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ABSTRACT

A BIOLOGICAL BASED MODEL OF THE HUMAN VISUAL SYSTEM

INCORPORATING LATERAL SUBTRACTIVE INHIBITION WITH

NON-UNIFORM SAMPLING AND MULTIPLE SPATIAL FREQUENCY

FILTERS

by

Nisreen Radhi
University of New Hampshire, December, 2016

The human visual system has been an interesting topic of scientific research for decades. It

is known that the cone photo-receptors are arrayed in a non-linear fashion and that a lateral

subtractive inhibitory process is occurring in the visual pathway. This thesis outlines for the

first time how lateral subtractive inhibition manifests itself in the context of a non-uniform sensor

distribution where the distance between cone photo-receptors, and size of the receptors, are varying

in a log manner when moving radially away from the foveal area. Range limits on the parameters

that control the non-uniform sampling and coupling coefficients are presented and optimal values

are identified for specific image resolutions. The results of this analysis are then coupled to a

proposed model of spatial frequency filtering to assist in subsequent studies of feature extraction

and pattern analysis. The filters generated are based on three spatial-frequency channels that are

designed to model the human eye contrast sensitivity curve. Simulated results are presented.
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Chapter 1

The Human Visual System (HVS)

Humans can recognize a face, an apple or identify car keys with ease. This pattern recognition task

is accomplished by processing the image information through the visual system, and then a cognitive

evaluation of extracted information from that image is used to form a judgment on the particular

models. An interesting question is raised here: how the Human Visual System (HVS) maps the

captured visual information from the external sensory world into internal memory representation?

The answer to this question would be of great benefit to some research areas. Such as an Artificial

Intelligence and Neural Network aspects.

Artificial Intelligence is an interesting research topic that offers the capability to study and

understand the information processing of the human intelligence system that underlies thinking

and intelligent behavior. One of the most intriguing senses that many biological entities possess

is a vision. The way in which human acquire, process and finally interpret visual information has

been an interesting topic of scientific study for years. So the objective of this study reduces the gap

between the biology and man-made machines so that our “smart computers” can sense, process

and perform as well as human. A lot of efforts have been made to propose an adequate model with

computationally efficient, biologically inspired, image processing framework suitable for pattern

recognition purposes. That model is designed to satisfy two important properties of machine vision

applications that already exist in the HVS. The first property is maintaining a large field of view

while preserving the detailed information from the scene at the point of interest. The second feature

is providing the capability to process the data at a very fast rate. The human visual system has

a non-uniform sampling of visual input in the space domain. Non-uniform or space-variant factors

including cortical magnification and receptive field scatter substantially affects human perception
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from a visual scene. In this research work, the non-uniform distribution of the photo-receptor cells

of the HVS will be investigated and explored to present the benefits of this biological-like pattern.

Also, a comparison is made between the new biological-like model and the Uniform model where

the receptors are organized in a uniform way. In other words, the spatial distance between the

receptors is constant (more information regarding this model is providing in chapter three). The

comparison is made depending on the resultant output images via each mapping model as well as

the Root Mean Square Error quality metric. The justifications of using the HVS as a reference

model can be summarized as follows:

1. The human visual system can be viewed as the most delicate, perfectly designed information

processing system in many aspects such as real time, pattern recognition, feature exploiting,

etc. Therefore, by using HVS characteristics, it may be possible to develop better recognition

systems.

2. The finding or design an accurate model that precisely simulates the functionalities of the

human visual system at a present time is not an easy task at all. Therefore, researchers

usually start with assumptions about the mechanism associated with one or more aspects of

the HVS. To investigate the HVS quantitatively, we resort to computers and mathematical

models, even though these models are much simplified compared to the actual HVS models.

1.1 Basic Model of the HVS as an Information Processing System

The essential function of the human visual system is processing image data. Whereas, the first

step of the processing is the image sampling (mapping) from the external sensory world into an

internal memory representation. Figure 1-1, illustrates the concept of mapping. In which it is valid

to assume that the image data processing occurs simultaneously with the image mapping task.

From the same figure, the input information (projected image) in the retinal photo-receptors layer

which is denoted by the matrix [E] corresponding to the two-dimensional nature of the picture

data. On the other hand, the matrix [F ] which represents the lower level electrochemical firing

rate associated with the neural information transferred or with, the higher level output feature
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vectors.The visual sampling task is accomplished by linear sensory mapping represented by the

matrix [S]. The neural firing rate information [F] is then mapped into the internal memory world

of the brain via associative memory mapping, represented by the matrix [M]. In this thesis work,

Figure 1-1: Basic Model Showing Mapping from External Sensory World to Internal Memory World

we have concentrated on a mapping matrix [S]. The associative memory mapping is a fascinating

research topic in the neural network area, but it is beyond the scope of this study. Although the

mapping are described in the context of Human Visual System (HVS), it is reasonable to believe

that similar exist in other biological visual systems.

1.2 Phenomenon, Evidence and Explanation of Lateral Inhibition

Lateral inhibition of neurons is an interesting phenomenon found in biological sensory systems

such as the human eye. This mechanism is discovered and verified by Hartline and his research

team when they carried out an electro-physiology experiment on the Limulus’ vision [9]. Every

microphthalmia of Limulus’ ommuleum is seen as a receptor. They found that a receptor is inhibited

by its adjacent receptors and this inhibition effect is spatially summed. A certain receptor is more

severely inhibited by the closer receptors rather than the farther ones. The inhibition among cells

is mutual, every receptor is adjacent to its adjacent receptors and it tries to inhibit it’s adjacent

receptor. This is the final mode of nerve fiber activities. This inhibition effect has also been
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observed in higher level animals’ sensory systems through electro-physiological experiments on the

retinas of cats and monkeys [10, 11]. It is greatly accepted that the lateral inhibition mechanism

also exists in the human visual system [9]. The effectiveness of this mechanisms can be represented

by some kinds of negative feed-back systems. The explanation of this representation is interpreted

biologically. There are a finite number of ions available for neural firing rates which propagate

the information from a local region of the retina to the corresponding cortex region. This local

propagation procedure inhibitory influences among all the receptors in the neighborhood because

they compete for those ions at the ganglion level. There will overabundance of ions accumulated

on the bright side of a dark/bright boundary. This phenomenon enhances the contrast and the

sharpness in the sensory field of receptors and neurons and this can cause two effects. Simultaneous

contrast and Mach band effect [1]. Mach band phenomenon is a well-known phenomenon that was

detected by the scientist, Ernst Mach, see figure 1-2. Then, the gratings with dark and white bars

are honored his name. Center-surround receptive field interactions can explain these Mach bands.

Where, the receptive fields are represented as a disk (+) and annulus (-). The center point of the

disk is an excitatory area and the annulus an inhibitory area. The receptive field of the uniformly

white and uniformly black areas received about the same stimulation in their excitatory center and

inhibitory surrounds. Therefore, the center excitation area is in balance with surround inhibitions.

Figure 1-2: Illustrate The Mach Band Effect Experiment [1].
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The neuron over the bright Mach band gives a stronger response in the center because part of

surround is in the dark part of the grating. Therefore, it inhibits from the surround cells less than

if it is in the bright area. This biological phenomenon can be representing in the following figures.

A typical experiment was performed with a gray level chart shown in figure 1-3. In figure 1-3 a

bar chart image with a monotonic function of luminance has shown and its cross section profile to

represent the constant transition between two adjacent bars within different intensity levels. How-

ever, the apparent brightness is not uniform along the width of each particular bar. Transitions

between two adjacent bars appear brighter on the right hand side (where the darker luminance is to

its left) and darker on the left side (where the brighter luminance is to its right hand side). Figure 1-

4 demonstrates the perceived brightness that observed via the sensory field of receptors and neurons

in the human visual system. Whereas, the overshooting and undershooting edges in figure 1-4 and

1-5, are characterizing the effect of this biological method in grayscale and color space, respectively.

Figure 1-3: (A):The Input Image.(B)The Cross Section Profile of the Image

5



Figure 1-4: (A):The Output Image Based on The LSI.(B)The Cross Section Profile of the Image

Figure 1-5: (A):The Colored Version of Output Image Based on The LSI.(B)The Cross Section

Profile of the Image
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1.3 Lateral Inhibition Applications

The contour of the image as the main feature of a picture has a strong stability, and therefore

the image processing is necessary for the detection of contour information. In the field of defense

technology and aerospace, demands have been proposed on the shape detection of the target, such

as processing speed, lower memory consumption, positioning accuracy and better effects. Contour

points are usually defined as a pixel location of abrupt gray-level change. The application of

lateral inhibition mechanism is possibly a new way of looking at contour (edge) detection and

enhancement problem. Although the lateral subtractive inhibition as an interesting biological

phenomenon has been known for decades, the applications of algorithms based on that has not

been investigated thoroughly. Few research results can be found in which precise model describing

lateral subtractive inhibition is proposed. George G. Furman Proposed and compared four models

about lateral inhibition in receptor-neuron fields in his paperback in 1965 [12]. He applied his

model to one-dimensional sensory area to simulate this mechanism. His research represents the

early efforts in investigating lateral inhibition based algorithms and their application quantitatively.

Dr. Richard Messner ‘s dissertation about smart visual sensors for real-time image processing and

pattern recognition based upon the human visual system characteristics explored this area further

[13]. He proposed the quad-tree matrix inversion (QMI) algorithm which is useful in doing the

calculation associated with certain models. His research provides the basis and motivation for this

research work.
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Chapter 2

Lateral Inhibition

2.1 What is Lateral Inhibition ?

Lateral Inhibition (L.I.) is an interaction between neurons in which the excitement of one neuron

inhibits the excitability of neighboring neurons. The strength of this inter-connections are stable

rather than changeable as well as they are organized as excitatory among nearby receptors and in-

hibitory among farther receptors. In other words, when any given receptor responds, the excitatory

connections tend to increase its response while inhibitory connections try to decrease it.

All the receptors in the neural network receive a mixture of excitatory and inhibitory signals

from other competitive receptors. As a result of the competitive network structure, a distinction

between the receptor or a group of receptors which have the strongest output and the receptors

with weaker output become larger. Weaker receptors might be suppressed. According to the value

of excitatory and inhibitory coefficients and number of interconnected optimum coefficients, the

receptor which has the strongest output contained all the other receptor outputs and this kind

called “the winner takes all” type [14]. For a biological system, the lateral inhibition can be

considered as a peripheral processing phenomenon. According to this study presented here [2] the

lateral inhibition is commonplace in human nervous system, and it has been widely recognized

as contrast detection and enhancement mechanism. It is also sometimes called on-center or off-

surround architecture. These terms are mainly used for biological structures that operate in the

same way.

Figure 2-1 illustrates the interconnection between the receptors in the neural network sensory field.
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Figure 2-1: Defines a set of sensors with lateral inhibition mechanism. The arrows are indicating

the inhibitory effect of each sensory on the neighbor’s sensors which are represented by “B”. each

individual input that is designated by “x” and each drives down the output “y” of its neighbors

which are connected to it at black arrow end. The ratio between the amount of sensory output

which is driven by neighbors and the amount of output is called the degree of lateral inhibition [2].

2.2 Historical Background of Lateral Inhibition

Effects of lateral inhibition were first recognized in 1886 by the Austrian physicist Ernst Mach

who ascertained that all knowledge was based on sensation and that scientific observations or

measurements were dependent upon the observer’s perception. H.K. Hartline in 1956 [15], has

received Nobel prize for his work on a visual system of the horseshoe crab, which is a kind of

arthropod from North America, see figure 2-2. The concept of lateral inhibition arose in the

comprehensive experimental research of H.K. Hartline and his colleagues on the faceted compound

eye horseshoe crab. This study proceeded the period of over fifty years and was an outstanding

example of bringing quantitative mathematical methods of signal transmission.

In figure 2-2, illustrates the dorsal-ventral structure of a horseshoe creature.

2.2.1 Horseshoe Crab (Limulus Polyphemus)

Horseshoe crabs or Limulus are the oldest and an interesting creatures. They are estimated to be

at least 300-million years old. This kind of creatures belongs to the large group of invertebrates
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Figure 2-2: Dorsal and ventral view of Horseshoe Crab [2]

(animals without backbones) called Arthropods. The first generation of the horseshoe crab species

was crawling around the earth’s shallow coastal seas for at least 100-million years before even the

dinosaurs arrived. People have used horseshoe crabs for different scientific purposes. Recently,

these creatures have been instrumental in the scientific research, especially in biomedical fields.

The horseshoe crabs have been beneficial to the research world, and several Nobel prizes have

been awarded to researchers based on their work on horseshoe crabs. The researchers have found

that chitin, which makes up the horseshoe crab’s shell, can reduce the healing time of wounds as

well as it reduces the pain compared to other standard treatments. Chitin is now used to make

dressing and sutures for burns, surface wounds, and skin graft donor sites. On previous fifty years,

research on the compound eye of this creature has led to a better understanding of how human eyes

function. The reasons for relying on the horseshoe’s compound eye for scientific studies especially

about the vision studies are: the compound eyes of Horseshoe crab are relatively large, horseshoe

crab optic nerve, which connects the compound eyes to the brain is not very long; and last but not

least, the horseshoe crab can be safely kept out of water for a relatively extended period.
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2.2.2 Horseshoe Crab Vision and Lateral Inhibition

Horseshoe crab have about a ten eyes with sensing light, used for finding mates and feeding. The

most bright eyes are the two lateral eyes which are used to find their mates during the spawning

season. These eyes are also called the compound eyes. The compound eyes are included the smaller,

simple eye units, called Ommatidia, see figure 2-3. Each compound eye has about 1,000 of light

receptors or Ommatidia. Those receptors have the same structure as those in the human eyes. It’s

classified into Cones and Rods, except that they around 100 times larger in size than those in the

human eye, figure 2-4.

Figure 2-3: Illustration of Compound Eye Consist of Ommatidia [2]
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Figure 2-4: Compound Eye of Horseshoe Crab. (a) Real Photo of Compound Eye (b) Close Up

View of Compound Eye of Horseshoe Crab [2]

The inhibitory and the excitatory currents are summed to produce the “Spike Generator.” This

peak generator will be encoding as a train of action potentials. Then, the spike train propagates

and forward along to the optic nerve to the brain to mediate behavior. The goal of the earlier

experiment is to prove that the primary visual requirement of the horseshoe crap is contrast and the

lateral inhibition mechanism to enhance the ability of horseshoe crab to distinguish contrast. This

phenomenon can be seen in Figure 2-5 and it will be discussed in the following section of this

chapter.

Figure 2-5: Schematic Demonstration of Optical and Neural Mechanism of Ommaditium [3]
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2.3 The Effect of Lateral Inhibition

Lateral subtractive inhibition plays a significant role in contrast enhancement, see figure 2-6. This

figure below illustrates the enhancement of the edge via the lateral inhibition effectiveness. Whereas,

this figure represents a horizontal line for photo-receptors and the vertical line for the input light

intensity. It can be seen that the edge or the discontinuity in the input is exaggerated in the output

due to the lateral inhibition influence. In the visual system the contrast enhancement effect can be

easily detect.

Figure 2-6: Contrast Enhancement [4]

2.3.1 The Human Visual System

The Human Visual System can be classified into two important parts, the eyes and the brain.

Whereas, the eyes act as a camera to capture the light and transform it into signals which are then

transmitted to image processing centers in the brain.
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2.3.2 The Eye

The structure of the human eye is analogous to that of a camera. The basic structure of the eye is

displayed in Figure 2-7.

a. The cornea serves as a primary lens which performs the focusing task of the incoming light

signal.

b. A muscle which controls both the positioning and the shape of the eye’s lens. The benefit of

that is to obtain an excellent control over how the light entering the eye[?]

c. The iris of the human eye is a muscle which, when contracted, covers all but a small central

portion of the lens. Whereas an adaptive controlling the light entering the eye.

d. The retina, where the contrast enhancement can be observed. This part of the human eye

provides a photosensitive skin at the back side of the eye, where is the light converting into

nerve signals.

e. The fovea which is the central region of the retina is particularly sensitive, and it provides

the highest resolution and is used for close inspection of objects in the visual field.

Figure 2-7: Major Parts of Human Eye [5]
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2.3.3 The Retina

The retina part of the human eye is a thin layer of cells positioning at the interior back and sides

of the eye. There are two general classes of light-sensitive cells in the retina; the rods and the

cones. Rod cells are responsible on the night-vision due it’s high sensitivity to light. However,

the cone receptors provide the daylight vision in reasonable light levels. There are about (100-120)

million rod cells and (5-6) million cone cells in the human retina. There are more rods than cones

because they are used at low light levels and they are desired to collect or gather the incident light

[19]. Although there are some 120 million rods and 6 million cone cells in the retina, there are

roughly a million optic nerve fibers which connect them to the brain. This means that there cannot

be a single one-to-one connection between the photo-receptors and the nerve fibers. The number

of receptors connecting to each fiber is location dependent. In other words, the light information

will be gathered in a different way depending on the position of the light photoreceptor. In the

periphery part of the retina, as many as 600 rods are connected to each nerve fibers, while, in the

fovea there is an almost one-to-one connection between cones and fibers. In addition to those two

types of photoreceptors, there are other cell types whose function is to accumulate and process

the light data information produced by the photoreceptors. The mechanism by which a neural

cell can pass information to multiple cells is through horizontal and amacrine cells, see figure 2-8.

