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ABSTRACT  

A DIRECT SIMPLE SHEAR DEVICE FOR THE DYNAMIC  

CHARACTERIZATION OF PARTIALLY SATURATED SOILS 

by  

KHOA N. LE 

University of New Hampshire, May, 2016 

 

The importance of unsaturated soil mechanics has become of interest in recent decades to 

the geotechnical community. Previous investigations have led to the conclusion that inter-particle 

interactions present in unsaturated soils can contribute additional strength to the soil structure. 

Recent renovations made to a custom built Direct Simple Shear Apparatus at the University of 

New Hampshire has allowed researchers to study the dynamic properties of partially saturated 

soils. The renovations included a new control system, hydraulic components, and data acquisition 

system to allow the system to become functional from its previous working state. Modifications 

made to the soil chamber and the installation of a flow pump allows users to use the axis translation 

technique to control the degree of saturation in the soil specimens. An investigation conducted on 

a clean sand subjected to medium shear strains were tested at different degrees of saturation from 

a completely dry to a saturated state. The investigation confirmed the importance of matric suction 

on both the seismic compression and dynamic properties, as well as the validation of the system 

to record these properties. Results indicated that higher shear modulus values and lower damping 

ratios were observed for specimens subjected to larger matric suction values. Further investigations 

will be needed to address some of the challenges encountered in the system.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Motivation 

As the world uses more seismic resistant structures, the fundamental concepts of soil dynamics are 

often applied for design and construction. Soil dynamics becomes an important aspect when 

considering the seismic response analysis of a soil mass and structure system. When modeling site 

conditions, certain material variables like the shear modulus, G, and the damping ratio, ζ, are 

needed in order to accurately predict the behavior of the system when subjected to dynamic loads.  

 Furthermore, the emergence of the behavior of partially saturated soils has been examined 

over the past decade due to advancements in technology and testing methodology. The effects of 

inter-particle forces available in unsaturated soils have been found to contribute significantly to 

the strength and stiffness of soil system. Previous investigations have utilized acoustical methods 

(e.g. bender elements) and conventional laboratory methods (i.e. triaxial, resonant column, and 

direct shear tests) to study the effects of matric suction on the dynamic properties (i.e. shear moduli 

and damping ratios) of unsaturated soils. However, different testing methods can induce different 

response mechanisms and results in different soil characteristics.  

Dynamic shear modulus and damping can be measured in the laboratory through direct or 

indirect application of cyclic shear stress to the soil specimen. The Dynamic Direct Simple Shear 

(DSS) apparatus is a well-established equipment that has been successfully implemented to 

directly apply shear to the soil specimen. The apparatus is capable of providing in-situ conditions 

(ie. confining pressures and saturation levels) to a soil sample and applying a horizontal cyclic 

motion to the soil. The displacement and loads are recorded by sensors and the dynamic properties 
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can then be determined by analyzing the recorded data. Adapting DSS testing for unsaturated soil 

conditions would enable us to better understand the changes in dynamic material properties under 

different moisture conditions.   

1.2 Objective/ Scope of Project 

The main objectives of this thesis is to outline and explain the renovations made to the Direct 

Simple Shear (DSS) apparatus at the University of New Hampshire. These renovations allowed 

the apparatus to become operational since its last known previous working state in 1998. In 

addition, modifications were made to soil sample cell and system to allow suction control (axis 

translation technique) to control the degree of saturation of the samples. Post processing techniques 

were developed to analyze the raw data recorded by the newly installed data acquisition system.  

 An investigation on a clean F -75 Ottawa Sand was conducted to study the dynamic 

properties with respect to different degrees of saturation and varying cyclic shear strains. 

Additionally, the investigation provides insight on the viability of the system to record dynamic 

properties for a range of degree of saturation (suction).    

1.3 Outline  

This thesis is divided into several sections to allow the reader to understand every aspect of thesis 

investigation from the background information on soil dynamics to the methodology used for 

testing. The current chapter provides the motivation behind the thesis and the reason for testing, 

objectives and scope, and outline of the thesis.  

Chapter 2 reviews the basics of soil mechanics and dynamics. The methods used to 

determine dynamic properties of soils are presented and empirical formulas for the small strain 

and strain-dependent shear modulus and damping are shown. The mechanisms and concepts 
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associated with partially saturated soils are briefly introduced. Previous investigations regarding 

dynamics of partially saturated soils are presented and discussed. 

 The importance of direct simple shear systems and the different variations of the machine 

utilized by different institutions are discussed in Chapter 3. An in-depth description of the Direct 

Simple Shear System at the University of New Hampshire (UNH –DSS) and the modifications 

that were made to enable testing partially saturated soils are presented. Schematics of the system 

layout and details of water flow are shown. Additionally, the mechanisms involving the horizontal 

control system is presented. System compliance issues are discussed and examined.   

 Chapter 4 presents the geotechnical properties of F75 Ottawa Sand used for this 

investigation and the soil water retention curves. The procedure of preparing a soil sample for the 

UNH – DSS and testing procedures are presented. The system software user interfaces for the data 

acquisition system and flow pump are shown. The testing program outlining the state variables 

(i.e. confining pressures, relative density, matric suctions, and applied shear strains) and naming 

sequences used to test and identify soil specimens are explained.  

 Chapter 5 exhibits a set of example raw signals outputted from one of the tests. The data 

reduction methods and analysis techniques converting signals to motions and then into dynamic 

properties is discussed. The modification methods used to compare the dynamic properties 

between different samples and to account for system compliance issues are explained.  

Chapter 6 presents the analyzed results of the investigation. These results include the 

seismic compression behavior (pore fluid response and axial/volumetric strain), dynamic 

properties (shear modulus and damping), and normalized dynamic properties (G/Gmax and 

D/Dmax).The discussion of these results against the conclusions from previous investigations and 

the viability of the system is made.  
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A summary on the renovations made and on the results of the investigation is presented in 

Chapter 7. Suggestions and potential modifications to the UNH – DSS to address the challenges 

encountered from this investigation for future research are also provided.  

 The appendix section of this thesis includes the various sensors and equipment 

specification and known model numbers that are used for the current system setup. Dimensions 

and modifications made to a part of the soil sample chamber to accommodate partially saturated 

soils are shown.  A block diagram of the Proportional – Integral – Derivative (PID) horizontal 

control system showing the interactions between the sensors – controller – hydraulic equipment is 

included. A step by step procedure on the creation and running a test (from vertical consolidation 

to cyclic testing) is also provided. The MATLAB code for post processing is also provided.   
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CHAPTER 2 

 

BACKGROUND 

2.1 Dynamic Properties of Soils  

2.1.1 Introduction  

The importance of soil dynamics has become more prominent in recent decades due to 

advances in both technology and stricter regulations in building codes. Soils can be subjected to 

dynamic loads from a wide variety of sources. These sources could be in the form of railroad/traffic 

vibrations, ocean waves, Soil – Foundation - Structure Interactions (SFSI) (SFSI via wind loads, 

dynamic machine foundations, etc.), and earthquakes.  

In order to investigate any of these problems, specific information about site dynamics is 

needed. For example, site response analysis is often conducted by geotechnical engineers to 

evaluate seismic motion propagation in a site and to estimate the design motion at the soil surface.  

In order to properly conduct this analysis, dynamic properties such as the shear modulus and 

damping ratio are needed. In an earthquake, a seismic motion originated from the bedrock will 

propagate upwards through the overlying strata. The seismic wave is then distorted through the 

soil and will result in different responses (in terms of displacement, velocities, and accelerations) 

at the surface.  

 Historically, there have been numerous methods that investigators have used to model a 

soil system. One of the most fundamental ways to model the movement of soil when subjected to 

dynamic loads is using a representative soil element. Then, this element is dynamically loaded and 

its response is evaluated. However, this approach incorporates a fair amount of assumptions and 
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approximation with regards to the boundary conditions. The element level response would be used 

to characterize the dynamic properties of soil system in larger scales.  

2.1.2 Basic Definitions 

In order to conduct any geotechnical seismic analysis, certain soils properties are needed. 

A typical soil element under field conditions is presented in Figure 1. When a soil element is at 

rest, a vertical effective confining stress, σ’v is exerted on the top and bottom of the soil element 

and a horizontal effective confining stress, σ’h is exerted around the sides. The vertical pressure is 

often provided by the weight of the overlying soil and any additional surcharge load at the soil 

surface while the effective stress is obtained by subtracting water pore pressure from the vertical 

stress. It should be noted that the horizontal effective stress is usually taken as a portion of the 

vertical effective stress by multiplying the at-rest lateral earth coefficient, Ko. 

 

Figure 1: Stress Conditions of a Soil Element (after Dunstan, 1998) 
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The mean effective confining stress, 𝜎𝑚
′  describes the stress surrounding the soil element. In most 

cases, the pressure on the sides are considered to be identical (in the x and z directions), the stress 

would then be in the following form,  

𝜎𝑚
′ =

1

3
(𝜎𝑣

′ + [2𝐾0𝜎𝑣
′])      ( 1 ) 

In an earthquake, shear waves originated from the underlying bedrock will propagate up 

through the overlying soil strata and will result in a cyclic shearing force, Fc applied to the soil 

system and consequently on any soil element (Figure 1). The cyclic shearing stress, τc is calculated 

as the shear force divided by the cross-sectional area of the soil element, A (in the xz-plane). When 

the shear stress is applied to the sample, a resulting horizontal displacement, Δ will also be 

imparted onto the element (in the x-direction). The shear strain, γc is then defined as the horizontal 

displacement over the original height, H (in the y-direction) of the element.  

2.1.3 Dynamic Behavior of Soils 

The secant shear modulus, G, is one such material variable that describes the stiffness of the soil. 

This parameter in cyclic shear test is the ratio between the cyclic shear stress, τc to cyclic shear 

strain, γc.  

𝐺 =  
𝜏𝑐

𝛾𝑐
       ( 2 ) 

Empirical relations have been established and confirmed through the work of various researchers 

(e.g. Equation 3) to estimate this parameter.  

(Seed and Idriss, 1970)      𝐺 = 1000𝐾2(𝜎𝑚
′ )0.5          ( 3 ) 

   

In this equation, σm
′  represents the mean effective stress confining the soil element (in psf) at a 

particular depth and K2 is an influence factor that is a function of the void ratio and the subjected 

strain amplitude.  



8 

 

Cyclically loaded soils often exhibit a non-linear shear stress-strain response. Depending 

on the shear stress or strain imparted on the particular soil, the response of the soil can be shown 

as a hysteresis loop in Figure 2. 

 

Figure 2: Typical Shear Stress-Strain Response of Soil (after Hardin and Drnevich, 1970) 

The at-rest condition of the soil begins at the origin, O and is loaded to point A. It is then 

unloaded following the hysteresis curve ABC and then reloaded on the curve CEG. The backbone 

curve of the hysteresis loop, HOG describes the behavior of the soil when subjected to initial 

loading at different strains. The hysteresis behavior of soil can be attributed to the dissipation of 

energy in the soil element and between individual soil particles. It can be observed that the shear 

modulus is steepest at small shear strains, thus resulting in a stiffer soil. The line tangent to the 

hysteresis loop at small strain is often referred to as the small strain shear modulus or maximum 

shear modulus, Gmax. The shear strain range for this modulus is usually less than 1*10-4 % (Kramer, 

1996). On the contrary, as the shear strain increases, the slope of the backbone curve tends to 

decrease, thus indicating a softer soil.  
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When calculating the shear modulus, the calculations can be done through two separate 

approaches from the shear stress-strain curve. One way is to calculate the shear modulus from the 

origin to the point of interest; this value yields the Gsec (secant shear modulus) value. Alternatively, 

the modulus can also be taken as the tangential slope of the curved response; this value is 

referenced as the Gtan (tangent shear modulus). This value is continuously changing over the 

response of the soil.  

2.1.4 Small-Strain Shear Modulus, Gmax 

The general form of the maximum shear modulus value is typically written in the following 

form, 

𝐺𝑚𝑎𝑥 = 𝐴 ∗ 𝐹(𝑒) ∗ (
𝜎𝑚

′

𝑃𝑎
)𝑛              ( 4 )  

where, A and n are empirical fitting parameters, F(e) is function based on the void ratio of the soil, 

𝜎𝑚
′  is the mean effective confining stress on a particular soil element, and 𝑃𝑎 is the atmospheric 

pressure.  

Empirical relationships that have been established by various investigators (Hardin and 

Drnevich 1970, Seed et al. 1971) on the small strain shear modulus with common laboratory 

parameters have the following forms;  

(Hardin and Drnevich, 1970)  𝐺𝑚𝑎𝑥 = 14760 ∗ 
(2.973−𝑒)2

1+𝑒
∗ 𝑂𝐶𝑅𝑎 ∗ (𝜎𝑚

′ )
1

2        ( 5 ) 

(Seed and Idriss, 1970)    𝐺𝑚𝑎𝑥 = 1000𝐾2,𝑚𝑎𝑥(�̅�𝑚
′ )0.5          ( 6 )  

where, e is the void ratio, OCR is the overconsolidation ratio (and represents the stress history of 

the soil), 𝜎𝑚
′  is the mean effective confining stress, a is a fitting paramenter, and K2,max is a function 

of the relative density, DR of the soil. Variations of K2,max obtained from experimental data are 

provided by Seed and Idriss, (1970) shown in Equation 7: 

𝐾2,𝑚𝑎𝑥 = 0.6𝐷𝑅 + 16     ( 7 ) 
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The shear wave’s wave velocity is directly correlated with the small strain shear modulus, 

shown in the ensuing equation and often measured in the laboratory using acoustical method (e.g. 

bender elements).  

𝐺𝑚𝑎𝑥 = 𝜌𝑣𝑠
2        ( 8 ) 

In this equation, the maximum shear modulus is a function of the total density of the soil 

medium, ρ, and the shear wave velocity, vs. The shear wave velocity is determined by measuring 

the time it takes for the shear wave to travel a set distance. This is often accomplished by using an 

acoustical method that utilizes shear wave transducers/ bender elements (Hall and Richart, 1963).  

An alternative laboratory method that is often used is the resonant column test. This test 

involves creating a column of soil and subjecting the soil to a small torsional shear with a range of 

frequencies. The natural frequency of a soil column excited with different frequencies will be 

related to the soils’ shear wave velocity. Then, the soil small-strain shear modulus is estimated 

(Hall and Richart 1963, Hardin and Richart 1963). It should also be noted that empirical relations 

between standard in-situ tests (Standard Penetration Test, Cone Penetration Test, Dilatometer, and 

Pressuremeter) and the maximum shear modulus have also been established over the past decades 

(Ohta and Goto 1976, Baldi et al. 1986, Bellotti et al. 1986, Rix and Stokoe 1991). 

2.1.5 Cyclic Degradation & the Modulus Reduction Curve  

 

 In a comprehensive study by Hsu and Vucetic (2004) the degradation of the shear modulus 

occurs when the imparted shear strain to the soil is larger than a certain value. This value is often 

termed as the volumetric cyclic threshold shear strain, γtv and varies for different types of soils. 

Typical values for clean sands (SP) are around (0.01% - 0.02%), while for sands with incorporated 

fines and clayey soils yield larger values (0.4% - 0.49%). These values tend to increase as the 
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relative densities and amount of fines (and plasticities for clays) increase.  The threshold value 

distinguishes when the soil experiences permanent deformation and changes in volume.  

The modulus reduction curve presents a normalized approach in determining the effects of 

state variables on the behavior of soils over a wide range of strain levels, shown in Figure 4.  

 
Figure 3: Modulus Reduction Curve (after Kramer, 1996) 

Previous investigators (Hardin and Drnevich 1972, Darendeli 2001, Menq 2003, Oztoprak and 

Bolton 2013) have produced empirical relations for this curve. These relations are presented in 

Equations 9, 10, and 13. 

(Hardin and Drnevich, 1972)    
𝐺

𝐺𝑚𝑎𝑥
=  

1

1+
𝛾

𝛾𝑟

        ( 9 ) 

In this equation γr is the reference shear strain at which Gmax is determined and γ is the 

shear strain corresponding with the shear modulus. Modifications are presented in the following 

equations.  

(Darendeli, 2001)     
𝐺

𝐺𝑚𝑎𝑥
=  

1

1+(
𝛾

𝛾𝑟
)𝑎

      ( 10 )  

(Menq, 2003)     𝛾𝑟 = 0.12 ∙ 𝐶𝑢
−0.6 ∙ (

�̅�𝑚
′

𝑃𝑎
)0.5∙𝐶𝑢

−0.15
     ( 11 )  

𝑎 = 0.86 + 0.1 ∙ 𝑙𝑜𝑔 (
�̅�𝑚

′

𝑃𝑎
)         ( 12 )  

In these equations, γr is the reference shear strain, a is a curvature parameter, Cu is the 

soils coefficient of uniformity, Pa is the atmospheric pressure, and σm
′  is the effective mean 

confining pressure. Recently, a more detailed form is introduced as: 
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(Oztoprak and Bolton, 2013)           
𝐺

𝐺𝑚𝑎𝑥
=

1

[1+(
𝛾−𝛾𝑒

𝛾𝑟
)

𝑎
]
        ( 13 )  

In this equation Gmax is the max shear modulus, γr is the reference shear strain, a is a 

curvature fitting parameter that describes the rate of degradation, and γe is the elastic threshold 

strain (volumetric threshold strain). It should be noted that Oztoprak and Bolton’s equation used a 

regression model that compiled data from dozens of investigations (using test data from different 

tests and soils) to accurately form an equation that has both an upper and lower bound by altering 

the parameters, γr and  γe.  

