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ABSTRACT

NONLINEAR WAVES ON A STRING

WITH INHOMOGENEOUS PROPERTIES

by

Robert Arredondo

University of New Hampshire, May, 2015

Nonlinear waves on an infinite string with a rapid change in properties at one

location are treated. The string is an idealized version of more complex configura-

tions in both fluids and solids. This idealized version treats the property change as

an interface with a discontinuity in properties. Packets of waves are then considered

with a reduced model, here a set of nonlinear Schrödinger (NLS) equations. The

stress and the displacement must both be matched at the interface, resulting in dy-

namic and kinematic interfacial conditions. The dynamic condition produces an in-

homogeneous effect that cannot be treated successfully with separation-of-variables.

This inhomogeneity is treated here with a time-evolution approach using Laplace

transforms. The results show that this inhomogeneity creates a mean longitudinal

displacement on both sides of the interface and a shift in the position of the interface

as the waves transit the interface. This mean longitudinal displacement corresponds

to a sustained strain in the string. The mean longitudinal displacement develops

three distinct features. One feature has a length scale that is half the wave-length of

the incident waves, while the lengths of the other two features have the same order

as the length of the wave packet. The position of maximum strain as a result of

this mean is often at the interface, depending on parameter values. These results

apply to a variety of applications, such as waves in ocean ice, Rayleigh waves caused

by earthquakes, internal waves in the oceans and atmosphere, as well as waves in

stretched cables.

xi



Chapter 1

INTRODUCTION

Waves are ubiquitous in natural and man-made systems, and they often have a

dramatic effect on the observable features of these systems. Waves are most easily

classified by their restoring force, such as gravity, rotation, and elasticity. The be-

havior of the waves may depend quite strongly on the character of these different

restoring forces. However, there are often features of wave behavior that are shared

by different types of waves. One such feature is the wave behavior near a region

where properties change rapidly.

Waves of all types are routinely treated with the slowly-varying assumption.

Slowly-varying generally means that the length for a change in any feature that

affects the waves is much longer than the length of an individual wave. Such features

include the material properties, a wave packet shape, and the strength of nonlinear

effects. The results with this slowly-varying approximation reliably predict many

aspects of wave propagation.

However, the background state may not be slowly varying, and in fact may contain

very sudden changes in properties. One example of this fact appears in the character

of the ice field in arctic regions. The ocean in arctic regions is covered with a relatively

thin ice layer. Waves have been observed to form on this ice layer, see Campbell [1],

analogous to ocean waves. These ice waves have both gravity and the elasticity of the

ice as restoring forces. The waves are likely to result in fracture of the ice and may

accelerate the disintegration of the polar ice caps, generating much recent interest

in the problem. For example, Wang [2] considered solitary waves with an elastic

model of ice, while Korobkin [3] investigates linear waves in a channel with an elastic

1



CHAPTER 1. INTRODUCTION 2

ice sheet. Measurements of ice thickness show wildly varying values over very short

distances, apparently mostly due to the shape of the ice bottom. Thus long waves,

as in Wang [2], when encountering these thickness variations would respond in a

manner similar to that predicted here.

Another application of the present results is the propagation of waves created by

earthquakes. An earthquake creates a wave field in the Earth that is often modeled as

wave propagation in an elastic media. However real earthquake waves travel through

many different regions with different material properties, e.g. loosely packed sand,

hard packed gravel, solid bedrock, etc. These different materials have different elastic

properties and the interface between these regions is often quite distinct. Again, the

waves would respond to these interfaces in a manner similar to that analyzed here.

Cables and wires are common in many man-made structures. Many types of

excitation will cause packets of waves to propagate along the cables. Different size

cables that are rigidly connected are accurately modeled with the results given here.

In general, a rapid or sudden change in the properties of the media will likely

cause a similar rapid change in the behavior of the waves, and this is a violation of

the common assumption of slowly-varying material conditions. Nonlinear waves that

are rapidly varying are very difficult to treat, yet can be extremely important. The

one configuration with rapidly varying properties that may still be treated within

the slowly-varying assumption is the case where the properties change abruptly, such

that they may be modeled with a discontinuity in properties. This discontinuity is an

interface, with corresponding interfacial conditions. The main subject of this thesis

is the weakly nonlinear theory of waves that are evolving slowly but impinge on an

interface of material properties for the important case of waves on an elastic string.

The linear model of waves propagating on a string results in the second-order
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wave equation,

utt = c2uxx,

where u is the string displacement, t is time, x is position, and c is the phase speed.

The subscripts used here indicate differentiation. The general wave solution to this

equation is

u = F (x± ct),

where F is any function with sufficient differentiability. These waves do not disperse

and are generally called ‘hyperbolic’ waves. A general discussion of the second-order

wave equation appears in many texts, see for example Whitham [4] and Bland [5].

Nonlinear effects with larger amplitude motions may be important for several

reasons. The material may have a constitutive behavior that is strongly nonlinear

or even non-elastic. For many common engineering materials these effects are small

and thus these material nonlinearities are ignored here. Other nonlinear effects may

appear as a result of purely geometric deformation, and these effects are included.

Nonlinear elasticity is reviewed in the book by Antman [6].

The physical model treated here is an infinite string consisting of two semi-infinite

segments, each with different material properties, joined together at the interface.

The interfacial conditions are that the displacement and tension must be continuous

at the interface point. Bland [5] and Fetter and Walecka [7] discuss the linear solution

for transverse waves with this same configuration. Morse and Ingard [8] and Beyer

[9] give the nonlinear equations for constant property strings, but do not provide a

general solution.

Nonlinear waves in discontinuous or inhomogeneous media have been treated

recently in a variety of physical problems. Ellermeier [10] considers weakly nonlinear

acoustic waves in non-uniform infinite and finite layered media; the medium in this

case is an ideal gas and the non-uniformities are variable cross-section and density
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stratification. Chakraborty and Gopalakrishnan [11, 12] consider numerical solutions

to nonlinear wave propagation in Functionally Graded Materials (FGM). FGM are

engineered materials which exhibit the desired variation of material properties along

spatial directions. The FGM properties in Chakraborty and Gopalakrishnan vary

over a finite spatial distance, unlike the sudden change in properties for the string

treated here. Mortell and Seymour [13] also consider nonlinear waves in FGM, but

seek a solution where the inhomogeneity interaction between strong stratification

and nonlinear material properties can be chosen to yield combinations of linear exact

solutions as in Whitham [4]. Iizuka and Wadati [14] study nonlinear waves in one-

dimensional inhomogeneous lattice structures using the Korteweg-de Vries (KdV)

wave equation. Yajima [15] and Iizuka and Wadati [16] treat the reflection and

transmission of soliton waves through a one-dimensional lattice structure, again using

the KdV equation.

The present work considers slowly evolving nonlinear monochromatic waves trav-

eling in a packet, similar to the many studies of dispersive waves. The wave packet

impinges on an interface, creating a reflected wave packet and a transmitted wave

packet, see Figure 1.1. The incident, reflected, and transmitted wave packets must

respect the nonlinear interfacial conditions, as well as the nonlinearities in the gov-

erning equations. Furthermore, the incident and reflected wave packets exist together

on one side of the string, creating a nonlinear wave interaction. The nonlinear evo-

lution during this stage is determined in this thesis. Of particular importance is a

mean longitudinal displacement that occurs. One of the goals of the present work is

to precisely determine this mean longitudinal displacement.

The governing equations are derived in Chapter 2 for a nonlinear one-dimensional

wave equation for transverse and longitudinal displacements for a constant or smooth

property string. In Chapter 3, the string is allowed to experience a sudden change
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Interface

Y

X

Incident Wave

Reflected Wave

Transmitted Wave

Left side string

Right side string

Figure 1.1: Wave Packet Direction

in properties and the interface conditions are developed. Chapter 4 addresses the

neglect of quadratic and higher level terms in the governing equations and the inter-

face conditions and the linear solution is presented. Chapter 5 develops the weakly

nonlinear wave equations from the governing equations and the interface conditions.

In Chapter 6, the weakly nonlinear solution is determined for each side of the string.

The dynamic interface condition could not be satisfied due to an inhomogeneous term

which requires special treatment. An initial value approach using Laplace transforms

is used. In Chapter 7, the third-order equations produce secular terms which must be

suppressed. This results in three NLS equations in terms of the incident, reflected,

and transmitted wave packet amplitudes. Chapter 8 presents the solution to the

NLS equations using numerical integration to solve for the wave packet amplitudes

and to show the resultant behavior of the mean longitudinal displacement equations.

Chapter 9 gives the results from the numerical simulations for various cases of

three dimensionless parameter ratios which emerge. These parameter ratios are var-
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ied systematically to show their effects. It was found that a purely transverse incident

wave produces longitudinal waves and a mean longitudinal displacement when inter-

acting with an interface where properties change suddenly. This mean longitudinal

displacement can be either positive or negative depending upon the parameters and

can have an effect that spans outward from the interface along each side of the string

with decreasing values away from the interface point. The shape of the mean longi-

tudinal displacement curve has unique features attributable to various terms in the

mean longitudinal displacement equations. The mean longitudinal displacement also

induces a strain in the string near the interface. Chapter 10 presents a conclusion of

the results.



Chapter 2

GOVERNING EQUATIONS

Consider an infinite string with smoothly varying properties along its length. Initially

the string is parallel to the abscissa. The properties of the string are dictated by the

mass density per unit length ρ, the elastic modulus E, and the cross-sectional area

A. Figures 2.1 and 2.2 are schematics of an infinitesimal element of the string in the

reference and deformed positions. The displacements u, v are defined by

u = x−X, (2.1)

v = y − Y , (2.2)

where X, Y are the initial or reference positions, and x, y are the deformed positions.

The angle ψ between the element at time t+ δt and the abscissa is given by

tanψ = lim
δX→0

(
δY + δv

δX + δu

)
=

[(
∂Y
∂X

+ ∂v
∂X

)(
1 + ∂u

∂X

) ]. (2.3)

Using subscript notation to denote derivatives, (2.3) becomes

tanψ =

(
YX + vX
1 + uX

)
. (2.4)

The elongational strain ε is defined as

ε = lim
δX→0

{
[(δX + δu)2 + (δY + δv)2]1/2 − [δX2 + δY 2]1/2

}
δX

, (2.5)

which reduces to

ε = [(1 + uX)2 + (YX + vX)2]1/2 − [1 + Y 2
X ]1/2. (2.6)

7
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δ

ψ + δψ

T

ψ

T l

Figure 2.1: String Element - Reference and Deformed Positions

Since the string in the initial or reference position is parallel to the abscissa,

YX = 0. (2.7)

Equations (2.4) and (2.6) become, respectively,

tanψ =

(
vX

1 + uX

)
, (2.8)

ε =
[
(1 + uX)2 + v2

X

]1/2 − 1. (2.9)

The equations of motion along the horizontal and vertical directions are derived using

Newton’s Second Law of motion,

~F = m~a, (2.10)

where ~F represents the sum of the forces acting on the string, m is the mass of the

string, and ~a is the acceleration. Applied to the string element, the horizontal force

component gives

T cosψ

∣∣∣∣
x+δx,y+δy

− T cosψ

∣∣∣∣
x,y

= ρutt δX.
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δ

Y

X

(X,Y)

Position at time = t

Position at time = t+dt ψ+δψ

(X+u, Y+v)
ψ

(X+  X+u+   u, Y+   Y+v+   v)δ δ δ δ

(X+  X, Y+  Y)δ

Figure 2.2: String Element Coordinate Endpoints

Add and subtract

T cosψ

∣∣∣∣
x,y+δy

and rearrange to get[
T cosψ

∣∣∣∣
x+δx,y+δy

− T cosψ

∣∣∣∣
x,y+δy

]
+

[
T cosψ

∣∣∣∣
x,y+δy

− T cosψ

∣∣∣∣
x,y

]
= ρutt δX. (2.11)

Divide both sides by δX and add δx and δy as appropriate to get

[T cosψ
∣∣∣
x+δx,y+δy

− T cosψ
∣∣∣
x,y+δy

δx

]
δx

δX

+

[T cosψ
∣∣∣
x,y+δy

− T cosψ
∣∣∣
x,y

δy

]
δy

δX
= ρutt. (2.12)

Take the limit as δX goes to zero, to obtain

∂(T cosψ)

∂x

∂x

∂X
+
∂(T cosψ)

∂y

∂y

∂X
= ρutt. (2.13)
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However, direct reference to the current state is unnecessary, as the quantity on the

left is merely ∂/∂X,

∂(T cosψ)

∂X
= ρutt. (2.14)

The vertical force component can also be treated in a similar matter resulting in

∂(T sinψ)

∂X
= ρvtt. (2.15)

In linear theory, (see Chapter 4), the tension in the string is considered constant

and the angle of the string element is assumed very small. Here the tension is

assumed non-constant and the angle of the string segment is not restrained to be

infinitesimal, resulting in the important nonlinear effects.

