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ABSTRACT 
 
 

MANGANESE LIMITATION AS A MECHANISM FOR REDUCED DECOMPOSITION IN 
SOILS UNDER LONG-TERM ATMOSPHERIC NITROGEN DEPOSITION 

 
by 
 

Emily Whalen 
 

University of New Hampshire, December, 2017 
 
 
Long-term atmospheric nitrogen (N) deposition has been shown to reduce leaf litter and lignin 

decomposition in forest soils, leading to an accumulation of soil carbon. Reduced decomposition 

has been accompanied by altered structure and function of fungal communities, the primary 

decomposers in forest ecosystems; however, a mechanistic understanding of fungal responses to 

chronic N enrichment is lacking. A reduction in soil and litter manganese (Mn) concentrations 

under N enrichment (i.e., Mn limitation) may explain these observations, because Mn is a cofactor 

and regulator of lignin-decay enzymes produced by fungi. We conducted a 6-month incubation 

study to evaluate the effect of Mn availability on decomposition dynamics in chronically N-

enriched soils. We measured ligninolytic enzyme activities, mass loss and lignin (% change) in 

litter, and characterized the whole litter fungal community by ITS2 metabarcoding. We show a 

significant positive correlation between Mn availability and ligninolytic enzyme activities in litter. 

In addition, we demonstrate an increase in the relative abundance of ‘weak’ decomposers (e.g., 

yeasts) under long-term N enrichment, and a reversal of this response with Mn amendment. Our 

results suggest that higher Mn availability may promote fungal communities better adapted to 

decompose lignin. We conclude that Mn limitation plays an important role in decomposition 

dynamics under long-term atmospheric N deposition and may represent a mechanism that explains 

reduced decomposition and soil C accumulation under this global change factor.
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1. Introduction 

Human activities have greatly increased the release of nitrogenous compounds (NOx) to 

Earth’s atmosphere. As a result, atmospheric nitrogen (N) deposition has risen by 200% since the 

start of the industrial revolution, and current rates of deposition are projected to double by 2050 

in many parts of the world (Galloway et al. 2004; 2008). Long-term N deposition has been 

shown to slow leaf litter and lignin decomposition in forest soils, resulting in an accumulation of 

soil carbon (Berg & Matzner 1997; Vitousek et al. 1997; Magill & Aber 1998; Knorr et al. 2005; 

Pregitzer et al. 2008; Zak et al. 2011; Lovett et al. 2013; Frey et al. 2014). A long history of 

research has attempted to pinpoint the underlying cause of this C accumulation and has focused 

much attention on the microbes that regulate decomposition processes in soils, namely fungi 

(Frey et al. 2004; Allison et al. 2007; Freedman et al. 2015; Morrison et al. 2016). Through 

various field studies, simulated N deposition has been shown to reduce fungal biomass (Frey et 

al. 2004; Wallenstein et al. 2006; Treseder 2008), alter fungal community composition (Allison 

et al. 2007; Freedman et al. 2015; Morrison et al. 2016), repress lignin-decay enzyme activity 

(Carreiro et al. 2000; DeForest et al. 2004; Frey et al. 2004) and down-regulate the expression of 

genes encoding these enzymes (Edwards et al. 2011; Hesse et al. 2015). Despite extensive study, 

a mechanistic understanding of this repression of the soil fungal community is still lacking.   

Biological processes in temperate forests are limited by N. The addition of bioavailable N 

via atmospheric deposition has lifted N restrictions on these processes, but has generated novel 

nutrient limitations (Ollinger et al. 1993; Aber et al. 1998; Crowley et al. 2012). Nitrogen-

induced reductions in soil base cation (e.g., calcium) and phosphorus concentrations have 

received considerable attention (Gilliam et al. 1996; Peterjohn et al. 1996; Vitousek et al. 1997; 

Currie et al. 1999; Naples & Fisk 2010; Lovett et al. 2015; Fatemi et al. 2016). Meanwhile, 
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biologically essential soil metals like manganese (Mn) have largely been ignored. Despite this, 

Mn limitation appears to be common across simulated N deposition studies. In a meta-analysis of 

leaf litter chemistry across such experiments in temperate forests, van Diepen et al. (2015) 

showed that litter Mn concentrations are reduced by an average of 24% under N enrichment. 

Berg et al. (2015) synthesized the results of two N deposition experiments in boreal forests and 

showed a significant decline in needle litter Mn with increasing litter N concentrations. In 

addition, others have measured reductions in soil (Turlapati et al. 2013) and foliar (Minocha et 

al. 2015) Mn under long-term N enrichment.  

Myriad studies have demonstrated a strong positive relationship between litter Mn 

concentrations and the rate and extent of decomposition (Berg 2000; Berg et al. 2007; 2010; 

Davey et al. 2007; Trum et al. 2015; Keiluweit et al. 2015). After synthesizing the results of 56 

decomposition studies, Berg et al. (2010) concluded that Mn was the “single main factor” 

influencing litter decomposition rates in forests, even when compared to other litter components 

linked to decomposition (e.g., N, P, K, Ca and Mg). The importance of Mn in decomposition is 

thought to derive from its role in lignin-decay enzyme production (Perez & Jeffries 1992; Steffen 

et al. 2002; Hofrichter 2002). Because of this function, Mn is particularly crucial to the 

decomposition of lignin, a chemically complex, recalcitrant plant biopolymer comprising up to 

~25% of leaf litter (Taylor et al. 1989; Berg et al. 2007; 2010). The rate at which lignin 

decomposes greatly influences total litter mass loss (Berg et al. 1993; Berg 2000). Thus, lignin 

accumulation has been attributed as the process driving C accumulation across simulated N 

deposition experiments (Whittinghill et al. 2012; Eisenlord et al. 2013; Frey et al. 2014). By 

repressing lignin decomposition, reductions in Mn availability (i.e., Mn limitation) under N 

deposition may thereby contribute to soil C accumulation.  
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Manganese influences lignin decay via two distinct mechanisms: (1) enhancing the 

activity of lignin-decay enzymes, and (2) oxidizing lignin via redox reactions (i.e., Mn (III/IV) 

oxidizes lignin and is reduced). The latter mechanism depends on the former, because lignin-

decay enzymes oxidize bioavailable Mn (II), thereby generating Mn (III/IV) oxides. Enzymatic 

Mn oxidation is performed primarily by fungi (Hofrichter 2002; Hansel et al. 2012), the 

dominant decomposers in forest ecosystems (Schneider et al. 2012). The most common lignin-

decay (i.e., ligninolytic) enzyme produced by wood and litter-decomposing fungi is Mn 

peroxidase, which depends on Mn for its activity (Hofrichter 2002). The activities of other 

ligninolytic enzymes are enhanced by Mn, including heme peroxidases (lignin peroxidase; 

versatile peroxidase) and phenol oxidase (e.g., laccase; Dashtban 2010; Hatakka & Hammel 

2010). Manganese peroxidase and laccase influence lignin decay by oxidizing Mn (II) to Mn 

(III/IV; Hofrichter 2002; Schlosser & Hofer 2002). Manganese (III/IV) oxides are some of the 

strongest oxidants in nature, and can rapidly depolymerize phenolic components of lignin (Sunda 

& Kieber 1994; Hansel et al. 2012; Remucal & Ginder-Vogel 2014). Lignin peroxidase and 

versatile peroxidase can decompose lignin directly by opening its ring structures, and this 

activity is stimulated by Mn (Archibald & Roy 1992; Perez & Jeffries 1992; Dashtban 2010; 

Hatakka & Hammel 2010).  

