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ABSTRACT 

Ductility of 304 Stainless Steel under pulsed uniaxial loading 

by 

Graham W Cullen 

University of New Hampshire, December, 2016 

The enhanced ductility that 304 stainless steel is exhibited under pulsed loading (Zhang, 

2009) is investigated here using a combination of experiments and analysis. The simplest 

loading case, i.e., uniaxial tension, was selected to avoid the complicating effects of multiaxial 

stress states and/or contact and friction with a rigid die. Three types of tensile tests were 

performed: monotonic, pulsed and hold. For a range of strain rates, the pulsed and the hold 

tests exhibited different elongation-to-fracture from the monotonic tests. Digital image 

correlation and infrared thermography were employed to further probe this behavior. It was 

discovered that since the pulsed tests lasted longer than the corresponding monotonic ones 

(i.e., those with the same loading speed) but the total plastic work expended was comparable, 

milder deformation-induced heating developed in the pulsed tests. Since the resulting 

temperature gradients act as imperfections that trigger the localization of deformation, the 

enhanced elongation-to-fracture in the pulsed tests was attributed to the milder gradients that 

developed. Subsequently, a special isothermal tension test was used to de-couple the 

mechanical from the thermal behavior of the material and was repeated at various strain rates 

and temperatures. The material properties determined from these tests were used as input to 

coupled, thermomechanical finite element simulations of the experiments. Despite numerous 

simplifications, such as constant thermal properties with temperature, the simulations captured 



 
 

x 
 

the essential physics of the problem and yielded very close predictions of the elongation-to-

fracture observed in the experiments. 
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INTRODUCTION 

 

Recent experimental findings suggest that enhanced ductility (elongation-to-fracture) can be 

achieved in a variety of material forming processes when the loads are applied in a slow, pulsed 

fashion as opposed to the more commonly used monotonic increase (Banabic D. a., 1994) 

(Banabic D. a., 2005) (Mori K. M., 2007) (Mori K. P., 2004) (Zhang, 2009). At the same time, the 

lightweight materials (aluminum, magnesium) and the advanced high strength steels that 

currently find increasing applications (e.g., in the automotive industry) suffer from limited ductility 

in comparison to the mild steels that they are meant to replace.  Hence, this enhancement of 

ductility is of interest even for well-established processes, such as sheet and tube hydroforming.  

The slow variation of the pulsed load (order of a few Hz or less) distinguishes these 

processes from the ultrasonically-assisted ones. It has been postulated among other reasons 

that the enhancement could be due to microstructural modifications of the work material by the 

pulsed load and/or better loading paths and/or strain-rate effects. Furthermore, it is conceivable 

that the enhanced formability shown in real parts (e.g., in Fig. 2 of (Mori K. P., 2004)) is due to 

tribological reasons: the pulsed application of the load leads to a repetitive opening and closing 

of the gap between the tube and the die in the areas where the two are in contact. This aids in 

the effective tube-die lubrication and thus it reduces the unfavorable effect of friction on 

formability (Korkolis, 2011). However, experiments on freely inflated (i.e., without the presence 

of a die) mild steel tubes also exhibited enhanced elongation-to-fracture (Mori K. M., 2007) (Mori 

K. P., 2004). In those experiments, the internal pressure was ramped and then oscillated, while 

the end-displacement of the tube was increasing monotonically throughout the deformation. 
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That led the tube to alternate between freely bulging and axially wrinkling depending on the 

value of the pressure, thus effectively increasing the axial feed of material in the burst-prone 

central zone of the tube. Hence the enhanced ductility was in that case due to the selection of a 

beneficial loading path. (Zhang, 2009) performed both pulsed tube hydroforming and pulsed 

uniaxial tension tests on 304 stainless steel. In both cases, an increase in the deformation 

before failure was observed. The authors attributed this enhancement to microstructural 

modification of the material. While these works have proved that the pulsed application of the 

load can enhance the elongation-to-fracture, both in simple and in complex loading cases, it 

appears that this is due to a variety of mechanisms, different for each loading case and for each 

work material.  

There is significant literature on deformation-induced heating and thermal phenomena 

during mechanical straining. It is well known that the majority of the plastic work is converted 

into heat. (Gao Y. and Wagoner, 1991) (Farren & Taylor, 1925) (Kim, 1987) (Lin, 1987) 

(Raghavan K.S. and Wagoner, 1987) (Tugcu, 1995) (Rusinek, 2009) (Andrade-Campos, 2010) 

(Dumoulin, 2010) (Sung, 2010), (Knysh & Korkolis, 2015). At the same time, a variety of 

physical processes that occur during, and due to, mechanical straining involve the additional 

generation or absorption of heat. Such examples are the thermoelastic cooling and heating 

(Bottani, 1982) and the martensitic transformation (Meyers, 1998). In cases of spatially non-

uniform heat generation and thermal boundary conditions, heat transfer by conduction to the 

grips or tools and by convection and radiation to the ambience occurs. This leads to a spatially 

and temporally non-uniform temperature distribution inside the specimen. As the material 

properties are affected by the temperature, this distribution can often trigger the localization of 

deformation and the eventual failure of the specimen. Therefore, if the pulsed application of the 

load can affect this distribution, it could effectively alter the apparent elongation-to-fracture of 

the material. 
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 The enhanced elongation-to-fracture observed under pulsed loading is investigated in this 

thesis using a combination of experiment and analysis. The simplest possible case, i.e., uniaxial 

tension, is considered, to avoid the complications of multiaxial loading and contact and friction 

with a die. The material used is 304 stainless steel (abbrev. SS-304, also known as 18-8 

stainless steel), with a basic element composition of 18% Cr and 8% Ni (and less than 0.08% 

C), as there is existing evidence of its enhanced ductility under pulsed loading (Zhang, 2009). 

This behavior is probed in this thesis by uniaxial experiments under various loading conditions. 

These experiments disclosed the mechanism that induced and regulated the enhanced 

elongation-to-fracture in the pulsed uniaxial loading of SS-304. The experiments are 

subsequently simulated using Abaqus/Standard. However, successful modeling requires the 

use of proper material properties, which in the case of SS-304 cannot be trivially extracted (e.g., 

from conventional tension tests) because of the coupling of the mechanical and thermal 

behavior. This required the development of a simple custom isothermal tension test which is 

described in Chapter 2.3. Informed of these material properties, the coupled thermomechanical 

finite element modeling of the problem is discussed in Chapter 4. The features and level of 

detail that is required for the modeling to accurately predict the enhanced elongation-to-fracture 

are also described in that chapter. 
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EXPERIMENTAL 

 

2.1 Tensile Specimen Manufacturing 

The material used for the aforementioned tensile tests was obtained from McMaster-Carr 

and came in the form of an 457 x 457 x 3 mm sheet of stainless steel 304. The sheet was able 

to provide 28 longitudinal, and 2 transverse to the rolling direction specimens, the layout of 

which can be seen in Figure 2-1. The sheets used were not obtained at the same time and were 

denoted batches 1-6 to keep any material lot variations grouped together. 

 

 

Figure 2-1: SS304 Sheet with coupon layout 

 

Rolling 
Direction 
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In order for the sheets of stainless steel 304 to be used in the uniaxial tensile testing, 

coupons conforming to the ASTM E8 standard needed to be made. This involved saw-cutting 

the sheet of SS304 into eight inch long strips, one and one quarter inch wide along the rolling 

direction of the sheet ( 

Figure 2-1), deburring and placing them into a custom mill fixture shown in Figure 2-2, with 

the specimen shown in red.  

 

Figure 2-2: ASTM E8 tensile specimen end-milling fixture. 

 

The fixture was designed to clamp the strip of metal with uniform pressure so that chattering 

of the end mill would be eliminated and no stress raisers would be created in the area of the 

specimen where plastic deformation occurs. The fixture was placed into a CNC mill, centered 

and a one inch diameter end mill ran along both sides of the specimen strip following the 

contour of the fixture shown in blue. Once the milling was complete a light deburring was 

performed and the specimens visually checked for machining imperfections. If any large 

variations were present along the gage length (GL) of the specimen, it was discarded. The 
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specimens were produced in batches to reduce variation, and cataloged by material lot. The 

final specimen with the extensometer gage length of 40mm is shown in Figure 2-3. 

 

Figure 2-3: ASTM E8 tensile specimen geometry. 

 

2.2 Strain Measurements 

In order to obtain accurate stain data from tensile testing, the strain across the gage length 

of the specimen needed to be measured during the tensile test. This is normally accomplished 

with an extensometer with a gage length of 50 mm as per the standard but for these 

experiments a non-standard gage length of 40mm was used. This non-standard gage length 

was dictated by the use of a custom, large strain range mechanical extensometer in preliminary 

experiments of this type and has been kept constant since. In later experiments the mechanical 

extensometer was replaced with random pattern of black speckled dots on a white background, 

applied to one side of the specimen and recorded with a camera during the tensile test. The 

images were post processed with VIC-2D from Correlated Solutions, Inc. to compute the strain 

(Sutton, 2009) at the 40mm gage length throughout the tensile test. 

2.2.1 Extended Extensometer Arms 

The few first tensile tests conducted utilized a standard extensometer with a one inch (25.4 

mm) gage length. It was soon discovered that the inherent ductility of the SS-304 was such that 

the range of the standard extensometer was exceeded and in order to obtain accurate 

information a modification to the extensometer would be needed. This took the form of 
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extension arms (Figure 2-4) which would allow for a greater linear motion where they attached 

to the specimen, but at the cost of added noise. 

 

Figure 2-4: Extensometer with extension arms 

 

The length of the arms was designed so that -40% to 90% strain with a gage length of 40 

mm could be realized. The final length of the extension arms was 293 mm, and the 

extensometer recalibrated using a micrometer calibration fixture. The results from the calibration 

show near perfect linearity (Figure 2-5) and thus the arms were validated for experimental strain 

measurement. 
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Figure 2-5: Extensometer with extension arm calibration and linearity  

 

The extensometer with the extension arms showed a significant increase in noise shown in 

Figure 2-6 as the purple line, compared with the standard arms shown in blue. The noise was a 

result of the vibrations from the hydraulic system in the servo-hydraulic uniaxial load frame used 

for the experiments. An attempt was made to reduce the noise with the use of increasing arm 

mass, sprung supports and rubber damping material added to the internals of the extension 

arms. None of these gave satisfactory solutions and so alternative methods were used to obtain 

the strain data needed during the tensile test, namely digital image correlation. It should be 

noted that much after the noise reduction testing discussed here, it was discovered that analog 

filtering was present on the input from the extensometer to the servo-hydraulic machine that 

could only be adjusted by the manufacturer and needed to be altered in order to obtain an 

acceptable noise level. 
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Figure 2-6: Extensometer noise, Blue = w/o extension arms, purple=w/ ext. arms. 

