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Abstract 

CHATTER SIMULATION AND DETECTION IN CNC MILLING 

by 

Jonathan Shepard 

University of New Hampshire, September, 2017 

 

A key feature to maintaining a safe and efficient machining operation is the avoidance of 

unstable vibrations of the cutting tool, commonly called chatter. This thesis explores chatter simulation 

and a new chatter detection algorithm developed for use in a CNC milling machine. This algorithm, 

based on a once per revolution sampling method, samples forces experienced during the milling 

process, and calculates the variance of the differences between consecutive samples. As a selected level 

of variance, chatter is assumed. An existing milling simulation program is modified to produce a stability 

lobe diagram for a given CNC machine, workpiece material, and cutting tool. Stable, unstable, and 

marginally stable cuts are indicated as a function of spindle speed and axial depth of cut. 

The chatter detection algorithm is initially verified by simulation and then added to the 

simulation to auto-generate stability lobe diagrams. A collection of experimental aluminum cuts is run to 

collect force data that can be analyzed by the detection algorithm and compared to simulation results. 

Experimental cut stability is determined by observation of the noise, force, and cut surface. Comparing 

algorithm results to observed results shows the effectiveness of the algorithm in distinguishing between 

stable and unstable cuts. However, further testing is needed, particularly in determining the variance 

threshold of the algorithm. 
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The simulation and algorithm are also used to explore the effect of system parameters; 

specifically, spring constant (k) and damping ratio (ζ). This exploration shows there being a strong 

connection between the maximum attainable stable axial depth and the parameters. 
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Chapter 1: Introduction 

1.1: Introduction 

Machining is one of the most used processes in manufacturing across all industries. Two of the 

most common forms are turning, where a stationary cutting tool is used to shape a spinning workpiece, 

and milling, where a spinning cutting tool is used to shape a workpiece mounted to a table. To achieve 

better accuracy and repeatability, CNC (Computer Numerical Control) machining was developed. This 

was a major step for its time, but there have been few improvements over the years to make the system 

smarter. There is a need for automated process monitoring and process improvement to make CNC 

machining both safe and efficient.  

Automated process monitoring and improvement requires methods and algorithms to interpret 

sensor signals, and determine what actions, if any, should be taken. This process is illustrated in Figure 

1, where the CNC controller communicates with the CNC machine to maintain an optimum process. The 

real-time controller uses sensor information it receives from the CNC machine and part G-code 

information (pre-processing) to apply wear, force control, and chatter algorithms contained within the 

controller. 
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Figure 1: Real-time monitoring and control block diagram. 

Previous research has explored tool wear monitoring and force control algorithms [1], which are 

applied in the real-time controller. The goal of this research is to simulate CNC machining chatter and 

develop a chatter detection algorithm. This would form the core of an eventual control system that can 

monitor and adjust for chatter, while working in conjunction with the previously developed controls.  

A central feature of safe milling is chatter free cutting. Chatter is an unstable tool vibration 

during turning and milling operations that results in a rough surface on the workpiece, an example of 

which is shown in Figure 2. The greatest risk from chatter is the large cutting forces that can occur near 

the natural frequency of the machine, potentially causing part surface damage and tool breakage. If 

CNC Machine 

CNC 

Controller 

Tool Wear 

Monitoring 

Force Control 

System 

Sensors 

Data 

Acquisition 

Pre-Processing 

PC 

Real-Time Controller 

Chatter 

Detection 



Page | 3  
 

 

chatter is allowed to build for an extended time, there is the potential for damage to not only the 

workpiece and tool, but to the machine as well.  

 

Figure 2: Workpiece with a rough surface caused by chatter. Surface outlined by yellow lines. 

Several different approaches of chatter detection have been explored using various sensors such 

as microphones [2] [3], plate dynamometers [4] [3], and various displacement sensors [3]. All the 

sensors are used to collect online data, which is analyzed by a data processing method, such as once per 

revolution sampling [2], Fast Fourier Transform (FFT) analysis [4] [3], and Power Spectral Density (PSD) 

analysis. The major disadvantage of the microphone is that it is susceptible to ambient noise, while the 

plate dynamometer is too expensive for industrial use, and the displacement sensors are easily 

disrupted by chips and coolant expelled during milling. Most of these data processing methods flag 

chatter by looking for differences between a collected data set and a known stable case. Making 

comparisons can be a good way to detect chatter, but it requires data collection for new cutting 

conditions that can slow down detection time, delaying preventative actions.  

Figure 3 shows the Fadal CNC milling machine used in this research. The machine contains a 2-

axis moving table, along with a vertically moving spindle. The CNC controller is a Windows based, real 

time operating system, and is programmed using G and M codes. It has an open architecture to allow for 

the integration of sensors and controllers. One of the main sensors used is a Kistler plate dynamometer, 

shown in right side of Figure 3. The machine also contains sensors to protect it from current overloads in 
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the feed drive and spindle motor. The machine can handle a large variety of cutting tools, but for this 

research, only flat end insert cutters are utilized. 

   

Figure 3: Fadal CNC milling machine. Overall setup (left) and close up of spindle and work piece mounted on Kistler force 
dynamometer (right). 

The purpose of this research is to develop a chatter detection algorithm for use in a CNC milling 

machine. To efficiently test the effectiveness of the developed algorithm, a MATLAB based simulation is 

utilized. Experimental cuts are completed for further verification of both the algorithm and simulation 

results. 

1.2: Thesis Overview 

This thesis presents the work completed toward chatter simulation and a reliable, cost effective 

chatter detection algorithm. Chapter 2 discusses the cutting force model, along with the theoretical 

description of chatter. A linearized, coefficient based model, as described in Altintas [5], is used to 

calculate cutting forces. The description of chatter is from Schmitz and Smith [6], and is based on the 

coefficient based cutting model. 

Kistler Force 

Transducer 

Workpiece 

Cutting Tool 
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Chapter 3 describes the milling simulation used in the research. It starts with an overview of the 

three portions of the simulation: initialization, force model calculations, and system dynamics 

calculations. A complete description of the dynamic equations is presented. This chapter also describes 

the methods used to obtain the system parameters. 

Chapter 4 describes previous work in chatter detection, with a focus on the method that uses 

once per revolution sampling. It continues to a description of the new algorithm developed in this 

research, and the simulation results used to evaluate the algorithm. 

Chapter 5 presents the experimental testing used to validate the detection algorithm. The 

results from the experiments are presented, evaluated, and compared to simulations.  

Chapter 6 examines the effect of CNC machine system parameters on chatter. Several sets of 

results are presented, each with the spring constant (k) or damping ratio (ζ) shifted up or down to 

explore their effect on system chatter.  

Chapter 7 wraps up the thesis with conclusions and future work. This is followed by the 

appendix. 
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Chapter 2: Theory/Background 

2.1: Introduction 

This chapter introduces the milling process model consisting of a force model, compliance 

model, and tool deflection feedback that affect the behavior of the system. Under certain cutting 

conditions the system can become unstable, resulting in machine chatter. 

Milling, like many complicated physical processes, can be explored with mathematical models of 

the process and a computer simulation package that can solve the resulting coupled equations that are 

often nonlinear. The input to the milling process is the desired chip thickness which is dependent on the 

feed-rate and spindle speed (Ω). The output is the displacement of the tool which can affect part 

dimensions and lead to chatter.  

The milling process is composed of a force model, a tool compliance model, and the 

instantaneous and regenerative (previous) deflection feedbacks. These parts are illustrated in the 

generic block diagram shown in Figure 4. The milling force cutting model and tool compliance model are 

described in detail in the following sections.  

 

Figure 4: General block diagram for milling process. 
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The regenerative feedback is positive in the block diagram, and this is significant in chatter 

development, which is an unstable response of the system to a given chip thickness input and cut 

geometry. This feedback is positive because the surface left by a negative instantaneous deflection of 

the previous tooth leaves material that must be removed by the next tooth. This positive feedback can 

lead to system instability under certain cutting conditions. 

2.2: Cutting Force Model 

Milling cutting forces can be accurately predicted by the coefficient based mechanistic force 

model described below [5]. This model has been tested extensively, and shown to have good accuracy 

and repeatability when the model is calibrated correctly [1]. The tangential and radial forces are shown 

in Figure 5 and can be written as: 

 𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙  [N] = 𝐹𝑡 = 𝐾𝑡𝑐𝑎ℎ(𝜙) + 𝐾𝑡𝑒𝑎 (1) 
   
 𝐹𝑟𝑎𝑑𝑖𝑎𝑙  [N] = 𝐹𝑟 = 𝐾𝑟𝑐𝑎ℎ(𝜙) + 𝐾𝑟𝑒𝑎 (2) 
   

where a is the axial depth of cut [mm], Ktc and Krc are the tangential and radial cutting coefficients 

[N/mm2], Kte and Kre are the tangential and radial edge coefficients [N/mm], and φ is the angular location 

of a tooth edge in the cut [deg]. The chip thickness (h) [mm], with no tool deflections is: 

 ℎ(𝜙) = 𝑓𝑡  sin (𝜙) (3) 
   

where ft is the feed per tooth [mm/tooth]. The feed per tooth is proportional to the slide feed-rate and 

inversely proportional to the spindle speed. The above equations are for a zero-helix cutter, however a 

cutter with a helix angle can be sliced into numerous disks, and the force on each disk can be summed. 

This is necessary because the cut geometry on each disk is different because of the helix angle.  



Page | 8  
 

 

 

Figure 5: Cutting model forces and coordinates [1]. The figure is assuming up milling, with feed direction in x-direction. 

The radial and tangential cutting forces can be resolved into the feed direction (x) and normal 

direction (y) of the cutter. This formulation was generated for a flat end cutter, with the z-direction 

force neglected since it is usually very small. The transformations are: 

 𝐹𝑥  [N] = −𝐹𝑡𝑐𝑜𝑠𝜙 − 𝐹𝑟𝑠𝑖𝑛𝜙 (4) 
   

 𝐹𝑦  [N] = 𝐹𝑡𝑠𝑖𝑛𝜙 − 𝐹𝑟𝑐𝑜𝑠𝜙 (5) 

   
The total force experienced by a tool with a helix angle is obtained by summing the forces on 

each axial slice, as well as each tooth:  

 𝐹𝑥_𝑡𝑜𝑜𝑙 = ∑ ∑ 𝐹𝑥

𝑚

𝑗 = 1

(𝑖, 𝑗)

𝑛

𝑖=1

 (6) 

   

 𝐹𝑦_𝑡𝑜𝑜𝑙 = ∑ ∑ 𝐹𝑦(𝑖, 𝑗)

𝑚

𝑗=1

𝑛

𝑖 = 1

 (7) 

   
where n is the number of teeth on the tool, and m is the number of axial slices.  

Fr 

Ft 

Y 

∅ 

X 
∅𝑒𝑥 

∅𝑠𝑡 
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This model has been used in previous research, and shown to be reliable. Work done by Eren [7] 

quantified this reliability, showing there is a maximum error of 14% in peak force prediction for a given 

cut geometry with recently calibrated coefficients. Nouri [1] shows the accuracy of the simulation’s 

predictions to experimental cuts in Figure 6.  

 

Figure 6: Simulation validation - down milling cut on Steel 1018 with a one tooth 0.75 in diameter cutter at 1500 rpm spindle 
speed. The axial and radial depth are 0.1 and 0.375 in (.25 and .95 mm). Feedrate is 5.44 in/min (0.14 m/min). (Nouri [1]) 

 

2.3: Milling Process Model 

The system’s dynamics are modeled as a two-dimensional spring-mass-damper system, the 

diagram for which is shown in Figure 7. Like the force calculations, z-direction motion is considered 

negligible due to the stiffness of the tool in that direction. For this configuration, the differential 

equations for this system are:  
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 𝑚�̈� + 𝑐𝑥�̇� + 𝑘𝑥𝑥 = 𝐹𝑥 (8) 
   

 𝑚�̈� + 𝑐𝑦�̇� + 𝑘𝑦𝑦 = 𝐹𝑦 (9) 
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where m is the effective mass [kg] of the tool/holder/spindle, c is the damping coefficient [Ns/m] of the 

tool/workpiece interface/spindle, k is the spring coefficient [N/m] of the tool/holder/spindle, F is the 

experienced force [N], and x and y are the displacements [m] in their respective directions. The 

equations could be solved for x and y by using a simple integration routine. 

 

Figure 7: Single mode spring-mass-damper system in x and y. 

