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ABSTRACT

THE RELATIONSHIP BETWEEN VOLATILES (CO2, H2O, F, S & Cl) AND

NOBLE GASES IN REYKJANES PENINSULA LAVAS, ICELAND

by

Lorne C. Loudin

University of New Hampshire, May, 2015

The presence of volatiles in the local mantle magma source region has been suggested as a

contributor to the observed high melt production rates in the volcanic segments of the island of

Iceland. However, the source of volatiles beneath this island remains enigmatic. New volatile

(CO2, H2O, F, S and Cl) concentration data for 157 olivine-hosted melt inclusions in concert with

noble gas data (He and Ne) from the Reykjanes Peninsula, Iceland, allow for the reconstruction of

magma degassing and the distribution of volatiles in the mantle beneath Iceland. Water

concentrations in olivine-hosted melt inclusions from this study record a maximum H2O

concentration of 1.99 ± 0.06 wt. %. The H2O concentrations are not correlated with any of the

major oxides, but are in some cases elevated relative to other incompatible elements. Solubility

models we have tested show that olivine-hosted melt inclusions from the Reykjanes Peninsula

have considerably less CO2 for the observed H2O, which implicates degassing to be a more

important volatile-loss process than diffusion. Volatile concentrations are negatively correlated

with R/Ra, a relationship that implies lower H2O concentrations in the primitive high-3He mantle
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component and higher-water concentrations in samples that approach Mid Ocean Ridge Basalt

(MORB) R/Ra values. Water concentrations are highest along the atmosphere-MORB mixing line

on a three-neon isotopic plot, and primitive samples plotting along the atmosphere-solar mixing

line have lower water concentrations. These relationships suggest that a volatile-enriched recycled

component with high H2O and low 3He/4He values has mixed with a primitive mantle component

that is low in H2O but has high 3He/4He values. These two end-member compositions are consistent

with a plume component and a depleted MORB source component – potentially enriched and

fluxed by subducted components – mixing in the mantle beneath Iceland, and melting to produce

the observed volcanic products. These findings support previous suggestions for a three-

component-mixing model to explain the relationship between He and H2O in Reykjanes Ridge

lavas.
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1. INTRODUCTION

Analyses of volcanic glasses and olivine-hosted melt inclusions from ocean-island basalts

(OIBs) and mid-ocean ridge basalts (MORBs) have demonstrated that OIB are enriched in volatiles

(CO2, H2O, F, S, and Cl) relative to MORB (e.g., Moore, 1965; Moore et al., 1982; Poreda et al.,

1986, Dixon et al., 1991, Dixon et al., 1997; Hauri et al., 2002; Nichols et al., 2002; Métrich et al.,

2014). These and related findings suggest that volcanism associated with mantle plumes may in

some cases be aided by the presence of volatiles in the mantle as opposed to the singular presence

of a thermal anomaly or rapid decompression (e.g., Schilling et al., 1980; Nichols et al., 2002;

Metrich et al., 2014). However, as noted by Dixon and Clague (2001), simply knowing that OIBs

are enriched in volatiles relative to MORB does not provide us with deep insight into the source

of volatiles. It is through assessing the relationship volatiles have with noble gases and

incompatible elements that we gain valuable insight into their source.

In this study I elucidate the origin of volatiles in olivine-hosted melt inclusions from the

Reykjanes Peninsula, Iceland, and evaluate the role of a recycled crustal component as the source

of volatiles in the mantle beneath the island. I present new volatile data derived from splits of rock

from the same suite of samples used in earlier studies (Dixon et al., 2000; Dixon 2003), which

used He and Ne isotopic data to argue for magma generation by binary mixing between a less

depleted mantle domain, containing vestiges of primordial He and Ne, and the more highly

depleted MORB mantle beneath Iceland. Together with the noble gas data, the new volatile

concentrations presented here provide new insight into the origin of volatiles in Icelandic magmas

and elucidate the role of recycled oceanic lithosphere in generating the Iceland plume. The notion
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that subducted lithosphere may play an important role in generation of ocean-island magmas was

first suggested by Hoffmann and White (1982) examining other localities. The results presented

here confirm the applicability of that model in Iceland and allow for an enhanced understanding

of how this recycled oceanic lithosphere is interwoven in the MORB source region.

The importance of H2O in the generation of MORB and OIB is nontrivial. Water in the

mantle lowers the solidus substantially, increasing melt production at a given temperature (Kushiro

et al., 1968; Hirose and Kawamoto, 1995; Gaetani and Grove, 1998), and allowing melting to

commence at higher pressures (McKenzie 1985; Robinson et al., 2001). Moreover, Asimow and

Langmuir (2003) showed that an excess of H2O in OIB and MORB increases melt production but

lowers the total volume of melting when it is the sole factor. They demonstrated that the effect of

H2O on the extent of melting is significant not only in regions of anomalously high-water

concentrations, but also in MORB with the average H2O content of ~0.2 wt. %. Consequently,

these processes have important implications for the major- and trace-element chemistry of mantle-

derived magmas.

Some volatile studies suggest that plumes originating from less depleted domains within

the lower mantle generally contain higher water concentrations than plumes demonstrably

originating from recycled lithosphere in the shallow mantle (Jambon and Zimmerman, 1990;

Dixon et al., 1997; Dixon and Clague, 2001; Dixon et al., 2002). Dixon et al. (2002) attributed the

difference in H2O concentrations between the two plume sources to the dehydration of recycled

lithosphere during subduction and argue that subduction could remove ~97% of the H2O from the

down-going slab and accordingly cause plumes originating from recycled lithosphere to be “damp”

not “wet” (Dixon et al., 2002).
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Conversely, a recent investigation of volcanic glasses from the Manus Basin demonstrated

that if H2O and H isotope anomalies are correlated to the seismic anomaly beneath the basin,

significant amounts of H2O are potentially transferred into the mantle and preserved for up to 109

years (Shaw et al. 2012). In an investigation of tholeiitic glass from the Azores, Schilling et al.

(1980) proposed that “hot spots” in the North Atlantic were possibly “Wet Spots” undergoing

volatile induced flux melting. The concept of wet recycled material in plumes was later applied to

the ridge sections near Iceland by Poreda et al. (1986) based on the relationship between H2O and

He isotopes in the Reykjanes, Kolbeinsey, and Mohns ridges. These findings resulted in the

hypothesis that three-component mixing involving two plume components and depleted MORB

occurred beneath the region.

In the three-component model, the two plume components included a domain with high

3He/4He and low H2O, and a domain containing recycled material with low 3He/4He and high H2O

(Poreda et al., 1986), contradicting the model of Dixon et al. (2002) that suggests low H2O in the

recycled component. In the model presented by Poreda et al. (1986), the Reykjanes Ridge segment

was believed to involve only the less-depleted plume component and the depleted MORB source

(Poreda et al., 1986). However, with additional arguments, mainly H2O/Ce, Michael (1995)

included the recycled component, with high H2O and low 3He/4He, beneath the Reykjanes Ridge,

invoking rapid subduction as a cause for the H2O anomaly. Two-component-mixing models have

also been suggested to explain heterogeneity in Icelandic magmas. The two-component models

invoke a pyroxenite-peridotite mantle and require a depleted MORB source and an enriched

recycled component (Shorttle and Maclennan 2011; Koornneef et al., 2012).

Iceland is the ideal location to investigate the origin of volatiles in a hybrid volcanic setting

because it represents the interaction of a mantle plume and a major spreading center, the Mid-
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Atlantic Ridge (Schilling, 1973; Wolfe et al., 1997). On the basis of noble gas studies, it is

generally accepted that binary mixing between a plume component and MORB component occurs

beneath Iceland, and particularly beneath the Reykjanes Peninsula (Moreira et al., 2001; Dixon,

2003; Furi et al., 2010). Water and other volatile concentrations increase along the MAR towards

the Iceland plume (Schilling et al., 1983; Poreda et al., 1986; Hilton et al., 2000; Nichols et al.,

2002). In addition, Nichols et al. (2002) proposed that the mantle source beneath Iceland is

enriched in H2O (e.g., ~620-920 ppm) relative to the MORB source ~110 ppm (Workman and

Hart, 2005). The H2O content of the Iceland plume estimated by Nichols et al. (2002) spans the

HIMU and FOZO mantle endmember H2O compositions proposed by Dixon et al. (2002).

However, the source of volatiles remains enigmatic.

As noted by Sigmarrsson and Steinthorsson (2007), the possibility of ancient recycled

oceanic lithosphere in the mantle beneath Iceland is an important consideration when investigating

mantle plume heterogeneity beneath the island and has been proposed on the basis of radiogenic

isotopes and trace elements by several authors (Chauvel and Hemond, 2000; Skovgaard et al.,

2001; Breddam, 2002; Stracke et al., 2003a; 2003b; Kokfelt et al., 2006; Brandon et al., 2007;

Sobolev et al., 2008; Koornneef et al., 2012). Owing to the relationship between trace elements

and Pb-Nd-Sr-O isotopes, the subduction of an entire section of oceanic crust was proposed to

explain both enriched and depleted plume components beneath Iceland (Chauvel and Hemond,

2000; Kokfelt et al. 2006). Kokfelt et al. (2006) suggested that radiogenic Pb coupled with trace-

element patterns in alkali basalts from Iceland were similar to the HIMU mantle component

beneath St. Helena and that these basalts represented the enriched source, derived from recycling

the upper, hydrothermally altered oceanic crust. However, unradiogenic Pb, coupled with

geochemical anomalies unique to the MORB source, defined the depleted component resulting
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from recycling of gabbroic and ultramafic cumulates in the lower oceanic crust (Kokfelt et al.,

2006). Further evidence for younger recycled crust being superimposed on primitive high 3He/4He

mantle near the core-mantle boundary is suggested by relationships between 187Os/188Os and

3He/4He coupled with solar Ne (Brendon et al., 2007). The age of recycled crust incorporated into

the mantle beneath Iceland has been constrained to ~1-2 Ga (Kokfelt et al., 2006; Brandon et al.,

2007; Sobolev et al., 2008).

The new volatile data presented here record H2O concentrations in Reykjanes Peninsula

melt inclusions as high as 1.99 ± 0.06 wt. %. The volatile data are evaluated in terms of mixing

between an enriched plume component and the depleted MORB mantle, and in terms of recycled

oceanic lithosphere mixing with the less depleted mantle to generate two unique plume

components beneath Iceland.

I propose that the volatile concentrations of Reykjanes Peninsula melt inclusions are best

explained by mixing an ancient recycled component with the ambient MORB mantle. This model

is in agreement with the three-component-mixing model proposed by Poreda et al. (1986) and

Michael et al. (1995), and it does not rule out a two-component model involving the presence of a

pyroxenite-peridotite mantle already modified by an influx of subduction components (Shorttle

and Maclennan 2011; Koornneef et al., 2012). For the paleo-position of the mantle beneath the

Iceland region, emplacement and subsequent mixing of recycled oceanic lithosphere into the less

differentiated mantle can be explained by subduction during the Ketilidian Orogeny (1.85-1.72

Ga) of south Greenland (Garde et al., 2002). The timing of the Ketilidian Orogeny is consistent

with three independent age models that constrain recycled material in the mantle beneath Iceland

to a range of ~1-2 Ga (Kokfelt et al., 2006; Brandon et al., 2007; Sobolev et al., 2008).
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2. GEOLOGICAL SETTING AND SAMPLE SELECTION

Iceland coincides with the Mid-Atlantic Ridge where anomalously high volcanic

outpourings and formation of crust are attributed to the upwelling of a mantle plume whose hotspot

is currently located beneath Vatnajökull Glacier (Figure 1A; Schilling, 1973; Wolfe et al., 1997).

This hotspot is presumed to have traversed Iceland in an accommodation zone between the

Snæfellsnes Peninsula in the west and its current location beneath Vatnajökull glacier to the east

(Figure 1A), as the North American Plate has moved westwards. Active upwelling has caused

crustal thicknesses beneath Iceland to exceed typical ocean crust values (White, 1997), reaching a

maximum thickness of ~40 km near the locus of plume activity contrasting to ~15 km south of the

Reykjanes Peninsula (Darbyshire et al., 2000).

The Reykjanes Peninsula in southwest Iceland (Figure 1A) is part of the neovolcanic zone,

a continuation of the MAR and an active rift zone dominated by tholeiitic volcanism (Jakobsson

et al., 1978). Igneous basement rocks of the Reykjanes Peninsula are younger than 700 ka (Peate

et al., 2009). Five en-echelon volcanic systems characterized by a central volcano and fissure

swarm make up the Reykjanes Peninsula (Figure 1B; Jakobsson et al., 1978; Peate et al., 2009);

and volcanic activity in these zones is primarily post-glacial, less than ~15-13 ka (Ingolfsson et

al., 1997; Norðdahl and Pétursson 2005; Geirsdóttir et al., 2009) From southwest to northeast the

volcanic systems of the Reykjanes Peninsula are the Reykjanes, Grindavík, Krýsuvík, Bláfjöll, and

the Hengíll swarms (Figure 1B; Jakobsson et al., 1978; Peate et al., 2009). The Reykjanes

Peninsula is bound to the northeast by the Hengíll swarm (Figure 1B), which sits at a triple junction
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between the Reykjanes Peninsula, the Western Volcanic Zone, and the South Iceland Seismic Zone

(Ferk and Leonhardt, 2009; Einarsson, 2012).

The Hengíll swarm continues to the north forming the WVZ (Peate et al., 2009).

Intraglacial volcanism in the neovolcanic zone, including the Reykjanes Peninsula, resulted in the

formation of table mountains, or tuyas, flat topped mountains composed of hyaloclastites, pillow

lava, and a capping lava (Jakobsson and Johnson, 2012); these are the products of subglacial

eruptions penetrating through an ice sheet (Mathews 1947; Licciardi et al., 2007). The volcanic

rocks of the Reykjanes Peninsula record the relationship between volcanism and deglaciation

(Jakobsson et al., 1978) and show that eruption rates increased by up to ~50 times during the

deglaciation of the Reykjanes Peninsula, ~14.5 kyr BP, continuing for ~2-3 ky into the early post-

glacial period (Jull and McKenzie, 1996; Maclennan et al., 2002).

The olivine-hosted melt inclusions analyzed in this study are from intraglacial and post-

glacial olivine tholeiite and picritic basalts collected from localities on the Reykjanes Peninsula

(Figure 1, Table 1) for the noble gas studies of Dixon et al. (2000) and Dixon (2003). Figure 1B

shows the studied lava-flow locations and their corresponding volcanic swarms along the

Reykjanes Peninsula. The picrites and olivine tholeiites from the WVZ are amongst the least

evolved rocks on Iceland with MgO = ~ 8.5 - 14 wt. % (Jakobsson and Johnson 2012). The

petrology and mineralogy of Reykjanes Peninsula samples have been described in detail elsewhere

(e.g., Jakobsson et al., 1978; Risku-Norja, 1985; Tronnes, 1990; Einarsson, 2012), but in general

the samples selected for this study have phenocrysts of olivine, spinel ± plagioclase ±

clinopyroxene (Dixon et al., 2000). In addition, these samples record a range of He and Ne isotopic

compositions interpreted to represent binary mixing between a plume and MORB end member

(Dixon 2003; Table 2). The variations in noble gas signatures and their primitive magmatic
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compositions, make these samples well suited for investigating the origin of volatiles in the mantle

beneath Iceland.