 

2.2.2 Digital Image Correlation 

Digital image correlation abbreviated to DIC from here on, is the method of using a random 

pattern of highly contrasting speckles that can be easily and very accurately tracked using 

software. The DIC system used was VIC-2D from Correlated Solutions, Inc., coupled with the 

VIC-Snap Image Acquisition software. A single, 2.0 Megapixel digital camera (Point Grey 

Research, Inc.) with 17 mm Schneider lens was sufficient, as the out-of-plane displacement of 

the specimens was limited and within the depth of field of that lens. After experimental validation 
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of the DIC “virtual extensometer” (Chapter 2.2.3), the use of the mechanical extensometer was 

discontinued in order to simplify the experimental setup and reduce noise. The DIC system is 

not only able to calculate the strain measured at the 40mm gage length that the mechanical 

extensometer does, it can also calculate the Green-Lagrange strain field over the entire surface 

of the specimen (Figure 2-7). 

 

Figure 2-7: Lagrangian major strain field 

 

2.2.2.i Painting the specimens 

The specimens needed to have a highly concentrated random pattern of dots on their 

surface, so that the DIC system would be able to calculate the desired strain. Initially the paint 

used would start to flake off at the higher strains seen in the SS-304, and the strain data would 

be lost from that point onward. Among the speckling methods tried were white acrylic paint for 

the background with acrylic black paint or ink used for the speckles, ink alone, ink sprayed from 

an air brush and finally the use of Rustoleum® specialty high temperature paint. The high 

temperature paint does not cure to a smooth shiny finish like normal paint and will not flake off 

at the high strains (>70%), seen in the SS304.  
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The finish-machined and deburred specimens were first cleaned with acetone and a paper 

towel to remove any oils or particles that may prevent the adhesion of the paint. Without 

touching the prepared surface, the specimen was placed in an area designed for spray painting 

and a uniform layer of white spray paint applied according to the manufacturer’s directions. 

Once the white paint had dried, the black paint was sprayed on with very light pressure being 

applied to the spray nozzle. This created a fine spray of black that when applied in a fast 

sweeping motion created a random and yet fairly uniform speckle pattern (Figure 2-8). 

 

Figure 2-8: Tensile specimens prepared for DIC with extensometer line outlined in red  

 

Once the specimens had fully dried they were ready for use, except that without a 

calibration scale in the image the 40mm gage length needed could not be accurately 

determined. An easy way to overcome this issue, was to scribe 0.2mm lines onto the center of 

the gage length of the specimen using a pair of calipers, and a mechanical drafting pencil. 

These marks are small enough to no disturb the strain calculation during post processing, but 

are large enough to be easily recognizable in the post processing software (Figure 2-8).  

2.2.2.ii  DIC Camera Setup 

The camera used for the DIC measurements was a single, 2.0 Megapixel digital camera 

(Point Grey Research, Inc.) with 17 mm Schneider lens, which was mounted to the servo-

hydraulic machine. The camera was mounted to be normal to the surface of interest on the 
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tensile specimen, and focused to produce the largest reasonable depth of field. This was 

accomplished by illuminating the tensile specimen with two 125 Watt halogen spot lamps, 

setting the aperture of the lens to be fully open and reducing the exposure time in VIC-Snap 

Image Acquisition software until the contrast on the speckle pattern could be easily seen. A 

section in the middle of the tensile specimen was selected and magnified in VIC-Snap, and the 

aperture opened all the way. This had the effect of minimizing the depth of field to make it easy 

to find the optimal focus. The focus was then adjusted until the image was as clear as possible. 

The aperture was then closed down 90% of the way and the exposure increased until just below 

the saturation point of the imagining sensor. Using this procedure will set the focus in the center 

of the depth of field, and keep the specimen in focus as its thickness is decreasing with strain. 

2.2.2.iii   DIC VIC-2D Software 

While the VIC-Snap software is used to acquire the images and force data from the servo-

hydraulic machine during testing, VIC-2D is used to process the images and output the strain 

data. A typical reference image for the stain calculation is shown in Figure 2-9. 

 

 

Figure 2-9: VIC-2D reference image 
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Since the VIC-2D software can only track the pixels in the speckled image, a reference 

image must be selected that represents the initial state of the specimen. The software also 

needs to have a defined area in which the strain information is to be calculated, this area is 

highlighted in red in Figure 2-9. The software will use the reference image to calculate the new 

pixel location for each pixel in the selected region and for each subsequent image. Now that 

each pixel’s original and final locations are known, the software is able to calculate various 

strain tensors for each pixel and can combine each of those pixels into a strain field. An 

example of this can be seen in Figure 2-7, where the specimen is about to break. The 

Lagrangian strain field that is output from the VIC-2D software cannot be easily resolved into 

engineering strain and compared with the previous results using the mechanical extensometer. 

The VIC-2D software has a virtual extensometer function which can be used in place of the 

mechanical extensometer by placing the inspect extensometer line between the 40 mm gage 

lines already scribed on the tensile specimen, as shown in Figure 2-10.  

 

Figure 2-10: Virtual extensometer line 

 

2.2.3 Validating DIC Strain Data 

The data obtained from the DIC system needed to be validated for both the strain field and 

the virtual extensometer. This was done with a series of experiments that were instrumented 
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with both the mechanical extensometer, speckled specimen with DIC camera, and procession 

scribed lines (described later in this section) and DIC camera. The results were compared and 

the DIC data determined to be accurate and consistent. 

2.2.3.i Scribed Lines, DIC and Mechanical Extensometer 

The comparison of the virtual extensometer created using VIC-2D to that of the mechanical 

extensometer was a simple matter and a number of experiments were performed to validate it. 

A sample of this comparison can be seen in (Figure 2-12) from experiment SS-37 where two 

cameras simultaneously captured the speckled side of the specimen used for DIC and the back 

side of the specimen where precision scribed lines (Chapter 2.2.3.ii) were placed (Figure 2-13).  

 

Figure 2-11: a) DIC speckles and extensometer knife edge rubber bands and, b) traditional 

extensometer extended arms and scribed lines 2mm apart  
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The mechanical extensometer was attached to the specimen on the back side, and all the 

data was recorded. The mechanical extensometer covered the specimen at the 40mm gage 

length used for the strain calculations, thus the scribed lines and DIC extensometer used a 

smaller gage length. Since for the majority of the experiment the strain is uniform across the 

specimen, the comparison can be made for smaller values of strain; but as the strain field along 

the specimen becomes non-uniform at higher strain values the engineering strain will be lower 

for a larger initial gage length. The plot in Figure 2-12 shows that the strain measured by the 

DIC extensometer is virtually identical to the mechanical extensometer for smaller values of 

strain but starts to deviate past 20% strain. The strain lines were measured for a number of 

images and the strain totaled for approximately the same gage length as used by the DIC 

extensometer and are shown as points on the plot. These points perfectly follow the DIC 

extensometer indicating that although the mechanical extensometer deviates due to non-

uniform strain above 20%, the values obtained as accurate. 

 

Figure 2-12: Comparison of scribed strain lines, DIC extensometer and traditional 

extensometer (with extension arms) 
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2.2.3.ii DIC Strain Field versus Scribed Lines 

The DIC systems can output full field strain data over the observed surface of the specimen, 

and a simple validation of this data was conducted. Blue layout fluid was applied to the back 

side of the specimen, and a needle placed into a CNC mill chuck was used to scribe lines 

exactly 2mm apart along the entire gage length of the specimen (Figure 2-11). 

The scribed lines were recorded during the test so that they could be compared with the DIC 

output data. Note that the DIC system used reports Lagrangian strains (Figure 2-7), but these 

can be routinely converted to engineering strains. Denoting the position vector of a material 

point in the undeformed configuration with respect to the material coordinate system as 𝑿, the 

displacement vector as 𝒖 and the deformation gradient as 𝑭, the Green-Lagrange strain tensor 

𝑬 is defined as (Bower, 2009): 

𝑬 =
1

2
[𝑭𝑇𝑭 − 𝑰] 

(2.1) 

This can be further expressed in Cartesian component form as:   

𝑬 =
1

2
[
𝜕𝒖

𝜕𝑿
+ (

𝜕𝒖

𝜕𝑿
)

𝑇

+ (
𝜕𝒖

𝜕𝑿
)

𝑇 𝜕𝒖

𝜕𝑿
] 

(2.2) 

Assuming that the 1-axis is along the specimen (x-axis in Figure 2-13), expanding Eq. (2.2) 

for the 1-1 term and noting that before the onset of necking following Eq. (2.3) 

∂u2 ∂X1⁄ = ∂u3 ∂X1⁄ = 0 
(2.3) 
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we obtain: 

E11 =
∂u1

∂X1
+

1

2
(

∂u1

∂X1
)

2

 
(2.4) 

so that the Lagrangian and the engineering strain along the loading axis are ultimately related 

by (Sutton, 2009): 

εx ∶= ε11 = √1 + 2E11 − 1 
(2.5) 

Note that this conversion holds only for uniform deformations, due to Eqns. (2.3), hence the 

post-necking strains described in subsequent chapters should be views as approximately 

correct.  

The strain data from SS-29 was extracted using DIC along the specimen at the end of the 

experiment, just before failure. The resulting Lagrangian strain was converted to engineering 

strain using equation 2.5, and is shown in Figure 2-14 in blue. On the back side of the 

specimen, the scribed lines (Figure 2-13) were measured and the resulting engineering strain 

was calculated and is shown in Figure 2-14 in red. The slight deviation at the center of the 

specimen is due to the non-uniform strain as discussed previously.  

 

Figure 2-13: Specimen with scribed lines 2mm apart  
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Figure 2-14: DIC and scribed line engineering strain (SS-29) 

 

2.3 Iso-Thermal Setup 

For the numerical simulations described in CHAPTER 4, it is necessary to decouple the 

mechanical from the thermal response of the material. A specialized and simple isothermal 

tension experiment was devised for that purpose. In this experiment, a copper heat exchanger 

was clamped at the stationary end of the specimen and attached to the back of it with thermal 

grease (Arctic Silver® 5) in between, as shown in Figure 2-15. 

50.0

70.0

90.0

110.0

130.0

150.0

170.0

190.0

-10.0 -5.0 0.0 5.0 10.0

En
gi

n
ee

ri
n

g 
St

ra
in

 (
%

)

X/GL (mm/mm)

SS-29 DIC Engineering Strain

SS-29 Scribed Line Engineering Strain



 
 

19 
 

 

 

Figure 2-15: Heat exchanger attached to specimen, and the internals of the heat exchanger  

 

The heat exchanged was made from two 120mm x 50.8mm pure copper bars, which had 

6.25 mm wide and 3.125 mm deep circular profile cooling channels milled into one of their 

sides, as shown in the right image in Figure 2-15. Clearance and tapped holes were added to 

allow the two bars to be fastened together producing two 6.25 mm dia. round cooling channels. 

At the end of the cooling channels on one of the copper bars, feed and return holes were added 

and AN-6 male fittings brazed into them. Static mixers (Figure 2-16) which force the fluid to 

rapidly alternate rotational direction causing high turbulence where initially added to the cooling 

channels to aid in the heat transfer between the temperature controlled liquid and the copper. It 

was soon discovered that they were not needed as the fluid velocity from the constant 
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temperature bath was sufficient to keep the copper at a constant temperature as shown in 

Figure 2-18.  

