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ABSTRACT 
 

EFFECT OF IN VIVO POLYBROMINATED DIPHENYL ETHER (PBDE) TREATMENT 
ON HEPATIC GLYCERONEOGENESIS AND LIPID METABOLISM 

 

by 

Kylie R. Cowens 

University of New Hampshire, May 2015 

 Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals that 

contaminate the environment. Through ingestion and inhalation, these chemicals get 

into the human body, where they affect the liver by suppressing the metabolic enzyme 

phosphoenolpyruvate carboxykinase (PEPCK), which is partially responsible for 

glyceride-glycerol production via glyceroneogenesis. This study investigated the effects 

of PBDE-induced hepatic PEPCK suppression on glyceroneogenesis, and the 

associated perturbations in liver lipid metabolism. Twenty-eight male, weanling Wistar 

rats were treated daily with 14 mg/kg body weight PBDE mixture, DE-71 (TRT, n=14) or 

corn oil vehicle (CON, n=14) for 28 days. After a 48-hour fast, rats were sacrificed and 

blood and livers removed for analysis of serum metabolites, PEPCK protein levels, 

PEPCK activity, liver lipids, and glyceroneogenesis. TRT animals exhibited significant 

increases in serum ketones (27%), accompanied by significant decreases in serum 

triglycerides (27%),  and liver PEPCK protein (23%), PEPCK Vmax (40%), lipids (29%), 

and glyceroneogenesis (41%) compared to CON. These findings demonstrate that 
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PBDE-induced PEPCK suppression impacts liver lipid metabolism, likely by suppressing 

glyceroneogenesis.
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CHAPTER 1 
 
 
 

LITERATURE REVIEW 
 
 

 
POLYBROMINATED DIPHENYL ETHERS 

 
 

Background 

 Polybrominated diphenyl ethers (PBDEs) are a class of brominated 

environmental chemicals that were incorporated into consumer products beginning in 

the 1970s to decrease flammability of home and office supplies such as electronics, 

furniture, and upholsteries (Watkins et al., 2011, Besis and Samara et al., 2012). 

Structurally, PBDEs are similar to thyroid hormone, with two phenyl rings connected by 

an ether bridge and the potential addition of 2-10 bromines in 209 possible 

combinations or congeners (see Figure 1).  

 Commercially, 3 main classes of PBDEs have been produced: deca-, penta-, and 

octa-BDE formulations. These nomenclatures refer to the degree of bromination within 

each class: deca-BDE compounds are a mixture of congeners that are nona- or deca-

brominated; octa-BDE consist of mainly congeners that are hexa-, hepta, or octa-

brominated; penta-BDE are made mostly from congeners that are tetra- or penta-

brominated (McDonald, 2002). 
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  The phasing out of commercially added penta- and octa- formulations began in 

the early 2000’s, followed by the complete phase out of the deca- formulations by the 

end of 2013. There are currently no PBDEs in commercial use, but because PBDE-

containing products exist in homes and offices (Costa et al., 2008), PBDEs continue to 

persist in the environment.  

 

 

Figure 1 – Structure of PBDE: two phenyl rings connected by an ether bridge. Bromines 

can be added in any combination in the 10 positions indicated, with a minimum of 2 

bromines and a maximum of 10. There are 209 possible combinations, or congeners. 

 
PBDEs as environmental contaminants 

 PBDEs are not chemically bound to the products in which they are used, allowing 

for their easy transition into the environment by leaching into soil and groundwater upon 

disposal of PBDE-containing products in landfills. Furthermore, PBDEs contaminate the 

outdoor air during production and through incineration of disposed products (Osako et 

al., 2004, Hale et al., 2008). Once in groundwater, PBDEs are able to penetrate the food 

supply, affecting produce and more notably fish and game (Costa et al., 2008). Diet is 
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one route of exposure, although more recently indoor inhalation and ingestion of dust 

have been identified as significant contributors to human exposure (Costa et al., 2008).  

 Studies conducted over the past 10 years have indicated that in the US, PBDEs 

are present in sediment, sludge, and soil in addition to key dietary sources including 

marine animals, dairy products, and meat (Costa et al., 2008). Studies have found 

PBDEs to be relevant in the indoor environment as well, with significant levels settling in 

dust (Jones-Otazo et al., 2005, Wilford et al., 2005, Wu et al., 2007).  PBDEs have been 

detected in tissues such as breast milk (Dunn et al., 2010), adipose tissue (Johnson-

Restrepo et al., 2005), liver (Covaci et al., 2007), and serum (Sjodjin et al., 2004), with 

the greatest burden reported in adipose tissue and liver (Frederiksen et al., 2009). This 

illustrates a clear migration of PBDEs from the environment into the human body. 

 

PBDEs in the body 

 PBDEs are highly lipophilic compounds, and as such, accumulate in adipose 

tissue (Johnson-Restrepo et al., 2005). Metabolism however, occurs most notably in the 

liver, which participates in oxidative hydroxylation and reductive debromination of parent 

PBDE compounds (Stapleton et al., 2009). Both hydroxylated and debrominated 

metabolites have been identified in human serum (Athanasiadou et al., 2008, Thuresson 

et al., 2006), although the distinct pathways responsible for PBDE degradation remain 

unclear (Stapleton et al., 2009). Studies have found hydroxylated metabolites to have 

similar in vivo effects as their parent PBDEs (Feo et al., 2013), or in some cases more 
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harmful effects (Canton et al., 2005), suggesting in vivo metabolism of PBDEs is a 

worthy concern. 

 

Endocrine-disrupting effects 

 One well-studied consequence of in vivo PBDE exposure is perturbed thyroid 

hormone signaling. Due to the similarities in structure between PBDEs and thyroxine, an 

inactive form of thyroid hormone, studies have found that PBDEs competitively bind, 

and therefore antagonize thyroid receptors α and β (Meerts et al., 2000). Furthermore, 

PBDEs have an affinity for binding both transthyretin and thyroxine binding globulin, two 

transporters responsible for binding thyroid hormone in circulation (Marchesini et al., 

2008, Hamers et al., 2006).   

 It has been shown in both rats and mice that triiodothyronine, the active 

circulating form of thyroid hormone, is affected by the presence of PBDEs. One study 

treated Sprague-Dawley rats daily for 30 days with 100, 300, or 600 mg/kg/day of BDE-

209, the PBDE congener that is most abundant in human tissue samples (Lee et al., 

2010). Results illustrated a significant decrease in serum triiodothyronine at all three 

doses used. This was accompanied by a decrease in serum TSH at 300 and 600 

mg/kg/day (Lee et al., 2010). These results are supported by work conducted in a 

mouse model, in which male offspring of dams treated with 0, 10, 500, or 1500 

mg/kg/day BDE-209 daily for 17 days illustrated a significant decrease in serum 

triiodothyronine at both 10 and 1500 mg/kg/day doses (Tseng et al., 2008). 
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 Taken together, these data suggest exposure to PBDEs affects thyroid 

metabolism at several stages, including transport, binding, and hormone availability. 

Furthermore, thyroid hormone is a driver of metabolism, and disruption of transport and 

signaling of this key hormone raises concern of PBDE-induced metabolic perturbations. 

 

Liver-specific effects 

 One organ that is a main target for chronic exposure of PBDEs is the liver (Costa 

and Giordana, 2007). Considering the role the liver plays in PBDE catabolism, most 

notably through oxidative hydroxylation (Stapleton et al., 2009), this organ is likely to 

suffer PBDE-associated consequences. The liver is in control of many crucial metabolic 

processes and perturbations in function could have both liver-specific, and systemic 

consequences. 

 Although there are limited studies to date focusing on enzymatic or metabolic 

consequences of PBDE exposure in the liver, several studies have illustrated hepatic-

associated consequences that highlight the liver as an organ of concern. One key 

consequence of PBDE exposure is hepatic oxidative stress. Albina et al. (2010) treated 

adult male Sprague-Dawley rats with a single dose of 0, 0.6, or 1.2 mg/kg BDE-99, an 

environmentally relevant congener. Forty-five days after treatment, animals were 

euthanized and livers were analyzed for markers of oxidative stress. Key antioxidant 

enzymes including superoxide dismutase (SOD) and catalase (CAT) were found to be 

significantly upregulated in livers of treated animals, SOD at both treatment doses and 

CAT at the highest dose. Furthermore, the ratio of oxidized to reduced glutathione was 
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significantly increased, suggesting greater levels of reactive oxygen species associated 

with BDE-99 treatment compared to controls.  

 These data are further supported by work from An and colleagues (2011) in a 

study analyzing two PBDE metabolites, 6-hydroxylated and 6-methoxylated BDE-47, 

and their effects on a human hepatoma cell line, HepG2. An et al., found that DNA 

damage was caused by both of these metabolites in a dose-dependent manner, 

accompanied by an increase in SOD activity and a decrease in reduced glutathione. 

This suggests that both PBDEs and their metabolites increase hepatic oxidative stress. 

 Other hepatic perturbations include increases in overall liver weight and fat 

accumulation in response to PBDE exposure. Lee et al. (2010) found liver weight was 

significantly increased in rats treated with 600 mg/kg/day BDE-209 for 30 days 

compared to control animals. Furthermore, these animals exhibited fatty degeneration in 

histological analyses of the livers. This is supported by a study conducted by Bruchajzer 

et al. (2010) where administration of 200 mg/kg/day of PentaBDE for 14 days resulted in 

increased fatty deposition in the livers of female rats, accompanied by an increase in 

relative liver mass. Nash et al. (2013) also found an increase in overall liver weight and 

relative liver weight in male rats in response to 28 days of treatment with 14 mg/kg DE-

71, a Penta-BDE mixture. This was accompanied by a significant increase in liver lipid 

percentage. 

 There has been little research on the effects of PBDEs on hepatic lipid or 

carbohydrate metabolism. In a recent study, Nash and colleagues (2013) found that 

after 28 days of daily treatment with 14 mg/kg DE-71, hepatic phosphoenolpyruvate 
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carboxykinase (PEPCK) activity was suppressed by 43%. PEPCK lies at the crossroads 

of hepatic carbohydrate and lipid metabolism, and disruptions in hepatic PEPCK activity 

could have significant metabolic consequences. Currently, metabolic consequences of 

PEPCK disruption by PBDEs are unknown. 

 

PHOSPHOENOLPYRUVATE CARBOXYKINASE 
 

 
Background 
 
  PEPCK is responsible for the decarboxylation and subsequent phosphorylation 

of oxaloacetate (OAA) to form phosphoenolpyruvate (PEP), using guanosine 

triphosphate (GTP) or inosine triphosphate (ITP) as an energy source, and yielding 

GDP or IDP, and CO2 as byproducts (Hanson and Patel, 1994).  The main product of 

the PEPCK reaction, PEP, is an intermediate metabolite of gluconeogenesis, and is 

essential for the de novo production of glucose in times of fasting (Hanson and Patel, 

1994, Chakravarty et al., 2005, Yang et al., 2009). PEP is also an intermediate 

metabolite of glyceroneogenesis, and is necessary for the de novo formation of glycerol-

3-phosphate, the backbone of triglyceride (Chakravarty et al., 2005, Yang et al., 2009). 

The production of glycerol-3-phosphate, via glyceroneogenesis, is necessary for hepatic 

reesterification of fatty acids during times of fasting, when systemic and hepatic fatty 

acid levels rise due to increased rates of lipolysis (Chakravarty et al., 2005). Thus, 

PEPCK is the first rate-limiting enzyme in both gluconeogenesis and 

glyceroneogenesis, responding to changes in diet and hormones, such as glucagon and 

glucocorticoids (Chakravarty et al., 2005, Yang et al., 2009). PEPCK is present in two 
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forms, a cytosolic (PEPCK-c), and a mitochondrial (PEPCK-m) form, and relative 

expression of the two forms is species-dependent. In humans, the relative expression is 

50:50, PEPCK-c:PEPCK-m, while in rodents there is a much greater expression of 

PEPCK-c, accounting for approximately 90% of the total PEPCK (Hanson and Patel, 

1994).  

 

Metabolic roles  

 

Gluconeogenesis  

 Gluconeogenesis allows for conversion of non-carbohydrate substrates to 

glucose by the liver in times of acute fasting, or by the kidney in times of long-term 

starvation (Hanson and Patel, 1994). Ablation of whole body PEPCK-c in mouse models 

caused significant reductions in blood glucose and the animals did not survive past 3 

days of life, illustrating the importance of PEPCK-c’s gluconeogenic function (Hakimi et 

al., 2005). Furthermore, whole body PEPCK-c deletion resulted in hepatic fat 

accumulation that was 2 to 3 times greater than controls, accompanied by elevated 

circulating ketones (Hakimi et al., 2005). These data suggest perturbed lipid metabolism 

as well.  

 Elimination of liver PEPCK-c in mouse models resulted in slight systemic 

hyperglycemia, in addition to reduced gluconeogenesis within the liver tissue (She et al., 

2000, Hakimi et al., 2005). The resulting hyperglycemia is likely due to the ability of the 
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kidney to perform gluconeogenesis and thereby compensate for losses in liver 

gluconeogenic function.  