A receptor cell can directly pass information to another kind of receptor cell which is a bipolar

cell, but to send information to other bipolar cells, that electrical signal has been sent already via

horizontal cells. The bipolar cells send electrical pulses to many ganglia through similar cells known

as amacrine cells. The ganglion cells perform as terminators for the nerve fibers connecting to the

brain. Throughout most of the retina, bipolar cells gather signals from several receptors while

the fovea there is usually one for each receptor. The benefit of horizontal cells is to connect the

adjacent receptors and the amacrine cells to multiple ganglion. The major three types (receptor,

bipolar and ganglia) of neural cells send excitatory signals, and the horizontal and amacrine cells

send inhibitory signals.

In addition to the inhibitory nature of horizontal cells and amacrine cells, excitatory effects of

bipolar cells and ganglion, cells make the lateral inhibition a common form of data processing which
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Figure 2-8: Neural Pathway of Visual Stimulus in The Retina [6]

takes place in the retina of the visual system. When a local area of the retina is excited by a fixed

input illumination, the cells on the excited part of the retina do not just send the data information

to the brain. They also send signals to closest adjacent cells whose effect is to diminish or inhibit

the effect of any excitation taking place there. Figure 2-9 shows the effect of a simple model with

and without lateral inhibition. In the first part of this figure shown, a uniform input stimulation is

applied to an array of sensors. The resultant output is a constant level of production from the

sensors. In part (b) the level of stimulation is not continuous it shows a sudden increase. The

result also has sudden increase simultaneously. The last part of this figure shows the effect when

inhibition is applied to the system. As well as outputting its signal, each sensor has an inhibitory

effect on its two neighbors. The resulting sensor output is similar to the second part, however, at

the boundary between the two levels of illumination excitatory, the difference in the output is

accentuated. In image processing, treating signals in this way is known as edge enhance.
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Figure 2-9: The Effects of Lateral Inhibition on Edge Enhancement

2.4 Mathematical Formulation of Lateral Inhibition

2.4.1 One Dimensional Matrix

The subtractive lateral inhibition occurred when a single receptor was illuminated with a con-

stant level of illumination, and a test signal traveled over a receptor adjacent to the first. This

phenomenon has also been observed in the higher level mammals through electro-physiological

experiments on the retinas of cats and monkeys[16, 10]. Because of such evidence, the lateral

subtractive inhibition has been accepted to occur among the photo-receptors of the Human Visual

System. Such inhibition called subtraction because a measure of the activity of any neuron may

be obtained by subtracting the inhibitory from the excitatory influences. Thus, the neuron may be

totally inhibited if the net inhibition is greater than the excitation. This inhibition influence has

been described in equation 2.1:

fi = ei −
N∑
j=1

bij ∗ fj (2.1)
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Whereas, ei and fi correspond to the input luminance over the receptor field and the output

associated with it. And bij is the coupling coefficient representing the interaction between the

receptors with index i and j. This weighting value is usually directly related to the distance

between the receptors in a neural network.

In this research work a recurrent model of a lateral subtractive inhibition method will be used

as an edge detection and enhancement algorithm and the reason is that this model resembles

the biological explanation. The external luminance source over each sensory receptor unit can be

considered as an independent excitatory input because of the external luminance itself cannot cause

the inhibitory effect. For example, if a machine scans the gray level chart used in the Mach band

experiment as shown in figure 2-10 without intelligence, the output will be constant as long as the

input is constant. The inhibitory phenomenon is invoked by the biological mechanism of the visual

system when each receptor unit is competing for neural firing simultaneously.

Figure 2-10: Image With Two Intensity level
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2.4.2 Two Dimensional Matrix

Image signals are typically two dimensional. Therefore, the LSI equation will be extended into the

two dimensional form. Each row of receptors can be seen as a group of receptors. Two dimensional

form of this biological method can be represented by the equation 2.2:

Fij = eij −
N∑
k=1

N∑
l=1

Bijkl ∗ fkl (2.2)

Where, bijkl, is representing the weighting coefficient matrix; before proceeding further, an explana-

tion of the nutation used is necessary matrices, including sub-matrices and vectors as special cases

of matrices, are denoted by letters wrapped with brackets, [].The elements of a matrix or a vector

are denoted by letters along with numeric subscripts indicating their coordinates. To be consistent

with the previous expression, [E] and [F ] correspond to the illumination input and the sensory

output respectively in matrix form, while [B] corresponds to the coupling coefficient matrices. Now

we can express the relationship represented in the previous equation in matrix form as shown in

equation 2.3:

[F ] = [E]− [B] ∗ [F ] (2.3)

For the sake of simplicity, only 3− by − 3 receptor field is being considered as an example.

[F1] = [E1]−
[
[B11][B12][B13]

]
∗ [F1]

[F2] = [E2]−
[
[B21][B22][B23]

]
∗ [F2]

[F3] = [E3]−
[
[B31][B32][B33]

]
∗ [F3]

Where, [F1] = [f11; f12; f13], [F2] = [f21; f22; f23]and[F3] = [f31; f32; f33]. [Bik] = 3 − by − 3

matrix consisting of the feed-backward coupling coefficients, bijkl = i, k, j and l vary from 1 to 3 re-

spectively in this 3− by−3 receptor field case. When, i = j implies intra-raw receptor interactions,
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which means the two receptors are in the same row. i 6=j implies inter-row receptor interactions,

which mean the two receptors are in different rows.From the previous equation, we have [F ] output

variable in both side of the equation. Therefore, we need to do some mathematical conversion in

order to simplify the equation 2.3. And an equation 2.4 will be obtained:

[F ] = S−1 ∗ [E] (2.4)

Apply this equation above on a 3−BY − 3 matrix:

[F1] =

[
[I +B11][B12][B13]

]
∗ [E1]

[F2] =

[
[B21][I +B22][B23]

]
∗ [E2]

[F1] =

[
[B31][B32][I +B33]

]
∗ [E3]

Where, [S] matrix represents the visual mapping depicted in figure 1-1. Whereas, this matrix is

shown to be an inverted version of the weighting coefficients matrix, [B], and expressed as a feature

extraction filter in visual neuron-physiology, known as the novelty filter [17].the inverse matrix of

the coupling coefficients can be achieved from equation 2.5:

[S] =

[
[I +B11][B12][B13][B21][I +B22][B23][B31][B32][I +B33]

]−1

(2.5)

Whereas, the identity matrix [I] equals to:


1 0 0

0 1 0

0 0 1


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And, the Inverse matrix [S] is :

[S0] = [I +B11] = [I +B22] = [I +B33]

[S1] = [B12] = [B21] = [B23] = [B32]

[S2] = [B13] = [B31]

One of the important characteristics of the matrix [S] is its symmetry. Let us first look at its sub-

matrices. For example,[Bdd], is a matrix consisting of coefficients describing the coupling among

receptors in the dth row in the two dimensional receptor array. Each receptor unit in row d may have

interaction with any other receptors including itself (in row d). This is the intra-row interaction

case. For instance, if there are 3 receptors in row d, 3−by−3 matrix is needed to represent all these

coupling coefficients and is called [Bdd]because the interaction is mutual between any receptors and

assuming that it only depends on the distance between them, it follows that bd1d2,bd2d1, bd2d3,

and etc. are all equal. In this case, as long as the difference between the coordinates j and l

remains constant, the coefficients, bdjdl, will be equal. A similar principle applies to the , Bij ,

(when i = 1, ...., N, k = 1, ....N , and i 6=j) the inter-row coupling coefficient matrices. They will be

identical if the distance separation between the two rows and k, remains constant. Thus matrix

[B] is symmetric. As we mentioned above, [I], is the identity matrix, therefore a matrix [S] is a

symmetric matrix, as well [6].

2.4.3 The Exponential Model to Generate the Coupling Coefficients Matrix

The interaction between the receptors is constrained by distance because the receptors always try

to draw ions from a nearby region rather than from a remote area when competing for the neuron

firing rate and therefore affect other receptors in the neighboring area. However, in the HVS the

coupling coefficients,bij , are assumed to become exponentially weaker the larger the spatial distance

between the receptors [18]. Equation 2.6 is representing the mathematical expression of the mutual

interconnection of the neural network:
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Bij = α ∗ exp(−β ∗D) (2.6)

whereas, alpha α and beta β are two variables that have a direct impact on the resultant output

image via LSI. Therefore, it is crucial to investigate how are they influence on the output image and

which numerical value gives them the best representation. In the following chapter, the examination

of these two variables impacts and their proper values have shown for both mapping models.

The interconnection spatial distances between the neuron receptors have been calculated via the

Euclidean equation which is representing by this equation below, see equation 2.7:

D =
√

(x− x0)2 + (y − y0)2 (2.7)

As indicated previously, the interconnection spatial distances between the photo-receptors and the

way to calculate it is the point of interest in this study. The following chapter will representing

the new mapping model based on the Log-Polar Transformation method and a filtration process

via Contrast Sensitivity Function (CSF) with the three multiple spatial-frequency channels. In the

next chapter the simulation results regarding the new model as well as the conventional one will

be shown. Then, the conclusion of this research work and our directions for the future work will

be presented in chapter five and chapter six, respectively.
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Chapter 3

Effect of Lateral Inhibition within

Two Different Image Mapping Models

Human visual system is composed of vast neural networks retinal cells to sense light stimulus, neural

pathways and visual cortex for high-level visual cognition information processing role at different

levels; that is physical level, psychological level and physiological level, as well as a cognitive level.

In every level, many rational and well-ordered mechanisms can be found that should be applied in

information processing. Such neural computing and generic algorithm are good examples of the

application using biological mechanisms [19].

Lateral inhibition which is a physiological level phenomenon of early vision system can be shown as a

computational model that improves and enhances the image contrast. Different kind of methods to

enhance and improve the image contrast are used such as grayscale transformation (linear, gamma,

logarithm, etc. [20]), histogram modification [21] and some filtering or masking techniques [22].

However, these techniques have unsatisfactory results which arise for the following reasons:

1. We have to choose ad hoc one of them to the needs of the moment because they do not adapt

themselves to an actual image automatically. .

2. These methods are based on using digital or statistical features of the image, but they lack a

consideration of the physiological and psychological behavior of our visual systems. .

The proposed method in this work (image contrast enhancement based on the lateral inhibition),

gets over both of the problems mentioned above (1,2) and can show the rationality of human visual

system to recognized and detect the important features from wide varieties of visual stimuli. The
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lateral inhibition model represents the basis of physiological and psychological levels. Lateral

inhibition in retinal cells is a phenomenon that has the effect of making the cells compare the

amount of light at one position with the amount at neighboring regions (photo-receptors).

The Lateral Inhibition (LI) comprises two inhibitory modes: Recurrent-Lateral Inhibition (RLI) and

Non-Recurrent Lateral Inhibition (N-RLI), and the difference between these two mutual inhibitions

is that what caused the inhibition effect. If the network output produced it, then it is the RLI;

otherwise, it is N-RLI. The neural network whose connection mode adapts the lateral inhibition

mechanism is called Lateral Inhibition Neural Network (LINN). In this research work we have

adopted the Recurrent mode of the lateral inhibition since it is much closer to the HVS than an

N-RLI and the reason is a biological one.

It is believed that the recurrent (negative) feedback lateral inhibition occurs between the photo-

receptors in several different sensory systems, but in particular, Human Visual System. In these

optical systems, if one receptor is excitatory after being stimulated, it will inhibit the surrounding

neurons through the inhibitory connections; thereby achieve the competition between neurons. This

contest among the receptors produces a phenomenon which characterized in enhancing the image

contrast in the receptive field. Different models have been investigated to calculate the weighting

coefficients matrix of the lateral inhibition algorithm to obtain the contrast enhancement of the

processed image, see [6]. However, in this work an exponential model has been used to generate

the coupling coefficients of LSI.

Figure 3-1 represents the way to calculate the uniform spatial distances between the center points

of the photo-receptors and generating a uniform coupling coefficients for the lateral subtractive

inhibition based on the exponential model by using equation 2.6 and equation 2.7.
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Figure 3-1: This figure Illustrates the Uniform Model of the Recurrent Lateral Inhibition, with

neural network size [3 x 3].

The Uniform model introduces the way of how to calculate the spatial distance between the

photo-receptors according to the center point (the point of interest). However, this way of calcula-

tion produces many difficulties to the pattern recognition process in image processing world. One

of these challenges is the size of the output processed image will be same as the input image data,

and that needs a large memory space for the data processed to be stored. The second one is the

time required to process and detect the features from the entire input image data. While, the real-

time operation property is a crucial, especially in vision systems. Therefore, a new mathematical

method to sample the image has been introducing to get rid of these difficulties of the conventional

model (the Uniform model). This new approach mimics the Human Visual System in a way that

it processes the image data in a non-uniform way corresponding to the spatial distribution of the

receptive fields. More details about the new model will be presented on the following section. The

structure of this research work is representing in figure 3-2 below to illustrate the procedures and

the comparison method that we have used to compare the new model with the conventional one

which is the Root Mean Square Error (RMSE) quality metric.
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3.1 The Work Structure:

Figure 3-2: The Work Structure Of this Thesis.
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3.2 The Non Uniform Mapping Model of the coupling coefficients

matrix based on the Recurrent Lateral Inhibition Method

3.2.1 Introduction to Log - Polar Transformation Mapping

At the highest levels of evolution, living beings have developed vision systems that are both ac-

tive and space-variant. In the vision system of primates and specifically in the human eye, a

space-variant image sensor structure exists and characterized by a non-uniform pixel geometry.

In biological systems such as these, there are two different areas of resolution can be recognized:

the fovea, characterized by a relatively uniform receptor distribution of fine resolution, and the

periphery, where the receptor distribution is sparser and is non-uniformly distributed. This map-

ping method was first motivated by its resemblance with the structure of the retina of mammalian

biological vision systems. It has been found that the excitation of the cortex can be approximated

by a log-polar mapping of the eye’s retinal image. In other words, the real world is projected onto

the retinas of our eyes, is reconfigured onto the striate cortex of the brain by a process similar

to a log-polar mapping before it is processed by our brains[23]. In the human visual system, the

cortical mapping is performed through a space-variant sampling strategy, with the sampling pe-

riod increasing linearly with the distance from the fovea. Within the fovea, the sampling period

becomes almost constant (one-to-one uniform area). The retina-cortical mapping can be described

through a transformation from the retinal plane onto the cortical plane[24]. In particular, log-polar

mapping algorithm produces an image with less amount of data to be processed, while preserving

details in the fovea necessary for robust pattern recognition [25].

3.2.2 Background

In 1866 Max Schultz published an extensive report on the anatomy of the human eye [26]. By

carefully raising the scaler on a human eye, removing the choroid and pigment layers, Schultz was

able to view the tips of the photo-receptors in situ. He found that the photo-receptors were not

organized in a uniform manner, but were denser at the fovea and became less dense as one traversed

rays outward from the fovea. From his early work has evolved the exponential model for the cone
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density. In other words, as the radial displacement from the center of vision is increased, the cone

density decreases in an exponential manner. This physiological fact incited great interest into how

the information gathered by the cones is mapped to the corresponding section of the brain. Schwartz

in [27, 28], showed that under the conditions that the cortex has unfolded into a cortical plane and

the curved retinal surface, within of visual field, is approximated by its tangent plane. Daniel and

whitteridge have been introduced the magnification factor, which the cortical magnification factor is

defined as a ratio of the distance moved across the surface of the cortex to the corresponding distance

moved across the surface of the retina [29]. And this can be approximated by a complex logarithmic

mapping model. In his notes, Schwartz has mentioned that this retinal-cortical mapping provides

the mechanism for size and rotational invariance in the HVS. The retinal-cortical mapping has the

same mathematical insight of a conformal logarithmic model for the projection of the retinal surface

onto the striate cortex of the brain. The conformal logarithmic mapping has introduced to the image

processing community. The mathematical treatment of the conformal mapping and a suggestion

on how to utilize this mapping model in an image processing is described in this study [30], but do

not proceed further to develop simulations. The non-uniform structure has investigated regarding

the non-uniform sensor arrays with the sensor distributed in such a manner as to preserve chain

encoding [31]. However, the human visual system does not require chain encoding preservation

and instead of that the physiological evidence for a complex logarithmic retinal-topic mapping

has exploited by calculating the logarithmic transformation through a collapsing of a non-uniform

(retinal) sampling field onto a uniform (cortical) field [32].