2.4: Chatter Theory 

Chatter can occur during both turning and milling operations. The vibrations are initiated by the 

system dynamics in response to the regenerative and instantaneous deflection feedbacks. These 

vibrations are amplified when the wavy surface created on the workpiece surface (regenerative) is  out 

of phase with the instantaneous deflection.  

Referring to Figure 4, it can be observed that the regenerative deflection provides a positive 

feedback to the system loop. Based on classic control theory, positive feedback is undesired since it is a 

major source of instability in the system. An image of milling force during chatter is shown in Figure 8. 

Note how the force peaks are large, and the forces widely vary between consecutive tool revolutions. 
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Figure 8: Simulated force trace of Fadal CNC Machine to show an example of chatter. (7500 RPM, 8 mm axial depth) 

To account for the tool deflection, the chip thickness equation (Equation 3) is rewritten as: 

 ℎ(𝜙(𝑡)) = 𝑓𝑡 sin(𝜙(𝑡)) + 𝑠(𝜙(𝑡 − 𝜏)) − 𝑠(𝜙(𝑡)) (10) 
   

where s is the surface variation due to tool deflection [mm], and τ is the time between tooth passings 

[sec.], i.e. s(t) is the instantaneous tool deflection and s(t-τ) is the regenerative deflection.  

Milling process conditions under which chatter occurs can be represented by stability lobe plots. 

These plots are generated with a horizontal axis of spindle speed, and a vertical axis of axial depth of 

cut. The lobes are a function of the Frequency Response Function (FRF), which is the equation(s) that 

describes the vibration behavior of the tool end in response to a force applied at the tool end. Another 

common term for the FRF is the Transfer Function of the system. For the CNC milling system, the FRF is 

for the compliance dynamics of the system. This is modeled as a simple second order mechanical 

system, which was described in section 2.2. 
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An example of a stability plot is shown in Figure 9. In the plot, the areas above the lobes are 

regions of instability, while everything below is stable. Each lobe is a function of the number of complete 

sinusoidal cycles imprinted on the surface of the workpiece, labeled as N. For example, any cuts made 

around the farthest right lobe that leave an imprint on the workpiece, will only leave a fraction of a 

complete sinusoidal cycle on the cutting surface. This is noted as N = 0, which can be interpreted as 

there are zero complete cycles imprinted. Moving towards the left, each new lobe adds one more 

sinusoidal cycle. This explains why there are pockets of large axial depth stability at lobe intersections, 

since these are the areas where there is no phase shift between the present tool motion and the surface 

waviness left by the previous tool motion. The synchronous nature equates to a constant chip thickness 

and cutting force. 

Figure 9 also shows the blim line, which is the minimum axial depth across all the stability lobes. 

This value is usually what is considered when choosing an axial depth to operate at, since any value 

below this line is independent of spindle speed. 

 

Figure 9: Typical stability lobe plot. Solid lines are lobes. Dashed line is axial depth limit (blim). 
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The two methods for generating stability lobe plots are by looking at a large number of 

experimental cuts, or through an approximate theoretical analysis using the compliance FRF of the CNC 

machine. 

Theoretical stability lobes are often calculated by applying Tlusty’s average tooth angle 

approach [8]. As the name suggests, this approach uses the mean tooth angle in the cut, which is the 

midpoint between the start and exit angles of cut. This is used because the force direction is time 

dependent, and assuming an average angle makes the system time invariant. Per Schmitz and Smith [6], 

generation of the lobes via this approach is a 6-step process.  

First step is to determine the oriented FRF and valid chatter frequency range. The oriented FRF 

is calculated by summing the products of the orientation factors with their corresponding FRF (Equation 

11). Milling occurs in the x-y plane, so the FRF of each the x-direction and y-direction are used. The 

orientation factors (µx and µy) are the trigonometric values needed to project the FRF’s onto the average 

cutting force direction. They are calculated from the cutting force angle (which can be calculated from 

the cutting coefficients if not given) and the average tooth angle. The valid frequency range (fchatter) is 

the set of frequencies where the real part of the FRF is negative. This limits the calculations to only 

where chatter is likely to occur. 

 𝐹𝑅𝐹𝑜𝑟𝑖𝑒𝑛𝑡 = µ𝑥𝐹𝑅𝐹𝑥 + µ𝑦𝐹R𝐹𝑦 (11) 

   
Step 2 is to solve for 𝜖, the phase between the current and previous tooth vibrations (eqn. 12), 

as determined from the Nyquist plot for the system [8]. 

 𝜖 = 2𝜋 − 2 tan−1 (
𝑅𝑒[𝐹𝑅𝐹𝑜𝑟𝑖𝑒𝑛𝑡 ]

𝐼𝑚[𝐹𝑅𝐹𝑜𝑟𝑖𝑒𝑛𝑡 ]
) (12) 
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Step 3 is to find the average number of teeth in the cut (𝑁𝑡
∗) for the selected radial immersion 

(eqn. 13). This calculation requires the total number of teeth on the tool (𝑁𝑡), along with the start angle 

(φs) and exit angle (φe). 

 𝑁𝑡
∗ =

𝜙𝑒 − 𝜙𝑠

360 𝑁𝑡⁄
 (13) 

   
Step 4, calculate blim, which is the maximum axial depth attainable while avoiding chatter, over 

the valid frequency range (eqn. 14). This equation was obtained by solving for blim in the open-loop 

transfer function equated to -1 [8]. 

 𝑏𝑙𝑖𝑚 =
−1

2𝐾𝑠𝑅𝑒[𝐹𝑅𝐹𝑜𝑟𝑖𝑒𝑛𝑡 ]𝑁𝑡
∗ (14) 

   
where; 

 𝐾𝑠 =
𝐾𝑡𝑐

sin(𝐾𝑡𝑐 𝐾𝑟𝑐⁄ )
 (15) 

   
For step 5, select an N value and calculate associated spindle speeds Ω (eqn. 16). This equation 

is derived from the ratio of the chatter frequency to the forcing frequency, and the phase shift present. 

By solving for Ω, an equation is obtained that allows for the solving of Ω based on previously determined 

values. This calculation needs to be repeated for each N associated lobe desired. 

The last step is to plot spindle speed vs. axial depth for each N value. This process results in 

lobes like what is shown in Figure 9. 

 𝛺 =
𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟

𝑁𝑡 (𝑁 +
𝜖

2𝜋
)

 (16) 

   



Page | 15  
 

 

2.5: Summary 

This chapter provides a thorough description of the two models used to simulate the milling 

machine operation. First is the linearized cutting force model, which is two coefficient-based equations 

that can calculate the radial and tangential forces experienced by the cutter. Second is the tool 

compliance model, which is represented as a standard two-dimensional, second order spring-mass-

damper system. Appropriate modifications to the equations are described so they can be applied to a 

tool with multiple helical teeth. A comparison of experimental and simulation forces show the accuracy 

of the model when good model coefficients are used. 

Machining chatter is also discussed in this chapter.  The regenerative chip thickness equations 

that result in a positive feedback in the simulation are described. Also presented are stability lobes, a 

diagram of stable and unstable cuts plotted on a 2-D plane of spindle speed vs. axial depth of cut. A 

theoretical method to calculate the stability lobes using an average angle approach, originally developed 

by Tlusty, is also described.  
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Chapter 3: Milling Simulation 

3.1: Introduction 

This chapter describes the milling simulation used in the research. It starts with an overview of 

the three portions of the simulation: initialization, force model calculations, and system dynamics 

calculations. A complete description of the dynamic equations is presented, along with the methods 

used to obtain the system parameters. 

Accurate simulations are useful in understanding and explaining the behavior of real world 

systems. The effect of parameter variation on the system can also be explored without the cost of 

experiments. However, an accurate simulation requires experiments to determine system parameters 

and to validate simulation results.  

The cutting simulation used in this thesis contains a two-step process; (1) calculate the forces 

acting on the tool at an instant of time, and (2) use the forces to calculate the x and y deflections of the 

tool. The basis of the simulation is from Schmitz and Smith [6], which has been used in previous research 

at UNH [1]. 

The block diagram of the simulation, which is a more detailed version of the general diagram in 

Section 2.1, is shown in Figure 10. This diagram indicates that the linear force model, as described in 

Section 2.2, is used to calculate the forces experienced during cutting. The system compliance is 

assumed to be a second order system, the equations of which are described in Section 2.3.  
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Figure 10: Block diagram for CNC system simulation. 

3.2: Simulation Description  

The simulation contains three main sections; input and initialization, force calculation, and 

displacement calculation. As shown in Figure 11, the first step initializes all the necessary constants and 

variables needed for the simulation. The constants are based on the inputs, and include all tool 

parameters (natural frequency, spring coefficient, damping ratio, tooth count, and diameter), cutting 

coefficients, and machine settings (feed rate, immersion, and axial depth). Dependent variables 

displacement, velocity, acceleration, and force are updated throughout the simulation, all starting with a 

zero-initial condition. 

 

Figure 11: Overall flow chart for simulation. 
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The second section calculates the force experienced by the tool using the flow diagram shown in 

Figure 12. This section cycles through two loops for each time step; an inner loop for the axial slices of 

the tool, and an outer loop for the teeth on the tool. Forces are calculated using the process described 

in Section 2.2, with the addition of summing the forces calculated for each tooth.  

 

Figure 12: Flow diagram for force calculation. 
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The third portion calculates the displacement experienced by the end of the tool. As shown in 

Figure 13, this is done by calculating the acceleration, velocity, and position of the tool in the x and y-

directions for each mode during each time step in the simulation. 

  

Figure 13: Flow diagram for system dynamics calculations. 

The simulation works in equal time steps, with the variables considered as functions of the step 

index (𝑖 = 1, 2, …N), where N is the number of steps (final time) the simulation is to run. Solving 

Equations 8 and 9 for acceleration for index 𝑖 results in: 
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These equations are valid assuming the previous time step (i-1) has already been determined. Since all 

initial conditions are assumed to be zero, calculations are not accurate for a number of time-steps. 

To complete the state calculations, the velocities and displacements are determined using 

rectangular integration,  

 �̇�(𝑖) = �̇�(𝑖 − 1) + �̈�(𝑖)𝑑𝑡 (19) 
   
 𝑥(𝑖) = 𝑥(𝑖 − 1) + �̇�(𝑖)𝑑𝑡 (20) 
   
 �̇�(𝑖) = �̇�(𝑖 − 1) + �̈�(𝑖)𝑑𝑡 (21) 
   
 𝑦(𝑖) = 𝑦(𝑖 − 1) + �̇�(𝑖)𝑑𝑡 (22) 
   

where dt is the time step [sec] between indices. The simulation loops through the force and dynamics 

calculations for as many time steps as requested by the simulation user. 

The simulation program of Schmitz and Smith was written to handle higher-order dynamic 

models in the x and y direction (Figure 14) by using modal parameters. Modal parameters are another 

way to describe a system, and are obtained by decoupling higher-order mechanical systems into a series 

of independent second-order systems. The total response of the system is then calculated by summing 

the responses of the isolated systems. Each of these contributing responses is called a mode, and the 

use of modes helps simplify the calculations required in the simulation. Given the normal system 

 �̈�(𝑖) =
𝐹𝑥(𝑖) − 𝑐𝑥�̇�(𝑖 − 1) + 𝑘𝑥𝑥(𝑖 − 1)

𝑚
 (17) 

   

 �̈�(𝑖) =
𝐹𝑦(𝑖) − 𝑐𝑦�̇�(𝑖 − 1) + 𝑘𝑦𝑦(𝑖 − 1)

𝑚
 (18) 
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parameters, the modal parameters can be calculated by finding the eigenvalues of the system. The 

calculation process is explained in more detail by Schmitz and Smith [6]. 

 

Figure 14: Diagram for double spring-mass-damper system, in the x and y direction. 

3.3: System Parameters – Free Vibration Analysis 

The dynamic parameters of the CNC machining model need to be determined to obtain accurate 

tool vibrations from the simulation. This includes natural frequency (ωn), damping ratio (ζ), and spring 

constant (k) of the spring-mass-damper system in the x and y directions. 

A common approach to finding the parameters of a single mode, second-order system is to 

analyze the free response to an impact. Methods have been developed and rigorously tested to reliably 

and accurately solve for the ωn and ζ from the response. Unfortunately, the spring constant can’t be 

reliably determined from the response. Instead, k is calculated by analyzing force vs displacement of the 

tool, which should give an accurate value. Parameters must be determined in both the x and y-

directions using the impact response and displacement-force response methods. 



Page | 22  
 

 

Impact testing was applied to the end of the cutting tool to obtain the required time trace. The 

equipment used was a PCB accelerometer (U353-B03), a PCB modal hammer (086C03) with a metal tip, 

two charge amplifiers, and a HP 35670A spectrum analyzer.  