These data illustrate that (1) liver-specific reductions in PEPCK-c reduce 

gluconeogenesis, (2) a reduction in hepatic PEPCK-c can be compensated for by renal 

PEPCK, and (3) a loss of whole body PEPCK-c perturbs hepatic triglyceride 

metabolism, as evidenced by fat accumulation in the liver and increased circulating 

ketones.  

 

Glyceroneogenesis 

 The main role of glyceroneogenesis is the production of glycerol-3-phosphate, 

the activated form of glycerol used for esterification of fatty acids to form triglycerides 

(Chakravarty et al., 2005, Yang et al., 2009). This occurs largely in the liver, and to a 

smaller extent in the adipose tissue (Chakravarty et al., 2005, Yang et al., 2009). 

Studies focused on the origin of glycerol-3-phoshpate have demonstrated through 

deuterium-labeled water techniques that after an overnight fast, up to 65% of 

triglycerides synthesized in the liver and exported in VLDL contain a glycerol backbone 

produced via hepatic glyceroneogenesis (Kalhan et al., 2001, Kalhan et al., 2008), 

highlighting the importance of this pathway in regulating lipid homeostasis.  

 Reduced hepatic glyceroneogenesis, a proposed consequence of decreased 

hepatic PEPCK, should theoretically decrease available glycerol-3-phosphate, reducing 

the amount of fatty acid esterification in the liver and causing a build-up of hepatic fatty 

acids. This would enlarge the pool of available fatty acid substrate for ketone synthesis, 
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and subsequently increase circulating ketones, a known metabolic consequence of 

decreased PEPCK (Hakimi et al., 2005, Stark et al., 2014). In addition, it is expected 

that hepatic triglyceride formation would decrease and result in decreased serum 

triglycerides. Indeed, reduced serum triglycerides are associated with ablation of hepatic 

and renal PEPCK-m (Stark et al., 2014), but fat accumulation in the liver in response to 

a loss of PEPCK-c (Hakimi et al., 2005) is contrary to reduced glyceroneogenesis, and 

requires further investigation. 

Unlike gluconeogenesis, a reduction in hepatic glyceroneogenesis cannot be 

compensated for by another tissue. Although there is significant PEPCK activity in white 

and brown adipose tissue, the lungs, the jejunum, and the acinar cells of the mammary 

gland, in addition to the liver and kidney (Hanson and Patel, 1994), none of these 

tissues compensate for losses in hepatic glyceroneogenesis. Adipose tissue has 

sufficient PEPCK to participate in glyceroneogenesis, however the enzyme is 

differentially regulated in this tissue. While hepatic PEPCK is upregulated in response to 

fasting conditions and rising glucagon, adipose tissue PEPCK is suppressed during 

fasting, allowing for an increase in fatty acid release.  Instead, adipose tissue PEPCK is 

upregulated in response to insulin when fatty acids are being made in the liver, and thus 

fatty acids can be esterified and stored in adipose, adding another layer of control over 

circulating fatty acid levels (Chakravarty et al., 2005), which are linked to diabetes and 

cardiovascular disease. Because of this lack of compensation, a PBDE-induced 

decrease in hepatic PEPCK may have a greater effect on whole body triglyceride 

metabolism, compared to carbohydrate metabolism. 
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 There is no available data on how PBDE or other environmental chemicals may 

affect liver glyceroneogenesis, although there is relevant data from adipose. Recent 

work found that decreased PEPCK-c protein in adipose tissue caused by leptin was 

accompanied by decreased rates of glyceroneogenesis (Jaubert et al., 2012), 

highlighting the link between PEPCK-c suppression and the physiological consequence 

of depressed glyceroneogenesis. Due to the high rates of glyceroneogenesis present in 

the liver compared to the adipose tissue, combined with the suppression of hepatic 

PEPCK by PBDE, disrupted glyceroneogenesis is a likely, but currently unsupported, 

metabolic consequence of PBDE exposure.  

 

METABOLIC AND HEALTH CONSEQUENCES OF DEPRESSED 
GLYCERONEOGENESIS 

 
 
Metabolic consequences  
  
 There are three possible serum markers of decreased hepatic 

glyceroneogenesis: elevated fatty acids, elevated ketones, and suppressed 

triglycerides. Because hepatic glyceroneogenesis is largely responsible for esterification 

of fatty acids synthesized de novo by the liver (Kalhan et al., 2001, Kalhan et al., 2008), 

a decrease in glycerol-3-phosphate could lead to elevated hepatic fatty acids, which 

could be released into the blood stream, or act as a substrate for ketone synthesis in the 

liver. Although glyceroneogenesis has not been evaluated specifically, studies 

evaluating the effects of decreased PEPCK-c and decreased PEPCK-m have 

demonstrated an increase in serum ketones, most notably beta-hydroxybutyrate (Hakimi 



	
   12	
  

et al., 2005, Stark et al., 2014). Increases in fatty acids and ketones would theoretically 

be accompanied by suppressed hepatic triglyceride formation, subsequently decreasing 

hepatic triglyceride output. Studies have reported variable changes in serum 

triglycerides in response to losses in PEPCK-c vs. PEPCK-m function (Hakimi et al., 

2005, Stark et al., 2014), and the role of glyceroneogenesis in relation to these changes 

has yet to be addressed. 

 

Health consequences  
 
 
Insulin Resistance 
  
 It has been fairly well established that increases in circulating fatty acid levels are 

associated with the development of insulin resistance (Boden, 1991, Boden, 1997, 

Boden, 2006). After infusing human subjects with triglycerides and heparin to increase 

plasma free fatty acids, Boden used a euglycemic-hyperinsulinemic clamp to 

demonstrate that increased fatty acids significantly decreased glucose uptake in the 

presence of excess insulin, suggesting the development of acute insulin resistance that 

was both dose-dependent and reversible (Boden, 1997).  Further work using 

euglycemic-hyperinsulinemic clamps supported this development of insulin resistance 

by demonstrating that a 35% decrease in glucose infusion rate was required to sustain 

euglycemia in rats treated with lipid/heparin and excess insulin (Griffin et al., 1999). 

Griffin found evidence to suggest fatty acid disruptions in insulin signaling may be 

occurring, and reported that elevated fatty acids affect 3 key steps involved in insulin-

stimulated glucose uptake in muscle: (1) membrane-association of protein kinase C Θ, 



	
   13	
  

(2) insulin receptor substrate-1 tyrosine phosphorylation, and (3) PI3-kinase activity. 

These decreases were accompanied by a 25% reduction in glucose transport in vivo 

(1999). Current research is focused on further elucidation of the mechanisms involved in 

fatty acid-induced insulin resistance, expanding on the work done by Griffin and 

colleagues (Capurso and Capurso, 2012). An unanswered question is: what are the 

mechanisms by which circulating free fatty acids may be increasing, and are metabolic 

disruptions of glyceroneogenesis contributing to this increase? 

 

Vascular Disease 

 Elevation of ketone bodies is implicated in the development of vascular disease, 

a complication that is often associated with type 1 and type 2 diabetes (Rains and Jain, 

2014). Although current review of the literature suggests that a mild elevation in 

circulating beta-hydroxybutyrate (BHB) may be cardioprotective (Dedkova and Blatter, 

2014), recent studies have found that more marked increases in circulating ketone 

bodies, including BHB and acetoacetate (AA) may contribute to increased oxidative 

stress in endothelial tissue, potentially contributing to vascular disease (Rains and Jain, 

2014, Kanikarla-Marie and Jain, 2015). A recent study using primary human umbilical 

vein endothelial cells demonstrated that treatment with BHB and AA caused a 

significant increase in reactive oxygen species (ROS). The addition of glucose to the 

media increased ROS to a greater extent (Kanikarla-Marie and Jain, 2015), suggesting 

that the presence of elevated ketones in combination with elevated glucose may have 

the most detrimental effect. This suggests that hyperglycemia due to diabetes could 
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further compound the oxidative stress accompanied by increased circulating ketones. 

Taken together, these data imply that the potential consequences of suppressed 

glyceroneogenesis, including increased fatty acids and increased ketones, could cause 

perturbations that work in concert to disrupt insulin sensitivity and vascular health. 

 

SUMMARY 

 PBDE are environmental chemicals that are present in the human body and have 

known effects on the liver. Chronic PBDE exposure has been shown to suppress 

hepatic PEPCK activity, a key enzyme involved in both carbohydrate and lipid 

metabolism in the liver. While the kidney can compensate for losses in PEPCK-driven 

glucose metabolism, there are no documented tissues or pathways that can 

compensate for losses in PEPCK-driven lipid metabolism, including glyceroneogenesis. 

 

HYPOTHESIS 

 PBDE-induced suppression of PEPCK activity decreases hepatic 

glyceroneogenesis and perturbs lipid metabolism. 
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CHAPTER 2 
 
 
 

METHODS 
 
 

ANIMALS 
 

 
Experimental model and basic design 
 
 The male Wistar rat model was used for all experiments. A total of 28 rats were 

received from Charles River Laboratory (Wilmington, MA) weighing 75 to 100 g. After 

arrival, animals were given 5 to 8 days to acclimate to their environment. They were 

housed in hanging wire cages under a 12 hr light/dark cycle at 70°F and 30 to 70% 

relative humidity. Rats were provided standard rat chow and water ad libitum for the 

duration of each experiment.  

 Two experiments were conducted, noted as experiment 1 (n=16), and experiment 

2 (n=12). In experiment 1, rats were treated daily for 28 days with 14 mg/kg body weight 

DE-71, a commercial PBDE mixture, to assess changes in the liver indicative of 

suppressed PEPCK and associated metabolic stress. These data served to inform 

experiment 2, in which rats were treated with the same amount of DE-71 for the same 

duration to address changes in glyceroneogenesis, hepatic lipid metabolism, and 

PEPCK protein. 
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 After acclimatization, treatment was administered daily between 8:00-10:00 AM, 

using a standard gavage method. Animals in the treatment group (TRT) were gavaged 

with 14 mg/kg DE-71, while animals in the control group (CON) were gavaged with a 

comparable amount of corn oil vehicle. Although treatment starts dates were staggered 

so that 4 animals, 2 TRT and 2 CON, could be euthanized per day, each rat was treated 

for 28 days, fasted for days 27 and 28, and euthanized on the morning of day 29.  

 

Tissue procurement 

 Animals were euthanized via CO2 asphyxiation.  Immediately post euthanasia, 

animals were laid on their dorsal surface, the abdomen was wiped with ethanol, and an 

incision was made at the base of the abdomen and extended out and along the sides of 

the animal. For experiment 1, upon opening of the body cavity, the diaphragm was cut 

allowing access to the heart, where ~5mL of blood was removed via cardiac puncture 

using a 5cc syringe attached to an 18-gauge, 1.5” needle. Livers were then removed, 

rinsed in cold water, weighed, and whole liver weight was recorded. Two-5mg samples 

of liver were removed and fixed in 10% formalin for later histological analysis. The rest 

of the liver was divided into approximate 2-gram portions, frozen in liquid nitrogen and 

stored at -20°C for later use.  

 For experiment 2, livers were removed, rinsed, weighed and three-200mg 

portions of each liver were removed as follows: the liver was placed on its ventral 

surface and the first sample was taken from the outer portion of the far left lobe 

(denoted “1” on figure 2). The liver was then turned over (as seen in figure 2), and the 
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next sample was taken from the central portion of the far left lobe (denoted “2” on figure 

2). The final portion was taken from the tip of the triangular looking lobe (denoted “3” on 

figure 2). Liver sections were set on ice for subsequent glyceroneogenesis assay. 

 

 
 
 
 
 

Figure 2. Ventral surface of rat liver. Location of samples removed from each liver for 

glyceroneogenesis quantification are indicated by respective numbers. (Picture from 

Ruehl-Fehlert et al., 2003). 

  

1	
  2	
  

3	
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 The rest of the liver was divided into approximate 2-gram portions and 

immediately frozen in liquid nitrogen for later determination of PEPCK protein, PEPCK 

activity, and liver lipid accumulation.  

 

Preparation of gavage solutions 

 For experiment 1, a 2-gram aliquot of DE-71 was obtained in an amber glass 

bottle from NIEHS (Lot# 1500K07A), originally obtained from Great Lakes Chemical 

Corporation. The bottle was stored at room temperature in a dark drawer until solution 

preparation. First, 1200 uL hexane was added to the amber glass bottle and stirred with 

a glass stir rod for approximately 10 minutes, until the sticky, viscous material was 

completely dissolved from the bottom, sides, and mouth of the bottle. The solution was 

then poured into a 150mL amber glass bottle containing 60mL corn oil. An additional 

51mL corn oil was added to the bottle, which was then vortexed for 60 seconds. The 

hexane used to dissolve the DE-71 into solution was evaporated under nitrogen for 

approximately 6 hours. The final concentration of DE-71 was 2000mg/111mL, or 

18mg/mL, however analysis of previous DE-71 solutions prepared following the same 

instructions found DE-71 concentration to be approximately 14mg/mL, suggesting that 

some DE-71 may be lost in preparation. 