𝛾𝑟 (%) = 0.01𝑈𝑐
−0.3 (

𝑝′

𝑃𝑎𝑡𝑚
) + 0.08𝑒𝐷𝑟       ( 14 ) 

𝛾𝑒 = 0.0002 + 0.012𝛾𝑟       ( 15 )  

𝑎 = 𝐶𝑢
−0.075        ( 16 )  

where 𝐶𝑢 is the coefficient of uniformity, 𝑃𝑎𝑡𝑚 is atmospheric pressure, 𝑝′ is the mean effective 

stress, e is void ratio, and Dr is the relative density.  

2.1.6 Damping Ratio 

Another material variable that is important when determining the response of the system is the 

damping ratio, ζ. This parameter represents the amount of energy that is dissipated by the soil 

when subjected to dynamic loading. The damping ratio is often calculated from the area within the 

hysteresis loop (shown in Figure 2).  

𝜁 =
1

2𝜋
∗ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝐿𝑜𝑜𝑝

𝐴𝑟𝑒𝑎𝑜𝑓 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑂𝐴𝐵′+ 𝐴𝑟𝑒𝑎𝑜𝑓 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑂𝐶𝐸′
     ( 17 )  

The damping ratio and the shear modulus are often reciprocals of the other parameter. 

Often as the shear modulus degrades with larger imparted shear strains, the damping ratio will 

increase. Conversely, as the shear modulus increases, a smaller damping ratio will be observed. 

Thus, a soil element exhibiting Gmax, at the same time will also have a minimum damping ratio, 

ζmin. An empirical relation for this value was developed by Menq (2003).  
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              𝜁𝑚𝑖𝑛 = 0.55 ∗ 𝐶𝑢
0.1 ∗ 𝐷50

−0.3 ∗ (
�̅�𝑚

′

𝑃𝑎𝑡𝑚
)−0.08      ( 18 ) 

The equation for the minimum damping ratio, ζmin, is a function of various parameters including: 

the soils’ coefficient of uniformity, Cu, the medium grain size (in mm) determined from the soil 

gradation curve,  D50, mean effective confining pressure,𝜎𝑚
′ , and atmospheric pressure, Patm. 

Alternatively, the maximum damping ratio, ζmax is exhibited by the soil when the soil is subjected 

to large strains. Seed and Idriss (1970) provided the basis for this value in the following equation, 

𝜁𝑚𝑎𝑥(%) = 𝑥 − 1.5(𝑙𝑜𝑔10 𝑁)       ( 19 ) 

where, x is a value that ranges from 28 (for clean saturated sands) to 33 (for clean dry sands) and 

N is the number of cycles. The relationship between the degradation of the normalized shear 

modulus and the increasing trend of the damping ratio is provided in the following equations. 

(Hardin and Drnevich, 1972)      𝜁 = 𝜁𝑚𝑎𝑥(1 −  
𝐺

𝐺𝑚𝑎𝑥
)         ( 20 ) 

(Menq, 2003)         𝜁 = 𝑏 (
𝐺

𝐺𝑚𝑎𝑥
)

0.1

∗ 𝜁𝑚𝑎𝑠𝑖𝑛𝑔 + 𝜁𝑚𝑖𝑛           ( 21 ) 

The damping ratio, ζ is a function of the normalized shear modulus, ζmasing, which is a modified 

form of damping based on “Masing behavior”, b is a scaling coefficient (based on the cycle 

number) for the ζmasing response, and ζmin, the damping ratio at small strains. “Masing behavior” 

relates the soils’ monotonic loading response (via the backbone curve) with the cyclic unloading 

and reloading response (Masing 1926, Darendeli 2001). In both functions, the damping ratio 

increases as the shear strain increases as shown in Figure 4.  
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Figure 4: Relationship between Normalized Shear Modulus and Damping w/ respect to Shear Strain 

In this figure, the degradation value of the shear modulus and the increase in damping values was 

created using the relationship established in Equations 13 and 20, respectively. The assumptions 

for the Oztoprak and Bolton equation parameters are as follows; Cu = 1.83, e = 0.6605, p’ = 28.57 

kPa, patm = 101.3 kPa, and DR = 0.45. 
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2.2 Partially Saturated (Unsaturated) Soils  

2.2.1 Introduction to Unsaturated Soils 

Unsaturated zone in a soil layer is the zone above the water table where often most foundations, 

embankments, and dams are built. This zone is also known as the “phreatic” or “vadose” zone. 

Flow- (hydraulic), stress-, and deformation-related behavior can be greatly influenced by the 

properties of the unsaturated soil which these structures are built upon.  

Partially saturated soils are considered a relatively new field of study in the geotechnical 

profession. The extent of the unsaturated zone is often a function of numerous variables including 

the depth of the water table, soil grain size, evaporation, rainwater, snowmelt infiltration, and other 

climatic and local factors (vegetation growth, etc.).  A typical soil profile is shown in Figure 5. 

 
Figure 5: Typical Soil Profiles (after Lu and Likos, 2004) 

2.2.2 Unsaturated Zone 

Classical soil mechanics often cover a two phase system of soil considering the soil as either 

completely dry or fully saturated. In partially saturated soils, the soil system consists of three 

phases comprised in a soil-water-air interface at equilibrium (e.g. Figure 6). 
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Figure 6: Various phases in a soil element. Fully Saturated (Right), Unsaturated (Center), Dry (Left) (after Suprunenko, 2015) 

The unsaturated zone encompasses three different regions in itself. Located right above the 

water table is the capillary fringe region. The pores in between the soil particles are completely 

saturated with water. The water uptake through the soil structure is contributed to the negative 

pore water pressure in the system. The height of the capillary zone is often a function of the 

effective pore size diameter of the soil and can be represented by Equation 22 (Holtz et al. 2011). 

ℎ𝑐 =  
𝐶

𝑒∗𝐷10
         ( 22 ) 

where, hc is the height of the capillary zone, e is the void ratio, D10 is the diameter of the soil from 

the soil grain distribution chart, and C is an empirical coefficient based on the angularity and shape 

of the individual soil grains.  

The soil starts to become unsaturated once the (matric) suction becomes larger than the air 

entry value. This region of soil is known as the funicular zone. Next is the residual or pendular 

zone that is located closest to the ground surface. The soil interface has a layer of water covering 

the surface and inside of the disconnected pores between the individual particles. It should be noted 

that at this state, more water can be extracted from the soil only by additional heat (ie. oven dried, 

desert regions, etc.).  

Total suction, 𝜓𝑡, is comprised of two different mechanisms displayed in the following 

equation.  

𝜓𝑡 =  𝜓𝑚 +  𝜓𝑜       ( 23 ) 
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These mechanisms include matric suction effects, ψm and osmotic effects,  ψo. Matric suction 

consists of capillary and physiochemical forces such as Van der Waals and electrical double layer 

attractions and repulsion. While osmotic effects are due to dissolved solutes which can affect the 

chemical potential of water through hydration and solvation (Lu and Likos, 2004).  The 

approximation of the measured matric suction is typically taken as the negative pore water pressure 

that is present in the soil matrix.  

 

Figure 7: Illustration of the Unsaturated Soil Zones (after Lu and Likos, 2006) 

2.2.3 Soil Water Retention Curves 

The soil-water retention curve (SWRC) is often used to show the characteristics of the volumetric 

water content against the applied matric soil suction. The SWRC is highly dependent on the soil 

type, the particle size, void ratio, and confinement pressure. The curve consists of different regimes 

shown in the ensuing figure.  
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Figure 8: Regimes of the Soil Water Retention Curve (after Lu et al,. 2007) 

In the first regime, the rightmost, the soil is completely saturated and the upper part of the regime 

is the air entry value (ua – uw)b. In the secondregime, the soil matrix experiences matric suction 

mostly through capillary action and the surface tension by the menisci formed from the interactions 

between soil particles, water, and air. The third and final regime describes the soil at the residual 

state; water exists in the soil element by thinly coating the surface of the soil particles. It should 

be noted that the volumetric water content could vary for an identical soil sample subjected to the 

same matric suction depending on whether the soil is being saturated (wetting) or desaturated 

(drying). A hydraulic model of the water retained by the soil element at different matric suctions 

was developed by van Genuchten (1980). The closed form solution is provided in the subsequent 

equation. 

 
𝑆− 𝑆𝑟

1− 𝑆𝑟
= 𝑆𝑒 = { 1

1+[𝛼(𝑢𝑎−𝑢𝑤)]
𝑛}

1−1
𝑛
       ( 24 ) 

In this equation the parameter, Se is the effective degree of saturation of the soil, S is the 

current degree of saturation, Sr is the residual degree of saturation, α and n are van Genuchten 
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fitting parameters that are empirically determined by running a soil water retention curve analysis, 

ua − uw is the applied matric suction. 

2.2.4 Effective Stress in Unsaturated Soils 

Terzhaghi (1943) introduced the concept of the effective stress in soils, σ′, to be determined by the 

equation below. This relation was found to be considerably accurate for fully saturated soils and 

is still used in current geotechnical practice. 

𝜎′ =  𝜎 −  𝑢𝑤        ( 25 )  

Bishop (1959) expanded on the effective strength equation, with the idea of an additional 

term to the equation to represent the “matric suction” caused by the air-water interface and 

effective stress parameter, χ.  

𝜎′ = (𝜎 − 𝑢𝑎) + 𝜒 (𝑢𝑎 − 𝑢𝑤)      ( 26 ) 

 

     𝜒 = 𝑓(𝑆)        ( 27 ) 

 

where, σ − ua represents the net normal stress, χ  is the effective stress parameter, and ua − uwis 

the matric suction stress, and S is the degree of saturation. The effective stress parameter is a 

material variable and ranges between 0 ≤ χ ≤ 1; a soil is considered completely dry when this value 

is 0 and completely saturated when this value is 1. Lu and Likos (2010) proposed the 

redevelopment of Bishops equation to determine the effective stress of the soil when subjected to 

a matric suction using the van Genuchten (1980) model and incorporating the concept of suction 

stress using the following form,  

𝜎′ = 𝜎 − 𝑢𝑎 +
𝑢𝑎−𝑢𝑤

(1+[𝛼(𝑢𝑎−𝑢𝑤)]𝑛)1−
1
𝑛

        ( 28 ) 

By incorporating the modelling of the matric suction into the effective stress equation, it is 

readily apparent that the matric suction can contribute “additional” strength to the soil element. 
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When combining the effective stress equation with the standard Mohr-Coulomb failure criterion 

for the shear strength of soils Fredlund and Morgenstern (1977) proposed a two state variable 

approach. The formulation for the ultimate shear stress at failure, 𝜏𝑓, was found to be a function of 

both the net normal stress and the matric suction. This approach utilizes the Mohr Coulomb failure 

envelope approach of finding the friction angles in two different stress spaces. Consequently, the 

peak shear stress would be calculated in the subsequent form when subjected to two different stress 

states.  

         𝜏𝑓 = 𝑐′ + (𝜎 − 𝑢𝑎)𝑓 𝑡𝑎𝑛 𝜙′ + (𝑢𝑎 − 𝑢𝑤)𝑡𝑎𝑛𝜙𝑏     ( 29 ) 

 

where 𝜏𝑓 represents the shear strength at failure, c’ represents the cohesion of the soil, (σ − 𝑢𝑎)𝑓 

is the net normal stress, ϕ′is the friction angle in the net normal stress space, 𝑢𝑎 − 𝑢𝑤 is the matric 

suction applied to the soil, and ϕ𝑏is the friction angle in the matric suction stress space.  

2.2.5 Axis Translation Technique 

The axis translation technique was developed by Hilf (1956) to provide a way to control the degree 

of saturation and suction in a laboratory soil sample. This method makes use of a fully saturated 

High Air Entry Value (HAEV) disk to separate the air - water interface. The technique typically 

changes the suction by altering the air pressure that is applied to the top of the specimen and the 

pore water pressure below the disk. Alternatively, the pore water pressure can be altered, while 

keeping the air pressure constant at atmospheric pressure.  A reference axis is established at a point 

within the sample and pore water is extracted from the fully saturated sample. The extracted water 

results in a decrease in water content in the sample while the increase in the matric suction is 

measured from the reference axis. Tracking the water content in the specimen and the applied 
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suction one can develop a soil water retention curve. A typical configuration of a soil sample under 

axis translation is shown in the following figure. 

 
Figure 9: Typical configuration for a partially saturated soil cell chamber (after Lu and Likos, 2004) 

2.3 Dynamically Loaded – Partially Saturated Materials 

 

Numerous investigations have been conducted to study the behavior of unsaturated soils under 

different state conditions. In these investigations, the studies utilized different soils and types of 

equipment. The implications of comparing the results are readily apparent, in which different 

testing methods could result in diverse conclusions from different analysis techniques and 

equations. In an attempt to describe the overall behavior of soils, the following sections have been 

dedicated to past studies on the effects of different state and material variables on the dynamic 

behavior (ie. shear modulus and damping ratio) and seismic compression (ie. pore fluid generation, 

axial and volumetric strains) of unsaturated soils.  

2.3.1 Previous investigations on Dynamic Soil Properties 

The dynamic behavior of partially saturated soils often describes the stiffness and damping 

properties and has been a subject of many studies to date. Different state variables such as cyclic 

stress/strain ratio, frequency of loading, confining pressures, and the number of cycles in 

conjunction with the degree of saturation have been altered to determine the impacts of these 
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variables on the dynamic properties. Previous studies that have utilized bender elements to study 

the small strain shear modulus with respect to the effects of partially saturated soils have indicated 

that increasing the matric suction can induce larger observed small strain shear moduli in soils 

(e.g. Figure 10) (Cho and Santamarina 2001, Ghayoomi and McCartney 2011, Kumar and 

Madhusudhan 2012). However, there is a discord in where or whether the peak small strain moduli 

value occurs in regards to the degree of saturation depending on the material type. This could be 

due to the sample saturation techniques, tested soil points (residual values not reached or tested), 

effective confining pressures, etc.    

 

Figure 10: Effect of Saturation on Gmax a) (after Kumar and Madhusudhan, 2012) b) (after Ghayoomi and McCartney, 2011) 

The same parameter has also been examined using data from resonant column tests. These studies 

also confirmed the conclusion that by increasing the matric suction applied to the sample, the small 

strain shear moduli would increase as shown in Figure 11 (Khosravi and McCartney 2011, Hoyos 

et al. 2015).   
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Figure 11: Effect of Matric Suction on Gmax a) (after Khosravi and McCartney, 2011) b) (after Hoyos et al., 2015) 

Medium to large strain shear modulus values have been measured using triaxial systems adapted 

with suction control/axis translation systems to control the degree of saturation in the sample (Cui 

et al. 2007, Kimoto et al. 2011, Ghayoomi et al. 2015). The results shown in Figure 12 indicated 

an increase in shear modulus in specimens with higher matric suctions.  

  

Figure 12: Recorded Shear Modulus Values of Partially Saturated Samples (after Ghayoomi et al., 2015) 

Large strain shear moduli of partially saturated soils under different loading conditions (cyclic vs 

monotonic) have also been studied to a limited extent using commercially built direct simple shear 

machines (Jafarzadeh and Sadeghi 2012, Milatz and Grabe, 2015). The results of the normalized 

shear modulus and damping ratios obtained from Jafarzadeh and Sadeghi compared against results 

from other investigations is presented in Figure 13. It should be noted that different testing 

methods, state conditions, and soils were used by other investigations.  
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Figure 13: Results of the Normalized Shear Modulus and Damping Ratios (after Jafarzedah and Sadeghi, 2012) 
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From the figure, the results from Jafarzadeh and Sadeghi indicate lower results than typical 

recorded results from other investigations. This is attributed to the different state conditions and 

testing methods used.  

 The damping ratios of unsaturated soils at small, medium, and large strains have been 

measured using resonant column and triaxial systems (Chin et al. 2010, Biglari et al. 2011, Hoyos 

et al. 2015). The results showed that as the matric suction increases, a stiffer soils is observed and 

less damping occurs (e,g, Figure 13).  

 

Figure 14: Shear Moduli and Damping Ratios (after Biglari, 2011) 

2.3.2 Previous investigations on Seismic Compression 

Seismic compression describes the volumetric/axial strain and pore fluid (both air and water) 

generation response of soils when subjected to dynamic loading. Previous research using direct 

simple shear apparatuses have shown that this behavior is linked with the composition of the soil, 

prepared relative density, stress history (OCR), and applied shear strain (Whang et al. 2004). The 

investigation led to the conclusion that the degree of saturation had a large effect on the amount of 

vertical deformation experienced by the soil as displayed in Figure 15. This effect was more 

noticeable on soils with a large amount of plastic fines than soils with a small amount of plastic 

fines.   
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Figure 15: Effects of Relative Density and Saturation on Seismic Compression (after Whang et al., 2004) 

Conversely, a study conducted by Duku et al. (2008) concluded that the degree of saturation 

showed no effect on the seismic compressional behavior of clean sands. A figure illustrating this 

effect is provided.  

 

Figure 16: Lack of Effect of Saturation on Seismic Compression (after Duku et al., 2008) 

It should be noted that these studies utilized a different method in order to prepare the samples. 