3.2.3 Mathematical Representation of Log-Polar Mapping Algorithm

According to the non-uniform distribution of the cone receptors in the human retina, a pattern has

been built. Whereas, the non-uniform radial logarithmic sampling of a captured object, produces a

uniform homogeneous space as an output which can be expressed as (u, v). whereas, the parameter

(u) is equivalent to the natural log radius (log(r)), and (v) represents the angular position of the

receptor (θ) in the HVS. This mapping from a non-uniform space (r, θ) to a uniform one (u, v)

which preserves angular information, may be decomposed into two steps for simulation purposes.
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The first step takes the non-uniform array described in the left side of figure 3-3 below and produces

the uniform (u, v) plane. In the second step, the data will be re-organized in spatial coordinates

to reflect the angular information of the original image; this will be shown on the right side of the

same figure.

Figure 3-3: The conversion of the Uniform space to the Non-Uniform plane (r, θ) in (a). Illustration

the transformation of the Non-Uniform Plane to Uniform (u, v) space (b) [7].

The following equations give the mathematical relationship of these two steps mapping, from

the non-uniformly sampling plane to the uniform (u, v) feature space:

r =
√
x2 + y2 (3.1)

θ = arctan(
y

x
) (3.2)

This transformation presents some interesting properties for the scale and rotation invariance

about the origin in the Cartesian plane. It can be seen from figure 3-4, that the single circle maps

to a single vertical line in the transform space since the radius of the circle at all angles is given

by a constant value (r) coordinates for all (θ) coordinates from (0 to 2π). Similarly, an image
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of radial lines which have a constant angle but variable radius results in a map of vertical lines

in the transform space [33]. These mapping characteristics are well known and are fundamental

for many rotation and scaling invariant pattern recognition algorithms. When the input image is

rotated that would be translated onto a vertical shift along the y-axis of the (u, v) mapped space.

However, if the same input image has zoomed in (scaled on the point of view) that will result in

only horizontal shift displacement of the mapped space without effecting on the important details

of the image itself. This has been explicitly represented and documented by researchers [34]and in

figure 3-4 below:

Figure 3-4: The Log-Polar Mapping Applied to Regular Patterns (Concentric Circles and Radial

Lines in The Image Plane).
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3.3 Non-Uniform Model And Lateral Subtractive Inhibition (LSI)

Method

The concepts of a non-uniform retinal-like image sampling and log-polar mapping have been widely

applied in the area of machine vision and image processing. An extensive research work has been

done on log-polar mapping has represented in this study[35]. While, the non-uniform retinotopic

image sampling and complex log-mapping applied on face recognition have demonstrated by this

work presented here[36]. The lateral inhibition occurs in the frontal pathway of the Human Visual

System (HVS) between neuron receptors at different stages of information flow. The explanation of

this biological phenomenon. There are only a finite number of ions available for neural firing rates

which propagate information from local region of the retina to the corresponding cortex region.

This causes an inhibitory influence among the receptors in the neighborhood because they compete

for these ions at the ganglion level. As we mentioned earlier, and the mathematical representation

of this biological method can be found in equation 2.3 and 2.4.

Non-uniform resolution of the human retina has been found to follow a logarithmic polar law,

taking into account the linear increment of the photo-receptor’s size with the distance to the center

[27]. Combining this with the lateral subtractive inhibition phenomenon, that occurs between the

neuron receptors. It is possible to obtain such a robust biological filter model to perform the

desired tasks, such as edge-enhancement, without considering all the data contained in uniformly

sampled images. Hence, the processing effort can be concentrated in the foveal area. Thereby, less

computational cost on the processing data can be achieved. The main advantage of this model is

the utilize of geometric properties of the log-polar image to implement lateral inhibition, and hence

we can obtain the edge enhancement on the foveal area (the highest resolution part of the LPM

pattern) as opposed to the image periphery. And compare that to the uniform Cartesian image,

to show that both computational and performance advantages arise from the use of the space-

variant systems.The photo-receptors in the human retina are distributing in space with increasing

concentration toward the center of the visual field (the fovea) [37]. This model is based on a Log-

Polar space variant, and that would produce a non-uniform image sampling. The main advantage of
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this kind of sampling is an important data reduction obtained at the cost of reducing the resolution

in the periphery of the pictures, but the high settlement in the fovea is sufficient to accomplish most

of the visual tasks [38]. As we mentioned earlier, that the structure of the human retina follows the

log-polar law and to observe that the figures 3-5 have shown the way that a cone photo-receptors

are taken to distributed over the human retina.

Figure 3-5: the human retina cone-rods distribution.

Figure 3-6, includes the non-uniform distribution of receptors in the human retina. As well as,

it shows the inhibition effectiveness between the sub-circles. If we take a particular circle to be

our reference sub-circle, then the calculation of the distance and the inhibition competition will

be starting from this circle to its neighbors, then the separation distances will be calculated via

the Euclidean equation 2.7. From the same figure, the inhibition impact reaches the maximum

with the minimum distance between the sub-circles. Therefore, there is an inversely proportional

relationship between the inhibition effect and the interconnection spatial distance between the

neurons:

TheInhibitionImpact =
1

TheSpatialDistanceBetweenTheNeurons
(3.3)

The calculated distances (D) will be re-organized in a uniform space, where the y-axis represents

the angular spatial positions for each sub-circle ”how it’s distributed aver a range from [0 to 3600]”,
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Figure 3-6: Illustrate The Non-Uniform Distribution of the Receptors: Inter-connection Distance

Calculation of the Receptors and the inhibition Impact.

and the x-axis represents the non-uniform natural logarithmic increment of the radii, see figure 3-7.

Figure 3-7 illustrates the uniform increment of the y-axis of (u, v) space, (the angular position

regarding θ), due the symmetry. In other words, the difference of the distance between any two

angles is constant. However, the x-axis of the same space which represents the non-uniform incre-

ment of the radii is asymmetry. Which means, the difference between any two radii is not constant,

and it depends on the position of the reference sub-circle, and if we take another sub-circle to be

our new reference neuron then, the distances will be different as well as the weighting coefficients

according to the new distances. The weighting coefficients matrix will be achieved by applying

the same exponential model on the non-uniform distances via the new mapping model, by using

the equation in 2.6 . This mathematical expression represents the effect of the Lateral Subtractive

Inhibition (LSI) on neuron receptors in the HVS [12]. Each parameter in this equation impacts

effectively on the resultant weighting coefficients. More explanation and simulation figures related

to this algorithm will be representing on the following chapter.
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Figure 3-7: Illustration of the Cartesian plane and the Log-Polar plane with non-uniform distance

between two radii [8].

3.4 The Contrast Sensitivity Function (CSF) of the Human Visual

System (HVS)

Evidence that the Human Visual System may be performing some parallel spatial frequency fil-

tration processing is supported by both physiological and psycho-physiological data. Evidence has

been found that the cells of the Macaque monkey’s visual cortex are spatially selective frequency

[39]. The use of multiple, fairly narrowly tuned, spatial frequency channels (presumably cells selec-

tively sensitive to different restricted portions of the spatial frequency spectrum), has been utilized

in this research work to show the separation of features in portrait images into different frequency

channels. Then, study the possible existence of the Lateral Inhibition between spatially neighboring

channels that detect similar spatial frequencies.
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3.4.1 Contrast Sensitivity

In addition to the anatomical and neurophysiology studies, much insight into human vision has been

paid via psycho-physical technique, for example, the HVS can be experimentally characterized by

detection the various spatial contrast, most commonly sine-wave gratings, see figure 3-8. The

contrast sensitivity threshold for a given stimulus is defined as the minimum contrast necessary

for a human to observe the target. Many different measures of contrast have been employed in

psycho-physiology studies, such as: Simple Contrast, Weber Contrast, Michelson Contrast and

Root-Mean-Squared Contrast (RMS Contrast):

1. SimpleContrast is defined as:

Csimple =
Lmax
Lmin

(3.4)

where Lmax and Lmindenote the target’s minimum and maximum luminance, respectively.

2. WeberContrast is defined as:

Cweber =
Lmax − Lmin

Lmin
(3.5)

where Lmin and Lmax denote the target’s minimum and maximum luminance, respectively.

3. MichelsonContrast is defined as:

Cmichelson =
Lmax − Lmin
Lmax + Lmin

=
1

2
∗ (Lmax − Lmin)

µ(L)
(3.6)

where Lmin and Lmax denote the target’s minimum and maximum luminance, respectively;

where µ(L) denotes the mean luminance.

4. RMSContrast is defined as:

Crms =
1

µ(L)

(
1

N
∗

N∑
i=0

[
Li − µ(L)

]2)0.5

=
σ(L)

µ(L)
(3.7)

where µ(L) denotes the mean luminance, σ(L) denotes the standard deviation of the tar-

get’s luminance’s, Li denotes the target’s luminance at spatial location , i and N denotes

the total number of spatial locations. Most often, the contrast metric is selected based

on the experimental stimuli; e.g., Michelson (peak-to-peak) contrast is commonly used for
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targets consisting of sine-wave gratings, whereas RMS contrast is commonly employed for

non-periodic targets (noise, textures, images). Note that the luminance values used in all

of these definitions of contrast are defined in standard CIE units of candelas/square meter

(cd/m2).

Figure 3-8: three different spatial frequency ranges [2 cycles/mm, 4cycles/mm and 16 cycles/mm.

3.4.2 Contrast Sensitivity Function

Contrast is a physical parameter describing the magnitude of the luminance variations around the

mean in the scene. According to the previous section, it is not a trivial task to choose the proper

metric to measure the contrast, since in any particular scene luminance may change from point

to point in complex ways [spatial-temporal contrast]. However, in the visual stimuli always the

stimulus is a single of uniform luminance presented against a uniform background or sinusoidal

pattern (periodical pattern). If the stimulus is a spatial periodical pattern (or gratings), it defined

the spatial frequency which is the number of cycles per unit space. The luminance profile of

sinusoidal gratings of frequency (f) measured in cycles/ distance,cpd , oriented along the spatial

direction, can be described as:

Y (x, y) = Y0 +A ∗ sin
(
2π(fxX + fyY )

)
+ φ (3.8)
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Where,Y0, is the background luminance, A, is the amplitude and (fx, fy) are the spatial frequen-

cies along (x, y) orientations, respectively. φ is the phase, determine the luminance at the origin of

the coordinates (x = 0, y = 0). If the phase φ is πrad the luminance is zero at the origin the pattern

has an odd symmetry. Whereas, if the phase φ is fracπ2rad , the luminance is maximum at the

origin and the pattern has an even symmetry. The figure shown below illustrates the sinusoidal

luminance with different spatial frequencies: [2cyces/pi], [4cyc/pi]and[16cyc/pi] to represent the

complete frequency bands [Low, Mid, High]. The contrast detection measurement depends on the

determination of the minimum contrast required (threshold) to detect sine wave gratings of with

different spatial frequencies as the expression in 3.9:

CSF =
1

THRESHOLDCONTRAST
(3.9)

Figure 3-9 shows the typical shape of the curve to represent the CSF for a subject with a normal

visual system when φ = π
2 rad. This curve is bandpass in nature. In other words, it represents that

Figure 3-9: Contrast Sensitivity Function Envelope Curve (CSF).

the stimuli are most sensitive to an intermediate range of spatial frequency and less sensitive to the
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lower and higher that this range.

Figure 3-10: Sweep Grating

Figure 3-10, displays a pattern that increases in spatial frequency from left to right (the bars

get narrower) and decreases in contrast from bottom to top (the bars get fainter). By tracing out

the boundary between the visible and invisible you can make out the curved shape of the CSF,

which is exactly like the typical curve in the previous figure, see figure 3-9. In the human eye, the

reduction in sensitivity at high spatial frequency has been attributed to limitations both in optics

of the eye and in receptors spacing, and to quantum noise; whereas at low spatial frequency reduced

the sensitivity is believed to occur in part by limited receptive field size[40].
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3.5 Multiple-Spatial Frequency Channels

The typical curve of the CSF is an envelope of over several underlying mechanisms filter; each

corresponds to photo-receptor neurons with differing preferred spatial frequencies, this depends on

the evidence has found that the cells of monkey’s visual cortex are spatially selective frequency

[41, 42]. Each frequency channel is sensitive to a particular range of frequency, and these channels

can be overlapped as well as they are acting like the bandpass filter. According to [42, 43] studies,

the HVS has between five and seven spatially-tuned frequency bands. However, for real-time

operation, it is necessary to eliminate unnecessary processing or combine several processing tasks

into one simultaneous process to reduce the processing time required to accomplish the required

task. To do that, we formed the CSF curve to be an envelope over three underlying spatial

frequency selective filters. These three bands are thoughts to be useful for pattern identification.

All the results simulations for these three groups will be presented in the following chapter.

3.5.1 The Link Between The Contrast Sensitivity Function and The Recurrent

Lateral Inhibition of HVS

This section deals with the link between LSI and the Multiple Spatial Frequency Channel HVS

Model. According to [18] the Lateral Subtraction Inhibition (LSI) was represented as the process

of passing the visual information inputs through the multiple bandpass channel filters. These filters

are formed from a difference of Gaussian (DOG) functions under the condition that the coupling

coefficient matrix is Gaussian. The difference of Gaussian (DOG) model is a spatial bandpass filter,

whereas it describes the characteristics of lateral geniculate nuclei (LGN) receptive fields since the

DOG filters show a significant similarity to retinal ganglion cell receptive field. As we mentioned

previously, many of physiological researchers have been recorded that the neurons of the retinal

ganglion cells signal the spatial differences in light intensity falling upon the retina. This is accom-

plished by the so-called “center-surround” organization of receptive field, in which it’s excitatory

and inhibitory subfields are organized circularly symmetric regions. Therefore, if we want to find

the closest function in image processing that can model the receptive field’s properties, we can say

that the difference of Gaussian filter function is the one to model the shape of the retinal receptive
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field. Whereas, the role of DOG captures reasonably well the “maxi can hat” shape of retinal

ganglion cell receptive fields. Of course, the human retina is more complicated than this model in

reality; that’s because of the transformation of the visible pixels to retinal ganglion cell outputs is

mediated by many other neurons and complex synopses.

There are two major varieties of the center-surround receptive field, which is the main property

of the retina and the DOG filter, ON-center/OFF-surround and Off-center/ON-surround, depend-

ing on weather the central region is excitatory or inhibitory, respectively. It is widely thought that

the reason for having these two varieties is so that both negative and positive changes in intensity

can be signaled with positive-only quantities. The figure 3-11 below represents the two types of

photo receptors of the human retina:

Figure 3-11: The two models of the neurons receptive fields of the HVS.

3.5.2 Filtering Entirely In Spatial Domain:

It is known that certain definable features can be shown to be in separate spatial frequency channels

[43]. These spatial-frequency channels have generated based on the difference of Gaussian function

(DoG). That based on the similarity between the structure of the neuron receptive field and the

DoG function. Since the Fourier transformation of a Gaussian is still Gaussian, the filtration process

in this research work will be in a spatial domain and that means, a convolution of the original input

image with a DOG (difference of Gaussian) where this function can be obtained by subtracting

two zero mean Gaussian filters with different sigma parameters. All the mathematical operations
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related to these process will be shown below:

In One Dimension:

DOG(x) = A ∗
(
Gaus(σhigh)−Gaus(σlow)

)
(3.10)

DOG(x) = A1 ∗
(

exp
(
− (x− µ)2

2 ∗ σ2high
)−A2 ∗ (exp(−(x− µ)2

2 ∗ σ2low
)
))

(3.11)

In two Dimension:

DOG(x, y) = A1∗
(
exp(−

(
(x− µ) + (y − µ)

)2

2 ∗ (σhigh)2
)

)
−A2∗

(
exp(−

(
(y − µ) + (y − µ)

)2

2 ∗ (σlow)2
)

)
(3.12)

where, A1 and A2 are representing the filter’s amplitude. In this work, the spatial domain is the

main domain to filter out the mapped images via the following equation to represent the convolution

operation regarding this space:

FilteredImage = conv2

(
Mappedimage(x, y), DOG(x, y)

)
(3.13)

Feature extraction and enhancement can be achieved by using the DOG filters. To do that, the

filter’s parameters should be specified first. As we mentioned earlier, the contrast sensitivity of

the captured image is necessary to observe against the constant background and this metric is

representing by a typical band-pass envelope curve. To mimic that curve shape with the filters

DOG as multiple spatial frequency channels, we need to set up parameters in a specific way so

that we can achieve the low frequency of the image from the first channel, the middle frequency

from the second band as well as the high frequency from the last one. Indeed, the performance

of the filter is conditioned by parameter (σ). The relationship between the first sigma of the first

Gaussian low-pass filter to the second sigma of the second filter can be represented by equation 3.14:

σ2 = k ∗ σ1 (3.14)

Where, k is a constant. To test the impact of this parameter on the filtered image based on a DOG

filter, we have tested a range of numerical values and regarding its output image the best value

has chosen. In other words, a Root Mean Square Error quality metric has used to calculate the
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difference between a filtered output image regarding different k parameter to the original one. The

following figure, figure 3-12, is illustrating the impact of increasing this parameter on the output

image, as we can see that there is no change at all on the output image after a 5.6 value. Therefore,

we have used this value to calculate the second sigma σ2 for the second Gaussian filter (Gausσ2)

Figure 3-12: Demonstration the Relationship Between the Second Sigma σ2 to the First one σ1.