 For experiment 2, DE-71 was obtained in a clear glass bottle wrapped in paper 

towel and tape from the University of Indiana (Lot# G550QF65A), originally obtained 

from Great Lakes Chemical Corporation. To obtain an approximate 2-gram portion, a 

small amber glass bottle and stir rod were placed on an analytical scale, which was then 
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zeroed. The stir rod was then used to remove a portion of the DE-71 from the clear 

glass bottle and transfer it to the amber glass bottle on the scale. A 1.8-gram portion 

was obtained, 1080uL hexane was added to the amber glass bottle, and the stir bar 

used to transfer the DE-71 from the original source was then used to stir the solution for 

approximately 10 minutes, until the DE-71 was entirely dissolved from the bottom and 

sides of the amber glass bottle, as well as the bottom and sides of the glass stir rod. 

The solution was then transferred to a 150mL amber glass bottle containing 54mL corn 

oil. Another 45.9mL corn oil was added to the bottle, which was then vortexed for 60 

seconds. The hexane was evaporated under nitrogen for approximately 6 hours. The 

concentration of the solution was expected to be similar to those previously prepared by 

this method, 14mg/mL. 

 To prepare the corn oil control solution, the same preparation was used as 

above, excluding the addition of DE-71. For experiment 1, 1200uL hexane was added to 

111mL corn oil, vortexed for 60 seconds, and hexane was evaporated. For experiment 

2, 1080uL hexane was added to 99.9mL corn oil, vortexed for 60 seconds, and hexane 

was evaporated. 

  
MEASUREMENTS 

 

Serum metabolites 

  To analyze biochemical makers of metabolic stress that may accompany PBDE 

exposure, serum concentrations of a suite of metabolites were determined from rats in 

experiment 1. Blood was collected via cardiac puncture, transferred to 5mL serum 
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separator Vacuette® tubes, and left to clot at room temperature for approximately 2 

hours before centrifugation at room temperature for 15 minutes at 1200 x g (3000 rpm) 

in an IEC – Centra8R centrifuge, to separate serum from plasma. Serum was then 

poured off into a plastic, 5mL storage tube and frozen at -20°C. Samples were sent to 

Marshfield Laboratories (Marshfield, WI) for determination of the following metabolites: 

serum glucose, alanine aminotransferase, alkaline phosphatase, total bilirubin, 

cholesterol, total protein, albumin, urea, creatinine, calcium, sodium, potassium, 

chloride, globulin, albumin/globulin ratio, urea/creatinine ratio, sodium/potassium ratio, 

beta hydroxybutyrate, triglycerides, and non-esterified fatty acids.  

 

Histological analysis 

 To analyze visual changes in the liver that accompany PBDE exposure and may 

be indicative of metabolic stress, histological examination of livers from rats in 

experiment 1 was conducted. The formalin-fixed sections of each liver were sent to Dr. 

Roger Wells of the New Hampshire Veterinary Diagnostic Lab at the University of New 

Hampshire. Dr. Wells cut thin sections from each sample and mounted them on a glass 

slide, which he then stained with hematoxylin and eosin. He then evaluated the slides 

using light microscopy, providing a histopathology narrative that described the changes 

in liver lipid content in the TRT animals compared to CON.  
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PEPCK activity 

 To confirm findings of Nash et al. (2013) that PBDE treatment at 14mg/kg BW for 

28 days suppresses hepatic PEPCK activity, frozen liver tissue was used to measure 

PEPCK activity using a spectrophotometric method within 3 months of euthanasia in 

experiment 2. 

 

Liver cytosol extraction 

 Four samples were processed at a time. Two CON and two TRT samples were 

removed from the freezer and thawed on ice for 30-45 minutes, during which time 

homogenization buffer was made fresh. Once thawed, one sample at a time was 

weighed, hand minced with scissors, and transferred to a 50mL conical bottom screw 

cap tube with 9 volumes of homogenization buffer, followed by homogenization for 15 

seconds with a Powerstat® polytron electric homogenizer set at 60.  

 Samples were centrifuged for 15 minutes at 3116.425 x g (5000 rpm) and 4°C in 

a Sorvall Evolution RC centrifuge. Supernatants were removed and centrifuged for 60 

minutes at 59466 x g (30,000 rpm) and 4°C in a Beckman L8-80 ultracentrifuge. Glass 

Pasteur pipettes were used to remove the fat that had accumulated at the surface of 

samples, and the supernatants were transferred with plastic transfer pipettes to 15mL 

conical bottom screw cap tubes and placed on ice for immediate spectrophotometric 

analysis. 
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Spectrophotometric assay 

 Four prepared samples were kept on ice while being analyzed for PEPCK 

activity, one at a time. Liver cytosol containing PEPCK was combined with malate 

dehydrogenase (MDH), varying concentrations of malate, and NAD+. MDH uses malate 

and NAD+ to produce oxaloacetate (OAA), the substrate for PEPCK, in addition to 

NADH, a biochemical that can be measured spectrophotometrically at 340nm. MDH is a 

reversible enzyme that will reach equilibrium based on the amount of substrate 

available. If PEPCK activity is low and OAA is not being used, MDH will slow down its 

production or move the reaction in the opposite direction. NADH is made in a 1:1 ratio 

with OAA, so as the production of OAA is reduced, so is the production of NADH. If 

PEPCK activity is high and OAA is continually used, MDH will continue to make OAA, in 

addition to NADH. Therefore, the amount of NADH will directly reflect the activity of 

PEPCK in this closed system. 

 Each liver cytosol was assayed at 0, 0.25, 0.5, 1, 2, 4, and 8mM malate, all run in 

duplicate. One cuvette at a time, the following ingredients were added to a 3 mL acrylic 

cuvette: 330 uL ddH2O, 300 uL 5mM MnCl2, 200 uL 10mM NAD+, 50 uL 1:50 MDH 

(2.2mg/mL), and varying amounts of malate and 100mM Tris (see Table 1). The volume 

in the cuvette after the addition of these ingredients totaled 1680 uL. The cuvette was 

then incubated in a 37°C water bath for 3 minutes followed by the addition of 120 uL 

liver cytosol and incubated for 1 minute in a 37°C water bath. The cuvette was removed 

from the water bath, wiped on all sides with a Kimwipe, and placed in a Milton Roy 
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Spectronic Genesys 5 spectrophotometer with a temperature controlled chamber set at 

37°C. Finally, 200 uL 10mM GTP was added to start the reaction, bringing the final 

volume in the cuvette to 2 mL. The absorbance at 340nm was recorded every 15 

seconds for 2 minutes and the first 4 readings were used in the final calculation of 

PEPCK activity. 

 

Final Malate 
Concentration in 
Cuvette (mM) 

Malate (uL) 100mM Tris (uL) 

0 0 800 
0.25 501 750 
0.5 1001 700 
1 2001 600 
2 4001 400 
4 8001 0 
8 8002 0 

 

Table 1. Final concentrations and volumes of malate for PEPCK assay. 110mM malate 

stock, 220mM malate stock. 

 
Solutions 

CYTOSOL PREPARATION 

Homogenization Buffer was prepared fresh for each set of 4 samples. The following 

ingredients were added, one at a time, to a 150mL glass beaker: 

20mL 0.5M potassium phosphate, pH 7.0 
60mL doubly distilled H2O (ddH2O) 
5mL 20mM EDTA 
200uL 0.5mM leupeptin 
2mL 50mM PMSF, dropwise 
2mL 50mM DTT, dropwise 
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The final volume was brought to 100mL with ddH2O and the solution was kept at room 

temperature during liver cytosol preparation. 

0.5M Potassium Phosphate, pH 7.0 was made by adding 13.609 g potassium 

phosphate (MW=136.09 g/mol) to 150 mL ddH2O, stirring until dissolved, adjusting pH 

to 7.0 with 10M NaOH, and bringing the final volume to 200 mL with ddH2O. The 

solution was stored at 4°C. 

20mM EDTA was made by adding 0.8089 g EDTA (MW=404.45 g/mol) to 90 mL 

ddH2O, stirring until dissolved, and bringing the final volume to 100 mL with ddH2O. The 

solution was stored at 4°C.  

0.5mM Leupeptin was made by adding 0.0021 g leupeptin (MW=426.6 g/mol) to 10 mL 

ddH2O, stirring until dissolved, and aliquoting 200 uL portions into Eppendorf tubes. 

Aliquots were stored at -20°C.  

50mM PMSF was made by adding 0.1742 g PMSF (MW=174.19 g/mol) to 18 mL 

ethanol, stirring to dissolve, and bringing the final volume to 20 mL with ethanol. The 

solution was stored at 4°C. 

50mM DTT was made by adding 0.154 g DTT (MW=154.25 g/mol) to 18 mL ddH2O, 

stirring until dissolved, and bringing the final volume to 20 mL with ddH2O. The solution 

was stored at 4°C.  

SPECTROPHOTOMETRIC ASSAY 

5mM MnCl2 was made by adding 0.0989 g MnCl2 (MW=197.91 g/mol) to 100 mL 

ddH2O and stirring until dissolved. The solution was stored at 4°C. 
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10mM NAD was made by adding 0.1326 g NAD (MW=663.43 g/mol) to 20 mL ddH2O, 

stirring until dissolved, and aliquotting 1.3 mL portions into Eppendorf tubes. The 

aliquots were stored at -20°C. 

1:50 Malate Dehydrogenase (MDH) from Bovine Heart was made fresh for each set 

of 4 samples by adding 60 uL MDH (Sigma Aldrich, 2770 units/mg protein) to 2940 uL 

0.9% NaCl, and vortexing briefly. The solution was kept on ice. 

0.9% NaCl was made by adding 0.9 g NaCl (MW=58.44 g/mol) to 90mL ddH2O, stirring 

until dissolved, and bringing the final volume to 100 mL with ddH2O. The solution was 

stored at 4°C. 

100mM Tris, pH 8.0 was made by adding 1.211 g Tris (MW=121.14 g/mol) to 80 mL 

ddH2O, stirring until dissolved, adjusting the pH to 8.0 with 10M HCl, and bringing the 

final volume to 100 mL with ddH2O. The solution was stored at 4°C. 

10mM Malate was made by adding 0.0712 g malate (MW=178.05 g/mol) to 40 mL 

100mM Tris and stirring until dissolved. The solution was stored at 4°C. 

20mM Malate was made by adding 0.0712 g malate (MW=178.05 g/mol) to 20 mL 

100mM Tris and stirring until dissolved. The solution was stored at 4°C. 

10mM GTP was made fresh for each set of 4 samples by adding 0.0785 g GTP 

(MW=523.2 g/mol) to 15 mL 100mM Tris and stirring until dissolved. The solution was 

kept at room temperature. 

 
Calculations 

 Beer’s law was used to calculate activity of PEPCK using the absorbance at 

340nm. The equation calculates the activity of PEPCK as a rate, using the relationship 
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A=Ebc, where A is absorbance at 340nm, E is the extinction coefficient of NADH 

(6200L/mol x cm), b is the path length of the cuvette (1 cm), and c is the concentration 

in mol/L. The volume in the cuvette must be accounted for, in this case 2 mL, in addition 

to the volume of cytosol used, which was 120 uL. The following equation can be used to 

express activity of PEPCK in umol/min/gram liver. 

 

(Average A/min)    x      1 cm      x       106 umol/mol     x    0.002L 
               6200 L/(mol x cm)  
______________________________________________________________________ 
 
   Liver (g) / buffer (mL) x  120 uL 
           1000 ul/mL 
 
 
 
 
 

PEPCK protein determination 

 To determine if the PBDE-driven suppression in PEPCK activity is due to a 

reduction in PEPCK protein, western blotting methods were used in experiment 2. 

Protein was extracted from liver samples stored frozen for approximately 1 week.  

 

Protein extraction 

 Four samples were processed at a time. Liver samples were thawed, and 

approximately 5mg tissue was dissected from each sample and placed into a 5 mL 

plastic scintillation vial with 300 uL lysis buffer. Each sample was homogenized for 

approximately 10 seconds with a Powerstat® polytron electric homogenizer set at 60. 
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The blades of the homogenizer were washed with 600 uL lysis buffer into the cuvette 

containing the sample, which was then transferred to a 1.5 mL Eppendorf tube. 

Eppendorf tubes were maintained at a constant agitation on an orbital shaker for 2 

hours at 4°C (in a walk-in refrigerator). The samples were then centrifuged for 20 

minutes at 16,000 x g at 4°C in an Eppendorf 5418R tabletop centrifuge. The 

supernatant was transferred into a clean Eppendorf tube using a 5 mL plastic transfer 

pipette. Samples were kept on ice for immediate protein quantification using a 

commercial DC protein kit (BioRad, Cat. No. 500-0112), and then frozen overnight for 

use the next morning. 

 

Western blot 

 A volume of sample equivalent to 25 ug total protein was mixed in a 3:1 ratio with 

4X Laemmli sample buffer and boiled for 3 minutes at approximately 100°C. 

