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FOREWORD 
 

 This work serves to connect fundamental principles in science and mathematics to the 

current apex of technology. In a world so in turmoil over alternative facts, scientific skepticism, 

accessible communication, and the role of automated platforms such as unmanned aerial 

systems, it is important to remain vigilant in our understanding of how we got to where we are. 

Knowing our current position allows us as a society to know where we can possibly go moving 

forward. This thesis serves not only a research exposition but also an information piece on the 

adoption of Unmanned Aerial Systems (UAS, UAV, RPAV, drone, etc.). At times this thesis will 

review basics, perhaps beyond the need of the scientific methods of the study; serving the 

purpose of connecting knowledge and thoughts necessary for those looking to integrate UAS into 

their own work. A great deal of this Master’s degree research was spent investigating and 

confirming how UAS operate, both fundamentally as remote sensing platforms. In consideration 

with modern legality of  the national airspace system (NAS) under the FAA. Being on the cutting 

edge of technology in this case has been eased by growing public acceptance of the platform 

however, there is still much work to be done in openly utilizing this platform for any project. 

Any qualitative or quantitative evaluation of Unmanned Aerial Systems, in this novel age, would 

not be complete without these considerations taken into account before even getting the system 

off the ground.  

 



vi 

 

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS ........................................................................................................... iii 
FOREWORD .................................................................................................................................. v 
TABLE OF CONTENTS ............................................................................................................... vi 
LIST OF FIGURES ..................................................................................................................... viii 
ABSTRACT .................................................................................................................................... x 

INTRODUCTION .......................................................................................................................... 1 
BACKGROUND AND LITERATURE REVIEW ........................................................................ 5 

Troubled Ecosystems in the Anthropocene ................................................................................ 5 
Land Cover Mapping from Remote Sensing .............................................................................. 7 
Accuracy, Uncertainty, and Efficiency Evaluations ................................................................. 17 

Unmanned Aerial Systems ........................................................................................................ 26 

METHODS ................................................................................................................................... 34 

Study Areas ............................................................................................................................... 34 
Ground Reference Data ............................................................................................................ 38 

UAS Image Sampling ............................................................................................................... 46 
Classification Unit Sampling .................................................................................................... 56 

Image Analysis ......................................................................................................................... 60 
Accuracy Assessment ............................................................................................................... 62 
Effectiveness of Comparison .................................................................................................... 63 

RESULTS ..................................................................................................................................... 65 
Optimal UAS Sampling Design ................................................................................................ 65 

PBC and OBIA Accuracy Assessments .................................................................................... 74 
Sampling Efficiency ................................................................................................................. 78 

DISCUSSION ............................................................................................................................... 80 
Investigation of Results ............................................................................................................ 80 

Difficulties Experienced with this Novel Research Platform ................................................... 85 
Future Considerations ............................................................................................................... 89 
Conclusions ............................................................................................................................... 91 

LITERATURE CITED ................................................................................................................. 93 
APPENDICIES ........................................................................................................................... 109 

APPENDIX A. GROUND DATA COMPOSITION FINIDINGS ........................................ 110 
APPENDIX B. UAS FLIGHT PERMISSION ....................................................................... 113 
APPENDIX C. FIELD DATA NOTES AND CHECKLIST FOR FLIGHT ......................... 114 
APPENDIX D. PHOTO INTERPRETATION KEYS ........................................................... 115 
APPENDIX E. UAS CALIBRATION AND TRAINING EXAMPLE ................................. 116 

APPENDIX F. IMAGE CLAIBRATION DIAGRAMS FOR EACH WOODLAND ........... 117 

 

  



vii 

 

LIST OF TABLES 

 
Table 1. Conventional error matrix example ................................................................................ 20 
Table 2. Focused woodland property attributes for the six study areas ........................................ 36 
Table 3. Representative plot data to illustrate CFI classification variables .................................. 42 

Table 4. Decision ruleset for classification of split decision polygons during OBIA. ................. 60 
Table 5. Error matrix example for UAS sampling reference data. ............................................... 63 
Table 6. Optimized prism sampling protocol for meeting error thresholds .................................. 64 
Table 7. PBC UAS photo interpretation potential thematic accuracy assessment error matrix. .. 74 
Table 8. Error matrix of direct comparison between PBC of CFI plots by forest biometrics and 

UAS image interpretation. ............................................................................................................ 75 
Table 9. Error matrix showing the accuracy of 268 individual orthomosaic subsamples ............ 76 

Table 10. Object-based image analysis accuracy assessment error matrix .................................. 77 

Table 11. OBIA thematic mapping accuracy assessment, comparison of UAS samples to 

classification derived from CFI ground sampling plots. ............................................................... 77 
Table 12. OBIA thematic classification accuracy assessment in comparison to ground reference 

data. ............................................................................................................................................... 78 
Table 13. Efficiency comparison of UAS to ground sampling. .................................................... 79 
Table 14. Study Areas CFI plot networks ................................................................................... 110 

Table 15. Dominant forest species for the CFI plots of the study areas. .................................... 111 

 

  



viii 

 

LIST OF FIGURES 
 

Figure 1. Pixel-based classification, spatial resolution detail incorporation. ............................... 12 
Figure 2. Object-Based Image Analysis data inclusion ................................................................ 13 
Figure 3. Computer Vision Interpretation Mimicry of the Human Ocular System ...................... 14 

Figure 4. Forest Stand Orthomosaic Model .................................................................................. 16 
Figure 5. Reference Data Sample Units ........................................................................................ 22 
Figure 6. Core components of Unmanned Aerial Systems ........................................................... 28 
Figure 7. Estimated boundaries for focused study areas ............................................................... 35 
Figure 8. Kingman Farm systematic sampling grid arrangement of CFI plots ............................ 40 

Figure 9. Sampling design classification scheme breakdown. ..................................................... 44 
Figure 10. Forest stands for Kingman Farm, Madbury, NH. ........................................................ 45 

Figure 11. Aeronavics Skyjib X-8 complete system configuration .............................................. 47 

Figure 12. eBee Plus system configuration................................................................................... 48 
Figure 13. Phantom 2 Vision + UAS Configuration. ................................................................... 49 
Figure 14. Kingman Farm flight planning mission blocks, eMotion3 .......................................... 50 
Figure 15. Flying heights above canopy detail comparison for UAS imagery collection. ........... 52 

Figure 16. Tie point Image Matches in Pix4Dmapper Pro. .......................................................... 54 
Figure 17. Keypoint  matches for UAS aerial imagery in orthomosaic generation in 

Pix4Dmapper Pro. ......................................................................................................................... 55 
Figure 18. Pixel-based classification reference data sample units. ............................................... 58 
Figure 19. OBIA stratified random sampling units for each example forest stand. ..................... 60 

Figure 20. Image examples of Coniferous and Deciduous species. ............................................. 61 
Figure 21. Image calibration statistics for 50m above canopy flying height, captured with the 

SODA. ........................................................................................................................................... 67 

Figure 22. Orthomosaic result for 50m above canopy flying height, captured with the SODA. . 68 

Figure 23. Image georeferencing for the normal color sensor of the Parrot Sequoia optic, at 50m 

above canopy flying height. .......................................................................................................... 69 

Figure 24. 120m above canopy orthomosaic produced by the sequoia sensor, and associated 

image tie point densities................................................................................................................ 70 
Figure 25. Orthomosaic output examples for Agisoft PhotoScan and Pix4Dmapper Pro. ........... 71 

Figure 26. Kingman Farm, Pix4D Mapper Pro processing errors. ............................................... 71 
Figure 27. Study area orthomosaics for the six UNH woodland properties ................................. 73 
Figure 28. Ground data forest stand maps for each of the six study areas. ................................ 112 

Figure 29. Field data collection records for use during UAS missions ...................................... 114 
Figure 30. Photo interpretation keys ........................................................................................... 115 
Figure 31. Initial calibration of UAS flight protocol and image processing procedure ............. 116 

Figure 32. Distributions of the uncalibrated images across the eight final orthomosaics .......... 117 

 

 

 

 



ix 

 

 

 

 



x 

 

ABSTRACT 
 

EVALUATING THE USE OF UNMANNED AERIAL SYSTEMS (UAS) FOR COLLECTING 

THEMATIC MAPPING ACCURACY ASSESSMENT REFERENCE DATA IN NEW 

ENGLAND FOREST COMMUNITIES 

 

by 

 

BENJAMIN T. FRASER 

University of New Hampshire, September, 2017 

 

 To overcome the main drivers of global environmental change, such as land use and land 

cover change, evolving technologies must be adopted to rapidly and accurately capture, process, 

analyze, and display a multitude of high resolution spatial variables. Remote sensing 

technologies continue to advance at an ever-increasing rate to meet end-user needs, now in the 

form of unmanned aerial systems (UAS or drones).  UAS have bridged the gap left by satellite 

imagery, aerial photography, and even ground measurements in data collection potential for all 

matters of information. This new platform has already been deployed in many data collection 

scenarios, being modified to the needs of the end user. With modern remote sensing optics and 

computer technologies, thematic mapping of complex communities presents a wide variety of 

classification methods, including both pixel-based and object-based classifiers. One essential 

component of using the derived thematic data as decision-making information is first validating 

its accuracy. The process of assessing thematic accuracy over the years has come a long way, 

with site-specific multivariate analysis error matrices now being the premier evaluation 

mechanism. In order to perform any evaluation of certainty, or correctness, a comparison to a 

known standard must be made, this being reference data. Methods for reference data collection in 
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both pixel-based and object-based classification assessments are indeterminate, but can all 

become quite limiting due to their immense costs. This research project set out to evaluate if the 

new, low cost UAS platform could collect reference data for use in thematic mapping accuracy 

assessments. We also evaluated several collection process methods for their efficiency and 

effectiveness, as the use of UAS is still relatively unknown in its ability to acquire data in 

densely vegetated landscapes. Collected imagery was calibrated and stitched together by way of 

structure-from-motion (SfM), attempting calibration and configuration in both Agisoft 

PhotoScan and Pix4DMapper Pro to form orthomosaic models.  Our results showed that flying 

heights below 100m above the focus area surface, while acquiring ultra-high-detailed imagery, 

only resulted in a maximum of 62% image calibration when generating spatial models. Flying at 

our legal maximum flying height of 120m above the surface (just below 400ft), we averaged 

97.49% image calibration, and a gsd of 3.23cm/pixel over the 398 ha. sampled. Using a 

classification scheme based on judging the percent coniferous composition of the sampled units, 

our results during optimal UAS sampling showed a maximum of 71.43% overall accuracy and 

85.71% overall accuracy, respectively, for pixel-based and object-based thematic accuracy 

assessments, in direct comparison to ground sampled locations. Other randomly sampled 

procedures for each approach achieved slightly less agreement with ground data classifications. 

Despite the minor drawbacks brought about by the complexity of the environment, the 

classification results demonstrated OBIA acquiring exceptional accuracy in reference data 

collection. Future expansion of the project across more study areas, and larger forest landscapes 

could uncover increased agreement and efficiency of the UAS platform. 
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INTRODUCTION 
 

 

 From the level of the terrestrial biosphere to the individual habitat patch, the effects of 

climate change and natural resource degradation can be linked to disastrous negative impacts. 

Patterns of biodiversity loss and habitat augmentation have become so severe that many have 

relabeled this era the Anthropocene (Kareiva and Marvier, 2011; McGill et al., 2015). Furthering 

this destructive disposition, swelling contentions between scientific principle, ecosystem 

conservation, and personal belief are driving the need for more definitive environmental 

solutions. Like many areas around the globe, forested areas in coastal New Hampshire have been 

harshly impacted by these disturbances. Each forest experiencing diminished functionality, area 

loss, and fragmentation of its critical habitat. Natural areas such as these provide countless 

ecosystem services which are directly linked to global welfare, including water quality 

regulation, wildlife habitat, air purification, and recreation (MacLean et al., 2012). Many fields 

of science now look to combat these harrowing impacts and conserve what remaining natural 

areas we have left. Modern conservationists are turning to adaptive management protocols and 

adopting novel ways of exploring current and future challenges.  

 Finding true measures for which to base models of complex systems is inherently 

difficult. Forested landscapes of New Hampshire, representative of the Northeastern United 

States, are especially indicative of this hardship, comprising a vast diversity of composition and 

structure (Justice et al., 2002). To understand these systems, we must find parameters which are 

readily assessable and characterize their elements. Land cover presents an opportunity for this, 

representing the fundamental constructs covering the surface (Burley, 1961; Anderson et al., 
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1976). To collect land cover data at a scale sufficient for answering our questions of the 

environment, remote sensing is used as a data enrichment tool (Field et al., 1995; Ford, 2000; 

Chapin et al., 2002; Congalton and Green, 2009). 

 Thematic mapping of land cover characteristics fills the gaps in our ability to make 

management decisions (Kerr and Ostrovsky, 2003; McRoberts and Tomppo, 2007). 

Incorporating the context of spatial relations, through the use of remote sensing, gives a new 

platform for measuring environmental phenomena at various scales (Sokal, 1974; Pugh, 1997; 

Bolstad, 2012; Jensen, 2016). The continual technological advancement and adaptation of remote 

sensing aims to match the complexity of the systems we use it to study (Hyyppa et al., 2000), 

most observably in spatial, spectral, and temporal resolutions. The methods for performing 

thematic classifications have taken two primary forms with digital data. Originally, classification 

algorithms distinguished individual pixels, labeling them based on trained or statistically 

associative rulesets. These pixel-based classifications supported resolutions based on the 

specifications of the sensor. More recently, image spatial and spectral resolutions, along with 

improved computational power, have yielded object-based image analysis methods (Blaschke et 

al., 2000; Blaschke and Strobl, 2001; Blashcke, 2010; Kelcey and Lucieer, 2014). The creation 

of image objects through segmentation incorporates additional types of information, potentially 

furthering analyses (Robertson and King, 2011). To determine which approach is more 

appropriate hinges on the specific needs of the project. The importance of this information, 

however, always provokes the need for its accuracy just as much as its availability. 

 To test the validity of remote sensing systems for producing effective thematic maps of 

complex forest communities, and therefore being implemented in management decisions, an 

accuracy assessment must be performed on the resulting data product(s). Such processes ensure 
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the certainty of thematic mapping and work to uncover the sources of error in the classification. 

The obligation for verifying such expansive products has not always been a priority though, with 

both costs and intricate sources of error weighing heavily on the sampling designs (Congalton et 

al., 1993; Foody, 2002; Congalton and Green, 2009). Beginning with early forms of only visual 

inspection, the process of thematic mapping accuracy assessments has now evolved to site-

specific statistical analysis of agreement (Biging and Congalton, 1989; Congalton, 1991; 

Congalton and Green, 2009). This process of validating the correctness of the remotely sensed 

data product requires having reference data that represents the actual conditions on the ground.  

Reference data, used for either training the land cover classification or, independently, 

validating its results, comes from three major sources. These include: (1) ground sampling, (2) 

using remotely sensed data of a higher resolution, or (3) preexisting maps (Congalton and Green, 

2009). Ground sampling stands out among these as the most established but is associated with an 

intrinsic greater cost.  Although reference data exists as the standard of comparison for what is 

correct, there remains an unavoidable margin of subjectivity in all of these data sources, 

reasoning against the terminology of it as “truth”. Professional fields such as forest mensuration 

or biometrics have been adopted by the geospatial sciences for their fundamental principles, to 

promote efficiency and minimize sources of uncertainty in collecting reference data. Forest 

mensuration is the foundation behind obtaining quantifiable information for forestry decision 

making (Husch et al., 1972; Kershaw et al., 2016). The need for information devoid of bias and 

inaccuracies in ecological and economical management has created precise procedures for the 

systematic accumulation of these observations and measurements (Husch et al., 1972), making 

an ideal standard for comparison. Methods such as implementing continuous forest inventory 

(CFI) for the simultaneous observations of large scale and long term trends are prevalent up to 
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the national level. Forestry techniques realize the infeasible nature of measuring every tree, 

instead inciting statistics for landscape estimations. Similarly, the overwhelming cost of accurate 

reference data collection with a suitable sample size results in considerable limitations (Harris 

and Ventura, 1995; Foody, 1999; Foody, 2002; Congalton and Green, 2009; Laliberte et al., 

2010). In an effort to optimize the process of ground sampling MacLean et al., (2012) reformed 

previously set standards of thematic classification accuracy from Husch et al., (1972) for the 

minimum plot sampling requirements of forested landscape, based on statistical power and 

efficiency analysis. Even with these reevaluated benchmarks, the cost of going to the ground to 

collect reference data remains substantial.  

 Following a history of research and development parallel to manned aviation, unmanned 

aerial systems (UAS) have emerged at the forefront of remote sensing technologies in recent 

years with the advent of small-format, microprocessing computers (Marshall et al., 2016). These 

systems have evolved to make use of nearly every facet of modern technology, for the benefit of 

the user. With both fixed-wing and rotary-winged models, system configurations propose 

consumer desired versatility.  Applications now include such things as low-cost 3D surveying 

(Westoby et al., 2012), coastal area management (Delacourt et al., 2009), wildlife monitoring 

(Jones et al., 2006), agricultural monitoring (Zhang and Kovacs, 2012), and rangeland imaging 

(Hardin and Jackson, 2014), bolstering the promise of flexibility, efficiency, and high-quality 

products. Real-time image analysis, rapid digital surface model (DSM) and planimetric model 

construction have the ability to capture extraordinary detail, even in complex environments more 

efficiently than other methods. Raising the question if this new platform could be instrumental 

for collecting highly accurate reference data in forest environments.  Therefore, the goals of this 

research are: 
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1. To evaluate if UAS are capable of efficiently and effectively collecting reference data 

for use in assessing the accuracy of thematic maps. 

a. Specifically, can UAS be used for collecting reference data for use in 

assessing thematic maps created from a pixel-based classification 

approach? 

b. Specifically, can UAS be used for collecting reference data for use in 

assessing thematic maps created from an object-based classification 

approach? 

 

 

BACKGROUND AND LITERATURE REVIEW 
 

 

Troubled Ecosystems in the Anthropocene 

 The modern world is facing staggering rates of degradation in its natural systems. So 

much so that many scientists have deemed this a new ecological era, the Anthropocene or 

“Human epoch”. Human caused patterns of disturbance have dominated trends in global 

biogeochemistry and biodiversity (Kareiva and Marvier, 2011; McGill et al., 2015). Much of the 

terrestrial biosphere is now affected by anthropogenic activities (Kerr and Ostrovsky, 2003), with 

virtually all projections estimating increases in magnitude. Compounding and perpetuating these 

effects, in a positive feedback loop, greenhouse gases are expected within the next century to 

cause the most rapid pace of climate change since the last deglaciation, approximately 18,000 

years ago (Chapin et al., 2000). In the last four decades alone, fossil-fuel combustion and 

deforestation have contributed to half of the 30% increase in atmospheric 𝐶𝑂2 recorded for the 
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past three centuries (Chapin et al., 2000).  The combined changes in biodiversity represent a 

pivotal challenge for ecologists, combining the efforts of sustainability, ethics, and policy 

(McGill et al., 2015), all clashing with public interests to predict the state of future natural 

resources.  

 Complex natural communities around the world are becoming functionally extinct, 

unable to perform their most basic of processes.  Human led disturbances alter ecosystem 

resilience, leaving them further susceptible to irrevocable change (Chapin et al., 2000).  Current 

datasets from around the world are producing interdisciplinary evidence of just how ubiquitous 

anthropogenic effects are becoming, altering virtually every remaining natural setting in 

existence (Redford, 1992).  