According to the figure above, the mathematical expression which will be using to obtain the

Gaussian filters for the filtration part of this work will be presenting on the following equation:

σ2 = 5.6 ∗ σ1 (3.15)

More details about that will be representing on the following chapter of this work. Besides, the

amplitude parameter of the kernel has been selected to gives the exact shape of the composite

envelope curve; the next figure illustrates all the spatial frequency channels that we have built and

used to filter out the images in this work and the envelope curve shape that relates to the CSF of

the HVS.

Figure 3-13 illustrates the composite envelope curve that came from adding up all the spatial-

frequency channels to represent the Contrast Sensitivity Function (CSF) of the Human Visual

System. As we mentioned earlier that these three channels are actually Difference of Gaussian with

zero mean and different standard deviations and amplitude to obtain all the important information

details from the input image depending on each channel bandwidth. The following figure 3-14, will
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be showing the input image as well as the filtered output images via these three spatial frequency

bands in grayscale and in color space to let the reader clearly observe the difference between the

filtered images.

Figure 3-13: The contrast sensitivity function (dashed line) and its underlying spatial frequency

channels (solid line). These channels, each of which is sensitive to specific range of frequencies

each corresponding to a different size of the receptive fields, by adding up these three channels the

Contrast Sensitivity Function envelope curve can be obtained which is the black dashed curve of

this figure.
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Figure 3-14: Input Image and The Filtered Image based a Three Different Spatial Frequency Bands
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Chapter 4

The Simulation Output Images

In this chapter, all the output images based on the mapping models and the filtration process

via the multiple spatial frequency channels of the CSF will be shown according to figure 4-1.

Where, all the related procedures of this chapter have illustrated in the figure below, regarding

each particular mapping model. As we mentioned earlier in chapter three, that the difference

between a new mapping model (non-uniform mapping model) and a conventional one (which is

the uniform model) is the utilizing of a Conformal-Log Mapping method. Whereas, the usefulness

of this mapping approach comes from the rotation and size/scale invariance that achieved in the

resulting domain making the transform suitable for pattern recognition. The concepts of non-

uniform retina-like image sampling and log-polar mapping have been widely applied in the area of

machine vision and image processing. An extensive review of biologically motivated data reduction

models related to log-polar mapping can be found in [24]. After mapping the input image via these

two sampling models, a forward and inverse images will be obtained. Then a lateral inhibition

biological algorithm and the multiple spatial frequency channels (CSF) will be applied to these two

versions of a mapped image.

A Root Mean Square Error (RMSE) quality metric has used to calculated the difference be-

tween the filtered image via the Difference-of-Gaussian filter to the lateral inhibition image within

the same mapping model in order to measure which output filtered image contains the closest in-

formation to the image processed based on the LSI algorithm. All the numerical results will be

shown as tables in this chapter [44, 45].

The effectiveness of Lateral Inhibition decreases exponentially with increasing a spatial distance

between the adjacent retinal photo-receptors. According to this relationship the weighting coeffi-
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Figure 4-1: Demonstration the Work Procedures of this chapter for both models .

cients for lateral inhibition will be generating depending upon the separation distances between the

neurons over the retinal plane for both models. See the equation 2.6. From this equation in 2.6,

α and β are two variables have involved in an exponential model, and they have their impact on

the weighting coefficients matrix. A contribution of this research besides generating a new design

which mimics the Human Visual System, is specified the best numerical values and the roles of

these two parameters. The investigation on these values for the exponential model will be shown

firstly for the Uniform model then the non-uniform one, respectively. Then, the comparison by

the images between a Lateral Inhibition method and the three spatial-frequency filters image will

presenting later.

To identify these two variables for this model, we have used a synthetic pattern image with size

[100 x 100] and two specific level of intensities which represented by the cross section profile of this

image, see figure 4.2 part B. The reason for choosing this picture instead of the real gray-scale image

is that the processing results will be easier to observe and compare to determine which parameter

value is more suitable for obtaining an accurate result. Also, it conserves a lot of time by working

with smaller size images in general; therefore, we’ve preferred to work with [100 x 100]. MATLAB

computer language with version (R2016a), has been used to process the images and obtain the
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simulation results.

4.1 The Exponential Model’s variables for the Uniform Mapping

Image:

A synthetic image has used for this model with image size equals to [100 x 100], to make this study

more general. To clearly understand the impact of these two variables on the processed image, one

of them has to be set as a constant while changing the other variable within a particular range of

numerical values. And depending on the overshooting and the undershooting edges of the cross

section profile of the resultant image as well as the preserved information beyond the edges, we can

notice the impact of these two variables and investigate the best numerical value which gives the

desired LSI image. According to two important criteria that are representing in the cross section

profile of the LSI image that is shown in figure 4.1, where these criteria are: first: the degree of the

edge enhancement which can be calculated by subtracting the peak of the overshooting edge (P)

from the setting of the overshooting area (S1). Second: the preserved information beyond edges,

and this can be calculated by subtracting the setting of the overshooting are (S) from the setting

of the undershooting part of the LSI image (S2).
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Figure 4-2: (A)Input Synthetic Image. (B)Cross Section Profile

Figure 4-3: (A)Lateral Inhibition Uniform Mapping Image. (B)Cross Section

Profile
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4.1.1 The α Variable of the Exponential Model

Alpha α variable will be tested and verified in this section using a synthetic image with two

specific region of intensities. According to the Overshooting edges and the differential of the

intensities between the Overshooting and Undershooting of the processed image based on lateral

subtractive inhibition, the best numerical value will be specified. The following simulation figures

are representing all the results related to this investigation. Figure 4.4 illustrates the minimum

value of an alpha α parameter, 0.03, has been used as the minimum value to represent an alpha

variable for the uniform mapping model because that (0.01 and 0.02) values are giving an image

which is exactly similar to the original image and the first changing on the information of the

processed image is starting to be seen when alpha equals to 0.03, then the following figures will be

showing the rest of the numerical values within a range of values starting from 0.03 to 1.2:

Figure 4-4: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.03 and

β=0.5.
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Figure 4-5: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.05 and

β=0.5.

Figure 4-6: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.08 and

β=0.5.
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Figure 4-7: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.1 and

β=0.5.

Figure 4-8: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.2 and

β=0.5.
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Figure 4-9: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.3 and

β=0.5.

Figure 4-10: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.4 and

β=0.5.
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Figure 4-11: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.5 and

β=0.5.

Figure 4-12: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.6 and

β=0.5.
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Figure 4-13: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.7 and

β=0.5.

Figure 4-14: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.8 and

β=0.5.
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Figure 4-15: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=0.9 and

β=0.5.

Figure 4-16: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=1 and

β=0.5.
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Figure 4-17: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=1.1 and

β=0.5.

Figure 4-18: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With α=1.2 and

β=0.5.
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From the previous simulation figures, we have concentrated on the overshooting edges of the

cross section profiles since it represents the edge enhancement of the output image. As we can

see that by increasing an alpha parameter, the overshooting peak increases linearly. However, this

increment of the alpha parameter reduces the differential intensities of the same image. In other

words, the separation distance between the overshooting and the undershooting peaks of the cross

section profile image is decreasing when alpha is increasing. And that means if we increasing the

alpha parameter we will achieve the edge enhancement of the processed image but the relevant

information beyond these edges will be missing. Therefore, a numerical value need to be chosen to

represent an alpha parameter on the exponential model which gives the desired results according

to the edge enhancement as well as improving the important information beyond these contrast.

Figure 4-19 represents the relationship between an alpha parameter α and the edge enhancement

(Overshooting peaks) of the image that treated via LSI method:

Figure 4-19: Illustrates the relationship between the overshooting edges of the lateral inhibition

image and alpha parameter. when alpha α changes from [0.08 – 1.2], while beta β =0.5.
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And the following figure 4-20 is representing the relationship between the alpha variable α

while fixing beta β to the relevant information beyond the image enhancement in order to study

the impact of this parameter on the whole image (the edges and the important information between

the edges):

Figure 4-20: Represents the Impact of α Parameter on the Differential of The Intensities of the

Resultant Output Image.

From these two figures above, we can observe that there is a linearly proportional relationship

between an alpha parameter to the edge enhancement of the LSI image. While an inversely propor-

tional relationship between the same parameter to the differential intensities which representing the

preserved information beyond the edges of the same image. In other words, as an alpha parameter

increasing the important information between the overshooting and undershooting edges decreases

until we almost lose all the image data [see figure 4-18].

Before proceeding to choose the best numerical value of an alpha parameter, we need to study the
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impact of the other parameter of an exponential model which is a beta β variable. In order to

complete this investigation and obtain the big picture of the operation function of these two vari-

able and what is exactly their influence on the processed image and which number is giving us the

best result regarding the edge enhancement as well as the improvement of the relevant information

beyond these edges.

4.1.2 The β Variable:

The same procedures will be used as the previous section, in order to the other variable of an

exponential model which beta /beta.To do that we have set an alphaα parameter to be as (0.5)

by default while changing beta within specific range of numbers from 0.1 until 1.5, figures (4.21 -

4.34) are showing the output images when alpha=0.5 and beta changes to represent the impact of

a beta variable on the edge enhancement and the perceived information of the lateral inhibition

image results.

Figure 4-21: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.1 and

α=0.5.
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Figure 4-22: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.2 and

α=0.5.

Figure 4-23: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.3 and

α=0.5.
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Figure 4-24: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.4 and

α=0.5

Figure 4-25: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.5 and

α=0.5
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Figure 4-26: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.6 and

α=0.5

Figure 4-27: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.7 and

α=0.5
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Figure 4-28: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.8 and

α=0.5

Figure 4-29: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.9 and

α=0.5
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Figure 4-30: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=1 and

α=0.5

Figure 4-31: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=1.1 and

α=0.5
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Figure 4-32: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=1.2 and

α=0.5

Figure 4-33: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=1.3 and

α=0.5
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Figure 4-34: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=1.5 and

α=0.5

As we can see from all the figures above, that the relative information beyond the overshooting

and undershooting edges of the lateral subtractive inhibition image is improving linearly as the

value of beta variable is increasing while the enhancement of the image contrast reduces. The

following figures 4-35 and 4-36 are representing the relationship between the beta parameter of an

exponential model (while fixing an alpha variable as 0.5 by default) to the edge enhancement of the

processed image and the perceived information beyond the edges. We can observe that there is an

inverse relationship between the edge enhancement to the distance between these edges. Therefore,

to specify the numerical values for these two variables that are giving the desired output images a

brief comparison between these two variables is made and presented in figure 4-37 and figure4-38.
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Figure 4-35: Illustration The Impact of Beta parameter β on the Overshooting Peak of the LSI

Image

Figure 4-36: The Relationship between the separation Distance between the Overshooting and the

Undershooting and the beta β parameter of LSI Image
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From all the above simulation results related to this investigation of beta and alpha impact

over the LSI image. An inversely proportional relationship between an alpha parameter to the

beta parameter within an exponential model has observed. In other words, when an alpha variable

increasing the overshooting edges increases as well while the differential distance between the edges

is dropping. However, when a beta variable is rising the edge enhancement decreases while the

differential distance between the edges improves. The following figures 4-37 and 4-38 illustrate the

operation functions for these two parameters over the LSI image briefly to choose which case is

giving the desired output image via LSI method.

Figure 4-37: Different Cases of Alpha from [0.08 to 1] While Beta =0.5.
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Figure 4-38: Different Cases of Beta from [0.08 to 1] While Alpha =0.5.

According to the data in figure 4-37 and 4-38, the desired situation is obtained when beta is

higher than alpha [more details regarding the relation between these two variables will be shown in

chapter five]. In other words, the desired output image with the edge enhancement and perceived

information is achieved when an alpha α equals to (0.5) and beta β is (1).
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4.2 The Simulation Results of the Uniform model via the LSI

Method

In this section, the numerical values that have obtained from the previous experiment for an alpha

and beta variables to generate the coupling coefficient matrix via an exponential equation for this

mapping model will tested on a different synthetic and real images. The result output images will

shown in this section according to figure 4-1.

All the experiments in this work were performed on the images, (synthetic or real), with partic-

ular image size [100 x 100] for the Uniform Model and [128 x 64] for the Non-Uniform Model, that’s

because of the inverse matrix [S] which is corresponding to the RLI method. Matrix inversion can

be easily done by a function call in the MATLAB; however, different versions of MATLAB running

on different platforms have different capabilities of handling large size matrix inversion. For ex-

ample, MATLAB with Simulink for Windows running on a PC platform is capable of performing

matrix inversion by a direct function call up to order [16384 x 16384]. Beyond that size, “out of

memory” errors occur. Therefore, the following simulations will have one particular size which is

[100 x 100] for this image mapping model. Firstly, the synthetic Uniform mapped image, for this

research work we have built two types of synthetic images, a staircase image and a stripped image

with two gray level scales, see figure 4-39 part A and B. While, the real image is presenting on the

following figure, in figure 4-40 part A, B, C, and D.
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Figure 4-39: (A):A Stripped Image with Size [100x100]. (B)A Synthetic Staircase Images with size

[100x100] .

Figure 4-40: The Input Real images with size [100x100] with Four Different Types: (A): Flower.

(B):Butterfly. (C):Jet. (D): Word.
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The lateral inhibition method is applied to the input image directly regarding this model.

Therefore, the interconnection spatial distances will be calculating uniformly via the Euclidean

equation, see equation 2.7.

The circular version of this image will be obtained via a pattern that constructed from number

circles that is equivalent to the image size and increasing linearly (uniformly). The reason for

obtaining this type of the image is because that the new design has two type of the pictures; the

forward mapped image as well as the reverse one (wrapped back image) which comes from a circular

pattern that is similar to this pattern in figure 4-41. However, the non-uniform circular pattern is

including concentric circles that are increasing in a non-linear way (logarithmically) [more details

regarding this model will be illustrating in the following section of this chapter].

Figure 4-41: Circular Pattern To inverse the Uniform Mapped Image with size [100 ring x 100

wedge] .

Figure 4-42 represents the synthetic image with size [100x100] before and after applying the

lateral subtractive inhibition method with an alpha =0.5 and beta=1, for an exponential model.

In the following figures, the second type of the synthetic image will be treated by the (LSI)
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Figure 4-42: (A)The Synthetic Input Image. (B)The Lateral Inhibition Image with α = 0.5 and

β = 1.

Figure 4-43: (A)The LSI of Synthetic Input Image.(B) the LSI Wrapped Back Image with α = 0.5

and β = 1.
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biological method to study the characteristics of the resultant output image. However, the output

image will be too dark to visualize the changes occurred after applying the recurrent lateral inhi-

bition to it. Therefore, the colored version of the input and the output image will be presenting

right next to this figure to illustrate the edge enhancement of the output image based LSI.

Figure 4-44: (A)The Synthetic Mach Bands Input Image. (B) the Lateral Inhibition Image with

α = 0.5 and β = 1.

Figure 4-45: (A)The Colored Version of the Synthetic Mach Bands Input image. (B)The Colored

Version of the Lateral Inhibition Image.
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Figure 4-46: (A)The Colored Version of the Synthetic Mach Bands Input image. (B)The Colored

Version Wrapped Back LSI Image with α = 0.5 and β = 1.

As we can see from the previous simulation figures, that the feature enhancement (the edges

or the discontinuities regions in the image) were successfully obtained by using this biological

phenomenon for the Uniform Mapped image and the Inverse mapped image. The colored images

have presented above to visualized the enhanced edges based the Lateral Inhibition image for Mach

Bands image. The following result images is related to a four real images in order to examine the

performance of the lateral subtractive inhibition over a real grayscale pictures, see figures 4-47 to

4-54 .
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Figure 4-47: (A)The Real Image with Size [100x100]. (B)The Lateral Inhibition Image with alpha

α=0.5 and beta β=1.

Figure 4-48: (A)The Inverse of Real Image with Size [100x100]. (B)The Lateral Inhibition Image

with alpha α=0.5 and beta β=1.
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Figure 4-49: (A)The Real Image with Size [100x100]. (B)The Lateral Inhibition Image with alpha

α=0.5 and beta β=1.

