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ABSTRACT 

 

ESTIMATING SURFICIAL SEAFLOOR SEDIMENT PROPERTIES 

USING AN EMPIRICAL ORTHOGONAL DECOMPOSITION ON 

 ACOUSTIC BACKSCATTER WAVEFORM PROPERTIES 

by 

 

Joshua L. Humberston 

University of New Hampshire, May, 2015 

 

Seafloor classification and environmental assessment in shallow marine waters are crucial to 

habitat mapping, coastal management policies and maintaining navigational waterways. There 

are existing methods for remotely estimating some bottom properties, but the large variety of 

desired measured sediment properties frequently leads to insufficient quantifiable data to support 

marine policy decisions. This problem is exacerbated by the highly variable bottom composition 

of typical coastal and estuarine environments. In this work, field observations from an Odom 

Echotrac vertical-incidence echosounder with a 200 khz transducer were used to estimate 

seafloor sediment characteristics in regions with variable bottom types. Observations were 

obtained in water depths ranging 0.5-24 m of the Little Bay, New Hampshire, during February 

and March, 2013. Backscatter waveforms (the acoustic return representing the first interaction 

with the bottom) were analyzed and their properties compared to sediment grain size 

distributions. These comparisons showed varied degrees of predictive capability and require 

subjective a priori selection. In an effort to better capture the collective effects of seafloor 

sediment's composition on acoustic returns, empirical orthogonal functions (EOF’s) were 

computed from an ensemble of seven waveform properties and compared with observed surficial 

sediment size fractions, bulk density, and porosity.  A simple logarithmic model relating first 

mode EOF spatial variability to observed mud fractions explained 43% of the variability and 

well estimated the spatial pattern of mud across the bay from deep channels (with no mud) to 

high concentrations of mud on the shallower flats near the sides of the estuary. This method 

produced greater coverage and higher resolution predictions of mud fraction than could be 

obtained using traditional sediment measuring techniques. Deviations from the model are shown 

to be correlated with lower sediment porosity most likely due to river inflow from the Bellamy 

River draining into the Bay. Still, application of the model to a new area in the Great Bay, New 

Hampshire showed favorable results with RMS errors below 15% along two surveyed lines. This 

empirical analysis provides a first order objective means to interpret acoustic backscatter, an 

important step towards a widespread quantitative assessment of shallow water seafloor 

sediments. 
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Chapter 1 

INTRODUCTION 

Remote Mapping Background 

Seafloor mapping typically focuses on measuring the elevation of submerged topography 

(bathymetry) with acoustic echosounders mounted on research vessels.  An echosounder 

functions by sending specific electric signals to a carefully constructed piezoelectic sensor 

known as a transducer. The electric charges are converted to sound pulses which are 

directionally emitted from a submerged transducer at a prescribed frequency and propagate at 

sound speeds determined by the elasticity modulus of the water (a function of the temperature 

and salinity distribution of the water body) and angles determined by Snell’s Law for wave 

refraction (Lurton, 2002).  Acoustic energy associated with each sound pulse (ping) is attenuated 

in the water column by spherical spreading losses, scattering and absorption from suspended 

particulate matter, and volume scattering at the seabed (Jackson, D. and Briggs, K., 2013).  

Spherical and, in shallow water, cylindrical spreading and scattering affects are the dominant 

causes of transmission losses and can be accounted for analytically (e.g., Lurton, 2002 and 

Heggen, 2010). 

The component of the acoustic signal reflected back towards the receiving transducer 

(backscatter) is converted to an electronic voltage by the transducer reordered as a raw voltage. 

Backscater is a function of depth and properties of the seafloor that affect the acoustic 

impedance, including characteristics of the sediment composition and compactness (a function of 

grain size and porosity).  For estimation of bathymetry, the initial seafloor return is found 

through various digital search algorithms and the two-way travel time, the time duration from 

when the pulse is sent until the reflection is measured, is converted to depth using observed (or 

modeled) sound speed profiles.  Information on seafloor surficial sediment composition or 

geotechnical properties is based on more in-depth analysis of the measured acoustic response and 

requires ground truth verification based on field measurements of seabed sedimentary properties. 
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The extraction of meaningful measurements from full acoustic backscatter data has been a 

topic of discussion for some time (Anderson, J., et al., 2008 and Anderston, 1992). Brown, et al. 