 Forests are ranked among the most the most exploited of natural environments, despite 

being well known for their sheer volume and diversity of resources which they provide the 

human society. The United Nations Food and Agriculture Administration (FAO) has estimated a 

net global loss of 7.3 million hectares of forest land per year between 2000 and 2005 (Kareiva 

and Marvier, 2011). Unregulated deforestation is a major cause for concern in many scientific 

disciplines, international economics, and levels of government. Deforestation is also an indirect 

means of defaunation, negatively influencing biodiversity (Redford, 1992). Loss of ecosystem 

function strains not only the biosphere but also pressures human economies. The term 

“ecosystem services” was formed to represent those good and services which are provided by the 

natural world, preserving human life (Kareiva and Marvier, 2011). These services, such as water 

quality regulation, wildlife habitat, nitrogen and carbon cycling, and primary production by 

forests and agriculture (Kareiva and Marvier, 2011; MacLean et al., 2012), represent vital 
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resources for mankind. They serve to classify and quantify the benefits given by earth’s 

ecosystems; giving, in some circles, a way to defend their protection.  

 To understand and conserve natural environments, and therefore also their associated 

ecosystem services, ecologists must improve their ability to detect and predict changes all the 

while basing models on their knowledge of what is causing such impacts (Kerr and Ostrovsky, 

2003). Many tools now exist to aid ecologists in assimilating mass amounts of heterogeneous 

data, at a range scales, and translating those data into useful information for conservation and 

management (Michener and Jones, 2012).  

 

Land Cover Mapping from Remote Sensing 

 Tracking changes, disturbances, and repercussions requires a large amount of data in the 

form of variables which we can test and analyze.  Capturing both biological composition and 

structure of complex environments is a challenging predicament. Further epitomizing these 

complex landscapes are forest stands in the Northeastern United States, which continually 

change (Justice et al., 2002). Understanding impacts all the way down to the level of the single 

tree requires an equally expansive indicator.  

 Land cover, a descriptor of the physiographical characteristics of the surface environment 

in any of its capacities (Kerr and Ostrovsky, 2003), can be formed from a number of 

classification methods. Representing the actual features present in a landscape, land cover 

constitutes a fundamental relationship to the biological and ecological systems comprising 

environments (Anderson, 1976; Vitousek, 1994; Chapin et al., 2002; Foody, 2002; Jensen, 

2016). Closely related to this, land use refers more intently to what people do on the surface, 

pertaining to the utility of its elements (Avery and Berlin, 1985; Jensen, 2016). A land cover type 
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could be labeled as grassland, giving significance only to the contents of the terrestrial surface. A 

land use classification for this same area would instead be pasture, insinuating livestock grazing; 

or recreation field, inferring anthropogenic activities. Increases in the intensity of land use can be 

significant, affecting key earth system functionality, and are predicted to have the largest impact 

on biodiversity by the year 2100 (Chapin et al., 2000; Lambin et al., 2001; Smith, 2002). McGill 

et al., (2015) reported that humans have already modified nearly 50% of the terrestrial land 

cover. In contrast to data on land use practices, data on land cover can be directly measured and 

changes quantified over time and space. To promote the progress of ecological studies, and 

inform critical decisions, we not only need more data surrounding such variables, it must also be 

justifiably accurate (Ford, 2000). Remote sensing is capable of collecting data of this manner for 

both cultivating and enriching data sets (Field et al., 1995; Congalton and Green, 2009).  

 Remote sensing is a highly versatile and readily available tool for collecting data beyond 

the scope of in situ observations, encompassing our ability to learn about an object, through a 

sensor, without coming into direct contact with it (Paine and Kiser, 2003; Jensen, 2016). The 

scale, range, and flexibility, of remotely sensed imagery justify its use as the leading source of 

both land cover and land use data (National Academy of Science, 1970; Anderson, 1976; 

McGargial and Cushman, 2002; Turner, 2005; Radoux et al., 2011; MacLean et al., 2012; 

Whitehead and Hugenholtz, 2014). Easily applicable to Geographic Information Systems and 

Science (GISS) due to its collection of spatially explicit data, remote sensing encompasses both 

our ability to measure, and our ability to visually analyze remote phenomena.  Photogrammetry, 

or the math and science of remote sensing, has a rich history of numerically assessing remotely 

sensed features; while photointerpretation, more generally known as the art of remote sensing, 

specifies qualitative analysis of such features (Avery, 1977).  
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 Most notably recognized as the indication of remote sensing’s advancement, spatial, 

spectral, and temporal resolutions directly regulate the power of remote sensing for measuring 

aspects of nature. Spatial resolution is the digital imagery pixel size and represents the smallest 

divisible unit in a remotely sensed data product (Kerr and Ostrovsky, 2003; Paine and Kiser, 

2003). Spectral resolution is characteristic of the wavelengths of light, or electromagnetic 

radiation, reflectance resolvable by the sensor employed. Lastly, temporal resolution is the revisit 

occurrence of the observations in question, ranging from several times a day to much broader 

scales.  Recent advances in remote sensing have enabled data capture at resolutions that have 

matched a range of ecological processes (Turner et al., 2003), and at spatial and temporal extents 

which could not be met using field-based sampling methods. Multispectral and hyperspectral 

sensors now see well beyond that of the human visual capacity, while spatial resolutions have 

shrunk to sub-centimeter pixel sizes. All of this information can fill gaps for urgently needed 

surveying, at scales which more closely compare to anthropogenic changes in the environment 

(Kerr and Ostrovsky, 2003; Homer et al., 2012).  

 It is necessary to also recognize how remote sensing fits into the wider context of 

scientific discovery, working with geographic information systems (GIS) to command spatial 

data. GIS are an arrangement of computer hardware, software, and people used for entering, 

storing, manipulating, analyzing, and displaying geographic or spatial data (Congalton and 

Green, 1992). Working hand in hand, GIS and remote sensing provide the formation of 

qualitative and quantitative analysis of spatial data in the digital age. Geographic information 

science then ties together fundamentals from both disciplines, also amassing its own theories for 

how such unique data should be handled (Avery and Berlin, 1985; Goodchild, 1991; Goodchild, 

1992; Longley et al., 2015). Much contention still emanates from the divergence and distinct 



10 

 

labeling of each field of study, as well as surrounding influences, due to how interdisciplinary 

each remains (Goodchild, 1992). The successful acquisition and assessment of remote sensing 

products however, necessitates guidance from all preceding disciplines.  

 Classifying land cover from remotely sensed imagery, more formerly known as thematic 

mapping, involves labeling objects or features in arranged groups on the basis of the relations 

among their characteristics (Sokal, 1974; Pugh, 1997; Bolstad, 2012; Jensen, 2016). This form of 

pattern recognition is an attempt to identify and describe natural, or artificial, systems based on 

expert knowledge. Thematic classification reflects both characteristics within the source 

imagery, and the motivations/objectives of the individual project (Sokal, 1974; Pugh, 1997). 

Once classified, individual units of data form patterns of discernible characteristics uncovering 

more complex processes and presenting more feasibly consumable information. This land cover 

information is needed to provide end-user guidance and products which can be directly 

incorporated into management plans and policies (Anderson, 1976; Civco et al., 2002). The 

strength of land cover classifications comes from the resolutions of the remote sensing platform, 

its compatibility with other data sources, image-processing procedures, classification algorithm 

choice, and time constraints (Lu and Weng, 2007).  As part of the design for the project, the 

classification scheme addresses most of these concerns, using definitions for each class which 

are mutually exclusive, totally exhaustive, and hierarchical, ensuring that a comprehensive and 

repeatable outcome is formed in an objective manner (Anderson 1976; Jensen, 2016). Some 

projects have also used “fuzzy” classification procedures, in an attempt to avoid ill-fitting or 

overly subjective classifications, based on non-discrete results; however, acceptance of this 

methodology is not fully recognized. In the digital age, computer database management systems 



11 

 

are used heavily for the classification process, deriving statistical parameters for quantitative 

decision rules of pattern recognition (Avery and Berlin, 1985).  

 The most common, and simplest, form of thematic mapping in digital image processing 

classifies the individual pixels throughout the imagery. This procedure uses one of the many 

pixel-based classification (PBC) algorithms to harness the power of spectral data contained 

within each singular pixel, then assigns a class label based on the project’s ruleset. Additionally, 

powerful ancillary information such as texture, terrain, and observable patterns can be used to 

form expert knowledge driven parameters for the classification algorithms (Haralick et al., 1974; 

Harris and Ventura, 1995; Lu and Weng, 2007; Caridade et al., 2008).  Controlling the amount 

of detail contained within each minimum mapping unit is the resolution of the original remote 

sensing data source, or sensor platform (Anderson, 1976). As the pixel size decreases, therefore 

increasing spatial resolution, greater amounts of detail and data are collected (Figure 1). From a 

historical context, the line between low or coarse resolution and high-resolution imagery 

products has moved considerably, and in a subjective manner, with some sensors now producing 

high resolution imagery at sub-meter or sub-centimeter spatial resolution. 
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Figure 1. Pixel-based classification, spatial resolution detail incorporation.  

 

 The rules, algorithms, and methodologies for forming pixel-based land cover 

classifications have evolved just as rapidly as the technologies driving them (Lu and Weng, 

2007). Still, modern high-resolution imagery has made the use of pixel-based thematic mapping 

largely inappropriate. Individual pixels can themselves be mixtures, they can be difficult to 

precisely locate, and in most cases, they are now smaller than the minimum mapping unit of the 

project design (Congalton and Green, 2009). These sources of error would only be compounded 

when using increasingly high-resolution imagery. To avoid misregistration errors between the 

remotely sensed data and the ground, it is more commonly found that 3x3 or 5x5 homogenous 

pixel clusters are used. Each pixel cluster still represents only a single sample, with the necessary 

size dependent on the positional accuracy of the data and the corresponding image resolution 

(Congalton and Green, 2009).  



13 

 

 With modern technology, users are now able to define more holistic units of analysis, 

image objects. Capitalizing on the advancements of digital image processing, object-based image 

analysis (OBIA) prescribes units designated as objects, polygons, areas, or in particular cases 

extracted features, which can be identified within the imagery to incorporate additional data 

parameters (Figure 2). OBIA bolsters the potential for analysis through this procedure of 

increasing the content of each individual unit (Congalton and Green, 2009; Blashcke, 2010; 

Radoux et al., 2011).  

 

 

Figure 2. Object-Based Image Analysis data inclusion, in comparison to a single pixel 

classification unit analysis. 

 

 At the heart of OBIA, segmentation sets the thresholds for internal variability and 

maximum segment size. Depending on software functionality, algorithms set counter-balanced 
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thresholds for spectral variability and area size to preserve units as homogenous in their 

heterogeneity (Definiens, 2007). Having more between object variability rather than within 

object variability is a defining trait of this method, giving it its additional power.  

 Among the benefits of OBIA, image objects reduce the noise of land cover classifications 

by lumping in alternatively classified areas, smaller than the desired threshold (Blaschke et al., 

2000; Blaschke and Strobl, 2001; Robertson and King, 2011). This can mean lumping in bare 

ground patches that peer through the canopy of forested area, or negating the presence of 

sporadic trees from large housing developments. This also aids in creating products which more 

closely represent the human perceptual ability, having computer vision match landscape 

classification characteristics in easily interpretable thematic layers (Figure 3) (Hay and Castilla, 

2008; Robertson and King, 2011). Such products have the potential to create more accurate and 

repeatable results. 

 

  

Figure 3. Computer Vision Interpretation Mimicry of the Human Ocular System, segmentation 

processed by Trimble eCognition Developer v9.2.0. 
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 Determining which classification method, pixel or object-based, to employ hinges on the 

specific needs of the project, and the characteristics of the source imagery (Pugh, 1997; Lu and 

Weng, 2007). Varying levels of spatial detail and attribute complexity can be found even with 

contemporary technologies. Helping to guide this decision among approaches is the suitability of 

the land use and land cover information extracted from the resulting thematic layer (Civco et al., 

2002; Foody, 2002; Lennartz and Congalton, 2004; Jensen, 2016).  

 Although OBIA approaches to thematic mapping still provide a wealth of unrealized 

potential, there are now new interests forming in the realm of high-resolution three-dimensional 

(3D) and digital planimetric modeling. These modeling designs reform our need for 

understanding core principles of remote sensing photogrammetry, such as how photographs 

originate with displacements in their features, and also perhaps distortions, barring them from 

being consumed as actual maps. Creating planimetric, or orthomosaic models, along with their 

associated 3D point-clouds, through structure from motion (SfM) utilizes significantly 

overlapping images and vast amounts of tie points for a low-cost, more inclusive output (Puschel 

et al., 2008; Remondino et al., 2012; Turner et al., 2012; Westoby et al., 2012; Fornstad et al., 

2013; Haala et al., 2013; Mancini et al., 2013). These models, to perform adequately with the 

heightened resolution, require a sizeable endlap (latitudinal overlap) and sidelap (longitudinal 

overlap) among neighboring photos (Eisenbeiss and Zhang, 2006; Colomina and Molina, 2014). 

Unlike more traditional photographic rectification, which only accounts for tilt in the sensor, 

orthophotography by definition uses full geometric, differential, correction to adjust for tilt, 

topographic displacement, relief displacement, and even lens geometric distortions, using 

subsequent images (Avery, 1977; Avery and Berlin, 1985; Paine and Kiser, 2003). Aerial 

triangulation recognizes reoccurring features within overlapping images to calculate geometric 
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association and form a singular surface, as seen in Figure 4. These can be either automatically 

generated, pixel-sized, tie points by way of computer vision, or manually registered ground 

control points, which should both be dispersed throughout the area of interest.  

 

 

Figure 4. Forest Stand Orthomosaic Model Containing 106 Images, 94,696 tie points, and is 

approximately 40x45m in size. Produced in Agisoft PhotoScan. 

 

 Apart from the automatic correction and calibration of the surface, the creation of more 

holistic models such as these planimetric representations is quite ordinary. The fields of remote 

sensing and photogrammetry specifically have been producing such geometrically correct 
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surface outputs for nearly 30 years now (Avery, 1977; Krzystek, 1991), for the benefit of many 

disciplines. What is so revolutionary about these digital products are: their associated dense point 

clouds, conceivably rivaling LiDAR or Terrestrial Laser Scanners (TLS), with on-demand 

structure models deemed “PhoDAR” (Fritz et al., 2013); and the centimeter level ground 

sampling distances uncovering a wealth of new context.  

 

Accuracy, Uncertainty, and Efficiency Evaluations 

 The weight of decision making, poised on the conclusions drawn from remote sensing, 

drives the urgency for validating data quality (Lunetta et al., 1991; Stehman and Czaplewski, 

1998). Poor quality data often times misleads results, forming inaccurate conclusions which 

weaken the foundation of conservation sciences and practices. Having ignorance of the focus 

system, or how to properly create a project design for it will also lead to lower than desired 

quality results. Data quality and validation procedures define potential sources of error within the 

project assessment design. For remote sensing, this means uncovering sources of spatial data 

error, which can be found at nearly every stage of the project (Lunetta et al., 1991; Thapa and 

Bossler, 1992). Even more appropriately, this error can in some cases be thought of as confusion; 

basing the sources of inaccuracy on more intrinsic properties of human observation (Congalton 

et al., 1993; Congalton and Green, 2009). Thresholds of error or overall accuracy are an 

individualized objective for each project, with many trade-offs and considerations for the user to 

manage.  

 Spatial data accuracy is a combination of two distinct characteristics (Congalton and 

Green, 2009). First, positional accuracy is the locational agreement between the remotely sensed 

data and the ground position. Errors in location for remotely sensed data can be determined by 

using known ground points of interest and applying geometry to determine the difference for its 
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respective output placement (Story and Congalton, 1986; Bolstad, 2005; Bolstad, 2012). This 

process calculates the discrepancy as the Root Mean Square Error (RMSE). Positional accuracy 

is a large component of photogrammetry, garnishing extensive standards such as the National 

Standard for Spatial Data Accuracy (NSSDA) (FGDC, 1998), the importance of which cannot be 

understated. As a much more complex metric of uncertainty, thematic accuracy compares 

specifically the labels, attributes, or characteristics of what is on the ground to the product of the 

spatial analysis (Pugh, 1997; Congalton and Green, 2009). Unlike positional accuracy, 

understanding thematic accuracy should not immediately impose that there is such strict, 

acceptable, standards of accuracy which are required for the results. Being that remote sensing 

classification for land cover mapping is such a large proportion of applications (Foody, 2002), 

and it derives such a purposeful outcome, the correctness of its product should be weighted 

accordingly.  

 In the early existence of remote sensing products quantitative evaluation of thematic 

accuracy was largely ignored due to the immense cost and infeasibility of validating entire 

mapping projects to any degree of precision. In this age, qualitative agreement between the 

features on the ground and the resulting product was deemed sufficient (Spurr, 1948; Katz, 1952; 

Congalton and Green, 2009). The cost of attainment, coarse resolution, and perceived 

dependability of these products made the most prevailing use as general landscape interpretation 

tools (Spurr, 1948; Spurr, 1952). In the attempt to bring merit and support for thematic mapping 

as a sensible scientific endeavor, the 1950s brought several prominent figures declaring the 

necessity for quantitatively assessing remote sensing accuracy beyond positional agreement 

(Spurr, 1948; Katz, 1952; Cowell, 1955; Congalton and Green, 2009). These initial notions of 
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accuracy standards fueled thoughts of methodological specifications; however, no affirmation 

was accomplished at this time.  

 At the onset of computer technologies, as is the case with many fields of analysis, early 

beliefs regarded digital products to be superior and without flaw. Flashy, automated systems, 

lived a period of profound growth with the main focus being capability. With the creation of ever 

more complex products, increased emphasis began to grow for the need to quantitatively assess 

data quality (Aronoff, 1982; Congalton, 1991; Congalton and Biging, 1992; Foody, 2002; 

Congalton and Green, 2009; Jensen, 2016). Although even today visual interpretation of results 

is still used in some projects, these measures often induce unwarranted uncertainty (Congalton 

and Biging, 1992). The use of this practice stems from the preceding belief that map makers are 

always right, and can be increasingly detrimental depending on the complexity of the project.  

 The quantitative assessment of thematic classification results is built on a solid 

foundation of statistical principles, comparing estimated to known, real values. Beginning as 

non-site specific assessments, total areas of map classes (e.g. Forest, Grass, or Developed) were 

compared between the thematic map and some reference material (i.e. county statistics or parcel 

map) to see to which level the two sources agree (Congalton, 1991; Foody, 2002). Using this 

method provided a very simplistic evaluation of the thematic accuracy, neglecting positional 

agreement in all regards, and withholding more comprehensive results of the classification. 

Quickly evolving to overcome previous uncertainty hazards, site-specific thematic accuracy 

assessments were formed to interject acknowledgement for the amount of specific locational 

conformity between the remotely sensed classification layer and what was on the ground 

(Congalton, 1991; Congalton and Green, 2009). Site-specific accuracy assessments provide 

overall agreement between the ground and the thematic layer. To facilitate this process of 
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assessing two data sources, and their relationship in a multivariate fashion, an error matrix, also 

known as a contingency table (in statistics) or confusion matrix is used (Congalton and Mead, 

1983; Story and Congalton, 1986; Congalton, 1991; Congalton and Green, 2009). The error 

matrix presents individual categorical accuracies and relations among recorded inaccuracies 

(Table 1) (Foody, 2002).  

 

Table 1. Conventional error matrix example. 

 

 

 Unlike the regulated standards for positional accuracy (e.g., NSSDA), each thematic 

mapping project must determine its own tolerance of uncertainty, and the type of uncertainty that 

it can most justifiably accept. User’s accuracy (Table 1), also known as error of commission, 

evaluates the user’s ability to produce a map which correctly classifies the characteristics of the 

ground, in other words, if too many samples have been committed to a class (Congalton and 

Green, 2009). Producer’s accuracy, also known as error of omission, assesses if measured 

locations have been viably captured for each class, alternatively if actual locations have been 
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omitted from the reference source (Story and Congalton, 1986). In most instances, errors of 

commission are preferred to their counterpart omission errors because, falsely allocating 

additional area to classes of interest generates less detriment than failing to locate critical 

features within the focus area (Congalton and Green, 2009; Cormier et al., 2013). For both 

producer’s and user’s accuracy there are notable tradeoffs in error between resolution, 

classification scheme complexity, and the overall objective, with regards to the emerging cost of 

the project. What can be even more important (in some cases) than the overall accuracy of the 

project, or either of the before mentioned errors, is the sources of error and how they affect the 

results in relation to the objective(s) (Congalton and Green, 2009).  

