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ABSTRACT 

AN EXPERIMENTAL STUDY OF THE WAKE OF A TURBULENT BOUNDARY LAYER 

JUNCTION FLOW 

by 

Nicholas Marino 

University of New Hampshire, December, 2017 

 

 An experimental study of the wake of a turbulent boundary layer junction flow was 

performed using a 3:2 elliptical nose and NACA 0020 tail airfoil in the Flow Physics Facility at 

the University of New Hampshire. An eight-wire enstrophy hot-wire probe was used to measure 

all three components of velocity and vorticity at four downstream measurement planes from 1 

cord length to 33 cord lengths behind the airfoil. In addition, a simple fairing was added to the 

airfoil, and the same experiments were repeated. The friction velocity was measured afterward 

by a Preston tube experiment at the same measurement locations. The incoming flow had a 

momentum thickness Reynolds number of Reθ = 19600. 

 It was found that the streamwise velocity statistics in the near measurement planes 

matched previous junction flow observations. The other velocity statistics supported the 

conclusions and knowledge in the near planes. The vorticity variance measurements showed 

little variation from the undisturbed boundary layer leading to the conclusion that large-scale 

motions are primarily responsible for the non-equilibrium aspects of the flow. The downstream 
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measurements clarified the recovery process towards the undisturbed boundary layer. The final 

measurement plane showed that aspects of the flow had fully recovered, while others had not. 

The Reynold stress showed that the turbulent structure of the flow had not recovered but 

remained persistently different from the undisturbed case. The airfoil with the fairing supported 

the observations of the airfoil case. Differences were seen between the airfoil and the airfoil with 

the fairing, but due to the coarse measurement plane, no conclusions were made.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

 

 In 1904, Prandlt [1] introduced his boundary layer theory describing the interaction of a 

viscous fluid with a solid boundary. He stated that the effect of friction from the solid boundary 

on the fluid caused the fluid adjacent to the solid boundary to stick to it; this describes his no-slip 

condition. He continued in saying that the frictional effects were only experienced in a thin 

region, the boundary layer, near the solid boundary while the remainder of the flow was 

effectively inviscid and unaffected by the presence of the wall. As the Reynolds number 

increases, the boundary layer transitions from a laminar flow to a turbulent flow. As the 

Reynolds number continues to increase in the turbulent regime, the statistical properties of the 

wall-flows continue to vary and the underlying instantaneous mechanism of momentum and 

energy transfer change accordingly. Many practical applications, including US Navy vehicles, 

operate within the high Reynolds number turbulent regime, and therefore, a considerable amount 

of research has been performed studying wall-bounded flows with most effort devoted to the so-

called canonical wall flows. These flows include fully developed pipe flow and channel flow, 

along with the zero-pressure gradient boundary layer. Central aspects of our understanding of 

these flows pertain to the dependence of their statistics and spectral properties on Reynolds 
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number [2].  Much less is known regarding the so-called non-equilibrium wall flows and their 

dynamical structure. 

Non-equilibrium flows arise when an imposed forcing effect modifies the unperturbed 

canonical flow in such a way that the local momentum transport and turbulent properties lose 

connection with the local wall shear stress. Broadly speaking, forcing effects of interest include 

heterogeneous surface roughness, streamwise pressure gradients, and imposed lateral strain rates. 

Such perturbations are commonplace in many naval vessels and aircraft applications, see figure 

1.1.1. The present study focuses on turbulent boundary layer junction flow. Here lateral strain 

rates caused by an airfoil drive a canonical boundary layer flow into a non-equilibrium state.  

1.2 Turbulent Boundary Layer Junction Flow 

 Junction flows occur when the incoming boundary layer encounters another object 

normal to the surface upon which the boundary layer is developing. The presence of the object 

creates an adverse pressure gradient experienced by the approaching flow, and this causes the 

incoming boundary layer to separate fore of the protruding body. (The coordinate system used 

going forward will consider the positive x-direction the streamwise direction. The y-direction 

will be the wall-normal direction with the origin at the wall. The z-direction will be the spanwise 

Figure 1.1.1: High Reynolds number non-equilibrium flow phenomena: 1. Heterogenous roughness. 2. Stream-wise 

pressure gradients. 3. Junction Flows (a) Virginia class submarine, (b) F/A-18E Super Hornet. 



 

3 

 

direction in which zero will be the centerline of the tunnel and airfoil. Positive z is to the right 

looking in the positive x-direction.) The spanwise pressure gradient then causes the fluid to move 

around the object while simultaneously the spanwise vorticity is stretched along the object. In the 

case of a streamlined body, the skewing and stretching around the body is greater causing larger 

lateral strain rates. The flow then advects these effects downstream creating a horseshoe-like 

shape [4]. Figure 1.2.1 from Fleming shows this process and the aptly named horseshoe vortex. 

The horseshoe vortex has been an important aspect of aerodynamics dating back to Prandtl's 

lifting line theory for a finite wing. He replaced the finite wing with a bound vortex filament, 

however, because of Helmholtz’s theorem a vortex filament cannot end in a fluid. Therefore, the 

two vortices trail from the wing tips to infinity creating the horseshoe-like shape [5].  

 The horseshoe vortex in a junction flow has the same rotation as the incoming boundary 

layer and therefore takes the high-speed freestream flow and brings it close to the wall which 

causes an increase in heat transfer and drag. One such example is the scouring around bridge 

piers due to the presence of a horseshoe vortex. Similarly, the wing-fuselage junctions on 

modern-day aircraft cause about 10% of the total drag. This can also lead to buffet impairing the 

aerodynamic performance of the aircraft [6]. These areas are of high interest to engineers leading 

to the need to understand the physics involved in such flows. This has been a topic of research 

Figure 1.2.1: Turbulent Junction Flow Wing Body Visualization [3] 
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over the last couple decades with attempts to fully understand the flow as well find ways to 

mitigate undesirable effects. 

1.3 Literature Review 

 There have been numerous studies of turbulent junction flows. These studies have 

primarily been performed using simple geometric shapes such as cylinders, as well as more 

complex geometries including various airfoil configurations. Dickinson in 1986 presented a 

junction flow study with a NACA 0020 airfoil and the so-called Rood airfoil. He found that the 

Rood airfoil produces larger crossflow velocities due to the more blunt nose allowing the trailing 

horseshoe vortex to be identified more easily. The Rood airfoil combines a NACA 0020 tail with 

a 3:2 elliptical nose and has become a standard test case [7]. Gand et al. [6] list various 

experiments performed as well as what was of interest in each study including whether the 

horseshoe vortex and corner separation were observed. The Reynolds number with respect to the 

moment thickness, Reθ, was also given for each experiment. Momentum thickness is the 

distance by which the boundary layer should be displaced to compensate for the reduction in the 

momentum of the fluid on account of the boundary layer. The largest Reynolds number in the list 

of experiments was Reθ = 8200. They then performed some modeling looking at the corner 

separation. More recently, a large eddy simulation was performed by Ryu et al. [8] at a Reθ =

5940 and they compared their results to the experiments performed by Simpsons, Olcmen, 

Fleming, and Devenport. These studies have incoming boundary layer Reynolds numbers up to 

Reθ = 8200 and are focused on the flow around the object to the trailing edge separation. 

 Simpson, Olcmen, and Fleming [9] performed one of the most comprehensive 

experimental studies. Through their combined experiments they gathered data from incoming 

boundary layers with Reynolds numbers of 500 < Reθ < 23000 for a Rood airfoil. Some 
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examples of the perturbations from the airfoils are shown in table 1.3.1. The body height, 

maximum thickness, and incoming boundary layer height are presented. The perturbation effect 

is related to the airfoil height compared to boundary layer height. Therefore, the ratio of the 

boundary layer height to airfoil height is computed. The ratio of the maximum thickness to the 

airfoil height is also given. This data has been used to understand the physics of the flow and 

compare observations to numerical models. The primary focus of these studies was the nose 

separated region and the junction vortex around the side of the airfoil as well as comparing the 

effects of different in-flow boundary layers [9]. 

Table 1.3.1: Airfoil Perturbation 

Reθ H T δ δ/H T/H 

5940 [9] 22.9 7.17 3.91 0.170742 0.3131 

23200 [9] 22.9 7.17 13.42 0.586026 0.3131 

6300 [7] 22.9 7.17 3.68 0.160699 0.3131 

 

 Fleming et al. [7] compared the findings of previous work with their own. In addition, 

they focused on the downstream wake development. This is of particular interest because to the 

author’s knowledge they compiled the farthest downstream wake measurements in the literature. 

Measurements of this study where aquired with an incoming boundary layer of Reθ = 6300. 

They were taken along the spanwise extent of the body, and out to 11.56 cord lengths 

downstream. The wake entered an adverse pressure gradient six cord lengths downstream of the 

body. Only the streamwise mean velocity and velocity variance were measured starting at three 

cord lengths downstream. Owing to its relevance, this study will be referenced throughout this 

thesis. 