(2011) provides a good synopsis of some of the major remote characterization efforts over time. 

Over the last 10 to 15 years there have been studies that develop and improve remote seafloor 

classification and characterization techniques using acoustic methods (Alexandrou and 

Pantzartzis, 1993; Amiri-simkooei, et al., 2011; Clarke, 1994; Fonseca, et al., 2007; and others). 

These methods have taken different approaches and focused on the advantages of both single 

beam and multi-beam echo-sounding systems (MBES). Even in recent years as multi-beam 

systems have become the preferred mapping method in many environments, some groups such as 

Snellen, et al. (2011) and Haris, et al. (2012) have continued to explore the practicality of the use 

of single-beam echosounders for seafloor characterization and sediment classification. Single-

beam studies, in conjunction with recent efforts to better interpret multi-beam data for the effects 

of high incident angles (Fonseca, et al., 2007 and Fonseca and Calder, 2005), have produced 

increasingly accurate seafloor characterizing methodologies.  

 Still, most classifications efforts have been centered on depicting general differences 

between soft (mud) and hard (rock) sediments. Relatively few studies have explored the potential 

for remote seafloor characterization in shallow to very shallow water and the possibility of 

relating acoustic responses to other sediment characteristics (Lyons and Abrahm, 1999 and 

Freitas, et al., 2008). One specific shallow marine environment that could greatly benefit from an 

effective remote bottom classification method is estuaries and their associated shallow bays. 

Estuaries 

 

Estuaries are highly variable inland water systems which vary in definition, but are 

frequently referred to as partially enclosed bodies of water open to the sea that extend to the 

upper limit of tidal rise (Fairbridge, 1980). On the east coast of the United States, most estuaries 

are drowned river valleys resulting from sea level rise. The hydrologic structure of estuaries is 

highly dependent on the amount of freshwater input from rivers, the tidal flux, and an estuary’s 

morphology and bathymetry. Geologically, estuaries tend to be one of the most complex 

nearshore environments due to their underlyng morphology, sediment input levels and types, and 
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potentially strong tidal currents. In some estuaries, continuous maintenance dredging adds to the 

temporal variability of flow structure and the resulting sediment distribution. 

Most estuaries serve as effective sediment traps for both fluvial and oceanic sediment 

inputs (Meade, 1969). Sediment from rivers is deposited into the main channels of an estuary 

during high flow periods. Over time, higher flows in the channels winnow away fine sediments 

leaving coarser or limited material in the deeper channels. The suspended fine grained sediment 

is frequently deposited in the lower flow regions along the sides of the estuary (Dronkers, 1986). 

The net result is a residual transport of fine-grained sediment towards the shallower banks and 

mudflats on the sides of the main channel.  However, the combined effects of complex 

morphology, tidal variations, strong currents, and freshwater variations tend to complicate 

sediment distribution in estuarine environments. Bottom sediments can vary from exposed 

bedrock and large boulders to fine sands and mud.  

The distribution of sediment types is of interest to various fields of study. For safety 

purposes, particularly in high trafficked shipping channels, hydrographic mapping surveys are 

concerned not only with bathymetry, but also seafloor composition. For example, a shoal 

composed of rock is a larger risk to vessels than a muddy shoal. Ecologically, estuaries can serve 

as habitats to a variety of organisms, both in the sediment and in the water column.  Bottom 

composition is also of great importance in the consideration of nutrient fluxes, engineered 

structures and studies of sediment dynamics (Hasegawa, et al., 2008; Airoldi, et al.; 2005, and 

Botto and Iribarne, 2000.) 