The modal hammer was equipped with a hard (steel) tip, with no added mass. The 

accelerometer was mounted to the end of the tool with wax as shown in Figure 15. The hammer and 

accelerometer were each wired through their own charge amplifier into the spectrum analyzer. The 

amplifier for the accelerometer was set to a gain of 1, while the hammer had a gain of 10. 

 

  

Figure 15: Tap test experimental setup. 

The accelerometer was aligned in the x or y direction depending on the test, and the analyzer 

was set to collect the time trace of the accelerometer. A single sharp tap from the opposite side of the 

tool, as close to the end of the tool and as much in line with the accelerometer as possible. A sample of 

the accelerometer time trace collected is shown in Figure 16. 
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Figure 16: System response to impact. 

The observed behavior in Figure 16 closely resembles the typical behavior for a second-order 

impact response. Based on this, the log decrement method, as described by Ogata [9], can be used to 

determine ζ. Equation 23 is a rearranged version of the one presented by Ogata, where n is the number 

of cycles in the calculation and T is the period (time to complete one cycle) of the signal. Multiple tap 

test calculations are made to get a range of ζ values, which are presented in Table 1. 

 

𝜁 =
1

√1 + (
2𝜋

1
𝑛

ln (
𝑥(𝑡)

𝑥(𝑡 + 𝑛𝑇)
)

)

2

 

(23) 

   
The damped natural frequency (ωd) is simply obtained from the plot by taking the inverse of the 

time required to make a complete cycle. This is then converted to ωn by using Equation 24. 

 𝜔𝑛 =
𝜔𝑑

√1 − 𝜁2
 (24) 

   
The spring constant (k) is the ratio of force to displacement, so it can be calculated by applying a 

known displacement to the end of the tool, while the resulting force is measured. This was 
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accomplished by placing a workpiece mounted to a Kistler 9257B dynamometer against the end of the 

tool. A measured displacement was applied using the machine’s table, accurate to 0.0005” (0.01 mm), 

while the force was measured by the Kistler. 

Figure 17 shows the measured force plotted against the measured displacement. The value of k 

is determined by finding the slope of the best straight line fit of the data set. These values are listed in 

Table 1, both of which seem reasonable based on previous testing at UNH [10].  

 

Figure 17: Kistler data fitted with a linear function. Slope of best fit line is the spring constant. 

Table 1: Dynamic parameters found via application of free vibration and known displacement analysis. 

 ωn [Hz] k [N/m] ζ 

x-direction 641 3.258 ∙ 106 .05 - .06 

y-direction 641 3.327 ∙ 106 .05 - .06 

 

3.4: System Parameters – Modal Fitting 

Another method of system parameters identification is modal fitting, using the Frequency 

Response Function (FRF) of the system. As stated in Section 2.4, the FRF is the function that describes 

the vibration behavior of the tool end in response to a force applied to the tool end. 
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A common method to obtain the FRF is through impact testing. One version of this method is to 

use a modal hammer with a force sensor to impact the system, and an accelerometer to measure the 

vibration response of the system. The result is a FRF that relates input force to output acceleration.  

The FRF can be visualized in many ways, with amplitude ratio and phase shift vs. frequency 

being the most common. For modal fitting, plots of the real and imaginary values vs frequency are 

needed. Four pieces of information are then used from the plots to calculate ωn, ζ, and k. Shown in 

Figure 18, the four items are the peak value (A) and frequency value (ωn1) on the imaginary plot, and the 

frequency value of the peaks of the real plot on either side of the imaginary peak (ω2 and ω3). Since this 

method is designed for modal parameters, the four items will need to be found for each mode desired. 

 

Figure 18: Visualization of modal fitting for one mode. Recreation of example plots shown in Schmitz and Smith [6]. 

Using modal fitting as explained in Schmitz and Smith [6], the FRF needs to relate displacement 

to force. Since these experiments use an accelerometer, the peak value that will be determined from 
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the plot (A) will be in terms of acceleration in response to force (Aa). To convert it to its displacement 

equivalent (Ad), Equation 25 is used. 

 𝐴𝑑 = −
𝐴𝑎

𝜔𝑛1
2  (25) 

   
With these four values, the remaining parameters are then calculated. The first is ωn, which is 

equal to ωn1, available directly off the plot. The other two parameters are calculated using the equations 

below, derived and given by Schmitz and Smith [6].  

 𝜁 =
𝜔3 − 𝜔2

2𝜔𝑛1
 (26) 

   

 𝑘 =
−1

2𝜁𝐴𝑑
 (27) 

   
As stated previously, the FRF for the tool is found using an impact testing method. The 

equipment and experimental setup for this is the same as for the free response analysis described in 

Section 3.3. However, the analyzer must be programed differently for the modal tests. 

For modal testing, the spectrum analyzer was set for a 2-channel frequency response, displayed 

as real and imaginary plots. A force-expo window was applied to the signals, with values of 750 μs for 

force, and 4 ms for the decay. The force-expo window is a combination of 2 types of data windows, each 

applied to one signal. The force portion is a boxcar window over the initial impact, the length of which is 

the time the initial impact takes. This eliminates noise and ringing of the hammer, allowing for a better 

estimation of an impulse input. The response portion is an exponential decay window, the length of 

which is the time required for the signal to mostly settle. The main purpose for this is to smooth the 

data to the shape of a typical damped system. Additionally, the analyzer was set to be triggered by the 
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hammer, and to average together ten data sets. This averaging smoothed the plots obtained, and 

improves the coherence of the data.  

Once the analyzer is started, the taps are completed in the same way as described for the free 

response, including the separate testing of both the x and y-directions. The only difference is that the 

additional taps are required for the averaging. This results in a plot similar to that shown in Figure 19.  

 

Figure 19: Sample output of HP Signal Analyzer. 

To calculate the parameters of interest, the four pieces of information described earlier are 

needed. The values for the first two modes (first two peaks) are pulled from the plots generated in the 

experiment. The values listed in Table 2 are the average value calculated from two experimental runs. 

These values are used in Equations 25-27 to calculate the modal parameters, which are presented in 

Table 3. 
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Table 2: Modal fitting values determined from real-imaginary plots. 

  A [V] ωn1 [Hz] ω2 [Hz] ω3 [Hz] 

x-direction 
1st Mode 7.39 628 569 693 

2nd Mode 3.09 1104 1056 1152 

y-direction 
1st Mode 6.38 620 560 696 

2nd Mode 3.68 1328 1260 1368 

 

Table 3: Dynamic parameters found via tap test. First two modes for each x and y directions presented. 

  ωn [Hz] k [N/m] ζ 

x-direction 
1st Mode 628 1.21∙ 105 .099 

2nd Mode 1104 2.02∙ 106 .043 

y-direction 
1st Mode 620 1.22∙ 105 .11 

2nd Mode 1328 2.62∙ 106 .041 

 

Table 4 presents the parameters found through the free vibration analysis alongside the first 

mode parameters found through modal fitting. Both sets show similar values for ωn, and have ζ values 

that are relatively close. The larger difference is in the k values where the force displacement method is 

an order of magnitude larger than the modal method. A decision must be made as to which parameter 

set to use. 

Both methods have several sources of error. The major sources for Modal Fitting is the accuracy 

of plot measurement, and the compounding of possible errors in the calculations. The free vibration plot 

clearly shows that both the x and y vibrations are composed of multiple modes, not just the assumed 

single mode. Since we are interested in the motion of the tool end, the free vibration test yields 

approximate parameters that describe tool end vibration. It was decided to use the values found with 

free vibration analysis, mostly because the measurement interdependency in the calculations is smaller, 

which translates to less compounding of errors. 
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Table 4: Comparison of first mode parameters for free vibration and modal fitting methods.  

 x-direction y-direction 

 Free Vibration Modal Fitting Free Vibration Modal Fitting 

ωn [Hz] 641 628 641 620 

k [N/m] 3.258∙ 106 1.21∙ 105 3.327∙ 106 1.22∙ 105 

ζ  .05 - .06 .099 .05 - .06 .11 

 

3.5: Simulation Improvements 

There are two major alterations made to the original code to help facilitate the cutting 

simulation and the determination of unstable cutting. First, the simulation is made time-step dependent 

rather than rotational-step dependent, and second, a check is added that terminates the simulation if 

the tool cutting forces become large enough to break the tool.  

Stability of the milling system is analyzed through simulation using a large range of spindle 

speeds. Using a “steps per revolution” method is fine for most cases, however this method breaks down 

at low spindle speed since there is a point where the “sampling frequency” will be very low. From 

sampling theory, this low frequency increases the chance of aliasing and it increases error in the 

simulation since a simple rectangular integration scheme is employed.  

To increase the simulation accuracy, a desired time-step is set. Using Equation 28, a value is 

calculated for the number of steps per revolution required to obtain the desired time-step. This value is 

then truncated to obtain an integer number of steps per revolution, and converted back to the actual 

simulation time-step using Equation 29. 

 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 =
60

𝛺 ∗ (𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝)
 (28) 

   

 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 =
60

𝛺 ∗ (𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝)
 (29) 
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Due to the instability of chatter, and the lack of displacement constraints in the program, it is 

possible for the cutting force to infinitely increase. A check was added for tool breakage by calculating 

the shear strength of the shank of the tool, assuming typical tool steel. This worked out to be 

approximately 1.9 MN for a ¾” (19.1 mm) diameter tool, and would be a worst-case scenario since the 

insert will most likely break before the tool shank. Once the tool shank fails, the simulation is ended. 

  



Page | 31  
 

 

3.6: Simulation Verification 

The milling process simulation program is verified by first comparing simulation results to those 

from Schmitz and Smith [6], and second by comparing simulation results to actual cuts performed on the 

Fadal CNC machine. Both stable and unstable cuts are simulated. 

A good initial confirmation is to compare simulation results from the revised simulation to those 

from Schmitz and Smith’s [6]. The simulations are for four tooth slot cutting in aluminum, with a feed 

per tooth of 0.15 mm/tooth. The cutting coefficients are Ktc = 281 N/mm2, Krc = 281 N/mm2, and Kte = Kre 

= 0. The mechanical system parameters used are equal in both x and y-directions with values ωn = 500 

Hz, k = 8e6 N/m, and ζ = .02. Both simulations are run with identical process parameters and constants. 

 

 

Figure 20: Comparison of stable force time traces; 7500 RPM, b = 3 mm. Left is simulation results from Schmitz and Smith [6, p. 

142], and right is research simulation results. 

The first set, shown in Figure 20, is of a stable cut; Ω = 7500 RPM, b = 3 mm. It is observed that 

the plots from both Schmitz and Smith [6] (left) and the research simulation (right) are nearly identical. 

They also clearly show the initial transient behavior caused by the tool’s initial contact with the 
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workpiece, followed by the decay to a steady force, as expected from a stable system. This shows initial 

confirmation to the accuracy of the research simulation, and demonstrates the ability to model steady 

cutting behaviors. 

 

 

Figure 21: Comparison of unstable force time traces; 7500 RPM, b = 5 mm. Left is simulation results from Schmitz and Smith [6, 

p. 142], and right is this research simulation results. 

The second set, shown in Figure 21, is of an unstable cut; Ω = 7500 RPM, b = 5 mm. Like the 

stable plots in Figure 20, the plots match well. The forces are very erratic, since the instabilities present 

in the system will not allow the forces to decay to a steady value. These plots give further confirmation 

of the research simulation’s accuracy, and demonstrates the ability to model chatter. 

The second confirmation compares simulation forces to experimental cutting data collected 

from the Fadal. The cut shown below (Figure 22) is quarter immersion in aluminum, at 2000 rpm, with 

an axial depth of 4 mm. The average chip thickness is set to 0.002” (0.05 mm), which equates to a feed 

rate of 25.32 in/min (0.64 m/min). The experimental data is smoothed using a 6th-order Butterworth low 

pass filter with a cutoff frequency of 500 Hz. The cutting coefficients used for the simulation data are Ktc 
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= 600 N/mm2, Krc = 120 N/mm2, Kte = 20 N/mm, and Kre = 19 N/mm, along with the system parameters 

obtained by the method described in Section 3.5, which are ωnx = ωny = 641 Hz, kx = 3.258e6 N/m, ky = 

3.327e6 N/m, and ζx = ζy = .131. Tool runout, which is offset of the tool center, is included in the 

simulation for a better match. The simulation uses tooth-to-tooth runout, which means that the radial 

offset of each tooth is used as input, altering the chip thickness for each tooth. Through trial and error, 

runout for the three-tooth cutter was discovered to be approximately 5, -25, and 0 µm. 