Immediately after boiling, sample was loaded into a mini-protean TGX pre-cast 12-well 

gel (BioRad, Cat. No. 456-9035). A protein plus dual color standard ladder (10-250 kD, 

BioRad, Cat. No. 161-0374) was loaded into the first and last wells of each gel to 

provide a molecular ladder as a point of reference. The second and eleventh wells 

contained a positive control of rat liver extract (Santa Cruz, Cat. No. SC-271029). Wells 

3-10 contained liver samples, in duplicate. A diagram of each gel was recorded, noting 

how much sample, ladder, or positive control was added to the wells. Each gel was then 

designated a number, and the numbers referred to the placement order of the gels in 



	
   28	
  

the electrophoresis cabinet. From the back of the cabinet to the front, the gels were 

numbered 1, 2, and 3, and these numbers were indicated on the gel diagrams. 

 Gels were then placed in the electrophoresis cabinet containing approximately 1 

liter of 1x tris-glycine/SDS running buffer. The cabinet was attached to a power source 

set to 175 volts of electricity for approximately 45 minutes, allowing for the protein to run 

down the gels and separate by size, with the largest proteins separating out first.  

 When the samples had run to the bottom of the gel, gels were removed from the 

running buffer. The gels were removed from their outer plastic casing by forcing open 

the plastic casing using the gel opening fork at the specified arrows. Once removed, the 

bottom edge of each gel was cut off using a razor blade, and finally, gels were placed in 

a bucket filled with approximately 1 L of 1x tris-glycine transfer buffer. Gels were placed 

in the buffer and assembled in a transfer sandwich (described below) one at a time, to 

ensure the identity of each gel was maintained. 

 Plastic cassettes were used to assemble transfer sandwiches. These cassettes 

allow for the gels to be held in tight, close proximity to Immunoblot PVDF membranes 

(BioRad, Cat. No. 162-0174), allowing for protein to transfer from the gels to the 

membranes which would next be incubated with antibodies. One membrane at a time 

was first incubated in methanol for 1 minute followed by pre-incubation in 1x transfer 

buffer in a 5-liter plastic tub for 5 minutes. The membrane was then labeled, according 

to which gel it would be incubated with. Once labeled, the membrane was placed into 

the plastic tub containing a liter of transfer buffer along with the cassette, 2 foam 

sponges, 2 transfer papers, and its corresponding gel. The sandwich was assembled 
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starting with the black side of the cassette, followed by a sponge, a piece of transfer 

paper, the gel, with lane 1 on the left side, membrane, another piece of transfer paper, 

the other sponge, and finally the clear side of the cassette. After removal of all bubbles 

from the sponges and from between the membrane and gel, the two white clips were 

slid onto the top of the transfer sandwich to hold it together. Once one sandwich was 

assembled, it was kept in the plastic tub containing the transfer buffer to avoid drying 

out of the membrane, a key concern at all points of the procedure.  

 Once all three sandwiches were assembled, the first two were placed into one 

electrophoresis cabinet containing one liter of 1x transfer buffer, and the third was 

placed into a separate electrophoresis cabinet containing one liter of 1x transfer buffer. 

An ice pack was added to the front of each cabinet along with a magnetic stir bar. The 

cabinets were then placed on a large stir plate, allowing for constant stirring of the 

transfer buffer overnight, while the cabinets were attached to a power source set to 30 

volts of constant power.  

 Approximately 21 hours after start of the transfer process, the cabinets were 

disconnected from the power supply and the contents of the cabinets were emptied 

back into the plastic tub that was originally used for cassette assembly. Once in the 

bucket, sandwiches were disassembled and membranes were immediately transferred 

to individual small dishes containing phosphate buffered saline (PBS) solution with 10% 

w/v non-fat dry milk and 1:500 dilution PEPCK-specific primary antibody (Santa Cruz, 

Cat. No. SC-271029). After 1-hour incubation with primary antibody, the membranes 

were washed three times for 10-minute increments in PBS containing 10% non-fat dry 
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milk. After washing, the membranes were incubated for another 1-hour period in a light 

sensitive goat anti-mouse IgG secondary antibody (Licor, Cat. No. 827-08364), at a 

1:15,000 dilution, according to manufacturer instructions. The membranes were once 

again washed three times for 10-minute increments to remove any excess, unbound 

secondary antibody. The secondary antibody bound to primary antibody, providing a 

fluorescent tag that was then visualized using a Li-Cor Odyssey scanner.  

 To visualize PEPCK on the membranes, the Li-Cor Odyssey scanner was used 

with all lights turned off and room shades closed. Membranes were placed one at a 

time, face down on the front left corner of the scanner. Bubbles were then pressed out 

from under the membrane using a 3-inch rubber roller, a rubber cover was placed on 

top of the membrane, and the scanner cover was closed. The scanner was then 

instructed to visualize the membrane, producing a picture that was sent to the computer 

and saved as a .tif file to a USB drive. This process was repeated for all 3 membranes. 

Pictures were then used to calculate density of each PEPCK band on the 3 membranes 

using the Un-Scan-It computer densitometry program. This provided semi-quantitative 

data regarding overall PEPCK protein present in the samples. 

 

Solutions 

Homogenization Buffer was made by adding the following ingredients to a half liter 

glass bottle in the order listed: 

12.5 mL 1M HEPES 
2.2 g NaCl 
0.105 g NaF 
0.5 mL 500mM EDTA 
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25 mL glycerol 
1.25 mL Triton X-100 
Bring the final volume to 250 mL using ddH2O  
 
The solution was made the day prior to protein extraction and stored at 4°C for 

approximately 2 weeks. 

Lysis Buffer was made by placing 15 mL homogenization buffer into a 20 mL glass 

beaker and adding 150 uL aprotinin (Sigma Aldrich, Cat. No. A6279, 3-7 TIU/mg 

protein) and 150 uL 1M benzamidine. Buffer was kept on ice for the duration of the 

protein extractions. 

1M HEPES was made by adding 3.098 g HEPES (MW=238.3 g/mol) to about 10 mL 

ddH2O, stirring until dissolved and bringing final volume to 13 mL with ddH2O. 

1M Benzamidine was made by adding 0.018 g benzamidine (MW=120.15 g/mol) to 

150uL ddH2O and mixing well until dissolved. The solution was immediately added to 

the lysis buffer. 

4X Laemmli Buffer was combined with 2-mercaptoethanol per manufacturer instruction 

(BioRad, Cat. No. 161-0737). 

Running Buffer (tris-glycine/SDS) was made by adding 100 mL 10X tris-glycine/SDS 

(BioRad, Cat. No. 161-0732) to 900 mL ddH2O and mixing well. Buffer was made the 

morning of use and was stored at 4°C until needed. 

Transfer Buffer (tris-glycine) was made by adding 200 mL methanol to 700 mL 

ddH2O, followed by the addition of 100 mL 10X tris-glycine (BioRad, Cat. No. 161-0734). 

The solution was then mixed well. Buffer was made the morning of use and was stored 

at 4°C until needed. 
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Phosphate-Buffered Saline (PBS) was made by adding 100 mL 10x-PBS (BioRad, 

Cat. No. 161-0780) to 900 mL ddH2O and mixing gently. Buffer was made the morning 

of use and was stored at 4°C until needed. 

 
Glyceroneogenesis 
 
 To address the hypothesis that PBDE treatment at 14 mg/kg BW for 28 days 

suppresses hepatic glyceroneogenesis, fresh liver tissue was used to quantify hepatic 

glyceroneogenesis using a radioactive method in experiment 2. 

 Glyceroneogenesis samples were transported back to the lab on ice, where each 

of the 3 samples was placed in 1 well of a 6-well plate. Each well had 1.5mL Kreb’s-

Ringer-Bicarbonate buffer (KRB) containing 5mmol glucose. Holding each sample 

above its well, it was cut in ~10, 20mg pieces using tweezers and small dissecting 

scissors. Each well was gassed with 95% CO2, 5% O2 and incubated on a shaker at 

37°C for 6 hours. 

 Approximately 30 minutes before the end of incubation, the radioactive working 

solution was made. Once the 6-hour incubation was complete, a Pasteur pipette was 

used to remove the KRB from each well, followed by addition of 1.5mL working solution 

to each well. Wells were then gassed with 95% CO2, 5% O2 and incubated on a shaker 

for 2 hours at 37°C, allowing for incorporation of 14C-pyruvate into the glycerol backbone 

of triglycerides in the liver tissue. At the end of this incubation period, a Pasteur pipette 

was used to remove the radioactive working solution from each well, and wells were 

filled with cold KRB, halting metabolism of the tissues. The KRB was removed using 

5mL plastic syringes, and then 1.5mL phosphate-buffered saline (PBS) was added to 
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each well for washing purposes. Each sample set was then transferred to another 6-well 

plate containing 1.5mL PBS per well. The plate was agitated lightly, followed by transfer 

of samples to another plate with clean PBS. This was repeated four times total, allowing 

for an initial PBS wash in the incubation plates, followed by four consecutive washes in 

clean 6-well plates. After washing was complete, each sample was removed from its 

well and placed in a 1.5mL Eppendorf tube, ensuring all pieces of sample congregated 

at the bottom of the tube. Tubes were then snap frozen in liquid nitrogen and placed in a 

-20°C freezer for later fat extraction. 

 Three-50uL aliquots of the extra working solution were removed and counted for 

determination of specific activity after each set of samples was incubated and frozen. 

Each aliquot was placed into an individual plastic scintillation vial, followed by immediate 

addition of 3 mL Optiphase Supermix scintillation cocktail. Vials were labeled and 

counted on the scintillation counter to quantify disintegrations per minute in each 

sample, which was then used to calculate specific activity of the working solution. 

 

Extraction of fat for radioactive quantification 

 Within 3-4 weeks of initial sample incubation and freezing, fat was extracted and 

radioactivity incorporated into fat was quantified as a marker of glyceroneogenesis. The 

three samples from one animal were removed from the freezer and transferred, frozen, 

from the base of the eppendorf tubes into three respective glass homogenizing tubes, 

each containing 1 mL ddH2O. Each sample was homogenized 6 times up and down 

using a hand drill and homogenizing pestle, and then transferred into a 15 mL capped-
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glass centrifuge tube containing 0.25 mL chloroform. Samples were mixed by hand 

briefly and then transferred back to their individual homogenization tubes where they 

were homogenized three more times up and down. Samples were transferred back to 

the capped-glass centrifuge tubes, and 3.75 mL methanol:chloroform 2:1 was added. 

Every step was completed on ice, in the hood. Tubes were then capped and vortexed 

for 30 seconds before shaken mildly on ice for 30 minutes.  

 After 30 minutes of incubation, samples were taken off the shaker and placed on 

ice in the hood, where 1.25 mL chloroform was added to each tube before re-capping 

and mild shaking on ice for another 10 minutes. At the end of the second incubation, 

samples were taken off the shaker once again and placed on ice in the hood, where 1 

mL ddH2O was added to each tube before re-capping and shaking on ice for an 

additional 10 minutes. At the end of the final 10-minute incubation, samples were 

balanced against water and centrifuged at 478 x g (3000 rpm) for 15 minutes at 4°C in a 

Sorvall Evolution RC centrifuge. After centrifugation, 2-1 mL portions of the bottom, 

chloroform layer from each sample were removed and transferred into individual 5 mL 

plastic scintillation vials, immediately followed by the addition of 3 mL Optiphase 

Supermix scintillation cocktail. Vials were labeled and counted on the scintillation 

counter to quantify disintegrations per minute within each sample, which was then used 

to calculate the rates of glyceroneogenesis. 

 Extractions were overlapped to optimize time spent on the procedure; however 

only 3 sets of triplicate samples could be run at once. The second set of samples was 

not removed from the freezer until the timer for the first set read 13 minutes remaining 
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for the 30-minute incubation. Similarly, the third set was removed from the freezer when 

the timer for the second set read 13 minutes remaining for the 30-minute incubation. 

This was to ensure that at the end of the third incubation, the samples could go directly 

into the centrifuge without any lag time. Preliminary studies revealed that a lag between 

incubation and centrifugation caused a dramatic drop in radioactivity, skewing the data. 

It was also important to remove the 2-1 mL aliquots from each sample tube within the 

first 2 minutes of removal from the centrifuge, to ensure that the aliquots reflected 

optimal separation of fat from other components of the liver samples. If this transfer took 

any greater than 2 minutes, the top layer started to fall back into the bottom layer, 

causing a distinct difference in radioactivity between the first and third triplicate samples. 

 

Solutions 

Kreb’s-Ringer-Bicarbonate Buffer (KRB) was made by adding the following amounts 

of each stock solution in the order listed, and stored at 4°C for up to 1 week: 

500 mL ddH2O 
25 mL 1M HEPES 
62.5 mL 2M NaCl 
5 mL 1m KCl 
1 mL 1M KH2PO4 
1.25 mL 1M MgCl2-6H2O 
1.25 mL 1M CaCl2-2H2O 
25 mL 1M NaHCO3 
pH to 7.4, bring to final volume of 1 Liter with ddH2O 
 
Stock solutions were made as follows and stored at 4°C for approximately 6-8 weeks: 
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1M HEPES was made by adding 119.15 g HEPES (MW=238.3 g/mol) to about 450 mL 

ddH2O and stirring until dissolved. The pH of the solution was adjusted to 7.76 and the 

final volume of the solution was brought to 500 mL with ddH2O. 