Due to its heterogeneous and chemically complex structure, lignin tends to accumulate 

during late-stage decomposition, and its decay is considered the rate-limiting step of the 

decomposition process (Berg 2000; 2014). To accomplish efficient lignin decomposition, fungi 

use a suite of enzymes (discussed above) that target distinct components of the lignin polymer 

(Rayner & Boddy 1988; Dashtban 2010; Hatakka & Hammel 2010). The only group of fungi 

known to produce the entire suite of enzymes, and thus capable of complete lignin 
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decomposition to CO2, are white-rot fungi (Hatakka 1994; Hofrichter 2002; Dashtban 2010). 

Therefore, white-rot fungi are considered the most efficient (‘strong’) lignin decomposers in the 

fungal community. In addition, white-rot fungi are members of the Agaricomycetes within the 

Basidiomycota, and the ability to produce class II peroxidases (manganese peroxidase; lignin 

peroxidase; versatile peroxidase) is restricted to the Agaricomycetes (Floudas et al. 2012; 

Bodeker et al. 2014). Although the Agaricomycetes encompass ectomyccorhizal (Bodeker et al. 

2009; 2014) and pathogenic (Yakolev et al. 2013) fungal taxa, genes encoding the class II 

peroxidases are most abundant (i.e., highest copy numbers) in white-rot fungi (Floudas et al. 

2012; Kohler et al. 2015), contributing to the efficiency of lignin decay by these organisms.  

In contrast, other fungal functional groups are unable (e.g., yeasts) or less efficient (e.g., 

pathotrophs with the capacity for facultative saprotrophy) at decomposing lignin (Eastwood et al. 

2011; Aguilar-Trigueros et al. 2014; Kohler et al. 2015; Treseder & Lennon 2015). Yeasts are a 

group of unicellular saprotrophs associated with the decomposition of highly labile C compounds 

(e.g., sugars; Botha et al. 2010; Treseder & Lennon 2015). Yeasts do not possess genes encoding 

lignin-decay enzymes and are thus considered ‘weak’ decomposers. Recently, Morrison et al. (in 

prep) demonstrated an increase in the relative abundance of yeasts under long-term N deposition, 

concluding that this increase in ‘weak’ decomposers may explain reductions in ligninolytic 

enzyme activity and lignin decay. Due to the fundamental role of Mn in the production of 

ligninolytic enzymes, Mn limitation under N deposition could be an important factor shaping the 

relative proportion of ‘strong’ vs. ‘weak’ decomposers in the fungal community.  

We hypothesize that (1) Mn limitation contributes to reduced lignin and leaf litter 

decomposition under long-term N deposition; and (2) Mn limitation is a factor underlying shifts 

in fungal community composition that have been observed in long-term simulated N deposition 
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experiments (e.g., Morrison et al. 2016; in prep). To test these hypotheses, we (1) quantified Mn 

concentrations in leaf litter at the Harvard Forest Chronic Nitrogen Amendment Study, hereafter 

CNAS (Petersham, MA, USA); and (2) conducted an incubation experiment in which we applied 

Mn amendments to soils from this site. After ~6 months of incubation, we evaluated litter mass 

loss, the percent change in litter lignin, and the potential activities of ligninolytic enzymes 

(peroxidase and phenol oxidase). Further, we characterized fungal community composition by 

ITS2 metabarcoding of the whole litter fungal community. We link our community data to recent 

work characterizing the total and active litter fungal communities at CNAS (Morrison et al. in 

prep) with the goal of describing the role that Mn plays in structuring fungal communities.   

 
 
2. Materials and methods 
 
2.1.  Experimental site 
 
 Samples were collected from the Chronic Nitrogen Amendment Study at the Harvard 

Forest Long-Term Ecological Research (LTER) site (Petersham, MA, USA; 42o 30’N, 72o10’W). 

This experiment was established in 1988 and had received 27 consecutive years of fertilization 

prior to our sampling (June 2015). Soils are classified as Typic Dystrudepts of the Gloucester 

series (Peterjohn et al. 1994) and are stony-to-sandy loam in texture. Experimental plots are in a 

mixed-oak forest dominated by black and red oak (Quercus velutina and Quercus rubra, 

respectively), with some interspersed black birch (Betula lenta), red maple (Acer rubrum) and 

American beech (Fagus grandifolia). Understory vegetation includes seedlings/saplings of 

striped maple (Acer pensylvanicum) and American beech as well as some herbaceous shrubs. 

Mean annual precipitation is 110 mm and mean temperatures range from 20oC in July to -7oC in 

January. Ambient atmospheric N deposition averages 8-10 kg N ha-1 yr-1 (Schwede and Lear 
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2014). This experiment is comprised of three 30 m x 30 m megaplots that receive one of the 

following N treatments as liquid NH4NO3 fertilizer: N0 (control; no N addition), N50 (50 kg N 

ha-1 yr-1), and N150 (150 kg N ha-1 yr-1). Each megaplot is divided into thirty-six 5 m x 5 m 

subplots. The outermost row of subplots is excluded from each megaplot to prevent the influence 

of an edge effect, leaving sixteen active 5 m x 5 m subplots per megaplot (N treatment). Nitrogen 

treatments were established to evaluate the effects of N enrichment on ecosystem processes. 

Globally, N deposition rates are projected to double by 2050 with some areas experiencing up to 

60 kg N ha-1 yr-1 (Galloway et al. 2008). Thus, CNAS uses chronic N amendments as a space-

for-time substitution to simulate future impacts of elevated N (N50 treatment) and N saturation 

(N150 treatment; Aber et al. 1998; Aber & Magill 2004) on ecosystem processes. 

 
 
2.2  Sample collection  
 
 We conducted a two-factor factorial incubation experiment with samples collected from 

CNAS that we amended with Mn (N x Mn factorial). We first describe sample collection for this 

incubation experiment. Then, we describe the collection of soils and leaf litter that were analyzed 

to determine the initial chemistry of the soils and litter we used in our incubations.  

In preparation for the incubation experiment, intact soil cores (5 x 10 cm) were collected 

from six randomly selected subplots of each N treatment at CNAS. These cores contained 

approximately 2/3 organic horizon soil, and 1/3 mineral soil, although the exact proportions 

varied based on the depth of the O horizon at each sampling location. These cores were 

transported in 10 oz. plastic cups on ice to the University of New Hampshire where they were 

stored at 4oC until incubation initiation. In addition, newly shed leaf litter was collected from 

each subplot to serve as the litter layer in the incubation (‘undecomposed litter’). This leaf litter 
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was later analyzed to evaluate initial chemistry of these litter inputs.  

To evaluate the starting chemistry of soils in our incubation, additional organic horizon 

and mineral soil samples were collected from each N treatment. Organic soils (Oe/Oa) were 

retrieved by removing 20 x 20 cm forest floor squares to the depth of the mineral soil. Leaf litter 

(Oi) was carefully removed from the top of each square. Mineral soil was collected from beneath 

each forest floor square using a 5 cm diam. x 10 cm deep corer. Samples were transported to the 

lab where organic and mineral soils were sieved (<2 mm) to remove coarse woody debris, roots 

and rocks.  

