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ABSTRACT

CRITICAL SHEAR STRESS ESTIMATES OF SUNKEN ALBERTA BITUMEN

by

Charles Bruno Richter Watkins

University of New Hampshire

December 2015

As observed in several recent spills (e.g., DBL-152, TX; Enbridge-Kalamazoo,
MI), under certain circumstances, released oil can sink to the bottom of a water body.
Once on the bottom, the oil can move or remobilize into the water column. The National
Oceanic and Atmospheric Administration’s (NOAA) Office of Response and Restoration
(ORR) uses mathematical models to predict the trajectory of spilled oil. The critical shear
stress (CSS) for an oil is used to predict the movement of sunken oil along and off the
bottom. The CSS has only been measured for one oil (Hibernian crude). The Coastal
Response Research Center (CRRC) at the University of New Hampshire (UNH) has an
annular flume equipped with a velocity profiler that can be used to estimate CSS by
measuring the instantaneous, three-dimensional water current velocities at which sunken

oils undergo movement and erosion of visible oil droplets occur.

xii



The CSS of sunken Alberta bitumen was determined by progressively increasing
current velocities until deformation, movement and erosion of the stranded oil was
observed. Tests were conducted in freshwater at water temperatures of 5, 15 and 25°C. At
temperatures > 18.5 = 1.9 °C, mass erosion of visible droplets was observed in current
velocities greater than 20 cm/s (0.39 knots.), corresponding to a CSS of 1.9 Pa. No
erosion was observed at temperatures < 18.5 £ 1.9 °C in current velocities up to 100 cm/s

(2.25 knots).

Understanding the transport and fate of sunken oil is an important prerequisite for
recovery of non-buoyant oils. Unfortunately, details regarding environmental conditions
and physical properties of crude oil are limited. Spill trajectory modelers make a “best
guess” of the expected conditions needed to erode and resuspend oil from the bottom.
CSS data are needed for a range of oils. This thesis research estimated CSS for an Alberta
bitumen, providing modelers information to predict the behavior of sunken Alberta

bitumen.
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Chapter 1: INTRODUCTION

Risk of Nonfloating Qil Spills

Spilled oil is one of the greatest threats to marine resources resulting in impacts to
environments, and also to economies and societies. Modern oil exploration and
transportation have increased the likelihood of maritime accidents resulting in oil spills.
For most spills, less than 20% of the oil is ever recovered, while the rest weathers in the
environment impacting ecosystems. Nearly one quarter of oil that is spilled in U.S
national waters consists of a class known as Group V oil; heavy petroleum in which the
specific gravity (Sp.G) is greater than 1 (NRC, 1999). Floating oil (i.e., Sp.G <1) may
also become nonfloating, as lighter products weather and interact with sediment. Oils that
sink to the bottom or remain suspended pose risks to certain resources that are not
normally affected by floating oil. These resources include fish, shellfish, seagrasses, and
other benthic and water-column biota. In addition, nonfloating oil is very difficult to
monitor and new trajectory models need to be developed to accurately predict the

behavior of heavy oil.
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Figure 1.1: Sunken oil from T/B DBL-152 (orr.noaa.gov)

Properties of Heavy Qils

Federal rules governing oil spill contingency plans categorize petroleum cargoes
according to their physical properties. Heavy oil is the term used by the response
community to describe dense, viscous oils that have low volatility, lose very few
constituents by evaporation, and have a viscous to semi-solid consistency (NRC, 1999).
Heavy crudes include many of those from Venezuela and California. Heavy oil also
refers to residual oils (No. 5 and No. 6 fuel oil, Bunker C, slurry oil), asphalt, coal tar,

coke, carbon black, and pitch.

Oil is formed when biomass that collects on the land’s surface or seafloor becomes
covered by sediment and sinks into the earth’s crust. Over millions of years in the anoxic
zones of these sedimentary layers, microorganisms degrade the biomass into carbon-rich
compounds that when subjected to heat and pressure form hydrocarbons. Microorganisms

continue to feed on the oil, preferring to first devour the smaller hydrocarbons that make



up light crudes. Once the lighter fractions are gone, what is left is heavy crude that
consists of larger aromatic compounds, which are more difficult for microorganisms to

degrade.

Because heavy oils are typically located deeper underground, they tend to be
exploited after lighter, shallower crudes have been recovered. For example, in the past,
crudes recovered from the Norwegian continental shelf have been conventional or light
(low density, easy flowing). Those fields have matured and their quality and quantity
have reduced. Currently, the Norwegian oil company, Statoil, has two heavy oil fields in
operation (Zuata: 8.5 API, Venezuela and Alba: 19 API, UK), while three are in early
development (Linerle: 16 API, Norway, Falk: 18 API, Norway, and Bressay: 10.8 API,

UK).

Recovery of Nonfloating Oil

Oil spilled into water can float, be neutrally buoyant, or sink depending on: the
density of the water, the specific properties of the oil, and interactions with suspended
material (e.g., sediments, marine snow). Oil that sinks to the bottom (i.e., sunken oil)
pose great challenges during an emergency response. Most oil spill cleanup technologies,
developed for floating oils, are not very effective for nonfloating oil. Because it sinks, it
is impossible to locate and track the oil visually. Furthermore, sunken oil is especially

difficult to track if it mobilizes along the bottom or re-suspends into the water column.



Remobilization of sunken oil was observed at several spills under various wave
and bottom current conditions (e.g., DBL-152, TX; Enbridge-Kalamazoo, MI). Knowing
or having the ability to estimate the bed shear stress (BSS) water exerts on sunken oil
during a spill and comparing it to the estimated critical shear stress (CSS) of the oil gives
responders an indication as to whether the material will become mobile, posing risks to
resources such as power plant cooling water intakes or critical biota. Data on the velocity
and CSS needed to mobilize and erode sunken oils from a sea or riverbed is lacking.
Cloutier et al. (2002) has provided the only published data. Their laboratory experiments,
using an annular flume (Ames et al; 1992), determined the CSS necessary to resuspend a
Hibernian crude (Sp.G. = 0.86) from the bottom (See chapter 2). While existing models
for erosion of sunken oil are empirically based, further research could develop theoretical

relationships.

While the U.S Coast Guard (USCG) has had recent success with new detection
methods for sunken oil, many issues associated with predicting its behavior, fate, and
transport remain unresolved. Furthermore, recovery of sunken oil and protection of
benthic natural resources is dependent on understanding and predicting its in situ
transport. Details regarding the environmental conditions and physical properties of
sunken oils are often unknown or extremely limited, which makes predicting their fate
and behavior very difficult. Oil spill trajectory modelers attempt to make a “best guess”
of a sunken oil’s behavior by making certain assumptions and using the limited CSS data

available.



Research Objectives

Presently, a spill modeler’s only option to predict the remobilization of sunken oil
is to use the CSS of the Hibernian crude (Simecek-Beatty, 2007). Group V oils with low
API gravities (<22) have greater density and viscosity than the Hibernian and hence, will
require higher BSS to mobilize or erode because they have a greater resistance to
deformation. Therefore, experiments are needed to estimate the CSS for a range of oils,
particularly those with low API gravities that may readily sink, and are becoming
increasingly more common in certain regions. Laboratory, real-time measurements on
sunken oil can generate CSS estimates to be incorporated into existing three-dimensional

trajectory models used for predicting the transport of sunken oil.

This thesis discusses the first nonfloating oil study conducted by the CRRC using
the annular flume facility. The project scope included: the observation of sunken oil,
definition of the environmental conditions likely to cause mobilization of oil on the
seabed, and calculation of the CSS necessary to resuspend the oil into the water column
(See chapter 4). Velocity measurements and calculations were documented using sunken
Alberta bitumen in freshwater ranging from 5 to 25°C at current speeds up to 100 cm/s
(>2 kn). The study was designed using guidance from ORR oil spill modelers, who can

use the information generated in their trajectory models.



Chapter 2: LITERATURE REVIEW

Spill modeling is well developed, but is not commonly used in response to
nonfloating oil spills because of limited environmental data and observations of oil
suspended in water or deposited on the seabed. However, based on an understanding of
the physical and chemical properties of heavy oils, simple qualitative predications can be
made of how it may behave. Several case studies (Appendix A) were identified and
demonstrate the challenge of responding to sunken oil spills and the need for CSS

estimates.

A literature review was conducted for laboratory and field measurements of the
CSS needed to erode and resuspend oil from the bottom. This is a highly specialized topic
and only one paper, Cloutier et al. (2002) has been published with this type of data.
However, there is an abundance of literature available describing methods for calculating
BSS (e.g., Soulsby, 1997; Kim et al., 2000; Biron et al., 2004). Oil sediment interaction
models may allow for relationships between oil erosion and sediment transport to be

developed.

Nonfloating Spill Models
Behavioral models of nonfloating oils have been developed from observations of

past spills. These models are descriptive, qualitative predictions of how a petroleum

6



product with a given density will behave when spilled into a receiving water. The key
factors that determine the behavior of spilled nonfloating oils are: water density, current

speed, and sediment interaction (NRC, 1999).

If the ratio of the density of oil to that of the receiving water is greater than 1.0, the
oil will not float. However, a small volume release and strong surface tension could allow
droplets to float. If an 0il’s specific gravity is very close to 1.0 (a few percent above or
below), its fate is subject to wave action and it is likely to become submerged. There is a
linear relationship between the density of water (g/cm’) and salinity of the water at any
given temperature (Figure 2.1 shows example at 15°C). The density of oil is shown as
horizontal lines in units of API (American Petroleum Institute) gravity. Oils with higher
densities (and therefore lower API numbers) than the receiving water (above line) will
sink; oils with lower densities than the receiving water (below line) will initially float, but

may ultimately sink.

1.03
1.025 —
~ 1.02 —
E Oil will not float
(&}
2 1.015
2 API 8
=
2
8 1.01 Oil will float
API 9
1.005
1.00 API 10
0.995 | | | | | | |
0 5 10 15 20 25 30 35 40
Salinity (ppt)

Figure 2.1: Relationship between water density and salinity at 15 °C (NRC, 1999)
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If current speeds are greater than 10 cm/s, non-floating oil will initially be
suspended in the water column before settling. If there is little to no current, oils heavier

than the receiving water will immediately sink to the bottom.

The percentage of sediment is a major consideration when predicting an oil’s
behavior. When lighter, normally floating oil is mixed with as little as 2 to 3 % sand, it
becomes heavier than water and sinks. The density of sand (Sp.G=2.03) grains is higher
than the density of silt (Sp.G=1.6) or clay particles (Sp.G=1.26); therefore more

concentrated cohesive mixtures of the latter are required for submergence.

BSS

Water flowing over the seabed creates a frictional drag force between the water
and the bottom that extends upwards towards the surface. At the bottom, the velocity is
considered zero where the thin layer of water is in direct contact with the boundary (i.e.,
no slip condition). Each successive water layer above the bottom increases in velocity
and shears the layer beneath until the maximum ambient velocity is reached (i.e., free
steam). The most rapid increase in velocity shear occurs nearest the bottom. Sunken oil
erodes into the water column from the bottom when the magnitude of the total BSS
exceeds the CSS (threshold for erosion), overcoming the forces holding the oil to the bed.

This might also explain how large masses of oil can move and be torn apart.



Techniques to calculate BSS due to currents (e.g., tides, winds, river outflow,
density differences) include velocity profile (VP), depth-averaged, Reynolds, and
turbulent kinetic energy (TKE) (See chapter 3). In addition to currents, waves may play
an important role in eroding oil in shallow water conditions. Given limitations during an
emergency response, it is unclear what field instrumentation and methods would be used
to calculate BSS. The best method will likely depend on the logistics of deploying field

equipment, instrument availability and technical support.

The VP method fits measured current velocity above the bottom to the von
Karman-Prandtl equation (see chapter 3). In general, a minimum of three current velocity
measurements is needed at small depths above bottom within the boundary layer. The
boundary layer has been defined as that part of the water column in which the velocity
profile is strongly influenced by the presence of the river bottom, where the flow velocity
decreases to zero. Biron et al. (1998) suggest that the boundary layer does not reliably
extend above 20% of the flow depth. Ideally, the velocity is expected to increase with
height logarithmically. For a variety of reasons (e.g., tidal currents, wind effects, density
stratification, wave action) the VP may not be logarithmic and the BSS can be over or

under-estimated

Wilcock (1996) suggests the VP is the most restrictive method because it is
limited to flows with finite log layers. The method losses accuracy in flow structures that

vary rapidly in space or time. Kim et al. (2000) found the VP method generally gave the

9



largest estimates of BSS, a tendency that is consistent with the effects of sediment-

induced stratification, which increases in intensity towards the bed.

The TKE method superimposes the turbulent fluctuations on the average current
flow. Simple linear relationships between turbulent energy and BSS have been
formulated in turbulence models (Galperin et al., 1988). Kim et al. (2000) have used the
absolute intensities of velocity fluctuations to infer BSS through TKE (Equations are

shown in chapter 3).

Methods of single-point measurements require appropriates flows only near the
bed, so it may be applied under a wider range of flow conditions, including spatially
variable flow. Biron et al. (2004) compared the BSS using several methods and

determined the TKE method provided the best estimate of BSS.