This technique (proctor compaction) could simulate a different mechanical behavior of the soil 

when subjected to different saturation levels. On the contrary, an investigation using a direct shear 

device modified to desaturate soils with the axis translation have shown that the soils experiencing 

higher matric suction will result in less seismic axial compression (Nishimura et al. 2010).  
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The importance of the drainage conditions on the pore water generation and dissipation of 

partially saturated soils has also been analyzed using a conventional triaxial system capable of 

generating dynamic earthquake motions (Sawada et al. 2006). The conclusion of the investigation 

was that if the maximum shear strain subjected to the soil was larger than 10%, the total volume 

change that was observed was not dependent on the saturation level (e.g. Figure 17). However if 

the shear strain was less than 10%, the drainage response affected the seismic compression 

experienced by the partially and fully saturated soils. Partially saturated soils were found to 

experience more volumetric strain during the undrained condition (during the earthquake motion) 

compared to fully saturated soils due to the compressional response of air in the soil matrix. Fully 

saturated soils exhibited more volumetric strains after the earthquake motion in the fully drained 

condition.  

 

Figure 17: Effect of Saturation and Shear Strain on Volumetric Strain (after Sawada et al., 2006) 

Furthermore, an empirical model developed by Ghayoomi and McCartney (2013) has been verified 

using centrifuge modeling to determine the total amount of settlement experienced by dry, partially 

saturated, and fully saturated sand layers subjected to seismic excitation. The model breaks the 

seismic settlement experienced by the soils in two different categories including compressional 
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and consolidation volumetric strains. The conclusion of this study showed that soil experienced 

the least amount of volumetric strains when the soil has a degree of saturation between 0.3 - 0.6 

(e.g. Figure 18) 

 
Figure 18: Effect of Saturation on Settlement (after Ghayoomi and McCartney, 2013) 

2.3.3 Current Investigation on Dynamic Properties of Unsaturated Soils 

The current investigation that will be conducted is unique in its own way compared to previous 

investigation due to the testing methods used and imparted shear strains. The axis translation 

technique has only been recently used to control the degree of saturation and matric suctions in 

soils. However, this technique has been used to test the dynamic properties in triaxial, resonant 

column, forced vibration, and bender element configurations which could lead to different 

mechanical responses (Chin et al. 2010, Biglari et al. 2011, Hoyos et al. 2015, Ghayoomi et al. 

2015). Additionally, previous studies using direct simple shear systems to study dynamic 

properties have used the wet compaction method to control the degree of saturation (Duku et al. 

2008). Previous investigations using direct simple shear apparatuses modified with the axis 

translation technique have tested soils at a limited amount of large cyclic shear strains (Jafarzadeh 

and Sadeghi 2012, Milatz and Grabe 2015). Therefore, the current investigation is essential to 

understand the behavior of soil when subjected to medium shear strains in a modified direct simple 

shear device.   
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CHAPTER 3 

DIRECT SIMPLE SHEAR APPARATUSES 

3.1 Introduction to Direct Simple Shear Machines 

Although there are numerous tests to determine the dynamic properties of soils both in laboratory 

(ie. Cyclic Resonant Column, Cyclic Triaxial, acoustical testing), and in-situ conditions (ie. 

Seismic refraction and the pressuremeter), the direct simple shear apparatus is one of the more 

geo-mechanically preferred methods due to the direct measurements of shear stress and shear 

strain. It is often used to determine the liquefaction response of saturated soils subjected to medium 

to large strains or to understand seismic compression of compacted soils. Direct simple shear 

(DSS) machines allow geotechnical personnel to study the mechanical properties of soils when 

subjected to shear in one direction at a 1-G level (as opposed to centrifuge testing). The advantage 

of this test as opposed to other laboratory methods is that it best represents a soil element subjected 

to “simple shear”. In order to explain this, an example of a seismic shear wave example is 

presented.  

In this conceptual example, a homogeneous soil mass lays above bedrock. A soil column 

is made up of individual soil elements (Figure 19a) and is considered to be in the “at-rest” 

condition. An earthquake motion is then introduced to the site (Figure 19b) and the bedrock moves 

in a lateral motion in the x – direction. A seismic shear wave (s-wave) propagates upwards (in the 

y- direction) through the soil column in the following form and individual soil elements (such as 

the one emphasized in red) are subjected to shear stresses. This response can be simulated by 

testing a small element of soil under similar simple shear stresses. 
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Figure 19: Conceptual Example of a Seismic Shear Wave System: a) before earthquake, b) during earthquake 

3.2 Variation of DSS Machines 

The main configuration of most direct simple shear apparatuses contains the same mechanical 

movements and measurements. These systems often keep a constant vertical pressure applied to 

the top of the specimen while a horizontal static or cyclic shear load is applied to the sample. Then, 

the corresponding forces and displacements are measured. The variations between these systems 

are often in the sample containment methods and dimensions. The sample confinement methods 

and size effects will be discussed in the subsequent sections.  

3.2.1 Effects of Sample Confinement (SGI, NGI, and Cambridge) 

The confining boundaries used to maintain a constant lateral volume for the soil sample consists 

of three different methods. The first method was developed by the Swedish Geotechnical Institute 

in 1936 and uses a rubber membrane to hold the sample together. A set of metal rings is then 

placed around the sides of the sample (Kjellman, 1951). The second method was developed by the 

Norwegian Geotechnical Institute; this method uses a wire reinforced rubber membrane to 

maintain a constant volume. The third method was developed by a researcher at the University of 
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Cambridge that used plates mounted with hinges to impart a uniform load across the sample 

(Roscoe, 1953). These confinement methods have been shown to slightly affect the residual 

behavior of the soil that is tested (McGuire, 2011). The confinement methods are illustrated in the 

next figure.  

 
Figure 20: Cross-Sectional Views of Various DSS Apparatuses (after Dunstan, 1998) 

3.2.2 Effects of Specimen Sample Size 

The effects of specimen dimensions on the static stress-strain behavior have been studied 

by numerous researchers (Wright et al. 1978, Vucetic 1982, Budhu and Wood 1984). The results 

from these studies have shown that static stress-strain behavior was not influenced by the H/D 

ratio, nor the confinement method chosen.  

However, in regards to the dynamic properties, a study conducted by Shen et al. (1977) 

showed that the H/D ratio affects the uniformity of the shear strain distribution along the sample. 

As this ratio decreases, a more uniform shear strain distribution along the boundaries of the sample 

can be observed. A discussion point brought up by Shen questions the capability to use the external 

horizontally applied strain as a basis for the dynamic response of the soil mass due to the non-

uniformity of the displacement throughout the specimen.  
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In addition to the H/D ratio, the distribution is also affected by the percentage of wire-

reinforcement (for NGI tests), the elastic modulus of the soil, the Poissons’ ratio, and the applied 

horizontal displacement. 

ASTM Standard D6528 – 07 recommends that the maximum H/D ratio to be less than 0.40 

with a minimum height and diameter of 12 mm and 45 mm, respectively. A variety of researchers 

have modified the dimensions of the sample size to be less than the maximum H/D ratio set forth 

by the standard. The dimensions used for each investigation is provided in the table below. 

Table 1: Dimensions of various DSS Sample Specimens 

University 

and 

Researchers Title of Work (Year) 

Type of Test 
Specimen 

Diameter 

Specimen 

Height 

H:D 

ratio 

MIT - Imtiaz 

Ahmed 

 

Investigation of Normalized 

Behavior of Resedimented 
Boston Blue Clay using 

Geonor DSS Apparatus  

(1990) 

Geonor DSS - SGI - 

undrained 6.7 cm (2.59 in.) 2.3 cm (.905 in.) 1: 2.91 

UMass-Amherst - 

D. DeGroot, C. 
Ladd 

Undrained Multidirectional 

Direct Simple Shear 

Behavior of Cohesive Soil 
(1996) 

Multidirection DSS - 
NGI 6.7 cm (2.59 in.) 2.3 cm (.905 in.) 1: 2.91 

UCLA - M. 

Vucetic, G. Lanzo, 

M. Doroudian 

Damping at Small Strains in 

Cyclic Simple Shear Test 

(1998) DS-DSS - NGI 6.6 cm (2.59 in.) 2 cm (typical) 1: 3.3 

UCLA - A. 

Mortezaie & M. 
Vucetic 

 

Effect of Frequency and 

Vertical Stress on Cyclic 

Degradation and Pore Water 
Pressure in Clay in the NGI 

Simple Shear Device (2013) NGI Undrained 66.7 mm (2.62 in.) 18.5 mm (.728 in.) 1: 3.6 

UCDublin - N. 

Boylan & M. 
Long 

Development of a Direct 

Simple Shear Apparatus for 
Peat Soils (2008) 

Cambridge - 
Undrained 70 mm (2.75 in.) 

Variable (5 to 35 

mm) or (0.197 to 
1.378 in.) 

1: 14 to 
1:2 

UNH - H.Miller 

 

Development of 

Instrumentation to Study the 
Effects of Aging on the 

Small Strain Behavior of 

Sands (1994) SGI - Undrained 10. 2 cm (4 in) 2.54 cm (1 in) 1: 4 

UCLA - P.M. 

Duku & J.P. 
Stewart 

Digitally Controlled Simple 

Shear Apparatus for 

Dynamic Soil Testing 
(2007) NGI -Undrained 10.2 cm (4 in.)  2 cm (typical) 1: 5.1 

UC Davis - Shen 

et al. 

An Analysis of NGI Simple 

Shear Apparatus for Cyclic 

Soil Testing (1977) NGI - Undrained 3.2 in. 0.8 in 1: 4 

ASTM D6528 – 

07 
 

Standard Test Method for 

Consolidated Undrained 

Direct simple Shear Testing 
of Cohesive Soils (2007) NGI - Undrained 45 mm (min) 12 mm (min) 

0.4 (max) 
or 1: 2.5 

 

 

3.2.3 Recent work by other institutions 
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Over the past couple of years, a variety of new types of DSS apparatuses have been 

developed by universities and institutions across the world. A system developed by the University 

of California – Los Angeles has the capability to control and accurately impart cyclic and static 

loads in 3 different directions (X, Y, and Z) using an integrated and complex system of PID loops 

(Duku et al., 2007).  

 
Figure 21: Digitally Controlled –Simple Shear Apparatus at UCLA (after Duku, 2007) 

Another system developed at the University of California is the double specimen DSS 

(DSDSS). This apparatus features two parallel samples that are loaded at the same time; the main 

advantage of using this system was the ability of eliminate false deformation readings for a 

particular specimen due to system compliance and friction limitations (Doroudian and Vucetic, 

1995).  

At the Texas A&M University, a prototype of a multi-directional DSS system was 

developed with the extended ability to impart a back pressure to the system. This ability allows for 

the system to act essentially as a triaxial system and provides a more effective way to saturate the 

soil sample, while having the ability to shear the sample in a horizontal manner (Rutherford, 2012). 
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3.3 UNH DSS System 

The Direct Simple Shear system at the University of New Hampshire was developed by Dr. Pedro 

de Alba and Heather Miller in 1992. The system was initially built to study the small strain 

behavior of Holliston 00 sand in relation to thixotropic effects. The system was then further 

modified by Alicia Dunstan in 1998 to effectively produce even smaller strains that could be 

applied to reconstructed Gulf of Mexico clay samples.  

The system is comprised of multiple parts including (1) the framework, (2) vertical and 

horizontal actuators to provide movement, (3) a control system hardware/software and data 

acquisition (DAQ) system, and (4) various sensors to measure the behavior of the soil. The 

framework of the system is comprised of a steel frame based on top of a steel table. A set of 

Thomson ball slides provide a guide for the bottom platen of a soil system to be guided in a 

horizontal direction. Another set of slides is fixed along the sides of the soil cell to allow a vertical 

load to be guided onto the sample.  

The vertical movement is provided by a pneumatic actuator and is regulated by a load cell 

and a linear variable differential transducer (LVDT). The horizontal movement is provided by a 

hydraulic actuator and is controlled on a Proportional Integral Derivative (PID) system in which a 

capacitive transducer provides horizontal distance feedback to the controller. A block diagram 

showing the electrical layout of the PID system and integration of the signal feedback is provided 

in the appendix. The following figure shows the current setup of the UNH-DSS.  
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Figure 22: Current Configuration of the UNH - DSS 

Numerous changes have been made to the system in the last two years in order to allow the 

system to become operational since its last previous working state in 1998. During this time, the 

system required an entirely new digital controller for the horizontal actuator since the previous 

controller could not be located. The new controller and data acquisition system is based off of the 

National Instruments software LabVIEW and allows users to acquire signals, record the response, 

and control the sensors in the system. Additionally, the hydraulic pump to provide the 

accumulators and actuator with the hydraulic fluid was also replaced. The specifications of the 

sensors used, controller module, hydraulic equipment, data acquisition modules/chassis system, 

and GeoTac flow pump are provided in the appendix.   

 In the previous system, the user interface allowed users to designate whether the system 

was load or displacement controlled for cyclic testing. The current setup allows users to designate 

the amplitude of the displacement (strain-controlled), however it is not setup for load (stress) 

controlled testing at this stage. 
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The soil sample configuration is based off of the Swedish Geotechnical Institute (SGI) DSS 

setup. The soil sample is confined by a series of silicon/teflon coated metal rings that are stacked. 

The soil sample is 10.16 cm (4 inches) in diameter and approximately 2.54 cm (1 inch) in height. 

The vertical piston can produce pressures of up to 137.412 kPa (20 psi) onto the sample, pressures 

above this limit will cause leaks in the piston seals. The damper system consists of two springs 

and a steel beam to provide stability to the hydraulic piston; it can be modified with different sets 

of springs to provide a stable loading condition for different strain ranges. The current damper 

configuration is limited to net horizontal movements between 4.305*10-4 cm (1.695*10-4 inches) 

and 1.506*10-3 cm (5.9*10-4 inches).  

    

 
Figure 23: Current damper configuration for horizontal movement (top view) 

 The technique of controlling the horizontal loading is also known as closed loop PID 

control. This technique uses a controller integrated into the computer to send a signal to the servo-

amplifier and then to the servo-valve attached to the hydraulic piston/actuator. The piston motion 

is then transferred through the damper system previously mentioned. The motion is transferred to 

the horizontal load cell to one side of the bottom table (which rests on top of the Thomson slides) 

and to the soil sample (built on top of the bottom table). On the other side of the bottom table is a 
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capacitance transducer that records and provides (distance) feedback to the computer and 

controller. The signal is then used to make adjustments to the servo-amplifier to complete the cycle 

over again.  

 A full schematic of the UNH Direct Simple Shear System with the position of the labeled 

pumps, actuators, sensors, piping, and soil chamber is provided in the following figure.  

 

Figure 24: DSS Schematic Architecture: Full System 

3.4 Modification for Partially Saturated Soils  

 In order to accurately control the degree of saturation in partially saturated soils using axis 

translation technique, a High Air Entry Value (HAEV) ceramic disk is often utilized. This disk 
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allows the flow of water to enter through the bottom, while prohibiting air (past a threshold value) 

to enter through the top. The HAEV ceramic disk that is incorporated into the bottom platen in the 

UNH – DSS is rated at ½ bar (50 kPa). The outer edges of the disk are epoxied to the platen to 

ensure that air cannot penetrate between the interface of the disk and platen. The bottom platen 

also includes a water channel and compartment underneath the disk to allow the user to flush out 

any air that may be trapped. The modified bottom platen is shown in the next figure, while the 

schematic and dimensions for the platen and the adapter can be found in the appendix. 

 

Figure 25: Modified Base Platen w/ embedded HAEV ceramic disk 

 In addition to the modification to the soil sample cell, a Geotac Digiflow Automated Flow 

Pump was incorporated into the system. This pump allows users to control the water pressure, uw 

beneath the HAEV ceramic disk and thus the matric suction in the soil cell. Additionally, a 

calibrated differential pressure transducer measures the difference in pore air pressure at the top 

(atmospheric) and pore water pressure or matric suction at the bottom of the sample. Depending 

on the stage of the test, various valves can be opened and switched in order to allow certain 

conditions to be applied. Specifications on the flow pump are provided in the Appendix section. 

The piping network is shown in the following schematic. 
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Figure 26: Soil Cell with Piping Schematic 
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CHAPTER 4 

 

SAMPLE PREPARATION & TESTING  
 

4.1 Testing Material Properties  

F-75 Ottawa silica sand was used for this investigation. This sand is classified as a clean poorly 

graded (SP) soil according to the Unified Soil Classification system. The grain size distribution 

curve was created by performing a sieve analysis in accordance with ASTM C136-14 and is shown 

in the subsequent figure. The coefficient of uniformity, Cu and curvature, Cc were both determined 

from this figure.  

 
Figure 27: Grain Size Distribution of F75 Ottawa Sand (after Suprunenko, 2015) 

Additionally, the sands maximum and minimum densities were determined using ASTM 

D4253 and ASTM D4254, respectively. Results from these tests were shown to be lower than other 

published values (Hargy, 2011). To be consistent with other test analyses that used the same soil, 

the properties of the sand for emin, emax, ρmin, and ρmax are based off a previous study that utilized 

the same soil. The friction angle for the sand was determined through an average of 3 static triaxial 
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tests prepared at a relative density of 45% (Suprunenko, 2015). A summary of the geotechnical 

properties of the tested sand are presented in the following table. 

Table 2: Various properties of F75 - Ottawa Sand 

Property Value 

Specific Gravity 2.65 

emin, emax 0.486, 0.805 

ρmin, ρmax (kg/m
3

) 1468, 1781 

Coefficient of Uniformity 1.83 

Coefficient of Curvature 1.09 

Prepared Specimen  

Relative Density  
45% 

Friction Angle (°)  40 

 

4.2 Sample Preparation  

 The soil sample was constructed on top of a bottom platen using the following procedure. 