Error matrices represent versatile quantitative assessments, capable of handling a myriad 

of data sample types, being that samples are comparable between the two sources. In PBC 

accuracy assessments this will be single pixels, belonging to a specific class. Identifying 

matching pixels between the thematic layer and reference source can lead to further error, 

however, with positional uncertainty causing misregistration. More commonly, homogenous 

pixel clusters, being either 3x3 or 5x5 depending on the spatial resolution, can be used to ensure 

proper registration of comparison units (Figure 5).  For OBIA, multiple locations need to be 

assessed to ensure that the entire polygon, with its characteristics, is validated. Many reference 

sample units need to be taken throughout each individual polygon (Figure 5), for which their 

combined standard errors can be used as a level of agreement or uncertainty in the prevailing 

classification judgement (MacLean et al., 2012).   
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Figure 5. Reference Data Sample Units (in black) for (a) Pixel-based Classification and (b) 

Object-based Classification methodologies shown with black dots. 

 

 To ensure that the process of thematic mapping accuracy assessment is legitimized 

requires having reference data samples which, as alluded to before, can be used to validate 

reality (Foody, 2002; Congalton and Green, 2009). To form a basis for this “correct” material, 

statistical reasoning designs collection procedures for reference data; from either higher 

resolution remotely sensed data, ground sampling, or previously produced sources, to compare to 

the thematic layer. Reference data is used for two distinct purposes, depending on the 

classification algorithm used. First, it can be used to train the classifier, generating the decision 

tree ruleset which forms the model. Secondly, reference data is used as a validation source, to 

then test the model’s accuracy. To remain statistically determinative, these two forms of 

reference data must remain independent throughout their collection and analysis. For spatial data, 

remaining independent prompts minimizing the influence of spatial phenomena. Spatial 
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autocorrelation is indicative of this phenomenon, conveying the influence which characteristics 

have on their condition in neighboring units (Cliff and Ord, 1973).  

 Although rightfully meticulous, methods of reference data collection are not absolute, 

and should not be understood as “truth”. Unavoidable sources of error are present even during 

the assessment of accuracy. These inaccuracies can be assessed using the error matrix, deriving 

themselves from one of four possible sources: errors in the reference data itself, subjectivity or 

complexity of the classification scheme in relation to the observer(s), inability of the remote 

sensing data to capture the desired land cover classes, or lastly, direct errors in mapping 

(Congalton and Green, 2009). Even among collection procedures for reference data there are 

varying techniques including, relying solely on visual identification of the area, collecting GPS 

location confirmation, or collecting full-record, precisely positioned samples. Complexity or 

subjectivity in the classification scheme diminishes with proper definitions, but there will always 

be disagreement in interpretation of some land cover classes. Error in the collection of the 

remotely sensed data or its mapping can be marginalized with knowledge of the platform and 

sampling frame reasonable capabilities. One notable attempt to place a lower limit on the degree 

of accuracy required of thematic mapping accuracy assessment reference data is by Anderson et 

al., (1976). For our analyses, reference sample units generated from remotely sensing methods 

will match an acceptable error of 4-10% at a 95% confidence interval proposed by Fitzpatrick-

Lins (1981). This threshold recognizes that such a “truth” finding process incurs minimal, yet 

inescapable uncertainty.  

 Statistically based ground sampling practices have gained widespread acceptance and 

innovation over the course of the last 100 years, promoting many of the practices that we adopt 

today for data collection. Natural forest areas exemplify an especially complex and vital resource 



24 

 

and challenge our ability to quantitatively or qualitatively analyze characteristics. The need for 

efficient and accurate sampling tools created the field of forest mensuration (Bates and Zon, 

1922; Kershaw et al., 2016). Forest mensuration collects the most accurate and precise 

observations possible, using mathematical principles and field tested devices, to maximize 

efficiency (Spurr, 1952; Husch et al., 1972; Avery and Burkhart, 1983; Betchold and Patterson, 

2005; Kershaw et al., 2016). For many decades now these methods have been the foundation for 

collecting accurate reference data, and general knowledge of forests, providing information 

devoid of excess bias, inaccuracies, and or confusion. These precise procedures for 

systematically accumulating observations and measurements have the ability to accurately 

represent complex communities (Husch et al., 1972). To then use forest mensuration to gather 

training and validation samples comes with the knowledge that such procedures have been 

rigorously tested, becoming a basis of understanding for the natural world.  

 Continuous forest inventory (CFI) plots are used by many large organizations to generate 

long term datasets for monitoring and managing forest landscapes. Many national agencies, in 

the United States and in Europe, have formed national forest inventories (e.g., Forest Inventory 

and Analysis (FIA) of the U.S. Forest Service) based on this systematic sampling design (Smith, 

2002; Husch et al., 2003; Kershaw et al., 2016). Used to cover large expanses, CFI plots main 

purpose is to generalize long term trends, but, with their wealth of data, they can also dictate a 

prominent source of reference data for thematic accuracy assessments. Angle gauge sampling, a 

form of horizontal point sampling used in CFI plot networks, selects trees for measurement 

based on a probability proportional to their size (Kershaw et al., 2016). This size determinant 

probability, also known as a tree factor, creates an unbiased estimate for a basal area per unit 

area calculation (Kershaw et al., 2016).The network of samples uses strict and refined rulesets 
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for collecting data on the cross-sectional area of individual trees and their distributions as species 

classes which can be widely utilized (Husch et al., 1972; Kershaw et al., 2016). Such a system is 

also only as good as its coverage and resampling guidelines, being opposed by some groups due 

to its significant cost of use.    

Even with efficiency being a primary concern in sampling, collecting a valid sample size 

of reference data units, in an appropriate fashion, is extremely costly; quickly becoming a project 

limitation (Dicks and Lo, 1990; Martin et al., 1998; Morisette et al., 2005; Radoux et al., 2011). 

For project budgets, reference data collection, or the assessment of accuracy, can constitute a 

large proportion of the overall funds (Congalton and Green, 2009). Due in part to the high cost of 

collecting validation samples, there is a tendency to neglect reporting accuracy results in modern 

science. Attaining more accurate, and at the same time cost effective conclusions, is especially 

imperative in today’s world of limited natural resource conservation funding support. A further 

exacerbated illustration of this is modern forestry, with professionals charged with ever more 

demanding need for simultaneously making sustainable and profitable yield decisions.  

Testing for the efficiency and statistical power of reference data sample units allows 

analysts to determine precisely how many observations are needed to correctly classify a given 

area. Using the bivariate normal distribution as the basis of general linear regression modeling 

the relationship between the classifications of the two data sources, the reference data and the 

remotely sensed product, can be determined (Quinn and Keough, 2002). The statistical power of 

each successive sample throughout the landscape can be established, for both pixel-based and 

object-based sampling, using their standard error in bootstrap resampling simulations (Snedecor 

and Cochran, 1980; Efron and Tibshirani, 1993; Mooney and Duval, 1993; Siciliano and Mola, 

2000; MacLean et al., 2012). Bootstrap resampling uses averaging of simulated iterations to 
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calculate the standard deviation of the population for the classification results, based on specified 

parameters. From here, the declining return of accuracy for each successive removal of a 

reference sample unit can be used to find the relationship with sampling cost and efficiency 

(Thompson, 2002; MacLean et al., 2012). Understanding these factors, Husch et al., (2003) and 

MacLean et al., (2012) have proposed increasingly refined sampling minimums for collecting 

thematic mapping ground sampling data.   

 

Unmanned Aerial Systems 

 Remote sensing continues to expand in the 21st century to meet the needs of the user. 

Now in a new frontier of high resolution and adaptable sensors, unmanned aerial systems (UAS) 

look to fill a niche role for the benefit of society. This newly prominent platform is technically 

defined only by its lack of an on-board operator (Finn and Wright, 2012; Wagner, 2015). The 

open-ended definition serves as a testament to the ubiquitous nature of the tool. The plethora of 

modifications popping up every new month brings with it a divided consensus of best suited 

terminology. Designations such as unmanned aerial system (UAS), unmanned aircraft system 

(UAS), unmanned aerial vehicle (UAV, unmanned aircraft (UA), remotely piloted aircraft 

(RPA), remotely operated aircraft (ROA), unmanned vehicle system (UVS), aerial robotics, and 

drone all have viable social and scientific perspectives (Colomina and Molina, 2014; Wagner, 

2015; Marshall et al., 2016; Cummings et al., 2017). Distinction between titles comes from the 

respective understanding of the user and their approach to the system. For example, individuals 

in the conservation sciences often prefer the term UAV, while those with a military background 

commonly utilize RPAV (Colomina and Molina, 2014). Here in, I use as many others have 

already, that unmanned aerial systems (UAS) is the most fitting label because this platform 
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represents a culmination of components (Figure 6). Although not every UAS makes use of all of 

the same components, the majority of systems can be expected to have some form or 

modification of: (1) a launch and recovery system or flight mechanism, (2) a sensor payload, (3) 

a communication data link, (4) the unmanned aircraft, (5) a command and control element, and 

(6) the most important of all, the human (Everaerts et al., 2008; Eisenbeiss, 2009; Barnhart et al., 

2012; Colomina and Molina, 2014; Kakaes et al., 2015; Marshall et al., 2016; Cummings et al., 

2017). Launch and recovery systems are found predominantly with larger UAS, needing 

additional components for their large masses. For smaller systems, these are more indicative of 

their flight mechanism, needing little to no support for flight. The remote sensing payload 

defines the primary utility for the UAS operation. With modern technologies this can be normal 

color, multispectral, hyperspectral, and even LiDAR sensors. Additionally, multiple sensor 

payloads can be deployed simultaneously, in some cases for first-person-view feeds, as 

supplementary data acquisition. The communication datalink serves as the eyes for the UAS 

pilot; this component interacts directly with the other components to transmit to the pilot and 

controller current status of operations. The unmanned aircraft itself connects all of the other 

pieces as the hardware nucleus of the UAS. Taking direct input of servo actions to dictate 

actions, the command and control element of a UAS can either be a manual controller for 

immediate operator control, or an autonomous control element, pre-programmed for the desired 

mission plan. Lastly, all UAS do require some form of human input. This can range from pre-

programming actions and over watch in fully autonomous scenarios to real-time remote control 

input, but should always be considered the most important component of the system (Marshall et 

al., 2016).  
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Figure 6. Core components of Unmanned Aerial Systems, all interconnected. 

 

Apart from the actual naming of the UAS, a more preeminent classification may be 

whether it is a rotary-winged or fixed-wing aircraft. Each providing unique benefits and 

limitations for modern systems, the division between these two configurations regulates much of 

the structure of the core components. Rotary-winged UAS, having any number of horizontally 

rotating propellers, are best regarded for their vertical take-off and landing (VTOL) abilities. 

Their added maneuverability, and hovering capabilities (Avery, 1977) are only hindered by their 

lower altitude operation threshold, and on average shorter duration flight capacity (Barnhart et 

al., 2012). Fixed-wing UAS are coveted for their longer duration, therefore larger extent 

coverage, and their higher altitude flight threshold; but at a trade-off for their lack of focused 

coverage.  
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 Naturally, any understanding or research into this recently emanating platform will 

unearth its rich heritage of military applications, with strides in the consumer market appearing 

only within the last decade. The history of UAS is very dependent on the interpretation of their 

true definition. Some accounts of UAS date back thousands of years to ancient Chinese emperors 

purposing of oil-lantern balloons for enemy surveillance (Barnhart et al., 2012; Marshall et al., 

2016). More agreed upon accounts trace the origins back to early remote controlled torpedoes at 

the beginning of the 20th century. These contraptions evolved in parallel with manned aircraft 

technology, with innovators such as Elmer Sperry and his son Laurence Sperry devising 

autonomous guidance controls and the Wright Brothers pioneering aviation systems (Barnhart et 

al., 2012; Finn and Wright, 2012; Marshall et al., 2016). These early remote operations became 

ever more capable with the integration of the then recently invented radio transmitters from 

Nicola Tesla (Marshall et al., 2016).  

 Still maturing as “dangerous, dirty, and dull” contraptions (Barnhart et al., 2012) several 

attempts were made during the World Wars to have UAS match other weaponized machines. It is 

during this time that the British Royal Navy’s unmanned reconnaissance drone coined the term 

drone (Marshall et al., 2016). The designation of drone reflects the behavioral ecology of bees, 

spurring several additional associated titles (Marshall et al., 2016). Following the war machine 

mentality for weaponized applications, interest shifted during the latter half of the 20th century to 

intelligence, reconnaissance, and surveillance (IRS) functions (Eisenbeiss, 2009; Barnhart et al., 

2012; Marshall et al., 2016). This repurposing lent itself to the widespread goals of remote 

sensing, bringing to life public interest. Today’s computer technology and micro-processing 

pushed the boundaries of each UAS component (Finn and Wright, 2012). The development of 

complex, scaled-down-stature computers in the mid-2000s formed an explosion in the consumer 
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market, making UAS available from $10 toy store configurations, to fully capable 

photogrammetric platforms with centimeter level mapping resolutions for roughly $1000 

(European Commission, 2007; Cummings et al., 2017).  

 The proliferation of UAS, with their now achievable increased spatial and temporal 

resolutions has already been embraced by many scientific fields and applications. Operations 

such as emergency response (Choi et al., 2009), fire mapping (Hinkley and Zajkowski, 2011), 

structure characterization (Carvajal et al., 2012; Nex and Remondino, 2014), forest inventory 

(Puliti et al., 2015), precision agriculture (Zhang et al., 2012), general natural resource 

management (Horcher and Visser, 2004), or wildlife monitoring (Jones et al., 2006; Kakaes et 

al., 2015; Hodgson et al., 2016), have already expressed benefits of UAS, with many others 

reviewing the potential (Colomina and Molina, 2014; Whitehead and Hugenholtz, 2014; 

Cummings et al., 2017). This frontier expressed a scientific revolution, open to all those willing 

to be an early adopter for these new technologies. The widespread growth in capabilities and 

handling by the public did however form a major conflict of interest with the government and 

culture, forcing new regulations to cover the needs of worldwide privacy, security, safety, and 

understanding (European Commission, 2007; Hugenholtz, 2012; Whitehead and Hugenholtz, 

2014; Marshall et al., 2016).  

 With any new technology there is of course a cause for question as to how it will 

inevitably affect society. All in their own right warranted, the major resisting factors to the 

advancement and adoption of UAS by more users are privacy, security, safety, and social 

understanding concerns (Dalamangkidis et al., 2008; Kakaes et al., 2015; Cummings et al., 

2017). These major drivers are causing shifts in the worldwide acceptance of the platform, 

critically influencing remote sensing data acquisition in the broad intentions of science. Some 
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disciplines, such as natural resource conservation, are already experiencing considerable 

opposition do to their social acceptance, leaving no room for careless UAS operations to further 

denounce practices by the public. The shift towards approval is however already experiencing 

some notable progress. For example, there is a renewed connotation forming for the label of 

drones. With increased public awareness and interest, online searches for the word “drone” now 

return images of consumer grade models, while only a few years ago this would be populated 

only by weaponized, predator style models (Google, 2017).  

 To ensure the compliance of UAS operations, regulations and policy have been 

developed at local, state, national, and even international levels of government. This research 

was conducted in the U.S., therefore following the National Airspace System (NAS) guidelines. 

Although not the most liberal in its authorizations, major reforms are being founded, with the 

goals of appeasing both UAS and public stakeholders. All actions within the U.S. NAS are 

governed by the Federal Aviation Administration (FAA). Under recent FAA definition, UAS 

operations are broken down into three broad categories: public (governmental), civil (non-

governmental), and model (hobby or recreational) (FAA, 2016a; FAA, 2016b; FAA, 2016c). 

These classifications were proposed to strictly limit sanctioned operation for the purpose of not 

exceeding a threshold of unnecessary risk within the NAS (Anand, 2007; Watts et al., 2012; 

FAA, 2015; FAA, 2016c). Up until recently, apart from these classifications, further regulations 

were not present to handle actual applications. This oversight caused noticeable issues, with 

improper or unsafe operations occurring across the country as the result of untrained pilots and 

further evolved systems. These conflicts opposed the overall goal of the FAA to administer 

safety standards for UAS which are at least as thorough as manned aircraft (Dalamagkidis et al., 

2008).  
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 Furthering the three-part classification, current regulations now establish a small UAS 

(sUAS) definition for which size and flight restrictions are imposed. The major limitation of this 

specification being a weight restriction of roughly 25kg (55lbs), altitude restriction of 

approximately 121m (400ft), and high visibility only operation (FAA, 2017b). Each of these 

systems must be registered through FAA personal under their proposed classification so that they 

can be reported in case of incident or failure. Other UAS such as large format, high altitude, or 

long endurance platforms are currently beyond the scope of civil or hobbyist authorization. All 

regulated sUAS operations within the NAS, not of public or hobbyist control, previously 

required, prior to use, approval of a Certificate of Waiver or Authorization (CoA). Detailed 

guidelines of intended coverage, operator understanding, and safety mitigation tactics were 

subject to review by the Aviation Rulemaking Committee (ARC) of the FAA under this system 

(FAA, 2017a). Alternatively, section 333 exemptions to this process were also approved for 

minimal impact operations. As of August 29th, 2017, this process was recognized as tedious and 

not inclusive to its intended extent, establishing the Remote Pilot in Command (RPIC) license 

under 14 Code of Federal Regulations (CFR) Part 107 (FAA, 2017). Part 107 stipulates 

operational permission of sUAS with restricted flexibility for all those who gain a RPIC license. 

Each intended mission must have at least one primary overseer with the RPIC clearance. This 

license requires passing a biyearly, reoccurring aeronautical knowledge test (FAA, 2017b), 

which is administered by a certified flight instructor, much like authorization for manned aircraft 

aviation. Nearly all restrictions under this reformed policy can be waived through an approval 

process, allowing for controlled but necessary limits. The regulatory framework under the FAA 

is still highly unpolished, putting the goals of safety and knowledge first, and dampening the 

progress utility to operators.  
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 At the state and local levels, supplementary guidelines are at the discretion of public 

opinion and lawmakers. Here in New Hampshire, house bill 602 looks to heighten registration 

and unlawful operation clauses (HB 602-FN, 2015). Looking at local levels, missions, especially 

routine and prolonged flights, must respect land owner permission and local authorities as to not 

incite concern.  

 The widespread acceptance and supportive regulations of UAS is promoted by the 

advances of their products. New products, with the aid of specialized or repurposed software, 

and computer vision, are further changing the way that we model the world. Orthomosaic models 

are being produced with small, point-and-shoot optics, with procedures designed to overcome 

sensor drawbacks. UAS photogrammetry is now being referenced in fields such as computer 

science, robotics and artificial intelligence, general photogrammetry, and remote sensing 

(Eisenbeiss, 2009; Cummings et al., 2017). Flight planning fundamentals call upon earlier 

manned mission planning protocols, with further reduced costs and flexibility. Multi-million 

dollar manned aircraft systems, and high-resolution satellite imagery scenes costing upwards of 

$20/ square km (WorldView-2, 2017) are now being repeatedly observed for a much lower cost 

of entry. Documented evidence for the shift towards inexpensive, on-demand options is popping 

up everywhere (Kakaes et al., 2015). The extremely high-resolution, flexible deployment, 

minimal cost, safety, and fast data acquisition of modern UAS makes them the ideal candidate 

for challenging ground, and alternative remote sensing platforms sampling (Eisenbeiss, 2009; 

Rango et al., 2009; Whitehead and Hugenholtz, 2014; Puliti et al., 2015).  