The methods used to estimate BSS were evaluated by Simecek-Betty (2007) who
wanted to propose a practical method for modeling the resuspension of sunken oil using
real-time laboratory measurements of bottom currents. She emphasized the need for spill
modelers to have data on the CSS for a range of heavy oils and highlighted one paper,
Cloutier et al. (2002), which described a series of oil erosion experiments in an annular

flume, as one method for collecting such data.

10



Previous Laboratory Studies of Nonfloating Qil

Cloutier et al. (2002) performed laboratory experiments in an annular flume using
Hibernian crude oil (p=0.875, v=400 ¢St at 15°C) to determine the CSS necessary to
move stranded oil from the bottom of the tank. Their flume consisted of an acrylic
annular trough 2 m in diameter, 0.15 m wide, and 0.45 m deep. The water depth was held
constant at 30 cm which gave a volume of 0.3 m"3. They stranded 200g of crude, which
formed a 2 mm thick oil slick to a section of the flume base (1.20 m x 0.15 m). After
introducing seawater, they progressively increased current velocities in small step

increments until erosion was observed.

Two types of erosion were evident: dissolution and erosion of soluble aromatics,
and mass erosion of visual globules. They observed mass erosion of visible globules
under a BSS of 5.0 Pa or equivalent to a mean current velocity of 55 cm/s in seawater (35
ppt) at 13 °C. At 4 °C, under a bed stress of 8 Pa in 75 cm/s current, there was no mass
erosion of visible globules. The abrupt onset of visual oil erosion indicated threshold
conditions. Cloutier et al. (2002) found that once the critical velocity is surpassed, erosion

increases with increasing current velocities.

A temperature effect was demonstrated on the threshold and rate of oil erosion: the
colder the temperature, the higher the BSS required for erosion. This is attributed to the

increase in oil density and viscosity in cold water. The viscosity of crude oils and oil

11



products is dependent on the oil type, but also on the temperature and degree of

weathering.

Oil Spreading

Oil spreading on the sea surface has been studied extensively, but little
information is available about spilled oil spreading on the bottom. Spreading of sunken
oil is likely far more complicated than surface spreading. BSS from waves and currents
may induce/enhance spreading. Oil adhering to the underlying sediments may inhibit oil

spreading and is a function of the oil adhesion characteristics and sediment matrix.

Thesis Research

Cloutier et al. (2002) published the results of laboratory experiments used to
determine the CSS needed to erode an Hibernian crude from the bottom of an annular
flume. Hibernian crude has a high API gravity. Therefore, it is unlikely to become
submerged without weathering and sediment entrainment. There is a data gap for oils
with medium API gravities (API of 22-31) that are neutrally buoyant and for low API
gravities (API of <22) that are denser than seawater, which would most likely become

submerged or sunken.

If spill modelers knew the approximate conditions in which sunken oil mobilizes
from the bottom, they could predict with some accuracy when and where it would travel,

allowing time to protect shorelines, sensitive marine areas and intakes. Also, first

12



responders could be more prepared by knowing whether the oil will remain entrained on

the bottom, be resuspended, transported away from the release site, and/or re-sink.

The literature revealed a lack of quantitative models for predicting the behavior of
heavy oils. This makes response to spills involving sunken oil very difficult and limits
protection of sensitive resources. The importance of knowing the bottom stress needed to
erode oil from the sea bottom was highlighted in the case studies. Clearly, there is need
for more work in this area for a variety of oils. This thesis research aimed to achieve this
by exploring the relationship between oil density, viscosity and CSS for a low API oil

Alberta Bitumen.

13



Chapter 3: MATERIALS and METHODS

Objectives

The main objectives of the sunken oil erosion experiments were to determine the
CSS, erosion frequency, and spreading rate of the bitumen along bottom. The behavior of
the bitumen was observed as a function of temperature, its original mass and current
velocity. The CSS is the minimum force applied to the oil on the flume bed that causes it
to spread and move into the water column. The water velocity above the bed created this
adjacent force. The erosion frequency was defined as the number of erosion events
observed during an experiment. The spreading rate was the distance the oil migrated in
horizontal (longitudinal direction) (x) and lateral (cross-tank sectional direction) (y) per
unit time. Digital cameras, that recorded the oil’s behavior during each experiment, were

used to collect these data.

The oil erosion experiments were conducted using an Alberta bitumen (Appendix
B), a heavy product from the oil sands in Canada (~8° API). This thesis research
represents the first laboratory experiments to estimate the conditions in which bitumen
erodes off a flume bed. The Alberta bitumen was obtained from a Canadian producer and
serves as a data point for heavy crudes and bitumen of similar characteristics (e.g., API

gravity, density, viscosity, adhesion).

14



Oil erosion experiments were conducted varying three primary variables: water
temperature, current velocity, and oil mass. To establish run protocols, trials were
performed using bitumen surrogates: molasses, chocolate pudding, and coral (Appendix
C) all with specific gravities similar to those of the bitumen. The velocities chosen (~20,
~50, ~80 cm/s) were based on those observed in possible spill scenarios (e.g., tidal zones,
ocean and river systems). The oil mass aliquots (5 and 20 g) were similar, on a density-
normalized basis, to those used by Cloutier et al. (2002) in previous oil erosion
experiments with a Hibernian crude (API 35°). Temperatures (5, 15, 25 °C) covered a

range based on case studies and normal marine transportation routes.

CRRC Facility

The sunken oil erosion experiments were conducted in an annular flume
(Appendix D) owned and operated by the CRRC. The facility is located in a high bay in
Gregg Hall (Room 137) (Figure 3.1). It was constructed in 2012 as part of a senior
capstone project with the intention of conducting a wide application of oil spill response

studies, but most specifically for investigating sunken oil.

Annular Flume

The flume has a 4000-L capacity with a 9 m and 0.8 m channel length and width,
respectively (Figures 3.1 and 3.2). The circular shape allows for continuous flow, which
is advantageous as it allows longer observational periods and better simulates seabed

conditions in the field. The outer and inner flume walls are %2 clear Lexan® allowing
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real-time bottom visual observation and monitoring by cameras. The inside of the flume
is lined with a 20-mil opti-clear PVC liner (Specialty Plastic Fabrics; Monkena, IL),
which acts as secondary containment. The flume sits on a subfloor constructed of
plywood. A lined berm surrounds the subfloor for containment redundancy in the event
the PVC liner or the Lexan are breached. The tank is filled with 2.5 m® (h = ~43 c¢m) of

fresh water using the potable water source located in the high bay

Figure 3.1: Side view of annular flume.
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Figure 3.2: Schematic of annular flume

Inner Flume

While the flume’s circular shape has advantages, one disadvantage that limits its
use for highly sensitive boundary layer studies is the excessive cross shears, which yield
highly turbulent currents that, are difficult to measure. This was resolved by the use of an
inner rectangular tank (i.e., a flume within a flume). This inner tank contains the test area
and consists of clear Lexan® 1.2 m long with a 0.2 m width and 0.9 m height (Figures
3.3 and 3.4). The test section has inlet and outlet structures conforming to each side of the
tank to promote unidirectional flow so that increases in velocity do not lead to turbulence

associated with curvilinear walls.
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Figure 3.3: Inner flume
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Figure 3.4: Schematic of inner flume
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Flow Generation
Electric Motor

The water current is generated using a transom-mount trolling motor (Figure 3.5)
with a thrust rating of 50 kgs (Motor Guide; Tulsa, OK). The motor is powered by three
12V marine grade batteries and charged by continuous smart-chargers to allow consistent
output by the batteries during long experimental runs (~60 min.). Sturdy (2x4) wooden
mounts hold the trolling motor. The motor mount is bolted to the floor outside the tank to
resist the force exerted by the motor. A vortex dampener prevents the formation of
cavitation in the area of the motor reducing turbulence and increasing efficiency of the

motor output.

Figure 3.5: Trolling motor

Flow Straighteners
The flume has two upstream flow straighteners to reduce motor turbulence (Figure

3.6). The first is a series of 3.8 cm diameter PVC pipes (L=12-18 in) heat-molded to a
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13-degree angle to conform to the circular radius of the flume. The second is directly
inside the test area and is made from 3.8 cm diameter PVC piping (L=4 in). This piping is
straight and allows for enhanced uniformity of the water current within the “flume within

a flume” straight test section.

Figure 3.6: Curved and straight flow uniformity piping

Velocity Settings

The motor is capable of generating a range of velocities to achieve the desired
conditions (Figure 3.7). Experimental runs lasted 60 min and were conducted at speed
settings 3, 5 and 7. Constant velocity was maintained, as it was best for interpreting
relationships (e.g., velocity vs. spreading, spreading vs. erosion). Depending on the speed
setting, approximately one minute was necessary to establish a fully developed, steady
flow regime, once the motor was started, as determined by the Vectrino (See ADV

profiler).
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Motor Setting Comparison
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Figure 3.7: Motor speed settings and corresponding current velocity

Flow Field Measurements
ADYV Profiler

The current velocity was measured using a Nortek Vectrino II (Vangkroken,
Norway) (Figure 3.8). The Vectrino Il is a profiling velocimeter that measures 3D water
velocities using coherent Doppler processing. Doppler velocity measurements observe
the changing distance of particles in the water by transmitting pulses of sound and
comparing the echoes. The acoustic Doppler velocimeter (ADV) provides high-resolution
velocity measurements with 1 mm readings over a vertical profile of 3 cm, at sampling
rates up to 100 Hz. Simultaneously, it can measure bottom distance at 10 Hz. The
Vectrino is secured to a wooden mount to avoid artificial acceleration, which can skew its

recordings.
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Figure 3.8: Vectrino Profiler

ADYV Calibration

The Vectrino is an acoustic instrument; therefore it does not require any user
calibration. During production, the probe head geometry is determined via a tow tank
calibration, but unless there is damage to the probe head this will remain fixed. However,
the manufacturer does recommend routine verification to ensure the instrument is
functioning properly. Performing the transducer and probe checks detailed in the owner’s
manual does this. To verify they are working as expected, all four beams should show
roughly the same profile shape with amplitude peaks at the manufactures “sweet spot”

and bottom reading.
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ADYV Positioning

The ADV mount has lockable wheels so the Vectrino can be moved forward and
backward in the test section. A track can move the probe from side to side within the
flume and an extension allows it to be lowered and raised within the water column. The
ADV was placed 6 to 7 cm above bottom to profile the boundary layer (Appendix E). A
test comparing bottom measurements of Lexan® and oiled surfaces validated the use of
the AVD’s bottom check to reference the distance to oil (Appendix F). Slight variations
in ADV positioning would not have affected the comparison between runs as long as the

sampling volume included the bottom.

Oil Observation
Digital Cameras

GoPro Hero 3 cameras (San Mateo, CA) are used to monitor each trial run in the
tank (Figure 3.9). The cameras record data at rates up to 100 frames per second, allowing
for precise time-correlated measurements of how the oil moves. One camera is placed
above the tank bottom facing downward, while a second is placed inside a watertight box
on the outside of the test section looking inward. The cameras can be operated by

smartphone or tablet using a WiFi connection.
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Figure 3.9: GoPro cameras in annular flume (a) downward-facing camera and (b) view of
the watertight box that holds inward-facing camera

Displacement Grids

Displacements grids are attached to the bottom and side of the test section
allowing the operator to measure the displacement of material along the bottom. The 1-
cm grids were procured online and printed on large poster paper. They were cut into 91
cm x 19 cm pieces and then laminated at UNH Printing so they would not deteriorate

underwater.

Oil Stranding
The desired aliquot size (measured by mass balance) was deposited on the
displacement grids using a hand suction pump then placed in the test section of the inner

flume (Figure 3.10).
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Figure 3.10: Strglnding of bitumen on tank grid

Video Analysis

The memory card files were uploaded to the CRRC computer using Windows
movie player or the GoPro video application. Both software packages allow quick
viewing at rates (10 frames per second) sufficient to classify oil erosion events. However,
in order to view the videos with maximum resolution (100 frames per second), they were
uploaded to IMovie or Final Cut Pro at the UNH Parker Media Laboratory. Experiments
were synchronized, so time stamps on the digital cameras recording the events matched,
as closely as possible, to those of the Vectrino. To ensure this, the cameras and vectrino
were activated at the same time followed by the motor (Figure 3.11). The cameras also
took still photographs of the oil before and after each experiment in addition to video
footage. Colored plastic beads (5-10 mm) (Jo-Ann Fabric and Craft; Newington, NH)

suspended in the water column were used to reference current velocities through the test

25



section. JMP statistical software (Cary, NC) was used to identify relationships and trends
of the major variables (i.e., oil, mass, water temperature, current speed) and how they

impacted critical oil erosion, erosion frequency, and migration using regression analysis.

Start vectrino and
camera

Start motor

1 .