Various aluminium collar rings were attached to the platen and were used to clamp a soil 

membrane around the base of the soil sample. Vacuum grease and O-rings were attached to the 

membrane to create a seal. A stack of Teflon coated aluminium rings was then inserted onto the 

sample and made flush with the base. A vacuum mold was installed onto the platen and the 

membrane was stretched over the top of the mold. A picture of the assembled bottom system before 

sample preparation is shown in Figure 28. 
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Figure 28: Bottom platen of cell with assembled vacuum mold 

 A piece of filter paper was then inserted inside the membrane. Ottawa sand was then dry 

pluviated into the mold to the desired density. It is then levelled off and another piece of filter 

paper was inserted on top of the sand. The height of the sample is recorded into a spreadsheet. A 

regular porous disk was placed on top of the filter paper and guiding rods were then installed 

around the edges of the bottom platen. The top platen was then slowly lowered onto the guide rods 

and on top of the porous disk. An annular clamp was then installed to secure the membrane to the 

top platen. The vacuum mold was then removed. The soil sample was inserted into the DSS system 

and clamped into place using T-Clamps that are embedded into the top and bottom platens of the 

soil chamber.  The guide rods were then removed at the end. A picture of a fully assembled soil 

chamber in the DSS system is shown in Figure 29. A step by step procedure outlining the entire 

sample preparation and testing procedure is also provided in the appendix.  

 
Figure 29: Soil Sample Chamber installed in the DSS system 
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4.3 Vertical Consolidation 

After inserting the sample into the apparatus, a vertical load is applied to the sample by 

manually adjusting an air regulator. The values of the consolidation of the sample are acquired 

manually by reading values of the LVDT and load cell in the LabVIEW interface. These values 

are then presented in a spreadsheet. The vertical consolidation of the sample results in changes of 

the height of the sample and thus a change in relative density (varies sample to sample, typically 

from 3% - 20%). To account for this change in density, the vertical deformation was used to adjust 

the tested relative density. 

One of the implications of using the current DSS system is the approximation of the vertical 

load. In the previous system, the application of the vertical load utilized a pneumatic servo-valve 

system to create a PID loop with the designated load. In the current system, the manual use of an 

air regulator results in a vertical load with a variance of 5 - 10%. In order to consider the effects 

of variance in the system, a normalization process was used. Further details on this process will be 

provided in analysis section.  

4.4 Sample Saturation and desaturation to the target matric suction 

 A variety of tests were conducted on multiple samples. In general, there were 6 types of 

tests that were conducted regarding the degrees of saturation; these tests consisted of a completely 

dry, fully saturated, and multiple partially saturated tests (w/ matric suctions at 4 kPa, 5kPa, 6kPa, 

8kPa, and 10 kPa).  

It should be noted that when soils are subjected to partially saturated and fully saturated 

conditions, the air pressure in the sample was kept at atmospheric conditions, while the water 

pressure below the HAEV disk was kept at a “constant” pressure using the flow pump. To verify 

this state when the cyclical loading was applied, the pore water pressures (PWP) were recorded 
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using values provided by the DPT. Fully saturated soils were kept under the same conditions (as 

the partially saturated soils) and were subjected to the flow pump’s active control of maintained 

constant PWP below the HAEV disk. However, when subjected to a cyclic load, excess pore water 

pressures could build up since the flow-pump may not have had time to extract water from the 

sample in time. This would result in “partially” drained conditions for both unsaturated and “fully” 

saturated soils. This effect could be considered an issue if the excess pore water pressures are large 

as it directly affects the stress inside the soil element, however further analysis is presented in a 

later section of this thesis.  

 In order to fully saturate the samples, de-aired water was flushed through the bottom of the 

specimen. The height of the water in the tank was considered to ensure that a quick condition did 

not occur during this process. Unlike a triaxial system in which back pressure saturation can be 

achieved by applying a confining cell pressure to the sample, the water level (saturation level) in 

the DSS sample was checked by reading a value from a calibrated differential pressure transducer 

(DPT). The flow of water was cut from the tank and the sample water level was allowed to 

equilibrate. Full saturation was assumed when the DPT reading was higher than the top of the 

sample.  

Samples considered to be “fully saturated” may only be 87 – 93% saturated, whereas 

Skemptons B – value method of saturation allows samples to have a degree of saturation of 95 - 

99%. In order to be consistent with the implications of the “fully saturated” soils, the obtained 

SWRC was consistent with the same method of saturation. However, fully saturated specimens in 

this study are more accurately “nearly saturated” 

The desaturation of the sample to the target matric suction was conducted using the axis 

translation technique. The valves connecting the sample to the flow pump were opened and the 
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pump extracted water from the sample. In a similar fashion, the SWRC was created using a similar 

procedure. The software that controls the flow pump is shown in the ensuing figure and allows 

users to track, control, and record the volume and pressure of the pump.  

 
Figure 30: GeoTac software for the DigiFlow Pump 

 The procedure for the SWRC measurement consisted of extracting water from the sample 

at constant increments of applied suction. Values of the extracted water volumes and readings from 

the DPT were taken once the sample was determined to be at a steady state condition (when the 

flow of water was less than 0.0002 mL/min). Matric suction values were calculated by establishing 

a reference pressure at the middle of the soil sample and subtracting the reference pressure from 

the values read from the DPT at a steady state condition. The results of the SWRC are shown in 

the next figure. The following van Genuchten parameters were then determined by fitting the curve 

on top of the experimental data. The experimental data was also compared to previous 
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investigations that also utilized the same material subjected to partially saturated conditions. These 

parameters are presented in Table 3. 

 

Figure 31: Soil Water Retention Curve of F75 Ottawa Sand 

Table 3: van Genuchten Parameters of F75 Ottawa Sand 

van Genuchten 

Parameters 
Current Study 

Suprunenko, 

2015 

Ghayoomi and 

McCartney, 2011 

Alpha, α 0.25 0.25 0.24 

N 8 9 7 

Residual Water 

Content (%) 
7.15 7.2 4 

Saturated Water 

Content (%) 
38.9 39.2 39.5 

 

The initial soil water retention curve was based on a soil sample that was prepared at a relative 

density of 45%. However, after vertical consolidation, the relative density increased in each 

specimen. Therefore it was necessary to complete a SWRC when the sample was in the DSS 

chamber. A comparison of the volumetric water content in the sample verse matric suction is 

shown in the next figure.  
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Figure 32: Comparison of SWRC before and after consolidation 

It is apparent from the figure, that the volumetric content is slightly affected by the consolidation 

stage in the test. This is mainly due to the amount of water that the can fill the voids of the sample 

with a lower porosity, however when comparing the degrees of saturation of the entire specimen, 

it is apparent that the degree of saturation is not significantly affected by the consolidation stage.  

 
Figure 33: Degree of Saturation before and after consolidation 

In addition to the soil water retention curve obtained from testing, the fitted van Genuchten for 

the tested soil is compared against the HAEV ceramic disk to show the relation of how the disk 

separates the air – water interface is shown in Figure 34. 
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Figure 34: van Genuchten curve vs HAEV threshold 

It should be noted that the van Genuchten curve is extrapolated to extremely high values of matric 

suction in order to show the limits of the HAEV disk. From this figure, it is readily apparent that 

the HAEV disk rated at 50 kPa is sufficient enough for this soil to reach residual water contents 

without passing the threshold value of the disk.  

4.5 Applying cyclic loads (Direct Simple Shear Testing) 

In order to start cyclical testing, the hydraulic actuator is started. It should be noted that when 

turning the hydraulic actuator on, a pressure on the springs – steel beam and damper system causes 

a slight monotonic load that is not taken into consideration. The effect is unavoidable since the 

pump cannot be turned on for an extended period of time (due to a slow apparent leak of hydraulic 

oil between the seals of the servovalve/actuator).  

After the designated degree of saturation is reached, the program LabVIEW (shaker-daq-

main.vi) is opened. The program interface (before a test is run) is shown in the following figure.  
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Figure 35: User Interface of UNH-DSS Data Acquisition System and Control 

In the interface, the designated amplitude, frequency, and duration of the control signal is inputted 

into the software (Box A). The control signal that is sent to the actuator is shown in Box B. Live 

signals from the sensors are initiated when the “Run” button is pushed. The horizontal loading is 

initiated when the “Trigger” button is engaged by the user and feedback from the various sensors 

are then recorded (Box D). The recorded signals are exported into a destination path shown in Box 

E as an Excel file. Although the control signal amplitude is designated by the user, slight variations 

between the recorded motion and control signal exist between tests with the same amplitude. These 

variations are accounted for when normalizing the shear modulus values. The motion is applied to 

the sample using the technique described in the previous chapter. 
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4.6 System Mechanical Compliance Corrections 

4.6.1 Top Table Movement 

It was observed from multiple tests and a previous investigation that there is movement in the top 

table (attached to the top of the sample cell). Although the primary cause is not fully understood, 

it is suspected that this motion is induced by the attachment of the damping system to the loading 

frame. In the previous system developed by Dunstan, the effect of the top table movement was 

considered for correcting the net displacement of the sample. Through a compiled amount of tests, 

the top table movement was simultaneously recorded for each test. On average, the top table 

motion was found to contribute 61.5% to the net cyclic motion. For example, a sample that was 

subjected to a horizontal distance of 0.0006 inches at the bottom of the sample, would have 

0.000225 inches of movement at the top. The net motion would be the top motion subtracted from 

the bottom motion, resulting in a net movement of 0.000375 inches. The recorded motions were 

compiled into the subsequent figure and a polynomial function to best estimate the top table 

movement as a function of the bottom table movement was obtained.  

 
Figure 36: Correlation between the top and bottom table movement 
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In this equation, y is the top table movement and x is the recorded horizontal motion captured by 

the capacitance transducer from the bottom table movement. The net horizontal motion subjected 

to the sample would be the top table movement subtracted from the recorded capacitance motion. 

In order to apply this concept to the cyclical horizontal motion, a sine wave with the same period 

and time delay of the control signal is overlapped onto the recorded capacitance signal. The 

recorded motions from the top sample LVDT and capacitance transducer were found to be in sync 

with no noticed delay when the horizontal motion was applied. The amplitude of the top table 

movement is provided by Equation 30. The resulting signal represents the net horizontal motion 

of the sample. The position of the top sample LVDT is presented in the subsequent figure.  

 
Figure 37: Top and Bottom LVDT sensors for distance corrections 

4.6.2 Friction Response Correction 

Although the system utilizes a set of low friction Thomson slides in order to provide guidance for 

bottom of the sample, there is internal resistance that would contribute force to the sample. To 

account for this resistance, a water sample was created. Since water does not have a shear 

resistance, the response of the sample would indicate the amount of force required to move the 

bottom table. The results of the water sample tests and correlation between the movements and 

force is presented in the ensuing graph.  
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Figure 38: Correlation between Frictional Resistance and Net Horizontal Movement 

   y = -46619x2 + 101.65x + 0.0133       ( 31 ) 

In this polynomial equation, y represents the frictional resistance (psi) and x represents the 

imparted net movement (inches) derived from the previous top table correction. Similar to the top 

table correction, the frictional resistance is subtracted from the response of the load cell using a 

similar equivalent sine wave approach.  

4.7 Testing Program  

Samples were prepared at a relative density of 45%. The vertical consolidation stage of the test 

subjected soils to be vertically confined with an approximate pressure of 50 kPa. The testing 

program for this investigation used two different methods in saturating and testing the soil. One of 

the approaches tested soil samples under the same applied amplitude (shear strain) and varied the 

degrees of saturation (Samples A1 – A3). The other approach tested samples with the same applied 

matric suction and varying strain amplitudes (Samples B1 – B7). The samples were sinusoidally 

loaded at a frequency of 1 Hertz for a duration of 5 cycles. The frequency of 1 Hertz was chosen 

for this study because it often represents similar conditions to the soil when subjected to moderate 
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seismic earthquakes with a similar dominant frequency (e.g. 1994 Northridge Earthquake, 1999 

Chi – Chi Earthquake). A summary of test parameters is provided in the table below.  

Table 4: Summary of Test Parameters 

Sample Prepared 

Relative Density (*)  

45% 

  

Total Vertical 

Confining Pressure  

~ 50 kPa 

  

Sample Name 
Applied Matric 

Suction (kPa) 
Applied Normalized Shear Strain (%) 

A1 
Dry, Saturated, 4 kPa, 

8 kPa, 10 kPa 
0.02 

A2 
Dry, Saturated, 4 kPa, 

6 kPa, 8 kPa, 10 kPa 
0.032 

A3 
Dry, Saturated, 4 kPa, 

6 kPa, 8 kPa 
0.04 

B1 Dry (0 kPa Suction) 0.017, 0.029, 0.035, 0.04, 0.045, 0.05, 0.055, 0.059 

B2 
Fully Saturated  

(0 kPa Suction) 
0.017, 0.023, 0.029, 0.035, 0.04, 0.045, 0.05, 0.055 

B3 4 kPa 0.017, 0.023, 0.029, 0.035, 0.04, 0.045, 0.05, 0.055, 0.059 

B4 5 kPa 0.017, 0.023, 0.029, 0.035, 0.04, 0.045, 0.05, 0.055 

B5 6 kPa 0.017, 0.023, 0.029, 0.035, 0.05, 0.055, 0.059 

B6 8 kPa 0.017, 0.023, 0.029, 0.035, 0.04, 0.045, 0.05, 0.055, 0.059 

B7 10 kPa 0.017, 0.023, 0.029, 0.035, 0.04, 0.045, 0.05, 0.055, 0.059 

* Although the sample is prepared at this density, an increase in DR between (3 – 20%) can occur after the vertical 

consolidation stage.  

  



54 

 

 

CHAPTER 5 

 

DATA INTERPRETATION & ANALYSIS 

5.1 Data Analysis 

The output from the LabVIEW program incorporates the readings from the various sensors in a 

single Microsoft Excel file. The recorded signals are then post-processed using Matlab scripts. The 

post-processing scripts are included in the Appendix. The results of the electrical feedback signals 

after the cyclic horizontal load was triggered can be seen in the next figure. The transformation of 

the electrical feedback signals (in millivolts) to recorded parameters (in terms of standard units, 

ie. lbs, inches, etc.) were obtained by calibrating each sensor individually.  

 
Figure 39: DAQ signals of various sensors after a cyclic test 
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In order to accurately analyze the results of the tests, some of the signals required some 

post – processing to eliminate noise. These signals were filtered by using the Matlab functions 

“moving average” and “smooth”. One of the implications of using these functions is that the 

function averages data from the previous number of specified recorded values, thus a time delay 

for the specified number of sample points is recorded. Although this effect is minimal, this results 

in a delay in the recorded response and the behavior of the soil. Signal filtering was applied to the 

readings of the top LVDT and the vertical confining load.  

 The obtained signals for the horizontal motion were modified for the top table movement 

and frictional resistance response mentioned in Chapter 4. Examples of response of the load cell 

and net – motions are provided in the following figures. These motions have been transformed 

from the electrical signals to the corresponding parameters. The shear strain response is shown in 

the next figure. 

 
Figure 40: Recorded Horizontal Motion Feedback  

According to Figure 40, the horizontal motion of the soil is converted from a distance reading to 

strain by dividing the value by the recorded height of the sample. The recorded shear strain by the 

capacitance transducer is shown in orange. The correction accounting for the top table motion is 

shown in yellow; the sinusoidal amplitude for this correction was established using Equation 30 

and the average shear strain amplitude from Cycles 2 – 4 of the capacitance reading (in orange). 
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The corrected net shear strain of the sample (shown in blue) would be the top table correction shear 

strain subtracted from the capacitance shear strain. It should be noted that time syncing was 

involved by matching the correction curve and feedback peak to peak since there was not a 

noticeable delay in the top table and capacitance transducer movement. This motion is then used 

for the calculation of the frictional response and then used to correct the shear stress response as 

shown in the following figure.  

 
Figure 41: Recorded Horizontal Stress Feedback 

This figure shows the progression of the shear stress produced from the horizontal actuator through 

the duration of the cyclical test. The horizontal load (recorded from signals by the horizontal load 

cell) is divided by the sample area to produce the shear stress (as shown on the y – axis). The signal 

in blue depicts the recorded data and the signal in orange is the correction for frictional correction. 

The amplitude for the sinusoidal friction correction is based off of average net displacement (cycles 

2 – 4) determined from previous plot and Equation 31. The frictional correction is then subtracted 

from the recorded motion to form the shear stress response of the soil (shown in yellow).  

The net shear strain and corrected shear stress response of the soil (as previously shown) 

is plotted against one another and the soil responses over the course of cycles 2 – 4 are plotted. 

The incorporation of noise from the horizontal load cell is readily apparent from Figure 41. The 
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initial determination of the seismic properties are calculated from the hysteresis loops that are 

formed for cycles 2 – 4. 

 
Figure 42: Soil Response of a partially saturated soil 

The dismissal of the dynamic properties for cycles 1 and 5 is mainly due to the ramping portions 

of the loading scheme from the control signal that is provided in the program. Reference lines are 

overlapped onto the hysteresis loop, shown in Figure 43, to provide insight on how the dynamic 

properties were calculated. 

 
Figure 43: Soil Response with Reference Lines for the Dynamic Property calculations 

It should be noted that in this figure the reference line is drawn for the average shear strain modulus 

and damping ratio. The secant shear modulus, Gsec was calculated by taking the slope of line A-A’ 



58 

 

for each cycle. The individual shear modulus for each cycle was then averaged. The damping ratio 

was calculated using the following equation for each cycle and then averaged.  