 

Figure 22: Stable force trace comparison between simulation and filtered experimental data; 2000 rpm, b = 4 mm. 

By including runout, the simulation and experimental data presented in Figure 22 are a good 

match. The filter does remove most of the Kistler vibrations and noise, but evidence of its resonance still 

exists. 

Experimental and simulation data is also compared for unstable cutting. The cuts are made at 

5000 rpm with an axial depth of 7 mm. The experimental data was obtained and processed in the same 
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way as described for the stable cuts, but due to the higher spindle speed, has a feed rate of 63.3 in/min 

(1.61 m/min). The simulation uses the same parameters as the stable cuts. 

 

Figure 23: Unstable force trace comparison between simulation and filtered experimental data; 5000 rpm, b = 7 mm. 

Figure 23 shows that there are similarities between the force traces of the experiment and 

simulation. The data sets don’t appear to match very well, but show strong evidence of chatter by the 

non-repeating force peaks and the tool moving in and out of the material, indicating very large 

vibrations. Also, due to the complexity of the milling process, and the chaotic nature of chatter, the data 

sets are not expected to match perfectly. Chatter is evident in both traces because the force does not 

repeat itself form one tool cycle to the next. To attain a better match would require the use of a much 

more sophisticated model.  
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3.7: Summary 

This chapter describes the MATLAB-based simulation used in this research. The simulation steps 

through time, calculating forces and displacements experienced by the tool for each time step. Total 

forces are calculated by the equations described in Section 2.2, looping to ensure all cutting teeth and 

axial slices are accounted for. Tool motion is calculated by applying Eulerian integration on the 

equations described in Section 2.3.  

The two methods to experimentally determine the spring constant (k), natural frequency (ωn), 

and damping ratio (ζ) of the Fadal milling machine are detailed. These methods are free vibration 

response and Modal Fitting. The first method consists of two separate tests. The first test collects data 

from an accelerometer mounted at the end of tool, in response to an impact, and the second test 

measures forces experienced when a known deflection is applied to the end of the tool. The Modal 

Fitting method calculates the parameters using values measured from the real and imaginary plots of a 

Frequency Response Function, obtained through impact-response testing. The parameters found 

through both methods are presented and compared. They all fall within a reasonable range, however 

the parameters found through free vibration response are considered more reliable and are used in the 

simulation of this thesis. 

The two major improvements made to the simulation are presented. The first converts the 

simulation from revolution-step dependence to time-step dependence. The second adds a check that 

terminates the program if cutting forces exceed 1.9 Mega-Newtons, breaking a ¾” (19.1 mm) tool. 

The revised simulation program is validated for both stable and unstable cases, through 

comparison with results from both Schmitz and Smith [6] and filtered force data from the Fadal. Schmitz 

and Smith’s results are nearly identical to those from the simulation, providing good initial verification. 
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Stable cuts from the Fadal provide a close match with the simulation, especially when tool runout is 

included in the simulation. The unstable cut data does not match, but since both show evidence of 

chaotic behavior caused by tool fluctuation, it is concluded that reasonable simulation of chatter can be 

obtained. This all shows that the simulation can accurately portray the real-world system’s behavior.  
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Chapter 4: Chatter Detection 

4.1: Introduction 

This chapter discusses past work in milling chatter detection, with a focus on the method that 

uses once per revolution sampling. The algorithm developed for this research is described, and 

presented with the simulation results used to evaluate the algorithm. 

Algorithms to accurately determine the existence of chatter during a machining operation could 

help make machining safer and more cost effective. Knowledge of chatter could be used to make the 

operator aware of the potentially damaging condition, or it could be used in a closed-loop control 

system that could automatically adjust the machine, returning to a safe and stable state. Accomplishing 

this requires a robust algorithm that can autonomously analyze force, displacement, or acceleration 

data, and return a determination of cutting stability.  

4.2: Previous Work 

Many methods have been explored for online chatter detection. These cover a range of sensors, 

and the data processing techniques with each method having advantages and disadvantages.  

Since chatter results from the vibration caused by the tool-workpiece interaction, many of the 

most popular methods attempted have relied on analysis of this interaction, mostly by way of the noise 

generated by the tooth engagement. This method involves using a microphone to collect noise data [2]. 

Chatter is detected when there is a positive jump in noise levels. The major advantage to this method is 

that it is fairly inexpensive to implement, and requires low computation power. The disadvantage comes 

from applying it in a manufacturing environment, since the ambient noise from other activity in the area 

will most likely be picked up by the microphone.  
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There have been attempts at measuring tool deflection directly. This is not straight forward, 

since the desired measurements are at the end of the tool, which is constantly in motion and in contact 

with the workpiece during milling operations. There are a few sensors that could be used in this 

situation, but they all require a smooth surface and/or a clear path of view to the tool. This can be 

reasonably done in a laboratory setting, but almost impossible for an industrial application. One such 

setup was used by Altintas [3], where a proximity sensor was aimed at a steel sleeve fitted just above 

the cutting section of the tool. This method would provide a direct measurement of tool vibration 

resulting from chatter, however sensor line of sight would make this method impossible in most 

industrial milling application. Perhaps new sensors will make this method feasible someday. 

The Fourier Transform of the cutting force has been explored as another way to determine the 

existence of chatter [11]. This method involves using a Fast Fourier Transform (FFT) routine to generate 

a frequency plot. Since chatter is defined as an unwanted vibration, it will show noticeable spikes on the 

plot, making this a valid way to show the presence of chatter. The large disadvantage to this method is 

the data processing time that would be required. Most current FFT routines require a fair amount of 

computation to complete the transform, which when added to the algorithms required to locate and 

process the FFT spikes, can lead to delays and errors in determining the initiation of chatter, and any 

resulting actions. 

A more complicated chatter detection algorithm was proposed by Ma and Melkote [4]. They 

apply several filters to a force trace collected with a Kistler 9257B dynamometer, and analyze it for the 

presence of chatter. They performed several cuts on a CNC Mill, and the algorithm successfully detected 

chatter when it was present. Ma and Melkote concluded that this method works for most of the cases 
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tested, and uses a fraction of the computing power in comparison to the FFT detection method. The 

downside is that the multiple steps increase the complexity of the algorithm. 

An alternate approach to on-line chatter avoidance is through process planning using accurate 

simulation models of the CNC process. Cutting conditions that give rise to chatter in the simulation can 

be changed during the process planning phase. Several researchers, such as Altintas [12] [13], have 

pursued this work by developing increasingly complex models. 

The approach taken in this research is based on work by Schmitz [2], where sound data is 

sampled once per revolution and evaluated for chatter. This algorithm is discussed in more detail in the 

next section. 
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4.3: Original once per rev deflection algorithm 

The once per revolution sampling method described in Schmitz [2] is based on Poincaré 

mapping techniques for determining system stability. A Poincaré map is a cross section of a system’s 

orbit (sampling of points from a specific position on the cycle), which means its only applicable for 

cyclical behaviors. Since z-direction motion is negligible, the motion plot will just be x vs y tool motion 

points measured at the same tool location angle for every tool rotation. Figure 24 shows the x-y plots for 

all tool rotation angles for 25 cycles of both a stable and unstable simulated cut. Displacements are 

given for continuous motion of the tool as it rotates and the starred points on the plots show the once 

per revolution sample, which can be considered the Poincaré map for the system. It can be easily seen 

that for stable cutting, the sampled points converge to a single point, while the unstable plot has a 

larger, more elliptical shaped map. Figure 25 shows the stable cut of Figure 24 in more detail. 

 

Figure 24: x vs y deflection plots of 25 revolutions. Both plots are quarter immersion, 5000 RPM. Left is a stable cut (b = 2) and 
right is an unstable cut (b = 6). 
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Figure 25: A zoomed in version of the stable x-y plot in Figure 24. 

 

Measuring displacements while milling is very difficult, so Schmitz used a unidirectional 

microphone as data input to the Poincaré technique. Once per revolution sampling was triggered by a 

visual sensor aimed at a piece of reflective tape on the tool. This ensured the audio data is collected is at 

the same point on the tool for each revolution, since the Poincaré technique requires that all the data 

points be of the same portion of the orbit.   

The possibility of chatter is indicated on the Poincaré plot by the spread of once per rev points. 

To quantify this, Schmitz calculated the variance (σ2) by: 

 σ2 =  
∑ (𝑥𝑖 − 𝑥𝑚)2𝑁

𝑖=1

𝑁 − 1
 (30) 

   
where xm is the average of the data set, and N is the size of the data set. 

To better show the spread of variance values calculated from experimental microphone data, 

Schmitz organized them into a grid relating the variances to their respective spindle speed and axial 

depth, which is shown in Figure 26. The values in the bolded sections are a spike in variance, which 
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coincided with observed chatter. From this, he concluded that variance is related to stability, and could 

possibly be used for detection. 

 

Figure 26: Variance values [mV2] from cutting test completed by Schmitz [2]. 

4.4: Evaluation of original once per revolution deflection algorithm 

Schmitz’s original once per revolution deflection algorithm was coded in MATLAB, and tested 

using the milling simulation described in Chapter 3, which uses cutting coefficients of Ktc = 600 N/mm2, 

Krc = 120 N/mm2, Kte = 20 N/mm, and Kre = 19 N/mm, and system parameters of ωnx = ωny = 641 Hz, kx = 

3.258e6 N/m, ky = 3.327e6 N/m, and ζx = ζy = .131. This allows all variables to be available for analysis, 

signals to be cleaner than experimental data, and the ability to more readily explore algorithm 

sensitivities to cutting conditions. Results were compared to those from Schmitz to ensure accuracy of 

the coding. 

The MATLAB based algorithm was written to collect 25 once per rev samples of displacement 

magnitudes after the initial transients settled out. The variance of the sample set is then calculated, and 

used to make a decision about the cut’s stability. The determination of chatter is based on variance 
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values chosen by the user, which means tuning of the algorithm is required if cutting conditions (i.e. 

radial immersion, workpiece material, cutting tool, etc.) are altered. 

Tuning of the algorithm requires several data sets from a mix of stable and unstable cuts. The 

easiest method is to choose a spindle speed, and increase axial depth starting from well below the axial 

depth chatter limit, blim. The effectiveness of this method increases with the number cuts made at 

various axial depths and spindle speeds. This is due to the increasing ease of patterns being observed, 

which results in better tuning of the algorithm. After some basic tuning, the algorithm proves to be a 

viable way to detect chatter, although there appear to be a number of false positives for chatter. 

False positives can be disruptive to the cutting process and are highly undesirable. Based on this, 

improvements are needed in the detection algorithm to give a more accurate determination of chatter 

presence. This is further complicated by the difficulty in determining chatter from cutting forces and 

cutter deflections since currently, the most definitive definition of chatter is the wavy surface left on the 

workpiece.  

4.5: Deflection algorithm improvements 

While developing the algorithm, the data contained a level of noise that did not appear to be 

related to chatter. Based on this, it was decided that straight variance would not be the best 

representation for the presence of chatter. Instead, the algorithm will use the magnitude of the 

difference between the x and y deflections of a sampled point, and its respective sample from the 

previous revolution. This is calculated by:  

 𝑑𝑖𝑓𝑓(𝑖) =  √(𝑥(𝑖) − 𝑥(𝑖 + 1))2 + (𝑦(𝑖) − 𝑦(𝑖 + 1))2 (31) 
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where i is the sample index. Just like previously, the variance of the differences is calculated, and related 

to chatter through a tuning process. 

Taking the differences yields information about the change in displacement between cycles 

rather than the overall displacement of each cycle. This ensures that constant tool deflections do not 

affect the calculation, and lessens the effect of longer time-scale changes. The magnitude ensures the 

total motion of the tool is considered, not just one direction. This also means that the calculation is 

independent of the coordinate system, meaning the axis can be defined in alternative orientations, and 

the algorithm will still hold. 

The standard once per revolution deflection algorithm is normally visualized through x vs y 

plots. Sample plots for both stable and unstable milling is shown below (Figure 27). 

 

Figure 27:Plots are of once per rev sampled, x vs y deflections from simulated cuts. Both are aluminum, 5000 rpm, with a 3-tooth 

cutter. Stable cut (left) is axial depth of 2mm and unstable cut (right) is axial depth of 6mm. 

