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Abstract
A PHYSIOCRATIC SYSTEMS FRAMEWORK FOR OPEN SOURCE
AGRICULTURAL RESEARCH AND DEVELOPMENT
BY
Dorn A.W. Cox

University of New Hampshire, May, 2015

This dissertation presents a new participatory approach to agricultural research and
development. It surveys the biological, sociological, economic, and technical landscape and
proposes a framework for adaptive management based on the 18t century Physiocratic
school of land-based economics. Industrial specialization and heavy emphasis on deductive
approaches to science have contributed to the disconnection of large portions of the
population from natural systems. Conventional agriculture and agricultural research
methods following this pattern have created expensive social, environmental, and
economic external costs, while adaptive management and resilient agricultural systems
have been hindered by the cost and complexity of quantifying environmental services.
However, the convergence of low cost computing, sensors, memory, and resulting data
analytic methods, combined with new collaborative tools and social media, have created an
exciting open source environment with the potential to engage more people in analyzing

and managing our natural environment.



Introduction

Any contribution to science is of limited value if it cannot be replicated or built upon as part
of the shared accumulation of knowledge and understanding; therefore, the process of
knowledge sharing as well as the knowledge itself becomes part of the study (Karami,

Keshavarz, and Lichtfouse 2010; Zaharia and Zaharia 2009; Jansson 2013).

“This leads to calls for “innovative innovation” concerning the

purposes and ways of designing new technologies and practices, or

new practices in relation to existing techniques. In fact, these claims

indicate a need for a shift in the governance of research and innovation

to achieve a sustainable future” (Barbier, 2012).
The following work explores open source agriculture as an “innovative innovation” method
of civic engagement in the exploration and inquiry of natural systems. The structural
relationship between environmental management and biogeochemical feedbacksis at the core of
thisstudy. Technical, biological and economic intersections with social systems are necessary to
act upon feedback; for this reason, the dissertation provides a historical context for
interdisciplinary analysis as a crucial part of the systems framework approach to natural

resources and earth systems science. The structure uses metaphors to bridge disciplines and

to create an open source framework of biological, technical, and social systems upon which



to support collaborative adaptive management. Because of the interdisciplinary nature of
this study, background that might otherwise be assumed common knowledge within a
particular field of economics, ecology, agronomy, remote sensing, or software development

has been included.
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Figure 1 - A convergence of knowledge sharing technology and environmental documentation. This 3-D digital
model of no-till hairy vetch plots, publishable through the Internet, documents crop variations in texture, volume
and color. The existence and availability of environmental modeling and images created with consumer grade
equipment illustrate the convergence of open source culture and low cost observation tools.

Theword "Agriculture” is derived from Latin meaning "culture of afield." My study offersa
framework to improve the sustainability of agriculture by examining the culture as well asthe
cultivation of thefield, and to engage alarger segment of the population in that process. Ideally,
the study will provide a systematic framework that fosters both inductive and deductive research

to guide project design, analysis, and documentation.



Organization of the Study
The dissertation consists of three parts divided into a total of twelve chapters followed by a
conclusion.
Part One, Physiocratic Systems Framework (Chapter 1: Systems Framework Literature
Review, Chapter 2: Framing Agrarianism and Political economy, Chapter 3: Quantifying
human interaction with the biosphere, Chapter 4: Technology, Open Source Culture, and
Participatory Research, Chapter 5: Framework for Adaptive Management), outlines and
places the active contemporary software-based collaborative adaptive management
approach within a theoretical and historic social/political economy framework. This
context will then be disassembled into systems components for more detailed analysis
throughout the study. Particular emphasis is placed on the socio-technical process of
gathering high frequency feedback required for the inductive research approaches implicit
in adaptive management that will be referenced throughout the dissertation. The emphasis
on inductive observations and feedback is matched with an accessibility analysis of high

resolution, low cost, and impartial data sources.



Part Two, Applied Collaborative Open Source Agricultural Systems (Chapter 6: Open
Source and Agrarian Systems Literature Review, Chapter 7: Application of a Physiocratic
Framework: Case Based Studies, Chapter 8: Adaptive Management, Open Source Research
and Social Media, Chapter 9: Agrarian Social Network Tools - Case Based Studies), provides
applied examples of socio-technical structures modeled around the framework outlined in
the first section of the study. The method builds upon the applied, inductive approach to
systems analysis with case-based studies that explore the interaction of socio-technical

agricultural systems.

Part Three, Agricultural Research and Development (Chapter 10: Technical Framework
and Adaptive Management, Chapter 11: Technology Workflow and Illustrated Field Studies,
Chapter 12: Low Cost Aerial Biomass Volume Measurement of Grain Corn Crop ), provides
a benchmark for contemporary technology and assesses the technological trajectory of
accessibility, accuracy, and the cost of observation required for inductive research and
adaptive management frameworks. Part Three also identifies technical challenges to filling
in the adaptive management and social framework identified in the previous two parts of
the study in order to achieve greater participation in environmental observations and

agricultural research.

The study concludes with Chapter 13 as a Summary and Review. The purpose here is to

create a road map for future interdisciplinary work that expands inductive and



participatory observation and identifies the generalizable elements of adaptive

management to address gaps, limitations, and challenges to resilient agriculture.

Background of the Study

Sustainability is not an absolute measure that can be imposed independent of human
processes, but is rather a constant decision-making process that redefines itself in scale
and time. The National Research Council articulated this complexity in a 2010 report titled
Toward Sustainable Agricultural Systems in the 21st Century:

“Pursuit of sustainability is not a matter of defining sustainable or

unsustainable agriculture, but rather of assessing whether choices of

farming practices and farming systems would lead to a more or less

sustainable system as measured. Finding ways to measure progress

along a sustainability trajectory is an important part of the

experimentation and adaptive management process. Environmental,

economic, and social indicators can be used to describe the

performance of agriculture and to provide information on whether a

farm, a farming system type, or agriculture at any scale is on a trajectory

toward improved sustainability. Many indicators are means-based and

others are outcome-based”(NRC, 2010).
Deductive agricultural research methods, dominant since the 19th century, have achieved
many intended results, including increased yields; however, they have also created many
unintended economic, environmental and social failures. Market failure is defined as a
failure of the free market to distribute goods and services efficiently, including the idea that
there is an alternative conceivable outcome where a market participant may be made

better-off without making someone else worse-off (Gomez-Baggethun et al. 2010). Market

failure reflected in undervalued ecosystem service functions and in external costs, or



externalities, is partly the consequence of non-systems approaches. Conventional resource
management practices are a symptom of the dominant culture not internalizing
environmental values into market structures, which has led to global scale market failures
and tragedies of the commons such as soil degradation, water pollution, and surplus
atmospheric C02 (Ruhl, Lant, and Kraft 2008; Hamilton et al. 2007). The National Research
Council also argues that pollution of water, soil, and air, degradation of environmental
resources, and loss of biodiversity are the by-products of current agricultura systems and
identifies additional external costs such as global greenhouse gas emissions and a myriad of
public health problems (NRC, 2010). Such externalities have left farm productivity and
economic viability vulnerable to resource scarcities, climate change, and market volatility.
Sustainable agriculture, in the National Research Council's view, has emerged largely in

response to the market failures of modern “industrial production” agriculture.

Agrarianism and Agriculture as a Social Science
Agriculture is a human activity; therefore, its application and practice are as much a product of
socia ecological systems and values (Walker et al. 2002) as of technical or biological limits
(Ledermann T. 2008; Uri 2000). However, the cultural component of agricultureis often
understated, not just cultural practices of crop rotation, but the culture of the civilization that
agriculture supports and is supported by. The focus has instead been placed on physical,
economic and chemical/biochemical processes, e.g. fertilizers and pesticides and genetics.
Because of the clear role of social limitations in the practice of agriculture, a techno-biological

approach aloneis not sufficient (Sakai 2009; Karami, Keshavarz, and Lichtfouse 2010;



Zaharia and Zaharia 2009); rather, the interaction of social context and practices with

technological and biological aspects of agriculture is crucial to managing agricultural systems.

Agrarianism as a social movement internalizes the integration of biological, social, and
technical aspects of agriculture into cultural values of land management across the general
population. Historian Richard Hofstadter notes that to call American agrarianism a "myth"
of sentimental attachment is not to imply that the idea is simply false. Rather, the myth so
effectively informs an agrarian ethos that it profoundly influences people's values and

behavior (Hofstadter 1955).

Hofstadter emphasizes the importance of the agrarian myth even after industrialization
revolutionized the American economy and life. Recent, improved environmental
monitoring of agricultural pollution has brought to light practices that run counter to the
agrarian ethos with examples such as the Gulf of Mexico “Dead Zone”, the decimation of the
Chesapeake Bay estuary, and identification of agricultural runoff as causing algal blooms in
Toledo, Ohio that have poisoned drinking water supplies. Tellingly, these examples have
not crushed the agrarianism myth, but have rather exposed the abuse of that myth by
commercial interests that market an idyllic, diversified image of agrarian heritage while
profiting from extractive practices. The deviation of the agrarian myth from the dominant
reality of contemporary production agriculture is evident in almost any children’s book
that depicts images of diversified farms, rural culture, and local markets. These idyllic,
agrarian images are significant in their contrast to the well documented trends towards

concentration of ownership and extractive, input-intensive production patterns of



contemporary agriculture known as factory farming, captured by the famous admonition of

USDA secretary of agriculture Earl Butz in 1977 to “Get big or get out” (Kleiner 1986).

Managing the agrarian myth through the internalization of shared values in the broader
culture is crucial to creating sustainability and to reducing negative externalities. It
requires developing cultural myths and metaphors that internalize whole systems
accounting. The desire for creating a new story of people and the land is reflected in the
contemporary local food movement, which, at its essence, seeks greater accountability and
connection to shared cultural values that are not being fulfilled by the contemporary

industrial agricultural system (C. A. King 2008).

A classic example of this mismatch occurred when former Secretary of Agriculture, Earl
Butz, and poet-farmer-New Agrarian, Wendell Berry, squared off in a debate. In his rebuttal
Butz remarked, "I've got a feeling that Dr. Berry and I haven't met here tonight. Perhaps we
won't." Berry later commented, "We may never meet because he's arguing from quantities
and I'm arguing from values” (Beus and Dunlap 1990). The history of agrarianism has
involved the internalization of these values across the culture including the highest
leadership. The Encycopédie, the definitive work of the Enlightenment published in 1751,
lavished attention to the mechanical arts such as agriculture and explored the cultural
historical significance of agrarian values in societies. For example the Chinese emperor and
his highest advisors would host an annual ritual by taking turns at the plough turning the
first furrows of the season, generals in the Roman Republic would return to their yeomanry

as their preference over lives as politicians or merchants, and the physiocrats convinced the



future Louis XVI, ‘the ploughing dauphin’ to imitate the Chinese ritual by following aploughin
asowing ceremony on 15 June 1769 (Cronk 2006). A faint legacy of these rituals, and values,

can be seen in the White House garden installed by the Obamas during their first term.

Systems Dynamics and Adaptive Management

Adaptive management is a complex ecological and socio-technical process, and requires a
collaborative approach in which multiple stakeholders participate in learning and developing a
shared understanding of a process of incremental experimentation and feedback with adaptive
goals, objectives, and management decisions. Adaptive management can also be described as
ongoing observation-based research and development integrated into a management
process. Adaptive management in agriculture, therefore, requires the involvement of
farmers in the research and development (R&D) process, and usually leads to the
formulation of a systems diagram often framed as a tree of problems and opportunities,

with many ramifications, rather than as a single clear-cut issue.

Key differences between farmer and scientist problem statements stem from farmers’
integrated, holistic, and observational approach to farm and resource management as
opposed to that of discipline-oriented scientists, who are taught to break problems into
manageable parts. The laboratory scientist's deductive approach to scientific inquiry,
which isolates theories out of the field in order to test hypotheses, is often viewed as
irrelevant by the farmer and agrarian. Collaborative adaptive management following a
Physiocratic framework has the potential to productively bridge laboratory science to

applied agricultural research.



Systems by their very definition have emergent and dynamic qualities which make precise
and stable definition challenging. Barbier (2012) articulates this challenge well (emphasis

added):

“System innovations are multi-factor, multi-actor and multi-level (multi-
scaled) processes, and can only be understood through the historical co-
evolutionary processes which link up these actors, factors and levels.
These historical processes are riddled with uncertainty and constitute open-
ended learning processes. Influencing such processes has proved to be
difficult, but not impossible. To stimulate sustainable development, the
challenge lies in influencing development at an early stage, when
irreversibilities are not yet entrenched and one can hope to sway the balance
between desirable and undesirable development processes. Researchers on
system innovation, knowledge regimes and design practices in the agro-food
sector can be seen as pivotal examples of what Gibbons et al. (1994) called a
mode 2 type of knowledge production. It transcends traditional disciplinary
science in two ways, viz: (1) it combines insights from various disciplines and
(2) knowledge is generated in a combined effort by scientists and
stakeholders from the domain under investigation.”

The framework of systems thinking provides a method to describe and study complexity,
and “transcend disciplines” and has developed into the applied science of adaptive
management (Karami, Keshavarz, and Lichtfouse 2010; Folke et al. 2002). Adaptive
management is an approach for addressing human environmental feedback loops, and is a
systematic process for continually adjusting policies and practices by learning from the
outcome of previously used policies and practices. Adaptive management uses each
management action as a scientific experiment designed to test hypotheses and to “probe”
the system as a way of learning about the system. Collaborative Adaptive Management
(CAM) is the coordination of these efforts across social and geographic scales to achieve
greater feedback, accuracy and effectiveness (Susskind, Camacho, and Schenk 2012;

Susskind, Camacho, and Schenk 2010). My study explores the systems contexts required
10



to incorporate meaningful quantitative interdisciplinary observations that can be used for

CAM.

Any transformative approach to change must therefore build on an understanding of
agriculture as a complex and technical socio-ecological system. In this context, technology
is not the sole solution to the challenge of internalizing external costs; however, technology
informed by ecological, social, and economic feedbacks can create the social conditions for
transformative change. Barbier (2012) states that “Technical change is always a complex
process with both biophysical and socio- economic aspects. It results from changes in the
thinking and activities of individuals, households and communities, as well as in market
and organizational relationships. In such transitions, learning is applied to new systems of
behavior and valuation, not just techniques or methods (Barbier and Elzen 2012).
However, cultural change, like evolution, is incremental and therefore needs stepping
stones to move from one dominant form to another (Kelly 2010). Technology can aid this
process and make a more participatory, social, and inductive approach to inquiry possible
by providing large quantities of impartial data to draw upon to quantify environmental
systems. The case studies and applied examples in Part Two and Three, below, are based

on this social approach of "probing" the system for observable responses and feedback.

Quantification of Environmental Services

Describing the human interaction with nature through labor and land management has a
long and challenging history (Higgs 2001; Costanza 2012); the complexity inherent in

quantifying and articulating the balance between human labor and nature’s contributions

11



to productivity has led to oversimplifications of systems descriptions. The resulting
externalities and market failures previously mentioned help frame the following three

problem statements:

(1) The economies of scale of industrialization and globalization have removed large
segments of the population from interaction with natural systems due to
overspecialized social and economic institutions (Johansson, Kisch, and Mirata
2005).

(2) The cost and complexity of deductively quantifying human interaction with the
biosphere and ecosystem services has been a primary reason for the lack of
quantification and resulting externalities (Kroeger and Casey 2007).

(3) The pace of technology to monitor and observe human changes to the biosphere has
lagged behind both the pace of industrially extractive technologies and the ability to

change our environment (Ernstson and Soérlin 2013).

Purpose of the Study
The purpose of this study is to increase our understanding of environmental and natural
resource problems and solutions at local, regional, and global scales and to pursue
interdisciplinary research of the environment. My dissertation proposes a historic
Physiocratic framework to address the three problem statements above, and to contribute
to a better interdisciplinary system for agricultural research and development. The study
explores the intersections of emergent open source social, technical, and biological systems

with a trajectory of powerful low-cost tools to observe, access, and communicate

12



knowledge, making collaborative adaptive management possible. Furthermore, the study
explores how these factors can positively disrupt market failures with quantified feedback
acted upon through collaborative adaptive management and internalized into

environmental service values.

Summary
Both the global environment and our understanding of that environment are changing at

rates that are unprecedented in the history of the Earth. Solutions to environmental
problems require knowledge of the interaction among physical, biological, environmental,
socioeconomic, and cultural factors that underlie the identification of environmental
problems and choice of action. The following twelve chapters will present an
interdisciplinary systems analysis using social case study, historic political economic
analysis, and examples of field data collected to illustrate an inductive, technical workflow
within an adaptive management framework. A workflow consists of an orchestrated and
repeatable pattern of activity enabled by the systematic organization of resources into

processes that transform materials, provide services, or process information.

Section |: A Physiocratic Systems
Framework

Chapter 1: Systems Framework Literature Review
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Chapter Introduction: Historic Roots of Agrarianism and Political
Economy

Biological systems that support human civilization can be influenced to produce
more or less of the services we need based on our care and management. Natural
resources and their management have always been central to the study and understanding
of human civilization. The roots of political economy included the study and interaction of
humans and their environment, and were formed in pre-revolutionary France by the first
land-based economists. These natural philosophers, called “Physiocrats” from the Greek
phusis (nature) and kratos (power), introduced a scientific approach to political economy and
proposed that only agriculture can generate an economic surplus through the productive powers
of land, and that through greater knowledge of natural systems, people can improve the
productivity of soil and the health and wealth of a nation (Higgs 2001). Their observations of
the interaction of civilization and soil over 200 years ago are as relevant today to
understanding the Anthropocene as the Greek philosophers’ moral queries raised over
2000 years ago that form the basis of modern law. The Physiocratic school of thought also
grew out of Enlightenment thinking and Confucian agrarianism, and was characterized by a
particular optimism that the world could be understood and improved through inductive
observation and human engagement with nature. In particular, the key tenet of
Physiocracy was the improvement of soil to increase the wealth of a nation (Gomez-
Baggethun et al. 2010; A. Smith 1776). These first economists worked without the benefit
of the knowledge of chemistry and mechanisms required to build the periodic table;
however, they observed people and nature through indicators, such as the interactions of

social and soil conditions, plant life and the health of farmers, laborers, merchants and
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landlords, and the circulation of resources across a landscape. Their limitations in
scientific observational methods naturally limited their available scientific approaches.
Without established theories and a body of scientific findings to draw upon, their approach
necessitated insights and inductive theories generated through observation of broad

systems behavior (Fuller 2004).

The outcome of the natural philosophers' inductive method yielded systems-wide
observations that still have cultural, biological, and technical relevance today. It is
becoming increasingly clear that the technical achievements of our post-industrial society,
used out of context from whole systems analysis, will not necessarily result in a more
sustainable society, i.e. a society that is characterized by a better balance between
economic, social, and ecological goals. Ensuring that any transition potentially taking place
leads to greater sustainability is a major challenge for agro-techno-social food systems in
particular, and one which calls into question the relations between sciences, agricultural
technologies, and public or private networks that make up the environmental system. Thus
the need for a whole systems approach, with methods for communication and a framework

to manage “innovative innovation” in studying these systems (Barbier and Elzen 2012).

Quantification of Ecosystem Services
For most of human history, inductive methods were limiting to scientific progress, but

were also the more accessible approach. Because inductive reasoning relies on impartial
observation and recording of details about management, it was subject to inherent biases

of both the observational and communication technology to process personal observations
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and farmer-to-farmer knowledge exchange. The advent of the printing press enabled the
accumulation and exchange of observations, although observations were still limited by
frequency and the skilled eye of the observer (Mulla 2013) and exchange was limited by
access to information. English agricultural innovator Jethro Tull’s observations were still
considered novel 50 years after he made them, when they were finally translated and
republished for wider distribution (Diderot 1751). The advent of lenses, photography and
chemical analysis expanded resolution of observational technology, but by itself did not
provide the context for functional relationships of systems indicators (D. E. Allen et al.
2011; Idowu et al. 2009). It was not until communications and archiving of scientific work
resulted in a compounding effect of deductive and inductive approaches that the pace of
scientific discovery increased. My study will explore how, despite increased understanding
of biological mechanisms, inductive systems based studies are still crucial to closing vast
gaps in technical socio-ecological system understanding of the interaction of these

mechanisms in agriculture.

Until recent technical developments, the limitation in knowledge flow rather than
observational technology has limited the quantification of environmental services and the
resulting feedback required for adaptive management. The AdaptN software decision
support model for adaptive nitrogen management, developed by the Cornell Soil Health
Laboratory, is a notable exception. Other than a handful of examples, adaptive
management has yet to be widely adopted for large scale agricultural systems, in large part
because environmental feedback of sufficient resolution has been too costly or complex to

measure (Van Es and Degaetano 2008)
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Transformative Observation Technology

The first LANDSAT satellite was launched in 1972 and ushered in a new cultural awareness
of Earth systems based on remote sensing. However, it has not been until the recent
convergence of open source culture, and networked, low cost computing, sensors,
accelerometers, gyroscopes, GPS, and memory that the temporal and spectral resolution
have the potential to radically shift cultural understanding of natural systems (Xiang and
Tian 2011). These compounded technical achievements have made possible observational
technology and inductive inquiry enabled by computer processing and big data methods,
coupled with collaborative tools to create a research and development environment that

has the potential to radically alter public awareness of our natural environment.

These recent, rapid changes in technological accessibility have yet to be culturally
incorporated into agricultural management or applied to accurately monitor and model
ecosystems. Technological developments have been applied only in a limited way to
conventional large scale precision agriculture and primarily to increase monoculture
accuracy and efficiency; the benefits of remain out of economic reach for smaller producers
(Bakhtiari and Hematian 2013; Mulla 2013). The dramatically lower costs of memory and
power storage, motors, controllers, sensors, radio communication, and public access to
consumer grade cameras, smart phones and other devices has yet to be assimilated into

diversified agriculture.
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The application of these tools in diverse agriculture and environmental monitoring have
the potential to be transformative (Silvertown 2009; Newman et al. 2012). New
technologies dramatically increase the temporal frequency of observations as well as
decrease the cost per observation, and enable monitoring beyond the human sensory range
(Hunt, Jr. et al. 2010). They produce documentation in a form that can be shared without
degradation across space and time at a marginal cost of near zero. The low cost and large
benefit of sharing code has benefited open-source software. Until recently, customizing software
has been much easier than custom-building equipment; the open-source paradigm is now

enabling the creation of open-source scientific hardware, as well (Pearce 2012).

A transformation of popular culture through ubiquitous observation, communication,
computation and data storage introduces the possibility of regenerative adaptive
management being within reach. These factors create conditions that can soften the
boundary of professional science characterized by reductive hypo-deductive processes.
The history of interdisciplinary amateur citizen scientists provides an alternative road map
to research that draws on inductive reasoning. Here, I explore a framework, tools, and
approach that critically assess the potential for every farm to be a research farm and every
backyard a laboratory. The techno-cultural shift made possible by ubiquitous, inexpensive,
accurate technology forms the basis for this study to help meet the challenge defined by
National Research Council to assess and measure progress along a sustainability trajectory

and to build a social framework to support those efforts.

Social Dynamics of Innovation
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This dissertation uses a case based approach to both frame and place in context broader
systems observations. The interaction between technological, social, and biological
systems occupies a great portion of the study. Barbier (2012) describes innovation as
crucial to the transition towards sustainable agro-food systems, stating that:

“This typically implies technological change, for a host of new

technologies will be needed to meet the sustainability challenges in

the various agricultural subsectors. Technological change, however,

will not be enough. The enormous challenges lying ahead will also

require new regulations, new behaviours (e.g. of consumers, farmers

as well as many other stakeholders), cultural change, institutional

change, institutional ‘hybridicity’ and the ecologization of agricultural

sciences and technology (Barbier and Elzen 2012).”
While the term ‘system innovation’ may denote broad technological change, innovative
design in the socio-economic order of agro-food systems is also part of system innovation.
System innovation phases and patterns is subject to the adaptive cycle of change (Holling
and Ludwig 1995) described in Chapter 3. Economic, biological and technological systems
may not always move through adaptive cycles at the same rate. For example, technology
may move more quickly, and established actors that benefit from current regimes may
resist change, or disruptions. Conversely, ‘outside’ actors attempting to create new niches
may see the disruption as an opportunity rather than a threat. Actors working to establish
new niches may investigate more radical solutions and learn how to make them work,
technically as well as within the framework of consumer requirements, markets, and
regulations. Barbier (2012) adds that “if successful, these “transition” developments may

link up to an existing regime and gradually change or replace it, which can eventually lead

to system innovation. In this process, niches therefore play a crucial role.”
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Chapter 2: Framing Agrarianism and Political Economy

Mirabeau’s Tree: A Systems Metaphor and Social Framework

The use of metaphor as a framework for systems study has a long history within political
economics, and indeed metaphor is crucial to the framework of this study (Carpenter et al.
2001; Gémez-Baggethun et al. 2010; Costanza 2012). Herman Daly observed:

“That economists have also found biological analogies useful is only
slightly less obvious. The circular flow of blood and the circular flow of
money, the many parallel phenomena of specialization, exchange,
interdependence, homoeostasis, and evolution are well known. In the
opposite direction, economic analogies in biology are also common, as
witnessed by Malthus' influence on Darwin and by the very etymology
of the word "ecology" ( Daly 2012).

Because their own knowledge was neither quantitative nor scientific in our modern sense
(the term "scientist” was not used until 1834) (Ross 1962), the Physiocrats relied on
metaphor to describe systems behavior to the Court and general population. In 1757,
Francois Quesnay, a founding Physiocrat, used a metaphor that will form the theoretical

foundation and social framework for the remainder of this study:

“The state is a tree, agriculture its roots, population its trunk, arts and
commerce its leaves. From the roots come the vivifying sap drawn up by
multitudinous fibres from the soil. The leaves, the most brilliant part of
the tree, are the least enduring. A storm may destroy them. But the sap
will soon renew them if the roots maintain their vigour. If, however,
some unfriendly insect attack the roots, then in vain do we wait for the
sun and the dew to reanimate the withered trunk. To the roots must the
remedy go, to let them expand and recover. If not, the tree will perish.”
(emphasis added)
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Quesnay was quoting an earlier Physiocrat, Victor de Riqueti, Marquis of Mirabeau (Bauer
2012; Higgs 2001). Mirabeau’s tree metaphor keenly integrates social, technological,
biological and economic feedbacks to create a relational structure within a larger agro-
ecological system that still holds up to a contemporary understanding of biogeochemistry,
economics, and sociology. With this quote, Mirabeau formed the conceptual foundation for
Physiocracy which, in turn, formed the basis for subsequent schools of political economy.
Physiocracy’s influence is still clear on USDA buildings around Washington DC. Until
November 16, 1983, the US Department of Agriculture seal’s official banner read

“agriculture is the foundation of manufacture and commerce”(USDA 2002).
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Figure 2 - Introduction of Mirabeau’s Tree. The tree metaphor forms basis for the Physiocratic Framework for
adaptive management that is used throughout this study. Mirabeau uses the tree as a living system to describe
the state (as a unit of civilization), with agriculture at the roots. Physiocrats believed that agriculture and the
improvement of it, provides the regenerative growth capacity for the state and the primary renewable source of
wealth for its citizens.

Mirabeau's tree metaphor isillustrated, annotated, and expanded upon throughout this
dissertation to position and create context between aspects of the interdisciplinary study. Itis
used to map the relationships of technological evolution, flow of information, and innovation as
anatural circulatory system within the context of biogeochemical cycles and illustrate the

political economy not just as social science but as alife science as emphasi zed by ecological and
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environmental economics (Davidson 2012; Herman E Daly 2012). Figure 3 illustrates the tree’s
natural systems function encompassing the concept of nutrient flows and circulation as both a
metaphor for inner circulation - i.e., within the tree and social science aspects - and external
nutrient flows of biological sciences and economies within the larger biosphere and related

feedbacks between the political economy and ecological systems.

External flow:
biogeochemical
nomies

Figure 3 - Mirabeau’s Tree provides interdisciplinary context. Mirabeau’s Tree also illustrates the functional
relationships between areas of science. The interdisciplinary nature of the metaphor is useful to position the
study of political economy within a bio-geochemical system, indicated by the outer grey shading. The concept of
the Anthropocene, or age of man, is interpreted as the effect of Mirabeau'’s tree on the surrounding environment.
The metaphor also illustrates the concept and relationships between social science and environmental science
required for whole systems understanding by an engaged and informed population.

The tree metaphor aso differentiates and invites analysis of types of growth within the system,

including its sources, vulnerabilities, resilience, adaptation, evolution, and feedbacks within
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related systems. In particular, atree provides a method of differentiating and positioning
unproductive growth from productive growth by illustrating the location and relationship of the
growth to a structural position and importance of inquiry in different areas, i.e., whether the

inquiry islocated at thetip of aleaf, or at the base of the trunk.

The Mechanistic Metaphe

Wy

T

Figure 4 - The mechanistic approach to nature subverts agriculture as a subset of commerce. Industrial
development economics ignores the role of ecosystem services in supporting economic activity, and treats nature
primarily as a fixed resource, as illustrated in this diagram by obscured and greyed-out roots of Mirabeau’s tree.
Agriculture in this model is not based on regenerative growth, but on a cost of inputs produced by capital (i.e.
labor and capital), and neglects and therefore does not account for the productive capacity of nature. The result
is a general population disconnected from the biogeochemical systems and essential ecosystem services. The
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political power dynamics of this model are therefor also inverted, resulting in the undervaluing of land-based
economics.

Locating human endeavors and relating them to structural economic areas within the larger
system provides a framework for additional insight. Systems health is not so much an exercise
in measuring absolute values but in measuring rel ationships, balance, and resilience. The
structural metaphor of the living, breathing, growing tree communicates these functional
relationships and quantifies flows between structures. The systems health indicators measure
growth as well as balance and resilience, factors that are missed by mechanistic measurements
based only on commerce such as extractable stocks or Gross Domestic Product (D. Meadows

1998; D. Robinson et a. 2013; Stockhammer et al. 1997).

The specialized language developed within environmental and earth science disciplines
have created cultural barriers to expanded engagement and participation (Couvet et al.
2008). To create crossover, the intuitive language of Mirabeau's Tree offers a context for
problem statements by placing efforts within a larger systems context that can be used to
develop and translate standards of measurement. By necessity the metaphor is abstract,
but the abstraction is also a strategy to communicate beyond the comfort zone fostered
within the specialist professional science culture, and to facilitate interdisciplinary problem
statement overlap. It also implies and requires reaching outside of the existing incentive
structures of contemporary academic and organizational structures. The intuitive
metaphor of Mirabeau's Tree and the Physiocratic framework from which it stems serves a
crucial role of building cultural trust and shared values between professional, deductive
methods of science and the more exploratory, inductive approach of open source

communities.
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The dynamic tension between inductive and deductive scientific inquiry was quite current
at the time that Mirabeau's tree metaphor was authored and was discussed at length by
Darwin (Lightman 2009). The Enlightenment values of shared knowledge and the
importance of inquiry itself are made current with adaptive management approaches that
explore the use of environmental and social data that can now be collected, not by
individual researchers, but by millions of citizens and unbiased sensors. Mirabeau's tree
metaphor serves as a boundary to represent the whole system, and places the millions of
potential observations and contributions within a relatable social, biological, and technical
system context, that would otherwise be overwhelming to contemplate and communicate.
In the sense that it is collaborative and exploratory, the model itself is a form of embracing

an inductive approach to scientific inquiry.

Natural Resource Management within the Framework

Expanding biological productivity is the explicit role of larger geochemical cycles that
support soil formation and fertility and are crucial to supporting resilient growth. Because
Mirabeau's tree metaphor is based upon a living system it also welcomes the measurement
and evaluation of systems “health.” The definition of soil health is the capacity for soil to
function biologically, physically, and chemically (NRCS 2014). Within Mirabeau's tree
metaphor, soil health is crucial to the health of the root, and forms the foundational anchor
of the system. The metaphor is a powerful tool that communicates complex ideas

implicitly with associations in a simple relatable form, without which explicit descriptions
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and associations are required. The tree metaphor is an illustrated version of the
Physiocratic framework that is both simple to understand and communicates complex
ideas. Itis used as tool throughout this study to reference and relate the positioning of

relationships between interdisciplinary systems for case studies and analysis.

Chapter 3: Quantifying human interaction with the biosphere

Biogeochemistry and Agriculture: Quantification and Description of
the Current Measurement Regime

Human understanding of our environment is reflected in the tools created to observe it.
Population pressure on degraded land has pushed environmental systems closer to
thresholds, or to a point where other land must be managed to sustain a condition beyond
“natural” unmanaged thresholds, and requires constant upkeep (e.g. terraces and
irrigation). Additional pressure creates more complexity and urgency to add systems
management sophistication before passing over thresholds into new, less productive

regimes (Walker and Salt 2006).

The cost and complexity of quantifying human interaction with the biosphere and
ecosystem services has been a primary reason for a lack of systems quantification, and has
given precedence to the lab-based, deductive approach to scientific research. With limited
resources available, building on the known is less risky than exploring the unknown.
Additionally, the professional scientific culture has undervalued the participatory,
observational contributions made daily by farmers in the field. For most of human history,

humans have been limited to describing the environment with the unaided eye, which is

27



limited both in perspective and spectrum. The invention of the microscope and telescope
expanded the field of view but not the perspective. It was not until aerial imagery that we
were able to radically change our perspective and see beyond ourselves by looking out and
down at our place in the world; these aerial imagery tools enabled the ability to look at
larger environmental and land use patterns and put ourselves in that larger context.
Satellite imagery has further extended this range of perspective. Because of complexity
and cost, this type of aerial imagery has been inaccessible to the broader public. However,
observations without a systems context do not communicate the complex effects - negative
and positive - of human economic activity on the landscape. Because of complexity and
cost, this type of aerial imagery has been accessible to only a select few in government or
corporate laboratories over the last 50 years; likewise, the balance between systems based
observation and deductive approaches to scientific environmental inquiry has not shifted

until recently because of the cost and complexity of analyzing large scale data collection.
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Figure 5 - The convergence of culture and conditions and their relationship to adaptive management. The flow
and convergence of culture and technology is illustrated as a means of addressing challenges of high frequency
feedback required for adaptive management. Cost and accessibility are both barriers to greater levels of
observation. Also illustrated are the building blocks and sequences required to achieve the desired state of
public internalization of environmental service values.

Recently, global remote sensing has dramatically improved the resolution and accuracy of
landscape level modeling. However, the social and technical challenges of increasing the
resolution beyond regional planning to enable watershed and smaller landowner/farmer

level decision support has yet to become a reality (Mulla 2013).

Complexity in describing nature has led to the associated costs of undervaluing ecosystem
services (Kroeger and Casey 2007). Biological systems level measurement has been

ignored because of cost and technical challenges and, in part, because compartmentalized,
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deductive methods of building on known theories has been a more accessible and
acceptable approach than inductive exploration into unknown, as yet untested, or
untestable theories. The cost and complexity assumptions are now changing. Figure 5
illustrates the generalized flow of technology and data as an intermediate means to the
ultimate ends of better resource systems understanding (and human happiness). Figures
6 and 7 illustrate examples of how these changes in observational technology are
expressed in the form of environmental imagery. Environmental systems understanding is
not static, and the technical accessibility, cost, and accuracy of measurement changes
radically with cultural assimilation and associated skills that develop roughly in parallel

with new technology.
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Figure 6 -High resolution digital imagery as an example of adaptive tools. The image represents an intermediate
output of the adaptive management model illustrated in Figure 5. Low cost consumer grade observation tools
now enable high resolution aerial images accessible to the general public and farmers at any scale. The low
equipment cost also makes higher frequency observation more practical than previous observation methods.
The zoomed in outtake in figure 6 illustrates that 5cm resolution enables the identification of individual corn
plants and leaves. The accessibility and resolution of observation tools is a key element for adaptive
management feedback to be useful to farmers.
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Figure 7 - Changes in perspective reveal patterns useful for management. This 3-D model was generated from
still images, and also represents the convergence of technology and culture described in Figure 5. Low cost
computing power, image chips and memory enable complex operations such as image stitching and analysis to be
performed in the field with a consumer grade laptop. The image also represents an expansion of the capacity of
an individual farmer to change their perspective when observing their own land, and observe patterns from leaf
level (as illustrated in Figure 6) to the landscape perspective, illustrated here. Each level of observation reveals
different patterns difficult to observe and quantify from the ground level. In this image, the dark green patterns
in the sorghum sudan grass (lower left block) reveal soil nutrient variation caused by the previous year’s
cropping practices.
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Figure 8 - Technical milestones for observation technology. The images represent technical milestones, and the
three axes represent the trajectories in cost, accessibility and accuracy of those milestones. The resulting
participation is indicated as a behavior over time (graph at the bottom). A goal of scientific inquiry is a more
informed and engaged population. The three axes illustrate the transition of scientific observation technology
from tools that were expensive, not very accurate or accessible (lower left quadrant), to a proliferation of
powerful easy-to-use tools available at consumer prices (upper right quadrant). Note the proliferation of
observation technology made possible by a dramatic decrease in the price of imaging chips, computing power,
memory and communications costs that, if harnessed together, can produce a trajectory and desired state of low
cost, highly accessible, accurate tools with high participation.