The tension in the string is defined using Hooke’s Law as

T = T0 + E A ε, (2.16)

where T0 is the initial tension and ε is the elongational strain. Combining (2.16) and

(2.9) gives

T = T0 + E A
[[

(1 + uX)2 + v2
X

]1/2 − 1
]
. (2.17)

After expanding, using trigonometric identities, and rearranging, (2.14) and (2.15)

become

−
(
T0 − EA

ρ

)[
(1 + uX)vXvXX − v2

XuXX
]

+
EA

ρ
uXX

[
(1 + uX)2 + v2

X

]3/2
=
[
(1 + uX)2 + v2

X

]3/2
utt, (2.18)

(
T0 − EA

ρ

)[
(1 + uX)2vXX − (1 + uX)vXuXX

]
+
EA

ρ
vXX

[
(1 + uX)2 + v2

X

]3/2
=
[
(1 + uX)2 + v2

X

]3/2
vtt. (2.19)



CHAPTER 2. GOVERNING EQUATIONS 11

Define

c2λ =
EA

ρ
, (2.20)

c2τ =
T0

ρ
, (2.21)

where cλ and cτ will be shown to be the longitudinal and transverse wave speeds,

respectively. Use these definitions in (2.20) and (2.21) to obtain

−(c2τ − c2λ)
[
(1 + uX)vXvXX − v2

XuXX
]

+c2λuXX
[
(1 + uX)2 + v2

X

]3/2
=
[
(1 + uX)2 + v2

X

]3/2
utt, (2.22)

(c2τ − c2λ)
[
(1 + uX)2vXX − (1 + uX)vXuXX

]
+c2λvXX

[
(1 + uX)2 + v2

X

]3/2
=
[
(1 + uX)2 + v2

X

]3/2
vtt. (2.23)

The nonlinear equations (2.22) and (2.23) cannot be solved in general, and a

weakly nonlinear approach is pursued here. The binomial series is used to simplify

the terms in (2.22) and (2.23) with fractional exponent. The binomial series is

(1 + β)n = 1 + nβ +
n(n− 1)

2!
β2 +

n(n− 1)(n− 2)

3!
β3 + · · ·, (2.24)

where |β| < 1. For small amplitude displacements where
∣∣(u2

X +2uX +v2
X)
∣∣ < 1, this

leads to

[
(1 + uX)2 + v2

X

]3/2
= 1 + 3uX + 3u2

X +
3

2
v2
X + u3

X +
3

2
uXv

2
X + · · ·. (2.25)

Use (2.25) in (2.22) and (2.23) and keep only cubic terms to obtain the final form of

the nonlinear governing equations as

utt − c2λuXX = (c2λ − c2τ )
[
(1− 2uX)vXvXX − v2

XuXX
]
+ · · ·, (2.26)
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vtt − c2τvXX = (c2λ − c2τ )

[
(1− 2uX)vXuXX +

(
uX − u2

X +
3

2
v2
X

)
vXX

]
+ · · ·. (2.27)

Close examination of (2.26) and (2.27) show that all nonlinear terms have a

common coefficient of

(c2λ − c2τ ). (2.28)

If the wave speeds are equal, the nonlinear terms vanish from the governing equations.

The severity of nonlinear behavior of the nonlinear terms is dictated by the difference

between the squares of the two wave speeds.



Chapter 3

THE INTERFACE

Now the string is allowed to have a sudden change in properties at one location,

conveniently chosen to be X = 0. Each segment of the string has constant or smooth

properties: E, A, and ρ. An incident wave packet is created at the left end of the

string and travels to the right toward the interface. When the incident wave packet

reaches the interface both a reflected wave packet and a transmitted wave packet are

created. The reflected waves travel to the left toward X = −∞ and the transmitted

waves travel to the right toward X = +∞.

At the interface the solution must obey both kinematic and dynamic conditions.

The kinematic condition requires the displacement to be continuous at X = 0:

[
u
]
l
=
[
u
]
r
, (3.1)

[
v
]
l
=
[
v
]
r
, (3.2)

on X = 0 where the subscript l and r represent left and right sides of the string

respectively.

The dynamic condition requires the tension T to be continuous, see Figure 3.1.

The Cartesian components of the tension give

[
T cosψ

]
l
=
[
T cosψ

]
r
, (3.3)

[
T sinψ

]
l
=
[
T sinψ

]
r
, (3.4)

on X = 0.

13
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Use (2.8) and (2.17) along with trigonometric identities to get

T cosψ =
(T0 − EA)(1 + uX)[
(1 + uX)2 + v2

X

]1/2 + EA (1 + uX), (3.5)

T sinψ =
(T0 − EA)vX[

(1 + uX)2 + v2
X

]1/2 + EA vX . (3.6)

Y

X

T

ψ
T

Figure 3.1: Interface Forces

Expand the denominator in a binomial series (2.24), to eliminate the fractional

exponent,

T cosψ = T0

(
1− 1

2
v2
X + uXv

2
X

)
+ EA

(
uX +

1

2
v2
X − uXv

2
X

)
, (3.7)

T sinψ = T0

(
vX − uXvX + u2

XvX −
1

2
v3
X

)
+ EA

(
uXvX − u2

XvX +
1

2
v3
X

)
, (3.8)

where quartic and higher terms have been neglected.

Finally the dynamic conditions at the interface are[
T0

(
uXv

2
X −

1

2
v2
X

)
+ EA

(
uX +

1

2
v2
X − uXv

2
X

)]
l

=

[
T0

(
uXv

2
X −

1

2
v2
X

)
+ EA

(
uX +

1

2
v2
X − uXv

2
X

)]
r

, (3.9)
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T0

(
vX − uXvX + u2

XvX −
1

2
v3
X

)
+ EA

(
uXvX − u2

XvX +
1

2
v3
X

)]
l

=

[
T0

(
vX − uXvX + u2

XvX −
1

2
v3
X

)
+ EA

(
uXvX − u2

XvX +
1

2
v3
X

)]
r

, (3.10)

on X = 0.



Chapter 4

LINEAR SOLUTION

Neglecting all quadratic and higher level terms in (2.26), (2.27), (3.1), (3.2), (3.9),

and (3.10) results in

utt − c2λuXX = 0, (4.1)

vtt − c2τvXX = 0, (4.2)

and [
u
]
l
=
[
u
]
r
, (4.3)[

v
]
l
=
[
v
]
r
, (4.4)[

(EA)uX

]
l
=
[
(EA)uX

]
r
, (4.5)[

vX
]
l
=
[
vX
]
r
, (4.6)

at X = 0. The linear governing equations (4.1) and (4.2) allow two well-known basic

wave types, transverse waves, where u = 0, v 6= 0, and longitudinal waves, where

u 6= 0, v = 0. A transverse wave traveling to the right has the solution

v = Aei(kX−σt) + A∗e−i(kX−σt), (4.7)

u = 0. (4.8)

where

σ = kcτ , (4.9)

where k is the wave number and σ is the wave frequency. The coefficient A is the

amplitude of the wave and the circumflex (*) indicates complex conjugate. Hence cτ

(defined earlier) is clearly the wave speed of a linear transverse wave.

16
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A longitudinal traveling wave moving to the right has the solution

u = Aei(kX−σt) + A∗e−i(kX−σt), (4.10)

v = 0. (4.11)

where

σ = kcλ. (4.12)

and here cλ is the wave speed of the longitudinal wave.

The nonlinear theory that follows will treat primarily transverse waves. Nonlinear

transverse waves will create a longitudinal structure, as will be seen. In contrast, pure

longitudinal waves do not create a transverse wave component, and hence transverse

waves are more complex.

Now focus on transverse waves, (4.7) and (4.8). When the interface is included,

the incident waves alone are not sufficient to satisfy the interfacial conditions, e.g.

for transverse waves, (4.7) does not satisfy (4.4) and (4.6). Reflected and transmitted

waves must be included. On the left side of the string both the incident and reflected

waves are present,

vl = Aei(klX−σt) + A∗e−i(klX−σt) +Bei(klX+σt) +B∗e−i(klX+σt), (4.13)

where A and B are the magnitudes of the incident and reflected wave respectively,

and kl is the wave number on the left. On the right side of the string are transmitted

waves, given by

vr = Cei(krX−σt) + C∗e−i(krX−σt), (4.14)

where C is the magnitude and kr is the wave number of the transmitted waves. The

interfacial conditions (4.4) and (4.6) give

A+B∗ = C, (4.15)
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kl(A−B∗) = krC. (4.16)

After rearranging,

B∗ = RA, (4.17)

C = T A. (4.18)

where R and T are the reflection and transmission coefficients, respectively,

R =

[
kl − kr
kl + kr

]
, (4.19)

T =

[
2kl

kl + kr

]
. (4.20)

Furthermore, the incident, reflected, and transmitted waves must have the same

frequency σ.



Chapter 5

WEAKLY NONLINEAR WAVES

The transverse waves are assumed to exist in a packet with a length that is much

larger than the length of an individual wave. The small parameter ε is a measure of

the ratio of the individual wavelength to the packet length. Introduce slow scales for

both time and position,

Xm = εmX, (5.1)

tm = εmt, (5.2)

where

m = 0, 1, 2. (5.3)

The amplitude of the wave is also assumed to be small, as measured by the small

parameter α. The displacement (u, v) is expanded in a power series in α,

u = αu1 + α2u2 + α3u3 + · · ·, (5.4)

v = αv1 + α2v2 + α3v3 + · · ·. (5.5)

In order to achieve the final results, the two small parameters α and ε must be

of the same order. The following choice achieves this requirement and simplifies the

analysis:

ε = α. (5.6)

The governing equations (2.26) and (2.27) (repeated here for convenience) are

utt − c2λuXX = (c2λ − c2τ )
[
(1− 2uX)vXvXX − v2

XuXX
]
,

vtt − c2τvXX = (c2λ − c2τ )

[
(1− 2uX)vXuXX +

(
uX − u2

X +
3

2
v2
X

)
vXX

]
.

19
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Use (5.1), (5.2), (5.4), (5.5), and (5.6) in (2.26) and (2.27), rearrange, and collect

powers of ε to obtain

u1,t0t0 − c2λu1,X0X0 = 0, (5.7)

v1,t0t0 − c2τv1,X0X0 = 0, (5.8)

u2,t0t0 − c2λu2,X0X0 = 2c2λu1,X0X1 − 2u1,t0t1 − c20v1,X0u1,X0,X0 + c20v1,X0v1,X0,X0 , (5.9)

v2,t0t0 − c2τv2,X0X0 = 2c2τv1,X0X1 − 2v1,t0t1 + c20v1,X0u1,X0,X0 + c20u1,X0v1,X0,X0 , (5.10)

u3,t0t0 − c2λu3,X0X0 = c2λu1,X1X1 − u1,t1t1 + 2c2λu1,X0X2 − 2u1,t0t2

+2c2λu2,X0X1 − 2u2,t0t1 − c20v1,X0u2,X0X0 + c20v1,X0v2,X0X0

−c20v2,X0u1,X0X0 + c20v2,X0v1,X0X0 − c20v1,X1u1,X0X0 + c20v1,X1v1,X0X0

−2c20v1,X0u1,X0X1 + 2c20v1,X0v1,X0X1 − 2c20u1,X0v1,X0v1,X0X0 , (5.11)

v3,t0t0 − c2τv3,X0X0 = c2τv1,X1X1 − v1,t1t1 + 2c2τv1,X0X2 − 2v1,t0t2

+2c2τv2,X0X1 − 2v2,t0t1 + c20v1,X1u1,X0X0 + c20v1,X0u2,X0X0

+c20v2,X0u1,X0X0 + c20u1,X1v1,X0X0 + c20u1,X0v2,X0X0 + c20u2,X0v1,X0X0

−c20(u1,X0)
2v1,X0X0 + 2c20v1,X0u1,X0X1 + 2c20u1,X0v1,X0X1

+
3

2
c20(v1,X0)

2v1,X0X0 − 2c20u1,X0v1,X0u1,X0X0 . (5.12)

where

c20 = (c2λ − c2τ ). (5.13)

Recall the kinematic interfacial conditions (3.1) and (3.2) (repeated here),

[
u
]
l
=
[
u
]
r
,

[
v
]
l
=
[
v
]
r
,

on X = 0.
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Treat these conditions in the same manner as the above governing equations to obtain[
u1

]
l
=
[
u1

]
r
, (5.14)[

v1

]
l
=
[
v1

]
r
, (5.15)[

u2

]
l
=
[
u2

]
r
, (5.16)[

v2

]
l
=
[
v2

]
r
, (5.17)

on X = 0. Note that the third order interfacial conditions are unnecessary.

The dynamic interfacial conditions (3.3) and (3.4) (repeated here) are[
T cosψ

]
l
=
[
T cosψ

]
r
,[

T sinψ
]
l
=
[
T sinψ

]
r
,

on X = 0, where

T cosψ = T0

(
1− 1

2
v2
X + uXv

2
X

)
+ EA

(
uX +

1

2
v2
X − uXv

2
X

)
,

T sinψ = T0

(
vX − uXvX + u2

XvX −
1

2
v3
X

)
+ EA

(
uXvX − u2

XvX +
1

2
v3
X

)
.

Again, treat as before: [
EA u1,X0

]
l
=
[
EA u1,X0

]
r
, (5.18)[

T0 v1,X0

]
l
=
[
T0 v1,X0

]
r
, (5.19)[

1

2
(EA− T0)(v1,X0)

2 + EA(u2,X0 + u1,X1)

]
l

=[
1

2
(EA− T0)(v1,X0)

2 + EA(u2,X0 + u1,X1)

]
r

, (5.20)

[
(EA− T0)u1,X0v1,X0 + T0(v2,X0 + v1,X1)

]
l
=[

(EA− T0)u1,X0v1,X0 + T0(v2,X0 + v1,X1)
]
r
, (5.21)

on X = 0.



Chapter 6

WEAKLY NONLINEAR SOLUTION

As stated previously, the incident wave packet travels toward the interface from the

left. Interaction with the interface creates reflected and transmitted wave packets.

During this interaction, incident, reflected, and transmitted waves exist simulta-

neously, while a short time later only the reflected and transmitted waves remain,

traveling in opposite directions. During this entire period, the right-side of the string

only has transmitted waves. There are no changes in string properties encountered

as the transmitted wave moves away from the interface, making it equivalent to an

incident wave problem with smooth or constant string properties. It is therefore

simpler and will be discussed first.

6.1 Right Side of String

If the incident wave is chosen to be a transverse wave, then the transmitted wave

will also be primarily a transverse wave of the form

u1 = 0, (6.1)

v1 = C11e
i(krX0−σt0) + C∗11e

−i(krX0−σt0), (6.2)

where kr is the wave number on the right side of the string and σ is the wave frequency

(σ = cτkr). The coefficient C11 may be a function of all the slow variables. The first

subscript on Cij denotes the order while the second subscript will be explained later.