Mælifell, Miðfell, and Sandfell, are intraglacial, late Pleistocene, hyaloclastite ridges

located in the Hengíll swarm (Einarsson, 2012). The Miðfell samples were collected from the

southern end of the volcanic edifice (Dixon, 2000) in the Dagmàlafell. The picritic pillow lavas

from Dagmàlafell occur in the upper volcanic sequence and are the result of a subglacial fissure

eruption (Guerenko and Sobolev, 2006). Plagioclase, Cr-Al-diopside, olivine, and gabroic nodules

are abundant in picritic lavas from Miðfell, and sample Ice-9 is from a locality where gabbroic

nodules are present (Dixon et al., 2000). Mælifell is composed primarily of picritic pillow basalts

containing Cr-Al-diopside gabbroic nodules (Einarsson, 2012). The Bleikholl sample is an olivine-

tholeiite, and the location is characterized by late glacial lava flows outpouring from a crater row

(Vargas, 1992). Stora-Eldborg, is located in the Krýsuvík volcanic system and is a post-glacial

lava flow containing abundant porphyritic olivine with negligible contents of other phenocrysts

(Vargas, 1992).

Olivine grains for this study were selected from a sample suite with known He and Ne

isotopic signatures (Table 2). The selected samples represent a range of He and Ne isotopic

compositions, suggesting various contributions from plume and MORB end-members (Dixon et

al., 2000; Dixon, 2003). The picrite and olivine-tholeiites originally sampled by Dixon et al. (2000)

and Dixon (2003) are primitive (MgO = ~ 8.5 -14 wt. %; Jakobsson and Johnson 2012),

representing the least evolved rock types on Iceland (Table 1), with high olivine content making

them ideal targets for trapped noble gasses. Their primitive composition and high olivine content

makes them equally suited for studying volatile concentrations because the trapped melt inclusions

should record primary melts representative of their mantle source.
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Dixon et al. (2000) and Dixon (2003) showed that samples from Miðfell (Ice-1b), Sandfell

(Ice-2), Stora-Eldborg (Ice-16), and Bleikholl (Ice-25) contain Ne with isotopic ratios

indistinguishable (≤ 2σ) from the MORB correlation line on a three-Ne-isotope plot. However,

additional samples from Miðfell (Ice-1a and 9), fall close (<1σ) to the air-solar mixing trend,

indicating that the Icelandic plume is heterogeneous and contains vestiges of primordial solar neon

(Dixon et al., 2000; Dixon, 2003). The Mælifell sample (Ice-10) contains Ne that is

indistinguishable from the atmospheric isotopic composition for this noble gas (Dixon, 2003). The

3He/4He (R/Ra) values measured previously by Dixon et al. (2000) and Dixon (2003) on the olivine

grain populations used in this volatile study range from 11±1 to 29±3. These samples represent the

noble gas heterogeneity of the mantle beneath Iceland (Table 2), both the primitive He and

primordial Ne components, and the MORB-like component, making them well-suited for

determining the source of volatiles in Reykjanes Peninsula lavas.



10

Figure 1: (A) Map of Iceland. Samples studied are from the Reykjanes Peninsula (enclosed region). Plume head is located
beneath the Vatnajökull glacier. Red zones indicate the neovolcanic zones. WVZ – Western volcanic Zone. EVZ – Eastern
volcanic zone. NVZ – Northern Volcanic Zone. (B) Location of lava flows studied. Red zones indicate volcanic swarms
(Jakobsson et al., 1978). Sample locations are Midfell (Ice-1, 9); Sandfell (Ice-2, 11); Maelifell (Ice-10);  Stora-Eldborg (Ice-
16);  Bleikholl (Ice-25). Base map from Googel Earth ® 2015.
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Table 1: Samples, rock type, sample locations, and elevation. Approximate elevations were determined using
Lat/Lon and Google Earth ® 2015.

Sample No. Rock Type Lat/Lon Locality Volcanic System Elevation (m)

Ice-1a Picrite 64.176N/21.057W Miðfell Hengíll ≈ 107

Ice-2a Picrite 64.110N/21.199W Sandfell Hengíll ≈ 172

Ice-9b Picrite 64.183N/21.067W Miðfell Hengíll 300

Ice-10a Picrite 64.104N/21.202W Mælifell Hengíll 344

Ice-11 Picrite 64.110N/21.199W Sandfell Hengíll 244

Ice-16a Ol. Thol. 63.857N/22.005W Stóra-Eldborg Krýsuvík 100

Ice-25a Ol. Thol. 63.863N/22.356W Bleikholl Grindavík 160

a Samples from Dixon (2003)
b Samples from Dixon et al. (2000)

Table 2: Noble gas data for samples used in this study. All noble gas data are from Dixon
et al. (2000) and Dixon (2003).

Sample No.
4He cm3 STP/g

(1 x 10-10) R/Ra 20Ne/22Ne 21Ne/22Ne

Ice-1aa 29 ± 2 18 ± 2 10.16 ± 0.11 0.0289 ± 0.0007

Ice-1ba 50 ± 3 21 ± 2 10.47 ± 0.07 0.0320 ± 0.0007

Ice-2aa 7.0 ± 0.4 14 ± 2 10.07 ± 0.07 0.0306 ± 0.0004

Ice-2ba 25 ± 1 11 ± 2 10.50 ± 0.10 0.0335 ± 0.0008

Ice-9ab 85 ± 4 20 ± 2 13.3 ± 1.1 0.0308 ± 0.0007

Ice-9bb 93 ± 5 29 ± 3 11.98 ± 0.56 0.032 ± 0.002

Ice-9cb 79 ± 4 17 ± 1 b.c. b.c.

Ice-10a 58 ± 3 16 ± 1 9.88 ± 0.10 0.0294 ± 0.0005

Ice-11a 69 ± 4 17 ± 1 10.1 ± 0.012 0.0301 ± 0.0005

Ice-16a 123 ± 7 18 ± 2 10.39 ± 0.09 0.0321 ± 0.0004

Ice-25a 112 ± 7 16 ± 1 9.97 ± 0.11 0.0312 ± 0.0004
a Samples from Dixon (2003)
b Samples from Dixon et al. (2000)
b.c. is "below cut off level" see Dixon et al. (2000) for discussion
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3. SAMPLE PREPARATION AND ANALYTICAL METHODS

A total of 107 euhedral to subhedral olivine phenocrysts, ranging in size from ~0.5 to 3

mm, were selected from eight picrite and olivine tholeiite samples. Dixon et al. (2000) and Dixon

(2003) were the first to separate the olivine grains used in this study from their host rocks. My

volatile study purposely focused on grain populations previously analyzed for their He and Ne

isotopic compositions in order to compare the two data sets.

Prior to selection of the olivine grains for volatile analysis, each phenocryst was inspected

under a binocular microscope to identify primary melt inclusions trapped during olivine

crystallization and to discriminate against melt inclusions showing signs of internal fractures and

alteration, thereby reducing the probability of post-entrapment volatile mobility and even diffusion

during homogenization. For this study, 157 melt inclusions were homogenized in the Piston

Cylinder Laboratory at Rensselaer Polytechnic Institute, following the method outlined in Stefano

et al. (2012) and Cabato et al. (2015). Approximately 10–20 olivine grains were packed in dry

graphite powder inside a graphite capsule and equilibrated inside the piston cylinder apparatus

using a carbon furnace surrounded by a silica glass sleeve and NaCl pressure medium. The charge

was heated at 100 oC/minute for 13 minutes, at 6 kbar pressure, allowed to equilibrate at 1300 oC

for 7 minutes, and was rapidly quenched. As noted by Stefano et al. (2012), to ensure

homogenization of melt inclusions (Figure 2), a temperature of 1300 oC was used to heat the

inclusions above the basalt liquidus of approximately 1100-1200 oC depending on melt

composition and water content (e.g., Ghiorso and Sack 1995; Asimow et al., 2001). The high-

pressure and temperature homogenization experiments employed here were modeled after Bucholz
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et al. (2013). Their procedure showed that melt inclusions with greater than ~0.2 wt. % H2O are

dehydrated to varying degrees during the homogenization experiments. Accordingly, the melt

inclusion H2O concentrations reported here constitute minimum values.

Following homogenization, olivine grains were mounted in an epoxy resin, ground to

expose individual melt inclusions, removed, and then polished to 1 µm in a second epoxy mount.

The grains were then transferred to an indium mount and polished to 0.3 µm, dried in a vacuum

oven at 110 oC for ~12 hours, gold coated and stored under vacuum prior to analysis. Volatile

(H2O, CO2, S, F, and Cl) analyses for melt inclusions were conducted at Woods Hole

Oceanographic Institution on the Cameca 1280 Secondary Ionization Mass Spectrometer (SIMS)

using a primary 133Cs+ beam, with a current of 500 nA, rasterized over a 20 x 20 µm area and used

to produce the detected secondary ions (12C, 16O1H, 19F, 30Si, 32S, and 35Cl). For a detailed

description of the analytical and principal method, see Helo et al. (2011) and Hauri et al. (2002),

respectively. Calibration curves were produced using a subset of nine standard glasses (Alvin 519-

4-1, D51-3, D52-5, 6001, 1654-3, JD17H, D20-3, NS-1, 46D) such that, each element or

compound analyzed used a minimum of five standards; seven standards were used to calibrate

H2O. Standard error on the slope of the calibration curve for H2O was 1.8% or less. The standard

errors of the calibration curves were ≤ 9.0%, 8.3%, 3.6% and 11.8 %, for C, F, S, and Cl,

respectively. The 1σ stability of the 16O1H/30Si signal for all analyses reported here was 7.4% or

better. The 1σ reproducibility of the in-run standard glass Alvin 519-4-1 was 8.2% or better for C,

F, S, and Cl and 12.6% for H2O. For each volatile the secondary ion image was monitored during

SIMS analyses (cf. Helo et al., 2011) and volatile data were not included in the discussion if a

homogenous signal distribution was not confirmed. Consequently, a total of 21 analyses for C,
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three analyses for S, and two analyses for Cl, were not included in the interpretations presented in

this study however, all data are reported in the results section.

Following volatile analysis, melt inclusions and host-olivine major-oxide concentrations

were measured on the JEOL-JXA-8200 Superprobe at the Massachusetts Institute of Technology

Electron Microprobe Facility. Melt inclusions were analyzed with a 15 kv accelerating voltage, a

4 na beam current, and a 10 µm defocused beam size. Typical counting times were 40 s except for

Na, which used a sub-counting routine to monitor for beam damage. The standard Alvin 1690-20

was measured 10 times prior to measuring the unknowns and the relative precision for SiO2, Al2O3,

FeO, MgO and K2O were 0.75, 1.40, 0.87, 0.79 and 4.12%, respectively. Host-olivine grains were

analyzed using the same setup as the melt inclusions, except that the beam size was only ~1µm.

Figure 2: Scanning Electron Microscope (SEM) image of a homogenized and polished olivine-hosted melt
inclusion. Ten µm electron microprobe spot in center of melt inclusion.
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4. RESULTS

4.1 Olivine Composition

Table 3 summarizes the host-olivine compositions, which, it turns out, are Fo-rich with

small variations among sample locations. Host olivine grains in the Hengíll swarm picrite lavas

ranged from Fo82-92 (Sandfell) to Fo85-91 (Miðfell) to Fo84-89 (Mælifell). Host-olivine compositions

in the olivine tholeiite from Stora-Eldborg in the Krýsuvík volcanic system have a narrow range

of Fo83-84. The olivine tholeiite from Bleikholl in the Grindavík swarm, Ice-25, shows a range of

Fo83-87.