Figure 8 graphs observational tools along several axes: Cost, Accuracy, and Accessibility
and the rough balance of these factors over time. The right, upper right quadrant is
projected as aspirational with large participation, high accuracy of observations, low cost

per observation and highly accessible.
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Prior to the first television images broadcast from space in 1960, and then digital imagery
from LandSat 1 in 1973, aeria imagery was the only option available for remote sensed
imagery. Aerial imagery at that time remained higher resolution but also at afar higher cost.
The launch of observation satellites began the cultural transition reflected by Marshall
McLuhan’s now generally forgotten claim that “‘at the moment of Sputnik the planet became
aglobal theater in which there are no spectators but only actors’(McLuhan 1974). Hisclaim
that the earth became a form of art is even more fitting when we consider that Google Earth’s

interface realizes McLuhan’s metaphor in the detail and context anticipated 50 years earlier.

Until about 1973, observation of the earth was limited to aerial imagery and physical
samples taken by hand. LandSAT1 launched in 1973 and began the process of monitoring
the entire earth. Landsat 3 launched in 1978, had a 75m resolution, and cost close to $1B in
inflation adjusted dollars. By 2003, image chips had dropped to about 1 cent per sensor
pixel. Landsat 8, launched in 2013, is capable of 15m resolution and cost $1B. Figure 9
represents the proliferation of commercial satellites now trackable through a google earth
plug-in. By 2014, a convergence of the new “Internet of Things”(Ashton 2009) and open
source software enabled un-manned aerial vehicles (UAVs) to produce aerial imagery of
5cm resolution, for a few hundred dollars (Devictor, Whittaker, and Beltrame 2010;

Dickinson et al. 2012; Lane et al. 2010; Xiang and Tian 2011).
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Figure 9 - The proliferation of commercial satellites illustrates an interim step(middle back quadrant) in
increased resolution and frequency of earth observation in the trajectory illustrated in figure 8. The accessibility
of the data generated by both these tools as well as consumer grade observation tools is illustrated by this
screenshot, which was generated by the AGI(Agi.com) Google Earth Plugin that tracks real-time (updated every
30 seconds) positions of 13,000 satellites.

From a systems framework perspective, the scale and resolution of images and sensor datais
relevant to the size and type of audience or social system. Global images and data patterns are
relevant to billions of people, asillustrated with global climate modeling. Large scale models
may affect cultural values, but may not be useful for daily management decisions at a sub-
system field or watershed scale. The images and data from asingle field at plant level or even
leaf level analysisis most relevant to just afew people making management decisions, but does
not reveal wider patterns across alandscape. However, collaborative and networked data,
including images gathered from fields across a landscape, have the potential to provide highly
relevant environmental data patterns to billions of people, while engaging more peoplein a
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process providing the high spatial, spectral, and social resolution and feedback necessary for
adaptive management. The digital nature of observation technology that can be shared socially
iscrucia for collaborative adaptive management. Free tools, such as Google Earth, now enable
management of all scalesin asingleintuitive interface leveraging collaborative computing,
memory, and network power. The contemporary computer-generated representation of the Earth
made possible by tools like Google Earth el evates environmental awareness through dramatic
presentation of visualized data sets. However, it also reduces the representation of the Earth into
an object that can be managed and manipulated. Thereis no assurance that the power of
technology will direct efforts towards regeneration and away from extraction and disconnection
from the natural world; hence, the importance of having a social framework (in the case of this
study, Physiocracy) to encourage the underlying values that |ean towards regeneration and

resilience.

The challenge, therefore, is to leverage the existing system of highly inaccessible, centrally
controlled, high cost, highly calibrated accuracy, as characterized by the NASA model of
remote sensing, with the low accuracy (high resolution, but low calibration), low cost and
low accessibility (socially and technically isolated tools) systems generated by the
amateur-driven DIY, Hacker and Maker movements (C. Anderson 2012) into larger
participatory systems bounded by the values of the Physiocratic model. The goal of
expanding citizen science is also referenced as participatory action research or PAR
(Joseph and Andrew 2008). Each transition identified is the byproduct of technical and

social limitations, the relationships of which shift dynamically. Later chapters and Parts II
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and III examine the convergence of factors and applied examples as case-based studies that

illustrate systems transition, and illustrate open source community approaches in action.

Validation of Low Cost Observation Technology
Alow cost, networked, participatory approach does not replace conventional methods, but

rather leverages the best contemporary conventional field and lab methods to validate and
calibrate lower cost approaches made possible through reductions in technology costs.
The marginal value of each field study increases, because each new validated data point
also creates a parallel database that can then act as a calibration or validation library to
reference using methods such as artificial neural networks. Validation of this type,
achieved through data analysis and ground truthing, is required to achieve the promise of
low cost and “light” systems on the front end - i.e., delivered back to handheld electronic
devices that can mimic or even improve on the knowledge and expertise applied by an

experienced field soil scientist, botanist, agronomist, or other specialist.

Aitkenhead (2013) created a practical application of this approach in Scotland and has
published an automated methodology using the Scottish soil survey to visually detect soil
properties. Aitkenhead has gone on to create a smartphone camera protocol that uses a
calibration card and coordinates from the sample location to feed results back to the field.
His approach relies on large databases and computationally intensive neural network
processing, but enables a very light and distributed front end smart phone application.

Without the validation from database libraries and associated processing power, the
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smartphone is not as useful to diagnose soil properties. It is the social and collaborative
effort of populating the databases and creating the reference data that makes this tool
useful. Collaborative social technologies, such as Microsoft’s Photosync, demonstrate the
future of interactive linked metadata that enable relationships to be built and value created
through participation. The extension of this effect enables the user to change perspectives
from zooming out to landscape level and down to the leaf level metadata. The technical
achievements making this reality possible are outlined in Chapter 5, and the social systems

that support it and build trust and legitimacy are discussed in Part II of the study.

Interdisciplinary evaluation of adaptive indicators

Lab Test value Rating

Sensor data value Rating - T

Analysis

value Rating

feedback loop for the acceptance
or rejection of indicator relative
o other available feedbacks

Figure 10 - A generalized adaptive management workflow for indicator evaluation. The development process
illustrates a workflow that enables the evaluation of new indicators and data sources across data gathering and
processing methods. Adaptive Management is based on constant feedback (Walker and Salt 2006). A proliferation
of data sources, many of which will not be calibrated or validated, also requires an approach to catalog and
evaluate data sources towards improved systems function indicators. Values are the absolute measurements
gathered, and ratings indicate a value added process that relates the measured values to moving benchmarks.

Sustainable agriculture is particularly dependent on documentation because of the

biological complexity that is relied on for nutrient cycling and other services. Variations in
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local soil and weather conditions are crucial to understanding claims of success or failure
of any given practice, but especially in sustainable systems. The political power dynamics
of sustainable agriculture also puts the burden of proof on sustainable producers to
quantify positive environmental services, while the dominant agricultural system does not
have to prove either benefit or lack of harm to soil, air, and water resources beyond
following industry best management practices. The health and condition of soil can vary
widely among farms based on past management, and previous treatments from trials on a
given site may have variations in compaction, microbial activity, water capacity or other
biological or physical characteristics. Such variability creates conditions impossible to
replicate without detailed historical knowledge (Kimetu et al. 2008). Sustainable systems
also add variables, such as increased rotation and greater soil life diversity that must be
understood and incorporated for systems understanding and analysis. Accommodating
this complexity requires observations of higher frequency and resolution, at lower cost. To
be feasible, it requires an approach to research and data gathering methods that leverage
the current state of technical knowledge and open source culture. Wider access to tools at
lower cost enables more questions to be asked, and more research completed by more people,
more rapidly (Couvet, Jiguet, Julliard, Levrel, & Teyssedre, 2008; Irwin, 2001) that might
otherwise not be economically feasible in current research and development conditions
(Pearce, 2012). The desired outcome of new approaches is greater understanding and
participation of the population at large in sustainability science with the potential to make
every farm a research farm and every backyard a laboratory for continual feedback. The
cultural shift represented by this paradigm forms the basis for collaborative adaptive

management to meet the challenge defined by the National Research Council to assess and
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measure progress along a sustainability trajectory and to build a systems framework to

support those efforts.

Adaptive Cycle and Open Source Culture

Highly specialized, deductive approaches to research, knowledge, biology, and economics
have resulted in substantial gains in understanding the biological and chemical
mechanisms of our world as well as the manufacture of new materials and tools that now
enable vast manipulation and observation of our environment at a global scale. Some
academics have, controversially, labeled our geologic era Anthropocene (Age of Humans)
(Walker and Salt 2006) to indicate our impact on the natural environment. Even the less
disputed terms of “globalization” and “industrialization” denote the negative side of
specialization that has created well-documented social, biological, and economic
externalities on a global scale. Examples of negative externalities include imbalances in the
carbon, nitrogen, phosphorus, and water cycle, decreased ecosystem resilience and
diversity (Reganold, Jackson-Smith, and Batie 2011; Lal 2004), and increased economic

inequality (Piketty 2014).

C.S. Holling’s concept of the adaptive cycle (Carpenter et al. 2001) was derived from the
comparative study of the dynamics of ecosystems. It focuses attention beyond growth and
conservation and onto the processes of release and reorganization. The adaptive cycle patterns
also encompass general system dynamics, and have been applied to social and market behavior

as well as ecosystems (Oelofse and Cabell 2012).
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Figure 11 - The Adaptive Cycle of Change is encapsulated by Mirabeau's Tree metaphor. It can also incorporate
social, economic, technological, biogeochemical and biological system dynamics. The adaptive cycle of change,
illustrates the four generalized stages of systems change from growth to conservation, release and
reorganization (Holling, Gunderson, and Ludwig 2002). It is useful within the Physiocratic framework of system
behavior to identify relationships and leverage points within the system. For example, social and economic
systems are resisting change in the late “K” conservation phase, while technology is in the “r” growth phase, and
biogeochemical and biological systems are interacting in between “Q” release phase and “a” reorganization
phase. Mirabeau’s Tree provides a method to bridge the mismatches and relate the abstract concept of the

adaptive cycle to areas of human action and interaction within the interactions of these systems.

The primary characteristics of the adaptive cycle phases are as follows:

e Most systems are not static; they are dynamic and change over time.
While not entirely predictable, these changes often follow a pattern in
which four phases of change are commonly observed.
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 During the growth phase when resources are plentiful, fast-growing
entities that can take advantage of these resources tend to dominate the

system.

* As the system matures, it enters a conservation phase where resources
become ‘locked up’ in longer-lived entities, (e.g., nutrients in the soil are
absorbed by trees) and are no longer available for new colonizers. As a
few species or organizations come to dominate in the conservation phase,
the system tends to become less flexible which increases the likelihood of

collapse.

» Arelease phase is often viewed as a disturbance to the system.

Disturbances can destroy structure and other forms of capital, whether it
is natural capital, such as accumulated biomass in a forest, or social capital

such as policies or relationships, as suggested by the history of the

telephone industry. These forms of capital have accumulated during the

prior growth and conservation phases.

* The release phase is quickly followed by the reorganization phase during
which new entities and innovations may enter the system but only a few

will survive through to the start of the next growth phase.

« Often the new adaptive cycle will be very similar to the old; at other

times, it will be very different. Forests may re-colonize with similar
species and assemblages.

» The system needn’t move sequentially between the four phases of the
adaptive cycle; other transitions are possible. Nonetheless, these four
phases seem to capture the behavior, structures, and characteristics of

many systems.

» Sometimes, a release phase is beneficial at the local scale. It can invite

innovation and provide a ‘window of opportunity’ for creating a new
system configuration when the old one is untenable.(“3.1 Cycles of
Change: The Adaptive Cycle” 2014)

The current research and development environment is typical of the conservation phase of

the adaptive cycle that resists change and tends to maintain the status quo.

Figure 11 illustrates the relationship of the K (conservation) phase within the adaptive
cycle. The conservation phase is typified by protective behavior, declining cultural and

environmental support, and a defense of the status quo. Monopoly behavior in industrial
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agriculture is exposed in patent protection of genetic material, large spending on
government lobbying, price fixing suits, fights to prevent GMO labeling, and requests for
“ag-gag” laws that make it illegal to document and publish photos from agribusiness
facilities. These examples provide evidence of established interests' political and market
power to maintain the status quo. In its current form, industrial agriculture is less a free
market as idealized by Adam Smith than it is comparable to the granted monopoly-based
mercantilist economic system of pre-revolutionary France that inspired the Physiocrats to

call for “laissez-faire” ideals (Higgs 2001).

The political power dynamics in the conservation phase of the adaptive cycle lead to
inevitable excesses, and contrasts with the reorganization phase where open source
culture thrives. In this context, the Physiocratic, agrarian, and now open source
communities have acted as balances to, and in reaction to, established interests and power
structures. Open source and sustainable agricultural interests are still a small market
relative to total cultural presence, but agricultural legislation and market growth are now
being driven by values established from perspectives beyond commodity production. The
growth of process certifications such as organic, humane, gluten- and GMO- free are all

indicators of this cultural process in action.

Open source communities are generally established with the expectation and benefit of
rapid innovation and adaptation, tendencies that are aligned with the release and
reorganization phases of the adaptive cycle. The language of self-identified “communities”

itself is indicative of sociopolitical self-awareness. Counter-culture and populist values are
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well known aspects of the most successful open source software projects such as Linux,
Apache, and Mozilla (Hertel, Niedner, and Herrmann 2003) which attempt to operate outside
the patent system. A similar cultural approach and strategy extended beyond software and
gained national attention in June 2014, when the electric car company, Tesla, announced
that it would not defend any of its hundreds of patents but would instead focus efforts on
innovation. Shifting the strategy from short term extraction in the form of protection of
intellectual property to long term innovation and adaptation illustrates a cooperative
approach in response to the hegemony of established interests. Tesla CEO Elon Musk in a
6/17/2014 MSNBC interview put the decision in context:

“Say there are a bunch of people on a ship and a bunch of holes (are in)

the ship, we are quite good at bailing water out of our section and have

this nice bucket. We are foolish not to share that nice bucket design

because if that ship goes down, we are going with it”(“Elon Musk Talks

Tesla and Climate Change | MSNBC” 2014).
The analogy also fits tightly within Herman Daly’s Plymsoll line carrying capacity metaphor
(Herman E Daly 2007), that a heavily laden ship is more vulnerable in a storm. In the

context of the adaptive cycle, these metaphors describe the conditions required for

resilience in the process of shifting from the conservation phase to reorganization.
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Agile Development and Adaptive Management in Research

In many ways, open source hardware and software development methodology parallels

natural resource management adaptive management systems approaches.

Waterfall
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Figure 12 - Agile software development process as an analog and precursor to adaptive management. The Agile
Software development process is an iterative process that does not prescribe outcomes, but is driven by constant
evaluation and correction that enable adaptation. The Agile process is presented in contrast to waterfall
development methodology that is less collaborative and based on more fixed roles and responsibility within a
team. There is a marked similarity to the spiraling questioning characteristic of adaptive management as
illustrated (Probst and Hagmann 2003). The parallel culture of adaptive management and agile software
development methods and tools is significant because future developments in cultural practices and adoption of
collaborative adaptive management will be codified in software workflows.

Both systems operate in contrast to more rigid approaches. In the case of open source
software, Agile development (horizontal, with constant feedback loops) is used in contrast
to management driven Waterfall type project management (top down, with limited

feedback loops). Agile production, best known in corporate circles as the “Toyota
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production method,” is characterized as being horizontally developed by smaller semi-
autonomous distributed teams that create and test quickly and collaborate actively across a
network. In natural resource management, the Waterfall approach is illustrated by the
rigid “best practices” model of governance developed through a hypothetical, deductive
approach dependent on following prescribed steps. There is a growing set of voices critical
of the traditional version of this method (Bauer 1992; McComas 1996; Lederman 1998;

Giunta 2001).

Agile development describes a more iterative and adaptive approach to software
development more aligned with an adaptive management approach in agriculture. Large
companies such as IBM have embraced and popularized both Agile and open source
approaches, while the “waterfall” approach has fallen out of favor. Figure 12 illustrates the
contrasting methodologies and how they relate to emergence and iteration. There are
benefits and clear challenges articulated throughout this study in creating a research
process that is itself adaptive and that focuses on uncertainty. Embracing emergence and
uncertainty also enables constant improvement and evolution in the questions that can be

asked.

Science at its essence is a process of discovering order in the natural world, and using that
knowledge to describe what is likely to happen in nature. Important outcomes of science are
principles that explain what consistently happens in nature; however, there are many ways to
approach and test systems (Miller, 2005). The social consequences of an overreliance on

deductive methods and the positive implications of revaluing exploratory, inductive methods of
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agricultural research are driversfor this study's analysis. Agricultural systems represent a
particular challenge to the hypothetical, deductive (Waterfall) model, because of the
number of uncontrollable variables and complex interactions, especially when studied at a
landscape and watershed level. A more inductive, adaptive (Agile) approach enables the
flexibility to follow unanticipated results by observing and then adjusting the research
questions in response to unforeseen variables as they are inevitably encountered. The
Physiocratic social framework outlined in this dissertation provides a context for
participatory research approaches that flourished during the Enlightenment period when
no theory had yet been established; the approach was quashed with the rise of
industrialism, professional science as a field of expertise, and an emphasis on deductive
methods. Agile, adaptive management approaches offer a resurgence of the potential to
foster curiosity and participation in the broader population, and to develop effective tools
for the documentation of soil, plant, and management interactions across a landscape. The
social structure of Agile, open source development is flat, and enables input to come from
any source. It puts tools in the hands of those who are willing to question and take action.
The social structure of the method creates both a social benefit and a communications
efficiency gain that is inherent in the process. The concept of iterative inquiry and action is
central to the promise of open source agricultural research and development.

Adaptive inquiry more closely represents the informal process that producers go through
on the farm every day, and can become a pathway into a larger inquiry. While previously
too expensive to allow a systems approach beyond the individual field, this method can
now be coupled with newly inexpensive, statistical and observational data logging tools to

enable a “blanket approach” to document as many indicators as possible to explore the
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results retroactively. This neutral data collection method of filling extensive "Baconian
Tables” (in reference to Sir Frances Bacon's description of the inductive process) creates a
model for inquiry that does not put the burden of experimental design on accurately
foreseeing the expected results, but rather creates opportunity for involvement, rigorous

scientific inquiry, and adaptive feedback loops regardless of the variables (Harwood 2004).

A more cyclical, adaptive approach to inquiry challenges some of the basic industrial,
cultural structures that are embodied in the reward systems and funding mechanisms for
research. Part of the requirement for adaptive management and the creation of Agile
research teams is a more horizontal and participatory structure. Agile research is less
management-driven, can take input from multiple sources and types, and enables multiple
interpretations and explorations of the data. In contrast, the conventional deductive
research model is more product than outcome based, focusing on certainty rather than
uncertainty. Because it relies on building blocks of only known knowledge, it also limits
participation to experts in their domain to assemble those blocks of knowledge together.
In essence, the deductive approach is a reflection of the consumer based socio-economic
model that creates two classes of participants. The byproduct of this approach is the
cultural perception that innovation happens only through special people (scientists,
inventors, etc.) working in special places (Laboratories, R&D centers). This construct
carries through beyond manufactured goods, to non-rival goods such as media and
scientific knowledge (Michael 1998), and creates a consumer model of passive dependence
on the “producers” of products and knowledge. In contrast, the Physiocratic framework for

an open source, inductive process reopens the process of inquiry to the commons, viewing
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the creation of shared knowledge and involvement in natural resource decisions as a public

good and a civic obligation. Rather than dependent consumers, participants in this

framework can become an empowered and active part of the improvement and

development of products, and even the manufacturing process. Open source development

using Agile methods and related methodologies, such as Collaborative Adaptive

Management, close the artificial gap between “producer” and “consumer” through a

structure and development process that is unified, horizontal, and requires participant

engagement and decision making to be successful.

Measuring the Commons to Reduce Externalities

The emerging open source agrarianism echoes the ideals of social justice concepts of self-

determination that emerged during the Age of Enlightenment. John Locke’s 1690 Second

Treatise on Civil Government stated that (emphasis added):

“Though the earth and all inferior creatures be common to all men, yet
every man has a ‘property’ in his own ‘person.’ This nobody has any
right to but himself. The ‘labour’ of his body and the ‘work’ of his hands,
we may say, are properly his. Whatsoever, then, he removes out of the
state that Nature hath provided and left it in, he hath mixed his labour
with it, and joined to it something that is his own, and thereby makes it
his property. It being by him removed from the common state Nature
placed it in, it hath by this labour something annexed to it that excludes
the common right of other men. For this "labour” being the
unquestionable property of the labourer, no man but he can have a right
to what that is once joined to, at least where there is enough, and as
good left in common for others” (Locke 1952).

Locke’s statement highlights many common elements in the current dialogue about

sustainable agriculture. He identifies the fundamental economic equation of agriculture
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and the concept of property ownership and stewardship by direct action and improvement,
and its relationship to the commons and related ecosystem services. He holds that Nature
and land are common, that the improvement from the product of labor is due to the
laborer, up until there is not enough in the commons for others. The last sentence - “where
there is enough, and as good left in common for others” is often overlooked in favor of the
industrialist’s expedient reading in favor of extractive property rights. Disruptions in the
provision of nature's benefits caused by human action were already recorded in ancient
civilizations by Plato's descriptions of the effects of deforestation on soil erosion and the
drying of springs in 400 BC (Daily, Matson, and Vitousek 1997; Gémez-Baggethun et al.
2010). The pace of technology to monitor human changes to the biosphere has lagged
behind the pace of industrially extractive technologies, which were enabled by capital and
hired labor to change our environment, at a pace beyond Locke’s comprehension. Itis a
perversion of Locke’s logic to treat this mechanical pace and hired extraction with the labor

of an individual for his own use and improvement.

There is a deep concept of justice in the idea of the commons in nature that is a constant
theme of human history and is now echoing globally in the context of climate change

dialogues and local food movements. Jonathan Swift famously wrote that

"whoever could make two ears of corn or two blades of grass to grow upon a spot of
ground where only one grew before, would deserve better of mankind and do more
essential service to his country than the whole race of politicians put together" (Swift
1726).
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Swift’s statement also emphasizes the economic equation of sustainable agriculture, and
the social and biological values associated with it. These social echoes are currently
relevant because they are being employed in contemporary settings and represent an
underlying shift in social values which in turn forms the basis for sustainable agriculture

and the understanding of ecosystem services within popular culture.

Substitutability arguments which came out of neoclassical economics identified capital as
the primary limiting factor, even for ecosystem services (Gomez-Baggethun et al. 2010).
However, there is an emerging understanding that good management and maintenance of
ecosystems can function and provide the same services more economically than built and
capital infrastructure. Post-disaster planning conducted after environmental crises such as
Hurricanes Irene and Katrina has increased the public awareness in the United States that
there is a much lower cost in managing ecosystem services like salt marshes, mangrove
swamps, seagrasses and similar natural buffers, than substituting the function with built
capital of concrete and steel. The blueprints for lower cost solutions already exist in nature
(Benyus 2002). As Antoine de Saint-Exupery explained, “You know you’ve achieved
perfection in design, not when you have nothing more to add, but when you have nothing more
to take away” (Saint-Exupery 1939). From the dust bowl to more frequent flooding, drought,
and more severe hurricanes predicted by climate models, cultural insights in valuing
ecosystem services move from theory to economic reality and become part of the public
planning process.

The conventional economic model has enabled cultural and economic values that do not

provide for the fundamental difference in the nature of agriculture, in its broadest sense,
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from all other human enterprises, and the fundamental biological relationship to improving
or degrading ecosystem services. By devaluing the importance of agriculture and by not
having sufficient feedback mechanisms, the result is an economic model as illustrated in
figure 13, with a small root system supported by external inputs and without a resilient
base of deep roots. In nature, trees expand their root structure as their canopy grows. A
tree with a large canopy and small roots is inherently unstable and vulnerable to stresses.

It is more easily blown over.

Growth without growth in r'eg_fé'hé'rétivé:ca‘pacity = extraction & instability

Figure 13 - Mirabeau’s tree represents the reduced resilience of a commerce driven system. The inversion of
agriculture as a subset of commerce, rather than commerce as a subset of agriculture, illustrates the limits to
growth of the contemporary economic model. The externalities are evident in undervalued contributions of land
improvement and the capacity for regeneration expressed as a small root system and a large canopy. The result
is a system dependent upon extractive growth rates explored in limits to growth theories (D.H Meadows et al.
1972), one that is top heavy, vulnerable and unstable.
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Climate change models bear this metaphor out: we see cities around the world which have
neither planned for nor taken this vulnerability into account facing more severe weather
and rising seas. Cultural systems and environmental feedbacks lag behind the ability to
extract and change the global environment, in part because culture and evolution are
sequential and cannot re-combine out of order. Technology, on the other hand, is not
limited to a single generation’s genetics and is therefore unbounded by linear sequencing;
it can grab genetics from across “species”, even “extinct” species, as long as there is
documentation (in this metaphor, DNA) (Kelly 2010). Author Kevin Kelly refers to almost
life-like evolution of technology as the “technium.” The technium he describes emerges
from environmental conditions and has parallel traits of convergent and co-evolution. It
has characteristics of a “selfish gene” (Dawkins 1976) and expresses the power of
accumulated knowledge and also the danger, the mismatch between the pace of
technological evolution and cultural assimilation. The slow feedback results in a lag time
between technical achievements and incorporation of skills and cultural values that
internalize the technological implications, especially evident in the documentation of
complex systems found in the natural world. This phenomenon is observed in the
environmental externalities of industrialization that were created before they could be

measured.

However, the Physiocratic living metaphor is bounded by what can be grown through
stewardship, and so total growth is limited to actual regenerative growth provided by
root structure and stewardship of a natural system; in other words, what regenerative

agriculture can support in terms of food, fuel, and raw materials. The industrialization of
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agriculture enabled a rapid bypassing of this slower, but more stable, and realistic concept
of growth that incorporates feedback for cultural assimilation. The result of bypassing this
equation was rapid, but unbalanced, industrial economic growth, without the technical
tools to evaluate the change, or time enough for the feedback required for social values to
catch up. The result is the contemporary unbalanced biogeochemical and social systems

we have today.

The industrialization of agriculture created economic models that both blurred and ignored
the distinctions among agriculture, mining, and manufacturing (Gémez-Baggethun et al.
2010). In the broad sense, agriculture and mining are the most fundamental ways in which
humans interact with our environment, while manufacturing transforms the raw goods
either grown or extracted from the other two. The blurring and obfuscation of these
fundamentally different relationships is reflected in economic and popular literature
(Goémez-Baggethun et al. 2010). In the latter half of the 20t and beginning of the 21st
century, agricultural economics was reduced to its factors of production, which fails to
recognize the fundamental difference between agriculture and manufacturing as identified

within the structure of Mirabeau’s tree.

The result is an imbalance between the regenerative capacity of the natural systems and
the population, commerce, and arts sustained by it. Figure 15 illustrates this imbalance by
showing a shrunken root system supporting a large canopy of commerce, expressed as
pollution, land use, and ownership patterns. Applied examples covered in later chapters

focus on the particularly top heavy nature of the New England economy, which produces
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only a small fraction of its own food and energy (Timmons 2006; White 2014). The tree
metaphor shows that the tree/culture might survive in good conditions, but without deep
roots would not be resilient to storms, drought, or other stresses. In this way, the
metaphor also functions in a similar capacity to Daly’s earlier mentioned Plimsoll line
metaphor for the Earth's carrying capacity. The ship metaphor illustrates resilience in
terms of the inherent vulnerability of an overladen vessel to adverse weather conditions
(H. E. Daly and Townsend 1996). The difference is that Daly’s metaphor doesn’t allow for

the growing of a bigger or more stable boat through management of natural systems!

Cultural Values and Internalization of Ecosystem Services

Global gtatug of human induced
soil degradation
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Figure 14 -Market failure expressed as human-induced global soil degradation (FAO 2014). This image illustrates
the outcome of Figure 13 as an extreme example of market failure caused by inaccurate indicators caused by a
commerce rather than agricultural driven system and slow corrective feedback loops that enabled the temporary
ability to ignore agriculture as the basis for civilization. The result was market values that have failed to account
for the degradation of the commons in the form of regenerative soil and water resources.

The shift in the language of land, soil, and the subsequent treatment of factors of

production shows how important environmental feedback and connections are to creating
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cultural values around ecosystem services. Cultural values directly relate to the framework
and feedback mechanism, and inform how a population interprets its own environment.
Just as European settlers’ observations of the perceived abundance of the New World was
informed by the Old World’s perceived scarcity (Cronon 1983), so do industrial hegemonic
values influence contemporary values placed on land and the care of land (Levy 2005).
Global soil degradation and soil health, illustrated in figure 16, are the most dramatic
examples of environmental indicators ignored or simply thought irrelevant by economic
schools of thought (David a. Robinson and Lebron 2010; D. Robinson et al. 2013). The
climatic and ecosystem service degradation caused by this oversimplification illustrates the
consequence of inadequate environmental feedback loops and of cultural systems that have
isolated people from nature (Walker and Salt 2006). Chemical soil testing performed to the
exclusion of a holistic approach is a well known example of how the industrial system of
specialization led to unintended external costs of degraded soil (Idowu et al. 2009). In this
extreme case, it has led to cultural values that lack feedback to appreciate and maintain soil
and nutrient systems as the most basic building blocks of civilization (Wrench 1940; F. H.
King 1911; Ohlson 2014).

Figure 17 illustrates the feedback process that leads to greater soil degradation. If systems
feedback, like reduced water capacity or increased compaction, is recognized and valued,
management changes and actions can stop the downward spiral. But if soil is not managed
as a complex system but instead a simple input/ output factor of production, then the
feedback is inadequate and even detrimental, resulting in a reinforcing pattern of

degradation.
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1. Intensive tillage, soil
erosion and insufficient
added residues

2. S0oil organic 3. Aggregates break down
matter decreases,

subsoil compacted
5. Infiltration decreases

4. Surface becomes Erosion by wind and water increases

compacted, crust forms ‘ & 7. MORE ponding & persistent
; ; wetness, but LESS soll water storage;
& Mpre SoN organic matter, less rooting; lower nutrient access by
nutrients, and top soil lost K lants*Sias. diversity of soil organisms,
8. Crop yields more discase
decline

9. Reduced yields and at
greater input cost

Figure 15 - The soil degradation cycle (Magdoff 2000) illustrates the negative feedback loop of management
attempts to compensate for a degraded resource without adequate feedback about the biological functions of
soil. The reversibility of this cycle is central to the Physiocratic framework. The sdiagram frames the
exploration of observational and analytic tools to provide the feedback necessary to farmers and managers to
document and reverse the degradation process illustrated in Figure 14.

Soil Health, Resilience, and Optimism
The history of soil degradation and the promise of soil regeneration has been captured in
agrarian literature in books such as Farmers of Forty Centuries: Organic Farming in China,
and Korea first published in1909, Reconstruction by way of the Soil, published in 1940 and
more recently in books listed as Amazon.com'’s top agricultural reads, including The Soil
Will Save Us: How Scientists, Farmers, and Foodies Are Healing the Soil to Save the Planet
published in 2014 and Grass, Soil, Hope: A Journey Through Carbon Country. The content of

this study is referenced throughout Grass, Soil, Hope (White 2014).

A theme of the above books, in the agrarian tradition, is a sense of optimism and hope that
through personal action, management can have a positive effect on natural systems. There

is also emerging communications literature on this particular aspect of environmental
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communication strategy (Bolderdijk et al. 2012). The Common Cause for Nature, a group of

environmental organizations, released a report stating that,

"Provoking feelings of threat, fear or loss may successfully raise the

profile of an issue," but "these feelings may leave people feeling helpless

and increasingly demotivated, or even inclined to actively avoid the issue".

People respond to feelings of insecurity ‘by attempting to exert control

elsewhere, or retreating into materialistic comforts.’
The common sense of optimism and empowerment shared by agrarian, Physiocratic and
Open Source narrative place the individual within a context that is empowered to create
more stability and security rather than fear and powerlessness. This is in contrast to
communication from the consumer based memes such as “peak oil,” and “carbon footprint,”
which leave the citizen in a helpless role, dependent on “producers” to change, or to only to
be able to change “consumption” patterns, within the confines of the existing regimen.
Building resilience through soil health, and measuring and including every citizen within
that dialog, is part of a communications strategy that the agrarian themed books embrace,
and is a consistent element in Physiocracy. The sociology of resilience in cultural patterns

is clearly tied within the concept of soil health and its management as presented by the

above authors.

Fortunately, the soil degradation cycle is reversible and the inverse of the same factors that
degrade soil can both increase soil health and resilience and help balance the atmospheric
surplus. Health is a systems concept, and therefore there are many ways of measuring it.
The most basic definition of soil health is the capacity of soil to function biologically,

chemically, and physically. The Cornell Soil Health test started with 96 indicators to
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measure health, and has worked down to the thirteen indicators for the 2013 test.
[teration and refinement is a constant process and, as part of that maturity, the Cornell Soil
Health test has become part of a national collaborative effort to refine and standardize soil
health indicators. The physical indicators include aggregate stability, water capacity
surface compaction and sub-surface compaction. The biological indicators include organic
matter, active carbon, respiration, ACE soil protein index, and root pathogen pressure. The
chemical indicators include the standard pH, P, K and micronutrients.

The Soil Renaissance project, initiated and funded by the Noble Foundation and the Farm
Foundation, has advisory members from national conservation groups, government
officials, and scientists coordinating an effort to standardize Soil Health indicators. The
existence of the Soil Renaissance project is culturally significant because the source of the
funding and the “conventional agricultural” stakeholders involved. Itis as an indicator of a
broader cultural engagement with environmental service values associated with
agricultural management. It is also an illustration of the potential practical application for
the immediate expansion of the collaborative adaptive management framework identified

by this study.

Soil health is a management variable that can add resilience to systems by mitigating
environmental and management variations, especially in drought and flood conditions.
Resilience is an especially important economic concept in relationship to soil health
because of the vulnerability of agriculture to volatility and variation, not just from weather
but from other cycles, such as bird migrations, insect life cycles and pathogens. Resilience

is defined as the capacity to recover from perturbation and disturbances, while retaining
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structure function, identity and feedbacks (Brand and Jax 2007; Holling et al. 2002; Lal
1997; Walker et al. 2004, 2010; Walker and Salt 2006). A soil with low resilience can
degrade beyond a critical threshold because of alterations in key soil properties and
processes. For example, decline in soil depth by accelerated erosion, or a decrease in Soil
Organic Content, can drastically alter soil health with the adverse impacts on agronomic

production and other ecosystem services (D. E. Allen et al. 2011).

Resilience and transformability are essential attributes of a good soil health. In the context
of changing climate and other perturbations, building soil health is essential to coping with
external changes and meeting the growing demands of increasing world population. Soils
of good health with high organic matter concentrations have favorable physical, chemical,
and biological properties and processes. Defining threshold levels of key soil properties
specific to land uses and ecosystems is essential to managing and enhancing soil health

(Lal, 1997).