 

Figure 2-16: Static mixer initially used to induce turbulent flow in the cooling channels of the 

heat exchanger 

 

Thermal grease (Arctic Silver® 5) which mainly consists of micronized silver particles 

suspended in polysynthetic oils was used between the specimen and the heat exchanger to 

ensure good thermal conductivity even as the specimen thinned-down during plastic 

deformation. The grease also allowed the tensile specimen to easily move against the heat 

exchanger so that the material response was not affected.  

The heat exchanger was connected to a Neslab RTE 740 constant temperature bath with a 

temperature range of -40 to 200 oC. When the testing required temperatures from 0 to 100 oC, a 

50% by volume solution of ethylene glycol (Zerex® G05) and water was the heat transfer 

medium. If temperatures over 100 oC were needed, pure mineral oil (Animed®) was circulated 

as the heat transfer medium. The heat exchanged is quite simple but very effective and in 

addition leaves one of the two wide sides of the specimen unobstructed, which is needed for the 

DIC and IR measurements. The entire iso-thermal setup including the servohydraulic load 

frame, DIC and thermal imaging cameras, heat exchanger and constant temperature bath are 

shown in Figure 2-16. 
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Figure 2-17: Iso-thermal tensile testing 
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2.4 Thermal Imaging Camera 

The same side of the specimen that was used for DIC analysis was also used for Infrared 

Thermography (IR) temperature measurement (Maldague, 2001). A FLIR SC-645 infrared 

camera, with a range of -20 oC to 650 oC, temperature resolution of 0.05 oC and spatial 

resolution of 640x480 pixels was used for these measurements. In order to establish that the 

emissivity variation of the black and white painted surface did not noticeably influence the 

thermal imagining, the heat exchanger used for the isothermal tests was painted with the same 

black and white paint as the tensile specimens. Instead of the speckle arrangement used for 

DIC, the left half of the heat exchange was painted with only white paint and the right side with 

only black (Figure 2-18). A prepared tensile specimen was placed into the load frame, thermal 

grease applied to the back of the specimen, and the heat exchanger clamped in place. The 

calibrated temperature bath was brought to 30 oC, and several thermal images taken (Figure 2-

18). A temperature profile line was taken from the thermal image, marked line one in Figure 2-

18, and the resulting temperature profile shown in the graph in Figure 2-18. It can be seen that 

the white paint had a slightly higher temperature reading of around 30.1 oC while the black had 

a slightly lower temperature reading of 29.8 oC, with the tensile specimen reading approximately 

30 oC. This noise is on the order of 0.1 degrees, so it can be concluded that the emissivity of the 

paint is approximately 0.95 and the results obtained from the camera are accurate within two 

tenths of a degree.  
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Figure 2-18: Iso-thermal temperature validation, experiment # SS-97 
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MATERIAL BEHAVIOR 

3.1 Stress Strain Curves 

The experiments were carried out under displacement control for a variety of strain-rates 

(crosshead velocities) using a standard, 100 kN servohydraulic testing machine (Instron 1350 

with a FastTrack 8800 controller and data acquisition system). Four types of uniaxial 

experiments were performed: standard monotonic (termed “master”), pulsed, hold and equal 

time monotonic, as detailed in the following sections. 

For a given strain-rate (crosshead velocity), a monotonic master experiment was performed 

first. This was followed by a pulsed experiment: the crosshead velocity was kept the same as in 

the master monotonic experiment, but after the crosshead had been displaced by 6.35 mm or 

approximately 7% strain, the specimen was manually unloaded to around 70 N or 2 MPa (in 

order to avoid the load train from becoming slack). The ~7% strain limit was chosen to 

correspond to approx. 1/10 of the elongation-to-fracture of SS-304 under monotonic testing. 

This procedure was then repeated, requiring eight to eleven such strain pulses to fail the 

specimen (Table 1). The time that was required to unload the specimen, prepare the next pulse 

and reload to a stress level comparable to that just before unloading, led to the pulsed 

experiments lasting significantly longer than the associated master monotonic ones (i.e., those 

performed under the same crosshead velocity). For example, the 𝜀̇ =10-3 /s master monotonic 

experiment lasted for 858 s, while the corresponding pulsed experiment lasted for 2472 s. Table 

3-1 details these time differences for a variety of experiments performed.  
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For the experiments shown (Figure 3-1), the pulsed test showed significantly greater 

elongation-to-fracture than the master monotonic test (69.7% and 60%, respectively for 10-3 

strain rate). This seems to contrast the common notion that unloading and reloading during a 

uniaxial tension experiment does not affect the stress – strain response recorded. Indeed, it is 

this apparent discrepancy as observed earlier on SS-304 (Zhang, 2009) that prompted the 

present work. To investigate whether this behavior is due to the repeated loading and 

unloading, “hold” experiments were performed. In these experiments, after the end of each 

strain pulse, the crosshead displacement was held constant for the same amount of time as was 

required for the unloading and reloading in the corresponding pulsed experiment to take place. 

The next strain pulse was then applied. By way of construction, these experiments lasted 

approximately the same amount of time as the pulsed ones (2472 s for the pulsed and 2481 s 

for the hold experiment in Figure 3-1). As is evident in Figure 3-1, relaxation of the material was 

observed as a result of holding the displacement constant under load. More remarkably 

however, for the data shown in Figure 3-1, the elongation-to-fracture measured at the hold 

experiment was identical to that of the pulsed experiment. Hence the increase over the master 

monotonic case cannot be contributed to the unloading and reloading of the specimens.  
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Figure 3-1: Stress–strain responses of 304 stainless steel  

 

These experiments were repeated for a range of strain-rates (i.e., crosshead velocities of 

the monotonic experiments) and the results are shown cumulatively in Figure 3-2. For a given 

strain-rate (crosshead velocity), the pulsed and the hold experiments always exhibited 

approximately the same elongation-to-fracture. For a range of strain-rates, these elongations 

were distinctly different from those measured from the associated monotonic experiments. 

Interestingly, this phenomenon is erased by either sufficiently increasing or decreasing the 

strain-rate.  
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Figure 3-2: Strain-rate dependence of elongation to fracture 

 

The DIC and IR tools were used to probe this behavior and a sample of the DIC 

measurements are shown in Figure 3-3. The evolution of strain along the gage length is shown 

in Figure 3-3b and exhibits the typical behavior of a localization problem: up to the onset of 

necking, the strain distribution is spatially uniform and equal to the overall normalized elongation 

𝛿/𝐿 . Beyond that point, the deformation localizes at a narrow region and the rest of the 

specimen unloads elastically. It should be noted that the local values of strain inside the neck 

(Figure 3-3b), exceed 120%.  
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Figure 3-3: a) Lagrangian strain field SS-29, b) Strain evolution along gage length at different 

overall deformation. 
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Another phenomenon that was observed during the pulsed and the hold experiments is 

strain aging. This was manifested by the overshooting of the stress-strain response during 

reloading (Figure 3-4). The response then returned to the fundamental, monotonic behavior. 

The overshooting is associated with breaking the energetic barrier for unpinning the dislocations 

from the interstitial atoms that have surrounded and locked them during the previous unloading 

(Meyers, 1998). Strain aging is known to be affected by the specimen temperature. Indeed, as 

the plastic deformation accumulated and the specimen temperature increased, the strain aging 

was accentuated (Figure 3-4). 

Figure 3-4: Strain aging of stainless steel 304 

 

The temperature evolution inside the specimen was assessed by IR measurements and is 

shown in Figure 3-5 for a relatively slow (𝜀̇ =10-3 /s) monotonic experiment. During plastic 

deformation, the majority of mechanical work is converted into heat (typically, 86.5% for steel 
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and 93% for aluminum, (Farren & Taylor, 1925)). For the problem at hand, the main mechanism 

of heat transfer is by conduction through the gage length to the metal grips. (Notice from Figure 

3-5 that due to the relatively large thermal mass of the grips, these remained relatively 

unaffected by the heating of the specimen throughout the experiment.) By comparison, 

convection to the still surrounding air and radiation are both negligible (Farren & Taylor, 1925). 

Furthermore, stainless steel is known to have very limited thermal conductivity in comparison to 

many other metals and alloys (𝑘 = 16.2 W/m-K, while carbon steels can have 𝑘 > 50 W/m-K 

and aluminum alloys 𝑘 > 200 W/m-K). As a result of these reasons, the center of the specimen 

progressively became distinctly warmer than the gripped ends, i.e., a temperature gradient was 

established along the gage length. This gradient has been shown to promote local softening and 

thus to trigger a premature localization of deformation in comparison to an idealized, isothermal 

case (Wagoner). Notice from Figure 3-5 that even in a slow monotonic experiment such as the 

one shown, the increase in temperature at the center of the specimen is around 35 oC at the 

onset of necking. The dominance of heat effects on the recorded responses is also indicated by 

the fact that all specimens failed at or very close to mid-span, which is the warmest region in the 

specimen.     
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Figure 3-5: Temperature development in the tensile specimen during monotonic testing  

 

In order to establish whether it is the strain or the temperature localization that preceded the 

other, the DIC and IR measurements are compared in Figure 3-6 at equal levels of overall 

normalized elongation 𝛿/𝐿. Comparing the two fields at 𝛿/𝐿 = 40%, it can be seen that while no 

visible necking is present, the center of the specimen is already 7-9 oC warmer than the gripped 

ends. Hence, necking was triggered by the temperature and not vice versa. 
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Figure 3-6:(a) axial engineering strain, and (b) temperature, along the specimen 

during monotonic testing 
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The full-field DIC and IR measurements can also be used to probe the evolution of 

localization in the pulsed tension experiments. Figure 3-6a shows snapshots of the strain 

distribution along the pulsed experiment SS-75 (𝜀̇ =10-3 /s) during a given strain pulse. At 𝛿/𝐿 = 

50.8% (beginning of the pulse) the deformation was already non-uniform, indicating that necking 

had already begun in the previous pulse, before unloading. (The DIC supplies Lagrangian 

strains; as discussed in Section 2.2.3.ii, the conversion to engineering strains is only 

approximately correct past the onset of necking.) Since the necked region had more work-

hardening than its immediate neighborhood but a comparable temperature, the deformation 

shifted upon reloading to just outside of the neck. As a result of deformation-induced heating, 

the temperature increased in these regions. A double peak in the temperature gradient is visible 

in Figure 3-8 from 𝛿/𝐿 = 53.81% to 56.28%. (Notice that the temperature gradient at 𝛿/𝐿 = 

52.74% is lower than at 50.8% due to thermoelastic cooling during that loading.) This promoted 

further deformation in these regions and resulted in a more diffuse neck than in the 

corresponding master monotonic experiment (Figure 3-7). Ultimately, the deformation shifted 

back to the center of the specimen and failure occurred there. Notice that the process just 

described requires that the strain-rate would be non-uniform inside the gage length and around 

the growing neck.  
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Figure 3-7: Axial engineering strain 

 

 

 

 

 

 

 

 

 

 

Figure 3-8: Temperature along the specimen during pulsed testing 
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With the information gathered thus far, a hypothesis for the enhanced elongation-to-fracture 

of the pulsed experiments can be postulated. The mechanical work and hence the heat 

generated is comparable between the pulsed and the monotonic experiments (Figure 3-1). 