 As stated before, high-resolution remotely sensed data can be used as reference data for 

other data sources. Paramount to the utility of this process in ecological research and 

management is the standardization of outputs (Anderson, 1976). Aerial imagery has been used 
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since at least the 1950s to provide an ancillary source of validation data (Spurr, 1948; Spurr, 

1952). This use has, over time, lead to skepticism over the appropriateness of photo 

interpretation derived reference data for thematic mapping accuracy assessments (Congalton and 

Green, 1992). While others have confirmed practices for accurately distinguishing composition 

from imagery (Martin et al., 1998). The photo interpretation potential of imagery has benefited 

with each increase in resolution, providing the ability for skilled professionals to identify 

individual species (Avery, 1977; Avery and Berlin, 1985) and then work up to deducing majority 

composition classes across samples. UAS derived orthomosaics enhance this process, associating 

three-dimensional (3D) texture and surfaces, with their readily formed high-resolution models. It 

is a question then if the UAS provide a potential platform for collecting thematic mapping 

accuracy assessment reference data of a necessary caliber, and if their operational efficiency 

supports their use over refined ground, or alternative sampling methods.   

 

METHODS 
 

 

Study Areas 

 This research was conducted using University of New Hampshire (UNH) woodland 

properties. Using properties owned and managed by the university gave several benefits 

including: comprehensive ground sampling measurements datasets (in the form of CFI plot 

networks), UAS operation permission, and study areas maintained for their research potential 

(UNH Woodlands and Natural Areas, 2017). The specific study areas chosen were selected for 

their complex species composition and structure, and for their spatial extent, to generate a 

statistically valid sample size for comparison. Of the over 1,200 hectares (ha.) (3,000 acres) of 
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woodland properties owned throughout the state, six locations were chosen within local 

proximity of the main campus in Durham, New Hampshire (Figure 7).  

 

 

Figure 7. Estimated boundaries for focused study areas used in reference data collection and 

comparison.  

 

These six forested properties comprise 522.85 ha. (1,292 acres) of total land, 377.57 ha. (933 ac.) 

of which are considered forested land cover. For each property, the areal extent and CFI data 
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available is detailed in Table 2. The number of CFI plots shown in this table represent those 

which have estimations of overstory species composition, measured as either count or measure 

trees found during ground sampling.  

 

Table 2. Focused woodland property attributes for the six study areas.  

Location 

Forest 
Area in 

hectares 
(Acres) 

Total 
Area in 

hectares 
(Acres) 

Forest 
Stands 

CFI Plots 

West Foss 
Farm 

42.90  
(106) 

52.27 
(144) 5 29 

Thompson 
Farm 

78.10 
(193) 

118.17 
(292) 8 66 

Moore 
Fields 

17.00 
(42) 

47.76 
(118) 4 15 

Kingman 
Farm 

94.70 
(234) 

135.17 
(334) 8 91 

East Foss 
Farm 

51.80 
(128) 

62.32 
(154) 10 55 

College 
Woods 

93.08 
(230) 

101.17 
(250) 6 97 

TOTAL: 377.57 
(933) 

522.85 
(1,292) 41 353 

 

 

West Foss Farm, located just south of campus in Durham, New Hampshire, contained a 

total of 42.9 ha. of forested land cover. Characteristic of this property were its large central 

grassland habitat, and its adjacent railroad tracks. Also present were low-laying powerlines, not 
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accompanied by a right-of-way. This property was last inventoried on the ground in 2014 with 

29 CFI plots covering the area. 

 Thompson Farm was the southernmost study area. Identified by its large central farmland 

and adjacent wetland habitat, this large property was home to an above canopy AIRMAP tower 

in its southern region, utilized for ongoing climate change research. Having access to this tower 

provided additional visual coverage during missions, but also implemented a no-fly zone, for risk 

of collision which was not autonomously detected. For this property, 66 CFI plots were 

inventoried in 2013 to analyze the forested land cover of 78.1 ha.  

 Moore Fields represented the smallest study area chosen for observation. Just west of 

campus, this woodland also runs adjacent to a large agriculture field managed by the university. 

With only 15 CFI plots, inventoried in 2014, this 17.0 ha. (42ac) forest comprised fairly 

distinctive cover types.  

 Kingman Farm was home to both the NH Agricultural Experiment Station and the UNH 

Office of Woodlands and Natural Areas main residence. The northernmost study site, and the 

only one located outside of the college town, Kingman Farm is situated in Madbury, NH. 

Kingman was most well-known for its abundant agriculture fields, running the southern portion 

of the property. The forested land covering this property, comprised 91 CFI plots over nearly 95 

ha, was inventoried in 2007 and again in 2017, during our field season. 

 East Foss Farm, sat southeast of the Durham campus. A mainly forested landscape, this 

property is notable for its actively managed early successional habitat. These habitats, as well as 

the sporadic wetlands, are not utilized in this study. The 55 CFI plots located systematically 
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throughout this property were last inventoried in 2014. East Foss farm has 51.8 ha. of forested 

land. 

 College Woods, with its associated natural area, was connected to the main portion of the 

UNH campus. Used as a primary source for educational opportunities to many departments, this 

area was highly characteristic of New England forest composition. Last inventoried in 2010, the 

97 CFI plots located throughout this property incur the longest duration since last sampling. 

Altogether, College Woods contained an estimated 93.08 ha. of forested land cover.  

Ground Reference Data 

 The extensive CFI ground sampling plot network used on the UNH woodland properties 

utilized methodologies for estimating landscape level characteristics. For each plot location, 

angle-wedge prism sampling was used to collect a number of biophysical measurements 

including: tree species composition, individual tree diameter at breast height (dbh), species 

count, and silvicultural code through horizontal point sampling (Kershaw et al., 2016).  The 

ocular methodology employed by the prism to select individual trees created a variable radius 

plot. Selection for inclusion, and therefore measurement, was based on the basal area factor 

(BAF) of the prism chosen, relating a probability proportional to size selection potential to each 

individual tree (Kershaw et al., 2016). Size determinate inclusion zones codify each individual 

tree’s basal area, or cross-sectional area at breast height (Husch et al., 1972). Such methods 

provide an efficient and elegant way of quantifying stand structure with minimized effort, 

sampling part of the population to represent the whole (Stage and Rennie, 1994; MacLean et al., 

2012) because it can be directly related to metrics such as stand volume or overall biomass 

(Husch et al., 1972). Forest mensuration principles provide conditions for slight discrepancies in 

this methodology regarding hard to see trees (blocked line of sight), plot ground elevation 
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changes, and dual-stem individuals (Kershaw et al., 2016). For the New England region, 

BAF 4.59𝑚2 (or20𝑓𝑡2) prisms are recommended (Ducey, 2001), and are used by the UNH 

forest technicians. Any tree found by the prism to have basal area over the BAF 4.59𝑚2 

minimum sight threshold is counted as being representative of the basal area of the larger forest 

stand, or part of the estimation sample. In addition to the single plot sampling methodology, the 

integration of “Big BAF” sampling provides additional biometric characteristics. This selection 

methodology is utilized at every plot location but with a BAF 75 probability of selection 

(Kershaw et al., 2016). For trees within this greater magnitude (large dbh or close to the plot 

center), tree height, bearing form the plot center, distance from the plot center, crown 

dimensions, and number of silvicultural logs were also recorded, deeming them as “measure” 

trees.  

 CFI plots were sampled on a systematic grid with 1 plot per hectare (Figure 8). This 

results in most management units, or unique forest stands, having a minimum size of 10 ha. 

Resampling frequencies call for woodland properties being measured at a minimum every 10 

years, with select areas being measured more on a needs-based rotation, depending on the 

research agendas and management design.  
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Figure 8. Kingman Farm systematic sampling grid arrangement of CFI plots. Plots 33-126 are 

present in this woodland. 

  

 CFI variable radius plots used the algorithm for basal area (see below) as a function for 

their probability proportional to size measurement of inclusion of individual trees (Kershaw et 

al., 2016). Basal area quantified both the distribution from the plot centers and cross-sectional 

area of each individually measured tree. Having such estimations of composition are useful to 

characterize forest stands and therefore landscapes using the relationships of distribution over 

area and size of the individuals’ encountered (Husche et al., 1972; Kershaw et al., 2016). Species 



41 

 

composition, frequency, abundance, and distribution, are all generalized from this information, 

using majority rules.  

         (1)   

 From the raw data CFI observations, the count and measure trees (i.e., the dominant 

individuals within each stand chosen based on their size and location in reference to the plot 

centers) were used to derive a quantification of the percentage of coniferous species comprising 

the sample. This was facilitated by calculating the basal area of each tree, then classifying them 

as either deciduous or coniferous and finding the percentage composition of each class.. Rather 

than classifying down to a species level scheme, which in this case would leave 31 classes (See 

Appendix A), I adopted the conventional three forest classes of Deciduous, Coniferous, or Mixed 

from Justice et al., (2002) and MacLean et al., (2012) to more feasibly discern lkand cover 

classes. There is also a noticeable change in resources provided in contrasting deciduous and 

coniferous forests. To transform the original dataset, provided by the UNH Office of Woodlands 

and Natural Areas, first a qualitative analysis of the data took place. As these data were collected 

for general purpose research and management, unnecessary variables were present and had to be 

identified; these included measures such as saw log volume per individual. Next, the datasets for 

each woodlot were assimilated into R Studio, version 3.3.2 (2016), for cleaning and processing, 

namely removing missing values and standardizing values. All count and measure trees were 

separated out from those noted as regeneration because they would not be part of the dominant 

forest structure. Among the 353 CFI plots, a few were identified during this step as not 

containing any recorded trees due to the size threshold of variable plot sampling, these plots were 

removed from the analysis since they represented non-forest dominated land by definition (the 

difference between the number of plots counted in the management plans and the number 
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referenced in Table 2). Standing dead trees were removed from the remaining plots, as a number 

of years have passed since their measured occurrence, and because they provide unique, yet 

differing resources to the forest ecosystem. Next, each remaining individual had its basal area 

computed in centimeters squared and its deciduous or coniferous class association confirmed to 

determine the percent coniferous composition based on basal area per unit area of each plot.  

With the processed variables (Table 3), a simple decision tree was employed for assigning the 

classification scheme ruleset to all remaining plots.  

 

Table 3. Representative plot data to illustrate CFI classification variables used to derive plot 

composition label (i.e. Plot Class). 

 

 

 The designed classification scheme here aims to match the complexity of previous studies 

performed in this region, staying within a more basic hierarchy of forest land covers (Anderson, 

1976). Adopting the conventional three forest classes of Deciduous, Coniferous, or Mixed from 

Justice et al., (2002) and MacLean et al., (2012) was advised for this region due to the highly 

variable forest composition even within minimal distances. For our research, the classification 

scheme was partitioned into the same three categories, allowing for a direct comparison to the 

findings of MacLean et al., (2012). Much like the national land cover dataset (NLCD), this 

project recognized the hierarchical utility of the data. Looking at only forested landscapes during 
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our analysis, we focused on the Anderson (1976) definition of forest: areas with 10 percent or 

more aerial tree-crown density, capable of producing timber, and influencing either the climate 

or water regime. Then, the more specific class definitions were: 

• “Coniferous”, any land surface dominated by large forest vegetation species, and 

managed as such, comprising an overstory canopy with a greater than or equal to 65% 

basal area per unit area coniferous species composition. 

•  “Mixed”, any land surface dominated by large forest vegetation species, and managed as 

such, comprising an overstory canopy, which is less than 65% and greater than 25% basal 

area per unit area coniferous species in composition. 

•  “Deciduous”, any land surface dominated by large forest vegetation species, and 

managed as such, comprising an overstory canopy, which is less than or equal to 25% 

basal area per unit area coniferous species in composition (Figure 9).  

Common coniferous species in New Hampshire include white pine (Pinus strobus), eastern 

hemlock (Tsuga canadensis), balsam fir (Abies balsamea), or black spruce (Picea mariana) (see 

appendix A for full breakdown of recorded species and classifications).  
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Figure 9. Sampling design classification scheme breakdown. Based on the percentage of 

coniferous species composition found within each sample. 

 

 

 Percent coniferous for each plot was factored to six decimal places in the “PlotClass” 

column (Table 3) unless whole integer values were obtained. Due to the collection materials, 

only a geographic coordinate system was confirmed for the CFI plot locations, in this case being 

the standard WGS-84.  

 To objectively assign forest stand boundaries for the management units of each woodland 

property, with adherence to our selected categories, the classified CFI plots were used to guide 

manual digitizing by fellow spatial analysis researcher Heather Grybas, in review with UNH 

woodlands manager Steve Eisenhaure. The processed systematic plot network formed, for the 

most part, recognizable divisions between management units of justifiable size while still 

managing the uniformity of the traditional New England landscape. Leaf-off, 2015, natural color, 

Department of Transportation (DOT) imagery with a 1-foot spatial resolution was used as a 

basemap during the digitizing process for visual, contextual understanding of boundaries 

between forest stands. Together more distinct edges between classes could be formed, working 
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down the hierarchical structure of the definitions. Non-managed forested areas within each of the 

woodlands were found using the management plans, and lack of CFI plots, all of which were 

digitized and ignored throughout the project. An example of these forest stand boundaries can be 

seen for Kingman Farm below in Figure 10, with the complete set for all of the study area 

properties in Appendix A.  

 

Figure 10. Forest stands for Kingman Farm, Madbury, NH. Based on ground sampling data.  
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UAS Image Sampling 

Two UAS were evaluated as primary sources for remotely sensed data acquisition during 

this project, with an additional system used as a calibration and scouting unit. The first was an 

Aeronavics Skyjib X-8 multirotor (octocopter) system (Figure 11). This rotary-winged platform 

integrated DJI hardware including an A2 flight controller and inertial measurement unit (IMU), a 

Mark-II iosD for real-time flight data capturing, and a LK24-BT (2.4Ghz) communication link. 

For the remote sensing payload, a commonly used Zenmuse-Z15 gimbal and Panasonic Lumix 

GH4 (12mm) camera are attached. Demanding two six-cell, 11.1-volt, 10,000mah Tattu batteries 

to operate brings the take-off weight to approximately 19kgs (~42lbs), for a maximum flight 

time of 8-10 minutes. In addition to the primary specified data collection system, an external 

first-person-view (FPV) monitor was supported by the communication data-link during operation 

on this UAS. Included with the DJI hardware is DJI Ground Station 4.0.11 for autonomous 

mission control and monitoring. This software was circumvented following training missions for 

the more ubiquitous Universal Ground Control Station (UGcs) version 2.10. DJI Ground Station 

software was no longer supported and could not provide full functionality for the required spatial 

data acquisition. Hardware limitations and project demands forced this system to only be used 

during training missions.  
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Figure 11. Aeronavics Skyjib X-8 complete system configuration including: (1) eight-rotor 

flight mechanisms, (2) Panasonic GH4 payload, (3) two Tattu battery placements, (4) unmanned 

aircraft, (5) 2 manual command and control elements, one for aircraft, one for gimbal, and (6) 

Bluetooth communication data link for laptop. Also pictured are the FPV monitor (right, under 

drone) and UGcs mission planner (left). 

 

 The primary UAS used for data acquisition was the eBee Plus platform. The eBee Plus 

was an all-in-one fixed-wing aircraft from Parrot SenseFly. Integrated in this UAS (Figure 12) 

were a proprietary autonomous flight controller, communication data link, and IMU. For 

payloads, both a sensor optimized for drone applications (S.O.D.A) camera and parrot sequoia 

multi-spectral sensor were investigated. The SODA is a natural color, 20 megapixel payload, 

capable of a 2.9cm ground resolution at a 122m flying altitude (SenseFly, 2017b), specifically 

designed for sharp drone imagery collection/ photogrammetry. Alternatively, the parrot sequoia 

is a five sensor, multispectral payload. The combination of sensors on the sequoia included a 
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normal color (16 megapixels) optic, and a multispectral system with individual green, red, red 

edge and near infrared sensors (SenseFly, 2017a). For a power supply, the eBee plus used a 

single 3-cell, 11.1-volt, 4,900mah battery, capable of a maximum flight duration of 59 minutes 

(SenseFly, 2017b).  The total weight of the system came to approximately 1.1kg with either 

payload. It was highly recommended that this system was only operated in pre-programmed 

autonomous missions (an emergency manual controller is included) using the included, 

proprietary eMotion3 mission planning software (version 3.2.4).  

 

Figure 12. eBee Plus system configuration with (1) flight mechanism, (2a) SODA and (2b) 

sequoia payloads, (3) battery, (4) aircraft, (5) communication link, (6) ground control software 

and controller. Also pictured are the hardware and software manuals, in color (far left). 
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 The final UAS system operated was a DJI Phantom 2 Vision+. A small rotary-winged 

(quadcopter) system, the Phantom series now represents a highly praised model in the consumer 

market. The Phantom 2 Vision+ came with a singular manual controller, and operates a Wi-Fi 

communication link to connect a smartphone device for gimbal and camera manipulation. An 

internal IMU collected minimal GPS and sensor orientation data throughout missions. This 

model of Phantoms offered the first version of an integrated normal color camera, boasting 14 

megapixels (DJI, 2017). A 5200mah, 11.1-volt, single battery was used to provide a 15-20-

minute flight time with a total weight of 1.2kg (DJI, 2017). The Phantom 2 Vision+ (Figure 13) 

was used primarily as a calibration and scouting platform due to its ease of use, but was not used 

to collect data analyzed in this project.   

 

 

Figure 13. Phantom 2 Vision + UAS Configuration. 
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Reference data collected by the UAS platforms was designed to match the characteristics 

of the classification outcome derived by the CFI plot-based ground data network. Having a new 

protocol which formed incompatible products to the ground data collection would relinquish the 

utility of the UAS data. For each of the woodland properties, proper notification was used for 

access and research permission by the appropriate parties (see table of access permissions in 

Appendix B). Flight planning was set up to capture the maximum possible area of each 

woodland property, while still flying only within the property boundaries. For larger properties 

(such as Kingman Farm) this meant breaking the property into up to four separate missions, to be 

merged later during processing of the imagery (Figure 14).  

 

 

Figure 14. Kingman Farm flight planning mission blocks, eMotion3 flight planning software 

from Parrott SenseFly. 
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Images, once collected, could have their spatial location joined to them, avoiding the 

need to restrict flights to individual forest stands (sample units) during mission planning. Prior 

day weather forecasting was used as the most accurate estimate of precipitation and wind speed. 

These weather condition estimations were reviewed through the National Weather Service 

(NWS) and serval drone flight mapping services. Although our systems could fly in winds over 

20m/s, it would have severely diminished their image quality and battery life. Instead, wind 

speeds in excess of 12m/s were not used for operation as a safety and accuracy precaution. It was 

highly recommended that for autonomous missions, flight lines are also set up perpendicular to 

the wind. Having perpendicular wind angles would cause flight speed and image spacing 

regularity, severely increasing accuracy and image matching capabilities (eMotion3, 2017). It 

was also desirable to have a near vertical sun angle during image acquisition and consistent sun 

exposure. Cloudy days and near dawn or dusk flights were avoided as to not cause irregular 

shadows or excess darkness in the imagery. Although individual images would not be influenced 

greatly, model generation could have been impacted at various stages. To summarize the mission 

planning information and retain notes on the progress understanding the systems, a checklist and 

flight log was organized (seen in Appendix D). Many mission planning software programs now 

include these records by default and even record some of the desired information as part of the 

flight data file (.EXIF data), never downplaying the importance of having excess records.  