Use (6.1) to simplify (5.7) through (5.12) to obtain

u1,t0t0 − c2λu1,X0X0 = 0, (6.3)

22
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v1,t0t0 − c2τv1,X0X0 = 0, (6.4)

u2,t0t0 − c2λu2,X0X0 = c20v1,X0v1,X0,X0 , (6.5)

v2,t0t0 − c2τv2,X0X0 = 2c2τv1,X0X1 − 2v1,t0t1 , (6.6)

u3,t0t0 − c2λu3,X0X0 = 2c2λu2,X0X1 − 2u2,t0t1 − c20v1,X0u2,X0X0

+c20v1,X0v2,X0X0 + c20v2,X0v1,X0X0 + c20v1,X1v1,X0X0 + 2c20v1,X0v1,X0X1 , (6.7)

v3,t0t0 − c2τv3,X0X0 = c2τv1,X1X1 − v1,t1t1 + 2c2τv1,X0X2 − 2v1,t0t2 + 2c2τv2,X0X1

−2v2,t0t1 + c20v1,X0u2,X0X0 + c20u2,X0v1,X0X0 +
3

2
c20(v1,X0)

2v1,X0X0 . (6.8)

Note that (6.1) and (6.2) satisfy the first-order equations (6.3) and (6.4).

Substitute (6.2) into (6.6). The inhomogeneous terms of (6.6) produce the secular

terms

2ikrcτ

[
cτ
∂C11

∂X1

+
∂C11

∂t1

]
ei(krx0−σt0), (6.9)

−2ikrcτ

[
cτ
∂C∗11
∂X1

+
∂C∗11
∂t1

]
e−i(krx0−σt0). (6.10)

To suppress these terms,[
cτ
∂C11

∂X1

+
∂C11

∂t1

]
=

[
cτ
∂C∗11
∂X1

+
∂C∗11
∂t1

]
= 0. (6.11)

The solution here is

C11 = C12e
i(krX1−σt1), (6.12)

C∗11 = C∗12e
−i(krX1−σt1), (6.13)

where C12 may be a function of (X2, t2). The second subscript is a reassignment

of the coefficient which may be functions of the next order slow scales and not the

current slow scales.
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When the first-order solution is combined with the linear solution, the combi-

nation is merely a linear wave with slightly different wave number and frequency.

These two orders are now merged by redefining the variables kr and σ as

kr → (ε+ 1)kr, (6.14)

σ → (ε+ 1)σ. (6.15)

The linear solution is now

v1 = C12e
i(krX0−σt0) + C∗12e

−i(krX0−σt0). (6.16)

All of the inhomogeneous terms in (6.6) are secular and have been suppressed.

Therefore the solution for v2 consists of the homogeneous solution alone,

v2 = C21e
i(krX0−σt0) + C∗21e

−i(krX0−σt0). (6.17)

where C21 and C∗21 are arbitrary. Set C21 = C∗21 = 0 to get

v2 = 0. (6.18)

Solve (6.5) using (6.16) to obtain homogeneous and particular parts for longitudinal

displacement to get

u2H = C22e
i(krX0−σt0) + C∗22e

−i(krX0−σt0), (6.19)

u2P = −ikr
4

[
C2

12e
i2(krX0−σt0) − C∗12

2e−i2(krX0−σt0)

]
, (6.20)

where subscripts H and P denote homogeneous and particular. Again choose C22 =

C∗22 = 0 to get

u2 = −ikr
4

[
C2

12e
i2(krX0−σt0) − C∗12

2e−i2(krX0−σt0)

]
. (6.21)
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6.2 Left Side of String

On the left side of the string there are two waves, incident and reflected. Both the

incident and reflected waves are transverse waves with displacements of the form

u1 = 0, (6.22)

v1 = A11e
i(klX0−σt0) + A∗11e

−i(klX0−σt0) + B11e
i(klX0+σt0) +B∗11e

−i(klX0+σt0), (6.23)

where kl is the wave number on the left side of the string and σ is the wave frequency

(σ = cτkl). The amplitudes A11 and B11 may be functions of all the slow variables.

Since u1 = 0 for the left side, then equations (6.3) through (6.8) are equally valid for

the left side. Note that (6.22) and (6.23) satisfy the first-order equations (6.3) and

(6.4).

The second-order solution must satisfy the inhomogeneous equations (6.5) and

(6.6). Substitute (6.23) into (6.6). The inhomogeneous terms in (6.6) produce secular

terms that result in

2iklcτ

[
cτ
∂A11

∂X1

+
∂A11

∂t1

]
ei(krx0−σt0), (6.24)

−2iklcτ

[
cτ
∂A∗11
∂X1

+
∂A∗11
∂t1

]
e−i(krx0−σt0), (6.25)

2iklcτ

[
cτ
∂B11

∂X1

+
∂B11

∂t1

]
ei(krx0+σt0), (6.26)

−2iklcτ

[
cτ
∂B∗11
∂X1

+
∂B∗11
∂t1

]
e−i(krx0+σt0). (6.27)

To suppress these terms,[
cτ
∂A11

∂X1

+
∂A11

∂t1

]
=

[
cτ
∂A∗11
∂X1

+
∂A∗11
∂t1

]
= 0, (6.28)

[
cτ
∂B11

∂X1

+
∂B11

∂t1

]
=

[
cτ
∂B∗11
∂X1

+
∂B∗11
∂t1

]
= 0. (6.29)
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The solution is

A11 = A12e
i(klX1−σt1), (6.30)

A∗11 = A∗12e
−i(klX1−σt1), (6.31)

B11 = B12e
i(klX1−σt1), (6.32)

B∗11 = B∗12e
−i(klX1−σt1), (6.33)

where A12 and B12 may be functions of (X2, t2).

As in the previous section, this contribution from the second-order may be merged

with the new linear solution. Use (6.15) and

kl → (ε+ 1)kl, (6.34)

to write the linear solution as

v1 = A12e
i(klX0−σt0) + A∗12e

−i(klX0−σt0) +B12e
i(klX0−σt0) +B∗12e

−i(klX0−σt0). (6.35)

Since all inhomogeneous terms in (6.6) have now been suppressed, the final solu-

tion for v2 consists of only a homogeneous part,

v2 = A22e
i(klX0−σt0) + A∗22e

−i(klX0−σt0) +B22e
i(klX0+σt0) +B∗22e

−i(klX0+σt0). (6.36)

Setting A22 = A∗22 = B22 = B∗22 = 0 gives

v2 = 0. (6.37)

Solve (6.5) using (6.35) to obtain homogeneous and particular parts for longitu-

dinal displacement,

u2H = A21e
i(klX0−σt0) + A∗21e

−i(klX0−σt0) +B21e
i(klX0+σt0) +B∗21e

−i(klX0+σt0), (6.38)

u2P = −ikl
4

[
(A11)

2ei2(klX0−σt0) − (A∗11)
2e−i2(klX0−σt0)

+(B11)
2ei2(klX0+σt0) − (B∗11)

2e−i2(klX0+σt0)

]
− ikl

2c2λ

(
c2λ − c2τ

)[
A11B11e

i2klX0 − A∗11B
∗
11e

−i2klX0

]
. (6.39)
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Set A21 = A∗21 = B21 = B∗21 = 0 to get

u2 = −ikl
4

[
(A11)

2ei2(klX0−σt0) − (A∗11)
2e−i2(klX0−σt0)

+(B11)
2ei2(klX0+σt0) − (B∗11)

2e−i2(klX0+σt0)

]
− ikl

2c2λ

(
c2λ − c2τ

)[
A11B11e

i2klX0 − A∗11B
∗
11e

−i2klX0

]
. (6.40)

6.3 Interface Conditions

The solution thus far is (6.1), (6.16), (6.18), (6.21), (6.22), (6.35), (6.37), and (6.40)

repeated here using appropriate subscripts l and r for the left and right sides:

[u1]l = [u1]r = 0, (6.41)

[v1]l = A12e
i(klX0−σt0) + A∗12e

−i(klX0−σt0) +B12e
i(klX0+σt0) +B∗12e

−i(klX0+σt0), (6.42)

[v1]r = C12e
i(krX0−σt0) + C∗12e

−i(krX0−σt0), (6.43)

[u2]l = −ikl
4

[
(A12)

2ei2(klX0−σt0) − (A∗12)
2e−i2(klX0−σt0)

+(B12)
2ei2(klX0+σt0) − (B∗12)

2e−i2(klX0+σt0)

]
− ikl

2c2λ

(
c2λ − c2τ

)[
A12B12e

i2klX0 − A∗12B
∗
12e

−i2klX0

]
, (6.44)

[u2]r =
ikr
4

[
C∗12

2e−2i(krX0−σt0) − C2
12e

2i(krX0−σt0)

]
, (6.45)

[v2]l = [v2]r = 0. (6.46)

The kinematic and dynamic interface conditions, (5.14) through (5.21), must be

satisfied at the interface where X = 0. Since the initial tension T0 equal on both
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sides of the string and v1 is independent of X1, (6.41) and (6.46) may be used to

reduce the eight interfacial conditions (5.14) to (5.21) to four:

[
v1

]
l
=
[
v1

]
r
, (6.47)[

u2

]
l
=
[
u2

]
r
, (6.48)[

v1,X0

]
l
=
[
v1,X0

]
r
, (6.49)[

1

2
(EA− T0)(v1,X0)

2 + EA(u2,X0)

]
l

=

[
1

2
(EA− T0)(v1,X0)

2 + EA(u2,X0)

]
r

, (6.50)

on X = 0. Use (6.42) and (6.43) in (6.47) and note that the three waves have the

same frequency σ, resulting in

C12 = A12 +B∗12, (6.51)

C∗12 = A∗12 +B12, (6.52)

on X = 0. This is the same relationship found in the linear solution (4.15). Differ-

entiate (6.42) and (6.43) and substitute into (6.49) to get the following additional

relationships:

C12 =
kl
kr

(
A12 −B∗12

)
, (6.53)

C∗12 =
kl
kr

(
A∗12 −B12

)
, (6.54)

on X = 0. Combine (6.51), (6.52), (6.53), and (6.54) to get

B0 = RA∗0, (6.55)

B∗0 = RA0, (6.56)

where A0 = A12(X = 0) and B0 = B12(X = 0). Combine (6.51), (6.52), (6.55), and

(6.56) to get

C0 = T A0, (6.57)
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C∗0 = T A∗0, (6.58)

where C0 = C12(X = 0) and R and T were defined previously as the reflection and

the transmission coefficients, respectively, (4.19) and (4.20).

6.4 Initial Condition Problem

There is an inhomogeneous term in the dynamic interfacial condition (6.50) that the

solution up to this point has not included. This term requires special treatment.

The solutions given in (6.41) through (6.46) are based on the separation-of-variables

method, where space and time are treated separately. A separation-of-variables

approach to the extra inhomogeneous term fails to satisfy the boundary condition at

X → ±∞. Instead, an initial value approach using Laplace transforms is pursued

here.

This additional part of the solution that balances the inhomogeneous term in the

dynamic interfacial condition must satisfy the homogeneous equation for the string,

u2,t0t0 − c2λu2,X0X0 = 0. (6.59)

The kinematic and dynamic boundary conditions at the interface may be written as

[
u2(0, t0)

]
l
−
[
u2(0, t0)

]
r

= 0, (6.60)[
EA(u2,X0(0, t0))

]
l
−
[
EA(u2,X0(0, t0))

]
r

= f(0, t0), (6.61)

where

f(0, t0) =

[
1

2

(
EA− T0

)[
v1,X0(0, t0)

]2]
r

−

[
1

2

(
EA− T0

)[
v1,X0(0, t0)

]2]
l

. (6.62)

Initial Conditions at t0 = 0 are

u2(X0, 0) = 0, (6.63)
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u2,t0(X0, 0) = 0. (6.64)

The Laplace transform is defined as

L
[
g(X0, t0)

]
=

∫ ∞

0

g(X0, t0) e
−st0dt0 = G(X0, s), (6.65)

where g is any function and G is it’s Laplace transform.

Use (6.65) to transform (6.59), (6.60), (6.61), (6.63), and (6.64) to get

s2 U(X0, s)− c2λU(X0, s)X0X0 = 0, (6.66)[
U(0, s)

]
l
−
[
U(0, s)

]
r

= 0, (6.67)[
EA(UX0(0, s))

]
l
−
[
EA(UX0(0, s))

]
r

= F (0, s), (6.68)

where

F (0, s) =
2k2

l k
2
r

(kl + kr)2

[(
EA
)
l
−
(
EA
)
r

]{∫ ∞

0

(A0)
2 e−i2σt0e−st0dt0

+

∫ ∞

0

(A∗0)
2 ei2σt0e−st0dt0 − 2

∫ ∞

0

A0A
∗
0 e

−st0dt0

}
, (6.69)

and U(X0, s) represents the Laplace transform of u2(X0, t0).

The general solution to (6.66) is

U(X0, s) = Ã(s) e−s(X0/cλ) + B̃(s) es(X0/cλ). (6.70)

For the left side of the string choose Ã(s) = 0 to achieve acceptable behavior as

X0 → −∞ and likewise for the right side of the string choose B̃(s) = 0 forX0 → +∞.

