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Abstract

MOLECULAR DYNAMICS STUDIES OF BIOMIMETIC

MEMBRANES

By

D. Ryan Barden

University of New Hampshire, May, 2017

We have explored the conformational dynamics of the peptide-appended pillar[5]arene (PAP) chan-

nel in lipid and block copolymer (BCP) membranes through the use of molecular dynamics (MD)

simulations. The novel polymeric structures trans-1,4-polybutadiene (PB), trans-1,4-polyisoprene

(PI), and poly-2-methyl-2-oxazoline (PMOXA) were created and parameterized. These structures

were then used to build and simulate pure PB12PEO9, PB23PEO16, PI12PEO9, and PI23PEO16

synthetic BCP membranes. In addition, simulations of the PAP channel inserted into lipid (POPC),

PB12PEO9, and PB23PEO16 membranes were conducted. Results of simulations containing PAP

suggest that the membrane environment can affect the channel dynamics and potentially its dif-

fusive as well as transport characteristics. Next, we began to explore the microscopic structure of

block copolymer membranes using coarse-grained methods. We tested original MARTINI force-field

parameters by simulating the self-assembly of a POPC lipid bilayer. We then used the MARTINI

force-field to build and simulate coarse-grained models of PB12PEO9. The original MARTINI force-

field was unable to show the self-assembly of PB12PEO9 and must therefore be further optimized

to observe the desired behavior.
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Chapter 1

Introduction

The demand for clean water continues to rise beyond available resources. In 2008, Shannon et al.

reported that an estimated 1.2 billion people didn’t have access to safe drinking water [1]. Current

estimates project that two-thirds of the worlds population will live in water stressed countries

by the year 2025 [2]. Improving desalination and water purification technologies has long been a

focus of scientists and engineers. The necessity for efficient and economical methods goes beyond

personal consumption, having large environmental and industrial impacts. Water is ubiquitous

throughout process engineering, both for its properties as a powerful solvent and efficient energy

storage medium. In an effort to meet the ever growing demand for water, we seek new and improved

water purification methods to expand our resources to those available in seawater and saline aquifiers

which represent 97.5% of all water on the Earth [1].

As of 2011, global water production by desalination was projected to exceed 38 billion m3 per

year, twice the production rate in 2008 [2]. Membrane based separation technologies have long been

utilized in process engineering and the majority of desalination is performed using reverse osmosis

(RO) membrane technology. In the case of RO, water is forced through a semi-permeable membrane

by a pressure gradient. The membrane is designed to allow selective transport of water while

rejecting any unwanted solutes. Major problems with this method include high energy consumption,

both in pretreatment of the water and filtration, and the negative environmental impacts of the

wastewater. Moreover, many harsh chemicals are introduced during pretreatment and large pressure

gradients are needed to induce an appreciable flux of clean water across the membrane. These

stages have the most opportunity to improve efficiency and reduce the environmental impact of this
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process. It is desired to increase the permeability of RO membranes while retaining high selectivity,

as well as design them to be more chemically robust to decrease the amount of pretreatment

necessary. This technology will present an alternative for water decontamination without the use

of harsh chemicals.

The efficiency of RO membranes has undergone continuous improvement since their inception

in the 1960s. The current design is thought to have reached a maximum efficiency [2]. Therefore, to

achieve the improvements we require, novel membrane materials must be considered. The transport

characteristics of biological membranes are of particular interest when engineering next generation

materials for use in purifications. It is well known that lipids spontaneously self-assemble in aqueous

environments to form lipid bilayers. In cells, the bilayer not only serves as an outer cell envelope but

also allows insertion of several membrane proteins including those that transport water molecules,

such as Aquaporin (AQP). AQP allows for the selective and passive transport of water molecules

on the order of ∼109 molecules/s [3]. AQPs have been used to generate membranes with an order

of magnitude increase in permeability over current reverse osmosis membranes [4]. While these

systems offer proof that more advanced membranes are possible, they cannot be directly used

because these systems lack the chemical and mechanical stability needed for process engineering

applications.

1.1 Biomimetics

While a significant amount of research has been conducted on lipid based membranes and AQPs [3–

7], a larger portion of materials based research is dedicated to the design of biomimetic materi-

als that are inspired from biological systems. Several areas in which biomimetic materials are

being used include molecular-scale devices, energy conversion and conservation, and biological self-

assembly [8] because nature has the ability to reduce energy use through complex structures [9].

Structures typically become less robust as they increase in complexity. For example, AQP is a

complex protein structure, and has been shown to have problems with functionality in different
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membrane environments [10]. Biomimetics capture the specialized abilities of complex structures

in simple robust synthetic structures. Research on synthetic materials relevant to membrane based

separations includes work done on block copolymers [3, 11–15], carbon nanotubes (CNTs) [16, 17],

and derivatives of imidazoles [18–20] and pillararenes [3, 20–22].

1.2 Synthetic Transport Channels

Due to their tubular architecture, CNTs have been used in transport applications, and have a

reported single channel permeability of ∼9.0×108 molecules/s [3]. Entire membranes can be con-

structed using CNTs and they have been explored as a replacement for biological transport channels

with mixed results. Simulation studies have shown promise, with CNTs transporting water at high

rates while rejecting solutes [16]. In practice however, CNT membranes have had problems with

saline rejection and are difficult to manufacture on large scales [11].

Imidazole will also self-assemble into superstructures capable of selective water transport in

membranes. In lipid membranes, these imidazole quartet (I-quartet) channels can passively trans-

port water at a rate of ∼106 molecules/s while rejecting all solutes except protons [18]. While the

permeability is 2 orders of magnitude lower than that of AQPs, these structures offer insight into

designing simple synthetic structures capable of high water selectivity [18]. Pillarene derivatives, in

particular peptide appended pillar[5]arene (PAP), have been shown to insert into lipid membranes

and passively transport water molecules at a rate of 3.5(±1.0)× 108 molecules/s [3]. The resulting

membranes have a pore density 2 orders of magnitude higher than CNT membranes [3]. PAP chan-

nels currently lack the necessary selectivity but can be modified further to change functionality [3].

Simulation studies of PAP channels are a major focus of this thesis.

1.3 Block Copolymers

Polymers have long held an important place in process engineering. A great deal of work has been

done in developing theories of polymer chemistry, thermodynamics [23], and structural behavior.
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New developments in understanding polymeric structures would be highly impactful in the fields of

chemistry, material science, and chemical engineering. Block copolymers (BCPs) are a combination

of two or more different polymer species in a single chain. BCPs have the potential to create

versatile and highly customized materials engineered for specific needs [24]. For this reason, they

represent a large industry with applications including pressure sensitive-adhesives, high-impact

plastics, foams, oil additives, and a variety of automobile parts [13]. BCPs also show promise in

the field of biosensors due to the diversity of properties which can be selected [25].

Importantly, BCPs also have the ability to self-assemble into different types of structures,

depending on the relative lengths and chemical properties of the constituent chains [15]. These

structures include synthetic membranes. These synthetic membranes can exhibit bending and area

expansion moduli comparable to lipid membranes while having an order of magnitude increase

in area strain before rupturing [12, 26]. They have also been shown to have a decrease in water

permeability by an order of magnitude [12, 26] when compared with lipid membranes. With such

diverse applications resulting from the structural behavior of different BCPs, there is a need for

further investigation into the dynamics that invoke these material properties [13].

1.4 Project Goals

In this work, we seek to investigate the dynamic behavior of synthetic BCP membranes and PAP

transport channels. These investigations were conducted by first curating a library of different

BCP structures along with the corresponding force-field information necessary to conduct molecular

dynamics simulations. We offer measurements from these simulations so that the work presented

is useful for future experimental investigations and comparison. We also provide information from

simulations to quantify the dynamic behavior of these structures with the intention of providing

insight when considering BCPs of interest and design refinements to the structures.

While working on the goals outlined above, we faced the following challenges. Certain BCP

structures needed to be generated specifically for this work as prior computer models do not exist.
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We also had to develop the proper force-field needed to study their dynamic behavior through

simulations. We also needed to devise a strategy that would allow us to quantify the dynamic and

structural information contained in the simulation trajectories. The structural information about

the self-assembly and membrane organization is largely unknown. Self assembly simulations would

allow us to analyze the membrane structure predicted by our force-field. Simulations that show self

assembly were not feasible with the available computational resources. For this reason we needed to

explore the development of a “coarse grained” force-field for our BCPs. In the following chapters,

we outline the strategies used to meet these challenges and accomplish the proposed goals.

1.5 Thesis Outline

In Chapter 2, we introduce underlying details of all computational methods and software tools

used. These include the basics of statistical mechanics, simulation software, and computational

techniques. Chapter 3 describes the building of de novo BCP structures suitable for use in molecu-

lar dynamics (MD) simulations, and Chapter 4 contains the results of simulations performed with

structures built in Chapter 3. Chapter 5 contains a brief exploration into building and simulating

“coarse grained” structures. Each chapter begins with a brief introduction describing background

information. The introduction of each chapter is followed by sections detailing computational meth-

ods/procedures and results with the exception of Chapter 2, which contains no results. Appendices

contain simulation details, example scripts, and mini software tutorials.
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Chapter 2

Methods

In this Chapter, we provide the basic information on simulation methods necessary to understand

work presented in Chapters 3-5. Sections 2.1 through 2.2 contain information fundamental to

Molecular Dynamics (MD) simulations. This information is broad and in general will apply to all

types of MD simulation work. The remaining sections contain information specific to the work

presented in this thesis. These sections will include discussions about certain types of simulations

that were employed, as well as descriptions of the various analysis techniques that we used. Briefly,

the information contained in this chapter has been limited to what we feel is necessary to understand

these topics at their most basic level. If further clarification is needed, or the reader desires a more

complete description of any of these topics, we suggest consulting cited sources.

2.1 Statistical Mechanics and Molecular Dynamics Simulations

Developments in computer science have played a key role in the efficiency of molecular dynamics

simulations. Equally as important is the subject of statistical mechanics. Statistical mechanics

provides the mathematical bridge connecting microscopic behavior to macroscopic thermodynamics.

In this section, we briefly introduce some key concepts of the subject to familiarize the reader. A

more complete treatment can be found in the following texts [27, 28].
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2.1.1 Systems and Phase Space

To understand the fundamentals of statistical mechanics, we first introduce the concept of defining

a collection of atoms as a system. We can describe the state of this system by specifying the

number of atoms (N), volume (V), and energy (E) of the system. We then make the assumption

that the total energy of the system depends on each atom’s position (~ri) and momentum (~pi), i.e.

E(~ri, ~pi). The phase space of our system is then defined as all possible values of the variables

(~ri, ~pi). A set of phase space positions of all atoms is called a microstate of the system. We now

present the argument that there are a great many microstates which can result in the same values of

N, V, and E. This collection of microstates is called an ensemble. In this thesis, we performed MD

simulations by sampling phase space in two specific ensembles, NVT (constant number of particles,

volume, and temperature) and NPT (constant number of particles, pressure, and temperature).

2.1.2 Entropy, Probability, and The Partition Function

The connection between entropy and macroscopic thermodynamic variables has been well estab-

lished through the relations first derived by James Clerk Maxwell [29]. The third law of thermo-

dynamics (Equation 2.1) provides us with a definition of entropy (S) in terms of the microscopic

variable Ω(E), called the density of states, and Boltzmann’s constant (kb).

S = kb ln Ω(E) (2.1)

In the above equation, we see by definition the density of states is some function of the systems

energy. It represents the number of all available states to a system with energy E. We note the

postulate that a state with energy Es is available to a system with energy E if Es < E. If we let

Ω(Es) represent the total number of states with energy Es, the probability of the system being in

one of those states is given as Equation 2.2.

P (Es) =
Ω(Es)

Ω(E)
(2.2)



Chapter 2. Methods 8

It should be obvious that even for microscopic systems of modest size, counting the total number

of available states is impossible. Through some mathematical reasoning, Equation 2.2 for the NVT

ensemble can be estimated by Equation 2.3 where T is the temperature of the system, the variable

β ≡ 1
kbT

, and Z is a new mathematical object called the partition function.

P (Es) =
e−βEs(~r,~p)

Z
(2.3)

With the requirement that Equation 2.3 is normalized, the partition function must have the fol-

lowing form.

Z =
∑
s

e−βEs(~r,~p) (2.4)

The partition function is a powerful tool and allows us to connect our sampling of phase space

(~ri, ~pi) to macroscopic thermodynamic properties.

2.1.3 Ensemble Averaging

When measuring certain properties in our simulations, it is likely that the value of the property will

be fluctuating rapidly. This is due to the chaotic nature of many body physics. The macroscopic

value of this property is taken as a time average of all fluctuations. The time average of some

property M(t), is given by the following equation.

M = lim
τ→∞

1

τ

τ∫
0

M(t) dt (2.5)

In Equation 2.5 we explicitly defined M as a function of time, M(t), but M can also be considered

as a function of the overall phase space, M(~r, ~p). We define a new average over all of the phase

space variables called the ensemble average given in Equation 2.6, where P (~r, ~p) is the probability

distribution introduced in Equation 2.3.

〈M〉 =

∫∫
M(~r, ~p)P (~r, ~p) d~rd~p (2.6)
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For certain properties of any system, it holds true that M = 〈M〉. Properties that satisfy this

condition are said to be ergodic. We can take advantage of this by keeping our system sizes

relatively small, and combining results from multiple independent trajectories. It should be evident

from Equation 2.6 that we would like to perform simulations that maximize the sampling of phase

space. In Section 2.2 we discuss different tools and methods we used to perform our simulations.

2.2 Simulation Software and Force-Field

Work presented in this thesis was completed using various computational resources. In this section,

we provide a brief description of each of the resources used.

2.2.1 Visualization Software: VMD

Visual Molecular Dynamics (VMD) [30] software was an integral part of all research we conducted.

Developed and maintained by The Theoretical and Computational Biophysics Group (TCBG) at the

University of Illinois at Urbana-Champaign, VMD contains a wealth of useful tools and resources

for anyone performing MD simulations. VMD was used to visualize and analyze MD trajectories

as well as build and parameterize novel structures.

2.2.2 The CHARMM Force-Field

All classical MD simulations were performed using CHARMM (Chemistry at HARvard Macromolecular

Mechanics) [31] family of force-fields. All CHARMM [31] force-fields use the same set of pairwise

potential functions to define the potential energy of any simulation system. The general form of

this force-field is given by Equations 2.7 through 2.13.

U = Ubonds + Uangles + Udihedrals + Uimpropers + UUrey−Bradley + Unon−bonded (2.7)

Ubonds =
∑
bonds

kb(b− bo)2 (2.8)
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Uangles =
∑
angles

kθ(θ − θo)2 (2.9)

Udihedrals =
∑

dihedrals

kφ[1 + cos(nφ− δ)] (2.10)

Uimpropers =
∑

impropers

kψ(ψ − ψo)2 (2.11)

UUrey−Bradley =
∑

Urey−Bradley
ku(u− uo)2 (2.12)

Unon−bonded =
∑
i

∑
j>i

εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑
i

∑
j>i

qiqj
4πεorij

(2.13)

The bond, angle, improper, and Urey-Bradley type terms are modeled after harmonic oscillators,

with the potential energy equal to a force constant, ki, multiplied by the square of the displacement

from an equilibrium position, io (i represents b, θ, ψ, and u). Impropers account for out of plane

bending and Urey-Bradley terms account for 1,3 non-bonded interactions causing angle bending.

The dihedral term accounts for any bond rotations. As bonds rotate, they sample an energy land-

scape which is periodic in increments of 2π. In this term, kφ is a force constant, n is the periodicity,

φ is the rotation angle, and δ is the phase shift. Multiple terms with different periodicities and

phase shifts can be used to parametrize a single bond rotation. The non-bonded terms recreate

electrostatic and van der Waals type forces between non-bonded atoms. The electrostatic interac-

tions are represented by a Coulombic potential where q represents the charge of an atom, εo is the

permittivity of free space, and rij is the distance between the centers of mass of two atoms. The

van der Waals forces are represented by a Lennard-Jones potential function. In this equation, εij

represents the energy well depth, σij is the hard sphere radius, and rij is the distance between the

centers of mass of two atoms. Different versions of this force-field contain parameters that have been

optimized for simulating specific types of molecules. In addition to parameters generated and opti-

mized manually, all simulations were performed using the CHARMM36 prot, CHARMM36 cgenff,

and CHARMM35 ethers force-fields. Parameters to simulate the PAP channel were previously used

in MD simulations and were adopted as is [3].
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2.2.3 The MARTINI Force-Field

The MARTINI [32] force-field is a coarse-grained (CG) force-field first developed to simulate lipids

and proteins. This force-field uses some of the same pairwise potential terms as the CHARMM [31]

force-field, specifically those defined for bonds, angles, dihedrals, and non-bonded interactions. The

MARTINI [32] force field saves computational resources by defining groups of individual atoms as

“super atoms”. This reduces the number of degrees of freedom (DOF) in a given system and

accelerates simulation time. This strategy of reducing the DOF is what classifies it as a coarse

grained force-field. This approach is not suitable for capturing all types of dynamic behavior but

can be effective for certain applications. In Chapter 5, we briefly discuss CG simulations using the

MARTINI [32] force-field.

2.2.4 Simulation Software: NAMD

All simulations were performed with NAMD (NAnoscale Molecular Dynamics) software [33].

NAMD generates simulation trajectories by numerically integrating Newtons equations of motion

given in Equation 2.14.

mi
d2~ri
dt2

= −∇U(~ri) (2.14)

Here the force on each atom is derived from the potential function defined in Equations 2.7 through

2.13. In Equation 2.14, mi represents the mass of each atom and ~ri is each atom’s radial position

vector. The integration algorithm in NAMD is designed for parallel computations and results in

negligible violations in energy conservation across large numbers of integration steps, preserving the

time reversibility of the equations of motion. The integrator includes methods to control system

volume, pressure, and temperature and gives users the ability to define forces through tcl scripting.

The source code is freely available for academic use and remains open source for users to modify.

Details about the integration algorithm, computational performance, and the various features of

NAMD can be found in this 2005 review paper [33].
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2.3 Simulations of the Membrane Transport Channel

MD Simulations involving membranes with embedded structures such as proteins or synthetic

transport channels require careful considerations for stability. Simulations of this type must be

carried out in three separate steps. Simulations performed in Chapter 4 that included a synthetic

transport channel were carried out with the same procedure described in this section. A more

complete description of this procedure can be found in a tutorial on the subject [34].

All simulations containing a synthetic transport channel inserted into a membrane were con-

ducted by first creating a PDB and PSF file of an equilibrated membrane structure. Detailed de-

scriptions of PDB and PSF files can be found in Sections 3.1.1 and 3.1.3, respectively. For POPC

membranes, the membrane builder plugin of VMD [30] was used to generate these files. Simulations

using block copolymer (BCP) membranes required additional simulations of membrane structures

which is described in Section 4.1.1. The equilibrated structures of membranes were then combined

with the transport channel structure by aligning the center of mass of each to the origin and ori-

enting the channel axis along the z direction. All steric conflicts must be removed from the newly

combined structure. This was done by removing any lipids or BCPs within a certain distance of

the transport channel (∼2-5 Å). Care is taken to choose a cutoff distance which is not so large as to

remove too many lipids/BCPs while still reconciling any structural issues. The combined structure

was then solvated and any water molecules within the hydrophobic layer of the membrane were

manually removed from the system.

During the first step of each simulation, all atoms in the system are fixed with the exception of

the hydrophobic section of the membrane. This allows the hydrophobic chains to acclimate to the

newly inserted channel and fill any voids. We experienced problems with systems crashing during

the first step. The cause of the crashing was hydrophobic chains starting too close to the transport

channel. As a result, atoms would have velocities too high for the system to handle at a 2 fs time

step. To fix this, a 1 fs time step was used in the first phase of all simulations of this type. These

simulations are short, lasting only 0.25 ns so the smaller time step resulted in a negligible change
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in simulation time. These simulations were conducted in the NVT ensemble.

The second step of the simulation was carried out in the NPT ensemble with the area of the

periodic cell constrained to a constant value. During this step of the simulation, new constraints

were placed on the atoms in the system. Atoms in the transport channel were held fixed and

external forces were applied to keep water from entering the hydrophobic section of the membrane.

All other atoms were allowed to move freely. A 2-fs time step was used and simulations ran for

0.25 ns. The third and final steps of simulations were carried out in the NPT ensemble with a fixed

area. A 2-fs time step was employed and all atoms were allowed to move freely. These were long

scale simulations which ranged from ∼200-1000 ns in length.

2.4 Trajectory Analysis Techniques

Various techniques were used to analyze all simulations performed. In this section, we provide a

brief description of each of these techniques and the significance of the information.

2.4.1 Density of Species

Understanding the overall structure of any given membrane was an important goal of the simulation

work we performed. This can be done by visually inspecting individual snapshots of our simulations.

This is decidedly insufficient as it will only give us information about the membrane structure at

one specific instant in time. To understand the average cross-sectional structure, we developed a

way of combining information of this type from all runs. Our code employed a coordinate system

whose origin is always aligned with the center of mass (COM) of the membrane. Moving in a

direction normal to the membrane, the membrane was separated into 1 Å thick slices. The number

of atoms in each of the slices is counted and sorted by species. This is done for each slice of the

simulation space for each frame in a simulation trajectory. Then the values for each slice across all

trajectory frames are averaged. An example of this code can be found in Appendix B.7.
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2.4.2 Root Mean Squared Displacement

Measuring the root mean squared displacement (RMSD) of a structure is a basic technique used

to quantify conformational changes during MD simulations. At each frame in the trajectory, the

structure is aligned with its initial structure or some reference structure. The displacement of each

atom is squared and averaged together. The square root of this value is taken and we plot the

RMSD of the structure as a function of simulation time. The RMSD values will initially change

rapidly but then start to fluctuate around an average value as the system reaches equilibrium. As

a result, this measurement also provides information about when a system reaches equilibrium. An

example of this code can be found in Appendix B.8.