2M NaCl was made by adding 58.44 g NaCl (MW=58.44 g/mol) to approximately 450 

mL ddH2O, stirring until fully dissolved, and bringing the final volume to 500 mL with 

ddH2O. 

1M KCl was made by adding 7.46 g KCl (MW=74.6 g/mol) to approximately 90 mL 

ddH2O, stirring until fully dissolved, and bringing the final volume to 100 mL with ddH2O. 

1M KH2PO4 was made by adding 13.609 g KH2PO4 (MW=136.09 g/mol) to 

approximately 90 mL ddH2O, stirring until fully dissolved, and bringing the final volume 

to 100 mL with ddH2O.  

1M MgCl2-6H2O was made by adding 20.33 g MgCl2-6H2O (MW=203.30 g/mol) to 

approximately 90 mL ddH2O, stirring until fully dissolved, and bringing the final volume 

to 100 mL with ddH2O. 

1M CaCl2-2H2O was made by adding 14.702 g CaCl2-2H2O (MW=147.02 g/mol) to 

approximately 90 mL ddH2O, stirring until fully dissolved, and bringing the final volume 

to 100 mL with ddH2O. 

1M NaHCO3 was made by adding 42.005 g NaHCO3 (MW=84.01 g/mol) to 

approximately 450 mL ddH2O, stirring until dissolved, and bringing the final volume to 

500 mL with ddH2O. 
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14C-pyruvate was ordered from Perkin Elmer (Cat. No. NEC2550, 50 uCi) in powder 

form. To reconstitute into solution, 2 uL ddH2O was added for every uCi of radioactivity 

present.  

Working Solution was made fresh for each set of 4 livers (liver samples were run in 

triplicate; working solution made for 12 samples at a time). First, 19 mL cold KRB was 

added to a 50 mL glass beaker. The beaker was placed on a heating stir plate followed 

by the addition of 10.45 mg pyruvic acid and a magnetic stir bar. Solution was stirred 

until the pyruvic acid dissolved, followed by addition of 380 mg fatty acid free bovine 

serum albumin (FAF-BSA) (Sigma, Cat. No. A7030). The hot plate was turned on low 

and stirring was continued until FAF-BSA was completely dissolved. Hot plate was then 

turned off while stirring was continued for the final addition of 38 uL 14C-pyruvate (or 1 

uCi 14C-pyruvate per mL working solution). The final working solution was stirred for an 

additional 5 minutes to ensure mixing. 

 
Phosphate-Buffered Saline (PBS) was made by adding 100 mL 10x-PBS (BioRad, 

Cat. No. 161-0780) to 900 mL ddH2O and mixing gently. The solution was stored at 4°C 

for approximately 3 weeks. 

 
Methanol:Chloroform 2:1 was made by adding 90 mL methanol to a 150 mL amber 

glass bottle, followed by the addition of 45 mL chloroform. The mixture was then 

vortexed for 15-30 seconds, capped, and stored under the hood. 
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Calculations 

 Glyceroneogenesis Rate of each sample was expressed as pmol 14C-pyruvate 

incorporated into triglyceride per hour per mg tissue (pmol/hr/mg).  Specific activity (SA) 

was calculated every time fresh working solution was made, and was used to convert 

dpm into nmol per mL, because 1mL of the chloroform layer was counted at a time. The 

chloroform layer was approximately 2.5mL per sample, so multiplication by 2.5 allowed 

for the number to be expressed in nmol/whole sample. Amount of time in incubation and 

sample weight were also accounted for to express glyceroneogenesis as a rate in 

nmol/hr/mg tissue. The final rate was multiplied by 1000 to express the rate in 

pmol/hr/mg tissue. The following equation is a mathematical representation of the 

calculation used: 

 

1000 pmol/nmol *{(dpm of sample/SA of working solution in dpm/nmol) *2.5mL/sample} 

(2 hours per incubation  x  sample weight in mg) 

 Each sample was counted in duplicate, and each animal had triplicate tissue 

samples analyzed. The duplicate rates were averaged for a within sample mean. The 

triplicate means were then averaged for a within animal mean. The within animal means 

were then averaged for a within treatment group mean.  

 Specific activity (SA) was calculated using the specific activity of the stock 

solution of 14C-pyruvate, which was 9.5mCi per mmol for a bottle containing 50uCi. This 

corresponds to .005mmol of radioactive pyruvate in the stock solution. Working solution 

is made by adding 19uCi of 14C-pyruvate, which is 38% of the total stock, containing 
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.00199mmol of radioactive pyruvate, or 1.99umol. The addition of 10.45mg cold 

pyruvate added 118.74umol cold pyruvate, for a total of 120.74umol pyruvate in 19mL 

working solution. Three aliquots of 50uL were counted of each working solution, which 

were then averaged to provide one value representing dpm/50uL, which was then used 

to calculate SA for each sample using the following mathematical relationship: 

    dpm  X     19mL  = (dpm/umol) x 1000 = dpm/nmol 
0.050mL              120.74umol 
 
SA was calculated separately for each working solution that was made, and applied to 

the corresponding samples when calculating glyceroneogenesis rates. 

 

 
Liver lipid content 

 To evaluate PBDE-associated changes in hepatic lipid content, triglycerides were 

extracted from frozen livers of rats in experiment 2. Liver portions were allowed to thaw, 

three at a time, on ice for approximately 30-60 minutes. At room temperature, three 50 

mg portions of each liver were weighed out, weights recorded, and samples individually 

homogenized ten times up and down in 0.3 mL cold PBS. The solution was left to rest 

for 15 seconds followed by homogenization 5 additional times up and down. Each 

sample was then transferred to an individual clean, 15 mL Corex glass tube. To ensure 

as much sample transfer as possible, 2 mL hexane:isopropanol (3:2) solution was 

added to the homogenization tube, mixed lightly by hand and transferred to the Corex 

tube containing the sample. Each sample was then gassed with nitrogen and vigorously 

shaken for 1 hour. Next, 0.6 mL 0.5M sodium sulfate was added to each sample. Tubes 
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were then vortexed for 60 seconds, and vigorously shaken for an additional 15 minutes. 

After the final shake period, samples were balanced against water and centrifuged for 

10 minutes at 871 x g (2700 rpm) and 23°C in a Sorvall Evolution RC centrifuge. 

Immediately following centrifugation, 1-1 mL aliquot of the upper phase from each 

sample was removed and placed in a dry, pre-weighed disposable glass tube. The 

samples were then dried under nitrogen gas for approximately 20 minutes and weighed 

again immediately, and then once more the following day to confirm complete drying. 

The change in weight of the tube was then used to calculate the percentage of lipid 

present in each liver. 

 

Solutions 
 
Phosphate buffered saline (PBS) was made by adding 10 mL 10x-PBS (BioRad, Cat. 

No. 161-0780) to 90 mL ddH2O and mixing gently. The solution was stored at 4°C for 

approximately 3 weeks. 

Hexane:Isopropanol (3:2) was made by adding 60 mL hexane to an amber glass 

bottle under the hood, followed by adding 40 mL isopropanol, capping, and vortexing 

lightly for approximately 15-30 seconds. The solution was stored under the hood. 

0.5M sodium sulfate was made by placing 7.102 g sodium sulfate (MW=142.04 g/mol) 

in ddH2O and bringing the final volume to 100 mL. The solution was mixed on a stir 

plate using a magnetic stir bar for approximately 5-10 mintues. The solution was stored 

at 4°C for approximately 3 weeks. 
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Calculations 

The following calculation was used to determine hepatic lipid percentage: 

 

{ 6/5* x [(final tube weight – initial tube weight) /initial weight of sample] }x 100 

 

 

*6/5 is a correction factor for volume of hexane. The lipid is collected in the hexane 

layer, and 2 mL of 3:2 hexane:isopropanol is added to each tube, equaling a theoretical 

volume of 1.2 mL hexane. Only 1 mL of this is extracted and used in the final step of the 

method, and therefore, to account for the amount of lipid extracted in the whole volume 

of hexane, the raw calculated values are multiplied by (1.2/1) or (6/5). 

Samples were run in triplicate, therefore three lipid percentages were calculated for 

each liver. Coefficient of variation (CV) was conducted within the three samples for each 

liver, and the data was rejected if the CV was greater than 25%. In these cases, three 

additional samples were taken from the liver and the method was repeated. 

 

STATISTICS 
 

 Coefficient of variation of 25% for PEPCK activity calculated from the literature 

(Chauvin et al., 1996) requires 8 rats per group to detect a 45% treatment effect 

(Berndtson, 1991). Based on this calculation, 16 animals were used for experiment 1, 

n=8 per group. Coefficient of variation of 10% calculated from pilot studies for 
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glyceroneogenesis requires 6 rats per group to detect a 20% treatment effect 

(Berndtson, 1991). Based on this calculation, 12 animals were used for experiment 2, 

n=6 per group.  

 Two-way ANOVA was used to determine the effect of treatment and experiment 

date on body and liver weight outcomes using JMP Pro11.  

 Unpaired t-tests were used to compare means for CON and TRT groups for 

blood metabolites, PEPCK protein density, glyceroneogenesis, and liver lipid 

percentage using GraphPad InStat 3. Equal population standard deviations were 

assumed in all tests.  
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CHAPTER 3 

 

 

PBDE-INDUCED SUPPRESSION OF 

PHOSPHOENOLPYRUVATE CARBOXYKINASE (PEPCK) 

DECREASES HEPATIC GLYCERONEOGENESIS AND 

DISRUPTS HEPATIC LIPID HOMEOSTASIS 
 

INTRODUCTION 

 

	
   Polybrominated diphenyl ethers (PBDEs) are a class of environmental chemicals 

added to consumer products starting in the 1970s to help reduce flammability (Watkins 

et al., 2011, Besis and Samara, 2012). PBDEs have been used in a wide variety of 

products, including but not limited to electronics, textiles, curtains, couches and many 

other types of home and office furniture and upholsteries (Harrad et al., 2008, Jones-

Otazo et al., 2005, Wilford et al., 2005).  

 Because PBDEs are added, not bound, to the products in which they are used, 

they freely migrate into the air and settle into the environment (Costa et al., 2008). 

When consumer products containing these chemicals are disposed of, either in landfills 

or through incineration, PBDEs will settle into sediment, sludge, and soil, where they 
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can contaminate the water and food supply and eventually biomagnify up the food chain 

(Osako et al., 2004, Hale et al., 2008, Costa et al., 2008).  

 The main routes of human exposure to PBDEs include inhalation and ingestion, 

with sources coming mainly from dust (Harrad et al., 2008), but also food sources such 

as fish, dairy, and meat (Costa et al., 2008). Once in the body, PBDEs tend to reside in 

the fat tissue due to their lipophilicity (Johnson-Restrepo et al., 2005), however 

metabolism of PBDEs occurs in the liver (Stapleton et al., 2009), suggesting these two 

tissues bear the bulk of the PBDE exposure burden. 

 Although PBDEs have been phased out of production since late 2013, they still 

persist in the environment. Homes and offices have furniture and upholsteries 

containing PBDEs, and disposal of these products continue to contaminate both indoor 

and outdoor environments.  

 Once inside the body, PBDEs are known endocrine disruptors. Due to the 

similarity in structure between PBDEs and thyroxine, PBDEs are able to competitively 

bind thyroid receptors α and β (Meerts et al., 2000), thyroid transporter transthyretin 

(Hamers et al, 2006, Marchesini et al., 2008), and effectively decrease circulating levels 

of the active form of thyroid hormone, triiodothyronine (Lee et al., 2010, Tseng et al., 

2008). PBDEs have also been found to bind receptors for estrogen, progesterone, 

androgens, and glucocorticoids (Hamers et al., 2006), disrupting endocrine signaling 

and potentially creating obesogenic or diabetic effects (Feo et al., 2013).  

 In addition to endocrine-disruption, PBDEs largely affect the liver by increasing 

oxidative stress and antioxidant enzyme activity (An et al., 2010, Albina et al., 2010), 
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increasing fatty deposition in the liver (Bruchajzer et al., 2010), and decreasing activity 

of a key metabolic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). Indeed, 

Nash et al. (2013) found that hepatic PEPCK activity was suppressed by 43% when 

male Wistar rats were exposed to 14mg/kg/day DE-71, a commercial PBDE-mixture, for 

28 days. This change in enzyme activity was accompanied by an increased 

glucose:insulin ratio, suggesting metabolic perturbations indicative of insulin resistance. 

 PEPCK catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate 

(PEP), a regulated and crucial beginning step of both de novo glucose synthesis via 

gluconeogenesis, and triglyceride resynthesis via glyceroneogenesis (Yang et al., 

2009). Increased enzyme activity is necessary for these pathways to be robust during 

fasting, and the primary mechanism for controlling PEPCK activity is via increased 

transcription (Chakravarty et al., 2005, Yang et al., 2009). 