Figure 4-50: The Inverse Real Image with Size [100x100] and the Lateral Inhibition Image with

alpha α=0.5 and beta β=1

77



Figure 4-51: (A)The Real Image with Size [100x100]. (B) The Lateral Inhibition Image with alpha

α=0.5 and beta β=1.

Figure 4-52: (A)The Inverse Real Image with Size [100x100] (B) The Lateral Inhibition Image with

alpha α=0.5 and beta β=1.
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Figure 4-53: (A)The Real Image with Size [100x100]. (B)The Lateral Inhibition Image with alpha

α=0.5 and beta β=1.

Figure 4-54: (A)The Inverse Real Image with Size [100x100].(B)The Lateral Inhibition Image with

alpha α=0.5 and beta β=1.
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4.3 Filtering the Uniform Mapping Image via Multiple Spatial

Frequency Channels (CSF)

The feature extraction image processing can be done by using a separate spatial-frequency bands

[43]. These bands can be created as shown previously by performing a difference of Gaussian

operation in the spatial domain. In this simulation, three spatial-frequency bands were formed to

mimic the Contrast Sensitivity Function envelop (CSF), see figure 3-13. As we mentioned earlier,

the HVS has between five and seven spatially-tuned frequency bands [46]. However, in our case and

because the processing time is critical, we have eliminated an unnecessary processing or combine

several processing tasks into one simultaneous process to reduce the processing time required to

accomplish the required task. Therefore, in this research work, three spatially-tuned channels

which cover the range of detectable visual spatial frequencies have generated. These spatially

tuned channels can be created by taking the difference of two successive zero mean Gaussian low

pass filters with different standard deviation parameters (σ), using the same equations provided in

3.10, 3.11 and 3.12. According to the mathematical expressions in equation 3.14 and 3.15. These

mathematical representations are illustrating the relationship between the first Gaussian filter to

the second one. Note that the difference of two low pass Gaussian filters with various width and

spatial frequency ranges implies that this process can be viewed as a successive approximation to

the Lateral Inhibition model, when the coupling coefficient matrix, [B], is, respectively, Gaussian

or low-pass [47] . The spatial domain is our filtering processing space to filter out the image

since a Fourier transform of the Gaussian in a frequency domain is still Gaussian. Therefore, the

convolution operation will used to obtain the filtered image relative details regarding each frequency

band.

Different studies such as [48] and [49] have presented the lateral subtractive inhibition method

as an edge detection preprocessing image; which means it detects and enhances the high-frequency

information of the picture only (acts like High-Pass Filter). Moreover, from [50] the effect of lateral

inhibition (as in the retinal ganglion cell receptive field) may be seen mathematically as a second

derivative operator d2

dx2
which is equivalent to the Laplacian of Gaussian (LoG). Whereas, a LoG
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performs as a high pass filter, which means it enhances the edges of the image only. However, in

this research work the edge enhancement as well as the perceived information beyond the edges

have achieved by using the lateral inhibition. Therefore, we need to examine the difference between

the image treated via LSI (Lateral Subtractive Inhibition biological phenomenon that is occurring

between the photo-receptors of the human retinal eye) to the filtered imaged based on LoG (ap-

proximation using Difference of Gaussian (DoG)). The LOG can be approximated by a Difference

of two Gaussian (DoGs) at different scales. Where, that separability and scalability of Gaussian

apply to the DoG so that we can achieve an efficient implementation of the LoG operator. The

equations from 4.1 to 4.4 are representing the mathematical expressions regarding the Difference

of Gaussian filters.

∂2DOG ≈ A ∗ (Gσ2 −Gσ1) (4.1)

Where, A represents the amplitude of the Difference of Gaussian curve, and σ2 = 5.6σ1, see

figur 3-12. whereas, the Fourier Transform of the second derivative operator will be as following:

F (u) =

∫ inf

− inf

(
f(x) ∗ exp−2π ∗ x

)
dx (4.2)

The first derivative operator of the Fourier function is given by:

F (
∂f(x)

∂x
) = i2πF (u) (4.3)

and the second derivative is given by:

F

(
∂2f(x)

∂x2

)
= −(2πu)2F (u) (4.4)

the contrast enhancement effect can be divided into three ranges [50]. At the low contrast

range, there is no edge enhancement at all, where the grating is visible but the contrast is invisible.

However, at the very high spatial frequency range, the contrast of the grating is visible and enhanced

right down to the contrast sensitivity threshold curve, see figure 3-14. Lastly, the intermediate

spatial frequency range, the edges did not appear brighter than the other information within the

same image; in fact, it may seem less bright. Figures from 4-55 to 4-57, are showing the three

Difference of Gaussian channels in 3D [the upper row] and 2D [lower row]. While the Composite
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filter that comes from adding up all the three channels to mimic the Modulation Transfer Function

curve of the Human Visual System 4-58.

Figure 4-55: Difference of Gaussian Filter (DOG) acts like Low-Pass Filter where: (A) First Gaus-

sian with µ = 0 and σ = 2. (B)First Gaussian with µ = 0 and σ = 11.2. (C)The Difference-

of-Gaussian Filter. (D)Profile of The First Low-Pass Gaussian Filter. (E)Profile of The Second

Low-Pass Gaussian Filter. (F)Profile of The Difference of Gaussian Filter.

.
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Figure 4-56: Difference of Gaussian Filter (DOG) acts like Band-Pass Filter where: (A) First

Gaussian with µ = 0 and σ = 3. (B)First Gaussian with µ = 0 and σ = 16.8. (C)The Difference-

of-Gaussian Filter. (D)Profile of The First Low-Pass Gaussian Filter. (E)Profile of The Second

Low-Pass Gaussian Filter. (F)Profile of The Difference of Gaussian Filter.

.

Figure 4-57: Difference of Gaussian Filter (DOG) acts like High-Pass Filter where: (A) First

Gaussian with µ = 0 and σ = 5. (B)First Gaussian with µ = 0 and σ = 28. (C)The Difference-

of-Gaussian Filter. (D)Profile of The First Low-Pass Gaussian Filter. (E)Profile of The Second

Low-Pass Gaussian Filter. (F)Profile of The Difference of Gaussian Filter.

.
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Figure 4-58: The Composite Envelop Figure Which Represents The Result of Summing Up All

The Three Channels Above.

The following section of this chapter will represent the simulation results based on the multiple

spatial-frequency channels (which mimics the Contrast Sensitivity Function curve of the Human

Visual System). Then, a comparison will be made via the quality metric (RMSE) between the

image processed via the biological method (Lateral Subtractive Inhibition) to the filtered image

based on these three spatial-frequency bands. The benefit of this comparison is to identify which

spatial-frequency channel produces an image data that is closest to the lateral inhibition image. In

other words, which DoG filter is most similar to this biological phenomenon. Where, all the results

related to this comparison is shown in table 4.1 and table 4.2 for the uniform and non-uniform

models, respectively.
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4.3.1 The Simulation Results of The Filtration Process of The Uniform Model:

Figure 4-59 is representing the first real image before and after filtration process in gray scale:

Figure 4-59: (A)Butterfly Image in Gray scale. (B)Butterfly Image After DOG-LPF. (C)Butterfly

Image After DOG-BPF.(D)Butterfly Image After DOG-HPF.

In order to visualize the difference between theses three filtered image, we have colorized the figure

above, and the colored version is shown in figure 4-61. To transform the grayscale image to color

space image, we have used a MATLAB command function called (colormap(parula)). Figure 4-60

represents the range of colors regarding this color map function, where the dark blue color represents

the dark gray color of the grayscale image while the yellow color corresponds to the bright gray of

that image. Then, the following figures from 4-62 to 4-67 are shown all the resultant output images

based on the filtration process via the Difference of Gaussian filters.
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Figure 4-60: This Figure is Representing the Gray Scale Image and The Color Space Version of

Lena Image.

Figure 4-61: (A)Butterfly Image in Color Space. (B)Butterfly Image After DOG-LPF. (C)Butterfly

Image After DOG-BPF.(D)Butterfly Image After DOG-HPF.

.
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Figure 4-62: (A)Jet Image in Grayscale. (B)Jet Image After DOG-LPF. (C)Jet Image After DOG-

BPF.(D)Jet Image After DOG-HPF.

.

Figure 4-63: (A)Jet Image in Color Space. (B)Jet Image After DOG-LPF. (C)Jet Image After

DOG-BPF.(D)Jet Image After DOG-HPF.

.
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Figure 4-64: (A)Word Image in Grayscale. (B)Word Image After DOG-LPF. (C)Word Image After

DOG-BPF.(D)Word Image After DOG-HPF.

.

Figure 4-65: (A)Word Image in Color Space. (B)Word Image After DOG-LPF. (C)Word Image

After DOG-BPF.(D)Word Image After DOG-HPF.

.
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Figure 4-66: (A)Flower Image in Grayscale. (B)Flower Image After DOG-LPF. (C)Flower Image

After DOG-BPF.(D)Flower Image After DOG-HPF.

.

Figure 4-67: (A)Flower Image in Color Space. (B)Flower Image After DOG-LPF. (C)Flower Image

After DOG-BPF.(D)Flower Image After DOG-HPF.

.
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The figures above, from 4-62 to 4-67, have shown the filtered images based on the three spatial-

frequency channels (DOG-LPF, DOG-BPF, and DOG-HPF) in grayscale and color space, as well.

However, the objective of this simulation is to find out which filtered image contains the closest

information as the biological image (lateral inhibition image), we have re-generated the same images

above however in this time the LSI image will included too.

4.3.2 The Simulation Results of The Lateral Inhibition Method and the Mul-

tiple Spatial Frequency channels (CSF):

The comparison between an image processed via lateral inhibition biological method to the filtered

image based the multiple spatial frequency channels (CSF), has established under this section. The

following figures will represented all the uniform mapping images from both methods to find out

which spatial frequency channel that produces an image similar to the lateral inhibition model

see the figure 4-1. As we mentioned earlier, each mapping model includes two type of images,

Forward and Inverse images. For this section the Forward Uniform mapping image represents after

applying the lateral subtractive inhibition algorithm with [α=0.5 andβ =1], and the three different

Band-Pass spatial-frequency channels. Then, the differences between the filtered image via the thee

multiple spatial-frequency to the picture processed based on the biological method will calculated

based on the Root Mean Square Error (RMSE) quality metric regarding this mapping model. The

following figures from 4-68 to 4-75 represent the resultant images via each method in grayscale and

color space as well. While the figures from 4-76 to 4-81 are shown the difference between the LI

image to the filtered image based on each spatial frequency channel in both scales, the gray and

colored one.

90



Figure 4-68: The Comparison Between LSI Image to The Filtered image: (A)The Original Im-

age.(B)The Lateral Inhibition Image with [α = 0.5and β = 1].(C)The Filtered Image via DOG-

LPF.(D)The Filtered Image via DOG-BPF.(E)The Filtered Image via DOG-HPF.

Figure 4-69: The Comparison Between LSI Image to The Filtered image: (A)The Original Im-

age.(B)The Lateral Inhibition Image with [α = 0.5and β = 1].(C)The Filtered Image via DOG-

LPF.(D)The Filtered Image via DOG-BPF.(E)The Filtered Image via DOG-HPF.

91



Figure 4-70: The Comparison Between LSI Image to The Filtered image: (A)The Original Im-

age.(B)The Lateral Inhibition Image with [α = 0.5and β = 1].(C)The Filtered Image via DOG-

LPF.(D)The Filtered Image via DOG-BPF.(E)The Filtered Image via DOG-HPF.

Figure 4-71: The Comparison Between LSI Image to The Filtered image: (A)The Original Im-

age.(B)The Lateral Inhibition Image with [α = 0.5and β = 1].(C)The Filtered Image via DOG-

LPF.(D)The Filtered Image via DOG-BPF.(E)The Filtered Image via DOG-HPF.
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Figure 4-72: The Comparison Between LSI Image to The Filtered image: (A)The Original Im-

age.(B)The Lateral Inhibition Image with [α = 0.5and β = 1].(C)The Filtered Image via DOG-

LPF.(D)The Filtered Image via DOG-BPF.(E)The Filtered Image via DOG-HPF.

Figure 4-73: The Comparison Between LSI Image to The Filtered image: (A)The Original Im-

age.(B)The Lateral Inhibition Image with [α = 0.5and β = 1].(C)The Filtered Image via DOG-

LPF.(D)The Filtered Image via DOG-BPF.(E)The Filtered Image via DOG-HPF.
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Figure 4-74: The Comparison Between LSI Image to The Filtered image: (A)The Original Im-

age.(B)The Lateral Inhibition Image with [α = 0.5and β = 1].(C)The Filtered Image via DOG-

LPF.(D)The Filtered Image via DOG-BPF.(E)The Filtered Image via DOG-HPF.

Figure 4-75: The Comparison Between LSI Image to The Filtered image: (A)The Original Im-

age.(B)The Lateral Inhibition Image with [α = 0.5and β = 1].(C)The Filtered Image via DOG-

LPF.(D)The Filtered Image via DOG-BPF.(E)The Filtered Image via DOG-HPF.
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Figure 4-76: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-LPF Filtered image with µ=0 and σ=9.2.(D)The Test image [LSIimg − LPFimg].

.

Figure 4-77: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-LPF Filtered image with µ=0 and σ=9.2.(D)The Test image [LSIimg − LPFimg].

.

As we can see from figure 4-76 and 4-77, that after subtracting the low-pass filtered image from

the lateral subtractive inhibition image. The remaining details will be basically: the edges (which

is the high-frequency information) in addition to the relative information between the low and high

frequencies, see part D of these two figures above.
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Figure 4-78: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-BPF Filtered image with µ=0 and σ=13.8.(D)The Test image [LSIimg −BPFimg].

.

Figure 4-79: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-BPF Filtered image with µ=0 and σ=13.8.(D)The Test image [LSIimg −BPFimg].

.

However, after subtracting the band-pass filtered image from the lateral inhibition image the

resultant details, as illustrated in figure 4-78D and in 4-79D, only the contrast that is remaining

besides a blurry details from the original image.
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Figure 4-80: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-HPF Filtered image with µ=0 and σ=23.(D)The Test image [LSIimg −HPFimg].

.

Figure 4-81: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-HPF Filtered image with µ=0 and σ=23.(D)The Test image [LSIimg −HPFimg].

.

While the resultant output image in, 4-80part D and 4-81 part D, which is the resultant output

image of subtracting the high pass filtered image from the lateral inhibition image has a blurry

edges and there is a few details related to the relative information beyond the edges comparing to

the previous figures.

To complete all the image results regarding this model, we need to add the Inverse of this model

too. Therefore, the next part of this section will be concentrating on the inverse image of a Uniform

mapped model.
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4.3.3 The Simulation results of the Inverse Uniform Model Based on the Mul-

tiple Spatial Frequency Channels (MTF):

In this section, the wrapped back version of the uniform mapped image will be obtaining based

on a circular mapping model within that same size as the original input image. This pattern has

constructed based on a number of circles and wedges that are equivalent to the scale of the entry

picture. Whereas, these circles are extending linearly as the distance from the center point increases.

That contradicts to the non-uniform mapping model, where the circles are growing logarithmically

as we move further from the fovea. Therefore, the resultant output image has the same resolution

at the center and the periphery area. The reason of generating this type of uniform mapped image

is to complete the comparison between the uniform mapping model to the novel model in both

image patterns [the foreword and inverse pattern]. See figures from 4-82 to figure 4-89.