The optimistic scenario represented in figure 16 has positive feedback loops based on
increased soil health. However, to achieve the positive feedback results illustrated in figure
16 requires cultural shifts that treat soil as a complex social and biological system rather

than something limited to geology and extractable minerals.
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Figure 16 - Positive feedback loops of soil health and increased organic matter. The ability of farmers to improve
soil with management is a central tenant of the Physiocratic framework. The pace and capacity for soil building
has been underestimated, but the knowledge and tools to do so have yet to be widely adopted or prioritized as
development strategies (United Nations Affairs Department of Economic and Social Affairs 2012). One indicator of a
move towards changing this trend in the United States is the creation of the Division of Soil Health within the
USDA/NRCS.

Methods that produce quantifiable feedback and cultural support are critical to change
behavior over time (Lal 2004). Recent technical achievements, such as soil imaging
processed by neural networks to provide near real time feedback equivalent to an
experienced field scientist, are part of the answer. But the cultural context and how the
achievements are further developed, distributed, and used will decide if they will also shift
wider cultural values and the perceived value of ecosystem functions to include public
awareness of their own role within the water, carbon, nitrogen and phosphorus cycles. The
simple figure of Mirabeau's Tree incorporates the concept of soil regeneration, with a sense
of place within the larger system that is important both culturally and rhetorically to

complement communications of optimism and empowerment through involvement.
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The accounting process of measuring the positive change in soil, observable in just a single
season, can be culturally powerful. Jethro Tull observed the same pattern over 250 years
ago as recorded in the entry on Agriculture within the Encyclopédie: "This skillful
academician wisely judged that one small example would have more impact than
reasonings which, though sound, would not be understood by most men or trusted by

those who might have difficulty in following them (Diderot 1751).”

In this feedback cycle, the deposits of surplus organic material feed into the “carbon bank.”
Once in the bank, the carbon deposits show a form of compound interest, creating a real
return on investment. As one seed is invested and perhaps one hundred are returned back,
biomass is returned as residue, and a season’s share of nutrients that were pulled from the
atmosphere and soil are circulated like blood through a body, a metaphor used by Quesnay.
The soil responds, like a runner with a higher metabolism, like a muscle being used. When
one seed is invested the following season, and one hundred twenty seeds are returned, a
true compound interest based on the universal asset of life, carbon, is experienced,
indicating an increase in return. The surplus added back to the soil has been truly earned,
and has not been simply extracted from the millions of lives before us (White, 2014). This
powerful process already observed during the Age of Enlightenment and formed the basis

of Physiocracy.

Soil Health Measurement and Management
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A dominant discourse in environmental economics often involves some variation of I =
PAT, developed in the 1970s during the course of a debate between Barry Commoner, Paul
R. Ehrlich and John Holdren (Ehrlich and Holdren 1971). They argued that Human Impact
(I) on the environment equals the product of P= Population, A= Affluence, T= Technology.
The formula indicates how growing population, affluence, and technology contribute to
environmental impact. However, the framers of this equation and those to use variations of
it since, have not articulated that human “impact” could be restorative and reactive, or
could enhance diversity and ecosystem services (Palm et al. 2007) as figure 18 illustrates.
Their prejudice is still seen in the framing of popular terms like “carbon footprint” and
USDA tools with names like “Revised Universal Soil Loss Index” that assume human
interaction with natural resources will inevitably result in some form of degradation
without the potential for improved function of the biosphere. There is a danger in using
history to model human behavior and the environment. It is like predicting the outcome of
a sports game based on team records from ten years earlier: the teams have the same
names, but the players are different. Just as there are environmental thresholds as
described by resilience thinking, social thresholds also exist, which can result in new
cultural regimes. The cultural effects of satellite images are an example, and global
networked communications coupled with open source hacker culture may be another. The
relatively recent shift within the USDA to emphasize soil health at a national level, a
growing cultural acceptance of terms like soil health and all that it implies, and the many
conventional funders fully embracing such approaches through efforts like the Soil
Renaissance, indicate that past behavior by established interests can shift significantly and

does not always predict future performance.
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Jean Louis Comolli argued that the impacts of Renaissance perspective in terms of its effect
upon scientific and industrial structures was both a cause and a consequence of a shift to amore
humanist social regime (Gurevitch 2014). Measuring soil health and the human effect on it, and
the Physiocratic belief that soil health can be managed and improved, follows this clear legacy.
The use of Google Earth and similar levels of mapping further illustrates this point. Computer
automation, and even animation of perspective and rendering, has far-reaching consequences for
the relationships we have with representations of Earth, its ecology, and our cultural responsesto
externalities and climate change. This structured process of observation and action was formed
from the renai ssance perspective and created the active relationship between the Earth and
humans which has led to the Anthropocene. Our ability to observe and generate human
renderings of the Earth continues to evolve and contribute to the industrialization and science
(Gurevitch 2014). The Physiocratic framework builds on the renai ssance impulse of modeling
and measuring our environment, but adds explicit values of improving soil health as social

amendment to an earlier concept of the Anthropocene.
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Chapter 4: Technology, Open Source Culture, and
Participatory Research

Introduction
The contemporary focus on sustainable agriculture and natural resource management does

not imply large-scale transfer of finished technologies, as has been the mode for a long
time. Rather, it involves location-specific, informed practice, consensual decision making,
and adaptive management. Implementing all these requires collective learning by farmers
about technological and other innovations, and flexible options that can be adapted;
enhancement of capacities for opportunity identification, problem solving, and decision
making; platform building for resource use negotiation; and collective decision-making at
the larger ecosystem level (Roling and Jiggins 1998; A. R. Braun and van de Fliert 2000; van

de Fliert and Braun 2002)

A dramatic reduction in the cost of technological tools has resulted in a convergence of
conditions that will alter who can observe, access, and communicate knowledge and alter
social systems. The same computing power that now data mines Facebook, Google or
Twitter for behavior patterns, or recognizes faces from snapshots, creates Instagram
photos and shares digital self-portraits across the internet, can without any further
technical achievement identify plant growth patterns, and map and rank environmental
health indicators across a landscape. The annual report of the International
Telecommunication Union (ITU) estimated that by the end of 2013, there would be some

6.8 billion mobile-cellular subscriptions — almost as many as there are people on the planet.
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In 2000, 7% of the global population was connected to the internet; in 2014, the connected

population was 40% (Meeker and Wu 2013).

However, the popular global industrial narrative has focused on the primary applications of
technology as consumer uses or abuses. The demand for everyday consumer conveniences
has become the primary market driver for the low cost gyroscopes, accelerometers, GPS,
imaging chips, and memory now used in smartphones. The focus on monitoring the
behavior of people and delivering the most common wants of consumer culture, misses the
far more significant and consequential application of the same tools (Lane et al. 2010).
These observational tools have the powerful potential to monitor the management of
natural systems and dramatically involve a wider population in an open process of
scientific inquiry by lowering the costs and risks of participation. Weather prediction is the
most basic example of a distributed predictive modeling service provided to the general
population. However, this example does not yet use private mobile devices to exchange
and give dynamic feedback with those models. The technical capacity to achieve global
distribution of the networked devices is already proven; the potential for participation and
interaction through use of these tools applied to nutrient cycles is the topic of this study’s

socio-technical systems approach.

A number of different mobile phone applications (apps) are becoming available for
environmental monitoring ( Donnelly, Coull, & Black, n.d.; M. ]. Aitkenhead, Coull, Towers,
Hudson, & Black, 2012). Such apps fall into two different categories: observation

recording and data access. The manner in which each app operates is different, as is the
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data that is either recorded or accessed by the user. Examples of “observation” apps
include species identification and water quality monitoring. Apps of this type require a
certain level of knowledge on the part of the user in order to produce reliable observation
data. Monitoring equipment must often be used, for example pH or moisture meters, which
can provide measurements that the mobile phone is not equipped to take. Another type of
app that allows users to record their own information is the ‘mapping’ app, which can
enable land managers, for example, to record the positions at which samples have been
taken for later analysis. This type of app is useful for recording and retrieving the spatial
distribution of observation points in relation to fields or other landscape features.
However, it still requires the user to carry out additional (often costly and time-consuming)
analysis. There are also apps that process user observations and provide decision support
for agricultural and environmental management, for example in crop pest monitoring, crop

yield prediction and farm management (M. Aitkenhead et al. 2014).

Examples of apps that allow the user to access existing data include interfaces for soil maps
(e.g., Web Soil Survey) and more general environmental map information (e.g., Google
Earth ). These apps use the GPS function of the phone to pass the user’s location to a server
where the map is stored; this information is then passed back to the user. The value of this
kind of app is that it can supply the user with existing information, usually for free, that is
from a reliable source. However, the observations that have been recorded do not always
match those that are required by the user, and even if they do, they may be several years

old. For some applications this is not an issue, but as mentioned above, some soil and
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landscape characteristics, for example land cover or soil moisture content, can change

rapidly (M. Aitkenhead et al. 2014).

Beyond Smartphones and Networked Remote Sensing

Smart phones are a singular combination of technology oriented towards a particular use.
Phones are generally tied to individuals, with not more than one phone per individual,
which caps the potential nodes to about 8 billion devices. The “Internet of Things”, or the
networking of objects communicating about their environment, is not limited in any way to
the number of people or their location. The Weightless company
(http://www.weightless.org/) projects selling a network connectivity on a chip for under
$2 that would last for 10 years on a single battery and communicate over 5km, which opens
ethical and social considerations, but also illustrates the potential applications beyond

smart phones.

For example, the World Wildlife Foundation is working with Conservation Drones
(http://conservationdrones.org/) to put low cost Unmanned Aerial Vehicles (UAVs) in the
hands of citizens to map watersheds, document habitat, and track animals and poachers
(Koh and Wich 2012). Other applications, such as low cost wireless sensors that
communicate independently but are also internet accessible, are proliferating (O’Flynn et
al. 2007). IBM and Libelium partnered to create an environmental monitoring network in
Lake George in upstate New York; a September 2013 Forbes magazine article profiled this
effort with the headline “Saving Lake George: Can Sensors and Big Data Protect $1 Billion In

Tourism?” Libelium’s website continues the theme: “If we can harvest the Big Data insights
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from all of the things connected to the Internet we can more precisely understand how our
world actually works.” The development of techno-environmental optimism is highly
reminiscent of the Physiocratic worldview that natural systems can be understood and
governed, but also diverges from the alarmist rhetoric typical of the environmental

movement of the past 30 years.

Open source research and development organizations such as The Public Laboratory for
Open Technology and Science (Public Lab) and Farm Hack which are both discussed as case
based studies in Part II of this dissertation, apply and illustrate this techno-optimism
though cooperatively held events at the author’s farm in Lee, New Hampshire, on a
weekend in May during the years of 2012-14 called iFARM (Imaging for Agricultural
Research and Management). Several examples of open source environmental monitoring
hardware and software were presented that illustrate the social and technological
convergences. These systems were all similar in approach, cost and structure to the soil
imaging system already discussed. Examples of the open source community driven
projects that illustrate technological approaches to environmental understanding included:
RIFFLE - A < $100 water sensor (temperature, pressure and conductivity) data
logger that can be housed in a water bottle enclosure. The Riffle is a Public Lab and

Open Water project.

FIDO - A < $100 wireless networked wifi cellular data logger with web interface and
automation potential. FIDO is a Farm Hack project funded by KIVA and SARE.

Apitronics - solar powered a wireless data logging network that can support
thousands of sensors per node with communication up to 8 miles between nodes.

The first production run was Kickstarter funded.

Cow/farm tracker - A Farm Hack project to develop a $20 per tag cow tracker that is
precise within an inch and can indicate cow head position to determine grazing
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behavior, which could be used for other animals or objects. The prototypes are
being developed with USDA/SARE funding.

UAYV and Kite imaging systems - Both Public Lab and Farm Hack projects presented
multiple $300-$2000 solutions, some of which were funded by Kickstarter
campaigns

Infogram and spectral workbench - Public Lab hardware and software for

multispectral cameras and spectrometer Kkits for smartphones. Funded by several
Kickstarters.

Each of the projects presented at the 2014 iFARM event was built upon the accumulation of
other open source technical accomplishments. Case studies presented in later chapters

review the open source design methods used in the development of these tools.

It is not surprising to see so many variations and simultaneous and similar combinations of
hardware and software. In his book, What Technology Wants, author Kevin Kelly
introduces the theory of parallel innovation, which states that when conditions are ripe,
simultaneous and similar solutions emerge, just as complex eyes in mollusks, birds and
mammals have evolved many times through convergent evolution. Examples of such
parallel solutions are the simultaneous inventions in multiple locations without
coordination of the light bulb, the sickle bar mower, and the airplane (Kelly 2010). A
similar phenomenon is now being expressed in the proliferation of networked
environmental sensors. The rapid trajectory and evolution of observation technologies is
illustrated in Figure 17 by the change over three years in technology used at a series of

iFarm events.
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Figure 17 - Three years of iFarm learning community’s technological evolution. The trajectory of iFarm
technology presented and demonstrated by the Public Lab community illustrates the rapid change of low cost
observation tools available. The change in technology also illustrates the evolution of community technical skills
and the cumulative nature of technological capability within a learning community. Each year, new tools were
added, and previous tools were tested and refined. The refinement and change from year to year illustrates a
responsiveness to rapidly changing technology and communication across open source communities.

In 2013, Jeffery Warren, co-founder and research director for Public Lab, proposed that the
community driven and intentional process of data gathering and analysis be called "Small
Data.” The term is used to differentiate it from “Big Data”, the anonymous collection and
analysis of data from sources that may or may not be intentionally participating (Warren
2013). Small data approaches are covered in more detail in chapters 10-13 (“Public Lab:
iFarm Tech Talks” 2014), and in the forthcoming Chapter 6 of the Textbook Digital

Governance (D'IGNAZIO, Warren, and Blair 2014).
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Moore's Law and Implications for Sensor Networks
Technical achievements in the last few decades have made ubiquitous environmental
monitoring possible. Key technical achievements in transistors, storage, imaging chips and
other advances are now percolating through markets as the capabilities increase and costs
drop, enabling embedded networked technology in tools that “talk” with other tools which
leads to the expansion of the Internet beyond human participants and into the realm of the
“Internet of Things.” New applications for lower cost computational power and data
collection span the micro to the macro, from genetic sequencing, to documenting complex
plant to plant and plant to root to soil interactions (Jones 2008), to nutrient cycling across
landscapes (Li et al. 2012) and global bio-geochemical pattern recognition and modeling

(Lal 2004).

These discoveries and accomplishments have had a compounding effect, just as precision
machining enabled the building of better and more precision machines. Moore's Law states
that over the history of computing hardware, the number of transistors in a dense
integrated circuit doubles approximately every two years. The law is named after Gordon
E. Moore, co-founder of Intel Corporation, who described the trend in his 1965 paper
(Moore and Fellow 1998). This trend has continued for more than half a century. His
prediction has proven to be accurate, in part because the law is now used in the
semiconductor industry to guide long-term planning and to set targets for research and
development. The capabilities of many digital electronic devices are strongly linked to
Moore's Law: quality-adjusted microprocessor prices, memory capacity, sensors and even

the number and size of pixels in digital cameras(Lockwood and Pavesi 2004). Moore's law
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describes a driving force of technological and social change, productivity and economic

growth in the late 20th and early 21st centuries.

The following figures illustrate the dramatic decrease in pricing and increase in capacity
over the last few decades. According to internetworldstats.com, 39% of the global
population now has Internet access which represents a677% growth in just the last 14 years.
Thetrgjectory for the next 14 yearsis still emerging. However, the pathway that started with
the linkages between computers and people has already extended to the linkages of things
to the internet and hyperlinking data and meta-data generated by ubiquitous sensors
across the globe. Professor William Webb, CEO of computer component manufacturer
Weightless SIG, has a vision of 50 billion connected devices with chipset costs below $2,
battery life of 10 years or more and a range of 5km or more to ensure ubiquitous coverage
from a low cost network (Weightless.org 2014). Two billion smart phones are projected to be
inusein 2015, illustrating that the process is already underway, with mobile technology
becoming the fastest growing segment of internet connected electronic devices (Emarketer.com
2014). The printing press provided access to cumulative knowledge. This next phase begins a
process that moves beyond sharing information and knowledge, as feedbacks and modeling
begin to form networked intelligence. How and for what purpose that intelligence is used has yet

to be determined.
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Figure 18 - Cost and capacity of imaging chips 1995-2009 (dpreview.com, 2014).
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Figure 19- Continued drop in Cost per Gigabyte of storage 2000-20013 (statisticbrain.com, 2014).
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Figure 20 -Networked Remote Sensing expressed as a smart phone. Low cost transistors, memory, imaging chips
and sensors converge to form a social networked remote sensing technology expressed as a smart phone (Lane et
al. 2010).
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These lowered costs are already found in electronic toys, digital picture frames, home
automation, automobiles and, most importantly, as illustrated in figure 25, in smart phones
that form the basis for a complex and powerful remote sensing tool.

Some environmental applications use the phone unmodified in consumer form (networked
imaging) as a “base” for hardware plugins such as the FLIR Systems $300 thermal imaging
camera, EcoSyth or the Public Lab developed spectrometer, or the sub components to build
new custom devices such as UAV autopilots, which also add additional sensors such as
barometers, thermal sensors and internal compasses (APM). However, this same drop in
costs has not yet been applied to closed source, commercially available environmental
monitoring equipment. At the time of writing, the cost of commercial UAVs and data
logging companies maintain a 10x markup from the equivalent costs of hardware
components and open source software. This type of markup moves the price point of a
powerful research tool from $1,000-5000 to $10-60,000. These price points were gathered
based on a survey of published prices of the leading UAV vendors marketing to agricultural
uses including, but not limited to, 3D Robotics(http://3drobotics.com/), Precision Hawk
(http://precisionhawk.com/), and Trimble (http://www.trimble.com/unmanned/).
Figure 24 illustrates the price breakdown in the form of a sample bill of materials for a

fixed wing UAV with off the shelf components acquired as part of this study.

Function Description Approximate Price

Imaging 10-14 megapixel cameras. IR filters $50-$350
are $10

FPV Live video streaming 5.8ghz $150-600
transceiver system

Navigation Autopilot $200
GPS & compass $80
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Ground station software $0
Navigation telemetry radios 915m $30-100
hz
Laptop or tablet to run ground $500-1000
station software
Power system | Lipo Batteries $15-100
Speed controllers $20-40
Servos and connectors $20-50
Motors and props $13-40
Airframe EPO and carbon fiber airframe kit $50-250
Manual Radio | 2.4ghz systems with receiver $50-250
control
Total approximate cost range $1200- 3000
including ground station computer

Figure 21 - UAV Bill of Materials. This table indicates a mix of proprietary and open source hardware and
software. The systems and their assembly are well documented in publicly available forums and open source
communities. Closed source solutions are not documented because the bill of materials and software
components are not publicly available. There are many suppliers, however the hobbyking.com and 3DRobotics
companies are the primary suppliers for this bill of materials.

The price disparity between open source and proprietary systems provides an illustration
for the power of open source publishing as a cultural check to the extractive bent of market
tendencies (Gillespie 2006). The same disparity is seen now in other scientific
instrumentation, data loggers, and other hardware (Pearce 2012). The New Yorker
magazine published an article on Open Source Ecology (OSE), a nonprofit focused on
generating open source documentation of the fifty tools it deems critical to build
civilization. OSE claims the advantage in avoiding extractive pricing by distributing the
research and development risk, and reducing speculative production and support
infrastructure (Eakin 2013). By its nature, an open source community is its own support

structure and learning community.

Open Source Development Trends

A summary of a survey by Black Duck Software, a leading for-profit open source software

company, reported that open source projects grew from just tens of thousands in 2006 to

77



over a million projects in 2012 and the number of projects is projected to double by 2014
(“The Eighth Annual Future of Open Source Survey | Black Duck,” 2014). The same survey
also found that the number one reason for this growth was the better quality of software,
large libraries, and freedom from vendor lock that is an inherent tendency of proprietary
systems. The same report concluded that open source projects lead with innovation,
collaborative partnerships, development methods, and attracting developer talent. All of
those factors are important to the free flow of knowledge and are relevant to accelerating
the research and development cycles for environmental monitoring projects and increasing

public access to environmental knowledge.
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Carbon + Silicon + Open Source = Tools for Resilient Agriculture

Examples of Indicator Measurement Possible using Remote Sensing Methods

Atmospheric measures
-temperature

-humidity

-precipitation

-Carbon and Oxygen levels

(i) Indicates potential w:™
for imagery based
measurement

Soil health
indicators
-water capacity
carbon levels(i)
Root health(i)

~ Nodulation(i)
Vet a8 : -‘_"Pore structure(i)
Temperature (i), A EZILN 7% Compaction(i)
Conductivity - - ) - s Respiration
Chemistry (i)
Turbidity(i)
Algal growth(i)
Depth/Pressure/Flow/Quantity

Figure 22 - Governance of Nature through data. Potential systems indicators that could be measured by imaging
and network sensors to provide feedback for adaptive management. Mirabeau’s tree provides a backdrop and
“field of view” for the measurement and integration of whole systems health. The figure also illustrates the
interdisciplinary merging of observation and analytic technology to communicate biological systems activity.

The factors already covered that have led to a dramatic cost reduction, accuracy increase,
and accessibility of observations that have substantial implications for resilient soil and soil
health. Figure 22 illustrates example indicators which can be used to record and
communicate indicators of environmental systems health. The list and distribution
illustrates that most of the biological indicators are measurable through imaging systems.
Biological life forms follow relatively consistent structures that are comparatively more

visible than atmospheric and soil chemistry. Other indicators rely on more specialized
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sensors or laboratory processes. Resilient/regenerative agriculture management requires
rapid feedback to enable effective adaptive management, and the speed of acquisition of
image-based analysis is also a logical fit for biological monitoring. As previously discussed,
changes in technology have rapidly altered what can be measured, who does research, what
questions are asked, how it is funded, where it is done, how we communicate the results, and

how those results feed back to mental models of our own world.

ULTI

Well-Being, e.g. happiness,

The “technium” bridge
between abstract concepts
and systems action '

Daly’s Pyramid

Figure 23 - The “technium” is a term coined by Kevin Kelly to describe the evolutionary forces at play with
technological development (Kelly 2010). The interface of observation and analysis technology enables the joining
of Mirabeau'’s tree metaphor to Herman Daly’s Pyramid metaphor. The pyramid metaphor expresses the
movement of ultimate means (natural capital) to the ultimate ends (human well-being). In Daly’s metaphor
technology and built capital are intermediate means to ultimate ends. Kelly’s observation that tools are a
reflection of human understanding of their environmental systems creates new insights to Daly’s model and links
to the operating model of Mirabeau’s Tree.

Figure 23 identifies a category of technology in the technium mirror that is observational,

and informs systems understanding critical to natural systems management. The “activity
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layer” is within the intermediate means category of Daly’s pyramid structure. The
intermediate means is where scientific technology and political economy interact. As this
network of tools/technology is applied, it has a particular place within the social tree
metaphor. Daly’s pyramid is useful in terms of human made structures based on natural
resources (ultimate means) and how they relate to our ultimate ends of human well-being (
Daly 2007). The pyramid is a method of interpreting the human outcomes of the Mirabeau
agro-sociological tree, and the technium is the means of doing so. The Kelly technium layer
provides a mirror back to the social capital structure and enables feedback to systems’

environmental, economic and social health, and structural balance.

Chapter 5: Framework for Adaptive Management

Indicators as building blocks for systems health analysis

It isdifficult and often even impossible to characterize the functioning of a
complex system, such as an eco-agrosystem, by means of direct measurements.
The size of the system, the complexity of the interactions involved, or the
difficulty and cost of the measurements needed are often crippling. However,
environmental indicators can be measured and reported at different scales. For
example, atown may track air quality along with water quality and count the
number of rare species of birds to estimate the health of the environment in their
area. Indicators are devel oped for specific ecosystems, such as the Great-L akes
in North America. National governments use environmental indicators to show
status and trends with respect to environmental issues of importance to their
citizens (Walker et al. 2004).

As previously discussed, adaptive management is dependent on rapid feedback to function.

Adaptive management is a process of constant research, with the value of that research
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focused on management. The nature of adaptive research data means that it is far more
valuable in aggregate than in isolation. Data that was once extraordinarily expensive and
challenging to acquire and work with becomes accessible, inexpensive, and easy to share.
The dynamic also provides an opportunity to codify the complexity of adaptive

management into a more universal and adaptive cross-disciplinary framework.

The key elements that have already been identified are derived from the Soil Health
Reporting process (which is presented in more detail in the systems application and social
analysis section) and are as follows:

1. Indicators are user defined - characteristic that could have unlimited variations
and cross disciplinary applications.
Values - actual measured (or calculated) values
Ratings - values as they rank with others within the database
Health - combination of ratings of groups of indicators
Systems Health - larger aggregations of health groupings

Vi W

Whole systems Health

(biological) Assessment:

Co-Mingle

Interdisiplinary | A Balance of Many
Data Streams A dicators
{social)

(technical)

Adaptive Rating
Calibration,
And Validation

LT
U e

(ecoriomid) value Rating

Figure 24 - The generalized adaptive framework expands to enable the creation of cross disciplinary indicators.
Low cost indicators can be developed without field measurements. For example, measuring pounds of gain
(beef) to inches of rain uses financial recordkeeping and weather data to provide an indicator of soil health. The
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generalized structure enables new combinations of indicators to be developed and compared to other indicators.
These diverse measures can be evaluated and compared in social software in a “farmer dashboard” structure
such as the Cornell Soil Health report.

Indicator - The indicator is the basic building block for adaptive management. It is the
focus of the development of this model and enables the validation of new culturally
assimilated indicators into the workflow. The proposed framework also enables expressed
social values through Mirabeau's tree as well as through the adaptive management
approach outlined here. Networked communication technology also makes it possible to
record this process and these relationships not just in writing, but in code. Some potential

examples of indicators that could be created include:

Soil compaction - Net profit to soil health ratio
Net yield to nitrogen input - Farm labor intensity/acre
Total days without plant growth - Net primary production
Capital use efficiency - Net energy to soil health ratio
Land use efficiency - Monitoring frequency
General soil health - Net biomass per acre/inputs
Soil organic matter - Plant diversity
Soil water holding capacity - Yield/pounds gain per inch of
rain

Value. A measured value becomes an indicator when placed into context. The technical
discussion of this dissertation spends some time examining examples of changes in
technology that have altered the cost of measuring and storing values, but what makes
values useful is placing them in context. The value on its own might provide some insight,
but it becomes more valuable when put in context and as a measurement of an indicator of

a larger system.
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Rating A rating takes the measured value and puts it into a systems context by applying
logic and comparing the value to other measured values already recorded. The process of
applying the rating creates the human interpretation of the value within high and low
baselines. It is where values are created to guide management decisions, and is the result
of the convergence of science, technology and community. The quality of the rating also

depends on trust and community participation required to build a quantitative context.

The Physiocratic framework, as illustrated by Mirabeau’s Tree, represents a social system
that places indicators within social, economic, biological and technical contexts and
expresses the values in terms of the culturally accessible metaphor of tree health. The
combination of indicators and associated ratings are assembled to achieve a meaningful
representation of the larger system; from soil health, holistic farm management, to water

quality, or watershed erosion potential.
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Figure 25- The application of interdisciplinary indicators to create dynamic health feedback loops.
Interdisciplinary indicators can be combined and visualized as they relate to their functional relationship within
Mirabeau’s Tree metaphor of whole systems health. Ratios can be created between social, economic and
biological interactions that otherwise might not be viewed in context. The values associated with each of the
indicators can be evaluated and recombined with values from other parts of the system to create new indicators
as the Figure 24 workflow illustrates.

The compilation of multiple indicators and their relative ratings provides a quantitative
rating first of sub systems health, such as soil health, or whole systems health as outlined
within the Physiocratic framework. Without the indicators and metaphors, the system
becomes too complex to comprehend or manage with some level of informed decision

making. The adaptive management applied to the Physiocratic framework recognizes that
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the first indicators will not be the most accurate, but they can be used to prod the system,

and to develop and validate new and more accurate indicators.

These relational elements also form the basis for an adaptive research process that can be used as
an applied methodology and codified into an adaptive management software tool. One of the
primary challenges of cross disciplinary research isthe siloing of data and methods for
integrating disparate types of data. Thisuniversal relationa structure provides a conceptual
interface to that problem, and also a method for evaluating the quality of the indicators chosen.
For example, in the process of using this framework for soil health the general indicators
provide guidance to focus efforts, after which particular values come into play. The actual
values may or may not be actionable by themselves, but ratings provide a context and logic
to what that value means in a social context and in relationship to other values already
recorded in the database. Individual ratings can then be placed within a broader context to
further prioritize adaptive action. Some indicators may change slowly and others more

quickly, but by being socially connected and in aggregate, they can be evaluated in context.

The use of indicators embraces an approach of observation of emerging systems behavior
with an assumption that the system cannot be wholly known, but that patterns in behavior
can be gleaned from inductive observation. The focus on inductive observation also
enables the identification of common questions that bridge disciplines. The indicator
approach does not ignore deductive approaches but instead inverts the process to build

upon specialized knowledge after focusing on common unknowns and questions.
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Indicators may emerge from farmer- or research-generated data from sensors, recorded
observations, spreadsheets, accounting software, and/or climate and nutrient models
already in use for farm management decision-making; however, these indicators are
frequently presented without context and often in low frequency. The calculations and
data also tend to be inaccessible, locked up in spreadsheets or obtuse academic software
that are difficult to maintain even for the modelers. The alternative is accessible, affordable
adaptive management software that shifts a portion of the data collection and ownership to
the farmer, and which invites further participation and collaborative exploration with a
supporting role of data aggregation, processing and value added interpretation from
scientists and professional service providers. To become more adaptive and engaged in the
broader feedback loop of agricultural research, farmers can adopt tools that generate large
quantities of high resolution data through environmental monitoring technology and
online farm management software that have value beyond their immediate management

goals.

Web APIs (application programming interface) methods create linkages across platforms
through agreements and contracts. Researcher-built models such as Web Apps can now
use Web APIs to enable farmers to access indicators calculated countless times in a season,
with little or no delay. Based on an adaptive management software framework, an open
source platform could enable researchers to easily access live data sources that could be

validated against other indicators within the system and made available through Web APIs.
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Figure 26 - Observation technology applied to a landscape. This diagram illustrates the application of currently
available open source observation tools in a landscape context. The collection of these remote sensing tools is
combined within this context to provide high resolution feedback required for collaborative adaptive
management. These include, from bottom left moving clockwise, smartphone based imagery, Apitronics and Fido
networked ground sensors, UAV based aerial imagery, FarmOS software, ubiquity wireless wifi bridges, and riffle
water sensors and data loggers.

The potential is a greater quantity of biological, economic, and social data, documented at
higher frequency, controlled by agreements with farmers available over Web APIs to both
technical advisers and researchers. Decision-making support using rapid and accurate

feedback is a pre-condition for effective adaptive management.
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Examples of Web APIs for agriculture in development (also covered in later case studies)
are:
1. Hive - Publishes a Web API for environmental data collected from an on farm
sensor network.
2. Farmier/FarmOS - Publishes a Web API for farm management data that is
entered by a farmer for management, order processing, and record keeping.
3. Cornell Soil Health Lab - Web API (in development) for soil health data to

be collected on-farm and lab-processed.

With these data sources available in real time and combinable in another Web App, the
indicators can be customized, recalibrated, and shared in many custom combinations. Data
portability is made possible through standardizing the data format such as column headers

in CSV files. The Web API creates a bridge to carry that container across to other APIs.

The bridging enabled by Web APIs means that factors such as soil compaction ratings and
pH can not only be tracked but also combined with financial and management record
keeping data, which can be imported using the same framework as a value and indicator,
and related to other indicator descriptions. The Soil Health Report uses a weighted model
to generate ratings and total soil health scores, similar to weighted financial modeling. The
creation of a universal adaptive model enables the combining and re-combination of
financial, biological and technical models that can accommodate any type of biological,
social, technical or financial data flow, and create meaning from relationships of individual

values relative to data within the database. This type of holistic health rating system
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enables the development of far more sophisticated ratios and indicators over time. Until
recently, many systems interactions have been too complex to quantify, such as yield-to-
input indicators, and yield-to-weather indicators, to measure resilience and environmental
efficiency. These interactions can now be analyzed. These measures also enable managers
to assess more sophisticated relationships, such as herd health, soil health and net margin.
It also provides a framework for developing new adaptive measurements. Many indicators
have not previously been practical because of the high cost of measurement and

recordkeeping.

Faster indicator feedback is arequired condition for improved adaptive management (Walker
and Salt 2006), and creating software systems that codify the feedback process and refine the
value of indicators in the process is a step toward making adaptive management areality. A
more detailed discussion of this framework continues in the technical section; this framework
provides the organizing principles of the social technology and data flows described within the
applied social analysis section, aswell. The shift to using machine-based observations and
processing to create new observations from data collected in an unbiased approach creates new
considerations for the balance between inductive and deductive research that makes adaptive
management possible. By its nature of making broad observations first, an inductive approach
focuses more on the search for unknown patterns. The unknown will always be greater than the
known, and this condition of shared wonder therefor creates common ground across fields of

study and accommodates the interdisciplinary nature of systems exploration and management.

90



Adaptive Management Development Process

Communication in and

out of system

Avallable tools J

.

Outcomes

Feedback — from
available tools

mental Model!
behavior

e

e

N

Products
exported and
returned

Agro-ecological system

Figure 27- Adaptive Management flow from knowledge to action. This flow diagram illustrates the
implementation of adaptive management and a constant flow of knowledge feedback loops. Adaptive
management requires feedback of appropriate knowledge at the appropriate time to take action. Reactions and
feedback times from those actions are then taken into account for future actions, but are limited by feedback
cycle times. The complexity of the data and interpreting the feedback from indicators illustrate the role of
computer aided support to gather and accelerate the interpretation of knowledge to enable action.

Figure 27 applies the technium-aided quantitative adaptive feedback model to land
management. In this diagram, the primary flow is knowledge to action. Tools, action and
environmental feedbacks are all knowledge based. Incomplete information for social, or
technical reasons would be symbolized by blockages, or restrictions to the feedback
process. The result of knowledge restrictions are expressed in reduced systems

understanding and inadequate feedback and ultimately in missed opportunities to take the
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most effective action. If, however, this model is applied effectively, it can create a positive,

reinforcing feedback loop as illustrated in figure 28, again using Mirabeau’s Tree metaphor.
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Figure 28 - Cumulative systems knowledge, improved tools and Adaptive Management. The adaptive
management process overlaid on Mirabeau’s Tree illustrates the process of Figure 30 put into societal context.
Feedback from biological and agricultural systems flows through to reflect itself in improved observational,
analytic and action tools. The refinement of tools and communication tools leads to improved systems
understanding which can feed back towards improved management decisions. The feedback process is aided
and parallels the development of the “technium”.

The complexity-to-accuracy ratio of ecosystem monitoring tools is not necessarily a linear
function. An indicator that is more complex to measure is not necessarily more accurate;

however, simple and low cost indicators may be challenging to identify and subsequently
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validate without methods that may at first be complex. Neural network and machine
learning methods make it possible, for example, to identify visual spectral signatures of
nutrient deficiency in leaf tissue that are easily identified with the unaided eye, but to
validate that observation may require complex and expensive laboratory methods to build
spectral libraries and databases to increase the accuracy of field observations. As
validation through greater levels of participation is made possible through social
technology and reduced barriers to knowledge exchange, simple observations may be
made more powerful through context gained by access to a wider network of observations.
A non-technical example of this is general knowledge of species identification. Most New
England residents are likely to be able to identify poison ivy, but probably not fungal
growths on barberry leaves; this is not a matter of complexity but of cultural assimilation of
environmental indicators. However, simple ID protocols could create a simple automated
leaf color and ID tool like leafsnap.com which is being developed by the Smithsonian,
University of Maryland, and Columbia University. Figure 29 illustrates this process of
technology aiding in cultural assimilation of knowledge. It describes simple observations

made powerful through high tech validation and networked data management.