Time

Figure 3.11: Schematic of trial synchronization

Post Processing
Exporting Vectrino Files

Once the data were collected, they were exported into Matlab from the Vectrino
application page. Matlab offered advantages over Excel in processing because codes
could be written to streamline analysis. In Matlab, the data can be easily accessed in
tabular form (Appendix G). Two structure arrays were created to group related
information using data containers called fields. The “Data” structure saved all recorded
measurements using separate fields (e.g., Profiles Vel contained current velocity data).
The “configuration” structure contained fields related to the pre-specified arrangement of
the Vectrino’s functional variables (e.g., Config.SampleRate contained the specified

sample rate in Hz).
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The ADV’s four probes provide velocity measurements in 3 directions plus an
additional vertical velocity (i.e., Z1 & Z2). The probes are co-located, so the estimates
should be the same. This is redundant information, but can be used in post-processing.

One Z variable was created as an average of Z1 and Z2.

Quality Assurance and Control

There must be a “reasonable” amount of suspended particles in the water for the
successful operation of the Profiler (Nortek Vectrino II, 2013). Quality assurance (QA)
procedures recommended by the manufacturer include using synthetic particles (e.g,
Nortek seed, baby powder) to generate a sufficient number of suspended materials to
facilitate adequate measurement of the Doppler shift. Quality control (QC), as suggested
by manufacturer included processing of the collected data to exclude points with
correlation and signal-to-noise ration (SNR) of less than 40% and 15 dB, respectively. In
this thesis research, the mean correlations of all data sets were ~ 90% (Appendix H). A 3-
standard deviation filter was used to remove velocity data that was statistically different

than expectations (Appendix I).

Calculation of CSS

Sunken oil erodes into the water column from the bottom when the magnitude of
the BSS exceeds the CSS. The CSS condition was created by progressively increasing
current velocities until the cameras observed deformation, movement and erosion of the

bitumen. The BSS, 7, was determined from:
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Ty = pw U*Z [eq. 1]

Where: p,, is water density (kg/m’) and U, is shear velocity (cm/s) (i.e., a velocity that

relates shear between layers of flow).

VP Method

Shear velocity was calculated by fitting the measured current velocity above the

bottom to the von Karman-Prandtl equation (Appendix J):

U, .2
U(z) =—In (i) leq.2]
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Figure 3.12: Schematic of vertical velocity profile with labeled parameters of
Karman-Prandtl equation
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Where U, is the mean flow velocity at a height z, K is the von Karman constant (~0.40),

U, is the shear velocity, and z; is the roughness height (i.e., elevation at which water

velocity theoretically becomes zero).

The equation describes the variation of water velocity from zero at the bed to maximum

velocity at the surface of the boundary layer and can be rewritten as:

Ugy = %ln(z) - %ln(zo) fea-3]
with z and U,y being measured by the Vectrino and its setting
Where:
o E [eq. 4]
K
b= —%ln(zo) [eq. 5]
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Regressing the values of U, against the logarithms of z yields estimates of the slope (m)

and y-intercept (b). Shear velocity (cm/s) and roughness height can be calculated from

the relationships:
U, =Kmz, = e P/m
zo=e "/m
The BSS, 1, is then calculated using eq.1.
The specific calculation interval for estimating LP BSS was different for each
experiment (i.e., 0.5-2.0 cm). The selected range was within the boundary layer, which

extended 5-10% of the flow depth.

TKE Method

CSS was also calculated using the TKE method (Appendix K):

1 [eq.7]
TKE = lEJ p,(W?+v'%+w'?)

Where: u’, v’, w' are the velocity fluctuations in the x, y, and z-axis (Figure 3.13).
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Figure 3.13: Schematic of velocity fluctuation (u’)

From the turbulent kinetic energy, BSS can be estimated as:

1, =C-TKE leq. 8]

Where C is a proportionality constant, typically 0.19 (Stapleton and Huntley, 1995) and

was used in this research.

The average of the variance terms (i.e., highest 10% of velocity fluctuations) for x,
y, and z was calculated within a 0.5 cm interval, 0.5 cm off bottom. These terms were

used to calculate the turbulent energy (eq. 7). The location was chosen to eliminate data
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contamination from influence of the bedform and the interval smoothed spikes from

depth bands closest to the oil-water interface.

Adhesion Determination

Oil adhesion characteristics were measured in the laboratory using a penetrometer
(Model G-118-H-1200, Hoskin Scientific LTD.; Burnaby, BC) as described by the
ASTM D5 method (Appendix L). The temperatures at which the adhesion of bitumen

was measured were similar to those in the oil erosion experiments (i.e., 5, 20, 27°C).

Environment Heath and Safety

Following each experiment, surface oil sheens were removed using absorbent pads
and the oil stranded on the bottom was recovered simply by removing the oiled grid in
the test section. A sump pump removed the water from the flume at the end of an
experiment. The water was stored in aerated tanks then discharged to the Durham, NH
sewer collection sewer. The ADV probe was washed with a mild detergent using a

microfiber cloth and rinsed with water, as recommended by the manufacturer.

A lab study was performed to determine the toxicity of the oil-contaminated water.
The amount of oil used in the experiment (5 and 20g) resulted in concentrations for
benzene, toluene, ethyl benzene, and the xylenes that were below the direct discharge
permits (Table 4.1). The tank liner was cleaned with mild detergent, if visibility was

impaired, and vacuumed to remove any debris.
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Table 3.1 Durham, NH discharge limits as compared to measured tank water contaminant
concentrations

Industrial User Discharge Permit
Compound Regulatory Limit (mg/L) | Tank Water (mg/L)
Benzene 0.13 ND
Toluene 1.35 ND
Ethylbenzene 1.59 ND
Xylene 0.4 ND
TPH 25 13

Where ND = non detect
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Chapter 4: RESULTS and DISCUSSION

Research Objectives

The primary objective of this thesis research was to determine the BSS at which an
Alberta bitumen resuspends into the water column (i.e., CSS). Secondary outcomes
included defining the environmental conditions (e.g., water temperature, current velocity)
likely to cause mobilization of bitumen on a flat seabed and characterize its erosion

behavior (e.g., frequency, size).

Flume BSS Estimates

Minimum and maximum current velocities measured in the flume test section
during the bitumen experiments were 16 and 106 cm/s (See Table 4.3 for all test values).
This corresponds to 0.3 to 2.1 knots, which is comparable to current velocities found in
river systems and marine/estuarine environments. The minimum and maximum BSS
were 0.6 and 1.9 Pa and 9.6 and 17.3 Pa as calculated by the VP and TKE methods,
respectively (Figures 4.1 and 4.2). This is comparable to the BSS generated by natural
currents (Appendix M), but higher than those of Cloutier et al., 2002 due to flume

limitations.

34



LP

20

15

Bed Shear Stress, Pa

20 40 60 80 100
Velocity, cm/s

Figure 4.1: Estimation of BSS using LP with 95% CI, y=0.1x-0.85, R"2=0.86
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Figure 4.2: Estimation of BSS using TKE with 95% CI, y=0.16x-1.6,R"2=0.91
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Linear relationships were observed between flow velocity and BSS with the LP
and TKE methods yielding R” values of 0.85 and 0.91, respectively (Figures 5.1 and 5.2).
Thompson et al. (2003) found a similar relationship, but developing a standard relation
would be difficult since BSS varies between flume systems with different flow conditions
and bed structures. A custom parameter test indicates the fits of LP and TKE were not

significantly different (Appendix N).

Current velocity was binned into three categories. Six replicate datasets were
collected for each velocity category. The intent of acquiring replicate datasets was to
determine the reproducibility of desired BSS loads. (Tables 4.1 and 4.2).

Table 4.1: Replicates of BSS estimates determined by TKE

Comparison of repeatability of BSS TKE in Pa

Current Velocity Count | Mean | Min Max %RSD
24.6+1.3 6 2.16 1.93 2.35 6.6
52.7+1.3 6 7.46 4.87 9.95 22.4
89.8+9.2 6 12.83 | 7.30 17.28 26.0

Table 4.2: Replicates of BSS estimates determined by LP
Comparison of repeatability of BSS LLP in Pa

Current Velocity Count Mean Min | Max | %RSD
24.6+1.3 6 1.26 0.57 | 147 30.6
52.7+1.3 6 4.77 4.25 5.7 12.1
89.8+9.2 6 8.65 6.2 9.53 14.8

The RSD of replicates generally increased with flow velocity. This suggests the
system was more difficult to control at higher velocities due to higher variance in the

flow field, possibly caused by flume geometries and motor induced turbulence. However,
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velocities generated at the lowest speed settings were the most sensitive to motor
adjustments. The highest RSD (i.e., LP = 30.6%) was observed at the lowest velocity due
to this sensitivity. TKE generally had higher RSD than VP because of the uncertainty

associated with single-point observations.

In addition, triplicate calculations were made within each dataset to measure
instantaneous BSS over an averaged 1-minute period. The intent of calculating BSS at
various points within the dataset was to determine the precision of any given estimate in
the time series. The estimate of BSS by the TKE method had a mean relative percent
difference of 19%. Estimates of BSS made using the LP method had a mean relative
percent difference of 10%. The precision of estimates suggests instantaneous BSS did not
deviate far from the mean BSS. While this discussion assumes the mean velocity for each
experiment, the instantaneous values are also reported as the electric motor failed to
maintain constant flow in 3 experiments (e.g., yr.day 14.041). This only occurred when

performing multiple runs in a single day.

Temperature Effect

Oil erosion experiments were conducted at 5.3 + 0.4, 18.5 + 1.9, and 26.5 + 1.0°C.
CSS (reported as TKE values) of bitumen is a function of temperature. No erosion was
observed at <17.5°C in current velocities up to the facility maximum (106 cm/s, 2.06 kn)
and under BSS conditions of 17.3 Pa. At 18.5 £ 1.9 °C, mass erosion of visible oil

globules was observed in current velocities of 24.6 + 1.3 cm/s (0.5 kn), corresponding to
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a CSS of 2.2 Pa. At 26.5 + 1.0 °C, the CSS was 1.9 Pa at 24.6 + 1.3 cm/s (0.5 kn) current.

Mass erosion was driven by temperature, where a lower threshold existed, under which,
no erosion was observed (Figures 4.3 and 4.4).

Mass (9)

Figure 4.3: Temperature as the driving variable of mass erosion (red dots = experiment

with erosion & black dot = experiment without erosion)

A nominal logistics regression (Baldi and Moore, 2009) for erosion was created
using water temperature, current velocity and oil mass (Figure 4.4). Water temperature
demonstrated the highest statistical significance (p<0.0001). The potential for visual

erosion exists above the threshold of 15°C. At 25°C, erosion is certain. The likelihood
increases sharply from 17.5 to 22.5°C.
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Figure 4.4: Nominal logistics plot for erosion as a function of water temperature (right
side of line = erosion and left side of line = no erosion)

The model was validated using a contingency analysis (Appendix O) of observed
data from the experiments in binary form. Of the ten conditions in which the model
predicted no erosion, nine were verified by the data. Of the eight conditions in which the
model predicted erosion, seven were verified. The model proved to be ~90% accurate

with only two false predictions occurring in the simulated conditions (n=18).

Velocity Effect
Oil erosion experiments were conducted with fairly constant velocities of 24.6 +

1.3,52.7 £ 1.3, and 89.8 £ 9.2 cm/s. An inverse relationship between the occurrence of
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mass erosion and current velocity was observed at all temperatures (Figure 4.5). The
highest erosion frequencies were observed under the lowest velocity setting. Further, the
highest erosion (i.e., 67) was associated with a velocity of 24 cm/s and the highest

temperature (27.9°C) and largest initial oil mass (20g).
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Figure 4.5: Erosion events per hour as a function of current velocity

A literature review on the rheology of bituminous materials explains the observed
response. Viscoelasticity is the property of a material that exhibits both viscous (fluid’s
resistance to flow) and elastic (solid’s tendency to return to its original form)
characteristics (Roberson and Crowe, 1997). Bitumen is a viscoelastic material (Abivin et

al., 2012) and exhibits shear-thickening behavior where, as the shear rate is increased, its
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viscosity also increases. The bitumen will act stiffer (deform less) under faster rates of

loading (i.e., higher flume current velocity).

This was observed in the experiments as the sunken bitumen eroded less with
greater shear as current velocity increased (Figure 4.5). A light crude, such as Alaskan
North Slope (API 31.4), does not have strong viscoelastic properties and will more
closely resemble Newtonian flow (Ronningsen, 2012). The oil will behave similarly to
Hibernian crude (API gravity of 35.1) observed by Cloutier et al. (2002) and erode more
frequently under faster currents. Sediment interaction may result in a deviation from

Newtonian flow if concentrations are high enough.

Viscoelastic effects are significant for all petroleum products consisting of high
molecular weight compounds and large amounts of wax (paraffins) (Wardhaugh and
Boger, 1991). These crudes (e.g., Californian Kern River Crude, other heavy oils) are
likely to become submerged when released into the environment (Abivin et al., 2012).
Hence, similar viscoelastic behavior can be expected for these types of sunken crudes
making the data on Alberta bitumen even more heL.Pful in predicting their fate during a

spill in freshwater (e.g., rivers).