However, due to difficulties and high time and financial costs, many physical 

interpretations and policy decisions are made in these fields based on limited field observations 

of seabed sedimentary material. This problem is exacerbated by the highly variable bottom 

composition of many estuaries.  More extensive and more easily producible maps of bottom 

characteristics could improve hydrographic, ecologic, and engineering decision making in 

estuarine and other shallow water environments. Models that predict not only variations in 

sediment type, but also specific sediment properties such as mud fraction and median grain size, 

could greatly aid coastal scientists, engineers, and managers concerned with benthic properties 

and habitats (Atema, and Stenzler, 1977; Cogan, et al., 2009; and Correll, et al., 1992).  
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Introduction to Remote Seafloor Characterization 

 

Shallow water remote seafloor characterization is often limited by sampling techniques in 

shallow water. Some work has been done with light distance and ranging (lidar) methods to 

remotely determine bottom characteristics in shallow water (Pe’eri and Long, 2011), but these 

techniques are bounded even in shallow water by increased turbidity in the water column. 

Several intermediate and deep water classification techniques have been applied with some 

success in shallow water, but their algorithms are not suited to resolve the rapidly varying 

sediment characteristics in these environments (Freitas, et al., 2008).  

Different studies have used a variety of techniques to relate backscatter properties to 

bottom characteristics. Some approaches have compared the energy of the second return relative 

to the first while others have looked solely at the properties of the first return (Greenstreet et al., 

1997; Mayer, 2006; Sternlicht and Moustier, 2003). The most recent work has focused on how 

data from multibeam systems can be adjusted to account for the effects of incident angle to better 

understand backscatter-sediment correlations across the full swatch (Fonseca, L and Mayer, L., 

2007). While these new efforts have produced favorable results, one large drawback is the 

financial cost associated with carrying out an effective multibeam survey, particularly in shallow 

coastal waters where the footprint of a multibeam is greatly limited by depth. Fortunately, single-

beam surveys often suffice for many scientific, commercial, and managerial purposes in shallow 

water environments, and are significantly lower in cost and more available to the wider 

community. 

In this work, we consider an objective method of utilizing acoustic backscatter waveform 

properties for seafloor characterization in shallow water and develop an empirical model for 

estimating mud fraction in a shallow estuary, a potentially valuable tool for many scientific 

studies and policy decisions. Hughes-Clarke, et al. (1996) noted that “the remote characterization 

of the seafloor [by acoustic methods] has important practical application in a broad range of 

disciplines, including marine geologic, geotechnical, hydrographic, biological, fisheries and 

environmental research” (Hughes-Clarke et al., 1996). This increasingly holds true in estuarine 

environments that serve as valuable ecologic habitats, highly trafficked waterways, and 

recreational areas. 



 5 

The method developed in this study uses a single-beam vertical-incidence echosounder to 

obtain full acoustic backscatter records. The waveform, defined in this study as the segment of 

the acoustic backscatter representative of the signal’s first interaction with the bottom, is 

extracted and further analyzed. A statistical decomposition of the waveform's properties reveals 

spatial patterns in acoustic data that are related to the bottom composition. This method (similar 

to those used by Preston and Collins, 2000; Tsemahman et al, 1997; Amiri-Simkooei, 2011; 

Milligan et al, 1978; De et al, 2010, and others) removes subjective biases by using an empirical 

orthogonal function (EOF) to decompose waveform properties and objectively determine the 

significance of those properties. The results of the statistical decomposition are compared to 

measured mud fractions from bottom sediment samples, and used to model sediment properties 

in areas where only acoustic data has been collected. Further relationships between acoustic 

responses, bulk density, and porosity measurements are also considered. 
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Chapter 2 

METHODS 

Field 

Acoustic Survey 

A single-beam vertical-incidence echosounder survey of the Little Bay, New Hampshire 

(NH) (Figure 1), was conducted over 16 days in the winter of 2013 (12-15, 20-22, 25-26 

February, and 11-15 and 26-27 March). The survey extended from the General Sullivan Bridge 

to Adam’s Point. Survey times were focused around high tide during daylight hours to allow 

surveying of the very shallow mudflats surrounding much of the estuary. Survey lines were 

planned with 20 m spacing and run cross estuary. These lines were uploaded into Hypack, a 

hydrographic survey software, and used for navigation during the survey. A total of 360 

prescribed cross channel lines were surveyed, a cumulative 383 km. The boat speed was kept at 

approximately 3 to 5 knots during data collection to allow for a relatively high along-track ping 

density (approximately 70 pings per meter). The high density of acoustic measurements allowed 

for more robust measurements of waveform properties during later analysis. Up to 3 

conductivity-temperature-depth (CTD) casts were made each survey day using a YSI Cast-a-way 

CTD to determine the sound speed in the water column because water column variability 

associated with tidal currents. Owing to the well-mixed estuarine water at the time of collection, 

a simple linear correction was made to the sound speed by using an averaged sound speed from 

the nearest CTD cast (in time). 