For the assessment of sampling efficiency, several flying heights above canopy were 

included in the initial imagery collection planning. Originally this entailed 25m, 50m, and 100m 

above the average canopy height.  However, as test missions were flown these were adjusted as 

necessary. Any missions below 50m quickly lost line-of-sight (a legal requirement) and 
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communication link. The desire to find the minimum effective flying height above the forest 

canopy in the pursuance of high spatial resolution while maintaining radio communication 

resulted in analyzing heights of 50m, 100m, and 120m above the forest canopy. The cap set here 

(120m above surface or canopy) was based on the restriction of the Part 107 regulations, stating 

sUAS operations are limited to a 400ft ceiling above surfaces (FAA, 2017b). The canopy height 

model was provided by NH GRANIT, as was the DOT basemap imagery. Additionally, a state-

wide LiDAR (.las) dataset, with its original two points per meter squared was made coarser, and 

had outliers removed. The final LiDAR input was brought to two points for every ten square 

meters, resulting in a much smoother flying height for UAS mission planning. To keep a 

constant ground sampling distance (gsd), or model pixel size, image acquisition flying height had 

to match the surface of the forest canopy. Having three flying heights would test the levels of 

detail derived (Figure 15) and the processing efficiency of varying numbers of images. 

 

  

Figure 15. Flying heights above canopy detail comparison for UAS imagery collection. 

 

Following flight sessions, the images had to be linked to the spatial data collected by the 

UASs IMUs and global navigation satellite systems (GNSS). For both the Skyjib, and eBee plus 

platforms, this was done by attaching the internally stored .bbx (or .dat) formatted text file to the 
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folder containing the raw images captured for that specific mission block. The Phantom 2 

Vision+ performed this process automatically during image acquisition. During mission block 

flight, every sensor with the exception of the parrot sequoia had an external SD card for storing 

the captured images. The sequoia, as standardly configured, had both an internal and external 

storage location. Having both data storage options provided the possibility for on-the-fly 

changing of preference. For the eBee, the mission planner is able to post-flight process the flight 

log file and the images to match the servo action of camera triggering to the specific image to 

facilitate the creation of any number of outputs. For the Skyjib, the .dat file had to be rewritten to 

match required text formatting of the selected processing software such as eMotion3. Once 

reformatted, the spatial data could then be linked to the individual images. All systems were 

backed-up in multiple digital storage locations after daily flight sessions so that successive 

operations would not lead to the loss of data for any reason and to alleviate any data storage 

limitations.  

Generating spatial models from heavily overlapping successive images once structured 

flight planning to achieve image overlaps necessary for transcribing photographic detail to 

previously available planimetric maps (Avery and Berlin, 1985). This degree of overlap was 

purposed to match the horizontal positioning of common features in successive captures, using 

the historically low quality sensors (Avery and Berlin, 1985). To generate planimetric models 

from the exceedingly high spatial resolution UAS imagery, it is recommended to require at least 

a 65% forward and sidelap (Pix4D, 2017). This higher percentage of overlap forms the basis for 

computer vision SfM modeling (Westoby et al., 2012; Mancini et al., 2013).  Low altitude 

flights, with high levels of detail, make image matching of specific tie points through aerial 

triangulation (Figure 16) very difficult. Even minimal distortions from shadows, from the wind, 
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from the drone, or even from the features of interest, can disrupt the automatic tie point 

agreement. Images which do not establish at least three tie points are not calibrated or 

assimilated into model processing.   

 

 

Figure 16. Tie point Image Matches between images with overlap, shown by green crosshairs. 

Image matching produced in Pix4Dmapper Pro. 

 

For complex environments, such as highly vegetated forests, point cloud and orthomosaic 

models are recommended to have images with 85% forward and 70-75% side overlap (Pix4D, 

2017b). These overlaps result in thousands of matches between images in an ideal scenario 

(Figure 17). Manual tie points can also be selected from within the imagery to improve 

matching, using either distinctive features in the landscape or prerecorded ground control points. 

To mitigate the complications of the high-resolution imagery error, image scales within the 

processing software are set for these tie point matches to further aid their calibration (Pix4D, 
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2017a). If tie points cannot be found between an image and any other, it will be automatically 

disabled during model processing, resulting in a lower overall image calibration percentage.  

 

 

Figure 17. Keypoint (tie point) matches for UAS aerial imagery in orthomosaic generation. 

Connecting lines show the number of matches between overlapping images, with darker lines 

showing a greater number of automatic matches. Green circles show geolocation uncertainty of 

images. Processed in Pix4Dmapper Pro. 

 

 At the leading edge of UAS photogrammetry and modeling, the software packages 

Agisoft PhotoScan (Agisoft) and Pix4Dmapper Pro (Pix4D) have become the dominant players. 

Both programs have been used during this project, with varying results across study areas. 

Previous questioning of other users (ASPRS conference in spring 2017) and use during test 

missions provided comparable results across outputs, with the only consistent, observable 
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difference being the usability preference. The increased core functionality (image input options) 

and added statistics provided during initial processing in relation to image quality, stitching 

completeness, and model accuracy, favored Pix4D for most locations during initial testing. 

Agisoft was also run for a large portion of analyses to evaluate its processing products.  

In determining the efficiency of processing such large area models, at such a fine scale, 

Moore Field was used to assess if high density and high accuracy processing was necessary in 

our analysis, or whether moderate level parameters could create appropriate products. 

Altogether, eight orthomosaic models would be generated in the final data source comparison 

analysis. Thompson Farm was split into North and South due to forest stand locations. College 

Woods was split into East and West due to its heavy processing loads. High accuracy photo 

alignment and calibration, and medium dense cloud formation were set as the batch processing 

parameters; all other options in the standardized workflow of Agisoft remained unchanged.  

 

Classification Unit Sampling  

Both PBC and OBIA thematic mapping accuracy assessment reference data samples 

collected from the UAS were derived from the resulting woodland property orthomosaics. These 

samples, in their use as validation data were analyzed over all of the woodland properties other 

than West Foss Farm (which was used for training samples). Mission blocks (individual flight 

plans), were processed together to make holistic property models. For the PBC reference data 

sampling, 90x90m areas were positioned within each forest stand, using an internal buffer, for 

two analysis methods. In the first, UAS samples were positioned near the center of cover type 

area to simulate the collection of reference data for more routine sampling protocols (Congalton 

and Green, 2009), without prior plot level ground data context for the areas. To more directly 
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compare the classification of the UAS reference data samples to labeling based on the CFI plots, 

a second method of PBC reference data collection placed the UAS samples directly over known 

CFI plots and compared the classification of each for the forest area. From the selected 90x90m 

areas, representing a pixel cluster, the center 30x30m area serves as the effective area, being 

visually interpreted to classify the sample and used as a representation of the overall 

homogenous area (Figure 18). This effective area serves two purposes: first, it avoids 

misregistration errors for matching the reference data to the thematic map, and secondly, it 

ensures that the area that is classified truly fits within the boundaries of the given stand 

(Congalton and Green, 2009). Although the UAS has a positional accuracy of within ten meters, 

the thematic layer can have a greater, varying, degree of positional uncertainty. Accounting for 

such a large margin of error negates the necessity of verifying each sample’s locational 

agreement. Sample units of 30x30m squares also created equivalency among the samples 

collected at the varying flying heights. Of the 41-total forest stands found at the six properties, 

some could not be analyzed using this 90x90m area due to their linear or narrow arrangement.  
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Figure 18. Pixel-based classification reference data sample units. 

  

For object-based image analysis, reference data sample units must be able to label classes 

at the image object structure level. The goal here was to have a greater amount of external 

variation rather than internal for image object formation (i.e., between objects/forest stands is 

more variable that within objects/forest stands) (Congalton and Green, 2009). These thematic 

objects, the forest stands, require multiple samples each to accurately represent their 

heterogeneity (Congalton and Green, 2009; MacLean et al., 2012). To retain conformity between 

the flying heights, the comparison samples were again a standardized size. Like the PBC 

samples, a 30x30m effective area for interpretation was used. For the OBIA approach there were 

also two collection methods for the location of reference sample units. First, independent, non-

overlapping, orthomosaic samples were randomly distributed throughout each of the forest 

stands (Figure 19). Sample units followed a stratified random sampling approach. Sample size 

(n) during collection was the maximum allowable without inducing spatial bias (i.e., 
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autocorrelation), resulting in 268 units. Using the stratified random sampling approach would 

assess if UAS products were viable to photo interpret forest stand classification in complex 

communities as reference data. For the second method, UAS reference samples were directly 

compared to the classification of the individual CFI plots and their overall polygon decision. 

Forest stands were internally buffered 21.215m (half the hypotenuse of the 30x30m square 

sample), with remaining, interior CFI plots being used as sampling locations for the UAS 

orthomosaic sections. Among the five analyzed woodlands, 202 sample units were appropriate 

for this method. This secondary analysis assessed whether we can directly compare the 

classification of forest stands by looking at the ground sampling plot against the UAS reference 

data classification. The majority agreement of the UAS sample units within each of the forest 

stands was used to derive a classification for the object area using both methods. In the case of a 

non-clear majority split among the sample units for the classification, the decision followed the 

ruleset shown in table 4 for majority composition. The decision for majority agreement in forest 

stand classification was supported by the inability to further breakdown UAS orthomosaic 

sample units into a discrete averaged percent coniferous composition estimates. Overall forest 

stand classifications instead relied on the judgment of the three-class decision for each 

orthomosaic sample unit.  
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Figure 19. OBIA stratified random sampling units for each example forest stand, image object. 

 

Table 4. Decision ruleset for classification of split decision polygons during OBIA.  

 

 

 

Image Analysis 

 Collected orthomosaic samples for both classification comparison methods required 

diligent interpretation to derive compositional cover type identification. Remote sensing photo 

interpretation harnesses a confluence of evidence from within the image, relying greatly on the 

mind for generalizing features (Avery, 1977; Avery and Berlin, 1985). The confluence of 
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evidence in remotely sensed imagery can include image or feature characteristics such as site, 

shape, shadow, tone, pattern, size, and/or texture (Avery, 1977). Photographic identification of 

forest vegetation species is concerned with recognizing key characteristics of morphology and 

spatial distribution patterns (Avery, 1977). These characteristics, being visually unique down to 

the species level for experts, can be generalized more readily at the level of deciduous and 

coniferous type classes (Figure 20). Deciduous species being more soft, rounded, or billowy in 

shape, while coniferous species have jagged branching and pointed crowns (these are 

generalizations of types and not always indicative). To provide a more sound judgement for the 

fit of each sample within the three class classification scheme, a photo interpretation key for the 

separation of each classification scheme category was generated (see Appendix C).  

 

 

Figure 20. Image examples of Coniferous and Deciduous species. 
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To construct the photo interpretation classification keys, or training samples, the basal area per 

unit area class composition of known CFI plots were found for each distinction. Orthomosaic 

90x90m samples of 100%, 66%, 26%, and 0% coniferous composition were distinguished using 

their computed basal area compositions (Appendix C). These keys represent the distinction 

between thematic classes. The center 30x30m cell serves as guides for later visual estimation of 

coniferous composition. These key training samples were not reused during comparison to 

ground data and were all taken from West Foss Farm, which then was not used during the 

analysis of data source agreement. Samples analyzed for agreement with the ground data were 

performed using a blind interpretation process, so that locational knowledge bias did not 

influence classification judgement.  

 

Accuracy Assessment 

 Both PBC and OBIA thematic mapping reference data accuracy assessments used site 

specific error matrices. For each of the four proposed methods, UAS orthomosaic sample units 

were interpreted to adhere to the classification scheme, and to be comparable with the ground 

sampled, forest stand delineations created by spatial data analyst Heather Grybas (Table 5). 
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Table 5. Error matrix example for UAS sampling reference data. 

 

 

 

Site specific accuracy assessments were generated for each of the six woodland properties. 

Overall accuracies were evaluated alongside producer’s and user’s accuracies to form a 

comprehensive analysis of the agreement and uncertainty.  

 

Effectiveness of Comparison 

 Statistical analysis differed slightly between pixel-based and object-based classification 

methods due to their inherent sampling natures and products. Both methods needed to determine 

the effectiveness/efficiency of the UAS orthomosaic samples, in comparison to the ground 

sample data, in classifying the complex forest environments. Following the use of the decision 

tree for classification, pixel-based methods, could be directly compared to ground sampling for 



64 

 

both the photo interpretation potential method and the direct comparison to the CFI plot method. 

For OBIA reference data, sample size (n) plays a significant role in the threshold of accuracy and 

power of each additional sample used to label each unique object/forest stand.  MacLean et al., 

(2012) in their revised efficiency model for ground sampling plots in thematic mapping, based 

on Husch et al., (2003), looked at thresholds of ≤1%, ≤2%, and ≤4% standard error (SE) per 

change in sample size (Table 6). These thresholds represent common, but not definitive accuracy 

results for each forest cover type.  

 

Table 6. Optimized prism sampling protocol for meeting error thresholds, proposed by MacLean 

et al., (2012). 

 

 

 

 Bootstrap analysis was used here to determine the mean of all possible combinations of 

sample units, within each forest stand, for a given random sample size (Mooney and Duval, 

1993; MacLean et al., 2012); 1,000 iterations were run to ensure statistical validity and 

convergence of the mean. The standard deviation of the bootstrap estimates for each sample 

classification within the larger polygon will, by this method, be the standard error of the mean 

for all estimates for percent coniferous (MacLean et al., 2012). To contrast the findings of 



65 

 

MacLean et al., (2012), regression analysis determined change in accuracy per successive UAS 

OBIA reference data sample size reduction (Quinn and Keough, 2002). Calculating the bootstrap 

estimations allowed us to devise a relation between error and the efficiency of the orthomosaic 

samples. For our methods however, UAS samples were photo interpreted for this classification, 

not providing a distinct percent coniferous composition of each resulting sample. Instead, 

bootstrapping was used to find the mean classification result of 1,000 iteration estimations (Fox 

and Weisberg, 2010). Only polygons with at least 10 samples were valid for this analysis. 

Determining if minimum sampling requirements proposed by MacLean et al., (2012), would also 

be applicable to UAS reference data collection methods. 

 

 

RESULTS 
 

Optimal UAS Sampling Design 

Although both the Aeronavics Skyjib and eBee plus UAS configurations were tested for 

their ability to capture imagery, only the fixed-wing eBee Plus could ultimately capture data used 

for further analysis. These samples, along with the multitude of training mission data products 

demonstrated the impractical nature of modeling with samples lower than 100m above the 

surface in densely vegetated areas (Figure 21a-b). Large regions of interpolation, uncalibrated 

images, and completely missing areas caused inoperative products (Figure 22). As a result, 

samples were further collected only at 100m and 120m above the forest canopy. Comparing 

flying heights of 100m and 120m during these same training missions, ground sampling 

distances (gsd) differed by only 0.01cm, however, the number of images taken decreased by 

roughly 30%, and there was a difference in image calibration of 3%. Comparing the sequoia 
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multispectral sensor to the SODA we saw an increase of 1.2cm (37%) in the gsd at the same 

flying height, and 13% decrease in image calibration results for the natural color products. 

Orthomosaics produced from the sequoia sensor incurred rampant image artifacts and visual 

distortions, being uninterpretable at even the maximum legal flying height (Figure 23). At 

equivalent flying heights, the sequoia sensor retrieved far diminished products, in terms of both 

completeness and resolution (Figure 24a-b). The remaining, optimal sampling protocol of 120m 

flying height, with the SODA sensor produced eight orthomosaics from 17 total mission blocks, 

covering 398.71 ha, (Figure 27 a-f).  

Resulting in only 62% calibration success (green dots) with optimized calibration 

parameters, having a flying height of 50m above the canopy was not able to make complete 

orthomosaic models or DSMs. In figure 21, we see a 10.66ha area of Kingman Farm averaging 

2,870.75 matches per image for the 209 calibrated images that could be found. A greater number 

of calibrated images were clustered within the southern portion of the focus area, which 

correlates with the woodland edge and adjacent agricultural field. The number of matches 

between these calibrated images in the southern region (weight of their connecting lines) was 

also greater. When matched, images experienced a mean re-projection error of 0.134 pixels. 

These models were generated with a ¼ image scale and a 7x7 pixel matching window size. 
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Figure 21. Image calibration statistics for 50m above canopy flying height, (left) showing 

calibrated images in green vs uncalibrated images in red and (right) image matching strength by 

line weight, captured with the SODA. 

  

 Produced from the above image matching statistics (Figure 21a,b), the orthomosaic had 

an average ground sampling distance (gsd) of 2.16cm or 0.85in (Figure 22). Faulty 2D image 

matching in the most densely vegetated regions led to errors which formed over-interpolated and 

fully absent patches. With standard processing parameters, namely full-scale image matching, 

the resulting product experienced an even lower calibration percentage and higher degree of 

geolocation uncertainty during matching. 
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Figure 22. Orthomosaic result for 50m above canopy flying height, captured with the SODA. 

 

For the parrot sequoia, flying at such a low height above the surface produced (all 

altitudes) improper results. For the desired training region, matching the same area as above in 

previous figures 21 and 22, only 73 of the 322 images (22%) could be calibrated with optimized 

parameters. For the 22% that could be matched, with at least 2 points in the entire image, there 

was an average of 52.94 matched points per image. As shown in Figure 23, the image calibration 

details for the sequoia produced a rolling shutter effect (displayed by the blue lines 

distinguishing shutter activation point form image capture point) displacing image locations at 

low flying heights at standard flight speeds. As expressed, much of the total mapped area (68%) 

was not calibrated or modeled through automated processing.  
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Figure 23. Image georeferencing for the normal color (RGB) sensor of the Parrot Sequoia optic, 

at 50m above canopy flying height. 

 

 Orthomosaics captured by the sequoia, normal color optic, resulted in an overall 

image calibration success of 87% (Figure 24). Due to the lower spatial resolution of the natural 

color sensor the gsd was 27% lower than those outputs produced by the SODA with the same 

mission parameters and processing options. Individual trees were hazy, blurred together, and 

pixelated in areas, leading to poor quality interpretation overall.  
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Figure 24. 120m above canopy orthomosaic (left) produced by the sequoia sensor, and 

associated image tie point densities (right).  

 

The lack of accuracy reports in the Agisoft software result in a more black box approach 

in terms of its outputs.  With the range of flying heights tested, and the difference in sensor 

resolution, orthomosaic models were created with ground sampling distance ranging from 2cm 

(SODA at 50m above canopy) to 17.17cm (Sequoia at 120m above canopy with Multispectral). 

For the data agreement analysis of this study however (the main objectives), Agisoft performed 

to a superior degree. In running both programs over entire woodland properties (Kingman Farm, 

Moore Field, and West Foss Farm) Agisoft outcompeted Pix4D (Figure 25), both in the number 

of images that it was able to calibrate (7.97% higher calibration of images on average), and the 

resolution of the orthomosaics used in photo interpretation (approximately 9.2% higher 

resolution on average). Pix4D was also found to create several erroneous regions when 

processing large data volumes at higher detail settings (Figure 26). 
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Figure 25. Orthomosaic output examples for Agisoft PhotoScan (left) and Pix4Dmapper Pro 

(right).  

 

 

Figure 26. Kingman Farm, Pix4D Mapper Pro processing errors. 
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With higher density modeling parameters, the number of tie points and densification of 

the point cloud, used to generate other outputs, were increased. In testing this on Moore Field, 

this meant 31.3% more overall tie points (346,598 vs 264,015) over medium density parameters, 

and a 371% increase in dense cloud points (187.3m vs 50.5m). Looking at the representative 

orthomosaic models however, there was a difference of only 0.01cm between the high and 

medium processing resolution parameters. Considering the nearly 3-day difference in the 

processing time required per woodland when choosing the higher resolution options, and the 

overall objective of having photo interpretable models, it seemed ill-advised go above moderate 

resolution processing parameters. 