For comparison, the results of the difference-magnitude algorithm for the same cutting 

conditions used in Figure 27 are plotted below (Figure 28 and Figure 29). Since these results are the 

magnitudes of difference, it is more difficult to visualize what they represent. The basis of the approach 
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is that instabilities cause a larger, more erratic range of motion in comparison to stable operation. By 

plotting the calculation results vs. the sample number, a good visualization of the behavior can be 

obtained. 

 

Figure 28: Results of algorithm for stable cut described in Figure 27. 

 

Figure 29: Results of the difference-magnitude algorithm applied to displacement data for unstable cut described in Figure 27 

(right). Stable plot (left) is same as Figure 28, but scaled to match unstable plot. 

Looking at Figure 29, it can be easily seen that the values calculated from the unstable cut are 

magnitudes larger than the stable cut. Comparing the zoomed in stable plot (Figure 28) to the unstable 

plot, the tighter consistency in consecutive data points for the stable cut contrasts with the more wildly 
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varying points of the unstable cut. From this, it can be concluded that there is validity in using the 

difference-magnitude algorithm on displacement data for detecting the presence of chatter. 

To show the improvement of the new algorithm over Schmitz’s, analysis of displacement data 

for 4250 rpm at b = 4.75 mm was completed. Figure 30 shows visualizations for each of the algorithms. 

The left plot, which is the visualization for Schmitz’s, shows the tool oscillating between two points at 

values spread enough to question the system’s stability. This is in contrast to the difference magnitude 

values in the right plot, which form a very consistent, straight line. The line indicates that the cut is 

definitively stable. 

 

Figure 30: Displacement results for 4250 rpm, b = 4.75mm. The left plot contains the visualization of Schmitz’s algorithm, which 
shows the tool oscillating between two points. The right plot shows the difference magnitude values, which form a very 

consistent, straight line. 

4.6: Use of Force data 

Tool deflections are a proven method of chatter detection, based on both past research and 

simulation results presented here. The major issue with this method, as discussed in Section 4.2, is 

implementation for online detection in manufacturing environments. This is also why Schmitz [2] 

explained his method through displacement, but experimentally implemented his algorithm using a 

microphone. 
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Tool deflection sensors require either a clear line of sight or constant contact with the tool. 

Most of these sensors require a smooth, clean surface to either be aimed at or attached to, neither of 

which are available during machining operations. Contact sensors could interfere with the machining 

process, and could be easily damaged by the machine motion. Indirect systems could be kept at a safe 

distance, but would be blocked by material chips and coolant. For these reasons, switching to the more 

easily and reliably obtained force data makes sense. A 3-axis dynamometer, used in this research, or a 

tool based dynamometer such as the Smart tool [14], are both sturdy enough to be used in an industrial 

setting. The same once per revolution sampling and calculations described in Equation 31 for 

displacement can be applied to the force data.  

4.7: Confirmation of algorithm applied to simulation force data 

The displacement based plots shown in Figure 29 can be recreated using force data as shown in 

Figure 31. The same trend of the stable cut samples having a much tighter grouping than the unstable 

cut is observed in the plots. 

 

Figure 31: Results of force differencing algorithm for stable cut (left) and unstable cut (right). 
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Figure 32 is the stability plot developed by applying the chatter detection algorithm to 

simulation force data for a variety of axial depths and spindle speeds. Each algorithm determination is 

represented by a point. By looking at a sampling of force traces, reasonable variance limits are chosen. 

The ones used for these plots are less than 10 for stable, greater than 5000 for unstable, and between 

these values for marginal. 

The simulation is of up milling with a quarter immersion of a ¾” (19.1 mm) tool, at a feed rate of 

.0016 in/tooth (0.04 mm/tooth). The cutting coefficients used are Ktc = 600 N/mm2, Krc = 120 N/mm2, Kte 

= 20 N/mm, and Kre = 19 N/mm, with system parameters of ωnx = ωny = 641 Hz, kx = 3.258e6 N/m, ky = 

3.327e6 N/m, and ζx = ζy = .131. The theoretical lobes drawn on the plot were calculated using the 

average tooth angle approach described in Section 2.4 [6]. 

 

Figure 32: Simulation generated stability plot, determinations by difference-magnitude algorithm applied to force data. Average 

angle approach for theory.  
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The stability lobe plot of Figure 32 shows discrepancy between the theoretical lobes and the 

algorithm produced lobes. This discrepancy appears to be a simple axial depth and spindle speed shift in 

the lobes, staying fairly consistent from peak to peak, with the number of peaks nearly matching. The 

shift is approximately 3 mm in the axial depth direction, and 250 rpm in the spindle speed direction. 

Some shift would be expected since the theoretical lobes require a number of simplifying assumptions. 

The large shift in axial depth is somewhat unexpected and explored in Chapter 6. 

Based on visual observations of the force traces, the chatter detection algorithm results appear 

to be reliable. Accuracy of the algorithm is explored in the next chapter using experimental cuts. 

4.8: Summary 

This chapter describes previous work in milling chatter detection, and this research’s 

contribution to that work. The past methods covered include the use of noise, displacement, and force 

data to determine the presence of chatter. The methods applied to these data sets include once per 

revolution sampling, Fast Fourier Transform (FFT) analysis, and multi-step filtering calculations. The 

development of more complex cutting models was also discussed, even though they are more suited for 

preprocess planning than online detection. 

Schmitz’s once per revolution method [2] is presented as the basis for the algorithm developed 

in this research. This method is based on Poincaré mapping techniques, which states that a cyclical 

system’s stability is related to the amount of spreading present in a cross-section of the cycle. Schmitz 

used cuts performed at a variety of axial depths and spindle speeds to show that the variance of tool 

displacements sampled at the same point in the cycle is much greater in unstable cuts in comparison to 

stable cuts.  
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The improved detection algorithm is then described. The algorithm uses the same data sampling 

described for Schmitz’s method, but takes the differences between consecutive data points, and then 

determines the magnitude of the differences. Examples of clear cases for both stable and unstable 

simulated cuts are presented.  

Initially, all algorithm results are based on the displacement of the tool. Given the 

impracticalities associated with monitoring tool deflections, the use of force data is explored. Just as 

with displacement, force sampled cases are shown for both stable and unstable cuts. This illustrates that 

forces experienced by the tool show similar behaviors to tool deflection, and therefore, can be easily 

implemented into the algorithm.  

A stability lobe plot generated using simulation data analyzed by the algorithm is presented. This 

plot also contains stability lobes determined through theory. These two components don’t agree in axial 

depth limit, but show similar shapes.  
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Chapter 5: Experimental Work 

5.1: Introduction 

This chapter discusses the experimental testing used to validate the detection algorithm. The 

results from the experiments are presented, evaluated, and compared to simulations. 

Simulation and theory are a cost-effective way to analyze the milling process. However actual 

experimental data is required to validate the simulation results and to explore the complicated nature of 

chatter. Stable and unstable (chatter) cuts are explored through experiments on the Fadal CNC machine. 

Results are used to confirm the chatter detection algorithm, and to develop a stability lobe diagram for 

comparison to one generated by simulation. The cuts are selected to ensure a variety of stability levels, 

i.e. stable, marginally stable, and unstable.  

5.2: Experimental cuts 

Experimental cuts are made on aluminum 6061 for comparison to simulation results (discussed 

in Section 3.6) and to evaluate the chatter detection algorithm. All cuts are up milling with a radial 

quarter tool immersion. Spindle speed and axial depth of cut is varied to explore stable, unstable, and 

marginally stable cuts. 

The experimental cuts are made on a Fadal EMC 3-axis milling machine with a PC based open 

architecture controller from MDSI (Figure 33). The machine contains a horizontal, 2-axis table to which 

the workpiece is mounted, along with a vertical moving spindle. The tool holder and tool used in the 

experiment is shown in Figure 34. The ¾” (19.1 mm) diameter tool was equipped with three Sandvik 

Carbide inserts (R390-11 T3 08E-NL H13A). 
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Figure 33: Fadal CNC milling machine. Overall setup (left) and close up of spindle and work piece mounted on Kistler force 
dynamometer (right). 

    

Figure 34: Cutting tool used for experimental cuts (left). Sandvik Carbide insert (right). 

Figure 35 shows the hardware component diagram for the Fadal CNC Machine. This diagram 

shows the data flow from the CNC machine and three external sensors back to the control PC. All the 

data can be used in process monitoring and control, or in this case, collection for further analysis. 

Kistler Force 

Transducer 

Workpiece 

Cutting Tool 
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Figure 35: Hardware components of the CNC system: machine, controller, and sensors. [15] 

 

The load cell, a Kistler 9257B Multi-Component Dynamometer, is the only sensor used in the 

research (Figure 36). The force signal is amplified by a 3-channel charge amplifier from Kistler 

Instrument Corporation, sampled by a high-speed data acquisition board, and then stored in the CNC 

control computer. Data collection is completed by a C# program developed in house, which samples and 

saves force data for x, y, and z-direction signals, along with time stamps. 

 

Figure 36: Kistler 9257B Multi-Component Dynamometer [16]. 
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The experimental cuts are made using a constant average chip thickness of 0.002” (0.05 mm), 

based on standard speed and feed tables for aluminum. The desired average chip thickness of 0.002” 

(0.05 mm), equates to a feed per tooth (FPT) of 0.0042 in/tooth (0.11 mm/min) for a quarter immersion 

cut. The spindle speed is changed throughout the experiments, so the feed-rate must be calculated for 

each spindle speed (Equation 32). 

 𝑓𝑒𝑒𝑑𝑟𝑎𝑡𝑒 [𝑖𝑛/𝑚𝑖𝑛] = 𝐹𝑃𝑇[𝑖𝑛/𝑡𝑜𝑜𝑡ℎ] ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ ∗ 𝛺[𝑟𝑝𝑚] (32) 
   

 To ensure the reliability of applying the once per rev sampling, a sampling rate of 360 

samples/rev must be maintained. This means the sampling rate must also be calculated with each 

spindle speed (Equation 33).  

 𝑠𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 [𝐻𝑧] =  𝛺[𝑟𝑝𝑚] ∗ (360[𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑟𝑒𝑣]/60[𝑠𝑒𝑐/𝑚𝑖𝑛] ) (33) 
   

The goal of the experiments is to develop a full stability plot of spindle speed vs axial depth with 

a full grid of data points. To ensure safe operation of the machine, i.e. no chatter, the initial cuts are 

made at 2 mm for an even distribution of spindle speeds. The axial depth is then increased, and cuts for 

another even distribution of spindle speeds is made. This process is continued until chatter is found. 

Once chatter is found, no more cuts are made at that spindle speed for greater axial depths, since 

chatter is expected to continue, which could put the machine at greater risk of damage.  

The determination of chatter in the experiments is determined through observations of the cut 

as they are made. Noise levels are monitored by ear for chatter, and the process is interrupted if it 

becomes excessive. After the cut ends, either through completion or interruption, the roughness of the 

workpiece surface is evaluated. Since chatter is defined by the wavy surface, the roughness of the 

surface is used as a final determination of chatter. 
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Table 5 lists the spindle speed and axial depth for all the experimental cuts, along with the feeds 

and sampling rates required for each spindle speed. This also includes the additional cuts made at 

spindle speeds between stable and unstable points, which help pinpoint the exact point of transition to 

instability. 

Table 5: Table of cuts made for experiments. Contains feeds and speeds that maintain a chip thickness of 0.002” (0.05 mm), 
along with sampling speed required to maintain 360 samples/rev. 

Spindle Speed [RPM] Axial Depth [mm] Feed [in/min] Sampling (360 samples/rev) [kHz] 

2000 4, 6, 7 25.32 12 

2125 7 26.90 12.75 

2250 7, 8 28.49 13.5 

2375 8 30.07 14.25 

2500 4, 7, 8 31.65 15 

3000 2, 4, 6, 7, 8 37.98 18 

3125 8 39.56 18.75 

3250 7, 8 41.15 19.5 

3375 7 42.73 20.25 

3500 4, 7, 8 44.31 21 

3625 7, 8 45.89 21.75 

3750 7, 8 47.48 22.5 

4000 2, 4, 6, 7, 8 50.64 24 

4500 4, 7, 8 56.97 27 

4625 8 58.55 27.75 

4750 8 60.14 28.5 

5000 2, 4, 6, 7 63.30 30 

6000 6 75.96 36 

 

To ensure the quality of the data collected, several considerations are made while running the 

experiments. First, a minimum of 5 minutes is given between cuts to allow time for the tool and 

workpiece to return to room temperature, decreasing the effect of heat since no coolant is used. Also, 

between each cut, chips are cleared from the workpiece area and the existing workpiece surface, 

potentially very rough, is smoothed by a light end mill cut. 