Figure 4-82: (A)The Original Image. (B) THE Wrapped Back Version of the Uniform Mapped

Image with Size [100 x 100]. (C) LSI Image with [α = 0.5andβ = 1]. (D)The Filtered Image via

DOG-LPF.(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.
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Figure 4-83: (A)The Original Image. (B) The Wrapped Back Version of the Uniform Mapped

Image with Size [100 x 100]. (C) LSI Image with [α = 0.5andβ = 1]. (D)The Filtered Image via

DOG-LPF.(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

From the figure 4-83, we can notice that the wrapped back image has a uniform resolution over

the entire picture and the Lateral subtractive inhibition model has the same frequency band as

the high-pass filtered image see part (C) and (F) of the same figure above. However, the lateral

inhibition image has information more than the DOG-high pass filtered image. In other words, the

lateral inhibition does improve the relative information beyond the contrasts beside enhancing the

edges of the picture. And that contradicts the idea in [50] where the lateral inhibition method is

only a second derivative operator. But before drawing any conclusion, we need to test the rest of

the real images regarding this model and the new one and observe if that’s applicable on the other

images or no!
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Figure 4-84: (A)The Original Image. (B) The Wrapped Back Version of the Uniform Mapped

Image with Size [100 x 100]. (C) LSI Image with [α = 0.5andβ = 1]. (D)The Filtered Image via

DOG-LPF.(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

Figure 4-85: (A)The Original Image. (B) The Wrapped Back Version of the Uniform Mapped

Image with Size [100 x 100]. (C) LSI Image with [α = 0.5andβ = 1]. (D)The Filtered Image via

DOG-LPF.(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.
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Figure 4-86: (A)The Original Image. (B) The Wrapped Back Version of the Uniform Mapped

Image with Size [100 x 100]. (C) LSI Image with [α = 0.5andβ = 1]. (D)The Filtered Image via

DOG-LPF.(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

Figure 4-87: (A)The Original Image. (B) The Wrapped Back Version of the Uniform Mapped

Image with Size [100 x 100]. (C) LSI Image with [α = 0.5andβ = 1]. (D)The Filtered Image via

DOG-LPF.(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.
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Figure 4-88: (A)The Original Image. (B) The Wrapped Back Version of the Uniform Mapped

Image with Size [100 x 100]. (C) LSI Image with [α = 0.5andβ = 1]. (D)The Filtered Image via

DOG-LPF.(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

Figure 4-89: (A)The Original Image. (B) The Wrapped Back Version of the Uniform Mapped

Image with Size [100 x 100]. (C) LSI Image with [α = 0.5andβ = 1]. (D)The Filtered Image via

DOG-LPF.(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

102



The following figures are representing the remaining details after subtracting the filtered image

via the three multiple spatial frequency channels from the lateral inhibition image regarding this

version of the uniform mapping model.

Figure 4-90: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-LPF Filtered image with µ=0 and σ=9.2.(D)The Test image [LSIimg − LPFimg].

.

Figure 4-91: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-LPF Filtered image with µ=0 and σ=9.2.(D)The Test image [LSIimg − LPFimg].

.
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Figure 4-92: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-BPF Filtered image with µ=0 and σ=13.8.(D)The Test image [LSIimg −BPFimg].

.

Figure 4-93: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-BPF Filtered image with µ=0 and σ=13.8.(D)The Test image [LSIimg −BPFimg].

.
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Figure 4-94: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-HPF Filtered image with µ=0 and σ=23.(D)The Test image [LSIimg −HPFimg].

.

Figure 4-95: (A)The Flower original input image.(B) Lateral Inhibition image with α=0.5 and

β=1(C) DOG-HPF Filtered image with µ=0 and σ=23.(D)The Test image [LSIimg −HPFimg].

.
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4.4 The Non-Uniform Model

For this model, we have used the Log-Polar Mapping method to mimic the non-uniform distribution

of the receptors in the human visual system. Whereas, this pattern gives us two different regions of

resolution (spatially variant pattern), and because of the way that the neuron receptors are taking

to distribute over the retina. In other words, the retinal receptors are densely packed at the fovea,

and their density decreases as the radial distance from the fovea increases. These characteristics

result in data reduction and wide field of view while preserving the detailed information at the point

of interest. The diameter of the receptive field size increases linearly with eccentricity. According

to that we have built this model with specific dimensions to represent different radii and different

angles, ([number of rings (Radii)-by-number of wedges (angles), NR x NW]). To sample the input

grayscale image, we need to overlay our new pattern on the image of entry. Whereas, each sub-circle

from the non-uniform pattern will be centered on a particular point of the picture and gathered all

the information data underneath it. The average value of this information will be calculated, then

will be mapped into a uniform ([U x V]) space. For example, the figure below represents the non-

uniform pattern with size equals to [NRXNW ], where NR equals two and NW equals to 4. The

central circle represents the fovea part of the retinal area, where the uniform sampling is occurring.

Thus, if we want to perform only the non-uniform sampling of the image, we need to remove this

part (the fovea area) from the pattern, and that’s what the following figures are illustrating, see

figure 4-96. After, these points (the center-points) have set up on the image using the following

expression. The Non-Uniform Mapping model with size [numberofringsnumbersofangles] have

overlaid the input image, then all the information that positioning underneath each sub-circle will

be extracted, see figure 4-97. As we mentioned earlier, the Foveal area will be removed from this

model, to represent only the Retinal Mapping space (Th Non-Uniform Mapping Plane). The mean

of these information from each sub-circle will be calculated and the result value will be placed on

a Uniform [UxV ]plane, see the figure 4-98:

TheCentralPointoftheSubCircle =
(Radius2−Radius1)

2
(4.5)
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Figure 4-96: Illustration the Non-Uniform Circular Pattern with NRXNW = 2X4.

The spatial variant geometry of the sampling points is obtained through this space-variant

sampling structure which is similar to the human retina. where this grid is formed by concentric

circles with Nang = 2 ∗ Nradii. However, the fovea radius could be chosen equal to the minimum

sampling period to cover all the image center without generate oversampling in the retinal plane

[51]. If we want to obey to this constraint, then the radius of fovea equals to:

ρFovea ≥
Nang

2π
(4.6)
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Figure 4-97: Lena Image after assigning the center-points of each Sub-Circle of the Previous Pattern.

Figure 4-98: The Extracted Information from the Input Image based the Non-Uniform Mapping

Model with size [2x4], Where, the Fovea Area has removed using equation 4.6 .
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Figure 4-99: The Mean Value of each sub-circle has been calculated and placed on the exact position

according to the Log-Polar Mapping Mathematical Representation see equations (3.1) and (3.2).

The black part is representing the removed area of the nonuniform model (Fovea).

Figure 4-100: Illustration the distribution of the cone receptive fields along a concentric rings with

different Radii in the HVS, [8].
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Figure 4-101: The Non-uniform Model to Mimic the HVS with size=

[numberofRingsxnumberofangles = 32x64].

Figure 4-102: Representation of the relationship between the number of rings and the number of

wedges [NRXNW ] to the fovea’s radius depending upon the equation 4.6.
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Figure 4-103: The Resultant output image with the Mean Values via the Non-Uniform Mapping,

with size = [128x64].

The distinct functional advantages of the nonlinear (space variant) structure of the human

visual system are that a wide range of visual resolution is provided, without massive cost that

would be incurred by a spatially uniform high-resolution system. Since cortical magnification

factor decreases by as much as 1.5-2 orders of magnitude from central fovea to far periphery, thus

the foveal resolution was utilized, [23].
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4.5 The Exponential Model’s variables for the NON-Uniform Map-

ping Image:

In this section, Lateral Subtractive Inhibition phenomenon has been applied to non-uniform grayscale

images. In other words, there are two processing tasks should be done before implementing this

biological method on the model. First, obtain and read a symmetrical image, then insert it to

the Log-Polar Mapping Transformation Method to sample the image non-uniformly. The sampled

image within size equals to [nrxnw], has treated by the LSI mechanism for feature extraction and

edge enhancement processing. [52] has introduced the sequence of these operations in his work,

starting with mapping the image via log-polar transformation method then apply the lateral inhi-

bition biological method to the mapped image. This sequence is most reasonable to represent the

human visual system, where the retinal photo-receptors have sampled the captured scene then the

retinal neurons are start competing to achieve the maximum amount of light intensity by inhibit

the neighboring neurons and hence the lateral inhibition impact occurs. The simulation results via

the LSI method will be represented in this section including the inverse image of the non-uniform

model, as well. Since the spatial distance between the adjacent photo-receptors on the human reti-

nal plane is exponentially increasing, thus we will use the same exponential model as the previous

mapping model to calculate the the coupling coefficient matrix regarding a non-uniform intercon-

nection distances between the photo-receptors. In order to apply the lateral inhibition method on

the non-uniform mapped image, the numerical values for alpha α and beta β variables regarding

the mathematical expression in 2.6 have to identified first to obtain the desired lateral inhibition

output image with the edge enhancement and perceived information beyond the edges, same as the

previous model. Since the spatial distances between the neuron photo-receptors of this Model are

different, definitely the impact of Lateral Inhibition biological method is different too.
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Figure 4-104: (A) The Cross Section Profile of The Original Image. (B) The Original Synthetic

Image.

Figure 4-105: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image.

In order to identify these two variables the same synthetic image as the uniform model will

used. However in this time, the log-polar mapping pattern (non-uniform model) will applied to

that synthetic image within specific dimension, then the calculation will made depending on the

overshooting peaks and the differential distance between the two settings (represents the differential

between two intensity levels of the image). Figure 4-104 represents the original mapped image.

Since the distribution of the photo-receptors is different in this model, definitely the exponential

model’s variables will be different too since they are directly related to interconnection distances
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between these receptors. The following section will illustrate how is an alpha parameter impact on

the resultant LSI image and which numerical value gives the most desirable image based on the

overshooting edges and the relative information enhancement as well.

4.5.1 Alpha (α) parameter for the NON-Uniform Model:

For consistency purposes with the Uniform model, we have assigned (0.5) by default for beta β

variable while alpha will changed within specific range of numbers, see the following figures from

4-106 to figure 4-114. As we can see from the figure 4-106, the output image is not affected by the

Figure 4-106: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.5

and α=0.08.

lateral inhibition method, this is because of the exponential model’s parameters. In order to find

out which variable we should change one of them to obtain the actual impact of lateral inhibition

method (edge enhancement). We have reduced a beta β parameter first to be equals to (0.05) and

maintaining the same value of alpha. Then a reasonable output image will obtained in the following

figure, see figure 4-107. According to this figure above, we will consider (0.05) value to represent

beta β variable in the exponential model for this mapping model and changing alpha α parameter

to find out a good value to obtain the reasonable image regarding this model.
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Figure 4-107: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.1.

Figure 4-108: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.2.
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Figure 4-109: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.3.

Figure 4-110: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.4.

Figure 4-111: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.5.
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Figure 4-112: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.6.

Figure 4-113: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.7.

117



Figure 4-114: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.9.

An observation has made according to all these figures shown above regarding this section,

which is that an alpha parameter (α), has a direct impact on the edge enhancement (Overshooting

peaks) and that similar to what we had in the uniform model. However, for this mapping model a

beta parameter (β), should be lower than an alpha parameter in order to achieve a desired output

image based on a lateral inhibition biological method with the edge enhancement and the perceived

information. In this experiment, different numerical values have been tested to represent an alpha

parameter while a beta is being constant to investigate the effect of this particular variable on

the resultant image. The following two curves in figure 4-115 and 4-116, have been generated to

illustrate the relationship between an alpha parameter with the enhancement of an overshooting

peaks as well as to the differential intensities between these two peaks of the image which represents

the perceived information beyond the edges based on a lateral inhibition biological method. From

these two figures, we have noticed that an alpha parameter has a direct impact on the overshooting

edges. In other words, the contrast enhancement is rising when an alpha parameter is increasing

as well. However, that would decrease the relative information beyond these boundaries until we

almost lost all the important details from the original image, see figure 4-114, where it represents the

highest value of an alpha variable regarding this mapping model. Therefore, the proper numerical

value has to be chosen according to the edge enhancement as well as maintaining the necessary

118



information that is related to these contrasts to obtain the desire LSI image. Depending on all these

results of this section, α = 0.3, value has chosen to represent an alpha parameter in an exponential

model for this mapping design.

Figure 4-115: Illustrating The Relationship Between an Alpha Parameter α to the Overshooting

Peak Enhancement. When Beta β=0.05 and Alpha α is changing within the range of [0.1 - 0.7].

Figure 4-116: Represents The Impact of α Parameter on the Differential of the Intensities of the

Resultant Output Image with Changing Alpha [0.1-0.7].
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4.5.2 Beta (β) parameter for Non-Uniform Model:

The same procedures and image will be used to test the second variable of an exponential model

which a beta β and to make sure that a(0.05) is the numerical value that gives a proper lateral

inhibition resultant image. In this section we have fixed an alpha parameter α and make it equals

to (0.3) depending on the previous section and changing a beta β variable within specific range of

numbers starting from (0.01) until (0.1).

Figure 4-117: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.1

and α=0.3.

Figure 4-118: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.08

and α=0.3.
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Figure 4-119: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.05

and α=0.3.

Figure 4-120: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.03

and α=0.3.
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Figure 4-121: (A) The Cross Section Profile of The LSI Image. (B) The LSI Image With β=0.01

and α=0.3.

According to all the previous figures of this section, an observation has made, that a beta pa-

rameter should always be lower than an alpha variable to obtain the desired edge enhancement and

perceived information via the Lateral Inhibition. Additionally, the increment of a beta parameter

will reduce the overshooting and undershooting peaks of the output image, see figure 4-122. There-

fore, a value of (0.05) has used to represent a beta (β) variable in the exponential equation for this

model since it gives a good results regarding the information extracted beyond the boundaries as

well improving the edge,see figure 4-123. The following two figures are shown below, figure 4-124

and 4-125, represent the impact of a beta variable on the edge enhancement as well as the preserved

information beyond the contrast. As we can see from these two curves below, that as beta increases

the enhancement of the image contrast decreases. While this increment improves the relevant data

between the edges.
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Figure 4-122: The Impact of Beta β parameter on the Overshooting Peaks of the Lateral Inhibition

Image when Alpha α = 0.3.

Figure 4-123: The Impact of Beta β parameter on the Differential Intensities of the Lateral Inhi-

bition Image when Alpha α=0.3.
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Figure 4-124: Different Cases of Alpha from [0.1 to 0.6] While Beta = 0.05.

Figure 4-125: Different Cases of Beta While Alpha = 0.3.
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4.6 The Simulation Results of the Non-Uniform Model Based Lat-

eral Inhibition

According to figure 4-1, the new pattern has started with Log-Polar Mapping Transformation

method to obtain the non-uniformly distribution of the photo-receptors. A uniform mapped image

is achieved by taking the average value of each sub-circle of the new design and reorganizing them

in a consistent way. The lateral Inhibition biological will be applied on the mapped image to

investigate its effect on the new model. As we mentioned earlier, the spatial distance between the

adjacent photo-receptors increases in an exponential way and the inhibition effect between these

receptors decrease in the same way as we go farther from the center point of the pattern (the Fovea

area). To be consistent with the uniform model, we shall start our simulation regarding this model

with the synthetic images; then the real pictures will be represented. For the Synthetic image,

where the size of an input image is [500 x 500], while the scale of the output Mapped image will be

depending on the number of rings versus the number of angles, [64 x 128]. Then the inverse of the

mapped image has been presented to compare the original image efficiently, [ the inverse mapped

image and the Lateral Inhibition Inverse Mapped image]. As mentioned earlier, the fovea part

of the retinal plane perform the Uniform sampling on the picture. However, the purpose of this

section is to show the advantage of the non-uniform sampling only. Therefore, the fovea area will be

removed, and only the retina region will be represented in this new pattern. The fovea radius has

been calculated via a particular mathematical relationship which we have already explained earlier

in this chapter, see the mathematical description in 4.6. The following Images illustrating the

effectiveness of Lateral Inhibition biological phenomenon on the Non-Uniform model via Synthetic

Images. The black section of the nonuniform pattern is representing the removed fovea.
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Figure 4-126: (A)The Synthetic Input Image of Two Gray Intensity Levels with with Size [500 x

500]. (B) The Non-uniform Mapping Model via LPT Method with Size [64 x 128]. (C)The Uniform

[UxV ] Mapped Image via LPT Method. (D) The Lateral Inhibition Method with Alpha α=0.3

and Beta β=0.05.
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Figure 4-127: (A)The Synthetic Staircase grayscale Input Image with with Size [500 x 500]. (B)

The Non-uniform Mapping Model via LPT Method with Size [64 x 128]. (C)The Uniform [UxV ]

Mapped Image via LPT Method. (D) The Lateral Inhibition Method with Alpha α=0.3 and Beta

β=0.05.

.

Figure 4-128: (A)The Colored Version of Synthetic Staircase grayscale Input Image with with Size

[500 x 500]. (B) The Non-uniform Mapping Model via LPT Method with Size [64 x 128]. (C)The

Uniform [UxV ] Mapped Image via LPT Method. (D) The Lateral Inhibition Method with Alpha

α=0.3 and Beta β=0.05.

.
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The wrapped back version of the mapped image will be obtaining by using a log-polar circular

grid within a number of circles that increasing logarithmically and the number of wedges increases

uniformly. Then, the sampled image via the LPT method and resultant mean value of each par-

ticular sub-circle, see figure 4-103, will be re-organized in a circular pattern depending on their

coordinates (x and y position on the uxv mapped image).For more explanation see the figure 4-129

below. As we can see from this figure, that the sub-circle of the wrapped back circular pattern,

(4-129C), is containing the mean value of the image data related to the same sub-circle within a

same location of the forward circular pattern, (4-129A). As we mentioned earlier, that the advan-

tage of this design is providing a wide field of view while maintaining the necessary details from the

point of interest. In other words, as we move farther from the center point of the circular pattern

(the fovea area where is the uniform sampling occurred), the detailed information will be less and

less, and the mean value of each sub-circle will be shrinking too while the radius of the sub-circles

is increasing in an exponential way thus a blurry image detailed can be achieved at the periphery

region of this pattern( we can’t visualize that from this figure below, because of the dimension size

of this pattern is too small [20x40]. However, we shall observe this difference of the resolution on

the following figures.