Using Agisoft PhotoScan medium densification and resolution parameters produced eight 

total orthomosaics covering a total of 398.71 ha. These models were generated from 9,173 

images taken from the eBee plus platform. The eight orhtomosaic models of the study areas 

required a total of over 100GB of data to form and process. Figure 27 shows all eight study area 

planimetric models (top left to bottom right): Kingman Farm at 2.86cm gsd, Moore Field with a 

3.32cm gsd, East Foss Farm with a 3.54cm gsd, West Foss farm with a 3.18cm gsd, Thompson 

Farm with a 3.43cm gsd (Northern portion) and a 3.1cm gsd for the southern portion, and lastly, 

College woods with a 2.9cm (western) and 3.24cm (eastern) gsd. Combined these orthomosaics 

average a gsd of 3.23cm (Figure 27a-f). Image calibration regions can be seen in Appendix F, to 

acknowledge the distribution of interpolation and uncertainty within their features. 
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Figure 27. Study area orthomosaics for the six UNH woodland properties.(Top left to bottom 

right); (a) Kingman Farm, (b) Moore Field, (c) East Foss Farm, (d) West Foss Farm, (e) 

Thompson Farm, (f) College Woods.  
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PBC and OBIA Accuracy Assessments 

 For pixel-based classification reference data units a total of 48 pixel-based classification 

reference samples were analyzed for their agreement with the CFI plot classification of forest 

areas. The first method, assessing the photo interpretation potential of the UAS orthomosaic 

samples analyzed 29 PBC reference data units (Table 7). The second method, comparing the 

UAS PBC reference data samples to the CFI plot classifications, analyzed 19 samples (Table 8). 

Overall accuracies for pixel-based classification reference data collection were 68.9% and 

73.86% respectively. The first PBC assessment resulted in the highest producer’s accuracy for 

deciduous forest areas, and the highest user’s accuracy for coniferous forest areas.  

 

Table 7. PBC UAS photo interpretation potential thematic accuracy assessment error matrix.  

 

 

UAS, PBC reference data samples located directly at known CFI plots achieved an 

overall accuracy of 73.68%. With the highest user’s accuracy (100%) and the highest producer’s 

accuracy (83.3%) in the coniferous stands. The largest margin of uncertainty was found in the 

classification of the mixed forest areas (Table 8).  



75 

 

 

Table 8. Error matrix of direct comparison between PBC of CFI plots by forest biometrics and 

UAS image interpretation. 

 

 For each method of OBIA thematic accuracy assessment two error matrices were 

generated. First, the individual UAS orthomosaic reference data sample units were evaluated 

against the classification of the forest stands derived from the ground sampling data (Table 9 and 

11). Secondly, each method was assessed to determine the agreement for the forest stand 

classifications between the UAS and ground data reference samples (Table 10 and 12).  

For the OBIA method, agreement of the OBIA UAS orthomosaic reference data sample 

units with ground samples varied similarly between user’s and producer’s accuracies (Table 9), 

ranging between 50 and 70%. Overall agreement between the UAS orthomosaic samples and the 

classification of the forest stands by the ground data was 63.81% for the 268 sampled locations.  
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Table 9. Error matrix showing the accuracy of 268 individual orthomosaic subsamples, used to 

derive object level classification. 

 

 

 For the classification of the forest stand objects, the randomly sampled UAS orthomosaic 

units resulted in a 71.43% agreement with the ground data (Table 10). User’s accuracy was 

highest at 100% for the coniferous forest stands. Producer’s accuracy among the three land cover 

classes was highest at 81.82% for the pure deciduous forest stands.  
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Table 10. Object-based image analysis accuracy assessment error matrix for the stratified 

randomly distributed reference data units. 

 

 

 When comparing the classification agreement of the UAS reference data sample units 

directly to that of the CFI plots a sample size of 202 was used. This secondary method resulted in 

in a 62.87% accuracy for the individual UAS OBIA reference samples (Table 11).  

 

Table 11. OBIA thematic mapping accuracy assessment, comparison of UAS samples to 

classification derived from CFI ground sampling plots. 
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 The UAS OBIA reference samples linked to CFI plot locations produced forest stand 

polygons with an accuracy of 85.71% (Table 12). Producer’s and user’s accuracies for each of 

the three and cover classes varied only slightly for this method.  

 

Table 12. OBIA thematic classification accuracy assessment in comparison to ground reference 

data. 

 

 

Sampling Efficiency 

 Bootstrap resampling estimates for each land cover class ran 1,000 iterations to determine 

the change mean classification accuracy estimations.  Table 13 shows the calculated averages of 

classification accuracies among the viable forest stands for each land cover class, based on the 

full number of iterations and samples. Using these averages, the probability of accurate 

classification derived under Fitzpatrick-Lins, (1981) 4-10% reference data accuracy thresholds 

were evaluated to determine if an equivalent number of minimum sample points to MacLean et 

al., (2012) could be used for deriving forest stand image object classifications. Here we tested 

the bootstrap resampling classification estimates for 6 forest stands. For each forest stand, 1,000 

random samples were selected from its population of OBIA UAS reference data samples. These 
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iterations were analyzed at sample sizes ranging from ten to two.   Each set of iterations were 

classified to determine the overall accuracies of the estimation. Accuracy thresholds of 99%, 

96%, and 90%, were used to suggest different qualifications of adequate reference data. Using 

regression analysis, each forest stand could be assessed for a minimum number of samples 

required for each accuracy threshold.   

Overall, forest stand objects could be correctly classified to with fewer than 10 samples 

per object. Some of the sampled forest stands surpassed 96% accuracy with as few as 3 samples. 

Averaging across all 6 analyzed forest areas, 7 samples were needed per stand to determine 

classification, to a 96% accuracy threshold. When estimating the majority classification with 

fewer than 3 samples, an exact accuracy could not be reached. This minimum sampling result 

was shown in many of the forest stands, not able to reach a defined threshold for 90% 

classification accuracy (N/As).    

 

Table 13. Efficiency comparison of UAS to ground sampling. 
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DISCUSSION 
 

 

Investigation of Results  

 The objective of this research was to determine if UAS were capable of efficiently and 

effectively collecting reference data for use in assessing the accuracy of thematic maps. Our 

assessment evaluated both: pixel-based classification approaches, and object-based classification 

approaches. As part of the classification accuracy assessment process it was imperative to also 

understand the possible sources of error and uncertainty (Congalton and Green, 1993; Lu and 

Weng, 2007; Congalton and Green, 2009). These errors, for most projects reside as sample 

design considerations, are commonly impacted by cost or subject matter experience.  

The CFI plots, intended for long-term monitoring, were sampled as far back as ten years 

ago (Kingman Farm). Forests are dynamic systems, constantly growing and transitioning. The 

difference between the CFI datasets observations and the current forest stand compositions will 

have changed, although, only marginally as management has permitted.  Using forest type rather 

than a finer scales species-specific classification alleviated lag-time issues between ground 

sampling and UAS flights. Any recently disturbed areas, within the course of CFI plot sampling 

to now, was knowingly avoided due to its discontinuity. CFI plots were known to have a sizeable 

GPS positional error, more than ten meters, associated with their mapped projections. Hardware 

positional uncertainty, further diminished by canopy signal interference, obscured what should 

be a regular network of plots into more of a randomized placement. As observed from the study, 

the high variability in forest composition over short distance could have altered the classification 
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of the UAS reference data sample if not in positional agreement with the ground data sampling 

location. To counteract uncertainty in positional agreement between the ground data, the forest 

stand edges, and the UAS imagery products, high-resolution DOT imagery was used to guide 

observable edges during digitizing. Furthering the manual digitization of the forest stands, our 

procedure included guidance from the manager of the studied woodland properties. In comparing 

the classifications of the individual CFI plots to the greater forest stands there was only an 

agreement of 54.46% agreement. The 54.46% agreement was not seen as error in either 

classification but rather the severe heterogeneity in species composition found in the New 

Hampshire landscape. Other minimal changes between the time of ground sampling and UAS 

imagery sampling could not be accounted for.  

The novelty of UAS and their performance caused limitations and errors which were 

recognized using our training missions. Through training missions and support knowledge base 

review (Pix4D, 2017a; Pix4D, 2017c) it was determined that an optimal flying height for current 

systems would be our maximum legal altitude of 120m above the average surface. Although 

lower flying heights and alternative sensors could be employed for possibly high-resolution 

results, image calibration success was found to be significantly lower (Figure 21 and Figure 23). 

Additionally, model artifacts and distortions became more prevalent at the lower imaging 

heights, to the point of only forming unworkable products (Figure 24). Using the SODA sensor 

on the eBee plus UAS, the optimal UAS image sampling design provided 398.71 ha. of 

orthomosaic models at an average gsd of 3.23cm for thematic accuracy assessments (Figure 27). 

The resulting diversity and magnitude of outputs giving testament to the effectiveness of the 

platform. Photo interpretation samples were more than capable of devising classification of the 
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three-category scheme used in this and previous projects (Justice et al., 2002; MacLean et al., 

2012) at such a resolution. 

During testing with Pix4D, geolocation error for the eBee plus system averaged 7m in the 

x, y, and z axes. Even at our maximum legal flying height (120m), flying during optimum sun 

angle hours, and using a higher than recommended 85% overlap, some images were not 

calibrated during processing. Other studies and even the user manuals for these systems 

recommend ground sampling distances of at least 10cm/pixel, requiring a flying height over 

400m (Dandois et al., 2015; eMotion3, 2017; Pix4D, 2017a; Pix4D, 2017b). For the eight final 

orthomosaics 97.49% of the images were calibrated (9,135 out of 9,370). Our high image 

calibration percentage was the result of two UAS mission planning considerations. First, 

ensuring mission blocks overlapped on their edges, a product of their design. Secondly, when 

necessary, we flew areas of especially dense vegetation in a repeated session. Other parameters 

of the UAS flight mission planning were structured as their only possible option. The orientation 

of mission blocks, their delineation, and the tested flying heights were set within the legal and 

moral guidelines of UAS operations (FAA, 2016c; FAA, 2017c). Being able to adjust these 

parameters based on the weather conditions of the day or UAS properties could have reduced 

minimal distortions, sun angle effects, and model processing errors (Dandois et al., 2015).  

 For the analysis of the two classification approaches a total of 581 samples were taken 

among the four UAS reference data sampling procedures. Even with this sampling size, 

distribution among the methods formed a lack of statistically valid assessments. Forest stand 

configuration, the need for independence of samples, and the size of each sample (90x90m and 

30x30m), eliminated the possibility of increasing the sample size. PBC approaches were 

drastically affected by this, with only 29 samples for first method (assessing the photo 
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interpretation potential of the sample units) and 19 samples for the second method (the direct 

comparison to CFI plots procedure). To appropriately validate the accuracy of thematic map 

classes, distinct areas should contain at a minimum 30 samples for a classification of this 

complexity (Congalton and Green 2009).  The sample size of this project aimed to maximize its 

efforts and create a statistical valid evaluation of thematic accuracy reference data collection 

(Congalton and Green, 2009). Unfortunately, even among the nearly 400 ha. of forest lands 

processed by the UAS data, forest stand structure and placement severely limited the number of 

samples which could be assessed. During PBC the difference in accuracy of only a single sample 

unit caused considerable changes in the overall, producer’s, and user’s accuracy of the resulting 

assessment. With such a small reference data sample size, definitive assessment of validity could 

not be determined.  

Possible errors during the image analysis methods included: the subjective nature of the 

visualization process, the difference between the variable plot inclusion zone factoring of basal 

area species composition percentage (Kershaw et al., 2016), and the perspective view canopy 

composition process. All UAS reference data sample units were categorized using the same 

interpreter, with interpretation key training sets (Appendix C) from West Foss Farm, and photo 

interpretation guides of vegetation as aides. Although branching patterns and distribution trends 

were used to guide their assessment (Avery, 1977; Avery and Berlin, 1985) I was still not a 

professional forester with extensive knowledge in this process. The representation of percent 

composition for each class within the imagery and the actual composition sampled on the ground 

could have alluded to a source of uncertainty. Inter-annual variation of the forest stands also led 

to confusion in the categorization of orthomosaic samples (Townshend et al., 1991). Noticeable 

differences among the appearance of specific individual species were found even within the 
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same property. This combined with the subjective nature of the class assignment could have 

induced error, intensified by the low sample size of some methods.  

Analysis of the four classification sampling methodologies showed how effective UAS 

image modelling products can be as reference data acquisition tools for thematic classification 

validating. In the first method of each thematic mapping classification approach, the UAS were 

assessed as a platform for collecting reference data through photo interpretation without 

additional ground sampling. The random sampling distribution of these reference data units, 

imposed additional uncertainty for the accuracy assessment. Being that New Hampshire forest 

landscapes, and these study areas more specifically, are heterogeneous patchworks of 

composition and structure, the specific location of each sample does influence its class 

assignment. For the second method of each classification approach, our accuracy assessments 

portrayed how directly comparable these same products were to forest stand classification 

derived through forest biometric variable plot ground sampling. Using the UAS orthomosaics for 

the collection of thematic mapping accuracy assessment reference data in PBC methods showed 

an agreement 68.97% for samples located at the center of forest areas (Table 7) and 73.86% for 

samples located at known CFI plot locations (Table 8). Both PBC accuracy assessment methods 

suffered from the mischaracterization of the mixed forest class. For the two object-based 

classification thematic accuracy assessment methods, resulting agreements were higher at 

71.43% for randomly located sampling locations within forest stands, and 85.71% for the direct 

comparison to CFI plot approach (Table 10 and 12). Both of these methods were hindered by the 

small sample sizes within the smaller forest stands, forming exceedingly high inaccuracy with 

each misclassified sample.   
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 Looking at the efficiency of the second method (non-random) object-based classification 

sampling approach, we saw that even with as few as 3 samples within a complex forest stand/ 

image object, UAS reference data samples could precisely and accurately label the category. The 

average of this limited analysis determined that an average of 7 samples were needed per stand to 

determine an accurate classification, to a 96% accuracy threshold. These efficiency evaluations 

adhered to the proposed thresholds of accuracy required by validation data in thematic mapping 

(Fitzpatrick-Linz, 1981). The evaluated subgroup of forest stands, which contained at least 10 

samples each, achieved a heightened agreement to the ground data classification as compared to 

smaller forest stands (those with less than 10 subsamples). Low sample size during bootstrapping 

formed inconclusive results, however, when tested average estimations were able to classify 

polygons with at least 90% accuracy with as few as 3 UAS orthomosaic sample units (Table 13). 

Further analysis should work to increase the sample size and also form a relation with the forest 

stand size.  

 

Difficulties Experienced with this Novel Research Platform 

 Before establishing the difficulties of integrating UAS into a research sampling design, 

the first obstacle for this research was determining the optimal level of detail to be used for the 

classification scheme of this project. Both Justice et al., (2002) and MacLean et al., (2012) 

utilized hierarchical classes with coniferous, mixed, and deciduous at the first level during their 

operations of classification schemes for local forest composition. The original sampling design 

was constructed to capture an adequate sample size for the analysis. Unfortunately, the extreme 

heterogeneity of our woodland properties devalued this proposition. Forest stands were 

structured such that they could not be further sampled using our UAS acquisition while 

maintaining spatial independence.   
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As with any novel technology, being at the forefront of an innovation comes with its 

challenges and limitations. The first and foremost for this research project was the lack of formal 

training or knowledge base for using UAS as an applied tool for scientific observation. This is 

not to say there is no background theory for aerial photography mission planning, 

photogrammetry, or photo interpretation, but rather basics for the characteristics unique and 

intrinsic to UAS. Although application papers and review forums are sprouting pervasively, few 

pass on concrete knowledge needed to get a UAS into the air and keep it there for the duration of 

the mission. These studies also glide over how to successfully handle the large amounts of data 

that are collected. Companies such as Parrot, DJI, Microdrones, and Pixhawk are advancing, in 

large part, due to their user-bases sharing knowledge vital to their operations. Much of the first 

year of this master’s research project was spent deciphering technical specifications, devising 

distance and duration thresholds for the system, and formatting the images that they acquired 

into something that a processing software could handle. Numerous training and calibration 

missions were run to ensure methodology (see Appendix E) before data collection could even be 

attempted. In total, this project required learning four manual UAS controllers, four mission 

planning software packages, and two processing programs to optimize the outputs that were 

generated.  These factors though, are all likely to be significantly marginalized in the coming 

year as methods are recorded and shared, and programs become more ubiquitous. As noted, two 

rotary-winged UAS were also used during testing and scouting but not during actual primary 

data collection. This was due to their reduced flying characteristics (primarily flight time and 

maximum distance of data link communication operability).   

 Taking into consideration the roles of privacy, safety, and policy for this and future 

research was itself an endeavor limiting data collection potential and efficiency. The integration 
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of UAS into the NAS for the majority of this project’s duration, August 2015 to August 2017, 

was a gray area of contention. Until the Remote Pilot in Command license, Part 107, became 

functional on August 29th, 2016 the FAA had a rudimentary and somewhat lacking process for 

being granted approval for research or public operations. Many of the early reports in the 

scientific exploration and application of UAS show this hazy understanding under federal law 

(Anand, 2007; Dalamagkidis et al., 2008; Rango and Laliberte, 2010; Hugenholtz, 2012; 

Colomina and Molina, 2014). Such uncertainty in policy limits expansion and potential. Here 

specifically, policy reform blocked months of possible data collection time, and restricted flying 

heights to 120m above the surface. It is also recommended for UAS that mission planning blocks 

be established perpendicular to the wind and, as per efficiency, parallel to the long side of the 

focus area (eMotion3, 2017) to maintain optimal calibration and the lowest number of images 

necessary for coverage. Due to public concern awareness and known regulations, these 

conditions were not possible for several sections of the various woodland properties. 

Surrounding private residence at sites such as Kingman Farm and West Foss Farm forced angled 

flight lines in reference to wind angle, reducing the certainty of constant spacing between 

images. Steps were taken to capture additional imagery where needed and to fly on days where 

wind direction and speed better suited mission block orientation. Some days, even when clear 

skies were present, would simply just not accommodate complete mission image calibration. As 

more sophisticated and observable applications come into play, it is the hope that trends will 

follow these past few years, and regulations will become more steadfast to match the 

technologies available, no longer limiting growth.  

During training missions, it was noticed that uncalibrated regions within the final outputs 

were clustered within densely vegetated stands. With the complexity of the imagery at such a 
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fine scale, finding tie points at the level of individual branches or even leaves challenged the 

aerial triangulation algorithms. Adding in the effects of sun angle, wind displacement, and 

optical perspective forced unavoidable loss of including some images (Dandois et al., 2015; 

eMotion3, 2017). These influences were amplified at the lower flying heights, causing 

completely inadequate models. Some of these effects were mitigated by flying a repeated pass 

over the same area in less severe conditions. We also attempted to fly flight perpendicular to the 

wind, as suggested by Pix4D support (Pix4D, 2017c). Such mission block orientations, however, 

proved inaccessible for most locations, or did not observably improve results.  

Orthomosaic processing resulted in several difficulties in handling the UAS imagery.  

The sheer volume of data (over 100GB), in the short time span for which it was processed, tested 

the maximum potential of even our most powerful computers. Both Agisoft and Pix4D were 

shown to be effective in their outputs however, slightly varying among final resolutions (Figure 

25). While learning to use these software package, it became apparent that the expense of time 

needed for ultra-high resolution and accuracy products (up to a week or more) would not be 

worth the potential improvement in the photo interpretable results. Even at moderate level 

processing parameters, the procedure of aligning photos, determining tie points, interpolating a 

mesh/ surface, and constructing the orthomosaic could take over 20 hours per step with multiple 

1,000 image models.  