 Devenport et al. [10] investigated how the addition of a simple fairing affects the flow 

around a Rood airfoil. Their fairing was a simple fillet with a radius equal to 0.53 of the wing 
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thickness wrapped circumferentially around the airfoil. They found that the fillet does not 

eliminate the separation at the leading-edge but increases the effective radius of the nose. 

 The studies just discussed provide great insight into turbulent boundary layer junction 

flows and generated a wide range of data to compare to numerical models. However, there is still 

a need for continued research to provide experimental data to validate models and gain a greater 

understanding of the underlying physics. The present study builds on this previous work. The 

incoming boundary layer has a Reynolds number Reθ = 19600, and wake measurements were 

then taken out to 33 cord lengths downstream the body. To the author's knowledge, this provides 

the most extensive documentation of the Rood body wake to date. In addition, a custom-made 

eight-wire enstrophy sensor was used to acquire wake statistics for all three velocity components. 

The present study will also look at a simple fairing case to compare with Devenport et al. [10]. 

1.4 Aims of the Present Study 

 The current study uses a Rood airfoil with a removable fairing to compare to previous 

studies. The experiments were performed in the University of New Hampshire Flow Physics 

Facility (described in detail in the next section) which allowed for wake measurements out to 33 

cord lengths behind the body giving the furthermost wake study done for turbulent junction 

flows. An eight-wire enstrophy sensor was used to measure the three components of the mean 

and fluctuating velocity including the Reynolds stress and other velocity correlations. In 

addition, the three components of time-resolved vorticity were measured. The vorticity 

measurements were, however, only obtained in the first two measurement planes for the airfoil 

and the first measurement plane for the airfoil with the fairing. The combination of the long fetch 

afforded by the FPF and measurements by the enstrophy probe give the most comprehensive 

study to date of the downstream wake of a turbulent boundary layer Rood airfoil junction flow. 
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 This study focuses on the similarities of the near wake to measurements from previous 

similar experiments as well as the downstream development of the velocity statistics. Profiles are 

plotted for each statistic for the given spanwise measurement location as well as the downstream 

location. These statistics include the mean velocities, variances of the fluctuations, turbulent 

shear stress, and turbulence kinetic energy. Where vorticity measurements are available, their 

statistical behaviors will also be discussed. The downstream evolution of the power spectra of 

the three velocity components will be characterized relative to the unperturbed boundary layer. 

The airfoil with the fairing will then be compared to the airfoil without the fairing examining the 

differences in their statistics at the various downstream locations. Finally, downstream 

development of the Reynolds stress and velocity correlations will be discussed.  For 

completeness, additional data plots are compiled in the appendix. 
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CHAPTER 2: EXPERIMENT 

2.1 Facility 

The turbulent boundary layer junction flow experiment was performed at the University 

of New Hampshire (UNH) Flow Physics Facility (FPF). The FPF is, to the author’s knowledge, 

the largest boundary layer wind tunnel in the world. It measures approximately 2.8m in height 

(varies to maintain a zero-pressure gradient in the streamwise direction), 6m wide, and 72m in 

length. The tunnel is an open circuit pressure driven wind tunnel in which two 300kW fans 

create a lower pressure in the plenum at the rear of the tunnel to draw the atmospheric air in at 

the inlet and exits out through the fans (Figure 2.1.1). The flow enters at the left of figure 2.1.1 

through a turbulence management section where the flow is tripped to be turbulent on the floor 

and walls and exits after the low-pressure plenum on the right of the figure. The large flow 

development fetch allows for high Reynolds number flows at low speeds in which the boundary 

Figure 2.1.1: UNH Flow Physics Facility cut away [11] 
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layer height towards the rear of the tunnel can reach a 𝛿99 of approximately one meter. Vincenti 

et al. [11] show the constancy of 𝑈∞ as a function of downstream fetch with approximately a 3% 

increase in the last three meters for higher velocities and Preston tube-based friction velocity 

estimates in the spanwise direction with an overall variation of less than 0.5% across the span. 

For a comprehensive review of the FPF, see Vincenti et al [10]. 

2.2 Instrumentation 

 An eight-wire enstrophy sensor that simultaneously measures three components of 

velocity and three components of vorticity was used. Hot-wire sensors allow fluctuations in 

velocity and vorticity to be measured with good spatial and temporal resolution. The probe used 

was developed and implemented by S. Zimmerman at the University of Melbourne [12]. The 

probe was tailored for boundary layer measurements at higher Reynolds number and was 

sufficiently tested. The probe is comprised of four x-wire arrays shown in Figure 2.2.1. Each 

wire was operated by the custom-built Melbourne University Constant Temperature 

Anemometer with the output routed through an Alligator Technologies USBPGF-S1 

programmable analog low pass filter and then data acquired using a Data Translation DT9836 

Figure 2.2.1: 8-wire enstrophy model showing wire design and where each component of velocity is measured 
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15-bit A/D board. The temperature was recorded along with each data point by a custom-built 

thermocouple, and the ambient pressure was recorded manually throughout the experiment. The 

probe has a size of less than ten viscous units for the measurements taken in the FPF. A viscous 

unit is defined by the kinematic viscosity, ν, and the friction velocity, 𝑢𝜏. A single viscous unit is 

the smallest motion in the flow. Having a probe size on the order of less than ten viscous units 

allows for the resolution of the smaller motions of the flow. For a full review of the probe design, 

processing, and testing, see Zimmerman [12]. The combined small size of the probe and large 

size of the FPF afford the measurements presented in this study to be some of the highest 

Figure 2.2.2: Custom built 2D traverse and mounted hot-wire probe in UNH FPF 
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resolution, highest Reynolds number measurements of vorticity fluctuations in existence. 

Unfortunately, the probe experienced a wire breakage, and therefore capabilities to measure the 

vorticity were lost after the second measurement location. The three components of velocity 

were maintained throughout the experiment allowing the measurement of the mean and 

fluctuating velocities along with the Reynolds stress and other velocity correlations. 

 The probe was mounted on a sting arm connected to a computer controlled custom built 

two-axis traverse shown in figure 2.2.2. This is the first experiment performed with the spanwise 

axis of the traverse. Modifications to the original single axis were needed to ensure proper 

performance. These modifications included a larger stepper motor combined with a new pulley 

system to efficiently lift the spanwise addition with little vibrations, a stabilizing side wing to 

restrict the spanwise section from rotating about the vertical axis, and additional supports to 

make the spanwise section level. Care was taken to ensure that each of the electrical components 

was connected through different electric circuits in the FPF to avoid interference and cross-

communication between the two traverse motors. Previous hot-wire probes were then used to 

check the functionality of the traverse as well as find the appropriate operation speeds to 

minimize vibration of the probe to best avoid breaking wires during the actual experiments. In 

addition, to check the level of the spanwise section, each spanwise measurement location was 

independently recorded and compared to a reference height. The offset in the wall-normal 

direction was then implemented into the traverse code to ensure each spanwise point was level. 

This was done at each measurement location. 
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2.3 Junction Body 

 The junction body used was the well-documented 

3:2 semi-elliptical nose with a NACA 0020 airfoil tail that 

melds at the maximum thickness [7]. This body is known 

as the Rood airfoil. The streamline curvature of the body 

with consideration of the no-slip condition provides a 

lateral straining of interest but without separation at the aft 

of the body. The body is referred to as the airfoil for the 

remainder of this thesis. The airfoil specifications were 

based on the specific experimental case. The boundary 

layer thickness 𝛿99 at x = 30m in the FPF is approximately 

0.4m thick, to ensure the entire boundary layer was 

consider 𝛿99 was over estimated to be 0.5m in the following 

calculations. The airfoil therefore was made to have a height 

H = 0.5m to ensure the entirety of the boundary layer interacted with the body. The thickness 

was then determined by 𝑇 =
1

2
𝛿99 to be 0.25m. The thickness was then used to satisfy the chosen 

airfoil shape which led to an overall cord length 1.051m. The airfoil was custom manufactured 

out of 16-gauge aluminum. The top and bottom were water jet cut into the correct shape, an 

internal frame then connected the two together, and finally a sheet was wrapped around to 

enclose the shape shown in figure 2.3.1. In addition to the airfoil, a simple fairing was added for 

a second group of experiments. The fairing had a height of two inches. The fairing was 3-D 

printed in two pieces and melded together using acetone. It was then sanded to a smooth surface 

Figure 2.3.1: (a) NACA 0020 airfoil with 

3:2 elliptical nose with simple fairing (b) 

airfoil sketch with dimensions 
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finish to meld with the airfoil body. Experiments were performed with and without the fairing on 

the airfoil.  

2.4 Experimental Setup 

The airfoil was placed at x = 30.6 m from the entrance to the test section. This was 

chosen to allow for significant boundary layer growth prior to the airfoil. A summary of the 

undisturbed boundary layer properties at the body is given in table 2.4.1. This also allowed for a 

significant length remaining in the test section to investigate the wake recovery. The incoming 

boundary layer was found to have a 𝛿99 = 0.379m and would remain steady throughout an 

experiment but would vary somewhat during a different experiment owing to day-to-day 

variations in atmospheric conditions. 