The power of systems integration is in the pace of iterations, validation of new indicators,
and the ease and speed of communication and adaptation of management by participants
(Lee 1999). An example of this is illustrated using a comprehensive Scottish soil data base
coupled with low cost imagery in the visual spectrum taken with low cost color calibration
cards included in-frame (M. ]. Aitkenhead et al. 2013). The images were then fed through a
neural network to process the images remotely, and return the analytic results. The

project relied on The National Soils Inventory for Scotland (NSIS), which contains soil and
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site conditions of 3094 locations throughout Scotland sampled for physical and chemical
properties using a 5 km grid across the entire country (M. . Aitkenhead et al. 2013). The
project demonstrated that a neural network approach to the prediction of soil parameter
values could consistently produce r:values of >0.5 for parameters relating to texture and
broad physicochemical properties such as organic matter. Such an approach is an
illustration of a rapid and cost-effective method for providing soil analysis that can be
applied by soil professionals and land users with little expertise in the field (M. ].

Aitkenhead et al. 2012).

Aitkenhead (2013) builds on the initial promise of this approach and experimenting with a
system that will work with mobile phone cameras to link with server-side data processing,
and enable the progression from data acquisition to useful landowner feedback. The same
infrastructure used for this approach is already in use for web-based mobile phone
applications used in agriculture and public health. Fields such as ecology and public health
are more restricted to case-based inductive methods of observation and analysis because
of ethical concerns, and have established methods for data gathering and processing.
Changes in machine learning, artificial intelligence, and big data quantitative methods make

these methods more powerful, and expand the potential for re-application in other fields.

Aitkenhead (2013) illustrates the role of a manually collected ground-truthed dataset such
as the National Soils Inventory for Scotland (NSIS) for calibrating and automating
participatory low cost systems based on image analysis. This process is actually

discovering, exploring, and creating hyperlinks between images and metadata cumulatively
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provided by users, based on the content inside the images. The amount of semantic
interconnection and the amount of richness that comes out of the system expands with use
and becomes larger through the classic network effect. The extension of this process, taken

to extremes, is a model of the entire Earth and the way the Earth works.

Complexity to Internalization Curve
Complexity has characteristics that are emergent, unexpected and unpredictable.
Simplicity, in contrast, is the creation of inexpensive, predictable, and reproducible results
that can be built upon and re-combined. For example, the internet is built on the most
simple building block possible in patterns of binary code, running on a series of switches in
the form of transistors that can repeat very simple actions billions of times without failure.
The simplicity, and dependability of those building blocks is represented in the scale of
complex, but largely invisible forms that make the simplicity of the an Internet search bar
possible. The simplicity of transistors and binary code is also what makes possible the
complex network that enables people who do not know how the system works to benefit

from the cumulative knowledge upon which the Internet is built.
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Desired state of reduced systems complexity through cultural assimilation of
Environmental indicators
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Figure 29 - Complexity curve of indicator validation. This graph illustrates the logical process of increasing
complexity as indicators are validated, but then the decreasing complexity of indicator measurement once lower
cost indicators are both validated and become culturally internalized. The iterative process of adaptive
management and generalized approach to indicator evaluation and validation (Figure 10) is aimed at narrowing
down to fewer, more simple, and more accurate indicators over time.

Photosyng, an open source community based out of Michigan State University, provides
another example of movement along this curve. Like the soil imaging project, it is building
a model based on observable biological characteristics, and working towards an online

spectral library to evaluate plant health.

Photosynq’s open source platform intends to create a global database of plant health
around the world by linking individual users together with low cost but powerful scientific
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instruments that connect to smart phones. They are, in essence, attempting to move along
the complexity curve illustrated in figure 36. Photosynq is also aiming to create the tools,
collaborative space, and social community to support their effort. The basic work flow

from the Photosynq web site is as follows:

e & e e Gm e s S
- R e e e e Pmama
e Femi e b SRells @ B e

Figure 30 - Collaborative networked data collection and analysis illustrated by the Photosynq process
(“PhotosynQ - An Open Reseach Project” 2014). This process relies on high resolution, low cost networked field
hardware that feeds into databases for aggregation and analysis which is conducted through online social and
collaborative software.
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Raw data collected by the phone is sent wirelessly to a database where it is
compiled. The remote sending data includes florescence, light level, absorbance,
leaf image, date time, and GPS location (other raw data could also be collected by
other sensors and platforms identified).

. All data submitted to the database is available to everyone else in the community for
analysis. Some of the measurement protocols include LED brightness, Pulse timing,
Amplifier gain and Sample Rate.

The data is then fed back into a user-friendly web-based interface to enable
collaborative analysis and community conversation support and feedback.

The common platform links applied scientists with researchers, educators, and
citizens to create a participatory network.

The interface and network architecture can support inquiries of multiple temporal
and special scales, based on the community need.

The result is a combined research and experiential education platform that serves
both applied and foundational work at the same time, and incorporates outreach

into the process. (“PhotosynQ - An Open Reseach Project” 2014)

The process grows in complexity as people use it, and its benefits to the users increase as

they use it. Participants’ photos are tagged with meta-data that somebody else has entered,

creating immensely rich virtual models of plant life collected not just from overhead flights

and satellite images, but from collective memory and broad-based participation.
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Implications for Experimental Design

Changes in technology, and the reduced cost of complexity due to the lowering cost of data
storage, processing, and observation, have implications for the basic economic principles
laid out by Ricardo related to comparative advantage and specialization (Ricardo 1821). If
particular knowledge can be made universally accessible through collective intelligence,
then the process and cost of asking questions will have a profound impact on the structure
and financing of research. The economics of an inductive, participatory approach to
science, which requires vast quantities of impartial data to overcome biases and limitations
of perspective, is just now becoming possible; the shift in observational technology and big
data methods opens up the opportunity for greater participation with experimental design

as research becomes more accessible, less expensive, and more accurate.

Experimental design is often structured to facilitate data collection and to accommodate
the statistical challenges of processing the results. Riley and Alexander (1997) provide
examples of alternative approaches for participatory research design and include
“augmented designs which involve a large number of unreplicated treatments organized
into very small blocks, with as few as five experimental units (Lin and Poushinsky, 1983;
Casler, 2013). Another approach is to use a center plot within each block consisting of a
single cultivar that serves the purpose of error estimation and spatial adjustment on a large

scale. Additional check cultivars are added at random to individual blocks to augment
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error estimation and to estimate the spatial effects on a finer or smaller scale (Lin and

Poushinsky, 1983).

Mother-daughter designs have recently emerged as a variation of this theme in the field of
participatory research (Snapp et al., 2002; van Eeuwijk et al., 2001). These designs are
generally focused on a small number of practical treatments in which farmers or small
landholders have a genuine interest and/or a sense of ownership. The most traditional
application involves the use of a “mother” trial, conducted under traditional parameters at
a research station but also accompanied by numerous “daughter” trials conducted by
participating producers. Mother trials usually include all possible treatments, while
daughter trials generally include a subset of the treatments of interest to the producer.
Individual producers are able to choose which treatments are of the most value to their
own operation. The daughter trials are linked together by the fact that they are also
replicated in the mother trials and many treatments are repeated across multiple daughter
trials (van Eeuwijk et al., 2001). If participation is part of the goal, then designing
experiments with relatively few treatments over larger areas is also more desirable than

lots of variation on a few farms with concentrations of data (Riley and Alexander 1997).

One of the most valuable parts of on-farm experimental design is that it can incorporate
both management history and diversity of conditions. Incorporating these is especially
important when deliberately building complex plant agro-ecosystems and testing variety
performance in diverse conditions. For example, the interactions of diverse cover

cropping, inter-planting, and complex weed seed banks are hard to replicate on research
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stations. With the advent of computer-based statistical analysis, new types of
experimental designs are possible, which rely on computer calculations rather than on the
farmer (Riley and Alexander 1997). Computing power is now readily available, along with
the expertise to manage complex modeling software that makes statistical processing

universally available on any modern laptop.

Open Source Research Hardware
Until recently, customizing software has been much easier than customizing equipment;
however, the open-source paradigm is now enabling creation of open-source scientific

hardware, as well (Pearce 2012).

A transformation of popular culture through ubiquitous observation, communication,
computation, and storage creates conditions that can soften the boundary of professional
science with a more interdisciplinary, natural philosophy approach. Public Lab is an
example of an emerging open source "citizen science" organization, describing itself as “a
community where you can learn how to investigate environmental concerns.” Using
inexpensive DIY techniques, Public Lab seeks to change how people see the world in

environmental, social, and political terms.

Public Lab represents an early adopter network-based organization that has pioneered the
use of consumer grade electronics and cameras for environmental observation. A
representative example of the Public Lab community projects is the grass roots mapping

kit. The kit is a combination of instructional materials, web sites, software, balloons and
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kites with easy to build instructions for generating aerial imagery at higher resolutions
than the most sophisticated satellite imagery. Public Lab’s early work gained notoriety
through citizen documentation of the Gulf of Mexico oil spill. Because of the open source
nature of the work, which can be tracked and quantified by cross postings and shared
across community memberships, Public Lab’s early contributions have had a ripple effect
across other open source communities, including Farm Hack and DIY Drones. The
interaction among these open source communities and their technical contributions to a
new systems framework will be covered in Part Two and Part Three of this thesis,

respectively.
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Part Il — Application of Collaborative Open
Source Agricultural Systems

Chapter 6: Open Source and Agrarian Systems

Literature Review

Research Approach and Methodology

Important outcomes of science are principles that explain what consistently happen in
nature (Miller 2005). The research design of this dissertation used a qualitative, multiple
case study approach combined with a phenomenological approach. Yin (2002) defined case
study as “an empirical inquiry that investigates a contemporary phenomenon within real-
life context.” Phenomenology refers to how an individual or group of people attach
meaning, structure, and essence to their experience related to a phenomenon (Moustakas
1994). The task of the researcher is to depict the essence or basic structure of an
experience in order to find meaning through interpretation of the “text” of the experience

(Merriam 1998).

This study uses the case-based method applied to open source communities which have

recorded interactions using electronic media and documentation to record the “text” of the
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experience. This online documentation provides a rich record of community location,
motivation, and contribution. The case-based approach brings insight, clarity, and
interpretation to the study with the intent of describing the social links and network
structures involved in innovation and sustainability. The dissertation uses these case
studies and phenomenological analysis to support the proposed theoretical and social

framework for collaborative adaptive management.

According to Kurt Lewin, complex systems can be best explored through action within the
system, because a system's reaction to changes reveals its characteristics (Lewin 1946) ("'if

you want to know how things really work, just try and change them"). In other words,
relevant issues frequently come up during the process of action, and would be missed
through rigid planning (Hangmann et al, 2002). The methodology used is not a work of

explaining, but rather of exploring; not a prescription, but rather an approach and structure

to help guide further exploration.

Lessons from Practice
Where theory is lacking, the scientific approach must be inductive and, accordingly, theory
development is based on comparative analyses of different case studies. Based on Lewin'’s
crucial observation about systems behavior, organizational and technical experiments
were developed using a systems approach - to test and observe systems behavior over

time by engaging the system directly and observing the results. The creation of GreenStart
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and Farm Hack and their expression of biological, social, economic, and technical systems

behavior are a result of such action by the author in the course of this study.

Action research is a means of systematic inquiry for all participants in the quest for greater
effectiveness through participation (Joseph and Andrew 2008). Action research, as a
method places the researcher as an observer, and as a peer within the social network being
studied, rather than an outside researcher with an unknown agenda. The peer to peer
relationship, and shared values reduces the risk of lost trust. Network development is
dependent upon building relationships which may be fragile before systems behavior
emerges and shared values and goals can be established. By observation through
indicators and documented outcomes, systems emergence can be captured through
technical achievements and social behavior expressed in actions as indicators. The
existence of online documentation in GreenStart and Farm Hack forums is an expression of
actions reflecting social values and interaction with other biological, technical, and
economic systems as expressed in the Physiocratic framework diagrams presented in Part
One. For example, the web sites created within the open source community are also
published under the creative commons license, which facilitates republishing and sharing

of their content and data.

Adaptive management is an ongoing and constant process of research and development

and continual refinement through active feedback loops. The process assumes uncertainty

rather than viewing uncertainty as a failure. The Physiocratic framework is used to
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provide a broader interdisciplinary systems context and associated agrarian social values

within which to place the case studies.

Open Source Community Approach to Agricultural Technology

There is a clear intellectual link between historic Enlightenment values and the current
open source movement (Zimmer 2009). Wikipedia stands out as a contemporary corollary
to the French Encyclopédie, a Systematic Dictionary of the Sciences, Arts, and Crafts of 1751.
The Encyclopédie was the first encyclopedia to include contributions from many named
contributors and is considered by historians to be the embodiment of French enlightenment
values of spreading and expanding human knowledge (Cronk 2006). The Encyclopédieis
particularly relevant to this study both because of its participatory creation and because it gave
specia attention to detailed documentation of the skills of mechanical arts and crafts that
previously had been ignored such as agriculture, baking, and metallurgy. It symbolized the 18th
century's crusade against superstition, fanaticism, and tyranny, and its belief in human progress,
happiness, and freedom (Cronk 2006). At the time of this writing, the collaboratively written
web-based Wikipedia is ranked by Alexa Internet as the 6th most popular website (“Alexa
Top 500 Global Sites” 2014); Internet technology allows Wikipedia to broaden the
Encyclopédie’s mission by allowing for ongoing participation through openly editable
content. Google, the most trafficked web site on earth, although not explicitly open source,
has a stated mission to “organize the world’s information and make it universally
accessible and useful.” Google’s mission also echoes the Encyclopédie and Denis Diderot’s
words from over 200 years ago that captures the cumulative power of open source knowledge

exchange:
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“The goal of an encyclopedia is to assemble all the knowledge scattered
on the surface of the earth, to demonstrate the general system to the
people with whom we live, and to transmit it to the people who will
come after us, so that the works of centuries past is not useless to the
centuries which follow, that our descendants, by becoming more
learned, may become more virtuous & happier, and that we do not die

without having merited being part of the human race.”
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Figure 31 - The juxtaposition of the Wikipedia entry on the Encyclopédie illustrates the compounding nature of
open source knowledge exchange and the continuation of an unfinished vision of the enlightenment continued.
The contemporary open source and agrarian movements are able to expand the potential vision for knowledge
exchange and participation due to the dramatic changes in digital information technology.

The intellectual heritage of the open source movement is not lost on its participants.

Thomas Jefferson, for example, is often quoted within and by the movement (“Wired 2.03:

The Economy of Ideas” 2014):

“That ideas should freely spread from one to another over the globe,
for the moral and mutual instruction of man, and improvement of his
condition, seems to have been peculiarly and benevolently designed
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by nature, when she made them, like fire, expansible over all space,

without lessening their density at any point, and like the air in which

we breathe, move, and have our physical being, incapable of

confinement or exclusive appropriation. Inventions then cannot, in

nature, be a subject of property.”
Jefferson and his contemporaries did not talk about knowledge in terms of sustainability,
partly because there were still vast frontiers to the west in their minds, but also because
their agrarianism was rooted in the most basic nature of regeneration and sustainability
and the human cultural values imbued by the concept. These ideas were far from new even
then. Pre-industrial Physiocratic thinkers like Benjamin Franklin and Jefferson drew
heavily from Confucian intellectuals (Higgs 2001). In the Encyclopédie, to which Jefferson
was a contributor, the entry on agriculture describes earlier agrarian leadership in
Confucian China, stating that “in order to inspire a taste for it in his subjects, the emperor
puts his own hand to the plough once a year to plough a few furrows, and his most
distinguished courtiers then follow him in turn” (Diderot 1751). Although disparate in
philosophical perspectives, Enlightenment thinkers shared a belief that the free flow of, and

access to, knowledge was crucial to human progress and understanding of the world, and

that restrictions to knowledge were a drag on human progress.

The strength of these convictions has always been in reaction to human tendencies in the
opposite direction. Early American and European history was a time of great state and
industrial espionage, with official restrictions on the flow of knowledge, seeds, and genetics
from countries or regions. Part of the challenge to the open flow of knowledge has always
been extractive pressures as a component of resource development, either applied to

natural resources or to intellectual property. The tension between open source approaches
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and protectionism of knowledge has a long history. For example, harbormasters once
fiercely protected tidal chart knowledge, using their expertise as an intellectual monopoly
(Ehret 2008). The eventual publishing and effective “open sourcing” of that knowledge not
only led to general access to local tidal conditions, but a global understanding of tidal

function.

Thomas Jefferson was known to have personally smuggled in his pockets rice varieties
from Italy that are now grown in the Southeastern United States (Mazzei 1975). Jefferson
believed that favorable genetics were part of the global commons, and it was not a crime to
“liberate” the seed for establishment elsewhere; he also wrote disparagingly about those
who attempted to restrict the best genetics of sheep to extract a top price, and schemed to
instead offer the best rams at cost to improve flocks across the United States (Jefferson,
1810). The well-known industrialist, Francis Cabot Lowell, smuggled knowledge of British
power looms by memorizing their designs. More optimistically, open source projects
illustrate, just as in nature, that competition is only one factor in evolutionary success.
Cooperation, coevolution, and symbiosis are also evolutionary strategies. In 2014, the
electric car company Tesla provided a contemporary high profile example with the
announcement that it would not enforce patents, and even invited the use of its technology
by competitors. Disrupting the knowledge ecosystem through open sourcing key
knowledge or technology is a strategy designed to shift the competitive landscape in

conditions of mismatched/asymmetrical entities of scale and political power.
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The segmentation and restriction of knowledge in agricultural research and development,
through protection and specialization, has led to imperfect knowledge in markets and has
contributed to market failures. Current externalities have established beneficiaries, with
market power that provides an incentive to keep external costs from being valued. A
hegemonic cultural situation will work to reduce change by creating deliberate barriers to
entry to slow change and benefit the status quo. The resulting externalities are a byproduct of
the dominant culture that cannot be solved with a simple technical fix. However, technology,
especially technology that is collaborative and community based, is a means to bend and
change the cultural biases past the “K” conservation phase, described in Chapter 2, and move

gently into a new adaptive cycle.

Because sustainability itself is a social construct, and not simply a technical or biological
challenge, a systems based approach is needed to provide wider internalization of
biological function with cultural and environmental service values. Of primary importance
is that underlying environmental mechanisms and values are incorporated into the dominant
culture, otherwise negative externalities will expand and efficient markets will be elusive
regardless of technical capability. Open source communities and the products and
community generated by them, such as networked sensors, low cost UAVs, and a mobile,
socially networked population, symbolize and make possible a shift to a less hegemonic

and more engaged culture of scientific research.

The common theme of each of these four movements (physiocracy, agrarianism, ecological

economics and open source community) is the importance placed on the free flow of
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knowledge. The open source software which now runs the Internet is the modern version
of the enlightenment's intellectual commons. Jefferson’s vision of agriculture was also one
that envisioned an ever expanding intellectual commons. As a member of the “society of
letters,” he was a contributor to the Encyclopédie. He was eager to try promising
innovation in farming and, if the experiment succeeded, to share the benefits with others.
Thomas Jefferson wrote to then President Madison, referencing the deliberate restriction of
the Merino sheep genetics by speculators.

"No sentiment is more acknowledged in the family of

Agriculturalists than that the few who can afford it should incur

the risk and expense of all new improvements, and give the benefit

freely to the many of more restricted circumstances. ... I will throw

out a first idea, to be modified or postponed to whatever you shall

think better. (“Jefferson, 1810)"
He then went on to propose a method to “open source” and distribute the best quality
genetics across the countryside for the benefit of the republic. A culture that values and is
motivated by the exchange of knowledge would also have open source tendencies. The
open source software communities are particularly dominant within the networked
software culture of well-known communities such as Apache and Mozilla. These strong
tendencies also overlap with agriculturalist ideals, and share biological metaphors to
explain the exchange of knowledge (circulatory system) or the structure of networks
(neural networks). Francois Quesnay, was a physician prior to becoming an influential
economist, and was best known for proposing that blood did not terminate at the limbs, but

circulated through the heart. It was this insight that he applied to political economy and

agriculture (and nutrients) across a landscape.
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Given that a limiting factor in effective participatory research is likely cultural, it is
interesting to consider that it was not until industrialization, around 1840, that the concept
of the professional scientist emerged, well after the Enlightenment (Ross 1962). Prior to
that time the pursuit of science was called Natural Philosophy and provided the basis for
the Industrial Revolution and future scientific discovery. The transition to the adoption of
the term “scientist” (as in “artist”) emerged as a term along with industrialism and
professionalism of science, which overshadowed science’s social role in creating a more
informed public. This transition also followed a transition from a focus on inductive
learning, or learning from observation with an assumption of uncertainty, to a focus on
deductive learning, or learning based on assumptions of certainty which became possible
with the accumulation of scientific discovery. The specialization and focus on deductive
approaches emerged from the classification of disciplines over the next hundred years
resulted in great scientific advances, but at the cost of creating a cultural gap between
scientists and other members of society. The consequences of professionalization, from a
cultural perspective, was the marginalization of general inquiry and amateur observation.
The tension and social aspects of the deductive and inductive methods are covered in

Chapter 2.

Early 20t century agrarians, partly in reaction to industrialization, built upon the
enlightenment ideals of the 1750s Systematic Dictionary of the Sciences, Arts, and Crafts
represented in the publishing of “Farm Knowledge: An Encyclopedia of Practical
Knowledge.” Published in 1918, it was distributed through the most modern distribution

method of the day - the Sears’ Catalog. The 640-page text of this encyclopedia has been
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digitized (at a cost of less than $200) and archived by this author at www.archive.org, and
it is editable in wiki format at www.farmhack.net. Open source communities and the
creation of collaborative platforms like wikis have also made a new, flatter, more

participatory model possible.

Agricultural systems communication has always been challenging because of the biological,
cultural and economic variables unique to each application. The agriculture of sharing
knowledge, and how it is shared, also vary widely. The traditional approach to that
complexity has been direct observation with farmer-to-farmer social contact,
supplemented with extension (a concept proposed by Mirabeau and echoed by Jefferson in
the creation of the University of Virginia) and professional services (Joseph and Andrew
2008; van de Fliert and Braun 2002). “Farm Knowledge” was yet another attempt to
aggregate practical knowledge to enable accumulated knowledge to exchange across a
landscape in printed form. Just as Quisney did a century and a half earlier, the
encyclopedia itself describes a natural metaphor of the circulatory system of knowledge
and observations, transferring both information and inspiration. Figure 40 captures the
mixing of knowledge, labor, biology, and the creation of feedback through the social

exchange of systems observations at agricultural community clubs.
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Figure 32 - The Community Club knowledge exchange from the Encyclopedia of Practical Farm Knowledge
(Seymour 1918). This figure illustrates both the extension of a biological metaphor to describe a circulatory
system of knowledge, as well as the culture of sharing that extends beyond the information, and also the
inspiration that comes from social gatherings and explorations and experimentation.
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The community club structure and the natural metaphor of the circulatory system
effectively communicates that the limiting factor in the successful adoption of beneficial
practices is not natural resources, but culture, and a culture that produced access to
continually appropriate feedback and knowledge. Brekelbaum (1990, 1994) conducted a
literature review of self-reliant and self-managed projects and identified various essential
skills for farmers, including a list of criteria for success that looks, unsurprisingly, like the
characteristics for general resilience and adaptive systems (Walker and Salt 2006).

The essential skills included: (brackets for relevant resilience framework reference)

e Critical thinking (feedback loops)

« Diagnosing and solving problems (systems understanding)

e Formulating and prioritizing objectives (systems dynamics)

* Developing and implementing action plans (adaptive governance)

« Systematizing information and analyzing results critically (systems dynamics and

understanding)
« [dentifying indicators for quantitative and qualitative monitoring and evaluation

(feedback loops)

» Developing external linkages, both horizontal and vertical (substitutability and
modularity)

» Showing solidarity (van de Fliert and Braun 2002) (reserves)

The community club model for exchanging ideas is particularly effective, and extends
beyond any single element of the system. On a local level feedback can be quite rapid.

However, the feedback is limited to the quality and quantity of the observations within that

location.
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The technical accomplishments discussed earlier make the sharing of systems observation
possible across broader spatial and temporal scales. The exchange can happen in the form
of on-line videos, wikis, forum comments and more structured data exchange (Silvertown
2009). However, the building of trust and community, although different, is just as critical
within the on-line community as within the local agricultural/community club model.
Farm Hack, discussed in later case studies, in particular has tried to merge the two, with
implementing local meet-ups called “Farm Hacks”, design charettes or “hackathons” with a
strong emphasis on the socializing and sharing of food with knowledge exchange and
technical problem solving, followed up with on-line documentation and communication.
During the course of this study the sophistication of the on-line collaborative tools evolved
significantly. In the first iterations, Farm Hack used collaborative tools that enable
simultaneous editing and sharing across communities, like Google documents, followed by
similar open source and ether-pad based tools like hackpad.com. Most recently, Farm Hack
has added project Kanban boards, such as Trello, that are typical in Agile software
development, and that enable multiple users to contribute ideas, vote on priorities, and
simultaneously edit documents. These on-line tools mimic in-person collaborative
processes. They also facilitate building trust through a balance of transparency in the
collaborative process and also control of publishing and editing rights within the
community. Google Hangout, and similar tools have also become crucial tools for remote
collaboration and project status updates. The video element and informality of the process
builds community through active widely attended screen sharing and video conferencing

sessions. A weekly video check-in for the volunteer software development team can often
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have more than six participants. The informal nature of the video conferences has resulted

in food and beverages being displayed and consumed to “share” with others.

The entry about agricultural clubs within the Encyclopedia of Practical Farm Knowledge
mentions that at every gathering food would always served as part of the ritual(Seymour
1918). That same importance of food in community building has been adopted at in-
person “hackathon” and contemporary GreenStart and Farm Hack events discussed in
Chapter 7 case based studies. Food and socializing is not viewed as peripheral, but a
central part of building trust within the sharing and learning community. The community
generated Farm Hack “event” tool wiki captures additional elements that are important
based on observations and feedback from each event. Creating and extending social
commitment and trust within a group is harder on-line, but equally important. Similar
cultural patterns emerge around Public Lab events and BioBlitzes and represent examples
of the mixing of in-person social events with participatory science and R&D (Cohn 2008;
Clements 2013; Michael 1998; Devictor, Whittaker, and Beltrame 2010; Irwin 2001;

Cooper et al. 2007; Newman et al. 2010; Bonney et al. 2009; Newman et al. 2012).

Open Source Agriculture and Social Media
The heart metaphor illustrated in the Encyclopedia of Practical Farm Knowledge illustrates
the same operating principles that are embodied within the structure that are being carried
on within the organizations explored in case studies covered in Part II of this dissertation.

These communities were formed in part to address, within a 21st century context, many of
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the same biological, economic and cultural ideals, and political economic failures that
motivated earlier agrarian and Physiocratic movements. Contemporary organizations are
able to employ many of the same methods to create a “circulatory system” of ideas that
spreads inspiration and innovation at the local and community of exchange, but also can
extend the reach much further and faster through collaborative information technology
now available. These organizations follow a “network” centric approach, rather than
traditional non-profit structures, and follow design principles of distributed economics and
subsidiarity which specify that structures should not be larger than they need to be to
function. Chapter 7 covers network based organizations and the collective impact
approach as part of the case based analysis. The network based minimalist approach was
implemented not only by design but also of necessity due to the low budgets indicative of
community based organizations operating outside of the power structure and the
administrative overhead and distributed nature of technical and social linkages that hold

the structures together.

The strength of the networked approach is resilience, adaptability and low overhead.
These strengths make a networked organization a good fit for adaptive management and
applied inductive research that is constantly adjusting to feedbacks and building on past
case based learning. The weakness is that in isolation, and without participation, there is
little replication or external feedback, and observations are difficult to validate without a
larger context that comes from a functioning network. Networked adaptive management,
however, makes individual observations more meaningful by placing the observations in a

broader context. By enabling data sharing of on site (in situ) observations, additional
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technical, social, biological, interactions that cannot be controlled for or replicated in
isolation can also be captured and included in broader systems study and analysis. The
additional benefit of networked participatory action in adaptive management is that
popular agronomy (i.e., avocational interest and study) and greater biogeochemical literacy
is a byproduct that also achieves science’s social objective of a more informed public.
Charles Darwin, also a product of the Enlightenment and an inductive observational
scientist, insisted on the importance of writing for the public. “I sometimes think,” he
affirmed, “that general and popular Treatises are almost as important for the progress of

science as original work” (Lightman 2009).

Darwin’s insistence on general accessibility of scientific inquiry supports the Physiocratic
social model that general “popular” inquiry is as important as original work, and from a
holistic perspective that low science literacy of a population is an indication of a cultural

failure in the practice of science.

The development of new measurement tools can have a profound effect not just on the
direction of scientific inquiry, but on who can ask questions, how science is funded, and
who participates. All are an expression of cultural values and the value placed on the
natural and intellectual commons. The effect of observation tools on human values about
the environment has been well documented in the cultural history of the telescope in
placing the Earth and humanity within the context of a solar system, and the microscope
and x-rays in exploring the structure of our bodies and our environment, and more recently

satellite images of the planet that helped spark the environmental movement (Sagan 2006).
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Geographic data sharing has become popularized through remote sensing images now
available through Google Earth. New low cost aerial imagery has enabled scientists and
citizens alike to view the local environment from a different perspective both literally and
figuratively. Observational tools, and access to data stored from those observations also

shift the dynamic balance between the advantages of inductive vs. deductive scientific

approaches.
Movement of emphasis and resources
to regenerative knowledge based systems
Excludable Non-excludable
Rivalrous
Non-
rivalrous

Figure 33- A knowledge based system creates incentives for expansion of public goods. The basis of economic
growth and wellbeing is tied to the productivity of regenerative common resources and the cycling of nutrients
(e.g. water, carbon, nitrogen, phosphorus) through plants and soil. This contrasts to extractive systems and
world views which tend towards a vision of scarce finite resources that therefore need to be protected through
the exertion of force (market or otherwise)(Meadows and Meadows 2007).
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The Physiocratic framework approach reemphasizes public goods and the relationship of
public goods and commons management that can still foster profitable healthy private
enterprises. Public knowledge of environmental systems and best management practices
and a learning culture are non-rivalrous, non-excludable goods. They can be used to create
a more productive commons that supports a regenerative basis for private goods - rather

than private goods only generated from the production of more private goods.

The historic tension between inductive and deductive approaches to research is especially
relevant to this study due to the social implications of scientific knowledge being treated as
a public good or as private property. The change in the accessibility, cost, and ubiquity of
tools to communicate and observe our environment shifts basic assumptions about the
historic advantages and disadvantages of the approaches. The accessibility of systems
approaches and inductive methods that are already more common in ecology and
healthcare, provide a complimentary context for an alternative to reductionist and

proprietary models of inquiry.

Reductionist Research and Extraction
The reductionist approach to inquiry and questioning has been necessary partly because of
the high processing cost and the associated complexity of exploring unknown interactions.
As already illustrated through global ecosystem service market failures, the over-focus on
deductive inquiry and resulting “siloed” specialized knowledge has had unintended

negative social and economic effects. Segmented, specialized knowledge and the creation
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of professional expertise as intellectual property paralleled the development of extractive
systems in agriculture, energy, and mining. These approaches and methods have been the
engines of the global industrial economy, and have led to greater efficiency in the
extraction of resources at greater rates. However, because of the limitations of deductive
approaches applied to systems and the inability to manage experimental complexity in
place, the result has been an oversimplification of agricultural processes and the creation of
associated externalities. Social costs associated with an overreliance on deductive methods
include concentrated knowledge and wealth that relates to agricultural practices that do
not lead to cultural internalization of the biogeochemical systems understanding. Total
productivity of the biosphere, and public knowledge of its function, should be held in the
commons as part of science’s social mission to create a more informed public. Examples of
detrimental oversimplification of systems study can be seen in the recent documentation of
plant available organic nitrogen, the variety of fungal communities within healthy soil, and
nitrogen producing bacteria within non-legume soil aggregates, all of which were missed or
dismissed until they were studied in place (M. F. Allen 2007). Laboratory methods, in an
attempt to isolate and simplify conditions, served to destroy the complex environmental
conditions required for the processes and population function to be properly observe
(Seiter, Ingham, and William 1999). Problematically, deductive research methods form a
"cleaner” cultural fit for resource extraction, and specialized corporate and academic
funding processes that tend to reward products (e.g., mineral yield, crop yield, papers
published) over outcomes (e.g., improved biogeochemical literacy, and expanded soil

function and net primary productivity).

122



The dominant paradigm of the last part of the 20th century treated knowledge as
intellectual property, essentially a private fixed resource to be monetized as a method of
value extraction. This paradigm is evident in the proliferation of NDA (non-disclosure
agreements) patent suits in the technology field. One of the symptoms of this reductionist
approach, which depends on specialized professionalized inquiry rather than broad
participatory questioning, is that much of the knowledge gained is inaccessible to farmers
and the general public, as well as to scientists in other academic fields; often, research is
accessible only behind academic or commercial paywalls (Willinsky 2010; von Krogh and
Spaeth 2007). This view of knowledge as a scarce resource, as intellectual property,
parallels natural resource economic models that treat nature in general, and soil in
particular, as fixed assets to be measured in value by their extraction efficiency, rather than
as part of a global commons that can appreciate with proper management. The role of soil
in the carbon, nitrogen, phosphorus, and water cycles is an example of both stock and
dynamic flow that varies with management. The dynamic nature of these flows, and

imperfect flows of knowledge, have led to the market failures already discussed.

With advances in communication technology beyond the printed page and analog
telephone lines, the cost of storing and exchanging data and knowledge has dropped,
making protecting data more difficult now than sharing it (Huang et al. 2014). Because of
these techno-sociological changes, adaptive management, as described within this study, is
moving within the reach of applied science. Computationally intensive approaches now cost
little enough, and provide high enough resolution, that fast changing nutrient cycles, soil health,

water quality, pathogen, and population patterns can be modeled and used to provide
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management feedback. Examples of landscape and watershed models for nutrient cycling such
as AdaptN and DNDC illustrate that it is now possible to model with enough accuracy to make
environmental management decisions (Van Es and Degaetano 2008; Li et al. 2012; Giltrap, Li,
and Saggar 2010). These types of sophisticated models, which can be run on consumer hardware
and/or over the Internet, illustrate the potential to expand what questions can be asked, who asks
them, and how they are funded beyond the realm of universities, government and corporate |abs.
The changes in assumptions about the research process and the cultural application of
scientific knowledge opens the potential for alternative approaches which link
conventional deductive methods with participatory inductive approaches through open

source software and research and development practices.

Inductive Participatory Research
The social technical framework proposed by this dissertation builds upon the benefits and
limitations identified within the maturing field of participatory research. Itis based on the
observation that farmers, professional scientists, and citizen researchers have different
knowledge and skills (coming from different parts within Mirabeau’s Tree), and that these
may complement each other. Through collaboration, the many groups may achieve better
results than by working alone. Most academic agricultural literature focuses on a formal
managed process for research. A broader review identifies examples of network, systems
based and technologically-facilitated processes that rely on a more open approach for

participation as well as organization.
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The following statement articulates that a collective action approach is particularly

effective for complex social and systemic challenges:

“The solutions we have come to expect in the social sector often involve
discrete programs that address a social problem through a carefully
worked out theory of change, relying on incremental resources from
funders, and ideally supported by an evaluation that attributes to the
program the impact achieved. Once proven, these solutions can scale up
by spreading to other organizations. The problem is that such
predetermined solutions rarely work under conditions of complexity—
conditions that apply to most major social problems—when the
unpredictable interactions of multiple players determine the outcomes.
And even when successful interventions are found, adoption spreads very
gradually, if it spreads at all. Collective impact works differently. The
process and results of collective impact are emergent rather than
predetermined, the necessary resources and innovations often already
exist but have not yet been recognized, learning is continuous, and
adoption happens simultaneously among many different organizations. In
other words, collective impact is not merely a new process that supports
the same social sector solutions but an entirely different model of social
progress.”(]J. Kania and Kramer 2013)

Collective impact methodology is being used as the basis for the local food system
organizations examined as case studies in Chapter 7. These are social rather than
biological systems, managed using an adaptive management approach under another
name. The same principles also parallel the “agile” software development methodology
previously discussed. The application of these principles through case studies in Chapter
10-12 will illustrate examples of the complementary and crucial supporting role that
researchers using deductive science play in building a cutting edge participatory research
system.

