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ABSTRACT 

 

The aim of this project is to utilize high-throughput molecular methods to investigate the diets of 

three non-native and one native Hawaiian bird species. Next-generation sequencing (NGS) has 

made it possible to produce thousands of sequencing reads of DNA in a relatively short amount 

of time. This metabarcoding technology has been used to identify a range of different taxa, from 

bacteria in the human gut to fungi in the soil. More recently, this approach has been used to 

identify insects in the diets of birds and other species, including bees and bats. Samples 

underwent genomic sequencing using a targeted approach of the cytochrome oxidase I (COI) 

gene, a region that is present in all insects. DNA was extracted from bird feces and stomach 

contents using protocols designed for fecal material and a genomic region was amplified by 

polymerase chain reaction (PCR) using universal COI primers. The resulting amplified 

sequences were compared to an online reference database of millions of insect sequences for 

taxonomic identification. Data were analyzed for diet variation within and between each species 

of bird, as well as were compared to arthropods sampled from areas where these birds were 

observed foraging. The results showed there were a large variety of insects and spiders 

consumed by birds. There was overlap of insect order between the species of birds, but when 

diets were examined at a species level, bird species were preying on different insects. 

  



 4 

TABLE OF CONTENTS 

 

Introduction and Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. .  

5 

Previous Work with Microscope Dissection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. .  

7 

Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.   

8 

 Sample Preparation and DNA Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. .  

8 

  Single Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . 

9 

  Well-plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . 

9 

 DNA Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. .  

9 

 DNA Sequencing and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. 

10 

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. .  

11 

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. .  

12 



 5 

Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. .  

14 

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. .  

16 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . 

20 

 

 

  



 6 

INTRODUCTION AND RATIONALE 

Next-generation sequencing has modernized scientific research within the last twenty 

years, allowing millions of copies of a gene fragment or entire genomes to be generated within a 

few days. Anything containing DNA can be sequenced, from an animal to a pathogen. This 

technology was first used to study human cancer, and has produced a wealth of new knowledge 

about the genetics of different cancers (Reis-Filho 2008). The new technologies reduced the cost 

of sequencing, to where it costs $1,000 to sequence the entire human genome instead of the $3 

billion it took the Human Genome Project before this technology existed (Reis-Filho 2008). 

Next-generation sequencing is now being applied to other facets of research, including dietary 

analysis of animal species. It is replacing traditional methods of taxonomy using a microscope to 

now rapidly identify subjects on a nucleotide level (Clare et al. 2011, Behjati and Tarpey 2013). 

Microscope dissection requires considerable taxonomic expertise and also fragments that are 

large enough to be identified (Ralph et al. 1988). This is not always possible due to the 

mechanical and chemical breakdown of food through the digestive system, resulting in a loss of 

sample (Bohmann et al. 2011). Although birds do not chew food due to their lack of teeth, the 

gizzard contains small rocks and sand that mechanically break down food particles when the 

gizzard contracts. However, DNA from ingested food survives the digestive system and is 

deposited in the feces at amounts sufficient to be extracted, analyzed, and identified (Clare et al. 

2011). 

The growth of NGS applications is concurrent with utilizing high-throughput amplicon 

sequencing (HTS), often referred to as metabarcoding. Combining NGS with HTS allow many 

samples to be run simultaneously, producing a high volume of results in a comparatively short 

amount of time when compared to single-sample procedures. HTS has been shown to be able to 
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identify dietary components of a wide range of animals (Lagisz et al. 2010, Jusino et al. 2017). 

The high-throughput method of sequencing DNA found in fecal pellets by Bohmann et al. 

(2011), paired with bioinformatics analyses, provided researchers enhanced insight into the diets 

of two species of African bats and the degree which the foraging habits of these aerial insect 

predators overlap. This method has been successfully used on insectivorous (Crisol-Martínez et 

al. 2016, Trevelline et al. 2016, and Jedlicka et al. 2017), piscivorous (Deagle et al. 2007), and 

carnivorous (Han and Oh 2018) bird species.  

A molecular approach to studying diet samples will offer faster and more cost-effective 

method to identifying insect species than observing and identifying insect parts through a 

microscope, ideally without compromising accuracy of results, and may even be more accurate 

in identifying taxa. DNA was extracted from fecal samples and a specific locus was barcoded 

and amplified. Arthropods share a mitochondrial cytochrome oxidase C subunit I locus (COI), 

and which is most commonly used as primer annealing site in PCR amplification (Jusino et al. 