Table 2.4.1: Boundary Layer Properties at airfoil 

𝑈∞ 𝛿99 𝑢𝜏 𝜈 𝑅𝑒𝜃 

6.47 0.379m 0.229 1.443 x 10-5 19600 

 

The undisturbed boundary layer is presented in figure 2.4.2. The streamwise velocity 

mean and variance, along with the wall-normal velocity variance and spanwise velocity variance 

are presented. They are inner-normalized based on Klewicki [2]. This will specifically be 

discussed in section 3.1. The mean is represented by a capital letter U, and the fluctuating 

velocity is represented by the lower-case letter u, v, and w. The overbar denotes that the values 

are time averaged. The figures show the aspects of 2-D turbulent boundary layer flows. These 

include the log region in the streamwise mean, the step-like shape in the streamwise variance, the 

peak in the wall-normal variance, and the two distinct slopes of the spanwise variance.



 

 

 

1
4 

Figure 2.4.1: Inner-normalized undisturbed zero pressure gradient turbulent boundary layer (a) Streamwise Mean (b) Streamwise Variance (c) Wall-Normal 

Variance (d) Spanwise Variance 
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Figure 2.4.3 shows the coordinate system and the measurement planes that are used 

throughout. The x-coordinate is positive moving from the entrance of the tunnel to the exit in the 

streamwise direction. The y-coordinate is in the wall-normal direction with the origin at the wall. 

The z-coordinate is in the spanwise direction in which the zero point is the centerline of the 

tunnel which corresponds to 

the centerline of the airfoil. 

Positive z is to the right when 

looking in the positive 

streamwise direction. The 

airfoil is symmetric, and 

therefore measurements were 

only taken in the positive 

spanwise direction. Each 

measurement plane was made 

Figure 2.4.3: Example measurement plane at x/c = 1 

Figure 2.4.2: Sketch of airfoil, incoming undisturbed boundary layer, coordinate system, and measurement plane 
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up of eight spanwise measurements at ten different wall-normal positions creating an eighty-

point plane. The planes varied from 0.75m to 1.4m in the spanwise direction at each downstream 

location while they varied from 0.75m to 0.8m in the wall-normal direction at each downstream 

location. Figure 2.4.3 shows an example of a measurement plane at X/C = 1. 

 The measurement planes are located at x = 32.7, 40.4, 50.3, and 66.2m from the tunnel 

entrance. The location of the planes is normalized by the cord length of the airfoil with the airfoil 

tail being X/C = 0. The planes are therefore at X/C = 1, 8.4, 17.8, and 33 cord lengths 

respectively. 

 Each measurement was taken for 1 minute at 15 kHz. The measurements were taken 

between sunrise and sunset to minimize temperature drift from atmospheric changes. Pre and 

post calibrations were taken according to Zimmerman's [12] processing to correct for the existing 

temperature drift as well as 2-D calibration at each measurement location for the probe itself. 

The final experimental setup is presented in figure 2.4.4. 

Figure 2.4.4: Final experiment setup including: airfoil, 2D traverse, hot-wire probe, and computer system in the 

UNH FPF 
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2.5 Preston Tube Experiment 

 In order to make a comparison to the equilibrium undisturbed boundary layer case, it is 

beneficial to have measurements of the friction velocity. The friction velocity, 𝑢𝜏, is a 

characteristic velocity for canonical (equilibrium) flows. [2]. Estimates of friction velocity can be 

obtained by velocity profiles finely spaced near the wall, using a Clauser plot for canonical 

flows, or using a Preston tube experiment. A Preston tube is needed because the probe is not 

small enough to get into the viscous sublayer. Therefore, the Preston tube experiment was 

performed to obtain estimates of the friction velocity. A Preston tube is simply a pitot tube that is 

placed on the floor of the tunnel. This Pitot pressure is then referenced to the local static 

pressure. The boundary layer approximations show that the pressure gradient in the wall-normal 

direction is zero. This allows the static pressure measurement to be taken at any point above the 

Preston tube. For simplicity in the experiment, the static port of a Pitot-static tube was connected 

to the pressure transducer along with the Preston tube. The Pitot-static tube was located in the 

freestream. Since the FPF has no significant variability in the spanwise direction, (see FPF 

description), the Pitot-static tube was set to the side to avoid any flow interaction from the stand 

on the Preston tube. The Preston tube was aligned using a laser at each spanwise measurement 

location corresponding to those taken with the hot-wire. Using Patel’s [13] calibration we can 

solve for the wall shear stress and thus the friction velocity. Patel found a general relationship 

below:  

𝜏𝑤𝑑2

4𝜌𝑣2
= 𝐹 (

∆𝑝𝑝𝑑2

4𝜌𝑣2
),                                                                          (2.1) 

where d = outer diameter of Preston tube and ∆𝑝𝑝 = pressure difference 
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Using this relationship, he developed a series of equations depending on the differential pressure 

between the static pressure and the Preston tube pressure. There are three equations used to find 

the wall shear stress. First, he defines two variables shown below: 

𝑥∗ = 𝑙𝑜𝑔10(
∆𝑝𝑝𝑑2

4𝜌𝑣2 )         𝑦∗ = 𝑙𝑜𝑔10(
𝜏𝑤𝑑2

4𝜌𝑣2)                                                     (2.2) 

The equation used depends on a range of 𝑦∗. The equations are as follow  

 

For 3.5 < 𝑦∗ < 5.3 

𝑥∗ = 𝑦∗ + 2𝑙𝑜𝑔10(1.95𝑦∗ + 4.10)                                                    (2.3) 

For 1.5 < 𝑦∗ < 3.5 

𝑦∗ = 0.8287 − 0.1381𝑥∗ + 0.1437𝑥∗2 − 0.0060𝑥∗3                                 (2.4) 

For 𝑦∗ < 1.5 

 𝑦∗ =
1

2
𝑥∗ + 0.037                                                              (2.5) 

Once 𝑦∗ is obtained, the wall shear stress can be calculated, and therefore estimates of the 

friction velocity as well. Numerous equilibrium cases were run to compare to previous friction 

velocity measurements in the FPF to check for accuracy in the present experiments at 

downstream locations of x = 34, 50, 66. The previous friction velocity measurements being 

compared are from Zimmerman’s hot-wire boundary layer data found using a Clauser plot [12]. 

It was expected that the Preston tube results would have a difference as they depend on capturing 

the lower portion of the logarithmic region. Since the boundary layer is so large, small diameter 

Preston tubes are not as accurate in the FPF. Therefore, the largest diameter Preston tube was 

used for the primary measurement and a correction factor was added. It was found that with a 

correction factor of 0.945 that the friction velocity at all locations was within 2% of S. 
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Zimmerman’s values as well as showing good agreement between the various sized Preston 

tubes with the largest being the most accurate. The three Preston tube diameters used were 

0.00635m, 0.008001m, and 0.0127m. The final friction velocity results are presented in Table 

2.5.1 and Table 2.5.2. Error from the changing environmental conditions effecting the flow 

cannot be measured. 

Table 2.5.1: Friction velocity for Airfoil 

Airfoil 𝑢𝜏 

Spanwise (Z/T) 0 0.428 0.857 1.285 1.714 2.143 2.571 3 TBL  

X/C = 1 0.259 0.259 0.244 0.224 0.239 0.245 0.235 0.232 0.229 

          
Spanwise (Z/T) 0 0.571 1.143 1.714 2.286 2.857 3.429 4  
X/C = 8.4 0.253 0.252 0.244 0.234 0.231 0.226 0.226 0.231  

          
Spanwise (Z/T) 0 0.686 1.371 2.057 2.743 3.429 4.114 4.8 TBL  

X/C = 17.8 0.247 0.246 0.242 0.229 0.230 0.225 0.225 0.225 0.225 

          
Spanwise (Z/T) 0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 TBL 

X/C = 33 0.241 0.238 0.234 0.230 0.228 0.224 0.223 0.220 0.223 

 

Table 2.5.2: Friction velocity for Airfoil with Fairing 

Airfoil with Fairing 𝑢𝜏 

Spanwise (Z/T) 0 0.429 0.857 1.286 1.714 2.143 2.571 3 TBL 

X/C = 1 0.266 0.265 0.254 0.227 0.236 0.239 0.230 0.236 0.229 

          
Spanwise (Z/T) 0 0.571 1.143 1.714 2.286 2.857 3.429 4  
X/C = 8.4 0.255 0.251 0.246 0.239 0.229 0.231 0.226 0.237  

          
Spanwise (Z/T) 0 0.686 1.371 2.057 2.743 3.429 4.114 4.8 TBL  

X/C = 17.8 0.252 0.250 0.243 0.236 0.227 0.231 0.238 0.233 0.225 

          
Spanwise (Z/T) 0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 TBL  

X/C = 33 0.239 0.237 0.234 0.227 0.224 0.221 0.221 0.222 0.223 
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2.6 Uncertainty 

 The absolute uncertainty of multi-element hot-wire measurements is difficult to estimate, 

S. Zimmerman (private conversation). This stems from several factors. These include the 

changing environmental conditions of the FPF along with the many components of the 

calibration process. This makes it impossible for an uncertainty percentage for each contribution 

to be calculated and for error bars to be shown on plots. However, it was recommended by 

Zimmerman, that one can get an overall estimate of the uncertainty by looking at measurement 

results which do not agree with what is known to occur physically, to within the accuracy of the 

experiment, pertaining to the two-dimensionality of the undisturbed boundary layer. Two of 

these measurements are the turbulent shear stress of 𝑢𝑤̅̅ ̅̅  and 𝑣𝑤̅̅ ̅̅  for the zero-pressure gradient 

turbulent boundary layer. These values should be very close to zero at all wall-normal positions. 