Mass Effect
Oil erosion experiments were conducted by stranding two different oil masses

(20.1 £0.4 and 5.7 = 0.5 g) on the tank bottom. Erosion was observed to be greater in
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experiments using the larger mass of bitumen (Figures 4.6 and 4.7). In experiments using

larger oil masses, erosion was also observed at lower temperatures.
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Figure 4.6: Erosion events observed in experiments using 20.1 = 0.4g of bitumen (digits
above bars are number of erosions observed)

Erosion Frequency (5g)

70
E 60
@ 50
% Globule
2 40 % (0.32 +/- 0.27cm)
£ 30 0 Q
S 0 g (0.2 +/- 0.14cm)
g 20 0 0215 S
= 10 0 ! 89.8 ‘? (01 +/' Ocm)
0 5]
0 = J 52.7 S
5.3 24.6 >
18.5 26

Temperature (C)

Figure 4.7: Erosion events observed in experiments using 5.7 + 0.5 g of bitumen (digits
above bars are number of erosions observed)
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It is difficult to model erosion frequency because it resembles a one-point model
(Baldi and Moore, 2009) where the experiment with 67 erosion events is extremely large
relative to other experiments and dictates the model. Excluding the event to perform the
analysis alters the model. This is also true when distinguishing between aliquot masses.
While conclusions about erosion frequency can be made, it cannot be modeled without a
more normally distributed dataset (i.e., more intermediate values). A greater number of

experiments with replicates could allow future modeling.

Oil Migration

Disturbance of the stranded oil’s surface and ripple formation was observed in all
experiments. Migration of ripples along the surface of the oil slick was observed at
temperatures >15°C and mass erosion of globules occurred into the water column at
temperatures >17.5°C (Figure 4.8). Initially, ripples were 1 cm or larger in height and

then diminished to a few millimeters over time, a possible mass limiting effect.

Migration .
g Erosion

Figure 4.8: Oil migration showing ripple formation and globule erosion
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As anticipated, the temperature had the greatest effect on rate of spreading along
bottom. At 5.3 + 0.4 °C, in 24.6 = 1.3 cm/s current, the oil “pancake” did not appear to
move (Figure 4.9). At 18.5 + 1.9 °C, the lengthening was 176% in 89.8 = 9.2 cm/s current

(Figure 4.10). The “pancake” moved the greatest along bottom at 26.5 + 1.0 °C in 89.8 +

9.2 cm/s current, lengthening 350%.
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Figure 4.10: Oil advanced (i.e., component of migration) 176% at 18.5 = 1.9 °C
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Rise in temperature greatly increased the rate of oil migration (i.e., longitudinal
lengthening) along bottom as the bitumen’s viscosity decreased in warmer water (Figure

4.11). The amount of oil mass stranded on bottom had little effect on magnitude of

spreading.

300

250

200

Lengthening
-

e,
°
.
’

5 10 15 20 25 20 40 60 80 5 10 15 20
Water Current
Temperature, ¢ Velocity. cm/s Oil Mass, g

Figure 4.11: Lengthening of oil as function of water temperature, velocity and mass.

Performing a least squared analysis (Appendix P) of oil lengthening on bottom
allowed a determination to be made on variable importance (e.g., total effect (TE) is an
index that reflects the relative contribution of that factor alone and in combination with
other factors). Temperature had the largest effect (TE = 0.78) on the magnitude of oil
spreading by a significant margin. Current velocity had a modest effect (TE = 0.27),

while oil mass was nearly negligible. A generalized regression analysis was also
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performed for comparison and yielded similar results with temperature and velocity

having total effects of 0.81 and 0.25, respectively.

The coefficient of multiple determination (i.e., proportion of variation in the
response that can be attributed to the model rather than random error) of the lengthening
profile was 0.96 suggesting the model is an excellent predictor of response. The response
from water temperature and current velocity may be applied in the field during an
emergency response in freshwater because of the large dynamic range investigated in the
experiments. However, because the oil aliquot sizes were so small relative what would be
released in a spill, extrapolating the response from initial oil mass is not recommended
because the dynamics above that range are unknown (e.g., with thicker or broader oil

masses on different substrates).

Globule Size

The oil globule size (in length, as long globules were observed) was measured
using video camera footage and the test section grid. Erosion globule size (Appendix Q)
was greater with an increase in water temperature (Figure 4.12). Water velocity and oil

mass appeared to have little effect on sizes of eroding globules.
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Globule Size Distribution
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Figure 4.12: Mean eroding globule size observed in experiments

With sufficient BSS, globules of varying sizes were sheared off the oil film
(~2mm thick) on bottom. NRC (1999) suggests for oil heavier than water under low
currents, the oil will form small (mm) globules. However, until now, no laboratory
measurements of eroding oil sizes have been made to substantiate this claim. While
measuring globule size is subjective, the use of displacement grids provided a visual
reference for estimates. Globule sizes of eroding bitumen ranged from several millimeters

to centimeters, which is larger than the field observation made by NRC (1999). It is
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difficult to model globule size because of subjectivity and is limited to a few data points,
but trends suggest the size distribution may be a function of the oil’s physical properties

(e.g., viscosity due to temperature) and not water turbulence.

The manner in which the globules eroded from tank bottom provides insight into
the expected behavior of sunken oil in the field. The globules tended to be elliptical with
long tails and pulled off the oil mass in a “taffy-like” motion (Figure 4.8). At26.5 £ 1.0
°C, steady erosion of globules were observed from all areas of the oil slick (Figure 4.13).
At 18.5 £ 1.9 °C, globules eroded in “bursts” from the anterior of the oil slick, often

following the “surge” of a large ripple (i.e., spike in migration rate (Appendix R)).

Figure 4.13: Continuous erosion of oil globules observed at 26.5 + 1.0 °C

(black arrow = direction of flow and red arrows = eroding globules)

-
Direction of flow
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CSS Estimates

The CSS was defined as the minimum mean BSS to cause deformation of oil slick
and resuspend bitumen into the water column (Figure 4.14). Oil erosion was observed in
experiments where the mean BSS was 1.93, 2.07, 2.19, 6.77, 7.53, 9.95, 12.16, and 13.39
Pa based on TKE calculations (Table 4.3). Those same conditions as calculated by LP
were 0.57, 1.37, 1.6, 4.41, 5.18, 5.7, 9.34, and 9.53 Pa. The conditions where erosion was
observed were 18.5 + 1.9 °C or 26.5 + 1.0 °C and the majority were using the larger oil
mass (20.1 + 0.4 g). These estimates of the CSS are the first to quantify conditions in
which Alberta bitumen on a smooth surface will undergo mass erosion (Appendix S). The
relationship between bitumen erosion and environmental conditions (i.e., temperature and

velocity) is shown if Figure 4.15.
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CSS Estimates
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The LP and TKE values were statistically significant (p=0.002) as determined by a
custom parameter test (Appendix T). However, this is likely a type Il error because the
change in significance is the result of a reduced sample size (i.e., n=8 vs. n=18). The
earlier analysis (Appendix N) had more statistical power and determined the two methods

were not statistically significant.

Literature suggests the TKE method is the best estimate of BSS (Biron et. a.,
2009). The TKE method exhibited the most consistency in the experiments (i.e., required
assumptions were never violated) and has fewer limitations (e.g., appropriate for non-
steady state conditions) than the LP method when applied to the field. Therefore, this
thesis reported the CSS using TKE. At > 18.5 + 1.9 °C, the CSS of Alberta bitumen was
~2 Pa. The CSS of Alberta bitumen was not reached up to ~18 Pa at temperatures < 18.5

+1.9°C.

The experiments in which the CSS of bitumen was determined were conducted
using freshwater. If the water were more saline (i.e., estuarine, oceanic), the BSS would
be slightly higher due to increased density (pi20=998kg/m’ vs. praciw20=1025 kg/m’) of
the saturated fluid (7, = p,,U?), but the CSS of bitumen would remain the same even if
the velocity profile was affected because it is a physical property of the bitumen. Hence,

this thesis research can be applied to a variety of environments.
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Table 4.3: Summary of all experimental results

Mean
Temp, | Velocity, | Mass, | Erosions, | Lengthening | T, Pa 7, Pa | Globule
C cm/s g #/hr %/hr (TKE) (LP) Size
(cm)
17.5 91 20.6 0 174 14.82 9.40 -
5.5 88 20 0 29 12.04 8.30 -
5.5 78 5.2 0 64 7.30 9.10 -
15.0 106 5.4 0 175 17.28 6.20 -
5.0 26 20.1 0 0 2.35 1.50 -
26.1 55 19.6 5 230 9.95 5.70 0.58
24.8 53 6.6 2 125 6.77 5.18 0.20
6.0 51 20.1 0 4.5 7.42 4.25 -
279 24 20 67 174 2.07 1.60 0.27
27.0 16 5.1 15 145 1.93 0.57 0.32
5.0 52 5.6 0 18 8.25 4.28 -
5.0 25 5.9 0 15 2.20 1.05 -
26.7 86 5.9 1 350 13.39 9.35 0.10
26.7 90 20.7 2 350 12.16 9.53 0.40
19.7 53 5.6 0 110 4.87 4.81 -
19.1 57 20.1 1 111 7.53 4.41 0.10
19.6 24 6 0 67 2.21 1.47 -
20.0 23 19.7 10 90 2.19 1.37 0.23

*(0 and - no erosion observed; hence no globule size. Supplemental data can be found in
Appendix U.
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Adhesion

The adhesion numbers of the bitumen were 3150, 531, and 376 g/m2 at 5, 20, and

27 °C, respectively (Figure 4.16).
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Figure 4.16: Adhesion number as a function of temperature

The adhesion characteristic is informative in an emergency response as it helps
predict the “stickiness” of oil. The penetrometer test determined that Alberta bitumen has

a strong affinity to adhere to a substrate and to have particles stick to its surface.
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Broje and Keller (2006) measured interfacial interactions between hydrocarbons
and various surfaces for oil recovery purposes. A dynamic contact angle (DCA) analyzer
(Cahn Radian 315, Thermo Electron Corporation) was used to measure adhesion-related
parameters. Oil recovery was measured as the weight of adhered oil per unit surface area.
The adhesion of Cooks Inlet, AK (p=886 kg/m’, v=9.6 mPas) and marine fuel IFO-120
(p=965 kg/m’, v=1540 mPas) on a steel surface at 15 °C was 10 and 30 g/m?,

respectively.

The DCA analyzer automates the adhesion method and achieves more consistent
and reliable results than the penetrometer. However, because of the similarities in
methods, a comparison between the test oils can be made. The adhesion of Alberta
Bitumen (p=1,100kg/m’, v=29,116 mPas) to a similar surface was significantly greater at
all temperatures than the oils investigated by Broje and Keller. This suggests that during
a spill, the Alberta bitumen is more likely to foul structures and settle to the bottom of a

water body.

Implications of Research

The containment and recovery of sunken oil has proven to be very difficult. The
shearing off or movement of sunken oil is especially bad (e.g., shuts down cooling water
intakes, raw intakes for potable water, sensitive species impacts, reduces amount of
recoverable oil). Spill modelers can use the data generated by this research to help predict

the fate and transport of sunken oil. In the experiments, temperature was found to be the
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most important variable affecting the CSS of bitumen with no erosion observed at
temperatures < 18.5 £ 1.9°C. Therefore, sunken bitumen resulting from spills occurring
in cold or temperate climates would likely remain stranded on bottom once it settled. This
also applies to deeper ocean spills where there is a steep cooling temperature gradient to
4°C. In the experiments, all visual erosion of bitumen was observed at temperatures >
18.5 + 1.9 °C. Hence, potential for erosion of bitumen is greater in tropical or sub-
tropical climates where water temperatures can reach 20°C (68°F) or higher (e.g., T/B

Morris J. Berman Spill (API gravity of 9.5) in San Juan, Puerto Rico, 1994).

While heavy petroleum products such as bitumen may initially suspend in the
water column, once stranded on bottom even the strongest tidal systems (e.g., Piscataqua
River, NH =200 cm/s, 4 kn) would probably not cause erosion of sunken bitumen unless
the ambient water temperatures met the thresholds for erosion observed in these
experiments. Observations from a recent Mississippi River spill of slurry oil (API gravity
< 13) in summer 2015 verified this laboratory model. Changes in side-scan sonar images
over a few days showed minimal mobilization of the oil along the riverbank suggesting
no erosion at ~14°C. The recovery of sunken oil was accomplished using an

environmental clamshell bucket.

56



Recommended Response Protocol

Model development of submerged oil has rarely been studied and establishing a

methodology to compute resuspension of sunken oil is needed. In the event heavy oil is

spilled, the following is recommended to determine its fate.

1.

Determine what class of oil is released into the environment: Check manifest and
MSDS for description of oil. The oil’s API gravity and initial visual observations
can be used to determine likelihood of it floating, submerging or sinking to the

bottom.

Determine if submerged oil will likely remain suspended in the water column or
sink to bottom: Conduct oil-to-water contact experiments (e.g., introduce small
samples of collected spill oil into jars of ambient water) to determine potential oil
behavior. Confirm the oil is on the seabed/riverbank using side-scan sonar and/or

divers.