This gives

Ul(X0, s) = B̃l(s) e
s(X0/cλ)l , (6.71)

Ur(X0, s) = Ãr(s) e
−s(X0/cλ)r , (6.72)

where subscripts have been added to indicate sides of the domain. Apply the kine-

matic boundary condition (6.67) to get

Ãr(s) = B̃l(s) = D̃(s), (6.73)
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on X = 0. This gives the following solutions for (6.66):

Ul(X0, s) = D̃(s) es(X0/cλ)l , (6.74)

Ur(X0, s) = D̃(s) e−s(X0/cλ)r . (6.75)

Use (6.74) and (6.75) in (6.68) to get{[
EA

cλ

]
l

+

[
EA

cλ

]
r

}
s D̃(s) = F (0, s) (6.76)

Use (6.69) in (6.76), solve for D̃(s), then use (6.74) and (6.75), rearrange and simplify

to get

Ul(X0, s) =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

∗

{∫ ∞

0

[
(A0)

2 e−i2σt0 + (A∗0)
2 ei2σt0 − 2A0A

∗
0

]
e−st0dt0

}
es(X0/cλ)l

s
, (6.77)

Ur(X0, s) =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

∗

{∫ ∞

0

[
(A0)

2 e−i2σt0 + (A∗0)
2 ei2σt0 − 2A0A

∗
0

]
e−st0dt0

}
e−s(X0/cλ)r

s
. (6.78)

Multiply (6.77) and (6.78) by est and integrate from 0 to ∞ to inverse Laplace

transform the equations to get

u(X0, t0)l =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

1k
2
2

(k1 + k2)2

∗
∫ ∞

0

{∫ ∞

0

[
(A0)

2 e−i2σt0 + (A∗0)
2 ei2σt0 − 2A0A

∗
0

]
e−st0dt0

}
es(X0/cλ)lest0

s
ds,

(6.79)

u(X0, t0)r =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

1k
2
2

(k1 + k2)2

∗
∫ ∞

0

{∫ ∞

0

[
(A0)

2 e−i2σt0 + (A∗0)
2 ei2σt0 − 2A0A

∗
0

]
e−st0dt0

}
e−s(X0/cλ)rest0

s
ds,

(6.80)
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where the RHS has been left in integral form.

6.5 Evaluation of the Integrals

The inner integral in (6.79) and (6.80) can be sub-divided into three sub-integrals.

The coefficient A0 only depends weakly on t2, hence an asymptotic approximation

can be found for each sub-integral with repeated application of integration by parts.

The three integral solutions are, e.g.∫ ∞

0

A2
0e
−(s+i2σ)dt0 = A2

0

∫ ∞

0

e−(s+i2σ)dt0 +O(ε2). (6.81)

Essentially A2
0 may be removed from the integral here (and below),∫ ∞

0

e−(s+i2σ)t0dt0 =
1

(s+ i2σ)
+O(ε2), (6.82)

∫ ∞,

0

e−(s−i2σ)t0dt0 =
1

(s− i2σ)
+O(ε2), (6.83)∫ ∞

0

e−st0dt0 =
1

s
+O(ε2). (6.84)

Neglect terms of ε2 and higher and use (6.82), (6.83), and (6.84) in (6.79) and (6.80)

to obtain

ul(X0, t0) =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

∗
∫ ∞

0

{
(A0)

2 1

(s+ i2σ)
+ (A∗0)

2 1

(s− i2σ)
− 2A0A

∗
0

1

s

}
es(t0+X0/cλ)l

s
ds, (6.85)

ur(X0, t0) =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

∗
∫ ∞

0

{
(A0)

2 1

(s+ i2σ)
+ (A∗0)

2 1

(s− i2σ)
− 2A0A

∗
0

1

s

}
es(t0−X0/cλ)r

s
ds. (6.86)
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After rearrangement, the remaining integrals can each be segmented into three sub-

integrals with the coefficients removed from within the sub-integral (as treated ear-

lier) to give

ul(X0, t0) =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

{
(A0)

2

∫ ∞

0

es(t0+X0/cλ)

s(s+ i2σ)
ds

+(A∗0)
2

∫ ∞

0

es(t0+X0/cλ)

s(s− i2σ)
ds− 2A0A

∗
0

∫ ∞

0

es(t0+X0/cλ)

s2
ds

}
, (6.87)

ur(X0, t0) =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

{
(A0)

2

∫ ∞

0

es(t0−X0/cλ)

s(s+ i2σ)
ds

+(A∗0)
2

∫ ∞

0

es(t0−X0/cλ)

s(s− i2σ)
ds− 2A0A

∗
0

∫ ∞

0

es(t0−X0/cλ)

s2
ds

}
. (6.88)

The remaining six sub-integrals can each be treated with contour integration

using Cauchy’s residue theorem:∫
C

G(X, s) estds = 2πi
n∑
i=0

res
[
G(X, s)est

]
, (6.89)

The contour used consists of a line at s = γ which is to the right of all singularities

and an semi-circular arc of radius R centered at s = γ. The two parts of the contour

can be represented by a line integral and an integral over the semi-circular arc as∫
CR

G(X, s) estds+

∫
LR

G(X, s) estds = 2πi
n∑
i=0

res
[
G(X, s) est

]
. (6.90)

Taking the limit as R → ∞, the integral over the semi-circular arc is zero and the

remaining integral becomes

1

2πi

∫ γ+i∞

γ−i∞
G(X, s) estds =

n∑
i=0

res
[
G(X, s) est

]
. (6.91)
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Define

Ql =

(
t0 +

X0

cλ

)
l

, (6.92)

Qr =

(
t0 −

X0

cλ

)
r

. (6.93)

s

i

CR

γ + iR

γ - iR

s 1

s 2

LR

Figure 6.1: Contour Integration Including Poles

For Ql, Qr > 0, the semi-circle is chosen to the left of the s = γ line with

all singularities inside the closed contour, see Figure 6.1. Note: Only one contour

integral figure is shown here. For Ql, Qr < 0, the semi-circle is chosen to the right

with no singularities inside.

For Ql, Qr > 0, the integrals have simple poles and are not multi-valued, thus the
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residue at each singularity is given by

res(sn) =
1

(m− 1)!
lim
s→a

∂(m−1)

∂s(m−1)

[
(s− a)mf(s)

]
, (6.94)

where m is the order of the pole, and s = a is the pole location. For Ql, Qr > 0 the

integral solutions are

1

2πi

∫ γ+i∞

γ−i∞

esQl

s(s+ i2σ)
ds =

1

i2σ

[
1− e−i2σQl

]
, (6.95)

1

2πi

∫ γ+i∞

γ−i∞

esQl

s(s− i2σ)
ds = − 1

i2σ

[
1− ei2σQl

]
, (6.96)

1

2πi

∫ γ+i∞

γ−i∞

esQl

s2
ds = Ql, (6.97)

1

2πi

∫ γ+i∞

γ−i∞

esQr

s(s+ i2σ)
ds =

1

i2σ

[
1− e−i2σQr

]
, (6.98)

1

2πi

∫ γ+i∞

γ−i∞

esQr

s(s− i2σ)
ds = − 1

i2σ

[
1− ei2σQr

]
, (6.99)

1

2πi

∫ γ+i∞

γ−i∞

esQr

s2
ds = Qr. (6.100)

For Ql, Qr < 0, the integrals do not contain singularities and are zero.

Substitute (6.95), (6.96), (6.97), (6.98), (6.99), and (6.100) into (6.87) and (6.88)

and recall the particular solutions (6.40) and (6.21). The final longitudinal displace-

ment may be written as

u2(X0, t0)l = −ikl
4

[
(A12)

2ei2(klX0−σt0) − (A∗12)
2e−i2(klX0−σt0)

+(B12)
2ei2(klX0+σt0) − (B∗12)

2e−i2(klX0+σt0)

]
− ikl

2c2λ

(
c2λ − c2τ

)[
A12B12e

i2klX0 − A∗12B
∗
12e

−i2klX0

]
+ W̄l, (6.101)
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u2(X0, t0)r = −ikr
4

[
(C12)

2ei2(krX0−σt0) − (C∗12)
2e−i2(krX0−σt0)

]
+ W̄r, (6.102)

where

W̄l =


0 when t0 <

[
− X0

cλ

]
l

Ūl when t0 >
[
− X0

cλ

]
l

,

W̄r =


0 when t0 <

[
X0

cλ

]
r

Ūr when t0 >
[
X0

cλ

]
r

,

Ūl =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

{
(A0)

2 1

i2σ

[
1− e−i2σ(t0+X0/cλ)l

]
−(A∗0)

2 1

i2σ

[
1− ei2σ(t0+X0/cλ)l

]
− 2A0A

∗
0

[
t0 +

X0

cλ

]
l

}
, (6.103)

Ūr =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

{
(A0)

2 1

i2σ

[
1− e−i2σ(t0−X0/cλ)r

]
−(A∗0)

2 1

i2σ

[
1− ei2σ(t0−X0/cλ)r

]
− 2A0A

∗
0

[
t0 −

X0

cλ

]
r

}
. (6.104)



Chapter 7

NLS EQUATIONS

The third-order equations are used to finalize the solution. These equations are not

solved, but it is important that all secular terms be eliminated to make the second-

order solution uniformly valid. As a result of the third-order analysis the secular

terms create three non-linear Schrödinger’s (NLS) equations. The NLS equations

will be solved numerically.

7.1 Third-Order Equations

The third-order equations are (6.7) and (6.8), repeated here:

u3,t0t0 − c2λu3,X0X0 = 2c2λu2,X0X1 − 2u2,t0t1 − c20v1,X0u2,X0X0

+c20v1,X0v2,X0X0 + c20v2,X0v1,X0X0 + c20v1,X1v1,X0X0 + 2c20v1,X0v1,X0X1 ,

v3,t0t0 − c2τv3,X0X0 = c2τv1,X1X1 − v1,t1t1 + 2c2τv1,X0X2 − 2v1,t0t2 + 2c2τv2,X0X1

−2v2,t0t1 + c20v1,X0u2,X0X0 + c20u2,X0v1,X0X0 +
3

2
c20(v1,X0)

2v1,X0X0 .

Apply (6.18) and (6.37) to get

u3,t0t0 − c2λu3,X0X0 = 2c2λu2,X0X1 − 2u2,t0t1 − c20v1,X0u2,X0X0

+c20v1,X1v1,X0X0 + 2c20v1,X0v1,X0X1 , (7.1)

v3,t0t0 − c2τv3,X0X0 = c2τv1,X1X1 − v1,t1t1 + 2c2τv1,X0X2 − 2v1,t0t2

+c20v1,X0u2,X0X0 + c20u2,X0v1,X0X0 +
3

2
c20(v1,X0)

2v1,X0X0 . (7.2)

37
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Several terms contain derivatives of v1 and u2 with respect to X1 or t1. Since v1 and

u2 are not functions of X1 or t1, the equations further reduce to

u3,t0t0 − c2λu3,X0X0 = −c20v1,X0u2,X0X0 , (7.3)

v3,t0t0 − c2τv3,X0X0 = 2c2τv1,X0X2 − 2v1,t0t2

+c20v1,X0u2,X0X0 + c20u2,X0v1,X0X0 +
3

2
c20(v1,X0)

2v1,X0X0 , (7.4)

valid for both sides of the string.

7.1.1 Right Side of String

The first- and second-order solutions for the right side of the string are (6.16) and

(6.102), repeated here:

(v1)r = C12e
i(krX0−σt0) + C∗12e

−i(krX0−σt0),

(u2)r = −ikr
4

[
(C12)

2ei2(krX0−σt0) − (C∗12)
2e−i2(krX0−σt0)

]
+ W̄r,

where

W̄r =


0 when t0 <

[
X0

cλ

]
r

Ūr when t0 >
[
X0

cλ

]
r

,

Ūr =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

{
(A0)

2 1

i2σ

[
1− e−i2σ(t0−X0/cλ)r

]
−(A∗0)

2 1

i2σ

[
1− ei2σ(t0−X0/cλ)r

]
− 2A0A

∗
0

[
t0 −

X0

cλ

]
r

}
.

For the right side of the string (7.3) and (7.4) become

[
u3,t0t0 − c2λu3,X0X0

]
r

= c20k
4
r

[
C3

12e
i3(krX0−σt0) + C∗12

3e−i3(krX0−σt0)

]
−c20k4

r

[
C2

12C
∗
12e

i(krX0−σt0) + C12C
∗
12

2e−i(krX0−σt0)

]
−ic20kr

[
C12e

i(krX0−σt0) − C∗12e
−i(krX0−σt0)

]
(W̄X0X0)r, (7.5)
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where

(W̄X0X0)r =


0 when t0 <

[
X0

cλ

]
r

(ŪX0X0)r when t0 >
[
X0

cλ

]
r

,

(ŪX0X0)r =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

[
i2σ

(c2λ)r

]
∗

{
− (A0)

2e−i2σ(t0−X0/cλ)r + (A∗0)
2ei2σ(t0−X0/cλ)r

}
; (7.6)

and

[
v3,t0t0 − c2τv3,X0X0

]
r

=

+ei(krX0−σt0)

[
2ic2τkr

∂C12

∂X2

+ 2icτkr
∂C12

∂t2
− c20k

4
rC

∗
12C

2
12

]

−e−i(krX0−σt0)

[
2ic2τkr

∂C∗12
∂X2

+ 2icτkr
∂C∗12
∂t2

+ c20k
4
rC12C

∗
12

2

]
+ic20kr

[
C12e

i(krX0−σt0) − C∗12e
−i(krX0−σt0)

]
(W̄X0X0)r

−c20k2
r

[
C12e

i(krX0−σt0) + C∗12e
−i(krX0−σt0)

]
(W̄X0)r, (7.7)

where

(W̄X0)r =


0 when t0 <

[
X0

cλ

]
r

(ŪX0)r when t0 >
[
X0

cλ

]
r

,

(ŪX0)r =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

[
1

(cλ)r

]
∗

{
− (A0)

2e−i2σ(t0−X0/cλ)r − (A∗0)
2ei2σ(t0−X0/cλ)r + 2A0A

∗
0

}
. (7.8)

7.1.2 Left Side of String

The second-order solutions for the left side of the string are (6.35) and (6.101),

repeated here:

(v1)l = A12e
i(klX0−σt0) + A∗12e

−i(klX0−σt0) + +B12e
i(klX0+σt0) +B∗12e

−i(klX0+σt0),
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(u2)l = −ikl
4

[
(A12)

2ei2(klX0−σt0) − (A∗12)
2e−i2(klX0−σt0)

+(B12)
2ei2(klX0+σt0) − (B∗12)

2e−i2(klX0+σt0)

]
− ikl

2c2λ

(
c2λ − c2τ

)[
A12B12e

i2klX0 − A∗12B
∗
12e

−i2klX0

]
+ W̄l,

where:

W̄l =


0 when t0 <

[
− X0

cλ

]
l

Ūl when t0 >
[
− X0

(cλ

]
l

,

Ūl =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

{
(A0)

2 1

i2σ

[
1− e−i2σ(t0+X0/cλ)l

]
−(A∗0)

2 1

i2σ

[
1− ei2σ(t0+X0/cλ)l

]
− 2A0A

∗
0

[
t0 +

X0

cλ

]
l

}
,

For the left side of the string (7.3) and (7.4) become

[
u3,t0t0 − c2λu3,X0X0

]
l
=

+c20k
4
l

[
A3

12e
i3(klX0−σt0) + A∗12

3e−i3(klX0−σt0) +B3
12e

i3(klX0+σt0) +B∗12
3e−i3(klX0+σt0)

]
−c20k4

[
(A2

12A
∗
12 + 2c21A12B12B

∗
12)e

i(klX0−σt0) + (A12A
∗
12

2 + 2c21A
∗
12B12B

∗
12)e

−i(klX0−σt0)

+(B2
12B

∗
12 + 2c21A12A

∗
12B12)e

i(klX0+σt0) + (B12B
∗
12

2 + 2c21A12A
∗
12B

∗
12)e

−i(klX0+σt0)

−(A12B
2
12 + 2c21A12B

2
12)e

i(3klX0+σt0) − (A∗12B
∗
12

2 + 2c21A
∗
12B

∗
12

2)e−i(3klX0+σt0)

−(A2
12B12 + 2c21A

2
12B12)e

i(3klX0−σt0) − (A∗12
2B∗12 + 2c21A

∗
12

2B∗12)e
−i(3klX0−σt0)

+A∗12B12
2ei(klX0+3σt0) + A12B

∗
12

2e−i(klX0+3σt0)

+A2
12B

∗
12e

i(klX0−3σt0) + A∗12
2B12e

−i(klX0−3σt0)

]
−ic20kl

[
A12e

i(klX0−σt0) − A∗12e
−i(klX0−σt0)

+B12e
i(klX0+σt0) −B∗12e

−i(klX0+σt0)
]
(W̄X0X0)l, (7.9)
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where

(W̄X0X0)l =


0 when t0 <

[
− X0

cλ

]
l

(ŪX0X0)l when t0 >
[
− X0

cλ

]
l

,

(ŪX0X0)l =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

i2σ

(c2λ)l

∗

{
− (A0)

2e−i2σ(t0+X0/cλ)l + (A∗0)
2ei2σ(t0+X0/cλ)l

}
, (7.10)
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and

[
v3,t0t0 − c2τv3,X0X0

]
l
= +

[
i2c2τkl

(
∂A12

∂X2

)
+ i2cτkl

(
∂A12

∂t2

)

−c20k4
lA

2
12A

∗
12 + c20k

4
l (c

2
1 − 3)A12B12B

∗
12

]
ei(klX0−σt0)

−

[
i2c2τkl

(
∂A∗12
∂X2

)
+ i2cτkl

(
∂A∗12
∂t2

)

+c20k
4
lA12A

∗
12

2 − c20k
4
l (c

2
1 − 3)A∗12B12B

∗
12

]
e−i(klX0−σt0)

+

[
i2c2τkl

(
∂B12

∂X2

)
− i2cτkl

(
∂B12

∂t2

)

−c20k4
lB

2
12B

∗
12 + c20k

4
l (c

2
1 − 3)A12A

∗
12B12

]
ei(klX0+σt0)

−

[
i2c2τkl

(
∂B∗12
∂X2

)
− i2cτkl

(
∂B∗12
∂t2

)

+c20k
4
lB12B

∗
12

2 − c20k
4
l (c

2
1 − 3)A12A

∗
12B

∗
12

]
e−i(klX0+σt0)

−3c20k
4
l

(
c21 − 1

)
A12B

2
12e

i(3klX0+σt0) − 3c20k
4
l

(
c21 − 1

)
A∗12B

∗
12

2e−i(3klX0+σt0)

−3c20k
4
l

(
c21 − 1

)
A2

12B12e
i(3klX0−σt0) − 3c20k

4
l

(
c21 − 1

)
A∗12

2B∗12e
−i(3klX0−σt0)

−c20k4
lA

∗
12B

2
12e

i(klX0+3σt0) − c20k
4
lA12B

∗
12

2e−i(klX0+3σt0)

−c20k4
lA

2
12B

∗
12e

i(klX0−3σt0) − c20k
4
lA

∗
12

2B12e
−i(klX0−3σt0)

+ic20kl

[
A12e

i(klX0−σt0) − A∗12e
−i(klX0−σt0) +B12e

i(klX0+σt0) −B∗12e
−i(klX0+σt0)

]
(W̄X0X0)l

−c20k2
l

[
A12e

i(klX0−σt0) + A∗12e
−i(klX0−σt0) +B12e

i(klX0+σt0) +B∗12e
−i(klX0+σt0)

]
(W̄X0)l,

(7.11)

where

(W̄X0)l =


0 when t0 <

[
− X0

cλ

]
l

(ŪX0)l when t0 >
[
− X0

cλ

]
l

,
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(ŪX0)l =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
2k2

l k
2
r

(kl + kr)2

1

(cλ)l

∗

{
(A0)

2e−i2σ(t0+X0/cλ)l + (A∗0)
2ei2σ(t0+X0/cλ)l − 2A0A

∗
0

}
, (7.12)

c21 =
c20
c2λ

=
(c2λ − c2τ )

c2λ
. (7.13)

7.2 Secular Terms

Equations (7.5) and (7.9) produce no secular terms. Secular terms in (7.7) and (7.11)

are suppressed using the relations,∫ π

−π
eimXe−inX dX = 0, (7.14)

for n 6= m, and ∫ π

−π
eimXe−inX dX = 2π, (7.15)

for n = m, where m and n are integers. Multiply each equation by one of the four

secular exponential factors e±i(kX0±σt0) and integrate over one period. Finally the

NLS equations are

i2cτkl

(
∂A12

∂t2

)
+ i2c2τkl

(
∂A12

∂X2

)
− c20k

4
lA12

2A∗12

+c20k
4
l (c

2
1 − 3)A12B12B

∗
12 − c20k

2
lA12(N̄l) = 0, (7.16)

i2cτkl

(
∂B12

∂t2

)
− i2c2τkl

(
∂B12

∂X2

)
+ c20k

4
lB12

2B∗12

−c20k4
l (c

2
1 − 3)A12A

∗
12B12 + c20k

2
lB12(N̄l) = 0, (7.17)

i2cτkr

(
∂C12

∂t2

)
+ i2c2τkr

(
∂C12

∂X2

)
− c20k

4
rC

2
12C

∗
12 − c20k

2
rC12(N̄r) = 0, (7.18)
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where

N̄l =


0 when t0 <

[
− X0

cλ

]
l

M̄l when t0 >
[
− X0

cλ

]
l

,

N̄r =


0 when t0 <

[
X0

cλ

]
r

M̄r when t0 >
[
X0

cλ

]
r

,

with

M̄l = −
[

(EA)l − (EA)r
(EA/cλ)l + (EA/cλ)r

]
4k2

l k
2
r

(kl + kr)2

1

(cλ)l
A0A

∗
0, (7.19)

M̄r =

[
(EA)l − (EA)r

(EA/cλ)l + (EA/cλ)r

]
4k2

l k
2
r

(kl + kr)2

1

(cλ)r
A0A

∗
0. (7.20)



Chapter 8

SOLUTION

The equations governing the complex amplitudes of the incident, reflected, and trans-

mitted wave packets are (7.16), (7.17), and (7.18) respectively. The interfacial con-

ditions are given by (6.47) through (6.50). The mean longitudinal displacement due

to the inhomogeneity in the interfacial conditions is governed by (6.101) through

(6.104). These equations will be treated numerically. Before the numerical approxi-

mation is discussed, the equations are made dimensionless.

8.1 NLS Equations

All variables are made dimensionless using kl and (cτ )l:

Â12 = klA12, (8.1)

B̂12 = klB12, (8.2)

Ĉ12 = klC12, (8.3)

Â0 = klA0, (8.4)

û2 = klu2, (8.5)

X̂j = klXj, (8.6)

t̂j = kl(cτ )ltj, (8.7)

where the circumflex denotes a dimensionless quantity and the subscript j = 0, 1, 2.

Note that the dimensionless variables are defined with the string properties from the

left side. The dimensionless equations are

45
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(
∂Â12

∂t̂2

)
+K0

(
∂Â12

∂X̂2

)
= − i

2
K1Â

2
12Â

∗
12 +

i

2
K2Â12B̂12B̂

∗
12 − iK1Â12N̂l, (8.8)

(
∂B̂12

∂t̂2

)
−K0

(
∂B̂12

∂X̂2

)
=
i

2
K1B̂12

2B̂∗12 −
i

2
K2Â12Â

∗
12B̂12 + iK1B̂12N̂l, (8.9)(

∂Ĉ12

∂t̂2

)
+K3

(
∂Ĉ12

∂X̂2

)
= − i

2
K4Ĉ12

2Ĉ∗12 − iK5Ĉ12N̂l, (8.10)

where

K0 =
[cτ ]l
[cτ ]l

= 1, (8.11)

K1 =

[
c2λ
c2τ
− 1

]
l

, (8.12)

K2 =

[
c2τ
c2λ
− 2

c2λ
c2τ

+ 1

]
l

, (8.13)

K3 =
[cτ ]r
[cτ ]l

, (8.14)

K4 =

[
k3
r

k3
l

][
(c2λ − c2τ )l
(cτ )r(cτ )l

]
, (8.15)

K5 =

[
kr
kl

][
(c2λ − c2τ )l
(cτ )r(cτ )l

]
, (8.16)

N̂l =

 0 when t̂0 < −X̂0

(
cτ
cλ

)
l

M̂l when t̂0 > −X̂0

(
cτ
cλ

)
l

,

N̂r =

 0 when t̂0 < X̂0
(cτ )l

(cλ)r

M̂r when t̂0 > X̂0
(cτ )l

(cλ)r

,

M̂l = K6Â0Â
∗
0, (8.17)

M̂r = K7Â0Â
∗
0, (8.18)

K6 = −

[
1− (EA)r

(EA)l

1 + (EA)r (cλ)l

(EA)l (cλ)r

]
4
[
kr

kl

]2[
1 + kr

kl

]2 , (8.19)

K7 =

[
1− (EA)r

(EA)l

(cλ)r

(cλ)l
+ (EA)r

(EA)l

]
4
[
kr

kl

]2[
1 + kr

kl

]2 . (8.20)
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8.2 Interface Mean Longitudinal Displacement

The mean longitudinal displacement is governed by (6.101) through (6.104). Taking

the average of (6.101) and (6.102), the oscillatory terms vanish and the interfacial

mean longitudinal displacement terms remain. The equations become

ū2(X0, t0)l = −ikl
2

(
1− c2τ

c2λ

)
l

[
ABei2klX0 − A∗B∗e−i2klX0

]
+ ¯̄Wl, (8.21)

ū2(X0, t0)r = ¯̄Wr, (8.22)

where

¯̄Wl =


0 when t0 <

[
− X0

cλ

]
l

Ūl when t0 >
[
− X0

cλ

]
l

,

¯̄Wr =


0 when t0 <

[
X0

cλ

]
r

Ūr when t0 >
[
X0

cλ

]
r

.

Apply (8.1) through (8.7) as before to get the dimensionless equations:

ûl = − i
2
K8

[
ÂB̂ei2X̂ − Â∗B̂∗e−i2X̂

]
+ Ŵl, (8.23)

ûr = Ŵr, (8.24)

where

K8 =

(
1− c2τ

c2λ

)
l

, (8.25)

Ŵl =

 0 when t̂ < −X̂
(
cτ
cλ

)
l

Ûl when t̂ > −X̂
(
cτ
cλ

)
l

,

Ŵr =

 0 when t̂ < X̂ (cτ )l

(cλ)r

Ûr when t̂ > X̂ (cτ )l

(cλ)r

,



CHAPTER 8. SOLUTION 48

Ûl = K9

{
(Â∗0)

2 i

2

[
1− ei2

[
t̂+X̂(cτ/cλ)l

]]

−(Â0)
2 i

2

[
1− e−i2

[
t̂+X̂(cτ/cλ)l

]]
− 2Â0Â

∗
0

[
t̂+ X̂

(cτ
cλ

)
l

]}
, (8.26)

Ûr = K9

{
(Â∗0)

2 i

2

[
1− ei2

[
t̂−X̂(cτ )l/(cλ)r)

]]

−(Â0)
2 i

2

[
1− e−i2

[
t̂−X̂(cτ )l/(cλ)r

]]
− 2Â0Â

∗
0

[
t̂− X̂

(cτ )l
(cλ)r

]}
, (8.27)

K9 =

[
1− (EA)r

(EA)l[
cτ
cλ

]
l
+ (EA)r (cτ )l

(EA)l (cλ)r

]
2
[
kr

kl

]2[
1 + kr

kl

]2 . (8.28)

8.3 Parameters

There are four dimensional parameters for each side of the string related to the string

properties: the density ρ, the elastic modulus E, the cross section area A, and the

initial tension T0. For the string to be continuous at the interface, the initial tension

must be the same on both sides of the string. Furthermore, E and A only appear

together as the product EA, and hence may be treated as a single parameter. This

leaves five free parameters. In addition, the initial conditions that create the incident

wave packet introduce wave number, amplitude, and packet length, as well as the

packet shape.

After non-dimesionalization, the material properties are reduced to three dimen-

sionless parameters: the wave speed ratio c2n, the density ratio ρn, and the elastic-area

product ratio (EA)n. These parameter ratios are defined as

c2n =

[
c2λ
c2τ

]
l

, (8.29)
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ρn =
ρr
ρl
, (8.30)

(EA)n =
(EA)r
(EA)l

. (8.31)

The wave speed ratio (8.29) relates the longitudinal and transverse wave speeds

for the left side of the string where the incident wave packet begins. When the wave

speed ratio is unity, the coefficient of the non-linear terms in governing equations,

(2.26) and (2.27), is zero. The non-linear terms vanish for the left side of the string.