Participatory research projects have often created limited practical cooperation between
farmers and scientists, mainly because the strengths of farmers and the limitations of

researchers are often overlooked; as a result, the communication and interaction between

125



the two remains superficial. Emerging technology illustrates that these limitations can be
overcome. Hoffmann (2007) proposed that it is crucial to first recognize farmers’
achievements, and then focus on five steps towards optimizing collaboration for rural
innovation:

1. more user orientation

2. more decentralized dissemination of research and results

3. openness towards informal modes of experimentation

4. more externalization of tacit knowledge

5. more respect for farmers’ opportunity costs

(Hoffmann, Probst, and Christinck 2007).
These five steps are embodied by the applied case studies covered later in this chapter as

well as within the proposed Physiocratic framework for adaptive management and

participatory research and development.

Locating research on farmsis essential for studies involving 1) management histories and
physical conditions not available on experiment stations; 2) farmer management, especially of
innovative systems; and 3) ecological effects of whole-farm changes

(M. D. Anderson 1992).

These three criteriaidentified by Anderson are the conditions met by any farm attempting
adaptive management, and therefore support the need for participatory research and development
methods. The Physiocratic framework proposed within this dissertation and the manifestations
of the framework covered in Chapter 7 (Farm Hack, Public Lab, Ecosyng and GreenStart)
provide applied examples. The benefits of participatory research that involve farmers and
citizens produces advantages in the design, implementation, and dissemination stages of research

and development (M. D. Anderson 1992). Anderson continues:
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“These benefits may warrant locating a project on a farm even if it could
also be done on-station. Misunderstandings about the value of on-farm
research are often due to its promotion in conjunction with sustainable
agriculture and greater political power for farmers. On-farm research,
especially with high farmer involvement, is more appropriate for
answering some questions critical to developing more sustainable
agricultural systems; but other aspects of sustainable agriculture are more
suitably studied at experiment station sites. Greater involvement of
farmers in all stages of a project is conducive to improving communication
and cooperation with agricultural researchers and administrators.
However, not all research on farms should have this kind of farmer
involvement; and simply increasing the amount of on-farm research does
not necessarily augment farmers' political power (M. D. Anderson 1992).”

In addition to the farmer and citizen based case studies presented in Part Two, other
studies have found that improving agricultural sustainability requires holistic and
integrated strategies that are relevant and legitimate at the local level (Keeney et al. 1999;
W. Allen, Kilvington, and Horn 2002; Leeuwis, C. Pyburn 2002). These examples provide a
complementary approach to governmental based use of a combination of extension and
subsidies, which according to Vanclay and Lockie (1995) are now considered poorly suited
to the challenges posed by sustainable agriculture. However, governments turning to
participatory research approaches face challenges of local legitimacy and establishing local
trust. Leveraging the potential for participatory research in sustainable agriculture
requires first an understanding of the nature and purpose of participatory approaches, as
well as of the methods necessary for building on-line and local communities necessary for

success (Bruges and Smith 2007).

Bruges and Smith (2007) continue:

“Even the most fervent proponents of participatory approaches have come
to realize that participatory research should be presented as
complementary to conventional research. In a maturing field of
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participatory approaches there is an emerging group that call for ‘uniting
science and participation’ and emphasize the ‘comparative advantages of
farmers and scientists’ in generating knowledge and innovations and

»n

propose innovative ways to combine ‘local and global science’.

In a similar vein, Rhoades and Nazarea (2006) suggest that “what local communities
demand is not necessarily a choice between ‘participation’ and ‘formal research’, but a new,
mature relationship with outside agencies and individuals.” These positions reflect the
many new approaches made possible with communications technology that combine
various forms of stakeholder participation with cutting-edge scientific research. An
adaptive framework for participatory agricultural research will enable projects to take into
account the increasing diversity and multi-dimensional character of sustainable

agriculture, food security, and natural resource management.

Many analysts and practitioners of participatory research identify different levels and
forms of participation in research that can be structured by specific typologies. Most of
these research approaches have their roots in an early classification of different degrees of
citizen participation developed by Arnstein (1969). The “participation ladder” recognizes
categories ranging from manipulation (classified as non-participation) to consultation
(described as a kind of tokenism) to citizen control (considered as the highest degree of
citizen participation). The disadvantage of this approach is that the structural values
assigned to each level give an impression that they are in some rank or order, rather than
seeing each type of inquiry as a complementary part of a healthy learning community.

Probst et al. (2003) determined key variables of a combination of four approaches, namely:

(1) transfer of technology (formal research without substantial
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farmers’ participation)

(2) supply-on-demand (formal research where farmers have control

over own or donated research funds)

(3) farmers first (where farmers participate in the generation,

testing, and evaluation of technology)

(4) participatory learning and action research (innovation is

considered to be the outcome of a mutual learning process amongst a

multiplicity of actors and networks)

(van de Fliert and Braun 2002; Probst and Hagmann 2003)
This focus on approaches highlights different research strategies and their underlying
philosophies, and provides a context for the case studies used in Parts Two and Three.
These approaches are more flexible than rigid classifications; however, the identification
and listing helps to sharpen the differences between the approaches, and brings more
conceptual clarity into the discussion. Implicit with this structure is the understanding that
projects can change over time, spread geographically, and proceed along different paths
within different communities. “Participatory learning and action” types of research
projects might involve farmers during the whole process of technology generation, while
the dissemination of the technology by local extension workers may follow a classical
“transfer-of-technology” approach. Research projects may also have certain features that

would classify them as “farmers first,” whereas other features would correspond more to

the “supply-on-demand” type.

GreenStart and Farm Hack, profiled in Chapter 7, emerged within the context of attempting
to support participatory inquiry methods, but also with an understanding of traditional
technology transfer. Open source projects in agriculture, although historically not a new
idea (as evidenced by the Physocratic movement), are a relatively new phenomenon to the

contemporary literature. New tools such as Farm Hack will enable more quantitative
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tracking of the velocity of technological transfer through the automatic logging and
archiving of all contributions and posts by community members. The global trends in open
source projects, which could be seen as a reasonable projection for agriculture, grew from
just tens of thousands in 2006 to over a million projects in 2012, and the number of
projects is projected to double by 2014 ( “The Eighth Annual Future of Open Source Survey
| Black Duck,” 2014). Chapter 7 provides examples of these structures that represent part

of the open source trajectory.

Chapter 7: Application of a Physiocratic Framework: Case
Based Studies

Chapter Introduction: Prodding the System

As discussed in Chapter 6, complex interactions of biological, technical, and social factors are
still poorly understood and therefore favor inductive approaches for analysis to form the basis of
theory development. A case based study approach provides a good fit to build observational and
interdisciplinary systems frameworks. In practice, the methods used in the following case
studies draw on approaches often referred to as "action research," "learning by doing," or
"lessons from practice." Figure 34 illustrates the different niches that the case studies
chosen for this study occupy. Each of these organizations in their niches use environmental
data with different goals, but the techniques for gathering it and exchanging it are similar.
Figure 35 expands on Figure 34 and positions the case study organizations within

Mirabeau’s Tree to illustrate the relationship of the organizations to broader social
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systems, and relate the data collected and exchanged by the organizations to the broader

structure.

In Figure 35, Daly’s Pyramid is juxtaposed to illustrate the similarity in

structure to Mirabeau’s Tree. The ultimate means are the tied to the organizations acting

on the natural resources (Soil Health Initiative), while the organizations at the top (Food

Solutions New England) are working on the ultimate ends by influencing social behavior

and values through network development and policy that reflect on behavior throughout

the system.
Audiences & Organizations
Audience Students, General Planners Farmers and Crop
Public & Scientists Consultants
Example Public Laboratory (Growing Clean Water Farm Hack
Organization Applied geo-solutions
Office of environmental GreenStart

Environmental<:

Advocacy & public
accountability for care
of the commons

Bridging organizations (open shops)

arkets)

Quantification of
environmental
service for regional
planning and
payments

Bridging organizations (open shops)

Environmental/
Agricultural
Management

Analysis &
persuasion

Environmental Data management and social media tools and

workflow Overlap

Observation
and action

Identify public health
Concerns (Industrial
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and contribute
Distributed
environmental
Monitoring and
Engaged public in
monitoring health
of the commons

Process models
And publish
results

Feed back to
policy

makers and
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Generate land
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Figure 34 - Functional locations of case studies within the Physiocratic framework. The case studies used
(example organizations) for this study are similar in their use of data for adaptive management goals, but occupy
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different functional locations within the Physiocratic framework. Farm Hack and GreenStart are closer to the
roots, and Public Lab, as an advocacy organization, is located in the canopy of the tree. The organizations on the
left are observational and geared toward citizen education and policy, while the ones on the right are more
action oriented towards environmental management. This diagram illustrates the organizational relationships
of data collection, analysis and action and the flow of data across organizations, as well as how these
relationships are complementary and important to whole systems study.

Economic

Figure 35 - Each of the case studies is further positioned relative to both Mirabeau’s Tree and Daly’s Pyramid, to
illustrate the breadth and coverage of the examples chose to study and the relationship of organizations to their
function within the system. For example, the Soil Health Initiative is focused on the root of the system (Mirabeau)
and also addressing the ultimate means (Daly). This contrasts with the Food Solutions New England case study,
which is focused almost entirely on the outcome and social means to achieving food justice and equity as an
output of Mirabeau’s Tree and at the top of the pyramid as ultimate ends (Daly).

Case Study One: GreenStart
Methods
The GreenStart case study used an approach of studying action within a system through
the application of the Physiocratic framework to an organization to test the social,
biological, and technical systems reaction to those actions. GreenStart was founded to

create local examples and to remove barriers to agricultural experimentation and the
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exchange of agricultural knowledge and innovation. It is highlighted as a case study to
illustrate the particular application of a networked organization modeled on the
Physiocratic framework.

“We have dwelt on this subject because it is of great importance to

mankind. We invite those whose wealth permits them to undertake

costly experiments with no guarantee of success, yet without incurring

any financial hardship, to add the weight of experiment to the parallels

and conjectures made by M. Duhamel. This skillful academician wisely

judged that one small example would have more impact than

reasonings which, though sound, would not be understood by most men

or trusted by those who might have difficulty in following them.

(Diderot 1751)”
Diderot’s observation of Jethro Tull’s work over 250 years ago illustrates the importance of
local examples to encourage further experimentation. Observation of human behavior
forms the historic background for GreenStart's approach to applied agricultural examples
and experiential learning. In this way, GreenStart has applied the basic Physiocratic model
to its operation, but updating the method with current tools for participatory action
research and collaborative adaptive management (CAM).
Although not explicit at the time of its founding, GreenStart became an experiment to test
an alternative organizational structures and Physiocratic ideals. The author’s role in the
experimental organization and transition was first as a founding board member, and then
the executive director. Both roles provided in-depth access to the operations and
interactions of the organization. The author observed the results through years of
informal interviews and interactions with other organizations, farmers and researchers

that created an emerging agrarian network. The case study below is based on the first

hand observations of GreenStart’s operation, its context and function.
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Overview: A Regional Agrarian Social Club for Knowledge Exchange
GreenStart was formed in 2006 as a non-profit to share agricultural innovation, and has
incorporated many of the characteristics of resilience, open source community, and
agrarianism into its structure and mission. The structure and language of the organization
illustrate ties with its historic agrarian roots and the Physiocratic framework identified in
Chapter 2. GreenStart’s evolution in many ways paralleled the exploration and
development of this study. When GreenStart was founded, the organization had a fairly
narrow focus on biodiesel availability and use in New Hampshire. As the study progressed,
its focus shifted towards a broader Physiocratic understanding that moved GreenStart’s
agenda towards the larger agrarian value of soil health. By March 2010, GreenStart had
adopted the following mission and laid out the groundwork for an applied case study for
the Physiocratic framework and participatory research called for by Jethro Tull 200 years
earlier: “To foster a resilient energy and food system for New Hampshire by providing

technical education and practical agricultural examples.”

Although GreenStart does not publically reference the Physiocratic framework,
GreenStart’s web site reflects Physiocratic ideals in practice. For example, the web site
states that “GreenStart sees food and fuel security as the end-product of a vibrant,
sustainable agriculture system in New Hampshire.” This statement places the organization
in an agrarian context, and makes the Physiocratic link to soil and free knowledge exchange
more explicit by going into more detail:

To achieve this end, GreenStart facilitates projects that

1) Increase soil carbon “banking”
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2) Decrease energy inputs

3) Increase both food and fuel outputs (positive energy and
carbon balance)

4) Promote “tight” cycling of nutrients

5) Provide open source access to appropriate knowledge,

seeds, and equipment”

GreenStart positions itself as an organizational experiment to test innovative
approaches to both land management, participatory research, and communication
of science. It describes itself as practice-based to provide functioning local examples
of agricultural practices that are critical to adoption of new technology, building

active on-farm projects, and promoting on-farm research.

GreenStart partners with institutions, but can adapt quickly and stay focused on
results in the field. GreenStart works with academic institutions, regulatory
agencies, NGOs, landowners, and farmers to fill practical “gaps” in knowledge or
equipment; partners include UNH Cooperative Extension, USDA/NRCS, NHACD,
County Conservation Districts, Cornell Soil Health lab, and individual farms across
the state and region. In line with Darwin’s observations about the importance of
publicly accessible science (Lightman 2009), GreenStart promotes the concept of
“Popular Agronomy” (As in Popular Science/science for non-scientists or those
working in avocational science) and provides tools for producers to work towards

continuous improvement through on-site research.
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Figure 36 - A systems based landscape model was used as the foundation of GreenStart’s work, and created a
static draft for the actual nutrient modeling, landscape documentation, and networked sensor work and
visualization software that became possible through the development of open source hardware and software
projects.

GreenStart’s own description reflects not just contemporary adaptations of Physiocratic
social principles, but also an updated version of the Enlightenment-era salon and the early
20th century agrarian agricultural club, geared toward inspiration and innovation shared
by all. Unlike its historic counterparts, GreenStart benefits from social communication
technology that can facilitate collective action towards systematic transition to valuation of
agro-ecological systems. The social communications technology has made it possible to be
organized without an elaborate or hierarchical structure. GreenStart’s network-based

model also tests this concept.
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Outcome and expression within the system:
In practice, the networked organizational structure of GreenStart relies on partnerships

and coordination with more established existing entities such as NRCS, NHACD, Cornell
University, and UNH Cooperative Extension to disseminate relevant on-the-ground
information. Open communication and coordination of projects does not eliminate the
need for an organization entirely, but greatly expands and leverages existing organizations
and enables recombination of them to create an organized approach. To illustrate this, the
following section will present GreenStart projects and accomplishments with a budget that

supported only one to two part-time paid positions at any one time.

GreenStart’s projects have included the development of a statewide, voluntary, innovative
farmer network by working closely with and providing technical support through
conservation districts in all ten counties of New Hampshire. This participatory network
has demonstrated cover crops, as well as developed, tested, and demonstrated new
equipment and enterprise models. GreenStart programing has also developed on-farm
energy systems such as the modular open source mobile biodiesel processor documented
on FarmHack.net. GreenStart has promoted a strong soil health initiative, and assisted with
technical capacity building of New Hampshire farmer, and facilitated equipment lending
programs around the state. The network has been built in coordination with many local

and regional partners.

More than twenty farms in four counties participate in GreenStart’s network developing

long term soil health management plans in cooperation with the Cornell Soil Health Lab,
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Conservation Districts, UNH Cooperative Extension and the USDA/NRCS. The original
network of farms now extends well beyond the twenty farms in all ten counties, with
stronger relationships building directly from farmer-to-farmer exchanges over soil health,

covercrops, silvopasture and nutrient management being key drivers.

In 2013, at least twenty farmers attended each of five no-till and reduced energy
agricultural workshops in four counties representing tens of thousands of acres under
farmers’ management. Subsequent to GreenStart’s work, at least five conservation districts
have developed equipment sharing programs to assist with no-till and soil health practices,
based on technical expertise provided by GreenStart. Hundreds of farmers participated in
workshops presenting the Cornell Soil Health analysis and its role in measuring on-farm
energy balance. GreenStart assisted three county conservation districts in applying for,
and administering, NH State grants for wood ash spreaders, no-till grain drills, sub soilers

and aerway soil aerators.

GreenStart’s contributions to open source templates and knowledge sharing are facilitating
expansion of county scale projects to state wide projects through enhanced communication
and collaboration, illustrated through the change in behavior and increased collaboration
by conservation districts. At the start of this study, there was a baseline of no significant
collaboration, and by the end, there were numerous collaborative grant proposals, and
shared programing templates, and boilerplates for insurance and equipment rental
agreements. The focus on soil health and tools has resulted in increased energy and

interest at the meetings and more engaged supervisors over the time period. The dialog
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and sophistication of the farmer interactions increased, as was observed through the
nature of technical questions. Initial questions typically focused on definitions of soil
health (what), while later questions shifted to cover crop mixes and equipment setup
(how). The interest and application of the applied work and partnerships with NRCS,
GreenStart and the Conservation Districts is reflected in a 10-fold increase in cover crop
acres during the Soil Health Initiative from about 400 acres in cover crops to over 4000
(NRCS, 2014). GreenStart also observed expanded local network and logistics capacity,
demonstrated through the greater number of conservation district-led workshops and

events that required less technical support in each subsequent year by GreenStart.

Biodiesel is a trademark and charismatic product for GreenStart and a powerful symbol of
“what is possible” through local examples, as suggested by Diderot’s comments on Jethro
Tull’s work. Building and operating an open source biodiesel trailer provides GreenStart a
backstop that makes many other conversations possible. Functioning local examples, like
the biodiesel processor, shift the dialogue into how to do, rather than if something can be

done.

Continued expansion of state wide equipment lending inventories now include multiple no-
till drills, Aerways(soil aerators), wood ash spreaders, soil testing equipment, roller
crimpers, sub-soilers, and yeoman’s plows. All of these tools are a reflection of soil health
understanding and are important to reducing energy inputs, building soil carbon, and

improving water quality.
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GreenStart’s alternative approach based on the Physiocratic framework has also gained
corporate credibility. In 2014, GreenStart was invited to present to the North East
Sustainable Dairy Collaborative, and invited to advise in the creation of the Wolf’s Neck
research farm made possible by a 3-year, $1,693,000 grant from Stonyfield Farm and the

Danone Ecosystem Fund.

GreenStart’s work has also gained attention through leadership in the open source
technology standards work groups of the North East Sustainable Agriculture Working
Group (NESAWG), and Food Solutions New England, which are primarily funded by the
John Merck Fund and Kendall Foundation. The successful approach to soil health outreach
and open knowledge exchange also resulted GreenStart being invited to join the national
Soil Renaissance Project funded by the Oklahoma-based based Noble Foundation and the
Farm Foundation. GreenStart’s work has also attracted international recognition from the
London-based Virgin Earth Challenge (virginearth.com), which has assisted in validating,
expanding, and contributing to the GreenStart network’s technical capacity also expressed
through the Farm Hack project (virgin.com/unite/business-innovation/farmers-geeks-

hacking-agriculture).

Increased Adoption and Investment in Soil Health
There was a ten-fold increase in cover crops planted from 2011 to 2013. The result was

over 4000 acres planted in 2013 reported by the NH Natural Resource Conservation
Service (NRCS 2014). This increase in cover crops over a short period of time illustrates

the potential of the soil health tools developed by GreenStart and the Cornell Soil Health
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laboratory, and the ability of these networked tools to increase both the messaging and the
pace of farmer-to-farmer knowledge exchange. The potential for successful, participatory
science exploration among a broader section of the population is also expressed in the
general increase in open sourced manufacturing documentation that has expanded the

GreenStart-supported Farm Hack open source website.

GreenStart continues to expand the on-farm documentation of new equipment such as
combines, oilseed presses, drying equipment, dehulling, and cleaning equipment. In the
summer of 2013, GreenStart imported and demonstrated grain and oilseed harvesting
equipment imported from Asia that has dramatically reduced the cost and complexity of
harvesting grains and oilseeds in New England conditions. It now forms the basis for
engineering an appropriate New England scale grain and oil seed infrastructure.
GreenStart successfully demonstrated the equipment at workshops around the state,
harvesting canola, sunflower, barley, buckwheat, corn, beans, wheat, oats, and rye. The
viability of the equipment has also engaged manufacturers and created opportunities to
locally manufacture agricultural equipment. For example, the most recent purchase of a
yeoman’s plow by the Strafford County Conservation District was accompanied by
contracts to fabricate the frame locally. Many projects underway include local

manufacturing of equipment and components.

Feedback systems that helped identify barriers to greater participation
GreenStart held a special statewide session in February 2014, which drew stakeholders
from across the state for feedback on current programing and to review the greatest gaps

and leverage points to future work. Through this process, it was clear that the technical
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support of GreenStart helped early adopter farms demonstrate successful practices; the
learning curve for the first farms integrating grains and oilseed into their production
systems has been steep, however, and the next round of farms will have the benefit of

knowledge gained by early adopters and their willingness to share knowledge.

Increased interest in on-farm grain and oilseed processing and production illustrates the
importance of adopting adaptive and farmer-generated hardware documentation coupled
with enterprise decision support tools. Success was measured in attendance at regional
events by conservation districts and attendance at GreenStart conference presentations.
This work is highlighted as a future area of focus for GreenStart. GreenStart’s wider range
of partnership farms has demonstrated a change in interest and acceptance for growing oil
seeds and grains for feeds and on-farm processing. The observed change was in the form of
reactions and dismissals in 2006-2008, to customer acceptance of the product at local
markets in 2011-2014. An expression of this change is illustrated by commercial
agricultural enterprises investing in activities that were pioneered by GreenStart. For
example, The Full Sun Company ( fullsuncompany.com) is building a commercial oil seed

crushing plant, and recruiting growers to supply sunflower and canola.

Discussion
GreenStart serves as a social experiment in using an open and networked approach to
create organization across a large network, but without creating a large organization. All of
the activity described in the previous section was accomplished by providing a minimum

platform, a vision, and standards for facilitating a conversation. GreenStart has been
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successful in affecting the regional agricultural conversation by bringing the networked
and Physiocratic approach into policy and planning meetings, getting the approach adopted
in print, and making measurable change in agricultural practices and attitudes across the
State of New Hampshire (NRCS, 2014). GreenStart network serves as a statewide resource
and network builder, and functions as a catalyst for action on the ground by linking

farmers, designers, engineers, agencies, universities, and non-profit organizations.

GreenStart illustrates a contemporary application of the Physiocratic framework by
engaging a diverse population in participatory research, soil health and agrarianism with
the goal of changing behavior through direct experience and observations. Success of the
approach was demonstrated by GreenStart’s voice within conventional stakeholder forums
and changes in farmer behavior. Challenges were observed in the network facilitation role
that GreenStart plays due to the limited resilience of the organizational structure. The
minimalist nature of network facilitation, and reliance on no full time staff or
infrastructure, also make it challenging to measure and document contributions and impact

in terms familiar to funding and academic institutions.

GreenStart has increased the size of the population that connects food and energy
production systems and soil health, as measured by increased soil health practices,
numbers of tests and the expansion of the Soil Health management planning process into a
national program within NRCS. A similar pattern of interactions and awareness of soil
health is emerging in partnerships with land conservation organizations that have
expanded their mission to collaborate on the agricultural management of conservation

lands.
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Outcome and Conclusion

GreenStart has been able to change its activities from merely advocating what is
theoretically possible, to illustrating with on-farm demonstrations. Participating farms are
now involved in building community-scale agricultural infrastructure and soil health
knowledge that increase food and fuel production while building soil and reducing energy
needs. GreenStart’s work promotes on-the-ground energy and farming practices, and
supports changes in behavior that conserve energy, sequester carbon, and lead to more

resilient communities.

GreenStart clearly identified the need for greater decision support and enterprise planning,
and to facilitate the “lessons learned” from one farm to the next. GreenStart heard
consistently that farms are willing to share their experiences so that others need not go

through the same steep learning curves as they shift practices.

Other “lessons learned” from this case study include the following three points:

1. The open source manufacturing model is more about identifying relationships and a
suite of products that demonstrate viability to justify manufacturer relationships
and attention. GreenStart and the Cornell Soil Health Lab’s survey of participants in
the Soil Health Management Planning process also found varying levels of technical
competence, which highlights the importance of building a support community with

technical backgrounds.
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2. The obstacles continue in the form of added financial, technical, social and biological
complexity of adding on-farm capacity, and the inevitable resistance to change.
However, there is opportunity to handle complexity through expanded
documentation, collaborative tools, and a culture of trust that that creates incentives
for exchange of knowledge as a benefit rather than a risk.

3. Building trust and legitimacy with the farmer participants is crucial to successful
projects, highlighting the importance of farmer-validated decision support tools to

help change the culture and to create relationships that spread knowledge.

Case Study Two — Farm Hack

Methods
Farm Hack was founded as an expansion of concepts incubated within GreenStart, and to

test the social acceptance of open source culture in agriculture. The author co-founded the
organization based on knowledge gained through the establishment of GreenStart. The
structure for Farm Hack came out of work already started by GreenStart two years earlier.
Observations for this case study were gathered first hand by the author as a co-founder and
president of the board of directors. The internet traffic data was gathered using Google
analytics. Due to the on-line nature of community and the database driven structure of the
Farm Hack web site, the contributions and patterns of use of the community are all
recorded, archived and publically accessible documentation as contributions by the

community members.
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Approach

The following section is an expansion of the GreenStart case study that tests the internet
meme that “you don’t need an organization to be organized.” Rather than focusing on local
in-person experiential learning and trust building, it instead focuses on the potential for
open knowledge exchange beyond geographic boarders, and the creation of large and

complex tasks developed through informal networks, collaboration, and volunteer efforts.

The Farm Hack case study is similar to the GreenStart approach in its network-based
structure and operating platform that establishes rules, provides some collaborative tools,
and orchestrates conversations to create an environment where content is almost entirely
user-generated. The extension and scalability of the model is of particular interest to the
Farm Hack case study, which also has the objective of turning users of tools into producers,

and passive customers into active participants and designers of systems.

As discussed in Chapter 1, the conventional, centralized, deductive model of farm research,
development and commercialization creates substantial social and environmental externalities.
It has not produced the seeds, breeds, tools, and culture that can be shared or scaled for a
resilient, regenerative, and just food system. However, one of the challenges in building
sustainable agricultural systems is a vision for which direction to move. The diversity of
stakeholders tends to introduce very different opinions on what constitutes desirable
directions for development (Barbier 2012). Clearly, it is important to create collaborative

problem solving tools that help build shared vision among stakeholders, thereby allowing
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for combining efforts and reducing duplication, while at the same time enabling

independent development efforts.

While shared understanding is required to envision a common future, the development of
collaborative networks to stimulate system innovation calls for methodical thinking and
the development of tools that support that process. Farm Hack was created as an
experiment in “learning by doing,” in an effort to understand the system by trying to
change it. Farm Hack is a case study used for merging contemporary communications
technology with the Physiocratic social framework, which was established as a central
purpose of the Farm Hack project during its foundational meetings. It serves as a test bed
to observe the social, technical, and agricultural system reactions to the expansion and
extension of the framework beyond geographic boundaries. It serves to generate systems
feedback on an open source approach to research and development. This model challenges
the social acceptance that the inventor/discoverer be the one who knows or determines the
ultimate use of research or an invention, and instead tests the idea that the ultimate use will be

collaborative and emergent.

Overview: An Online and In-person Agrarian Social Club for Knowledge
Exchange
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Figure 37 - Collaborative network based organizations. GreenStart and Farm Hack are experimental network
based organizations that are testing the boundaries of creating organization without organizations. The role of
the networked organization is to remove barriers to exchange and facilitate linkages by creating space for
conversation and collaboration, and communicating a set of values. Both GreenStart and Farm Hack have come
into existence as an exploration of these concepts and have been supported by more traditionally structured
organizations.

In 2011, a community of farmers, designers, developers, engineers, architects, roboticists,
and open source thinkers were invited by MIT to meet in Boston, Massachusetts. This first
event was organized by the National Young Farmers Coalition, followed closely by many
more events in partnership with GreenStart and the Greenhorns (a young farmer-artist
collaborative). These events were promoted through organizational and personal social
networks and drew on the desire of participants to make improvements in agriculture that
could be achieved by reducing barriers to knowledge exchange, and a belief that placing
agricultural technology into the creative commons would reflect shared values and result
in a more adaptive, open, and resilient food system. Farm Hack emerged from these shared
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Enlightenment-based values that joined the seemingly disparate cultures of technologists

and agrarians.

The Farm Hack community quickly evolved and expanded through on-line and in-person
social networks, spreading across the east and west coasts of North America to become a
global, user-driven, open source community of ideas. Today, Farm Hack includes
thousands of active participants, with contributors from almost every continent, roughly in
proportion to internet connectivity, and a growing repository of open source tools and
skills documentation. It has demonstrated itself to be an effective networked culture of

collaborative problem solving.

Both hacker and maker cultures are a natural, if not obvious, fit with the sustainable
agricultural movement. Both cultures formed in response to ongoing hegemonic attempts
to control access to resources (of technology and industry), and incorporated tactics that
use open access to knowledge and sharing as a strategy to counter established interests
that dominate industrial food and energy production. Hacking has been defined as aclever
solution to atricky problem by modifying something in an extraordinary way to make it more
useful. Aswell, hacking means to reject the confines of consumer-defined culture, and to
modify, improvise, and create new, customized forms (Anderson 2012). The use of this
“hacking” definition comes from interviews and discussions within the Maker and Hacker
movements including a panel discussion at the 2012 World Maker Faire in which the author
participated. Innovation is an inherent part of agriculture, in general, and a critical part of

sustainable agriculture, in particular. Identifying a problem, thinking of a solution, trying
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that solution, and assessing the efficacy while thinking of the next iteration is a daily

practice on most farms.

In 2013, Farm Hack became a non-profit organization governed by representative contributors
and organizations to oversee and facilitate the expansion of the network and contributions to
the agricultural creative commons. Farm Hack maintains an active online community with
thousands of volunteer contributors and provides a platform for collaborating across
organizations and between individuals. The website hosted documentation for over 100
innovative tools within the first year, ranging from manufacturing instructions for newly
created farm-built hardware such as garlic planters to “extinct” farm-scale tools documented
for remanufacture such as oat hullers, greenhouse automation and sensor networks to organic
egg enterprise business models, and open source software including the Farm Hack website
itself. Many tools were modified with variations bouncing between the East and West coast
and across to Europe and back again, with each stop documenting local adaptations. Since its
founding, the Farm Hack prototype community has attracted over 500,000 unique users. If
Farm Hack is able to expand to 1m users and 1% become contributors, it would create a
research and development force of 10,000 that could be supported by a handful of people
to maintain the software platform. A creative, passionate research and development team

of that scale would approach that of large private corporations.

Despite being an all-volunteer organization, and operating without a budget or non-profit
status until 2014, Farm Hack has partnered with dozens of organizations, universities, and
open source and maker communities in the US and Europe which have hosted “live” Farm Hack

events to document and improve tools, foster sharing, and build skills. Following the agrarian
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club tradition, these events have also involved lots of eating, drinking, and socializing. Public
recognition has generated traffic and national foundation interest, as well as media
discussion. Farm Hack serves as a case study for the applied framework proposed by this
study. The framework proposed within this dissertation has been presented to the plenary
sessions of the North East Sustainable Working Group, NOFAVT winter conference, the
Quivira Coalition Conference in New Mexico and a Biodiversity, Water, Soil Carbon and
Climate Conference hosted in Boston. The approach has also been recognized by the Virgin
Global Earth Challenge, the Howard Buffet Conservation Innovation Prize, and the Soil
Renaissance Project. It has been written about by popular press such as the NY Times,
Wired, Make Magazine, Men'’s Journal, and PBS NOVA, and has been presented at many

other conferences.

The Farm Hack events and web platform bring together farmers, builders, and designers
and organizational partners including the National Center for Appropriate Technology,
UCAL Davis, Draft Animal Power Network, Apitronics, GreenStart, Greenhorns, National
Yong Farmers Coalition, Food Solutions New England, the Food Knowledge Ecosystem
Project, Open Source Ecology, University of Vermont, University of New Hampshire,
Groundswell Center, NOFA Vermont, NOFA New York, NOFA NH, Cornell University, Brown
University, RSDI, MIT, Local Granges, SUNY, and The Intervale in Burlington Vermont. More

partners are added on a regular basis.
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Figure 38 - Collaborative best practices create new learning communities. Organizational knowledge exchange
and overlapping values converge through Farm Hack as a means to exchange knowledge and shared values
across organizational boundaries.

The FarmHack.net siteisalso atool and a collaborative expression of the community. It isthe result
of 710 hours of volunteer web developer effort and has had over 500,000 unique page views since
2012, with over 250,000 unique visitors resulting in 16,000 hours of user participation. There are
over 2,000 registered contributors to the site, with 159 tools currently posted to the creative commons
for adaptation and improvement. Further, there are 554 forum topics representing active engagement

and discussion on issues relevant to sustainable agriculture, problem solving, and innovation.
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Discussion

Farm Hack builds not only on the Enlightenment and open source software movement
ideas that the natural state of knowledge is to be free, but on the Physiocratic world view of
nature-governance (articulated by Quisney, Jefferson, Locke, and Franklin) that the
productivity of the soil, and the education of the populace towards the ability to provide for
their own livelihood, is necessary for the liberty and the health of a culture. In short,
agricultural production is the root of sustainable civilization and therefore not just an

occupation, but foundational to the shared cultural values of a healthy society.

Enlightenment thinkers pioneered the idea of crowd sourcing with the community-created
Encyclopédie: a Systematic Dictionary of Sciences, Arts and Crafts, referenced in Chapter 2. The
contemporary open source software community pioneered the development of networked
tools, such as wikis, forums, and collaborative documents that facilitate collaboration and trust.
Building on these models and their culture of voluntary reciprocity, Farm Hack confronts the
assumed economics of agricultural research, and therefore challenges what questions are
asked, what tools are produced, and how they are financed. The outcome is that the tools, seeds,
and techniques developed through this process both reflect and benefit those who intend to use
them, not just those intent on selling them. Farm Hack has built upon these pre-industrial and
modern hacker/maker ideals of amateur inquiry by connecting farmers with other farmers,
drawing upon a global library of skills and designs to create the potential for every farm to

become a research farm and their neighbor a manufacturer.

By documenting, sharing, and improving farm tools and associated knowledge, Farm Hack is

not just framing agriculture as a shared foundational economic activity but also illustrating an
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alternative template for local manufacturing. It is a model that provides greater choice and
citizen control towards local self-determination. With this approach, the primary limiting
factor in agriculture shifts from the (negative) extraction of scarce natural resources to the
(positive) expansion of skills and systems understanding to harness the complex
biogeochemical flows of atmospheric carbon, water, and nitrogen into productive and
resilient agro-ecosystems. The emphasis shifts from efficient extraction to skilled
regeneration using all available knowledge; our role as farmers becomes improving rather

than diminishing the natural resource base.

In contrast, the conventional model for farm research, development, and commerce has
illustrated a tendency towards biological “dead end” seeds and breeds, using closed
technologies that create friction in each transaction and often cannot be shared, adapted, or
reproduced. There is potentially more innovation happening on farms every day than in all
universities and private labs combined. However, because of a scarcity mindset, very little on-
farm innovation gets shared beyond the farm gate. Building trust across geography and
promoting non-traditional community interactions is crucial to creating a culture of knowledge
sharing. Farm Hack is built upon recognizing that farms are less competitive with one

another than with global economic and climatic forces.

The documentation and communication required for open source research and
development is not a skill set that is yet culturally established within agriculture. This is
not a unique challenge, but is common to all open source communities. Fortunately, open

source communities have the advantages of the cumulative accomplishments of and
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collaboration with other open source communities. Farm Hack’s operating system has
built on the strength of network structures and administrative tools developed by other
open source communities, including Drupal, Wikipedia, Open Layers, and Apache, and has
been able to build trust, grow, and adapt while making its own unique contributions back
to the commons. In particular, it has been able to model the Collective Impact Framework
as a backbone organization using collaborative tools to form common agendas, shared
measurement, mutually reinforcing activities, and continuous communication across
organizations and individuals to build trust as a new community (B. J. Kania and Kramer
2011). Mutually reinforcing activities also expand the value of the repository. The
community benefits by identifying overlaps, building on the cumulative achievements of

the broader open source community while reducing duplicated efforts.