𝜁 =
1

2𝜋
∗

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝐿𝑜𝑜𝑝

𝐴𝑟𝑒𝑎𝑜𝑓 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑂𝐴𝐵+ 𝐴𝑟𝑒𝑎𝑜𝑓 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑂𝐴′𝐵′
      ( 32 )  

It should be noted that in this equation, the area of the hysteresis loop represents the energy 

dissipated into the soil structure, while the areas OAB and OA’B’ represent the stored energy in 

the soil element. These areas are calculated within the MATLAB script for each cycle.  

5.2 Modification of the Gsec values 

The preliminary results of the secant shear modulus are based off of the net shear strains measured 

by the capacitance transducer. The shear strains are based off the motion that is inputted by the 

user. However, slight discrepancies can exist between two tests with the same inputted signal. To 

account for this effect, as well as the compliance issues due to the variation in the top table load 

and relative density. It is imperative to modify these measured values in order to compare results 

between two different tests subjected to the same motion.  

 The modification of these values are conducted using a combination of equations 

established by Seed and Idriss (1970) and Oztoprak and Bolton (2013). Recall the following 

formula for the shear modulus. 

𝐺 = 1000𝐾2(�̅�𝑚
′ )0.5 

 

This equation is a function of the effective mean confining pressure, and K2 which is a function of 

K2max and F’ which in turn are functions of relative density and shear strain. The modification of 

the shear modulus would then be in the following form.  

𝐺𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝐺𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
= (

�̅�𝑚,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

�̅�𝑚,𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

)0.5 ∗ (
𝐾2,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝐾2,𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
)   ( 33 ) 
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In this equation, Gmodified  represents the modified Gsec value, Gunmodified represents the recorded 

values from the test, 𝜎𝑚,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the modified confining pressure, 𝜎𝑚,𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the recorded 

value of average effective confining pressure over the duration of the test. 𝐾2,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is a value 

based on the modified density and strain, and 𝐾2,𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is a value based off the relative 

densities and strains recorded in the test.   

The values were modified for the total vertical pressure of 50 kPa which corresponds to a 

mean confining pressure of 28.57 kPa for a dry test. The formula for the effective mean confining 

pressure is provided.  

𝜎𝑚 =  
1

3
(𝜎𝑉 + (2 ∗ (1 − 𝑠𝑖𝑛(𝜑′)) ∗ 𝜎𝑉 )      ( 34 ) 

In this equation, σ̅mrepresents the mean confining pressure through the test, σV  is the average 

vertical pressure through the duration of the cyclical load portion of the test, and φ′ is the friction 

angle of the sand (which was determined from triaxial testing). Since the total vertical pressures 

are averaged through the duration of the test, the effect of the pore fluid (matric suction or water 

pressures in some cases) response within the sample becomes vital when determining the effective 

pressure in the soil (using Equation 28). This is important for both partially and fully saturated 

soils to show that the matric suction or water pressure in the soil did not drastically change during 

the duration of the cyclic loading. The confirmation of this condition is presented in the next 

chapter.  

The modification of the relative density, Dr, and applied cyclic shear strains, γc, are 

accounted for in the K2 portion of the equation. The K2 parameter is a function of the K2max and F’ 

values are shown in the subsequent set of equations  

𝐾2 = 𝐾2,𝑚𝑎𝑥 ∗ 𝐹′       ( 35 ) 

𝐾2,𝑚𝑎𝑥 = (0.6 ∗ 𝐷𝑅) + 16       ( 36 ) 
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𝐹′ =
𝐺

𝐺𝑚𝑎𝑥
        ( 37 ) 

The formulation of K2max is based off of empirical data from a study conducted by Seed and Idriss 

(1970) and is dependent on the relative density of the soil. F’ represents the degree of reduction in 

the shear modulus degradation curve. This value is also a function of the shear strain. Oztoprak 

and Boltons' equation for the degradation of shear modulus was used with the material properties 

(coefficient of uniformity) and state variables (void ratio and relative density) provided in Chapter 

3. The shear modulus degradation parameter, F’ is presented over a series of strains in the 

subsequent figure. 

 
Figure 44: Shear Modulus Reduction Curve of F75 Ottawa Sand (after, Oztoprak and Bolton 2013) 

 In order to better explain the modification process, an example is presented. A soil sample 

is subjected to the vertical consolidation stage (of 50 kPa) and the relative density changes from 

45% to 53%. The sample is then saturated and desaturated to partially saturated conditions (of 4 

kPa matric suction). It is then sinusoidally loaded with a cyclical shear strain amplitude of 

“0.032%”. The actual recorded signals after the MATLAB post processing show that the shear 

strain subjected to the sample was 0.0315%, the average total vertical stress was 48.35 kPa 

(effective stress at 50.59 kPa using Equation 28), and the calculated average shear modulus from 

the hysteresis loops was 15.87 MPa. The mean effective confining stress would be 28.91 kPa.  
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Using the equations 35 – 37 and Figure 44, the K2modified value would be 19.75 (for DR at 

45%, and strain at 0.032%), K2unmodifed value would be 22.12 (for DR 53% and strain at 0.0315%), 

𝜎𝑚,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
′  value would be 28.57 kPa, 𝜎𝑚,𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

′  value would be 28.91 kPa, and 𝐺𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 

value would be 15.87 MPa. Inputting these values into the modification equation (e.g. Equation 

33) would result in a  𝐺𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 value of 14.08 MPa. These values are summarized in the Table 5 

to show the recorded and modified values used for Equation 33.  

Table 5: Summary of Modification Process for Shear Modulus Value 

Modification Parameter 

Unmodified 

(Recorded) Value Modified Value 

Vertical Effective 

Confining Pressure (kPa) 50.59 50 

Mean Effective Confining 

Pressure 28.91 28.57 

Shear Strain Amplitude 0.0315% 0.0320% 

Relative Density 53% 45% 

K2  Value 22.12 19.75 

Average Shear Modulus 

(MPa) 15.87 14.08 

 

This modification process was used for all of the samples in order to compare the shear 

modulus values against each other on the same shear strain level and to eliminate compliance 

issues due to relative densities and changes in confining pressures. The modification process for 

the shear modulus values was found to contribute anywhere from 6.3% to 36.7% with an average 

of 19.7% from the recorded value. The contribution amount was dependent on how much the 

recorded value (e.g. confining pressure, shear strain, and relative density) deviated from the 

intended value.  It should be mentioned that other approaches looking at the effects of only the 

confining pressure or relative density and shear strain were considered, but were not used for the 

presentation of results.  
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5.3 Modification of Damping Ratio Values 

The modification of the damping ratio, 𝜁 is based off of the modification process used for the shear 

modulus values. Since the damping ratio and the shear modulus have been known to have a 

reciprocal trend from one another, the ratio between the values was assumed to be in the following 

form, 

𝜁𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝜁𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
=  

𝐺𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝐺𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
       ( 38 ) 

where, 𝜁𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the modified damping ratio (with regards to density, shear strain, and confining 

pressure), 𝜁𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑  is the calculated average damping ratio from the hysteresis loops, 

𝐺𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the recorded Gsec value from the hysteresis loops, and 𝐺𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the modified 

shear modulus mentioned in the previous section. 

To demonstrate this modification process, the previous example will be recalled upon for 

continuity purposes. The damping ratio calculated from the previous examples hysteresis loops 

yielded a value of 0.0651. The modified and unmodified shear modulus values were 14.08 MPa 

and 15.87 MPa, respectively. Using the aforementioned equation, the modified damping ratio 

would yield a value of 0.0734.  

5.4 Determination of the Gmax and ζmax values 

The small strain shear modulus, Gmax and large strain damping ratio, ζmax are often required to 

distinguish a normalized approach of comparing soils dynamic properties under different 

conditions. In the following sections, the equations and methods used for determining these values 

are explained. The modulus reduction curve (G/Gmax) and increasing trend of the damping ratio 

(ζ/ζmax) over a wide range of strains with the normalized data from this investigation are presented 

in the next chapter. 
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5.4.1 Determining the Small Strain Shear Modulus, Gmax  

Similar to the method for the modification of the shear modulus values detailed in the previous 

section, the small strain shear modulus, Gmax was calculated using the empirical equation 

established by Seed and Idriss (e.g. Equation 6). Recall the following equation for the small strain 

shear modulus 

Gmax = 1000K2,max(σ̅m
′ )0.5 

Recall that in this equation, K2,maxis an empirical value based off of the relative density of the 

sand and, σ̅m
′  which is the effective mean confining pressure of the sample. For each test, the value 

for Gmax changed for each different degree of saturation and matric suction applied to the sample 

due to the change in effective stress (e.g. Equation 26), while the K2max parameter remained 

consistent for each test (for DR = 45%). 

5.4.2 Determining the Large Strain Damping Ratio, ζmax  

The determination of the large strain damping ratio utilized the empirical formula established by 

Seed and Idriss (e.g. Equation 19). Recall that the formula was dependent on the saturation level 

of the test, in which x was 33 (for dry condition) and 28 (for fully saturated condition). Since the 

results of this investigation tested soils at different degrees of saturation from a dry to fully 

saturated state, the assumption on the progression of the x value changed linearly over the course 

of saturation was made. Therefore, the equation was altered into the following form, 

𝜁𝑚𝑎𝑥 = (33 − 5(𝑆𝑅)) − 1.5(𝑙𝑜𝑔(𝑁))      ( 39 ) 

In this equation, ζmax represents the maximum damping ratio, SR is the degree of saturation, and N 

is the number of cycles. In addition to the degree of saturation assumption, the value of N was 

assumed to be 3, since the damping ratios were averaged over the course of three cycles. Since the 
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degree of saturation was different for each test, the maximum damping ratio was calculated for 

each case.  
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CHAPTER 6  

 

RESULTS & DISCUSSION 

 

The results from the investigation are presented in two sections, seismic compression and dynamic 

properties. The seismic compression results are broken into the pore fluid response of the soil and 

the progression of axial strain exhibited by soils subjected to increasing shear strains. The dynamic 

properties include the modified shear modulus values, damping ratios, and normalized shear 

modulus values (G/Gmax) and normalized damping ratio results (ζ/ζmax). The presentation of these 

properties are separated to correspond with the testing methods used (A and B series).  

6.1 Seismic Compression Results 

6.1.1 Pore Fluid Response 

As it was mentioned in Chapters 4 and 5, the pore water response was measured by the DPT to 

ensure that partially saturated and fully saturated soils were tested under drained or, practically, 

partially drained conditions throughout dynamic testing. The results indicated that changes in the 

PWP were not considered to be significant. The pore water pressure response for two fully and 

two partially saturated soils subjected to two different cyclic motions are presented in Figure 45.   
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Figure 45: Pore Water Pressure Response over Cyclical Testing 

The graph shows the PWP response in partially and fully saturated soils during cycles 1 - 5 of 

cyclical loading. It should be noted that the plots include an additional 2 cycles of readings (1 cycle 

for pre testing - Cycle 0, and 1 cycle for post testing – Cycle 6) to show the pressures before and 

after the test. It can be observed that in both cases (saturated and partially saturated soils), a slight 

change in PWP is noticeable, however the magnitude in relation to the applied pressures was 

considered minimal through the duration of the test. This was also the observed trend for the other 

partially saturated soils (5 kPa, 6 kPa, 8 kPa, and 10 kPa). However, in order to provide a more 

accurate picture of the extent of the change in pore pressures, Figure 46 provides a more detailed 

look into the “change” in PWP response previously presented in Figure 45.  
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Figure 46: Changes in Pore Water Pressure Response during Loading 

The effect of imparted shear strain (as denoted by the percentages in the legend) on the effect of 

PWP is displayed for both conditions; the trend indicates that higher shear strains result in larger 

changes in PWP. At smaller strains, the change is considered to be much insignificant. This trend 

corresponds well with previous investigations. The results from the testing should be taken with a 

considerable amount caution since the resolution of the DPT falls in the range of the changes in 

PWP recorded. The resolution is rated at 0.1% F.S. (full span) or 0.1 kPa, therefore the recorded 

changes may actually be noise instead of the actual pressure change in the sample.  

6.1.2 Axial/ Volumetric Strain Response 

The multistage seismic compression results were calculated from the changes in height before and 

after a dynamic test was conducted. The term “multistage” describes the loading pattern that was 

used for testing, in which larger and larger motions were subjected to the same specimen under 

the same degree of saturation. The vertical deformations were then used to calculate the axial 

strains that the sample experienced. Since the sides of the samples were confined, the axial strains 

are approximately equivalent to the volumetric strains.  The results are presented for samples B1 

– B7 in Figure 47. 
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Figure 47: Multistage Seismic Compression Results 

The results from the multistage testing of the B series show the relation between the amounts of 

axial strains estimated from the vertical settlement and applied shear strains. In this plot, the 

applied shear strains were not modified using the technique explained in the previous chapter 

where the recorded shear strains were matched with the strains experienced by the soil. From this 

plot, one can observe that matric suction had no significant impact on the vertical strains when the 

shear strain is less than 0.037%. However, at larger shear strain values, the dry sand sample (B1) 

experienced the most settlement while partially saturated soils (B3 – B7) experienced the least 

amount of axial strain. The compressional axial strains exhibited by sample B4 suggests that there 

may have been an error in reading the vertical deformation from the sensor since it displays a 

different trend from the remainder of the tests (at γ ~ 0.025%). With the exception of sample B4, 

the approximation of the volumetric shear strain threshold, γtv, is between 0.017% and 0.023% and 

is in agreement with values suggested by Hsu and Vucetic (2004), although it should be noted that 

these sample were tested at a slightly different relative densities. 

6.2 Results of the Dynamic Properties  

The results of the dynamic properties are presented for the different methods of dynamic testing.  
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Sample series A(1 -3) tested samples at the same relative shear strain level, while adjusting the 

degree of saturation between tests. Sample series B (1 – 7) maintained the same degree of 

saturation, while testing the samples over a range of shear strain values. The presentation of the 

strain dependent shear modulus, G and the damping ratio are presented in the following sections. 

6.2.1 Results from Sample Series A 

The results from sample series A is presented in two different manners. One method is plotting the 

modified shear modulus values vs the degree of saturation (e.g. Figure 48). Using this figure one 

can show the distinction of the location of the fully saturated and dry shear modulus as both have 

zero suction. However, at the lower end of saturation (S < 0.01), it is difficult to distinguish the 

difference between dry vs residual shear moduli values. The alternative way of presenting the 

results is to plot the shear modulus against the matric suction values (e.g. Figure 49). This figure 

allows researchers to understand the effects of matric suction on the shear modulus. The difficulty 

associated with this data presentation is that the fully saturated and dry results of the shear modulus 

values are both located at 0 kPa for matric suction.  Therefore, it is necessary to present the data 

in two different ways as shown in the ensuing figures.   

 
Figure 48: Modified Shear Modulus Values vs Degree of Saturation 
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Figure 49: Modified Shear Modulus vs Matric Suction (fully saturated soils are denoted with green fill) 

These plots show the clear effects of partially saturated soils on the shear modulus and confirm 

conclusion from studies by Cui et al. (2007), Hoyos et al. (2015), and Suprunenko (2015) that 

indicate that higher values of matric suction in the soil matrix can contribute an increase in value 

on the secant shear modulus. The peak shear modulus value over the range of the suctions indicate 

that the maximum value occurs when samples are subjected to a matric suction of 8 kPa. However, 

a slight decrease in the shear modulus value when transitioning from 8 kPa to 10 kPa can be 

noticed. The degradation of the shear modulus is apparent from the position of the data points. 

Samples subjected to larger strains (i.e. Sample A3) correspond with lower shear modulus values 

than samples with smaller induced shear strains (i.e. Sample A1).  A normalized approach in 

presenting the shear modulus is displayed in the following figure. In this figure, the values of the 

modified shear modulus are normalized with the dry shear modulus value obtained for the sample. 
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Figure 50: Normalized Shear Modulus w/ respect to Dry Shear Modulus, A-series 

The contributions to the stiffness from the matric suction can be seen to contribute a partial amount 

to each soil sample. It should be noted that the dry samples would be normalized to a value of 1, 

while contributions or deductions to the stiffness would read as values larger or smaller than 1. At 

smaller shear strains (e.g. A1), the matric suction has a maximum contribution of ~14% over the 

dry sample stiffness. However, at larger shear strains (e.g. A3), the contribution of matric suction 

at 8 kPa to the stiffness response is roughly 5%. 

 In the following figures, the damping ratios corresponding to data points in Figures 51 and 

52 are presented in forms similar to the previous two (i.e. Damping ratio versus Degree of 

Saturation and Matric Suction). It is important to note that the damping ratio reflects the inverse 

trends occurring within the stiffness/shear modulus calculations since the properties are inversely 

related.  Also, mechanically it has been proven that stiffer soils generally result in lower damping 

values. 
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Figure 51: Modified Damping Ratio vs Degree of Saturation 

 
Figure 52: Modified Damping Ratio vs Matric Suction (fully saturated soils denoted in green) 

In these figures, a decrease in damping ratio can be observed when the specimen was subjected to 

higher suctions (w/ the exception of series A1; although in this series partially saturated soils 

exhibit lower damping values). The lowest damping occurs for partially saturated soils, while the 

peak damping value is shown at the dry condition. This corresponds well with the properties 

observed for the shear modulus values (such that the values reflect lower damping values for higher 

suction values). This observation corresponds well with previous conclusions by other researchers 

(Biglari et al. 2011, Kimoto et al. 2011).   
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6.2.2 Results from Sample Series B 

The presentation of the results from Sample Series B is presented in a form to show the shear 

modulus over a range of shear strain for samples subjected to the same matric suction. It should 

be noted that the shear modulus values have been modified using the techniques described in the 

previous chapter. The shear modulus response for Sample Series B is shown in the next figure. 