. Determine physical properties of the oil: Obtain viscosity and specific gravity

estimates from MSDS and send samples of “neat” oil and “weathered oil” to a lab
(e.g., Environment Canada) for physical characterization (i.e., density, viscosity)
at various temperatures (e.g., temperature profile as a function of water depth)

specific to ambient conditions at spill site.
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4. Determine coastal processes and measure physical conditions at the spill site: Few
if any real-time measurements of currents have been made during recent spills
(e.g., Delaware River, 2004; Mississippi River, 2015), but current estimates with
depth are necessary in a response to potentially predict the movement of the
sunken oil. Request an Oil Spill Response Vessel take physical measurements
(i.e., water temperature, salinity, bathymetry). For some incidents, there may be
automated oceanographic buoy systems nearby equipped with instrumentation

capable of measuring these characteristics in mid-water column and near-bottom.

5. Obtain measurements needed to calculate BSS: Depending on equipment
availability, measure single-point 3D current velocity (u, v, w). Measurements
should be taken close to the boundary layer, preferably within 20% of flow depth
(e.g., if water depth is 10 ft., take measurements at <8 ft.). If this is not possible,
free stream velocity measurements can be used. If deployment of a velocimeter is
not possible, then a determination of bed stress can be made as a function of
pressure using 7, = YRS where y is the specific gravity of water, R is the
hydraulic radius (approximately the depth of water for a wide channel), and S is

slope of channel.

6. Calculate BSS: Plot average current flow and superimpose velocity fluctuations to

obtain the three velocity components, u’, v, w’ used to calculate turbulent energy.
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7. Predict potential movement of sunken oil: Compare ambient BSS to available CSS
estimate for the spilled oil or a similar oil under same conditions. If BSS is
significantly less than the CSS, oil will remain stranded on bottom. If BSS is
above critical values, then oil will mobilize and resuspend. At a minimum, spill
modelers can approximate the conditions under which the oil globules will shear
off oil adhered to the bottom. While digital cameras may allow for quick on-site
observations, it is often very difficult to videotape because of turbidity and depth

of water.
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Chapter 5: CONCLUSIONS

Simecek-Beatty (2007) proposed a method for modeling the resuspension of
submerged oil using laboratory and real time measurements of bottom currents, but its
abilities are limited if the CSS of the oil is not known. The UNH CRRC flume facility is
capable of conducting experiments to determine the CSS of specific oils. Only one study,
Cloutier et al. (2002) has been published showing data estimating the conditions under
which a sunken oil will erode off bottom. They determined mass erosion of Hibernian
crude (API 35) will occur at CSS of >5 Pa in seawater at 13 °C. At 4 °C, they determined

the Hibernian will not erode under bed loads <7 Pa.

Unfortunately, the oil Cloutier et al. used was a high API gravity and will not
readily sink in the event of a spill. Spill modelers need the CSS values of heavier oils to
more accurately predict the fate of sunken oil. This thesis research provides such data on
Alberta bitumen, a low API gravity petroleum product (~8.5°). Mass erosion of bitumen
will occur at ~2 Pa. in freshwater > 18.5 + 1.9 °C and will not erode under BSS up to ~18
Pa between 5.3 £ 0.4 and 18.5 £ 1.9 °C. The estimated CSS can be used in spills of
similar products (Group V oils), as it is common practice to use one group V oil’s
characteristics to represent the likely behavior of another. This gives modelers the option

to apply the expected behavior of Alberta bitumen during an emergency response and
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would be a more realistic assumption for heavy oil spills than currently available based

on the Hibernian crude.
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Chapter 6: RESEARCH RECOMMENDATIONS

Research is needed to determine the CSS of more oils with varying API gravities.
This research investigated an oil of low API gravity (Alberta bitumen, 8.5° API).
Oils of medium API gravities (California Kern River Crude, 15° API) need to be
studied, as well as lighter oils (Alaskan crude, 32° API) mixed with sediment to
make them sink. Experiments also need to be conducted using oil stranded on
various bottom types (e.g., sand, mud). This research examined stranded oil on a
smooth, flat artificial (Plexiglas) surface, which best resembles a flat bedrock
bottom. It is also possible that the CSS of the bed substrate (e.g., silt) could be less

than that of the oil, which lowers its velocity threshold for erosion.

Improved estimation of BSS is essential to improving predictions of the conditions
under which erosion of sunken oil will occur. While oil spill modelers suggested
the methods used in the study, a thorough investigation of other possible BSS
calculation methods such as Reynolds stress and the Shields approach are
recommended. Each estimation method is subject to different types of errors (e.g.,
instrument noise, selection of sample volume for turbulence analysis). So, in
future experiments, multiple methods appropriate for the local flow environment

should be used for estimation.
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The velocity profiles (Appendix V) revealed some inconsistencies that may have
affected the accuracy of BSS estimates. The velocity profile method requires that
the flow conform to a logarithmic profile. In some experiments, the velocity
departed from this assumption. The flow straightener inside the test section was
the likely source of error. Moving the test section further downstream may reduce
artificial turbulence and achieve more consistency among the experiments. A
comparison of BSS estimates using the free stream velocity is recommended when

certain boundary layer assumptions are violated.

Acoustic interference (i.e., echoes from past pings affecting present
measurements) is a concern when using coherent Doppler instruments, but often
resolved by moving the instruments position or changing sampling parameters
(e.g., pulse length). However, when profiling near the boundary a reflection is
difficult to avoid. Despite the hard tank bottom, the signal-to-noise ratios in this
research (Appendix V) suggest minimal acoustic reflection within sampling
volume. In the future, acoustic interferences could be avoided using soft and more

acoustically absorbent materials (e.g., wood, rubber, foam, natural substrate).
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Appendix A: Case Studies of Nonfloating Oil Spills

17/B DBL-152

In 2005, the Tanker Barge DBL-152, while making its way from Houston, TX to
Tampa, FL, collided with submerged remains of a pipeline service platform that had
collapsed during Hurricane Rita. Its cargo, 100,000 barrels of slurry oil, a by-product of
petroleum refining, was released into the Gulf of Mexico. The oil had a very low API
(4°) and sank to the seafloor.

The sunken oil was difficult to locate and monitor. Trawler vessels equipped with
snare sentinels (e.g., chain drags and crab pots with absorbent material) and remotely
operated vehicles (ROVs) were deployed to find the sunken oil. Very little (~5%) was
collected by divers. Some of the oil remaining in the environment washed up on

shorelines many months after the incident.

(epa.gov)
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Nestucca Spill

A tug vessel lost its tow of the Nestucca barge in 1988 a few miles off Greys
Harbor, WA. When the tug attempted to reestablish the connection, it collided with the
bow of the barge. The collision ripped a hole in the barge causing 6,000 barrels of API 12
oil to spill along Washington’s outer coast.

High seas and strong current precluded the use of containment booms, so no
attempt was made for open water recovery. The spilled oil was over washed by waves
and quickly formed tar balls that moved below the water surface and could not be tracked
visually. Two weeks later, the oil unexpectedly came ashore in discontinuous patches
along the coast of Vancouver Island, Canada, 175 kilometers north of the release site. It

contaminated 150 kilometers of shoreline.

r %
) Vancouverisland
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Grays Harbor County, WA, USA
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Kalamazoo River

In 2010, an Enbridge pipeline ruptured releasing > 1,000,000 barrels of dilbit
(bitumen mixed with a diluted crude of lighter density) near Marshal, MI. The dilbit (~20
API) entered Talmadge Creek and flowed into the Kalamazoo River, which is a tributary
of Lake Michigan. The oil became submerged in the tributary because, as the diluent
evaporated, the remaining product became mixed with the high sediment load in the
creek (due to recent flooding) and its density increased. The USEPA was in charge of the
response to the spill and directed Enbridge to take removal actions. Unfortunately, due to
the nature of the spill much of the oil could not be immediately recovered without
causing significant adverse impacts to the creek and river. The sunken oil had to be
carefully monitored and collected slowly over time. In 2013, the EPA ordered Enbridge
to remove oil and oil-containing sediment along parts of the Kalamazoo River where
significant accumulations were found.

The best way to identify the location of the sunken oil in these shallow waterways
and determine its extent was using a field technique known as poling. Poling involves
manually agitating soft sediment and river mud using a pole. When the sediment was
agitated, the sunken oil rose to the surface in the form of oil sheen and globules. The
resulting areas of recovery indicated where other sunken oil might reside and these

locations were targeted for dredging.
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(epa.ov)

M/T Athos

On November 26, 2004, the M/T Athos I struck several submerged objects and
released approximately 6,500 barrels of Bachaquero crude oil into the Delaware River,
which is a major tidal estuary. The tanker’s draft was 36 feet. It was traversing a channel
depth thought to be 40 feet. At the time of the incident, the river was flooding with water
current velocities around 1.5 kn. near the release site; divers spotted two large trenches
filled with crude. The oil jetted out of the ship causing entrainment with clay and mud
from the bottom, creating a cohesive mixture denser than the ambient seawater. The oil in
the large trenches was vacuumed out. When samples of the oil were taken and placed in
jars of cold, freshwater, the oil floated to the surface. A major concern for the Unified
Command was that sufficient BSS applied to the oil in the trenches could cause erosion
and allow it to move. Little, if any, real-time observations of waves, currents or bottom

characteristics were available at the time of the incident. This scenario illustrated the
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questions and problems modelers encounter when attempting to predict behavior of

sunken oil during a response.
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The sunken oil posed a major risk to a local nuclear power plant as it drew water
from the river for cooling purposes. It cost millions of dollars a day to shut down the
nuclear plant. If decision makers had known under what conditions and currents the
sunken oil would resuspend or mobilize, then a more informed decision about closing the

plant intakes could have been made.
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Appendix B: Alberta Bitumen MSDS

Material Safety Data Sheet “

=]

ETRO-CANADA BITUMEN PETROCANADA

1. Product and company identification |

Product name
Synonym
Code

Material uses

Manufacturer

In case of emergency

: PETRO-CANADA BITUMEN

: MacKay River Bitumen, Dover Bitumen, Bitumen, Off-Spec Bitumen, Sales Oil
1 90000124
: Raw product for oil refineries to produce fuels and other petroleum based organic

products.

: PETRO-CANADA

P.O. Box 2844

150 = 6th Avenue South-West
Calgary, Alberta

T2P 3E3

: Petro-Canada: 403-296-3000

Canutec Transportation: 613-996-6666
Poison Control Centre: Consult local telephone directory for emergency number(s).

cation

2. Hazards identifi

Physical state
Odour

WHMIS (Canada)

OSHA/HCS status

Emergency overview

Routes of entry

Potential acute health effects

Inhalation

Ingestion
Skin
Eyes

Chronic effects

Carcinogenicity
Mutagenicity
Teratogenicity
Developmental effects

: Viscous liquid.

: Tarry odour. "Rotten egg" if H2S present, but odour is an unreliable warning, since it

may deaden the sense of smell.

@

Class D-2B: Material causing other toxic effects (Toxic).

: This material is considered hazardous by the OSHA Hazard Communication Standard

(28 CFR 1910.1200).

: WARNING!

CAUSES EYE AND SKIN IRRITATION. MAY CAUSE ALLERGIC SKIN REACTION.
Iritating to eyes and skin. May cause sensitisation by skin contact. Do not breathe
vapour or mist. Do not get on skin or clothing. Avoid contact with eyes. Wash
thoroughly after handling.

: Dermal contact. Eye contact. Inhalation. Ingestion.

: Inhalation of this product may cause respiratory tract irritation and Central Nervous

System (CNS) Depression, symptoms of which may include; weakness, dizziness,
slurred speech, drowsiness, unconsciousness and in cases of severe overexposure;
coma and death. At higher concentrations (above 10 ppm), hydrogen sulphide is
extremely toxic by inhalation, may cause respiratory-tract irritation and respiratory failure,
coma and death. Pulmonary edema can occur up to 24 hours after hydrogen sulphide
exposure. While hydrogen sulphide emits a strong odour of rotten eggs, detection by
smell is not sufficient as a warning property for exposure to this substance, as it may
deaden the sense of smell quickly.

: Ingestion may cause narcosis.

: Imitating to skin. May cause sensitisation by skin contact. Hot bitumen can burn skin.
: |mritating to eyes. Hot bitumen can burn eyes.

Potential chronic health effect

: Once sensitized, a severe allergic reaction may occur when subsequently exposed to

very low levels.

: No known significant effects or critical hazards.
: No known significant effects or critical hazards.
: No known significant effects or critical hazards.
: No known significant effects or critical hazards.

[Date of issue : 5/28/2012.

Petro-Canada is a Suncor Energy business

Internet: www.petro-canada.ca/msds Page: 1/7
™ Trademark of Suncor Energy Inc. Used under licence.
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PETRO-CANADA BITUMEN Page Number: 2

2. Hazards identification

Fertility effects . No known significant effects or critical hazards.
Medical conditions : Pre-existing skin disorders may be aggravated by over-exposure to this product.
aggravated by over- Repeated skin exposure can produce local skin destruction or dermatitis.
exposure

See toxicological information (Section 11)

3. Composition/information on ingredients

Name CAS number %
Bitumen 128683-24-9 100
Organo-sulphur compounds 7704-34-9 4-5

During storage or transit of hot bitumen, toxic hydrogen sulphide (7783-06-4) may be
generated. Contains small amounts of polynuclear aromatic hydrocarbons (PNAs).