 
 
2.3  Leaf litter and soil chemistry 
 

To characterize the initial chemistry of litter inputs to our incubation, undecomposed 

litter nutrient (Ca, Mn, Mg, P, K, Al, B, Cu, Fe and Zn) concentrations were determined via ICP-

AES. Samples were prepared for analysis by dry ashing and acid digestion in a solution of 50% 

hydrochloric acid (Kalra and Maynard 1989). Litter C and N were assessed via dry combustion 

using a Perkin-Elmer CHN Series II 2400 Elemental Analyzer (Perkin Elmer Inc., Waltham, 

MA). Litter organic matter chemistry was characterized using pyrolysis gas chromatography and 

mass spectrometry (py-GCMS) to determine the relative abundance of lignin, phenols and other 

aromatic compounds. Briefly, samples were pyrolyzed at 600oC on a CDS Pyroprobe 5150 

pyrolyzer (CDS Analytical Inc., Oxford, PA) and decomposed products were transferred to a 

Thermo Trace GC Ultra gas chromatograph (Thermo Fisher Scientific, Austin, TX) and 

subsequently to a Polaris Q mass spectrometer (Thermo Fisher Scientific). Here, products were 

ionized and detected using an Automated Mass Spectral Deconvolution and Identification 

System (AMDIS, V 2.69). Recorded peaks were classified using the National Institute of 
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Standards and Technology (NIST; accessed: March 2017) compound library and the relative 

percentages of organic matter compounds were calculated as in Grandy et al. (2009) and 

Wickings et al. (2011).  

Soil pH was quantified in distilled water (1:10 wt/vol) using a digital pH meter. Soil 

moisture was determined by oven drying organic horizon material at 60oC for 48 hours and 

mineral soils at 105oC for 24 hours. Exchangeable soil acidity was evaluated by soil extraction 

with 1M KCl and subsequent titration with dilute NaOH. Cation exchange capacity (CEC) was 

calculated thereafter using the equation, CEC = exchangeable acidity (meq) + exchangeable base 

cations (meq; Ca, Mg, K, Na).  

 
 
2.4  Extracellular Enzyme Activity 
 

Within 24 hours of sampling, leaf litter collected from each forest floor square was 

assessed for the activities of two ligninolytic enzymes. Fresh leaf litter was homogenized, 

subsampled and analyzed using colorimetric assay techniques outlined by Saiya-Cork et al. 

(2002). Peroxidase activity was assessed with the substrate 3,3’-5,5’-Tetramethylbenzidine 

(TMB + 0.3% hydrogen peroxide [H2O2]; Johnsen and Jacobsen 2008). Phenol oxidase activity 

was evaluated using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS; Floch et al. 

2007). For assays, ~0.5 g fresh leaf litter were homogenized in 125 mL of 50 mM sodium acetate 

buffer (pH = 4.7) in a blender for 30 seconds to form leaf litter slurries. Litter slurries were 

transferred to 96-well microplates along with enzyme-specific substrates (TMB, ABTS). 

Microplates were incubated at 250C for 15 minutes (ABTS) or 20 minutes (TMB + H2O2), 

representing the time necessary to elicit maximal potential enzyme activity (substrate-specific; 

determined by Vmax test). Following incubation, absorbance was determined using a BioTek 
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Synergy!HT Multi-detection Microplate Reader with emission wavelengths set at either 420 nm 

(ABTS) or 450 nm (TMB + H2O2). Enzyme activities were standardized by litter moisture 

contents, which were determined by drying litter at 60oC for 48 hours. Final enzyme activity 

values were calculated following methods outlined by DeForest (2009) and are reported as 

µmole substrate per hour per gram dry litter (µmol h-1 g-1). ! 

 
 
2.5  Incubation assembly 
!

Intact soil cores, which included both organic and mineral soil, were incubated in 10 oz. 

plastic cups set inside one-gallon glass pickle jars. Each soil core was topped with a mesh 

compartment (0.3 mm pores) containing 1.6 g of dry, undecomposed oak leaf litter (2 cm x 2 cm 

pieces), representing the dominant litter type at CNAS (~85% of trees in the plots are oak). The 

use of intact soil cores was intended to simulate a realistic medium for leaf litter decomposition 

(a mini soil profile) and mesh was used to facilitate the complete removal of litter at the end of 

the incubation. The quantity of oak litter added represents approximately two-times the average 

litter mass found at CNAS on an area basis. Based on previous CNAS decomposition studies, we 

estimated that we would need ~1.6 g litter to ensure that decomposition could continue for six 

months and enough litter would remain for our planned analyses. 

Soil cores (n = 48) were incubated at 25oC for ~6 months (167 days) to evaluate the role 

of Mn in mid- to late-stage litter decomposition. Before incubation, soil moisture was 

standardized to 60% water-holding capacity and 60% field capacity across the forest floor 

(Oe/Oa) and mineral soil components of each core, respectively. Briefly, water-holding capacity 

of forest floor material was determined for six replicates of each N treatment as in Kittredge 

(1955) and Naeth et al. (1991) and mineral soil field capacity was assessed following standard 
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methods (sensu Veihmeyer & Hendrickson 1949). Once soil cores were assembled for 

incubation, Mn amendments were surface applied to leaf litter. Mn amendments were added 

using liquid solutions of manganese sulfate tetrahydrate (MnSO4 - 4H2O; 223.05 g mol-1). We 

anticipated that it would take a long time for Mn amendments to reverse the effects of ~30 years 

of N fertilization, especially in the strongly acid soils of CNAS; thus, we chose to repeatedly 

apply Mn via once monthly amendments (0.5 ml applications; 6 applications total). These 

amendments served as a space-for-time substitution (like that of N enrichment at CNAS) to 

simulate conditions where Mn was no longer limiting. One of three Mn amendments was 

applied: ambient (no additional Mn, only native litter Mn); low Mn; or high Mn. The ‘low’ rate 

of Mn amendment was based on initial Mn concentrations in control N litter (~3 mg g-1 litter; 

Table 1). The high Mn amendment rate was 2x that of the low Mn rate. Over the course of the 

incubation, more Mn was added to chronically N-fertilized samples than control N samples 

(Table 3) because these samples were assumed to be more Mn-deficient due to lower initial litter 

Mn concentrations (Table 1). Due to an error in our Mn application scheme, we have excluded 

the control N, low Mn treatment pair. As such, all of our analyses are based on 8 treatment pairs 

(3 Mn treatments x 3 N treatments – 1 = 8 treatment pairs). 

 
 

2.6 Incubation harvest and analysis 

 Following nearly 6 months of incubation, mesh dividers were removed and remaining 

litter was weighed to determine mass loss. Litter was then homogenized and subsampled for 

analysis. A subsample was immediately lyophilized to determine litter moisture at time of 

harvest. This subsample was later analyzed via ICP-AES to determine total litter Mn 

concentrations as described in section 2.3. A separate ~0.5 g subsample of fresh litter was 
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collected for extracellular enzyme analysis. Litter samples were slurried with 50 mM sodium 

acetate buffer and the activities of peroxidase and phenol oxidase were assayed as described in 

section 2.4. Final enzyme activity values were standardized on a sample by sample basis using 

the dry weight equivalent of litter at harvest. Lastly, a third subsample of fresh litter (~0.75 g) 

was collected in microcentrifuge tubes, flash frozen with liquid nitrogen, and stored at -80oC for 

downstream DNA extraction.   