Since however the former can last significantly longer than the latter (Table 3-1), the heat 

generated is given more time to conduct away from the specimen. Hence, milder temperature 

gradients develop in the pulsed case than the monotonic one, leading to an enhanced 

elongation-to-fracture. By the same token, if the experiments are performed too fast, then all 

loading cases approach the adiabatic conditions irrespectively of the type of loading; while if 

they are performed too slowly, they all approach the idealized isothermal case. In either of these 

extremes, the difference in elongation-to-fracture for different loading types should be erased if 

it was solely due to the temperature gradients.  

The results plotted in Figure 3-2 corroborate this hypothesis. Furthermore, the hypothesis 

was verified by conducting additional monotonic experiments, where the crosshead velocities 

were adjusted to be such that these experiments would last the same amount of time as the 

pulsed ones. These experiments will be termed “equal time”. A comparison of the recorded 

stress-strain response to the monotonic and the pulsed experiments, extracted from Figure 3-2 

shows that the elongation-to-fracture of an equal time experiment is now the same as the 

pulsed case (Figure 3-9). Furthermore, a direct comparison of the temperature gradients that 

develop in the monotonic, pulsed and equal time experiments (Figure 3-10) reveals that at the 

same time instances during these tests, the pulsed and the equal time experiments have 

developed identical or very similar temperature gradients. In contrast, the monotonic experiment 

has developed a sharper gradient than the other two, since by then it has already accumulated 

much more plastic strain. For example, at 𝑇 =  60 s, the axial strain during the monotonic 

experiment is 36% and the plastic work accumulated is 620.37 MPa, while for the pulsed 
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experiment these numbers are 14.85% and 530 MPa and for the equal time one they are 

12.99% and 506.2 MPa, respectively. 
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Figure 3-9: Stress-strain response from Figure 3-1 with the equal time test added 
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Figure 3-10: Temperature evolution along the monotonic, pulsed and equal time 

 

Thus, recasting the elongation-to-fracture in terms of the duration of the experiment yields 

the strong correlation shown in Figure 3-11. Experiments which last the same amount of time 

can be expected to show similar elongation-to-fracture, irrespectively of the way the load is 

applied (monotonic, pulsed or hold), as they develop similar temperature gradients. Hence the 

enhancement reported in Figure 3-1 and Figure 3-2 is due to, and regulated by, these gradients. 

In that sense, the extended duration of the pulsed experiments leads to the development of less 

severe temperature gradients than in the corresponding monotonic experiments, somewhat 

negating the detrimental effects of these gradients on the elongation-to-fracture.  
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Figure 3-11: Duration of testing vs. elongation to fracture 

 

3.2 Determination of material properties for modeling 

The major challenge in developing a reliable numerical simulation of the experiments 

described is in the proper measurement of the material properties. Stainless steel 304 is a 

material that is strongly rate- and temperature-dependent and prone to martensitic 

transformation (De, Murdock, Mataya, Speer, & Matlock, 2004); (Lee, Kim, & Han, 2010) (Beese 

& Mohr, 2011) (Moser, Gross, & Korkolis, 2014). In addition, its low thermal conductivity and the 

temperature gradient that develops during the experiment as a result of deformation-induced 

heating lead to the mechanical and thermal responses being tightly intertwined. This is 

illustrated in Figure 3-12, which shows 6 uniaxial tension experiments with strain-rates ranging 

from 10-1 /s (which is approximately the upper limit of our servohydraulic equipment for this 

specimen size) to 10-4 /s. These responses cascade as expected at low strain levels, with the 
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flow stress increasing with the strain-rate (Meyers, 1998) (Meyers and Chawla, 1998). However, 

as the plastic deformation accumulates the specimens heat up and in a spatially non-uniform 

way, with the faster ones developing sharper temperature gradients which in turn trigger the 

localization of deformation. Hence, as shown in Figure 3-12, the flow stress at the faster 

experiments begins to saturate and the specimens fail earlier than they do in the slower 

experiments.  

  

Figure 3-12: Stress-strain curves of SS304 at various strain rates  

 

As discussed in Section 2.3, in order to create an accurate numerical simulation described 

in Section 4, it was necessary to decouple the mechanical from the thermal responses of the 

material. As shown in the infrared images in  
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Figure 3-13, a very uniform temperature field was maintained along the specimen 

throughout the experiments (compare the temperature scale in  

Figure 3-13a to that of Figure 3-5). Indeed, just before failure the temperature difference 

between the center and the rest of the isothermal specimen did not exceed 3 oC, in contrast to 

more than 35 oC in the 𝜀̇ =10-3 /s conventional experiment shown in Figure 3-5. As shown in 

Figure 2-18, the different emissivities of SS-304 and that of copper heat exchanger do not affect 

these measurements because of the black and white paint applied to its surface.  

With the aid of the isothermal device, isothermal tension experiments have been performed 

at six temperatures (25, 30, 35, 60, 100, 150 oC) at strain-rates of 10-4, 4x10-4, 10-3 and 10-2 /s. 

The plots of these tests are shown in Appendix A. The responses for 𝜀̇ =10-3 /s are shown in 

Figure 3-14, along with a conventional tension experiment at the same strain-rate plotted with a 

dashed line. Initially, the conventional tension response matched the isothermal experiment 

performed at 25 oC (approx. room temperature). However, after the development of additional 

plastic strain (less than 10%), the conventional experiment exhibited a reduced flow stress as a 

result of the deformation-induced heating. This induced a temperature gradient (shown in Figure 

3-5) that lead to a premature localization of deformation and an early failure in comparison to 

the 25 oC isothermal tension experiment. 
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Figure 3-13: Isothermal tests at various levels of strain, a) 35oC and b) 100oC. These images 

indicate that the specimen is maintained at a fix temperature  
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The effect of the temperature on the ultimate tensile strength and the elongation-to-fracture 

(for 40 mm gage length) for different strain-rates is summarized in Figure 3-15. The ultimate 

tensile stress is seen to drop monotonically with the increase in temperature and the decrease 

in the strain-rate. The elongation-to-fracture follows a similar trend, even though the sensitivity 

to the strain-rate is quite mild for the rates examined. The anomaly observed between 25 and 

35 oC is related to the martensitic transformation that takes place at that temperature range; 

(Cho, Yoo, & Jonas, 2000); (De, Murdock, Mataya, Speer, & Matlock, 2004); (Lee, Kim, & Han, 

2010) (Beese & Mohr, 2011) (Moser, Gross, & Korkolis, 2014) 
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Figure 3-15: Dependence of the UTS and the elongation-to-fracture on the temperature of the 

isothermal tension experiments, for 3 different strain-rates. 
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NUMERICAL MODELING 

 

The experimental data obtained in Section 3, were used to create a numerical model which 

can predict the material behavior, not only for the simple case of uniaxial tension described here 

but also for more complex loading predictions as well. The model uses the inputs from the 

physical experimentation, such as specimen geometry, mechanical deformation, heat 

generation and transfer, along with the material behavior at different temperatures and strain 

rates. This chapter describes in detail how these were incorporated in the numerical simulation 

software, and then compares the predictions of the model to the experimental observations. 

 

4.1 Model Setup 

The experiments were simulated using the nonlinear finite element code Abaqus/Standard. 

Isotropic hardening with an associated flow rule based on the von Mises yield surface is 

assumed throughout. The mesh consisted of C3D20RT continuum, 20-node, reduced 

integration elements capable for large deformations and coupled temperature-displacement 

analysis. These elements have quadratic shape functions for the displacement and linear for 

temperature. The model utilized yield stress and plastic strain input curves for different 

temperatures for its material data, and film coefficients for conductive and convective heat 

transfer, as described in detail in this section. The final model made use of the symmetries 

present, and only 1/8 of the specimen geometry was discretized (Figure 4-1).  



 
 

46 
 

4.1.1 Geometric Imperfection 

Despite the deformation-induced heating which results in a temperature gradient along the 

specimen, it was found necessary to aid the triggering of the necking instability by adding a 

geometric imperfection at mid-span. At first a linear slope was used to produce the imperfection, 

starting with the nominal width and reducing it linearly toward the center of the specimen. The 

notch sensitivity was explored without rate dependence, starting from the uniform width and 

increasing the mid-span amplitude of the imperfection in 100μm increments to 400μm, which 

produced the load-displacement plots in Figure 4-2. 

 

 

Figure 4-1: Schematic of the finite element model of the uniaxial experiments and the 

coordinate system adopted in this work  
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Figure 4-2: Linear notch size and the effect on numerical simulation of failure 

 

It was found that without the notch to trigger the localization, failure would not occur and 

instead the simulation would abort. A notch with a depth of as little as 2μm was enough to 

trigger a localization and allow the simulation to process. As would be expected, it can be seen 

in Figure 4-2 that the size of the notch has a strong effect on the rate of localization and failure. 

The initial extrapolation of the iso-thermal input curves discussed in Section 4.2.3 used the 

simple notch model for testing with a notch of 2μm, which was enough to initiate the localization 

but proved to cause simulation errors for the more complicated not iso-thermal simulations. 

Furthermore, when the rate dependence was implemented the output no longer matched the 

experimental data (Figure 4-11). An alternative to the simple notch was to utilize an equation-

driven imperfection (Chen, 1971), with the width of the specimen 𝑤(𝑥) made to vary with the 

axial distance 𝑥 measured from mid-span (Figure 4-1) as follows: 
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𝑤(𝑥) = 𝑤0(1 − 𝛼𝑒−𝛽𝑥2
) 

(4.1) 

 
where 𝑤0 = 6.35 mm is the undeformed nominal half-width, 𝛼 = 0.015 is a parameter controlling 

the amplitude of the imperfection at mid-span and 𝛽 =  7000 is the imperfection decay 

parameter (Figure 4-3). These parameters were adjusted so that the pre-necking region of the 

numerical output matched the experimental material response but were able to trigger 

localization. No imperfection was prescribed for the specimen thickness. This new imperfection 

utilized almost identical input curves that were developed for the simple notch, but did not create 

the simulation instability of the simple notch. 

 

 

Figure 4-3: Equation-driven imperfection, shown here greatly exaggerated for ease of 

visualization. 
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4.1.2 Mesh Reduction and Refinement using Symmetry 

The mesh of Figure 4-1 was adopted after suitable parametric studies, starting with the full 

model of the specimen, excluding the ends which were held in the grips and did not deform 

during the experiment (Figure 4-4). The full model was constructed of 10994 elements, with 4 

elements through the thickness and took almost 3 hours of simulation time on a Dell PowerEdge 

2900III, 2X Intel Quad Core Xeon 3.0GHz server, running Linux OS (Ubuntu 11.04 64‐bit) with 

64GB RAM to complete. It was then determined that a new model could be created that could 

take advantage of the symmetry and the full model was cut in half through the XY, and XZ 

planes and consisted of 2736 elements and can be seen in Figure 4-5. Boundary conditons of 

symmetry were used on the XZ, and XY planes and no heat transfer was premitted at those 

plane. The processing time for this model was approximetely 35 minutes, almost 5 times faster 

and the results fell on top of those of the dense full model mesh in Figure 4-4.  
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Figure 4-4: Full model of tensile specimen, using 11016 elements 

   

 

Figure 4-5: Quarter model with dense mesh of 2736 elements 
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Figure 4-6: Quarter model with coarse mesh of 912 elements 

 

The mesh was further modified with less elements to create a coarse mesh (Figure 4-9) to 

reduce the computational run time. This mesh was the least dense that did not show any 

appreciable deviation from the full models results. A comparison of the three different meshes 

are shown in Figure 4-7 and it can be seen that all three engineering stress-strain responces fall 

on top of each other.  