2.4.3 PAP Orientation

In an effort to understand the effect of the membrane environment on the PAP channel, we tracked

the orientation of the channel within each membrane throughout all simulations. Simulations were

set up so that the z -coordinate was always normal to the surface of the membrane. A vector was

defined pointing through the center and axis of the cylindrical PAP channel, and its angle with

respect to the z -coordinate was measured as a function of time. An example of this script can be

found in Appendix B.9.

2.4.4 PAP Diffusivity

To understand the mobility of PAP channels in different membrane environments, we used mea-

surements of the diffusion coefficient. Calculations of the diffusion coefficient were obtained by

taking advantage of the Einstein relation [35] shown as Equation 2.15, where where D is the diffu-

sion coefficient, d is the dimensionality of the system, and
〈
r2
〉

is the mean squared displacement

(MSD).

∂
〈
r2
〉

∂t
= 2dD (2.15)
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To obtain the MSD, coordinates of all trajectories were first unwrapped to remove the effect of

periodic cell boundary conditions. System drift was removed by tracking the center of mass of the

system and adjusting the displacement of the PAP channel accordingly. The squared displacement

of the channel, r2, was then plotted as function of time. The MSD as a function of time,
〈
r2(t)

〉
, was

obtained by ensemble averaging the plots of r2(t). Each plot was split into 20 ns segments which

were then realigned and averaged. Note that r is a vector containing (x, y, z) coordinates. Due to the

Einstein relation’s dependence on dimensionality, we could measure the PAP channel’s diffusivity

in any combination of the three spatial dimensions. We chose three different combinations, overall

(x, y, z), lateral in the membrane plane (x, y), and normal to the membrane surface (z). An example

of the script used to obtain r and its components can be found in Appendix B.10.

2.4.5 Permeability

The permeability of the PAP channel was measured by a widely used collective diffusion model

developed by Zhu et al [36]. This method has been used previously to measure the permeability

of the PAP channel in a lipid membrane [3]. A new variable, n, is defined by Equation 2.16 to

characterize the movement of water in the channel, where S(t) represents the set of water molecules

located inside a volume of interest within the channel at a time t, dzi represents each water molecules

displacement in the z direction, and L is the length of the volume of interest.

dn =
∑
i∈S(t)

dzi
L

(2.16)

Equation 2.16 can be integrated to obtain n(t) which obeys the Einstein relation [35] given as

Equation 2.15. Using this relationship, we can obtain the diffusion coefficient of n. The following

relationship between the diffusion coefficient, Dn, volume of a single water molecule, υw, and the

channel permeability, pf , has been shown by Zhu et al [36].

pf = υwDn (2.17)
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To obtain the MSD as a function of time,
〈
n2(t)

〉
, the volume of interest was defined as a cylinder

6 Å in diameter, 8 Å in length, and aligned with the center of mass of the carbon atoms of the

dimethoxy benzene ring of the channel. This is the same volume used in previous PAP channel

simulations [3]. The square of the collective displacement coordinate, n2(t), was calculated for each

trajectory. The n2(t) trajectories were split into 1 ns segments and aligned so n2(0) = 0 for all

segments. The aligned segments were averaged together to give
〈
n2(t)

〉
. This value was plotted to

determine the permeability of the channel. An example of the script used to obtain n(t) can be

found in Appendix B.11.
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Chapter 3

Construction and Parameterization of
Novel Polymeric Structures

Polymer science has a broad range of applications in process engineering. Polymers are often the

desired product of chemical processes, or used in the actual processes themselves. A significant

amount of research has been devoted to this field and there is vast information about the chemical

behavior of many polymers. For certain applications, it is of interest to understand these structures

on a more mechanical level. To gain molecular-scale insights into dynamic behavior of polymers,

Molecular Dynamics (MD) simulations are emerging as an important tool [3, 37–40]

MD simulations of biological molecules are typically carried out using structures obtained by ex-

perimental methods (For example, X-ray crystallography and NMR spectroscopy). These structures

can be obtained from the Protein Data Bank (PDB), which is a repository for experimentally de-

termined structures of biomolecules [41]. The PDB does not contain structures of the polymers we

wish to simulate. Visual Molecular Dynamics (VMD) [30] is a freely-available software that contains

built-in tools which generate accurate theory based molecular structures of small organic molecules.

In this chapter, we take advantage of these tools to construct the small monomers of trans-1,4-

polybutadiene (PB), trans-1,4-polyisoprene (PI), and poly-2-methyl-2-oxazoline (PMOXA) that

serve as building blocks for the desired polymers.

Building chemical models suitable for both visualization and simulation presented in this thesis

requires generating four different types of files. The content of these four file types (PDB coordinate

file, Protein Structure file, Topology file, and Parameter file) is outlined in Sections 3.1.1 through
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3.1.4. The molefacture plug-in of VMD [30] allows a user to generate a new structure from small

predefined organic compounds and groups. Users can de novo build the chemical structure of

any molecule from these fragments. This results in preliminary PDB and topology files which

can be further refined by the user by employing advanced simulation protocols. Generating force-

field parameters requires the use of the force field tool kit (ffTK) [42] plug-in in VMD [30]. The

plug-in allows users to easily identify missing parameters for the new structure, and utilizes the

quantum chemistry program Gaussian [43] to generate and optimize these missing parameters. It

is important to note that successful completion of this stage will require access to Gaussian [43].

3.1 Description of Necessary Files (.pdb, .psf, .top, .par)

Building a new molecule requires detailed knowledge of various types of files. Therefore, automated

tools contained within VMD [30] are useful when beginning this process. The files generated with

these tools will require careful inspection and some manual editing/troubleshooting throughout the

process. A thorough understanding of the format and information contained within each of these

files will make the whole process efficient. The information presented in Sections 3.1.1 through 3.1.4

is taken from the NAMD tutorial [44]. A summary of the most relevant information is presented

in this chapter as a concise reference. If a more detailed description of the files is desired, the

reader is referred to the link: http://www.ks.uiuc.edu/Training/TutorialsOverview/namd/

namd-tutorial-win-html/namd-tutorial-win.html.

3.1.1 The PDB file

PDB files, sometimes referred to as coordinate files, contain the spatial information of all atoms

within a molecule. In addition to the position of each atom, the PDB file identifies element types

(i.e. C, N, O. . . ). Each line in this file represents information for a single atom. The information

can be split in two different categories, unique identifiers and non-unique identifiers. The first

number at the beginning of each line represents the unique index number of each atom. Every

http://www.ks.uiuc.edu/Training/TutorialsOverview/namd/namd-tutorial-win-html/namd-tutorial-win.html
http://www.ks.uiuc.edu/Training/TutorialsOverview/namd/namd-tutorial-win-html/namd-tutorial-win.html
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atom within a PDB file will have a unique index number as well as a set of unique Cartesian (x,

y, z) coordinates. Non-unique identifiers include residue name (resname), residue id (resid), chain,

segment name/id (segname/segid), and element. Non-unique identifiers will not identify a specific

atom on their own, however no two atoms will have the same values in all of these categories. Below

is an example of excerpts from a PDB file. From left to right, the information in each line is record

type, atom ID, atom name, residue name (resname), chain name (chain), residue ID (resid), x, y,

and z coordinates, occupancy, temperature factor (called β-factor), segment name (segname), and

element type.

ATOM 1 C1 BDE X 1 0.000 0.000 0.000 1.00 0.00 1 C

ATOM 2 C3 BDE X 1 2.130 1.308 -0.066 1.00 0.00 1 C

ATOM 3 H11 BDE X 1 -0.326 -0.473 0.819 1.00 0.00 1 H

ATOM 4 H12 BDE X 1 -0.326 -0.473 -0.819 1.00 0.00 1 H

It is important to note that a PDB file does not contain information on inter-atomic bonds. These

files also treat all elements on equal ground, that is to say given only a PDB file, there is no infor-

mation to distinguish an sp3 hybridized carbon from an sp2 hybridized carbon. This information

is essential to modeling the dynamic behavior of molecules. It is obvious that a model comprised

of only a PDB file is incomplete for the purpose of studying dynamics.

3.1.2 The Topology File

A topology file is perhaps the most important file type for new users to become familiar with.

Topology files contain information about each atom’s orbital structure, charge, mass, and bonding.

A table appears at the beginning of all topology files that gives the mass in amu of each of the

different atom types appearing in the file.

MASS 1 CG321 12.01100 C

MASS 1 CG331 12.01100 C

MASS 1 CG2D1 12.01100 C

MASS 1 HGA2 1.00794 H

MASS 1 HGA4 1.00794 H

MASS 1 HGA3 1.00794 H
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Entries in the topology file are organized by the residue name. The letters RESI signal the begining

of a new residue. This line contains the name and overall charge of the residue. Each atom in a

residue must be given a unique name. In the example topology file below, there is only one C2

atom. Next to the atom name is the atom type followed by the atoms charge. The atom type is

determined by electron orbital hybridization. The lines beginning with BOND contain information

about which atoms are bonded together in the residue. There is no need to specify the bond type

as this information is contained within the atom type. The next lines beginning with IC are the

internal coordinates of the residue. These will become important when we generate polymers using

scripts.

AUTO ANGLES DIHE

DEFAULT FIRST HBD1 LAST HBD4

RESI BDE 0.00

GROUP

ATOM C1 CG321 -0.18000 ! H11 H12

ATOM C3 CG2D1 -0.15000 ! \ |

ATOM H11 HGA2 0.09000 ! (C4)-C1 H31

ATOM H12 HGA2 0.09000 ! \ /

ATOM C2 CG2D1 -0.15000 ! C2=C3

ATOM H21 HGA4 0.15000 ! / \

ATOM H31 HGA4 0.15000 ! H21 C4-(C1)

ATOM C4 CG321 -0.18000 ! | \

ATOM H41 HGA2 0.09000 ! H41 H42

ATOM H42 HGA2 0.09000 !

BOND C1 H11 C1 H12 C1 C2

BOND C3 C2 C3 H31 C3 C4 C2 H21

BOND C4 H41 C4 H42

BOND C1 -C4

IC -C3 -C4 C1 C2 0.000 0.000 180.0 0.000 0.000

IC -C4 C1 C2 C3 0.000 0.000 180.0 0.000 0.000

IC C1 C2 C3 C4 0.000 0.000 180.0 0.000 0.000

IC C2 C3 C4 +C1 0.000 0.000 180.0 0.000 0.000

Entries designated as PRES are called patches. These patches are extremely important when

building polymers by “patching” monomers together. These entries are typically created manually.
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A detailed description of patches can be found in Section 3.2.2. It is important to note that topology

files are not unique to a single PDB file.

PRES HBD4 0.00 ! Complete terminal methyl at C4

!

ATOM H43 HGA3 0.09 !

ATOM C4 CG331 -0.27 !

ATOM H41 HGA3 0.09 !

ATOM H42 HGA3 0.09 !

BOND H43 C4

3.1.3 The PSF File

Protein structure files (PSF) are companions to PDB files. They contain information needed to

properly model atomic interactions described by the inter-atomic potential, i.e., a force-field. All

information in a PSF file can be split into 7 different sections. The first line in each section begins

with a number representing the total number of entries that follow. The “!” is included to comment

out the section title. It is important to notice that none of the sections then contain identifying

information when read by the necessary software. For this reason, PSF files must always contain the

same sections in the same order. We will go through each of these sections in the order they appear

in these files. The first section designated !NTITLE, contains remarks about different topology files

and patches that were used when the PSF file was generated.

3 !NTITLE

REMARKS original generated structure x-plor psf file

REMARKS topology /home/bardenr/thesis/pmoxa_build/molfac/mox_1.top

REMARKS segment 1 { first NONE; last NONE; auto angles dihedrals }

The next section designated !NATOM contains information about all the atoms in the structure.

This particular structure contains 15 total atoms; only partial entries are shown below. Each line

represents a different atom and the entries from left to right are atom ID, segment name (segname),

residue ID (resid), residue name (resname), atom name, atom type, charge, mass, and an unused

0. Atoms in the PSF files are paired with their PDB counterpart by atom ID.
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15 !NATOM

1 1 1 PMX O OG2D1 -0.510000 15.9994 0

2 1 1 PMX C1 CG201 0.510000 12.0110 0

3 1 1 PMX C2 CG331 -0.270000 12.0110 0

It is followed by the section with information on bonds. This particular example has 14 total bonds.

Each line contains a list of no more than 4 bonded atoms designated by their atom ID’s. Every

two atom’s listed represent a bonded pair. For example, pairs in the first line are atoms 1-2, 2-3,

2-4, and 3-5.

14 !NBOND: bonds

1 2 2 3 2 4 3 5

3 6 3 7 4 8 4 9

8 13 8 14 8 15 9 10

9 11 9 12

The next section contains information on all angles for the structure. This example has 24 total

angles but has been truncated. Atoms are again represented by their atom ID number. In this

section every three atoms represents a group defining an angle with no more than three angle groups

per line. For example, the groupings on the first line are 1-2-4, 1-2-3, and 2-4-9.

24 !NTHETA: angles

1 2 4 1 2 3 2 4 9

2 4 8 2 3 7 2 3 6

2 3 5 3 2 4 4 9 12

The next section contains information on all dihedral angles for the structure. Dihedral angles

are defined by groups of four atoms. This example has a total of 22 dihedral angles but has been

truncated. Atoms are again identified by an atom ID number. Each line contains two dihedral

groups. For example, the first line defines the following two dihedral angles 1-2-3-5 and 1-2-3-6.

22 !NPHI: dihedrals

1 2 3 5 1 2 3 6

1 2 3 7 1 2 4 8

1 2 4 9 2 4 8 13
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The remaining sections are not required for the work presented in Chapter 3. When generating

new polymers, these entries will likely remain blank. An example of the remaining blank entries

can be seen below. If the reader desires more information about each of these, it can be found in

the NAMD tutorial [44].

0 !NIMPHI: impropers

0 !NDON: donors

0 !NACC: acceptors

0 !NNB

1 0 !NGRP

3.1.4 The Parameter File

The parameter file contains information relevant to the force-field. Unlike the files we have previ-

ously discussed, it contains no information about the molecular structure. Similar to a topology

file, parameter files do not pair with specific PDB or PSF files. A single parameter file can contain

sufficient information to define a force-field for many different structures. Atoms are identified by

each atom-type in these files. Typical parameter files used in this work contain entries for each

of the terms in the CHARMM [31] force-field (bond, angle, dihedral, improper, and non-bonded).

A detailed description of the CHARMM [31] force-field can be found in Sections 2.2.2 and 3.3.1.

Each section of the parameter file contains a description of the force-field term as well as headings

for the information. For this reason, parameter files are easier to navigate than other previously

discussed file types. These files can become very large as there are many different ways to make

combinations of existing atom types. An example of a bonds section is shown in the following.

Sections for all other terms follow a similar format. The first line identifies the term. The next

line is a mathematical representation of the potential function followed by entries identifying the

units of the parameters. The next line contains headings for entries which is then followed by a list
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of all atom combinations defined in the parameter file for that term. In the example below, the

last line defines a bond between atom types CG331 and HGA2. This bond has a force constant

kb = 999.508 kcal

mol·Å2
and a bond length b0 = 1.097 Å.

BONDS

!V(bond) = Kb(b - b0)**2

!

!Kb: kcal/mole/A**2

!b0: A

!

!atom type Kb b0

!

CG331 HGA2 999.508 1.097 !

3.2 Constructing A New Polymer

With the information provided in Section 3.1, it is possible to generate the chemical structure

of a new molecule using any text editor. This becomes tedious as molecules increase in size and

complexity. VMD [30] contains a plug-in called molefacture which can automate the process of

generating new PDB, PSF, and topology files. Section 3.2.1 provides information needed to suc-

cessfully complete the work presented in Chapter 3. For a more detailed description, the reader is

referred to the following link: www.ks.uiuc.edu/Training/Tutorials/.

3.2.1 Molefacture

The most efficient way to build polymers of any size is to first build the corresponding monomer

in molefacture. Molefacture is better suited to building relatively small and simple molecules. It is

natural then to first build the monomer, which will act as a building block for generating polymer

chains. This monomer can then be used with tcl scripts to automatically generate polymer chains

of any size. This is much faster than building a complete polymer in molefacture every time a

new chain is desired. This strategy was used for all polymers built in Chapter 3. In this section,

www.ks.uiuc.edu/Training/Tutorials/
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we include important details of the trans-1,4-polybutadiene (PB) build. A more detailed tutorial

version of the PB build can be found in Appendix C.1.

To build a monomer of PB, we used butane as a base molecule. The monomer for PB is

essentially 2-butene. This makes the build relatively straight forward. We deleted one hydrogen

atom from the carbon atoms at positions 2 and 3. The single bond between the second and third

carbon was converted to a double bond. After raising the bond order, the purple markers signifying

empty orbitals are gone, while the bond has a cylinder surrounding a portion of it representing

the new double bond (see Figure 3.1). Finally, we deleted one hydrogen atom from each terminal

carbon. We did this because we are modeling a single unit of a polymer. The empty orbitals are

addressed in Section 3.2.2 when we discuss building patches.

Figure 3.1: Snapshots of modifications to the 2-butene fragment in Molefacture

The most important part of building a molecule in molefacture is manually editing each atom in

the atom list. We changed the name, type, and charge for each atom in the new molecule. For our

monomer, we named our carbons C1, C2, C3, and C4. Hydrogens were named using their periodic

table symbol and 2 additional numbers. The first corresponds to the number of the carbon to which

the hydrogen is bonded, while the second is a unique identifying number. For example, the three

hydrogens bonded to carbon C1 were named H11, H12, and H13. Every atom in our structure

needs a unique name for the purposes of applying patches and generating PSF files.

Atom types are determined by the orbital bond structure. When editing the atom type and

charge, we browsed structures previously defined in existing topology files. It is important to stay
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consistent when assigning atom types as they are not arbitrary. Atom types are what specify force-

field parameters. In the top_all_36cgenff.rtf topology file, there is an entry for 2-hexene which

is included below. This molecule has all the information we needed to define our monomer as well

as the patches we built in Section 3.2.2.

RESI HXE2 0.00 ! C6H12 2-hexene, yin/adm jr.

GROUP

ATOM C1 CG331 -0.27 ! H12 H13

ATOM H11 HGA3 0.09 ! \ |

ATOM H12 HGA3 0.09 ! H13-C1 H31 H51 H52

ATOM H13 HGA3 0.09 ! \ / \ /

GROUP ! C2=C3 C5 H61

ATOM C2 CG2D1 -0.15 ! / \ / \ /

ATOM H21 HGA4 0.15 ! H21 C4 C6-H62

GROUP ! / \ \

ATOM C3 CG2D1 -0.15 ! H41 H42 H63

ATOM H31 HGA4 0.15 !

GROUP

ATOM C4 CG321 -0.18

ATOM H41 HGA2 0.09

ATOM H42 HGA2 0.09

GROUP

ATOM C5 CG321 -0.18

ATOM H51 HGA2 0.09

ATOM H52 HGA2 0.09

GROUP

ATOM C6 CG331 -0.27

ATOM H61 HGA3 0.09

ATOM H62 HGA3 0.09

ATOM H63 HGA3 0.09

Atoms C2 and C3 were assigned atom types CG2D1 with a charge of -0.15 as they are defined above.

The hydrogens bonded to those atoms were assigned types consistent with those described as well.

When assigning atom types to the C1 and C4 atoms in our structure, we used the information

for the C4 atom in 2-hexene. We did so as this structure is modeled after a single unit appearing

within a larger polymer chain. We changed the entry for resname to “BDE” and chain to “B”, then
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had molefacture generate PDB, PSF, and topology files. An example of the resulting topology file

can be found in Section 3.2.2.

3.2.2 Patches and Topology File Modifications

Patches are entries that appear at the end of topology files. They contain information that allows

larger structures to be built from multiple residues or the creation of modified residues. This is

done with the psfgen tool included in VMD [30]. A brief description of how we utilized the psfgen

feature is outlined in Section 3.2.3, while a more comprehensive tutorial can be found online. In

this section, we describe how we manually built a patch and edited the topology file we created

using molefacture. A copy of the original topology file generated by Molefacture is presented below.

This is followed by the full modified file and a numbered list containing detailed information of all

the changes made to the file. The modified file contains numbered entries next to the new/modified

lines. The numbers correspond to the detailed description in the list of changes.
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Original Topology File

*>>>>>> CHARMM topology file generated by Molefacture <<<<<<

27 1

MASS 1 CG321 12.01100 C

MASS 1 HGA2 1.00794 H

MASS 1 CG2D1 12.01100 C

MASS 1 HGA4 1.00794 H

AUTO ANGLES DIHE

RESI BDE 0.00

GROUP

ATOM C1 CG321 -0.18000

ATOM H11 HGA2 0.09000

ATOM H12 HGA2 0.09000

ATOM C2 CG2D1 -0.15000

ATOM H21 HGA4 0.15000

ATOM C3 CG2D1 -0.15000

ATOM H31 HGA4 0.15000

ATOM C4 CG321 -0.18000

ATOM H41 HGA2 0.09000

ATOM H42 HGA2 0.09000

BOND C1 H11 C1 H12 C1 C2

BOND C2 H21 C2 C3 C3 H31 C3 C4

BOND C4 H41 C4 H42

END
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Modified Topology File

*>>>>>> Modified CHARMM topology file generated by Molefacture <<<<<<

27 1

MASS 1 CG321 12.01100 C

MASS 1 CG331 12.01100 C ! 1. New mass entry for atom type CG331.