The wave speed ratio is equal to the reciprocal of the initial strain in the string,

since

c2n =
c2λ
c2τ

=
EA

T0

, (8.32)

which is found using (2.20) and (2.21). Furthermore,

δ

L
=

T0

EA
=

1

c2n
, (8.33)

where δ is the change in length and L is the initial length of the string. Hence when

the wave speed ratio is unity, the string’s stretched length would be twice the affected

initial length, see Morse [8]. Therefore

c2n > 1. (8.34)

With the use of (2.21) and (4.9), the density ratio can be related to the wave

number ratio by

kr
kl

=

[
ρr
ρl

]1/2

. (8.35)

This allows the reflection and transmission coefficients (4.19) and (4.20) to be

written as
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R̂ =

[
1− kr

kl

1 + kr

kl

]
, (8.36)

T̂ =

[
2

1 + kr

kl

]
. (8.37)

If the density ratio and wave number ratio are equal to zero, then the right side

of the string has zero density. This would require that the interface be rigidly fixed.

The elastic-area product ratio can only be equal to zero under the circumstance

where either the elastic modulus or the cross-sectional area of the right side of the

string is zero. Therefore, both ρn and (EA)n must be positive,

ρn > 0, (8.38)

(EA)n > 0. (8.39)

All three parameter ratios appear in the coefficients of both the NLS and mean

longitudinal displacement equations in various combinations. How the values of these

parameters affect the behavior of the equations will be discussed further in the results

section.

8.4 Numerical Techniques

For numerical computation, the complex amplitudes Â, B̂, and Ĉ are converted into

magnitude and phase using

Â = Reiφ, (8.40)

B̂ = Seiθ, (8.41)

Ĉ = Peiψ. (8.42)
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Apply (8.40) through (8.42) to (8.8) through (8.10), expand, simplify, and separate

into real and imaginary parts to get

Rt +K0RX = 0, (8.43)

St −K0SX = 0, (8.44)

Pt +K3PX = 0, (8.45)

φt +K0φX = −1

2
K1R

2 +
1

2
K2S

2 −K1Ñl, (8.46)

θt −K0θX =
1

2
K1R

2 − 1

2
K2S

2 +K1Ñl, (8.47)

ψt +K3ψX = −1

2
K4P

2 −K3Ñr, (8.48)

where

Ñl =

 0 when t̂ < −X̂
(
cτ
cλ

)
l

M̃l when t̂ > −X̂
(
cτ
cλ

)
l

,

Ñr =

 0 when t̂ < X̂ (cτ )l

(cλ)r

M̃r when t̂ > X̂ (cτ )l

(cλ)r

,

M̃l = K6R
2
0, (8.49)

M̃r = K7R
2
0. (8.50)

Use (6.55) and (6.57) to get the relationship between R, S, and P ,

S =

[
kl − kr
kl + kr

]
Re−i(φ+θ), (8.51)

P =

[
2kl

kl + kr

]
Rei(φ−ψ). (8.52)

Use (8.40) through (8.42) in (8.23), (8.24), (8.26), and (8.27) to obtain

ûl = K8RS sin(φ+ θ + 2X̂) + Ŵl, (8.53)

ûr = Ŵr, (8.54)
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where

Ŵl =

 0 when t̂ < −X̂
(
cτ
cλ

)
l

Ûl when t̂ > −X̂
(
cτ
cλ

)
l

,

Ŵr =

 0 when t̂ < X̂ (cτ )l

(cλ)r

Ûr when t̂ > X̂ (cτ )l

(cλ)r

,

Ûl = K9

[
R2

0

(
sin(2φ0) + sin

[
2
(
t̂+ X̂(cτ/cλ)l − φ0

)])
−2R2

0

[
t̂+ X̂

(cτ
cλ

)
l

]]
,

(8.55)

Ûr = K9

[
R2

0

(
sin(2φ0) + sin

[
2
(
t̂− X̂(cτ )l/(cλ)r − φ0

)])
−2R2

0

[
t̂− X̂

(cτ )l
(cλ)r

]]
,

(8.56)

where subsrpcipt 0 again refers to the value at X = 0.

Equations (8.43) through (8.48) are solved using a two-step Lax Wendroff method,

see Ames [18], for linear terms and the third-order Adams Bashforth method, see

Gear [19], for non-linear terms. All interior points are treated with a central difference

scheme, for example (8.43) and (8.46) are discretized as

Ri, j+1 = Ri, j −
1

2
K0

∆t

∆x

(
Ri+1, j −Ri−1, j

)
+

1

2

(
K0

∆t

∆x

)2(
Ri+1, j − 2Ri, j +Ri−1, j

)
, (8.57)

φi, j+1 = φi, j −
1

2
K − 0

∆t

∆x
(φi+1, j − φi−1, j)

+
1

2

(
K0

∆t

∆x

)2(
φi+1, j − 2φi, j + φi−1, j

)
−∆t

48
K1

(
55R2

i, j − 59R2
i, j−1 + 37R2

i, j−2 − 9R2
i, j−3

)
+

∆t

48
K2

(
55S2

i, j − 59S2
i, j−1 + 37S2

i, j−2 − 9S2
i, j−3

)
, (8.58)

where i, j are the space and time grid points, respectively.
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At the interface (the right boundary point) an upwind scheme was used, for example

(8.43) and (8.46) are discretized as

Ri, j+1 = Ri, j −
1

2
K0

∆t

∆x

(
Ri, j −Ri−1, j

)
+

1

2

(
K0

∆t

∆x

)2(
Ri, j − 2Ri−1, j +Ri−2, j

)
, (8.59)

φi, j+1 = φi, j −
1

2
K − 0

∆t

∆x
(φi, j − φi−1, j)

+
1

2

(
K0

∆t

∆x

)2(
φi, j − 2φi−1, j + φi−2, j

)
−∆t

48
K1

(
55R2

i, j − 59R2
i, j−1 + 37R2

i, j−2 − 9R2
i, j−3

)
+

∆t

48
K2

(
55S2

i, j − 59S2
i, j−1 + 37S2

i, j−2 − 9S2
i, j−3

)
. (8.60)

Simulations use 2000 spatial points on each side of the string with ∆X = 0.01.

The time step chosen is ∆t = .005. A raised cosine curve is used for the incident

wave packet. The wave packet consists of 8 individual waves, see Figure 8.1.

8.5 Strain

The strain in the string can be directly calculated using (2.9) repeated here

ε =
[
(1 + uX)2 + v2

X

]1/2 − 1.

Use the binomial series expansion and retaining up to cubic terms for the frac-

tional exponent gives

ε = uX +
1

2
v2
X −

1

2
uXv

2
X + · · ·. (8.61)

As before expand the displacements using the slow scales (5.1) and (5.2) to get

u = εu1 + ε2u2 + ε3u3 + · · ·, (8.62)
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Figure 8.1: Wave packet showing raised cosine envelope (dashed line) and individual waves

(solid line).

v = εv1 + ε2v2 + ε3v3 + · · ·. (8.63)

Take the derivatives and group by powers of ε gives

uX = εu1,X0 + ε2(u2,X0 + u1,X1) + ε3(u3,X0 + u2,X1 + u1,X2) + · · ·, (8.64)

vX = εv1,X0 + ε2(v2,X0 + v1,X1) + ε3(v3,X0 + v2,X1 + v1,X2) + · · ·. (8.65)

For both sides of the string it was determined that

u1 = 0, (8.66)

v2 = 0. (8.67)

and it was also determined that u2 and v2 are not functions of X1 and since the

third-order solution u3 and v3 is not sought, the strain can be simplified as

ε = ε2

(
1

2
v2

1,X0
+ u2,X0

)
. (8.68)
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Non-dimensionalize and separate the wave amplitudes coefficents A, B, and C

into magnitude and phase components gives the following expressions

(v1,X0)
2
l = −

[
2R2cos

(
2φ+ 2(X0 − t0)

)
+ 2S2cos

(
2θ + 2(X0 + t0)

)
+RScos

(
φ+ θ + 2X0

)
+RScos

(
φ− θ − 2t0

)
− 2R2 − 2S2

]
, (8.69)

(u2,X0)l =

[
R2cos

(
2φ+ 2(X0 − t0)

)
+ S2cos

(
2θ + 2(X0 − t0)

)
+K8

[
2RScos(φ+ θ + 2X0)

]
+ (ŴX0)l. (8.70)



Chapter 9

RESULTS

Three free dimensionless parameters emerge from the non-dimensional equations: the

wave speed ratio c2n, the density ratio ρn, and the elastic-area product ratio (EA)n.

While these parameters are present in several of the coefficients in the governing

equations, each parameter can be connected to a physical process that it approxi-

mately controls. The wave speed ratio c2n primarily sets the relationship between the

transverse waves and the longitudinal interfacial mean longitudinal displacement.

The density ratio ρn has the major effect upon the magnitudes of the reflected and

transmitted waves. The elastic-area product ratio (EA)n has the major effect upon

the mean longitudinal displacement when incident, reflected, and transmitted waves

are acting near the interface.

A choice of unity for any of the three dimensionless parameters have unique

consequences for the results. For example, when c2n is unity many coefficients vanish,

causing the non-linear terms in the NLS equations to vanish, see (8.12), (8.13), (8.15),

and (8.16). When ρn is unity, the reflection coefficient is zero and the transmission

coefficient is unity, see (4.19) and (4.20). As a result, there is no reflected wave and

the transmitted wave is identical to the incident wave in shape and amplitude; the

incident wave passes through the interface unchanged. When (EA)n is unity, the

interfacial part of the mean longitudinal displacement becomes zero. Hence careful

choice of the parameters can be used to select particular cases.

56
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9.1 A Typical Case (Case T1)

Choose

c2n = 16.0, (9.1)

ρn = 0.4, (9.2)

(EA)n = 0.5. (9.3)

This is called Case T1. For this case both ρn and (EA)n on the left side of the string

are greater than the corresponding values on the right side. Thus the left side is

more dense and stiffer.

The results for this case are shown in Figures 9.1, 9.2, and 9.3. Figure 9.1 has

three sub-figures, each representing a single time. Figure 9.1a corresponds to a time

prior to the incident wave reaching the interface, Figure 9.1b corresponds to a time

when the incident wave is transiting the interface, and Figure 9.1c corresponds to

a time when the reflected and transmitted waves have disengaged fully from the

interface.

Each sub-figure has three panels. The top panel shows the wave magnitude versus

horizontal position. The incident wave (solid line) and reflected wave (dashed line)

are shown on the left side of the string and the transmitted wave (solid line) is shown

on the right side of the string. The second or middle panel shows the wave phase

versus horizontal position. The third or bottom panel shows the mean longitudinal

displacement. Note that the mean displacement is a longitudinal displacement, de-

spite being plotted vertically. The interface is shown as a vertical dash-dot line in

the center of each panel. This same combination of time values and panels will be

used again for other cases.

The mean longitudinal displacement is zero before the incident wave packet has

reached the interface, and after the incident waves have disappeared and been con-
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verted into reflected and transmitted waves, as shown in the third panel of Figures

9.1a and 9.1c. This mean longitudinal displacement is only nonzero when the wave

packet is interacting with the interface, as shown in Figure 9.1b.

This result may also be inferred directly from equations (6.101) and (6.102). The

mean longitudinal displacement for the left side of the string is given by (6.101) and

has two components. One component is proportional to ei2klX0 , and this component

depends on the presence of both the incident and reflected waves acting simultane-

ously. This oscillatory mean longitudinal displacement is a result of direct interaction

between the incident and reflected waves. If either the incident wave or reflected wave

packets do not exist, then this component is zero. The oscillatory component of the

mean is evident in Figure 9.1b for X̄ < 0 as very fine-scale oscillations. The wave-

length of this oscillation is always half the wavelength of the incident waves (or twice

the wave number).

The other component is W̄l, which is the mean longitudinal displacement due

to the inhomogeneity in the interfacial conditions. The right side only has one

component W̄r (no oscillatory part), also due to this interfacial effect. This interfacial

mean longitudinal displacement is only nonzero when the incident waves are exciting

the interface, e.g. when A0 6= 0.

Figure 9.2 shows the development with time of the mean longitudinal displace-

ment. Given in Figure 9.2 are mean longitudinal displacement profiles at a sequence

of times, each profile shifted by a fixed value merely for display purposes. It is evi-

dent in Figure 9.2 that this mean longitudinal displacement expands outward from

the interface as the incident wave begins to interact with the interface. The extent of

this mean longitudinal displacement is therefore not the same as the incident wave

packet length, as in many other nonlinear wave systems. The mean longitudinal

displacement length is related to the incident wave packet length only in the sense
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of the time associated with the incident wave packet to interact with the interface.

This mean longitudinal displacement length or span of longitudinal influence directed

outward in both directions from the interface is determined by this time along with

the longitudinal wave speed, cλ.

The interfacial component of the mean longitudinal displacement appears to be

comprised of two parts, clearly evident in Figure 9.2. One part is the broad shape

that continues to grow with time. The other part is a narrower effect that results

in a peaked shape at the interface. These two parts can be clearly distinguished in

the expressions for W̄ in (8.26) and (8.27). Both effects are due to the quadratic

contributions of v2
1 for both sides of the string. Since (v1)l is the sum of the incident

and reflected waves (and their complex conjugates), then (v2
1)l consists of squares of

the amplitudes of the incident and reflected wavesA2
0 andA∗20 , and cross terms 2A0A

∗
0.

The A2
0 and A∗20 terms are responsible for the oscillatory part of the interfacial mean

longitudinal displacement, and the frequency of oscillation is twice the incident wave

frequency. The cross product A0A
∗
0 contributes a linear variation with position (as an

increase on the left side). Both contributions have compact support. Note in Figure

9.2 that combination of oscillatory and linear components of the interfacial mean

longitudinal displacement results in a relatively large displacement of the interface.