There are no additional ingredients present which, within the current knowledge of the supplier and in the
concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in
this section.

4 . First-aid measures

Eye contact : Check for and remove any contact lenses. Immediately flush eyes with plenty of water
for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical
attention immediately.

Skin contact : In case of contact, immediately flush skin with plenty of water for at least 15 minutes
while removing contaminated clothing and shoes. Wash skin thoroughly with soap and
water or use recognised skin cleanser. Wash clothing before reuse. Clean shoes
thoroughly before reuse. Get medical attention immediately.

Inhalation : Move exposed person to fresh air. If not breathing, if breathing is irregular or if
respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel.
Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention
immediately.

Ingestion : Wash out mouth with water. Do not induce vomiting unless directed to do so by medical
personnel. Never give anything by mouth to an unconscious person. Get medical
attention immediately.

Protection of first-aiders : No action shall be taken involving any personal risk or without suitable training. It may
be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash
contaminated clothing thoroughly with water before removing it, or wear gloves.

Notes to physician : No specific treatment. Treat symptomatically. Contact poison treatment specialist
immediately if large quantities have been ingested or inhaled.

5. Fire-fighting measures

Flammability of the product : May be combustible at high temperature.

Extinguishi i
Suitable . Use an extinguishing agent suitable for the surrounding fire.
Not suitable : None known.

Special exposure hazards : Promptly isolate the scene by removing all persons from the vicinity of the incident if
there is a fire. No action shall be taken involving any personal risk or without suitable
training.

Products of combustion : Carbon oxides (CO, CO2), nitrogen oxides (NOx), sulphur oxides (SOx), hydrogen
sulfide (H:S), smoke and irritating vapours as products of incomplete combustion.

Special protective . Fire-fighters should wear appropriate protective equipment and self-contained breathing

equipment for fire-fighters apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Special remarks on fire : Low fire hazard. This material must be heated before ignition will occur. Hydrogen

hazards sulphide may be released if the product is overheated.

Special remarks on : Do not pressurise, cut, weld, braze, solder, drill, grind or expose containers to heat or

explosion hazards sources of ignition.

Date of issue : 5/28/2012. Internet: www.petro-canada.ca/msds Page: 2/7
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|6 . Accidental release measures

Personal precautions

Environmental precautions

Methods for cleaning up
Small spill

Large spill

. No action shall be taken involving any personal risk or without suitable training.

Evacuate surrounding areas. Keep unnecessary and unprotected personnel from
entering. Do not touch or walk through spilt material. Avoid breathing vapour or mist.
Provide adequate ventilation. Wear appropriate respirator when ventilation is
inadequate. Put on appropriate personal protective equipment (see Section 8).

: Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and

sewers. Inform the relevant authorities if the product has caused environmental pollution
(sewers, waterways, soil or air).

: Stop leak if without risk. Move containers from spill area. Dilute with water and mop up

if water-soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and
place in an appropriate waste disposal container. Dispose of via a licensed waste
disposal contractor.

: Stop leak if without risk. Move containers from spill area. Approach the release from

upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash
spillages into an effluent treatment plant or proceed as follows. Contain and collect
spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or
diatomaceous earth and place in container for disposal according to local regulations
(see section 13). Dispose of via a licensed waste disposal contractor. Contaminated
absorbent material may pose the same hazard as the spilt product. Note: see section 1
for emergency contact information and section 13 for waste disposal.

7. Handling and storage

Handling i

Storage

Put on appropriate personal protective equipment (see Section 8). Eating, drinking and
smoking should be prohibited in areas where this material is handled, stored and
processed. Workers should wash hands and face before eating, drinking and smoking.
Remove contaminated clothing and protective equipment before entering eating areas.
Persons with a history of skin sensitization problems should not be employed in any
process in which this product is used. Do not get in eyes or on skin or clothing. Do not
ingest. Avoid breathing vapour or mist. Keep in the original container or an approved
alternative made from a compatible material, kept tightly closed when not in use. Empty
containers retain product residue and can be hazardous. Do not reuse container.

: Store in accordance with local regulations. Store in original container protected from

direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials
(see section 10) and food and drink. Keep container tightly closed and sealed until
ready for use. Containers that have been opened must be carefully resealed and kept
upright to prevent leakage. Do not store in unlabelled containers. Use appropriate
containment to avoid environmental contamination.

8. Exposure controls/personal protection

Ingredient

Exposure limits

Hydrogen sulphide

ACGIH TLV (United States).
TWA: 1 ppm 8 hour(s).
STEL: 5 ppm 15 minute(s).

Consult local authorities for acceptable exposure limits.

Recommended monitoring
procedures

Engineering measures

: If this product contains ingredients with exposure limits, personal, workplace atmosphere

or biological monitoring may be required to determine the effectiveness of the ventilation
or other control measures and/or the necessity to use respiratory protective equipment.

: No special ventilation requirements. Good general ventilation should be sufficient to

control worker exposure to airborne contaminants. If this product contains ingredients
with exposure limits, use process enclosures, local exhaust ventilation or other
engineering controls to keep worker exposure below any recommended or statutory
limits.

Date of issue : 5/28/2012.
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8. Exposure controlslpersonal protection

Hygiene measures

Personal protection
Respiratory

Hands

Eyes

Skin

Environmental exposure
controls

: Wash hands, forearms and face thoroughly after handling chemical products, before

eating, smoking and using the lavatory and at the end of the working period. Appropriate
techniques should be used to remove potentially contaminated clothing. Contaminated
work clothing should not be allowed out of the workplace. Wash contaminated clothing
before reusing. Ensure that eyewash stations and safety showers are close to the
workstation location.

. Use a properly fitted, air-purifying or air-fed respirator complying with an approved

standard if a risk assessment indicates this is necessary. Respirator selection must be
based on known or anticipated exposure levels, the hazards of the product and the safe
working limits of the selected respirator. Recommended: organic vapour cartridge or
canister with a dust, fume or mist filter (R, or P series) may be permissible under certain
circumstances where airborne concentrations are expected to exceed exposure limits.
Protection provided by air-purifying respirators is limited.

: Chemical-resistant, impervious gloves complying with an approved standard should be

worn at all times when handling chemical products if a risk assessment indicates this is
necessary.
Recommended: natural rubber (latex), Viton®.

: Safety eyewear complying with an approved standard should be used when a risk

assessment indicates this is necessary to avoid exposure to liquid splashes, mists or
dusts.

: Personal protective equipment for the body should be selected based on the task being

performed and the risks involved and should be approved by a specialist before handling
this product.

: Emissions from ventilation or work process equipment should be checked to ensure they

comply with the requirements of environmental protection legislation. In some cases,
fume scrubbers, filters or engineering modifications to the process equipment will be
necessary to reduce emissions to acceptable levels.

9. Physical and chemical properties

Physical state

Flash point

Auto-ignition temperature
Flammable limits

Colour

Odour

Odour threshold

pH
Boiling/condensation point
Melting/freezing point
Relative density
Vapour pressure
Vapour density
Volatility

Evaporation rate
Viscosity

Pour point

Solubility

: Viscous liquid.

: Open cup: 182°C (359.6°F) [Cleveland.]

1 >245°C (>473°F)

: Not available.

: Black.

: Tarry odour. "Rotten egg” if H2S present, but odour is an unreliable warning, since it

may deaden the sense of smell.

: Not available.

: Not available.

1 230°C (446°F)

: Not available.

: 1to 1.1 (Water=1)
: Not available.

: Not available.

: Not available.

: Not available.

: 29116 cSt @ 40°C (104°F)
1 21°C (70°F)

: Insoluble in water.

Date of issue : 5/28/2012.
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10 . Stability and reactlwty

Chemical stability . The product is stable.

Hazardous polymerisation : Under normal conditions of storage and use, hazardous polymerisation will not occur.
Materials to avoid : Reactive with oxidising agents.

Hazardous decomposition : May release COx, NOx, SOx, H.S, smoke and irritating vapours when heated to
products decomposition.

11 . Toxicological information

Acute toxicity
Product/ingredient name Result Species Dose Exposure
Hydrogen sulphide LC50 Inhalation  Rat 444 ppm 4 hours
Gas.
Conclusion/Summary : Not available.
ct ic toxicit
Conclusion/Summary : Not available.
Irritation/Corrosion
Conclusion/Summary : Not available.
Sensiti
Conclusion/Summary : Not available.
Carci .
Conclusion/Summary . Not available.
Mutagenicity
Conclusion/Summary : Not available.
Terat igit
Conclusion/Summary : Not available.
R juctive toxicit
Conclusion/Summary : Not available.
12 . Ecological information
Environmental effects : No known significant effects or critical hazards.
A i toxicit
Conclusion/Summary : Not available.
Biod iabilit
Conclusion/Summary : Not available.

13 . Disposal considerations

Waste disposal : The generation of waste should be avoided or minimised wherever possible. Significant
quantities of waste product residues should not be disposed of via the foul sewer but
processed in a suitable effluent treatment plant. Dispose of surplus and non-recyclable
products via a licensed waste disposal contractor. Disposal of this product, solutions
and any by-products should at all times comply with the requirements of environmental
protection and waste disposal legislation and any regional local authority requirements.
Waste packaging should be recycled. Incineration or landfill should only be considered
when recycling is not feasible. This material and its container must be disposed of in a
safe way. Care should be taken when handling emptied containers that have not been
cleaned or rinsed out. Empty containers or liners may retain some product residues.
Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and
Sewers.

Disposal should be in accordance with applicable regional, national and local laws and regulations.

Date of issue : 5/28/2012. Internet: www.petro-canada.ca/msds Page: 5/7
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13 . Disposal considerations

Refer to Section 7: HANDLING AND STORAGE and Section 8: EXPOSURE CONTROLS/PERSONAL PROTECTION
for additional handling information and protection of employees.

14 . Transport information

Regulatory UN number |Proper shipping Classes PG* | Label Additional
information name information
TDG Classification |Not - - - i isi
regulated. For US Shipments
Only: ELEVATED
TEMPERATURE

LIQUID, N.O.S., at or
above 100°C and
below its flash point, 9,
UN3257, PGIII

DOT Classification |Not available. | Not available. Not available. |- -

PG* : Packing group
15 . Regulatory information

United States
HCS Classification : Imitating material
Sensitising material
Canada
WHMIS (Canada) : Class D-2B: Material causing other toxic effects (Toxic).

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and
the MSDS contains all the information required by the Controlled Products Regulations.

International requlations

Canada inventory ;. All components are listed or exempted.

United States inventory : Not determined.

(TSCA 8b)

Europe inventory : Not determined.

16 . Other information

Label requirements : CAUSES EYE AND SKIN IRRITATION. MAY CAUSE ALLERGIC SKIN REACTION.

Hazardous Material

Information System (U.S.A.
yatem { ) Flammability 1

Physical hazards 0
Personal protection H |

National Fire Protection :
Association (U.S.A.) Flammability

Health 0 > Instability
Special
References : Available upon request.
™ Trademark of Suncor Energy Inc. Used under licence.
Date of printing . 5/28/2012.
Date of issue : 28 May 2012
Date of previous issue . 5/27/2008.
Date of issue : 5/28/2012. Internet: www.petro-canada.ca/msds Page: 6/7
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16 . Other information

Responsible name : Product Safety - DSR
P Indicates information that has changed from previously issued version.
For Copy of (M)SDS : The Canadian Controlled Products Regulations (CPR) (Under the Hazardous Products

Act, part of the WHMIS legislation) only apply to WHMIS Controlled (i.e., hazardous)
products. Therefore, the CPR and the 3-year update rule specified therein do not apply to
WHMIS Non-Controlled products. Although this is true, customarily Petro-Canada
reviews and updates Non-Controlled product MSDS if a customer requests such an
update. These Non-Controlled product updates are given a lower priority than Controlled
products but are handled as soon as practicable. If you would like to verify if the MSDS
you have is the most current, or you require any further information, please contact:

Internet: www.petro-canada.ca/msds
Western Canada, telephone: 403-296-7672; fax: 403-296-5147

For Product Safety Information: (905) 804-4752
Notice to reader
To the best of our knowledge, the information contained herein is accurate. However, neither the above-named
supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the
information contained herein.
Final determination of suitability of any material is the sole responsibility of the user. All materials may present

unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot
guarantee that these are the only hazards that exist.

Date of issue : 5/28/2012. Internet: www.petro-canada.ca/msds Page: 7/7
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Appendix C: Density calculations for rock surrogate pretest

Bitumen spedcific gravity 1.01
Rock specific gravity 2.6
Height (cm) = Height (cm) = Height (cm) = Height (cm) = Height (cm) =
0.25 0.5 1 2 4
Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent
Bitumen Bitumen Bitumen Rock Rock Rock Rock Rock Rock
Volume Diamter Weight Volume Dimensions Dimensions Dimensions Dimensions Dimensions
(cc) {cm) (N) (cc) (cmxcmxem)  (cmxcmxem)  (cmxemxem)  (cmxemxem)  (emxemxcm)
41 4.28 0.41 15.93 11.03 7.80 5.52 3.90 2.76
131 6.30 1.30 50.85 18.72 13.94 9.86 6.97 493
983 12.34 9.74 381.86 54.01 38.19 27.01 15.10 13.50

*Coral rock and density calculations provided by Dr. Thomas Ballestero
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Appendix D: Annular flume background

Battelle Memorial Institute (Duxbury, Ma) donated an annular flume to the
University of New Hampshire (UNH) that is now operated by the Coastal Response
Research Center (CRRC). Prior to being donated, the flume had been used to study the
behavior of surface waves using a vane system to generate wind-driven waves.