Figure 4-129: (A)The Image after Combining The non-uniform Mapping Model and The Original

Image. (B).The Mean Value Image After Mapping The Original One with size [NRxNW ]. (C)

The Wrapped Back Image with The Mean Values From the [UxV ] Mapped Image With The Same

Size As The Non-uniform Circular Pattern.

128



Figure 4-130: (A)The Wrapped Back Version of Synthetic Staircase Input Image. (B)The Lateral

Inhibition Image of The Reverse Non-uniform Mapped image.

Figure 4-131: (A)The Wrapped Back Version of Synthetic Staircase Input Image. (B)The Lateral

Inhibition Image of The Reverse Non-uniform Mapped image.
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The real image with input size equals to [500x 500] will be processed based on log-polar map-

ping method in order to sample the image non-uniformly with in two area of resolutions, see the

following image results. Then the new coupling coefficient matrix for the lateral inhibition biologi-

cal algorithm will be obtained based on an exponential model with specific numerical values for an

alpha and beta. The output mapped image size will be same as the mapped synthetic image which

is equals to [nr = 64 x nw = 128] and the radius of Fovea = NW
2π .While the reversed version of the

mapped image will be the same size as the original one.

Figure 4-132: (A)The Flower Input Image with Size [500x500].(B) The [UxV ] Mapped Image

Based on Log-Polar Mapping Method.(C) The Wrapped Back Image with Size [500x500]. (D)The

Non-Uniform Mapped Pattern with Dimension [128 x 64].(E)The Lateral Inhibition Method of the

Forward Image with size [128x64]. (F)The Lateral Inhibition Image of the Reversed mapped image.

130



Figure 4-133: (A)The Butterfly Input Image with Size [500x500].(B) The [UxV ] Mapped Image

Based on Log-Polar Mapping Method.(C) The Wrapped Back Image with Size [500x500]. (D)The

Non-Uniform Mapped Pattern with Dimension [128 x 64].(E)The Lateral Inhibition Method of the

Forward Image with size [128x64]. (F)The Lateral Inhibition Image of the Reversed mapped image.

Figure 4-134: (A)The Jet Input Image with Size [500x500].(B) The [UxV ] Mapped Image Based

on Log-Polar Mapping Method.(C) The Wrapped Back Image with Size [500x500]. (D)The Non-

Uniform Mapped Pattern with Dimension [128 x 64].(E)The Lateral Inhibition Method of the

Forward Image with size [128x64]. (F)The Lateral Inhibition Image of the Reversed mapped image.
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Figure 4-135: (A)The Word Input Image with Size [500x500].(B) The [UxV ] Mapped Image Based

on Log-Polar Mapping Method.(C) The Wrapped Back Image with Size [500x500]. (D)The Non-

Uniform Mapped Pattern with Dimension [128 x 64].(E)The Lateral Inhibition Method of the

Forward Image with size [128x64]. (F)The Lateral Inhibition Image of the Reversed mapped image.

Figure 4-136: (A)The Lena Input Image with Size [500x500].(B) The [UxV ] Mapped Image Based

on Log-Polar Mapping Method.(C) The Wrapped Back Image with Size [500x500]. (D)The Non-

Uniform Mapped Pattern with Dimension [128 x 64].(E)The Lateral Inhibition Method of the

Forward Image with size [128x64]. (F)The Lateral Inhibition Image of the Reversed mapped image.
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4.7 The Filtration Process of the Non-Uniform Model based on

the Multiple Spatial Frequency Channels (CSF):

As we mentioned in figure 3-2, the next step will be the filtration process via the Multiple Spatial

Frequency channels applied to the non-uniform Mapped image and to the wrapped back version

of the mapped image, respectively. Then, the Comparison between the resultant image via the

natural method to the picture processed by the three spatial-frequency filters will be illustrated

as a picture figures in grayscale and the color space as well, see the figures from 4-137 to figure

4-145. The purpose of this calculation is to calculate the difference information between the Lateral

Inhibition image and the Filtered image.The same frequency range of the multiple spatial-frequency

channels that has been used for the previous model will be employed here in this mapping model

too. The following figures illustrate the simulation results regarding the Forward nonuniform [UxV ]

mapped image.

Figure 4-137: (A)The Original Input Image. (B) The Non-Uniform Sampling of Synthetic Staircase

Image. (C) The Lateral Inhibition Synthetic Image with [α = 0.3andβ = 0.05].(D) The Filtered

Image via DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.
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Figure 4-138: (A)The Original Input Image. (B) The Non-Uniform Sampling of Synthetic Staircase

Image. (C) The Lateral Inhibition Synthetic Image with [α = 0.3andβ = 0.05].(D) The Filtered

Image via DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

Figure 4-139: (A)The Original Input Image. (B) The Non-Uniform Sampling of Synthetic Staircase

Image. (C) The Lateral Inhibition Synthetic Image with [α = 0.3andβ = 0.05].(D) The Filtered

Image via DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.
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Figure 4-140: (A)The Original Input Image. (B) The Non-Uniform Sampling of Butterfly Real

Image. (C) The Lateral Inhibition Real Image with [α = 0.3andβ = 0.05].(D) The Filtered Image

via DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

Figure 4-141: (A)The Original Input Image. (B) The Non-Uniform Sampling of Butterfly Real

Image. (C) The Lateral Inhibition Real Image with [α = 0.3andβ = 0.05].(D) The Filtered Image

via DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.
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Figure 4-142: (A)The Original Input Image. (B) The Non-Uniform Sampling of Jet Real Image.

(C) The Lateral Inhibition Real Image with [α = 0.3andβ = 0.05].(D) The Filtered Image via

DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

Figure 4-143: (A)The Original Input Image. (B) The Non-Uniform Sampling of Jet Real Image.

(C) The Lateral Inhibition Real Image with [α = 0.3andβ = 0.05].(D) The Filtered Image via

DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.
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Figure 4-144: (A)The Original Input Image. (B) The Non-Uniform Sampling of Word Real Image.

(C) The Lateral Inhibition Real Image with [α = 0.3andβ = 0.05].(D) The Filtered Image via

DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.

Figure 4-145: (A)The Original Input Image. (B) The Non-Uniform Sampling of Word Real Image.

(C) The Lateral Inhibition Real Image with [α = 0.3andβ = 0.05].(D) The Filtered Image via

DOG-LPF .(E)The Filtered Image via DOG-BPF.(F)The Filtered Image via DOG-HPF.
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The following figures are illustrating the remaining information details after subtracting the

filtered image via difference of Gaussian filters from the image processed via the biological lateral

inhibition image regarding this version of the non-uniform mapping model:

Figure 4-146: (A)The Non-Uniform Mapping Flower original input image.(B)Lateral Inhibition

image with α = 0.3andβ = 0.05.(C)DOG-LPF Filtered image with µ = 0 and σ = 9.2.(D) The

Test Image image [LIimg − LPFimg].

Figure 4-147: (A)The Non-Uniform Mapping Flower original input image.(B)Lateral Inhibition

image with α = 0.3andβ = 0.05.(C)DOG-LPF Filtered image with µ = 0 and σ = 9.2.(D) The

Test Image image [LIimg − LPFimg].
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Figure 4-148: (A)The Non-Uniform Mapping Flower original input image.(B)Lateral Inhibition

image with α = 0.3andβ = 0.05.(C)DOG-BPF Filtered image with µ = 0 and σ = 13.8.(D) The

Test Image image [LIimg −BPFimg].

Figure 4-149: (A)The Non-Uniform Mapping Flower original input image.(B)Lateral Inhibition

image with α = 0.3andβ = 0.05.(C)DOG-BPF Filtered image with µ = 0 and σ = 13.8.(D) The

Test Image image [LIimg −BPFimg].
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Figure 4-150: (A)The Non-Uniform Mapping Flower original input image.(B)Lateral Inhibition

image with α = 0.3andβ = 0.05.(C)DOG-HPF Filtered image with µ = 0 and σ = 23.(D) The Test

Image image [LIimg −HPFimg].

Figure 4-151: (A)The Non-Uniform Mapping Flower original input image.(B)Lateral Inhibition

image with α = 0.3andβ = 0.05.(C)DOG-HPF Filtered image with µ = 0 and σ = 23.(D) The Test

Image image [LIimg −HPFimg].
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4.7.1 The Simulation results of the Inverse Non-Uniform Model

In this section, the inverse of the non-uniform mapping image will be presenting to validate the

comparison between the new model to the conventional one. The lateral inhibition image has

been generated based on non-uniform weighting coefficients that are created by log-polar mapping

method, and the size of the output image will be equivalent to the original picture. The following

figures will including the projected image with size equals to [500 x 500], then the inverse form of the

mapped image based upon the log-polar transformation method will be obtained. Then, the lateral

inhibition image has achieved after applying the numerical values for an alpha and a beta variables

in the exponential model that have specified from the previous experiments regarding this mapping

model to calculate the non-uniform weighting coefficient. An enhancement on the contrast and the

related information can be observed in the lateral inhibition image, which means that this method

is providing details exceeds the edge enhancement and the idea of second derivative operator which

presented in [50]. The other three images of the same figure are presenting the output filtered

pictures via multiple spatial-frequency channels. Whereas the first image is showing the filtered

image based upon the difference of Gaussian low-pass filter, as we can see the blurry details in that

picture as we go further from the fovea, while the filtered image via difference of Gaussian high-pass

filter is containing only the image contrasts of the original image, which is similar to the negative

second derivative of Laplacian. Then, the centered image of the same figure will be representing the

filtered output image by the difference of Gaussian band-pass filter, as we can see that this image

it does have some information related to the contrasts as well as some low frequency details. The

goal of this simulation is to compare and study the similarity in performance between the lateral

inhibition image and the three filtered image regarding the three difference of Gaussian filters of

this version image of the non-uniform mapping model.
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Figure 4-152: (A)The Flower Input Image with Size [500x500].(B) The [XxY ] Wrapped Back Image

Based on Log-Polar Mapping Method.(C) The LSI Wrapped Back Image. (D)The Wrapped Back

Non-Uniform Filtered Image Based on DOG-LPF.(E)The Wrapped Back Non-Uniform Filtered

Image Based on DOG-BPF. (F)The Wrapped Back Non-Uniform Filtered Image Based on DOG-

HPF.
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Figure 4-153: (A)The Flower Input Image with Size [500x500].(B) The [XxY ] Wrapped Back Image

Based on Log-Polar Mapping Method.(C) The LSI Wrapped Back Image. (D)The Wrapped Back

Non-Uniform Filtered Image Based on DOG-LPF.(E)The Wrapped Back Non-Uniform Filtered

Image Based on DOG-BPF. (F)The Wrapped Back Non-Uniform Filtered Image Based on DOG-

HPF.

Figure 4-154: (A)The Butterfly Input Image with Size [500x500].(B) The [XxY ] Wrapped Back

Image Based on Log-Polar Mapping Method.(C) The LSI Wrapped Back Image. (D)The Wrapped

Back Non-Uniform Filtered Image Based on DOG-LPF.(E)The Wrapped Back Non-Uniform Fil-

tered Image Based on DOG-BPF. (F)The Wrapped Back Non-Uniform Filtered Image Based on

DOG-HPF.
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Figure 4-155: (A)The Butterfly Input Image with Size [500x500].(B) The [XxY ] Wrapped Back

Image Based on Log-Polar Mapping Method.(C) The LSI Wrapped Back Image. (D)The Wrapped

Back Non-Uniform Filtered Image Based on DOG-LPF.(E)The Wrapped Back Non-Uniform Fil-

tered Image Based on DOG-BPF. (F)The Wrapped Back Non-Uniform Filtered Image Based on

DOG-HPF.

Figure 4-156: (A)The Jet Input Image with Size [500x500].(B) The [XxY ] Wrapped Back Image

Based on Log-Polar Mapping Method.(C) The LSI Wrapped Back Image. (D)The Wrapped Back

Non-Uniform Filtered Image Based on DOG-LPF.(E)The Wrapped Back Non-Uniform Filtered

Image Based on DOG-BPF. (F)The Wrapped Back Non-Uniform Filtered Image Based on DOG-

HPF.
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Figure 4-157: (A)The Jet Input Image with Size [500x500].(B) The [XxY ] Wrapped Back Image

Based on Log-Polar Mapping Method.(C) The LSI Wrapped Back Image. (D)The Wrapped Back

Non-Uniform Filtered Image Based on DOG-LPF.(E)The Wrapped Back Non-Uniform Filtered

Image Based on DOG-BPF. (F)The Wrapped Back Non-Uniform Filtered Image Based on DOG-

HPF.

Figure 4-158: (A)The Word Input Image with Size [500x500].(B) The [XxY ] Wrapped Back Image

Based on Log-Polar Mapping Method.(C) The LSI Wrapped Back Image. (D)The Wrapped Back

Non-Uniform Filtered Image Based on DOG-LPF.(E)The Wrapped Back Non-Uniform Filtered

Image Based on DOG-BPF. (F)The Wrapped Back Non-Uniform Filtered Image Based on DOG-

HPF.
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Figure 4-159: (A)The Word Input Image with Size [500x500].(B) The [XxY ] Wrapped Back Image

Based on Log-Polar Mapping Method.(C) The LSI Wrapped Back Image. (D)The Wrapped Back

Non-Uniform Filtered Image Based on DOG-LPF.(E)The Wrapped Back Non-Uniform Filtered

Image Based on DOG-BPF. (F)The Wrapped Back Non-Uniform Filtered Image Based on DOG-

HPF.

4.8 The Comparison Between The Uniform Model and The Non-

Uniform Model:

To conclude this chapter, a comparison between the new mapping model [Non-Uniform Model]

and a conventional one [Uniform Model] will represented below. Whereas, this comparison demon-

strates the fact that the new mapping design processes the input image [in any size] within the

minimum amount of time comparing to the uniform layout. And that is because of the non-uniform

distribution of visual sensors (sub-circles) in the retina (Circular Mapping model) corresponds to

the spatially variant sampling strategy of the Human Visual System (HVS). Where, the retinal

receptors are densely packed at the fovea, and their density decreases as the radial distance from

the fovea increases (Exponentially).This directly effects on the time required to process the input

information since this model characterized in a spatial way to calculate its dimension to mimic
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the human retina, nrxnw where nw = 2nr. While the conventional (Uniform) mapping model

maps the entire input image uniformly and the resultant output image size will be similar to the

original image,[XxY ]. Therefore, the last one needs a long time to process such an image with

high resolution comparing to the nonuniform model. See the following figure which explains this

comparison regarding the degree of complexity or the time required for mapping the image, figure

4-160.

Figure 4-160: The Comparison Between the Uniform to the Non-uniform Model Regarding Time

Required to Sample The Input Image within Different Image Sizes.

As we can see, that the non-uniform model exhibits better performance regarding a degree of

complexity. Where this superiority of a non-uniform mapping model can be precisely characterized

as the picture size is increased.

According to figure 3-2, the Root Mean Square Error quality metric will be used to compare the

image processed based on (LSI) natural method to the filtered image based on Difference of Gaussian

filters. Since the remaining details of subtracting these two images for all both models have shown
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that the closest filtered image to the lateral inhibition image is the picture treated via the DOG-

HPF, see figure4-151 regarding the new model and figure 4-80 which represents the uniform one.

To assure this observation with a practical calculation the RMSE quality metric will be used to

determine precisely by values whats is the difference between these two methods (the biological

and DOG filtration). Therefore, the following tables are representing these determination via the

equation 4.7 for both models regarding by testing eight different real images with one specific size,

for the uniform model is [100x100], see Table 4.1. And [128x64] for the new mapping model, see

table 4.2.

RMSE =

√
1

MN
∗
∑

(LateralInhibitionImage− FilteredImage)2 (4.7)

Where, MN represent the number of elements of the filtered image. And the ”Lateral Inhibition

Image” is the output image via the natural method after calculating the interconnection distances

between the neurons and obtain the coupling coefficients based on the exponential model for each

mapping model. Then, the LSI algorithm will be applied to that mapped image. And the ”Filtered

Image” represents the output image via the three Difference-of-Gaussian spatial-frequency channels

within different standard deviation parameter,σ. To provide three separate information details from

a picture depending on the range of frequency of each particular channel. Theses calculations are

revealing numerical values that are describing how different are these two processed images, in

other words, as these numerical results decrease it reveals the degree of similarity between the

image processed by the lateral inhibition biological method to the filtered image based on the three

multiple spatial frequency channels. As we can observe from these two tables below,Table4.1 and

4.2, that the DOG-HP filtered image is the closest image to the biological picture for both models.