 
 
2.7 DNA extraction and amplification 
 
 Following incubation, DNA was extracted from decomposed leaf litter (0.25 g) using the 

DNeasy PowerMax Soil Kit (Qiagen Sciences Inc., Germantown, MD). The ITS2 region 

(Schoch et al. 2012) was amplified using fungal specific primers fITS7 (Ihrmark et al. 2012) and 

ITS4 (White et al. 1990) which contained an Illumina adaptor sequence, an 8 bp pad sequence, a 

2 bp linker sequence and one of 48 (n = 48) unique 8 bp index sequences (Morrison et al. 2016). 

Triplicate PCR reactions were conducted under the conditions outlined by Caporaso et al. 2011: 

10 µM fITS7 (0.5 µL), 10 µM ITS4 (0.5 µL), Five Prime Hot Master Mix (10 µL), PCR grade 

water (13 µL) and template DNA (1 µL). DNA was amplified in a Bio-Rad T100!Thermal 

Cycler (Bio-Rad Laboratories Inc., Hercules, CA) following the temperature cycles used by 

Caporaso et al. 2011. Successful DNA amplification and fragment size were confirmed on a 

1.5% agarose gel. PCR products were purified using the AxyPrep MAG PCR Clean-up Kit 

(Corning, Tewksbury, MA). Cleaned PCR products were assessed fluorometrically with a 

Qubit" 3.0 Fluorometer to quantify DNA concentrations (Life Technologies, Grand Island, NY). 

An equimolar amplicon library was generated and DNA sequencing was conducted by Illumina 

MiSeq (v2; 2 x 250 bp chemistry) at the Indiana University Center for Genomics and 
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Bioinformatics (Bloomington, IN). Sequences were de-multiplexed during data extraction from 

the sequencer. 

 
 
2.8 Bioinformatics 
 
 Sequencing adaptors and PCR primers were removed from sequence reads using 

Trimmomatic v. 0.36 (Bolger et al. 2014) prior to downstream filtering. Paired end reads were 

merged using the ‘UPARSE’ command in USEARCH v. 10 (‘usearch10’; Edgar 2013) and bases 

with Phred scores < 3 removed (with specification ‘fastq_minqual=3’). Merged sequences were 

quality filtered with the ‘fastq_filter’ function in usearch10 (maximum expected error rate setting 

of 0.5) and all sequences < 150 bp were removed. Filtered sequences were dereplicated using the 

usearch10 ‘derep_fulllength’ command and input into ITSx (Bengtsson-Palme et al. 2013) for 

ITS2 region extraction. Extracted ITS2 sequences were clustered based on a similarity threshold 

of 97% using the usearch10 cluster_otus algorithm to generate operational taxonomic units 

(OTUs; Edgar 2010). Fungal taxonomy was assigned in QIIME (Caporaso et al. 2010) by 

comparing the representative sequence of each OTU to the UNITE database (Kõljalg et al. 

2013). Abundant representative sequences without a match in the UNITE database were blasted 

against the NCBI non-redundant nucleotide database using the ‘blastn’ search option. Blast 

searches were performed manually for representative sequences with >500 sequences per OTU 

in our dataset and hits were accepted if they met the following standards: a minimum bit score of 

200; E value < 0.0001 (although, ours ranged from 10e-70 to 10e-50); and query coverage # 98% 

(E-value based on minimum accepted E-value in QIIME; Caporaso et al. 2010; see also Pearson 

2013). Singletons (OTUs with a single sequence) and non-fungal OTUs were removed, and 

samples were rarefied to a depth of 9,278 sequences, representing the minimum number of 
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sequences in any sample. This left 569 fungal OTUs in our dataset for analysis. Relative 

sequence abundance of each OTU was calculated and this metric was used for comparisons of 

community composition across treatments. Because DNA extraction efficiency varies from 

sample to sample, absolute sequence abundance is not an accurate metric by which to compare 

OTU abundance, and calculating relative abundances is thus necessary. Thereafter, OTUs with 

known taxonomies were parsed into functional groups using database curation by Tedersoo et al. 

(2014). For the purpose of comparison to Morrison et al. (in prep), a functional analysis of litter 

fungal communities across N treatments at CNAS, we parsed our community data into the 

following functional groups: filamentous saprotrophs, yeasts, white-rot fungi, plant pathogens 

and ectomycorrhizal fungi following criteria outlined in this paper. Classification of OTUs as 

yeasts vs. non-yeasts is readily accomplished using the Tedersoo et al. (2014) database, which is 

why we selected this classification approach over more recent fungal functional classification 

tools such as FunGUILD (Nguyen et al 2015). 

 
 
2.9 Statistical analyses 
!   

All statistical analyses were performed in R 3.3.1 (R Core Team 2016). The effects of 

field N treatments on soil C and N stocks, pH, exchangeable acidity, litter micro and 

macronutrient concentrations, total “aromatics” (lignin, phenols, and aromatic compounds) and 

ligninolytic enzyme activities were evaluated using one-way ANOVA and post-hoc Tukey HSD 

tests. Levene’s test of homogeneity of variances and the Shapiro-Wilk normality test were used 

to assess homoscedasticity and the normality of residuals, respectively. When homoscedasticity 

was not achieved, data were evaluated using non-parametric Kruskal-Wallis and post-hoc Dunn 

tests.  
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In the two-factor factorial laboratory experiment, the effects of Mn and N treatments on 

mass loss, percent change in lignin and ligninolytic enzyme activities were assessed using two-

way ANOVA. Ligninolytic enzymes were evaluated as the summation of peroxidase (PER) and 

phenol oxidase (POX) activities, i.e., PER + POX. Enzyme activity values were square root 

transformed to meet assumptions of normality and homoscedasticity of residuals. The relative 

abundance of lignin, phenols and aromatics were summed and were analyzed as one common 

term, total “aromatics”. The percent change in total aromatics was calculated and differences 

across Mn and N treatments were evaluated with two-way ANOVA.  

To visualize the effects of Mn and N treatments on fungal community composition, we 

performed non-metric multidimensional scaling (NMDS) of Bray-Curtis distances calculated 

from the log(x+1)-transformed OTU relative abundance values (‘vegan’ package; Oksanen et al. 

2015). To confirm the statistical significance of the NMDS ordination, we conducted 

permutational multivariate analysis of variance (PerMANOVA; Anderson 2001). To assess the 

influence of Mn and N treatments on individual OTUs or fungal functional groups, we conducted 

univariate two-way ANOVA on OTU or functional group relative abundance. Prior to analysis, 

data were arcsine-transformed to meet homogeneity of variance assumptions. If the analysis 

resulted in a significant interaction between Mn and N, the simple effects of Mn and N were 

evaluated independently using Tukey HSD tests. If there was no significant interaction term, 

only the main effects were tested. We evaluated the relative abundance of individual OTUs for 

significant differences across treatments if they represented # 10% of OTUs in any given 

treatment pair. This cutoff encompassed OTUs with a minimum average relative abundance 

across all treatments of 0.068% (i.e., we evaluated down to a very low presence across the entire 

dataset).  
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3. Results 

 We conducted a two-factor factorial incubation experiment with samples from a long-

term simulated N deposition experiment that we amended with Mn (N x Mn factorial). We first 

describe the effects of the chronic N field treatments on in situ leaf litter and soil chemistry to 

give context for how these varied in our incubation based on the N treatment they were sourced 

from. Then, we present the results of our incubation experiment, in which we describe the effects 

of Mn amendments on decomposition dynamics and fungal community characteristics. We also 

describe how the legacy effects of chronic N enrichment influenced these variables.   