 Reduced PEPCK activity has been associated with physiological consequences, 

such as decreased hepatic gluconeogenesis (Zhang et al., 2012, Diani-Moore et al., 

2013) and changes in glucose:insulin ratio (Nash et al., 2013).  These findings suggest 

decreased PEPCK activity may be associated with perturbed hepatic carbohydrate 

metabolism. Less explored is how changes in PEPCK may be affecting 

glyceroneogenesis and consequently, hepatic lipid metabolism. Because 

glyceroneogenesis generates glycerol-3-phosphate, the necessary backbone for fatty 

acid esterification, disruption of this pathway could lead to decreased triglyceride 

formation and increased hepatic and systemic fatty acid levels.  Chronically high levels 

of fatty acids have been shown to perturb insulin signaling, leading to the development 
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of insulin resistance and playing a potential role in the development of diabetes. Thus, 

the goal of the current study was to examine PBDE-induced alterations of hepatic 

glyceroneogenesis and PEPCK expression, and the resulting implications for hepatic 

lipid metabolism.   

 
MATERIALS AND METHODS 

 

Animals 

Twenty-eight weanling male Wistar rats (Charles River Laboratory, Wilmington, MA) 

were used for this study. Rats weighed between 75-100 g at arrival and were allowed to 

acclimate to their new environment for 5-8 days. They were housed individually in 

stainless steel hanging basket cages under a 12 h light/dark cycle and fed standard rat 

chow and water ad libitum. Procedures and methods were approved by the University of 

New Hampshire Institutional Care and Use Committee (#131003 and #14071). 

 

Chemicals 

DE-71 was generously donated from NIEHS (Lot# 1500K07A) and Indiana University 

(Lot# G550QF65A). Approximately 2 grams were dissolved in hexane and corn oil; 

excess hexane was evaporated under nitrogen for a final PBDE concentration of 14 

mg/mL.  Control solution was prepared with identical amounts of hexane using the same 

procedure, without the addition of DE-71. 
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Treatment 

All rats were gavaged daily with 14 mg/kg body weight DE-71 (n=14, TRT) or a 

comparable amount of corn oil vehicle (n=14, CON) between 8:00-10:00 AM, for 28 

days. On days 27 and 28, rats were fasted and then euthanized between 8:00-10:00 

AM on the morning of day 29. Rats were weighed every 3 days throughout the 

experiment. The study included two experiments with identical treatment methods 

conducted nine months apart, using lot #1500K07A for the first experiment and lot 

#G550QF65A for the second experiment.  

 

Tissue Procurement 

After the 48-hour fast, rats were weighed then euthanized via CO2 asphyxiation.  Three 

to five mL of blood were collected immediately via cardiac puncture, followed by removal 

of the liver. Livers were rinsed, blotted dry, and weighed. Each liver was separated into 

two 5 mg-portions that were fixed in formalin for histological analysis, three 200 mg-

portions that were placed on ice for glyceroneogenesis measurements, and three to five 

2 gram-portions that were snap frozen in liquid nitrogen and stored at -20°C for later 

quantification of PEPCK protein, PEPCK activity, and hepatic lipids. 

 

Serum Metabolites 

Blood was allowed to clot at room temperature for approximately 2 hours, and then 

centrifuged at room temperature for 15 minutes at 1200 x g. Serum was separated and 
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frozen at -20°C, until analysis by Marshfield Laboratories (Marshfield, WI) for blood 

metabolites.  

Histological Analysis 

Formalin-fixed livers were sectioned, mounted on glass slides and stained with 

hematoxylin and eosin for evaluation of lipid content using light microscopy by the NH 

Veterinary Diagnostic Lab at the University of New Hampshire.  

 

PEPCK Protein 

Liver was thawed on ice and protein was extracted from a 5 mg-portion by 

homogenization in 300 uL of lysis buffer containing 50mM Hepes, 150mM NaCl, 10mM 

NaF, 1mM EDTA, 10% glycerol, 0.5% Triton X-100, 1% aprotinin (3-7 TIU/mg protein) 

and 10mM benzamidine. The blade was rinsed with 600uL lysis buffer, which was 

added to the sample, and samples were maintained at a constant agitation on an orbital 

shaker for 2 hours at 4°C. Finally, samples were centrifuged for 20 minutes at 16,000 x 

g and 4°C. Supernatant was assayed for protein (DC protein kit, BioRad), and frozen 

overnight for use the next morning.  

 Twenty-five ug protein from each sample was loaded in duplicate onto mini-

protean pre-cast gels (BioRad) and separated via 10% SDS-PAGE before transfer onto 

Immuno-blot PVDF membranes (BioRad).  Membranes were incubated for one hour 

with a mouse PEPCK primary antibody, 1:5000 dilution (Santa Cruz Biotechnology, 

Dallas, TX), washed with PBS containing 10% nonfat dry milk to remove excess 

unbound antibody, incubated for one hour with a light-sensitive goat anti-mouse IgG 
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secondary antibody (LiCor), and washed with PBS containing 10% nonfat dry milk. Gels 

were visualized using a Li-Cor Odyssey Scanner and semi-quantified using 

densitometry (Un-Scan-It). 

 

PEPCK Activity 

Enzyme activity was measured as previously described (Nash et al., 2013) with 

modifications. Approximately 2-gram portions of each liver were homogenized and 

centrifuged at 3116.425 x g (5000 rpm) for 15 minutes at 4°C, and the cytosolic fraction 

was isolated by centrifugation at 59466 x g (30,000 rpm) for 60 minutes at 4°C.  PEPCK 

activity was measured in a 3 mL cuvette with final concentrations of 50mM Tris, 0.75mM 

MnCl2, 1mM NAD+, 6 units MDH, 1mM GTP, and 0-8 mM malate (final volume was 2 

mL) as follows: the cuvette was incubated for 3 minutes at 37°C containing double-

distilled water, MnCl2, NAD+, MDH, malate and Tris, pH 8.0; cytosol was added and 

incubation continued for another minute; GTP was added to start the reaction.  The 

samples were read at 340nm every 15 seconds for 2 minutes, and the average ΔOD 

was calculated for the first minute. Samples were run in duplicate with 0, 0.25, 0.5, 1, 2, 

4, and 8mM malate.  

 

Hepatic Lipids 

Livers were thawed on ice and lipids extracted as described by Nash et al. (2013). 
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Hepatic Glyceroneogenesis 

Hepatic glyceroneogenesis rates were measured as described previously (Jaubert et 

al., 2012) with modifications. In brief, each of three 200 mg-portions of liver was cut into 

approximately 10 pieces, and placed in one well of a 6-well plate containing 1.5 mL 

Krebs Ringer bicarbonate buffer containing 5mM glucose. Samples were incubated for 6 

hours at 37°C, followed by removal of media using glass Pasteur pipette. Each well was 

then incubated in 1.5mL Krebs Ringer bicarbonate buffer containing 6.25 mM pyruvic 

acid, 2% fatty acid free BSA, and 1.5 uCi 14C-pyruvate at 37°C.  After 2 hours, samples 

were rinsed 6 times in cold PBS, placed in 1.5mL Eppendorf tubes, snap frozen in liquid 

nitrogen, and stored at -20°C for up to 2 weeks. Fat was extracted from frozen samples 

by the following steps, all on ice: each sample was homogenized in 1mL double distilled 

water for 5 strokes, 0.25mL chloroform was added and sample homogenized for 3 

strokes, 3.75 mL methanol:chloroform 2:1 was added and sample shaken for 30 

minutes.  Next, 1.25mL chloroform was added and the sample was shaken for 10 

minutes, followed by the addition of 1 mL ddH2O and 10 minutes of shaking.  The 

samples was centrifuged for 15 minutes at 478 x g and 4°C, and two 1mL-portions of 

the bottom phase of each sample were removed and counted in a scintillation counter to 

calculate incorporation of 14C-pyruvate into hepatic lipids. 
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Statistics 

A two-way ANOVA was used to evaluate the effect of treatment and time of experiment 

on body weight and liver weight. Means for CON and TRT groups for blood metabolites, 

hepatic PEPCK Vmax and Km, hepatic lipids, hepatic glyceroneogenesis, and hepatic 

PEPCK protein were compared using unpaired t-tests, assuming equal population 

standard deviations using GraphPad InStat3 and JMP Pro 11. Significance was set as 

P<0.05. 

RESULTS 
 

 
Animal and Liver Measurements 
 
 Analysis of final body weight, liver weight, and liver as a percent of body weight 

for rats in both experiments revealed no effect of time of experiment, but a significant 

effect of treatment (Table 2).  DE-71 treatment increased liver weight by 33% and liver 

weight as a percent of body weight by 26%, but did not have an effect on final body 

weight. Furthermore, DE-71 treatment increased hepatic concentrations of BDE-47, 

BDE-99, and BDE-100 by 59-, 31-, and 80-fold, respectively (Table 3).  

 

Hepatic PEPCK Activity 

 Hepatic PEPCK activity from CON vs. TRT rats demonstrates a 28% decrease of 

activity in livers from TRT rats compared to CON at the highest substrate concentration 

of 8mM (Figure 2). Kinetics curves of PEPCK activity from individual rat livers were 

plotted on Sigma Plot 12, and a hyperbolic curve was fit to the data and used to 

determine individual hepatic PEPCK Km and Vmax, revealing a 40% decrease in Vmax 
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of TRT animals compared to CON, with no change in Km between treatment groups 

(Table 4).  

 

Hepatic PEPCK Protein Levels 

 A representative Western blot of hepatic PEPCK protein levels in TRT and CON 

samples is shown in Figure 4. Quantification of the data (n=6 per group) using 

densitometry revealed a 17% decrease in PEPCK protein in livers of TRT rats 

compared to CON (p=0.11). A Q-test revealed no clear outliers due to the limited 

sample size; however samples that skewed coefficient of variation by greater than 25% 

were removed from the comparison. Removal of one CON and one TRT point tightened 

coefficient of variation by 34% and 28%, respectively, and comparisons of the new 

means revealed a significant, 23% decrease in PEPCK protein in livers of TRT animals 

compared to CON (p<0.05, n=5).  

 

Blood Metabolites 

 To evaluate if PBDE-induced PEPCK suppression affected hepatic 

gluconeogenesis, serum glucose was measured. TRT animals exhibited a 48% 

reduction in serum glucose compared to CON, after a 48-hour fast (Table 5).  Beta-

hydroxybutyrate, a marker of excess unesterified fatty acid metabolism, was significantly 

increased by 27% in TRT animals compared to CON (p<0.05). This was accompanied 

by a significant 27% reduction in serum triglycerides in TRT animals. Serum NEFA and 

cholesterol levels were not different between the two groups.  



	
   53	
  

Hepatic Lipid Content 

 Hepatic lipid was 29% lower in livers from TRT animals compared to CON 

(p<0.05, Figure 5). In contrast, histological data illustrated mild lipid vacuolation in the 

midzonal region of livers from 7 of the 8 TRT rats, and 0 of the 8 CON rats (Figure 6). 

 

Hepatic Glyceroneogenesis 

 There was a significant, 41% decrease in hepatic glyceroneogenesis in livers of 

TRT animals compared to CON (Figure 7). The change in glyceroneogenesis was not 

dependent on liver location because triplicates were run from three distinct areas of 

each liver and there were no significant differences between triplicate samples within 

each treatment group. 

 
DISCUSSION 

 
 This study is the first to evaluate hepatic lipid metabolic perturbations caused by 

the commercial PBDE-mixture, DE-71, revealing that PBDEs suppress hepatic 

glyceroneogenesis in vitro. This suppression is consistent with our findings of reduced 

hepatic PEPCK protein and activity. To our knowledge, this is the first study to (1) 

address hepatic glyceroneogenesis in response to PBDE exposure, and (2) illustrate a 

relationship between hepatic PEPCK protein, activity, and glyceroneogenesis. 

 Despite the lack of evidence supporting a decrease in glyceroneogenesis in 

response to PBDE exposure, other work in the liver suggests that hepatic 

glyceroneogenesis is responding to changes in hepatic PEPCK activity (Martins-Santos 

et al., 2007), which has been shown to be suppressed by DE-71 exposure (Nash et al., 



	
   54	
  

2013). Martins-Santos et al. (2007) incubated precision-cut liver slices from control and 

48 h-fasted rats with 14C-glucose, 14C-pyruvate, and 14C-glycerol to measure the 

contribution of gluconeogenesis, glyceroneogenesis, and glycerol phosphate to the 

production of glyceride-glycerol in the liver. They found up to a 43% increase in 14C-

incorporation from pyruvate in fasted animals compared to controls, supporting an 

increase in hepatic glyceroneogenesis in the fasted state. Furthermore, Martins-Santos 

et al. (2007) found an accompanying 84% increase in hepatic PEPCK activity, 

suggesting glyceroneogenesis responds to changes in hepatic PEPCK activity. This 

provides evidence to support that the PBDE-induced decrease in hepatic PEPCK 

activity shown by Nash et al. (2013) may be sufficient to suppress hepatic 

glyceroneogenesis, which our current data demonstrate.  