2017). This would allow for the targeted replication of insect DNA and not the replication of 

other DNA in that sample, such as the host DNA, although some misamplification of host DNA 

does occur. There is an extensive reference library for the COI gene 

(http://www.boldsystems.org), which makes it the chosen locus for insectivorous animal dietary 

studies (Jusino et al. 2017). A forward and reverse primer with complimentary bases to the COI 

gene binds to DNA in the fecal sample and amplifies thousands of copies. The indexing primers, 

allowing each sample to be labeled (i.e. barcoded), were derived from Kozich et al. (2013) and 

were originally designed for 16S rRNA gene amplicons. Using this indexing approach, the 

attached barcodes allow for unique sample identification when all samples are combined into a 

single sequencing library (Bohmann et al. 2011).  
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The purpose of this experiment was to access whether samples that were collected more 

than ten years ago could be used with new technologies of DNA extraction and NGS to 

determine the diets of these bird species. In fact, my work was successful and the information 

yielded determined the degree of dietary overlap between each bird species. Diet preference was 

then determined through comparison to insects from vegetation samples. Finally, birds were 

sampled in two different environments, a native forest and an exotic forest, to compare 

differences between forest type for which arthropods the birds were eating.  

 

PREVIOUS WORK WITH MICROSCOPE DISSECTION  

The samples to be used in this current project were collected over a decade ago during the 

doctoral research of my mentor, Dr. Jeffrey Foster (Foster 2005). His dissertation examined the 

invasion of exotic birds in Hawaiian forests, and the dietary portion of his research focused on 

the potential for food competition with native bird species. The three introduced species studied 

were the Japanese White-eye, Japanese Bush-Warbler (Cettia diphone), and Red-billed Leiothrix 

(Leiothrix lutea), and have lived on the islands since 1921. The native species of bird that was 

studied was the Maui Alauahio or Maui Creeper (Paroreomyza montana). Research was 

conducted in two different forest types for a deeper comparison of foraging behavior. Native 

forest was determined to be canopy trees, predominately ohia (Metrosideros polymorphia) with 

some koa (Acacia koa). Exotic forest was both a tropical ash forest (Fraxinus uhdei) with 

assorted Eucalyptus spp., ohia, and koa, and a pine forest consisting of conifers, of which were 

mostly weeping (Pinus mexicanus) and sugi (Cryptomeria japonicus) pines. Food is paramount 

to the survival of an animal, and competition between native and non-native species for food 

resources can determine the success and future of a species. In this previous study, bird diets 

were determined by studying regurgitated stomach contents that were acquired using stomach 
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flushing and bird feces. Samples were manually sorted through, examined, and photographed 

using a dissecting microscope. The fragments and whole specimens of insects were identified to 

order through taxonomic means via a reference library of whole insects and in consultation with 

entomological specialists (Foster 2005). In an analysis of samples from 252 birds, both 

fruits/seeds and arthropods were identified. For arthropods, five orders comprised most the 

samples: Homoptera, Lepidoptera (moths), Hemiptera (true bugs), Coleoptera (beetles), and 

Araneae (spiders). When possible, arthropods were classified to family, genus, or species.  

However, the diversity of the samples, the highly fractured nature of the pieces, and 

incomplete entomological surveys of the area made identification challenging. Nonetheless, 

arthropods, not fruit, comprised a majority of the diet for all four species investigated (Foster 

2005). Therefore, it is important to be able to correctly identify the plethora of insects and 

spiders consumed to wholly understand the diet of a bird species and how it may overlap the diet 

of another species to see if they may be potentially competing for food resources. 

 

MATERIALS & METHODS 

Sample Preparation and DNA Extraction 

Samples were collected as described in Foster thesis between 2002 and 2004. Sample 

sources include avian fecal, avian stomach content, and vegetative. Foster employed the methods 

of stomach flushing and fecal bags to collect samples. After sorting and identification of insect 

fragments via microscope dissection, samples were stored in individual glass dram vials in 

approximately 4 ml of 90% ethanol. These samples were stored at room temperature until 2015. 

Ethanol was pipetted out of vials without disturbing the sample and the vials were set under a 

fume hood for 12 to 36 hr for complete evaporation of the remainder of the ethanol. The MO 
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BIO Powersoil DNA Isolation Kit (now known as the Qiagen DNeasy Powersoil HTP 96 Kit) 

was used for DNA extraction and purification for both single tube and 96-wellplate procedures, 

with minor modifications: 

Single tube extractions: Before loading a sample, the solution in the Powerbead tube was 

removed. The sample was loaded into the tube now just containing the Powerbeads, and 

incubated at -80°C for 45 min. The tubes were vortexed for 1 min. The solution was re-

added to the tubes and vortexed for 1 min. 

96-well-plate extractions: To prevent “flying” of sample material during transfer from 

vial into well-plate, some samples were slightly wetted with up to 600 μl of phosphate 

buffer saline. Single-use inoculating loops were used to transfer the sample contents. 

Blank extractions were included in each plate to measure cross-contamination. 