 
 
3.1 In situ litter and soil chemistry 

Chronic N increased litter N concentrations by 25%, but significantly reduced litter Mn, 

as well as the base cations Ca, Mg, and K (Table 1). Manganese was reduced by ~57% and 

~72% under N50 and N150 conditions, respectively, and was one of the elements most affected 

by N. In addition, chronic N significantly reduced the abundance of aromatic compounds, 

representing the sum total of lignin, phenols and other aromatics. Aromatics declined by ~44% 

under chronic N enrichment, from 28.6% (N0) to 16.1% (N150) of litter components (Fig. S3a). 

We assayed leaf litter from the field N treatments and found a suppression of phenol oxidase 

activity (P = 0.0004) with N addition, but no difference in peroxidase activity (Table 1).  

Soil pH of the organic horizon declined from approximately 4.03 in the N0 treatment to 

3.38 in N150 (P = 0.009; Table 2). Mineral soil pH followed a similar trend, decreasing from 

4.66 (N0) to 3.93 (N150; P = 0.0005). Correspondingly, exchangeable soil acidity increased up 

to ~29% in the organic horizon and 65% in mineral soil with N addition (P = 0.005 and P = 



! 16 

0.001, respectively). Soil CEC also increased in the mineral horizon (P = 0.002; Table 2).  These 

data represent initial litter and soil chemistry prior to incubation initiation. 

 

3.2 Incubation experiment 

3.2.1 Mn accumulation in decomposed litter 

 To confirm that Mn amendments elevated litter Mn concentrations as intended, we 

analyzed the total Mn concentration in leaf litter at harvest (i.e., after 6 months of 

decomposition). All litter accumulated Mn, and Mn-amended samples accumulated the most 

(Fig. S1). There was a relationship between the rate of Mn accumulation and field N enrichment 

level: samples from the highest N treatment accumulated and/or retained less Mn than control 

and intermediate N (N50) treatments.    

 

3.2.2 Litter mass loss and ligninolytic enzyme activities 

Long-term N enrichment reduced total litter mass loss and lignin loss (P = 0.003 and P = 

0.001, respectively; Table 3). Counter to expectations, Mn amendments did not significantly 

increase decomposition. However, there was a trend towards increased mass loss with increasing 

Mn (P = 0.07; two-way ANOVA). This trend was visually apparent in the N0 and N50 

treatments (Fig. S2); but, there was no apparent change in mass loss with Mn in the N150 

treatment. Lignin percent change varied by N treatment, but not by Mn treatment (Table 3). 

Chronic N enrichment increased lignin retention in the highest N treatment (P = 0.001; two-way 

ANOVA). 

 Long-term N enrichment repressed ligninolytic enzyme activity, particularly in the 

highest N (N150) treatment. However, Mn amendments significantly elevated the activity of 
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these enzymes (P < 0.0001; two-way ANOVA; Fig 1a), releasing N-induced limitations on their 

activity. There was a significant correlation between enzyme activity and total Mn (P < 0.0001; 

R2 = 0.481), where total Mn represents the initial litter Mn concentration plus the cumulative 

amount of Mn added over the course of the incubation. Overall enzyme activity levels were 

lowest in the highest N treatment (N150); however, this treatment experienced the greatest 

percent increase in ligninolytic enzyme activity in response to the high Mn amendment (relative 

to ambient Mn levels; Table 3). We present the ligninolytic enzyme data as the sum of 

peroxidase (PER) and phenol oxidase (POX) activities (Fig. 1a; 1b) because PER and POX 

responded similarly to Mn amendments.  

 

3.2.3 Fungal community composition 

During incubation, both long-term N enrichment and Mn amendments restructured the 

litter fungal community (Fig. 2; N: P = 0.001; Mn: P = 0.002; PerMANOVA). There was a 

significant interaction between the effects of N and Mn on filamentous saprotroph relative 

abundance, the most dominant fungal functional group in our dataset (Fig. 3a). Thus, we have 

analyzed the simple effects of N and Mn separately. Chronic N enrichment reduced the relative 

abundance of filamentous saprotrophs from ~94% to ~68% (ambient Mn samples; Tukey HSD 

test; Fig. 3a). Manganese amendments compounded this effect in the highest N treatment 

(N150), further decreasing filamentous saprotroph relative abundance from ~68% (ambient Mn) 

to ~37% (high Mn; Tukey HSD test; Fig. 3a). 

After filamentous saprotrophs, the second most abundant functional group was comprised 

of taxa for which there was no functional annotation (i.e., no assigned trophic status; Fig. 3b). 

While filamentous saprotrophs declined in response to high N and Mn availability, the “no 
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functional annotation” category increased in relative abundance, reaching its highest point in the 

highest N, highest Mn treatment, where almost 60% of taxa had no functional annotation. 

Notably, one OTU comprised the majority of this “no functional annotation” group, 

Coccinonectria rusci (OTU2). We present the simple effects of N and Mn on the relative 

abundance of this organism due to a significant interaction in the two-way ANOVA (Fig. 4). The 

relative abundance of C. rusci increased under chronic N enrichment from ~0.14% (N0) to 

~6.13% (N150) across ambient Mn samples (Tukey HSD test). C. rusci responded even more 

strongly to the combined effects of added N and Mn, increasing from ~6.13% in ambient Mn 

samples to 53.3% in highest N, highest Mn samples (Fig. 4). 

Chronic N addition increased the relative abundance of pathotrophs from ~3% (N0) to 

~16% (N150) of the fungal community (P = 0.008; two-way ANOVA; Fig. 3c). In contrast, Mn 

amendments reduced pathotroph abundance from 16% to 5% relative abundance (P = 0.023; 

two-way ANOVA). This decline with Mn addition returned pathotroph relative abundance to 

levels comparable to those of N0 and N50 treatments (Fig. 3c). There was no difference in 

pathotroph abundance between N0 and N50 treatments. All described pathotrophs were 

classified as Ascomycetes. 

Similar to the pathotroph response, chronic N addition increased the relative abundance 

of yeast taxa in the highest N treatment (ambient Mn samples; note significant N*Mn interaction; 

Fig. 3d). Yeast relative abundance was ~0.27% in N0 samples (ambient Mn), compared to 

~1.50% in N150 samples (ambient Mn). Adding Mn counteracted this effect, reducing the 

average relative abundance of yeasts back to 0.27% in the highest N, highest Mn treatment. The 

relative abundance of white-rot fungi was elevated in the highest N treatment (P = 0.001), but 

was unaffected by Mn amendment (Fig. S6).   
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4. Discussion 

 We show that long-term simulated N deposition reduces the concentration of Mn 

available to support fungal decomposition of leaf litter. Further, we demonstrate that the addition 

of bioavailable Mn significantly increases the activities of the ligninolytic enzymes peroxidase 

and phenol oxidase. Concomitant with this change in microbial function, we show a shift in 

fungal community composition with Mn addition, which helps to explain the functional response 

we observed. 