In 2003, it was re-assembled in the Chase Ocean Engineering Laboratory.

The goal was to establish a facility at UNH that could be used to investigate the
weathering characteristics of oil spilled in water. Dr. M. Robinson Swift, a Professor of
Mechanical and Ocean Engineering spearheaded the project. Initial objectives were to:
set up the flume, test its wind- and wave-generating capabilities, choose suitable test oils,
conduct water-contact experiments, and determine the feasibility of containment
technology.

Dr. Swift’s team developed and evaluated procedures for observing nonfloating oil
behavior to enable future investigation of settling, transport, containment and recovery of
nonfloating oils. This work represented UNH’s first attempt in studying the nonfloating
oil problem.

In 2012, the CRRC, a partnership with NOAA’s Office of Response and
Restoration (ORR), reassembled the flume in Gregg Hall. The Center understood the
enormous potential of the circular flume to conduct research in initial oil-water contact
processes, globule formation, settling, transport by currents, as well as containment

technologies of oil below the surface.
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Appendix E: Vectrino readout of ADV’s elevation during experiments

Bottom Distance
0.1 T T T T

Ciztance to Bottom (m)

1 1 1 1 1 1 1 | 1
200 420 440 460 450 500 520 540 560 580 600
Time[s)

*Solid line is lot of points on top of each other
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Appendix F: Bottom check test

Bottom Check
7 T T T

- = = 0il
6.9 Lexan |
6.8 -
6.7} i
£ [T A
€ 6.6 .
o
=
a [
o 6.5} 1 .
@
5
2 6.4} -
[a]
6.3} .
6.2 i
6.1 .
6 1 | 1 1 1 | 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time, min
* Thickness of stranded oil (1.75mm - measured by digital caliper) and change in bottom
distance (1.78mm - measured by ADV) were nearly identical indicating the ADV easily
distinguishes between the two fluids (i.e., oil-water interface). Dashed lines are for oil
(black) and Lexan (red) surfaces.
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Appendix G: MATLAB data structure containing collected Vectrino data

BottomCheck_startDate
|-E] Units
Comments

'2014-03-24 12:...

<1x1 struct>
<1x1 struct>

e O O Data

N Bl ¥ =R = o - T Stack:| Base 3 Select data to plot v
[€] Data <1x1 struct>

Field & Value Min Max
o Profiles_HostTime <1x38063 doubl... 1.3957e+09 1.3957e+09
[ Profiles_VelX <38063x28 singl... <Too man... <Too many elem...
[ Profiles_VelY <38063x28 singl... <Too man... <Too many elem...
[ Profiles_VelZ1 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_VelZ2 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_CorBeam1 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_CorBeam?2 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_CorBeam3 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_CorBeam4 <38063x28 singl... <Too man... <Too many elem...
(] Profiles_AmpBeam1 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_AmpBeam?2 <38063x28 singl... <Too man... <Too many elem...
(] Profiles_AmpBeam3 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_AmpBeam4 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_SNRBeam1 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_SNRBeam?2 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_SNRBeam3 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_SNRBeam4 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_DataQualityBeam1 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_DataQualityBeam?2 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_DataQualityBeam3 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_DataQualityBeam4 <38063x28 singl... <Too man... <Too many elem...
[ Profiles_TimeStamp <38063x1 single> 3.1965e+03 3.5951e+03
(] Profiles_Status <38063x1 single> 4 36
[ Profiles_SpeedOfSound <38063x1 single> 1.4964e+03 1.5007e+03
(] Profiles_Temperature <38063x1 single> 24.9000 26.5400
[ Profiles_AveragedPingPairs <38063x1 single> 61 101
(- Profiles_Range <1x28 single> 0.0400 0.0679
(] Profiles_firstRecord 1.3957e+09 1.3957e+09 1.3957e+09
Profiles_startDate '2014-03-24 12:...
[ BottomCheck_HostTime <1x4003 double> 0 1.3957e+09
[ BottomCheck_CenterBeamAmp <4003x500 singl... <Too man... <Too many elem...
[ BottomCheck_CenterBeamCurveFit <4003x500 singl... <Too man... <Too many elem...
(] BottomCheck_CenterBeamBottomPeak <4003x500 singl... <Too man... <Too many elem...
[ BottomCheck_TimeStamp <4003x1 single> 0 3.5951e+03
[ BottomCheck_BottomDistance <4003x1 single> -0.0996 0.1303
(] BottomCheck_Status <4003x1 single> 0O 32
[ BottomCheck_Range <1x500 single> 0.0200 0.5348
[ BottomCheck_firstRecord 1.3957e+09 1.3957e+09 1.3957e+09
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Appendix H: Sample correlation of ADV velocity measurements

00 Correlation Time Series

60 -

50

40 F

Beam Correlation, %

30

T

20

10

0 1 | 1 | |

0 10 20 30 40 50
Time, min
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Appendix I: 3-standard deviation filter applied to raw ADV data

Filtered Time Series

o o=
o -+

Current \elocity, m /s
o

Raw
— Filtered

0 10 20 30 40
Time, min

Command Window
>> sum((X_CLEANED{1}.Data_ Raw) )

ans =
2.9815e+05
>> sum(isnan(X_CLEANED{1l}.Data_Correlation_Filtered))
ans =
85
>> sum(isnan(X_CLEANED{1l}.Data_3_Sigma_Filtered))
ans =

\
£ 2209

50

*Filter removed 2209 data points outside 3 standard deviations from the mean
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Appendix J: LP BSS calculation code

1- clc

2 - clear

3 - format long

4

5 - load('VectrinoData.308.13.Vectrino-II.00001.mat")

6

7 % declare constants

8 - p=1000;

9 - K=.4000;

10

11 % give start and stop row values for velocity average

12 - row_start=1;

13 - row_end=length(Data.Profiles_VelX)

14

15 % get median bottom distance (use median instead of mean!)
16 - bottom_value=median(Data.BottomCheck_ BottomDistance)

17

18 % assume the first measurment is the bottom distance - 4 cm
19 - first_measurment = (bottom_value-.04)

20

21 % create a matrix of ranges, going from (bottom dist - 4cm) to 1
22 % NOTE: do not go to 0, as this will not be a valid value when I do the
23 % natural log!

24 - z_range=fliplr([l:round(first_measurment*1000)])/1000

25

26 % get the mean velocity values

27 - mean_uX=mean(Data.Profiles_VelX(row_start:row_end,:));

28

29 % get the standard deviation of velocity values

30 - std_uX=std(Data.Profiles_VelX(row_start:row_end,:));

31

32 % cut out the mean values; e.g. from (bottom dist - 4cm) to 1
33 - mean_uX=mean_uX(l:length(z_range));

34

35 % plot profile

36 - figure(1l)

37 - clf

38 - plot(mean_uX,z_range*1000, 'o")

39 - xlabel('Current velocity (m/s)')

40 - ylabel( 'Distance off Bed (mm)')

41 %%

42

43 % calculate the natural log of the ranges

44 - z_range_nl=log(z_range);

45

46 % linear regression of the natural log ranges and velocity
47 - datafit_coeffs=polyfit(z_range_nl,mean_uX,1);

48

49 % this line is just so I can plot the line on the next graph
50 - datafit_line=polyval(datafit_coeffs,z_range_nl);

51!

52 % plot log fit

53 - figure(2)

54 - clf

55 - plot(z_range_nl,mean_uX, 'o')

56 - hold on

57 - plot(z_range_nl,datafit_line)

58 - xlabel('Natural Log Distance off Bed')

59 - ylabel( 'Current velocity (m/s)')

60

61

62 % calculate

63 - m=datafit_coeffs(1)

64 - b=datafit_coeffs(2)

65 - z=exp(-b/m)

66 -

67 - t=p*U~2

68
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; Linear Regression
T T T T T

0.9}

0.8

0.7}

0.6

0.5f

0.4f

Current velocity (m/s)

0.3}

0.2f

0.1}

O

0
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Natural Log Distance off Bed (mm)

X a g Command Window

bottom_value =

0.0668

first_measurment =

0.0268

z_range =
Columns 1 through 9
0.0270 0.0260 0.0250 0.0240 0.0230 0.0220 0.0210 0.0200 0.0190
Columns 10 through 18
0.0180 0.0170 0.0160 0.0150 0.0140 0.0130 0.0120 0.0110 0.0100
Columns 19 through 27

0.0090 0.0080 0.0070 0.0060 0.0050 0.0040 0.0030 0.0020 0.0010

0.1976

1.3173

0.0013

0.0790

86



Appendix K: TKE BSS calculation code

1- clear

2 - clc

3

4 - CORRELATION_MINIMUM=80

5

6 - TIME_FLUC_START=1

7 - TIME_FLUC_STOP=1000

8

9 - TOP_PERCENT=1 % e.g. top 1%

10

11 - DEPTH_START=1

32| = DEPTH_STOP=3

13

14 $% I REFORMAT YOUR DATA TYPES INTO STRUCTURES, and REMANE V to XI!!
15 - load matlab.mat

16 - x=v; clear v;

17 - X={};

18 - for g=1l:size(x,2)

= X{g}=x(:,q);

20 - end

21 - Y={};

22 - for g=1:size(y,2)

23 - Y{a}=y(:,q);

24 - end

25 - Z={};

26 - for g=1:size(z,2)

27 - Z{q}=z(:,q);

28 - end

29

30 % time vector had some random zero outs in it near

31 % the end....

32 - t_sample_rate = t(2)-t(1);

33 - t_new=[t(1l):t_sample_rate:length(t)*t_sample_rate+t_sample_rate];
34

35

36 - for i=['X' 'Y' 'Z"]

37 - eval(sprintf('v=%s;', i));

38

39 - for n=DEPTH_START:DEPTH_STOP

40 %% correlation exclusion....

41 - v_corr_cleaned{n}=v{n};

42 - v_corr_cleaned{n} (find(c(:,n) < CORRELATION_MINIMUM))=NaN;
43

44 %% 3-sigma remove filter

45 - v_std=std(v_corr_cleaned{n});

46 - v_3sigma{n} = v_corr_cleaned{n};

47 - v_3sigma{n}( find( v_corr_cleaned{n} >= 3*v_std + mean(v_corr_cleaned{n}) ) )=NaN;
48 - v_3sigma{n}( find( v_corr_cleaned{n} <= mean(v_corr_cleaned{n}) - 3*v_std ) )=NaN;
49

50

51 %% calculate fluctuationms....

52 - [trsh window_start]=min(abs(TIME_FLUC_START-t_new));

53 - [trsh window_end]=min(abs(TIME_FLUC_STOP-t_new));

54 - mean_v=nanmean(v_3sigma{n}(window_start:window_end));

55 - tmp=sort(abs(v_3sigma{n}(window_start:window_end)-mean_v), 'descend’);
56 - fluctuation=nanmean(tmp(1l:floor(TOP_PERCENT/100*size(tmp,1))));
57

58 - V{n}=struct('Correlation Filter_ Value', CORRELATION_MINIMUM,...
59 'Flucuation_Percent_Filter_ Value', TOP_PERCENT,...

60 'Time_Range_Values', [TIME_FLUC_START TIME_FLUC_STOP],...
61 'Mean_Velocity Over_Time_Range', mean_v,...

62 'Fluctuation_Over_Time_Range', fluctuation,...

63 'Data_Raw', v{n},...

64 'Data_Correlation_Filtered',v_corr_cleaned{n},...

65 'Data_3_Sigma_Filtered', v_3sigma{n},...

66 'Time', t_new);

67 %{

68 %% Plot time series

69 figure(n)

70 clf

71 plot(t_new,v{n})

72 hold on

73 plot(t_new,v_corr_cleaned{n},'y")

74 plot(t_new,v_3sigma{n},'r")

75 %}

76 - end

77

78 - eval (sprintf('%s_CLEANED=V;', i));

79 - end
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X a [ Command Window

>> X_CLEANED{1}
ans =

Correlation_Filter_Value: 80
Flucuation_Percent_Filter_Value: 1
Time_Range_Values: [1 1000]
Mean_Velocity Over_Time_Range: 0.2084
Fluctuation_Over_ Time_Range: 0.3570
Data_Raw: [295752x1 single]
Data_Correlation_Filtered: [295752x1 single]
Data_3_Sigma_Filtered: [295752x1 single]
Time: [1x295752 single]

>> Y_CLEANED{1}
ans =

Correlation_Filter_Value: 80
Flucuation_Percent_Filter_Value: 1
Time_Range_Values: [1 1000]
Mean_Velocity_ Over_Time_Range: 0.0035
Fluctuation_Over_Time_Range: 0.2354
Data_Raw: [295752x1 single]
Data_Correlation_Filtered: [295752x1 single]
Data_3_Sigma_Filtered: [295752x1 single]
Time: [1x295752 single]

>> Z_CLEANED{1}
ans =

Correlation_Filter_Value: 80
Flucuation_Percent_Filter_Value: 1
Time_Range_Values: [1 1000]
Mean_Velocity Over_Time_Range: 0.0046
Fluctuation_Over_Time_Range: 0.0685
Data_Raw: [295752x1 single]
Data_Correlation_Filtered: [295752x1 single]
Data_3_Sigma_Filtered: [295752x1 single]
Time: [1x295752 single]
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Appendix L: Adhesion procedure (Jokuty, 2001)

Adhesion

This method requires the use of an analytical pan balance capable of weighing to 0.0001 g, and with provision for
weighing from below the pan. Some type of draft shield will probably be required to obtain stable readings. Also
required is a standard penetrometer needle as described in ASTM method D 5 - Standard Test Method for
Penetration of Bituminous Materials (ASTM D 5), adapted for hanging below the balance.

a) The oil sample is allowed to stand at room temperature for 30 minutes.
b) The sample bottle is shaken for 30 minutes using the reciprocating shaker.