Automated processing of the images using classification and regression tree (CART) 

analysis and multiresolution segmentation algorithms was an early goal of this project. OBIA is 

praised for its ability to delineate and extract specific features within remote sensing imagery 

(Blaschke, 2010).  Within heavily forested environments individual tree detection algorithms 

have been formulated to remove background noise and estimate biometric parameters (Pouliot et 
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al., 2002; Hay et al., 2005; Kim et al., 2009). The challenge for integrating these procedures into 

our research was having additional contextual data that matched the resolution of the imagery in 

order to aid the computer vision classification. Such high-resolution imagery, absent of 

multispectral sensing, texture models, or distinct radiometric properties lacks the accuracy 

needed in removing noise (e.g. shadow, ground, or understory vegetation) for reference data 

creation.  

 

Future Considerations 

 The potential for UAS to reduce the cost of reference data sampling is a significant 

progression for scientific research and overall spatial data validation.  Despite the temptation to 

minimize costs to the maximum potential, we should still keep in mind that no matter how much 

the technology advances it should never fully remove the human element from the sampling. To 

remove the human element during sampling would diminish the potential observations. In this 

study, we saw that design of the sampling frame significantly changed the results of the 

agreement between the ground and UAS data sources. UAS were capable of collecting and 

processing nearly 400 ha of forest area into planimetrically correct models with supplemental 

high-resolution DSMs in well under a months’ time. Even in complex environments, with less 

than ideal conditions, high levels of accuracy were achieved. With the incorporation of expert 

knowledge-driven interpretation and decreased landscape heterogeneity, this platform proposes a 

significant advantage to projects which undertake their use. Even apart from reference data 

sampling, the high resolution of UAS imagery provides access to spatial data not found by any 

other remote sensing platform for the equivalent cost and temporal resolution. 
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UAS present a wide array of possibilities for the future of science and technology. Due to 

their widespread adoption in the consumer market, more and more individuals and companies are 

becoming accustomed to remote sensing and the products that it can provide. Specific examples 

of their versatile nature being found in major review papers for the platform (Watts et al., 2012; 

Kakaes et al., 2015; Cummings et al., 2017). It is unquestionable that an extraordinary number of 

creative people are thinking about how they can use these systems to best suit their needs; from 

Universities (UNH, 2015) to big name corporations like Amazon and Dominos. The adoption of 

novel technologies has never been easy. As we progress as a society however, the necessity for 

efficiency drives the strength of platforms such as UAS.  

One of the most promising outcomes form this project was the generation of dense 

photogrammetric point clouds. For some forest stands this initial processing step, structured 

hundreds of millions of points in space, across the perspective of the aligned images. As these 

SfM 3D modeling algorithms advance, their overall efficiency and potential to model systems 

will continue to grow. A few groups, working directly with the software companies, have already 

begun to explore this greater potential (Fonstad et al., 2013; Micheletti et al., 2015). Others are 

adding in multispectral imaging, already found in several UAS formats (Laliberte et al., 2011), 

and seasonal variation or multi-temporal coverage. A frontier of possibilities presents itself here, 

with a probable future in the rapid acquisition of data which can process and simulate holistic 

large-scale area landscapes.  

 The influence of flying height restrictions by the FAA on our realized level of detail and 

calibration success is very much a time explicit obstacle. Progress for UAS regulations over the 

recent past, the duration of this research project (Rango and Laliberte, 2010; FAA, 2015; FAA, 

2017a), and foresight into the near future shows a trend of rapid evolution and expansion of 
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operations within the NAS. Future consideration of use for UAS would be expected to be much 

expanded and simplified in comparison to today’s authorization system.  

 

Conclusions 

 The assessment of UAS for acquiring thematic mapping accuracy assessment reference 

data of both pixel-based and object-based approaches presented unique considerations as a 

remote sensing platform. The diversity and magnitude of products generated during this project, 

for use in the four sampling procedures, demonstrated the potential of the platform for rapidly 

developing high-resolution products over considerable areas. Introductory training missions with 

the three UAS (an eBee plus with two possible sensors, an Aeronavics Skyjib X-8, and a 

Phantom 2 Vision+) indicated that the eBee plus platform with its SODA sensor provided the 

greatest ability to collect quality data efficiently. This system, when operated at its maximum 

legal flying height of 120m above the surface generated planimetric models of the nearly 400ha 

of forest landscapes at an average ground sampling distance of 3.23cm. Using these outputs, two 

PBC reference data collection procedures achieved 68.97% (Internally centered procedure) and 

73.68% (linking CFI plot location to UAS orthomosaic sample) accuracy. Next, two OBIA 

thematic classification reference data collection procedures achieved 71.43% (stratified random 

sampling) and 85.71% (direct comparison to ground data sampling network) accuracy. Assessing 

these methods together provided insight into the severity of influence the heterogeneous 

landscape had on the location of the chosen reference samples for labeling the greater forest 

stand object/area. Although promising, these results are still obscured by the low sample size due 

to sampling frame restraints. This low sample size forced a lack of statistically valid inference 

for thematic accuracy validation the PBC methods. Future research should consider maximizing 

their intended flying height to minimize distortions and other external influences on the 
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modeling process. Other recommendations include the addition of seasonal variation for 

interpretation or multispectral imaging context, and augmenting the complexity of the landscape 

studied. Despite the noted error sources and obstacles, the accuracy assessments demonstrated 

high accuracy reference data collection in complex forest communities. Widening exploration 

and acceptance of UAS use is expected to continue well into the future, as experienced by the 

prolific evolution of applications, modifications, and legislation just over the time of this project.   



93 

 

LITERATURE CITED 
 

Anand, S. 2007. Washington Internships for Student Engineers. ASTM Standardization News. 

 ASTM International. 

 

Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer. 1976. A land use and land cover 

 classification system for use with remote sensor data. Geological Survey Professional 

 Paper 964, 41pp. URL:http://www.pbcgis.com/data_basics/anderson.pdf.  

 

Aronoff, S. 1982. Classification Accuracy: A User Approach. Photogrammetric Engineering 

 and Remote Sensing 48(8) 1299-1307. 

  

Avery, T.E. 1977. Interpretation of Aerial Photographs. Third Edition. Burgess Publishing 

 Company. Minneapolis, Minnesota.  

 

Avery, T.E. and  G.L. Berlin. 1985 Interpretation of Aerial Photographs. Fourth Edition. Burgess 

 Publishing Company. Minneapolis, Minnesota.  

 

Avery, T.E. and H.E. Burkhart. 1983. Forest Measurements. Third Edition. McGraw-Hill Book 

 Company New York, New York. 

 

Baatz, M., and A. Schape. 2000. Multiresolution Segmentation: an optimization approach for 

 high quality multi-scale image segmentation. Journal of Photogrammetry and Remote 

 Sensing 58(3-4), 12-23. 

 

Barnhart, R.K., Hottman, S.B., Marshall, D.M., and E. Shappee. 2012. Introduction to 

 Unmanned Aircraft Systems. CRC Press, Chapter 1: History. 

 

Bates, C.G., and R. Zon. 1922. Research methods in the study of forest environment. Bulletin 

 1059, USDA Forest Service. 209p.  

 

Betchold, W.A. and P. L. Patterson. 2005. The Enhanced Forest Inventory and Analysis 

 Program—National Sampling Design and Estimation Procedures. United States 

 Department of Agriculture, Southern Research Station. General Technical Report SRS-

 80. 



94 

 

 

Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of 

 Photogrammetry and Remote Sensing 65(1), 2-16. 

 

Blaschke, T., Lang, S., Lorup, E., Strobl, J., and P. Zeil. 2000. Object-oriented image processing 

 in an integrated GIS/remote sensing environment and perspectives for environmental 

 applications. Environmental Information for Planning, Politics and the public 2, 555-570. 

 

Blaschke, T. and J. Strobl. 2001. What’s wrong with pixels? Some recent developments 

 interfacing remote sensing and GIS. GIS. Heidelburg: Huthig GmbH & Co. 6, 12-17. 

 

Bolstad, P. 2005. GIS Fundamentals. Second Edition. Eider Press, White Bear Lake, MN. 543pp.  

 

Bolstad, P. 2012. GIS Fundamentals: A First text on geographic information systems. Fourth 

 Edition. Eider Press, White Bear Lake, MN. 

 

Burley, T.M. 1961. Land use or land utilization? Professional Geographer 13(6), 18-20.  

 

Caridade, C.M.R., Marcal, A.R.S. and T. Mendonca. 2008. The use of texture for image 

 classification of black & white air photographs. International Journal of Remote Sensing 

 29(2), 593-607. 

 

Carvajal, F., Aguern, F., and M. Perez. 2012. Surveying a Landslide in a Road Embankment 

 Using Unmanned Aerial Vehicle Photogrammetry. Remote Sensing and Spatial 

 Information Sciences, Conference on Unmanned Aerial Vehicle in Geomatics, Zurich, 

 Switzerland. 

 

Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., 

 Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C.,  and S, Diaz. 2000. 

 Consequences of changing biodiversity. Nature 405, 234–242. 

 

Choi, K., Lee, I., Hong, J., Oh, T., and S.W. Shin. 2009. Developing a UAV-based Rapid 

 Mapping System for Emergency Response. Department of Geoinformatics, University of 

 Seoul. Unmanned Systems Technology 9. 

 



95 

 

Civco, D. L., Hurd, J. D., Wilson, E. H., Song, M., and Z. Zhang. 2002. A comparison of land 

 use and land cover change detection methods. ASPRS-ACSM Annual Conference and 

 FIG XXII Congress. University of Connecticut, Laboratory for Earth Resources 

 Information Systems. 

 

Cliff, A.D. and J.K. Ord. 1973. Spatial Autocorrelation. London: Pion. 

 

Colomina, I. and P. Molina. 2014. Unmanned aerial systems for photogrammetry and remote 

 sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 92, 79-97. 

 

Colwell, R.N. 1955. The PI picture in 1955. Photogrammetric Engineering and Remote Sensing. 

 49(1), 69-74 

 

Congalton, R. 1991. A review of assessing the accuracy of classifications of remotely sensed 

 data. Remote Sensing of Environment 37(1), 35-46. 

 

Congalton, R.G., and G.S. Biging. 1992. A Pilot Study Evaluating Ground Reference Data 

 Collection Efforts for use in Forest Inventory. Photogrammetric Engineering and Remote 

 Sensing 58(12), 1669-1671. 

 

Congalton, R.G. and K. Green. 1992. The ABCs of GIS: An introduction to geographic 

 information systems. Journal of Forestry 90(11), 13-19.  

 

Congalton, R.G., Green, K., and J. Teply. 1992. Mapping Old Growth Forests on National Forest 

 and Park Lands in the Pacific Northwest from Remotely Sensed Data. Photogrammetric 

 Engineering and Remote Sensing 59(4), 529-535.  

 

Congalton, R.G. and K. Green, 2009. Assessing the accuracy of remotely sensed data: principles 

 and practices, Second Edition. CRC Press, Boca Raton, FL 208 pp. 

 

Congalton, R.G. and R.A. Mead. 1983. A quantitative method to test for consistency and 

 correctness in phot-interpretation. Photogrammetric Engineering and Remote Sensing 

 49(1) 69-74.  

 



96 

 

Cormier, T.A., Congalton, R.G., and J.J. Babbitt. 2013. Spatio-statistical Predictions of Vernal 

 Pool Locations in Massachusetts: Incorporating the Spatial Component into Ecological 

 Modeling. Photogrammetric Engineering and Remote Sensing 79(1), 25-35.  

 

Cummings, A.R., McKee, A., Kulkarni, K., and N. Markandey. 2017. The Rise of UAVs. 

 Photgrammetric Engineering and Remote Sensing 83(4), 317-325.  

 

Dalamagkidis, K., Valavanis, K.P., and L.A. Piegl. 2008. On unmanned aircraft systems issues, 

 challenges and operational restrictions preventing integration into the National Airspace 

 System. Progress in Aerospace Sciences 44, 503-519.  

 

Dandois, J.P., Olano, M., and E.C. Ellis. 2015. OPtimal Altitude, Overlap, and Weather 

 Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sensing 7, 

 13895-13920. 

 

Definiens: Developer 7- User Guide. 2007. Definiens Understanding Images. Definiens AG 

 Munchen, Germany. 

 

Delacourt C., Allemand, P., Jaud, M., Grandjean, P., Deschamps, A., Ammann, J., Cuq, V., and 

 S. Suanez. 2009. DRELIO: An Unmanned Helicopter for Imaging Costal Areas. Journal 

 of Coastal Research 56, 1489-1493.  

 

Dicks, S.E., and T.H.C. Lo. 1990. Evaluation of thematic map accuracy in a land-use and land-

 cover mapping program. Photogrammetric Engineering and Remote Sensing 56(9), 1247-

 1252. 

 

DJI. 2017. Phantom 2 Vision +. URL:http://www.dji.com/phantom-2-vision-plus. (Accessed 

 June 2017).  

 

Dorren L.K.A., Maier, B., A.C. Seijmonsbergen. 2003. Improved Landsat-based forest mapping 

 in steep mountainous terrain using object-based classification. Forest Ecology and 

 Management 183, 31-46.  

 

Ducey, M.J. 2001. 2001 Workshop Proceedings: Forest Measurements for Natural Resource 

 Professionals. Natural Resource Network: Connecting Research, Teaching, and Outreach, 

 University of New Hampshire Cooperative Extension, 71pp. 



97 

 

 https://extension.unh.edu/resources/files/Resource000398_Rep420.pdf (Accessed 13 

 June, 2017).  

 

Efron, B. and R. Tibshirani. 1993. An introduction to the bootstrap. CRC Press, Boca Raton, 

 FL, 456pp.  

 

Eisenbeiss, H. 2009. UAV Photogrammetry. Doctors of Science Dissertation. University of 

 Technology, Dresden. 

 

Eisenbeiss, H., and L. Zhang. 2006. Comparison of DSMs Generated from Mini UAV Imagery 

 and Terrestrial Laser Scanner in a Cultural Heritage Application. ISPRS Commission V 

 Symposium 'Image Engineering and Vision Metrology. IC WG I/V Autonomous Vehicle 

 Navigation, IAPRS Volume 36(5), 90-96.  

 

eMotion 3. 2017. eMotion 4 User Manual; Revision 1.5. senseFly a Parrot company. senseFly 

 SA, Route de Geneve 38, 1033 Cheseaux-Lausanne, Switzerland.  

 

European Commission. 2007. Study Analysing the Current Activities in the Field of UAV. 

 European Commission: Enterprise and Industry Directorate-General. ENTR 65, 1-96.   

 

Everaerts, J. 2008. The use of Unmanned Aerial Vehicles (UAVs) for Remote Sensing and 

 Mapping. The International Archives of the Photogrammetry, Remote Sensing and 

 Spatial Information Services XXXVII, Beijing. 

 

FAA (Federal Aviation Administration). 2015. Operation and Certification of Small Unmanned 

 Aircraft Systems. Department of Transportation. Notice for proposed rulemaking FAA-

 2015-0150. 14 CFR Part 107.  

 

FAA (Federal Aviation Administration). 2016(a). Civil Operations (Non-Governmental). URL: 

 https://www.faa.gov/uas/civil_operations/, U.S. Department of Transportation Federal 

 Aviation Administration 800 Independence Avenue, SW Washington, DC 20591 

 

FAA (Federal Aviation Administration). 2016(b). Public Operations (Governmental), URL: 

 https://www.faa.gov/uas/public_operations/, U.S. Department of Transportation Federal 

 Aviation Administration 800 Independence Avenue, SW Washington, DC 20591 



98 

 

 

FAA (Federal Aviation Administration). 2016(c). Unmanned Aerial Systems, URL: 

 https://www.faa.gov/uas/, U.S. Department of Transportation Federal Aviation 

 Administration 800 Independence Avenue, SW Washington, DC 20591. 

 

FAA (Federal Flight Administration). 2017(a). Certificate of Waiver or Authorization (COA). 

 URL: https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/syste

 mops/aaim/organizations/uas/coa/, U.S. Department of Transportation Federal Aviation 

 Administration 800 Independence Avenue, SW Washington, DC 20591. 

 

FAA  (Federal Flight Administration). 2017(b). Fact Sheet – Small Unmanned Aircraft 

 Regulations (Part 107). URL: https://www.faa.gov/news/fact_sheets/ 

 news_story.cfm?newsId=20516, U.S. Department of Transportation Federal Aviation 

  Administration 800 Independence Avenue, SW Washington, DC 20591. 

 

FGDC (Federal Geographic Data Committee). 1998. Subcommittee for Base Cartographic Data. 

 Geospatial Positioning Accuracy Standards. Part 3: National Standards for Spatial Data 

 Accuracy. FGDC-STD-007.3-1998: Washington, DC. FGDC, 24pp.   

 

Field, C.B., Randerson, J.T., and C.M. Malmstrom. 1995. Global Net Primary Production: 

 Combining Ecology and Remote Sensing. Remote Sensing of Environment 51, 74-88. 

 

Finn, R.L., and D. Wright. 2012. Unmanned aircraft systems: Surveillance, ethics and privacy in 

 civil applications 28, 181-194.  

 

Fitzpatrick-Linz, K. 1981. Comparison on sampling procedures and data analysis for a land-use 

 and land-cover map. Photogrammetric Engineering and Remote Sensing 47(3): 343-351. 

 

Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.J., and P.E. Carbonneau. 2013. 

 Topographic structure from motion: a new development in photogrammetric 

 measurement. Earth Surface Process and Landforms 38, 421-430.  

 

Foody, G.M. 1999. The continuum of classification fuzziness in thematic mapping.  

  Photogrammetric Engineering and Remote Sensing 65, 443–451. 

 



99 

 

Foody, G.M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of 

 Environment 80, 185-201. 

 

Ford, E.D. 2000. Scientific method for ecological research. Cambridge University Press, New 

 York. 564pp.  

 

Fox, J. and S. Weisberg. 2010. An R Companion to Applied Regression. Second Edition. Sage 

 Publications Inc. London, United Kingdom.  

 

Fritz, A., and Kattenborn, T., and B. Koch. 2013. UAV-Based Photogrammetric Point Clouds – 

 Tree Stem Mapping in Open Stands in Comparison to Terrestrial Laser Scanner Point 

 Clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial 

 Information Sciences, Volume 40-1/W2, 141-146.  

 

Goodchild, M.F. 1991. Geographic Information Systems. Progress in Human Geography 15(2), 

 194-200. 

 

Goodchild, M.F. 1992. Geographical Information Science. International Journal of Geographical 

 Information Systems 6(1), 31-45.  

 

Google. 2017. "drones" ; Images. URL: 

 https://www.google.com/search?q=drones&source=lnms&tbm=isch&sa=X&ved=0ahUK

 EwiM4Ybuv8rUAhVDWj4KHfpUAnAQ_AUIDCgD&biw=1920&bih=990. (Accessed 

 June, 2017). 

 

Haala, N. Cramer, M., and M. Rothermel. 2013. Quality of 3D Point Clouds from Highly 

 Overlapping Imagery. International Archives of the Photogrammetry, Remote Sensing 

 and Spatial Information Sciences, Volume 40-1/W2, 183-188.  

 

Haralick, R.M., Shanmugam, K., and I. Dinstein. 1973. Textural Features for Image 

 Classification. IEEE Transactions on Systems, Man, and Cybernetics 6(3), 610-621.  

 

Hardin, P.J., and M.W. Jackson. 2014. An Unmanned Aerial Vehicle for Rangeland 

 Photography. Rangeland Ecology and Management 58(4), 439-442.  

 



100 

 

Harris, P.M., and S.J. Ventura. 1995. The integration of geographic data with remotely sensed

 imagery to improve classification in an urban area Photogrammetric Engineering and 

 Remote Sensing 61, 993-998. 

 

Hay, G.J., Castilla, G., Wulder, M.A., and J.R. Ruiz. 2005. An automated object-based approach 

 for the multiscale image segmentation of forest scenes. International Journal of Applied 

 Earth Observation 7, 339-359.  