MASS 1 CG2D1 12.01100 C

MASS 1 HGA2 1.00794 H

MASS 1 HGA4 1.00794 H

MASS 1 HGA3 1.00794 H ! 2. New mass entry for atom type HGA3.

AUTO ANGLES DIHE

DEFAULT FIRST HBD1 LAST HBD4 ! 3. Line specifying the default patches

! applied to the residue.

RESI BDE 0.00

GROUP ! 4. Map of the atoms.

ATOM C1 CG321 -0.18000 ! H11 H12

ATOM C3 CG2D1 -0.15000 ! \ |

ATOM H11 HGA2 0.09000 ! (C4)-C1 H31

ATOM H12 HGA2 0.09000 ! \ /

ATOM C2 CG2D1 -0.15000 ! C2=C3

ATOM H21 HGA4 0.15000 ! / \

ATOM H31 HGA4 0.15000 ! H21 C4-(C1)

ATOM C4 CG321 -0.18000 ! | \

ATOM H41 HGA2 0.09000 ! H41 H42

ATOM H42 HGA2 0.09000 !

BOND C1 H11 C1 H12 C1 C2

BOND C3 C2 C3 H31 C3 C4 C2 H21

BOND C4 H41 C4 H42

BOND C1 -C4 ! 5. Bond connecting two monomers

! 6. Internal coordinates table

IC -C3 -C4 C1 C2 0.000 0.000 180.0 0.000 0.000

IC -C4 C1 C2 C3 0.000 0.000 180.0 0.000 0.000

IC C1 C2 C3 C4 0.000 0.000 180.0 0.000 0.000

IC C2 C3 C4 +C1 0.000 0.000 180.0 0.000 0.000
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! 7. Two new patches for terminal residues

PRES HBD4 0.00 ! Complete terminal methyl at C4

!

ATOM H43 HGA3 0.09 !

ATOM C4 CG331 -0.27 !

ATOM H41 HGA3 0.09 !

ATOM H42 HGA3 0.09 !

BOND H43 C4

PRES HBD1 0.00 ! Complete terminal methyl at C1

!

ATOM H13 HGA3 0.09 !

ATOM C1 CG331 -0.27 !

ATOM H11 HGA3 0.09 !

ATOM H12 HGA3 0.09 !

BOND H13 C1

END

List of Modifications

1. New mass entry for atom type CG331: Patches are essentially used to change existing atom

types, add new atoms/bonds, and delete existing atoms/bonds. Our terminal carbon atoms

are a different atom-type than those we defined for our interior. We need to define mass for

this terminal carbon atom-type (CG331). This atom type can be seen in the topology for

2-hexene included in Section 3.2.1.

2. New mass entry for atom type HGA3: Similar to the carbon atom, we need to define mass

for the hydrogens with atom-type HGA3. This atom type can be seen in the topology for

2-hexene included in Section 3.2.1.

3. Line specifying the default patches applied to the residue: The psfgen tool in VMD [30] builds

structures in multiple segments, where several residues make up each segment. This line will

instruct psfgen to automatically apply patch HBD1 to a BDE residue if it is the first residue

in the segment. The line also instructs psfgen to apply patch HBD4 to a BDE residue if it is

the last residue on a segment. Both of these patches are defined in item 7.
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4. Map of the atoms: This addition is optional and will not be read by any software. It is

advisable as it will give anyone who is viewing the file a clear picture of which atoms are

connected.

5. Bond connecting two monomers: We created our monomer with the intent of making a larger

polymer. Adding this bond will instruct psfgen to connect the C4 atom of a BDE residue with

the C1 atom of the next BDE residue. The “-” appearing prior to C4 informs psfgen that

these atoms are not on the same residue. If the “-” was not present, psfgen would erroneously

create a bond between the C1 and C4 atom of the same residue.

6. Internal coordinates table: As residues are added to a segment, psfgen will guess their posi-

tions. You will likely end up with an initial residue that looks good, while the rest will have

many overlapping atoms. The internal coordinates table will give psfgen instructions on how

to place atoms relative to one another. This requires some trial and error to get right, but

the result does not have to be perfect. Atoms just need to be separated from one another.

Energy minimization prior to simulation will adjust any unrealistic bond lengths.

7. Two new patches for terminal residues: Patches are identified by the heading PRES, short for

patch residue. On the same line as the heading is the patch name and the overall charge of

the patch. Our patches are named HBD4 and HBD1. The HBD4 patch will be applied to the

C4 carbon while the HBD1 will be applied to the C1 carbon. The patches will override the

information contained in the main RESI entry. In the HBD4 patch, we can see that the C4,

H41, and H42 atoms will be assigned new atom types. There is also a new atom, H43, defined

to cap the terminal carbon. The last line of the patch defines the bond between the C4 atom

and the new H43 atom. These patches were modeled after the C1 atom in the topology for

2-hexene included in section 3.2.1.
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Patches Connecting Two Different Polymer Segments

To combine two different types of polymer segments, a unique patch must be created for that

combination. In this section, we use the example of a patch created to combine a segment of PB

with a segment of polyethyleneoxide (PEO). It is convenient to store patches of these type together

in a separate topology file. The topology file can be appended as new polymers are added to your

structure library. These patches start with the heading PRES followed by the unique patch name

and charge. In this example, our patch is given the name PBEO and carries a charge of 0.17. An

important difference to note in these patches is the number in front of the atom name. It is likely

that two different residues will contain atoms with the same name. To ensure the patch works as

intended, each residue is identified by a number. In this example, our PB monomer is denoted with

a 1 while the PEO monomer is denoted with a 2. After the new atom types are specified, the next

two lines instruct psfgen to delete a hydrogen atom from each of the residues to make space for the

new bond. The new bond is defined in the next line followed by an internal coordinates table.

PRES PBEO 0.17

GROUP ! H41 H1A

ATOM 1C4 CG321 -0.18 ! | |

ATOM 1H41 HGA2 0.09 !-C3--C4---C1-O1

ATOM 1H42 HGA2 0.09 ! | |

GROUP ! H42 H1B

ATOM 2C1 CC32A -0.01 !

ATOM 2H1A HCA2A 0.09 !

ATOM 2H1B HCA2A 0.09 !

DELE ATOM 1H43

DELE ATOM 2H1C

BOND 1C4 2C1

IC 1C2 1C3 1C4 2C1 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C3 1C4 2C1 2O1 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C4 2C1 2O1 2C2 0.0000 0.0000 180.0000 0.0000 0.0000
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3.2.3 Automated Polymer Construction

After we made the necessary changes to our topology files and created the proper patches, we used

psfgen to create polymer chains of any desired length. In this section, we outline the procedure

to use psfgen to create our polymers. A tcl script that will generate a trans-1,4-polybutadiene

and polyethyleneoxide block copolymer can be found in appendix B.5. Examples contained in this

section are excerpts from that psfgen script.

When creating our block copolymers, each polymer is first created separately. The following

tcl script was used to generate PB polymer chains. A description of the contents of this script can

be found in Appendix C.2.

#######################################

#generating PB section #

#######################################

package require psfgen

topology ./top_patch/top_all36_cgenff.rtf

topology ./top_patch/top_all35_ethers.rtf

topology ./top_patch/BDE.top

segment B {

for {set i 1} {$i <= $nPB} {incr i} {

residue $i BDE

}

}

coordpdb ./monomers/newBUD_carbon.pdb B

regenerate angles dihedrals

guesscoord

writepdb polyPB.pdb

writepsf polyPB.psf

mol delete all

resetpsf

Once we created two different polymers of the desired length, we combined them into a single block

copolymer. In the example tcl script below, psfgen is instructed to apply the patch PBEO to the
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last residue of segment B with the first residue of segment E. Note that this example was taken from

an automated script, ${resLast} calls the stored variable reslast. For instance, if we connected

a PB segment with 12 units to a PEO segment, reslast would be 12. Other scripts similar to this

were used to connect all polymer chains. A description of the contents of this script can be found

in Appendix C.2.

#######################################

#Combining the two chains #

#######################################

package require psfgen

topology ./top_patch/top_all36_cgenff.rtf

topology ./top_patch/top_all35_ethers.rtf

topology ./top_patch/BDE.top

topology ./top_patch/patch.top

readpsf polyPB.psf

coordpdb polyPB.pdb

readpsf polyPEO.psf

coordpdb moved_polyPEO.pdb

patch PBEO B:${resLast} E:1

regenerate angles dihedrals

guesscoord

writepdb pb${resLast}peo${resFirst}.pdb

writepsf pb${resLast}peo${resFirst}.psf

3.3 Generating Force-Field Parameters

After we finished building our polymer, we generated any missing parameters for conducting sim-

ulations. This was done using the force-field tool kit (ffTK) [42] plugin in VMD [30] as well as

the quantum chemistry software Gaussian [43]. In Sections 3.3.2 through 3.3.6, we outline details

on the usage of these resources. A more detailed tutorial version of the process can be found in

Appendix C.3.
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3.3.1 The CHARMM Force-Field

The CHARMM [31] force field uses additive, pairwise potential functions to capture the overall

potential energy of all atoms in a given system. This section provides a brief overview of the

CHARMM force-field terms relevant to this chapter. A complete description of the CHARMM

force-field is given in Section 2.2.2. All potential terms in the force-field can be separated into two

main categories: bonded and non-bonded.

U = Ubonded + Unon−bonded (3.1)

The bonded terms we are concerned with consist of bond, angle, and dihedral terms. Bonds

and angles are represented as harmonic oscillators, with the overall force being proportional to a

displacement from some equilibrium position or angle. The dihedral term is a bit different. It

is meant to represent a potential energy landscape that is periodic in increments of 2π. More

information on the dihedral term can be found in Section 3.3.6.

Ubonded =
∑
bonds

kb(b− bo)2 +
∑
angles

kθ(θ − θo)2 +
∑

dihedrals

kφ[1 + cos(nφ− δ)] (3.2)

The non-bonded terms recreate electrostatic and van der Waal’s type forces between non-bonded

atoms. The electrostatic interactions are represented by a Coulombic potential where q represents

the charge of each atom, εo is the permeativity of free space, and rij is the distance between centers

of mass of two atoms. The van der Waal’s forces are represented by a Lennard-Jones potential

function. In this equation, εij represents the energy well depth, σij is the hard sphere radius, and

rij is the distance between the two centers of masses of two atoms.

Unon−bonded =
∑
i

∑
j>i

εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑
i

∑
j>i

qiqj
4πεorij

(3.3)
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3.3.2 Force Field Toolkit (ffTK)

When generating parameters, the size of each structure was kept as small as possible while still

retaining necessary atoms to find missing parameters. We found that dimers were sufficient for

most polymers, however, there were a few exceptions. In Sections 3.3.2 through 3.3.6, we will walk

through an example of generating the missing parameters for a PB and PMOXA dimer. Missing

parameters were identified by using ffTK [42] to scan existing parameter files. For the PB dimer,

we were only missing one dihedral angle (Figure D.2). All other bonds, angles and non-bonded

parameters were defined in the CHARMM36 [31] force field. This was not typical of all dimers

as most of them were missing bond and angle parameters. Non-bonded parameters will always be

defined if atom types are taken from previously defined topology files.

Instructions on how to generate and optimize bond/angle parameters are included in Appendix

C.3 and the ffTK tutorial [45] located at www.ks.uiuc.edu/Training/Tutorials/. Once we have

identified missing parameters, we generated an output parameter file for our newly developed

parameters.

3.3.3 Geometry Optimization

After identifying the missing parameters, we used Gaussian [43] to optimize the geometry of our

structures. This is an important step as it corrects any unrealistic structures created by psfgen.

If this step is skipped, any Gaussian [43] runs to calculate bonds/angles and dihedrals will likely

fail. An example of the Gaussian [43] input file generated by ffTK [42] is included Appendix B.1.

All necessary output information, including the optimized geometry, was written to a log file. The

information in the log file was used by ffTK [42] to create new PDB files with optimized geometry.

A geometry optimized PDB was used in all remaining steps.

www.ks.uiuc.edu/Training/Tutorials/
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3.3.4 Charge Optimization

Gaussian input files were generated to optimize atomic charges in each structure. An example

of some of these files can be seen in Appendix B.2. These files were run in Gaussian [43], again

directing the output to a log file. The log files were used by ffTK [42] to optimize the charge

of each atom. Successive iterations of the optimization process were performed until there was a

negligible difference between the “Prev. Charge” and “Final Charge” values. Once the charges

had converged, a new PSF file containing the optimized charges was created. If the charges were

significantly different than those in the initial PSF, the original topology file was modified with the

new charges. There was a negligible change in the charges for all structures except for PMOXA.

3.3.5 Bond Angle Optimization

The required Gaussian [43] input file for each structure was generated by ffTK [42]. An example of

one of the files is included in Appendix B.3. These files were run in Gaussian [43] and outputs were

saved to log files. The output files were then used to optimize any missing bond/angle parameters

through an iterative procedure described in Appendix C.3.3. The optimized parameters were then

used to update the initial parameter files we created.

3.3.6 Dihedral Optimization

Gaussian [43] dihedral scan inputs for all missing dihedral parameters were generated using ffTK [42].

Dihedrals terminating with hydrogens were not scanned explicitly unless the hydrogens carried a

charge other than +0.09. The following settings were used for all dihedral scans performed in

Chapter 3: “Scan +/- (◦)” was set to 180 and “Step Size (◦)” was set to 10. These modifications

were made at the suggestion of the ffTK tutorial [45]. Each dihedral angle resulted in two scan

input files, one positive scan and one negative scan. Each of these files were run in Gaussian [43]

and outputs were saved to log files. An example of a positive scan input is included in Appendix

B.4.
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Once Gaussian [43] completed all the necessary scans, the output files were used to optimize

missing parameters through an iterative procedure described in Appendix C.3.4. When parameter-

izing a PMOXA dimer, there were 8 missing dihedral angle terms. The resulting energy landscape

was fairly complex and therefore we developed a new strategy to optimize molecules that have a

large number of missing dihedral parameters. The steps are outlined here as well as in Appendix

B.4.

1. Before running the initial optimization, we duplicated every dihedral angle 4 times and

changed the “Periodicity (n)” value in each of the three duplicates to 2, 3, 4, and 6. Now,

every angle had 5 terms with different periodicity values. The first optimization gave a poor

fit and had a root mean squared error (RMSE) of 5.241.

2. We used “Set As Refit Input” and “Run Refitting/Refinement” to perform successive itera-

tions. The RMSE initially decreased by large amounts. The decreases in RMSE continued to

become smaller and smaller. We continued performing iterations until there was little to no

change in RMSE or the RMSE began to increase.

3. We then carefully went through the list of parameters and identified the smallest “Force

Constant (k)” value. The term with the smallest “k” value was removed as this essentially

weights the terms in overall contribution to the energy profile. When removing terms, we

made sure to always keep at least one term for every dihedral. We continued to repeat steps

2 and 3 until the smallest “k” value was larger than 0.01.

4. We then changed the “Mode” to downhill and “Tol” to 0.0001 and ran the refitting optimiza-

tion.

5. We deleted the smallest “k” value and ran the refitting/refinement in “Simulated Annealing”

mode. The RMSE increased and we set this as the refit input and ran the refitting/refinement

in “Downhill” mode. We then compared the final RMSE with the RMSE prior to deleting
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the last term and refitting in “Simulated Annealing”. This step was repeated as long as the

RMSE continued to decrease.

Conformation

Energy

(kcal/mol)

Figure 3.2: Energy profile of the missing poly-2-methyl-2-oxazoline dihedral angles
(black) as well as the final (blue) fittings.

Using the steps outlined above, we were able to produce the energy profile (blue), shown in

Figure 3.2, after approximately 60 iterations. This was time consuming but it took away a lot of

guess work. The final fit has an RMSE of 0.524 which is higher than usual but acceptable given the

complexity of the profile. This fit also closely reproduces all energetic minimas which is important.

We were able to optimize all dihedral angles except three needed to simulate PB-PMOXA and

PI-PMOXA (Table 3.4). We were unable to to reproduce a suitable fit for the energy profile using

the above strategy. New strategies will need to be explored to obtain these parameters.
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3.4 Individual Builds

Each of the structures in this section were built using the same method outlined in section 3.2.

Sections 3.4.1 through 3.4.3 contain the resulting topology files and any supplemental information

specific to each polymer build.

3.4.1 Trans-1,4-polybutadiene

A detailed description of the trans-1,4-polybutadiene build is outlined as an example in section 3.2.

*>>>>>> CHARMM topology file generated by Molefacture <<<<<<

27 1

MASS 1 CG321 12.01100 C

MASS 1 CG331 12.01100 C

MASS 1 CG2D1 12.01100 C

MASS 1 HGA2 1.00794 H

MASS 1 HGA4 1.00794 H

MASS 1 HGA3 1.00794 H

AUTO ANGLES DIHE

DEFAULT FIRST HBD1 LAST HBD4

RESI BDE 0.00

GROUP

ATOM C1 CG321 -0.18000 ! H11 H12

ATOM C3 CG2D1 -0.15000 ! \ |

ATOM H11 HGA2 0.09000 ! (C4)-C1 H31

ATOM H12 HGA2 0.09000 ! \ /

ATOM C2 CG2D1 -0.15000 ! C2=C3

ATOM H21 HGA4 0.15000 ! / \

ATOM H31 HGA4 0.15000 ! H21 C4-(C1)

ATOM C4 CG321 -0.18000 ! | \

ATOM H41 HGA2 0.09000 ! H41 H42

ATOM H42 HGA2 0.09000 !
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BOND C1 H11 C1 H12 C1 C2

BOND C3 C2 C3 H31 C3 C4 C2 H21

BOND C4 H41 C4 H42

BOND C1 -C4

IC -C3 -C4 C1 C2 0.000 0.000 180.0 0.000 0.000

IC -C4 C1 C2 C3 0.000 0.000 180.0 0.000 0.000

IC C1 C2 C3 C4 0.000 0.000 180.0 0.000 0.000

IC C2 C3 C4 +C1 0.000 0.000 180.0 0.000 0.000

PRES HBD4 0.00 ! Complete terminal methyl at C4

!

ATOM H43 HGA3 0.09 !

ATOM C4 CG331 -0.27 !

ATOM H41 HGA3 0.09 !

ATOM H42 HGA3 0.09 !

BOND H43 C4

PRES HBD1 0.00 ! Complete terminal methyl at C1

!

ATOM H13 HGA3 0.09 !

ATOM C1 CG331 -0.27 !

ATOM H11 HGA3 0.09 !

ATOM H12 HGA3 0.09 !

BOND H13 C1

END
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3.4.2 Trans-1,4-polyisoprene

A single monomer of trans-1,4-polyisoprene was constructed in molefacture, atom types were mod-

eled after 2-hexene.

*>>>>>> CHARMM topology file generated by Molefacture <<<<<<

27 1

MASS 1 HGA3 1.00794 H

MASS 1 CG331 12.01100 C

MASS 1 CG2D1 12.01100 C

MASS 1 HGA4 1.00794 H

MASS 1 HGA2 1.00794 H

MASS 1 CG321 12.01100 C

AUTO ANGLES DIHE

DEFAULT FIRST HSP1 LAST HSP3

RESI ISP 0.008

GROUP

ATOM H12 HGA2 0.09000 ! H31 H32

ATOM H13 HGA2 0.09000 ! \ /

ATOM C3 CG321 -0.18000 ! H21 C3-(C1)

ATOM H31 HGA2 0.09000 ! \ /

ATOM C5 CG2D1 0.00800 ! C2=C5

ATOM C2 CG2D1 -0.03900 ! / \

ATOM H21 HGA4 0.03900 ! (C3)-C1 C4-H43

ATOM C1 CG321 -0.18000 ! / \ / \

ATOM C4 CG331 -0.27000 ! H13 H12 H41 H42

ATOM H41 HGA3 0.09000 !

ATOM H42 HGA3 0.09000 !

ATOM H43 HGA3 0.09000 !

ATOM H32 HGA2 0.09000 !

BOND C1 -C3 H12 C1

BOND C3 H31 C3 C5 C3 H32 C5 C2

BOND C5 C4 C2 H21 C2 C1 C1 H13

BOND C4 H41 C4 H42 C4 H43
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IC -C3 C1 C2 C5 0.000 0.000 180.0 0.000 0.000

IC C1 C2 C5 C3 0.000 0.000 180.0 0.000 0.000

IC C1 C2 C5 C4 0.000 0.000 000.0 0.000 0.000

IC C2 C5 C3 +C1 0.000 0.000 180.0 0.000 0.000

IC C5 C3 +C1 +C2 0.000 0.000 180.0 0.000 0.000

PRES HSP3 0.00 ! Complete terminal methyl at C3

!

ATOM H33 HGA3 0.09 !

ATOM C3 CG331 -0.27 !

ATOM H31 HGA3 0.09 !

ATOM H32 HGA3 0.09 !

BOND H33 C3

PRES HSP1 0.00 ! Complete terminal methyl at C1

!

ATOM H11 HGA3 0.09 !

ATOM C1 CG331 -0.27 !

ATOM H12 HGA3 0.09 !

ATOM H13 HGA3 0.09 !

BOND H11 C1

END
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3.4.3 Poly-2-methyl-2-oxazoline

A single monomer of the PMOXA chain was constructed in molefacture. The ketone group attached

to the nitrogen was named using acetamide. The necessary parameters to simulate PMOXA linked

with PB and PI blocks could not be optimized.