Farm Hack's online platform is a prototype to reduce duplication of efforts and to find shared
problems and creative solutions. Just as symbiosis is as powerful an influence as competition
in nature, the same approach can turn the agricultural research and development system on its
head by creating tools and cultural operating systems to reward, evaluate, test, share and build

on the cumulative accomplishments of the community.

Outcome and Conclusion
By creating a voluntary community of support, and changing the economics of research, Farm
Hack also aims to change the questions that are asked, and which problems get priority. The
result is that the tools, seeds, and techniques developed are for the benefit of those who intend

to use them, not just those who sell them: a demand-driven system rather than only supply-
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driven. It provides a response to particular types of market failures that fail to provide

appropriate tools even in the presence of demand.

By documenting, sharing, and improving farm tools and associated knowledge, Farm Hack
illustrates an approach to improving not just agriculture and local manufacturing, but also
providing more choices and greater citizen control over quality of life and livelihood through
improved social and technical tools. Agricultural history has primarily been a story of
exploitation and extraction of both human and natural resources; however, there is a
largely forgotten historical movement of great value in the natural philosophy of the
Physiocratic thinkers. Farm Hack’s vision for a more regenerative agriculture taps into
both these earlier ideals and those of a new age of agrarianism that has emerged from Slow
Food and other 21st century food justice and agrarian movements, merging their ideals
with the shared values of the open source networked computing communities. Farm Hack
expresses itself as an experiment to apply open source technology approaches to
agricultural software and hardware and to the complex and knowledge-intensive bio-

technical social system of agriculture.

Farm Hack’s vision has built a working prototype for a more distributed economic system
made possible by universal access to a constantly improving repository of ideas from the
global community that can be drawn upon to adapt to local manufacturing and farming
systems. The Farm Hack case study illustrates that the expansion of the creative commons
is no longer a technical barrier, but is rather a matter of cultural persuasion as a

counterbalancing force to hegemonic industrial forces. By creating open source
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repositories of knowledge, it is possible to bypass political power structures, shifting the
balance from those who derive their power through the control of scarce resources and
knowledge to those who derive it from innovation and creativity, mixing their skills with
nature to create abundance based upon the most basic premise of agricultural promise

observed by Jonathan Swift over 200 years ago.

Chapter 8: Adaptive Management, Open Source Research, and
Social Media

Open Source Research and Development Theory and Practice

Adaptive management is a continuous inductive research and feedback process. Tools to
gather systems-wide observations that can be used for management decision-making are
both in effect and emerging. Realizing the full benefit of these efforts requires
documentation, sharing, and feedback from a larger context. By expanding the context and
leveraging individual efforts as open source validation, traditional professional researchers
can provide greater return on observation efforts. A platform for adaptive management
and data sharing serves as the same platform for collaborative research and development
efforts to enable hardware to adapt and be shared across scales, to select varieties, to
identify pathogens, etc. Adaptive management using an open source framework is not a
particular solution, but rather a methodology for problem solving, management, and

generalized knowledge exchange.
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Social Network Overview and the New England Food Knowledge
Ecosystem

The Farm Hack platform created the conditions for an open source adaptive management
software system. The Farmier/FarmOS record keeping software tools emerged in parallel
with Farm Hack and brings together social, technical, and biological feedback loops
expressed in the user interface form of a management dashboard. Farm Hack focuses on
shared problem solving to enable development, and takes the form of collaborative
software. GreenStart also used collaborative tools such as shared documents and wikis to
build a research network, and expanded tools such as Drupal, Open Layers and Etherpad to
create the Farm Hack platform. The primary example, discussed in Part |, is the GreenStart
facilitated Soil Health Management planning process created in partnership with the
USDA/NRCS, NH Conservation Districts, the Cornell Soil Health Lab, and 18 cooperating
farms and facilitated by GreenStart. The management project itself was coordinated using
collaborative software in the form of Google Docs (collaboratively editable web-based-
based documents) which created the foundation for interaction within the iFARM initiative

to reach an even broader audience.

The New England Food Knowledge Ecosystem project (NEFKE) and Farm to Institution
New England (FINE) also provide examples of network oriented organizations which have
internalized systems-based approaches that embrace collaborative tools and processes.
The methodologies articulated through their planning processes illustrate collaborative

work across multiple overlapping networks. Both organizations are using the findings
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from the RE-Amp study, funded by the Garfield Fund, as a framework (Piestrak 2013).

Those findings, which describe the characteristics of resilient and open source systems, are

as follows:

Start by understanding the system you are trying to change

Involve both funders and non-profits as equals from the outset

Design for a network, not an organization, and invest in collective infrastructure
Cultivate leadership at many levels

Create multiple opportunities to connect and communicate

Remain adaptive and emergent, and committed to a long term vision (Piestrak
2013)

In each of these case studies, resilience is not just an implicit goal, but an explicit central

organizing principle. In addition to resilience and open, knowledge-sharing networks, the

related concept of Collective Impact (B. ]. Kania and Kramer 2011) also plays a central role

in the networked and collaborative planning dialogues taking place in food system network

meetings across New England. The best practices identified within the Collective Impact

framework have been officially or unofficially adopted by NESAWG, FINE, the Vermont

Sustainable Jobs fund, and Food Solutions New England. They are:

The Five Conditions of Collective Impact Success (B. ]. Kania and Kramer 2011):

1.

Backbone Organization: Creating and managing collective impact requires a
separate organization(s) with staff and a specific set of skills to serve as the
backbone for the entire initiative and coordinate participating organizations and
agencies.

Common Agenda: All participants have a shared vision for change including a
common understanding of the problem and a joint approach to solving it through
agreed upon actions.

Shared Measurement: Collecting data and measuring results consistently across all
participants ensures efforts remain aligned and participants hold each other
accountable.

Mutually Reinforcing Activities: Participant activities must be differentiated while
still being coordinated through a mutually reinforcing plan of action.

Continuous Communication: Consistent and open communication is needed across
the many players to build trust, assure mutual objectives, and appreciate common
motivation.
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NEFKE articulates its first project element as the establishment of an information
archive/hub that bridges the FINE/NEFKE/NESAWG networks. The design element of the
hub is both about openness and reserves. NEFKE identifies the development of a new
NESAWG.org site as an opportunity to build on open standards to enable complementary
support to the new FINE site, and other food network organizations in the region. This
includes data and information archiving/cataloging, data feeds such calendar and RSS
feeds, and visualization tools. The process has already begun with a number of tools made
publicly available through the network. An additional key element of the NEFKE project is

the Linked Information Platforms which form easy-to-use, extensible shared resources.

Open collaboration is listed as a key assumption and part of strategic planning with FINE,
LocalFoodSystems.org, Farm Hack and civic tools including Open Civic (gotopencivic.com)
to support planned hackathons and collaborative development which will continually
catalog and share new tools and applications. The approach taken by NEFKE is based on
the extensive literature of participatory research and the requirements of adaptive
management. These organizations and initiatives are creating examples of open exchange
and collaboration within a dominant food system culture that is largely opaque and not

adaptive to environmental or social changes.

New England Food Knowledge Ecosystem

Approach
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The New England Food Knowledge Ecosystem emerged out of a working group of the
North East Sustainable Agriculture Working Group or NESAWG. The working group
sessions over a period of years identified the common need for shared knowledge and
reducing the barriers to knowledge exchange across the landscape through shared
standards, methodologies, and best practices. The case study presented here will focus on
a particular aspect that had the most network overlaps in stakeholders, values, and
technology with Farm Hack, GreenStart, and Food Solution New England efforts: the
process of developing shared networking tool kits for collaborative networks using existing
open source and collaborative tools. This approach, if successful, also creates new tools as
a byproduct of an emerging regional food system network. In presentations to the
NESAWG community, the development process was described by the author as the

“blacksmith building the first tools.”

Overview: A tool kit for collaborative networks

The New England Food Knowledge Ecosystem (NEFKE) was formed in cooperation with
Cornell, the John Merck Fund and the North East Sustainable Agriculture Working Group,
and incorporated the principle of openness into its operating principles. NEFKE and its
work formally and informally overlap with the other case studies. NEFKE’s website and
planning documents state that, “Where possible, ‘open’ solutions and structures will be
encouraged” (Piestrak 2013), including:

Open source tools, systems and platforms
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Open access to existing knowledge resources and those generated through the
ecosystem itself (e.g. case studies and user contributions)

Open content that can be easily adapted or repurposed

Open standards (e.g. UBL), technical protocols (e.g. HTTP), and specifications (e.g.
RDF)

Open science, making scientific research, data, and dissemination accessible to all

The organizational structure is based on the Collective Impact Theory covered in previous
chapters, and exists within a subset of many other networked organizations. The project is
organized as a working group within NESAWG, and the management team draws advisors
from multiple stakeholder groups, including Farm Hack and GreenStart. The NESAWG role
within the larger network has been to provide research and resources in the form of
existing language and related case studies, to assist with the first stages of coordination
while the organizations moved towards deeper collaboration. NEFKE, in its early stages,
was able to provide a basic framework for conversation amongst organizations; it was also
able, with support from organizations such as Farm Hack, to illustrate the potential for
improved collaborative tools to support the social and technical processes of collaborative

development.

Discussion
The Open Shops feature prototyped by Farm Hack was conceptually developed in a

partnership between NEFKE and Farm Hack. The Open Shop concept allows individuals,
organizations, merchants, and fabricators to feature their open-source designs and

collaborative activity, and to create an entry “home” page to the Farm Hack content and

162



tools. Open Shop is part of the experiment in trust-building and ownership within the
community, allowing users to curate and showcase their own activity and interests to a
particular audience while still contributing to the wider Farm Hack community. The Open
Shops area is currently in a prototype version on the Farm Hack website, which itself is a
Minimum Viable Product (MVP) or prototype. The development of Open Shops was
identified as a strategic focus with detailed functionality developed and documented
through numerous design build sessions called “hackathons.” The collaborative
functionality and “embedded” content model was prioritized in strategic planning sessions
hosted by NEFKE in March of 2014 and illustrates the importance placed among the food
systems groups in the Northeast in expanding collaboration and creating shared user-

generated content.

Many organizations have open source projects, but Open Shops stands out as an expression
of the meta-goal of providing an operating system for collaboration among organizational
partners with shared values. As such, it assists with identifying overlapping problem
statements, tools, and solutions. For example, Food Solutions New England and the
Northeast Sustainable Agricultural Working Group dialogues include the development of a
standards conference for open source communications across food systems. This project's
proposed structure is facilitated by Farm Hack, and uses Farm Hack as the platform to
develop the basis for the Food Knowledge Ecosystem Project administered by NESAWG.
Most recently, the network has expanded to include collaborative dialogue with related

international open source organizations such as the Open Food Foundation in Australia.

The Farm Hack Open Shops project illustrated in Figure 39 includes the following goals:
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1.

Improve the open shops collaborative on-line tool. Success will be measured in
increased organizational and individual use and in the form of on-line feedback and
tool ratings, and documentation downloads.

Increase the capacity within the farming and wider community to document, share and
create their own open source projects by hosting instructional webinars and in-person
events, and collaborating with organizational partners on an open source food system
standards conference.

Improve the web-based interface to lower technical barriers for sharing open source
projects. Success will be measured by a higher participation rate and fewer “lurkers.”

Facilitate building, selling, and discovery of tools that reduce the economies of scale in
agriculture by building a classifieds on-line tool. Success will be measured in the
percentage of tools being sold, built, used, and documented by the community.

Document and expand Farm Hack in-person events that bring together people with
diverse skill sets to create a more resilient food system with tighter linkages between
customer and producer. Success will be measured by the diversity of community
profiles and participation beyond farming membership.
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Figure 39 - Architecture of Open Shops Concept developed through NEFKE. The Open Shops concept aims to
build collaborative best practices, and to reduce barriers to cross organization knowledge sharing. Each type of
documentation represents a different aspect of knowledge exchange and a different part of the development and
sharing process.

Other examples of shared templates and standards that have come through the overlap in
stakeholder involvement include shared grant templates through the New Hampshire
Association of Conservation Districts (NHACD), the opening and sharing of projects and
infrastructure across New Hampshire county conservation district borders, as well as
explicitly open source science and technology organizations such as Public Lab, DIY Drones
(http://diydrones.com), Arduino (http://www.arduino.cc/), Mission planner

(http://planner.ardupilot.com/), Flight Riot (flightriot.com),
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Ecosynth(http://ecosynth.org/) and Photosynq(http://photosynqg.org/). All of these have

contributed to and benefited by interaction directly or indirectly from the NEFKE project.

The NEFKE project holds a crucial role in the effectiveness and scalability of open source
and collaborative efforts, as it recognizes that collaboratively generated shared standards
are as important to improving incentives for knowledge exchange as collaborative tools
and best management practices. The NEFK project provides another example of a network
based approach and collective impact methods; this is illustrated by the expressed
intention not to create a new organization, but instead to hold and champion the
collaborative process and language while working with others to form “backbone”
organizations that can carry the cultural practice of standards setting. Standards can play
an important role in defining markets for sustainable innovations. However, Barbier
(2012) warns that “they are usually enacted on the basis of ‘proven’ novelties rather than
on what may be needed from a sustainability perspective. There is consequently a risk that
standards become a barrier to further innovation, which makes it important for them to be

flexible and ‘progressive’”(Barbier and Elzen 2012).

There is, of course, great value in innovation beyond the level of sharing data standards.
NEFKE, Farm Hack, and related projects have overlapping stakeholders and illustrate this
by also adopting elements of collective impact theory and practice. In addition to
statements of shared values, and continual communication, these projects embrace open
source collaborative tools, such as Drupal, Open layers, Etherpad, and standardizing RSS

feeds to enable content sharing and the inspiration of a wider learning community. This is
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possible because, contrary to widely held views, standards do not actually standardize
practices but rather organize them so that the data can be exchanged more easily. In the
case of NEFKE, this means enabling exchange of content regardless of where it is stored
rather than centralizing data repositories. The challenge is to also implement standards

that reward further innovation.

NEFKE provides an applied case of trust building in the network development process,
illustrated by the tools identified in Figure (40).
Standards and Agreements Governance Group (All)

o _ ) Standards and
Permissions/Trust/Single Sign-on Templates

NEFKE
Open Shops & Tool “Kits”

4 Tool kits L, RSS feeds

Tool kits Calendar
Tool kits RS
Tool kits  eggikis & forums
1 Tool kits esearch & problem
=° ~  statement tools

Figure 40 - Structure of shared collaborative tools created through NEFKE. The development of both the
collaborative tools and the standards, also serves to build social bridges across organizations and build trust.
The value of the collaborative tools also increases as the size of the network increases.
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Barbier (2012) states that “the importance of trust building among stakeholders may
seem trivial but in practice it is often overlooked in projects and change processes. If trust
is lacking, actors may talk at length about issues of content but they will never find the
common ground that allows them to move forward.” NEFKE, the organizational structure,
and references to collective impact literature all contributed to the building of trust that
was critical in the initial stages of the process of introducing new tools and workflows
between organizations. NEFKE’s attention and endorsement of the Farm Hack project also
provided legitimate standing within the broader academic and organizational structure

that enabled an expansion of the community.

NEFKE has been successful in standards setting in the development of shared goals, RSS
standards, Calendar framework, and other tools and language standards. However, the
transformation of a socio-technical regime is a long-term process, and more complicated
than the diffusion process described by classical, linear innovation models. In a transition,
small parts of a regime start to change initially, as is indicated by the three-step process of
true collaborative behavior. With further growth, new actors will become involved, which
leads to further changes and adaptations, but to ownership and legitimacy of the process as
the initial challenges of leadership diminish. The growth and transition to the expansion
stage often require an additional step in a learning process (Barbier and Elzen 2012). A
long-term process of gradual transformation also requires management as the novelty
wears off and external support for the process diminishes.

“The general view is still that government support should be

given only in the initial stages until a novelty is ‘proven’, often
only in a technical sense, and that thereafter it should be able to
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stand on its own feet. This, however, is not the way system
innovation processes work. Longer-term policy support is
required, although the type of support may change over time. As
there is little experience in how to actually do this, it requires

yn

further investigation, often in a process of ‘learning by doing’.
(Barbier and Elzen, 2012)
This implies that management of transitions beyond the “innovative” phase and into the
“implementation” phase is a long-term process that should be recognized and supported.
Current policies do not tend to support this, but NEFKE and the collaborative process
underway with Food Solutions New England, Farm Hack, and NESAWG can provide a

longer term case study to revisit at future stages of maturity.

Chapter 9: Agrarian Social Network Tools - Case Based Studies

Social Expressions, outputs, and tools
The previous chapter identified placement of individual organizations and projects within
the Physiocratic framework and used their “actions” to observe changes to system
behavior. The study will now examine the output of the identified collaborative social
systems in relationship to the generalized adaptive framework discussed in Chapter 3.
This chapter will illustrate “flows” and feedbacks through the framework, and examine the

products and evidence of Collaborative Adaptive Management (CAM) in action.

The Physiocratic theoretical framework provides social context and agrarian values to
frame the significance of the open source research and development examples provided.

The following case studies are presented within a historic context, but also identify new
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software and hardware tools that play a role in reinforcing networked activities and

encouraging participation in agricultural science.

Soil Health Initiative and Management Planning Software
The Physiocrats believed that soil development was primary to economic development.
This concept is useful when applying Mirabeau’s Tree metaphor to reflect on the structure
of contemporary agriculture, and in recognizing that the free flow of knowledge is still
intricately linked to the management of the public good of regenerative natural systems.
Knowledge exchange tools such as smartphones are now ubiquitous, but have yet to be
directed towards soil health measurement. The adaptive management framework
provides a method to measure complex heterogeneous indicators, yet to be developed, as
an integrated system based on the generalized indicator, value, rating and systems health

structure introduced in Chapter 3.

Limiting factors and the concept of constraints in agriculture are often used to understand
nutrients. For example, soils testing is often concerned with measuring sufficient plant
available nitrogen, potassium, or phosphorus, seeing if pH is in the right range, or if there is
sufficient soil temperature and water. Systems knowledge is characterized by the complex
interactions between individual constraints, the knowledge of which could also be
considered a limiting factor. How knowledge is gained, how it is transferred, and what
pathways develop from observation to management: all are significant to management
decisions and outcomes. Social structures play a role in determining who has the power

and resources to manage research and development, and how knowledge flows from field
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to management and back to the field. Open source systems, collaborative tools, and open
ended reports like the Cornell soil health test work to remove social, hierarchical, and
interdisciplinary barriers to knowledge exchange. Instead, their focus is on a conversation
that begins with indicators, but that invites participation, recommendations, and

collaborative problem solving to interpret those indicators.

The Social Aspect of the Cornell Soil Health Test

As discussed in Chapter 6, building trust and a sense of shared goals within a community is
crucial for network-based organizations. In this regard, the Cornell Soil Health Lab
approach to reporting and interacting with users is different and important. This
differentiation is embodied within the layout of the Soil Health Report. In addition to
providing a quantifiable measure for biological and physical health indicators in the “value”
column of the report, the lab also provides a relative “rating” which is an easily identified
color-coded traffic light, basically a “dash board” for the soil health report. This method not
only serves as a decision management tool, but also provides social feedback relative to
others in the system. In this way, network participants can give and get critical feedback
not just about the absolute health of their soil, but also the relative health of their soil

through rankings and ratings of practices within the database.
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Cornell Soil Health Assessment
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Figure 41 - Social structure of the Cornell Soil Health Test. The layout and presentation of the Cornell Soil Health
Test illustrate a management focus to data. The data are presented not just as absolute values, but also relative
to others within the data base. The relative rating carries with it social implications, and also opens the door to
further analysis with other farms, providing insights that form the basis for the more generalized approach to
participatory adaptive management.

The current form of the test relies on a simple comparative score within a given indicator
based on all other similar samples in the database (Idowu et al. 2009). As more samples
are added, the value of the ranking increases as well as the resolution. The soil health
reports are currently distributed by email in pdf format; however, a mobile and web-based
report is being developed in conjunction with GreenStart. The potential for the web-based
version of the soil health report is to enhance the social feedback not just for soil health

indicators, but for management decision support as well. Soil management decisions are
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specific to farms, but the decision making process and possible variables to consider from
the physical, biological, and chemical processes are consistent across all farms. Rotations,
cover crops, tillage methods, and amendment decisions can be facilitated by having access
to what has worked (or not) for soils in similar condition within the database. The
movement of the soil health management to a web-based application will facilitate the
gathering of more detailed location data, and the addition of expanded sampling protocols
such as soil image analysis, or more frequent or detailed indicators such as compaction,
moisture, and pH. These can be rapidly field tested rather than lab researched, which
opens the possibility for the “test” to be less isolated and more of an ongoing evaluation
and decision making support tool. The same software capabilities that enable access to
collaborative tools like Farm Hack can also be used to link farmers together for peer-to-
peer decision support. Adaptive management becomes, in effect, a constantly evolving
research and development process. A similar approach can be expanded to develop new
indicators as electronically derived sensor data becomes available. Higher resolution and
continual monitoring create the conditions for both social and economic feedback loops

required for the universal adaptive management framework.

Building trust online has been a key to enabling transactions across the internet, and is a
crucial factor in sharing environmental data. Social technology has developed in parallel
with new measurement tools to address this issue in other fields, such as e-commerce, and
are constantly improving. E-bay developed vendor and buyer ratings in order to provide a
measure of trust between anonymous parties conducting business; companies like

couchsurf.com and Airbnb, that are pioneering the sharing economy, are viable because of
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trust in reputation ratings. Active on-line forums and wiki editors develop histories and
peer ratings that carry weight within the community (Richters and Peixoto 2011; Buskens
2002; Sherchan, Nepal, and Paris 2013). The sharing of soil, environmental, and
agricultural practices data will require similar systems and methods to build trust and
provide sufficient benefits to participants. As sensors and data loggers continue to drop in
cost and increase in accuracy, a networked platform will improve the database of stored
values. Associated decision support improves with producer feedback, which in turn will

increase incentives for participation.

This horizontal method of communication and the mutual trust required for the system to
function also has the potential to reduce the social gap between agricultural scientists
and farmers, which has been identified as one of the primary challenges for participatory

and on-farm research projects (Riley and Alexander 1997).

The pace of peer review, and access to data and publishing, will also be affected as large
data sets become available through agreements with producers. The quantity of data
generated will, in essence, make data sets less valuable, but instead emphasize the quality,
frequency, and community relevance of the analysis. Environmental models can be
validated more rapidly by having access to more data points to refine regression analysis,
and in the process also become more transparent to users. Modeling tools become valuable

as planning tools as they become integrated into the decision support process.
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Additionally, mobile web-based data collection will enable the soil health management
planning process to plug into other management software. A structure for open source

adaptive management software is proposed in Chapter 10.

Innovation in open science and community development

iFARM (Imaging for Agricultural Research and Management)
Method

As discussed in Chapters 1 and 3, participatory research has the potential to be both cutting
edge and high quality. iFARM events build on the combined efforts of Public Lab,
GreenStart, and Farm Hack communities already discussed in this chapter, with the stated
intention of creating better observation tools, shared data, and an engaged citizenry
through an active learning community. The iFARM initiative offers a counterpoint to
conventional closed-source scientific research hardware and software, and operates as a
system of participatory amateur inquiry. The participants at iFARM events are motivated
by the belief that without open source research methods, many tools and techniques, even
with radically reduced prices, will remain in the exclusive realm of consultants or hidden
behind pay-walls. iFARM was created as an interaction of the case-based studies already
presented. It also serves as a case study for the cumulative effect of this learning
community, reflected in the rapid increase in sophistication and expansion of technical

skills and scope from year to year.
Results/outcome
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The first iFARM event in 2012 was held on a single day and converged around the imaging
of no-till cover crop plots discussed in Part III, Chapter 11. Weather balloons and kites
were used as aerial platforms utilizing very basic canon hacker development kit (CHDK)
scripts running on the cameras. Post image processing included early paired image NDVI
scripts and hyper3D structure from motion processing using Meshlab. The images were
georeferenced using mapknitter, an open source tool developed by Public Lab based on
open layers tools. The resulting geotiffs were later accepted into the public Google earth

map layer.

The second iFARM event in 2013 expanded from a single day event into a two-day social
hackathon. It focused on smart phone and web cam based spectral data equipment that
was just mature enough to test as well as early near infrared infragram camera prototypes.
The focus was on ground truthing and calibration using commercially available scientific
equipment. The primary aerial platforms remained kites and balloons, but the event added
a 40’ pole camera with a remotely controlled gimbal that tested live camera video feeds.
Some members of the community demonstrated the early stages of multi-rotor and fixed

wing aircraft mapping platforms, but they were not yet mature enough for full missions.

The third iFARM event in 2014 broadened in scope and participation into three days of
programing. The first day focused entirely on UAV field setup operation with four

universities being represented. Thousands of images were collected with several UAVs
flying autonomous missions using sophisticated camera scripts that interacted with the

autopilots. The second day focused on technical presentations to share the past year’s
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accomplishments. The presentations included Infragram, Spectra Workbench, FIDO,
Apitronics, Cow Tracker, the Growing Clean Water Initiative, an open penetrometer design,
soil imaging and the beginning of image calibration approaches. The emerging structure
and relationships of the hardware, software, and management feedback are captured in the
indicator, value, rating and health framework for adaptive management and research and

development proposed by this study.

Open Source Hardware is Software - Farm Hack and Open Source
Knowledge Exchange

The open exchange of agricultural knowledge and tool designs was underway long before
the invention of the internet, as illustrated by the historical review in Chapter 2. The new
development in open exchange is the contemporary communication technology now

available to remove barriers to the flow of ideas.

The growth of the open source movement has been partly the extension of the software
development culture and methodology into organizational structure, business models, and
hardware. Open source hardware is, at its essence, the communication of “genetic code”:
the blue prints, associated documentation, and assembly instructions to replicate and build
new hardware. In that sense, it is simply an extension of software, and can even quite
literally be communicated in the form of software code as machine language instructions
for precision manufacturing equipment such as 3D printers, lathes, CNC machines, or pick-
and-place circuit board printers. In some cases, it can be documented and communicated
in a form as simple as a photograph or line drawing. Hardware is simply tools that reflect
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our understanding of the environment and how to manipulate it; the description of
hardware and its context is also documentation that can be digitized, modified and shared.
Knowing this context is crucial for understanding the case studies that follow and for
understanding the successful hardware development projects that the Farm Hack, Public
Lab, Adafruit, Arduino, 3D-Robotics and Apitronics communities have built. The following
tool examples illustrate representative innovation types and knowledge exchange
processes that developed as patterns of use from user generated content on the Farm Hack

platform.

Adaptability to Changing Technology and Farmer Needs

FIDO was one of the first projects developed within the Farm Hack community through the
farmer-driven design charrette procedure. The project captures the convergence of open
source culture, agriculture, and newly reduced costs of electronic circuitry. The FIDO
concept developed out of a grower’s problem statement that identified crop losses in
greenhouses because the feedback process of manually checking remote locations resulted
in air temperatures that were too high or too low. The first prototype solution created a
basic system that would text message the farmer (or anyone else) if the temperature was
out of range. The FIDO project fits within the adaptive indicator structure outlined in
Chapter 4, and was quickly adapted to provide an automatic data feed and text message
alerts for other farmer-defined indicators. The FIDO project illustrates the successful
convergence of hardware, software, and open source culture in creating adaptive

management tools.
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The open architecture of the FIDO project also enables integration and adaptation as new
technology becomes available. The first FIDO projects were released on cellular networks;
the second generation data loggers made by Apitronics were based on Xbee 915Mhz
wireless radio protocols. But, during that time, the cost of increasing the range of Wi-Fi on
farms also dropped dramatically when Ubiquity, a wireless hardware manufacturer,
introduced low cost Wi-Fi bridges that enable Ethernet speeds at distances of over a mile.
The US State Department funded an open source mesh network project called Commotion
Wireless that enabled these bridges to run software to make them into Wi-Fi hotspots. This
software greatly reduces the cost and complexity of connecting and makes whole farm Wi-
Fi possible for a few hundred dollars; affordable and accessible software shifts the
hardware options for problem solving to higher frequency environmental monitoring and

alerts.
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Design Evolution and “forking” of Open Source Hardware and Software Interaction

( Open Source Tools library

(e.g. arduino, raspberry pi)

Farmer defined
environmental monitoring
problem 1

(" )
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production run

Technical approach—
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Farm Hack Design Charetts
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Kickstarter crowd
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WiFARM(expanding open
source tool library)
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Rover FIDO Apitronics Hive and Bee FIDO Il

New modular, adaptable and scalable tools and expanded library for problem solving

Figure 42 - Evolution of technology through knowledge exchange and collaborative process. Technological
branches are facilitated by publishing accumulated innovations. For example, the Rover electric fence controller
was a branch of the FIDO project development. The FIDO II project bypassed development steps by building on
the original concept, but with newer open source hardware platforms.

The adaptation and flexibility of tools and their ability to be combined easily illustrates the
open source socio-technical interaction. The FIDO project was quickly copied for other
data logging and monitoring jobs such as climate control, electric fence, and water
monitoring. The full history, design logs, and conversations related to the development of
FIDO are archived, and are publicly accessible on the Farm Hack website (“Farm Hack -

Fido-Temperature-Alarm-Sends-Text-Messages” 2014).
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Designs Revived From Extinction Through Documentation
The Farm Hack platform also supports the re-manufacturing of products that are no longer

manufactured but were once commercially available. The impact oat huller tool posted to
Farm Hack represents a prototype built from archived engineering drawings shared and
demonstrated at a Farm Hack event. The engineering notes were digitized, posted as a tool
wiki on Farm Hack. The drawings were digitized and modeled in Trimble Sketchup and posted
the 3D warehouse library of models for public sharing. The freely downloadable Sketchup file
enables the design to be translated into a CAD file for fabricators. Design improvements and
modernization of the design were also suggested through forum conversations that extended
the functionality of the design to function for other crops such as spelt and barley (“Farm
Hack - Oat-Dehuller-Model-Sr-50” 2014).

International Adaptation of Technology (from Europe to USA)
The Farm Hack platform also functioned to transfer designs between countries and adapt
the designs to local conditions and available materials. For example, the Triangle Hitch tool
is used to improve the three-point hitch implement attachment system, and makes
switching implements faster and safer. Commercial units were either unavailable or
available at a cost substantially above the cost of materials. An alternative design was
developed and published to the creative commons in France by a Farm Hack partner
organization called ADABio. Through a Farm Hack tool post and a subsequent event, three
adaptation methods were developed based on the French plans to translate the design
from metric to standard steel stock available in non-metric countries. The contributions to
the project flowed from France to New England, with refinements contributed by farmers
in Quebec. New design and latching mechanisms were developed, documented, tested, and
shared (“Farm Hack - Triangle Quick Attach 3 Point Hitch” 2014).
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Hardware Design Modification from USA to Europe and Back
Hardware designs were also transferred from the United States to Europe and back again,

illustrating low barriers to knowledge exchange. The roller crimper, a tool that
mechanically kills winter annual crops by crimping the stems, was developed by the Rodale
Institute as part of their organic no-till research initiative. In 2010, the Rodale Institute
made their tool design open source. The open source design was manufactured locally in
Pennsylvania. GreenStart purchased two for local trials in New Hampshire, and the design
was posted to Farm Hack. Other designs, modifications, and adaptations were
subsequently added to the Farm Hack tool wiki page. The new postings came from
Pennsylvania, New Hampshire, France, Quebec, New York and Germany. Each post adapted
and improved function based on particular local conditions and needs, with improvements to

the design from France being actively adopted in New Hampshire and New York within a year
(“Farm Hack - Cover Crop Roller” 2014).

Adaptation and Scale Reduction of Industrial Technology
Farm Hack also illustrates knowledge exchange across industry scales. Biodiesel
knowledge exchange and open source designs pre-date the creation of Farm Hack, with
many early designs posted to forums such as biodiesel.info.pop, and biodieselnow.com. In
2008, these web sites and communities also promoted California "maker spaces" and “skills”
fab days/workshops that brought together passionate amateur fuel makers to build and
improve biodiesel processers, an early example of industrial knowledge being exchanged and
adapted for and by an amateur open source community. The development of the first mobile
biodiesel processing plant was inspired by the “appleseed” workshops in 2008. The design
was then improved upon by Piedmont Biodiesel in North Carolina, before GreenStart created

the fourth generation prototype. The biodiesel trailer was GreenStart's first open source

182



project; it inspired the creation of the Farm Hack web site to improve upon open source
documentation tools, and led to the documentation and implementation of basic open source
design principles. Farm Hack built upon design elements from the early biodiesel forums. The
biodiesel trailer represents a project that would not exist except for open source research
methods, tools and techniques, and on-line forums and wikis. The biodiesel trailer also
represents one of the more complex tools that will serve as a test case for improving
technical documentation of design, manufacture and use of tools (“Farm Hack Tool - Mobile

Biodiesel Processor” 2014).
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Part Il — A Technical Review: Agricultural
Adaptive Management Feedback Systems

Chapter 10: Technical Framework and Adaptive Management
Part | and Chapters 1-5 outlined a Physiocratic framework and a theoretical foundation for
approaching adaptive management. Part |1 and Chapters 6-9 explored the social and
economic applications of that framework. Part 111 focuses on the technical process of
measuring environmental indicators that feed into an adaptive management system built on
the Physiocratic framework. Two case studies are used to illustrate the workflows and
methods in the context of currently available and accessible technical tools. Chapter 11
explores the workflow of remote sensed imagery analysis of agricultural research plots
taken from consumer grade equipment for accurate species differentiation. Chapter 12
explores the workflow of volumetric calculations from three dimensional point clouds
generated by similar consumer grade cameras for use as an indication of plot biomass and
crop yield calculations. Both chapters discuss the results in the context of generating
“popular” agronomy by exploring the ease of sharing and analyzing data and images within

a larger agricultural and social context as described in the first nine chapters.

The Physiocratic and adaptive management framework, as described in the previous
chapters, depends upon incremental social and technical achievement, embodied by open

source technology. An exhaustive review of toolsis not feasible because of the limited scope
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of this study, the dynamic nature and rapid rate of change, and the independent nature of the
supporting communities. However, this study has chosen representative tools and field
studies to “prod” the system and generate observations of the socio-techno-agricultural

interactionsillustrated by open source citizen science monitoring of agricultural field trials.

The achievement of a ‘post-industrial’ society will not necessarily result in a more
sustainable society that is characterized by a better balance between economic, social and
ecological goals (Barbier and Elzen 2012). Without social transformation, as articulated
through the Physiocratic Framework and modeled by adaptive management, negative
externalities will likely continue; greater technical advancement of observational
technology will not result in more resilient agricultural systems without a coinciding
cultural shift. A primary goal as articulated earlier in this study is to expand participation
in natural resource management by increasing observational accuracy at lower costs to
enable adaptive management. The purpose of Part III is to examine the state of technology
with regard to these goals and document the current challenges and limitations. The same
"learning by doing" and “prodding the system” process is used in this analysis, including
field experiments to create and test sample methods and software work flows. The work

flows are not the only possible approaches, but represent one iteration of each type.

Because of the focus on cost, accessibility, participation, and accuracy, the technical
examples and experiments in this section are not testing a biological hypothesis so much as
acting as indicators themselves of the maturity, accessibility, accuracy, and usability of the

systems they represent. From this perspective, the camera is not as important as a
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scientific instrument as it is an indicator of the technical potential and the social system

that modified it, and the social context into which it is being released as a tool.

Similarly, the field trials and experiments are presented as indicators of the accessibility of
the system, and the challenges in applying this technology in a real world situation. This
approach provides an indication of the technical system path towards or away from the
desired state of low cost, highly accurate, highly accessible research with broad

participation.