 
Figure 53: Shear Modulus vs Shear Strain 

A clear depiction of the degradation in shear modulus values when higher shear strains are applied 

to the sample can be observed from the test results. These results confirm the ability of this DSS 

machine to measure a decrease in shear modulus values when changing the shear strain values 

slightly, as well as the previous results from sample series A. The data illustrates that partially 

saturated soils yield higher shear modulus values over soils at fully saturated and dry states, with 

peak values occurring at 8 kPa matric suction at the same shear strain level. Potential outliers for 

this sample series include B3 (at shear strains < 0.04%) as it shows a smaller shear modulus value 

than the nearly saturated condition. Alternatively, it may suggest that the saturated sample, may 
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not actually be fully saturated but instead “nearly” saturated as it was discussed earlier. The same 

argument can be used to explain why the fully saturated soils resulted in higher shear modulus 

than in the cases of dry soils while it was expected to be the same. The data set also shows the 

decrease in stiffness when the matric suction transitions from 8 kPa to 10 kPa, this observation is 

consistent with sample series A. This may suggest that a different mechanical response may be 

enacted within the soil even though the two values are essentially at the same residual value of 

saturation. The decrease in mechanical response (i.e. stiffness) of the soil may be caused by the 

decrease of inter-particle stress within the soil. Capillary attraction may fall off in magnitude (when 

going from 8 kPa to 10 kPa of Matric suction) as the interfaces between water and soil particles 

lose continuity, which would then result in a lower shear modulus value.   

 The damping ratio vs shear strain response for sample series B is shown in the ensuing 

figure.  

 
Figure 54: Damping Ratio vs Shear Strain 
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Similar to the observed trends from sample series A, the results from the sample series B reflect 

the trend of higher damping ratios when subjected to higher shear strains. Furthermore, the 

depiction of the highest damping was exhibited by the dry soil samples, while unsaturated soils 

displayed less damping. It should be noted that the damping ratio for sample B7 exhibits high 

damping. This may confirm the findings that a loss in capillary attraction is exhibited in the soil 

structure when transitioning from 8 kPa to 10 kPa of matric suction. Concurrently, the behavior of 

the soil could act like a dry soil, displaying a high damping ratio. It is apparent that the trend 

between the damping ratio and the degree of saturation is not consistent between series A and B, 

this may be due to differences in testing methods and the modifications made to the damping ratios 

that account for the confining pressure, density, and applied shear stress. In addition, previous 

researchers have also occasionally observed irregular trends in damping ratio patterns for different 

degrees of saturation (Jafarzadeh et al. 2012) 

6.3 Shear Modulus Reduction and Damping Curves  

The degradation of the shear modulus and increase in the damping ratio are presented in the 

following sections. In order to present these results, the determination of the small strain shear 

modulus, Gmax and maximum damping ratio, ζmax were calculated through the methods mentioned 

in the previous chapter. The recorded values determined through testing were then used to establish 

the ratios G/Gmax and ζ/ζmax.  

The shear modulus reduction values are compared against values obtained through a curve 

established by Oztoprak and Bolton (2013). The parameters for the curve are as follows: Cu = 1.83, 

e = 0.6605, p’ = 28.57 kPa, patm = 101.3 kPa, and DR = 0.45.  
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Figure 55: G/Gmax vs Shear Strain 

This plot suggests that the values of the shear modulus, G, measured by this DSS system are less 

than the ones that can be predicted from empirical relations. This finding would be consistent with 

past studies on the machine conducted by Dunstan (1998) and Miller (1994). Alternatively, it may 

suggest that the empirical relation for the value of the small strain shear modulus Gmax established 

by Seed & Idriss may overestimate the small strain modulus associated with this sand. It should 

be taken into account that the empirical values for the shear modulus by Seed & Idriss and the 

modulus reduction from Bolton and Oztoprak were based off of results from different testing 

methods (i.e. Resonant Column, torsional shear, and triaxial cell). Although it is not imperative 

that the data should fall on the normalized line established by Oztoprak and Bolton, the data should 

reflect the rate of degradation as shown by the curve in this particular set of shear strain values. 

However, considering the scatter available in the proposed empirical relations the measured values 

are in approximately acceptable range, especially in higher strain levels.  
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The relation of the ζ/ζmax curve established by the Hardin and Drnevich (1972) was used 

(e.g. Equation 20) in combination with the shear modulus reduction curve by Oztoprak and Bolton 

(2013). The measured values were normalized by the approximate ζmax and compared with the 

empirical formula in Figure 55. 

 
Figure 56: ζ/ζmax vs Strain 

The empirical normalized damping significantly overestimates the measured values. This variance 

is more severe than what was observed in shear modulus mainly because the normalized relation 

was not from one study on one soil and under one state condition. Especially the maximum 

damping estimated from Seed and Idriss’ equation was very approximate. Certainly, the damping 
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CHAPTER 7 

 

SUMMARY AND CONCLUSIONS 

7.1 Summary 

The recent renovation made to the Direct Simple Shear Apparatus at the University of New 

Hampshire has restored the ability to test soils under dynamic motions. These renovations include: 

installing a new hydraulic pump, horizontal control system, data acquisition system, various 

sensors, and user interfaces (LabVIEW and GeoTac Software). Additionally, the soil chamber has 

been modified to enable users to use the axis translation technique to control the degree of 

saturation and suction to soil specimens.  

 The investigation conducted on a clean sand shows the effect of the degree of saturation 

and matric suction on the seismic compression and dynamic properties of partially saturated soils. 

The behavior of pore water pressures in partially and fully saturated soils show the ability of the 

flow pump to maintain relatively constant pressures when subjected to these shear strain levels. 

The volumetric threshold shear strain is not dependent on the degree of saturation and was found 

to occur at a value between 0.017% and 0.023%. However, when subjected to shear strains larger 

than the volumetric threshold shear strain, the overall axial strain results indicate that partially 

saturated soils experienced less deformation than dry soil.  

The importance of the saturation and testing methods (sample series A vs B) can lead to 

significant differences in the amount of increase in shear moduli that the matric suction can 

contribute to the soil structure. The shear modulus values were found to increase when subjected 

to higher matric suctions with a peak shear modulus value occurring when a sample was subjected 

to 8 kPa of matric suction. These values were larger than the shear modulus values recorded by 
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dry and fully saturated samples. Alternatively, the partially saturated soils displayed lower 

damping ratios compared to dry and fully saturated soils. An interesting observation was noted 

when soils were subjected to 10 kPa of matric suction; in which, decreases in the shear modulus 

and increases in the damping ratios suggest a loss of capillary attraction in the soil structure when 

transitioning from 8 kPa to 10 kPa of matric suction. 

The viability of the DSS as a means to record reasonable results for the dynamic properties 

was confirmed by the observation of the degradation of the shear modulus with increasing shear 

strains. Concurrently, the corresponding damping ratio values increased as the applied shear strains 

increased.  

7.2 Conclusions 

In conclusion, the following lessons can be deduced from the results of this research: 

 Partially saturated soils exhibit a stiffer mechanical response than dry and fully 

saturated soil and will deform less than dry samples.  

 Partially saturated soils exhibit less damping than dry soils. 

 Soils subjected to higher shear strain values exhibit lower stiffness values, while soils 

subjected to lower shear strains display higher stiffness values. 

 Soils subjected to higher shear strain values exhibit higher damping values, while soils 

subjected to lower shear strains display lower damping values. 

7.3 Potential Research/Modifications for the Future 

Although the apparatus is able to distinguish the changes in dynamic properties over a small range 

of applied shear strains and different saturation conditions, it is recommended that for future tests, 

studies and modifications should be made to the system to address the relatively low value of 

recorded shear modulus values. It is suspected that the movement recorded by the vertical load 
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and LVDT and that this may have an effect on the shear modulus values due to an introduced 

moment in the system. In order to address this issue the need to establish active control in vertical 

loading would need to be developed.  

Numerous modifications should be conducted by altering the LabVIEW software 

architecture. It is recommended that the user should be familiar with software engineering or have 

an outside professional make the necessary changes. These changes should include restoring the 

ability to run stress controlled tests (using the horizontal load cell as feedback in the PID control 

loop) and controlling the vertical load. An additional pneumatic servo-valve is available and was 

previously used for controlling the vertical load. However, it was not integrated into the LabVIEW 

software. The additional servo-valve would allow users to actively control the vertical load applied 

for vertical consolidation or maintain constant vertical pressure when running the dynamic portion 

of the test.  

Further improvement to the soil sample cell could be made for the confirmation of results 

from this investigation. A pressure transducer could be installed to the top of the sample to track 

the changes in pore air pressure. Alternatively, instead of changing the PWP below the disc to 

control the matric suction, the air pressure at the top of the specimen could be changed to test 

samples at the same suction level. The sample rate of the DPT should be increased to record the 

behavior of the PWP between cycles. The incorporation of an additional bender element into the 

already modified bottom platen could also allow users to reincorporate the already existing bender 

element embedded into the top platen of the sample. The re-establishment of the acoustical system 

would allow the measurement of the small strain shear modulus values.  

A completely different approach of creating a new soil cell that would users to apply a 

pressure surrounding the sample could also have some advantages. One such would be that water 
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surrounding the cell could prevent the potential for air diffusion from occurring around the sides 

of the sample. Additionally, an induced cell pressure would allow users to achieve high degrees of 

saturation using Skemptons’ B – Value saturation technique. 

  



82 

 

 

REFERENCES 

 

Airey, D. W., and D. M. Wood. "An Evaluation of Direct Simple Shear Tests on 

Clay." Géotechnique 37.1 (1987): 25-35. Print. 

 

ASTM D6528-07, Standard Test Method for Consolidated Undrained Direct Simple Shear Testing 

of Cohesive Soils, ASTM International, West Conshohocken, PA, 2007, www.astm.org 

 

Biglari, M., Jafari, M.K., Shafiee, A., Mancuso, C., and D’Onofrio, A. "Shear Modulus and 

Damping Ratio of Unsaturated Kaolin Measured by New Suction-Controlled Cyclic 

Triaxial Device." Geotechnical Testing Journal. 34.5 (2011): 1-12. Web. 

 

Budhu, Muniram. "Nonuniformities Imposed by Simple Shear Apparatus." Canadian 

Geotechnical Journal. J. 21.1 (1984): 125-37. Web. 

 

Chin, K. B., Leong, E. C., and Rahardjo, H. "Cyclic Behaviour of Unsaturated Silt in Suction-

controlled Simple Shear Apparatus." Unsaturated Soils. 1 (2010): 65-70. Print. 

 

Cho, G.C., and Santamarina, J. C. "Unsaturated Particulate Materials—Particle-Level Studies." 

Journal of Geotechnical and Geoenvironmental Engineering 127.1 (2001): 84-96. Web.  

 

Cui, Y.J, Tang, A.M, Marcial, D., Terpereau, J.M, Marchadier, G. and Boulay, X. "Use of a 

Differential Pressure Transducer for the Monitoring of Soil Volume Change in Cyclic 

Triaxial Test on Unsaturated Soils." Geotechnical Testing Journal 30.3 (2007): 1-7. Web.  
 

Das, Braja M. Principles of Soil Dynamics. Boston: PWS-Kent Pub., 1993. Print. 

 

Darendeli, B. M. “Developement of a new family of normalized modulus reduction and material 

damping curves” Diss. U. of Texas - Austin. 2001. Web 

 

Doroudian, M., and Vucetic, M. "A Direct Simple Shear Device for Measuring Small-Strain 

Behavior." Geotechnical Testing Journal 18.1 (1995): 69-85. Web. 

 

Duku, P. M., Stewart, J. P., Whang, D. H., and Venugopal, R. "Digitally Controlled Simple Shear 

Apparatus for Dynamic Soil Testing." Geotechnical Testing Journal. 30.5 (2007). Print. 

 

Duku, P. M., Stewart, J. P., Whang, D. H., and Yee, E. "Volumetric Strains of Clean Sands Subject 

to Cyclic Loads." Journal of Geotechnical and Geoenvironmental Engineering. 134.8 

(2008): 1073-1085. Web.  

 

Dunstan, Alicia H. Laboratory Simulation of Earthquake Loading on Clay. Thesis. University of 

New Hampshire, 1998. Print. 

 

http://www.astm.org/


83 

 

Genuchten, M. Th. Van. "A Closed-form Equation for Predicting the Hydraulic Conductivity of 

Unsaturated Soils." Soil Science Society of America Journal 44.5 (1980): 892. Web. 

 

Ghayoomi, M., and McCartney, J.S. "Measurement of Small-Strain Shear Moduli of Partially 

Saturated Sand during Infiltration in a Geotechnical Centrifuge." Geotechnical Testing 

Journal 34.5 (2011): 103608. Web. 

 

Ghayoomi, M., McCartney, J.S., and Ko, H.Y.  “An Empirical Methodology to Estimate 

Seismically Induced Settlement of Partially-Saturated Sand.” ASCE Journal of 

Geotechnical and Geoenvironmental Engineering 139.3 (2013) p. 367-376. 

 

Ghayoomi, M., Suprunenko, G., and Mirshekari, M.  "Cyclic Triaxial Test to Measure Strain-

Dependent Shear Modulus of Unsaturated Sand." ASCE International Journal of 

Geomechanics (Under-Review - 2016). Web. 

 

Hall, J. R., Jr., and Richart, F. E., Jr. “Dissipation of Elastic Wave Energy in granular Soils.” ASCE 

Journal of the Soil Mechanics and Foundations Division. Vol. 89, No. SM6. 1963. p. 27 - 

56. 

 

Hardin, B. O., and Richart, F. E., Jr. “Elastic Wave Velocities in Granular Soils.” Journal of the 

Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33 -65. 

 

Hargy, Jay. Measuring Residual Strength of Liquefied Soil with the Ring Shear Device. Thesis. 

University of New Hampshire, 2011. Print.  

 

Holtz, R. D., and Kovacs, W. D. An Introduction to Geotechnical Engineering. 2nd ed. Upper 

Saddle River, NJ: Pearson, 2011. Print. 

 

Hoyos, L. R., Suescún-Florez, E.A., and Puppala, A.J. "Stiffness of Intermediate Unsaturated Soil 

from Simultaneous Suction-controlled Resonant Column and Bender Element 

Testing." Engineering Geology. 188 (2015): 10-28. Print. 

 

Hsu, Chu-Chung, and Vucetic, M. "Volumetric Threshold Shear Strain for Cyclic Settlement." 

Journal of Geotechnical and Geoenvironmental Engineering 130.1 (2004): 58-70. Print.  

 

Idriss, I.M., and Seed, H.B. "Seismic Response of Horizontal Soil Layers." ASCE Journal of the 

Soil Mechanics and Foundations Division. 94.4 (1968): 1003-031. Print. 

 

Ishibashi, I. and Zhang, X. (1993). “Unified Dynamic Shear Moduli and Damping Ratios of Sand 

and Clay,” Soils and Foundations. Vol. 33, No. 1, pp.182-191. 

Jafarzadeh, Fardin, and Sadeghi, H. "Experimental Study on Dynamic Properties of Sand with 

Emphasis on the Degree of Saturation." Soil Dynamics and Earthquake Engineering. 32.1 

(2012): 26-41. Print. 

 



84 

 

Kimoto, S., Oka, F., Fukutani, J., Yabuki, T.  and Nakashima, K., "Monotonic and Cyclic Behavior 

of Unsaturated Sandy Soil Under Drained And Fully Undrained Conditions."  Soils and 

Foundations. 51.4 (2011): 663-81.  

 

Kjellman, W. "Testing the Shear Strength of Clay in Sweden."Géotechnique. 2.3 (1951): 225-32. 

Web. 

 

Khosravi, A., and McCartney, J. S. "Resonant Column Test for Unsaturated Soils with Suction–

Saturation Control." Geotechnical Testing Journal. 34.6 (2011): 103102. Print. 

 

Kramer, Steven L. Geotechnical Earthquake Engineering. Upper Saddle River, NJ: Prentice Hall, 

1996. Print. 

 

Kumar, J., and Madhusudhan, B.N. "Dynamic Properties of Sand from Dry to Fully Saturated 

States." Géotechnique. 62.1 (2012): 45-54. Print. 

 

Lu, Ning, Godt, J. W., and Wu, D. T. "A Closed-form Equation for Effective Stress in Unsaturated 

Soil." Water Resources Research Water Resources. Res. 46.5 (2010): n. pag. Web. 

 

Lu, Ning, and Likos, W. J. Unsaturated Soil Mechanics. Hoboken, NJ: J. Wiley, 2004. Print. 

 

Masing, G. “Eigenspannungen and Verfestgung Beim Masing,” Proceedings, Second 

International Congress of Applied Mechanics. (1926) p. 332 – 335 

 

McGuire, Seth T. “Comparison of Direct Simple Shear Confinement Methods on Clay and Silt.” 

Thesis. University of Rhode Island, 2011. Kingston: U of Rhode Island, 2011. Web. 

 

Menq, F. Y. “Dynamic Properties of Sandy and Gravelly Soils.” Diss. U. of Texas – Austin, 2003. 

Web.  

 

Milatz, M., and Grabe, J. "A New Simple Shear Apparatus and Testing Method for Unsaturated 

Sands." Geotechnical Testing Journal. 38.1 (2015): 9-22. Print. 

 

Miller, Heather J. "Development of Instrumentation to Study the Effects of Aging on the Small 

Strain Behavior of Sands." Diss. U of New Hampshire, 1994. Print. 
 

Nishimura, T., Shahrour, L., and Bian, H.B. “Investigation of the behavior of an unsaturated sand 

using a cyclic direct shear device.” Unsaturated Soils. 1 (2010): 329 – 334. Print.  