The symmetry of the model about its center was used to create a one eighth model with 456 

elements. The output of this model was identical to that of the quarter model with 912 elements. 

The use of quadratic elements allows for a minimum of two elements through the model 

thickness. As such, the model is capable of representing the deformation of the specimen past 

the onset of necking but it is not suitable for capturing the actual rupture at the end of the 

experiment, which has less than 1/8 symmetry. This, of course, is beyond the scope of this work 

and the capabilities of the continuum description adopted here. 



 
 

52 
 

 

Figure 4-7: Comparison of the numerical simulation results from the full model (10944 

elements), quarter model (2736 elements) and the coarse quarter model (912 elements)  

 

4.1.2.i Mechanical Boundary Conditions 

Symmetry boundary conditions were prescribed at the 𝑥 = 0 mm, 𝑦 = 0 mm and 𝑧 = 0 mm 

planes (Figure 4-1) to replicate the full specimen, resulting in the eighth model described above. 

A uniform displacement was prescribed at plane A (Figure 4-1). This was the location where the 

shoulder of the specimen emerged from the grips. The boundary condition was implemented 

with the “kinematic coupling” option available in Abaqus, to facilitate the measurement of the 

total load applied. The “kinematic coupling” allows for a single control point to be directly tied to 

all the nodes and elements in a specified region. The degrees of freedom for all directions and 

rotations can be specified and were all linked to the control point, which is displayed as the load 
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cell in Figure 4-8. In this way a displacement can be applied to the control point and the 

resulting load monitored throughout the experiment. Since any constraint applied to the control 

node is replicated at the node and elements on the model, only a displacement in the x direction 

was permitted and all other displacements and rotations were set to zero. This resulted in no 

contraction of plane A in the y- and z- directions, which replicated the gripped end.  

 

Figure 4-8: Kinematic coupling boundary condition with "load cell" control point  

 

4.1.2.ii Thermal Boundary Conditions 

An adiabatic condition at the three symmetry surfaces was used. A film (or convection) 

coefficient of ℎ = 24 W/m2-K was applied to the free sides where convection to the still air would 

occur. This value was arrived upon after iteratively adjusting the coefficient until the temperature 

gradient along the gage length of the specimen was very close to that of the corresponding 

experiment. Due to the uneven contact between the grips and the specimen, the conduction of 

heat from the end of the specimen to the grips was instead simulated as convection, but using a 

much higher film coefficient ℎ = 200 W/m2-K applied on plane A. As with the convection heat 

transfer coefficient, this value was adjusted to keep the end of the specimen at the same 



 
 

54 
 

temperature seen throughout the corresponding test. The sink temperatures used for the air and 

the grips were both set to 23oC. The values for film coefficient were arrived at after some trial 

and error discussed in the results Section 4.3.   

Thermal radiation from the specimen to the surrounding ambience was neglected (Farren 

and Taylor, 1925). The model was loaded by specifying the displacement and time needed to 

replicate each step in the corresponding experiment. 

 

4.2 Model inputs for numerical simulation 

4.2.1 Displacement Control 

The simulations were conducted with a prescribed displacement to correspond to the 

physical experiments. Since the gripped material in the experimental setup is prone to a small 

amount of slipping, the displacement prescribed in the model had to be adjusted until the stress 

at the end of the run was approximately the same as that of the experiment. This was done to 

keep the testing time the same between the experimental and simulated results since the 

material behavior is controlled by rate dependent variables. For the pulsed experiments this 

meant stopping the simulation after each pulse and making very minor changes to the 

displacement to account for the small amount of slipping in the grips so that the unloading and 

loading cycling would coincide with that of the experiment.  

4.2.2 Inelastic Heat Fraction 

The inelastic heat fraction (i.e., the fraction of the plastic work that is converted into heat) 

was set to 0.93 and kept constant throughout the simulation. This value is not constant and is 

rate dependent (Zehnder, Babinsky, & Palmer, 1998) (Hodowany, Ravichandran, Rosakis, & 

Rosakis, 2000), which could not be easily simulated with Abaqus. 
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4.2.3 Input curves 

In order for the numerical simulation software to accurately predict the material behavior, 

input data needs to be included, and needs to describe the material behavior for all conditions 

encountered. Since in the region where necking occurs, the deformation is no longer uniform, 

the experimental data obtained up to the onset of necking (i.e., where the deformation is 

uniform) cannot be used. To identify the material behavior beyond necking, the stress-strain 

hardening curves were extrapolated with the aid of the isothermal experiments. In the finite 

element model of these experiments, both the temperature- and the rate-dependence were 

turned off. The localization was triggered with a geometric imperfection (simple notch) 

discussed in Section 4.1.1. The experimental data from the isothermal experiments at 25, 30, 

35, 60, and 100˚C at the quasi-static strain rate of 10-4 /s were converted from engineering to 

true stress (𝑺) and strain from yield until the point of necking or the ultimate tensile strength. An 

extrapolation of this data was then performed and the new material data curve was fed into 

Abaqus to compare the numerical results to the experiments. Initially, the extrapolation of the 

curve was done with the standard linear, power law, and flat hardening models, but none of 

these produced accurate material responses in the numerical model after uniform deformation. 

After testing a number of curve fitting algorithms for extrapolation of the stress-strain curve, the 

Morgan-Mercer-Flodin (MMF) model (eqn 4.2) was found to have very low residuals close to the 

ultimate tensile strength for the experimental data and the numerical simulations produced 

reasonably close results to that of the experimental data after necking.  

𝑺 =
(𝒂 · 𝒃 + 𝒄 · 𝒆𝒅)

𝒃 + 𝒆𝒅
 

(4.2) 

In this model, 𝒂, 𝒃, 𝒄 and 𝒅 are fitting coefficients (the 1st and 3rd having units of stress, the 

other two being unit-less). The MMF model was adopted in this work because it easily allows for 

a sigmoidal stress-strain relationship (see Figure 3-14). After a numerical simulation that used 
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the initial guesses of the MMF coefficients, these were iteratively adjusted so that the output 

load-displacement (or engineering stress-strain) response from the model very closely matched 

the one measured experimentally. In order to keep the data from having a large change in slope 

which would cause instability in the numerical model, a number of data points at the end of the 

experimental data where the MMF model was used for extrapolation were manually altered to 

keep the changes from data point to data point small. This was repeated for all temperatures for 

which isothermal data existed and resulted in a set of extrapolated hardening curves, covering 

the temperatures used for the isothermal experiments. The final input curves for the simple 

notch discussed in Section 4.1.1 are shown in  Figure 4-9 and the stress-strain output from the 

numerical modeling shows excellent agreement is shown in Figure 4-10. 

  

Figure 4-9: Numerical input curves for both the simple notch and the equation driven notch  
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It was found that after the rate dependence (Section 4.2.4) was turned on for the simple 

notch imperfection model, the output did not follow the experimental data any longer. It can be 

seen in Figure 4-11 that the non-rate dependent output matches the experimental data well but 

after the rate dependence (RD), and simulation time which controls the strain rate (10-4 to 10-7 s-

1) are increased the output deviates drastically from the experimental. In order to overcome this 

issue the equation-driven notch was then implemented (eqn. 4.1) and the imperfection adjusted 

until the rate dependent output from the simulation matched that of the experimental data, which 

yielded the results that were shown in Figure 4-10.  
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Figure 4-11: Simple notch numerical model and the effect of strain rate on the output curve  

 

4.2.4 Rate-Dependence 

Abaqus allows for three different commonly used rate-dependence options to be applied to 

the model. Initially the Cowper-Symonds (1957) option was used to described the rate-

dependence behavior of the material with constants determined for the values of the yield stress 

at 1% and 5% strain for standard non-isothermal tests (Table 4-1). The Cowper-Symonds 

(1957) model is shown in equation 4.3 which describes the dynamic stress (𝝈𝒅) as a function of 

the static stress (𝝈𝒔), the strain rate (𝜺)̇ and two constants C and P. The constant calculated 

from the data in Table 4-1 are C of 500 and 600 with a P of 4.8 and 4.4 for 1% and 5% strain 

respectively. 
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𝝈𝒅‐ =  𝝈𝒔 ∙ (𝟏 + (
𝜺̇

𝑪
)

𝟏
𝑷

) 

(4.3) 

 

Strain Rate 
[1/s] 

Yield Stress [MPa] 
@ 1% strain 

Yield Stress [MPa] 
@ 5% strain 

0.0001 392 490 

0.0004 392 490 

0.001 393 493 

0.01 412 515 

0.05 432 537 

0.1 439 543 

Table 4-1: Data used to determine the Cowper-Symonds strain rate dependence. 

 

 

 

 

 

 

 

 

 

 

Figure 4-12: Flow stress at various strain rates and at two levels of plastic strain, for the 

calibration of the Cowper-Symonds viscoplastic powerlaw. 
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To better account for the temperature effects on rate-dependence in Abaqus, the “yield-

ratio” option was used Anon., 2009, which captured the behavior of SS-304 for the strain-rate 

range in hand more accurately than the Cowper-Symonds (1957) model. At a specific strain, the 

yield-ratio is defined as the flow stress at a given strain-rate over that of the quasistatic 

experiment. In our case, the 𝜀̇ =10-4 /s experiment was chosen as the quasistatic limit. This 

procedure can be repeated for various temperatures and ultimately populate a table with 

multiple combinations of strain-rates and temperatures. In the present work, the yield ratios (see 

Table 4-2) were obtained from the various isothermal experiments at a strain of 10.5%. As the 

yield ratios change with plastic strain, this value was selected as the best representation of the 

behavior in this family of experiments. With the input curves thus extrapolated and the rate-

dependence also included in the numerical models, the amplitude of the imperfection (𝛼 =

 0.015) in Eq. 4.1 was fine-tuned to trigger the localization at the same strains as observed in 

the experiments. 

4.2.5 Other constants  

The other inputs used for the numerical modeling are the density, specific heat and 

coefficient of thermal expansion which were set to the published values of 8030 kg/m3, 508 J/kg-

̊C and 1.69 10-5 m/m-̊C respectively (Table 4-3). Poison’s ratio was set to 0.3 and Young’s 

modulus set to a non-standard 187 GPa to help match the experimental data where the 

unloading and reloading follows a hysteresis like loop discussed in the results. 

 



 
 

62 
 

 

 Table 4-2: Yield ratios from isothermal tension experiments 

Mechanical properties     

Young's modulus ε 187MPa 

Poisson's ratio ν 0.3 

Strain-rate dependence See table 4-2 

Hardening curves See section 4.2.3 

   Physical and thermal properties     

Density ρ 8030kg/m3 

Thermal conductivity κ 16.2W/(m K) 

Inelastic heat fraction η 0.93 

Coefficient of linear thermal expansion α 1.69x10-5 1/K 

Specific heat Cp 508J/(g K) 

Table 4-3: Material properties input to the numerical model
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4.3 Results 

The model described above was used to simulate the entire family of monotonic, pulsed, 

hold and equal time experiments. The main characteristics of these results will now be 

discussed through some representative examples. The engineering stress-strain curves from 

the experiment and the numerical model of a monotonic and a pulsed test at 𝜀̇ =10-3 /s are 

shown in Figure 4-13. 