Technological Context: Remote Sensing and Adaptive Management
Adaptive management is dependent on receiving rapid feedback from managed
environmental systems (Holling, 1978) and (Walker, B., & Salt, D. 2006). A framework and
workflow from participatory open source methodologies is emerging to calibrate image
analysis methods that can distinguish species composition and abundance, as well as other
environmental conditions in agricultural plots using multi-spectral imagery. These
processes provide promising data collection methods that are faster, less labor intensive,
and lower-cost than destructive biomass sample analysis. The emerging “Internet of
Things” landscape is made up of blends of hardware, software, and overlapping networks
of open source communities. The collaborative development model of shared risk and
reward changes the culture and economics of asking questions, and increases paths for
participation and expanding the knowledge sharing community. As previously discussed,

because they are both knowledge driven, open source communities are well matched to the
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principles of adaptive management. Because of these similarities, they share many of the

same community development tools and methodologies.

Chapter 4 covered the newly available high resolution consumer-grade digital cameras,
open source camera firmware programs, computer vision software, and low cost hobbyist
remote controlled aircraft, kites, and weather balloons that enable the generation of large
volumes of high resolution images. Organizations such as Public Lab, discussed in the
previous socio-technical analysis, have also developed low cost multispectral adaptations
for digital cameras. New low cost tools enable an exploration beyond Normalized
Differential Vegetation Index (NDVI) to Differential Vegetation Index (DVI) and the
development of customizable indices to target a particular spectrum. This is made possible
by the greater resolution achieved by using imagery below cloud cover and the low
marginal cost of filters and computer aided post-processing capacity. Chapters 11 and 12
apply these tools and workflows to illustrate how they intersect with “ground truth” data

collected with traditional agricultural plot analysis techniques.

The transformation in agriculture and adaptive management has the potential to follow
patterns of development in other disciplines that have already taken advantage of greatly
improved imaging and observational tools and digital communications technology. The
medical field, in both research and practice, has been revolutionized by imaging and
communication of 3D images, and provides an example of implementing sophisticated
inductive methods to assess systems health in the human body. The fMRI, CT scans, x-rays,

EKG monitors, ultrasound, and other tools, provide equivalent cases and logical analytical
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processes that require a similar infrastructure to communicate as in agriculture. The
toolbox for landscape-based analysis includes imaging and telemetry based sensors that
can include ground based wireless network and data logging color calibration methods and
markers as ground control points. Tools such as genome sequencing, not only of the
human genome, but also of symbiotic human bacterial populations, have profound parallels
to the open exchange of knowledge and shift in approach to systems based analysis in
environmental science; these parallels can help form links between adaptive approaches to

human health and environmental health.

Just as medical systems require the integration of data streams to develop a picture of
human system health, the Physiocratic framework and adaptive management process forms
the basis for software architecture to integrate disparate observations to assess systems
health. The adaptive management layer is an interpretive user interface that creates a “view”
based on available APIs that enable data to be pulled from across alandscape and from a
variety of sourcesto create custom decision support processes. This data architecture
enables constant evaluation of indicators and becomes a method for socia interaction and
communication of indicators and whole systems evaluation. The Cornell Soil Health
structure, presented in Chapter 3, provides afoundation for this method by introducing the
core concepts of Indicator, Value, and Rating structure which, when aggregated and viewed
in context, provide general and adaptive measures of systems health.

The remaining portions of the technical evaluation will be dedicated to describing data

flows from imaging within this context.
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Historic Context: Aerial Imaging and Computational Power
Imagery is a method of capturing large quantities of data that can be interpreted using
inductive methods by identifying observable patterns. Changing the position of
observation is a critical element of reducing observational bias that is inherent in inductive

methods.

Putting cameras on flying objects pre-dates the invention of the airplane and was one of the
first uses of photography once the equipment became small enough to hoist in a balloon;
the first aerial images were captured in 1858 (“History of Aerial Photography -Dark Room
in a Hot-Air Balloon” 2014). The development of high resolution consumer grade cameras
combined with other advances in lithium polymer batteries, memory, brushless motors,
and computer processors has made low cost UAV (unmanned aerial vehicles) and UAS
(unmanned aerial systems) possible as aerial platforms for agricultural remote sensing.
The images contained within this dissertation’s analysis are significant in what they
communicate, but are most significant for the open source and low cost processes that
made their creation possible. The images generated within this dissertation were created
with equipment and software costing less than $600, and could be generated for
significantly less as costs continue to drop and techniques are refined. The total system
cost for this equipment represents well less than 1/10th of low-end commercially available
systems of similar technical specifications, and 1/100th of others. For example, Trimble, a
well-known GPS and farm automation company that recently acquired both Sketchup and

Soil Information Systems, announced that in 2014 it would offer an agricultural flying wing
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UAS for $50,999 (Floyd 2014). The bill of materials cost of the components and sub-
components in such a system is negligible, and illustrates the price extraction premium
added by corporate overhead. It also illustrates how open source systems introduce a
transparency in pricing of hardware components and accelerate innovation and

accountability in research and development within the marketplace.

In 1525, Albrecht Durer rendered a series of now-famous images in a treatise on
measurement. These images all illustrated draftsmen in the process of using drawing grids
to render various three-dimensional (3D) objects in perspective. His approach changed
the relationship between material objects and representation with profound effects.
The capacity to represent accurate and mathematically defined objects and spaces was
revolutionary and resulted in empirical science that has given rise to modern
engineering and manufacturing. More recently, a similar argument has been made that
draws a line from Da Vinci to modern CAD (computer aided design) that underpins the
techniques (Gurevitch 2014) explored throughout the technical case studies provided

in this dissertation.

Manually collecting and documenting vegetation and environmental conditions is time
consuming, expensive, and tedious, which reduces the potential participants, especially
amateur and voluntary participants. Despite these limitations, manual data collection of
soils, vegetation, and water is the standard and validated method for collecting agricultural
field data when a plot combine or plot forage harvester is not an option. Advances in

precision agriculture have yet to appear in smaller scale equipment or less automated
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harvest and planting equipment, and have thus not yet lowered the cost of participation or
expanded research activities. The industrial commodity application of precision
agriculture relies on expensive proprietary systems integration. As low cost open source
remote sensing and data analysis tools become more accessible and automated, the
potential for creating APIs and related applied research methods to inform management
practices increases. The potential exists for these data systems to run on distributed
platforms to match or exceed the accuracy of the industrial closed and proprietary systems.
Ground-based sensor networks will also be mentioned as a ground truthing method; t he
data outputs from sensor networks is already in a quantifiable data log, which makes
exchange and calibration comparatively simple in comparison to the technical challenges of
image analysis. Imaging produces rich data sets, but requires extensive processing to
produce quantifiable digital data streams and requires libraries for calibration and pattern

interpretation.

Despite the added post-processing requirements, there are great advantages to aerial
image analysis. As discussed in Chapter 4, digital image sensors are now very inexpensive
and are not consumable or biofoulable, such as contact-type sensors which may require
cleaning or frequent replacement of disposable parts. Imaging is also a non-destructive
and non-invasive method, and produces rich data sets that can be gathered at high
frequency if weather permits. Platforms for imaging are covered in Chapter 9. Light
conditions and image calibration, large file size, and computationally intensive data
processing requirements to generate quantitative data from images, although

disadvantages, are increasingly being addressed by lower cost digital hardware and open
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source software also covered in Chapter 9. Imaging requires a less complex technical
networking infrastructure in the field to operate. The disadvantage is generally a higher
set-up cost due to the physical nature and complexity of field deployments of large
numbers of networked devices. However, just as with traditional data collection methods,

these techniques are most powerful when used to complement and calibrate one another.

Open Source Technical Support

Open source technical communities provide a viable substitute for corporate overhead and
speculative or venture driven research and development. The technical community
landscape that generated and supported the workflows outlined within this section are

represented in the following table. These communities are an extension of the open source

network covered in Part III Chapters 11-12.

Key Open Source Software Public Education & | Biogeochemical

communities Social Network Environmental Models
Communities

Open DIYDrones Conservation DNDC (UNH)

Layers (diydrones.org) | Drones (dndc.sr.unh.edu)

openlayers.org (conservationdrones.org)

FarmOS Meshlab Flight Riot Adapt N (Cornell)

(drupal.org/pr | (meshlab.sourc | flightriot.com (adapt-n.com)

oject/farm) eforge.net/)

Image] QGIS Public lab USDA Nutrient and

(imagej.nih.go | (QGIS.org) (publiclab.org) Manure models

v/ii/) (ars.usda.gov/Main/docs.

htm?docid=21345)

VSFM Ecosynth Farm Hack Net Carbohydrate and

(ccwu.me/v | (ecosynth.or | (Farmhack.net) Protein System (Cornell)

sfm/) g/) (cncps.cornell.edu/)

CHDK Drupal GreenStart USDA RUSL2

(chdk.wikia.co | (drupal.org) | (Greenstartnh.org)
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m/wiki/CHDK (fargo.nserl.purdue.edu/r

) usle2_dataweb/RUSLE2_I
ndex.htm)

MultiSpec

(engineering.purdue.edu/~biehl/

MultiSpec)

Figure 43 - Key communities, organizations and tools. Three categories and multiple examples of open source
communities and tools that provide a foundation for environmental observation and analysis.

This section will review the current state of university and commercially distributed low
cost remote sensing research and put participatory action research, such as Public Lab and
Farm Hack efforts, in context. These communities provide the foundation upon which
future adaptive management APIs may be constructed. The structure and technical

architecture is explored within the chapters that follow.

Low Cost Aerial Imagery Indicator Validation

The focus of this technical systems analysis is to present a replicable framework to
calibrate image analysis methods that can distinguish species composition and abundance,
as well as other environmental conditions in agricultural plots using aerial imagery. The
analysis covered in Chapter 11-12 will focus on using aerial imagery which can be rapidly
produced with consumer grade cameras and low cost balloons and hobby aircraft and
compare the remote sensing outputs with ground truth biomass, species and soils data
collected conventionally by hand from quadrats placed at random within the field trial
plots. Hand charting of vegetation in quadrats, which was used for both chapter case
studies, is a very time consuming and tedious method, but is the standard method used to
collect cover estimates in the field. Software tools have already attempted to speed up the

process and standardize the measurement process so that results are more uniform and
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reflective of the condition of vegetation growing on a site (Johnson, 2009). If the process
can be automated, the social, environmental, and economic implications of lower cost and
applied research methods integrated into management practices could be dramatic.

The following is adescription of the primary steps for adaptive feedback and remote sensing
validation which include aerial platforms, imaging and telemetry, ground truthing methods,

ground sensor technology, post processing, collaborative publishing and reporting.

The architecture, illustrated in Figure 53, shows the potential for data portability
throughout a workflow generated by low cost remote sensors, processed through third
party environmental models, and then published back to different audiences in appropriate
views to enable both accessibility and control of data throughout the process.

As discussed in Chapter 1, producing good data and analysis is not enough to accomplish
effective adaptive management at a landscape level. The data must be exportable, portable,

and interpreted into various forms to become accessible to different audiences.

Figure 53 illustrates the data pathways through functional transformation based on linking
independent web applications through coordinated standards and Web APIs. The process starts
with a management data API feeding into many potential environmental data APIsthat are, in
turn, picked up through multiple environmental model APIs and decision supported APIs. The
final leg of the journey back to managersis through “Views” to make the data available in
accessible and useful formats and resolutions. Within this networked data structure, the data can

be accessed “where it is” rather than needing to be archived, centralized, and controlled.
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Figure 44 - Social and technical systems expressed as software. Landscape scale model that expresses the
workflow and application of the adaptive management feedback model shown in Figure 25, Chapter 5. The data
flows from sensors (1) and observations into logs which can then be made accessible through APIs (2) to add
value in external environmental models (3), which create value added feedback customized for appropriate
audiences (4), which in turn can be used for adaptive management (5). The process also represents a technical
flow of the Physiocratic process overlaid on Mirabeau’s Tree illustrated in Figure 28, Chapter 5.

The environmental data APIs and management data APIs are particularly valuable steps and
have many standards, tools, complexity and support communities behind them to make data
flow possible and accurate. To make the flow possible, the structure requires relationships
and trust built with every transaction, illustrating the importance of the social structures
covered in Chapters 1-5. The technical workflowsillustrated here are adaptive, emergent,
and to be successful must be generated, by definition, as a byproduct of collaborative

decision-making.
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Aerial Imagery Platforms and Data Collection Methods

Much of the field of agricultural remote sensing is a parallel progression to the techniques
and processes that were developed for satellite imagery for land cover analysis at the
regional landscape level (Laliberte et al. 2011). The same techniques are now being
applied at a higher resolution at a field and plant scale with the assistance of greater

distribution of technology and processing power.

There are many methods for positioning sensors for aerial imagery and remote sensing
(Thessler et al. 2011). Kites, balloons, fixed wing, rotary wing, and others (hybrid, blimp,
powered kite etc.) are examples used by the open source communities profiled within this

study.

A literature review from Thessler et al. (2011) also identified related sensor applications
that integrate with UAV data collection including growing conditions, plant protection,
irrigation, yield sensing, and mapping during harvesting, nitrogen management and soil,
weather sensor network. A survey of Thessler (2011) and commercial imaging services
and UAV providers including Precision Hawk (precisionhawk.com) and Agribotix
(agribotix.com) identifies additional agricultural indicators potentially generated through

image analysis are as follows:

Crop type - Soil type - Biomass
Plant count - Soil moisture - Forest health
Growth stage - Disease detection
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Invasive species - Plant height -+ Land cover mapping

identification - Nitrogen deficiencies - Carbon mapping

and - Plant health - Irrigated land mapping
quantification . Yield monitoring - Impervious surface
Canopy cover mapping

Leaf area index

Many of the indicators above can be generated using imagery in the visual spectrum,
however, customized sensors can increase accuracy by focusing on particular color bands

rather than on the full spectrum which can also reduce post processing time.

As methods are developed and validated they will continue to be published to the creative
commons through Farm Hack, Google Earth, and other knowledge sharing communities.
Publication is crucial to achieving the wider goal of improved quality and reduced cost of

environmental monitoring for adaptive management and research purposes.

Linking imaging with ground-based sensing does not eliminate the need for traditional
research gathering methods, but enables far more value to be gained because every
validated ground-based observation can be used to improve spectral/image libraries and
environmental models. Each improvement to imaging systems and validation enables
more accurate observations at greater frequency and lower cost than the individual

conventional observation.
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Figure 45 - Workflow model of aerial imaging post processing illustrating the relationship of the functional tools
and process of data collection through to data sharing and web publishing. The particular tools used to
accomplish the steps may change and become more integrated to improve user experience. The functional steps

represent the logical steps required to create usable feedback from aerial imagery in a web publishable and
sharable form.

An alternate workflow involves the direct creation of pointcloud and meshfiles using Visual
Structure From Motion (VSFM) and 2-D to 3-D modeling commercial software packages
such as PIX4D (www.pix4D.com) and AgiSoft (www.agisoft.com). These packages can
function without georeferenced files but also will generate geotiffs for export to other

image analysis processes.
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Popular Agronomy and Data Portability
Collaborative adaptive management assumes citizen engagement in the process, which
emphasizes the importance of the Physiocratic metaphor and framework. In order to generate
portable and sharable data, agreements on standards are required, such as those developed
by Open Layers, Open GEO and the APIs and data translators that enable portability of data

from popular platforms like Google Earth to professional GIS systems like ESRI ArcMap.

The process of cartography and data visualization has taken on new significance in the
digital age. The casuaness and accessibility of digital maps and geographic information
systems now nearly universally accessible also leaves the possibility for abuse through apathy;
again, thisiswhy the social context in which tools are used isimportant. Google Earth, for
example, represents a social network that is able to present user-generated content
spatially on a representation of Earth that can be imagined, projected, and shared in casual
fashion (Farman 2011). The data from aerial imagery and analysis collected and processed
for this study are viewable in Google Earth and included as .kmz files in the digital
appendix. A more limited version is hosted through a Google widget at the Farm Hack

ifarm tool.
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Figure 46 - Screenshot of data exported into a portable file that is viewable with free software and web
publishable. Through these types of presentations of both images and ground truth data, a wider audience can
be brought into the context associated with field trials. The image represents just a few of the many possible
ways in which data could be presented to the farmer or other citizen stakeholders and scientists.

The above Google Earth image, prior to being exported as a .kmz file readable by Google
Earth, pulled data from .xls, .shp, .obj, .dmz, .jpg, .tiff, .skp and many more file formats.
Interdisciplinary data depend on standards and agreements across technical communities
to enable data translation for adaptive management workflows to function. The many
steps required to produce the image, and the diverse file types and data sources required to
produce this type of image highlights the need for more accessible adaptive research and

development tools. The complexity associated with the many file types and sources also
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illustrate the importance of software, and software communities that build the trust that is

required for standards setting and data sharing.

The medical research and practice has already applied these types of advanced imaging
tools and standards and agreements to leap from Computer Aided Design (CAD) of
engineered objects, and Computer Aided Manufacturing (CAM) to the applied methods
used to document and operate on biological structures within the human body, and build a
system of trust for data exchange. Anyone who has had knee or hip surgery in the
developed world has likely experienced MRI machines, and orthoscopic imagery. These
machines enable high resolution digital image sharing and interpretation by skilled
technicians regardless of physical location; the images and associated health records are
also shared with medical professionals based on a series of permissions that protect
patient privacy. The medical community also provides other templates for the building of
trust in open source research. For example, the Human Genome Project provides a
template for a massive collaborative and high profile open source effort (Yu et al. 2007),
has led to the dramatic reduction in sequencing costs and therefore increased use for
medical diagnoses; open source tools and images applied across similar networks and
resolutions have similar potential to improve agro-agricultural understanding and
management.

Work completed for this study demonstrates that structure and spectral analysis is
possible using consumer grade hardware. Additionally, open source and freely available
software can be used to publish and distribute the results using methods that will be

leveraged when put into the larger social context of agricultural and agrarian clubs
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described in the second section of the dissertation. The imagery and analysis performed
for this study document the current state of the workflows required and bridge many
communities. The workflows also illustrate the potential for modular construction that is

possible because of the open source nature of the components.

Remote Sensing of Plant Characteristics

As discussed in Chapter 1, there are many indicators that can be developed through
imagery; plant growth and health are appealing targets for many reasons outlined within
this chapter. In particular, imagery is non-destructive, inexpensive, and creates
extraordinarily rich datasets, and could lead to faster detection and analysis methods for
plant characteristics supporting reduced manual data acquisition costs. The downside is
the inductive and computationally intensive processing required to generate quantitative
indicators from images. This chapter provides a brief summary of the current state of

remote imaging of plant characteristics.

Plant phenotyping has even been shown possible with this technology (Busemeyer et al.
2013). Stabilizing algorithms for video cameras can be integrated for inter-row navigation
and platforms for plant characteristics such as biomass, leaf area index or nutrient status to
provide information about the current status of the plants, which hints at growing
conditions within the field. Faster detection and analysis methods for plant characteristics

can support the reduction of manual work for data acquisition (Graeff et al., 2006).
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Crop canopy reflectance and temperature sensing for nitrogen or water stress detection in
combination with an ultrasonic sensor for crop height assessment has also been tested
(Zecha et al. 2013). Multispectral remote sensing applications from UAS are reported in
the literature less commonly than applications using visible bands, although light-weight
multispectral sensors for UAS are increasingly being used (Laliberte etal. 2011). Lelong et
al. (2008) showed that the quality of spectral ranges reached by standard digital cameras is
suitable for remote sensing and that data preprocessing is quite effective. Hunt Jr. et al.
(2010) used a filter for red light on several digital cameras without a near infrared (NIR)
blocking filter on a UAS, similar to Public Lab’s infragram approach (Hunt, Jr. et al. 2010).
They found correlations between green normalized difference vegetation index (gNDVI)
and leaf area index (LAI). Rabatel et al. (2012) used a single standard digitalRGB camera
for aerial field imaging at low altitude (Zecha et al. 2013). They also replaced the internal
NIR blocking filter by a low-pass filter, for which Public Lab’s filter kits provides
instructions. Zarco-Tejada et al.’s (2012) UAV results showed that crown temperature and
chlorophyll fluorescence were the best indicators for water stress detection (Kelcey and

Lucieer 2012).

Root nodulation size and leaf color indexes are already established as proxy indicators for
nitrogen fixation in legumes and soil root color analysis and structure documentation (e.g.,
nodulation color) has been explored (Gwata et al. 2004; Vollmann et al. 2011). Leaf
photosynthesis and rhizomial nitrogen fixation are the two metabolic processes of importance to
legume growth and development. These processes are closealy related to each other, which also

provides an example application for digital documentation of visual indicators of biological
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processes (Vollmann et al. 2011). Such approaches illustrate the necessity of validation and
of a more automated analysis of plots that can quickly and inexpensively screen results

through image analysis workflows.

The same techniques illustrated at the field plot level can also be applied at the watershed
level or to the plant or plant structure level. For example, the same work flows that are
used to document entire fields or landscapes, can also scale down to document individual
plant structures. The exchange of data, the files, the software and the permissions,
standards and agreements are the same, regardless. Figure 47 illustrates a 3D model
created from 2D digital images using the same technique used in field level work, but for
plant level documentation. This illustrates that in addition to the landscape and field level
analysis, the same methods may also be applied to smaller scale plant structure
documentation to enable the exchange of higher resolution observations. This image of an
experimental hay bale raised bed, used free on-line software, and produced a geo-located

3-D mesh model which can also contain associated metadata within the file.
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Figure 47 - Images created by 2D images transformed into 3D models, illustrating that the technology,
workflows, data standards and tools can be used to document and share environmental observations and data at
multiple scales. The structure of squash plant leaves, color and texture analysis and other high resolution data
can be exchanged in the form of digital files to enable observation, quantification and structural analysis and
aggregation of many detailed observations, at many scales, into larger analysis that may be emergent and
unanticipated at the point of data collection.

Post Processing Methods for Species ID
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Post processing methods for species ID are rooted in machine learning approaches and
case based logic (Koh and Wich 2012). These methods are rooted in developing large
quantities of case data to learn from. The accuracy and indicator validation in both
computer and social, participatory learning is an iterative process. This validation process

is generalized within the adaptive framework identified in Chapter 3.

As discussed in Chapter 3, there are many indicators that can be visually quantified. The
crucial next step in the workflow is to translate images into rich data sets through the post
processing process. “Rich datasets” refers to the large amount of quantitative data
generated through a pixel-level analysis which also has associated meta data with it,
including but not limited to location, time, altitude, barometric pressure, temperature,
camera settings. In the generalized adaptive management framework is a process of
associating values and data contained within the imagery into context by relating that data
to existing values within the database. The networked effect of the data in context then
becomes more valuable to all users of the data base by further increasing the context for
interpretation. Fully exploring all of the approaches to post image processing is beyond the
scope of this study. However, understanding the current state of imaging and analysis,

limitations, and technical trajectory is crucial to the broader system’s study.

There are many methods for classification analysis used to identify species, plant
structures, or other features that will need to be evaluated and adapted to higher
resolution imagery, deeper open libraries, lower cost processing and more accessible

workflows. These techniques include but are not limited to:
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Unsupervised Classification - Target Detection/Extraction

Supervised Classification - Spectral Mixture Analysis
Object-based Classification - Wavelet Analysis
Change Detection Texture Analysis

Unsupervised Classification methods generate a map with each pixel
assigned to a particular class based on its multispectral composition. The
number of classes can be specified by the user or may be determined by the
number of natural groupings in the data. The user must then assign meaning
to the classes, and combine or split classes where necessary to generate a
meaningful map. Successful uses include major vegetation types,
distinguishing native vs. invasive species cover,; vegetation condition, and

land use change.

Supervised Classification methods are used to generate a map with each

pixel assigned to a class based on its multispectral composition. The classes
are determined based on the spectral composition of training areas defined
by the user. Supervised Classification has similar uses to Unsupervised, but

with an added step in the workflow.

Object - based Image Analysis (OBIA), a technique used to analyze digital
imagery, was developed relatively recently compared to traditional pixel-

based image analysis (Burnett and Blaschke 2003). While pixel-based image
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analysis is based on the information in each pixel, object-based image
analysis is based on information from a set of similar pixels called objects or
image objects. More specifically, image objects are groups of pixels that are
similar to one another based on a measure of spectral properties (i.e., color),
size, shape, and texture, as well as context from a neighborhood surrounding

the pixels.

Change Detection’s goal is generally a layer or image that highlights areas
that have changed between two (or more) time periods and the direction and

magnitude of change.

Target Detection creates output in the form of a map of the spatial
distribution of the target object, species or cover type. Using sub-pixel
techniques, the software estimates the abundance fractions of targets
contained in each image pixel, rather than simply labeling each pixel to one

cover class as in classical image processing.

Spatial Wavelet Analysis (SWA) has output that is an ASCII file listing the
diameter and spatial location (X and Y coordinates at the object center) for
objects detected by the wavelet analysis algorithm. GIS software is needed to
display the output data spatially. All objects are represented by a circle when
the Mexican Hat wavelet is used, however other wavelet shapes could

potentially identify objects of different shapes.
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Spectral Mixture Analysis (SMA) is a technique for estimating the
proportion of each pixel that is covered by a series of known cover types. It

seeks to determine the likely composition of each image pixel.

Texture Analysis or texture mapping is a common method for delineating
surface features that cause localized variations in the brightness and other
spectral properties of the image, including shadowing. Texture is the spatial
distribution of tones across the pixels of remotely sensed images, providing a

measure of tonal variability.

As with most systems analysis, the results and the power of the tools are amplified when

they are used together to generate a richer, more dense data source.

Technology Workflow and lllustrated Field Studies

Chapter 11& 12 Introduction to Methods and Structure

The purpose of the following two chapters is to observe and evaluate the technical process of
data collection for computer aided inductive analysis, relate it to deductive methods, and
draw conclusions about the status of existing tools for providing meaningful quantitative

feedback within the participatory system described within the first ten chapters. Both case
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studies presented in these chapters represent field trial approaches aimed at answering
questions in agro-ecology but also represent projects that could be replicated in distributed
on-farm trials. Future design of on-farm research depends on the quality, cost and ease of
use of the observation and analysis technology. The case studies also serve to illustrate
applied workflow within context of the framework used for data acquisition and analysis as
the required steps prior to communication through inductive analysis and adaptive
management. Both chapters will focus primarily on agricultural plot trials that were
established within a conventional randomized block designs. These cases illustrate the
complementary aspects of inductive data gathering to deductive analysis as well as highlight
challenges and limitations. The outcome of the chapter should be an understanding of the
current technological capacity to approach environmental quantification within the social and
biological outcomes derived from increasing accuracy, participation, and accessibility and
lower observation and analysis costs. The current state of workflows used for analysis in this
context is relevant, not only in the context of the quality of the environmental data output,
but in the accessibility, cost, flexibility, social context and cultural acceptance of the
methods. The case studies serve as an example of the importance of leveraging
conventional agricultural research to improve participatory remote sensing approaches

that are dependent on validation and calibration using deductive approaches.

Chapter 11: Low Cost Aerial Species Analysis of Forage Crops

Introduction
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Here, a portion of a field experiment illustrates the process of evaluating and improving
remote sensed imagery of agricultural research plots taken from consumer grade
equipment for accurate species differentiation. The goal of the case study is to document
and evaluate a workflow required to calculate and validate percent cover analysis of a
highly diverse forage crop analysis. The field portion and plot analysis were chosen to
address the potential for remote sensing species identification and biomass response of
amendments. The underlying agricultural plot trials provide examples of the ground truth
species analysis, soil conditions and treatments. This chapter also focuses on the post
processing workflow and validation process for aerial imagery analysis. The analysis of the
field data and associated imagery is used to study the current accessibility and accuracy of
species identification through image analysis in order to draw broader conclusions about
the role of image analysis, and current limitations for species identification and
quantification in the adaptive management framework identified in Chapter 4. A portion
of the field trial ground truthing data was published in 2014 (R. G. Smith & Cox, 2014)in a
paper focused on yellow rattle response to woodash treatments. The results and reporting

are also published on Farm Hack and on NE SARE websites (Cox 2012b).

Imaging Platform and Camera Setup
The imaging portion of this experiment used balloon mounted Canon S495 12+megapixel
point and shoot cameras mounted on a string harness tethered from 10’ to 1000’ running
open source firmware called CHDK (Canon Hacker Development Kit). The scripts are
downloadable on Farmhack.net, DIYDrones.com and many other open source mapping

community web sites. The software enables full control of exposure, white balance,
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automatic triggers and intervelometer scripts that enable timed imaging (e.g., a picture
every 4 seconds) and remote control of camera functions. The aerial imagery presented in
this study was collected during balloon flights in May, 2012. All images from the plot and

associated meta-data are included in the digital appendix.

Figure 48 - Cameras are attached to a harness and then to the balloon tether. The dual camera NDVI camera rig
and trigger enables simultaneous images from the visual spectrum and near infrared. Open source software then
pairs the images during a post-processing step. The hardware required, including helium, can be purchased for
a few hundred dollars.

The no-till hairy vetch trials also provided the social basis for organizational meet-ups
between Public Lab and GreenStart and for the creation of the iFARM collaborative covered
in Chapter 4-6. The collaborative work of these groups provided the foundational technical
approach discussed within this section. The output of the combined data and imagery is

illustrated in Figures 49-51. These images are the output of the workflows explored within
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this study, but as static images of an interactive tool and process, are crude
approximations. The interactive .kmz files can be accessed from the digital appendix to
more fully illustrate the capability of digital publication and exchange of agricultural

observations.

70°58'10"W

43°8'0°N 43°8'0"N

70°58"10"W

Figure 49 - Geo-located stitched aerial images of no-till vetch plots published to web based GIS services such as
Google Earth illustrate an alternative method to communicate experimental design, execution and results.

Field Measurements - Ground Truth Data Collection Methods
The field trial portion of this experiment using the biomass analysis of hairy vetch was
measured on June 12, 2012, approximately 37 weeks after the amendment treatments
were applied and when the majority of individual hairy vetch plants were flowering.
Biomass was measured by harvesting all individuals of the plant community rooted within

two randomly placed 50 by 50cm quadrats within each treatment replicate. Harvested
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biomass was sorted to species (except grasses) and dried to constant weight at 60° C and
weighed to the nearest 0.01g. Data from the two subsamples were averaged to obtain a
plot-level measure of hairy vetch and remaining plant-species biomass. Soil biochemical
properties were measured in each plot on June 14, 2012 (two days after the hairy vetch
and plant community biomass were sampled). Soils were collected by taking four soil
cores to a depth of 15.2 cm from within the portion of each plot that was harvested for
aboveground biomass. The soil samples, along with samples of the commercially available
wood ash and bio char used in the experiment, were analyzed for pH organic matter (loss
on ignition at 500° C) and nutrients by Agro-One Soils Laboratory (Ithaca, NY) (Smith

2014).

The data for this case study are in the form of digital imagery and meta-data files that were
generated through the post processing. All associated digital data are included as part of

the digital appendix.
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Imagé"©2014" Public'Laboratory
Image USDA Farm Service Agency
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Tour Guide 4] Imagery Date: 5/22/2012 43°07'59.31" N/ 70°58'09.65" W elev 73 ft eyealt 366 ft

Figure 50 - A screenshot of the treatments published to Google Earth. The raster image of plots can then be
associated visually with the associated treatment and shared with casual observers of the project. The static
nature of this image, however, does notillustrate the interactive nature of the tool, which also enables the user
to zoom into observe detailed plant growth of each plot.
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Tour Guide » Imagery Date: 5/22/2012 43°07'59.27"N 70°58'09.65" W elev 73 ft eyealt 353 ft
Figure 51 - In addition to labels and data tables associated with each plot, the ground truth data can also be
overlaid and indicated by color transparencies to enable the visual identification of patterns. In this image, the
density of the green indicates yield, with light green indicating lower biomass. The screenshot of does not
communicate the interactive nature of the tool, which also enables zooming in to individual plots, and the ability
to click on each plot to view the data behind the layer. The interactive .kmz files can be accessed from the digital
appendix to more fully illustrate the capability of digital publication and exchange of agricultural observations.

lllustrated Workflow for Quantified Image Analysis
The images within each plot were analyzed at the pixel level for color range, color
consistency, color density, and contiguous areas of color ranges. The objective of these
analyses was to graphically differentiate between plant species and then validate the image
analysis with biomass data collected from that same plot. The iterative analysis of each
plot enables a regression process to achieve a “best fit” and result in a visual analysis model

calibrated to traditional ground based data collection methods which can create a validated
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and automated workflow. The replicated block design and mowed alleyways also provide

examples of factors that facilitate post image processing and analysis.

The illustrated workflows in the following section can be completed manually. However,
the goal of the documented workflows is to identify advanced planning steps for improved

field preparation to enable more automation of the basic processing steps.

Alternate workflows are possible if 3D mesh is created first with georeferenced images. A
geotiff can be exported then shape files used as a mask to select raster image for plot
analysis. The baseline visual spectrum image was georeferenced and imported into Google
Earth. This layer will be imported as a .klm file to assist with georeferencing higher
resolution images. The number of images should enable more than a 50% image overlap to
achieve the highest resolution and greatest accuracy.

The .kml file is used to define polygons around each plot. Once each plot has been
geographically located, each polygon’s properties are populated with the associated soil
and biomass data. These data can be imported from from .xls, or .csv table format into the
plot layer polygons with a join to the plot ID prior to export as a kml file (or any other web

publishable format).

After plot data population and geolocation, raster image layers from the aerial photographs
were imported into ArcMap (ESRI.com). The images were then selected by geolocated plot
for individual graphic analysis. Several approaches were used in both raster and converted
vector layers analysis within ArcMap. Although the workflows that generated the images

were documented in ArcMap, QGIS (qgis.org) workflows would be similar.
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For this project the “best fit” with the tools available within ArcMap was a combined
supervised and unsupervised method. This project started with an ISO Cluster
Unsupervised classification in the Image Analysis tool box. The output of that analysis
yielded a number of classes that were then manually identified. Each pixel was then
assigned to a class. The number of classes assigned is user determined and an arbitrary
process without ground truth calibration to identify visual signatures used to identify
species variation. The user-chosen classes may or may not correspond well to actual land
cover. In this case, although the calibration of the class delineations was not possible, the
description of the work flow, which is the primary purpose of this study, remains valid.
After the delineation of class boundaries, meaningful labels were assigned to each class. In
this case, although not calibrated, the classes were assigned to vetch or not vetch and given
a color to communicate the distinction and class boundaries. Figure 52 illustrates the

output of this process.
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Standard
Unaltered Deviation ISO Cluster

Figure 52 - Species quantification using ISO cluster analysis, which uses the classification of individual pixel color
to identify boundaries. In the four ISO cluster plots, green represents vetch and black represents not-vetch. The
number of classes and color boundaries is set by a guided process, and without ground truth image calibration
data the process is arbitrary. The image is included as an illustration of the output of the workflow, and to show
the value of ground truth data in creating meaningful quantification from image analysis and the complexity of
creating an automated workflow.

The above image illustrates the process of image classification through an ISO cluster
analysis, which is used to group color classes together and use the classification to quantify
individual species percent cover within the plot. Other types of analysis, both guided and
unguided may produce a better fit, however, without ground truth data, the selection

process is arbitrary. Figure 52 is included as an illustration of the output of the workflow,
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and to illustrate the value of ground truth data for creating meaningful quantification from
image analysis. It also illustrates the complexity of creating an automated workflow.
Because the data associated with the percent cover calculations generated through this
process was generated through arbitrary determination of class boundaries without
ground truth values, or a library of ranges to reference for the boundary of values
associated with hairy vetch imagery, the data generated from this image is not meaningful
other than to evaluate the workflow and conditions required for future analysis to be

meaningful.

Discussion
To realize the full potential of participatory remote sensing will require many more trials
that generate greater large digital libraries of images and ground truth data needed for
machine learning. As modeling methods and neural network processes and spectral and
textural libraries improve and are coupled with Visual Structure from Motion and other 3D
modeling methods, the accuracy of this type of process will improve, while also becoming

more automated.