Page | 56  
 

 

After data is collected, the chatter detection algorithm, detailed in Section 4.5, can be applied. 

The data consists of x and y voltages, proportional to force, and a time stamp for each set of data. The 

data is imported into MATLAB along with the time vector. The force signals are then converted from 

voltage [V] to force [N], and used in the detection algorithm by sampling the forces based on the time 

vector. The algorithm determines if the cut is stable or unstable (chatter) based on tuning values given 

by the user.  

Tuning values for chatter determination require a couple of stable and unstable test cuts. 

Variance values can be determined that separate stable and unstable cuts. If cutting conditions are not 

changed, except for depth of cut, the tuning values should be useful. Further precision can be made by 

looking at more data sets, especially ones near the transition zone. 

5.3: Experimental Stability Results 

This section contains results and analysis from the experimental cuts based on conditions in 

Table 5. These cuts are all done on the Fadal CNC milling machine, using up-milling at a quarter 

immersion, and an average chip thickness of 0.002” (0.05 mm). The cuts are used to generate stability 

lobe diagrams based on observation and on the chatter detection algorithm. The detection algorithm is 

evaluated by comparison of the stable, unstable and marginally stable points on the two plots. 

To better visualize the stability results, several force traces and surface finish photos are shown 

below. All the force traces are filtered with a 6th-order Butterworth low pass filter with a cutoff 

frequency of 500 Hz to reduce the resonance effect of the Kistler load cell. The surface generated by the 

cut is bordered by yellow lines to highlight the cut profile of interest. These examples include stable, 

unstable, and borderline cases.  



Page | 57  
 

 

 

Figure 37: Stable cut force trace (left), and photo of cut surface (right). 2000 rpm, b = 4 mm 

 

Figure 38: Unstable cut force trace (left), and photo of cut surface (right). 5000 rpm, b = 7 mm 

Figures 37 and 38 are clear examples for stable and unstable cutting. The stable cut (Figure 37) 

has a clean and repetitive force trace, which coincides with the smoothness of the workpiece surface. 

This contrasts with the unstable cut (Figure 38) which has a force trace that is very erratic, i.e. non-

repetitive, with much higher peak forces. The workpiece surface generated by the unstable cut is visibly 

rough, showing clear evidence of fully developed chatter. 

10 mm 

10 mm 
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Figure 39: Cut determined to be marginally stable through observation, but stable by algorithm. Force trace (left), and photo of 
cut surface (right). 3500 rpm, b = 7 mm 

 

Figure 40: Zoomed out version of force trace in Figure 39. 

Figure 39 shows a cut where the system is transitioning from stable to unstable, making the 

determination of the existence of chatter unclear. For this cut, the stability is categorized as borderline 

based on observation, since the surface shows a low frequency vibration that causes an alternating 

pattern of rough and smooth surfaces (which isn’t shown in the force trace). On a larger time-scale 

(Figure 40), it is more readily seen that a low frequency vibration exists, with the force going in and out 

10 mm 
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of chatter. The chatter detection algorithm determined this to be stable since it looks at the change 

between consecutive revolutions, which is slow enough to make categorizing it as chatter very difficult. 

 

Figure 41: Cut determined to be stable through observation, but unstable by algorithm. Force trace (left), and photo of cut 
surface (right). 2500 rpm, b = 8 mm 

 

Figure 42: Zoomed out version of force trace in Figure 41. Boxed area is a section of force trace where repetitive nature is 
interrupted. 

The cut results shown in Figure 41 is another example where the difference between stable and 

unstable can be unclear to the detection algorithm. Based on the smooth appearance of the surface and 

the repetitive nature of the force trace, the cut is categorized as stable by observation. When analyzed 

10 mm 
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by the algorithm, the cut is determined to be unstable. This false detection is based on the forces shown 

in Figure 42. Most of the trace looks to be consistent, but there are areas where the pattern changes, 

one such area being outlined in black. This seems to be a false positive, but even if this is not fully 

developed chatter, it is interesting that the algorithm still picks up on small changes that could be the 

first hints of unstable conditions. 

The first stability lobe plot (Figure 43) shows the stability results of the experiments as 

determined by observations of the noise and workpiece surface generated during cutting. The second 

stability plot (Figure 44) shows the stability results of the experiments as determined by the chatter 

detection algorithm.  

The stability plots are graphs of cutting stability for a range of axial depths and spindle speeds. 

The stability points are plotted using a blue circle for stable cuts, a red x for chatter, and a green star for 

marginally stable cuts. Additionally, Figure 44 contains a black diamond to represent the one data set 

that was corrupted, and unusable for the algorithm. 
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Figure 43: Experimental chatter results based on observed status of cut. Blue circle = stable, red x = chatter, and green star = 
borderline. Also included is the theoretically determined lobes, plotted as black lines. 
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Figure 44: Experimental chatter results based on algorithm analysis of experimental data. Blue circle = stable, red x = chatter, 
green star = borderline, and black diamond = invalid data. Also included is the theoretically determined lobes, plotted as black 

lines. 

The plots above also contain the theoretical lobes as determined by the average angle approach 

described in Section 2.4. These lobes are not expected to match perfectly, but to give a sense of the 

transition regions between stable and unstable cuts. The theoretical model requires a number of 

simplifying assumptions which reduce its accuracy, particularly in the location of the stability lobes. The 

axial depth limit, blim, can still be fairly accurate with the theoretical model.  

Stability information from both observation and the algorithm is condensed into a single plot, 

shown in Figure 45. This plot uses symbols to represent the observed state of the cut, and color for the 

algorithm’s determined state. Also included is the theoretically determined lobes for reference. 



Page | 63  
 

 

 

Figure 45: Experimental chatter results. Symbols relates to observed status of cut (o = stable, x = chatter, * = borderline), and 
color relates to algorithm results of experimental data (blue = stable, red = chatter, green = borderline, black = unusable data). 

The data collected in the experiments cover a range of behaviors, with several strongly showing 

the existence of chatter. The observation and the chatter detection algorithm show agreement on 

almost all the data sets that are clearly stable or unstable. Differences between the two occur in the 

transitional zone, where the vagueness of the definition of chatter can lead to different interpretations 

of the cut stability. The fact that even experts come to different conclusions about stability, it is 

reasonable to expect to the algorithm to not be perfect. Given the examples discussed above, it can be 

concluded that the algorithm is reasonably good at determining stability given good tuning values, and is 

a viable solution. 
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5.4: Comparison of experimental and simulation stability 

The experimental data from cuts in Table 5 can also be used to evaluate the accuracy of the 

simulation program in determining the transition between stable and unstable cuts. Specifically, the 

stability lobe diagrams are compared for accuracy and trends.  

Figure 46 is the simulation results from Section 4.7, and Figure 47 is the experimental results 

from Section 5.3. Both plots are for quarter immersion up-milling on the Fadal CNC machine. The two 

plots have a noticeably large difference in the axial depth at which chatter occurs. The simulation 

transition is between 4 and 5 mm, while the experimental transition is around 7 mm. The simulation 

points better match the shape of the theoretical lobes, while the experimental points better match the 

axial depth limit. 
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Figure 46: Simulation results originally presented in Section 4.5. Average angle approach for theory.  
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Figure 47: Experimental chatter results from in Section 5.4. Symbols relates to observed status of cut (o = stable, x = chatter, * = 
borderline), and color relates to algorithm results of experimental data (blue = stable, red = chatter, green = borderline, black = 

unusable data). 

 

There are several reasons for inaccuracy in the simulation chatter prediction. The most obvious 

is the machining center dynamic model parameters. If k, ωn, or ζ are not accurate, there is little hope of 

obtaining accurate chatter prediction. The next chapter explores the effects of these parameters on the 

stability lobe plots. Another reason is the simplified single mode dynamic model that is used to 

characterize a very complex machining center. Multiple modes with time varying system parameters is 

needed to obtain better chatter predictions. 
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5.5: Summary 

This chapter describes the experimental cuts that were made to validate the chatter detection 

algorithm. These cuts were completed on a Fadal EMC 3-axis milling machine, using a 3-tooth flat end 

mill, equipped with carbide inserts, and a 6061-aluminum workpiece. The cuts are all up milling with a 

quarter tool immersion. 

Force experienced during the cutting process was measured using a Kistler Dynamometer. The 

collected force data was then used for simulation verification (presented in Section 3.6), and as the 

input to the chatter detection algorithm for confirmation of operation.  

Several examples of individual cuts are presented to explain the determination of cutting 

stability by observation. Both stable and unstable cuts are presented, showing the agreement between 

observation and algorithm. Two additional cases are presented where the stability determination 

between observation and the algorithm don’t agree. The first case shows an example the cutting 

operation creating a rough surface even though the algorithm states its stable, which is because the 

large force changes happen over a longer period. The second shows a smooth workpiece surface for an 

algorithm determined marginal stability, which is because of small force jumps present in the data. 

Three plots are presented as visualization for what spindle speed and axial depth combinations 

generate chatter. The first plot shows the stability determinations made through human observations 

(i.e. noise generation and surface roughness) of the cut, while plot two shows determinations made by 

the algorithm. The last plot combines the information from the other two plots to obtain a single visual 

for easier comparison.  



Page | 68  
 

 

Lastly, the combination experimental stability plot is presented next to the simulation generated 

stability plot. Both these plots also contain the stability lobes calculated by the average angle approach. 

These plots show a fair amount of disagreement between each other, mostly in the axial depth limit. 

The simulation points better match the shape of the theoretical lobes, but the experimental points 

better match the axial depth limit.  
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Chapter 6: Dynamic Model Parameter Effects on Stability 

6.1: Introduction 

This chapter explores the effect of parameter variation on the accuracy of the simulation model 

to better understand how the model can be improved. Specifically, the spring constant (k) and damping 

ratio (ζ) of the model are varied to see chatter sensitivity to these changes. 

An accurate simulation model of the milling process could be used to select cutting conditions 

for a given part that avoids chatter. Typically, cutting conditions are chosen using a conservative blim 

(axial depth of cut) from stability theory that eliminates the possibility of chatter. Simulation selected 

axial depth of cuts can be found that are larger than those from theory by slightly adjusting the spindle 

speed to stability spaces between lobes. This could improve process time while still preventing chatter.  

6.2: Effect of spring constant (k) 

The first parameter analyzed is the spring constant (k) of the system. This parameter is 

dependent on the tool, tool-holder, and spindle. Of the portions, the tool is the one part that could be 

easily redesigned in order to alter the spring constant of the milling system. A close approximation to a 

cutting tool is a rod, whose stiffness decreases as the rod gets thinner and/or longer.  

Three stability lobe plots are generated by simulation, each for a different value of k. All the 

plots use cutting coefficients of Ktc = 600 N/mm2, Krc = 120 N/mm2, Kte = 20 N/mm, and Kre = 19 N/mm, 

and system parameters of ωnx = ωny = 641 Hz, and ζx = ζy = .131. Figure 48 uses the system k values (kx = 

3.258e6 N/m and ky = 3.327e6 N/m) found through experiments (same as Figure 32). Figure 49 is 

generated using k = 2.5e6 N-m, which is approximately 25% smaller than the original, while Figure 50 
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has k = 4e6 N-m, which is approximately 20% larger. Also, because of the interdependency of variables, 

changes to k also changes the effective mass (m) and the damping coefficient (c). 

 

Figure 48: Stability plot for kx = 3.258e6 N/m and ky = 3.327e6 N/m, experimental (same as Figure 32). 

 

Figure 49: Stability plot for kx =ky = 2.5e6 N-m, 25% smaller than experimental (other conditions same as Figure 48). 
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Figure 50: Stability plot for kx =ky = 4e6 N-m, 20% larger than experimental (other conditions same as Figure 48). 

Comparing the three plots, the most obvious effect observed is the shift in blim. It appears that 

the value of k is directly proportional to the value of blim, i.e. a 20% increase in k shifts the lobes up 20%, 

and vis-versa. Beside the blim change, k does not seem to shift the spindle speed at which the peak stable 

cuts occur, nor change the width or shape of the lobes. 

As stated in Section 5.4, the simulation is accurate enough to produce unstable cutting 

behaviors, but they do not exactly match the experimental results, particularly in blim. Since increasing k 

would shift blim closer to the experimental value, this hints toward the use of a lower k than actually 

exists in the machine. This is possible since the k used was found through static testing, but the high-

speed spinning could make the “observed stiffness” higher. 