 

Oztoprak, S., and Bolton, M.D. "Stiffness of Sands through a Laboratory Test Database." 

Géotechnique. 63.1 (2013): 54-70. Print.  

 

Sawada, S., Tsukamoto, Y., and Ishihara, K. "Residual Deformation Characteristics of Partially 

Saturated Sandy Soils Subjected to Seismic Excitation." Soil Dynamics and Earthquake 

Engineering. 26.2-4 (2006): 175-182. Web. 

 



85 

 

Seed, H. B., and Idriss, I. M. Soil Moduli and Damping Factors for Dynamic Response Analyses. 

Rep. 10th ed. Vol. 70. Berkeley: Earthquake Engineering Research Center, 1970. Print. 

 

Shen, C. K., Sadigh, K., and Herrmann, L. R., “An Analysis of NGI Simple Shear Apparatus for 

Cyclic Soil Testing,” Dynamic Geotechnical Testing, ASTM STP 654, American Society 

for Testing and Materials, 1978, pp. 148 – 162. 

 

Suprunenko, Ganna. Suction-Controlled Cyclic Triaxial Test to Measure Strain-Dependent 

Dynamic Shear Modulus of Unsaturated Sand. Thesis. University of New Hampshire, 2015. 

Print. 

 

Terzaghi, K., Peck, R.B., and Mesri, G. Soil Mechanics in Engineering Practice. New York: Wiley, 

1996. Print 

 

Vucetic, Malden, and Lacasse, S. "Specimen Size Effect in Simple Shear Test." Journal of the 

Geotechnical Engineering Division 108.12 (1982): 1567-585. UNH Illiad. Web. 

 

Whang, D.H., Stewart, J.P., and Bray. J.D., "Effect of Compaction Conditions on the Seismic 

Compression of Compacted Fill Soils." Geotechnical Testing Journal. 27.4 (2004): 11810. 

Web. 

 

Wright, D.K., Gilbert, P.A and Saasa, A.S. “Shear devices for determining dynamic soil 

properties.” Proc. Spec. Conf. Earthquake Engineering and Soil Dynamics, ASCE, 

Pasadena, 2, (1978) p.1056 – 1075. Web. 

   



86 

 

 

APPENDIX 

 

Appendix A: List of Sensors and Instrumentation 

Appendix B: Dimensions of the Modified Platen 

Appendix C: DSS Control System – Block Diagram 

Appendix D: Sample Preparation Procedure 

Appendix E: Various Procedures (from Vertical Consolidation to Cyclic Testing) 

Appendix F: MATLAB Code for post-processing analysis 
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Appendix A: List of Sensors and Instrumentation 
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Horizontal Equipment 

 

- Measurement of Horizontal Load 

o Interface SSM Sealed S-Type Load Cell   

 Rated at +/- 250 lbf capacity 

  

- Measurement of Horizontal Motion (Capacitance Movement) 

o MTI Instruments Capacitance Probe Model ASP – 500M – CTA   

 0.500 μm range 

 20 mV/μm sensitivity 

o MTI Instruments AccuMeasure 9000 Capacitance Sensor Amplifier 

 

- Measurement of Horizontal Movement (Top Sample Movement) 

o Schaevitz/ Measurement Specialties MHR 050 Series  

 +/- 0.05 inch range 

 3.15 V/V/Inch  

 

1. Vertical Equipment 

- Measurement of Vertical/Normal Load 

o Interface 1500 Low Capacity Low-Profile Load Cell 

 Rated at +/- 300 lbs capacity 

 

- Measurement of Vertical Displacement  

o Sensotec AC – AC Ultra Precision Model PLVX LVDT 

 +/- 0.2 inch range 

 5.08 mV/V/0.001” output sensitivity 

 

2. Saturation System  

 

- Validyne Model P55 Differential Pressure Transducer  

o Rated at 100 kPa  

o +/- 5 Vdc signal 

o 0.1% Sensitivity Rating 

 

- Geotac Flow Pump 

o 75 mL Water Reservoir Capacity 

o 100 kPa Pressure Transducer 

 

3. Data Acquisition System  

- National Instruments - SCXI 1000 Chassis 

o SCXI - 1314 & 1520 Strain Gauge Module (Load Cells) 

o SCXI – 1315 & 1540 LVDT Module (Distance Readings) 

 

4. Mechanical Equipment 

- National Instruments Controller  

- Hydraulic Equipment 
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o Hydraulic Actuator (specifications unknown) 

o Hydraulic Accumulators 

o Hydraulic Pump – Custom Built by NH Hydraulics 

 Rated at 1 GPM at 2700 PSIG 

 Electric Motor – 2 HP, 1800 RPM 

 110/220/1/60 VAC  

 Oil Reservoir  

 7 Gallons w/ oil level & temperature sight glass 

o MOOG Servovalve Model 760 – 101A 

o MOOG Servo-Amplifier Model G122 – 829 – 001  

 

- Interlaken Model 3611 – 1500-1 Pneumatic Actuator 

o 2 inch stroke  

o 4 inch cylinder bore 
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Appendix B: Dimensions of the Modified Platen 
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Figure B1: Modified Bottom Platen Dimensions  
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Figure B2: Bottom Platen Adapter Dimensions 
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Appendix C: DSS Control System – Block Diagram 
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Figure C1: Block Diagram of the Horizontal Control System 
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Appendix D: Sample Preparation Procedure 
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1) Set the bottom platen (#1 & #2) on a level surface and apply vacuum grease around the 

circumference of the soil pedestal. 

 

Figure D1: Modified Platen with embedded HAEV Ceramic Disk 

2) Use a 6 – inch soil membrane to cover the bottom soil pedestal. 

 

Figure D2: Attached Soil Membrane around Soil Pedestal 

3) Install annular clamp (#3) to the soil pedestal. 

 

Figure D3: Bottom pedestal with annular clamp (#3) 
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4) Place 3 rings, 2 O-rings, and an annular clamp around the extended bottom platen. It is 

important to make sure the top of the annular clamp is level with the top part of the modified 

base platen.  

 

Figure D4: Various shims to allow clamp to be level with pedestal 

5) Install the 1st part of the vacuum mold (#4) and insert 6 hex screws to make sure the bottom 

part of the mold is secure. Tighten the hex screws in a crisscross fashion (similar to 

changing a tire) and then tighten the two bolts on the side.  Insert an O-Ring on top of the 

mold.  

 

Figure D5: 1st part of Vacuum Mold 

6) Insert the ring stack and make sure that the sample is approximately 1” tall.  A guide rod 

can be used to straighten out the rings as shown in the following figure. 

 

Figure D6: Ring-stack with guide rod 
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7) Install the 2nd part of the vacuum mold (#5). Insert another O-ring onto the vacuum 

mold. 

 

Figure D 7: Soil Sample with 2nd part of vacuum mold 

8) Install the 3rd part of the vacuum mold (#6). 

 

Figure D8: Soil Sample with 3rd part of vacuum mold 

9) Stretch the soil membrane around the top of the mold and attach the vacuum lines to the 

mold and apply suction. The membrane should stick to the insides of the mold without 

any folds or wrinkles. Then, insert a piece of filter paper on top of the soil pedestal.  

 

Figure D9: Stretched soil membrane around vacuum mold 
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10) Place a bag around the perimeter of the vacuum mold and clamp it around the sides to 

catch any sand that may fall around the sides during the sand pluviation stage. 

 

Figure D10: Soil Sample prepared for Sand Pluviation 

11) Measure and record the initial height of the sample from the pedestal to the top of the ring 

stack at three different places. Use a funnel, washer, string, and bolt to pluviate the sand 

into the mold. To achieve 45% Relative Density, the height of the sand to fall was found 

to be 21.5 inches with a 0.25 inch washer opening.  

 

Figure D11: Sand Pluviation/Raining 
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12) Once pluviation was complete, the soil should be leveled out (using a card or piece of 

paper) and then insert a piece of filter paper on top of the soil. The vacuum clamp and bag 

can then be removed and three guide rods should then be attached to the bottom plate. 

 

Figure D12: Sand and filter paper with installed guide rods 

13) Before placing the top plate onto the sample, place 2 O-rings around the top platen and 

use vacuum grease around the perimeter. Slowly lower the top platen onto the sample 

until it makes contact with the soil sample. Adjust the platen to make sure it is level with 

the soil surface by using a level tool. 

 

Figure D13: Top Platen w/ O-Rings installed on top of soil sample 
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14) Flip the soil membrane onto the top platen and remove the top piece of the vacuum mold 

(#6).  

 

Figure D14: Soil Membrane attached to lowered top platen 

15) Move one of the O-rings down towards the ring stack. Install the top collar and then move 

the other O-Ring on top of the collar. Remove the vacuum lines and slowly move the 

sample towards the DSS.  

 

Figure D15: Installed annular clamp attaching membrane to top platen 

16) Insert the sample into the DSS by matching the T-Clamps into position. The top table may 

need to be raised. This can be achieved by adjusting the air regulators on the left side of 

the apparatus.  

 

Figure D16: Lining the soil sample up with the T-Clamps 
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17) Once the sample is lined up with the T-Clamps, gently push the specimen into place. Make 

sure that the water lines located at the top and bottom of the soil sample do not get caught 

in between the top table or the bottom table. Tighten the four hex bolts connecting the T-

clamps to the top and bottom table (2 bolts each).  

 

Figure D17: Installed Soil Sample in DSS 

18) Remove the 2nd part of the mold (#5), this process should be done with extreme caution as 

to not disturb the soil sample rings surrounding the soil.  

 

Figure D18: Soil Sample with 2nd part of vacuum mold removed 
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19) Before removing the last piece of the vacuum mold, install the top table LVDT. Start the 

program LabVIEW and start the 1st reading of the vertical consolidation stage (see next 

section). Lower the screws on the guide rods, so that a very small vertical load is applied. 

Then start removing the 6 hex screws attaching the vacuum mold to the base. Remove the 

two side bolts and mold very carefully. Then remove the guide rods completely. The 

sample is then ready for the remainder of vertical consolidation.  

 

Figure D 19: Fully Prepared Soil Sample in DSS 
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Appendix E: Various Procedures (from Vertical Consolidation to Cyclic Testing) 
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Vertical Consolidation Procedure 

 

1) Remove the bottom 2 sections of the mold, as carefully as possible.  

2) Once the sample is inside of the DSS chamber, install the vertical LVDT and 

capacitance transducer. The capacitance transducer should be approximately 4.6 mV 

(as read by the voltmeter on the side) to the target. 

 
Figure E1: Air Regulator for Top Load Control 

3) Start the program LabVIEW (Windows Desktop > Direct Simple Shear – Shortcut > 

shaker-daq-main.vi). Turn on the necessary sensors (Setup > Sensor Setup > Check the 

following boxes: LVDT_CH1, Vertical Load, Top Sample LVDT, and Bottom Sample 

LVDT > Save/Exit). Establish the connection between the software and sensors by 

pressing the “ ” button underneath the Setup button. Start manually recording the loads 

and displacements by signaling Run function in the program. Manually record these 

values into an Excel Sheet.  

4) At steady increments, slowly increase the pneumatic air regulator (located to the right 

of the desktop) and read/record in the corresponding values from the LVDT and 

Vertical Load cell.  

5) Once the target pressure is reached (usually ~50 kPa -> 0.00023 mV on the Vertical 

Load Cell), the sample is ready for saturation or testing depending what condition the 

user chooses.  

6) Install the Top Sample LVDT and Bottom Sample LVDT. This is accomplished by 

setting the magnetic gauge stand a set distance away. By looking at the sensor readout 

in LabVIEW and carefully adjusting the two LVDT coil assembly positions, the sensors 

should be within +/- 0.1 mV readings of the 0 mV reading.  
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Saturation and Desaturation Procedure 

 

1) Connect the two pipes from the bottom of the sample to the valves connecting the water 

reservoir and to the flushing pipe. The top tube can connect to the vacuum valve or left 

open to the atmosphere. Open the valve to allow water from the reservoir to the bottom 

of the sample. Open the valve to the vacuum trap. This configuration is shown below 

and is used to flush any air that may exist beneath the HAEV.  

 
Figure E2: Water Path for Flushing Procedure 

2) Close the valve to the vacuum trap and allow water to travel up through the HAEV and 

up through the soil sample. The top sample tube can be left open to the atmosphere or 

to the vacuum. This process should be left for a couple hours/overnight. Additional 

flushing periods should be conducted if any air is trapped beneath the HAEV. Careful 

consideration should be taken to make sure the vacuum trap does not reach its limit. 

The valves should allow water flow in the following configuration. 

 
Figure E3: Water Path for Saturation Procedure 
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3) After “near saturation” states, the valve for the vacuum pump should be closed and 

opened to atmosphere. The GeoTac Flow Pump and DPT valves should then be opened 

to the following configuration and the water in the tubes should be left to equilibrate.  

 
Figure E4: Water Path for Flow-Pump Control 

4) The GeoTac software should then be opened (Windows Desktop > DigiFlow-GP-SI). 

Depending on the matric suction required by the user, the pressure in the pump can be 

changed by pressing the tab Pressure Control. The user can specify constant pressure 

or a ramped time selection. The Start Pump button then starts the desaturation of the 

sample. The desaturation process can take up anywhere from 1 to 3 days for a 1” tall - 

F75 Ottawa Sand sample to reach equilibrium (when Flow < 0.002 mL/min). It should 

be noted that the flushing procedure should be enacted if any air bubbles are visible in 

the DPT or pump lines. 

 

Figure E5: Initial Screen of the GeoTac Flow-Pump Software 
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5) The reservoir capacity of the Flow Pump is 75 mL, therefore if the capacity is reached 

(indicated by a blinking/stead red light in the program), the pump will need to be 

emptied into the pump reservoir. To do this, switch the valve on the pump from the 

sample to the reservoir and complete the following steps in the software (GeoTac 

Software > Volume Control > indicate the amount of water to leave pump or empty all 

the contents with the triangle point up with a line underneath it > Reset Volume) Switch 

the valve back to the sample specimen and proceed with the pressure control procedure.  

6) The differential pressure transducer readings can be viewed using the following 

sequence (Setup > Sensors > DPT_Nickel > Test). The values of the DPT are used to 

ensure that the correct matric suction is achieved by taking the reading of the water 

pressure beneath the HAEV disk.  

Cyclic Testing Procedure  

 

1) Turn the hydraulic pump on. Ensure that the horizontal piston compresses the springs 

(the ratio changes for each spring set; for the current springs, the distance from the edge 

of the piston to the steel beam was found to be 0.3385 inches). This configuration is 

shown in the figure below. This distance can be adjusted by the bias screw on the Moog 

Servo-Amplifier. Record any changes in the Vertical LVDT. Turn on the additional 

sensors needed in the LabVIEW program (Setup > Sensor Setup > Check the following: 

LVDT_CH1, Vertical Load, Top Sample LVDT, Bottom Sample LVDT, MTI 

Capacitance, and Horizontal Load > Save/Exit). Note: There is an emergency stop 

button wired into the system. This button can be used at any time to turn off the 

hydraulics in the system.  

  

 
Figure E6: Actuator to Steel Beam distance (left) and PID Control (right) 

2) Ensure that the sample is at a steady state condition (in terms of flow). The parameters 

of the sinusoidal motion can be inputted into the LabVIEW Program (Box A) and the 

filename and destination can be also be inputted (Box E). The sensors can displaying 

the live signal of the program by pressing the Run button (Box C). However, do NOT 
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press the Trigger button until the DAQ for the pressure readings are started in the next 

step.  

 

 
Figure E7: LabVIEW Control Panel 

3) The data acquisition system of the flow pump and DPT readings can be initialized by 

the following sequence (GeoTac Software > Data Acquisition > New Task… > input 

the filename > Save > Reading Schedule: Dynamic > check Run > OK). Immediately 

after, switch back to the LabVIEW program and press the Trigger button.  

4) After the test is run, switch back to the GeoTac Software and end the data acquisition 

by pressing (Data Acquisition > Close Task > OK). The output files from the GeoTac 

program and LabView program are sent to the destination folders for further analysis.  

5) The final vertical LVDT reading should be recorded for the multistage seismic 

compression results using the last reading from (Box D). The hydraulic pump can then 

be turned off.  

6) Depending on the type of test (either constant strain or constant suction), the test is 

repeated using the above procedure to either change the suction level (ie. Saturation 

and Desaturation Procedure) or change the imparted shear strain level (ie. Cyclic 

Testing Procedure).  
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Appendix F: MATLAB Code for post-processing analysis 
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The MATLAB codes are designed specifically to work with Excel Files associated with Sample 

Preparation and data output files from LabVIEW. The sample preparation files (designated in the 

following form: SP.DATE.SaturationCondition) and data output files from LabVIEW (designated 

in the following form: DATE.SaturationCondition.Amplitude) are stored on the desktop of the DSS 

Computer. 