. 

 

  

 

 

 

 

 

 

 

Figure 4-13: Engineering stress-strain response, numerical vs experimental  

 

The numerical model is able to reproduce the flow stress with increasing plastic deformation 

due to both mechanical and thermal effects very well. Recall that the model is only informed of 

the isothermal and rate dependent data for SS-304 and not of the response of this specific 

monotonic experiment directly. A deficiency of the model predictions is observed after the onset 
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of necking, where the simulated responses do not drop as sharply as the experimental ones do. 

This is attributed to the lack of experimental data at the higher temperatures and strain-rates 

which prevail inside the neck (Chapter 3). However, the elongation-to-fracture is reproduced 

very well, as is the difference between the monotonic and the pulsed loading. A departure of the 

model from reality is in the simulation of the unloading and reloading after each strain pulse. 

This is shown in Figure 4-14, where the rather complex nonlinear unloading and reloading of the 

real material is represented by the model as a linearly elastic response exhibiting the Young’s 

modulus of the undeformed material. This is a direct consequence of adopting isotropic 

hardening in the simulations. The slope of each of the unloading and loading cycles changes 

with the amount of accumulated strain and so a non-standard Young’s modulus was chosen.  

While the unloading behavior after finite strain is an active area of research (e.g., for studies of 

spring back in sheet metal forming, see (Cleveland, 2002); (Yoshida, 2002); (Khan, 2010); (Sun, 

2011) and was initially a concern, the strain inaccuracy created by linearizing this behavior is 

rather minute (less than 0.5% over the entire simulation) in comparison to the overall strain at 

failure. Hence this deficiency of the model does not noticeably affect the predictions. 
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Figure 4-14: Magnification of one unloading–reloading loop. Included are experiments and 

numerical simulations. 

 

As a result of the agreement shown in Figure 4-13, the numerical model can capture the 

strain evolution during the experiment very accurately (see Figure 4-15). Notice that this 

experiment is included in Figure 4-13 as the monotonic case. Interestingly, towards the end of 

the loading the strain localization is predicted to be spread over a larger distance around the 

location of the actual rupture. This is because the strain-rates and temperatures that prevail 

inside the neck are higher than what we were able to reproduce experimentally and input to the 

model. Hence the model predicts a less abrupt localization of deformation than is observed in 

reality. This more-diffuse-than-the-real neck is partly responsible for the discrepancy observed 

at the tails of the curves in Figure 4-13.     
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While the mechanical aspects of the problem have been accurately captured by the 

modeling, the prediction of the temperatures that developed in the experiments shows much 

poorer agreement. This is shown in Figure 4-16, which compares the temperature fields 

developed in the same monotonic loading case as shown in Figure 4-13 and 4-15.  

 

Figure 4-15: Axial engineering strain development along the specimen during a monotonic 

tension experiment and its numerical prediction  

 

Apparently, the continuum description adopted here misses a series of phenomena that 

affect the heat balance, and as a result the induced temperature field. In summary, these 
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cooling. The inelastic heat fraction has been kept constant throughout the simulation, while 

there is evidence in the literature that this is not accurate (Knysh & Korkolis, 2015). In addition, 

the inelastic heat fraction changes with the strain-rate, which becomes relevant after the onset 

of necking.  

 

Figure 4-16: Comparison of the predicted temperature distribution along the monotonic  

tension specimen SS-85 ð _e ¼ 10_3=sÞ at e = 60.5% to the infrared image recorded 

during the experiment. 

 

These observations would alter the amount of heat that is generated for a given increment in 

the plastic work, and hence alter the temperature distribution. Furthermore, 304 stainless steel 

is susceptible to martensitic transformation ( (Meyers, 1998); (Cho, Yoo, & Jonas, 2000); (De, 

Murdock, Mataya, Speer, & Matlock, 2004); (Papatriantafillou, Agoras, Aravas, & 
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Haidemenopoulos, 2006) (Lee, Kim, & Han, 2010) (Beese & Mohr, 2011) (Moser, Gross, & 

Korkolis, 2014)), which is triggered by an appropriate combination of plastic deformation and 

temperature. The latent heat of this transformation has been neglected here. However, the 

mechanical aspects of the transformation are implicitly included in the modeling (see 𝑇 = 25 oC 

curve in Figure 4-11), Lastly, while the thermoelastic cooling (during loading) and heating 

(during unloading) is typically a fraction of a degree Celsius, in these experiments we have 

measured at large plastic strains cooling or heating temperature differences that exceeded 4-5 

oC, including the heat transfer effects (see Figure 3-8). In contrast, no thermoelastic cooling or 

heating was included in the simulations. Finally, all the material thermal properties (specific 

heat, heat conductivity, etc.,) were kept constant with temperature, which is another departure 

from reality. In addition to these theoretical shortcomings, it was practically impossible to control 

the ambient temperature and air flow during the experiments and from specimen to specimen. 

As an indication of the sensitivity of the results to the convection to the surrounding air, Figure -

17 shows the dependence of the overshooting during reloading on the film coefficient. To allow 

direct comparison of the amount of overshooting between the different cases, the responses 

were shifted in strain (by less than 1% strain) so that the linear unloading overlapped in all 

simulations. Then, each stress response was normalized with the stress at the onset of the 

previous unloading. The “clipped” behavior for ℎ > 20 W/m2-K is not due to some numerical 

deficiency but due to the lack of experimental data for the flow curve and strain-rate 

dependence at the relevant temperatures and strain-rates. It can be seen from Figure 4-17 that 

relatively small changes in that boundary condition can markedly affect the intensity of the peak. 

This overshooting, which is physically associated with strain aging and is beyond the 

capabilities of the constitutive model adopted, is alternatively shown here to be regulated by the 

convection of heat to the surrounding air.   
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Figure 4-17: Numerical simulation of the dependence of the overshooting during reloading on 

the heat transfer between the specimen and the still air  

 

Figure 3-12 which showed the correlation between experiment duration and elongation-to-

fracture observed in the experiments can be now updated with the numerical predictions (see 
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which are not explicitly identified in the plot to simplify the presentation. Experimental results 

from two batches of SS-304 are included, which yielded slightly different elongations-to-fracture. 

The numerical model was calibrated from specimens from batches 4 to 6; hence the numerical 

predictions are closer to these results. The model reproduces the trends and values observed in 

the experiments very well. The transition to the adiabatic (at short experiment durations) and 

isothermal (at very large experiment durations) asymptotes is also well reproduced. It can be 

concluded that enough features of the problem have been represented by the material 
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characterization and the numerical modeling to quantitatively capture the behavior observed in 

the experiments.    

 

Figure 4-18: Numerical predictions of the dependence of the elongation-to-fracture on the 

duration of the experiment, plotted with multiple experimental data.  
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CONCLUSIONS 

 

A combined experimental/numerical approach was used to investigate the enhanced 

elongation-to-fracture of 304 stainless steel under pulsed uniaxial tension. Three types of 

experiments were performed: standard monotonic (master and equal time), pulsed and hold. It 

was observed that for this material, the pulsed application of the load for a range of strain-rates 

enhances the elongation-to-fracture over the monotonic case. This phenomenon is erased if the 

experiment is performed sufficiently fast (𝜀̇ > 5x10-2 /s) or slowly (𝜀̇ < 10-4 /s). Hold experiments 

were performed to disclose if this phenomenon is due to the repeated unloading and reloading. 

These experiments yielded the same elongation-to-fracture as the pulsed ones, precluding the 

unload-reload mechanism from being a plausible explanation for this effect.  

It was observed that SS-304 heated up significantly during the experiments (e.g., anywhere 

between 35 and 100 oC), due to the combination of deformation-induced heating and the low 

thermal conductivity of this material. This established a temperature gradient along the 

specimens, which acted as an imperfection and triggered an earlier localization of deformation 

in comparison to the corresponding isothermal case. Subsequently, monotonic experiments 

were designed so as to have the same duration as the pulsed and hold ones. These 

experiments exhibited the same elongation-to-fracture as their equally timed pulsed and hold 

counterparts. Hence it was established that the enhanced elongation-to-fracture is induced and 

regulated by the temperature gradients. Indeed, this elongation correlates directly to the 

duration of the experiment, irrespectively of the way the load is applied (monotonically, pulsed, 

etc.).  
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 The importance of the temperature gradients in the behavior observed dictated the use 

of a coupled (temperature-displacement), rate-dependent numerical model. The simulations 

were performed with the nonlinear code Abaqus/Standard. The greatest challenge in this part of 

the work was the material modeling, i.e., the decoupling of the thermal and the mechanical 

behaviors observed in a conventional material characterization experiment. This was achieved 

by the use of a specially devised, simple isothermal tension experiment, which allowed the 

measurement of mechanical properties under controlled isothermal conditions. These properties 

were then input to the fully-coupled numerical model. The picture was complicated further 

because 304 stainless steel is susceptible to martensitic transformation around room 

temperature. The mechanical aspect of this was input to the model in a purely 

phenomenological way (see 𝑇 = 25 oC experiment in Figure 3-14 and 4-11), while the heat due 

to the transformation was omitted. In the simulations, isotropic hardening (which yielded the 

linearized unloading and reloading behavior), constant thermal (e.g., thermal conductivity, 

specific heat, etc.) and thermomechanical (e.g., inelastic heat fraction) properties and yield-

ratios for the strain-rate dependence (instead of the actual curves) were adopted. In addition, 

the thermoelastic cooling and heating were omitted. Despite these features, the simulations 

were very successful in accurately predicting the elongation-to-fracture in every case simulated 

(see Figure 4-18). However, the induced temperature fields were found to deviate from the 

experimental ones. 

 

 

 

  

 



 
 

73 
 

BIBLIOGRAPHY 

Andrade-Campos, A. T.-D. (2010). Effect of strain rate, adiabatic heating and phase 

transformation phenomena on the mechanical behavior of stainless steel. Stain, 283-

297. 

Anon. (2009). Abaqus Ver. 6.9 Documentation. Simulia Central. 

Banabic, D. a. (1982). Thermoelactic Instabilities in Metals. Physica Scritpa(T1), 65-70. 

Banabic, D. a. (1994). Prediction of forming limit diagrams in pulsatory straining. Journal of 

Material Processing Technology, 45(1-4), 551-556. 

Banabic, D. a. (2005). Bulge testing under constant and variable strain rates of superplastic 

aluminum alloys. CIRP Annuals, 54, 205-208. 

Beese, A. M., & Mohr, D. (2011). Indentification of the direction-dependency of martensitic 

transformation in stainlee steel using in situ magnetic permeability measurements. 

Experimental Mechanics, 667-676. 

Bottani, C. a. (1982). Thermoelactic Instabilities in Metals. Physica Scripta, T1, 65-70. 

Bower, A. (2009). Applied Mechanics of Solids. Boca Raton, Florida: CRC Press. 