Table 3. Host-olivine Compositions.
Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO NiO Total Fo (mol %)
Ice-1.1 40.64 0.00 0.05 10.18 0.11 49.05 0.36 0.26 100.6 89.6
Ice-1.2 40.53 0.00 0.07 9.02 0.10 49.99 0.32 0.31 100.3 90.8
Ice-1.3 40.05 0.02 0.15 13.60 0.19 46.47 0.32 0.17 101.0 85.9
Ice-1.4 39.92 0.00 0.08 12.19 0.18 47.50 0.36 0.20 100.4 87.4
Ice-1.5 40.54 0.01 0.15 11.27 0.13 48.18 0.32 0.19 100.8 88.4
Ice-1.7 40.22 0.03 0.08 11.16 0.18 48.36 0.30 0.21 100.5 88.5
Ice-1.8 39.64 0.04 0.06 12.50 0.23 47.41 0.32 0.20 100.4 87.1
Ice-1.9 39.42 0.02 0.13 9.68 0.17 49.35 0.31 0.23 99.3 90.1
Ice-1.10 40.20 0.04 0.06 9.64 0.15 49.56 0.32 0.24 100.2 90.2
Ice-1.11 40.55 0.01 0.07 10.02 0.16 48.87 0.32 0.24 100.2 89.7
Ice-1.12 39.73 0.01 0.10 11.05 0.17 48.34 0.33 0.23 100.0 88.6
Ice-1.13 40.14 0.03 0.05 8.59 0.13 50.39 0.31 0.27 99.9 91.3
Ice-1.14 39.56 0.01 0.05 12.60 0.20 47.39 0.28 0.18 100.3 87.0
Ice-1.15 40.20 0.03 0.06 12.15 0.21 47.46 0.33 0.19 100.6 87.4
Ice-1.16 39.80 0.02 0.06 11.36 0.16 48.03 0.32 0.20 99.9 88.3
Ice-2.1 39.01 0.00 0.02 12.91 0.22 47.45 0.32 0.16 100.1 86.8
Ice-2.2 40.36 0.01 0.14 10.90 0.17 48.17 0.27 0.27 100.3 88.7
Ice-2.3 39.04 0.00 0.01 12.13 0.24 47.80 0.31 0.19 99.7 87.5
Ice-2.4 38.88 0.00 0.00 10.48 0.19 49.43 0.30 0.24 99.5 89.4
Ice-2.5 38.96 0.00 0.06 17.39 0.30 43.36 0.32 0.14 100.5 81.6
Ice-2.6 40.13 0.00 0.11 10.38 0.18 49.26 0.27 0.26 100.6 89.4
Ice-2.7 39.56 0.00 0.00 10.57 0.18 49.05 0.33 0.22 99.9 89.2
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Table 3. (Continued). Host-olivine Compositions.
Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO NiO Total Fo (mol %)
Ice-2.8 40.19 0.00 0.07 10.91 0.20 47.76 0.31 0.22 99.7 88.6
Ice-2.9 40.60 0.00 0.04 12.32 0.19 47.13 0.34 0.21 100.8 87.2
Ice-2.10 39.41 0.00 0.07 10.98 0.16 48.84 0.31 0.22 100.0 88.8
Ice-2.11 39.54 0.00 0.07 9.45 0.14 49.29 0.30 0.28 99.1 90.3
Ice-2.12 40.07 0.00 0.07 10.03 0.17 49.69 0.35 0.24 100.6 89.8
Ice-2.13 40.19 0.00 0.05 12.78 0.22 46.90 0.31 0.17 100.6 86.7
Ice-2.14 39.51 0.00 0.03 12.23 0.20 47.55 0.32 0.20 100.0 87.4
Ice-2.15 40.22 0.00 0.81 12.57 0.22 46.70 0.34 0.19 101.0 86.9
Ice-2.16 40.24 0.00 0.09 10.42 0.17 49.24 0.30 0.28 100.7 89.4
Ice-9.1 40.24 0.00 0.03 11.55 0.16 47.65 0.33 0.16 100.1 88.0
Ice-9.2 40.15 0.00 0.03 11.02 0.16 48.04 0.32 0.20 99.9 88.6
Ice-9.3 39.25 0.00 0.89 12.76 0.22 45.79 0.37 0.16 99.4 86.5
Ice-9.4 40.11 0.00 0.01 9.76 0.14 49.10 0.34 0.24 99.7 90.0
Ice-9.5 39.53 0.00 0.02 10.75 0.16 48.45 0.33 0.23 99.5 88.9
Ice-9.6 40.40 0.00 0.10 9.51 0.15 49.52 0.33 0.24 100.3 90.3
Ice-9.7 40.14 0.00 0.11 11.52 0.17 47.89 0.37 0.21 100.4 88.1
Ice-9.8 39.90 0.00 0.08 11.16 0.19 48.55 0.32 0.19 100.4 88.6
Ice-9.9 40.21 0.00 0.02 11.01 0.18 48.49 0.32 0.24 100.5 88.7
Ice-9.10 39.35 0.00 0.02 10.94 0.17 48.56 0.35 0.22 99.6 88.8
Ice-9.11 40.35 0.00 0.04 10.22 0.16 49.10 0.34 0.24 100.5 89.5
Ice-9.12 39.55 0.00 0.01 9.65 0.17 49.78 0.31 0.27 99.7 90.2
Ice-9.13 40.52 0.00 0.03 9.97 0.15 49.56 0.32 0.23 100.8 89.9
Ice-9.14 40.00 0.00 0.04 14.07 0.23 46.49 0.34 0.16 101.3 85.5
Ice-10.1 39.24 0.00 0.04 10.36 0.18 49.06 0.31 0.23 99.4 89.4
Ice-10.2 39.71 0.00 0.15 12.45 0.21 47.44 0.30 0.16 100.4 87.2
Ice-10.3 40.08 0.00 0.06 12.77 0.18 47.71 0.32 0.16 101.3 86.9
Ice-10.4 39.76 0.04 0.07 12.47 0.18 47.55 0.33 0.16 100.6 87.2
Ice-10.5 39.58 0.01 0.05 12.11 0.20 48.08 0.33 0.14 100.5 87.6
Ice-10.6 40.05 0.01 0.03 12.54 0.20 47.64 0.32 0.21 101.0 87.1
Ice-10.7 39.59 0.06 0.02 12.88 0.21 46.97 0.31 0.17 100.2 86.7
Ice-10.8 39.07 0.00 0.07 9.65 0.13 49.42 0.28 0.24 98.9 90.1
Ice-10.9 39.91 0.00 0.06 9.51 0.13 49.76 0.31 0.28 100.0 90.3
Ice-10.10 39.46 0.03 0.07 12.76 0.19 47.38 0.33 0.16 100.4 86.9
Ice-10.11 38.77 0.04 0.06 15.80 0.27 45.22 0.29 0.12 100.6 83.6
Ice-10.12 39.34 0.01 0.06 13.16 0.20 47.09 0.30 0.16 100.3 86.4
Ice-10.13 40.12 0.00 0.11 13.25 0.19 46.93 0.31 0.14 101.1 86.3
Ice-10.14 40.20 0.00 0.08 12.34 0.17 47.59 0.32 0.18 100.9 87.3
Ice-10.15 40.08 0.00 0.05 12.15 0.13 47.81 0.35 0.16 100.7 87.5
Ice-10.16 40.11 0.00 0.04 11.70 0.15 48.24 0.33 0.16 100.7 88.0
Ice-10.17 39.91 0.00 0.05 12.79 0.20 47.27 0.35 0.16 100.7 86.8
Ice-10.18 39.48 0.00 0.06 11.96 0.21 47.82 0.31 0.18 100.0 87.7
Ice-10.19 39.05 0.00 0.06 12.80 0.22 47.48 0.34 0.19 100.1 86.9
Ice-10.20 39.90 0.03 0.30 11.09 0.22 48.43 0.30 0.23 100.5 88.6
Ice-10.21 39.80 0.00 0.07 12.12 0.22 47.64 0.33 0.18 100.4 87.5
Ice-10.22 39.38 0.00 0.06 12.50 0.20 47.45 0.33 0.19 100.1 87.1
Ice-10.23 39.15 0.00 0.04 12.02 0.20 48.36 0.32 0.18 100.3 87.8
Ice-10.24 39.20 0.00 0.01 12.49 0.21 47.67 0.28 0.16 100.0 87.2
Ice-10.25 39.45 0.00 0.25 14.43 0.26 45.80 0.31 0.14 100.6 85.0
Ice-11.1 40.47 0.07 0.10 10.07 0.18 48.91 0.33 0.38 100.5 89.6
Ice-11.2 39.89 0.07 0.07 11.68 0.22 47.96 0.31 0.27 100.5 88.0
Ice-11.3 40.10 0.06 0.10 11.39 0.18 48.49 0.35 0.24 100.9 88.4
Ice-11.4 39.68 0.08 0.11 12.04 0.21 48.41 0.32 0.24 101.1 87.8
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Table 3. (Continued). Host-olivine Compositions.
Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO NiO Total Fo (mol %)
Ice-11.5 40.68 0.04 0.08 8.11 0.15 50.74 0.29 0.35 100.4 91.8
Ice-11.6 37.69 0.03 0.09 9.98 0.18 49.41 0.32 0.33 98.0 89.8
Ice-11.7 40.79 0.04 0.11 9.61 0.17 49.64 0.33 0.32 101.0 90.2
Ice-11.8 40.42 0.07 0.12 9.93 0.19 49.09 0.34 0.32 100.5 89.8
Ice-11.9 40.00 0.04 0.10 12.24 0.22 47.74 0.34 0.26 100.9 87.4
Ice-11.10 40.70 0.02 0.08 8.66 0.15 50.80 0.34 0.35 101.1 91.3
Ice-11.11 40.31 0.04 0.13 10.84 0.22 48.88 0.34 0.24 101.0 88.9
Ice-11.12 40.42 0.05 0.12 11.04 0.22 48.69 0.31 0.28 101.1 88.7
Ice-11.13 40.88 0.02 0.10 9.01 0.20 50.05 0.34 0.30 100.9 90.8
Ice-11.14 40.92 0.05 0.14 10.10 0.20 49.15 0.36 0.31 101.2 89.7
Ice-11.15 40.21 0.05 0.11 11.72 0.23 48.45 0.37 0.26 101.4 88.0
Ice-16.1 39.16 0.06 0.64 16.32 0.33 44.09 0.26 0.23 101.1 82.8
Ice-16.2 39.99 0.06 0.11 15.42 0.29 45.65 0.31 0.25 102.1 84.1
Ice-16.3 39.22 0.07 0.12 15.25 0.26 46.09 0.28 0.23 101.5 84.3
Ice-16.4 39.74 0.11 0.16 16.13 0.27 44.58 0.28 0.24 101.5 83.1
Ice-16.5 39.92 0.08 0.07 15.12 0.23 45.58 0.26 0.24 101.5 84.3
Ice-16.6 39.83 0.06 0.13 15.23 0.27 45.43 0.29 0.24 101.5 84.2
Ice-16.7 39.83 0.07 0.09 15.51 0.30 45.53 0.29 0.26 101.9 83.9
Ice-16.8 39.85 0.14 0.12 15.24 0.23 45.14 0.28 0.22 101.2 84.1
Ice-16.9 39.82 0.07 0.09 15.33 0.23 45.53 0.27 0.27 101.6 84.1
Ice-25.1 39.96 0.00 0.02 13.97 0.21 46.37 0.26 0.23 101.0 85.5
Ice-25.2 39.53 0.01 0.02 15.10 0.24 45.47 0.27 0.19 100.8 84.3
Ice-25.3 39.63 0.00 0.06 14.63 0.21 45.07 0.33 0.17 100.1 84.6
Ice-25.4 39.45 0.00 0.05 14.95 0.24 45.34 0.27 0.21 100.5 84.4
Ice-25.5 39.35 0.00 0.02 14.84 0.23 45.19 0.27 0.17 100.1 84.4
Ice-25.6 40.03 0.00 0.27 14.32 0.21 45.30 0.30 0.17 100.6 84.9
Ice-25.7 39.66 0.00 0.02 14.92 0.21 45.42 0.28 0.16 100.7 84.4
Ice-25.8 39.53 0.04 0.04 15.07 0.24 45.38 0.28 0.15 100.7 84.3
Ice-25.9 39.15 0.01 0.02 16.63 0.25 44.08 0.29 0.12 100.6 82.5
Ice-25.10 38.11 0.00 0.01 14.47 0.25 45.67 0.25 0.20 99.0 84.9
Ice-25.11 38.83 0.05 0.06 14.56 0.23 46.05 0.28 0.19 100.2 84.9
Ice-25.12 39.79 0.00 0.00 14.84 0.25 45.24 0.28 0.18 100.6 84.5
Ice-25.13 40.09 0.00 0.01 12.35 0.18 47.82 0.25 0.23 100.9 87.3
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4.2 Major Elements in Melt Inclusions

Measured major-oxide and volatile element concentrations for all melt inclusion analyses

are listed in Table 4. The major-oxide concentrations of the Reykjanes Peninsula melt inclusions

indicate that the majority are tholeiitic basalts (Figure 3.A and Figure 3.B); with only six melt

inclusions classified as belonging to the alkaline series (Figure 3b). Melt inclusions range in Mg#

(58-77) with a majority bearing higher Mg# and more primitive composition than the glasses

reported for the Hengíll swarm by Tronnes (1990). Melt inclusion major-oxide concentrations can

be related to the basaltic-glass data from Tronnes (1990) by the progressive crystallization of

olivine and plagioclase, present as phenocrysts in all samples (Figure 4). The major-oxide

concentrations in the melt inclusions extend the basaltic glass trends from Tronnes (1990) to less

differentiated compositions (Figure 4).

The melt Inclusion data show a broader scatter than the data from Tronnes (1990). FeOt

concentrations for the melt inclusions show a range (7.41-13.32 wt. %); several of these data are

in agreement with the basaltic glasses analyzed by Tronnes (1990), which show a range of 8.75-

15.13 wt. % but the melt inclusion data reported here exhibit more variability (Figure 4). The

variability in FeOt and MgO in the melt inclusion is often the result of edge effects (Cabato et al.,

2015) and interpretations of these data are limited.
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Table 4: Major oxide and volatile data for all melt inclusions analyzed in this study. Major oxides and H2O concentrations are in wt. %. Carbon, F, S, and Cl concentrations are ppm. 2σ
uncertainties are shown for volatile data.

Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O SO3 Total H2O (wt%) C (ppm) F (ppm) S (ppm) Cl (ppm)
Ice-1.1 47.07 1.03 13.77 0.09 8.94 0.16 14.25 12.64 1.39 0.18 0.14 99.7 0.11 ± 0.003 564 ± 53 42.7 ± 0.79 906 ± 28 77.8 ± 8.0
Ice-1.2 48.63 0.59 14.25 0.3 7.52 0.12 13.89 12.78 1.81 0.04 0.07 100.0 0.36 ± 0.008 36.6 ± 4.2 74.2 ± 1.6 683 ± 46 21.2 ± 2.2
Ice-1.3a 48.51 0.86 15.34 0.04 10.93 0.2 8.88 14.04 1.4 0.06 0.07 100.3 0.28 ± 0.006 51.6 ± 6.4 61.9 ± 1.5 539 ± 17 11.9 ± 1.2
Ice-1.3b 47.02 0.76 13.42 0.02 10.96 0.21 13.09 12.68 1.31 0.03 0.1 99.6 0.20 ± 0.004 46.7 ± 4.9 57.2 ± 1.1 556 ± 17 7.48 ± 0.77
Ice-1.3c 48.28 0.79 15.23 0.01 9.64 0.15 13.5 11.88 1.69 0.04 0.06 101.3 0.19 ± 0.004 40.1 ± 6.4 74.5 ± 1.5 534 ± 17 53.7 ± 5.5
Ice-1.3d 47.37 0.74 15.02 0.06 10.85 0.17 12.75 11.05 1.96 0.07 0.11 100.2 0.24 ± 0.005 2660 ± 1600 141 ± 2.9 696 ± 34 107 ± 11
Ice-1.4 47.51 1.87 14.59 0.08 10.95 0.21 9.06 14.48 1.2 0.13 0.14 100.2 0.58 ± 0.01 321 ± 30 66.5 ± 1.4 899 ± 29 84.6 ± 8.7
Ice-1.5 47.38 0.81 14.69 0.06 9.72 0.17 11.34 13.08 1.47 0.03 0.06 98.8 0.51 ± 0.01 65.6 ± 7.4 59.7 ± 1.1 357 ± 11 32.1 ± 3.3
Ice-1.6 47.11 0.63 14.17 0.46 8.68 0.17 13.02 13.61 1.26 0.04 0.07 99.2 0.35 ± 0.007 157 ± 15 38.2 ± 0.74 415 ± 13 6.66 ± 0.69
Ice-1.7 47.27 1.05 14.35 0.14 9.99 0.21 12.92 11.79 1.74 0.16 0.11 99.7 0.30 ± 0.006 471 ± 650 72.0 ± 1.3 806 ± 26 91.8 ± 9.5
Ice-1.8 48.95 1.08 15.96 0.05 9.86 0.17 8.8 13.68 1.65 0.22 0.14 100.6 0.33 ± 0.007 73.0 ± 8.8 71.8 ± 1.4 738 ± 23 88.5 ± 9.1
Ice-1.9a 48.18 0.59 14.71 0.29 8.22 0.13 13.01 13.56 1.56 0.03 0.06 100.3 0.30 ± 0.009 46.7 ± 4.6 34.9 ± 1.1 451 ± 15 1.82 ± 0.19
Ice-1.9b 48.68 0.66 16.74 0.14 7.6 0.12 11 13.92 1.58 0.02 0.08 100.5 0.50 ± 0.02 0.185 ± 13 37.7 ± 1.3 424 ± 15 1.45 ± 0.17
Ice-1.9c 48.63 0.63 15.36 0.15 8.11 0.12 10.89 14.32 1.52 0.01 0.04 99.8 0.43 ± 0.009 72.0 ± 6.9 39.9 ± 0.81 417 ± 13 1.44 ± 0.17
Ice-1.9d 47.18 0.66 14.48 0.29 8.57 0.14 13.63 13.19 1.74 0.03 0.05 100.0 0.17 ± 0.003 292 ± 27 41.3 ± 0.76 477 ± 15 19.5 ± 2.0
Ice-1.10a 47.53 0.71 14.24 0.17 8.39 0.11 13.85 13.13 1.4 0.27 0.08 99.9 0.34 ± 0.007 32.7 ± 4.0 44.1 ± 0.86 918 ± 190 112 ± 12
Ice-1.10b 48.38 0.53 15.19 0.39 8.1 0.13 11.25 13.88 1.34 0.09 0.06 99.3 0.43 ± 0.008 195 ± 18 38.8 ± 0.73 341 ± 11 31.6 ± 3.2
Ice-1.10c 49.24 0.68 16.53 0.34 7.45 0.1 9.14 14.26 1.7 0.17 0.07 99.7 0.39 ± 0.008 121 ± 12 39.8 ± 0.77 552 ± 17 63.1 ± 6.5
Ice-1.11 47.88 0.65 14.64 0.12 8.45 0.13 13.07 13.21 1.49 0.02 0.08 99.7 0.21 ± 0.004 300 ± 28 36.5 ± 0.77 497 ± 16 3.67 ± 0.38
Ice-1.12 48.25 0.5 15.46 0.74 9.06 0.12 10.48 13.22 1.58 0.01 0.11 99.5 0.61 ± 0.01 48.6 ± 5.2 59.0 ± 1.1 510 ± 17 1.40 ± 0.15
Ice-1.13a 49.77 0.58 16.57 0.2 6.8 0.12 10.19 14.39 1.61 0 0 100.2 0.41 ± 0.01 28.9 ± 6.1 60.7 ± 1.7 15.1 ± 0.56 1.31 ± 0.20
Ice-1.13b 50.65 0.63 18.45 0.14 6.12 0.09 8.58 14.46 1.98 0.01 0 101.1 0.51 ± 0.01 20.1 ± 4.2 63.5 ± 1.2 4.97 ± 0.20 1.00 ± 0.11
Ice-1.14a 46.89 0.47 14.19 0.08 11.27 0.19 11.57 14.57 0.92 0.02 0.07 100.2 0.19 ± 0.004 294 ± 28 75.2 ± 1.5 602 ± 19 12.7 ± 1.3
Ice-1. 47.7 0.51 13.89 0.06 10.81 0.22 12.7 13.18 1.26 0.03 0.07 100.4 0.28 ± 0.005 580 ± 53 67.6 ± 1.3 576 ± 18 7.58 ± 0.78
Ice-1.14c 47.59 0.47 13.62 0.04 10.66 0.18 13.9 12.77 1.27 0.01 0.09 100.6 0.21 ± 0.004 205 ± 19 70.1 ± 1.3 591 ± 19 12.7 ± 1.3
Ice-1.15 47.47 0.89 13.97 0.07 10.42 0.19 13.49 11.44 1.77 0.18 0.13 100.0 0.31 ± 0.006 2150 ± 2800 79.9 ± 1.5 1040 ± 79 104 ± 11
Ice-1.16a 48.22 0.65 15.04 0.08 10 0.17 13.99 11.43 1.28 0.07 0.06 101.0 0.44 ± 0.009 53.6 ± 6.2 76.6 ± 1.4 674 ± 21 70.4 ± 7.3
Ice-1.16b 47.93 0.48 14.16 0.08 9.51 0.17 13.12 13.06 1.16 0.03 0.08 99.8 0.24 ± 0.005 707 ± 65 47.1 ± 0.90 637 ± 21 8.91 ± 0.95
Ice-1.16c 48.44 0.3 13.87 0.07 9.42 0.19 13.83 12.94 1.08 0.02 0.1 100.3 0.23 ± 0.004 641 ± 58 45.1 ± 0.86 665 ± 21 3.85 ± 0.41
Ice-1.16d 47.87 0.71 14.72 0.33 10.14 0.16 14.27 10.96 1 0.05 0.09 100.3 0.34 ± 0.007 1310 ± 120 45.7 ± 0.94 540 ± 17 33.1 ± 3.4
Ice-2.1 47.91 1.57 14.73 0.04 10.09 0.18 9.68 13.41 1.34 0.19 0.11 99.3 0.62 ± 0.01 1290 ± 190 67.0 ± 2.0 661 ± 21 97.4 ± 10
Ice-2.2a 48.68 0.44 15.12 0.57 9.63 0.17 10.62 12.6 1.76 0.01 0.07 99.7 0.57 ± 0.01 106 ± 32 56.8 ± 1.5 433 ± 23 2.71 ± 0.29
Ice-2.2b 47.8 0.66 15.39 0.06 8.78 0.15 13 12.51 1.72 0.05 0.09 100.2 0.47 ± 0.01 696 ± 360 52.8 ± 1.2 460 ± 15 13.6 ± 1.4
Ice-2.3 46.18 0.57 15.8 0.52 10.01 0.16 12.22 13.06 1.59 0.06 0.02 100.2 0.36 ± 0.007 20.5 ± 2.3 54.3 ± 1.1 38.9 ± 1.3 4.59 ± 0.48
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Table 4: (Continued). Major oxide and volatile data for all melt inclusions analyzed in this study. Major oxides and H2O concentrations are in wt. %. Carbon, F, S, and Cl concentrations are ppm.
2σ uncertainties are shown for volatile data.

Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O SO3 Total H2O (wt%) C (ppm) F (ppm) S (ppm) Cl (ppm)
Ice-2.4 48.74 1.61 16.56 0.12 8.1 0.12 9.24 13.66 1.72 0.26 0.1 100.2 0.28 ± 0.006 270 ± 30 74.9 ± 1.5 757 ± 24 80.4 ± 8.2
Ice-2.5a 47.37 0.7 13.77 0.08 10.76 0.15 12.98 11.98 1.74 0.05 0.06 99.6 0.61 ± 0.01 506 ± 870 75.0 ± 1.4 268 ± 9.1 18.5 ± 1.9
Ice-2.5b 46.36 0.14 19.06 0.1 10.71 0.22 10.91 11.69 1.22 0.05 0.04 100.5 0.33 ± 0.006 16.6 ± 3.5 17.3 ± 0.36 17.0 ± 0.56 1.64 ± 0.18
Ice-2.6 45.5 0.92 15.54 0.5 12.52 0.15 13.03 9.4 2.05 0.07 0.22 99.9 0.70 ± 0.02 63.4 ± 7.5 91.4 ± 2.3 1320 ± 43 74.8 ± 7.8
Ice-2.7 48.24 1.18 14.31 0.12 8.8 0.16 12.85 12.63 1.5 0.16 0.15 100.1 0.20 ± 0.004 414 ± 38 57.7 ± 1.2 934 ± 36 54.9 ± 5.6
Ice-2.8 47.51 1.82 15.41 0.09 9.12 0.16 10.19 13.91 1.28 0.1 0.03 99.6 0.51 ± 0.01 29.1 ± 4.3 73.0 ± 1.5 209 ± 6.8 21.3 ± 2.2
Ice-2.9a 45.97 1.01 13.67 0.05 10.96 0.19 12.84 13.36 1.3 0.04 0.06 99.5 0.86 ± 0.02 126 ± 1700 79.6 ± 1.6 428 ± 13 54.8 ± 5.6
Ice-2.9b 48.08 0.71 13.95 0.04 9.58 0.17 13.28 12.63 1.51 0.05 0.08 100.1 0.62 ± 0.01 648 ± 120 62.0 ± 1.2 370 ± 12 14.2 ± 1.5
Ice-2.9c 42.82 1.58 15.51 0.09 13.88 0.22 7.92 12.6 2.34 0.07 0.08 97.1 1.99 ± 0.06 648 ± 62 110 ± 2.4 518 ± 20 74.5 ± 7.7
Ice-2.10a 48 1.04 14.78 0.08 8.77 0.18 10.06 14.68 1.65 0.12 0.06 99.4 0.47 ± 0.009 420 ± 45 63.5 ± 1.3 561 ± 18 49.4 ± 5.1
Ice-2.10b 47.31 1.15 13.75 0.08 9.53 0.15 11.28 13.98 1.35 0.19 0.09 98.9 0.49 ± 0.01 325 ± 29 62.4 ± 1.2 664 ± 21 82.9 ± 8.6
Ice-2.11 48.89 0.61 15.25 0.26 7.41 0.12 12.06 13.63 1.78 0.02 0.05 100.1 0.38 ± 0.008 16.9 ± 2.5 63.1 ± 1.3 323 ± 10 1.11 ± 0.12
Ice-2.12 47.14 0.67 15.31 0.37 8.78 0.15 13.15 12.57 1.54 0.03 0.06 99.8 0.56 ± 0.01 113 ± 12 55.0 ± 1.3 340 ± 11 18.2 ± 1.9
Ice-2.13 44.46 1.33 14.06 0.06 12.62 0.2 10.88 14.79 1.29 0.08 0.12 99.9 0.80 ± 0.02 251 ± 26 65.7 ± 1.3 1060 ± 93 52.8 ± 5.4
Ice-2.14 48.28 0.9 13.88 0.05 10.02 0.18 11.74 12.72 1.51 0.09 0.13 99.5 0.90 ± 0.02 93.8 ± 8.8 76.1 ± 2.2 729 ± 23 26.8 ± 2.8
Ice-2.15 48.62 0.83 14.26 0.04 9.94 0.17 14.05 12.21 1.58 0.11 0.14 102.0 0.81 ± 0.03 115 ± 13 86.4 ± 10 950 ± 62 29.8 ± 3.6
Ice-2.16 49.8 0.51 15.94 0.77 8.8 0.16 8.16 13.53 2.27 0.01 0.1 100.1 0.54 ± 0.01 53.5 ± 7.2 66.4 ± 1.2 526 ± 17 1.73 ± 0.19
Ice-9.1 48.61 0.6 14.31 0.1 9.28 0.15 12.22 13.21 1.36 0.11 0.08 100.0 0.49 ± 0.01 31.6 ± 2.3 68.3 ± 5.7 401 ± 13 25.5 ± 3.0
Ice-9.2 48.22 0.88 15.13 0.11 8.99 0.15 10.34 13.3 1.58 0.12 0.14 99.0 0.46 ± 0.01 42.7 ± 17 46.9 ± 3.9 582 ± 20 47.3 ± 5.6
Ice-9.3 47.91 0.85 14.81 0.03 10.4 0.18 10.88 13.24 1.49 0.02 0.13 99.9 0.67 ± 0.01 146 ± 4.8 60.3 ± 5.0 540 ± 18 10.5 ± 1.3
Ice-9.4 46.62 0.73 14.24 0.53 8.04 0.13 12.23 12.99 1.1 0.21 0.09 96.9 0.78 ± 0.02 99.5 ± 18 49.3 ± 4.1 427 ± 14 101 ± 12
Ice-9.5 46.97 0.81 13.84 0.15 9.87 0.19 12.47 13.94 1.35 0.01 0.1 99.7 0.54 ± 0.01 215 ± 52 45.3 ± 0.89 384 ± 12 3.85 ± 0.41
Ice-9.6a 47.6 0.78 16.09 0.37 7.98 0.16 9.72 14.53 1.38 0.01 0.11 98.7 0.50 ± 0.01 178 ± 17 42.9 ± 0.85 387 ± 12 2.28 ± 0.25
Ice-9.6b 47.71 0.81 15.9 0.15 8 0.16 10.98 14.13 1.47 0.01 0.1 99.4 0.39 ± 0.008 145 ± 15 39.7 ± 0.77 441 ± 14 2.29 ± 0.25
Ice-9.6c 46.03 1.07 16.25 0.34 7.63 0.14 8.38 13.85 1.44 0.01 0.11 95.3 0.43 ± 0.009 215 ± 21 39.4 ± 0.86 411 ± 13 2.38 ± 0.25
Ice-9.7 46.94 0.81 16.42 0.13 9.22 0.14 10.34 13.08 1.58 0.02 0.13 98.8 0.46 ± 0.009 33.0 ± 5.2 68.2 ± 1.3 487 ± 16 3.45 ± 0.37
Ice-9.8a 47.13 0.73 14.8 0.6 8.99 0.14 11.84 12.2 1.56 0.06 0.04 98.1 0.31 ± 0.006 54.0 ± 6.0 54.8 ± 1.2 98.5 ± 3.3 10.1 ± 1.1
Ice-9.8b 47.97 0.62 15.08 0.72 9.38 0.18 11.64 12.68 1.51 0.03 0.02 99.8 0.34 ± 0.008 30.6 ± 4.3 61.8 ± 1.2 34.6 ± 1.1 3.74 ± 0.40
Ice-9.8c 48.51 0.77 15.72 0.12 8.91 0.16 9.65 13.55 1.6 0.15 0.12 99.3 0.52 ± 0.01 73.3 ± 7.7 61.1 ± 1.2 531 ± 17 72.8 ± 7.5
Ice-9.9a 47.34 0.68 14.87 0.44 9.15 0.16 12.5 12.31 1.49 0.25 0.18 99.4 0.28 ± 0.006 321 ± 30 53.2 ± 0.98 756 ± 25 101 ± 10
Ice-9.9b 48.99 0.72 16.81 0.11 8.85 0.17 7.63 14.38 1.78 0.07 0.05 99.6 0.41 ± 0.04 181 ± 23 57.4 ± 2.0 538 ± 18 51.8 ± 5.7
Ice-9.10 48.01 0.81 15.27 0.1 8.91 0.14 12.74 13.13 1.72 0.04 0.03 100.9 0.30 ± 0.006 35.0 ± 4.9 50.5 ± 1.0 78.9 ± 2.5 6.38 ± 0.66
Ice-9.11 47.91 0.59 15.07 0.26 8.51 0.14 12.81 13.49 1.3 0 0.09 100.2 0.26 ± 0.005 69.3 ± 7.8 34.5 ± 0.65 387 ± 12 1.26 ± 0.15
Ice-9.12 49.04 0.62 15.63 0.17 7.93 0.15 11.37 14.04 1.23 0.01 0.08 100.3 0.54 ± 0.01 70.0 ± 7.0 41.2 ± 0.82 271 ± 8.5 0.975 ± 0.11
Ice-9.13 49.09 0.78 15.58 0.14 8.17 0.14 10.56 14.6 1.44 0.09 0.14 100.7 0.30 ± 0.006 227 ± 21 50.1 ± 1.2 529 ± 17 34.8 ± 3.6
Ice-9.14 47.75 1.53 13.95 0.05 12.05 0.23 10.57 12.5 1.48 0.13 0.18 100.4 0.48 ± 0.009 51.2 ± 5.7 59.3 ± 1.1 791 ± 25 61.7 ± 6.3
Ice-9.15a 50.11 0.46 10.27 0.63 7.67 0.12 12.64 17.19 1.11 0.02 0.06 100.3 0.30 ± 0.006 3510 ± 360 45.0 ± 1.0 294 ± 9.7 8.22 ± 0.92
Ice-9.15b 49.67 0.67 9.79 0.61 7.52 0.15 12.84 17.39 0.87 0.02 0.04 99.6 0.32 ± 0.007 714 ± 65 42.0 ± 0.81 221 ± 7.2 4.96 ± 0.52
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Table 4: (Continued). Major oxide and volatile data for all melt inclusions analyzed in this study. Major oxides and H2O concentrations are in wt. %. Carbon, F, S, and Cl concentrations are ppm.
2σ uncertainties are shown for volatile data.

Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O SO3 Total H2O (wt%) C (ppm) F (ppm) S (ppm) Cl (ppm)
Ice-9.16 49.99 0.64 9.9 0.55 8.24 0.16 12.59 16.86 1.1 0 0.07 100.1 0.33 ± 0.007 9620 ± 3500 43.5 ± 0.83 298 ± 9.7 17.9 ± 2.6
Ice-10.1 48.84 0.56 15.34 0.81 8.43 0.14 10.63 13.58 1.66 0 0 100.0 0.77 ± 0.02 78.4 ± 7.4 71.4 ± 2.8 375 ± 12 30.6 ± 3.3
Ice-10.2 46.44 0.91 14.23 0.09 10.55 0.17 12.86 12.71 1.54 0.19 0.17 99.9 0.37 ± 0.007 36.2 ± 5.3 59.9 ± 1.2 944 ± 30 91.2 ± 9.4
Ice-10.3 46.38 1.03 13.31 0.1 10.53 0.16 13.93 12.85 1.41 0.12 0.13 100.0 0.55 ± 0.01 2010 ± 4200 72.4 ± 1.4 1200 ± 39 61.5 ± 6.3
Ice-10.4 47.16 0.9 13.69 0.09 10.08 0.17 12.98 12.51 1.34 0.2 0.28 99.4 0.43 ± 0.008 22000 ± 37000 63.1 ± 1.2 2800 ± 1200 102 ± 10
Ice-10.5a 41.07 0.66 13.32 0.21 9.67 0.15 12.7 12.02 1.39 0.12 0.15 91.5 0.30 ± 0.007 144 ± 16 66.6 ± 1.4 716 ± 24 67.6 ± 7.0
Ice-10.5b 48.24 0.87 13.82 0.14 9.53 0.13 14.34 11.81 1.54 0.15 0.18 100.8 0.30 ± 0.007 142 ± 13 72.8 ± 1.6 743 ± 24 66.0 ± 6.8
Ice-10.5c 48.23 0.84 13.42 0.09 9.48 0.14 13.1 12.58 1.36 0.12 0.14 99.5 0.45 ± 0.009 38.7 ± 8.9 83.6 ± 1.5 632 ± 20 59.7 ± 6.1
Ice-10.6 48.16 1.28 13.91 0.1 9.9 0.18 12.45 11.93 1.66 0.22 0.11 99.9 0.46 ± 0.01 27.6 ± 3.3 62.1 ± 1.3 783 ± 25 103 ± 11
Ice-10.7a 46.73 1.44 13.58 0.06 10.67 0.19 13.06 11.3 1.79 0.29 0.27 99.4 0.30 ± 0.006 401 ± 43 68.8 ± 1.3 1120 ± 57 138 ± 14
Ice-10.7b 47.33 1.56 13.14 0.12 10.92 0.18 12.92 11.52 1.73 0.25 0.3 100.0 0.33 ± 0.007 352 ± 33 71.6 ± 1.4 1040 ± 36 123 ± 13
Ice-10.7c 47.51 2.05 13.58 0.09 10.11 0.17 7.72 13.72 1.85 0.19 0.21 97.2 0.93 ± 0.02 276 ± 26 82.4 ± 1.6 903 ± 28 96.6 ± 9.9
Ice-10.8a 47.32 0.68 14.33 0.47 8.44 0.14 12.57 13.59 1.55 0 0 99.1 0.79 ± 0.02 201 ± 200 61.9 ± 1.3 344 ± 14 16.4 ± 1.7
Ice-10.8b 46.85 0.71 14.55 0.77 8.44 0.11 12.37 13.58 1.53 0 0.03 98.9 0.71 ± 0.01 2660 ± 1200 61.2 ± 1.2 339 ± 11 10.6 ± 1.5
Ice-10.9 47.51 0.49 14.58 0.66 7.96 0.1 14.29 12.64 1.61 0 0.02 99.9 0.43 ± 0.008 59.9 ± 6.1 55.4 ± 1.0 514 ± 17 5.56 ± 0.57
Ice-10.10 46.81 1.14 14.68 0.13 10.47 0.16 11.28 12.49 1.65 0.18 0.18 99.2 0.31 ± 0.007 170 ± 22 88.9 ± 1.8 3360 ± 800 106 ± 11
Ice-10.11a 47.76 1.49 12.49 0.08 13.32 0.21 11.87 10.31 1.86 0.3 0.27 100.0 0.51 ± 0.01 644 ± 58 174 ± 3.9 1200 ± 40 147 ± 15
Ice-10.11b 47.74 1.57 12.99 0.06 12.9 0.21 10.94 10.72 2.06 0.29 0.22 99.7 0.40 ± 0.008 301 ± 27 178 ± 3.5 1100 ± 35 148 ± 15
Ice-10.12 46.97 1.21 12.87 0.08 11.04 0.18 12.59 11.85 1.67 0.14 0.16 98.8 0.68 ± 0.01 31.0 ± 3.2 64.9 ± 1.2 859 ± 27 67.8 ± 7.0
Ice-10.13 47.26 1.38 12.89 0.08 11.63 0.19 12.64 10.46 1.85 0.18 0.15 98.7 0.47 ± 0.01 32.7 ± 4.5 106 ± 3.7 927 ± 33 81.3 ± 8.8
Ice-10.14 49.44 0.49 16.98 0.5 9 0.15 7.85 13.43 2.18 0.01 0.02 100.1 0.61 ± 0.01 505 ± 64 65.2 ± 1.2 535 ± 19 1.62 ± 0.17
Ice-10.15 45.96 1.09 14.43 0.07 10.34 0.17 11.46 13.67 1.33 0.14 0.19 98.9 0.90 ± 0.02 103 ± 11 76.2 ± 2.1 1170 ± 39 64.5 ± 6.7
Ice-10.16 47.87 0.53 14.43 1.02 9.61 0.16 12.51 12.8 1.27 0 0.04 100.2 0.51 ± 0.01 30.3 ± 9.7 55.8 ± 1.2 285 ± 9.0 1.15 ± 0.16
Ice-10.17 47.82 1 13.5 0.06 10.48 0.17 12.86 12.68 1.38 0.21 0.34 100.5 0.45 ± 0.009 38.7 ± 9.3 61.7 ± 1.3 854 ± 27 96.7 ± 9.9
Ice-10.19a 47.38 1.43 12.47 0.06 11.03 0.19 15.04 9.97 1.97 0.35 0.1 100.0 0.54 ± 0.01 33.3 ± 2.2 151 ± 6.6 983 ± 36 223 ± 25
Ice-10.19b 47.39 1.56 14.19 0.05 10.93 0.21 10.16 12.89 1.74 0.23 0.02 99.4 0.80 ± 0.02 801 ± 800 88.8 ± 4.1 884 ± 35 127 ± 15
Ice-10.20 46.94 0.64 14.17 0.09 8.99 0.18 15.69 11.58 1.51 0.02 0 99.8 0.18 ± 0.004 203 ± 44 46.9 ± 2.8 123 ± 7.0 60.5 ± 7.6
Ice-10.21a 48.47 0.57 14.05 0.04 9.97 0.15 12.49 12.91 1.58 0.04 0 100.3 0.51 ± 0.01 28.5 ± 3.6 68.2 ± 3.1 715 ± 27 17.4 ± 2.0
Ice-10.21b 48.45 0.69 14.3 0.06 10.22 0.21 11.69 13.38 1.45 0.06 0 100.5 0.62 ± 0.01 35.9 ± 4.2 75.2 ± 3.2 714 ± 26 23.4 ± 2.7
Ice-10.22 47.65 0.79 13.13 0.09 11.49 0.21 10.97 12.52 3.33 0.06 0 100.2 0.90 ± 0.01 1330 ± 1500 481 ± 21 556 ± 20 115 ± 13
Ice-10.23 45.62 0.66 15.36 0.75 10.68 0.21 9.94 13.31 3.33 0.03 0 99.9 0.85 ± 0.01 692 ± 59 3640 ± 150 597 ± 21 467 ± 53
Ice-10.24 48.27 1.39 13.78 0.04 10.51 0.21 12.48 12.1 1.59 0.17 0.12 100.7 0.54 ± 0.01 27.9 ± 2.6 69.8 ± 3.0 837 ± 30 74.2 ± 8.4
Ice-10.25a 47.99 1.77 13.43 0.03 12.77 0.23 9.82 11.7 2.01 0.31 0.19 100.3 0.64 ± 0.02 36.8 ± 3.2 173 ± 8.0 1120 ± 42 155 ± 18
Ice-10.25b 47.15 1.47 12.52 0.05 13.05 0.26 11.45 11.1 1.64 0.32 0 99.0 0.64 ± 0.01 51.4 ± 3.2 151 ± 6.6 1070 ± 39 176 ± 20
Ice-11.1 48.94 0.72 16.2 0.07 8.52 0.16 11.17 13.3 1.47 0.1 0.15 100.8 0.55 ± 0.01 31.3 ± 4.5 75.7 ± 2.1 301 ± 29 1.12 ± 0.13
Ice-11.2 47.9 1.37 14.54 0 9.86 0.17 11.71 13.41 1.35 0 0.16 100.5 0.41 ± 0.009 181 ± 20 46.8 ± 0.89 610 ± 19 42.1 ± 4.4
Ice-11.3 47.65 0.72 14.23 1.12 10.1 0.19 11.44 14.26 1.67 0 0.11 101.5 0.62 ± 0.01 424 ± 43 48.3 ± 1.0 482 ± 15 3.73 ± 0.39
Ice-11.4 47.36 0.59 14.12 1.74 10.3 0.15 14.13 11.53 1.79 0 0.1 101.8 0.43 ± 0.009 99.4 ± 13 51.4 ± 0.94 292 ± 9.2 4.40 ± 0.46
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Table 4: (Continued). Major oxide and volatile data for all melt inclusions analyzed in this study. Major oxides and H2O concentrations are in wt. %. Carbon, F, S, and Cl concentrations are ppm.
2σ uncertainties are shown for volatile data.

Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O SO3 Total H2O (wt%) C (ppm) F (ppm) S (ppm) Cl (ppm)
Ice-11.5 48.04 1.16 15.04 0.73 7.05 0.11 14.39 13.38 1.73 0 0.09 101.7 0.31 ± 0.006 220 ± 22 43.7 ± 0.82 300 ± 9.5 8.27 ± 0.86
Ice-11.6 48.27 0.55 14.63 0.79 8.38 0.12 14.16 12.83 1.69 0.01 0.15 101.6 0.35 ± 0.008 0.183 ± 5.4 53.0 ± 1.1 347 ± 11 1.19 ± 0.14
Ice-11.7 49.11 0.81 15.44 0.18 8.05 0.12 11.52 13.93 1.54 0 0.1 100.8 0.34 ± 0.007 0.199 ± 30 68.1 ± 1.3 309 ± 9.8 1.55 ± 0.18
Ice-11.8a 48.1 0.6 13.78 1.47 8.83 0.14 15.1 12.38 1.64 0.01 0.07 102.1 0.49 ± 0.01 183 ± 17 59.0 ± 1.3 269 ± 27 6.12 ± 0.64
Ice-11.8b 50.34 0.57 15.19 0.8 8.92 0.16 8.68 13.81 1.55 0 0.1 100.1 1.2 ± 0.05 535 ± 120 86.3 ± 2.7 312 ± 16 5.83 ± 0.62
Ice-11.9a 47.2 0.67 13.8 1.1 10.4 0.15 14.74 11.56 1.91 0 0.08 101.6 0.51 ± 0.01 590 ± 75 49.4 ± 1.1 303 ± 9.9 5.93 ± 0.71
Ice-11.9b 48.15 0.68 15.08 1.58 10.25 0.15 10.88 12.64 1.45 0.01 0.1 101.0 0.58 ± 0.01 72.7 ± 11 59.8 ± 1.2 315 ± 16 1.06 ± 0.27
Ice-11.10 48.04 0.72 15.13 0.79 8.21 0.16 11.98 14.48 1.66 0 0.18 101.4 0.78 ± 0.02 1300 ± 3000 59.7 ± 1.2 224 ± 9.6 4.93 ± 3.7
Ice-11.11 48.13 0.65 14.97 1.71 9.09 0.16 11.25 13.74 1.7 0 0.12 101.5 0.47 ± 0.01 72.9 ± 7.7 58.1 ± 1.2 469 ± 15 1.57 ± 0.19
Ice-11.12a 48.31 0.66 14.68 1.72 9.73 0.13 12.05 13.03 1.63 0.04 0.12 102.1 0.49 ± 0.01 77.3 ± 7.2 58.2 ± 1.2 450 ± 14 1.61 ± 0.18
Ice-11.12b 47.3 0.74 14.53 0.96 9.63 0.14 13.55 12.1 1.88 0.01 0.13 101.0 0.39 ± 0.008 361 ± 33 85.4 ± 1.6 345 ± 11 16.9 ± 1.7
Ice-11.13 48.1 0.78 15.36 1.12 7.72 0.15 13.03 13.08 1.79 0.05 0.24 101.4 0.33 ± 0.007 77.4 ± 7.8 60.3 ± 1.1 415 ± 13 1.53 ± 0.18
Ice-11.14a 45.72 0.83 13.92 1.25 11.15 0.16 14.13 12.51 1.2 0.03 0.12 101.0 0.57 ± 0.01 168 ± 25 71.8 ± 1.3 721 ± 65 28.0 ± 2.9
Ice-11.14b 44.77 0.91 15.08 0.78 10.95 0.18 11.87 15.32 1.73 0.03 0.1 101.7 0.67 ± 0.01 182 ± 25 68.3 ± 1.2 345 ± 13 22.1 ± 2.3
Ice-11.15a 46.98 0.96 14.44 0 10.04 0.17 13.09 13.09 1.64 0 0.12 100.5 0.74 ± 0.04 2240 ± 350 92.7 ± 4.6 333 ± 14 29.0 ± 3.5
Ice-11.15b 47.06 1.05 13.96 0.1 10.01 0.16 13.73 12.92 1.77 0 0.11 100.9 0.58 ± 0.01 76.9 ± 8.6 59.2 ± 1.3 417 ± 13 11.8 ± 1.2
Ice-11.15c 48.24 1.09 15.01 0 9.49 0.17 10.74 13.99 1.64 0 0.11 100.5 0.44 ± 0.01 40.1 ± 8.5 58.9 ± 1.2 355 ± 11 1.41 ± 0.19
Ice-11.15d 47.97 1.12 15.05 0.09 9.61 0.17 11.02 13.83 2.32 0.11 0.15 101.4 0.44 ± 0.01 38.3 ± 11 58.8 ± 1.1 346 ± 11 1.36 ± 0.16
Ice-16.1 46.53 1.1 15.15 0.42 12.54 0.24 13.19 9.89 2.32 0.11 0.15 101.6 0.41 ± 0.005 425 ± 100 220 ± 8.0 564 ± 14 41.9 ± 4.6
Ice-16.2a 47.54 2.09 14.4 0 12.18 0.19 10.3 11.93 2.16 0.12 0.23 101.1 0.49 ± 0.01 3110 ± 1100 256 ± 11 885 ± 35 60.4 ± 6.9
Ice-16.2b 45.36 1.63 12.95 0.19 12.25 0.21 13.97 10.29 1.75 0.13 0.23 99.0 0.32 ± 0.005 281 ± 68 249 ± 9.5 876 ± 23 48.6 ± 5.4
Ice-16.3 47.96 1.94 14.42 0 11.21 0.19 10.71 11.37 2.16 0.13 0.25 100.3 0.43 ± 0.007 666 ± 160 247 ± 9.2 1050 ± 26 54.3 ± 6.0
Ice-16.4 47.32 2.14 12.91 0.05 12.84 0.2 12.87 10.48 1.91 0.32 0.34 101.4 0.55 ± 0.008 110 ± 29 212 ± 8.2 1180 ± 32 161 ± 18
Ice-16.5 47.86 1.56 13.79 0.04 11.41 0.19 13.06 10.21 2 0.42 0.28 100.8 0.48 ± 0.007 98.5 ± 25 203 ± 7.8 863 ± 24 70.4 ± 7.9
Ice-16.6 47.43 1.93 14.81 0 11.18 0.2 10.56 11.59 2.25 0.17 0.25 100.4 0.42 ± 0.007 768 ± 180 251 ± 9.3 919 ± 24 55.7 ± 6.4
Ice-16.7a 46.2 1.66 14.21 1.53 13.1 0.24 12.15 10.77 1.93 0.17 0.22 102.2 0.51 ± 0.007 195 ± 57 284 ± 10 877 ± 24 62.5 ± 7.1
Ice-16.7b 47.54 1.63 13.94 0.15 12.75 0.21 10.78 11.6 2.09 0.15 0.2 101.0 0.52 ± 0.007 142 ± 35 248 ± 9.0 854 ± 21 70.0 ± 7.7
Ice-16.8 48.06 1.53 13.36 0.11 11.67 0.19 13.53 10 2.15 0.19 0.27 101.1 0.41 ± 0.005 40.4 ± 10 256 ± 9.4 973 ± 24 85.9 ± 9.5
Ice-16.9 44.4 2.51 13.72 0.02 11.99 0.18 11.15 10.87 1.95 0.3 0.44 97.5 0.59 ± 0.009 1990 ± 530 254 ± 9.3 1630 ± 51 185 ± 20
Ice-25.1 49.43 1.19 15.98 0.07 8.46 0.16 9.36 11.97 2.18 0.06 0.13 99.0 0.48 ± 0.01 22.4 ± 2.5 355 ± 17 663 ± 26 24.0 ± 2.7
Ice-25.2a 48.54 1.47 14.34 0.03 9.68 0.18 11.61 11.80 1.83 0.22 0.10 99.8 0.46 ± 0.008 0.00 ± 14 372 ± 16 766 ± 27 104 ± 12
Ice-25.2b 48.31 1.40 14.35 0.07 9.41 0.18 12.46 11.45 1.81 0.25 0.12 99.8 0.41 ± 0.008 27.3 ± 3.6 344 ± 15 805 ± 29 106 ± 12
Ice-25.3 47.61 1.39 14.11 0.04 9.88 0.16 12.78 11.45 2.01 0.20 0.13 99.8 0.53 ± 0.01 50.5 ± 4.9 391 ± 18 771 ± 29 74.6 ± 8.6
Ice-25.4 47.90 1.56 14.55 0.05 9.71 0.17 12.69 11.17 1.86 0.19 0.08 99.9 0.50 ± 0.009 31.1 ± 3.9 392 ± 17 790 ± 31 77.1 ± 8.7
Ice-25.5 47.44 1.43 13.43 0.06 10.40 0.18 12.81 11.33 1.75 0.17 0.06 99.1 0.77 ± 0.01 0.00 ± 40 348 ± 15 822 ± 30 66.7 ± 7.5
Ice-25.6 47.20 1.48 14.56 0.08 9.52 0.18 13.67 11.18 1.81 0.20 0.10 100.0 0.48 ± 0.01 31.3 ± 2.9 346 ± 15 688 ± 26 79.0 ± 8.9
Ice-25.7 47.18 1.43 13.29 0.04 10.80 0.19 13.62 11.02 1.74 0.15 0.09 99.6 0.66 ± 0.01 0.00 ± 36 345 ± 15 720 ± 26 67.3 ± 7.6
Ice-25.8 49.82 1.55 14.77 0.04 10.70 0.17 9.33 12.37 1.42 0.14 0.11 100.4 0.81 ± 0.02 41.0 ± 3.4 389 ± 17 794 ± 29 74.9 ± 8.5
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Table 4: (Continued). Major oxide and volatile data for all melt inclusions analyzed in this study. Major oxides and H2O concentrations are in wt. %. Carbon, F, S, and Cl concentrations are ppm.
2σ uncertainties are shown for volatile data.

Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O SO3 Total H2O (wt%) C (ppm) F (ppm) S (ppm) Cl (ppm)
Ice-25.9a 48.47 1.35 12.69 0.02 11.30 0.22 12.43 10.68 1.92 0.26 0.12 99.5 0.61 ± 0.01 16.0 ± 2.1 328 ± 15 847 ± 32 110 ± 13
Ice-25.9b 47.41 1.40 11.88 0.01 11.90 0.22 14.15 10.19 1.91 0.23 0.13 99.4 0.66 ± 0.01 19.1 ± 2.2 324 ± 14 922 ± 34 109 ± 12
Ice-25.9c 47.86 1.43 12.37 0.03 12.00 0.26 12.00 11.13 1.79 0.21 0.13 99.2 0.77 ± 0.02 26.7 ± 2.3 346 ± 16 990 ± 35 100 ± 11
Ice-25.10 47.80 1.20 13.28 0.03 9.77 0.20 15.09 10.21 1.65 0.21 0.10 99.5 0.47 ± 0.01 23.2 ± 2.5 316 ± 14 761 ± 28 88.1 ± 10
Ice-25.11 47.28 1.32 13.58 0.06 10.10 0.18 14.39 10.65 1.84 0.17 0.08 99.7 0.74 ± 0.01 32.4 ± 3.9 341 ± 14 752 ± 27 67.6 ± 7.6
Ice-25.12b 48.02 1.65 14.68 0.05 10.20 0.19 9.47 12.27 2.07 0.23 0.11 98.9 0.86 ± 0.01 29.0 ± 2.8 365 ± 15 779 ± 28 78.7 ± 8.9
Ice-25.12c 48.67 1.65 14.44 0.05 10.20 0.18 9.28 12.15 2.08 0.22 0.11 99.0 0.93 ± 0.02 32.2 ± 3.1 373 ± 17 855 ± 31 88.6 ± 10
Ice-25.12d 47.76 1.39 12.59 0.04 10.50 0.20 13.63 11.02 1.85 0.20 0.09 99.3 0.76 ± 0.02 21.8 ± 2.6 339 ± 15 755 ± 29 82.0 ± 9.4
Ice-25.13 49.30 0.38 12.68 0.06 8.97 0.14 16.34 9.61 1.73 0.02 0.02 99.2 0.78 ± 0.01 164 ± 10 1220 ± 51 314 ± 11 44.7 ± 5.0
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Figure 3: (A) Total alkali silica diagram showing magma compositions for studied melt inclusions. (B) K2O as a function of
SiO2 showing the boundary between alkaline and tholeiite compositions for Reykjanes Peninsula melt inclusions analyzed in
this study (series boundary defined by Peccerillo and Taylor 1976).
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Mg # Mg #
Figure 4: Major oxides vs. Mg # (mol %) for studied melt inclusions compared with data for volcanic glasses in
the Hengill Swarm analyzed by Tronnes (1990).
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Figure 4: (Continued). Major oxides vs. Mg # (mol %) for studied melt inclusions compared with data for volcanic
glasses in the Hengill Swarm analyzed by Tronnes (1990).
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4.3 Water in Melt Inclusions

Measured H2O concentrations in the studied melt inclusions show a range of concentrations

from 0.17 wt. % to a maximum value of 1.99 ± 0.06 wt. % (Table 4). The maximum values exceed

the H2O concentrations reported by Nichols et al. (2002) for basaltic glass, but a majority of the

melt inclusions preserve volatile concentrations in general agreement with previously reported

data for the Reykjanes Peninsula (e.g., Sigvaldson and Oskarsson, 1976; Schilling et al., 1980;

Jambon et al., 1995; Nichols et al., 2002).

The two highest H2O concentrations reported in this study occur in intraglacial picrites

from Sandfell in the Hengíll swarm, 1.99 wt. % (Ice-2) and 1.22 wt. % (Ice-11). Another

intraglacial picrite located in the Hengíll swarm at Mælifell, Ice-10, has a maximum H2O

concentration of 0.90 wt. % (Table 4). Maximum H2O concentrations in the intraglacial picrites

from Miðfell, also located in the Hengíll swarm, are lower than those from Sandfell and Mælifell.

The Miðfell samples have maximum concentrations of 0.61 wt. % (Ice-1) and 0.78 wt. % (Ice-9.)

Water concentrations in the late glacial olivine-tholeiite from Bleikholl, Ice-25, located in the

Grindavík swarm, reach a maximum value of 0.93 wt. %. The postglacial olivine-tholeiite from

Stora-Eldborg in the Krýsuvík swarm, Ice-16, has the lowest maximum H2O concentration of 0.59

wt. %. For the samples studied, H2O concentrations generally decrease with increasing distance

from the plume head – located beneath Vatnajökull Glacier (Wolfe et al., 1997) – as noted

previously by Nichols et al. (2002).

Figure 5 shows the relationship between major-oxide and H2O concentrations for melt

inclusions in this study. In general, the H2O concentrations are not correlated with major oxides.
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The lack of correlation suggests that H2O is not being concentrated in the melt during

crystallization (Section 5.1). Additionally, water concentrations do not correlate with K2O (Figure

5h), a similarly incompatible element.
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H2O wt. % H2O wt. %
Figure 5: Harker-style plots showing major oxides as a function of H2O compositions for the studied Reykjanes Peninsula
melt inclusions. Samples are grouped by location and corresponding sample numbers are shown for reference.
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4.4 Carbon Dioxide, F, S, and Cl in Melt Inclusions

Carbon dioxide, F, S, and Cl for the Reykjanes Peninsula melt inclusions studied here are

heterogeneous (Figure 6; Table 4) and exhibit a wide range of concentrations suggesting a complex

history of degassing, magmatic differentiation, and post-entrapment modification. However, a few

trends providing coherent correlations with other elements remain and offer some useful insights.

Volatile abundances show significant scatter as a function of H2O abundance (Figure 6) and trends

are restricted to individual sample locations. Carbon dioxide abundances show little to no

correlation with H2O but in some sample locations, such as Miðfell, CO2 generally decreases with

increasing H2O (Figure 6.A). Fluorine concentrations appear to covary with H2O, and increase

with increasing H2O (Figure 6.B). Fluorine concentrations are greatest in the olivine tholeiites

from Bleikholl and Stora-Eldborg. Sulfur and Cl lack any correlation with H2O (Figure 6.C and

6.D).

Sulfur concentrations and S solubility are functions of temperature, composition, fugacity,

pressure, and degassing (e.g., Wallace and Carmichael, 1992; Wallace and Edmond, 2011;

Bucholz et al., 2013). The Reykjanes Peninsula samples represent a wide range of compositions

(S = ~220-1600 ppm) suggesting variable degrees of degassing and entrapment at a variety of

pressures. Sulfur concentrations generally increase as FeOt increases from 7.05-13.88 wt. %

(Figure 7). A majority of these data plot below but parallel the empirical sulfide saturation curve

(Mathez, 1976) and sulfide saturation models (e.g., Wallace and Carmichael, 1992; Wallace and

Edmond, 2011) and represent uncompromised melt inclusions. MORB glasses typically have S

concentrations of >1000 ppm. Conversely, lavas erupted in subaerial and shallow submarine

settings show S < 250 ppm (Davis et al. 1991). There is a lack of correlation between S and H2O
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in the Reykjanes Peninsula samples (Figure 6c), and significant scatter in the data suggesting S

loss at low pressures (e.g., Wallace and Edmond, 2011).

Chlorine concentrations in Reykjanes Peninsula melt inclusions show a range of

concentrations (~1-223 ppm, one outlier = 467 ppm) and several of the samples have Cl

concentrations lower than the lowest standard used for calibration (Alvin 519-4-1, Cl=45 ppm).

Fifty eight of the melt inclusions studied here have Cl concentrations < 20 ppm, these are amongst

the lowest Cl concentrations reported for Iceland. However, several of the values fall within the

range of previously reported data for Iceland and the Northern MAR (e.g., Sigvaldson and

Oskarsson, 1976; Schilling et al., 1980; Metrich et al., 1991; Jambon et al., 1995), 20-50 ppm for

primitive MORB (Michael and Schilling, 1989) and 29-61 ppm for WVZ samples from Iceland

(Licciardi et al., 2008).

Dixon and Clague (2001) modeled the behavior of Cl as a function of the degree of melting

using SiO2 as a proxy because the highly incompatible nature of Cl implies its concentrations

should increase with decreasing extents of melting and increasing extents of crystallization. There

is no correlation between SiO2 and Cl in the Reykjanes Peninsula samples studied here. Similarly,

the Cl concentrations show no correlation with MgO, an indication that Cl is not being concentrated

during fractional crystallization (Michael and Cornell, 1998). When Cl is plotted against K2O, a

similarly incompatible element (Dixon and Clague, 2001; Figure 8), a positive correlation between

the elements is observed and the slope of the regression line is ~0.046 (R2 =0.82 excluding two

outliers), consistent with the nearly constant Cl/K ratio of 0.05 for Iceland samples observed by

Jambon et al. (1995).
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Figure 7: Sulfur concentrations as a function of FeOt for all melt inclusions studied. Degassing of sulfur is likely, however the
covariation of S and FeO suggests most samples were sulfide saturated, and minimal post entrapment modification occurred.
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Figure 8: Cl concentrations as a function of K2O for studied melt inclusions. Trend line excludes high Cl sample.

R² = 0.817

0

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5

Cl
 p

pm

K2O wt. %



34

5. DISCUSSION

5.1 Degassing and Crystallization

Degassing, crystallization, and post-entrapment re-equilibration are processes that affect

volatile abundances in melt inclusions as the host olivine ascends and eventually erupts at the

surface (e.g., Danyushevsky et al., 2000; 2002; Métrich and Wallace, 2008; Johnson et al., 2010).

For instance, melt inclusions trapped at different times and depths within the magmatic system

should each record a unique melt composition. Re-equilibration of the melt inclusion with the host

olivine at lower temperature may lead to FeOt loss and MgO gain in the melt inclusion to high Mg

olivine (Danyushevsky et al., 2000; 2002). Conversely, re-equilibration of the melt inclusion with

the host-olivine grain at high temperatures may lead to MgO loss and FeOt gain (Danyushevsky et

al., 2000; 2002). In order to discern the relationship between volatile concentrations and noble gas

signatures in the Reykjanes Peninsula samples, it is necessary to determine the extent to which

volatile concentrations have decreased as a consequence of degassing or, conversely, increased

due to crystallization processes or post-entrapment re-equilibration.

The loss of volatiles by degassing may be compensated by an increase of volatiles in the

residual melt during crystallization (e.g., Jambon et al., 1995; Jonhnson et al., 2010; Wallace and

Edmond, 2011). Dixon and Clague (2001) noted that degassing is a two-stage process; in the first

stage, CO2 is exsolved from the melt within the magma reservoir. Subsequently, in the second

stage, H2O, S, Cl and CO2 are removed during typical eruption-related venting of gases (Dixon

and Clague, 2001).  The studied Reykjanes Peninsula melt inclusions display a wide range of H2O

and CO2 concentrations indicating that melt-inclusion entrapment occurred over a range of
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pressures. The vapor-saturation pressure of a melt inclusion can be estimated using its H2O and

CO2 concentrations (e.g., Dixon, 1997; Newman and Lowerstern, 2002).