<) The balance is prepared for measurement by hanging a penetrometer needle, for which the surface area
of the stainless steel section has been calculated, from the balance hook and allowing the weight to
stabilize. The weight of the clean needle is recorded.

d) Approximately 80 mL of oil is poured into a 100-mL beaker. The beaker is elevated, using a lab jack, until
the top of the stainless steel needle meets the top of the oil. Care must be taken to avoid having the oil

——

Properties of Crude Oils and Oil Products - 12/99 ' &15
.

i | |
A . -L! —
b R '

g Appendix 1 - Methods

creep up onto the brass section of the needle, as the surface area calculation is based only on the
stainless steel portion.

inc——

1

i

; e) The needle is left in the oil for 30 seconds, and then the beaker is lowered, allowing the needle to hang
undisturbed.

f After 30 minutes, the weight of the needle plus oil is recorded.

g o B
ST N L

g) The needle is cleaned with dichloromethane and allowed to dry before the measurement is repeated. A
minimum of four measurements are made for each oil. The same beaker of oil can be used for all
measurements.

R ey

h) The oil adhesion is calculated as the average weight of oil remaining on the needle divided by the needle's

K
A€ o 83 R

surface area.
- Vofjlo Organic Compounds -
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Appendix M: Laboratory data on CSS estimates required to initiate movement of grains
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Laboratory and field data on the critical shear stress required 1o initiate
movement of grains (Leopold, Wolman, & Miller 1964). The solid line is the
Shields curve of the threshold of motion; transposed from the © versus
Rg form into the present form, in which critical shear stress is plotted as
a amcﬂon of grain diameter.

O Leopold, Wolman & Miller: 1964
{ Colorado Data (Wildland Hydrology)

*CRRC flume generates maximum BSS of 18 Pa., or 0.4 lbs./sqft., which initiates
movement of sedimentary rocks ~ 10cm in diameter. This was visually confirmed during
surrogate testing using stones collected from Rye Beach, New Hampshire.
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Appendix N: Parameter test of BSS values for LP and TKE in all experiments

Parameter
Intercept 0
Ip shear stress, pa

Value 0.3149646266
Std Error 0.2068311798
t Ratio 1.5228101823
Prob>|t] 0.1473247103
SS 17.300870457

Sum of Squares 17.300870457
Numerator DF 1
F Ratio 2.3189508513
Prob > F 0.1473247103
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Appendix O: Contingency analysis

v ~ Contingency Analysis of Most Likely Erosion? By Erosion?
v Mosaic Plot

1.00
0.75
ge
g 050-
g &
0.25-
0.00 — : -
Erosion?

v ~ Contingency Table

Most Likely Erosion?
Count |No Yes Total
Total %
Col %
Row %
o No 9 1 10
§ 50.00 556 55.56
o 90.000 12.50
w 90.000 10.00
Yes 1 7 8
5.56| 38.89 44.44
10.00/ 87.50
12.50, 87.50
Total 10 8 18
55.56 44.44
v Tests
N DF  -LogLike RSquare (U)
18 1 6.1003174 0.4933
Test ChiSquare Prob>ChiSq
Likelihood Ratio 12.201 0.0005*
Pearson 10.811 0.0010*
Warning: Average cell count less than 5, LR ChiSquare suspect.
Fisher's
Exact Test Prob Alternative Hypothesis
Left 1.0000 Prob(Most Likely Erosion?=Yes) is greater for Erosion?=No than Yes
Right 0.0019" Prob(Most Likely Erosion?=Yes) is greater for Erosion?=Yes than No
2-Tail 0.0029" Prob(Most Likely Erosion?=Yes) is different across Erosion?

92



Appendix P: Least squared profiler model

v ~ Profiler
v ~ Prediction Profiler

450 ' .
& 400 ; :
2 350 ; ;
i 32 % é
=0 : -
> - 494.2766 200 5 E
; i %
g 50
0 H
o r L
2 (Y= :
3 o /
£0.998664 ;
@ H
& ]
(=]
o
N O W o Wwoo o0 o o oW o 7o) o
- - « ® N ¥ 6 @ O — - «~
27.9 106
water velocity, 20.7
temp, ¢ cm/s oil mass, g

v ~'Variable Importance: Independent Resampled Inputs
v Summary Report

Column Main Effect Total Effect .2 .4 6 .8
water temp, ¢ 0.654 0.778 : i
velocity, cm/s 0.203 0.274 T
oil mass, g 0.02 0.073 ] :
v ~ Marginal Model Plots
450
«»n 400
- 350

B £ 250
€ § 200
150
2 100
s 50
0

n O nu o u o O O O O

o n o w o
- -~ N AN MO N ¥ © O O - -
-

water velocity,
temp, c cm/s oil mass, g
v Remembered Settings
water velocity, Pred
Setting temp, c cm/s oil mass, g lengthening% LS Desirability
_Optimal _ 27.9 106 20.7 4942766  0.998664
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Appendix Q: Eroded oil globule size

T=27.9C, V=24cm/s, M=20g
Time Size (cm) Time Size (cm) Time Size (cm)
5:07 0.1 22:45 0.1 32:15 5
14:13 0.5 22:47 A 32:20 A
15:03 0.5 22:50 0.15 32:21 1
15:03 0.25 22:53 Sand.1 32:30 25
15:43 0.2 23:35 0.6 32:48 3
16:05 0.3 25:21 0.7 32:52 1
16:30 0.2 25:35 0.6 36:21 25
17:00 0.2 25:55 0.2 37:12 2
17:15 0.2 26:28 0.3 37:50 3
17:55 0.15 27:28 1 38:27 A
18:10 0.1 28:38 0.15 40:30 25
18:12 0.1 28:48 0.6 42:05 2
18:25 0.25 29:17 0.2 42:20 2
19:25 0.2 30:47 0.2 44:02 3
20:10 0.3 30:50 0.3 46:40 2
20:40 0.5 30:52 A 49:15 A
21:10 0.1 30:56 0.1 49:55 2
21:15 0.2 31:15 0.2 50:15 2
21:16 0.1 31:38 0.6 55:53 3
21:18 0.1 31:50 Ax2 58:16 0.1
21:30 0.5 31:55 0.2 58:45 8
21:55 0.5 31:00 0.2
22:25 0.2 32:10 3
T=24.8C, V=53cm/s, T=26.7C, V=90cm/s,
M=6.6g M=20.7
Time Size Time Size (cm)
36:50 0.1 1:39 0.6
38:01 0.3 47:27 0.2
T=19.1C, V=57m/s, T=26.7C, V=86cm/s,
M=20.1g M=5.9¢g
Time Size (cm) Time Size (cm)
47:21 0.1 7:33 0.1
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T=27C, V=16cm/s, T=20C, V=23cm/s,
M=5.1g M=19.7¢g
Time Size (cm) Time Size (cm)
37:06 0.3 43:00 0.2
37:40 0.2 44:07 0.2
41:35 0.2 45:29 0.2
41:55 0.5 48:39 0.1
46:58 0.2 55:17 0.1
47:35 0.1 56:29 0.2
47:50 0.2 57:34 0.3
49:32 0.1 58:28 0.7
49:43 0.1 59:44 0.2
50:43 0.1 1:00:59 0.1

53:05 0.8
55:25 0.2
55:50 0.8
59:59 0.2
1:00:40 0.8
x£0.25 cm 0.252x<0.75 cm

X21 cm
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Appendix R: Average oil migration patterns

Oil Migration Pattern
2.5 T T T T T T

- - ~185C
53C
— 265C

Spread Rate, cm/min

Time Interval, 4 min

*Oil migration becomes mass limited at ~30 min.
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Appendix S: Instantaneous CSS

T=27C, V=16cm/s, M=5.1¢g

Time TKE LP
37:06 2.8 1.4
37:40 3.1 1.0
41:35 2.7 0.6
41:55 2.7 1.3
46:58 2.7 1.0
47:35 3.0 1.4
47:50 3.2 0.8
49:32 2.6 0.7
49:43 3.1 0.7
50:43 3.0 0.7
53:05 3.8 1.0
55:25 3.3 1.0
55:50 2.4 0.9
59:59 1.7 0.9
1:00:40 2.0 0.6
T=24.8C, V=53cm/s, M=6.6g
Time TKE LP
36:50 4.1 4.7
38:01 3.8 54

T=19.1C, V=57m/s, M=20.1g

Time

TKE

LP

47:21

4.5

4.9

T=20C, V=23cm/s, M=19.7g
Time TKE LP
43:00 29 1.3
4407 29 1.5
45:29 3.6 1.2
48:39 3.3 1.7

T=26.7C, V=90cm/s, M=20.7

Time TKE LP
1:39 8.7 14.3
47:27 5.8 12.7

T=26.7C, V=86cm/s, M=5.9¢g

Time

TKE

LP

7:33

11.6

7.9
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Appendix T: Parameter test of BSS values for LP and TKE in experiments with erosion

Parameter
Intercept 0
tke css 1

= 1
Value -0.262600856
Std Error 0.0533947485
t Ratio -4.918102684
Prob>|t| 0.0026618788
SS 10.319048337

Sum of Squares 10.319048337
Numerator DF 1
F Ratio 2418773401
Prob > F 0.0026618788
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Appendix U: Supplemental data collected during replicate experiments

Mean
Temp, | Velocity, | Mass, Erosion? Lengthening | 7, Pa 7, Pa | Globule

C cm/s g ’ %/hr (TKE) | (LP) Size

(cm)
13.1 75 21.5 No 85 - - -
13.8 88 20.3 No 100 - - -
20.7 14 20 Yes - 1.3 0.6 -
20.5 35 20 Yes - 3.2 2.6 -
20.4 48 20 Yes - 6.1 43 -
20.2 62 20 Yes - 9.1 5.7 -
20.1 75 20 Yes - 11.6 7.2 -
20.1 87 20 Yes - 18.9 7.5 -
12 70 12 No - - - -
18 35 12 No - - - -

*(-) no measurements or calculations were made
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Appendix V: ADV data of the experimental runs

Range, cm

Yr.Day=14.041 x=91cm/s t=17.5C m=20.6g
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Yr.Day=14.041 x=88cm/s t=5.5C m=20g

Velocity Time Series
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Range, cm
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5.5

6.5

Yr.Day=14.041 x=78cm/s t=5.5C m=5.2g

Velocity Time Series

Signal - to — Noise Ratio
T

1+
| ‘ A ‘
I i My gl I
ot “‘\““‘ i ‘M il ) ‘
Rkl ikl EL L ‘\ i
" POl
o i
€ ‘ “‘\ ‘
N il
§o.s— .
o
>
5
5
O 04}
0.2f
0 1 1 1 1 1 ]
0 10 20 30 40 50
Time, min
. . q o - ;
B 45F
J sk
§
@
| & 55
©
o
| sk
| 65]
. . .

40 60
Velocity, cm/s

107

60



Yr.Day=14.042 x=106cm/s t=15C m=5.4g

Velocity Time Series
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Yr.Day=14.042 x=26cm/s t=5C m=20.1g

Velocity Time Series
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45

6.5

Yr.Day=14.048 x=55cm/s t=26.1C m=19.6g

Velocity Time Series
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45

6.5

Yr.Day=14.056 x=53cm/s t=24.8C m=6.6g
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Yr.Day=14.056 x=51cm/s t=6.0C m=20.1g

Velocity Time Series
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Range, cm

Yr.Day=14.057 x=24cm/s t=27.9C m=20g

Velocity Time Series
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Yr.Day=14.057 x=16cm/s t=27C m=5.1g

Velocity Time Series
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Range, cm

Yr.Day=14.058 x=52cm/s t=5.0C m=5.6g

Velocity Time Series
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45

6.5

Yr.Day=14.062 x=25cm/s t=5C m=5.9g

Velocity Time Series
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4.5

6.5

Yr.Day=14.062 x=86cm/s t=26.7C m=5.9g

Velocity Time Series
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Range, cm

Yr.Day=14.064 x=90cm/s t=26.7C m=20.7g

Velocity Time Series
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