 

Hay, G.J., and G. Castilla. 2008. Geographic Object-Based Image Analysis (GEOBIA): A new 

 name for a new discipline. Lecture Notes in Geoinformation and Cartography, 

 Department of Geography, University of Calgary, 2500 University Dr. NW, Calgary, AB. 

 Chapter 1.4, 75-89.  

 

HB 602-FN. 2015. New Hampshire House Bill 602. Introduced Regular Session, Executive 

 Department and Administration. Relative to the use of drones.  

 

Hinkley, E.A. and T. Zajowski. 2011. USDA forest service–NASA: unmanned aerial systems 

 demonstrations – pushing the leading edge in fire mapping. Geocarto International 25(2), 

 103-111. 

 

Hodgson, J.C., Baylis, S.M., Mott, R., Herrod, A., and R.H. Clarke. 2016. Precision wildlife 

 monitoring using unmanned aerial vehicles. Scientific Reports 6, 22574. 7pp.  

 

Homer, C.H., Fry, J.A., and C.A. Barnes. 2012. The National Land Cover Database. U.S. 

 Geological Survey (USGS) Fact Sheet 2012-3020, 4pp.  

 

Horcher, A., and R.J.M. Visser. 2004. Unmanned Aerial Vehicles: Applications for Natural 

 Resource Management and Monitoring. 2004 Council of Forest Engineering Conference 

 Proceedings “Machines and People, the Interface.” 5pp.  

 

Hugenholtz, C. 2012. Small Unmanned Aircraft Systems for Remote Sensing and Earth Science 

 Research. Earth and Space Science 93(25), 24-25.  

 

Husch, B., Miller, C.I., and T.W. Beers. 1972. Forest Mensuration, Second Edition. Ronald 

  Press Company, NY. 



101 

 

 

Husch, B., T.W. Beers, and J.A. Kershaw, Jr. 2003. Forest Mensuration, Fourth Edition. John 

 Wiley and Sons, Inc, Hoboken, NJ. 443pp. 

 

Hyyppa, J., Hyyppa, H., Inkinen, M., Engdahl, M., Linko, S., and Y. Zhu. 2000. Accuracy 

 comparison of various remote sensing data sources in the retrieval of forest stand 

 attributes. Forest Ecology and Management 128, 109-120.  

 

Jensen, J.R. 2016. Introductory Digital Image Processing: A remote sensing perspective, fourth 

 edition. Pearson Education, Inc., 1900 E. Lake Ave, Glenview, IL. 

 

Jones, G.P., Pearlstine, L.G., and H.F. Percival. 2006. An Assessment of Small Unmanned 

 Aerial Vehicles for Wildlife Research. Wildlife Society Bulletin 34(3), 750-758. 

 

Justice D., Deely, A., and F. Rubin. 2002. Final Report: New Hampshire land cover assessment. 

 Unpublished, 15 pp. 

 

Kakaes, K., Greenwood, F., Lippincott, M., Dosemagen, S., Meier, P., and S. Wich. 2015. 

 Drones and Aerial Observation: New Technologies for property rights, human rights, and 

 global development a primer. New America, July 2015. 

 

Kareiva, P., and M. Marvier. 2011. Conservation Science: Balancing the Needs of People and 

 Nature. Roberts and Company Publishing. Greenwood Village, Colorado. 541pp. 

 

Katz, A.H. 1952. Photogrammetry needs Statistics. Photogrammetric Engineering and Remote 

 Sensing 18(3), 536-542. 

 

Kelcey, J., and A Lucieer. 2014. Object-based image analysis of ultra-fine spatial resolution 

 imagery acquired over a saltmarsh environment by an Unmanned Aircraft System (UAS). 

 University of Tasmania. School of Land and Food. In Review. 

 

Kerr, J.T., and M. Ostrovsky. 2003. From space to species: ecological applications for remote 

 sensing. Trends in Ecology and Evolution 18(6), 299-305.  

 



102 

 

Kershaw, J.A., Ducey, M.J., Beers, T.W., and B. Husch. 2016. Forest Mensuration, Fifth Edition. 

 John Wiley and Sons, Ltd. Hoboken, NJ. 632pp.  

 

Kim, M., Madden, M., and T.A. Warner. 2009. Forest Type Mapping using Object-specific 

Texture Measures from Multispectral Ikonos Imagery: Segmentation Quality and Image 

Classification Issues. Photogrammetric Engineering and Remote Sensing 75(7), 819-829.  

 

Krzytek, P. 1991. Fully automatic measurement of digital elevation models with Match-T. 

 Proceedings of the 43rd Annual Photogrammetric Week. 203-213.  

 

Laliberte, A.S., Herrick, J.E., Rango, A., and C. Winters. 2010. Acquisition, Orthorectification, 

 and Object-based Classification of Unmanned Aerial Vehicle (UAV) Imagery for 

 Rangeland Monitoring. Photogrammetric Engineering Remote Sensing 76(6), 661-672. 

 

Laliberte, A.S., Goforth, M.A., Steele, C.M., and A. Rango. 2011. Multispectral Remote Sensing 

 from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland 

 Environments. Remote Sensing (3), 2529-2551. 

 

Lambin, E.F., Turner, B.L., Geist, H.L., Agbola, S.B., Angelsen, A., Bruce, J.W., Coomes, O.T., 

 Dirzo, R., Fischer, G., Folke, C., George, P.S., Homewood, K., Imbernon, J., Leemans, 

 R., Li,. X., Moran, E.F., Mortimore, M., Ramakirshman, P.S., Richards, J.F., Skanes, H., 

 Steffen, W., Stone, G.D., Svedin, U., Veldkamp, T.A., Vogel, C., and J. Xu. 2001. The 

 causes of land-use and land-cover change: moving beyond the myths. Global 

 Environmental Change 11, 261-269.  

 

Lennartz, S. P., and R. G. Congalton. 2004. Classifying and mapping forest cover types using 

 IKONOS imagery in the northeastern United States. ASPRS Annual Conference 

 Proceedings, May 2004. 

 

Longley, P.A., Goodchild, M.F., Maguire, D.J., and D. W. Rhind. 2016. Geographic information 

 Science and Systems. Fourth Edition. John Wiley and Sons Inc. Hoboken, NJ.  

 

Lu, D. and Q. Weng. 2007. A survey of image classification methods and techniques for 

 improving classification performance. International Journal of Remote Sensing 28(5), 

 823-870.  

 



103 

 

Lunetta, R.S., Congalton, R.G., Fenstermaker, L.K., Jensen, J.R., McGuire, K.C. and L.R. 

 Timmey. 1991. Remote Sensing and Geographic Information System Data Integration: 

 Error Sources and Research Issues. Photogrammetric Engineering and Remote Sensing 

 57(6), 677-687. 

 

MacLean, M.G. Campbell, M.J., Maynard, D.S., Ducey, M.J. and R.G. Congalton. 2012. 

 Requirements for labeling forest polygons in an object-based image analysis 

 classification. International Journal of Remote Sensing. Doctors of Science. University of 

 New Hampshire. 

 

Mancini, F., Dubbini, M., Gattelli, M., Steechi, F., Fabbri, S., and G. Gabbianelli. 2013. Using 

 Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: 

  The Structure from Motion Approach on Coastal Environments. Remote Sensing 5, 

 6880-6898.  

 

Marshall, D.M., Barnhart, R.K., Shappee, E., and M. Most. 2016. Introduction to Unmanned 

 Aircraft Systems. Second Edition. CRC Press, Boca Raton, FL 233 pp. 

 

Martin, M.E., Newman, S.D., Aber, J.D., and R.G. Congalton. 1998. Determining Forest Species 

 Composition Using High Spectral Resolution Remote Sensing Data. Remote Sensing of 

 Environment 65(3), 249-254. 

 

McGarigal, K., and S.A. Cushman. 2002. Comparative evaluation of exponential approaches to 

 the study of habitat fragmentation effects. Ecological Applications 12(2), 335-345. 

 

McGill, B.J., Dornelas, M., Gotelli, N.J., and A.E. Magurran. 2015. Fifteen forms of biodiversity 

 trend in the Anthropocene. Trends in Ecology and Evolution 30(2), 104-113.  

 

McRoberts, R.E., and E. O. Tomppo. 2007. Remote sensing support for national forest 

 inventories. Remote Sensing of Environment 110(4), 412-419.  

 

Micheletti, N., Chandler, J.H. and Lane, S.N., 2015. Structure from motion (SFM) 

 photogrammetry. In: Clarke, L.E. and Nield, J.M. Geomorphological Techniques (Online 

 Edition). London: British Society for Geomorphology.  

 



104 

 

Michener, W.K., and M.B. Jones. Ecoinformatics: supporting ecology as a data-intensive 

 science. Speical Issue: Ecological and Evolutionary Informatics 27(2), 85-93.  

 

Mooney, C.Z., and R.D. Duval. Bootstrapping: A Nonparametric Approach to Statistical 

 Inference. Quantitative Applications in Social Sciences 95. Sage University Paper. Sage 

 Publications, 2455 Teller Road, Newbury Park, California. 73pp.  

 

Morisette, J.T., Giglio, L., Csiszar, I., Setzer, A., Schroeder, W., Morton, D., and C.O. Justice. 

 2005. Validation of MODIS Active Fire Detection Products derived from two algorithms. 

 Earth Interactions 9(9), 1-25. 

 

Nex, F. and F. Remondino. 2014. UAV for 3D Mapping Applications: A Review. Applied 

 Geomatics 6, 1-15.  

 

Paine, D.P. and J.D. Kiser. 2003. Aerial Photography and Image Interpretation. Second Edition. 

 John Wiley and Sons, Hoboken, NJ. 632pp.  

 

Pix4D, 2017a. Knowledge base: How to improve outputs in dense vegetation areas? Pix4D 

 Support. (Accessed June, 2017). Pix4D SA, Lausanne, Switzerland.  

 

Pix4D. 2017b. Pix4Dmapper 3.2 User Manual. Pix4D SA, Lausanne, Switzerland.  

 

Pix4D. 2017c. Step 1: Before Starting a Project > 1. Designing the Image Acquisition Plan > a. 

 Selecting the Image Acquisition Plan Type. Pix4D Support. (Accessed July, 2017). 

 Pix4D  SA, Lausanne, Switzerland. 

 

Pouliot, D.A., King D.J., Bell, F.W., and D.G. Pitt. 2002. Automated tree crown detection and 

 delineation in high-resolution digital camera imagery of coniferous forest regeneration. 

 Remote Sensing of Environment 82, 322-334.  

 

Pugh, S.A. 1997. Applying Spatial Autocorrelation Analysis to Evaluate Error in New England 

 Forest cover-type maps derived from Landsat Thematic Mapper Data. Masters of Science 

 Thesis. University of New Hampshire. 

 



105 

 

Puliti, S., Orka, H.O., Gobakken, T., and E. Naesset. 2015. Inventory of Small Forest Areas 

 Using an Unmanned Aerial System. Remote Sensing 7(8), 9632-9654. 

 

Puschel, H., Sauerbier, M., and H. Eisenbeiss. 2008. A 3D Model of Castle Landenberg (CH) 

 from combined photogrammetric processing of terrestrial and UAV-based images. 

 International Archives of the Photogrammetry, Remote Sensing and Spatial Information 

 Sciences. 36, 93-98. 

 

Quinn, G.P., and M.J. Keough. 2002. Experimental Design and Data Analysis for Biologists. 

 Cambridge University Press, Cambridge, UK. 553pp.  

 

Radoux, J., Bogaert, P., Fasbender, D., and P. Defourney. 2011. Thematic accuracy assessment 

  of geographic object-based image classification. International Journal of Geographical 

 Information Science 25(6), 895-911. 

 

Rango, A., and A. S. Laliberte. 2010. Impact of Flight Regulations on Effective Use of 

 Unmanned Aircraft Systems for Natural Resources Applications. Journal of Applied 

 Remote Sensing 4, 1-12.  

 

Rango, A., Laliberte, A., Herrick, J.E., Winters, C., Havstad, K., Steele, C., and D. Browning. 

 2009. Unmanned aerial vehicle-based remote sensing for rangeland assessment, 

 monitoring, and management. Journal of Applied Remote Sensing 3(1), 1-15. 

 

Redford, K. 1992. The Empty Forest. Bioscience 42(6), 412-422.  

 

Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., and D. Sarazzi. 2011. UAV Photogrammetry 

 for Mapping and 3D Modeling- Current Status and Future Perspectives-. International 

 Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 37-

 1/C22 ISPRS Zurich 2011 Workshop, 14-16 September 2011, Zurich, Switzerland, 25-

 31.  

 

Robertson, L.D., and D.J. King. 2011. Comparison of pixel- and object-based classification in 

 land cover change mapping. International Journal of Remote Sensing 32(6), 1505-1529. 

 

SenseFly. 2017a. Learn more about Sequoia. Pix4D. URL:https://pix4d.com/sequoia-faq/. 

 (Accessed June, 2017).  



106 

 

 

SenseFly, 2017b. eBee Plus: Aerial efficiency, photogrammetric accuracy. senseFly: a Parrot 

 company. URL:https://www.sensefly.com/drones/ebee-plus.html. (Accessed June, 2017) 

 

Smith, W.B. 2002. Forest inventory and analysis: a national inventory and monitoring program. 

 Environmental Pollution 116, 233-242. 

 

Snedecor, G.W. and W.G. Cochran. Statistical Methods. 7th edition. The Iowa State University 

 Press, Ames, Iowa, U.S.A. 507pp.  

 

Sokal, R.R. 1974. Classification: Purposes, Principles, Progress, Prospects. Science 185(4157), 

 1115-1123. 

 

Smith, W.B. 2002. Forest inventory and analysis: a national inventory and monitoring program. 

 Environmental Pollution 116, 233-242. 

 

Spurr, S. H. 1948. Aerial Photographs in Forestry. First Edition. The Ronald Press Company. 

 New York. 

 

Spurr, S.H. 1952. Forest Inventory. The Ronald Press Company, New York. 476pp.  

 

Stage, A.R. and J.C. Rennie. 1994. Fixed radius or variable radius plots? Journal of Forestry 92, 

  20-24. 

 

Stehman, S.V. and R.L. Czaplewski. 1998. Design and Analysis for Thematic Map Accuracy 

 Assessment: Fundamental Principles. Remote Sensing of Environment 64, 331-344. 

 

Story, M., and R. Congalton. 1986. Accuracy assessment: a user’s perspective. Photogrammetric 

 engineering and Remote Sensing 52(3), 397-399. 

 

Thapa, K., and J. Bossler. 1992. Accuracy of Spatial Data used in Geographic Information 

 Systems. Photogrammetric Engineering and Remote Sensing 58(6), 835-841. 

 



107 

 

Thompson, S.K. 2002. Sampling, Second Edition, John Wiley and Sons Inc. Hoboken, NJ. 

 400pp.  

 

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., and M. Steininger. 2003. 

 Remote sensing for biodiversity science and conservation. Trends in Ecology and 

 Evolution 18(6), 306-314.  

 

Turner, M.G. 2005. Landscape ecology: What is the state of the science? Annual Review of 

 Ecology, Evolution and Systematics 36, 19-344. 

 

Turner, D., Lucieer, A., and C. Watson. 2012. An Automated Technique for Generating 

 Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) 

 Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing 4, 1392-

 1410.  

 

UNH. 2015. UNH Campus Aerial Tour. YouTube: University of New Hampshire. URL: 

 https://www.youtube.com/watch?v=UaygNW_7arM. (Accessed June 2017).  

 

UNH Woodlands and Natural Areas. 2017. University of New Hampshire, College of Life 

 Sciences and Agriculture, Office of Woodlands and Natural Areas Home. College of Life 

 Sciences and Agriculture, Rudman Hall, 46 College Road, Durham, New Hampshire 

 03824.  

 

Vitousek, P. M. 1994. Beyond global warming: ecology and global change. Ecology 75, 1861-

 1876. 

 

Wagner, M. 2015. Unmanned Aerial Vehicles. Max Planck Encyclopedia of Public International 

 Law, Rüdiger Wolfrum, ed., Oxford University Press, Forthcoming; University of Miami 

 Legal Studies Research Paper No. 15-12. 10pp.  

 

Walter, V. 2004. Object-based classification of remote sensing data for change detection. ISPRS 

 Journal of Photogrammetry and Remote Sensing. 58(3-4), 225-238. 

 

Watts, A.C., Ambrosia, V.G., and E.A. Hinkley. 2012. Unmanned Aircraft Systems in Remote 

 Sensing and Scientific Research: Classification and Considerations of Use. Remote 

 Sensing 4(12), 1671-1692. 



108 

 

 

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., and J.M. Reynolds. 2012. 

 ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience 

 applications. Geomorphology 179, 300-314 

 

Whitehead, K. and C.H. Hugenholtz. 2014. Remote sensing of the environment with small 

 unmanned aircraft systems (UASs), part 1: A review of progress and challenges 1. 

 Journal of Unmanned Vehicle Systems. 02(03), 86-102. 

 

WorldView-2. 2017. Apollo Mapping: The Image Hunters. URL: 

 https://apollomapping.com/imagery/high-resolution-imagery/worldview-2 (Accessed 

 June 2017).  

 

Zhang, C. and J.M. Kovacs. 2012. The application of small unmanned aerial systems for 

 precision agriculture: a review. Precision Agriculture 13, 693-712. 

 

  



109 

 

 

 

 

 

 

 

 

 

 

APPENDICIES  

  



110 

 

 
 

 

APPENDIX A. GROUND DATA COMPOSITION FINIDINGS 

 

Table 14. Study Areas CFI plot networks. In total there are 354 variable radius, CFI ground 

sampling plots across the 377.57 hectares of forested land. Pictured are (top left to bottom right): 

(a) Kingman Farm, (b) Moore Field, (c) Thompson Farm, (d) College Woods, (e) East Foss 

Farm, and (f) West Foss Farm. 
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Table 15. Out of the 154 woody vegetation species recorded on UNH woodland properties, 

throughout the state of New Hampshire, 31 are recorded as dominant forest species for the CFI 

plots of the study areas used for this research project. 
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Figure 28. Ground data forest stand maps for each of the six study areas. 
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APPENDIX B. UAS FLIGHT PERMISSION 

 

Table 18. Conducting UAS research requires appropriate conduct and permission at many levels 

of authorization. Shown above are points of contact used for federal, local, and site specific 

control. These contacts were notified in advanced of any UAS mission, training, or otherwise, for 

their respective locations. In addition to these individuals, my advisor Dr. Russ Congalton was 

informed of any use of the UAS, and on-site personal were cautioned when necessary. 

 

 

 

 

 

 

 

  



114 

 

APPENDIX C. FIELD DATA NOTES AND CHECKLIST FOR FLIGHT   

 

 

Figure 29. Field data collection records for use during UAS missions to ensure comprehensive 

control and use of each flight. 
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APPENDIX D. PHOTO INTERPRETATION KEYS  

 

 

 

Figure 30. Photo interpretation keys derived from basal area per unit area calculations of CFI 

plots at West Foss Farm. Thresholds between classes here are not exact, but serve as guides for 

simple visual reference of relative percentage of coniferous composition within effective areas. 

90x90m areas are partitioned into 30x30m boxes 
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APPENDIX E. UAS CALIBRATION AND TRAINING EXAMPLE 

 

 

 

 

 

Figure 31. Initial calibration of UAS flight protocol and image processing procedure, taken by a 

Phantom 2 vision + at Wildcat Stadium, Durham, NH. 
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APPENDIX F. IMAGE CLAIBRATION DIAGRAMS FOR EACH WOODLAND 

 

 

Figure 32. Distributions of the uncalibrated images (points in pink) across the eight final 

orthomosaics. Captured, but not used during point cloud densification or orthomosaic model 

generation. Project averaged 97.49% image calibration for these models. 
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