Chen, W. (1971). Necking of a bar. International Journal of Solids and Structures, 685-717. 

Cho, S. H., Yoo, Y. C., & Jonas, J. J. (2000). Static and Dynamic strain aging in 304 austenitic 

stainless steel at elevated temperatures. Journal of Material Science Lett., 2019-2022. 

Cleveland, R. a. (2002). Inelastic effects on springback in metals. International Journal of 

Plasticity, 18, 769-785. 

Dablij, M. a. (1997). Portevin-Le Chatelier Plastic Instabilities: Characteristics of Deformation 

Bands. Materials Science and Engineering, 1-5 Web. 

De, A. K., Murdock, D. C., Mataya, M. C., Speer, J. G., & Matlock, D. K. (2004). Quantitative 

measurement of deformation-induced martensite in 304 stainless steel by X-ray 

diffraction. Scripta Materialia, 1445-1449. 

Dumoulin, S. L. (2010). Heat sources, energy storage and dissipation in high-strength steels: 

experiments and modeling. European Journal of Mechanics-A/Solids, 29(3), 461-474. 

Farren, W. S., & Taylor, G. I. (1925). The heat developed during plastic extension of metals. 

Proceeding of the Royal Society of London, 107, pp. 422-451. London. 

Gao Y. and Wagoner, R. (1991). A simplified model of heat generation during the uniaxial 

tensile test. Metallurgical Transactions A, 18(6), 1001-1009. 



 
 

74 
 

Hodowany, J., Ravichandran, G., Rosakis, A. J., & Rosakis, P. (2000). Partition of plastic work 

into heat and energy in metals. Exp. Mech., 40, 113-123. 

Khan, A. P. (2010). Evolution of subsequent yield surfaces and elastic constants with finite 

plastic deformation. Part III: Yield surface in tension–tension stress space (Al 6061–T 

6511 and annealed 1100 Al). International Journal of Plasticity, 26, 1432-1441. 

Kim, Y. a. (1987). An analytical investigation of deformation-induced heating in tensile testing. 

International Journal of Mechanical Sciences, 29(3), 179-194. 

Knysh, P., & Korkolis, Y. P. (2015). Determination of the fraction of plastic work converted into 

heat in metals. Mechanics of Materials, 86, 71-80. 

Korkolis, Y. a. (2011). Hydroforming of anisotropic aluminum tubes. Part I: Experiments. 

International Journal of Mechanical Sciences, 53, 75-82. 

Lee, M. -G., Kim, S. -J., & Han, H. -N. (2010). Crystal plasticity finite element modeling of 

mechanically induced martensitic transformation (MIMT) in metastable austenite. 

International Journal of Plasticity, 688-710. 

Lin, M. a. (1987). An experimental investigation of deformation-induced heating during tensile 

testing. Metallurgical Transactions A, 18, 1035-1042. 

Maldague, X. (2001). Theory and practice of infrared technology for nondestructive testing. New 

York: Wiley-Interscience. 

Meyers, M. a. (1998). Mechanical behavior of materials. Englewood Cliffs, New Jersey: 

Prentice-Hal. 

Mori, K. M. (2007). Mechanism of improvement of formability in pulsating hydroforming of tubes. 

International Journal of Machine Tools and Manufacturing, 47, 978-984. 

Mori, K. P. (2004). Improvement of formability by oscillation of internal pressure in pulsating 

hydroforming of tubes. CIRP Annals, 53, 215-218. 

Moser, N. H., Gross, T. S., & Korkolis, Y. P. (2014). Martensite formation in convensional and 

isothermal tension of 304 austinitic stainless stell measured by x-ray diffraction. 

Metallurgical and Materials Transactions, 4891-4896. 

Papatriantafillou, I., Agoras, M., Aravas, N., & Haidemenopoulos, G. (2006). Constitutive 

modeling and finite element methods for TRIP steels. Compuational Methods Applied 

Mechanical Engineering, 5094-5114. 

Raghavan K.S. and Wagoner, R. (1987). Combined influence of geometric defects and thermal-

gradients on tensile ductility. Metallurgical Transactions A, 18(12), 2143-2150. 

Rusinek, A. a. (2009). Experiments on heat generated during plastic deformation and stored 

energy for TRIP steels. Materials & Design, 30(1), 35-48. 



 
 

75 
 

Sun, L. a. (2011). Complex unloading behavior: nature of the deformation and its consistent 

constitutive representation. International Journal of Plasticity, 27, 1126-1144. 

Sung, J. K. (2010). A plastic constitutive equation incorporating strain, strain-rate, and 

temperature. International Journal of Plasticity, 26, 1746-1771. 

Sutton, M. O.-J. (2009). Image correlation for shape, motion and deformation measurements: 

basic concepts, theory and applications. New York: Springer. 

Tugcu, P. (1995). Heat-conduction effects on strain localization in plane-strain tension. 

International Journal for Numerical Methods in Engineering, 38(12), 2083-2099. 

Yoshida, F. U. (2002). Elastic–plastic behavior of steel sheets under in-plane cyclic tension–

compression at large strain. International Journal of Plasticity, 18, 633-659. 

Zehnder, A. T., Babinsky, E., & Palmer, T. (1998). Hybrid method for determining the fraction of 

plastic work converted to heat. Exp. Mech., 38, 295-302. 

Zhang, S. a. (2009). Research on mechanism of formability improvement in pulsating 

hydroforming of tubes. 4th Int’l Conference on Tube Hydroforming. TubeHydro 2009. 

Kaohsiung,Taiwan. 

 

 

 

 

  



 
 

76 
 

APPENDIX A 
Iso-thermal Stress Strain Experimental Curves at 25, 30, 35, 60, 100, 

and 150˚C 
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APPENDIX B: List of all SS304 experiments  

Specimen 

Strain Rate                            
[1/Sec] 

[mm/min] Material Description  Data Comments 

SS-8 10^-3 00003 
SS304 Dec 

09 Monotonic No DIC 
No Measurements 

Taken 

SS-9 10^-3 3.05 
SS304 Dec 

09 Pulsed DIC 1Hz, DAX 2Hz 

GL Reset at ~65% to 
49.64%                       No 

measurements 

SS-10 10^-3 3.05 
SS304 Dec 

09 Monotonic DIC 1Hz, DAX 3Hz 
Repeat of SS-8,    No 

Measurements 

SS-11 10^-3 3.05 
SS304 Dec 

09 90º Monotonic DIC 1 Hz, DAX 3Hz Some Anisotropy  

SS-12 10^-3 3.05 SS304 Feb 10 Monotonic DIC 1 Hz, DAX 3Hz   

SS-13 10^-3 3.05 
SS304 Dec 

09 
 Monotonic 
with Hold DIC 1/2Hz, DAX 1Hz 

Holding and Relative 
Ramp changed to 

match the unloading 
points of SS-9 

SS-14 10^-3 3.05 
SS304 Dec 

09 
Monotonic 
with Hold DIC 1Hz, DAX 1Hz 

Same as SS-13 but 
with holding times 

that better reflect the 
time it took to unload 

during SS-9 

SS-15   1.08 
SS304 Dec 

09 

Monotonic 
with total 

time equal to 
the pulsed 
test SS-9 DIC 1Hz, DAX 1Hz   

SS-16 10^-2 30.5 SS304 Feb 10 Monotonic DIC 2Hz, DAX 1Hz 
DIC failed (Vic Snap 

2009) 

SS-17 10^-2 30.5 SS304 Feb 10 Monotonic DIC 2Hz, DAX 1Hz 
DIC failed (Vic Snap 

2009) 

SS-18 10^-2 30.5 SS304 Feb 10 Pulsed DIC 2Hz, DAX 1Hz Using Vic Snap 2008 

SS-19 10^-2 30.5 SS304 Feb 10 
Monotonic 
with Hold DIC 2Hz, DAX 1Hz 

Holding and Relative 
Ramp changed to 

match the unloading 
points of SS-18 

SS-20 10^-2 30.5 SS304 Feb 10 
Monotonic 
with Hold DIC 2Hz, DAX 1Hz 

Same as SS-19 but 
with holding times 

that better reflect the 
time it took to unload  

during SS-18 

SS-21 10^-2 30.5 SS304 Feb 10 Failed     
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SS-22   6.133 SS304 Feb 10 

Monotonic 
with total 

time equal to 
the pulsed 
test SS-18 DIC 2Hz, DAX 1Hz 

Using the SS-18 total 
length at breaking and 

the time it took to 
reach that point the 

Strain rate was 
calculated. 36.8mm in 

360s 

SS-23 4x10^-4 1.22 SS304 Feb 10 Monotonic DIC 1/2Hz, DAX 1Hz 

A lot of noise in the 
system and 

extensometer 

SS-24 4x10^-4 1.22 SS304 Feb 10 
Monotonic-
Isothermal No DIC 

A heat sink with fan 
was added to help 

keep the specimen at 
ambient temperature. 
Specimen broke at the 
point furthest from the 
HS and grip, not in the 
middle. Extensometer 

was not able to 
capture the necking as 
it occurred outside of 

its GL. 

SS-25 10^-3 3.05 
SS304 Dec 

09 Failed     

SS-26 10^-3 3.05 
SS304 Dec 

09 Pulsed DIC 1/2Hz, DAX 1Hz Repeat of SS-9 

SS-27 4x10^-4 1.22 SS304 Feb 10 Pulsed DIC 1/2Hz, DAX 1Hz   

SS-28 4x10^-4 1.22 SS304 Feb 10 
Monotonic 
with Hold DIC 1/2Hz, DAX 1Hz 

Holding and Relative 
Ramp changed to 

match the unloading 
points of SS-27 

SS-29 4x10^-4 0.837 SS304 Feb 10 

Monotonic 
with total 

time equal to 
the pulsed 
test SS-27 DIC 1/3Hz, DAX 1Hz 

Using the SS-27 total 
length at breaking and 

the time it took to 
reach that point the 

Strain rate was 
calculated. 51.12mm 

in 3665s 

SS-30 10^-3 3.05 SS304 Feb 10 Monotonic No DIC 

Test to get a graph to 
compare the three 

monotonic strain rates 
but with the same 

material 

SS-31 10^-3 3.05 SS304 Feb 10 
Monotonic 
with Hold No DIC 

Used to give a more 
accurate overall time 
for the Hold specimen 

SS-32 4x10^-4 1.22 SS304 Feb 10 
Monotonic 
with Hold No DIC 

Used to give a more 
accurate overall time 
for the Hold specimen 
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SS-33 10^-3 3.05 SS304 Feb 10 Monotonic 
DIC 1Hz, DAX 1Hz, 
Thermal Imaging 