*>>>>>> CHARMM topology file generated by Molefacture <<<<<<

27 1

MASS 1 OG2D1 15.99940 O

MASS 1 CG201 12.01100 C

MASS 1 CG331 12.01100 C

MASS 1 NG2S1 14.00674 N

MASS 1 HGA3 1.00794 H

MASS 1 HGA2 1.00794 H

MASS 1 CG321 12.01100 C

AUTO ANGLES DIHE

DEFAULT FIRST HSP3 LAST HSP4

RESI PMX -0.15

GROUP

ATOM O OG2D1 -0.61300 ! H32 H31 H41 H43

ATOM C1 CG201 0.66700 ! \ / \ /

ATOM C2 CG331 -0.25800 ! (C4)-C3 C4-(C3)

ATOM N NG2S1 -0.24400 ! \ /

ATOM H21 HGA3 0.09000 ! N H21

ATOM H22 HGA3 0.09000 ! \ /

ATOM H23 HGA3 0.09000 ! C1-C2-H22

ATOM C3 CG321 -0.18000 ! // \

ATOM C4 CG321 -0.18000 ! O H23

ATOM H41 HGA2 0.09000 !

ATOM H43 HGA2 0.09000 !

ATOM H32 HGA2 0.09000 !

ATOM H31 HGA2 0.09000 !

BOND O C1 C1 C2 C1 N

BOND C2 H21 C2 H22 C2 H23 N C3

BOND N C4 C3 H32 C3 H31

BOND C4 H41 C4 H43 C3 -C4
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IC -C4 C3 N C1 0.000 0.000 000.0 0.000 0.000

IC -C4 C3 N C4 0.000 0.000 180.0 0.000 0.000

IC C3 N C1 O 0.000 0.000 000.0 0.000 0.000

IC C3 N C1 C2 0.000 0.000 180.0 0.000 0.000

IC C3 N C4 +C3 0.000 0.000 180.0 0.000 0.000

IC C4 N C1 O 0.000 0.000 180.0 0.000 0.000

IC C4 N C1 C2 0.000 0.000 180.0 0.000 0.000

IC C1 N C3 -C4 0.000 0.000 180.0 0.000 0.000

IC C1 N C4 +C3 0.000 0.000 180.0 0.000 0.000

IC N C3 -C4 -C3 0.000 0.000 180.0 0.000 0.000

PRES HSP3 0.00 ! Complete terminal methyl at C3

!

ATOM H33 HGA3 0.09 !

ATOM C3 CG331 -0.181 !

ATOM H31 HGA3 0.09 !

ATOM H32 HGA3 0.09 !

BOND H33 C3

PRES HSP4 0.00 ! Complete terminal methyl at C4

!

ATOM H43 HGA3 0.09 !

ATOM C4 CG331 -0.181 !

ATOM H41 HGA3 0.09 !

ATOM H42 HGA3 0.09 !

BOND H42 C4

END
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3.4.4 Patches For Block Copolymers

PRES PBEO 0.17

GROUP ! H41 H1A

ATOM 1C4 CG321 -0.18 ! | |

ATOM 1H41 HGA2 0.09 !-C3--C4---C1-O1

ATOM 1H42 HGA2 0.09 ! | |

GROUP ! H42 H1B

ATOM 2C1 CC32A -0.01 !

ATOM 2H1A HCA2A 0.09 !

ATOM 2H1B HCA2A 0.09 !

DELE ATOM 1H43

DELE ATOM 2H1C

BOND 1C4 2C1

IC 1C2 1C3 1C4 2C1 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C3 1C4 2C1 2O1 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C4 2C1 2O1 2C2 0.0000 0.0000 180.0000 0.0000 0.0000

PRES PBOX 0.00

GROUP ! H41 H32

ATOM 1C4 CG321 -0.18 ! | |

ATOM 1H41 HGA2 0.09 !-C3--C4---C3-N

ATOM 1H42 HGA2 0.09 ! | |

GROUP ! H42 H31

ATOM 2C3 CG321 -0.18 !

ATOM 2H32 HGA2 0.09 !

ATOM 2H31 HGA2 0.09 !

DELE ATOM 1H43

DELE ATOM 2H33

BOND 1C4 2C3

IC 1C2 1C3 1C4 2C3 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C3 1C4 2C3 2N 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C4 2C3 2N 2C4 0.0000 0.0000 180.0000 0.0000 0.0000
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PRES PIEO 0.17

GROUP ! H31 H1A

ATOM 1C3 CG321 -0.18 ! | |

ATOM 1H31 HGA2 0.09 !-C5--C3---C1-O1

ATOM 1H32 HGA2 0.09 ! | |

GROUP ! H32 H1B

ATOM 2C1 CC32A -0.01 !

ATOM 2H1A HCA2A 0.09 !

ATOM 2H1B HCA2A 0.09 !

DELE ATOM 1H33

DELE ATOM 2H1C

BOND 1C3 2C1

IC 1C2 1C5 1C3 2C1 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C5 1C3 2C1 2O1 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C3 2C1 2O1 2C2 0.0000 0.0000 180.0000 0.0000 0.0000

PRES PIOX 0.00

GROUP ! H41 H32

ATOM 1C3 CG321 -0.18 ! | |

ATOM 1H31 HGA2 0.09 !-C5--C3---C3-N

ATOM 1H32 HGA2 0.09 ! | |

GROUP ! H42 H31

ATOM 2C3 CG321 -0.18 !

ATOM 2H32 HGA2 0.09 !

ATOM 2H31 HGA2 0.09 !

DELE ATOM 1H33

DELE ATOM 2H33

BOND 1C3 2C3

IC 1C2 1C5 1C3 2C3 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C5 1C3 2C3 2N 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C3 2C3 2N 2C4 0.0000 0.0000 180.0000 0.0000 0.0000

END
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3.5 Parameters and Conclusions

All parameters in Tables 3.1-3.4 were generated using the methods described in Section 3.3. All

the parameters were obtained by parameterizing the following molecules: PB dimer, PB1PEO1,

PB1PEO2, PI monomer, PI2PEO1, PMOXA monomer, PMOXA dimer, and PB1PMOXA2. Tables

3.1-3.4 contain all parameters needed to perform simulations of these molecules with the exception

of three dihedral angles involved in cross-linking PMOXA to PB and PI. We were unable to optimize

these parameters using ffTK [42] and they are denoted with an (*) in Table 3.4.

3.5.1 Summary and Conclusions

• Complete knowledge of the contents and purpose of PDB, PSF, topology, and parameter files

is necessary for successful construction and parameterization of novel molecular structures.

These files will require manual editing and inspection.

• All current CHARMM topology files should be scanned to find similar structures for assigning

atom types (Section 3.2.1). This will reduce the number of new parameters needed.

• When obtaining new parameters, use multiple small and simple molecular structures rather

than one large and complex structure.

3.5.2 Parameters

Table 3.1: Bonded potential parameters generated with ffTK [42] and Gaussian [43]
software. Parameters are organized by atom type which can be cross-referenced in

Figure 3.3

Bonds Atom Types kb

[
kcal

mol·Å2

]
bo [Å]

CG321-CC32A 282.912 1.511
Ubond = kb(b− bo)2 OG2D1-CG201 774.515 1.240

CG201-CG331 309.030 1.528
CG201-NG2S1 436.936 1.363
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Table 3.2: Bond angle potential parameters generated with ffTK [42] and Gaus-
sian [43] software. Parameters are organized by atom type which can be cross-

referenced in Figure 3.3

Angles Atom Types kθ
[

kcal
mol·rad2

]
θo [o]

CG2D1-CG321-CC32A 40.751 110.091
Uangle = kθ(θ − θo)2 CG321-CC32A-HCA2A 53.619 109.514

CG321-CC32A-OC30A 91.237 109.996
HGA2-CG321-CC32A 49.856 112.011
CG331-CG2D1-CG331 61.669 119.294
OG2D1-CG201-NG2S1 110.295 122.580
OG2D1-CG201-CG331 95.429 122.288
CG201-NG2S1-CG331 80.188 120.362
CG201-CG331-HGA3 53.234 110.899
CG331-CG201-NG2S1 103.417 116.891
CG331-NG2S1-CG331 56.119 115.717
CG201-NG2S1-CG321 298.798 119.261
CG331-NG2S1-CG321 277.040 118.049
CG321-NG2S1-CG321 0.095 115.845
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Table 3.3: Set 1 of 2 dihedral potential parameters generated with ffTK [42] and
Gaussian [43] software. Parameters are organized by atom type which can be cross-

referenced in Figure 3.3

Dihedrals Atom Types kφ
[
kcal
mol

]
n δ [o]

HGA2-CG321-CC32A-OC30A 0.4470 1 180.00
Udihedral = kφ[1 + cos(nφ− δ)] HGA2-CG321-CC32A-OC30A 0.5270 3 180.00

HGA2-CG321-CC32A-OC30A 0.9900 4 180.00
HGA2-CG321-CC32A-OC30A 0.6180 6 180.00

CG2D1-CG321-CC32A-HCA2A 1.2000 3 0.00
CG2D1-CG321-CC32A-HCA2A 0.9490 4 0.00
CG2D1-CG321-CC32A-HCA2A 0.2810 6 0.00
HGA4-CG2D1-CG321-CC32A 0.5860 1 0.00
HGA4-CG2D1-CG321-CC32A 0.4330 3 0.00
HGA4-CG2D1-CG321-CC32A 0.1010 4 180.00
HGA2-CG321-CC32A-HCA2A 1.3830 1 180.00
HGA2-CG321-CC32A-HCA2A 0.3010 2 0.00
HGA2-CG321-CC32A-HCA2A 0.1830 6 0.00
CG2D1-CG2D1-CG321-CC32A 0.2480 1 0.00
CG2D1-CG2D1-CG321-CC32A 0.2090 2 0.00
CG2D1-CG2D1-CG321-CC32A 0.1030 4 0.00
CG321-CC32A-OC30A-CC33A 0.0840 1 180.00
CG321-CC32A-OC30A-CC33A 0.0630 2 0.00
CG321-CC32A-OC30A-CC33A 0.5800 3 0.00
CG2D1-CG321-CC32A-OC30A 0.4670 1 180.00
CG2D1-CG321-CC32A-OC30A 0.4510 2 180.00
CG321-CC32A-OC30A-CC32A 0.0690 1 0.00
CG321-CC32A-OC30A-CC32A 0.4530 3 0.00
HGA3-CG331-CG2D1-CG331 0.1500 1 0.00
HGA3-CG331-CG2D1-CG331 0.1500 3 0.00
CG2D1-CG321-CG321-CG2D1 0.8830 1 180.00
CG2D1-CG321-CG321-CG2D1 0.1170 2 180.00
CG2D1-CG321-CG321-CG2D1 0.3180 3 180.00
CG2D1-CG321-CG321-CG2D1 0.2260 4 0.00
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Table 3.4: Set 2 of 2 dihedral potential parameters generated with ffTK [42] and
Gaussian [43] software. Parameters are organized by atom type which can be cross-

referenced in Figure 3.3. *Parameters that could not be optimized.

Dihedrals Atom Types kφ
[
kcal
mol

]
n δ [o]

NG2S1-CG201-CG331-HGA3 2.3500 1 180.00
Udihedral = kφ[1 + cos(nφ− δ)] CG331-NG2S1-CG331-HGA3 2.2230 1 0.00

CG201-NG2S1-CG331-HGA3 3.0000 1 0.00
OG2D1-CG201-NG2S1-CG331 2.7310 1 180.00
OG2D1-CG201-NG2S1-CG331 0.4680 2 180.00
OG2D1-CG201-CG331-HGA3 2.9860 1 0.00
CG331-CG201-NG2S1-CG331 3.0000 1 0.00
CG331-CG201-NG2S1-CG331 2.5730 2 180.00
CC32A-CG321-CG2D1-CG331 0.5550 1 180.00
CG331-NG2S1-CG321-CG321 0.3390 4 0.00
CG201-NG2S1-CG321-CG321 0.4810 2 0.00
CG201-NG2S1-CG321-CG321 0.7830 3 0.00
CG201-NG2S1-CG321-CG321 0.9230 4 0.00
OG2D1-CG201-NG2S1-CG321 3.0000 1 180.00
OG2D1-CG201-NG2S1-CG321 1.1130 6 180.00
CG331-CG201-NG2S1-CG321 3.0000 1 0.00
CG331-CG201-NG2S1-CG321 2.8190 2 180.00
CG331-CG201-NG2S1-CG321 0.8870 3 0.00
CG331-CG201-NG2S1-CG321 0.8210 4 180.00
CG331-CG201-NG2S1-CG321 1.6890 6 0.00
NG2S1-CG321-CG321-NG2S1 0.9800 1 180.00
CG331-NG2S1-CG321-HGA2 0.2460 1 180.00
CG331-NG2S1-CG321-HGA2 0.3100 3 0.00
CG201-NG2S1-CG321-HGA2 0.6300 3 180.00
CG201-NG2S1-CG321-HGA2 0.5030 4 0.00
CG321-NG2S1-CG331-HGA3 2.9990 4 0.00
CG321-NG2S1-CG331-HGA3 0.2290 6 180.00

CG2D1-CG321-CG321-NG2S1* - - -
CG321-NG2S1-CG321-HGA2* - - -
CG321-NG2S1-CG321-CG321* - - -
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Figure 3.3: Dimers of the different polymers constructed and/or parameterized.
Corresponding atom types are included and can be cross referenced with Tables 3.1

through 3.4.
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Chapter 4

Simulations of Biomimetic
Membranes

A significant amount of research done in the chemical engineering field is devoted to improving

the efficiency and selectivity in separation processes [2, 5, 10, 11]. Nature provides examples of

efficient systems that have been fine-tuned through many years of evolution [8, 9]. Cell membranes

spontaneously form and incorporate membrane proteins in aqueous environments. Some of these

membrane proteins are water-transport channels as they possess selectivity for water over other

molecules. Aquaporins allow for the selective transport of water at a rate of ∼109 molecules per

second [3] while inserted in lipid bilayers. Though these biological systems can be replicated in the

laboratory, they are not practical on an industrial scale. They lack the robustness and chemical

stability necessary for applications in process engineering.

Experimental chemistry groups are currently exploring the use of block copolymers and syn-

thetic carbon nanotube like structures as biomimetic membrane transport systems [3, 4, 15–17,

20, 22]. The peptide-appended pillar[5]arene (PAP) channel has been shown to insert into lipid

bilayers and transport water at a rate of ∼108 water molecules per second, approaching that of

aquaporin [3]. Block copolymers can be used to build membranes with many advantages over lipid

membranes, such as higher mechanical and chemical stability, lower gas and water permeability,

and more customizable properties [11]. Biomimetic membranes such as these have shown promise in

applications including water desalination, liquid and gas separations, drug delivery and screening,

DNA recognition, and sensors [3, 13, 24, 25].
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We have explored the conformational dynamics of the PAP channel in lipid and block copolymer

membranes through the use of molecular dynamics (MD) simulations. In Section 4.1, we provide

information about how we set up and performed these simulations. This is followed by Section 4.2

where we provide a breakdown of analysis results and a brief discussion of their interpretation. Our

results suggest that the membrane environment can affect the channel dynamics and potentially

its diffusive as well as transport characteristics.

4.1 System Preparation

Block copolymers built in Chapter 3, specifically PB-PEO and PI-PEO, were used to build pris-

tine membrane structures. These structures were then equilibrated through the use of molecular

dynamics (MD) simulations. In addition, we performed several independent long time-scale MD

simulations of the PAP channel in three different membrane environments: POPC, PB12PEO9, and

PB23PEO16. In most of these simulations, the PAP channel was embedded in the membrane, but we

also carried out simulations where PAP was placed outside the membrane to observe spontaneous

insertion. A description of each simulation set-up is contained in this section.

4.1.1 Pristine Membrane Construction and Equilibration

PB-PEO and PI-PEO Membranes

Block copolymer membranes were generated by first constructing a single polymer chain of desired

length for PB and PEO blocks. The chains for each block were then connected using a patch as

described in Section 3.2.2. The parameters for the resulting block copolymer were optimized as

described in Section 3.3.2. The single PB-PEO chains were then replicated and placed in a regular 10

× 10 grid pattern over an area of 80 Å × 80 Å (PB12PEO9 and PI12PEO9) and a 9 × 9 grid pattern

over an area of 80 Å × 80 Å (PB23PEO16 and PI23PEO16). All BCP membranes were arranged

in a di-block configuration prior to equilibration (Figure 4.2). Pristine PB12PEO9/PI12PEO9 and

PB23PEO16/PI23PEO16 membranes contained a total of 200 and 162 polymer chains respectively.
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All BCP membranes were solvated using the autosolvate plugin in VMD [30]. Water molecules

placed within the PB or PI layers were removed, while those that were placed in the PEO layer

were retained. We conducted equilibration simulations of PB-PEO BCP membranes in three steps.

In step 1, membranes were equilibrated in the NVT ensemble for 0.25 ns using a 1 fs time-step after

minimizing the system for 4000 steps. All atoms were fixed during the first phase of simulation

except for the hydrophobic chains. In step 2, the time-step was increased to 2 fs and the system

was restarted after a brief minimization in the NPT ensemble using a constant area option for

0.50 ns. During the second step, external forces were applied using a tcl-script to keep water

out of the hydrophobic layer. In step 3, all constraints on water molecules were removed and the

system was restarted for a long timescale MD simulations. Trajectories were recorded every 20

ps. Simulations of PI-PEO membranes were carried out using the same method with one extra

step. During the third stage of simulation, both PI-PEO membranes lost their planar geometry

and began to bulge (Figure 4.1B). The PI chains contain an extra methyl group on every monomer

(when compared to PB) and were unstable when constrained to the same area/BCP values as PB.

To fix this, we stopped these simulations and restarted them using a constant ratio between the

sides of the periodic cell. This allowed the membrane area to grow and the bulging to relax (Figure

4.1B). The membranes were equilibrated for 100 ns once the area had stabilized.
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A B C

Figure 4.1: Snapshots of initial (A), bulging (B), and stable (C) membrane struc-
tures of PI12PEO9 prior to equilibration. PI chains are shown in yellow, PEO chains
are shown in pink, and water is shown in cyan. All hydrogen atoms have been omitted.

POPC/PB-PEO Hybrid Membrane

To create the hybrid membrane, two separate pdb/psf pairs were combined. We first generated an

80 Å× 80 Å POPC membrane using the membrane builder plugin in VMD [30]. This membrane was

merged with the equilibrated PB12PEO9 membrane structure obtained from pristine simulations.

Both membranes were centered at the origin. The POPC membrane was displaced by 30 Å in

the positive z-direction to create a space between PB and POPC chains. POPC and BCP chains

from the opposite layers were identified and all other atoms were removed from the system. This

procedure was carried out using a script called merge.tcl which can be found in Appendix B.6.

The resulting structure can be seen in Figure 4.2. This structure was then deployed in a long scale

MD simulation with the same settings as step 3 in the PB-PEO pristine membrane simulations.

Due to the initial gap between the membrane layers, the periodic cell experienced large changes in

the vertical direction. The system would become too small for the particle mesh Ewald (PME) grid

and crash (This grid is used to calculate the electrostatic forces, more info on the PME grid can be

found here [33]). The system was restarted with a new PME grid size in the z direction three times
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before the simulation was stable. This method was necessary to avoid starting the simulation with

overlapping structures as they could result in unphysical behavior or unstable simulations.

PB12PEO9 POPC−PB12PEO9

PI12PEO9

PB23PEO16

PI23PEO16

Figure 4.2: Snapshots of the initial PB12PEO9, PB23PEO16, POPC-PB12PEO9,
PI12PEO9, and PI23PEO16 membrane structures prior to equilibration. PB chains
are shown in green, PI chains are shown in yellow, PEO chains are shown in pink,

and POPC chains are shown in gray. All hydrogen atoms have been omitted.

4.1.2 PAP-Embedded in POPC and BCP Membranes

We used the membrane builder plugin in VMD [30] to generate the POPC membrane. The POPC

membrane used in all PAP/POPC simulations was 70 Å × 70 Å in size. The POPC membrane was
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first aligned by moving its center of mass to the origin. The PAP channel was then added to the

system and embedded into the membrane by aligning its center of mass to the origin as well. Any

POPC molecules that were within 1.5 Å of the PAP channel were removed. After removing the

unwanted lipids, the system was solvated using VMD’s autosolvate plugin. Any water molecules

placed within the lipid bilayer were removed from the system.

Simulations with PAP embedded in POPC membranes were carried out in three sequential

steps. In the first step all atoms were fixed except those in the lipid tails. The system was then

minimized and equilibrated in the NVT ensemble for 0.25 ns using a 1 fs time step. The restart

files from step 1 were then used to initiate step 2. During step 2 the system was equilibrated in

the NPT ensemble for 0.5 ns using a 2 fs time-step. Previous constraints placed on lipid and water

molecules were released. During this simulation, the PAP channel was again constrained and a

tcl-forces script was used to keep water out of the lipid membrane. In step 3, we released all

constraints and carried out long timescale equilibration simulations in the NPT ensemble using a 2

fs time-step. A more detailed description of this procedure can be found in section 2.3. We carried

out 4 independent trajectories of varying lengths in POPC membranes. We recorded trajectory

data every 20 ps.

For PAP embedded in PB12PEO9 and PB23PEO16 membranes, we chose equilibrated configu-

rations from pristine membrane simulations (See Sec. 4.1.1) for inserting PAP. A similar procedure

to the POPC membrane was followed for the alignment of PAP in these membranes, where un-

wanted polymer chains were deleted. We carried out three long-time scale and PAP-embedded MD

simulations for each BCP membrane.