There are two curves in Figure 9.3. A solid line shows the maximum mean

longitudinal displacement versus time. A dashed line shows the mean longitudinal

displacement at the interface position. Figure 9.3 shows that overall, the largest mean

longitudinal displacements occur when the incident wave packet is nearly centered at

the interface. Also the fluctuations are slightly smaller at the interface (dashed line),

e.g. the interface is not the location of the maximum mean longitudinal displacement.
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Figure 9.1: Case T1: Results with parameter settings of ρn = 0.4, (EA)n = 0.5, and

c2
n = 16.0, at times of (a) t̂ = 3.10, (b) t̂ = 3.82, and (c) t̂ = 4.54.
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lū

Figure 9.2: Case T1: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.3: Case T1: Mean maximum vs. time plot - solid line is maximum mean longitu-

dinal displacement and dashed line is the mean longitudinal displacement at the interface

location.



CHAPTER 9. RESULTS 62

9.2 ρn = (EA)n = 1 (Case 1)

Now choose

ρn = 1.0, (9.4)

(EA)n = 1.0, (9.5)

but allow c2n to have a sequence of values. This is called Case 1. Table 9.1 lists the

parameters for this sequence. Results for Case 1 are shown in Figures 9.4 through

9.7.

When ρn is unity, the reflection coefficient is zero and the transmission coefficient

is unity. Therefore there are no reflected waves for Case 1 and the transmitted wave

packet has the same magnitude and shape as the incident wave packet. Since (EA)n

is also chosen to be unity, this becomes a special case where the material properties

for both sides of the string are the same and the incident wave passes through the

interface with no change. The mean longitudinal displacement for this case is also

zero.

Table 9.1: Parameter Test Case 1

Case ρn (EA)n c2n û2 max.

1a 1.0 1.0 1.0 0

1b 1.0 1.0 4.0 0

1c 1.0 1.0 9.0 0

1d 1.0 1.0 16.0 0

If c2n is also chosen to be unity, then the nonlinear terms are zero (Case 1a), and

this case is shown in Figure 9.4. This is equivalent to the linear case for a string

with constant properties everywhere. Figure 9.4 shows results at three time values,
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as before. The third panel for each time shows the mean longitudinal displacement,

which is zero for this case. The first and second panels show the magnitude and

phase. Clearly for this case the wave packet moves to the right with the transverse

wave speed cτ and no other change, as expected.

Figures 9.5 through 9.7 (Cases 1b and 1c) show results with c2n 6= 1. Since ρn

and (EA)n are unity, there is still no reflected wave packet and the mean longitu-

dinal displacement is zero. However, with c2n 6= 1, the nonlinear effects are nonzero.

Figures 9.5 through 9.7 show that the magnitude of the wave packet is unaffected by

the nonlinearity for these sub-cases, and the only difference between the linear and

nonlinear cases is the phase, which now develops a variation within the wave packet,

and this variation becomes increasingly rapid with time. A larger value of c2n means

the rate of increase of this variation is faster, as can be seen by contrasting Figures

9.5 through 9.7. This result can be inferred directly from (8.43) through (8.48).

9.3 (EA)n = 1, c2n = 4 (Case 2)

Now choose

(EA)n = 1.0, (9.6)

c2n = 4.0, (9.7)

along with a sequence of values of ρn, and call this Case 2. The choice of c2n = 4

is merely for convenience, as the phase for this choice is less congested. Table 9.2

shows the parameter values for Case 2, and results are shown in Figures 9.8 through

9.19.

For Cases 2a and 2b, ρn is less than one which makes the right side of the

string less dense than the left. This causes the reflected waves to be smaller and

the transmitted waves to be larger in magnitude than the incident waves, as can
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Table 9.2: Parameter Test Case 2

Case ρn (EA)n c2n û2 max.

2a 0.25 1.0 4.0 0.24

2b 0.75 1.0 4.0 0.05

2c 1.5 1.0 4.0 0.07

2d 2.0 1.0 4.0 0.13

be seen in the top panels of sub-figures in Figure 9.8. The third panel in Figure

9.8b shows that the mean longitudinal displacement is weak but non-zero. Figure

9.9 gives more profiles of this mean longitudinal displacement. The interfacial part

of the mean longitudinal displacement with (EA)n = 1 is zero, hence the mean

longitudinal displacement shown in Figures 9.8 and 9.9 contains only the direct

interaction between the incident and reflected waves on the left side. This feature

makes Case 2 a special case.

Figure 9.10 shows the maximum displacement with time as the packet interacts

with the interface. There is a maximum in the displacement that occurs when the

packet is centered near the interface. However when the packet is very nearly centered

on the interface, the mean longitudinal displacement decreases briefly. This brief

effect is due to the symmetry that exists only when the incident wave packet is

centered, nearly cancelling this part of the mean longitudinal displacement.

Case 2b, shown in Figures 9.11 through 9.13, only differs in the value of ρn,

now larger but still less than unity. Figures 9.11 through 9.13 show that the results

closely match the results of case 2a in Figures 9.8 through 9.10. The significant

differences are that the reflected wave is much weaker for case 2b, and as a result

the mean longitudinal displacement is also much weaker, but otherwise has the same

character. Thus as ρn approaches unity, the result quickly approach the behavior
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shown in Case 1.

For Cases 2c and 2d, see Figures 9.14 and 9.17, ρn is greater than one, which now

makes the right side of the string more dense than the left and causes the reflected

wave and the transmitted wave to be smaller in magnitude than the incident wave.

As ρn increases from unity, the mean longitudinal displacement oscillations on the

left side of the string grow larger. Reflected and transmitted waves are present and

both reflected and transmitted wave magnitudes are smaller than the incident wave.

Three conclusions can be drawn from the results of the ρn variation in this case

and from the data in Table 9.3.

1. For ρn > 1: The left side of string is more dense than the right. The incident

wave upon reaching the interface causes both reflected and transmitted waves.

In the limit as ρn →∞, the magnitude of the reflected wave approaches unity

at 180 ◦ out of phase and the magnitude of the transmitted wave approaches

zero.

2. For ρn = 1: Both sides of the string have the same density. The incident

wave upon reaching the interface continues to pass through with no change in

magnitude or shape and there is no reflected wave created.

3. For ρn < 1: The right side of string is more dense than the left. The incident

wave upon reaching the interface causes both reflected and transmitted waves.

In the limit as ρn → 0, the magnitude of the reflected wave approaches unity

and the magnitude of the transmitted wave approaches a value twice that of

the incident wave.
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Table 9.3: Density and Wave Number Ratio Comparison

Density Wave Number Reflection Transmission

Ratio Ratio Coefficient Coefficient

(ρr/ρl)
1/2 kr/kl R T

0 0 1.0 2.0

.25 0.5 0.3333 1.3333

.50 0.7071 0.1716 1.1716

.75 0.8667 0.0718 1.0718

1.0 1.0 0 1.0

1.25 1.1180 -0.0557 0.9443

1.50 1.2247 -0.1010 0.8990

1.75 1.3229 -0.1390 0.8610

2.0 1.4142 -0.1716 0.8284

10 3.1623 -0.5195 0.4805

100 10 -0.8182 0.1818

1000 31.6228 -0.9387 0.0613

1000000 1000 -0.9980 0.0020

+∞ +∞ -1.0 0

9.4 ρ = 1, c2n = 4 (Case 3)

Choose

ρn = 1.0, (9.8)

c2n = 4.0, (9.9)
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along with a sequence of values of (EA)n. This is called Case 3. Once again the

choice of c2n = 4 is made for convenience, so that the phase is less congested. Table 9.4

shows the parameter values for Case 3. This table also includes the span of influence

lengths on both sides of the interface of the mean longitudinal displacement under

the columns (X̂ min.) and (X̂ max.). Results are shown in Figures 9.20 through

9.31.

With the choice ρn = 1 the reflection coefficient is zero and there are no reflected

waves. Since there is no reflected waves, the magnitude of the incident waves are

unchanged by interaction with the interface. This is seen for Case 3a in Figure

9.20. The top panels of each sub-figure of Figure 9.20 show that the wave packet

merely moves to the right without any significant evolution is shape. However, the

mean longitudinal displacement is not zero as the wave packet interacts with the

interface, as can be seen in the third panel of Figure 9.20b. More profiles of the

mean longitudinal displacement are shown together in Figure 9.21, as before. This

mean longitudinal displacement is purely due to the interfacial inhomogeneity, but

does show both parts, including the oscillatory component. Figure 9.22 shows the

maximum of the mean longitudinal displacement, indicating again that the maximum

mean longitudinal displacement occurs when the packet is nearly centered on the

interface. Case 3a has (EA)n < 1. With such values, the coefficient of the mean

longitudinal displacement K9 is positive, and the mean longitudinal displacement is

positive on both sides of the interface. This corresponds to a nonuniform shift to the

right of the region near the interface.

Case 3b only differs from Case 3a in its value for (EA)n, now being (EA)n = 0.75,

closer to unity. The results for Case 3b are shown in Figures 9.23 through 9.25, and

are generally the same as Case 3a, except now the mean longitudinal displacement

is weaker. As with Case 3a, (EA)n < 1 and the mean longitudinal displacement is
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positive everywhere, as shown in Figure 9.25. As (EA)n → 1, the mean longitudinal

displacement gets progressively weaker, being zero with (EA)n = 1, as discussed

above.

With (EA)n > 1, the value of K9 is negative and the mean longitudinal displace-

ment is also negative. For example, Case 3c has (EA)n = 1.5 and results are shown

in Figures 9.26 through 9.28. Figure 9.26 shows that the wave packet still propagates

to the right with no significant changes, other than an increase in the oscillations

in phase. However the mean longitudinal displacement in Figure 9.26b, also shown

in Figure 9.28, is everywhere negative. This negative mean longitudinal displace-

ment is a shift to the left. Thus in general, when the stiffness increases across the

interface, the mean longitudinal displacement is negative, indicating a shift toward

the source of the waves. Case 3d shows similar results to Case 3c, as (EA)n grows

larger away from unity, the mean longitudinal displacement becomes greater in the

negative direction, see Figures 9.29 through 9.31.

Table 9.4: Parameter Test Case 3

Case ρn (EA)n c2n û2 max/min. X̂ min. X̂ max.

3a 1.0 0.25 4.0 4.44 -7.8 3.6

3b 1.0 0.75 4.0 1.16 -7.8 6.7

3c 1.0 1.5 4.0 -1.91 -7.8 8.9

3d 1.0 2.0 4.0 -3.69 -7.8 10.6

9.5 ρ 6= 1, (EA)n 6= 1, c2n = 4 (Cases 4, 5, and 6)

Cases 4, 5, and 6 treat values of ρn and (EA)n that are not unity. Again c2n = 4 for

convenience.
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Table 9.5: Parameter Test Case 4, 5, 6

Case ρn (EA)n c2n û2 max/min. X̂ min. X̂ max.

4a 0.3 0.3 4.0 2.33 -11.0 7.8

4b 0.3 0.7 4.0 0.99 -11.0 11.0

4c 0.7 0.3 4.0 3.51 -7.8 4.8

4d 0.7 0.7 4.0 1.26 -7.8 7.8

5a 1.3 0.4 4.0 3.49 -7.8 4.4

5b 1.8 0.7 4.0 1.61 -7.8 5.0

5c 0.4 1.3 4.0 -0.90 -8.8 13.3

5d 0.7 1.8 4.0 -2.78 -7.8 12.2

6a 1.3 1.3 4.0 -1.19 -7.8 7.8

6b 1.3 1.8 4.0 -3.20 -7.8 8.8

6c 1.8 1.3 4.0 -1.30 -7.8 6.6

6d 1.8 1.8 4.0 -3.34 -7.8 7.8

Case 4 has both ρn and (EA)n less than unity, making the left side of the string

more dense and stiffer than the right side. Results are shown in Figures 9.32 through

9.43. This case has reflected and transmitted waves, as well as nonzero mean longi-

tudinal displacement. As before, since ρn < 1, the transmitted wave is larger than

the incident wave while the reflected wave is smaller. Also, the mean longitudinal

displacement due to the direct interaction is not zero, and since (EA)n < 1, the in-

terfacial mean longitudinal displacement is positive. Case 4a has ρn = (EA)n = 0.3

and results are shown in Figures 9.32 through 9.34. Overall the results agree with

the previous cases that isolated the effects of the parameters. However the mean lon-

gitudinal displacement now includes all components and is therefore more complex,
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as shown in Figure 9.36. Furthermore, the maximum mean longitudinal displace-

ment shown in Figure 9.37 indicates that the oscillations in the mean longitudinal

displacement are larger after the wave packet has passed the time when it would be

centered on the interface.

Cases 4b, 4c, and 4d are shown in Figures 9.35 through 9.43, all with values

of ρn and (EA)n that are less than unity. The results are similar to Case 4a, and

indicate that as these parameters approach unity, the mean longitudinal displacement

becomes weaker. Some combinations of parameters produce unusual patterns in the

mean longitudinal displacement, for example Case 4c with ρn = 0.7 and (EA)n = 0.3,

results shown in Figure 9.38, indicates a very narrow region at the interface where

the mean longitudinal displacement is quite large, and an even narrow peak at the

interface location.

Case 6 has both ρn and (EA)n greater than unity, making the left side of the

string less dense and less stiff than the right side. Results are shown in Figures 9.56

through 9.67. Here (EA)n > 1 causes the mean longitudinal displacement to be

negative, as before. The transmitted waves are larger than the incident waves, and

the reflected wave is small. This makes the oscillatory part of the mean longitudinal

displacement very small and difficult to discern in Figures 9.56 through 9.67.