Ramp endpoint not 
set far enough, 

Thermal Imaging 
information not fully 

recorded 

SS-34 10^-2 30.5 SS304 Feb 10 Monotonic 

DIC 1Hz, DAX 1Hz, 
Thermal Imaging 

1/3Hz 

All Data recorded 
and compared 

8/10/10 

SS-35 10^-1 305 SS304 Feb 10 Monotonic DIC 2Hz, DAX 5Hz 

Ramp endpoint not 
set far enough, First 
new SS comparison 
between lines and 

DIC 

SS-36 10^-1 305 SS304 Feb 10 Monotonic DIC 5Hz,DAX 10Hz 

Scribed Strain lines 
could not be 

followed after ~ half 
way though the test 

SS-37 10^-1 305 SS304 Feb 10 Monotonic 
DIC 10Hz, DAX 

10Hz 

Successful 
comparison of Strain 

Lines and DIC 
8/10/10 

SS-38 10^-3 3.05 SS304 Feb 10 Monotonic DIC 1Hz, DAX 1Hz 
No Measurements 

Taken 

SS-39 10^-3 3.05 SS304 Feb 10 Monotonic DIC 1Hz, DAX 1Hz IsoThemal 

SS-40 5x10^-2 152.5 
SS304 Aug 

10 Monotonic   

Recalling user state 
turned off the 

instron breaking the 
specimen 

SS-41 5x10^-2 152.5 
SS304 Aug 

10 Monotonic DIC 5Hz,DAX 5Hz   

SS-42 5x10^-2 152.5 
SS304 Aug 

10 Pulsed DIC 5Hz,DAX 5Hz   

SS-44 5x10^-2 152.5 
SS304 Aug 

10 Equal Time DIC 5Hz,DAX 5Hz   

SS-45 5x10^-2 152.5 
SS304 Aug 

10 Hold DIC 5Hz,DAX 5Hz 
DIC failed (Vic Snap 

2009) 

SS-46 5x10^-2 152.5 
SS304 Aug 

10 Hold DIC 5Hz,DAX 5Hz 

Hold Points do not 
match well with 

Puled SS-42 

SS-47 10^-3 3.05 
SS304 Aug 

10 Monotonic DIC 2Hz, DAX 2Hz   

SS-48 5x10^-2 152.5 
SS304 Aug 

10 Hold  DIC 5Hz, DAX 5Hz 

Better Hold Point for 
comparison to 
pulsed SS-42 
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SS-49 10^-3 3.05 
SS304 Aug 

10 Monotonic DIC 1Hz, DAX 1Hz 
DIC failed (Vic Snap 

2009) 

SS-50 10^-1 305 
SS304 Aug 

10 Monotonic 
DIC 10Hz, DAX 

10Hz 
Retest with GL 

40mm  

SS-51 10^-3 3.05 SS304 Feb 10 Monotonic DIC 1Hz, DAX 1Hz   

SS-52 10^-4 0.305 
SS304 Aug 

10 Monotonic DIC 1/5Hz, Dax 1Hz   

SS-53 10^-4 0.305 
SS304 Aug 

10 Pulsed 
DIC 1/10Hz, Dax 

1Hz   

SS-54 10^-4 0.305 
SS304 Aug 

10 Equal Time 
DIC 1/10Hz, Dax 

1Hz   

SS-55 
      

SS-56 10^-4 0.305 
SS304 Aug 

10 Hold 
DIC 1/10Hz, Dax 

1Hz   

SS-57 10^-4 0.31 
Aug 10 
SS304 Hold 

DIC 1/10Hz, Dax 
1Hz 

Better Hold Times 
Then SS-55 

SS-58 4x10^-4 1.22 
Aug 10 
SS304 Monotonic DIC 1/5Hz, Dax 1Hz 

Needed to Compare 
monotonic test with 

one material 

SS-59 10^-2 30.5 
Aug 10 
SS304 Monotonic DAX 20Hz   

SS-60 10^-2 30.5         

SS-61 5x10^-2 153         

SS-62 
  

Feb 10 
SS304 

  

ThermoCouple 
attempt Failed 

SS-63  10^-2 30.5 
Feb 10 
SS304 Hold   Retest of SS-20 

SS-64 10^-3 3.05 
Nov 10 
SS304 Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 6.25Hz 

New Material 
Comparison, found 

to be annealed 

SS-65  10^-3 3.05 
Nov 10 
SS304 Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz 

Restest of SS-64 for 
reproducability  

SS-66 10^-3 3.05 

Nov 10 
SS304  90 
Degrees Mototonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz 

New Material 
Comparison at 90 

degrees, found to be 
annealed 

SS-67  10^-3 3.05 

Nov 10 
SS304 

Second 
Sheet Mototonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz 

New Material 
second sheet 

Comparison at 0 
degrees, found to be 

annealed 

SS-68  10^-3 3.05 

Nov 10 
SS304 
Choice 
Metals Mototonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz 

New Material choice 
metals sheet 
Comparison  



 
 

86 
 

Sheet 

SS-69 10^-3 3.05 
Nov 10 
SS304 

IsoThermal 
Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz 

T = 0C Failed 
actuator ran out of 

travel  

SS-70 10^-3 3.05 
Nov 10 
SS304 

IsoThermal 
Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz T = 25C  

SS-71 10^-3 3.05 
Nov 10 
SS304 

IsoThermal 
Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz T = 60C 

SS-72 10^-3 3.05 
Nov 10 
SS304 

IsoThermal 
Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz T = 100C 

SS-73 10^-3 3.05 
Nov 10 
SS304 

IsoThermal 
Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz 

T = 25C Retest of SS-
70 

SS-74 10^-3 3.05 
Nov 10 
SS304 Pulsed 

DIC 1Hz, DAX 1Hz, 
IR 1Hz 

Failed due to 
number of pulses  

SS-75 10^-3 3.05 
Nov 10 
SS304  Pulsed 

DIC 1Hz, DAX 1Hz, 
IR 1Hz Repeat of SS-74 

SS-76 10^-3 3.05 

Feb 11 
Choice 
Metals Monotonic DIC=DAX=1hz 

No IR, UTS 711MPa, 
Eu = 55% 

SS-77 10^-3 3.05 

Feb 11 
Choice 
Metals Monotonic DIC=DAX=1hz Validity test of SS-76 

SS-78 10^-3 3.05 

Feb 11 
Choice 
Metals Pulsed  DIC=DAX=1hz 

Increased Ductility 
Test 

SS-79 10^-3 3.05 

Feb 11 
Choice 
Metals Pulsed N/A 

Vic-Gauge Test, total 
Failure 

SS-80 5X10^-3 15.2 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz   

SS-81 10^-2 30.4 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz   

SS-82 5X10^-2 152 
McMaster 
Annealed Monotonic 

DIC 5Hz, DAX 5Hz, 
IR 5Hz   

SS-83 
2.5X10^-

3 7.6 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz   

SS-84 10^-3 3.05 
McMaster 
2/26/11 Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz   

SS-85 10^-3 3.05 
McMaster 
2/26/11 Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz   

SS-86 10^-2 30.4 
McMaster 
Annealed Pulsed 

DIC 4Hz, DAX 4Hz, 
IR 4Hz   
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SS-87 10^-2 11.14 
McMaster 
Annealed Equal Time 

DIC 4Hz, DAX 4Hz, 
IR 4Hz   

SS-88 5X10^-3 15.2 
McMaster 
Annealed Pulsed 

DIC 2Hz, DAX 2Hz, 
IR 2Hz   

SS-89 5X10^-3 8.1 
McMaster 
Annealed Equal time 

DIC 2Hz, DAX 2Hz, 
IR 2Hz   

SS-90 10^-3 2.03 
McMaster 
Annealed Equal Time 

DIC 1Hz, DAX 1Hz, 
IR 1Hz   

SS-91 10^-3 3.04 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz IsoThermal T=35C  

SS-92 5X10^-2 152 
McMaster 
Annealed Monotonic 

DIC 5Hz, DAX 
10Hz, IR 5Hz IsoThermal T = 35C 

SS-93 10^-2 30.4 
McMaster 
Annealed Monotonic 

DIC 5Hz, DAX 5Hz, 
IR 5Hz IsoThermal T=35C  

SS-94 4x10^-4 1.22 
McMaster 
Annealed Monotonic 

DIC 1/2Hz, Dax 
1Hz, IR 1/2Hz IsoThermal T=35C  

SS-95 5X10^-3 8.08 
McMaster 
Annealed Equal time 

DIC 2Hz, DAX 2Hz, 
IR 2Hz Retest SS-89 

SS-96 10^-3 3.04 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz IsoThermal T=30C  

SS-97 10^-3 3.04 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz IsoThermal T=30C  

SS-98 10^-3 3.04 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz IsoThermal T=30C  

SS-99 10^-3 3.04 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz IsoThermal T=35C  

SS-100 10^-3 3.04 
McMaster 
Annealed Monotonic 

DIC 1Hz, DAX 1Hz, 
IR 1Hz IsoThermal T=150C  

SS-101 4x10^-4 1.22 
McMaster 

Last Monotonic 
DIC 1Hz, DAX 1Hz, 

IR 1Hz IsoThermal T=25C  

SS-102 10^-2 30.4 
McMaster 

Last Monotonic Vic Snap Failed IsoThermal T=25C 

SS-103 10^-2 30.4 
McMaster 

Last Monotonic 
DIC 2Hz, DAX 2Hz, 

IR 2Hz IsoThermal T=25C  

SS-104 4x10^-4 1.22 
McMaster 

Last Monotonic 
DIC 1Hz, DAX 1Hz, 

IR 1Hz IsoThermal T=30C  

SS-105 10^-2 30.4 
McMaster 

Last Monotonic 
DIC 2Hz, DAX 2Hz, 

IR 2Hz IsoThermal T=30C  

SS-106 
      

SS-107 10^-4 0.305 
McMaster 

Last Monotonic DIC=DAX=IR=1Hz IsoThermal T = 25C 

SS-108 10^-4 0.305 
McMaster 

Last Monotonic DIC=DAX=IR=1Hz IsoThermal T = 30C 
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SS-109 10^-4 0.305 
McMaster 

Last Monotonic DIC=DAX=IR=1Hz IsoThermal T = 35C 

SS-110 10^-4 0.305 
McMaster 

Last Monotonic DIC=DAX=IR=1Hz IsoThermal T = 60C 

SS-111 4x10^-4 1.22 
McMaster 

Last Monotonic 
DIC 1Hz, DAX 1Hz, 

IR 1Hz IsoThermal T=60C  

SS-112 10^-2 30.4 
McMaster 

Last Monotonic 
DIC 4Hz, DAX 4Hz, 

IR 4Hz IsoThermal T=60C  

SS-113 4x10^-4 1.22 
McMaster 

Last Monotonic 
DIC 1Hz, DAX 1Hz, 

IR 1Hz IsoThermal T=100C  

SS-114 10^-4 0.305 
McMaster 

Last Monotonic DIC=DAX=IR=1/4Hz IsoThermal T = 100C 

SS-115 10^-2 30.4 
McMaster 

Last Monotonic 
DIC 4Hz, DAX 4Hz, 

IR 4Hz IsoThermal T=100C  

SS-116 10^-4 0.305 
McMaster 

Last Monotonic DIC=DAX=IR=1/4Hz IsoThermal T = 150C 

SS-117 4x10^-4 1.22 
McMaster 

Last Monotonic 
DIC 1Hz, DAX 1Hz, 

IR 1Hz IsoThermal T=150C  

SS-118 10^-2 30.4 
McMaster 

Last Monotonic 
DIC 4Hz, DAX 4Hz, 

IR 4Hz IsoThermal T=150C  
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