 In a recent meta-analysis of leaf litter chemistry under long-term N enrichment, van 

Diepen et al. (2015) demonstrated a decline in litter Mn concentrations with increasing N 

fertilization in temperate forests. Here, we show the same trend in litter Mn at Harvard Forest. 

Others have shown that Mn is reduced in soils (Turlapati et al. 2013) and foliage (Minocha et al. 

2015) at this site. We hypothesize that reduced Mn availability is a result of N-induced leaching 

of Mn from soils. Nutrient (i.e., Mn) recycling in organic horizon soils is the primary source of 

plant-available Mn (Graham et al. 1988); Mn leaching from soils may thereby reduce foliar and 

litter Mn concentrations.  

Manganese leaching may be driven by reductions in soil pH. We documented a decline in 

both organic horizon and mineral soil pH with chronic N additions. Acidification is a common 

effect of simulated N deposition, because microbial uptake and nitrification of ammonium from 

fertilizers generates hydrogen ions, thereby decreasing pH (Vitousek et al. 1997). As soil pH 

declines, Mn becomes solubilized (Mn2+) in soil solution, making it more bioavailable (Sims 

1986; Kogelmann & Sharpe 2006). However, at very low pH, like those observed in our study 

(pH 3-4), soil cation exchange sites are commonly occupied by strongly-bound Al3+ cations 

(Bowman et al. 2008; Rengel 2015) and Mn2+ is susceptible to leaching. Reductions in soil pH 
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below pH 4 have been shown to induce Mn leaching (Ha et al. 2011). Furthermore, nitrate   

(NO3
-) leaching is common in long-term N enrichment studies (Peterjohn et al. 1996; Vitousek et 

al. 1997; Aber et al. 2003; Lovett & Goodale 2011), including at Harvard Forest (Aber et al. 

1998; Currie et al. 1999), and NO3
- typically binds with a cation (e.g., Mn2+) when leaching 

(Peterjohn et al. 1996; Vitousek et al. 1997; Aber et al. 2003). Thus, both of these N-induced 

leaching mechanisms may contribute to reductions in Mn availability for decomposer fungi.   

 Elevating bioavailable Mn concentrations for six months did not significantly influence 

total litter mass loss; however, given our understanding of the role of Mn in litter decomposition, 

this is not entirely unexpected. Manganese is known to play an important role in lignin decay, 

which dominates during late-stage litter decomposition (Berg & Matzner 1997; Berg & 

McClaugherty 2014). Litter mass loss proceeded to a greater extent in the control and 

intermediate N treatments than in the highest N (N150) treatment. In accordance with this trend, 

N150 samples retained more lignin (i.e., slower rates of lignin decomposition). Because greater 

lignin decay occurred in control and intermediate N samples, more Mn was likely required, 

which explains the trend towards increased mass loss with Mn amendment in these samples (Fig. 

S2). In contrast, there was no effect of Mn on mass loss in the N150 samples, which can likely be 

explained by lower rates of lignin decay and thus lower fungal requirements for Mn.  

While mass loss was unaffected, ligninolytic enzyme activities increased significantly 

following Mn amendment. The role of Mn in the production of ligninases like Mn peroxidase 

(MnP) is well known; however, our understanding of this relationship comes primarily from 

culture work with model taxa (e.g. Phanaerochaete chrysosprorium; Glenn et al. 1983; Tien & 

Kirk 1983; Perez & Jeffries 1992; Hatakka 1994; Steffen et al. 2002). To the best of our 

knowledge, this is the first direct evidence of the relationship between Mn availability and 
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ligninase activities from natural soil microbial communities. Further, we are only aware of two 

studies which have used Mn amendments to directly evaluate the role of Mn in decomposition 

(Trum et al. 2011; 2015), neither of which were conducted in the context of atmospheric N 

deposition. Thus, to the best of our knowledge, this is also the first paper to demonstrate the 

importance of Mn availability in decomposition processes under chronic N enrichment.  

Given that ligninolytic enzyme activities increased to such a great extent with Mn 

amendment, we expect that a longer incubation period (1+ years) would have captured a positive 

effect of Mn on mass loss, regardless of N treatment. Overall ligninase activities were lowest in 

the highest N treatment; however, relative to ambient conditions (no Mn amendment), the 

highest N, highest Mn treatment experienced the greatest increase in ligninase activity. This 

suggests that there is a legacy effect of high chronic N enrichment (N150 treatment) which 

suppressed the upper limit of enzyme activity; but, Mn amendment began to release this 

limitation. As decomposition progresses and lignin decay comes to dominate (Berg & Matzner 

1997; Berg & McClaugherty 2014), the strength of this Mn effect will likely grow.  

In addition to the clear response in ligninolytic enzyme activities, we observed a 

significant shift in fungal community composition with Mn amendment, which helps to explain 

the enzyme response we observed. Previous studies evaluating the effects of long-term N 

enrichment on fungal community composition have demonstrated shifts in the relative 

abundance of fungal functional groups. Specifically, N enrichment has been shown to increase 

the relative abundance of yeasts in leaf litter (Morrison et al. in prep) and pathogenic fungi in 

soils (Morrison et al. 2016). We show a reversal of these N effects on fungal community 

composition with Mn amendment, suggesting that Mn plays an important role in structuring litter 

fungal communities under long-term N enrichment.  
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In our study, the relative abundance of yeasts increased from 0.27% to 1.5% relative 

abundance with chronic N enrichment (under ambient Mn conditions). Morrison et al. (in prep) 

demonstrated a ~200% increase in yeast abundance under long-term N enrichment in the field at 

our site, from 2.0% to 5.8% relative abundance in the highest N treatment. Although yeasts 

represented a smaller proportion of the fungal community in our incubations, we show a 455% 

increase in yeast relative abundance between the control and highest N treatments (under 

ambient Mn conditions). Yeasts do not possess genes encoding lignin-decay enzymes, and are 

better adapted to decompose simple carbon compounds (e.g., sugar monomers; Botha 2011; 

Treseder & Lennon 2015). For this reason, an increase in the relative abundance of yeasts has 

been suggested as a mechanism for reduced decomposition and increased soil C storage 

(Treseder & Lennon 2015), which may explain soil C accumulation under long-term N 

enrichment (Morrison et al. in prep). We show that the addition of bioavailable Mn reduces the 

relative abundance of yeasts to control N levels (N150 treatment), suggesting that Mn limitation 

underlies this increase in yeasts under long-term N enrichment.  

 In addition, we show an increase in the relative sequence abundance of pathotrophic 

fungi under chronic N enrichment, which is consonant with the results of Morrison et al. (2016). 

Consistent with the response we observed in yeast taxa, adding Mn reduced pathotroph relative 

abundance, again suggesting that Mn limitation may have contributed to previously observed 

shifts in the fungal community under long-term N enrichment. It is important to note that we 

excluded pathotroph hosts from our incubation; thus, the functional role of so-called fungal 

‘pathotrophs’ (e.g., plant pathogens) is not explicit. It is likely that many taxa in this category 

were acting as saprotrophs because facultative saprotrophy is a well-established alternate 

function of ‘pathotrophs’ (Jumpponen & Trappe 1998; Promputtha et al. 2007; Rodriguez et al. 
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2009). Although certain facultative pathotroph-saprotrophs may be classified as ‘intermediate’ or 

‘strong’ decomposers (e.g., the white-rot pathogen Heterobasidion irregulare), there appear to 

be drawbacks to having dual-ecologies. These drawbacks include possessing genes encoding 

only one, rather than the entire suite of class II peroxidases (e.g., MnP in the case of H. 

irregulare; Yakolev et al. 2013), and possessing low copy numbers of such genes (Kohler et al. 