As is illustrated by the discussion of Figure 52, the current limitation with unsupervised
classification is that it often results in too many land cover classes, particularly for
heterogeneous land cover types, and classes often need to be combined to create a
meaningful map (Ghorbani et al. 2006). In other cases, the classification may result in a map
that combines multiple land cover classes of interest, and the class must be split into

multiple classes in the final map. Unsupervised classification is useful when there is no
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preexisting field data or detailed aerial photographs for the image area, and the user cannot
accurately specify training areas of known cover type. Hybrid classification may be used to
determine the spectral class composition of the image before conducting more detailed
analysis and to determine how well the intended land cover classes can be defined from the
image. The higher the level of supervision, the more accurate the analysis; supervised and
unsupervised classification are both pixel-based classification methods, and may be less accurate

than object-based classification (Karl and Maurer 2009).

In addition to the uncertainty introduced by the class selection process and choice of
analytic tools, percent cover calculations do not necessarily correspond well with biomass
ground truth data (Mischler et al. 2010; Teasdale et al. 2012). The growth patterns of vetch
exacerbate the measurement challenge because of the viney aboveground plant
architecture which tends to grow horizontally across other plant species. The image
analysis results, however, may yield a more accurate assessment of forage species
performance when combined with 3D biomass volume calculations. Combining the image
analysis methods covered in Chapters 11(color analysis) and 12 (structural analysis)
shows promise and is identified as a next step in Chapter 13.

Case One - Conclusion
This case study does not attempt to provide an exhaustive survey of approaches. Rather, it tests
the current state of the agro-techno-socia systems and illustrates a representative workflow by
applying the techniquesto afield trial. Thefield tria itself, is representative of the type of
research question that would be appropriate to incorporate into an adaptive management and

Physiocratic soil health framework. The trial aso represents the starting point for the generation
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of an expansive on-farm, inductive research model. Because the focus of this case study ison
illustrating the work flow and process, rather than on particular insights into biological systems
or the particular tools used to illustrate the process, the outcomes and conclusions are in the form
of recommendations for future refinements and improvements of the workflow and tools. Future
work will be required to develop field protocols for ground truthing percent cover calculations
and for using whole plot biomass sampling for ground truthing the percent species mix in
relationship to percent cover. In addition to ISO cluster analysis, many other commercial GIS
tools will also need to be tested to improve image analysis. Some examples of these tools in
packages such as ArcMap include geographically weighted regression, con spatial analyst,
zonal histograms, zscore rendering, and generate spatial weights matrix. The model’s
spatial relations might also be explored using the exploratory regression tools now
available through the ESRI Spatial Statistics Tool Box. Image calibration libraries would
also facilitate exploratory regression analysis between species biomass, percent cover
species analysis, soil analysis and treatments with color species analysis, and other texture

or color analysis with other ground collected and treatment data.

Many of the other techniques and tools for image and texture analysis have unique challenges
that will need to be evaluated and validated, a process which would benefit from the distributed,
participatory elements discussed in Chapter 5. That process is highly dependent on social
systems, coupled with backbone network facilitation and guidance and evaluation by experts to

popul ate image libraries with associated ground truth metadata.
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To generate effective indexes will require the evaluation of multiple approaches that are
analyzed with much larger data sets that also include calibration data. This type of analysis
is beyond the scope of this dissertation, but the road map to generate the data sets through
participatory action is not. This case study shows the limitations of uncalibrated images,
and illustrates the importance of ground truthing and the supporting social networks and
computationally intensive inductive methods required to validate and test multiple post
processing methods and workflows. The communications technology to provide every
citizen the equivalent evaluation skills of an experienced field technician exists as
presented in Chapter 5; however, without the collaborative nature of large data sets, the |ocal
data sets can be used as qualitative indicators for management. In order to draw larger inductive
conclusions and formul ate more precise lines of questioning (e.g., expert evaluation and
recommendation by smartphone), a substantial social, collaborative, and participatory effort is

required.

The Physiocratic social framework proposed by this study provides one of many possible
social contexts to achieve the feedback required for collaborative adaptive management.
However, to assemble collaboratively accumulated data libraries that are necessary to
realize the promise of rapid, cheap, accessible and accurate observation tools, the primary
challenges are still social in nature. Collaboration and shared values of the socia system are

crucia elementsto devel oping these techniques as quantitative indicators.

Some specific field protocol approaches may also improve the post processing work flows.

Examples of ideas that were generated by members of the iIFARM team include the use of GIS
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located calibration cards and aerial targets with known color and reflectivity to facilitate pattern
recognition and fine-tune post processing. Development of and testing these methods would
require ground truth and validation processes that benefit from the participatory approaches

covered in Chapter 5.

Chapter 12: Low Cost Aerial Biomass Volume Measurement

Introduction
As discussed in Part I, Chapter 4, rapid, low cost and accessible feedback is crucial to the
viability of adaptive management. Chapter 12 continues the focuses on image analysis as
an approach to create immediately interpretable and meaningful values generated by low
cost cameras. This chapter examines an alternative, but more quantitative, approach and
asks if volume calculations from three dimensional point clouds generated by similar
consumer grade cameras can be used as an indication of plot biomass and crop yield
calculations. This investigation primarily used data collected from a field trial set up to
investigate reduced tillage methods in grain corn crops completed in 2013, but also uses
some of the data from the previous no-till hairy vetch trial. All images from the plot and
associated meta-data are included in the digital appendix. The results from this trial were

also and reported and published on the Farm Hack and on NE SARE web sites (Cox 2014).
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Figure 53 - Representative Geotiff created from multiple images taken by low cost fixed wing UAS. This image
and the digital data associated with it illustrate the output of the process and an interim step in color and
structure analysis. The variation in color across the plots and fields illustrates one of the challenges for image
calibration. The 3D model generated from these images is interactive and available as part of the digital
appendix.

Materials & Methods
Imaging Platform and Camera Setup

This case study and illustrated workflow illustrates the use of open source hardware and
software tools typical of those described in Chapter 10. The images used for analysis were
taken with a consumer grade point and shoot camera mounted UAV with a total hardware
cost of less than $500. The bill of materials for the hardware setup is provided in Chapter
4, Figure 21. The images made of this trial were taken with a 12 megapixel A2200 Canon
camera running open source firmware called CHDK (Canon Hacker Development Kit)
mounted on a stock Hobby King Bixler2 airframe running an APM 2.5 3D robotics autopilot
and controlled with Mission Planner software which also provided flight data telemetry.

The assembly and sourcing of components and software is fully documented and supported
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by the open source communities identified in Figure 43. The CHDK software enables full
control of exposure, white balance, automatic triggers and intervelometer scripts that
enable timed imaging and remote control of camera functions. The aerial imagery from
UAV flights was collected in June, August and November of 2013. The full datasets, image
files and .kmz google earth files with embedded data by plot are included in the digital

appendix.
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Figure 54 - Illustrates the $600 UAS with Ardupilot 2.5 and 12 megapixel Camera running CHDK used to
document the corn plots in 2013.

Post Processing Analysis of 3D Models of Agricultural Plots
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Figure 55, below, was generated using MeshLab (http://meshlab.sourceforge.net/ ).
Autodesk’s123Dcatch(123dapp.com) was another option for image processing, but did not
offer geo-referencing. However, once a 3D model is created, Meshlab can export the file to
enable it to be opened using tools such as Trimble Sketchup (sketchup.com), which enables
georeferencing models through a Google Earth plugin. Purpose built commercial software
tools such as Pix4D(pix4d.com) and Agisoft(agisoft.com) have built-in georeferencing tools.
Meshlab, Sketchup, Autodesk 123D, PIX4D and AgiSoft or other similar 3D editing tools

enable volume to be calculated from these models.

Figure 55 - This image illustrates the variety of tools that can be used to calculate plot volume once the 3D mesh
model is created. In this case, Trimble Sketch-up is being used with a volume analysis plugin to “close” the
bottom of the 3D model of a plot. The red square represents the calculated ground level. The white portion of
the model illustrates the vetch and grass growth. The number indicated in the center of the model is the
calculated volume of the plot. These models can also then be 3D printed as an alternative method of observation
and analysis.
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Figure 56 - This image is representative of the many available commercial and open source tools for creation of
point clouds and mesh models. The green balls positioned above the 3D model indicate the position from which
the 2D images were taken above the landscape and relates them to the 3D model that is was generated from
those images. The 3D model can then be manipulated and analyzed to calculate crop height, volume and texture.
The screenshot is a static representation of interactive model generated by a representative tool. The model and
associated image files are included in the digital appendix.

The same basic approach is automated by Pix4D software using their “stockpile” function.

An analysis of the accuracy of this method follows:

228



157.14m error njfs °
155,54, erornis @
Isant

095,71 erornis @
1578

N2 LTI
LS & L07m
N0 14n AMOn

[@al 4™ >0 aax

Figure 57 - This screenshot is representative of the basic workflow in using the “Stockpile” tool for volumetric
analysis. The grain corn was planted with mowed grassy alleyways between blocks, which provided contrast
and reference points to facilitate image post processing and analysis, and enabled the ground level to be
extrapolated by the software to create a “closed” mesh model made up of polygons representing a single plot.
The volumetric values output by the tool are indicated in the upper right of the screen and the images used to
calculate the values are listed in the bottom right.

The PIX4D stockpile tool was used to measure the biomass volume of each plot. It shows
the same basic workflow as illustrated above, but automates it with a simple tool that can
be used to select a polygon bounded by ground located points, then calculates and fills in
the missing planes to create a closed object. The closed object is then used to calculate the
volume of that object (plot). Once the 3D model is built and loaded within PIX4D, the
volume calculation process takes just a few seconds. Figures 56 and 57 illustrate the

workflow and processing required to create a volumetric analysis.

229



The data for this case study is in the form of digital imagery and meta-data files that was
generated through the post processing. All associated digital data is included as part of the

digital appendix.

Discussion

The data generated by the “stockpile tool” illustrated in Figure 58 indicates that there is a
correlation between corn crop volume and yield. However, more analysis is needed in
other crops and crop conditions to develop a valid proxy for yield measurements. The
calculated volume values correlated with the manually collected yield data with an r
squared of (.745) in a linear fit as illustrated in Figure 57. The results also indicate a higher
accuracy at middle level yields and drops off at high or low yields. A quadratic regression
improves the fit with an r-squared value of (.930) as illustrated in Figure 58. This
interpretation reflects the structural observation of the images themselves. Low yielding
plots might have no or very low grain corn but weed biomass will still register as plot
volume. At higher yields, the yield increase could be in the form of larger ears rather than
increased crop density and height. If the increase in yield is not externally visible in the
form of increased crop height of leaf cover density, it would not be picked up by the

imaging process.
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Calculated Volume vs. Measured Total Biomass
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Figure 58 - Volumetric Analysis of Corn plots vs. Measured Corn Yield.

When the same volumetric process was applied to several rows of the hairy vetch plots
used in Chapter 11, the volume had very low correlation with the collected biomass as
illustrated in figure 60. This contrast is useful to illustrate the limits of this approach to
plot analysis in certain species mixes. In the case of the vetch plots, the plots also included
perennial grasses. The vetch is not particularly dense, but because of its viney architecture
can indicate high on the leaf area index, percent cover, and volumetric analysis, while some

of the grasses may be dense and even lodge close to the ground creating a very low volume
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profile. The difference in accuracy clearly highlights areas for future work and the

disadvantages of a volume only analysis. This data is also included in the digital appendix.

Figure 59 - This image illustrates the layering of a 3D model of the no-till vetch plots that has been exported to
Google Earth. The topography and texture of the plots is clearly documented, and can be sent as a digital file or
published in an interactive form on the web. The image also illustrates the convergence of image and texture
analysis with volumetric analysis to describe the outcome of multispecies composition and performance in a field
trial.
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Figure 60 - Volumetric analysis of vetch plot volumes vs. measured vetch biomass.

This method and analysis of both the corn and vetch plots was also aided by the mowed
alleyways to provide ground point references and contrast. The corn images and clearly
visible rows also made post processing easier. If the same technique were applied on-farm,
some consideration for markers would also be helpful in post processing analysis, although
historic ground topographic models taken without vegetation, during winter for example,

could serve the same purpose.
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For large plots that will be harvested with machinery equipped with yield monitors it is not
clear that an image based volumetric approach would provide an advantage, however, it
does provide the opportunity to do pre-harvest analysis and to track differential growth
rates. It also has the advantage of being available as a method when yield monitoring
equipment is not available. Imagery can also be taken multiple times a year, and to
increase accuracy, and improve resolution to within a few centimeters (Harwin and Lucieer
2012). Further exploratory image analysis using ground truth data for moisture, weed
biomass, and soil conditions was beyond the scope of this workflow analysis, but follows

the same image post processing workflow and challenges covered in Chapter 11.

A next step in image processing is to more fully employ 3D structure from motion tools
such as VisualSFM that enable greater customization of the processing than the commercial
closed source products such as Pix4D. VisualSFM is a GUI application for 3D reconstruction
(homes.cs.washington.edu/~ccwu/vsfm/). Once crops are modeled in 3D mesh files, many
tools are available for digital exchange and translation of the files. 3D printing sites, such
as www.thingiverse.com, provide a place to post, exchange, and order prints of the 3D
models, which adds to the flexibility and diverse methods for interpreting and exchanging
crop data. 3D printing provides an alternative workflow for volumetric analysis. Although
not pursued for this study, the files illustrated in Figures 59 and 57 could have been
printed, the plots manually cut out, and the volume measured through liquid displacement

methods.
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Conclusions
The image based volumetric analysis used in this experiment illustrates the promise of low

cost hardware coupled with computationally intensive post processing made possible by
open source communities. The results illustrate that it is not yet accessible due to the
complexity and background work required to calibrate and understand its best uses.
However, it also illustrates a trajectory of rapid, inexpensive, and accessible tools that have
the potential to offer citizen scientists the equivalent evaluation skills of an experienced
field technician. The next steps will require calibration and approaches in different crop
and weather conditions, timing, and evaluating the continually changing hardware and
software that becomes available almost daily. Even without advances, the data from this
experiment provides a template for ground truthing that can already function to build and
provide value as broader conclusions are developing. Future work that combines several
remote sensing methods together such as combined image, texture with volume analysis is
likely to provide a much more accurate field assessment that will certainly be part of future
refinements and efforts. While the techniques are being refined, the use of isolated plot
trials rather than on-farm conditions is useful and necessary for evaluating the ground
truthing and calibration process of the technology. Additional work from the next round of
trials will also help to identify the field protocols for plot layout and design that will
facilitate the ground truthing process to evaluate image based calculated measurements
with other measurements such as yield and biomass. Some examples may be the use image
calibration cards and image targets mounted on geolocated corner posts. The advancement
in networked sensors could also expand the potential for ground truthing soil, water, and

weather sensors. Future trials might also expand manual crop height measurement, which
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will aso beimportant in the evaluation of other remote sensing equipment Laser distance
measurement technology (such as LiDAR), used for altimetry, and contour mapping which is
now being offered by companies such as Pulsed Light (www.pulsedlight3d.com) for less

than $100.

When used in coordination with yield monitoring equipment this would further improve
the calibration library for various crops. Each of these developments will contribute to the
future plot design, and effect flight times and improve post processing, and the creation of
accessible output layers, exportable to tools such as Open Layers and Google Earth. The
iFARM case study, covered in Chapter 9, illustrate that the collaboration and interaction
between these methods can be accomplished rapidly and inexpensively through open

source community interactions and field trials.

Chapter 13: Summary and Review
Structure of this Chapter

This broad study examined cases and challenges in systems study in communication,
complex interactions of biology, culture, and technology. There are inherent challenges in
inductive research, because of the lack of bounds and unlimited possible lines of
questioning that come about, especially when examining the intersection of complex
systems across disciplines. However, that main challenge was also the topic of this study,
and substantial progress and broad patterns emerged from the process of developing an

approach and meaningful framework to tackle those challenges. This dissertation comes at

237



an exciting time in which observational, analytic and communications technology enables a
more full understanding and productive approach to investigating biological systems, but
the technology is also emerging at a crucial time to inform culture, which can in turn take
action to re-balance the global carbon and other nutrient cycles. However, the question
“who has this control of this knowledge and how is it gained?” has many more possible
answers now than in any previous time in history. We can now ask of our own culture: “Is
there any reason for every person who desires this knowledge not to have access to it?”
We can now ask ourselves, “Is it not to the advantage to all citizens, in our struggle with
entropy, to build a deep soil future - a deeper rooted commerce based on regenerative

agriculture?”

The knowledge associated with increasing regenerative production at the base of
Mirabeau’s tree is economic development through environmental management, but also
through building social resilience. This study does not provide policy analysis, or social
prescriptions, but focused instead on a framework for adaptive management to provide a
generalized approach and method for environmental feedback and developing stories that
provide guidance for policy making and management. Because the contemporary social
and funding mechanisms are still largely in the conservative conservation “K” phase of the
adaptive cycle (Figure 11), while technology is in the reorganization “Q0” and growth “r”
phase, funding and institutional structures built upon the status quo do not yet support the
action outlined within this study. However, the cases and open source examples, which are
at the growth phase of the adaptive cycle, provide approaches to systems change that can

interact with the existing structures, continue to be applied and refined, and ease the
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transition of the social structures from the conservation phase through release and
reorganization phases. This process can be continued and refined while also learning by
doing, by prodding the system, and building networked learning communities during
transitions. The remainder of this chapter will also follow the dissertation structure by

summarizing each of the first three parts, followed by broad conclusions and next steps.

The emergent open source social, technical and biological systems and the intersections
with radically reduced cost of tools to observe, access, and communicate knowledge that
make collaborative adaptive management possible. The low-cost nature of the emerging
digital based systems enable replication and more iteration. The number of calculations,
data collection points and iterations, accelerate the evolutionary process to create reliable
and reproducible building blocks for those systems create the potential for greater
simplicity rather than complexity. As Kelly (2010) observed, we are consciously or
unconsciously creating a singular machine of great redundancy. The Internet has run
continuously for a little over 5000 days, and by 2007 already equaled the complexity of the
human brain, however the human brain doesn’t double every two years, and that difference
is crucial in examining the future of adaptive management. These factors are beginning to
converge to meet the criteria of required for simplicity and the transition from specialized

technology to inexpensive, reliable, modular and reproducible tools.

The historic difficulty and complexity of systems observations had previously led to
oversimplifications of systems descriptions. Those conditions are clearly changing with the

evolution and simplification of the basic data gathering and dissemination building blocks,
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and with that comes changes in what can be measured, who asks what questions, how
those questions are funded, and who has access to the resulting knowledge. The change in
cost and resulting simplification of complex processes has already changed the economies
of scale that were important factors driving large industrial and social scales that were
required for efficient industrial extraction and colonization. The technology to monitor
human changes to the biosphere is no longer a barrier. This change also shifts the burden
to the social systems, rather than the technical systems, to make meaning of the
technological changes and then apply them productively to the agro-ecological systems
that will provide further positive economic, social and technical feedbacks. By creating a
structural relationship that links the economic, social, technical and biological systems, this
study provides a useful framework and historic context to identify methods for
interdisciplinary adaptive management, and next steps to reduce external costs through

transparency and access to knowledge.

Biological - Promising Field Trials and Research Methods

Challenges to interdisciplinary systems analysis are especially strong in agriculture just
because so many systems and disciplines intersect and are embodied in the practice of
agriculture. Organic systems, in particular, tend to be more biologically complex because
they rely on the enhancement of ecosystem function rather than inputs to prosper, and
therefore it is more challenging to quantify and study the variables independently. This
approach requires the use of systems indicators when precise mechanisms cannot be

identified, and an inductive, exploratory approach as discussed in Chapter 6. The
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complexity of collecting vast amounts of data in the field has historically added to the cost

of data collection.

As processing power, observational technology, and data storage costs have vastly reduced,
the cost associated with complexity has also been reduced. The decoding and open
sourcing of the human genome, provides a template for this next stage of work and
biological understanding. The implications for biological understanding are alluded to in
this study, but early examples of applications of these new systems would be to test all
possible interactions and combinations across the cover crop periodic table, illustrated in
Figure 61, using a distributed Agricultural Knowledge Systems structure as outlined in Part
II of this study. Some examples of exploratory on-farm trials already underway include
incorporating multispecies diversity studies with:

Reduced tillage trials (strip tillage, zone till, undercutting)

Organic covercrop termination methods and suppressing (solarizing,

undercutting, scalping, overgrazing)

Pasture cropping - and introduction of warm and cool season species at

different times and structure diversity and combinations, and levels of stress.

Stacking functions across animal, fungal, bacterial and plant systems.

Cover crop succession management across different times, structure diversity

and combinations, and levels of stress.

No-till establishment of annual covercrops into perennial grass legume sod at

different times and structure diversity and combinations, and levels of stress.
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No-till establishment of warm season annuals into winter annuals with

mechanical termination by crimping.
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Figure 61 - Multispecies interaction mapping and documentation. Detailed imagery, and structural mapping and
documentation of multispecies interactions form the basis for future inductive research. Imaging and remote
sensing above and below ground could play a role in managing the complexity of recording observational data
and identifying patterns of behavior. The figure illustrates a baseline approach to categorizing above and below
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ground characteristics for testing. Adapted from the ARS Cover Crop Periodic Table (“Cover Crop ‘Periodic’ Table,
Soilhealth.net” 2014) and (S. Braun 2012).

Observational technology, when coupled with an appropriate social system, could be used
to expand the basic cover crop periodic table from a generalized static table to a dynamic,
inductive research tool (a computer-aided Baconian table) that would also include below
ground soil root interactions, nutrient flow mapping, and animal-plant-microbe
combinations at the field and watershed level. Biological understanding will also require
testing tools and their interaction with the above and below ground plant-soil interactions
across the periodic table and observing and recording combinations of applications at
different depths and frequencies. Inductive methods coupled with deductive experiments
and low cost modeling can be used to identify patterns and develop and test new theories

faster.

Technical challenges — in search of simplicity
Chapter 1 outlined a desired state for observational technology. It stated that technology
should be accessible, ubiquitous, accurate, and low cost. In essence, the process to achieve
those goals parallels evolutionary pathways that built on low energy, efficient cellular
structures to produce complex structures that reproduce accurately billions of times
without error. As Antoine de Saint-Exupery famously said, “You know you’ve achieved
perfection in design, not when you have nothing more to add, but when you have nothing more
to take away” (Saint-Exupery 1939). Nature has excelled at that task, and bio-mimicry isthe
study of applying natural problem solving to man-made systems. The pathway to simplicity also
mimics natural evolution from single cellsto the evolution of eyes. The pattern isreplicated in
silicon form through the incremental building upon basic binary code to record logic with

transistors into incremental structures that create complex but dependable processing power that
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formsthe basis of the internet, and makes possible the powerful but simple evolutionary forms

such as the internet search box.

The next incremental stage of this pathway to simplicity, is through the extension of
linkages not just between computers, and data, but to the coming “Internet of Things” and
hyperlinking data and meta-data generated by billions of ubiquitous sensors all over the
globe. The move from linking machine to machine to linking data to data has already happened
as expressed by protocols such as KML, RSS, APIs, RDF and OWL (Kelley, 2014) whichisa
step toward linking to the “Internet of Things”. The ubiquity of these systems is arriving at a
pace faster than we are able to culturally assimilate the implications. The complexity of the
system is made possible by the simplicity and most basic nature of the mechanisms, and
the same process can be used to create improved and “simple” understanding of biological
systems as discussed in Part IIl. The processes and workflows identified in Part III clearly
require additional investigation and work to improve and make accessible, and move from
the complex and specialized to the simple and accessible. Some categories for future work
include improvements of management tools, data collection platforms, calibration of

sensors, and post processing.

Management visualization and decision support modeling

FarmOS emerged as a project out of iFARM and was profiled in Chapter 6. FarmOS is also
based on the development of standards that enable data collection, and sharing data where
it is through trusted relationships, rather than central repositories, and return analysis in

context to provide greater value. The development of an easy-to-use system to collect and
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disseminate decision support and reporting functions is not a trivial task, but the process is
made more manageable by using open source modules and approaches that have already
been tested and refined in other fields. The network architecture exists to host data locally
and create APIs that make it accessible based on qualified requests. Data privacy issues
clearly remain, but this is a challenge not unique to agricultural management software and
is currently being worked on by the broader open source community for other applications
with the same issue as issues associated with other personal data. Social protocols for
gathering and sharing data and building trust and fellowship are part of the process of

developing the next processes.

In addition to trust and data security issues, the system is one that grows in complexity as
people use it, and whose benefits become greater to the users as they use it. The first
adaptors, like the first adopters of a fax machine, get greater incremental value as more
people start using the same technology. This aspect of the technology, also creates a sort of
evangelism in similar communities. As shared data gets tagged with meta-data it adds
value to others work, the return on participation increases in value, and increases
incentives for participation. This process is been illustrated in the form of Microsoft’s

Photosync technology.

Data Collection Platforms
In addition to improved and more accessible management software, the hardware and

networked sensors, aerial platforms and cameras, although accessible in cost, are still very

challenging and technical to set up to work well, and require substantial skills to
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troubleshoot, along with frequent reliance on community forums for technical support.
The networking hardware has reached a stage where it is fairly mature and low cost;
however, the software setup could be substantially improved to make integration and
addition of additional nodes faster and easier. There is also substantial work in creating
accurate and low cost sensors to take advantage of the networked data loggers. Many
sensors included in smartphones have dropped in price, but many have yet to be tested to
measure environmental conditions, and the development of weatherproof housings,
standard power sources and connections remains to be done. There are also additional
platforms to be tested in order to gather plot images in more varied conditions including
pole-mounted or hand-held systems for smaller scale highly detailed analysis, depending on
scale. With the expansion of the community exploring these approaches the technical
knowledge base for networking and calibrating sensors also expands in the form of wikis

and forums.

In addition to improvement of sensors themselves, there are clearly opportunities to
develop field set-up protocols that will also reduce post-processing cost, time and expense.
For example, calibration cards that also serve as geo-reference points and ground truthing
points could be used as field markers at the beginning of the season, thus reducing layout

time, and data collection costs as well.

In addition to the examples listed above that reference the current state of technology, the
other constant is that the technology is also constantly changing. The dynamic nature of

the technology and new types of sensors illustrate the need for a process that is also
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adaptive. For example, low cost LIDAR may substitute for structure from motion
processing gathered from still images, although the general workflow of gathering texture
and volume information and the process of data standards and exchange remains the same.
The rapid pace of new technical developments enabling low cost observation technology,
also highlights the opportunity for new sensor and imaging hardware integrations and
developments. For example, soil probe mounted imaging, conductivity and electro
magnetic resonance imaging is already being done by closed source systems, but has a
great potential for very low cost systems using boroscopes and similar medical type
hardware for analysis in-place and other non-destructive methods that include field
processing protocols for root and soil imaging and analysis including nodule color analysis

discussed in Chapter 6.

Calibration Set-up
Additional work is clearly needed to create rapid and automated processes for calibrating

low cost sensors as they are developed. The longer term adaptive management process
was described in Part I to validate indicators, however, where there are known calibrated
devices available, and the process is calibration and not validation, the whole effort can be
made much simpler. This has been accomplished in the open source UAV community to
calibrate compasses by using redundant references of gyroscopes, and GPS data to check
one another and use the deviations to make adjustments and improve calibration over
time. The same basic approach could be applied to ground based and aerial sensors.
Environmental models will also benefit from calibration processes. The processes to
manage multiple types of data is not yet well integrated into many of the programs, and to

get data into a usable form often requires several steps.
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Post Processing
The social objectives of the post processing workflows are to create low barriers to entry

so that more complete data and meta data from imagery and sensors is entered by a
greater number of participants. In their current state, there is a tremendous amount of
work to improve the accessibility of post processing software and associated post
processing image analysis and modeling workflows. The closed source software packages
such as Pix4D and AgiSoft perform limited functions fairly well, but do not enable
expansion or flexibility in use. Open source products identified in Figure 43, such as Visual
Structure From Motion, Ecosynth, Meshlab, and environmental models like DNDC are
accessible to an academic audience, but are not refined enough yet for general use. In the
near term, it seems unlikely that end users such as individual farmers will use image
analysis software directly, but instead will be able to access the processed images through
service providers and agencies like the USDA/NRCS. However, as automated object
recognition and other complex interpretation models improve, the amount of data that can

be fed directly back without interpretation will also increase.

Post data processing of large data sets also opens up the potential for linkages with public
health models and pathogen tracking which could tie in with soil management practices
linked to air and water quality. The more stakeholders and users of land management data

there are, the more crucial are trust and data privacy issues; as has been discussed
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throughout this study, more engaged stakeholders necessitate a more adaptive and

collaborative research model.

Recommendations and Reflection

It is appropriate to end the interdisciplinary work of this study with a broad reflection on
the cultural aspects of this work. It is through cultural interactions that we synthesize
knowledge, interact with technological tools, and communicate biological systems
understanding. The case studies in this dissertation illustrate that the limiting factor in
improved environmental management is cultural rather than biological understanding or
technical capacity. The call for “innovative innovation” highlights the need for a shift in the

governance of agricultural research and innovation in order to achieve a resilient future.

In order to make progress in sustainable agriculture, new methods and approaches will be
required. Some of the key elements of the collaborative adaptive management framework
called for include:

1. Immediate management feedback indicators (water, nutrients, crops) that are easily
communicated and translated into management actions.

2. Rankings and ratings to compare decision making and performance with others in
the community, watershed and beyond to create social perception of stewardship
and self-evaluation.

3. Easy-to-use tools that reduce recordkeeping, reduce reporting requirements for

certifications and compliance, and also improve feedback and free time for strategic
thinking.
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4. Creation of communities of practice that enable new data driven markets and
incentives that could include prizes, equity value in land, environmental service
payments and social recognition for measured performance.

5. Creation of a system that values participation and protects the value of the data, and
promotes monitoring and sharing data as best management practice.

Despite technological achievements in environmental observation technology, the result
will not necessarily be a more sustainable society, i.e., a society that is characterized by a
better balance between economic, social, and ecological goals. The newly available
observational, analytic and communications technologies have yet to be culturally
assimilated. Unlike the re-combination of existing technology, cultural change is an
incremental process. However, just as with biology and technology, complex systems can
be made simpler through greater understanding and building upon reliable, inexpensive,

and replicable functional units.

The cultural aspects and intersection of technology and human values is a major challenge
for agro-food systems that calls into question the relations between agronomic sciences,
agricultural technologies and public and private expectations for science, participation, and
citizenship. The Physiocratic framework embodied by Mirabeau's Tree provides an
accessible metaphor that gives cultural value and import to open source agricultural
research and development methods. Advances in technology will continue, but how they
are applied, who controls them, and the knowledge collected has profound implications for

our future. For this reason, a whole systems approach is crucial to provide not just a
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technical framework, but a social and Physiocratic open source approach to collaborative

adaptive management.

Internalization

The open and networked framework explored within this study provides a hopeful
approach, as the process does not necessarily need to be fully understood to be managed.
New, networked internet tools have made it possible not to need an organization to be organized,
asillustrated by the open source community projects profiled. The cases chosen for this study
illustrate that with proper platforms, content can be almost entirely user generated; in fact, that

self-organizing collaboration, volunteer efforts, analysis and internalization of valuesis possible.

The technology explored within this study was expressed in terms of technical tools for
observation, but also within the cultural practices expressed as collaborative software, and
documents and documentation of open source organizations as products of their social
practices. Through these methods the inventor will most likely not be the one who will know
what the ultimate use may be, and the ultimate use will be collaborative and emergent. A
substantial portion of the innovation will come from people who work at their leisure and
create communities of innovation around their passions, and are more likely to put their work
back into the creative commons. This processis a continuation of the process of cumulative
printed knowledge that started with printing press, and is leading to networked intelligence, that
can be drawn upon by all. Beyond sharing information and knowledge, the cumulative process
of sharing and refining environmental observations and models begins the process of shared

intelligence. The by-product of the first 5000 days of this processis aready an immensely rich
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virtual model of every part of the Earth, collected not just from overhead flights and from
satellite images, but from networked sensors and recorded observations in what is becoming a

collective memory.

The coordination across open source communities, documentation and trust through
transparency is a crucial aspect for understanding social systems and how they react when
under pressure. Empowerment within this new system is an issue that will also require
further study. In a highly networked system, there is the potential for a leadership vacuum,
and yet through bio-mimicry we can see examples in nature of vast flocks of birds that are
able to navigate without collision and change course in coordination, and so a vast effort is
possible, through means we are only just beginning to understand. The Physiocratic
framework for adaptive management provides a working model to structure further
exploration.

"whoever could make two ears of corn or two blades of grass to grow upon a spot of
ground where only one grew before, would deserve better of mankind and do more

essential service to his country than the whole race of politicians put together" (Swift
1726).
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Appendix

Field Experiment Ground Truthing Background for Hairy Vetch plots
Field experiments were established in 2011 at a hay meadow located in Lee, New
Hampshire. The hay meadow was under no-till management prior to and for the duration
of the study. The plant community of the meadow was dominated by orchard grass
(Dactylis glomerata L.), timothy (Phleum pratense L.), sweet vernalgrass (Anthoxanthum
odoratum L.), buttercup, (Ranunculus spp.), and hairy vetch. The soil at the site is a Buxton
silt loam (fine, illitic, frigid Aquic Dystric Eutrudepts, USDA) and organic matter content
ranged from 6.6 to 8.6 %. The vegetation at the site was harvested as hay in July each of

the five years prior to the study.

The underlying agricultural field trial’s objective was to identify amendments that
significantly affect the biological competitiveness of no-till hairy vetch when planted into
perennial hay sod in degraded hayfield conditions. Of fourteen treatments and four
replications in a randomized complete block experiment, there were three wood ash
treatments (four, six, and eight tons per acre) that yielded the only significant improvement
in organic no-tilled vetch biomass. The trial was designed to isolate which effect of the
woodash was most important in increasing vetch competitiveness. The primary effects
being tested were pH, potassium, or carbon. The range of wood ash treatments was also
tested to identify the level of diminishing returns. The carbon effect was tested with bio
char and hardwood shaving treatments. Lime and potassium treatments were tested with

both lime and fast-acting lime as well as mineral KCL.
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Field experiment Ground Truthing Background for Corn Plots

The field based portion of the experiment was based on the 2013 field trial titled Grain-
alfalfa intercrop field experiment created and managed by Dr. Richard Smith and his agro-
ecology lab at UNH to explore organic reduced tillage methods and alfalfa crop rotations on

long term soil health and grain corn production.
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The treatment details are as follows:

T1: Full-tillage + inter-row cultivation T5: Undercut (Yeoman’s plow with
Moldboard plow, plant corn, 2-3 inter-row | undercut knives)

cultivations post corn emergence Mow or flail chop alfalfa very close,

T2: Full tillage + inter-row cultivation + | undercut with Yeoman'’s plow, plant corn
legume inter-seeded at final cultivation | T6: No-till + glyphosate burn-down
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Moldboard plow, plant corn, 2-3 inter-row
cultivations post corn emergence, inter-
seed with crimson clover at final
cultivation (at corn V4-V8 stage)

T3: Strip-tillage

Mow or flail chop alfalfa very close, strip-
till, plant corn

T4: Strip-tillage + glyphosate burn-
down

Stress or Kkill alfalfa with a burn-down

application of glyphosate, strip-till, plant plant corn
corn T9: Alfalfa
Manage as alfalfa hay

Stress or kill alfalfa with a burn-down
application of glyphosate, no-till plant corn
T7: No-till + glyphosate burn-down +
legume inter-seeded

Stress or kill alfalfa with a burn-down
application of glyphosate, no-till plant corn,
inter seed crimson clover at corn V4-V8
stage

T8: No-till + flail-mowed alfalfa

Mow or flail chop alfalfa very close, no-till

Soil samples were collected from each plot for the Cornell Soil Health Test at the site where

baseline plant community biomass was harvested from three randomly placed quadrats

per plot (0.25 m). On June 17, 2014 manure was applied to all the plots at approximately

50 lIbs N/acre. The “burn-down treatments” had recommended rates of Glyphosate applied

on June 20, 2013 and “mowed” treatments were flail-chopped. Tillage treatments were

established using conventional moldboard, strip-till, Yeomans plows. One June 21, 2013

moldboard treatments were disk harrowed and non GMO, 82 day Corn was planted across

all treatments (except T9). Weed biomass was collected in August 2013, grain moisture,

and soil moisture readings, test weight and grain yield were collected in November 2013

with a Kincaid x8 Plot Combine.
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