Figure 2.6.1 shows measured values of these quantities at the three downstream locations where 

they are available from the canonical flow. The values are time averaged which is denoted by the 

overbar. The turbulent shear stress 𝑢𝑤̅̅ ̅̅  varies significantly near the wall and then is negative. It 

only reaches zero at the far edge of the boundary layer. The turbulent shear stress 𝑣𝑤̅̅ ̅̅  is always 

positive and only reaches zero at the far edge of the boundary layer. Zimmerman et al. [12] 

discuss the agreement of statistics with that of direct numerical simulations (DNS) of the Navier 

Stokes equations. It has been found that the mean streamwise velocity, variances of the 

fluctuations, turbulent shear stress 𝑢𝑣̅̅̅̅ , turbulence kinetic energy, vorticity fluctuations, and 

spectra exhibit very good agreement with DNS. Therefore, in the discussion of the present 

results, observations will be made with this in mind, and the uncertainty of each measurement 

will be considered.
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Figure 2.6.1 Inner-normalized undisturbed zero pressure gradient turbulent boundary layer (a) Reynolds Stress 𝑢𝑤̅̅ ̅̅  (b) Reynolds Stress 𝑣𝑤̅̅ ̅̅  
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CHAPTER 3: RESULTS 

 Experiments were performed with a freestream velocity 𝑈∞ = 6.5 ± 0.3 m/s with an 

incoming boundary layer height of roughly 0.38m. Data was obtained from the four measurment 

planes at X/C = 1, 8.4, 17.8, 33 downstream of the airfoil for both the airfoil with and without a 

fairing. The origin of this coordinate system is at the downstream end of the airfoil. The 

following results will show a given variable of intrest at a particular measurement plane. The 

spanwise location of the measurements are given by z/T or the spanwise location normalized by 

the thickness of the airfoil. The wall-normal locations are normalized by the height of the airfoil 

Y/H. Some color maps are presented to show the wake and the remainder of the data will be 

presented as wall-normal profiles at a given spanwise-location. 

3.1 Normalizations 

 Boundary layers have various characteristic scales associated with them. Normalizations 

using these different scales aid in interpreting the underlying physics. There are two primary 

normalizations. Inner normalization reflects the dynamics and characteristics of the flow in 

which the primary interaction is with the wall, particularly the wall shear stress. A characteristic 

velocity can be created known as the friction velocity leading to 𝑢𝜏 = √𝜏𝑤
𝜌⁄  where 𝜏𝑤 is the 

wall shear stress and 𝜌 is the fluid density. Boundary layer dynamics transport (on average) high-

momentum fluid toward the wall, resulting in an increased wall shear stress relative to a laminar 
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flow. Therefore, the friction velocity serves as an ideal velocity scale to normalize flow variables 

of interest. Therefore, in the present study, the friction velocity will be used for inner-

normalization. The second normalization is the so-called outer normalization associated with the 

bulk motions of the flow. Typically, the characteristic length scale used is the boundary layer 

height, but because of the non-equilibrium nature of the flow, the height of the airfoil is used for 

the outer normalization. The velocity, as is typically done, will be normalized by the freestream 

velocity. Consistently, previous experimental studies such as Fleming et al. [7] used the airfoil 

thickness and freestream velocity to normalize the results. 

3.2 Friction Velocity Dependence 

 The friction velocity is used to normalize the statistics as discussed above. Since the flow 

is modified by the airfoil to create non-equilibrium conditions, the friction velocity is modified in 

comparison to the undisturbed case. As the friction velocity is used to normalize the statistical 

profiles, it is important first to examine how the friction velocity changes in the wake of the 

airfoil. Figure 3.2.1 shows friction velocity estimates derived from shear stress beneath each 

measurement plane. This figure presents the undisturbed case, the airfoil case, and the case of the 

airfoil with the fairing. Error bars are added to indicate the 2% error discussed in section 2.5.  

The X/C = 1 results near z/T = 0 indicate a large increase in the friction velocity relative 

to the undisturbed boundary layer. The friction velocity at z = 1.3 is equivalent to the undisturbed 

case. The values then get slightly larger again before coming back to the undisturbed case. The 

remaining three planes all show the same trend. The friction velocity near z/T = 0 have larger 

values. The friction velocity then decreases as z/T increases. X/C = 8.4 does not have an 

undisturbed case for comparison. At X/C = 17.8 the friction velocity is equal to the undisturbed 
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case at roughly z = 2. At X/C = 33 the friction velocity is equal to the undisturbed case at 

roughly z = 4.  

The larger friction velocity estimates reflect an increase of freestream momentum flux 

into the wall. The friction velocity estimates near z = 0 are large. The relative difference between 

the friction velocity estimates to the undisturbed case decreases at each downstream 

measurement plane. The spanwise location at which the friction velocity becomes equivalent to 

the undisturbed case is farther from the centerline at each downstream location. These findings 

give insight into how to interpret the statistical results normalized by the friction velocity. The 

spreading of the wake is observed as well as the increase wall momentum flux caused by the 

junction flow. Lastly, it is apparent that the friction velocity does not make a full recovery in the 

last measurement plane.
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Figure 3.2.1: Preston tube base friction velocity estimates at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33 for the airfoil case, the airfoil with fairing 

case, and undisturbed turbulent boundary layer case (TBL) 
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3.3 Comparison to Similar Previous Experiments 

 Fleming et al. [7] presents wake data of the streamwise mean and velocity variance for 

planes of x/C = 1.50 to 11.56, where x/C = 1 is at the trailing edge of the airfoil. However, planes 

x/C = 9.14, 11.56 were taken in an adverse pressure gradient. Therefore, the focus will be on the 

noted planes from the Fleming et al. study as compared to X/C = 1, 8.4 from the present study 

where X/C = 0 is at the trailing edge of the airfoil in the present case. Figure 3.3.1 shows color 

countors for the streamwise mean and velocity variance normalized by the freestream velocity at 

X/C = 1 and 8.4. The discrete data were linearly interpolated to generate smooth color variations 

on the image. The airfoil is oriented to the left of each figure where z/T = 0 is the centerline of 

the airfoil and tunnel. The apparent effect of the horseshoe vortex can be observed at X/C = 1 by 

looking at the peak in velocity variance. The peak is between z/T = 1 to 1.5. The influence of the 

vortex on the mean streamwise velocity can be observed at the same location. Contour plots of 

streamwise mean and velocity variance from Fleming et al.[7] at x/C = 1.50 agree with the 

present study. Their x/C = 3 measurement plane shows that the signature from the junction 

moves outward to a larger z/T. The present study X/C = 1 fits in between these two planes. It can 

be deduced that the vortex is located at a similar position in both experiments, as the peak in the 

velocity variance is at z/T = 1 to 1.5 in both cases. The mean velocity distortion pattern occurs at 

the same location as well. In all of the near plane contours for both studies, one can observe the 

deficit by z/T = 0 behind the airfoil as one would expect from having a body in the flow. 

 Observing the remaining Fleming et al. [7] data planes, the distortion of the mean 

velocity spreads outwards away from the airfoil and diffuses upward away from the wall. The 

present study at X/C = 8.4 shows the same process. The strong peak in the velocity variance in 

Fleming et al. [7] rapidly diminishes with downstream distance. Turbulence is transported 
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throughout the boundary layer in a similar manner to the mean velocity. The present 

measurements at X/C = 8.4 exhibit results consistent with this. The comparison to Fleming et al. 