The initial vortex of sample and C1 solution was extended from 10 min to 20 min for both 

protocols. In the final elution step, 100 μl of C6 was used instead of 200 μl. Extracted samples 

were stored at -20°C until processing. 

 

DNA Processing 

 All PCR assays were completed using a 96-wellplate protocol. Samples that were 

extracted using the single tube extraction protocol were transferred to 96-well-plates at 25 μl 

aliquots.  PCR amplifications were performed in 25 μl reactions containing 13 μl of Thermo 

Fischer Scientific SuperMix (22 mM Tris-HCl (pH 8.4), 55 mM KCl, 1.65 mM Magnesium 

Chloride, 220 μM dGTP, 220 μM dATP, 220 μM dTTP, 220 μM dCTP, 22 U/ml recombinant 

Taq DNA Polymerase, and stabilizers), 1 μl of the forward primer, 1 μl of the reverse primer, 

and 10 μl of template DNA. Thermal cycling conditions were as follows: 95°C for 5 min then 40 
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cycles (95°C for 15 s, annealing at 52°C for 30 s, 72°C for 30 s) followed by 72°C for 7 min. 

Negative and positive control reactions were employed each set of assays. PCR products were 

quantified using the Quant-iTTM PicoGreenTM dsDNA Assay kit, using 1 μl PCR product in 99 μl 

buffer solution. Two libraries, p10-1 and p10-2, were constructed to pool amplified and tagged 

DNA. The amount of each sample pooled was determined by the concentration of DNA to even 

the amount of DNA sequenced across samples. The libraries were concentrated using a heated 

vacuum centrifuge to approximately 100 ml. The two libraries were quantified using Qubit 

fluorometric quantification and Agilient 2200 TapeStation. The two pooled libraries of COI 

amplicons were sequenced using an Illumina MiSeq platform following 300 bp PE sequencing 

using V3 chemistry set for 600 cycles at TGEN North’s sequencing center on February 10, 2018 

(p10-1), and February 25, 2018 (p10-2). 

 

DNA Sequencing and Analysis 

Sequence results were analyzed using the following programs: 

Amptk v. 1.1.3-36d7eda 

usearch9 v9.2.64_i86linux32 

usearch10 v10.0.240_i86linux32 

vsearch v2.6.2_linux_x86_64 

python modules and R dependencies via Conda 

Samples with fewer than 50 reads were dropped, reads were trimmed to a minimum of 

160 bp and organized into operational taxonomic units (OTU) with 97% similarity standards. 

These initial OTU were filtered to reduce index bleeding. Libraries p-10 and p-11 were 
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combined into one master library, known as OahuBird. Amplicons were compared to the BOLD 

BIN database of the COI gene index for taxonomic identification for 99% similarity. 

 

RESULTS 

 From 441 fecal and vegetation samples, there were 19,938,852 raw reads. Bird samples 

yielded 2254 OTU detections of arthropods and vegetation samples yielded 1471 OTU 

detections. Twenty-seven orders were identified, compared to 18 by Foster (2005). A small 

number of unknown OTUs were present in this experiment. After clustering, filtering and 

combining the two libraries, 13,950,987 reads and 1,529 OTUs were produced. The red-billed 

leiothrix provided the greatest number of detections of identified OTU, and the Maui Creeper 

had the fewest detected OTUs, although sampling was not equal among species. 

 Non-native avian species consumed 18 different orders of arthropods (Figure 1). The top 

three consumed arthropod orders (all insects) were Lepidoptera, Diptera, and Coleoptera (Figure 

3). Native bird species consumed 12 orders of arthropods, with the top three most common prey 

items being Diptera, Lepidoptera, and Coleoptera (Figure 1). Observed detections were highest 

for Lepidoptera for non-native birds, while it was highest for Diptera for the native bird species. 

Sixteen orders of arthropods were observed in samples from both native and exotic vegetation, 

with Araneae (spiders), Diptera (true flies), and Lepidoptera (moths) constituting the top three 

observed orders. On a percentage basis, the most commonly consumed insects for all bird 

species, as well as insects available in the environment, were Lepidoptera and Diptera (Figure 2). 

Birds consumed more Coleoptera than apparent availability from the vegetation. Finally, 

Araneae were more abundant in the environment (based on a percentage of the arthropods 

sampled from the vegetation) than in the diets of the birds (Figure 2).  
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DISCUSSION 

 There are few studies discussing dietary overlap of avian species (Crisol-Martínez et al., 

2016, Deagle et al., 2007), and this experiment has shown the ability to obtain genetic informatic 

through NGS from samples more than a decade old. This study showed relative uniformity in 

proportions of the main arthropod orders consumed, but substantial differences when analyzed at 

the species level. 