An additional survey using the same sampling procedure was conducted in spring 2014 in 

the Great Bay, New Hampshire (Figure 1). Four lines were surveyed in different areas of the bay, 

two with the same sonar settings used in the Little Bay and two with different transmit, gain, and 

pulse width settings.  
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 The Little Bay and Great Bay are part of the Great Bay Estuary system located inland of the 

town of Portsmouth in southern New Hampshire. (Image from Google Earth; imagery date: 

10/9/2014)  

Positioning 

Echosounder positioning was obtained using a GPS receiver mounted to the top of the 

transducer pole with real time kinematic (RTK) corrections. RTK is a methods used to increase 

position precision by measured the phase of the measured satellite signal. Corrections were 

transmitted from a nearby Trimble 5700 GPS base station which was established through OPUS. 

Base stations were located at either the Great Bay Marina or near the boat launch at Adam’s 

Point, depending on the proximity to the area being surveyed (Figure 22). RTK corrections were 

transmitted at 1 s intervals, resulting in 1-5 cm horizontal positioning accuracy throughout the 

survey based on the GPS uncertainty and the travel time of the acoustic signals. Depth was 

recorded relative to the WGS84 ellipsoid, converted to NAD83, and then shifted to the NAVD88 

vertical datum using the National Geodetic Survey’s 2003 Geoid Model. The total uncertainty 

resulting from the combined sonar depths and GPS vertical locations uncertainties resulted in an 

estimated 10 cm uncertainty. 
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 GPS Base Station set up at the Great Bay Marine. The RTK antenna (right) transmitted 

correction from the GPS receiver (left) to the boat. 

Echosounder and Transducer 

The survey was conducted using an Odom CV2 echosounder system with an Airmar M108 

duel-frequency (24 and 200 khz) transducer. The beam width of the 200 kHz signal was 4° and 

the beam width of the 24 kHz signal was 20°. The bandwidth of the 200 and 24 kHz signals was 

100 kHz (Q = 2) and 3.2 kHz (Q = 7.5) and the pulse width 0.001 ms and 0.004 ms, respectively. 

The transducer was pole mounted to the starboard side of the R/V Galen J, a 22 ft open-cabin 

vessel with a 75 hp outboard motor (Figure 33). The bottom of the transducer was set at 

approximately 30 cm below the waterline with fore and aft straps attached to reduce vibrations of 

the transducer head. Ping rate was depth dependent, but averaged about 14 Hz. Full waveform 

1600 sample returns (extending up to 30 m water depth) were recorded with the return intensity 

measured in uncalibrated millivolts. The echosounder steady-state gain was set so that the 

maximum intensity returns would not saturate, and then left constant for all days of the survey. A 

time variable gain based on 20logR (with R being range; Lurton, 2002) was also applied to 

account for spherical spreading loss of the acoustic pulse. In this study, acoustic absorption was 

ignored as it was assumed to be small in the shallow and calm Little Bay.  
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  The R/V Galen J, a 22 foot open-cabin vessel used for surveying with the airmar 

transducer pole mounted to the starboard side with straps to stabilize the transducer head. A 

GPS receiver is mounted to the top of the transducer pole and a RTK receiver is mounted to 

the roof of the cabin. 