[7] substantiates that the present study has the same characteristic flow features. This will allow 

for further analysis to build off past experiments, expanding the understanding of the flow 

through the addition of added measured quantities, as well as downstream measurement 

locations in a zero-pressure gradient turbulent boundary layer flow.
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Figure 3.3.1: Streamwise Velocity Contours (a) 𝑈/𝑈∞ X/C = 1 (b) 𝑈/𝑈∞ X/C = 8.4 (c) 𝑢
2

/𝑈∞ X/C = 1 (d) 𝑢
2

/𝑈∞  X/C = 8.4 
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3.4 Downstream Development of Velocity Statistics 

 The downstream development of the mean streamwise velocity, velocity variance, and 

turbulent kinetic energy are now presented and described. Presentation of the data is such that at 

each measurement location downstream of the airfoil, wall-normal profiles are presented for 

eight different spanwise locations within the measurement plane. For the measurements at X/C = 

1, 17.8, and 33 the corresponding profiles of 2-D undisturbed turbulent boundary layer flow 

acquired at the same measurement location are provided. The velocity statistics were normalized 

using the friction velocity and freestream velocity, and the y-location was normalized by H. 

When significant, differences between normalizations are noted and described. 

 The normalized streamwise mean velocity profiles are shown at the four downstream 

measurement planes in figure 3.4.1 and figure 3.4.2. The normalization by friction velocity 

shows a considerable variability at plane X/C = 1 for locations Y/H > 0.1. This variability 

decreases with downstream distance. However, in comparison to the undisturbed case, X/C = 1 is 

both above and below the undisturbed case while at X/C = 17.8 they are all below. A kink in the 

profiles at X/C = 17.8 for both normalizations is observed but disappears in the X/C = 33 plane. 

Interestingly, now the profiles are above the undisturbed case. The normalization by the 

freestream velocity shows a slightly different trend. The profiles at X/C = 1 are spread out closer 

to the wall and converge farther from the wall. The profiles slowly converge with increasing 

downstream distance, but by X/C = 33 the profiles 0 ≤ Z/T ≤ 3.2 are slightly below the 

undisturbed case while the profiles for Z/T ≥ 3.2 are on or slightly above the undisturbed case. 

Both normalizations show that the profiles tend to converge with increasing downstream 

distance. However, at X/C = 17.8 both normalizations are above the undisturbed case, at X/C = 

33, the freestream normalization falls approximately on the undisturbed case. The friction 
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velocity normalization is below the undisturbed case leading to an offset when normalized by a 

higher friction velocity. This, however, is not entirely consistent with the friction velocity data. 

Some of the profiles are different even when the friction velocity is equivalent to the undisturbed 

case. This suggests that the flow dynamics are different and it is not a consequence of the 

normalization. Moreover, since at X/C = 33 the profiles do not converge on the undisturbed case, 

this suggests that the flow is either still developing or it has found a new equilibrium state. 

 The downstream development of the root mean squared (rms) profiles of the velocity 

fluctuations hint at how the turbulence evolves downstream of the airfoil. Figure 3.4.3 shows 

profiles of the streamwise variance at the different downstream planes. At X/C = 1 a large spread 

can be seen. The profiles at z/T ≤ 0.857 are below the undisturbed case while the profiles at z/T 

≥ 1.286 are above the undisturbed case. At z/T = 1.286 one can observe a significant peak at Y/H 

≈ 0.2 that can be associated with the horseshoe vortex. As the flow develops downstream, the 

peak disappears, and the profiles begin to converge with the inner z/T profiles increasing in value 

while the outer z/T profiles lessen in value. X/C = 33 shows a significant variability between 

profiles as well as being lower than the undisturbed case. The normalization by the freestream 

shows the same trends in figure 3.4.4. It has the same peak at X/C = 1, but the spacing between 

profiles is less than the friction velocity normalization. The spacing does converge, but unlike the 

friction velocity case, they converge around the undisturbed case. The differences between the 

two normalizations are similar to the mean streamwise velocity, a consequence of differences in 

the friction velocity, but also due to differences in the flow dynamics compared to the 

undisturbed flow.  

The profiles of the wall-normal variance normalized by the friction velocity are shown in 

figure 3.4.5.  At X/C = 1 there are two distinct peaks at locations z/T = 1.286 and z/T = 0.857 at 
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Y/H ≈ 0.2. These peaks are likely caused by the upwash and downwash regions caused by the 

horseshoe vortex. The other profiles lack a distinct peak but are greater than the undisturbed 

case. At X/C = 8.4 the peaks disappear, but a substantial deficit is seen at z/T ≤ 1.143 in relation 

to the other profiles. At X/C = 17.8 most profiles converge close to the undisturbed case, but z/T 

≤ 1.3714 falls below the undisturbed case. At X/C = 33 the profiles are below the undisturbed 

case, most notably under the peak of the undisturbed case at Y/H ≈ 0.2. 

Overall, the wall-normal velocity variance again shows evidence of effects of the 

horseshoe vortex in particular distinct peaks at X/C = 1 and for z/T = 1.286 and z/T = 0.857. 

Those peaks diminish as the flow evolves downstream. Instead of a peak, there is now, however, 

a deficit at inner spanwise locations. The deficit remains as the profiles recover close to the 

undisturbed case. The inner normalized profiles fall below the undisturbed case while the outer 

normalizations in Figure 3.4.6 fall approximately on the undisturbed case. Except at X/C = 33, 

the outer normalization is still greater than the inner normalization, but both are below the 

undisturbed case at Y/H ≈ 0.2. Even at X/C = 33, the flow does not fully recover to the 

undisturbed case.  

The wall-normal profiles of the spanwise velocity variance, shown in figure 3.4.7, have a 

crest that is probably associated with the horseshoe vortex at X/C = 1. The profiles z/T < 1.286 

are lower than the undisturbed case, while the profiles z/T ≥ 1.286 are higher than the 

undisturbed case. As the flow evolves downstream, the spanwise profiles converge, and the flow 

recovers towards the undisturbed case. The difference here is that all the profiles are less than the 

undisturbed case. The freestream normalization shown in figure 3.4.8 shows quantitatively 

similar results. The spanwise variance is likely influenced by the horseshoe vortex, but in a 

different way compared to the other velocity components. In particular, turbulence is higher and 
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modified over a broader wall-normal range. Again, as the flow evolves downstream, the 

spanwise profiles tend to converge and recover towards the undisturbed case.  

Lastly, the downstream evolution of the turbulent kinetic energy (TKE) was evaluated. 

Turbulent kinetic energy is calculated in the following manner: 𝑇𝐾𝐸 =  1
2⁄ (�̅�2 + �̅�2 + �̅�2). 

Figure 3.4.9 shows the TKE normalized by the friction velocity at the different downstream 

measurement planes. At X/C = 1 the peak at z/T = 1.286 is likely a signature of the horseshoe 

vortex. The profiles at z/T ≤ 1.286 have lower TKE while the profiles at z/T > 1.286 have higher 

TKE compared to the undisturbed case. The peak is diminished, and the spanwise profiles closest 

to the centerline remain with lower TKE values while those farther away begin to converge close 

to the undisturbed case. This remains true for each downstream location, but the differences 

between the profiles decreases at each location. At X/C = 33 the profiles are below the 

undisturbed case. The profiles normalized by the freestream velocity shown in figure 3.4.10 

exhibit similar qualitative features. However, at X/C = 33 the profiles shows general agreement 

with the undisturbed case except that z/T ≤ 0.8 are significantly lower while the remaining 

profiles are higher compared to the undisturbed case. Thus, the friction velocity again expands 

the profiles and offsets the final measurement plane for the same reasoning as described earlier. 

The TKE profiles at X/C = 1 demonstrate the effects of the junction flow. The increase in TKE 

likely due to the horseshoe vortex demonstrate the injection of turbulent energy by the airfoil. 

Downstream of the airfoil, the additional TKE is dissipated and the flow recovers towards the 

undisturbed case.
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Figure 3.4.1: Streamwise mean velocity profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.2: Streamwise mean velocity profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.3: Streamwise velocity variance profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.4: Streamwise velocity variance profiles normalized by 𝑈∞  at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.5: Wall-normal velocity variance profiles normalized by 𝑢𝜏  at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.6: Wall-normal velocity variance profiles normalized by 𝑈∞  at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.7: Spanwise velocity variance profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.8: Spanwise velocity variance profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.9: Turbulent kinetic energy profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure 3.4.10: Turbulent kinetic energy profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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3.5 Downstream Reynolds Shear Stress Development 

 Wall-normal profiles of the Reynolds shear stress profiles for 𝑢𝑣̅̅̅̅ , 𝑢𝑤̅̅ ̅̅ , and 𝑣𝑤̅̅ ̅̅  

normalized by the friction velocity and freestream velocity, are plotted at four measurement 

planes downstream of the airfoil and at eight spanwise positions at each plane. The uncertainity 

in the measured values of 𝑢𝑤̅̅ ̅̅  and 𝑣𝑤̅̅ ̅̅  is relevant here, and thus must be taken in interpreting 

these profiles. The error bounds associated with 𝑢𝑤̅̅ ̅̅  and 𝑣𝑤̅̅ ̅̅  will be highlighted in each figure to 

ensure that observations made are significantly different. The 𝑢𝑣̅̅̅̅  statistics, therefore, will be the 

primary interest of the discussion while 𝑢𝑤̅̅ ̅̅  and 𝑣𝑤̅̅ ̅̅  will only be used to supplement the 

understanding of 𝑢𝑣̅̅̅̅ . 