Calculated vapor-saturation pressures for the CO2 and H2O concentrations of the studied

melt inclusions using VolatileCalc, calibrated for tholeiitic to silica-undersaturated compositions

(Newman and Lowenstern, 2002), yields entrapment pressures <10 to 300 Mpa (Figure 9).  The

observed variability in H2O and CO2 concentrations in concert with calculated vapor-saturation

pressures indicates that partially degassed melts were trapped as magma ascended through the

crust. The loss of CO2 relative to H2O can be modeled using open-system degassing for the

maximum measured H2O concentration of 1.99 wt. % (Figure 9). Some of the data can be modeled

by invoking closed-system degassing. In the closed-system-degassing model, a fluid with 3 wt. %

H2O is exsolved (Figure 9). Globally, closed-system degassing is true for several volcanoes as

indicated by their melt inclusion data (Metrich and Wallace, 2008). However, the maximum H2O

concentrations of the Reykjanes Peninsula melt inclusions can be explained by closed-system

degassing only if the initial H2O concentration was significantly greater than the maximum value

reported here. Certain melt inclusions appear to be in equilibrium with CO2-rich fluids, as indicated

by the isopleths in Figure 9. While the degassing paths and vapor-equilibrium models are

speculative, it is clear that the melt inclusions are generally degassed to various degrees.

Volatiles are incompatible during melting and their concentrations may increase during

fractional crystallization (Johnson et al., 2010). Therefore, the possibility that volatiles were

concentrated in the melt inclusions leading to variations in volatile concentrations must be

evaluated. First-order observations of the relationship between H2O and other incompatible

elements such as TiO2, Na2O, and K2O reveal a lack of correlation (Figure 5). The absence of a

negative correlation between H2O and other incompatible elements coupled with the observed



36

enrichments of TiO2, Na2O, and K2O at lower H2O concentrations (Figure 5) suggests that H2O is

not being concentrated during crystallization but is degassing concurrently with crystallization

(Cabato et al., 2015).

Figure 9: Melt Inclusion CO2 vs. H2O for the Reykjanes Peninsula melt inclusions analyzed in this study. Also shown are
calculated vapor saturation isobars, open and closed system degassing paths, and isopleths all calculated using VolatileCalc
(Newman and Lowernstern, 2002). Absolute 2σ uncertainties are shown, for several samples error bars are within symbol.
Calculations were made using the average SiO2 composition of 47.77 wt. % and a temperature of 1200O C.
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5.2 Source Lithology

Magma compositions can yield valuable information about the depth of melt extraction

from the mantle (Lee et al., 2009). Koornneef et al. (2012) suggested that the observed trace

element and Nd-Hf-Sr-Pb isotopic heterogeneity in Icelandic magmas can be explained by

polybaric melting and melt extraction at variable depths from two components, an N-MORB and

an enriched ancient recycled crustal component. Recent studies have invoked a peridotite-

pyroxenite mantle beneath Iceland as a source for heterogeneity in the magmas (Shorttle and

Maclennan, 2011; Koornneef et al., 2012).

Using the barometric model presented in Lee et al. (2009), the pressure and depth of mantle

melt extraction has been calculated for the maximum H2O concentrations reported in this study

(Figure 10). The model presented in Lee et al. (2009) is calibrated for melts with SiO2

concentrations greater than 43 wt. %; consequently the Sandfell sample Ice-2 could not be

modelled because of the low SiO2 concentration (42.82 wt. %) in the melt inclusion. For the

remaining samples, maximum H2O concentrations correlate with pressure along two trends. The

Mælifell, Stora-Eldborg, Bleikholl, and Sandfell (Ice-ll) samples define one trend (R2 = 0.96). The

two Miðfell samples diverge from the trend defined by Mælifell, Stora-Eldborg, Bleikholl, and

Sandfell to lower H2O concentrations at a given pressure. The variation between the Miðfell

samples and samples from the other four localities studied may be the result of melting two

different mantle lithologies, peridotite and pyroxenite, as suggested by Shorttle and Maclennan

(2011), and Koornneef et al. (2012). Melting commences at different temperatures and,

consequently pressures, for pyroxenite and peridotite (Hirschmann et al., 2003; Koornneef et al.,
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2012), with derivative melts having a variety of compositions. It is possible that the Mælifell,

Stora-Eldborg, Bleikholl, and Sandfell samples are the results of melt extraction at different

pressures from a pyroxenite source that began melting deeper in the mantle. Alternatively, the

Miðfell samples could be the product of melt extraction from a peridotite source at shallower

depths in the mantle.

Figure 10: Water concentration as a function of depth and average pressure using melt inclusions with maximum H2O
concentrations. Regression line does not include the Miðfell samples as they appear to form their own trend. Ice-2 is not
included, see text for discussion.
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5.3 Volatiles and Noble Gases

A unique aspect of this study is that the volatile data reported here are from olivine-hosted

melt inclusions belonging to the same sample suite used to study He and Ne isotopic compositions

by Dixon et al. (2000) and Dixon (2003). This allows for a comparison of the new volatile data to

the existing He and Ne isotopic signatures for the same sample. Several studies have shown that

noble gas isotopic compositions and relative abundances can vary between individual flow units

in sample sites distributed through Iceland and that the observed variations are representative of

mantle heterogeneities (Harrison et al., 1999; Dixon et al., 2000; Trieloff et al., 2000; Moreira et

al., 2001; Dixon, 2003; Licciardi et al., 2006; Furi et al., 2010). To compare the volatile data from

this study to the noble gas data from Dixon et al. (2000) and Dixon (2003), the maximum volatile

concentrations, representative of the least degassed primary melts in the sample, are correlated to

the He (R/Ra) and Ne isotopic signature (Table 5). If replicate analyses were made by Dixon et al.

(2000) and Dixon (2003) the mean noble gas value was used in this comparison to the volatiles

(Table 2).

The H2O and S data reported here show a negative correlation (Figure 11 and Figure 12B)

with the helium data (R/Ra= (3He/4Hesample)/(3He/4Heatmosphere)) reported by Dixon et al. (2000) and

Dixon (2003). Discrepancies in trends between volatile species as a function of R/Ra within a

sample may result from a complex degassing history and source heterogeneities. Regardless, a

negative correlation between R/Ra and the volatile concentrations for H2O and S exists (Figure 11

and Figure 12B). In the case of S (Figure 12B), the Sandfell and Stóra-Eldborg samples are not

included in the trend calculation. Sulfur concentrations vary as a consequence of pressure,
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fugacity, and composition (Wallace 2005; Bucholz et al., 2013). The high S content in the Stóra-

Eldborg melt inclusion may be due to a higher oxygen fugacity relative to the majority of

Reykjanes Peninsula melt inclusions examined in this study and is therefore treated as an outlier.

On the other hand, the low S concentration in the Sandfell sample may represent a S undersaturated

melt in regards to sulfide. If this is the case diffusive loss of S is not replenished (Bucholz et al.,

2013) therefore the sample is treated as an outlier for comparison purposes.

There is no direct correlation between H2O concentrations and the concentration of 4He.

However, the Reykjanes Peninsula samples have lower 4He concentrations and higher H2O

concentrations than the samples reported for the Reykjanes Ridge by Hilton et al. (2000). This

evidence suggests degassing of CO2 and noble gases coupled with the presence of high magmatic

H2O concentrations in Reykjanes Peninsula magmas relative to Reykjanes Ridge magmas (Hilton

et al., 2000). Furthermore, as suggested by Hilton et al. (2000), for samples at latitudes higher than

61.3oN along the Reykjanes Ridge, a decrease in R/Ra values towards MORB values coupled with

increased H2O concentrations may be the result of interactions between mantle-derived magmas

and the crust.

Several studies have proposed binary mixing between a primitive plume component and

MORB to describe the heterogeneity of noble gases in Iceland (Moreira et al., 2001; Dixon, 2003;

Furi et al., 2010) and along the Reykjanes Ridge (Hilton et al., 2000). Binary mixing models for

Iceland, based on the relationship between He and Ne isotopic compositions (Moreira et al., 2001;

Dixon, 2003; Furi et al., 2010), require that either He is enriched in the MORB component relative

to Ne or that the plume component is depleted in Ne relative to He (Furi et al., 2010). To

demonstrate the relationship between Ne isotopic compositions and H2O, we plot the Reykjanes

Peninsula samples in three-neon-isotope space (e.g., Dixon et al., 2000; Dixon, 2003), and overlay
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the H2O concentrations for each sample (Figure 13). Two of the three lowest H2O concentrations

reported in this study are from samples with Ne isotopic compositions that have 2σ errors

overlapping with the solar-atmosphere mixing line (See Dixon 2003). Conversely, the three

highest H2O concentrations are found in samples that have 2σ errors overlapping with the MORB-

atmosphere mixing line (See Dixon 2003). The Mælifell sample, Ice-10, is indistinguishable from

atmospheric Ne (Dixon 2003). This observation suggests that the MORB Ne end-member has

incorporated a component containing higher H2O concentrations relative to the mantle component

found in the solar Ne end member. Since the R/Ra values corresponding to the samples on the

MORB – atmosphere mixing line are all greater than the typical MORB R/Ra ratio of ~8 (Graham,

2002), these observations suggest a complex mixing of plume and MORB end members capable

of producing the observed heterogeneities in volatiles and noble gases.
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Table 5: Melt inclusions with maximum volatile compositions.
Sample No. H2O (wt%) C (ppm) F (ppm) S (ppm) Cl (ppm)
Ice-1.3d 0.24 ± 0.01 ---* 141 ± 2.9 696 ± 34 107 ± 11

Ice-1.10a 0.34 ± 0.01 32.7 ± 4.0 44.1 ± 0.86 918 ± 190 112 ± 12

Ice-1.12 0.61 ± 0.01 48.6 ± 5.2 59.0 ± 1.1 510 ± 17 1.40 ± 0.15

Ice-1.16d 0.34 ± 0.01 1310 ± 120 45.7 ± 0.94 540 ± 17 33.1 ± 3.4

Ice-2.1 0.62 ± 0.01 1290 ± 190 67.0 ± 2.0 661 ± 21 97.4 ± 10

Ice-2.6 0.70 ± 0.02 63.4 ± 7.5 91.4 ± 2.3 1320 ± 43 74.8 ± 7.8

Ice-2.9c 1.99 ± 0.06 648 ± 62 110 ± 2.4 518 ± 20 74.5 ± 7.7

Ice-2.10b 0.49 ± 0.01 325 ± 29 62.4 ± 1.2 664 ± 21 82.9 ± 8.6

Ice-9.1 0.49 ± 0.01 31.6 ± 2.3 68.3 ± 5.7 401 ± 13 25.5 ± 3.0

Ice-9.4 0.78 ± 0.02 99.5 ± 18 49.3 ± 4.1 427 ± 14 101 ± 12

Ice-9.14 0.48 ± 0.01 51.2 ± 5.7 59.3 ± 1.1 791 ± 25 61.7 ± 6.3

Ice-9.15b 0.32 ± 0.01 714 ± 65 42.0 ± 0.81 221 ± 7.2 4.96 ± 0.52

Ice-10.11a 0.51 ± 0.01 644 ± 58 174 ± 3.9 1200 ± 40 147 ± 15

Ice-10.15 0.90 ± 0.02 103 ± 11 76.2 ± 2.1 1170 ± 39 64.5 ± 6.7

Ice-10.23 0.85 ± 0.01 692 ± 59 3640 ± 150 597 ± 21 467 ± 53

Ice-11.2 0.41 ± 0.01 181 ± 20 46.8 ± 0.89 610 ± 19 42.1 ± 4.4

Ice-11.8b 1.2 ± 0.05 535 ± 120 86.3 ± 2.7 312 ± 16 5.83 ± 0.62

Ice-11.9a 0.51 ± 0.01 590 ± 75 49.4 ± 1.1 303 ± 9.9 5.93 ± 0.71

Ice-11.14a 0.57 ± 0.01 168 ± 25 71.8 ± 1.3 721 ± 65 28.0 ± 2.9

Ice-16.2a 0.49 ± 0.01 ---* 256 ± 11 885 ± 35 60.4 ± 6.9

Ice-16.9 0.59 ± 0.01 1990 ± 530 254 ± 9.3 1630 ± 51 185 ± 20

Ice-25.9a 0.61 ± 0.01 16.0 ± 2.1 328 ± 15 847 ± 32 110 ± 13

Ice-25.9c 0.77 ± 0.02 26.7 ± 2.3 346 ± 16 990 ± 35 100 ± 11

Ice-25.12c 0.93 ± 0.02 32.2 ± 3.1 373 ± 17 855 ± 31 88.6 ± 10

Ice-25.13 0.78 ± 0.01 164 ± 10 1220 ± 51 314 ± 11 44.7 ± 5.0

* Indicates rejected value due to fluctuations in secondary ion image for specific
volatile species during SIMS analysis.
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Figure 11: Maximum H2O concentrations as a function of R/Ra for the melt inclusion analyzed in this study. For Ice-1, Ice-2
and Ice-9, the mean R/Ra values were used and the X-error bars represent the range of R/Ra values reported by Dixon et al.
(2000) and Dixon (2003). For Ice-10, Ice-11, Ice-16 and Ice-25, 1σ error bars are shown from Dixon et al. (2000) and Dixon
(2003). Y-error bars represent the maximum 2σ error for H2O measurements over all analyses. Data from Poreda et al. (1986)
are included for comparison along with the average MORB composition (Graham, 2002; Danyushevsky, 2001).
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Figure 12: Maximum volatile compositions as a function of R/Ra for the melt inclusion analyzed in this study. For Ice-1, Ice-2
and Ice-9, the mean R/Ra values were used and the X-error bars represent the range of R/Ra values reported by Dixon et al.
(2000) and Dixon (2003). For Ice-10, Ice-11, Ice-16 and Ice-25, 1σ error bars are shown from Dixon et al. (2000) and Dixon
(2003). Y-error bars represent the maximum 2σ error for the respective volatile species over all analyses. The regression line in
(B) does not include the Sandfell and Stóra-Eldborg data points, see text for discussion.
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Figure 13: Three neon plot for the Reykjanes Peninsula samples. Neon data from Dixon et al. (2000) and Dixon (2003),
replicate analyses were averaged for this study, 1 σ uncertainties are shown. Symbol size and color indicate H2O
concentrations in melt inclusions. Measured H2O concentrations are shown in the legend. Atmosphere-MORB mixing line
is from Moreira et al. (1998), and the solar end member is from Mahaffy (1998) and Pepin et al. (1999).
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5.4 Origin of Volatiles in the Iceland Plume

5.4.1 Binary Mixing and Melt Extraction

Several studies have attributed the apparent decoupling of He-Ne in Icelandic lavas to

binary mixing between a plume and MORB end member (Moreira et al., 2001; Dixon, 2003; Furi

et al., 2010). The binary mixing model is complicated because the plume component with high

3He/4He, and relative depletions in Ne (a reduction in Ne concentrations and loss of solar-like Ne

isotopic compositions), mixes with the depleted/degassed MORB mantle, and subsequently

undergoes degassing at shallow levels (Furi et al., 2010). A binary mixing model between a MORB

component and a plume component can be invoked to explain the relationship between the

variations in H2O and noble gas signatures.