4.1.3 PAP-Displaced Away From Lipid and BCP Membranes

To observe spontaneous insertion of a single PAP channel placed outside the membrane, we con-

ducted two independent simulations each for the POPC/PAP system and the PB12PEO9/PAP

system. The PAP channel was rotated by 90◦ such that its orientation was parallel to the mem-

brane surface and then it was displaced by 45 Å and 55 Å from the origin in a direction normal to
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the surface of the POPC and PB12PEO9 membranes respectively. We then followed the three step

procedure described above and conducted long timescale MD simulations. We recorded trajectory

data every 20 ps.

4.2 Results

We employed several techniques to analyze MD simulations described in Section 4.1. Membrane

thickness and area per lipid/BCP were used to compare simulations with experimental observa-

tions/measurements. These provide a benchmark for physically realistic membrane behavior in

our simulations. The diffusivity of PAP in all membranes was used to quantify mobility, and per-

meability measurements were taken to quantify performance. Measurements of the RMSD and

orientation (angle) of the channel were used to quantify structural changes of PAP in different

membrane environments.

4.2.1 Pristine Membrane Equilibration

Equilibration simulations of pure PB12PEO9 and PB23PEO16 membranes were 100.64 ns and 191.86

ns, respectively (Table A.1). The thickness of the hydrophobic layer for hybrid POPC-PB12PEO9,

pure PB12PEO9, and PB23PEO16 membranes on equilibration were 35 (±1) Å, 41 (±1) Å and 51

(±1) Å, respectively (Figure 4.3). We used these equilibrated configurations of BCP membranes

for simulations with the PAP channel. The simulations of pure PI12PEO9 and PI23PEO16 were

each 100 ns and had area/BCP values of 0.88 (±0.04) nm2

BCP and 1.35 (±0.06) nm2

BCP , respectively.

The hydrophobic thickness of the PI12PEO9 and PI23PEO16 mebranes was 36 (±1) Å and 48 (±1)

Å, respectively (Figure 4.4) All pristine membrane structures after 100 ns of equilibration can be

seen in Figures 4.5 and 4.6.
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Figure 4.3: Average density (atoms/Å3) by species vs. distance from membrane
center of mass (COM) from pristine membrane simulations [POPC-PB12PEO9 (A),
PB12PEO9 (C), and PB23PEO16 (E)] and PAP embedded simulations[POPC (B),

PB12PEO9 (D), and PB23PEO16 (F)].
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center of mass (COM) for pristine PI12PEO9 (A) and PI23PEO16 (B) membrane

simulations.

PI12PEO9

0 ns 100 ns

PI23PEO16

Figure 4.5: Snapshots of initial (0 ns) and final (100 ns) membrane (PI12PEO9 and
PI23PEO16) structures during equilibration.
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POPC−PB12PEO9

PB12PEO9

0 ns 100 ns

PB23PEO16

Figure 4.6: Snapshots of initial (0 ns) and final (100 ns) membrane (PB12PEO9,
PB23PEO16, and POPC-PB12PEO9) structures during equilibration.



Chapter 4. Simulations of Biomimetic Membranes 63

4.2.2 Permeability and Diffusivity

We measured the permeability of the PAP channel in POPC and PB12PEO9 membranes using a

widely-used collective diffusion model of Zhu et al. [36]. A detailed description of this technique can

be found in Section 2.4.5. No measurements are reported for the permeability of PAP in PB23PEO16

membranes as the channel did not span the membrane for the duration of any PB23PEO16 simu-

lations (Figure 4.7). Therefore, water mobility in the channel could not result in net transport of

water across the membrane. A decrease in permeability was observed on comparing PAP channels

in POPC to those in PB12PEO9 (Figure 4.8D). The average permeability of the channel in POPC

and PB12PEO9 was measured as 6.7 (±0.1)×10−14 cm3

s and 2.99 (±0.01)×10−14 cm3

s , respectively.

0 ns 320 ns160 ns 560 ns

Figure 4.7: Snapshots showing diffusion of PAP out of the PB23PEO16 membrane.
After ∼60-100 ns, PAP localizes to one side of the PB23PEO16 membrane in all three

PB23PEO16 PAP embedded simulations

The dominant contribution to the diffusivity of the PAP channel in each of the three membranes

came from lateral movement in the plane of the membrane (Figures 4.8A-C). The lateral diffusivity

of the PAP channel was measured by tracking the mean-squared-displacement (MSD) of the channel

in each simulation. A detailed description of this technique can be found in Section 2.4.4. The

lateral diffusivity of the PAP channel in POPC, PB12PEO9, and PB23PEO16 was measured as 5.35

(±0.01) µm2

s , 3.76 (±0.01) µm2

s , and 3.75 (±0.02) µm2

s respectively.
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Figure 4.8: MSD (Å2) vs. time (ns) plots of the pap channel in (POPC (A),
PB12PEO9 (B), and PB23PEO16 (C)) membranes. The slope of each line is equal
to the (overall (yellow), lateral (purple), and vertical (green)) diffusion coefficients
of the PAP channel. (D) MSD vs. time (ns) of the collective diffusion coordinate
n. The permeability of PAP in POPC (blue) and PB12PEO9 (red) membranes is

proportional to the slope of each line.

4.2.3 RMSD and Orientation Angle of PAP

We report the root-mean-squared-deviation (RMSD) of PAP from all runs in Figure 4.9. In some

of the simulations, the opening of the PAP channel at both ends was observed in a hydrophobic

environment. When this happens, hydrophobic phenylalanine chains at the end of the channel

create a hydrophobic cap over the entrance of the channel. This is likely a result of the hydrophilic

ends of the channel arms rotating inward and collapsing toward the center of the channel. This

type of structure can be seen in red conformation of PAP in Figure 4.9A. This conformation is seen

in both BCP membranes as well as in one of the POPC runs in which the channel turned sideways
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and rotated by ∼90◦, thereby fully immersing in the hydrophobic layer of the POPC membrane

(orange conformation in Figure 4.9B). This could be a possible explanation for decreased channel

permeability and stability of PAP in BCP membranes. The orientation angle of PAP for all runs is

reported in Figure 4.10. The angle traces show that the channel is oriented at an angle of ∼25◦ w.r.t.

the membrane normal in most of the runs except for one PB23PEO16 run (cyan trace in Figure

4.10D) and in one POPC run, where it quickly adopts an angle of ∼90◦ w.r.t. the membrane normal

(green trace in Figure 4.10B) thereby becoming parallel to the membrane surface while embedded

in the membrane (see Figure 4.11 for additional snapshots for the green trace run shown in Figures

4.9B and 4.10B).
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Figure 4.9: PAP structures observed in hydrophobic environments from PB23PEO16

(A) and POPC (B) simulations. RMSD (Å) vs. time (ns) of PAP in POPC (C),
PB23PEO16 (D), and PB12PEO9 (E) membranes.

Additionally, the hydrophilic ends of the PAP channel cannot span the entire PB23PEO16
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Figure 4.10: Diagram (A) showing the initial orientation angle (θ) of PAP defined
as 0◦. θ (◦) vs. time (ns) of PAP in POPC (B), PB12PEO9 (C), and PB23PEO16 (D)

membranes.

membrane to interact with PEO chains on both sides of the membrane at the same time (See

Figure 4.3). As a result, the PAP channel in each PB23PEO16 run was observed to diffuse to

one side of the PB23PEO16 membrane after ∼60-100 ns (Figure 4.7). In previous simulations of

an array of PAP channels in POPC membranes [3], hydrogen bonding was observed between the

carboxyl and amine groups among channels. It is possible that multiple channels interact via

such specific hydrogen bonds which help not only in stabilizing the channel but also in spanning

the PB23PEO16 membrane for successful water transport. This is a possible explanation for the

channels ability to transport water in PB23PEO16 membranes as seen in experiments but not in

PB23PEO16 simulations.
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Figure 4.11: Snapshots spanning the entire PAP embedded in POPC Run 3 (Table
A) simulation showing the channel adopt a ∼90◦ angle.
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4.2.4 Summary and Conclusions

• Simulations containing a membrane system require special care and attention during set-up

and initiation. When these steps are properly executed, simulations remain stable.

• Only water molecules should be used to specify and measure the area of periodic cells. Lipids

and BCPs will not give measurements with the accuracy needed for membrane simulations.

• PI-PEO membranes were unstable when constrained to the same area/BCP values as PB-

PEO membranes. When constraints on the area size were removed, PI12PEO9 and PI23PEO16

membranes reached equilibrium values of 0.88 (±0.04) nm2

BCP and 1.35 (±0.06) nm2

BCP , respec-

tively.

• The PAP channel was able to transport water and remain stable in POPC and PB12PEO9

membranes. The PAP channel was unstable in PB23PEO16 membranes, localizing to one side

after ∼60-100 ns (Figure 4.7). This is likely due to the thickness of PB23PEO16 membranes

relative to the length of PAP (Figure 4.3).

• Hydrophobic environments have an effect on the PAP channels average conformation (Figure

4.9). This may cause a reduction in transport ability (Figure 4.8D).
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Chapter 5

Simulations of Coarse Grained
Systems

The microscopic structures of block copolymer membranes remain unknown. Typical imaging

techniques for these structures have a resolution capable of measuring thickness of the membranes

but provide no insight as to the overall microscopic organization of the bilayer. The bilayers could

form much like lipids with two chains interacting end to end (Figure 5.1A) or align in a cross

linked pattern fully integrating each membrane layer into a single hydrophobic core (Figure 5.1B).

Throughout the all atom simulations performed, we postulated initial structures of BCP membranes

based upon geometric constraints on chain packing. This was necessary because performing self

assembly simulations in all-atom detail is not feasible with reasonable computational resources. In

an attempt to explore the possible membrane configurations, we used coarse grained simulations.

In this chapter, we present our initial explorations of this method.

A B

Figure 5.1: Snapshots illustrating two POPC lipids interacting end to end (A) and
two PB12PEO9 molecules aligned in a cross linked pattern (B).
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Coarse graining (CG) is a common technique used in molecular dynamics (MD) simulations.

In general, this involves reducing the number of degrees-of-freedom present in a system, thereby

reducing the computational complexity inherent to MD simulations. This increases the speed at

which simulations can be performed, allowing the observation of behaviors that occur over longer

time scales. This technique must be used judiciously as it may not faithfully reproduce all properties

of a system. Coarse graining has been used extensively to study several biomolecular systems as

well as the self assembly behavior of polymers [37, 38, 40, 46–54]. The MARTINI force-field [32] is a

popular CG approach that was developed initially to simulate lipids and proteins and is optimized

for these molecules. This force-field can be modified and optimized to simulate polymers and block

copolymers including polyethylene oxide [48]. In Section 5.1, we test the original MARTINI [32]

force-field parameters by simulating the self-assembly of a POPC lipid bilayer. We then use the

MARTINI [32] force-field along with a VMD [30] plugin to build and simulate coarse grained models

of PB12PEO9 in the Section 5.2. A brief description of the MARTINI [32] coarse graining method

can be found in Section 2.2.3 and a more complete description is found in the published work on

this force-field [32].

5.1 Self Assembly of Lipids

To familiarize ourselves with the technique of residue based coarse graining (RBCG) with the

MARTINI force-field [32], we simulated the self-assembly of a POPC lipid bilayer. The steps for

system preparation outlined in this section follow those presented in the RBCG tutorial [55] found

here: http://www.ks.uiuc.edu/Training/Tutorials. This website also includes a link for the

necessary files used to perform this simulation. We first constructed an all atom POPC membrane

using the membrane builder plugin of VMD [30]. The membrane was 100 Å × 100 Å in size. All

water molecules were removed and the membrane was dispersed in the direction normal to the

membrane surface using the following code:
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mol new membrane.psf

mol addfile membrane.pdb

for {set j 11} {$j < 29 } { incr j } {

for {set i 1 } {$i < 30 } { incr i } {

set sel [atomselect top "segid L$j and resid $i"]

set z [expr {45*(sin(($i)*15))}]

set offset [list 0 0 $z]

$sel moveby $offset

}

}

resetpsf

readpsf membrane.psf

set POPC [atomselect top "resname POPC and not (segid L11 and resid 1) and not

(segid L11 and resid 2) and not (segid L11 and resid 3) and not (segid L11 and

resid 4) and not (segid L11 and resid 5) and not (segid L11 and resid 6) and

not (segid L11 and resid 7)"]

$POPC writepdb self_popc.pdb

$POPC writepsf self_popc.psf

exit

The CG builder plugin [55] of VMD [30] was used to create the coarse grained model of this

system. The necessary topology and .cgc files were provided in the tutorial files download link:

http://www.ks.uiuc.edu/Training/Tutorials. A brief description of coarse grained topology

and .cgc files can be found in Section 5.2. A more detailed description of these files can be found

in the following tutorial [55]. The system was then solvated as described in the tutorial [55]. After

a brief minimization, the coarse grained system was simulated in the NPT ensemble with a fixed

area using a 20 fs time-step. All the necessary parameter files were provided in the tutorial files

download link here: http://www.ks.uiuc.edu/Training/Tutorials. The simulation showed a

successful self assembly of the lipid bilayer as shown in Figure 5.2
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A CB

Figure 5.2: Snapshots of the successful simulation of a POPC lipid bilayer self
assembly showing the initial (A), intermediate (B), and final (C) configurations.

5.2 PB12PEO9 Coarse Grained Simulations

After testing the MARTINI [32] force-field parameters for self assembly of a lipid bilayer, we

developed necessary files to coarse grain one of our BCP structures. We did this by first building

an all atom structure of PB12PEO9 as outlined in Section 3.2. The CG builder plugin was again

used to create the coarse grained structure, however, we had to generate the .cgc and topology files

needed. The .cgc file contains the mapping information to create a coarse grained PDB file. In the

.cgc file, each super atom in the structure is defined by a list of the corresponding atoms in the all

atom structure. The information in the file is organized as follows:

CGBEGIN

(RESNAME)(BEADNAME)0

(RESNAME)(ATOMNAME)0 (the first atom should be the central atom of the cluster)

(RESNAME)(ATOMNAME)0 (beyond that, the ordering is unimportant)

...

CGEND

This file is read by CG builder which then creates the desired coarse grained .pdb file. In our coarse

grained model, it was natural to define each monomer in our BCP chains as one super atom. Each

of the PB monomers were defined as a type C3T super atom. The PEO monomers were defined as a
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type SN0 super atoms. These super atom types were based upon previous papers on the MARTINI

force-field [32, 48]. The .cgc file used in all BCP RBCG simulations is included below.

#CG bead definitions for PBPEO

CGBEGIN

BDE BCP 0

BDE C2 0

BDE H13 0

BDE C1 0

BDE C3 0

BDE H11 0

BDE H12 0

BDE H21 0

BDE H31 0

BDE C4 0

BDE H41 0

BDE H42 0

CGEND

CGBEGIN

PEGM BCP 0

PEGM O1 0

PEGM C1 0

PEGM H1B 0

PEGM H1A 0

PEGM C2 0

PEGM H2A 0

PEGM H2B 0

PEGM H2C 0

CGEND

To generate the corresponding .psf file using psfgen, we created a coarse grained topology file for

the PB12PEO9 structure. This topology file differs from those described in Section 3.1.2. In these

files, every super atom is given the generic name BCP. This simplifies defining all bonds and angles

in the structure. Each super atom type is then determined by their residue name. The topology

file and .cgc file must be consistent to avoid errors. A copy of the topology file we manually created

is included below.
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! PB

RESI BDE 0.0 !

ATOM BCP C3T 0.0 !

BOND BCP +BCP !

ANGLE -BCP BCP +BCP !

! PEO

RESI PEGM 0.0 !

ATOM BCP SN0 0.0 !

BOND BCP +BCP !

ANGLE -BCP BCP +BCP !

!

PRES PBPE

GROUP

ATOM BCP C3T 0.0 !

GROUP

ATOM BCP SN0 0.0 !

BOND 1BCP 2BCP !

END

We note that there are no dihedral angles defined in the above topology file. This is not an

oversight or error. The MARTINI [32] force-field does not use a dihedral term for lipids, therefore

these simulations did not use any dihedral angles for the given atom types. Using these files, three

different systems were prepared for simulation. The first system was a single CG PB12PEO9 chain

inside a water box to test if the files and structure we created were compatible with the parameter

files included with the tutorial [55]. This test was successful, so we then built two larger coarse

grained models. These were longer simulations to test the self assembly behavior of the force-field.

The first of these longer simulations consisted of 72 coarse grained PB12PEO9 chains. These

chains were placed in a water box with initial dimensions of 130 Å × 130 Å × 180 Å. After a brief

minimization, this system was simulated in the NPT ensemble using a 20 fs time step. The BCP

concentration inside the system was not large enough to capture membrane formation so there were

no constraints placed on the cell area. In this simulation we wanted to observe micelle formation.

The force-field was able to rapidly produce this behavior. Snapshots of the micelle formation can
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be seen in Figure 5.3.

After the successful formation of micelles, we attempted to simulate the self assembly of a

PB12PEO9 membrane. We first dispersed one of the all-atom membrane models of PB12PEO9 that

we built in Section 4.1.1 using a code similar to the one included in Section 5.1. The all-atom

model was then coarse gained and after a brief minimization, simulated in the NPT ensemble using

a 20 fs time step. The area of the periodic cell was constrained to achieve a constant area/BCP

value consistent with those in Section 4.1.1. The results of this simulation can be seen in Figure

5.4. The BCPs did assemble into a distinct phase, however, it is evident from the snapshot shown

in Figure 5.4B that the hydrophobic and hydrophilic chains were not able to separate into distinct

layers. This can also be seen in the density of species plot shown in Figure 5.4C. The original

MARTINI force-field was unable to show the self assembly of PB12PEO9 and must therefore be

further optimized to observe the desired behavior.

A B C

Figure 5.3: Snapshots from the first long time scale RBCG simulation of PB12PEO9

chains showing the initial configuration (A) followed by the formation of aggregates
(B) and eventually a micellar structure (C).
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Figure 5.4: Snapshots of the initial (A) and final (B) configurations of the failed
RBCG self assembly simulation of a PB12PEO9 membrane. The density of species
plot (C) shows the BCP phase failed to form distinct hydrophilic and hydrophobic

layers.
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Chapter 6

Future Directions

The work presented in this thesis provides many opportunities for continued research. In this

chapter, we offer suggestions on how one could proceed with further investigations. In Chapter 3 we

were unable to obtain parameters to simulate PB-PMOXA and PI-PMOXA BCPs. New strategies

to obtain these parameters must be explored. There are also a number of other polymer structures

one could build and simulate. These polymers include 1,2-polybutadiene and polydimethylsiloxane

(PDMS). Along with the missing parameters, new polymers would allow building and testing many

new BCP membrane structures. This would significantly expand the work done in Chapter 4.

New simulations of pristine membranes with an induced pressure gradient could be useful to

measure the surface tension of the membranes. Using simulations of this type, one could also

test the rupturing pressure. These properties, along with hydrophobic thickness and area/BCP

could be benchmarked against experimental measurements. This information could also asist in

force-field refinement. In addition, larger membrane simulations containing multiple PAP channels

could be done to investigate whether interactions among PAPs have an effect on their stability and

transport ability. New transport channels can also be explored. For example, computer simulations

of imidazole quartet (I-quartet) channels in lipids have been successfully completed [18]. These I-

quartet channels can be incorporated and simulated in our BCP membranes to study the effect of

membrane environment. Explorations of hybrid asymmetric membranes paired with asymmetric

transport channels are also of interest for future work.

In Chapter 5, we were unsuccessful in our attempts to simulate a BCP membrane self assembly.

To achieve this, the MARTINI force-field [32] requires further optimization. There are a number
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of references which outline a procedure for extracting coarse grained (CG) parameters from all-

atom simulations [47–49]. These methods can be used to develop CG parameters from all-atom

simulations of a single BCP chain in a water box. These systems can be small and generate

sufficient data in relatively short periods of time. Once the CG parameters have been extracted,

self assembly simulations can be performed and mapped back to all-atom models. This will provide

a rapid method of membrane building without postulating an initial structure. Furthermore, with

CG models of BCPs and PAP, it may be possible to simulate the self assembly of entire vesicles

containing PAPs.
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Appendix A

Simulation Details

Table A.1: List of all-atom simulations conducted. Pristine runs are simulations of
pure membrane structures, PAP embedded runs are simulations with a PAP channel
inserted in a membrane, and free runs are simulations with the PAP channel displaced

away from a pristine membrane.