The simulation results also indicate that use of a stiffer tool could increase the axial depth limit, 

blim, allowing deeper cuts to be made, potentially improving process efficiency. 
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6.3: Effect of damping ratio (ζ) 

The effect of the damping ratio (ζ) on the system behavior is explored in this section. Like with 

the spring constant, this parameter is dependent on the material and shape of the tool edge, and can 

also depend on the cutting geometry. If the flank of the tool edge rubs on the workpiece the damping 

can increase substantially, but for only a portion of the tool rotation.  

Three different values of ζ are explored; 0.1, 0.131 (nominal), and 0.2. All the simulations use 

the same nominal conditions as described in Section 6.2, with Figure 51 being the stability plot for the 

nominal conditions (same as Figure 48). The other two plots use the nominal values, except for ζ. Figure 

52 is generated using ζ = .1, which is approximately 24% smaller than the original, while Figure 53 has ζ = 

.2, which is approximately 53% larger. Also, because of the interdependency of variables, changes to ζ 

also changes the damping coefficient (c). 

 

Figure 51: Stability plot for ζx = ζy = .131, experimental (same as Figure 32). 
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Figure 52: Stability plot for ζx = ζy = .1, 24% smaller than experimental (other conditions same as Figure 51). 

 

Figure 53: Stability plot for ζx = ζy = .2, 53% larger than experimental (other conditions same as Figure 51Figure 48).  

Comparing the three plots, the most obvious effect observed, like with k, is the shift in blim. It 

appears that the value of ζ is directly proportional to the value of blim, i.e. a 20% increase in ζ shifts the 

lobes up 20%, and vis-versa. There is no noticeable spindle speed shifting of the stable peaks caused by 

ζ, but the shapes of the lobes change slightly. As ζ is increased, the tip of the lobes round out. Also, as ζ 
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increases the low spindle speed cuts have a larger upward shift in axial depth limit than the higher 

spindle speeds. 

While the simulation is accurate enough to produce unstable cutting behaviors, they do not 

exactly match the experimental observations. Figure 53 indicates that increasing ζ would shift blim closer 

to the experimentally determined value, this suggests that the ζ used in the simulation is possibly low. 

Since the free vibration method used to find the ζ does not consider tool edge and workpiece contact, it 

is quite possible the value is not accurate. Also, the simplicity of the model used does not consider the 

additional damping present at higher spindle speeds, and the interdependency of ζ on tool edge 

geometry and tool wear. 

Based on these results, it would seem to be advantageous to cut with a higher damping ratio, 

since it will allow for the machine to safely operate at higher axial depths. Practically this is difficult to do 

since it requires more tool/flank face interface which results in high tool wear rate, or a specially 

designed tool holder that is expensive and less stiff than ordinary tools.  

Four more simulations are run where k and ζ are altered simultaneously in order to determine 

parameter interdependences. Although not shown in the thesis, the plots show the same shifting as 

described above, with changes in both k and ζ shifting blim up or down, and ζ creating a larger shift in the 

lower spindle speed cuts. The new observation is that the amount of shifting caused by changes in k is 

dependent of the value of ζ. Changes in k at lower ζ values has a smaller effect on the axial depth limit 

than changes in k at larger ζ values. 
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6.4: Summary 

This chapter explores the effects that the spring constant (k) and damping ratio (ζ) have on the 

simulation based stability plots. The plots are generated by applying the chatter detection algorithm to 

simulation force data. Three plots are created for spring constant changes and three for damping ratio 

changes. The first uses experimentally determined parameters for the Fadal milling machine. The second 

is with k (or ζ) increased, and the third with k (or ζ) decreased.  

In general, it appears that k and ζ are directly proportional to the axial depth limit (blim) of the 

milling machine. ζ additionally causes a larger shift at lower spindle speeds. This is complicated by 

changing k and ζ simultaneously, which shows interdependency between the two parameters. This 

relation shows larger shifting in association to changes in k when ζ is larger.  
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Chapter 7: Conclusions and Future Work 

7.1: Introduction 

This chapter summarizes the work presented in this thesis, along with the major results. Future 

work is also summarized. 

7.2: Conclusions 

This research explores the stability of end milling through simulation and experiments. 

Specifically, an end milling simulation model is revised to more accurately simulate end milling chatter, 

and a new chatter detection algorithm is created to quickly process cutting force data and identify the 

existence of chatter. Accurate simulation and on-line detection of chatter will improve process planning 

and machine operation and make milling more efficient and cost effective. The conclusions of this 

research are described below. 

The simulation uses a linearized, coefficient based model to calculate cutting forces experienced 

during operation, and applies Eulerian integration to the dynamic equations. This simulation has been 

used in previous research with good success, but required a few modifications to operate more 

efficiently. The two improvements made are changing the simulation from revolution-step dependent to 

time-step dependent, and adding a check that terminates the program if cutting forces exceed 1.9 

Mega-Newtons, which will break a ¾” (19.1 mm) tool. The step change increases the accuracy of 

simulations at low spindle speeds, mostly through lowering the possibility of aliasing. The break check 

ensures the simulation does not continue running when instabilities cause cutting forces to grow 

exponentially. 
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The chatter detection algorithm developed in this research is based on the once per revolution 

sampling method developed by Schmitz. This method determines the presence of chatter based on 

microphone data sampled once every revolution of the spindle. Improvements made to this algorithm 

include using force data instead of sound or displacement data, and processing the once per rev 

sampling by taking difference between the current force sample and the previous sample in both x and y 

directions, and calculating the magnitude of the differences. Since steady forces equate to stable 

cutting, analyzing the spread of changes will show the presence of chatter. The one drawback is that the 

algorithm requires tuning, which requires looking at a collection of cuts, analyzing them with the 

algorithm, and choosing reasonable variance values.  

The experimental cuts made during this research provided accurate data for both stable and 

unstable milling operations. Comparing this data to simulation results confirms that the simulation can 

accurately simulate stable milling operation, but that it tends to show chatter at much lower axial 

depths for unstable cases. The chatter detection algorithm is applied to the experimental data with good 

results. Clearly stable and unstable cuts, as determined by observation, are correctly determined by the 

algorithm. However, marginally stable cuts are more difficult to identify with the algorithm. Stability 

plots were developed by theory and simulation and compared to the experimental. The axial depth of 

cut limit was comparable between the theory and experiments, but much lower for the simulation. 

The simulation is used to explore chatter’s sensitivity to CNC machine dynamic system 

parameters. By increasing and decreasing the spring constant (k) and damping ratio (ζ), it is observed 

that the axial depth limit is directly proportional to the change in the parameters.  
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7.3: Future Work 

Work is available to further the work completed during this research. The final goal for this 

research is a control system that can maintain stable cutting operation of a CNC milling machine. This 

controller will automatically adjust the feed rate and spindle speed based on determination of cutting 

stability provided by the chatter detection algorithm.  

The research presented in this thesis demonstrates the viability of the chatter detection 

algorithm for a limited number of cuts. More work is needed to test the algorithm with a variety of tools 

and workpiece materials. In addition, a consistent and accurate method of variance tuning of the 

algorithm must be automated for online testing on a CNC machine. The Fadal CNC with an open-

architecture controller would be an ideal platform for testing. 

It would also be useful to continue improvements to the milling simulation model. An accurate 

model could be very useful in process planning, e.g. to avoid chatter regions, and in evaluating process 

control and monitoring algorithms. More work is needed in evaluating the number of machine modes 

needed to improve simulation accuracy. Also, more reliable methods of determining the modes are 

needed. Finally, many more experimental cuts are needed to validate the simulation model. 

The proposed process monitoring and control system could be improved by designing the 

chatter controller to work in conjunction with the tool wear system already developed. This would 

enable the machine to operate closer to the unstable regions of the stability lobe plots, thereby 

increasing productivity. 
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Appendix A: Cutting Simulation Code 

%% Milling cutting simulation 

% Based on code by Schmitz and Smith 

 

% function [t, F, Fx, Fy, x, y, RevStep] = ForceSimulation(rpm, AxialDepth, 

RevDes, tmin) 

  

%% Inputs needed to run program independently 

clear 

clc 

rpm = 4250;                 % Spindle Speed (rpm) 

AxialDepth = .00475;%.125 * 0.0254;         % (m) 

RevDes = 25;                % Desired # Revs to analyze 

tmin = .5; 

  

%% ForceSimulition parameter setup 

NT = 3;                         % Number of teeth 

% Feedrate = .798e-3;    % (m/min) 

% FeedperTooth = Feedrate/(rpm*NT); % (m/tooth) 

  

avgChip = .002 * .0254; %m 

%   *** Look below for this code *** 

% FeedperTooth = avgChip*(StartAngle-EndAngle)*(pi/180)/...  

%     (cosd(EndAngle)-cosd(StartAngle)); % (m/tooth) 

  

% FeedperTooth = .15e-3; % (m/tooth) 

  

%% Setup Cutting Conditions 

% Tool 

ToolDiameter = 0.75*0.0254;     % (m) 

HelixAngle = 17.869;            % (deg) 

RO = zeros(1,NT)*1e-6;          % (m) tooth-to-tooth runout 

% RO = [5 -25 0]*1e-6; 

  

% Cutting Conditions 

RadialDepth = ToolDiameter * (.25);  % (m) 

CuttingType = 2;                    % 1:Down Milling, 2:Up Milling 

  

% Cutting Coefficients 

% Ks = 600e6;     % N/m^2 

% beta = 60;      % deg 

% Ktc = Ks*sin(beta*pi/180);      % (N/m^2) 

% Krc = Ks*cos(beta*pi/180);      % (N/m^2) 

% Kte = 0;     % (N/m) 
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% Kre = 0;     % (N/m) 

  

% Steel 

% Ktc = 1738e6;   % (N/m^2) 

% Krc = 584e6;    % (N/m^2) 

% Kte = 62e3;     % (N/m) 

% Kre = 87e3;     % (N/m) 

  

% Aluminum 

Ktc = 600e6;    % (N/m^2) 

Krc = 120e6;    % (N/m^2) 

Kte = 20e3;     % (N/m) 

Kre = 19e3;     % (N/m) 

  

% Aluminum (Koh) 

% Ktc = 688.0e6;    % (N/m^2) 

% Krc = 229.4e6;    % (N/m^2) 

% Kte = 17.2e3;     % (N/m) 

% Kre = 10.5e3;     % (N/m) 

  

% Aluminum (Zhao) Valid for .002 to .004 in. 

% Ktc = 820e6;    % (N/m^2) 

% Krc = 280e6;    % (N/m^2) 

% Kte = 19e3;     % (N/m) 

% Kre = 12e3;     % (N/m) 

  

% Time vector 

TimeStepDes = 1e-5;    % Desired time step 

RevStep = floor(60/(rpm*TimeStepDes));  % Number of steps per rev 

TimeStep = 60/(rpm*RevStep);    % Calculate new time step [sec] 

TimeEnd = tmin + (RevDes*RevStep*TimeStep); 

t = 0:TimeStep:TimeEnd; 

  

dphi = 360/RevStep;     % Angular increment [deg] 

  

% Variables 

ToolRadius  = ToolDiameter/2;       %[m] 

LagAngle = asin((AxialDepth*tan(HelixAngle*pi/180))/ToolRadius)*180/pi; 

  

% Calculation Start & End Angle depends on cutting type and radial depth 

% For slot cutting, it does not matter whether type 1 or 2. 

% first quadrant: +X & +Y, clockwise rotation 

if CuttingType == 1 

    StartAngle = 180 - acos( (ToolRadius-RadialDepth)/ToolRadius )*180/pi; 

    EndAngle = 180; 

elseif CuttingType == 2 
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    StartAngle = 0; 

    EndAngle = acos( (ToolRadius-RadialDepth)/ToolRadius )*180/pi; 

else 

    disp('---Wrong Cutting Type---') 

    return 

end 

ActualEndAngle = EndAngle + LagAngle; 

  

FeedperTooth = -avgChip *(EndAngle-StartAngle)*(pi/180)/... 