Finally, Case 5 uses a combination of values ρn and (EA)n, with one greater and

the other less than unity. In all these cases, the value of (EA)n controlled the sign

of the mean longitudinal displacement, despite a value of ρn that was greater or less

than unity, see Figures 9.44 through 9.55.
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9.6 A sequence of c2n values (Case 7)

Now choose

ρn = 0.25, (9.10)

(EA)n = 0.5, (9.11)

this being a typical case with the left side of the string more dense and stiff than

the right side. The c2n value is allowed to be varied, this is called Case 7. Table

9.6 gives the parameter values and a summary of the results of mean longitudinal

displacement and strain. The mean longitudinal displacement along with the trans-

verse displacement create an associated strain in the string. The strain is calculated

directly from (2.9) using values of û2 and v̂1 for each time step in the numerical

program.

The results for Case 7 are shown in Figures 9.68 through 9.87. As ρn < 1,

then the transmitted wave is larger than the incident wave and the reflected wave

is smaller. The mean longitudinal displacement has all parts non-zero. This can be

seen in Figures 9.68 through 9.70 for Case 7a. The strain for this case is shown in

Figures 9.71 and 9.72. Figure 9.71 indicates that the largest values of strain for this

case occur on the left of the interface, and are due to the fine-scale oscillations that

result when the incident and transmitted waves exist simultaneously. The effect of

the mean longitudinal displacement is relatively small for Case 7a.

Case 7b has c2n = 9, larger than Case 7a, and results for this case are shown

in Figures 9.73 through 9.77. The behavior of the wave packet is not significantly

different here, but the strain is larger, as shown in Figures 9.72 and 9.77.

Figure 9.76 shows that the fine-scale oscillations are still responsible for the largest

values of the strain, despite a significant larger contribution from the mean longitu-

dinal displacement as shown in Figure 9.74. It seems in general true that the largest
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Table 9.6: Parameter Test Case 7

Case ρn (EA)n c2n û2 max/min. X̂ min. X̂ max. Strain max.

7a .25 .5 4.0 1.49 -7.8 11.0 15.3

7b .25 .5 9.0 2.39 -13.3 15.5 46.6

7c .25 .5 16.0 3.17 -15.5 21.7 91.8

7d .25 .5 25.0 3.93 -18.9 26.7 151.0

strains are due not to the interfacial part of the mean longitudinal displacement, but

to these fine-scale oscillations in the mean longitudinal displacement. Also note in

Figure 9.77 that largest overall values of the strain occur after the center of the wave

packet has passed through the interface. Cases 7c and 7d, with even larger values of

c2n, shows the same general trends in the strain and of the mean longitudinal displace-

ment. In general it may be concluded that as the wave speed increases, the mean

longitudinal displacement and the strain also increase. It can also be concluded that

as seen in the Case 7 set of graphs and in Table 9.6 the span of influence to the left

and right of the interface also increases with larger values of c2n.
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Figure 9.4: Case 1a: Results with parameter settings of ρn = 1.0, (EA)n = 1.0, and

c2
n = 1.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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lū

(b)

100 80 60 40 20 0 20 40 60 80 100

klX0

0.0

0.5

1.0

1.5

M
A

G
N

IT
U

D
E

100 80 60 40 20 0 20 40 60 80 100

klX0

1

0

1

P
H

A
S
E
 x

10
2

100 80 60 40 20 0 20 40 60 80 100

klX0

1

0

1

k
lū
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Figure 9.5: Case 1b: Results with parameter settings of ρn = 1.0, (EA)n = 1.0, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.6: Case 1c: Results with parameter settings of ρn = 1.0, (EA)n = 1.0, and

c2
n = 9.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.7: Case 1d: Results with parameter settings of ρn = 1.0, (EA)n = 1.0, and

c2
n = 16.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.8: Case 2a: Results with parameter settings of ρn = 0.25, (EA)n = 1.0, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.9: Case 2a: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 2.0 units

vertically.
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Figure 9.10: Case 2a: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.



CHAPTER 9. RESULTS 79

100 80 60 40 20 0 20 40 60 80 100

klX0

0.0

0.5

1.0

1.5

M
A

G
N

IT
U

D
E

100 80 60 40 20 0 20 40 60 80 100

klX0

1

0

1

P
H

A
S
E
 x

1
02

100 80 60 40 20 0 20 40 60 80 100

klX0

1

0

1

k
lū
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Figure 9.11: Case 2b: Results with parameter settings of ρn = 0.75, (EA)n = 1.0, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.12: Case 2b: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 2.0 units

vertically.
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Figure 9.13: Case 2b: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.14: Case 2c: Results with parameter settings of ρn = 1.5, (EA)n = 1.0, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.15: Case 2c: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 2.0 units

vertically.
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Figure 9.16: Case 2c: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.17: Case 2d: Results with parameter settings of ρn = 2.0, (EA)n = 1.0, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.18: Case 2d: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 2.0 units

vertically.
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Figure 9.19: Case 2d: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.20: Case 3a: Results with parameter settings of ρn = 1.0, (EA)n = 0.25, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.21: Case 3a: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.22: Case 3a: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.23: Case 3b: Results with parameter settings of ρn = 1.0, (EA)n = 0.75, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.24: Case 3b: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

(cτkl)t

0

1

2

3

4

5

k
lū

Figure 9.25: Case 3b: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.



CHAPTER 9. RESULTS 89

100 80 60 40 20 0 20 40 60 80 100

klX0

0.0

0.5

1.0

1.5

M
A

G
N

IT
U

D
E

100 80 60 40 20 0 20 40 60 80 100

klX0

2

1

0

1

2

P
H

A
S
E
 x

1
02

100 80 60 40 20 0 20 40 60 80 100

klX0

5
4
3
2
1
0

k
lū
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Figure 9.26: Case 3c: Results with parameter settings of ρn = 1.0, (EA)n = 1.5, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.27: Case 3c: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.28: Case 3c: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.29: Case 3d: Results with parameter settings of ρn = 1.0, (EA)n = 2.0, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.30: Case 3d: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.31: Case 3d: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.32: Case 4a: Results with parameter settings of ρn = 0.3, (EA)n = 0.3, and

c2
n = 4.0, at time of (a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.33: Case 4a: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.34: Case 4a: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.



CHAPTER 9. RESULTS 95

100 80 60 40 20 0 20 40 60 80 100

klX0

0.0

0.5

1.0

1.5

M
A

G
N

IT
U

D
E

100 80 60 40 20 0 20 40 60 80 100

klX0

2

1

0

1

2

P
H

A
S
E
 x

1
02

100 80 60 40 20 0 20 40 60 80 100

klX0

0
1
2
3
4
5

k
lū
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(c)

Figure 9.35: Case 4b: Results with ρn = 0.3, (EA)n = 0.7, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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lū

Figure 9.36: Case 4b: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.37: Case 4b: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.38: Case 4c: Results with ρn = 0.7, (EA)n = 0.3, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.39: Case 4c: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.40: Case 4c: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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lū

(b)

100 80 60 40 20 0 20 40 60 80 100

klX0

0.0

0.5

1.0

1.5

M
A

G
N

IT
U

D
E

100 80 60 40 20 0 20 40 60 80 100

klX0

2

1

0

1

2

P
H

A
S
E
 x

10
2

100 80 60 40 20 0 20 40 60 80 100

klX0

0
1
2
3
4
5

k
lū
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Figure 9.41: Case 4d: Results with ρn = 0.7, (EA)n = 0.7, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.42: Case 4d: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.43: Case 4d: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.44: Case 5a: Results with ρn = 1.3, (EA)n = 0.4, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.45: Case 5a: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.46: Case 5a: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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lū

(c)

Figure 9.47: Case 5b: Results with ρn = 1.8, (EA)n = 0.7, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.48: Case 5b: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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lū

Figure 9.49: Case 5b: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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(c)

Figure 9.50: Case 5c: Results with ρn = 0.4, (EA)n = 1.3, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.51: Case 5c: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

(cτkl)t

5

4

3

2

1

0

k
lū

Figure 9.52: Case 5c: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.



CHAPTER 9. RESULTS 107

100 80 60 40 20 0 20 40 60 80 100

klX0

0.0

0.5

1.0

1.5

M
A

G
N

IT
U

D
E

100 80 60 40 20 0 20 40 60 80 100

klX0

2

1

0

1

2

P
H

A
S
E
 x

1
02

100 80 60 40 20 0 20 40 60 80 100

klX0

5
4
3
2
1
0

k
lū
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Figure 9.53: Case 5d: Results with ρn = 0.7, (EA)n = 1.8, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.54: Case 5d: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.55: Case 5d: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.56: Case 6a: Results with ρn = 1.3, (EA)n = 1.3, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.57: Case 6a: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.58: Case 6a: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.59: Case 6b: Results with ρn = 1.3, (EA)n = 1.8, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.60: Case 6b: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.61: Case 6b: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.62: Case 6c: Results with ρn = 1.8, (EA)n = 1.3, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.63: Case 6c: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.64: Case 6c: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.65: Case 6d: Results with ρn = 1.8, (EA)n = 1.8, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.66: Case 6d: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 3.0 units

vertically.
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Figure 9.67: Case 6d: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.



CHAPTER 9. RESULTS 117

100 80 60 40 20 0 20 40 60 80 100

klX0

0.0

0.5

1.0

1.5

M
A

G
N

IT
U

D
E

100 80 60 40 20 0 20 40 60 80 100

klX0

3
2
1
0
1
2
3

P
H

A
S
E
 x

1
02

100 80 60 40 20 0 20 40 60 80 100

klX0

0
1
2
3
4

k
lū
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Figure 9.68: Case 7a: Results with ρn = 0.25, (EA)n = 0.5, and c2
n = 4.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.69: Case 7a: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 4.0 units

vertically.
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Figure 9.70: Case 7a: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.71: Case 7a: Strain evolution versus time from t̂ = 3.10 (bottom) through

t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 200 units vertically.
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Figure 9.72: Case 7a: Strain maximum versus time plot.
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Figure 9.73: Case 7b: Results with ρn = 0.25, (EA)n = 0.5, and c2
n = 9.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.74: Case 7b: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 4.0 units

vertically.
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Figure 9.75: Case 7b: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.76: Case 7b: Strain evolution versus time from t̂ = 3.10 (bottom) through

t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 200 units vertically.
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Figure 9.77: Case 7b: Strain maximum versus time plot.
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(c)

Figure 9.78: Case 7c: Results with ρn = 0.25, (EA)n = 0.5, and c2
n = 16.0, at time of (a)

t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.79: Case 7c: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 4.0 units

vertically.
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Figure 9.80: Case 7c: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.81: Case 7c: Strain evolution versus time from t̂ = 3.10 (bottom) through

t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 200 units vertically.
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Figure 9.82: Case 7c: Strain maximum versus time plot.
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Figure 9.83: Case 7d: Results with ρn = 0.25, (EA)n = 0.5, and c2
n = 25.0, at times of

(a) t̂ = 3.10, (b) t̂ = 3.78, and (c) t̂ = 4.54.
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Figure 9.84: Case 7d: Mean longitudinal displacement evolution versus time from t̂ = 3.10

(bottom) through t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 4.0 units

vertically.
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Figure 9.85: Case 7d: Mean longitudinal displacement maximum versus time plot - solid

line is mean maximum and dashed line is mean at the interface.
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Figure 9.86: Case 7d: Strain evolution versus time from t̂ = 3.10 (bottom) through

t̂ = 3.90 (top) in increments of ∆t̂ = 0.08 each separated by 300 units vertically.
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Figure 9.87: Case 7d: Strain maximum versus time plot.



Chapter 10

CONCLUSION

Waves on an infinite string have been treated here. The string has two regions, each

region having constant properties. The interface between the two regions has a very

sudden change in properties. A packet of waves are allowed to approach this interface

from one side. The results are related to a variety of applications, in particular, the

dynamics of ocean waves propagating through an ice sheet of non-uniform thickness.

Such ocean waves are believed to contribute to the disintegration of polar ice.

The waves in the string are assumed to be modeled by continuum elastic effects.

Geometric nonlinearities are included using a weakly nonlinear approach, but ma-

terial nonlinearities are neglected. The present results focus on purely transverse

waves. Linear theory shows that the incident waves will create reflected and trans-

mitted waves, depending on the material properties. The weakly nonlinear theory

considered here produces three nonlinear Schrödinger equations, one for the incident,

reflected, and transmitted wave packets. The amplitude of the waves is measured

by α and the length of the wave packet is measured by 1/ε. Both parameters are

assumed small, and the further assumption that α = ε is made for simplification.

The results show that these transverse waves generate a longitudinal mean dis-

placement in the string in the vicinity of the interface. The mean longitudinal dis-

placement is determined with a Laplace transform technique. This mean longitudinal

displacement is composed of three parts. One part is due to the direct interaction

of the incident and reflected waves, and has a spatial oscillation with twice the

wavenumber of the incident waves. The other two parts are driven by the motion of

the interface itself, with one part having a temporal oscillation at twice the frequency
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of the incident waves.

The results depend on three parameters, ρn, (EA)n, and c2n. The value of ρn di-

rectly affects the amplitude and shape of the reflected and transmitted waves through

the reflection and transmission coefficients. The value of (EA)n plays a dominate

role in the magnitude of interfacial mean longitudinal displacement terms. How-

ever, ρn and c2n also contribute in a smaller way to the interfacial mean longitudinal

displacement terms.

The value of c2n contributes to the phase angle of the three waves and is present

in the coefficient of the interfacial mean longitudinal displacement terms and con-

tributes to the span of influence of the mean displacement. In general, an increase in

c2n results in an increase in the length of the span of influence. The span of influence

is also not always equal on each side of the interface.

When the left side of the string has greater material properties than the right,

the mean longitudinal displacement is positive. When the right side of the string

has material properties greater than the left, the mean longitudinal displacement

is negative. A positive mean longitudinal displacement indicates that the string is

shifting toward the right, while a negative mean longitudinal displacement causes

the string to shift to the left.

The maximum strain is on the left side of the string near the interface, and occurs

when the incident wave is past the halfway point through the interface.
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