As suggested above (Section 5.2) the melting of two unique mantle lithologies can be

inferred by comparing the water concentrations to the pressure of melt extraction as predicted by

the barometric model in (Lee et al., 2009). The melting of a peridotite–pyroxenite mantle to

produce the observed Icelandic magmas has been inferred in recent studies (Shorttle and

Maclennan 2011; Koornneef et al., 2012). The observed relationship between H2O and Ne isotopes

may be the result of melting and mixing of enriched and depleted mantle domains as described

above.

Water concentrations in the Stora-Eldborg, Bleikholl, and Sandfell samples all correlate

with the depth of melt extraction and plot along a single well-defined trend in Figure 10.

Furthermore, the Stora-Eldborg, Bleikholl, and Sandfell samples all plot along the atmosphere –

MORB mixing line on a Ne isotope plot (Figure 13). Conversely, the Miðfell samples, which

diverge from the trend in Figure 10, plot along the atmosphere – solar mixing line on the three Ne
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isotope plot (Figure 13). This relationship may suggest that the presumed peridotite lithology

responsible for the Miðfell magmas contains a solar Ne and primitive He component that is lacking

in the hypothesized pyroxenite source.

With increasing source enrichment (i.e., high Nb/Zr or La/Sm), H2O/K2O values typically

decrease (Michael, 1995). Water concentrations from the Reykjanes Peninsula melt inclusions

studied here, decrease with decreasing H2O/K2O (e.g., Figure 5.H). While the low K2O

concentrations reported in this study are not well constrained given the large uncertainties in the

measurements, qualitatively the H2O/K2O values generally decrease with increasing R/Ra. For

example, the Miðfell sample Ice-9, has the highest R/Ra used in this study (mean R/Ra= 21.5,

maximum R/Ra= 29) and the second lowest H2O/K2O (= 3.7). The relationship between H2O/K2O

and R/Ra for the samples studied here suggests that samples showing higher R/Ra and lower

H2O/K2O values are enriched, and possibly represent comingled ancient recycled oceanic

lithosphere and less differentiated mantle domains. A similar argument was invoked by Brandon

et al. (2007) to describe the relationship between Os and noble gas isotopes.

If a binary mixing model between a recycled enriched plume component and MORB

component is the case, it would follow that the H2O from the enriched source is mixed with the

more depleted MORB mantle. As increased fractionation and melt extraction occur, the combined

processes, could give rise to the higher H2O/K2O and higher H2O concentrations at lower R/Ra.

Assimilation of hydrothermally altered crust into the magma chamber beneath Iceland could also

be a means for enriching H2O relative to K2O (e.g., Sobolev et al., 1996; Dixon et al., 2002) and

generating the high H2O/K2O observed for the studied melt inclusions. If assimilation of

hydrothermally altered crust into the magma chamber was the source of enrichment, Cl

concentrations in the melt inclusions should be more elevated as is the case in Loihi magmas
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(Dixon and Clague 2001). Assimilation of a Cl-rich phase in Loihi lavas results in Cl

concentrations reaching values as high as 2380 ppm in melt inclusions (Dixon and Clague 2001).

Given the low Cl concentrations of the studied melt inclusion, assimilation of recently

hydrothermally altered crust is unlikely. In general, the binary mixing model for H2O heterogeneity

in the plume and MORB components is in agreement with the plume-MORB binary mixing model

that gives rise to the decoupling of He and Ne as suggested by Dixon (2003) and Furi et al. (2010).

5.4.2 Three Component Mixing

An alternative explanation is that the Iceland plume contains two unique plume

components, a primitive component and one originating from ancient recycled crust, mixing with

depleted MORB. Three-component mixing was applied to the Shona Ridge group and Discovery

Ridge by Dixon et al. (2002), a region in the Southern Ocean that shows solar Ne and primordial

3He/4He coupled with evidence of a recycled plume component. The authors showed that the

Depleted MORB Mantle (DMM) component for Shona Group 1 has H2O/K2O = ~5 and H2O/Ce

=150 ± 10, and the FOZO component has H2O/K2O = ~0.8 and H2O/Ce =210 ± 30 (Dixon et al.,

2002). The ancient recycled enriched mantle (EM) component in the Discovery plume had lower

H2O coupled with lower H2O/Ce, H2O = ~0.5 wt. % and H2O/Ce = ~150. They established that

the HIMU mantle component, as determined from measurements of eclogite, has H2O ~600 ppm,

whereas the FOZO component is predicted to contain ~750 ppm. Dixon et al. (2002) concluded

that plumes originating from recycled material are “damp” while plumes originating from FOZO

are “wet.”

Several of the H2O/K2O values for the Reykjanes Peninsula melt inclusions studied here

are similar to the depleted MORB component from the Shona Ridge and Easter-Salas y Gomaz

seamounts, both having H2O/K2O = ~5 (cf. Dixon et al., 2002), or in the case of Iceland with
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several values from this study exceeding 5. Conversely, Nichols et al. (2002) reported several low

H2O/K2O (<1); these low values are similar to the common plume component of the Shona Ridge

group in the Southern Ocean (Dixon et al., 2002). Michael (1995) demonstrated that Northern

MAR, including samples from Iceland, have high mean H2O/Ce ~280±37, values more

representative of the common, less degassed, mantle component suggested by Dixon et al. (2002).

The mantle-source H2O concentration beneath Iceland proposed by Nichols et al. (2002) ranges

from 620 to 920 ppm, and the H2O concentrations for the melt inclusions presented here confirm

this estimate. The lower approximation for H2O in the Iceland mantle, 620 ppm, is in general

agreement with the HIMU estimates of Dixon et al. (2002). However, the values for mantle H2O

in the plume beneath Iceland reported by Nichols et al. (2002) span the range of both the HIMU

and FOZO H2O estimates proposed by Dixon et al. (2002).

As demonstrated above, the new data presented here in concert with previously reported

data for Iceland and the Northern Atlantic (e.g., Poreda et al., 1986; Michael, 1995; Nichols et al.,

2002) encompass the three-end-member magma-source components proposed by Dixon et al.

(2002). However, the recycled plume component beneath Iceland appears enriched in volatiles

relative to the common plume component and MORB. A volatile-enriched, recycled plume

component is suggested by the relationship between enrichments in H2O concentration with

decreasing R/Ra (Figure 11), coupled with the observation that two of the three lowest H2O

concentrations reported here plot close to the atmosphere – solar mixing line on a three Ne plot

(Figure 13). Further arguments supporting the presence of a volatile-enriched, recycled plume

component beneath Iceland include the observation that the highest H2O concentrations plot on

the atmosphere – MORB mixing line.
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Three-component mixing between a less degassed mantle component with high 3He/4He

and low H2O, a recycled mantle component with low 3He/4He and high H2O, and depleted MORB,

was invoked to describe the relationship between 3He/4He and H2O in the region encompassing

the Reykjanes, Kolbleinsy, and Mohns Ridges by Poreda et al. (1986). The melt inclusions studied

here follow a similar pattern to, but are unique from, the data for the individual ridge segments

reported in Poreda et al. (1986) (Figure 11). Michael (1995) applied the three-component mixing

model to the Reykjanes Ridge, and argued for rapid subduction as the source of high H2O/Ce and

the origin of recycled material, including volatiles into the Northern Atlantic mantle.

5.4.3 Conceptual Model for the Source of Ancient Recycled Crust

Both the binary mixing model between a pyroxenite-peridotite mantle and three-

component mixing model, require ancient recycled lithosphere incorporated into the mantle.

Several workers have proposed recycled, subducted, material beneath Iceland on the basis of

radiogenic isotopes and trace elements (e.g., Chauvel and Hemond, 2000; Skovgaard et al., 2001;

Breddam, 2002; Stracke et al., 2003a; 2003b; Kokfelt et al., 2006; Brandon et al., 2007; Sobolev

et al., 2008). While a HIMU-like component was suggested as a source for the enriched alkaline

rocks on Iceland (Stracke et al., 2003a; Kokfelt et al., 2006), the picrites are believed to originate

from a depleted plume component completely dissimilar to HIMU (Kokfelt et al., 2006). Both the

HIMU-like and depleted components were proposed to originate from the subduction of an entire

section of oceanic crust, the HIMU-like component deriving from the upper hydrothermally altered

crust, and the depleted component resulting from the gabbroic and ultramafic cumulates (Kokfelt

et al., 2006). Kokfelt et al. (2006) inferred using Pb isotope data that the average age of recycled

crust beneath Iceland is ~1.5 Ga. Additionally, Sobolev et al. (2008) demonstrated that the

correlation between 187Os/188Os, Mn and Ni, can be modeled as 1.1-1.8-Ga recycled oceanic crust
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reacted with peridotite. A study of Os and He isotopes in Iceland showed that the relationship

between 187Os/188Os and 3He/4He coupled with solar Ne, is consistent with ~1-1.5 Ga recycled

lithosphere being mixed with primitive, high 3He/4He, mantle near the core-mantle boundary

(Brandon et al., 2007).

Seismic studies have demonstrated a possible lower mantle origin for the Iceland plume

(Helmberger et al., 1998; Bijwaard and Spakman, 1999), but this observation is debated as other

geophysical methods place the plume at shallower mantle depths of no more than the 670-km

discontinuity (e.g., Wolfe et al. 1997; Ritsema and Allen 2003). Regardless of the depth of the

plume, Shaw et al. (2012) suggested from their investigation of Manus Basin volcanic glasses, that

water and H isotope anomalies are potentially transferred to the deep mantle via subduction, and

are preserved for up to 109 years.

The mantle plume beneath Iceland was located north of Greenland at approximately 130

Ma and migrated to its present day location as the North American Plate moved westward (Figure

14; L. Lawver, UTIG, personal communication). A conceptual model for the origin of volatiles in

the North Atlantic mantle as a consequence of subduction beneath Greenland during the

Paleoproterozoic Ketilidian Orogeny is presented in Figure 15. During the Paleoproterzoic

Ketilidian Orogeny, ca. 1850 – 1720 Ma, (Garde et al., 2002) an oceanic plate was subducted

beneath the current southern margin of Greenland as oblique convergence between Greenland and

an oceanic plate occurred (Chadwick and Garde 1996; Garde et al., 2002). The age of subduction

beneath Greenland presented in Garde et al., (2002) is in general agreement with the range of ages

(1-1.8 Ga) presented by Kokfelt et al. (2006), Brandon et al. (2007), and Sobolev et al. (2008) for

the age of recycled material incorporated into the plume beneath Iceland. If subduction during the
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Ketilidian Orogeny was rapid this could have supplied volatiles to the mantle resulting in the high

H2O/Ce reported by Michael (1995).

In the conceptual model, hydrothermally altered oceanic material is subducted into the

mantle beneath Greenland. During subduction He is volatilized, removing both 3He and 4He, the

remaining He concentration is subjected to the time integrated alpha decay of Th and U to produce

4He relative to 3He, thereby lowering the R/Ra ratio of the subducted material (Poreda et al., 1986).

Given the proposed oblique angle of convergence (Garde et al., 2002), it is possible that horizontal

propagating tears in the subducted plate removed sections of down-going slab and isolated

hydrothermally altered, volatile enriched, sections of slab within the less differentiated mantle.

The foundering and subsequent melting of the volatile-rich, hydrothermally altered oceanic

material results in the juxtaposition of recycled slab signatures against less differentiated mantle

domains as proposed by Brandon et al. (2007). The culmination of these events causes volatile

enrichment in the mantle and leads to the observed heterogeneous isotopic and trace element

composition of the plume (e.g., Poreda et al., 1986; Michael 1995; Chauvel and Hemond, 2000;

Skovgaard et al., 2001; Breddam, 2002; Stracke et al., 2003a; 2003b; Kokfelt et al., 2006; Brandon

et al., 2007; Sobolev et al., 2008).
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Figure 14: Map of the Northern Atlantic showing paleotectonic models representing the trace
of the Iceland Plume from 130 Ma to present. Purple dots represent the migration of the plume
between 130 – 70 Ma assuming a tectonically fixed position for the North Americon Massif.
Red dots indicate the trace of the plume between 100 Ma – 70 Ma assuming a tectonically
fixed position for Baffin Island. The green dots indicate the trace of the plume from 70 Ma to
present assuming a tectonically fixed position for Greenland. Figure courtesy of L. Lawver,
UTIG, personal communication.
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Figure 15: Conceptual model showing a possible origin of volatiles in the Iceland plume as a result of subduction. Subduction
of oceanic lithosphere off the southern margin of Greenland during the Paleoproterozoic Ketilidian Orogeny (Garde et al., 2002).
Speculative slab tears and foundering of the subducted slab leads to mixing of volatile rich recycled oceanic lithosphere with
less differentiated mantle material. By 130 Ma it is possible that slab is melted and incorporated into the mantle, mantle plume
migrates to present day location, see text for discussion. 1 Garde et al. 2002.
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6. CONCLUSIONS AND FUTURE WORK

This study demonstrates that magmas from Iceland are enriched in volatiles. These findings

in concert with data from the literature suggest that the mantle plume beneath Iceland contains a

volatile-rich, recycled component with R/Ra values greater than those of MORB, and yet with

MORB-like Ne isotopic ratios, as well as a volatile-poor, plume component with high R/Ra and

solar Ne. The conceptual model presented in this study shows a possible means for the

incorporation of hydrothermally altered oceanic lithosphere during the Ketilidian Orogoney (1850

– 1720 Ma) beneath Greenland and corroborates the age of recycled oceanic lithosphere in the

mantle beneath Iceland presented by Kokfelt et al. (2006), Brandon et al. (2007), and Sobolev et

al. (2008). In order to further understand the origin of volatiles in the Iceland plume, a survey of

trace elements, including H2O/Ce, on the melt inclusions studied here, must be conducted and

related to the source rock isotopic compositions. The major conclusions may be summarized as

follows:

1. Major-oxide concentration in the melt inclusions from the Reykjanes Peninsula are less

differentiated than the basaltic glasses from the Hengíll Swarm studied by Tronnes (1990).

The melt inclusion compositions are related to the Hengíll Swarm basaltic glass by the

progressive crystallization and fractionation of olivine and plagioclase.

2. Volatile concentrations in melt inclusions are heterogeneous for all species (CO2, H2O, F,

S, and Cl) throughout the Reykjanes Peninsula and no relationship exists between the

volatile and major-oxide concentrations.
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3. The maximum measured H2O concentrations on olivine-hosted inclusions in the Icelandic

suite of samples previously analyzed for He and Ne isotopic by Dixon et al. (2000) and

Dixon (2003) is 1.99 ± 0.06 wt. %. The range of H2O abundances are in agreement with

values reported for basaltic glass by Nichols et al. (2002), and likely represent minimum

concentrations because of the evidence for degassing.

4. Besides H2O, melt inclusions have also lost significant amounts of CO2, S, and Cl.

Calculations of entrapment-pressure based on the vapor saturation of CO2 and H2O yield

values from <10 to 300 MPa. Degassing occurred at low pressure and concurrently with

crystallization.

5. Volatile concentrations decrease with increasing R/Ra, and the highest H2O concentrations

plot along the atmosphere-MORB mixing line in three-neon-isotope space. Two of the

three lowest H2O concentrations measured plot along the solar-atmosphere mixing line.

These findings suggest that a volatile-enriched recycled component with high H2O and low

3He/4He values has mixed with a primitive mantle component that is low in H2O but has

high 3He/4He values.
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