    (cosd(EndAngle)-cosd(StartAngle)); % (m/tooth) 

  

%% Model start up 

% Define modal parameters for x direction 

% kx = 8e6;                   % N/m 

% zetax = .02; 

% wnx = 500*2*pi;             % rad/s 

% kx = [2e7 1.5e7];                   % N/m 

% zetax = [0.05 0.03]; 

% wnx = [800 1000]*2*pi;              % rad/s 

  

%smart tool 

% kx = [1.21e6 2.02e6];               % N/m 

% zetax = [.099 .043]; 

% wnx = [628 1104]*2*pi;              % rad/s 

  

%Smart tool single mode 

kx = 3.258e6;               % N/m 

zetax = .131; 

wnx = 641*2*pi;             % rad/s 

mx = kx./(wnx.^2);                  % kg 

cx = 2*zetax.*(mx.*kx).^0.5;        % N-s/m 

x_modes = length(kx);               % number of modes 

  

% Define modal parameters for y direction 

% ky = 8e6;                   % N/m 

% zetay = .02; 

% wny = 500*2*pi;             % rad/s 

% ky = [2e7 1.5e7];                   % N/m 

% zetay = [0.05 0.03]; 

% wny = [800 1000]*2*pi;              % rad/s 

  

%smart tool 

% ky = [1.22e6 2.62e6];                  % N/m 

% zetay = [.110 .041]; 

% wny = [620 1328]*2*pi;                 % rad/s 

  



Page | 84  
 

 

%Smart tool single mode 

ky = 3.327e6;                % N/m 

zetay = .131; 

wny = 641*2*pi;             % rad/s 

my = ky./(wny.^2);                  % kg 

cy = 2*zetay.*(my.*ky).^0.5;        % N-s/m 

y_modes = length(ky);               % number of modes 

  

%% Interate model through time 

for i = 1:length(t) 

if t(i) == 0        % Time = 0, Initial values set 

    phi = 0:dphi:(360-dphi); 

    p = zeros(x_modes,length(t)); 

    dp = zeros(x_modes,length(t)); 

    q = zeros(x_modes,length(t)); 

    dq = zeros(x_modes,length(t)); 

    x = zeros(1,length(t)); 

    y = zeros(1,length(t)); 

    if HelixAngle == 0 

        da = AxialDepth; 

    else 

        % discretized axial depth [m] 

        da = ToolDiameter*(dphi*pi/180)/( 2*tan(HelixAngle*pi/180) ); 

    end 

    AxialStep = round(AxialDepth/da); 

    surf = zeros(AxialStep,RevStep); 

    Fx = zeros(1,length(t)); 

    Fy = zeros(1,length(t)); 

    F = zeros(1,length(t)); 

    teeth = zeros(1,4); 

    if NT>1 

        for cnt = 2:NT 

            teeth(cnt) = teeth(cnt-1)+floor(RevStep/NT);%ceil(RevStep/4); 

            if teeth(cnt)>RevStep 

                teeth(cnt) = teeth(cnt)-RevStep; 

            end 

        end 

    end 

  

else                % Time > 0, Iterate through time 

    %%%%%%%%%%%%%%%%%%%%%%%% Simulation %%%%%%%%%%%%%%%%%%%%%%%% 

    for cnt2 = 1:NT     % current teeth positions 

        teeth(cnt2) = teeth(cnt2) + 1; 

        if teeth(cnt2) > RevStep 

            teeth(cnt2) = teeth(cnt2)-RevStep; 

        end 
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    end 

  

    for cnt3 = 1:NT     % cycle through all teeth 

        for cnt4 = 1:AxialStep  %cycle through entire height 

            cntphi = teeth(cnt3) - (cnt4-1); % based on bottom of teeth 

  

            if cntphi < 1 % helix has wrapped through phi = 0 [deg] 

                cntphi = cntphi + RevStep; 

            end 

  

            phia = phi(cntphi);    % angle for given axial disk [deg] 

  

            % Determine current cutting forces 

            if (StartAngle <= phia) && (phia <= ActualEndAngle) 

                n = x(i-1) * sin(phia*pi/180) ... 

                    -y(i-1) * cos(phia*pi/180); % [m] 

                dt = FeedperTooth*sin(phia*pi/180) + ... 

                    surf(cnt4, cntphi) - n + RO(cnt3); % [m] 

                if dt < 0 

                    dFt = 0; 

                    dFr = 0; 

                    surf(cnt4, cntphi) = surf(cnt4, cntphi) + ... 

                                       FeedperTooth*sin(phia*pi/180); 

                else 

                    dFt = Ktc*dt*da + Kte*da; 

                    dFr = Krc*dt*da + Kre*da; 

                    surf(cnt4, cntphi) = n - RO(cnt3); 

                end 

            else 

                dt = 0; 

                dFt = 0; 

                dFr = 0; 

            end 

  

            %%%%%% Force output %%%%%% 

            Fx(i) = Fx(i) + dFt*cos(phia*pi/180) + dFr*sin(phia*pi/180); 

            Fy(i) = Fy(i) + dFt*sin(phia*pi/180) - dFr*cos(phia*pi/180); 

  

        end 

    end 

     

    F(i) = sqrt(Fx(i)^2 + Fy(i)^2); 

  

    if F(i) > 1.9e6 

        F = NaN; 

        disp('---Tool Broken---') 
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        return 

    end 

     

    % Numerical integration for position 

    % x direction 

    for cnt5 = 1:x_modes 

        ddp = (Fx(i) - cx(cnt5)*dp(cnt5,i-1) - kx(cnt5)*p(cnt5,i-

1))/mx(cnt5); 

        dp(cnt5,i) = dp(cnt5,i-1) + ddp*TimeStep; 

        p(cnt5,i) = p(cnt5,i-1) + dp(cnt5,i)*TimeStep; 

        x(i) = x(i) + p(cnt5,i);        % m 

    end 

  

    % y direction 

    for cnt5 = 1:y_modes 

        ddq = (Fy(i) - cy(cnt5)*dq(cnt5,i-1) - ky(cnt5)*q(cnt5,i-

1))/my(cnt5); 

        dq(cnt5,i) = dq(cnt5,i-1) + ddq*TimeStep; 

        q(cnt5,i) = q(cnt5,i-1) + dq(cnt5,i)*TimeStep; 

        y(i) = y(i) + q(cnt5,i);        %m 

    end 

  

end     % Time if 

end     % Time for loop 

% end 

%%%%%%%%%%%%%%%%%%%%%%%% Function Ends %%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix B: Chatter Detection Algorithm Code 

%% Code for chatter detection algorithm 

% Jonathan Shepard 

  

function [chatter,variance] = chatter_detect(t, F, Fx, Fy, x, y, RevStep, 

method, tmin) 

%simulation 

if isnan(F) == 1 %Check for tool breaking 

    chatter = 3; 

    variance = NaN; 

     

% method = 'oneperrev'; 

elseif strcmp(method,'oneperrev') 

    nstart = find(t > tmin,1); 

    nstart = find(F == max(F(1:nstart)), 1); 

    nsamp = nstart:RevStep:length(t); 

    t1 = find(t(nsamp) > tmin, 1); 

    t1 = nsamp(t1); 

     

%     xone = x(t1:RevStep:length(t)); 

% %     xvar = var(xone); 

%     yone = y(t1:RevStep:length(t)); 

% %     yvar = var(yone); 

%     dif = zeros(1,length(xone)-1); 

%     for i = 1:length(xone)-1 

%         dif(i) = sqrt((xone(i)-xone(i+1))^2 + (yone(i)-yone(i+1))^2); 

%     end 

%     variance = var(dif); 

  

%     mag = (xone.^2 + yone.^2).^.5; 

%     variance = var(yone); 

  

    Fxone = Fx(t1:RevStep:length(t)); 

%     xvar = var(xone); 

    Fyone = Fy(t1:RevStep:length(t)); 

%     yvar = var(yone); 

    dif = zeros(1,length(Fxone)-1); 

    for i = 1:length(Fxone)-1 

        dif(i) = sqrt((Fxone(i)-Fxone(i+1))^2 + (Fyone(i)-Fyone(i+1))^2); 

    end 

    variance = var(dif); 

  

%     Fone = F(t1:RevStep:length(t)); 

%     for i = 1:length(Fone)-1 
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%         dif(i) = sqrt((Fone(i)-Fone(i+1))^2); 

%     end 

%     variance = var(dif); 

     

%% Limits set by user 

    if variance <= 10 

        chatter = 0; %Stable 

    elseif variance < 5e3 && variance > 10 

        chatter = 2; %Borderline 

    else 

        chatter = 1; %Chatter 

    end 

     

else 

    disp('---Incorrect Method---') 

end % method selection end 

end % function end 
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Appendix C: Code for stability lobe generation using simulation 

%% Stability lobe generation 

% Jonathan Shepard 

  

clear 

close all 

clc 

  

%% Parameters 

rpm_start = 500; 

rpm_max = 7500; 

rpm_step = 250; 

axial_start = .25e-3; 

axial_max = 10e-3; 

axial_step = .25e-3; 

  

method = 'oneperrev'; 

  

RevDes = 25; 

  

%% Initialization 

figure(1) 

hold on 

title('Stability Lobes') 

xlabel('Spindle Speed [RPM]') 

ylabel('Axial depth [mm]') 

plot(rpm_max+50,axial_max*10^3+50,'bo') 

plot(rpm_max+50,axial_max*10^3+50,'rx') 

plot(rpm_max+50,axial_max*10^3+50,'g*') 

plot(rpm_max+50,axial_max*10^3+50,'k*') 

axis([0 rpm_max 0 axial_max*10^3]) 

legend('Stable','Unstable','Borderline','Tool Break') 

variance = zeros(axial_max/axial_step,rpm_max/rpm_step); 

  

%% Simulation looping 

for rpm = rpm_start:rpm_step:rpm_max 

    for AxialDepth = axial_start:axial_step:axial_max 

        if rpm <= 500 

            tmin = 1; 

        elseif rpm > 500 && rpm <= 1000 

            tmin = .5; 

        elseif rpm > 1000 

            tmin = .2; 

        end 
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        %Run simulation 

        [t,F,Fx,Fy,x,y,RevStep] = ForceSimulation(rpm, AxialDepth, RevDes, 

tmin); 

         

        %Check for chatter 

        if isnan(F) == 1 

            chatter = 3; 

        else 

           [chatter,variance(floor(AxialDepth/axial_step),rpm/rpm_step)]... 

                = chatter_detect(t, F, Fx, Fy, x, y, RevStep, method, tmin); 

        end 

         

        %Mark point on plot 

        if chatter == 0 %No chatter exists 

            plot(rpm,AxialDepth*10^3,'bo') 

        elseif chatter == 1 %Chatter exists 

            plot(rpm,AxialDepth*10^3,'rx') 

        elseif chatter == 2 %Unsure chatter exists 

            plot(rpm,AxialDepth*10^3,'g*') 

        elseif chatter == 3 %Tool breaks 

            plot(rpm,AxialDepth*10^3,'k*') 

        end 

         

    end 

end 

  

savefig('coolplot') 

save('stuff','variance') 
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Appendix D: Tap test Data 

Data for Smart tool free vibration/known displacement 

X1 
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X2 
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Y1 
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Y2 
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Data for Smart tool modal fitting 

 A wn w1 w2 A(convt) zeta k m c 

x1 6.700 624 570 690 -3.880E-05 0.096 1.34E+05 0.34 41.30 

 3.171 1104 1056 1152 -5.866E-06 0.043 1.96E+06 1.61 154.42 

 20.000 2170 2080 2260 -9.577E-06 0.041 1.26E+06 0.27 48.12 

x2 8.076 632 568 696 -4.559E-05 0.101 1.08E+05 0.27 34.71 

 3.000 1104 1056 1152 -5.550E-06 0.043 2.07E+06 1.70 163.20 

 24.756 2168 2088 2256 -1.188E-05 0.039 1.09E+06 0.23 38.84 

x avg 7.388 628 569 693 -4.220E-05 0.099 1.21E+05 0.31 38.00 

 3.085 1104 1056 1152 -5.708E-06 0.043 2.02E+06 1.65 158.81 

 22.378 2169 2084 2258 -1.073E-05 0.040 1.17E+06 0.25 43.48 

y1 6.500 624 560 696 -3.764E-05 0.109 1.22E+05 0.31 42.57 

 3.524 1328 1256 1368 -4.506E-06 0.042 2.63E+06 1.49 167.11 

 17.412 2264 2192 2344 -7.660E-06 0.034 1.94E+06 0.38 57.66 

y2 6.254 616 560 696 -3.717E-05 0.110 1.22E+05 0.32 43.68 

 3.836 1328 1264 1368 -4.905E-06 0.039 2.60E+06 1.48 153.53 

 15.814 2272 2200 2352 -6.908E-06 0.033 2.16E+06 0.42 63.71 

y avg 6.377 620 560 696 -3.740E-05 0.110 1.22E+05 0.32 43.13 

 3.680 1328 1260 1368 -4.705E-06 0.041 2.62E+06 1.48 160.32 

 16.613 2268 2196 2348 -7.284E-06 0.034 2.05E+06 0.40 60.69 
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