Bottom Sampling 

Grab Sampling 

Bottom sediment samples were collected during 5 days in summer 2013 (26-27 June, and 

1, 13, 14 August) using a gravity driven grab sampler (Figure 44). An initial total of 101 sample 

sites were sampled along 5 cross channel lines. The grab sampler was deployed at all sites, but 

sample sizes sufficient for analysis could not be collected at 29 sites. Insufficient samples were 

due to either negligible sediment retrieval or retrieval of one or a few rocks. Where little or no 

sediment could be collected, records were kept on the apparent bottom type. Sediment samples 

were stored in plastic bags and placed in a refrigerator upon returning to shore. An additional 19 

sediment samples were collected in the spring of 2014 (1 and 22 April) along two new lines in 

areas of interest, one of which crosses the mouth of the Bellamy River where it flows into the 



 10 

Little Bay. In total, there were 7 transects sampled for seabed sediment characteristics (Figure 

55).  

 

 The gravity driven grab sampler used to collect surface sediment for grain size analysis 

 

 Sediment samples were collected along lines 1 through 5 in summer, 2014. Additional 

samples were collected along lines 6 and 7 in spring 2014. 



 11 

Videography 

To observe the in situ appearance of the bottom, particularly in areas where sediment 

samples could not be collected, an underwater video camera was lowered near the sediment 

sample sites. The underwater video camera collected images of the bottom with an associated 

GPS location at the surface (Appendix A) with an uncertainty on the order of a few meters given 

positioning uncertainty and bowing of the camera cable. The camera was supported above the 

bottom by a metal frame that included a marked 30 cm square in the camera’s view (Figure 6). 

The video images revealed areas with exposed rocks and no mud. General large grained 

sediment sizes could also be qualitatively estimated using the known size gradation on the 

marked square of the frame. 

 

 Underwater Video Camera at top with metal frame below to suspend camera above bottom. 

Bulk Density Sampling 

Bulk density measurements were made along line 4 which transects the main channel near 

the General Sullivan Bridge (Figure 77). To determine bulk density, a procedure was followed 

where two divers carefully inserted a 10.8 cm diameter tube into the sediment at approximate 

locations where previous grab samples were taken. The divers then capped the core, carefully 
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extracted it from the seabed, removed the top cap, inserted a plug beneath the sediment, and then 

re-capped the top of the core, at all times being careful to not disrupt the sediment-water 

interface. The core was then brought to the surface and extruded upward using a hydraulic press 

(Figure 88) until 2 cm was exposed. This volume of sediment (183.218 cm3) was then carefully 

placed in a sealed bag, and later stored in a 4 deg C refrigerator. A 2 cm3 subsample was 

removed from each sample to be used for sediment grain size analysis.  

 

 

 All sample locations including bottom samples, video samples, and bulk density samples. 
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 An aluminum frame held a core in place while a hydraulic jack was used to slowly push the 

core upward until exactly 2 cm were exposed.  

Laboratory Sediment Analysis 

Bulk Density 

 

In the laboratory bulk density analysis, the entirety of the remaining sample (181.218 cm3) 

was placed in pre-weighed beakers, weighed, and then put in a 60-100 deg C oven for at least 24 

hours to dry. Once dry, the samples were cooled to room temperature in a desiccator and 

reweighed. The difference in mass of the samples before and after drying was assumed to be 

entirely due to the removal of water. The mass of the wet sample per the volume of the sample is 

the wet bulk density, and the mass of the dried sample per the volume of the sample is the dry 

bulk density. A correction was made to the dry bulk density to account for the mass of salts in 

the pore water which remain in the samples after drying (Dadey, et al, 1992). The water 
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temperature and salinity at the time of sample collection was used to estimate a water density of 

1.02 g/cm3. The mass of water lost was divided by this density to determine the water volume 

contained within the original sample. Using the resulting water volume estimate, the porosity of 

each of the samples was determined by dividing the volume of water by the total volume of the 

sample. No gas appeared to be present in the sample, so it was assumed that all pore space had 

been filled with water at the time of collection.  

Sediment Size Distributions 

 

Sediment samples were analyzed for size distribution using a Malvern Mastersizer Laser 

Particle Size Analyzer (Figure 99) which emits a laser beam directed at a thin area of dispersed 

particle sample and measures the intensity of light scattered from the sample. It is limited to 

measuring maximum sized particles of 2 mm. The size analyzer produces an average size 

distribution based on 3 separate runs for each sample from which the percentage of sand and 

silt/clay (mud) was determined (Figure 10).  A median sediment size (D50) was also determined 

by the particle size analyzer.  