 Furthermore, a recent study conducted by Jaubert et al. (2012) suggested a 

correlation between PEPCK protein and glyceroneogenesis in the adipose tissue in 

vitro, another finding supported by the current data. Although other work in the adipose 

tissue contradicts a clear relationship between PEPCK protein, PEPCK activity, and 

glyceroneogenesis (Nye et al., 2008), it is important to note that this work was done in 

vivo, adding methodological complications that are not seen in in vitro models. 

Additionally, PEPCK activity in the adipose tissue is decreased by glucocorticoids, while 

PEPCK activity in the liver is increased by glucocorticoids (Chakravarty et al., 2005), 

suggesting adipose and liver glyceroneogenesis may not be comparable. The current 

work illustrates that PBDE exposure does indeed decrease hepatic glyceroneogenesis 
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in addition to hepatic PEPCK protein and activity, supporting a correlation between 

PEPCK protein, PEPCK activity, and glyceroneogenesis in the liver.  

 Suppression of glyceroneogenesis seen in the current study in response to DE-

71 treatment is expected to cause a lack of glycerol backbone for fatty acid 

esterification, and a subsequent rise in hepatic non-esterified fatty acids (NEFA). 

Although we did not measure hepatic NEFA directly, we did measure a significant rise in 

circulating ketones, suggesting PBDE treatment increased NEFA availability in the liver. 

It is well established that ketone synthesis is a substrate driven, hepatic pathway 

dependent on the amount of available NEFA. Once NEFA are delivered to the liver in 

times of increased lipid mobilization due to fasting, the degree to which ketone synthesis 

occurs varies, based on the apportioning of those NEFA between oxidation and 

esterification (Nguyen et al., 2008). Disruptions in the liver’s ability to esterify excess 

NEFA due to suppressed glyceroneogenesis, likely causes a large increase in NEFA 

oxidation and subsequently, ketogenesis, due to the lack of alternate uses for NEFA 

within the liver.  

 Changes in circulating ketones, likely due to suppressed glyceroneogenesis, 

have been associated with suppression of PEPCK activity, further supporting the 

relationship between glyceroneogenesis and PEPCK. Ablation of whole body PEPCK in 

mouse models was sufficient to significantly increase circulating ketones by 3-fold 

(Hakimi et al., 2005). Silencing of just the mitochondrial form of PEPCK in livers and 

kidneys of rats was also sufficient to increase circulating ketones by 18% (Stark et al., 

2014). No change was exhibited in these or the current study in circulating NFEA levels, 



	
   56	
  

although this is not unexpected. Both CON and TRT animals in the current study were 

fasted for 48 hours before euthanasia, and changes in circulating NEFA levels between 

the fed and 48 hour fasted state do not drastically change (Syamsurnarno et al., 2013), 

despite marked increases in overall energy and lipid metabolism (Sokolovic et al., 

2008). This suggests NEFA are transient and circulating levels may not reflect liver-

specific changes in metabolism. 

 Another key finding that exemplifies metabolic disruption by suppressed PEPCK 

and glyceroneogenesis is the PBDE-induced decrease in circulating triglycerides. This, 

coupled with the finding that PBDE treatment reduced liver lipids, suggests that PBDE 

decreased the liver’s ability to synthesize triglycerides by suppressing hepatic PEPCK 

and glyceroneogenesis. This is supported by results from Stark and colleagues (2014), 

who found that silencing of mitochondrial PEPCK in the liver and kidneys resulted in a 

43% decrease in circulating triglycerides. These findings are in contrast to those of 

Hakimi et al. (2005) who found a 50% increase in circulating triglycerides in response to 

whole body PEPCK ablation. The key difference in these findings is that one model 

used whole body PEPCK ablation, while the other monitored tissue specific losses in 

PEPCK. In adipose tissue, PEPCK plays a key role in triglyceride esterification and 

storage via glyceroneogenesis. This tissue lacks glycerol kinase as an additional source 

of glycerol-phosphate, and therefore, if whole body PEPCK is lost, adipose tissue has 

lost the ability to esterify and store triglycerides, causing an increase in circulating 

triglyceride levels. The liver, however, has sufficient glycerol kinase, and is therefore still 
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able to make triglycerides in the absence of PEPCK, adding to the increased levels 

found in circulation. 

 The current finding of decreased liver lipid is in contrast to Nash et al. (2013) who 

demonstrated a significant increase in liver lipid percentage after the same treatment 

dose and duration of DE-71. One striking difference between the current study and that 

conducted by Nash et al. (2013) is the state of fasting of the rats. In the current study, 

rats were fasted for 48 hours to sufficiently stress PEPCK and glyceroneogenesis, 

whereas in the Nash et al. (2013) study, rats were fasted for only 16 hours. This 32-hour 

difference in fasting time is significant and could explain key differences in findings in 

liver lipid, as well as other metabolites such as serum glucose. Indeed, studies in mice 

have indicated that serum glucose, lactate, and ammonia levels change significantly 

between a 12-hour and a 48-hour fast, in addition to drastic increases in overall 

carbohydrate and lipid metabolism (Sokolovic et al., 2008). 

 Histological data from the current study demonstrates lipid vacuolation in 7 of the 

8 Penta-BDE treated rats, and none of the Controls. Although seemingly contradictory 

to the decreased liver lipids, it was noted that vacuolation was only present midzonally. 

PEPCK is mainly expressed in the periportal (Gebhardt, 1992) and pericentral regions 

of the liver lobule (Sato et al., 2014). Because lipid vacuolation in response to PBDE 

treatment is not occurring in an area of the liver lobule where PEPCK is highly 

expressed, it may be that fat is reapportioned to the midzonal region, although the 

reason for this is unclear. Despite midzonal lipid vacuolation seen in treated rats, it is 

still feasible that total liver lipid is decreased. 
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 As discussed, the current data support that depressed hepatic 

glyceroneogenesis and its associated consequences occur in response to suppression 

of hepatic PEPCK activity. This is further accompanied by a decrease in hepatic PEPCK 

protein. The mechanism by which PBDEs reduce PEPCK protein levels, the likely cause 

of suppressed PEPCK activity, is unknown. It is well documented that PEPCK is 

transcriptionally regulated in response to insulin, glucagon, and glucocorticoids through 

a host of transcription factors (Chakravarty et al., 2005). Preliminary transcriptome 

profiling of livers from treated rats however, indicates no change in PEPCK message in 

response to PBDE treatment compared to control (unpublished data). Although these 

data need to be verified using PEPCK-specific methodology, they suggest our finding of 

PBDE-associated reductions in PEPCK protein levels may be due to post-translational 

modifications that are induced by PBDEs and target PEPCK protein for degradation, 

instead of decreased PEPCK gene transcription. This possibility is supported by 

demonstrations of three potential mechanisms of post-translational modification of 

PEPCK, including (1) acetylation (Jiang et al., 2011), (2) ADP-ribosylation (Diani-Moore 

et al., 2013), and (3) nitration (Jaubert et al., 2012).  All three mechanisms target 

PEPCK for degradation, reducing protein levels. Furthermore, Diani-Moore and 

colleagues (2013) demonstrated that PEPCK ADP-ribosylation can be a consequence 

of 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) exposure, so there is precedent for an 

environmental chemical to initiate post-translational modification of PEPCK protein. 

Nitration is linked to oxidative stress, a known consequence of PBDE exposure (Jaubert 

et al., 2012, Albina et al., 2010), and is another possible mechanism of PBDE-
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associated decreased PEPCK protein.  The role of these mechanisms in PBDE-induced 

suppression of PEPCK protein have not yet been investigated. 

 In summary, the findings of this study demonstrate that chronic PBDE-exposure 

disrupts hepatic lipid metabolism by decreasing glyceroneogenesis, increasing 

circulating ketones, and decreasing hepatic and circulating triglycerides. In addition, this 

suppression of hepatic glyceroneogenesis is associated with suppressed hepatic 

PEPCK protein and activity. However, the effect of environmentally relevant doses of 

PBDE on hepatic PEPCK and its associated metabolic pathways is still unknown.  

Whether or not a decrease in hepatic glyceroneogenesis has health-associated 

relevance, including disruption of insulin signaling via increased NEFA, remains to be 

determined.   
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TABLES AND FIGURES 
 
 
 

 

  
Final Body 

Weight (gms) 
Liver Weight 

(gms) 
Liver Weight (%  
Body Weight) 

CON 268±51 10.5±0.31 3.9±0.11 

TRT 283±62 13.9±0.31* 4.9±0.12* 

 
Table 2. Body and Liver Weight  
Final body weight, liver weight and liver as percent body weight for CON and TRT rats. 
Two-way ANOVA indicated no effect of experiment time, thus the data has been 
collapsed. There was, however a significant effect of DE-71 treatment. Data are 
presented as mean ± SEM. 1n=14, 2n=13, *p<0.05 compared to CON. 
 
 
 
 
 
 

  
BDE 47 

(ng/g lipid) 
BDE 99 

(ng/g lipid) 
BDE 100 

(ng/g lipid) 

CON 140.9±43.1 121.9±36.2 25.8±8.0 

TRT 8349±888* 3750±487* 2069±217* 
 

Table 3. Liver Burden of relevant PBDE congeners 
Final concentrations of the 3 most abundant congeners (accounting for 97-99% of 
hepatic PBDE burden) present in livers of CON and TRT rats (n=6, mean ± SEM). 
*p<0.05 compared to CON. 
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Figure 3. Hepatic PEPCK Activity 
Kinetics curve for PEPCK activity in liver from CON (gray circles) and TRT rats (solid 
black squares) (n=6, mean ± SEM). *p<0.05 compared to CON. 
 
 
 
 
 
 
 

  
Vmax 
(umol/min/g liver) Km [malate] 

CON 2.27±0.181 3.05±0.572 

TRT 1.36±0.17*2 2.85±0.572 

 
Table 4. Hepatic PEPCK enzyme kinetics 
PEPCK Vmax and Km in liver from CON and TRT rats. (1n=5, 2n=6, mean ± SEM). 
*p<0.05 compared to CON. 
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Figure 4. Hepatic PEPCK Protein 
Liver protein extracts from CON and TRT rats were separated by 10% SDS-PAGE and 
PEPCK protein was analyzed by Western blotting. Rat liver extract (Santa Cruz 
Biotechnology, Dallas, TX) was used as a positive control for hepatic PEPCK. A 
representative blot comparing duplicate CON and TRT livers is presented (n=2 group). 
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Table 5. Blood Metabolites 
Serum metabolites for CON and TRT rats following 28 days treatment and subsequent 
48-hour fast (n=8, mean ± SEM). *p<0.05 compared to CON. 
 
  

 
 
 
Figure 5. Hepatic Lipid Percentage 
Lipid extracted from livers is presented as a percentage of total liver weight for both 
CON (gray) and TRT (solid black) rats (n=6, mean ± SEM). *p<0.05 compared to CON. 
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Glucose 
(mg/dL)  

Beta-
hydroxybutarate 

(mg/dL) 
Triglycerides 

(mg/dL) 
NEFAs 
(mEq/L) 

Cholesterol 
(mg/dL) 

CON 177±19 21.8±1.4 83±1 0.682±0.052 78±6 

TRT 92±5* 27.7±1.5* 61±7* 0.635±0.037 69±6 
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    4A - Control      4B - Penta-BDE 
 

Figure 6. Histological Examination of Hepatic Lipid Content 
Representative photos of liver sections from CON and TRT rats evaluated by light 
microscopy at 40x magnification. (4A) CON exhibited normal hepatic cellular 
appearance. (4B) TRT had visible fatty vacuolation throughout the mid-zonal region that 
was not found in liver tissue from CON rats. Black arrows indicate fat vacuoles.  
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*	
  

 

 
 
Figure 7. In Vitro Hepatic Glyceroneogenesis 
Rates of glyceroneogenesis in liver explants from CON (gray) and TRT (solid) rats (n=6, 
mean ± SEM). *p<0.05 compared to CON. 
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APPENDICES 
 
 
 

APPENDIX A 
 

Transcriptome Data 
 

Gene	
  	
  
Protein	
   Fold	
  change	
  (TRT	
  

vs.	
  CON	
  livers)	
  

Cyp2b1	
  
Cytochrome	
  P450,	
  family	
  2,	
  
subfamily	
  B,	
  polypeptide	
  1	
   1.80E+308	
  

Cyp1a1	
  
Cytochrome	
  P450,	
  family	
  1,	
  
subfamily	
  A,	
  polypeptide	
  1	
   553.26	
  

LOC100909962	
   Cytochrome	
  P450	
  2B1-­‐like	
   74.47	
  

Cyp2b2	
  
Cytochrome	
  P450,	
  family	
  2,	
  
subfamily	
  B,	
  polypeptide	
  1	
   44.86	
  

Cyp2c6v1	
  (NW_003806290	
  
1395..6073)	
  