2015). These patterns are suggestive of less efficient lignin decomposition in these organisms.  

In our study, all documented pathotrophs were classified as Ascomycetes. Since the 

capacity to produce class II peroxidases is limited to the Agaricomycetes in the Basidiomycota 

(Floudas et al. 2012), these facultative pathotroph-saprotrophs likely fall into the weak or 

intermediate decomposer categories. As support for this, we show a negative correlation between 

pathotroph relative abundance and ligninolytic enzyme activity (Fig. S5a). We interpret these 

findings as evidence that Mn limitation under chronic N enrichment leads to an increase in the 

relative abundance of ‘weak’ decomposers (e.g. yeasts and pathotrophs). Since Mn amendments 

reduced the abundance of such groups, we hypothesize that Mn promotes fungal communities 

with greater capacity for leaf litter decomposition (i.e., capacity to produce ligninases).  

 In our incubation experiment, we showed a significant reduction in the relative 

abundance of filamentous saprotrophs in the highest N treatment (N150). In the study by 

Morrison et al. (in prep), there was a similar trend towards reduced filamentous saprotroph 

relative abundance with long-term N enrichment, albeit insignificant. In contrast to the yeast and 

pathotroph responses, filamentous saprotroph relative abundance declined further with Mn 

amendment in the N150 treatment. This response was driven by a decrease in the relative 

abundance of ascomycetous and zygomycetous saprotrophs. The relative abundance of 

basidiomycetous saprotrophs was unaffected by Mn amendment. Ascomycetous and 
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zygomycetous saprotrophs do not possess class II peroxidase genes and are associated with low 

to no copy numbers of genes encoding other ligninases (Floudas et al. 2012; Kohler et al. 2015); 

thus, they can be classified as weak to intermediate decomposers. Declines in ascomycetous and 

zygomycetous saprotrophs with Mn amendment may therefore be consistent with the 

phenomenon we observed with yeast and pathotroph taxa, wherein Mn amendment reduces the 

relative abundance of weak and intermediate decomposers. To support this, we created a 

synthetic ‘weak’ decomposer category in which we summed the average relative abundance of 

yeasts, pathotrophs and zygomycetous filamentous saprotrophs and regressed this group against 

ligninase activity. This model explained slightly more variation in enzyme activity than the 

pathotroph-only model (Fig. S5b). We excluded ascomycetous filamentous saprotrophs from the 

model because the relative abundance of this group was not correlated with enzyme activities.  

 We have discussed reductions in the relative abundance of fungal functional groups with 

Mn amendment, but have yet to explore fungi that increased in dominance with Mn, namely 

those OTUs without functional annotations in the Tedersoo et al. (2014) database (Fig. 3b). 

Interestingly, there was a synergistic effect of the highest levels of N and Mn on this group, 

where the relative abundance of OTUs with no annotation increased to >50% of the fungal 

community. This suggests that high combined resource availability of these nutrients (N, Mn) 

generates novel communities of fungi for which we do not have adequate ecological information. 

Due to the shortage of information about the ecologies of these organisms, it is impossible to say 

whether Mn promotes an increase in the relative abundance of strong decomposers in the fungal 

community. However, our enzyme data suggest that Mn affects fungal community function by 

increasing the potential for lignin decay. Therefore, Mn either (1) increased the lignin-decay 
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activities of strong decomposers already present in the community; or (2) increased the relative 

abundance of taxa performing this function.  

Because we observed clear reductions in the relative abundance of taxa that are 

associated with weak to intermediate decomposition following Mn amendment, we might expect 

the OTUs that increased in relative abundance to have greater capacity for ligninase production. 

However, C. rusci, the OTU that dominated the ‘no functional annotation’ category, is classified 

as an ascomycete, and as such would not be expected to have a high capacity for ligninase 

production (Floudas et al. 2012). Further, the relative abundance of this OTU was only weakly 

positively correlated with ligninolytic enzyme activities. It is important to note, however, that 

DNA-based measurements of the fungal community (i.e., our study) often fail to reveal patterns 

that RNA-based measurements of active fungi capture. For instance, Morrison et al. (in prep) 

showed a strong correlation between enzyme activities and the relative abundance of active fungi 

(RNA), whereas no correlation was found between these enzymes and DNA-based metrics of 

relative sequence abundance. Thus, we believe that the taxa without known ecologies, 

particularly C. rusci, deserve further study. RNA-based measurements of the active fungal 

community and surveys of functional genes encoding ligninase production in these taxa may be 

particularly useful.  

Lastly, contrary to expectations, the relative abundance of white-rot fungi increased in the 

highest N treatment (Fig. S6), a finding consistent with Morrison et al. (in prep). Because long-

term N enrichment has been shown to repress ligninase activity and lignin decomposition, it has 

long been assumed that N enrichment suppresses white-rot fungi (Waldrop & Zak 2006; 

Hofmockel et al. 2007; Treseder et al. 2008). Evidence is emerging to suggest this may not be 

the case. Instead, lower rates of lignin and litter decomposition may be driven by an increase in 
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the relative abundance of ‘weak’ decomposers. Our data suggest that this release of the weak 

decomposer community may be triggered by Mn limitation.  

 

5. Conclusion 

 We conclude that Mn limitation is a notable mechanism reducing ligninolytic enzyme 

activity and altering fungal community composition under long-term atmospheric N deposition. 

Our results suggest that Mn limitation may be an important control on decomposition and soil C 

storage under soil N enrichment. We applied Mn amendments to chronically N-fertilized soils to 

demonstrate the relationship between Mn availability and ligninolytic enzyme activities. We 

show the first evidence of a strong positive correlation between these two parameters for natural 

microbial communities in leaf litter and soils. We also demonstrate a shift in fungal community 

composition with Mn addition that helps to explain the enzyme response we observed. 

Specifically, we show that elevated Mn reduces the relative abundance of fungi thought to be 

‘weak’ decomposers, referring to their poor to intermediate ability to decompose lignin (relative 

to white-rot fungi, which are considered ‘strong’ decomposers). This decline in weak 

decomposer relative abundance with Mn was only observed in the highest N treatment (N150), 

which was the only N treatment to experience a significant increase in the relative abundance of 

these organisms. Incidentally, this treatment was also the most Mn-deficient. This suggests that 

Mn played the strongest role in shaping fungal communities where fungi were most affected by 

chronic N enrichment and/or most limited by Mn. Further, the finding that Mn amendments 

reduce the relative abundance of ‘weak’ decomposers suggests that higher Mn availability 

promotes fungal communities that have greater capacity for lignin decay. Taken together, our 

results suggest that Mn limitation plays a critical role in decomposition dynamics under long-
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term atmospheric N deposition and represents a mechanism that may help explain reduced 

decomposition and soil C accumulation under this global change factor.  
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TABLES AND FIGURES 

 