 

 The Malvern Mastersizer laser diffraction size analyzer used to measure the size 

distribution of sediment samples. 
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 An example of a sediment size distribution with the measured mud fraction shown. Blue 

lines show the results from the 3 trials and red shows the average. The dashed lines show 

the threshold between clay and silt (4 m; left) and silt and sand (62 m; right) 

Data Analysis 

Acoustic Waveform Analysis 

 

Sonar data and RTK-GPS GGA NMEA strings were recorded simultaneously in an 

ODOM dso file. The data from the dso files was parsed and the full returns were stored in new 

binary files along with ancillary sonar settings, position, and time information. Each full return 

was interrogated based on a median intensity threshold to find and extract the portion of the 

waveform representative of the first acoustic interaction with the bottom (similar to Dijkstra, 

2000). Waveforms with erroneous depth or positions were filtered out using a 3 standard 

deviation filter. Groups of 2, 3, 5, 10, and 20 consecutive waveforms were averaged together and 

retained for later comparative analysis. Each isolated waveform was then analyzed to extract 

shape defining parameters: intensity maximum, waveform width, mean intensity, integrated total 

area, rise time, skewness, and kurtosis (Figure 111).  

In this analysis, the maximum is defined as the highest measure of millivolts within the 

chosen waveform. The width describes the number of samples within the waveform (which 

Mud Fraction 

Clay Silt Sand
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could also be expressed in time or distance once sound speed corrections were applied). The 

mean of the waveform is the mean amplitude (in millivolts) of the waveform. The integrated total 

is the integrated total of millivolts along the width of the waveform. The rise time of the 

waveform is the number of samples (or time) from the beginning of the waveform to the 

maximum value. The skewness and kurtosis describe how the waveform differs from that of a 

Gaussian distribution (Parrish et al., 2014 and Adams et al., 2011). 

 

 A shows an example of a full 1600 sample return. The original pulse noise, the first return 

and the second return can be seen. B and C show visual representations of the shape 

parameters that were extracted from each waveform. 

Empirical Orthogonal Function Decomposition 

 

An empirical orthogonal function, or EOF, is an eigenvector based decomposition of a 

data covariance matrix into separate orthogonal modes. Each mode accounts for a specific 

amount of the variance, with the first mode accounting for the most variance and each successive 

mode accounting for progressively less. It is important to note that in this decomposition each 

mode is constrained to be orthogonal to the other modes, making higher modes more difficult to 

physically interpret. The modes describe how a certain weighting of the original properties 

(described by the eigenvectors) varies spatially and is given by (Davis, 2002) 

 

𝑋𝑚(𝑣) =  ∑ 𝐹𝑘(𝑣)𝑎𝑘(𝑚)𝑘=1 𝑡𝑜 𝑀      (1) 

 
 

where Fk() is the normalized EOF eigenfunction for mode k as a function of variable , ak(m) is 

the spatial weighting of the kth  mode at position m, Xm(v) is the observations of each variable  
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at spatial position m, and M is the total number of EOFs (equal to the number of variables 

considered).  The spatial variation (or weighting) of each EOF mode, ak (m), is given by 

 

𝑎𝑘(𝑚) =  ∑ 𝐹𝑘(𝑣)𝑋𝑘(𝑚)𝑣=1 𝑡𝑜 𝑀      (2) 

 

 

Waveform properties from all locations were normalized to their respective maximum 

value prior to decomposition so that each would have equal relative weight independent of their 

units. Water depth at each location was not included in this analysis. Because of orthogonally 

constraints, only the first mode was considered in this study. 

Modeling Mud Fraction 

 

The spatial values of the first mode were gridded at 10 by 10 m intervals and compared to 

the measured mud fractions at their sampling locations. A simple logarithmic curve was fit to the 

data.  A logarithmic curve was also fit to the relationship between mud fraction and each 

individual property prior to EOF decomposition. The model can be used to predict mud faction 

in all areas where acoustic information was available.  
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Chapter 3 

 

RESULTS 

Depth measurements extracted from the full waveform analysis (and after sound speed 

corrections are applied) were interpolated onto a 10 m grid to create a near-continuous 

bathymetric map of the study area (Figure 122) that served as a base map to plan sediment 

sampling and interpretation of results.  