 Arthropod samples were also taken from the vegetation, allowing a comparison of 

proportion of each type of arthropod in the diet versus in the environment. We found that overall 

the birds were largely eating what was available to them with limited indication of selective 

foraging based on what was available in the vegetation. However, there was a higher proportion 

of Lepidoptera in the diets compared to their presence in the vegetation and a higher occurrence 

of Araneae in the environment than in the diet (Figure 2). This and the higher percentage of 

Trombidiformes in the vegetation than what was consumed by birds indicate that the birds ate 

arthropods from some orders out of proportion to their abundance. This is supported when the 

data were analyzed at the family level. There was a clear separation between the arthropod OTUs 

from bird samples and OTUs from arthropod from vegetation samples (Figure 4). Regardless of 

species, the birds were not consuming all the arthropod groups available in the environment. In 

exotic forest, red-billed leiothrix were more likely to consume Trichopteran and Hemiptera than 

other bird species, Japanese White-eye consumed more Araneae and Lepidoptera, and Japanese 

Bush-Warbler consumed the most Coleoptera (Figure 3). In native forests, it was still found that 

bush-warblers consumed the most Coleoptera, white-eyes consumed the most Lepidoptera, and 

leiothrix were the only species to consume Trombidiformes (Figure 3). Bush-warblers were the 

only non-native bird species to consume Isopoda in native forests. In each forest type, the three 
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species were roughly eating the same proportion of Diptera. Thus, the bird species appear to be 

consistent in their dietary preferences regardless of the forest type, at least at the order level for 

common food items. The difference in the main prey of native versus non-native species of bird 

potentially indicates resource competition, but experimental work would be needed to fully test 

this. The favored prey item determined by NGS for non-native bird species has been 

Lepidoptera, and for the Maui creeper it was Diptera.  

 The diets by vegetation in the area did change slightly for each species. Bush-warblers 

consumed Isopoda and more Hemiptera in native forests than in exotic forest, and relatively 

fewer Lepidoptera. The proportions of Lepidoptera consumed by the other species did not differ 

between sites, so this could indicate reduced availability of moths in the native forests and an 

adaption to consumed Isopoda, which was not found in the diets of the other species. White-eyes 

also differed slightly in their dietary choices. The predominant orders consumed between native 

and exotic forest stayed the same, but Mecoptera was only found when foraging in exotic forest 

while Neuroptera was in their native forest diet. Leiothrix were the only other species to 

consume Mecoptera in their exotic forest diet, and did not consume insects from that order in the 

native environment. This could mean that Mecoptera is found in pine forest and not on plants in 

native forest.  

 There was considerable overlap in the primary orders of arthropods consumed by all 

birds, with some difference in the less commonly consumed orders. Native and non-native bird 

species were all eating Diptera, Lepidoptera, Coleoptera, and Araneae. This indicates potential 

for resource competition if all the birds are eating relatively the same thing; if one species were 

to grow in number, that could negatively affect the abundance of other species, which Foster 

(2005) speculated on as well. Studying competition and food availability is a complex issue that 
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merits additional study in this system. Freed and Cann (2009) suggested that competition for 

food resources was occurring on the island of Hawaii between the introduced Japanese white-eye 

and the Hawaii Akepa (Loxops coccineus). It is important to note that Lepidoptera consists of 

moths of all life stages, from caterpillar to flying insects, and in this study there was no method 

of determining the percentage between each. Compared to microscope dissection that requires 

fragments, NGS would allow for the detection of the digested soft-bodied moths from fecal 

samples. 

 

FUTURE DIRECTIONS 

 With the significant difference in insects consumed by birds at the order versus species 

level, a statistical comparison is needed to study dietary overlap at each taxonomic level. This 

would determine the exact degree of dietary overlap and offer deeper insight into resource 

competition as well as the full extent of the diets of each species and at different sites and forest 

types. This also depends on the completeness of the BOLD sequence library for detailed 

taxonomic identification, which can be region specific. Substantially more sequences are needed 

from arthropods from Hawaiian forests to increase identification of bird diets. There were more 

reads with NGS compared to microscope dissection, but there was no method to determining the 

relative abundance of the reads. It could be determined with the physical parts of insects, but not 

with the DNA. Methods to determining relative abundance with NGS should be developed to 

reduce inflation/bias of results of a certain arthropod, which could have happened in this 

experiment.   
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 A future analysis could determine the difference in results from the single tube versus the 

well-plate extraction methods. This could determine the more accurate and clean method of 

extracting DNA from fecal samples for future research.   

 A comparison of these data to current bird population foraging behaviors could be 

conducted to study changes that have occurred within the last two decades. This can assess 

consequences of competition for food resources and the adaptations, if any, that have occurred to 

support continued populations of native and exotic birds. 
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Figure 2.  
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Figure 3.
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Figure 4. 
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