Table 1. Initial litter chemistry, representing the starting quality of litter inputs to the 
incubations. Mean concentrations (n=6) of total aromatics (sum of the %lignin, %phenols and 
%aromatics), C and N and litter macro and micronutrients are presented with standard errors in 
parentheses. Means that do not share a letter are significantly different (P < 0.05). The percent 
change from control levels was calculated for each parameter and significant increases/decreases 
are denoted with asterisks (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; one-way 
ANOVA). Baseline oxidative enzyme (PER, POX) activities were also evaluated. We present 
these data here to demonstrate common reductions in oxidative enzymes induced by chronic N 
enrichment. 
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Table 2. In situ soil characteristics showing the effect of chronic N on pH, exchangeable acidity 
and cation exchange capacity (CEC) of the O (organic) and A (mineral) soil horizons. Average 
values (n=6) are presented with standard errors in parentheses. Means that do not share a letter 
are significantly different (P < 0.05). The percent change from control levels was calculated for 
each parameter and significant increases/decreases are denoted with asterisks (*P < 0.05; **P < 
0.01; ***P < 0.001; ****P < 0.0001; one-way ANOVA). 
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T
able 3. M

n am
endm

ent levels and enzym
e and decom

position responses to com
bined N

 and M
n treatm

ents follow
ing 6 m

onths of 
decom

position. The cum
ulative am

ount of M
n added to leaf litter (m

g g
-1) over the course of the 6-m

onth incubation is included. W
e 

list these data here, as it is im
portant to note that m

ore M
n w

as added to N
-fertilized (N

50, N
150) sam

ples than to control (N
0) sam

ples 
because these sam

ples w
ere assum

ed to be m
ore M

n-deficient. A
verage litter m

ass loss (%
) and percent change in lignin are presented 

w
ith standard deviations in parentheses. Lignin percent change represents the average %

 increase or %
 decrease in lignin relative to the 

average starting litter lignin concentration for each N
 treatm

ent pre-incubation. The percent change in oxidative enzym
e activity relative 

to control levels (am
bient M

n) is presented last. The control N
, low

 M
n treatm

ent pair w
as excluded from

 the experim
ent; w

e represent 
this w

ith a dashed line. The dashed lines in the ’C
um

ulative M
n’ category signify that no M

n w
as added (am

bient M
n). The dashed 

lines in the enzym
e (%

 change) category are present because values represent percent increases above the am
bient M

n category.  
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Figure 1. (a) Ligninolyitc enzyme activity (umol h-1 g-1) across N and Mn treatments. The 
activities of peroxidase and phenol oxidase have been summed (sensu Ng et al. 2014) because 
responses to Mn amendment (% change from ambient) were highly similar. Bar color is 
representative of Mn treatments, where white is ambient, gray is low Mn, and black is high Mn. 
Two-way ANOVA results are presented for the square-root transformed enzyme data. (b) Linear 
regression showing the effect of total Mn (mg g-1) on ligninolytic enzyme activity (square-root 
transformed), where total Mn represents the initial litter Mn concentration plus the cumulative 
amount of Mn added over the course of the incubation. The p-value and R2 presented are for a 
linear model which includes all observations (n = 48), not average values.   
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Figure 2. NMDS ordinations of fungal ITS2 data (stress = 0.18). Panel (a) represents the effects 
of Mn amendments on litter fungal community composition evaluated after 6 months of 
decomposition and panel (b) shows the effects of long-term N enrichment on fungal 
communities (evaluated in litter after 6 mo. of decomposition). Polygons outline the bounds of 
samples within each Mn (a) or N (b) treatment group; they are not representative of any 
statistical parameter. Polygon color represents the level of Mn or N application: control/ambient 
(red), intermediate (green), or high (blue) levels of each nutrient. PerMANOVA with a two-way 
interaction was used to test for significant differences in community composition across 
treatments; the same PerMANOVA results are shown in the Mn and N panels.  
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Figure 3. Relative abundance (%) of fungal functional groups (filamentous saprotrophs (a), no 
functional annotation (b), pathotrophs (c) and yeasts (d)) with significant responses to Mn 
treatments. Bar color is representative of Mn treatment, where white is ambient, gray is low Mn, 
and black is high Mn. Two-way ANOVA results (arcsine-transformed data) are presented for 
each functional group. 
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Figure 4. Relative abundance (%) of Coccinonectria rusci, the most abundant organism lacking 
a functional annotation in the Tedersoo et al. (2014) database. Bar color is representative of Mn 
treatment, where white is ambient, gray is low Mn, and black is high Mn. Two-way ANOVA 
results for the response of C. rusci to Mn and N amendments are presented. 
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                                    APPENDIX A: SUPPLEMENTARY FIGURES 
 
 
 

 
 
Figure S1. Amount of Mn accumulated in leaf litter throughout the 6-month incubation. 
Accumulated Mn was calculated as the difference between the final litter Mn concentration and 
the starting litter Mn concentration (mg g-1).  
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Figure S2. Total litter mass loss (%) across N and Mn treatments. Bar color is representative of 
Mn treatment, where white is ambient, gray is low Mn, and black is high Mn. Differences in 
mass loss were evaluated using two-way ANOVA.   
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Figure S3. Total aromatics (%lignin + %phenols + %aromatics) in undecomposed litter (a) and 
litter after 6 months of decomposition (b). Significant differences between N treatments in panels 
(a) and (b) are indicated with lower-case letters. Within each panel, bars that do not share a letter 
are significantly different. Percentages at the top of panel (b) represent the percent increase in 
litter aromatics within each N treatment throughout decomposition. More lignin and other 
aromatics were retained (i.e., slower lignin decomposition) in the N150 treatment than N0 and 
N50. In panel (a) we show lower initial aromatic/lignin concentrations in undecomposed litter in 
the highest N treatment. We believe this may suggest that oxidative enzyme activity (phenol 
oxidase and peroxidase) is suppressed in plants as well. Plants use oxidative enzymes to 
synthesize lignin. Lower litter lignin concentrations are suggestive of reduced lignin synthesis by 
plants. Lignin synthesis may be suppressed via an N-induced repression of oxidative enzymes in 
plants, mirroring the effect of N on microbial oxidative enzyme production. If oxidative enzyme 
activities are reduced in plants, Mn limitation may explain this observation.   
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Figure S4. Relative abundance (%) of the top 10 most abundant OTUs in our dataset. C. rusci, 
the fourth most abundant species is explored in more detail in the main text (Fig. 4).  
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Figure S5. Linear regressions between ligninolytic enzyme activity (square-root transformed) 
and the arcsine-transformed relative abundance of ‘weak’ decomposers (pathotrophs (a) and 
yeasts, pathotrophs and zygomycetous filamentous saprotrophs (b)). 
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Figure S6. Relative abundance (%) of white-rot fungi across N and Mn treatments. Bar color is 
representative of Mn treatment, where white is ambient, gray is low Mn, and black is high Mn. 
Two-way ANOVA and post-hoc Tukey HSD show a significant increase in white-rot relative 
abundance in the highest N treatment (N150), albeit highly variable. 
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APPENDIX B: PHOTOS OF INCUBATION EXPERIMENT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                         
Photo 1. Individual incubation cups with visible fungal colonization of leaf litter 
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Photo 2. Incubation jars in the environmental chamber (25oC). Sealed glass pickle jars with 
wetted paper towels were used to maintain soil and litter moisture. Large pickle jars were 

selected to maximize headspace, thus minimizing the times jars needed to be aerated. 
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