 

Function for Reading in Sample Dimensions 
 

Function[initial_sample_height,sample_weight,sample_diameter,sample_area,samp

le_Dr,EffectiveSat,Matric_Suction] = read_sample_dimensions 
sampledimensionfile = 'SP.DATE.SaturationCondition’; 
sheet = 1; %specifies the excel sheet of the corresponding test 

  
initial_sample_height = xlsread(sampledimensionfile,sheet, 'F11'); 
sample_weight = xlsread(sampledimensionfile,sheet, 'F6'); 
sample_diameter = xlsread(sampledimensionfile,sheet, 'F15'); 
sample_area = xlsread(sampledimensionfile,sheet, 'F17'); 
sample_Dr = xlsread(sampledimensionfile,sheet, 'F36'); 
EffectiveSat =xlsread(sampledimensionfile,sheet,'J28'); 
Matric_Suction =xlsread(sampledimensionfile,sheet,'L20'); 

 

 

Function for Reading in Output File from LabVIEW 

 
function[TimeInt,BottomSampleLVDT,HRead,VDistRead,HdistRead,TopSampleLVDT,VRe

ad]= read_input 
 

filename = ‘DATE.SaturationCondition.Amplitude’ ; 
TimeInt = xlsread(filename,1,'A8:A30000'); 
BottomSampleLVDT = xlsread(filename,1,'B8:B30000'); 
HRead=xlsread(filename,1,'C8:C30000'); 
VDistRead=xlsread(filename,1,'D8:D30000'); 
HdistRead=xlsread(filename,1,'E8:E30000'); 
TopSampleLVDT = xlsread(filename,1,'F8:F30000'); 
VRead=xlsread(filename,1,'G8:G30000'); 

 

Post Processing Code for Hysteresis Loops 

 
%Full Script, Plotting Data 
clear all 
clc 

  
cd ('E:\Matlab') 

  
%DSS Main Data Analysis - Converting Measurements into Loads and Strains 
[TimeInt,BottomSampleLVDT,HRead,VDistRead,HdistRead,TopSampleLVDT,VRead]= 

read_input; 

  
%calibration Factors from mV to force and Distance (English Units) 
Time = cumsum(TimeInt); %in seconds 
BotLVDT = ((BottomSampleLVDT*-.07819860)+.00230398);%in inches 
H_Load = (HRead-.0006608021)/.0000059679; 
%H_Load = (HRead-.0006451051)/.0000059926; %in lbf (Tests before 2.6.16) 
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VDistance = (VDistRead-0.00480646)/(-0.0179222);%in inches 
HDistance = (HdistRead*.0019685);%in inches 
V_Load = (VRead-.0000871981)/(-0.0000035075);%in lbf 
TopLVDT = (TopSampleLVDT-.003283)/(17.183411); %in inches 
CorrectedTopLVDT = TopLVDT - TopLVDT(1); 
CorrectedBotLVDT = BotLVDT - BotLVDT(1); 

  
[initial_sample_height,sample_weight,sample_diameter,sample_area,sample_Dr,Ef

fectiveSat,Matric_Suction] = read_sample_dimensions; 
%From Experimental Data  
FrictionAngle = 40*(pi/180); 
K0 = 1 - sin(FrictionAngle); 
Dr = sample_Dr; 

  
Shear_Force = H_Load/sample_area; 
Shear_Strain= HDistance/ initial_sample_height; 
Normal_Force = V_Load/sample_area; 
Top_Strain = TopLVDT/ initial_sample_height; 
%************************Delineation of Cycles********************** 
% cycle1start = 2000, cycle1end = 7045; 
% cycle2start = 7045, cycle2end = 12085; 
% cycle3start = 12085, cycle3end = 17085; 
% cycle4start = 17085, cycle4end = 22100; 
% cycle5start = 22100, cycle5end = 27530; 

  
Vertmean2 = mean(Normal_Force(7045:12085)); 
Vertmean3 = mean(Normal_Force(12085:17085)); 
Vertmean4 = mean(Normal_Force(17085:22100)); 

  
%********************************************************************** 
%INT(erval) variable used for filtering 
INT = 250; 
lag = INT/5000; %SampleRate = 5000 

  
AverageNormalPressure = (mean(Normal_Force))*6.89476 

  
AvgHorizontalForce = mean(Shear_Force); 
Non_Shifted = Shear_Force - AvgHorizontalForce; 
Non_Shifted_Norm = smooth(Non_Shifted - mean(Non_Shifted(1:1500))); 
% Pre-trigger time:0.35 sec @ 5000 Sample Rate = 1500 
% Time_Shifting=zeros(length(Non_Shifted_Norm)+5,1); 
Non_Shifted_Norm_New= Non_Shifted_Norm; 
%Non_Shifted_Norm_New=zeros(length(Non_Shifted_Norm)+INT,1); 
%  for i=1:(length(Non_Shifted_Norm)) 
% %      Time_Shifting(i+INT,1)=Time(i,1)+0.05; 
%      Non_Shifted_Norm_New(i+INT,1)=Non_Shifted_Norm(i,1); 
%  end 

  
Strain_BaseLine = mean(Shear_Strain); 
Shear_Strain_Corrected = (Shear_Strain - Strain_BaseLine); 
Norm_Shear_Strain = smooth(Shear_Strain_Corrected - 

Shear_Strain_Corrected(1)); 
NegCapacitance = (Norm_Shear_Strain)*-1; 

  



113 

 

mean2 = 

(max(NegCapacitance(7045:12085))+(abs(min(NegCapacitance(7045:12085)))))/2; 
mean3 = 

(max(NegCapacitance(12085:17085))+(abs(min(NegCapacitance(12085:17085)))))/2; 
mean4 = 

(max(NegCapacitance(17085:22100))+(abs(min(NegCapacitance(17085:22100)))))/2; 
mean = (mean2+mean3+mean4)/3; 

  
f= 2*pi; 
timeshift = .415; %in seconds 

  
TopMotion=(55.3623855239*(mean^2))+(0.3055884876*mean)+.000021570182; 
TopMotionCurve = -1*(TopMotion * sin(f*(Time-timeshift)));  
for i = 1:2129 
        TopMotionCurve(i) = 0; 
end 
for  i = 22165:28000 
    TopMotionCurve(i) = 0; 
end 

  
%********************************************************************** 
CorrectedMotion1 = (NegCapacitance - TopMotionCurve); 
for i = 1:4579 
        CorrectedMotion1(i) = 0; 
end 
for  i = 22165:28000 
    TopMotionCurve(i) = 0; 
end 
% AvgNETSTRAIN = -1*smooth(Net_Strain); 
%******************************************************************* 
cycle2maxstress = max(Non_Shifted_Norm_New(7045:12085)); 
cycle2minstress = min(Non_Shifted_Norm_New(7045:12085)); 

  
cycle3maxstress = max(Non_Shifted_Norm_New(12085:17085)); 
cycle3minstress = min(Non_Shifted_Norm_New(12085:17085)); 

  
cycle4maxstress = max(Non_Shifted_Norm_New(17085:22100)); 
cycle4minstress = min(Non_Shifted_Norm_New(17085:22100)); 

  
%******************************************************************* 
cycle2maxstrain = 

CorrectedMotion1(find(Non_Shifted_Norm_New==cycle2maxstress,1)); 
cycle2minstrain = 

CorrectedMotion1(find(Non_Shifted_Norm_New==cycle2minstress,1)); 

  
cycle3maxstrain = 

CorrectedMotion1(find(Non_Shifted_Norm_New==cycle3maxstress,1)); 
cycle3minstrain = 

CorrectedMotion1(find(Non_Shifted_Norm_New==cycle3minstress,1)); 

  
cycle4maxstrain = 

CorrectedMotion1(find(Non_Shifted_Norm_New==cycle4maxstress,1)); 
cycle4minstrain = 

CorrectedMotion1(find(Non_Shifted_Norm_New==cycle4minstress,1)); 
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AvgMaxStrain = (cycle2maxstrain+cycle3maxstrain+cycle4maxstrain)/3; 
AvgMinStrain = (cycle2minstrain+cycle3minstrain+cycle4minstrain)/3; 
AvgNetStrain = (AvgMaxStrain +abs(AvgMinStrain))/2; 

  
%****************Friction Correction (Horizontal Force)******************** 
FrictionAmp = (-46619*(AvgNetStrain^2))+(101.65*AvgNetStrain)+0.0133; 
%Amp2 = AvgForce; 
FrictionCorrection = -1*(FrictionAmp * sin(f*(Time-timeshift)));  
% Pre-trigger time:0.3 sec @ 5000 Sample Rate = 1500 + Additional time .372 
for i = 1:4579 
        FrictionCorrection(i) = 0; 
end 
for  i = 22165:28000 
    FrictionCorrection(i) = 0; 
end 
CorrectedForceFriction = Non_Shifted_Norm - FrictionCorrection; 
altcycle2maxstress = max(CorrectedForceFriction(7045:12085)); 
altcycle2minstress = min(CorrectedForceFriction(7045:12085)); 
        altmidcycle2stress = (altcycle2maxstress + altcycle2minstress)/2; 
altcycle3maxstress = max(CorrectedForceFriction(12085:17085)); 
altcycle3minstress = min(CorrectedForceFriction(12085:17085)); 
        altmidcycle3stress = (altcycle3maxstress + altcycle3minstress)/2; 
altcycle4maxstress = max(CorrectedForceFriction(17085:22100)); 
altcycle4minstress = min(CorrectedForceFriction(17085:22100)); 
        altmidcycle4stress = (altcycle4maxstress + altcycle4minstress)/2; 

  
%***************************G Calcs*************************** 
G2 =(6.89475728/1000)*((cycle2maxstress) + 

(abs(cycle2minstress)))/(cycle2maxstrain+(abs(cycle2minstrain))); 
G3 =(6.89475728/1000)*((cycle3maxstress) + 

(abs(cycle3minstress)))/(cycle3maxstrain+(abs(cycle3minstrain))); 
G4 =(6.89475728/1000)*((cycle4maxstress) + 

(abs(cycle4minstress)))/(cycle4maxstrain+(abs(cycle4minstrain))); 

  
RawG234 = [G2 G3 G4]; 

  
altcycle2maxstrain = 

CorrectedMotion1(find(CorrectedForceFriction==altcycle2maxstress,1)); 
altcycle2minstrain = 

CorrectedMotion1(find(CorrectedForceFriction==altcycle2minstress,1)); 
        altmidcycle2strain = (altcycle2maxstrain+altcycle2minstrain)/2; 
altcycle3maxstrain = 

CorrectedMotion1(find(CorrectedForceFriction==altcycle3maxstress,1)); 
altcycle3minstrain = 

CorrectedMotion1(find(CorrectedForceFriction==altcycle3minstress,1)); 
        altmidcycle3strain = (altcycle3maxstrain+altcycle3minstrain)/2; 
altcycle4maxstrain = 

CorrectedMotion1(find(CorrectedForceFriction==altcycle4maxstress,1)); 
altcycle4minstrain = 

CorrectedMotion1(find(CorrectedForceFriction==altcycle4minstress,1)); 
        altmidcycle4strain = (altcycle4maxstrain+altcycle4minstrain)/2; 

  
altG2 =(6.89475728/1000)*(altcycle2maxstress + 

(abs(altcycle2minstress)))/(altcycle2maxstrain+(abs(altcycle2minstrain))); 
altG3 =(6.89475728/1000)*(altcycle3maxstress + 

(abs(altcycle3minstress)))/(altcycle3maxstrain+(abs(altcycle3minstrain))); 
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altG4 =(6.89475728/1000)*(altcycle4maxstress + 

(abs(altcycle4minstress)))/(altcycle4maxstrain+(abs(altcycle4minstrain))); 

  
%******************************Damping Calcs******************************* 
%Area of Loops 
Area2 = abs(trapz(CorrectedForceFriction(7045:12085), 

CorrectedMotion1(7045:12085))); 
% format long 
% a =[CorrectedForceFriction(7045) FittingCurve(7045)] 
% b =[CorrectedForceFriction(12085) FittingCurve(12085)] 
%,FittingCurve(7045:9565)) 
%,FittingCurve(9565:12085)) 
Area3 = 

abs(trapz(CorrectedForceFriction(12085:17085),CorrectedMotion1(12085:17085)))

; 
Area4 = 

abs(trapz(CorrectedForceFriction(17085:22100),CorrectedMotion1(17085:22100)))

; 

  
%Area of Triangles 
OAB2 = .5*(altcycle2maxstress-altmidcycle2stress)*(altcycle2maxstrain-

altmidcycle2strain); 
OABPrime2 =.5*((abs(altcycle2minstress))-

altmidcycle2stress)*(abs(altcycle2minstrain)-altmidcycle2strain); 
OAB3 = .5*(altcycle3maxstress-altmidcycle3stress)*(altcycle3maxstrain-

altmidcycle3strain); 
OABPrime3 =.5*((abs(altcycle3minstress))-

altmidcycle3stress)*(abs(altcycle3minstrain)-altmidcycle3strain); 
OAB4 = .5*(altcycle4maxstress-altmidcycle4stress)*(altcycle4maxstrain-

altmidcycle4strain); 
OABPrime4 =.5*((abs(altcycle4minstress))-

altmidcycle4stress)*(abs(altcycle4minstrain)-altmidcycle4strain); 

  
D2=(1/f)*(Area2/(OAB2+abs(OABPrime2))); 
D3=(1/f)*(Area3/(OAB3+abs(OABPrime3))); 
D4=(1/f)*(Area4/(OAB4+abs(OABPrime4))); 

  
D = [D2 D3 D4]; 

  
AltD2 = (1/(2*f))*(Area2/(OAB2)); 
AltD2prime = (1/(2*f))*(Area2/(OABPrime2)); 
AltD2mean = (AltD2 + AltD2prime)/2; 

  
AltD3 = (1/(2*f))*(Area3/(OAB3)); 
AltD3prime = (1/(2*f))*(Area3/(OABPrime3)); 
AltD3mean = (AltD3 + AltD3prime)/2; 

  
AltD4 = (1/(2*f))*(Area4/(OAB4)); 
AltD4prime = (1/(2*f))*(Area4/(OABPrime4)); 
AltD4mean = (AltD4 + AltD4prime)/2; 

  
x2=altcycle2maxstrain-abs(altmidcycle2strain); 
x2other= abs(altcycle2minstrain)+abs(altmidcycle2strain); 
x3=altcycle3maxstrain-abs(altmidcycle3strain); 
x3other= abs(altcycle3minstrain)+abs(altmidcycle3strain); 



116 

 

x4=altcycle4maxstrain-abs(altmidcycle4strain); 
x4other= abs(altcycle4minstrain)+abs(altmidcycle4strain); 

  
format long 

  
avgstrain = (x2+x2other+x3+x3other+x4+x4other)/6 
altG234 = [altG2 altG3 altG4] 
altD = [AltD2mean AltD3mean AltD4mean] 
Suction = Matric_Suction 
Se =EffectiveSat 
Dr = sample_Dr 
%************************************************************************** 
figure (1) 
subplot(2,1,1) 
plot(Time,Non_Shifted_Norm, Time, FrictionCorrection, Time, 

CorrectedForceFriction(1:28000)); 
%ime,(,'-',(Time-(Time(INT))),Time, NetDifference,Time, Net_Difference,) 
title('Horizontal Motion (Loadcell Feedback)') 
xlabel('Time (seconds)') 
ylabel('Horizontal Force (psi)') 
legend('Non-Shifted-Norm','FrictionCorrection','CorrectedForceFriction') 

  
subplot(2,1,2) 
plot(Time,CorrectedMotion1,Time,NegCapacitance,Time,TopMotionCurve); 
title('Horizontal Motion (Net Motion Feedback)') 
xlabel('Time (seconds)') 
ylabel('Horizontal Shear Strain') 
legend('CorrectedMotion1','NegCapacitance','TopMotionCurve') 

  
figure(2) 
subplot(2,1,1) 
plot(CorrectedMotion1(4579:6555),Non_Shifted_Norm(4579:6555),CorrectedMotion1

(6555:11625),Non_Shifted_Norm(6555:11625),CorrectedMotion1(11625:16675),Non_S

hifted_Norm(11625:16675),CorrectedMotion1(16675:21675),Non_Shifted_Norm(16675

:21675)) 
title('Soil Response with toptable consideration') 
xlabel('Shear Strain') 
ylabel('Shear Force (psi)') 

  
subplot(2,1,2) 
plot(NegCapacitance(4579:6555),Non_Shifted_Norm(4579:6555),NegCapacitance(655

5:11625),Non_Shifted_Norm(6555:11625),NegCapacitance(11625:16675),Non_Shifted

_Norm(11625:16675),NegCapacitance(16675:21675),Non_Shifted_Norm(16675:21675)) 
title('Soil Response with capacitance') 
xlabel('Shear Strain') 
ylabel('Shear Force (psi)') 

  
figure(3) 
subplot(2,1,2) 
plot(CorrectedMotion1(4579:6555),CorrectedForceFriction(4579:6555),CorrectedM

otion1(6555:11625),CorrectedForceFriction(6555:11625),CorrectedMotion1(11625:

16675),CorrectedForceFriction(11625:16675),CorrectedMotion1(16675:21675),Corr

ectedForceFriction(16675:21675)); 
title('Soil Response with FrictionConsidered') 
xlabel('Shear Strain') 
ylabel('Shear Force (psi)') 
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subplot(2,1,1) 
plot(CorrectedMotion1(4579:6555),Non_Shifted_Norm_New(4579:6555),CorrectedMot

ion1(6555:11625),Non_Shifted_Norm_New(6555:11625),CorrectedMotion1(11625:1667

5),Non_Shifted_Norm_New(11625:16675),CorrectedMotion1(16675:21675),Non_Shifte

d_Norm_New(16675:21675)); 
title('Soil Response with shiftedresponse') 
xlabel('Shear Strain') 
ylabel('Shear Force (psi)') 

  
figure(4) 
plot(Time(1:7045), Normal_Force(1:7045),Time(7045:12085), 

Normal_Force(7045:12085),Time(12085:17085), 

Normal_Force(12085:17085),Time(17085:22100), 

Normal_Force(17085:22100),Time(22100:28000), Normal_Force(22100:28000)) 
title('Vertical Pressure Response') 
xlabel('Time') 
ylabel('Normal Force (psi)') 
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