Membrane Type Run (Simulation Type) Time-Step (fs) Size (Atoms) Length (ns)

POPC Run 1 (PAP Embedded) 2 32,666 977.44
Run 2 (PAP Embedded) 2 32,666 754.46
Run 3 (PAP Embedded) 2 32,666 879.54
Run 4 (PAP Embedded) 2 32,666 357.46
Run 5 (PAP Free) 2 43,624 305.16
Run 6 (PAP Free) 2 43,624 663.9

PB12PEO9 Pristine 2 75,124 100.64
Run 1 (PAP Embedded) 2 71,408 660.46
Run 2 (PAP Embedded) 2 71,408 652.72
Run 3 (PAP Embedded) 2 71,408 110.78
Run 4 (PAP Free) 2 75,001 237.82
Run 5 (PAP Free) 2 75,001 209.76

PB23PEO16 Pristine 2 123,249 191.96
Run 1 (PAP Embedded) 2 119,023 570.82
Run 2 (PAP Embedded) 2 119,023 564.56
Run 3 (PAP Embedded) 2 119,023 100

PI12PEO9 Pristine 2 87,796 100

PI23PEO16 Pristine 2 135,054 100
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Appendix B

Input Files and Sample Scripts

B.1 Gaussian Geometry Optimization Input File

%chk=geomOpt.chk %nproc=1 %mem=1GB

# MP2/6-31G* Opt=(Redundant) SCF=Tight Geom=PrintInputOrient

<qmtool> simtype=‘‘Geometry optimization" </qmtool>

0 1

C1 0.0 0.0 0.0

H2 -0.32600000500679016 0.9459999799728394 -0.0

H3 -0.32600000500679016 -0.4729999899864197 0.8190000057220459

H4 -0.32600000500679016 -0.4729999899864197 -0.8190000057220459

C5 1.399999976158142 0.0 0.0

C6 2.130000114440918 1.3079999685287476 -0.06599999964237213

H7 1.9129999876022339 -0.8560000061988831 0.06599999964237213

H8 1.6299999952316284 2.1740000247955322 -0.06599999964237213

C9 3.630000114440918 1.3079999685287476 -0.06599999964237213

H10 4.001999855041504 1.2050000429153442 0.9760000109672546

H11 4.0289998054504395 0.4560000002384186 -0.6579999923706055

C12 4.182000160217285 2.5840001106262207 -0.6309999823570251

H13 4.570000171661377 3.2190001010894775 0.1940000057220459

C14 5.239999771118164 2.3269999027252197 -1.5110000371932983

H15 3.4030001163482666 3.1619999408721924 -1.1729999780654907

C16 6.060999870300293 3.4739999771118164 -2.0220000743865967

H17 5.466000080108643 1.3910000324249268 -1.781999945640564

H18 5.88700008392334 4.4070000648498535 -1.7070000171661377

C19 7.195000171661377 3.1989998817443848 -2.9639999866485596

H20 8.088000297546387 2.875999927520752 -2.388000011444092

H21 6.933000087738037 2.384999990463257 -3.6760001182556152

H22 7.4710001945495605 4.104000091552734 -3.546999931335449
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B.2 Gaussian Charge Optimization Input Files

B.2.1 Acceptor Input

%chk=ODE-ACC-C2.chk

%nproc=1

%mem=1GB

# HF/6-31G* Opt=(Z-matrix,MaxCycles=100) Geom=PrintInputOrient

<qmtool> simtype=‘‘Geometry optimization" </qmtool>

ODE-ACC-C2

0 1

C1 -0.032023001462221146 0.18168500065803528 0.4885059893131256

H2 -0.28053799271583557 1.1330770254135132 0.9671869874000549

H3 -0.19148799777030945 -0.6192700266838074 1.2187880277633667

H4 -0.7419189810752869 0.015780000016093254 -0.3293190002441406

C5 1.380977988243103 0.1867399960756302 -0.012148999609053135

C6 2.232271909713745 1.2150779962539673 0.11348500102758408

H7 1.7262970209121704 -0.7211380004882813 -0.5093470215797424

H8 1.8892500400543213 2.1258859634399414 0.6093440055847168

C9 3.637691020965576 1.2289600372314453 -0.40772300958633423

H10 4.344244956970215 1.4332139492034912 0.4076260030269623

H11 3.892263889312744 0.238973006606102 -0.8071449995040894

C12 3.8399391174316406 2.2917490005493164 -1.501971960067749

H13 3.5858850479125977 3.2818078994750977 -1.1023969650268555

C14 5.245211124420166 2.3051509857177734 -2.023638963699341

H15 3.1330249309539795 2.0878140926361084 -2.3170900344848633

C16 6.096485137939453 3.3336689472198486 -1.899467945098877

H17 5.588099002838135 1.3938050270080566 -2.518605947494507

H18 5.751307010650635 4.24207878112793 -1.4031460285186768

C19 7.5093159675598145 3.338218927383423 -2.4006059169769287

H20 8.219548225402832 3.503972053527832 -1.5830349922180176

H21 7.7573652267456055 2.386698007583618 -2.8792760372161865

H22 7.668789863586426 4.1390509605407715 -3.1310179233551025

H1w C5 rAH C1 90.06 H7 90.09

x H1w 1.0 C5 90.00 C1 0.00

Ow H1w 0.9572 x 90.00 C5 180.00

H2w Ow 0.9572 H1w 104.52 x dih

rAH 2.0

dih 0.0
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B.2.2 HF-Single Point Calculation File

%chk=ODE-sp-HF.chk

%nproc=1

%mem=1GB

# HF/6-31G* SCF=Tight

<qmtool> simtype="Single point calculation" </qmtool>

ODE-sp-HF

0 1

C1 -0.03200000151991844 0.18199999630451202 0.48899999260902405

H2 -0.2809999883174896 1.1330000162124634 0.9670000076293945

H3 -0.19099999964237213 -0.6190000176429749 1.218999981880188

H4 -0.7419999837875366 0.01600000075995922 -0.32899999618530273

C5 1.38100004196167 0.18700000643730164 -0.012000000104308128

C6 2.2320001125335693 1.215000033378601 0.11299999803304672

H7 1.7259999513626099 -0.7210000157356262 -0.5090000033378601

H8 1.8890000581741333 2.125999927520752 0.609000027179718

C9 3.638000011444092 1.2289999723434448 -0.40799999237060547

H10 4.343999862670898 1.4329999685287476 0.40799999237060547

H11 3.8919999599456787 0.23899999260902405 -0.8069999814033508

C12 3.8399999141693115 2.2920000553131104 -1.5019999742507935

H13 3.5859999656677246 3.2820000648498535 -1.1019999980926514

C14 5.244999885559082 2.305000066757202 -2.0239999294281006

H15 3.132999897003174 2.0880000591278076 -2.316999912261963

C16 6.0960001945495605 3.3340001106262207 -1.8990000486373901

H17 5.5879998207092285 1.3940000534057617 -2.5190000534057617

H18 5.750999927520752 4.242000102996826 -1.402999997138977

C19 7.508999824523926 3.3380000591278076 -2.4010000228881836

H20 8.220000267028809 3.503999948501587 -1.5829999446868896

H21 7.756999969482422 2.38700008392334 -2.878999948501587

H22 7.669000148773193 4.138999938964844 -3.13100004196167
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B.2.3 MP2-Single Point Calculation File

%chk=ODE-sp-MP2.chk

%nproc=1

%mem=1GB

# MP2/6-31G* SCF=Tight Density=Current

<qmtool> simtype="Single point calculation" </qmtool>

ODE-sp-MP2

0 1

C1 -0.03200000151991844 0.18199999630451202 0.48899999260902405

H2 -0.2809999883174896 1.1330000162124634 0.9670000076293945

H3 -0.19099999964237213 -0.6190000176429749 1.218999981880188

H4 -0.7419999837875366 0.01600000075995922 -0.32899999618530273

C5 1.38100004196167 0.18700000643730164 -0.012000000104308128

C6 2.2320001125335693 1.215000033378601 0.11299999803304672

H7 1.7259999513626099 -0.7210000157356262 -0.5090000033378601

H8 1.8890000581741333 2.125999927520752 0.609000027179718

C9 3.638000011444092 1.2289999723434448 -0.40799999237060547

H10 4.343999862670898 1.4329999685287476 0.40799999237060547

H11 3.8919999599456787 0.23899999260902405 -0.8069999814033508

C12 3.8399999141693115 2.2920000553131104 -1.5019999742507935

H13 3.5859999656677246 3.2820000648498535 -1.1019999980926514

C14 5.244999885559082 2.305000066757202 -2.0239999294281006

H15 3.132999897003174 2.0880000591278076 -2.316999912261963

C16 6.0960001945495605 3.3340001106262207 -1.8990000486373901

H17 5.5879998207092285 1.3940000534057617 -2.5190000534057617

H18 5.750999927520752 4.242000102996826 -1.402999997138977

C19 7.508999824523926 3.3380000591278076 -2.4010000228881836

H20 8.220000267028809 3.503999948501587 -1.5829999446868896

H21 7.756999969482422 2.38700008392334 -2.878999948501587

H22 7.669000148773193 4.138999938964844 -3.13100004196167
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B.3 Gaussian Hessian Input File

%chk=hess.chk

%nproc=1

%mem=1GB

# MP2/6-31G* Geom=(AllCheck,ModRedundant) Freq NoSymm IOp(7/33=1)

# SCF=Tight Guess=Read

B * * K

A * * * K

L * * * K

D * * * * K

B 2 1 A

B 3 1 A

B 4 1 A

B 5 1 A

B 6 5 A

B 7 5 A

B 8 6 A

B 9 6 A

B 10 9 A

B 11 9 A

B 12 9 A

B 13 12 A

B 14 12 A

B 15 12 A

B 16 14 A

B 17 14 A

B 18 16 A

B 19 16 A

B 20 19 A

B 21 19 A

B 22 19 A

A 6 5 1 A

A 7 5 1 A

A 3 1 2 A

A 4 1 2 A

A 5 1 2 A

A 4 1 3 A

A 5 1 3 A

A 5 1 4 A

A 8 6 5 A
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A 9 6 5 A

A 7 5 6 A

A 10 9 6 A

A 11 9 6 A

A 12 9 6 A

A 9 6 8 A

A 13 12 9 A

A 14 12 9 A

A 15 12 9 A

A 11 9 10 A

A 12 9 10 A

A 12 9 11 A

A 16 14 12 A

A 17 14 12 A

A 14 12 13 A

A 15 12 13 A

A 15 12 14 A

A 18 16 14 A

A 19 16 14 A

A 17 14 16 A

A 20 19 16 A

A 21 19 16 A

A 22 19 16 A

A 19 16 18 A

A 21 19 20 A

A 22 19 20 A

A 22 19 21 A

D 6 5 1 2 A

D 7 5 1 2 A

D 6 5 1 3 A

D 7 5 1 3 A

D 6 5 1 4 A

D 7 5 1 4 A

D 8 6 5 1 A

D 9 6 5 1 A

D 8 6 5 7 A

D 9 6 5 7 A

D 10 9 6 5 A

D 11 9 6 5 A

D 12 9 6 5 A

D 10 9 6 8 A

D 11 9 6 8 A

D 12 9 6 8 A

D 13 12 9 6 A

D 14 12 9 6 A
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D 15 12 9 6 A

D 13 12 9 10 A

D 14 12 9 10 A

D 15 12 9 10 A

D 13 12 9 11 A

D 14 12 9 11 A

D 15 12 9 11 A

D 16 14 12 9 A

D 17 14 12 9 A

D 16 14 12 13 A

D 17 14 12 13 A

D 16 14 12 15 A

D 17 14 12 15 A

D 18 16 14 12 A

D 19 16 14 12 A

D 18 16 14 17 A

D 19 16 14 17 A

D 20 19 16 14 A

D 21 19 16 14 A

D 22 19 16 14 A

D 20 19 16 18 A

D 21 19 16 18 A

D 22 19 16 18 A
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B.4 Gaussian Torsion Scan Input File

%chk=BDE.scan1.pos.chk

%nproc=1

%mem=1GB

# opt=modredundant MP2/6-31g(d) Geom=PrintInputOrient

BDE Dihedral Scan at MP2/6-31G*

0 1

C1 -0.03200000151991844 0.18199999630451202 0.48899999260902405

H2 -0.2809999883174896 1.1330000162124634 0.9670000076293945

H3 -0.19099999964237213 -0.6190000176429749 1.218999981880188

H4 -0.7419999837875366 0.01600000075995922 -0.32899999618530273

C5 1.38100004196167 0.18700000643730164 -0.012000000104308128

C6 2.2320001125335693 1.215000033378601 0.11299999803304672

H7 1.7259999513626099 -0.7210000157356262 -0.5090000033378601

H8 1.8890000581741333 2.125999927520752 0.609000027179718

C9 3.638000011444092 1.2289999723434448 -0.40799999237060547

H10 4.343999862670898 1.4329999685287476 0.40799999237060547

H11 3.8919999599456787 0.23899999260902405 -0.8069999814033508

C12 3.8399999141693115 2.2920000553131104 -1.5019999742507935

H13 3.5859999656677246 3.2820000648498535 -1.1019999980926514

C14 5.244999885559082 2.305000066757202 -2.0239999294281006

H15 3.132999897003174 2.0880000591278076 -2.316999912261963

C16 6.0960001945495605 3.3340001106262207 -1.8990000486373901

H17 5.5879998207092285 1.3940000534057617 -2.5190000534057617

H18 5.750999927520752 4.242000102996826 -1.402999997138977

C19 7.508999824523926 3.3380000591278076 -2.4010000228881836

H20 8.220000267028809 3.503999948501587 -1.5829999446868896

H21 7.756999969482422 2.38700008392334 -2.878999948501587

H22 7.669000148773193 4.138999938964844 -3.13100004196167

D 6 9 12 14 S 18 10.000000
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B.5 Sample psfgen Script

# Compilation of 4 Codes written by Harish Vashisth

# (c) Harish Vashisth-- October 2015--UNH

# Modified and compiled by D. Ryan Barden June 2016--UNH

# This script creates a polymer composed of PEO and PB subunits

# Only input needed from command line is number of each type. Run script as:

# vmd -dispdev text -e pb_peo_maker.pgn -args -pb [pb-blocks] -peo [peo-blocks]

#######################################

#Defining variable from arguments #

#######################################

set nPB [lindex $argv 1]

set nPEO [lindex $argv 3]

set pbend [lindex $argv 1]

set peoend [lindex $argv 3]

set resLast [lindex $argv 1]

set resFirst [lindex $argv 3]

#######################################

#Generating PEO section #

#######################################

package require psfgen

topology ./top_patch/top_all35_ethers.rtf

segment E {

for {set i 1} {$i <= $nPEO} {incr i} {

residue $i PEGM

}

}

coordpdb ./monomers/PEGM_noh.pdb E

regenerate angles dihedrals

guesscoord

writepdb polyPEO.pdb

writepsf polyPEO.psf

mol delete all

resetpsf
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#######################################

#generating PB section #

#######################################

package require psfgen

topology ./top_patch/top_all36_cgenff.rtf

topology ./top_patch/top_all35_ethers.rtf

topology ./top_patch/BDE.top

segment B {

for {set i 1} {$i <= $nPB} {incr i} {

residue $i BDE

}

}

coordpdb ./monomers/newBUD_carbon.pdb B

regenerate angles dihedrals

guesscoord

writepdb polyPB.pdb

writepsf polyPB.psf

mol delete all

resetpsf

#######################################

#Aligning PEO with PB #

#######################################

mol new polyPB.pdb

mol addfile polyPB.psf

mol new polyPEO.pdb

mol addfile polyPEO.psf

set pbC1 [atomselect 0 "segname B and resid 1 and name C1"]

set pbC4 [atomselect 0 "segname B and resid $pbend and name C4"]

set compb [atomselect 0 "all and segname B"]

set coor_pbC1 [measure center $pbC1 weight none]

set coor_pbC4 [measure center $pbC4 weight none]

set coor_compb [measure center $compb weight mass]
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set peoC1 [atomselect 1 "segname E and resid 1 and name C1"]

set peoC2 [atomselect 1 "segname E and resid $peoend and name C2"]

set compeo [atomselect 1 "all and segname E"]

set coor_peoC1 [measure center $peoC1 weight none]

set coor_peoC2 [measure center $peoC2 weight none]

set coor_compeo [measure center $compeo weight mass]

set dist_com_c4_pb [vecdist $coor_pbC4 $coor_compb]

set dist_c1_com_peo [vecdist $coor_compeo $coor_peoC1]

set req_dist [expr "$dist_com_c4_pb + $dist_c1_com_peo + 2.0"]

set vec_shift [vecscale $req_dist [vecnorm [vecsub $coor_pbC4 $coor_compb]]]

set new_com_peo [vecadd $coor_compb $vec_shift]

set offset [vecsub $new_com_peo $coor_compeo]

set sel_peo [atomselect 1 "all"]

$sel_peo moveby $offset

set moved_peo [atomselect 1 "all"]

$moved_peo writepdb moved_polyPEO.pdb

mol delete all

resetpsf

#######################################

#Combining the two chains #

#######################################

package require psfgen

topology ./top_patch/top_all36_cgenff.rtf

topology ./top_patch/top_all35_ethers.rtf

topology ./top_patch/BDE.top

topology ./top_patch/patch.top

readpsf polyPB.psf

coordpdb polyPB.pdb

readpsf polyPEO.psf

coordpdb moved_polyPEO.pdb
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patch PBEO B:${resLast} E:1

regenerate angles dihedrals

guesscoord

writepdb pb${resLast}peo${resFirst}.pdb

writepsf pb${resLast}peo${resFirst}.psf

#######################################

#Keep it clean #

#######################################

mv pb${resLast}peo${resFirst}.pdb ./single_chains_pb_peo/

mv pb${resLast}peo${resFirst}.psf ./single_chains_pb_peo/

rm moved_polyPEO.pdb

rm polyPB.pdb

rm polyPB.psf

rm polyPEO.pdb

rm polyPEO.psf

exit
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B.6 merge.tcl

############################################################################

# This script generates a hybrid membrane of pb12peo9 BCPs and POPC #

# lipids by combining two pristine membrane structures with the same area. #

############################################################################

#define variables from the membrane file and pap channel

set popc popc_mem

set bcp pb12peo9_eq

#call popc files in vmd and center

mol new $popc.psf

mol addfile $popc.pdb

set lip [atomselect top all]

#Center and identify desired lipids

$lip moveby [vecinvert [measure center $lip]]

$lip moveby {0 0 30}

$lip writepdb popc_TEMP_center.pdb

$lip set beta 1

set lip_keep [atomselect top "segid L11 or segid L12 or segid L13 or segid L14"]

$lip_keep set beta 0

set badlipid [atomselect top "beta > 0"]

set seglistlipid [$badlipid get segid]

set reslistlipid [$badlipid get resid]

#Loop generating file with desired lipid membrane half

mol delete all

package require psfgen

resetpsf

readpsf $popc.psf

coordpdb popc_TEMP_center.pdb

foreach segid $seglistlipid resid $reslistlipid {

delatom $segid $resid

}

writepsf popc_half.psf

writepdb popc_half.pdb
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#call pb files in vmd and center

mol delete all

mol new $bcp.psf

mol addfile $bcp.pdb

set pb [atomselect top all]

#Center and identify desired pb

$pb moveby [vecinvert [measure center $pb]]

$pb writepdb bcp_TEMP_center.pdb

$pb set beta 1

set top {}

set B [atomselect top "chain B"]

for {set j 0 } { $j < 99 } { incr j } {

set seltext "segname B${j} or segname E${j}"

set pb_keep [atomselect top $seltext]

$pb_keep set beta 0

}

set badpb [atomselect top "beta > 0"]

set seglistpb [$badpb get segid]

set reslistpb [$badpb get resid]

#Loop generating file with desired bcp membrane half

mol delete all

package require psfgen

resetpsf

readpsf $bcp.psf

coordpdb bcp_TEMP_center.pdb

foreach segid $seglistpb resid $reslistpb {

delatom $segid $resid

}

writepsf bcp_half.psf

writepdb bcp_half.pdb
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#combining the temporary files

mol delete all

package require psfgen

resetpsf

readpsf popc_half.psf

coordpdb popc_half.pdb

readpsf bcp_half.psf

coordpdb bcp_half.pdb

writepsf popc_pb12_peo9_raw.psf

writepdb popc_pb12_peo9_raw.pdb

exit
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B.7 Density of Species Script

# This script was used to perform the density of species calculation

# for PB-PEO BCP membranes.

mol load dcd chop.dcd psf solvated.psf

set nf [molinfo top get numframes]

set dz 2

set ddz [expr $dz./2.]

set zt 120

set lw 80

set vol [expr $lw*$lw*$dz]

set jt [expr $zt+1]

set off [expr $zt./2.]

set norm [expr $nf*$vol]

#####################################################

#### Loop over all frames and align COM. ####

#####################################################

for {set i 0} {$i < $nf} {incr i} {

puts "frame $i of $nf"

set all [atomselect top "all" frame $i]

set mem [atomselect top "lipid or chain B or chain E" frame $i]

$all moveby [vecinvert [measure center $mem weight mass]]

#####################################################

##### Loop over segments #####

#####################################################

for {set j 0} {$j < $jt} {incr j $dz} {

set zcen [expr $j-$off]

set zmin [expr $zcen-$ddz]

set zmax [expr $zcen+$ddz]

puts "j is $j z is $zcen bin is $zmin < z < $zmax"
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set sellip [atomselect top "lipid and z<$zmax and z>$zmin" frame $i]

set selpb [atomselect top "chain B and z<$zmax and z>$zmin" frame $i]

set selpeo [atomselect top "chain E and z<$zmax and z>$zmin" frame $i]

set selwat [atomselect top "water and z<$zmax and z>$zmin" frame $i]

set selpap [atomselect top "chain A and z<$zmax and z>$zmin" frame $i]

set denlip($i.$j) [llength [$sellip get index]]

set denpb($i.$j) [llength [$selpb get index]]

set denpeo($i.$j) [llength [$selpeo get index]]

set denwat($i.$j) [llength [$selwat get index]]

set denpap($i.$j) [llength [$selpap get index]]

}

}

#####################################################

##### Average segments #####

#####################################################

set outfile1 [open den_lipid.dat w]

set outfile2 [open den_pb.dat w]

set outfile3 [open den_peo.dat w]

set outfile4 [open den_wat.dat w]

set outfile5 [open den_pap.dat w]

for {set j 0} {$j < $jt} {incr j $dz} {

puts "averaging bin $j"

set lipsum($j) 0

set pbsum($j) 0

set peosum($j) 0

set watsum($j) 0

set papsum($j) 0

for {set i 0} {$i < $nf} {incr i} {

set lipsum($j) [expr $lipsum($j) + $denlip($i.$j)]

set pbsum($j) [expr $pbsum($j) + $denpb($i.$j)]

set peosum($j) [expr $peosum($j) + $denpeo($i.$j)]

set watsum($j) [expr $watsum($j) + $denwat($i.$j)]

set papsum($j) [expr $papsum($j) + $denpap($i.$j)]

}
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puts $outfile1 "[expr $j-$off] [expr $lipsum($j)/$norm.]"

puts $outfile2 "[expr $j-$off] [expr $pbsum($j)/$norm.]"

puts $outfile3 "[expr $j-$off] [expr $peosum($j)/$norm.]"

puts $outfile4 "[expr $j-$off] [expr $watsum($j)/$norm.]"

puts $outfile5 "[expr $j-$off] [expr $papsum($j)/$norm.]"