The following table is illustrating the numerical results for each particular spatial frequency

channel regarding the uniform and non-uniform mapping model:
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Uniform Img RMSE-LPF RMSE-BPF RMSE-HPF

Flower 38 31 20

Jet 48 42 32

Word 44 38 33

Butterfly 33 31 31

Lena 38 27 17

Peppers 33 32 32

Table 4.1: The Root Mean Square Error Numerical Results Regarding The Uniform Model

Non-Uniform RMSE-LPF RMSE-BPF RMSE-HPF

Flower 23 17 13

Jet 18 12 10

Word 17 12 10

Butterfly 18 14 11

Lena 18 13 10

Peppers 18 13 11

Table 4.2: The Root Mean Square Error Numerical Results Regarding The Non-Uniform Model
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Chapter 5

Conclusions

It is worth mentioning that the non-uniform mapping model collaborating with a lateral inhibition

natural method is a novel way to treat the visual information in the same way as a human retinal

eye, and there is no previous study similar to the work presented here. However, the idea of using

log-polar mapping method to mimic the distribution of the retinal cone cells has first presented and

explained by Richard Messner in [13]. The objective of this research is, to create a computationally

efficient, biologically inspired, image processing framework suitable for pattern recognition that can

be utilized on an inexpensive PC platform. Where the benefits of such model are: the first one is

maintaining a large field of view while preserving the detailed critical information from the captured

scene at the point of interest. The second one is providing the capability of the system to process

an enormous amount of data at a very fast rate. These advantages are directly correlated with

the way human, and many other organisms process the visual information depending on the non-

uniform distribution of visual sensors in the retina corresponds to the spatially variant sampling

strategy of the Human Visual System (HVS). The response of a given retinal ganglion cell depends

on the light intensity falling on the photo-receptors within the small, more or less, circular area

of the retina called the ganglion cell receptive field. The retinal receptors over the non-uniform

sampling model are densely packed at the fovea (the central part of the pattern), and their density

decreases as the radial distance from the fovea increases. This directly allows for data reduction

and wide field of view while preserving the detailed information at the gaze point. As reported

by chapter three and four, the diameter of the receptive fields (the concentric circles on the non-

uniform pattern) increases linearly with the eccentricity. The distribution of ganglion cells has been

reported to be similar to the cone distribution [35]. At the fovea, there are at least three ganglion
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cells per one cone, while at the periphery there is one ganglion cell per two cones. Obvious data

reduction performed at the retinal sensory level through non-uniform sampling is only one aspect

of information processing occurring in frontal stages of the HVS. Early discoveries have shown that

the inverse of cortical magnification factor is linearly dependent on eccentricity [29]. This leads to

the introduction of a conformal logarithmic mapping (log-polar mapping) as the model that agrees

well with the rearrangement of retinal signals in the visual cortex (this signal rearrangement is

usually referred as retinal-cortical projection). Additionally, the lateral inhibition mechanism is

known to occur in the early stages of visual information processing in biological systems. This is

especially seen in the retina, lateral geniculate nucleus (LGN) and certain areas of the visual cortex.

The importance of lateral inhibitory connectivity in the context of the visual process is very often

perceived as edge enhancement or even interpreted as Mach-band effect.As mentioned in previous

studies that the effect of lateral inhibition (as in the retinal ganglion cell receptive field) can be seen

mathematically as a negative second derivative operator (− ∂2

∂x2
). In particular, such an area will

not respond to uniform or to uniformly graded illumination stimuli, for which a second derivative

is zero. After Fourier transformation, in the spatial frequency (f) domain, the negative second

derivative operator becomes equivalent to multiplication by f2 [50]. Where the negative second

derivative (or the Laplacian of Gaussian) operator is used in enhancing or detecting the edges from

the captured image (as High-Pass Filter). However, the lateral inhibitory sensory function exhibits

better than merely edge detection processor, see the resultant images via lateral inhibition for both

uniform and non-uniform mapping models in the previous chapter. Where, the inhibition impact

is shrinking when the radial distance increases in an exponential way. As explained previously in

this thesis, that this exponential model included two variables that effect directly on the resultant

output image via lateral subtractive inhibition. from the previous chapter, we have identified the

numerical values for these two variables that give a reasonable lateral inhibition image regarding

each mapping models depending on the edge enhancement of an input image and the differential

of the intensities between the edges of the same image as well which represents the perceived

information beyond the edges. In this part of research, the relation between the output image

to the input image corresponding to an exponential model will be presenting based on these two
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variables (α and β) and the relationship between these parameters themselves for both models.

To find out the adequate mathematical expression for these two variables. First, we shall relay on

our investigation study from the previous chapter on the search for the numerical value of beta

and alpha. Then, different mathematical equations will be tested to find the description of this

relationship depending on the characteristics of the resultant image. Since a (0.5) has confirmed to

be the value for an alpha α parameter for the uniform pattern, in this section the same value will be

used. The following three figures below are showing the resultant output images based on different

mathematical relationships between an alpha and beta parameters for the lateral inhibition method

regarding the uniform model:

Figure 5-1: The Identification of the Mathematical Relationship Between an Alpha and Beta

Variables [α and β] for the Unifrom Model: (A)The Original Image.(B)LSI Image When α=β

(C)LSI Image When α=1
2*β (D) LSI Image When β=1

2*α.
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Figure 5-2: The Identification of the Mathematical Relationship Between an Alpha and Beta

Variables [α and β] for the Uniform Model: (A)LSI Image When α=2*β(B)LSI Image When

β=2*α (C)LSI Image When α=1
3*β (D) LSI Image When β=1

3*α.
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Figure 5-3: The Identification of the Mathematical Relationship Between an Alpha and Beta

Variables [α and β] for the Uniform Model: (A)LSI Image When α=3*β(B)LSI Image When

β=3*α (C)LSI Image When α= 1
β (D) LSI Image When β= 1

α .
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According to these three figures above, figure 5-1, 5-2, and 5-3, we can notice that: when

alpha equals beta, see figure (5-1B), the related output image has an enhanced edges (that is

almost similar to the negative of the second derivative operator which is we think that the LSI

can give more than that). Because, we are almost losing the relative information between these

edges. While, when an alpha parameter is higher than beta, we won’t achieve the desired output

image or in other words, we will be missing all the important information of the captured image,

see the images in figure 5-1D, 5-2A,5-2D, and 5-3A. According to all these results we can say

that an alpha parameter should always be lower than beta to obtain the desired lateral inhibition

image with the edge enhanced as well as the information beyond the boundaries of this mapping

model. Different numerical values will be testing on the following figures within a particular range

of numbers [starting from 1 to 10], to identify by how much an alpha should be lower than beta.

Then, a conclusion with the specified mathematical relationship between an alpha α parameter to

beta β for the exponential model regarding the uniform format will be introduced right after these

figures below:

Figure 5-4: Illustration the Best Expression of Alpha α parameter and Beta β for the Uniform

Model. (A)The Original Image (B)LSI Image β = 1 ∗ α. (C)LSI Image β = 2 ∗ α. (D)LSI Image

β = 3 ∗ α.
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Figure 5-5: Illustration the Best Expression of Alpha α parameter and Beta β for the Uniform

Model. (A)LSI Image β = 4 ∗ α (B)LSI Image β = 5 ∗ α. (C)LSI Image β = 6 ∗ α. (D)LSI Image

β = 7 ∗ α.

Figure 5-6: Illustration the Best Expression of Alpha α parameter and Beta β for the Uniform

Model. (A)LSI Image β = 8 ∗ α (B)LSI Image β = 9 ∗ α. (C)LSI Image β = 10 ∗ α.
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According to the above figures, the best mathematical relationship between [α and β] variables

have been investigated and confirmed that beta always should be higher than alpha by a numerical

value. From the above three figures particularly,figure 5-4, 5-5, and figure 5-6, we can notice that

this value should be less than 4 to achieve the edge enhancement and the information beyond

the edges. In this thesis work, the following relation has been used to form the lateral inhibition

coupling coefficient matrix:

β = 2 ∗ α (5.1)

Then, the final description of the exponential model regarding this model will be as follows in the

equation 5.2:

B = (
β

2
) ∗ exp(−β ∗D) (5.2)

And the relationship between an original input image to the output lateral inhibition image will be

illustrated on the equation below 5.3

OutputLateralInhibitionImage = B−1 ∗OriginalImage (5.3)

However, for the non-uniform mapping model based on the log-polar transformation method,

we need to identify the mathematical expression of the exponential model’s variables to obtain

the desired weighting coefficients matrix for the output image via the natural method (lateral

inhibition). The same mathematical relationships that have used for the uniform model will be

using in this pattern too. For consistency purposes, we shall use the same procedure of identifying

the mathematical relationship between an alpha and beta variables of the exponential model [α and

β], from the conventional model in the new design. To see how are these variables acting on the

new paradigm and which mathematical description gives the reasonable LSI image output, to do

that the same numerical value for an alpha will apply here which is (0.3), see the following figures

below:
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Figure 5-7: The Identification of the Mathematical Relationship Between Alpha and Beta Variables

[α and β] for the Non-uniform Model. (A) The Original Image. (B)LSI Image when α=β=0.3.

(C)LSI Image when α= 1
2*β. (D)LSI Image when β= 1

2*α.
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Figure 5-8: The Identification of the Mathematical Relationship Between Alpha and Beta Variables

[α and β] for the Non-uniform Model.(A)LSI Image when α=2*β. (B)LSI Image when β= 2*α.

(C)LSI Image when α= 1
3*β.(D)LSI Image when β= 1

3*α.
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Figure 5-9: The Identification of the Mathematical Relationship Between Alpha and Beta Variables

[α and β] for the Non-uniform Model.(A)LSI Image when α=3*β. (B)LSI Image when β= 3*α.

(C)LSI Image when α= 1
β .(D)LSI Image when β= 1

α .

According to these results above, we can observe that when beta parameter β is higher than

alpha variable α the output image will be exactly as the original image, in other words, the LSI

natural method won’t impact on the processed image. However, when an alpha parameter α is

higher than beta β, the desired image will be achieved. To verify this observation and extract

a mathematical expression that represents the relationship between these two variables with the

input and output image the following figured have made to illustrate precisely ”by how much an

alpha parameter should be higher than a beta variable” within an exponential model to generate

non-uniform coupling coefficient matrix for the lateral inhibition method.

160



Figure 5-10: Illustration the Best Expression of Alpha α parameter and Beta β for the Non-uniform

Model. (A)The Original Image. (B)LSI Image when β=1
2*α.(C)LSI Image when β=1

3*α.(D)LSI

Image when β=1
4*α.
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Figure 5-11: Illustration the Best Expression of Alpha α parameter and Beta β for the Non-uniform

Model. (A)LSI Image when β=1
5*α.(B)LSI Image when β=1

6*α.(C)LSI Image when β=1
7*α.

Figure 5-12: Illustration the Best Expression of Alpha α parameter and Beta β for the Non-uniform

Model. (A)LSI Image when β=1
8*α.(B)LSI Image when β=1

9*α.(C)LSI Image when β= 1
10*α.
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As we can see from the previous results above, that beta should always be less than an alpha

parameter to obtain the desired images based on lateral inhibition biological method. However,

by how much beta should be lower than alpha, to answer that question we have made these three

figures above. According to these simulation results, if a beta is less than alpha by more than 2,

the desired output image will be achieved, in this thesis work we have taken (β =0.05) which is

almost to (16) of alpha (when α=0.3), see figure (5-11B). Therefore, the mathematical expression

which represents the relationship between these two variables to the input and the desired output

image will be as the following expression in equation 5.4:

β =
1

6
∗ α (5.4)

Then, the final mathematical description to generate the non-uniform coupling coefficients via the

log-polar mapping transformation method will be illustrating in the equation 5.5:

B = (6 ∗ β) ∗ exp(−β ∗D) (5.5)

Lastly, the mathematical relationship between these two variables from the exponential model

to the original image and the resultant output image via the lateral inhibition method will be

explained on the following equation 5.6:

OutputImage = B−1 ∗ InputImage (5.6)
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To mimic the lateral inhibition biological phenomenon, Laplacian of Gaussian or (Difference of

Gaussian) filters have been generated by subtracting two zero mean Gaussian filters with different

standard deviation parameters and applied the resultant filter to the mapped image. This filtration

process is classified into three categories; the first one is a DoG-Low-Pass filter to attenuate the

high-frequency details then a blurry output image will be achieved. The second one is a DoG-

High-Pass filter to enhance all the edges and get rid of the low-frequency image information. The

third category is a DoG-Band-Pass filter to extract all the relative information between the high

and low-frequency details. A particular quality metric has been used which is Root Mean Square

Error (RMSE) to test the performance of these filters and investigate which filtered image has the

closest information details as the picture processed via the natural method. The numerical results

via the RMSE quality metric have been proposed as tables, see tables in 4.1 and 4.2, regarding the

forward version of the mapped image from each mapping model. From these two tables as well

as the resultant images after subtracting the filtered image from LSI image we have observed that

the output image via a lateral inhibition method contains all the essential information from the

original image such as the edges (the high-frequency details) and the data beyond these boundaries

(almost the mid frequency details). Therefore, the filtered image via DoG-BPF and DoG-HPF

are the closest images to the LSI image more than the blurry image that is processed based on

the DoG-LPF. Besides that, a comparison between the conventional mapping model to the non-

uniform one has made from another perspective which is the time required to map the input image

with different dimension sizes. Whereas, the new sampling design was indicating the superiority in

performance over the conventional one as the picture size increases.

The following chapter will represent our directions and suggestions to expand this work in the

future.
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Chapter 6

Future Work

Although the research results presented in this work are satisfactory, they are still only the be-

ginning of the study related to the Lateral Inhibition biological phenomenon and it’s application.

In other words, there is another type of the lateral inhibition interaction among receptors called

shunting [53]. Both subtractive and shunting type of lateral inhibition are capable of enhancing

image contrast in the sensory field of the receptors and neurons, more details regarding the com-

parison between these type of lateral inhibition method is presenting in [12]. As has been indicated,

only the subtractive type of lateral inhibition has been investigated in this research work. it might

be worthwhile to explore the shunting type of inhibition on the new mapping model (non-uniform)

and compare the resultant images via these two neural connectivity types.

As has been presented in this work, we have concentrated on the Sensory Mapping method [S]

by proposing a new model to map the visual information in a way similar to the human retinal

eye, see figure 1-1. However, the HVS does not stop at this point, though. The neural firing rate

information is then mapped into the internal memory world of the brain via associative memory

mapping, representing by the matrix [M] of the same figure to generate a set of memory information.

Whereas the associative memory mapping coefficient matrix [M] is such a fascinating research topic

in the neural network world, see [54] for further study. Additionally, we have taken only one

mapping platform to mimic the human visual system, whereas, in reality, the human visual system

is characterized as a Binocular field of view. In other words, there are two eyes to visualize the

captured object. Therefore, to complete this work, another sampling mapping pattern has to add

to this non-uniform platform, where this extension will enhance the depth of the view. Then, the
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proper correlation and collaboration process between these two platforms will be in the cortical

part of the visual system. Then, the memory world will obtain the information from the whole

projected scene (from both sides) at the cortex within less amount of time comparing to the visual

system with only one sampling pattern.

Another idea that might be of interest, which is changing the location of the gaze point. In other

words, here in this study, we have considered the point of interest to be in the middle of the mapping

model, [x/2 and y/2]. Then the interconnection distances between the photo-receptors have been

calculated regarding that point, and the weighting coefficient matrix has obtained for the lateral

inhibition biological method based on an exponential model as we stated previously in this work, see

chapter three. However, this reference point can be changing to a different location (since the human

visual system has the full flexibility to moving the eye at various spots within a minimum amount of

processing time). This means that a new spatial inter-connection distances (new coordinates) will

be calculated according to the new gaze point and thus new coupling coefficients will be achieved

corresponding to these new coordinates. Therefore, we think that it would be great to expand this

work and make it more flexible on changing the position of our gaze point.

The Contrast Sensitivity Function (CSF) which is constructed by three multiple spatial fre-

quency channels, is now scaled of cycles per unit distance. However, the more biological flavored

scale for this function is cycles per degree. This can be a good point to start design a system that

has a parameter determine the distance from the sensor site to the object in degree scale, for more

details see [55].

The matrix inversion limitation could be a real point of study to enhance the resolution of the

output images via the non-uniform model of the LSI method and increase the dimension size of the

processing images to reach the [2048 x 2048] pixels double precision. Also, if a color-space image

is added to this research since the human eye can visualize the object in a gray and color scales.

Therefore, we believe that adding color-space images is a very necessary aspect of representing this

study in a perfect way.
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