Figure 3.5.1 shows profiles of the 𝑢𝑣̅̅̅̅  Reynolds stress at the four measurement planes. 

Notable observation are that at X/C = 1 there is a negative peak at z/T = 1.286 and Y/H ≈ 0.1. In 

addition, the values are higher than the undisturbed case for z/T < 1.286. At X/C = 8.4 the peak 

diminishes and the profiles begin to converge. In this plane, the profiles at z/T < 1.143 are higher 

than the rest of the profiles. At X/C = 17.8 the profiles have converged together but are all 

significantly lower than the undisturbed case. At X/C = 33 the profiles remain converged, but the 

difference relative to the undisturbed case increases. The plots normalized by the freestream 

shown in figure 3.5.2 show qualitatively similar results. 

 The 𝑣𝑤̅̅ ̅̅  Reynolds stress shown in figure 3.5.3 displays values that exceed the error 

associated with the undisturbed case as indicated by profiles that fall outside the yellow box. The 

normalization by the freestream in figure 3.5.4 qualitatively shows similar results. The 𝑢𝑤̅̅ ̅̅  

Reynolds stress, shown in figure 3.5.5 and figure 3.5.6, also display values that exceed the error 
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associated with the measurement. Again at X/C = 33, the profiles converge. The significant 

difference compared to the error for 𝑢𝑤̅̅ ̅̅  is not as great as the 𝑣𝑤̅̅ ̅̅  but is still observed. 

The Reynolds stress represents how mean momentum is transferred by the turbulent 

motions. The 𝑢𝑣̅̅̅̅  Reynolds stress provides a measure of how streamwise momentum is 

transported in the wall-normal direction, 𝑢𝑤̅̅ ̅̅  provides a measure of how the streamwise 

momentum is transported in the spanwise direction, and 𝑣𝑤̅̅ ̅̅  provides a measure of the turbulent 

transport of the spanwise or wall-normal momentum. A negative 𝑢𝑣̅̅̅̅  Reynolds stress means that 

high (relative to the mean) streamwise momentum (+u) is being moved toward the wall (-v) or, 

conversely, that low (relative to the mean) streamwise momentum (-u) is being moved away 

from the wall (+v). Similary, positive 𝑢𝑤̅̅ ̅̅  value means high (relative to the mean) streamwise 

momentum (+u) is being moved away from the centerline (+w) or, conversely, that low (relative 

to the mean) streamwise momentum (-u) is being moved towards the centerline (-w). Reynolds 

stress profiles clearly indicate that the the junction flow strongly modifies the Reynolds stress at 

X/C = 1, and its influence remains at X/C = 33. This, despite the fact that the turbulent kinetic 

energy for the freestream normalization shows almost a complete recovery. 

The normalization of the Reynolds stress by the friction velocity presents an interesting 

potential connection. The 𝑣𝑤̅̅ ̅̅  Reynolds stress has an estimated peak value of -0.2. The 𝑢𝑤̅̅ ̅̅  

Reynolds stress has an estimated peak of 0.3. The magnitude of each combined is 0.5, which is 

roughly the difference between the 𝑢𝑣̅̅̅̅  Reynolds stress peak and the undisturbed case. Thus, the 

𝑢𝑤̅̅ ̅̅  and 𝑣𝑤̅̅ ̅̅  magnitudes closely match the difference in magnitude between the 𝑢𝑣̅̅̅̅  profiles and 

the 𝑢𝑣̅̅̅̅  undisturbed case. This suggests that the increased wall-ward transport of momentum is 

offset by spanwise transport in the developing wake.
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Figure 3.5.1: Reynolds stress 𝑢𝑣̅̅̅̅  normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 
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Figure 3.5.2: Reynolds stress 𝑢𝑣̅̅̅̅  normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 
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Figure 3.20: Reynolds Stress vw at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 

 

 

 

Figure 3.5.3: Reynolds stress 𝑣𝑤̅̅ ̅̅  normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 
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Figure 3.5.4: Reynolds stress 𝑣𝑤̅̅ ̅̅  normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 

 

 

 

 

 

  

Yellow Boxes 

represent the error 

bounds associated 

with undisturbed 

turbulent boundary 

layer case as 

discussed in 

section 2.6. Data 

outside these 

bounds is consider 

significant. 



 

 

 

4
9
 

Figure 3.21: Reynolds Stress uw at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 

 

 

 

Figure 3.5.5: Reynolds stress 𝑢𝑤̅̅ ̅̅   normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 
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Figure 3.5.6: Reynolds stress 𝑢𝑤̅̅ ̅̅  normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 
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3.6 Vorticity Measurements 

 Vorticity measurements were acquired only at the first two downstream measurement 

planes of X/C = 1 and 8.4. The vorticity variance was computed for all three components and 

normalized by kinematic viscosity and friction velocity, as well as by the freestream velocity and 

airfoil height. Wall-normal profiles of the vorticity variances, and enstrophy (i.e., square of the 

vorticity) were compared to the undisturbed turbulent boundary layer at X/C = 1. Figure 3.6.1 

and 3.6.2 shows the inner normalized and outer normalized wall-normal profiles of the 

fluctuating vorticity for the eight spanwise locations. 

The x-vorticity variance at X/C = 1 and for Y/H < 0.2 is distributed around the 

undisturbed case. Above Y/H ≈ 0.2, the profiles are above the undisturbed case. The points 

furthest from the wall for z/T ≤ 0.429, clearly are non-zero, which may be a signature of the to 

the wake over the top of the airfoil. The y-vorticity variance, z-vorticity variance, and enstrophy 

all show qualitatively similar results to the x-vorticity variance. At X/C = 8.4, the first point 

closest to the wall, and for the spanwise locations z/T ≤ 1.143, the vorticity variances and 

enstrophy are much larger than the profiles z/T > 1.143. The profiles, however, quickly converge 

with the other profiles within one wall-normal measurement. With increasing Y/H, the profiles 

remain grouped together but have a non-zero value at the freestream. This is true for all the 

vorticity variances and the enstrophy.  

The outer normalized profiles have different trends, compared to the inner-normalized 

profiles at X/C = 1. Here the profiles are lower than the undisturbed case until Y/H ≈ 0. They 

then become greater than the undisturbed case. The spanwise profiles for z/T ≤ 0.429 have non-

zero values at the freestream. The profiles are closely spaced, and no distinguishing features 
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between them can be seen. This is qualitatively similar for all the vorticity variance components 

and the enstrophy. 

In general, the differences in the profiles of the vorticity variance are small between the 

junction flow and the undisturbed case. Owing to this lack of difference, it is most likely that 

large turbulent scales are primarily responsible for the non-equilibrium behaviors of the junction 

flow boundary layer development. A complete vorticity study successfully completed at all 

measurement planes would give further insight into this. Figure 3.6.3 and figure 3.6.4 show the 

inner and outer normalization of at X/C = 1 for the fairing case respectively. These are similar to 

the airfoil case. 
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Figure 3.6.1: Inner normalized (a) X-Vorticity Variance X/C = 1(b) X-Vorticity Variance X/C = 8.4 (c) Y-Vorticity Variance X/C = 1 (d) Y-Vorticity Variance 

X/C = 8.4 at spanwise locations z/T and undisturbed turbulent boundary layer (TBL) 
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Figure 3.6.1: Inner normalized (e) Z-Vorticity Variance X/C = 1(f) Z-Vorticity Variance X/C = 8.4 (g) Enstrophy X/C = 1 (h) Enstrophy X/C = 8.4 at spanwise 

locations z/T and undisturbed turbulent boundary layer (TBL) 
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Figure 3.6.2: Outer normalized (a) X-Vorticity Variance X/C = 1(b) X-Vorticity Variance X/C = 8.4 (c) Y-Vorticity Variance X/C = 1 (d) Y-Vorticity Variance 

X/C = 8.4 at spanwise locations z/T and undisturbed turbulent boundary layer (TBL) 
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Figure 3.6.2: Outer normalized (e) Z-Vorticity Variance X/C = 1(f) Z-Vorticity Variance X/C = 8.4 (g) Enstrophy X/C = 1 (h) Enstrophy X/C = 8.4 at spanwise 

locations z/T and undisturbed turbulent boundary layer (TBL) 
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Figure 3.6.3: Fairing inner normalized (a) X-Vorticity Variance X/C = 1 (b) Y-Vorticity Variance X/C = 1 (c) Z-Vorticity Variance X/C = 1 (d) Enstrophy X/C = 

1 at spanwise locations z/T and undisturbed turbulent boundary layer (TBL) 
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Figure 3.6.4: Fairing Outer Normalized (a) X-Vorticity X/C = 1 (b) Y-Vort X/C = 1 (c) Z-Vort X/C = 1 (d) Enstrophy X/C =1 

 

Figure 3.6.4: Fairing inner normalized (a) X-Vorticity Variance X/C = 1 (b) Y-Vorticity Variance X/C = 1 (c) Z-Vorticity Variance X/C = 1 (d) Enstrophy X/C 

=1 at spanwise locations z/T and undisturbed turbulent boundary layer (TBL) 
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3.7 Spectral Observations 

 Spectra were calculated at z/T = 0 for the four measurement planes and for all wall-

normal positions. The spectra were calculated using a Hanning window with 50% overlap with 

ensemble averaging. The spectra were then processed by a custom smoothing function to 

eliminate peaks. The spectra were then normalized by the airfoil height, H, and friction velocity, 

𝑢𝜏. Measurement planes X/C = 1, 17.8, 33 will be discussed while X/C = 8.4 is provided in the 

appendix. The spectra are compared to the undisturbed case to evaluate the effect of the airfoil.