}

close $outfile1

close $outfile2

close $outfile3

close $outfile4

close $outfile5

exit

B.8 Root Mean Squared Displacement

# This script was used to calculate the RMSD of the PAP channel in all

# membrane environments.

mol load dcd ../pap_vac.dcd psf ../channelA.psf

set outfile [open rmsd_PAP.dat w];

set nf [molinfo top get numframes]

set frame0 [atomselect top "chain A" frame 0]

set sel [atomselect top "chain A"]

set dt 0.02

# rmsd calculation loop

for {set i 0 } {$i < $nf } { incr i } {

$sel frame $i

$sel move [measure fit $sel $frame0]

puts $outfile "[expr "$i*$dt"] [measure rmsd $sel $frame0]"

}

close $outfile

mv rmsd_PAP.dat ../data_files/

exit
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B.9 PAP Orientation

# This script was used to measure the orientation angle of the PAP channel

# in all membrane environments.

mol load dcd ../pap_vac.dcd psf ../channelA.psf

set outfile [open angle_pap.dat w];

set nf [molinfo top get numframes]

set seltop "chain A and (name C32 or name C36 or name C31 or name C35 or name C4

or name C30 or name C34 or name C29 or name C33 or name C5)"

set selbot "chain A and (name C1 or name C2 or name C17 or name C21 or name C18

or name C22 or name C19 or name C23 or name C20 or name C24)"

set top [atomselect top $seltop]

set bot [atomselect top $selbot]

set PI 3.14159265359

set dt 0.02

for {set i 0 } {$i < $nf } { incr i } {

set xy {}

$top frame $i

$bot frame $i

set tCOM [measure center $top]

set bCOM [measure center $bot]

set norm [vecsub $tCOM $bCOM]

set x [lindex $norm 0]

set y [lindex $norm 1]

lappend xy $x

lappend xy $y

lappend xy 0

set n [veclength $norm]

set ij [veclength $xy]

set sin [expr $ij/$n]

set theta [expr asin($sin)]

puts $outfile "[expr "$i*$dt"] [expr $theta*180/$PI]"

}

close $outfile

exit
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B.10 PAP Diffusivity

# This script was used to measure the displacement of the PAP channel

# in all membrane environments.

mol new ../unwrap.dcd waitfor all autobonds off

mol addfile ../solvated.psf

set nf [molinfo top get numframes]

set seltxt "chain A"

set sel1 [atomselect top $seltxt]

set outfile1 [open pap_trajectory.dat w];

set slist1 {}

set system [atomselect top "all"]

set dt 0.02

for {set i 0 } {$i < $nf } { incr i } {

$sel1 frame $i

$system frame $i

set com_system [measure center $system weight mass]

set com1_c [measure center $sel1 weight mass]

set com1_r [vecsub $com1_c $com_system]

puts $outfile1 "[expr "$i*$dt"] $com1_r"

}

close $outfile1

mol delete all

mv pap_trajectory.dat ../data_files/

exit
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B.11 Channel Permeability

# This script was used to compute permeability using collective diffusion

# model of Zhu et al. (2004) Physical review letters 93.22: 224501

mol load psf ../solvated.psf

mol addfile ../realigned_aligned_npt03.dcd waitfor all autobonds off

set nf [molinfo top get numframes]

set outfile1 [open n_trajectory_hv.dat w];

set outfile2 [open n_water.dat w];

set seltxt "chain A and (name C35 or name C31 or name C27 or name C23 or name C19 or name C39 or name CC3 or name C26 or name C30 or name C34 or name C38 or name C18 or name C22 or name CC2 or name C25 or name C29 or name C33 or name C37 or name C17 or name C21 or name CC1 or name C3 or name C4 or name C5 or name C6 or name C1 or name C2 or name CC5 or name C28 or name C32 or name C36 or name C40 or name C20 or name C24 or name CC4)"

set vol [atomselect top $seltxt]

set all [atomselect top all]

set COM [measure center $vol weight mass]

puts "Center of chosen volume: $COM"

set x [lindex $COM 0]

set y [lindex $COM 1]

set z [lindex $COM 2]

set zmax [expr $z+4]

set zmin [expr $z-4]

puts "x:$x y:$y z:$z zmax:$zmax zmin: $zmin"

set seltxt1 "water and (sqrt(sqr(x-0.0)+sqr(y-0.0))<3 and z<$zmax and z>$zmin)"

puts "seltxt1: $seltxt1"

set sel [atomselect top $seltxt1]

set nt 0
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##################################################

# n(t) code #

##################################################

for {set i 1 } {$i < $nf } { incr i } {

$sel frame $i

$sel update

# Get indices of all water atoms in selection, their resids and segnames

set sel1 [$sel get index]

puts "sel1 contains: $sel1"

puts "sel1: [llength $sel1]"

set wresids [$sel get resid]

set wsegnames [$sel get segname]

#This block of code finds unique resids and segnames of each

#whole water molecule in volume

set pair {}

set newpair {}

set counter 1

for {set w 0 } {$w < [llength $sel1] } { incr w 1} {

set r [lindex $wresids $w]

set s [lindex $wsegnames $w]

# grow the list pair with resid and segname grouped for each index

set temp {}

lappend temp $r

lappend temp $s

lappend pair $temp

# Compare if each group in the list pair is repeated at least

# three times. This ensures that only those water molecules whose

# three atoms were found are counted.

if {$w != 0} {

if {[lindex $pair $w] == [lindex $pair [expr $w-1]] } {

set counter [expr $counter+1]

}

}
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if {$counter == 3 } {

lappend newpair [lindex $pair $w]

set counter 1

}

}

##sort the list newpair for unique ids although it is already unique, i think-----

puts "pair: $pair "

puts "unique pairs: [lsort -unique $pair]"

puts "new pair: $newpair "

puts "new unique pairs: [lsort -unique $newpair]"

# Separate each group in the list newpair to get resids and segnames

set uniquewresids {}

set uniquewsegnames {}

foreach pr [lsort -unique $newpair] {

lappend uniquewresids [lindex $pr 0]

lappend uniquewsegnames [lindex $pr 1]

}

# We need to cycle only through unique whole waters for dz, so get a counter m

set m [llength [lsort -unique $newpair]]

puts "No. of full water molecules in volume at frame $i: $m"

puts "resids of full waters found are: $uniquewresids"

puts "segnames of full waters found are: $uniquewsegnames"

puts "Check on list sizes resids: [llength $uniquewresids] segnames:

[llength $uniquewsegnames]"

set sum 0

set dt 0.02
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if 1 {

for {set n 0 } {$n < $m } { incr n} {

set watersel [atomselect top "water and resid [lindex $uniquewresids $n]

and segname [lindex $uniquewsegnames $n]"]

set waterresid [lsort -unique [$watersel get resid]]

set watersegname [lsort -unique [$watersel get segname]]

puts "At frame $i info of water [expr $n+1] resid: $waterresid segname:

$watersegname"

set watcurr [atomselect top "water and resid $waterresid and segname

$watersegname" frame $i]

set watprev [atomselect top "water and resid $waterresid and segname

$watersegname" frame [expr $i-1]]

set wcomcurr [measure center $watcurr weight mass]

set wcomprev [measure center $watprev weight mass]

puts "wcomcurr: $wcomcurr wcomprev: $wcomprev"

set zcurr [lindex $wcomcurr 2]

set zprev [lindex $wcomprev 2]

puts "zcurr: $zcurr zprev:$zprev"

# Check if any chosen water within our volume has current z outside the range

# -4.0 to +4.0

if { ($zcurr >=$zmax || $zcurr <=$zmin) } {

puts "CATASTROPHE: Problem reported at frame $i for $waterresid segname

$watersegname zcurr: $zcurr"

}

set tempdist [expr $zcurr-$zprev]

set dzmax [expr $zcurr-$zmax]

set dzmin [expr $zcurr-$zmin]



Appendix B. Input Files and Sample Scripts 110

if {$zprev >= $zmax} {

puts "water on top was outside"

set dz $dzmax

} elseif {$zprev <= $zmin} {

puts "water on bottom was outside"

set dz $dzmin

} else {

puts "water is still inside"

set dz $tempdist

}

set sum [expr $sum+$dz]

}

puts "At frame $i sigma dz is: $sum"

set dn [expr $sum/8.0]

puts "At frame $i dn is: $dn"

set nt [expr $nt + $dn]

puts "At frame $i nt is: $nt"

puts $outfile1 "[expr "$i*$dt"] $dn $nt 0 0"

puts $outfile2 "[expr "$i*$dt"] $m"

puts "Finished frame $i of $nf"

}

}

close $outfile1

close $outfile2

exit
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Appendix C

Mini Tutorials

C.1 Molefacture

The most efficient way to build polymers of any size is to first build the corresponding monomer
in molefacture. Molefacture is better suited to building relatively small and simple molecules. It is
natural then to first build the monomer, which will act as a building block for generating polymer
chains. This monomer can then be used with tcl scripts to automatically generate polymer chain
lengths of any size. This is much faster than building a complete polymer in molefacture every time
a new chain is desired. It will become apparent that using molefacture can be time-consuming.

To begin Molefacture, launch VMD [30] and navigate to the Extensions tab. Under the
Modeling subsection, find Molefacture. Click Start Molefacture to continue. This will bring
the main graphical user interface(GUI) for Molefacture. Start your molecule by navigating to
build → New molecule from fragment, and select a base molecule from the drop down menu.
For example, to build the monomer sub-unit of polybutadiene, we will select butane. The new
structure will appear in the VMD [30] display. The monomer for polybutadiene is essentially 2-
butene. This makes the build relatively straight forward. Now that we have our base structure, we
need to delete one hydrogen atom from the carbon atoms at positions 2 and 3. This can be done
by clicking on the hydrogen atom in the VMD display, or highlighting it in the atom list and then
pressing “Delete Selected Atom”. When an atom is selected, it is highlighted with an orange sphere.
If you are building a complex molecule, you can replace hydrogens with small organic groups. After
selecting the hydrogen you wish to replace, simply select a fragment from the list located under
build→ Replace hydrogen with fragment. If the wrong hydrogen has been deleted, the user can
replace it by selecting the atom it was bonded to and clicking “Add hydrogen to selected atom”
from the build menu or the GUI. This may be helpful when building larger and more complex
molecules.

Next, we need to convert the single bond between the second and third carbon to a double
bond. Under the Bonds section of the GUI, select the bond for carbon atoms 2 and 3. The two
orange spheres signify the bonded atoms, while the two yellow spheres signify the other two atoms
that make up the dihedral group. After raising the bond order, the purple markers signifying empty
orbitals should be gone, while the bond should appear to have a cylinder surrounding a portion of
it representing the new double bond. The last thing we should do before moving on is to delete
one hydrogen atom from each terminal carbon. We are doing this because we are modeling a single
unit of a polymer. The empty orbitals will be addressed in section C.1.1 when we build a patch.
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Figure C.1: Snapshots of modifications to the 2-butene fragment in Molefacture

The most important part of building a molecule in molefacture is manually editing each atom
in the atom list. This is done by highlighting an atom and clicking the “Edit selected atom” button
on the GUI. This will open a small window containing 4 entries. We will need to change the name,
type, and charge for each atom. A good strategy from naming atoms is to work left to right naming
all non-hydrogen atoms with their periodic table symbol followed by a unique number. If only a
single atom of a given element appears in the structure, the number is unnecessary. Larger and
more complex structures may require a different strategy but this approach is effective for small
monomers. For our monomer, we will name our carbons C1, C2, C3, and C4. Hydrogens are
named using their periodic table symbol and 2 additional numbers. The first corresponds to the
number of the carbon its bonded to, while the second is a unique identifying number. For example,
the three hydrogens bonded to carbon C1 will be named H11, H12, and H13. This method will
have problems if there are hydrogens bonded to elements other than carbon in your structure. A
suggested fix is to replace the first number with the name of the atom to which it is bonded. For
example, if there was a nitrogen named N1, name the hydrogen bonded to it as HN11. Every atom
in your structure needs a unique name for the purposes of applying patches and generating PSF
files.

Atom types are determined by the orbital bond structure. When editing the atom type and
charge, you will need to browse structures previously defined in existing topology files. It is im-
portant to stay consistent when assigning atom types as they are not arbitrary. Atoms types are
what specify force-field parameters. In the top_all_36cgenff.rtf topology file, there is an entry
for 2-hexene which is included below. This molecule has all the information we will need to define
our monomer as well as the patches we will build in Section C.1.1.
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RESI HXE2 0.00 ! C6H12 2-hexene, yin/adm jr.

GROUP

ATOM C1 CG331 -0.27 ! H12 H13

ATOM H11 HGA3 0.09 ! \ |

ATOM H12 HGA3 0.09 ! H13-C1 H31 H51 H52

ATOM H13 HGA3 0.09 ! \ / \ /

GROUP ! C2=C3 C5 H61

ATOM C2 CG2D1 -0.15 ! / \ / \ /

ATOM H21 HGA4 0.15 ! H21 C4 C6-H62

GROUP ! / \ \

ATOM C3 CG2D1 -0.15 ! H41 H42 H63

ATOM H31 HGA4 0.15 !

GROUP

ATOM C4 CG321 -0.18

ATOM H41 HGA2 0.09

ATOM H42 HGA2 0.09

GROUP

ATOM C5 CG321 -0.18

ATOM H51 HGA2 0.09

ATOM H52 HGA2 0.09

GROUP

ATOM C6 CG331 -0.27

ATOM H61 HGA3 0.09

ATOM H62 HGA3 0.09

ATOM H63 HGA3 0.09

Atoms C2 and C3 will be assigned atom types CG2D1 with a charge of -0.15 as they are defined
above. The hydrogens bonded to those atoms should be assigned types consistent with those
described as well. We need to keep in mind that we are defining atom types for a segment of a
polymer. When assigning atom type to the C1 and C4 atoms in our structure, we will use the
information for the C4 atom in 2-hexene. We are assigning these atom types because this structure
should be modeled after a single unit appearing within a polymer. Once all of the atoms have been
properly identified, click on the “Edit segname/resname/chain” button. We will change the entry
for resname to “BDE” and chain to “B”. Click the “Apply” button followed by “Done”. Navigate
to File → write top file and File → write psf and pdb files to generate the necessary outputs.
I suggest using the resname of the structure as the prefix for all of the output files. An example of
the resulting topology file can be found in Section C.1.1.

C.1.1 Patches and Topology File Modifications

Patches are entries that appear at the end of topology files. They contain information that allows
larger structures to be built from multiple residues or create modified residues. This is done with
the psfgen tool included in VMD [30]. A brief description of how to utilize the psfgen feature is
outlined in Section C.2, while a more comprehensive tutorial can be found online. In this section,
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we describe how to manually build a patch and edit the topology file we created using molefacture.
A copy of the original topology file generated by Molefacture is presented below. This is followed
by the full modified file and a numbered list containing detailed information of all the changes
made to the file. The modified file contains numbered entries next to the new/modified lines. The
numbers correspond to the detailed description in the list of changes.

Original Topology File

*>>>>>> CHARMM topology file generated by Molefacture <<<<<<

27 1

MASS 1 CG321 12.01100 C

MASS 1 HGA2 1.00794 H

MASS 1 CG2D1 12.01100 C

MASS 1 HGA4 1.00794 H

AUTO ANGLES DIHE

RESI BDE 0.00

GROUP

ATOM C1 CG321 -0.18000

ATOM H11 HGA2 0.09000

ATOM H12 HGA2 0.09000

ATOM C2 CG2D1 -0.15000

ATOM H21 HGA4 0.15000

ATOM C3 CG2D1 -0.15000

ATOM H31 HGA4 0.15000

ATOM C4 CG321 -0.18000

ATOM H41 HGA2 0.09000

ATOM H42 HGA2 0.09000

BOND C1 H11 C1 H12 C1 C2

BOND C2 H21 C2 C3 C3 H31 C3 C4

BOND C4 H41 C4 H42

END
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Modified Topology File

*>>>>>> Modified CHARMM topology file generated by Molefacture <<<<<<

27 1

MASS 1 CG321 12.01100 C

MASS 1 CG331 12.01100 C ! 1. New mass entry for atom type CG331.

MASS 1 CG2D1 12.01100 C

MASS 1 HGA2 1.00794 H

MASS 1 HGA4 1.00794 H

MASS 1 HGA3 1.00794 H ! 2. New mass entry for atom type HGA3.

AUTO ANGLES DIHE

DEFAULT FIRST HBD1 LAST HBD4 ! 3. Line specifying the default patches

! applied to the residue.

RESI BDE 0.00

GROUP ! 4. Map of the atoms.

ATOM C1 CG321 -0.18000 ! H11 H12

ATOM C3 CG2D1 -0.15000 ! \ |

ATOM H11 HGA2 0.09000 ! (C4)-C1 H31

ATOM H12 HGA2 0.09000 ! \ /

ATOM C2 CG2D1 -0.15000 ! C2=C3

ATOM H21 HGA4 0.15000 ! / \

ATOM H31 HGA4 0.15000 ! H21 C4-(C1)

ATOM C4 CG321 -0.18000 ! | \

ATOM H41 HGA2 0.09000 ! H41 H42

ATOM H42 HGA2 0.09000 !

BOND C1 H11 C1 H12 C1 C2

BOND C3 C2 C3 H31 C3 C4 C2 H21

BOND C4 H41 C4 H42

BOND C1 -C4 ! 5. Bond connecting two monomers

! 6. Internal coordinates table

IC -C3 -C4 C1 C2 0.000 0.000 180.0 0.000 0.000

IC -C4 C1 C2 C3 0.000 0.000 180.0 0.000 0.000

IC C1 C2 C3 C4 0.000 0.000 180.0 0.000 0.000

IC C2 C3 C4 +C1 0.000 0.000 180.0 0.000 0.000
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! 7. Two new patches for terminal residues

PRES HBD4 0.00 ! Complete terminal methyl at C4

!

ATOM H43 HGA3 0.09 !

ATOM C4 CG331 -0.27 !

ATOM H41 HGA3 0.09 !

ATOM H42 HGA3 0.09 !

BOND H43 C4

PRES HBD1 0.00 ! Complete terminal methyl at C1

!

ATOM H13 HGA3 0.09 !

ATOM C1 CG331 -0.27 !

ATOM H11 HGA3 0.09 !

ATOM H12 HGA3 0.09 !

BOND H13 C1

END

List of Modifications

1. New mass entry for atom type CG331: Patches are essentially used to change existing atom
types, add new atoms/bonds, and delete existing atoms/bonds. Our terminal carbon atoms
are a different atom-type than those we defined for our interior. We need to define mass for
this terminal carbon atom-type (CG331). This atom type can be seen in the topology for
2-hexene included in Section C.1.

2. New mass entry for atom type HGA3: Similar to the carbon atom, we need to define mass
for the hydrogens with atom-type HGA3. This atom type can be seen in the topology for
2-hexene included in Section C.1.

3. Line specifying the default patches applied to the residue: The psfgen tool in VMD [30] builds
structures in multiple segments, where several residues make up each segment. This line will
instruct psfgen to automatically apply patch HBD1 to a BDE residue if it is the first residue
in the segment. The line also instructs psfgen to apply patch HBD4 to a BDE residue if it is
the last residue on a segment. Both of these patches are defined in item 7.

4. Map of the atoms: This addition is optional and will not be read by any software. It is
advisable as it will give anyone who is viewing the file a clear picture of which atoms are
connected.

5. Bond connecting two monomers: We created our monomer with the intent of making a larger
polymer. Adding this bond will instruct psfgen to connect the C4 atom of a BDE residue with
the C1 atom of the next BDE residue. The “-” appearing prior to C4 informs psfgen that
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these atoms are not on the same residue. If the “-” was not present, psfgen would erroneously
create a bond between the C1 and C4 atom of the same residue.

6. Internal coordinates table: As residues are added to a segment, psfgen will guess their posi-
tions. You will likely end up with an initial residue that looks good, while the rest will have
many overlapping atoms. The internal coordinates table will give psfgen instructions on how
to place atoms relative to one another. This requires some trial and error to get it right, but
the result does not have to be perfect. Atoms just need to be separated from one another.
Energy minimization prior to simulation will adjust any unrealistic bond lengths.

7. Two new patches for terminal residues: Patches are identified by the heading PRES, short for
patch residue. On the same line as the heading is the patch name and the overall charge of
the patch. Our patches are named HBD4 and HBD1. The HBD4 patch will be applied to the
C4 carbon while the HBD1 will be applied to the C1 carbon. The patches will override the
information contained in the main RESI entry. In the HBD4 patch, we can see that the C4,
H41, and H42 atoms will be assigned new atom types. There is also a new atom, H43, defined
to cap the terminal carbon. The last line of the patch defines the bond between the C4 atom
and the new H43 atom. These patches were modeled after the C1 atom in the topology for
2-hexene included in section C.1.