 

 10×10 m gridded bathymetric map of the Little Bay, NH. The depth is from the 200 kHz 

signal and relative to the NAVD88 vertical datum. The axis of the map are in Northings 

and Eastings (km) in UTM Zone 19. 

The waveform that was extracted from each ping was analyzed to determine the seven 

shape defining parameters, each separately plotted in Figure 133.  
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 Spatial pattern of the observed distribution from the seven waveform parameters were 

extracted from each 200 kHz ping. 
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These parameters were decomposed into modes using EOF decomposition (Eq. 1 and 2). 

Each EOF mode has a normalized weighting corresponding to each variable (upper panels; 

Figure 144) and a spatial variation at each sonar sampling location in the Little Bay (lower 

panels; Figure 14). The skill of the first, second, and third modes is 91.1%, 5.98%, and 1.92% 

respectively.  The highest contributor in the first EOF is waveform intensity maximum, and all 

the other waveform properties positively contribute to the spatial distribution of the variance.   

The middle panels (Figure 14) show the second mode where the skewness and kurtosis explain 

the majority of variance. In the following, only the first mode is considered owing to its 

overwhelming contribution to the variance and the orthogonality constraints on the remaining 

factors. 

 

 

 From left to right, the first 3 modes (of 7 total) from the EOF analysis explain 98% of the 

variance with the respective modes explaining 91.1, 5.98, and 1.92% of the variance. The 

first mode was used exclusively for further analysis. 

Sediment size distributions were obtained from the Mastersizer laser diffraction particle 

size analyzer (Figure 155 and Appendix B). A mud fraction was obtained from each size 

distribution by summing the fraction of all size bins below 62 μm and divided by the total. 
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Although, some of the sediment samples showed evidence of a bimodal distribution in which one 

mode was primarily sand and the other mode was primarily mud, no further distinction is made 

to characterize the sediment composition. 

 

 

 Size distribution of some select bottom samples from Line 1. The vertical lines in the graph 

represent the threshold between clay and silt (left) and silt and sand (left). The size 

distribution plots includes results from three separate measurements (blue) as well as an 

average of the three trials (red). For each sample, the percent clay and silt were combined to 

obtain a percent mud (a combination of the two size classes of sediment).  
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Figure 166 shows a comparison between the measured mud fractions and the spatial 

weighting of the first mode from the EOF analysis at the corresponding location. A simple 

logarithmic curve was fit to the data which explains approximately 43% percent of the variance 

of the data, and is given by the equation 

 

𝑀𝐹(𝑚)𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  =
(log 𝑎𝑘(𝑚)−𝛼1)

𝛼2
   (3) 

 

where α1 and α2 are the model curve coefficients and are equal to -0.1927 and -0.0109 

respectively. The model fit was used to estimate surficial sediment mud fraction throughout the 

study area where acoustic data was available (Figure 177).  

 

 

 This figure shows a comparison of the measured mud fraction to the scaled spatial value of 

the first mode of the EOF analysis. The red line is a simple logarithmic curve that was fit to 

the data and has a skill of approximately 43%.  
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 Predicted mud fraction in the Little Bay, NH using the model from the mud fraction-EOF 

comparison. 

 The spatial variability of the predicted muds using all sediment samples can be compared 

to observations along each of the four sampling lines separately. Figure 188 shows observed mud 

fractions as a function of distance along each transect line and in relation to the bathymetric 

profile.  Also shown are the modeled predictions based on the individual waveform parameters 

independently, and the first EOF mode that objectively combines all the properties.  This 

comparison suggests that – although the details of the variability are not precisely modeled – the 

gross spatial variability of the mud distribution is well represented by the EOF logarithmic 

model, and that the EOF model much better identifies the spatial characteristics of the spatial 

variation in mud fraction than the other properties independently.   