Cytochrome	
  P450,	
  family	
  2,	
  
subfamily	
  C,	
  polypeptide	
  6,	
  variant	
  1	
   7.25	
  

Fabp4	
   Fatty	
  acid	
  binding	
  protein	
  4	
   6.86	
  

Ugt2b1	
  
UDP	
  glucuronosyltransferase	
  2	
  

family,	
  polypeptide	
  B1	
   6.73	
  
Rnf13	
  (NW_003807001	
  
776757..811777)	
   Ring	
  finger	
  protein	
  13	
   6.43	
  

LOC100910385	
  
Peroxisomal	
  acyl-­‐coenzyme	
  A	
  

oxidase	
  1-­‐like	
   5.92	
  

Ugt2b	
  
UDP	
  glycosyltransferase	
  2	
  family,	
  

polypeptide	
  B	
   5.43	
  
Dhtkd1	
  (NW_003812525	
  
173027..232220)	
  

Dehydrogenase	
  E1	
  and	
  transketolase	
  
domain	
  containing	
  1	
   4.80	
  

Dhcr24	
  
24-­‐dehydrocholesterol	
  
reductase	
   4.75	
  

C5	
  (NW_003807440	
  1439..23515)	
   Complement	
  component	
  5	
   4.70	
  
Rxra	
   Retinoid	
  x	
  receptor	
  alpha	
   4.57	
  
LOC100364457	
   Ribosomal	
  protein	
  L9-­‐like	
   4.47	
  

Rn18s	
  
	
  

18s	
  ribosomal	
  RNA	
   3.91	
  
Adipor2	
   Adiponectin	
  receptor	
  2	
   3.75	
  
Abhd2	
   Abhydrolase	
  domain	
  containing	
  2	
   3.71	
  

Aldh1a1	
  
Aldehyde	
  dehydrogenase	
  1	
  family,	
  

member	
  A1	
   3.37	
  
LOC257642	
   rRNA	
  promoter	
  binding	
  protein	
   3.23	
  
Cpamd8	
  (NW_003808236	
  
6132..8613)	
  

C3	
  and	
  PZP-­‐like,	
  alpha-­‐2-­‐
macroglobulin	
  domain	
  containing	
  8	
   3.18	
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Cyp2c6v1	
  (NW_003806294	
  
23625..120993)	
  

Cytochrome	
  P450,	
  family	
  2,	
  
subfamily	
  C,	
  polypeptide	
  6,	
  variant	
  1	
   3.14	
  

Hnf4a	
   Hepatocyte	
  nuclear	
  factor	
  4,	
  alpha	
   2.88	
  
Abcb11	
  (NW_003807561	
  
2064..90772)	
  

ATP-­‐binding	
  cassette,	
  subfamily	
  B	
  
(MDR/TAP),	
  member	
  11	
   2.87	
  

Mpeg1	
   Macrophage	
  expressed	
  1	
   2.85	
  
Afm	
  (NW_003811475	
  589..4764)	
   Afamin	
   2.84	
  

Cyp1a2	
  
Cytochrome	
  P450,	
  family	
  1,	
  
subfamily	
  A,	
  polypeptide	
  2	
   2.78	
  

Ces2a	
  (NW_003812795	
  
59045..64825)	
  

Carboxylesterase	
  2A	
  
2.77	
  

Abcc2	
  
ATP-­‐binding	
  cassette,	
  

subfamily	
  C	
  (CFTR/MRP),	
  member	
  2	
   2.67	
  
Lonp2	
   Ion	
  peptidase	
  2,	
  peroxisomal	
   2.61	
  
Mup4	
   Major	
  urinalry	
  protein	
  4	
   2.55	
  

Ephx1	
  
Epoxide	
  hydrolase	
  1,	
  microsomal	
  

(xenobiotic)	
   2.38	
  
LOC100362027	
   Ribosomal	
  protein	
  L30-­‐like	
   2.35	
  
Acox1	
   Acyl-­‐CoA	
  oxidase	
  1,	
  palmitoyl	
   2.33	
  

Cyp3a85-­‐ps	
  

Cytochrome	
  P450,	
  family	
  3,	
  
subfamily	
  A,	
  polypeptide	
  85,	
  

pseudogene	
   2.19	
  
LOC100909666	
   Complement	
  C4-­‐like	
   2.19	
  
LOC100911718	
   Cytochrome	
  p450	
  2C6-­‐like	
   2.14	
  

Slco1b3	
  
Solute	
  carrier	
  organic	
  anion	
  

transporter	
  family,	
  member	
  1B3	
   2.07	
  
LOC100359498	
   Ribosomal	
  protein	
  L35a-­‐like	
   -­‐2.01	
  
Hba-­‐a2	
   Hemoglobin	
  alpha,	
  adult	
  chain	
  2	
   -­‐2.07	
  
Hbb	
   Hemoglobin,	
  beta	
   -­‐2.08	
  
LOC360504	
   Hemoglobin,	
  alpha	
  2	
   -­‐2.27	
  
LOC100134871	
   Beta	
  globin	
  minor	
  gene	
   -­‐2.43	
  
Rpl30	
   Ribosomal	
  protein	
  L30	
   -­‐2.45	
  
Hbb-­‐b1	
   Hemoglobin,	
  beta	
  adult	
  major	
  chain	
   -­‐2.47	
  
Rps26	
   Ribosomal	
  protein	
  S26	
   -­‐2.51	
  
LOC689064	
   Beta-­‐globin	
   -­‐2.72	
  
LOC100912411	
   Uncharacterized	
   -­‐2.79	
  
Rpl9	
   Ribosomal	
  protein	
  L9	
   -­‐2.81	
  

 
 

To assess changes in gene expression of PEPCK, a library of mRNA expression was 
created. Sixteen, male weanling Wistar rats were treated daily with 14 mg/kg body 
weight DE-71 (TRT, n=8) or corn oil vehicle (CON, n=8) for 28 days. Rats were 
euthanized after a 16 hr fast and livers were frozen. To reduce biological variability, 100 
mg frozen tissue was dissected from 10 randomly selected livers from the CON (n=5) 
and TRT (n=5) groups. The samples were then pooled within groups, resulting in 1-
500mg representative CON sample and 1-500mg representative TRT sample. Tissue 
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could not be thawed at any time during the pooling process, so dissection of frozen 
tissue was done quickly using a scalpel and tweezers in a walk-in refrigerator. 
 RNA was extracted from the CON and TRT samples using a commercially 
available RiboPure kit (Ambion, Life Technologies). RNA samples were then sent to the 
Hubbard Center for Genomic study at the University of New Hampshire for subsequent 
mRNA extraction and gene sequencing. A library of genes expressed in the liver was 
made using cDNA for both CON and TRT. Relative expression was quantified using an 
Illumina HiSeq 2500 sequencer, and mapped to the reference genome of the Wistar rat. 
Data are expressed as fold change in gene expression in TRT livers compared to CON. 
There was no change in hepatic PEPCK-c or PEPCK-m in TRT livers compared to 
CON. Genes that changed by 2-fold or greater in response to DE-71 are presented. 
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APPENDIX B 

 

Glyceroneogenesis Between-Animal Coefficient of Variation 

Animal ID Glyceroneogenesis 
Rate  
(pmol/hr/mg tissue) 

Average 
between 
animals 

Standard 
Deviation 

Coefficient 
of 
Variation 

P1 13.57 

14.61 1.27 8.67% P2 14.96 
P3 13.39 
P4 16.54 

 

To determine biological variation between animals for the glyceroneogenesis assay and 
inform animal numbers necessary for subsequent experiments, four adult rats were 
sacrificed and livers removed. Three-200 mg portions were taken from each liver and 
used for glyceroneogenesis quantification. Each sample was run in duplicate. 
Duplicates were averaged within each sample, and triplicates were then averaged within 
each animal. The average and standard deviation between animals was used to 
calculate the between-animal coefficient of variation. 
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APPENDIX C 

 

Glyceroneogenesis Within-Animal Coefficient of Variation 

Sample ID Glyceroneogenesis 
rate  
(pmol/hr/mg tissue) 

Average 
within 
animals 

Standard 
Deviation 

Coefficient 
of 
Variation 

P5-1 15.04 

14.85 1.64 11.09% 

P5-2 14.34 
P5-3 15.39 
P5-4 17.91 
P5-5 13.12 
P5-6 15.32 
P5-7 14.71 
P5-8 16.10 
P5-9 11.74 

 
To determine biological variability within the liver for the glyceroneogenesis assay, one 
adult rat was sacrificed and the liver was removed. Nine-200 mg portions were taken 
from the liver and used for glyceroneogenesis quantification. Each sample was run in 
duplicate. Duplicates were averaged within each sample, and then all nine samples 
were averaged. The average and standard deviation was used to calculate the within-
animal coefficient of variation. 
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APPENDIX D 
 
 

PEPCK Activity in Subcutaneous Adipose Tissue 
 

 
 
 
To assess changes in PEPCK activity in adipose tissue, 16 male, weanling Wistar rats 
were treated daily with 14 mg/kg bw DE-71 (TRT, n=8) or corn oil vehicle (CON, n=8) for 
28 days. After a 16 hr fast, rats were euthanized and epididymal fat pads removed, 
weighed, and placed in 10% saline solution for transport to the lab. Fat tissue was 
homogenized and centrifuged at 23426 x g for cytosol isolation. PEPCK activity was 
quantified as previously described (Nye et al., 2008). PEPCK activity in TRT adipose 
tissue was suppressed by 17% compared to CON (p=0.068). 
 

 

 

 

 

 

 

 

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

16	
  

18	
  

20	
  

Control	
   Treatment	
  

PE
PC
K
	
  A
ct
iv
it
y	
  
(n
m
ol
/m

in
/m

g	
  
pr
ot
ei
n)
	
  

Control	
  

Treatment	
  



	
   72	
  

APPENDIX E 

 

Serum Metabolites 

METABOLITE CON TRT 
Glucose (mg/dL) 177  ± 19 95 ± 5* 
Beta-hydroxybutarate (mg/dL) 21.8 ± 1.4 27.7 ± 1.5* 
Triglycerides (mg/dL) 83 ± 1 61 ± 7* 
NEFA (mEq/L) 0.682 ± 0.052 0.635 ± 0.037 
Cholesterol (mg/dL) 78 ± 6 69 ± 6 
Alanine Transaminase (U/L) 24 ± 1 27 ± 2 
Alkaline Phosphatase (U/L) 165 ± 11 145 ± 9 
Total Bilirubin (mg/dL) .01 ± .04 .01 ± .04 
Total Protein (g/dL) 6.6 ± .1 6.5 ± 0.1 
Albumin (g/dL) 3.6 ± 0.1 3.6 ± 0.1 
Urea Nitrogen (mg/dL) 15 ± 1 13 ± 1 
Creatinine (mg/dL) 0.3 ± 0.01 0.3 ± 0.02 
Calcium (mg/dL) 12.6 ± 0.1 12.2 ± 0.2 
Sodium (mmol/L) 147 ± 1 149 ± 0.5 
Potassium (mmol/L) 7.9 ± 0.3 7.6 ± 0.2 
Chloride (mmol/L) 98 ± 1 100 ± 1 
Globulin (g/dL) 3.0 ± 0.05 2.9 ± 0.03 
Albumin/Globulin Ratio 1.2 ± .03 1.2 ± 0.03 
Urea/Creatinine Ratio 52 ± 2 50 ± 4 
Sodium/Potassium Ratio 19 ± 1 20 ± 1 

 

To assess metabolic changes associated with PBDE exposure, 16 male, weanling 
Wistar rats were treated daily with 14 mg/kg bw DE-71 (TRT, n=8) or corn oil vehicle 
(CON, n=8) for 28 days. Rats were euthanized after a 48 hr fast and blood was 
collected via cardiac puncture. Serum was separated and sent to Marshfield 
Laboratories (Marshfield, WI) for metabolite quantification. A complete metabolic serum 
profile of CON and TRT animals is presented; selected metabolites are listed in Table 5. 
Data are presented as mean ± SE, *p<0.05. 
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APPENDIX F 

 

Hepatic PBDE Congeners 

PBDE 
Congener CON (ng/g lipid) TRT (ng/g lipid) 

BDE 100 25.8 ± 8.0 2069 ± 217* 
BDE 99 121.9 ± 36.2 3750 ± 487* 
BDE 47 140.9 ± 43.1 8349 ± 888* 
BDE 28, 33 1.1 ± 0.3 21.5 ± 2.8* 
BDE 49 1.3 ± 0.4 2.7 ± 0.4* 
BDE 66 1.4 ± 0.7 5.7 ± 0.3* 
BDE 85, 155 5.4 ± 1.9 503.5 ± 49.8* 
Total 297.5 ± 88.6 14701 ± 1603* 

 

To determine hepatic PBDE burden in response to chronic high DE-71 treatment, 12 
male, weanling Wistar rats were treated daily with 14 mg/kg bw DE-71 (TRT, n=6) or 
corn oil vehicle (CON, n=6) for 28 days. After a 48 hr fast, rats were euthanized, and 
livers were removed and frozen in 2 gram portions. Frozen livers were sent to Dr. 
Heather Stapleton at Duke University for analysis of PBDE congeners. A complete 
profile of BDE congeners measured in CON and TRT livers is presented. Data are 
presented as mean±SE, *p<0.05.  
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APPENDIX G 

 

IACUC Approval Letter – Experiment 1 
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APPENDIX H 

 

IACUC Approval Letter – Experiment 2 
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