 The streamwise velocity spectra are shown in figure 3.7.1, 3.7.2 and 3.7.3 for X/C = 1, 

17.8 and 33 respectively. The spectra at X/C =1 are qualitatively similar to the undisturbed case. 

Subtle but notable differences are that near the wall, the airfoil spectra fall below undisturbed 

spectra at low frequency. Moving further from the wall, there appears to be a cross-over in the 

spectra at Y > 0.4298m. At X/C = 17.8 some low frequency variability exists most notably at Y 

= 0.0477m and 0.1473m. At Y = 0.4551m the airfoil case is lower than the undisturbed case for 

all frequencies. At X/C = 33 there is some variability but nothing notable except at Y = 0.4551m 

where again, the airfoil case is lower than the undisturbed case for all frequencies.   

The wall-normal velocity spectra at X/C = 1, 17.8, and 33 are shown in figure 3.7.4, 3.7.5 

and 3.7.6. There is no significant variability at X/C = 1 until Y = 0.1411m and 0.2463m where 

the airfoil case is higher at low frequencies. At Y = 0.4298m the airfoil case is higher for all 

frequencies. At X/C = 17.8 there is low frequency variability throughout in which the airfoil case 

tends to be higher than the undisturbed case. At Y = 0.1473m and 0.4551m, the airfoil case is 

lower for almost all frequencies. At X/C = 33 the low-frequency variability remains with the 

airfoil case being larger than the undisturbed case. For Y ≥ 0.1473m the low frequency 
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variability is less significant and close to the undisturbed case. The high frequencies also show 

some variability with the airfoil case being lower than the undisturbed case. 

 The spanwise velocity spectra at X/C = 1, 17.8, and 33 are shown in figure 3.7.7, 3.7.8 

and 3.7.9. There is low frequency variability at X/C = 1, most notably at Y = 0.0152m and 

0.0463m where the airfoil case is below the undisturbed case. At Y = 0.1411m the low 

frequencies for the airfoil case are below the undisturbed case, but at high frequencies, the airfoil 

case is above the undisturbed case. At Y = 0.4298m the airfoil case is above the undisturbed case 

for all frequencies. At X/C = 17.8 there exist some low frequency variability between the airfoil 

and undisturbed case. At Y = 0.4551m the airfoil case is lower at all frequencies. X/C = 33 has 

similar qualitative results to X/C = 17.8. The locations not noted are similar to the undisturbed 

case for all three velocity spectra. 

The spectra indicate that the low frequency motions are modified by the boundary layer 

interaction with the airfoil. The streamwise spectra show less energy at low frequencies and 

more energy at higher frequencies. This is recovered downstream to match the undisturbed case. 

The wall-normal spectra at X/C = 1 is only affected at wall-normal positions above y = 0.15m in 

which the low frequencies have higher energy. The development downstream shows a shift in 

which the low frequencies have more energy and the high frequencies have less energy, 

compared to the undisturbed case. The spanwise spectra show little differences, and those that do 

exist are at low frequencies. The final wall-normal position for each velocity spectra is 

significantly modified. The energy at all the frequencies is either higher or lower than the 

undisturbed case. This is close to the height of the airfoil in which the wake effects could be 

modifying the flow.
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Figure 3.7.1: Streamwise velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 1 for airfoil and undisturbed turbulent boundary layer (TBL) 
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Figure 3.7.2: Streamwise velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 17.8 for airfoil and undisturbed turbulent boundary layer (TBL) 
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Figure 3.7.3: Streamwise velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 33 for airfoil and undisturbed turbulent boundary layer (TBL) 
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Figure 3.7.4: Wall-normal velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 1 for airfoil and undisturbed turbulent boundary layer (TBL) 
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Figure 3.7.5: Wall-normal velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 17.8 for airfoil and undisturbed turbulent boundary layer (TBL) 
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Figure 3.7.6: Wall-normal velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 33 for airfoil and undisturbed turbulent boundary layer (TBL) 
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Figure 3.7.7: Spanwise velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 1 for airfoil and undisturbed turbulent boundary layer (TBL) 
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Figure 3.7.8: Spanwise velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 17.8 for airfoil and undisturbed turbulent boundary layer (TBL) 
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Figure 3.7.9: Spanwise velocity spectra normalized H/𝑢𝜏
3 at the centerline at X/C = 33 for airfoil and undisturbed turbulent boundary layer (TBL) 
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3.8 Fairing Comparison 

 The same set of experiments were performed with a simple fairing added to the airfoil. 

The full results of the fairing are given in the appendix with both normalizations by friction 

velocity and freestream velocity. The differences between the airfoil and the airfoil with the 

fairing are compared in this section. The comparison is made by plotting the inner normalized 

fairing data with an asterisk for the fairing case and circles for the non-fairing case. For clarity, 

only half of the spanwise profiles are plotted together. Therefore, for each statistic, there are even 

profiles and odd profiles. The even profiles are composed of the even number spanwise location 

of 2 to 8 while the odd profiles are composed of the odd number spanwise locations of 1 to 7. 

The even profiles will be used with the odd profiles contained in the appendix. 

 The streamwise mean velocity profiles are shown in figure 3.8.1. The profiles at X/C = 1 

show that the fairing has slightly higher values at locations away from the wall for spanwise 

profiles z/T ≤ 1.286. The other spanwise profiles are similar to each other. At X/C = 8.4 the 

differences are smaller. The profiles at X/C = 17.8 and 33 show very little difference between the 

two cases except that at X/C = 17.8 the non-fairing case has values that are slightly higher than 

the fairing. It is worthy of noting that like the non-fairing case at X/C = 17.8 there is a kink in the 

fairing profiles. The streamwise mean velocity for the fairing tends to be higher at X/C = 1 and 

8.4. At X/C = 17.8 the non-fairing case is slightly higher. They become similar at X/C = 33.  

The streamwise velocity variance is shown in figure 3.8.2. At X/C = 1 the peak of the 

non-fairing case is larger. The spanwise profiles at z/T ≥ 2.143 are similar to each other while the 

other spanwise profiles for the non-fairing case are larger. At X/C = 8.4 the fairing case is now 

higher for all spanwise locations. This remains true for the remaining measurement planes.  
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Unlike the mean streamwise velocity, the streamwise variance is not the same in the final 

measurement plane.  

The wall-normal variance shows similar trends to the streamwise velocity variance. 

Figure 3.8.3 and figure 3.8.4 show both the odd and even profiles. They are both plotted to show 

the double peak associated with the wall-normal variance. At X/C = 1 the non-fairing case has 

larger values for both peaks. At X/C = 8.4 both odd and even profiles show the fairing case is 

now slightly higher, but very similar to the non-fairing case. The profiles at X/C = 17.8 show the 

fairing case is larger for all profiles. The profiles at X/C = 33 show that all the profiles are very 

similar.  

The spanwise velocity variance in figure 3.8.5 shows that the non-fairing case is higher 

than the airfoil case. The profiles between the two cases then become similar to each other at 

X/C = 8.4. Slight differences are observed at X/C = 17.8 where the non-fairing case is higher at 

Y/H ≤ 0.1. Turbulent kinetic energy is shown in figure 3.8.6. The TKE shows qualitatively 

similar trends to the velocity variances. At X/C = 1 the non-fairing case is higher, but at X/C = 

33 the fairing case is slightly higher. 