Patches Connecting Two Different Polymer Segments

To combine two different types of polymer segments, a unique patch must be created for that
combination. In this section, we use the example of a patch created to combine a segment of
polybutadiene (PB) with a segment of polyethyleneoxide (PEO). It is convenient to store patches
of these type together in a separate topology file. The topology file can be appended as new
polymers are added to your structure library. These patches start just as before with the heading
PRES followed by the unique patch name and charge. In this example, our patch is given the
name PBEO and carries a charge of 0.17. An important difference to note in these patches is the
number in front of the atom name. It is likely that two different residues will contain atoms with
the same name. To ensure the patch works as intended, each residue is identified by a number.
In this example, our PB monomer is denoted with a 1 while the PEO monomer is denoted with a
2. After the new atom types are specified, the next two lines instruct psfgen to delete a hydrogen
atom from each of the residues to make space for the new bond. The new bond is defined in the
next line followed by an internal coordinates table.
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PRES PBEO 0.17

GROUP ! H41 H1A

ATOM 1C4 CG321 -0.18 ! | |

ATOM 1H41 HGA2 0.09 !-C3--C4---C1-O1

ATOM 1H42 HGA2 0.09 ! | |

GROUP ! H42 H1B

ATOM 2C1 CC32A -0.01 !

ATOM 2H1A HCA2A 0.09 !

ATOM 2H1B HCA2A 0.09 !

DELE ATOM 1H43

DELE ATOM 2H1C

BOND 1C4 2C1

IC 1C2 1C3 1C4 2C1 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C3 1C4 2C1 2O1 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1C4 2C1 2O1 2C2 0.0000 0.0000 180.0000 0.0000 0.0000

C.2 psfgen

Now that we have made the necessary changes to our topology file and created the proper patches,
we can use psfgen to create polymer chains of any desired length. In this section we will outline
how to use psfgen to create our polymers. A tcl-script that will generate a polybutadiene and
polyethyleneoxide block copolymer can be found in appendix B.5. Examples contained in this
section are excerpts from that psfgen script.

The first step in creating a block copolymer is to create each polymer separately. The first
line in the example below tells VMD [30] that we wish to use the psfgen package. The lines
beginning with topology instruct psfgen to read the topology file listed. These files contain the
information required to build the desired structure. The next line instructs psfgen that we would
like to build a new segment named “B”. The brackets should contain a numbered list of each of
the residues in the segment defined by a residue name. This example has been adopted from an
automated script so that the list is replaced with a for loop. In the for loop, the variable nPB

denotes the length of the polymer chain. The command coordpdb tells VMD [30] to use the pdb
file specified as a template to set coordinates for the segment specified. The command regenerate

angles dihedrals tells psfgen to generate all the angle and dihedral terms in the structure from
the bond information contained within the topology file. The last lines instruct psfgen to guess
the coordinates of missing atoms in the structure, write the specified pdb/psf pair for the new
structure, remove the structure from VMD [30], and clear all topology information from psfgen.
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#######################################

#generating PB section #

#######################################

package require psfgen

topology ./top_patch/top_all36_cgenff.rtf

topology ./top_patch/top_all35_ethers.rtf

topology ./top_patch/BDE.top

segment B {

for {set i 1} {$i <= $nPB} {incr i} {

residue $i BDE

}

}

coordpdb ./monomers/newBUD_carbon.pdb B

regenerate angles dihedrals

guesscoord

writepdb polyPB.pdb

writepsf polyPB.psf

mol delete all

resetpsf

Once we have created two different polymers of the desired length, we combine them into a single
block copolymer. Before doing this, it is necessary to load the two structures into VMD [30] and
move them so that they are properly aligned. It is best if the two residues which are to be patched
together are relatively close to one another. This will guarantee that the new bond connecting the
structure can quickly be fixed during minimization. A new PDB of the polymer that has been
moved should be generated before moving forward. An example of how to automate the alignment
process can be seen in Appendix B.5. To combine the structures, the user should first call psfgen as
before. The user then needs to load the topology files containing all structure and patch information
needed. The user then instructs psfgen to read the PSF file of each of the polymers and store the
coordinates from the desired PDB files. The command patchinstructs psfgen to apply the desired
patch. In the example below, psfgen is instructed to apply the patch PBEO to the last residue
of segment B with the first residue of segment E. Note that this example was taken from an
automated script, ${resLast} calls the stored variable reslast. For instance, if we wanted to
connect a PB segment with 12 units to a PEO segment, reslast would be 12. The remaining lines
instruct psfgen to generate all the angle and dihedral terms in the structure, guess any unspecified
atomic coordinates, and write the PDB/PSF pair of the finished block copolymer structure.
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#######################################

#Combining the two chains #

#######################################

package require psfgen

topology ./top_patch/top_all36_cgenff.rtf

topology ./top_patch/top_all35_ethers.rtf

topology ./top_patch/BDE.top

topology ./top_patch/patch.top

readpsf polyPB.psf

coordpdb polyPB.pdb

readpsf polyPEO.psf

coordpdb moved_polyPEO.pdb

patch PBEO B:${resLast} E:1

regenerate angles dihedrals

guesscoord

writepdb pb${resLast}peo${resFirst}.pdb

writepsf pb${resLast}peo${resFirst}.psf

C.3 Force Field Toolkit (ffTK)

As mentioned in the beginning of Section 3.3, the size of structures should be kept to a minimum
when generating new parameters. Dimers should be sufficient for most polymers, however there
are exceptions. In Sections C.3 through C.3.4, we will walk through an example of generating the
missing parameters for a polybutadiene dimer. Before launching VMD [30], create a new directory
with the following sub-directories: 1-sysPrep, 2-geomOpt, 3-chargeOpt, 4-baOpt, and 5-dihOpt to
keep files organized. To access Force Field Toolkit [42] (ffTK), launch VMD [30] and navigate
to Extensions → Modeling → Force F ield Toolkit. This will bring up the ffTK [42] graphical
user interface (GUI). Under the “BuildPar” tab, expand the “Identify Missing Parameters” section.
Add the PDB/PSF pair and any existing parameter files using the appropriate file dialogs. Once
you have done this, click on “Analyze”. This will populate the four sections below with any missing
parameters. For the polybutadiene dimer, we are only missing one dihedral angle (see Fig. D.2).

All other bonds, angles and non-bonded parameters are defined in the CHARMM36 [31] force
field. This will not be typical of all dimers. There will often be missing bond and angle parameters.
Non-bonded parameters should always be defined as they are unique to each atom type. Instructions
on how to generate and optimize bond/angle parameters are included in this section even though
we will not need to do them for this particular example. The ffTK tutorial [45] located at www.ks.
uiuc.edu/Training/Tutorials/ contains detailed instructions on how to complete those steps.

www.ks.uiuc.edu/Training/Tutorials/
www.ks.uiuc.edu/Training/Tutorials/
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Now that we have identified our missing parameters, we need to generate an output parameter file
that will contain our newly developed parameters. Click “SaveAs” next to the “Output PAR File”
file dialogue box. Choose a location for the parameter file and give it a name of your choice with
the extension .par.

C.3.1 Geometry Optimization

In this section we will use Gaussian [43] to optimize the geometry of our structure. This is an
important step as it corrects any unrealistic structures created by psfgen. If this step is skipped,
any Gaussian [43] runs to calculate bonds/angles and dihedrals will likely fail. Give ffTK [42] the
location of your original PDB file and create a new Gaussian [43] output file by clicking “SaveAs”
next to the “Output GAU File” file dialogue box. Save this file as geomOpt.gau in the 2-geomOpt
directory. An example of the guassian input file generated by ffTK [42] is included Appendix B.1.

All the necessary output information, including the optimized geometry, will be written to the
log file geomOpt.log. Populate the file dialogue boxes in the “Write Updated PDB” section with the
necessary file locations. Click “Load Gaussian LOG File” to see the geometry optimized structure
in the visualization window. After inspection, click “Write Optimized Geometry to PDB” to create
the new PDB file. Use the geometry optimized PDB file in the remaining steps.

C.3.2 Charge Optimization

Under the “Water Int.” tab (Fig. D.4), populate the necessary file dialogue boxes in the “In-
put/Output” section. Click “Load PSF/PDB” followed by “Basename From TOP” to load the
PDB/PSF pair into ffTK [42] and set the base-name. After this is done, click “AutoDetect In-
dices” under the “Hydrogen Bonding Atoms” section. This will generate a list of donor and accep-
tor atoms in your structure. Click the “Write Gaussian Input Files” button to generate all of the
charge optimization files. There will be a file for each of the atoms in the donor and acceptor lists
as well as files called wat-sp.gau, ODE-sp-HF.gau, . If you wish to visualize the water interaction
sites, click “Load GAU Files”. An example of each of these files can be seen in Appendix B.2. Each
of these files were run in Gaussian [43], again directing the output to a log file with the same prefix
as the input. If you wish to visualize the results, click “Load LOG files”, otherwise continue on to
the next step on charge optimization.

Under the “Opt. Charges” tab, expand the “Input” section. Specify the location of your
PDB/PSF files. Click “Load PSF/PDB” followed by “Resname From TOP”. Add any parameter
files you may have, including the new file generated for the molecule. Under the “Charge Con-
straints” section (Fig. D.6), click the “Guess” button to load all of the charge groups. Highlight
any groups of hydrogens with a charge of +0.09 and remove them by pressing “Delete”. Set the
“Net Charge” to 0 and press “Calculate from PSF”. Under the “QM Target Data” section (Fig.
D.7), populate the file dialogue boxes with all the necessary files.

There is no need to make changes under the “Advanced Settings” section. More information
about this section can be found here http://www.ks.uiuc.edu/Research/vmd/plugins/fftk.
Navigate to the “Results” section and start the optimization process by clicking “Run Optimiza-
tion”. To run successive iterations, after the optimization is complete, highlight the results and

http://www.ks.uiuc.edu/Research/vmd/plugins/fftk
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click “Set As Initial”. Continue doing this until there is a negligible difference between the “Prev.
Charge” and “Final Charge” values. Once the charges have converged, create a new PSF file
containing the optimized charges with the “Update PSF with new charges” file dialogue box. If
the charges are significantly different than those in the initial PSF, it is a good idea to update
the original topology file with the new charges. For the polybutadiene dimer, there is a negligible
change in the charges so this is unnecessary.

C.3.3 Bond Angle Optimization

Under the “Calc. Bonded” tab (Fig. D.8), populate the file diologue boxes under the “In-
put/Output Settings” section. Generate the required Gaussian [43] input file by clicking “Write
Gaussian Input File”. This will generate the file hess.gau, which is included in Appendix B.3. Run
this file in gaussian and direct the output to a file called hess.log.

The remainder of section C.3.3 contains examples of optimizing the bond and angle parameters
of a polymethyloxazoline dimer. After the program has completed, navigate to the “Opt. Bonded”
tab and expand the “Input” section (Fig. D.9). Populate the file dialogues with the appropriate
file locations and add any additional parameter files. ffTK [42] requires the use of NAMD [33] to
optimize bonds and angles. A copy of the NAMD [33] binary file must be located locally on your
workstation. Specify the location of the NAMD [33] binary file in the proper file dialogue box.

Open the “Parameters to Optimize” section (Fig. D.10). Click the “Guess” button to add the
missing parameters along with initial guesses provided by ffTK [42]. All of the initial guesses can
be edited by the user. Entries can also be manually added or removed. This will not be necessary
to complete the work presented in Chapter 3.

Under the “Advanced Settings” tab (Fig. D.11), make the following changes: Set “Geom.
Weight” to 2.0 and “Angles–Eq.Deviation” to 5.0. This is done at the suggestion of the ffTK
tutorial [45]. These settings were used to perform all bond and angle optimizations in Chapter 3.
Click “Run Optimization” to perform the first iteration of the optimization process.

Once the first optimization has finished, open the “Results” section (Fig. D.12). Here you
will find a list of the updated parameters. Notice the entries for “Current Final Obj. Value” and
“Previous Final Obj. Value” located beneath the parameter list. To run a second iteration, click
the “Set As Initial” button. Open the “Input” section and change the name of the “Output LOG”
by adding a number. After you have made these two changes, click the “Run Optimization” button.
When the second optimization has completed, you should see new parameters. There should now
be values for both “Current Final Obj. Value” and “Previous Final Obj. Value”. The user should
perform successive iterations as described above until the “Current Final Obj. Value” is greater
than the “Previous Final Obj. Value”.

Once you have performed enough iterations, we need to save the optimized parameters to our
new parameter file. Return to the “BuildPar” tab and open the section marked “Update Parameter
File with Optimized Parameters” (Fig. D.13). Specify the location of the initial parameter file
created in the “Input Parameter File” dialogue box. In the dialogue box next to “Optimization
LOG File”, provide the location of the LOG output file from the last bond optimization iteration
performed. Then specify a location for a new parameter file, we suggest you call this bondOpt.par
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and save it in your 4-BaOpt directory. Click “Write Updated Parameter File” to save the optimized
parameters to your new parameter file.

C.3.4 Dihedral Optimization

Open the “Scan Torsions” tab (Fig. D.14). Provide the file locations of your PDB and PSF as well
as the location where you would like the Gaussian [43] input files stored. Once you have done this,
click “Load PSF/PDB” and then “Basename from TOP”. Next, click the “Read from PAR” button
and specify the location of your initial parameter file. ffTK [42] will automatically populate the
“Dihedrals to Scan” window with the missing parameters. ffTK [42] will exclude dihedral angles
that terminate with hydrogens. Dihedrals that terminate with hydrogens do not need to be scanned
explicitly unless the hydrogens carry a charge other than +0.09. If your molecule contains missing
dihedral angles that terminate with hydrogens carrying a charge other than +0.09, they will need
to be added to the list manually by clicking the “Add” button.

Make the following changes to all entries in the “Dihedrals to Scan” list: set “Scan +/- (◦)” to
180 and “Step Size (◦)” to 10. Do this by highlighting each entry, modifying the values in the “Edit
Entry” boxes, and clicking the “

√
” button. These modifications are made at the suggestion of the

ffTK tutorial [45]. These settings were used for all dihedral scans performed in Chapter 3. Press
“Generate Dihedral Scan Input” to generate all of the Gaussian [43] input files. Each dihedral
angle will result in two scan input files, one positive scan and one negative scan. Run each of these
in Gaussian [43] saving the outputs to a log file of the same name. An example of a positive scan
input is included in Appendix B.4.

Once Guassian [43] has completed all the necessary scans, open the “Opt. Torsions” tab.
Under the “Input” section (Fig. D.15), provide the required file locations in the dialogue boxes as
in previous steps. Be sure to include the in-progress parameter file that contains any optimized
bond parameters. Open the “QM Target Data” section (Fig. D.16) and click the “Add” button.
Select all of the Gaussian [43] log files.

Open the “Dihedral Parameter Settings” section (Fig. D.17) and click “Read from PAR”. Select
the bond optimized parameter file to load the missing dihedral list. Entries can then be added,
removed, duplicated, or edited from this window. When optimizing a small number of dihedral
angles, you will likely not need to change anything. For the polybutadiene dimer, we only have one
dihedral angle to optimize so the procedure will be relatively straightforward and simple. A strategy
to optimize molecules that have a large number of missing dihedral parameters is presented at the
end of this section. For now, leave the “Advanced Settings” alone and click “Run Optimization”.

Once the first optimization has completed, open both the “Visualize Results” and “Refine”
sections (Fig. D.18). Highlight the initial run, uncheck “include MMEi” and hit plot selected.
The target energetic profile is shown in black while the energetic profile produced by the initial
optimization is shown in blue. This is a relatively simple energetic landscape and we have already
reproduced the shape very well (Fig. C.2A). To further refine these parameters, we need to perform
another iteration. Click the “Set As Refit Input” button. This will populate the “Modify Dihedral
Parameters for Refitting/Refinement” list in the “Refine” section. To get the best fit possible,
duplicate this term 3 times by hitting the “Duplicate” button. Change the “Periodicity (n)”
value in each of the three duplicates to 2, 3, and 4. Run successive iterations using the “Run
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Refitting/Refinement” button and “Set As Refit Input”. Do not use the “Run Optimization”
button as this will start the process over.

Selected DihOpt Fit Data

Conformation

Energy

(kcal/mol)

0 5 10 15 20 25 30 35

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

QME

import

Selected DihOpt Fit Data

Conformation

Energy

(kcal/mol)

0 5 10 15 20 25 30 35

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

QME

import

import

A B

Figure C.2: Energy profile of the missing polybutadiene dihedral angle (black) as
well as the A. initial (blue) and B. final (green) fittings.

Once you have reproduced the general shape of your energy profile, the ffTK tutorial [45]
suggests the following changes be made: switch “Mode” to downhill and “Tol” to 0.0001. Running
the refitting algorithm in this mode helps better match the amplitude of your energetic profile.
Once you are satisfied with your fit, save it by highlighting the most recent run and clicking the
“Write Selected to LOG” button. This can be done at any point during the refitting. You also
have the option of loading previously saved log file so you can start refitting where you left off if
you need to close VMD [30]. To save the new parameters, go to the “BuildPar” tab and open the
“Update Parameter File with Optimized Parameters” section. Specify the location of the bond
optimized parameter file in the “Input Parameter File” dialogue box. In the dialogue box next to
“Optimization LOG File” provide the location of the LOG output file from the the latest run of
dihedral refitting. Choose a name and location for your completed parameter file and click “write
Updated Parameter File”.

The simple example presented above may not be as helpful when trying to parameterize a large
amount of dihedral angles at once. When parameterizing a polymethyloxazoline dimer, there were
8 missing dihedral angle terms. The energetic profile for this molecule is much more complicated
than the polybutadiene dimer. It would be almost impossible to guess the right combinations of
periodicities for all 8 of the angles in order to best fit the energy profile. The following strategy
helped identify the right combinations of terms.

1. Before running the initial optimization, duplicate every dihedral angle 4 times and change
the “Periodicity (n)” value in each of the three duplicates to 2, 3, 4, and 6. Now every angle
should have 5 terms with different periodicity values. Run the initial optimization. The first
optimization will likely give you a very poor fit. In this example the initial optimization had
an RMSE of 5.241.

2. Use “Set As Refit Input” and “Run Refitting/Refinement” to perform successive iterations.
The RMSE will initially decrease by large amounts. The decreases will continue to become
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smaller and smaller as you perform more iterations. Continue performing iterations until
there is little to no change in RMSE or the RMSE begins to increase.

3. Make sure the lowest, most recent refitting is loaded in the “Refine” section. Carefully go
through the list of parameters and identify the smallest “Force Constant (k)” value. Remove
the term with the smallest “k” value as this essentially weights the terms overall contribution
to the energy profile. Be sure when you are removing terms that you always keep at least one
term for every dihedral. Run the refitting and refinement and continue to repeat steps 2 and
3 until the smallest “k” value is larger than 0.01.

4. Change the “Mode” to downhill and “Tol” to 0.0001 and run the refitting optimization.

5. Delete the smallest “k” value and run the refitting/refinement in “Simulated Annealing”
mode. The RMSE will increase, set this as the refit input and run the refitting/refinement in
“Downhill” mode. Compare the final RMSE with the RMSE prior to deleting the last term
and refitting in “Simulated Annealing”. Repeat this step as long as the RMSE continues to
decrease. When the RMSE no longer decreases, you have likely found the best possible fit.

Conformation

Energy

(kcal/mol)

Figure C.3: Energy profile of the missing polymethyloxazoline dihedral angles
(black) as well as the final (blue) fittings.

Using the steps outlined above, we were able to produce the energetic profile (blue) shown in
Figure C.3 after approximately 60 iterations. This is time consuming but it takes away a lot of
guess work. The fit has an RMSE of 0.524 which is high but acceptable given the complexity of
the profile. This fit also closely reproduces all energetic minimas which is important.
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Appendix D

Molefacture and ffTK GUI Images

This appendix contains images of the molefacture and ffTK GUIs referenced in Chapter 3 and
Appendix C.

Figure D.1: Snapshot of the Molefacture GUI.
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Figure D.2: Snapshot of the “BuildPar” tab in the ffTK[42] GUI.
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Figure D.3: Snapshot of the “Opt. Geometry” tab in the ffTK[42] GUI.
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Figure D.4: Snapshot of the “Water Int.” tab in the ffTK[42] GUI.
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Figure D.5: Snapshot of the “Input” section of the “Opt. Charges” tab in the
ffTK[42] GUI.
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Figure D.6: Snapshot of the “Charge Constraints” section of the “Opt. Charges”
tab in the ffTK[42] GUI.
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Figure D.7: Snapshot of the “QM Target Data” section of the “Opt. Charges” tab
in the ffTK[42] GUI.



Appendix D. Molefacture and ffTK GUI Images 133

Figure D.8: Snapshot of the “Calc. Bonded” tab in the ffTK[42] GUI.
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Figure D.9: Snapshot of the “Input” section of the “Opt. Bonded” tab in the
ffTK[42] GUI.



Appendix D. Molefacture and ffTK GUI Images 135

Figure D.10: Snapshot of the “Parameters to Optimize” section of the “Opt.
Bonded” tab in the ffTK[42] GUI.
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Figure D.11: Snapshot of the “Advanced Settings” section of the “Opt. Bonded”
tab in the ffTK[42] GUI.
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Figure D.12: Snapshot of the “Results” section of the “Opt. Bonded” tab in the
ffTK[42] GUI.

Figure D.13: Snapshot of the “Update Parameter File with Optimized Parameters”
section of the “BuildPar” tab in the ffTK[42] GUI.
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Figure D.14: Snapshot of the “Scan Torsions” tab in the ffTK[42] GUI.
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Figure D.15: Snapshot of the “Input” section of the “Opt. Torsions” tab in the
ffTK[42] GUI.
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Figure D.16: Snapshot of the “QM Target Data” section of the “Opt. Torsions”
tab in the ffTK[42] GUI.
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Figure D.17: Snapshot of the “Dihedral Parameter Settings” section of the “Opt.
Torsions” tab in the ffTK[42] GUI.
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Figure D.18: Snapshot of both the “Visualize Results” and “Refine” sections of the
“Opt. Torsions” tab in the ffTK[42] GUI.
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