Collectively, the measured profiles show that at X/C = 1 the profiles for the fairing case 

are generally above the non-fairing case. Then as the flow develops downstream there is a cross-

over and, the fairing case becomes slightly larger. At X/C = 33 the mean streamwise velocity is 

similar, but the velocity variances and TKE still have some slight differences. Thus, inconclusive 

results are observed. The coarse measurement plane could miss the complete effect from the 

junction. In either case, the fairing does not prevent leading edge separation or the horseshoe 

vortex from forming. This supports the primary conclusion of Devenport et al. [10]. 
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Figure 3.8.1: Fairing and non-fairing streamwise velocity comparison for even spanwise location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 
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Figure 3.8.2: Fairing Comparison Streamwise Variance Even Location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 

 

 

 

Figure 3.8.2: Fairing and non-fairing streamwise velocity variance comparison for even spanwise location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C 

= 33.0 
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Figure 3.8.3: Fairing Comparison Wall-normal Variance Odd Location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 

 

 

 

Figure 3.8.3: Fairing and non-fairing wall-normal velocity variance comparison for odd spanwise location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C 

= 33.0 
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Figure 3.8.4: Fairing Comparison Wall-normal Variance Even Location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 

 

 

 

Figure 3.8.4: Fairing and non-fairing wall-normal velocity variance comparison for even spanwise location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C 

= 33.0 
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Figure 3.8.5: Fairing Comparison Spanwise Variance Even Location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 

 

 

 

Figure 3.8.5: Fairing and non-fairing spanwise velocity variance comparison for even spanwise location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 

33.0 
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Figure 3.8.6: Fairing Comparison TKE Even Location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 

 

 

 

 

 

 

Figure 3.8.6: Fairing and non-fairing turbulent kinetic energy comparison for even spanwise location at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 

33.0 
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CHAPTER 4: CONCLUSIONS 

The present work has enhanced the understanding of the turbulent boundary layer 

junction flow by quantifying the downstream development of the boundary layer compared to an 

undisturbed boundary layer. The results at X/C = 1 show a strong influence of the junction flow 

on the boundary layer dynamics. Specifically, the friction velocity increase indicates a higher 

skin friction drag. The increase in turbulent kinetic energy and the increase in Reynolds stress 

indicates an increase in the turbulent transport due to the presence of the airfoil. 

In a similar experiment to that performed here, Fleming et al. [7] investigated the 

downstream development of a junction flow. The present study is at a higher Reynolds number 

than Fleming and investigates the downstream development over a broader range. The mean 

streamwise velocity of the flow approximately recovers to the undisturbed case at 33 cord 

lengths downstream. The turbulent kinetic energy also appears to recover, but its individual 

components have not necessarily recovered specifically the wall-normal turbulence. The 

vorticity variance profiles provide evidence that large scale effects are primarily responsible for 

the non-equilibrium features of the flow. The spectra observations support this conclusion. The 

friction velocity also tends toward the undisturbed case at X/C = 33 but has not yet fully 

recovered. 

The downstream development of the Reynolds stress showed a surprising result. 

Specifically, while the turbulent kinetic energy shows almost a complete recovery, the Reynolds 
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stress profiles continued to deviate from the undisturbed case. This surprising result indicates 

that the turbulent structure of the flow is very different from the undisturbed case despite the 

kinetic energy profiles being similar. The flow either needs a longer downstream development to 

recover, or a new state of equilibrium is being met. 

In the present study, the effects of the junction flow are observed far downstream. The 

difference may be that in the present study the boundary layer height is on the same order as the 

height of the airfoil, while in previous studies the boundary layer height was only about one-half 

the airfoil height. Tachie et al. [14] performed a study looking at the recovery length of a 

forward-facing step. Their conclusions support the estimates in the literature that the recovery 

process will be completed in 100 length scales of the affected flow region. In their experiment, a 

3mm step affected a boundary layer height of roughly 40mm for the affected flow of 0.075 

leading to an estimated recovery of 7.5δ. They concluded that recovery was complete at x/h = 

100 or 300mm of which 7.5δ = 300. Applying this to the current experiment where the entire 

boundary layer is affected, the recovered length of 100δ where δ = 0.4m would be 40m. The final 

measurement plane is 33 cord lengths which is roughly 35m downstream. Thus, seeing an 

incomplete recovery is reasonable, but the large differences in the Reynolds stress requires 

additional study. 

To further expand on this knowledge, an airfoil with an elliptical nose and tail has been 

manufactured. The height of the airfoil was doubled to remove wake effects over the top as seen 

specifically in the vorticity variance and spectra. This will create a perturbation in which the 

boundary layer would be half the size of the perturbation similar to previous experiments. The 

wake effects are talked about in Tachie et al. [14] and could be penetrating the boundary layer 

and affecting how the flow is recovering. In either case, the present study shows interesting 
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observations to the recovery of the given turbulent boundary junction flow. Further 

experimentation could help to resolve the questions observed in the present study.  
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Figure A.A.1: Displacement thickness at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 
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Figure A.A.2: Momentum thickness at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 
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Figure A.A.3: Displacement and momentum thickness at all locations at spanwise locations z/T and undisturbed turbulent boundary layer (TBL) 

  
  

 

Figure A.A.1: Displacement Thickness at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and undisturbed turbulent 

boundary layer (TBL) 
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Figure A.A.4: Wall-normal mean velocity profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.A.5: Wall-normal mean velocity profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T 

and undisturbed turbulent boundary layer (TBL) 
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Figure A.A.6: Spanwise mean velocity profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.A.7: Spanwise velocity profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.1: Displacement thickness for airfoil with fairing at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.2: Momentum thickness for Airfoil with fairing at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 

 

 

  



 

 

9
3
 

  

Figure A.F.3: Displacement and momentum thickness at all locations for airfoil with fairing at spanwise locations z/T and undisturbed turbulent boundary 

layer (TBL) 
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Figure A.F.4: Fairing streamwise mean velocity profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations 

z/T and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.5: Fairing streamwise mean velocity profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations 

z/T and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.6: Fairing streamwise velocity variance normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.7: Fairing streamwise velocity variance normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T 

and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.8: Fairing wall-normal mean velocity profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations 

z/T and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.9: Fairing wall-normal mean velocity profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations 

z/T and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.10: Fairing wall-normal velocity variance normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T 

and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.11: Fairing wall-normal velocity variance normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.12: Fairing spanwise mean velocity profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations 

z/T and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.13: Fairing spanwise mean velocity profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations 

z/T and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.14: Fairing spanwise velocity variance normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.15: Fairing spanwise velocity variance normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T 

and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.16: Fairing turbulent kinetic energy profiles normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations 

z/T and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.17: Fairing turbulent kinetic energy profiles normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations 

z/T and undisturbed turbulent boundary layer (TBL) 
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Figure A.F.18: Fairing Reynolds Stress 𝑢𝑣̅̅̅̅  normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL)  
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Figure A.F.19: Fairing Reynolds Stress 𝑢𝑣̅̅̅̅  normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.20: Fairing Reynolds Stress 𝑣𝑤̅̅ ̅̅  normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.21: Fairing Reynolds Stress 𝑣𝑤̅̅ ̅̅  normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.22: Fairing Reynolds Stress 𝑢𝑤̅̅ ̅̅  normalized by 𝑢𝜏 at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.F.23: Fairing Reynolds Stress 𝑢𝑤̅̅ ̅̅  normalized by 𝑈∞ at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 at spanwise locations z/T and 

undisturbed turbulent boundary layer (TBL) 
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Figure A.C.1: Fairing and non-fairing streamwise mean velocity comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C 

= 33.0  
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Figure A.C.2: Fairing and non-fairing streamwise velocity variance comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) 

X/C = 33.0  
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Figure A.C.3: Fairing and non-fairing wall-normal velocity comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0  
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Figure A.C.4: Fairing and non-fairing wall-normal velocity comparison for even spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 

33.0  
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Figure A.C.5: Fairing and non-fairing spanwise velocity comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 
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Figure A.C.6: Fairing and non-fairing spanwise velocity comparison for even spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0  
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Figure A.C.7: Fairing and non-fairing spanwise velocity variance comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 

33.0  
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Figure A.C.8: Fairing and non-fairing turbulent kinetic energy comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 

33.0  
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Figure A.C.9: Fairing and non-fairing Reynolds stress 𝑢𝑣̅̅̅̅  comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0  
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Figure A.C.10: Fairing and non-fairing Reynolds stress 𝑢𝑣̅̅̅̅  comparison for even spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0  
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Figure A.C.11: Fairing and non-fairing Reynolds stress 𝑣𝑤̅̅ ̅̅  comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0  
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Figure A.C.12: Fairing and non-fairing Reynolds stress 𝑣𝑤̅̅ ̅̅  comparison for even spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0  
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Figure A.C.13: Fairing and non-fairing Reynolds stress 𝑢𝑤̅̅ ̅̅  comparison for odd spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0  
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Figure A.C.14: Fairing and non-fairing Reynolds stress 𝑢𝑤̅̅ ̅̅  comparison for even spanwise locations at (a) X/C = 1 (b) X/C = 8.4 (c) X/C = 17.8 (d) X/C = 33.0 
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Figure A.S.1: Streamwise Velocity Spectra Normalized H/𝑢𝜏
3 at the Centerline at X/C = 8.4 for airfoil 
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Figure A.S.2: Wall-Normal Velocity Spectra Normalized H/𝑢𝜏
3 at the Centerline at X/C = 8.4 for airfoil 
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Figure A.S.3: Spanwise Velocity Spectra Normalized H/𝑢𝜏
3 at the Centerline at X/C = 8.4 for airfoil 
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