 It should be noted that the sediment samples near Bellamy River on the northern end of 

the Bay (lines 4, 5, and 6) show lower mud fraction than would be predicted by the simple 

logarithmic model.  It may be that the bottom itself is smoother (less rough) in this region than in 

other regions of the Bay with similar material (Ferrini and Flood, 2006).  This assertion, although 
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plausible, is not borne out with video samples of the region. It is clear that these data do not 

follow a similar pattern as the other data used in this report. 

                                          

 Predicted mud fraction along lines 1 through 7 with the prediction based on the EOF 

analysis shown by the thick black line. Depths profiles for each line are shown on the 

bottom. 

Up to this point the relationship of the acoustic backscatter has been assumed to be only a 

function of the unconsolidated makeup of the surficial sediments.  The mixture of grain sizes 

creates a variation in interstitial pore spaces that defines the porosity and bulk density of the 
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substrate, properties that are more directly related to the acoustic impedance that determines the 

nature of the acoustic backscatter properties.  Bulk density (and hence porosity) was sampled 

along Line 4 from eight undisturbed diver-obtained core samples. Comparison of the wet bulk 

density and porosity determined from the upper 2 cm of the core and the acoustic backscatter for 

Line 4 is shown in (Figure 19).  Two methods were used to calculate the wet bulk density. The 2 

methods for calculating the wet bulk density (WBD) can be described by the equations:  

𝜌𝑏 =  𝜌𝑤𝑛 +  𝜌𝑔(1 − 𝑛)    (4) 

 

and 

 

𝜌𝑏 =  
𝑀𝑤𝑒𝑡

𝑉𝑡
     (5) 

 

where 𝜌𝑏 is the wet bulk density, Mwet is the wet sample mass, Vt is the sample volume, 𝜌𝑤 is the 

density of water, 𝜌𝑔 is the grain density (assumed to be quarts: 2.65 g/cm3 ), and 𝑛 is the 

porosity. In this study, the method shown by equation 4 is the preferred method for calculating 

bulk density since it calculates density independent of a measured volume which is believed to 

have high uncertainty. Instead, equation 4 uses porosity, determined using the fractional loss of 

water, a relative and more precise value. Some error is introduced by assuming homogeneously 

quartz sediment, but this error is relatively small compared to those associated with the volume 

measurements.   
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 Bulk density was measured along line 4. The 4 panels from top to bottom show the 

measured wet bulk density, the calculated porosity, the measured and predicted mud 

factions (red dots show measured mud fractions from the bulk density sample and the blue 

dots show the measured mud fractions from prior sampling), and the depth along that line 

with the sample locations marked.  

Acoustic data was collected along four lines in the Great Bay, NH (Figure 20) with the 

sonar settings described in the table below. 
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Sonar Setting Lines 1 & 4  

(same as LB) 

Lines 2 & 3 

Transmit Power:  11 4 

Gain:  45 81 

Pulse Width: 6 20 

 

 The locations of the 4 surveyed lines in the Great Bay, NH and their corresponding sonar 

settings relative to those used in the Little Bay. 

The model created in the Little Bay was applied to the acoustic data from the Great Bay 

to predict mud fraction along the four sampled lines. Sediment samples were collected after the 

acoustic survey to test the accuracy of the applied model. Figure 21 shows the depth profiles, the 

predicted mud faction, and the measured mud fraction for lines 1 and 4 in the Great Bay which 

were collected using the same sonar settings used in the Little Bay survey. The RMS error of the 

predicted mud fraction is 11.9% for line 1 and 13.2% for line 4. 

1 

2 

3 

4 
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 The predicted mud fraction for lines 1 and 4 is shown in black and the measured mud 

fraction is shown in red in the top panel for each line. The corresponding depth profile is 

shown below. The RMS error for lines 1 and 4 is 11.9% and 13.2 percent respectively. 

The same methodology was applied to lines 2 and 3 in the Great Bay which were 

collected using different sonar settings. The depth profile, predicted mud fraction, and measured 

mud fraction for these lines are shown in Figure 22. The RMS error for the predicted mud 

fraction is 50.6% for line 2 and 57.9% for line 3.  
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 The predicted mud fraction for lines 2 and 3 is shown in black and the measured mud 

fraction is shown in red in the top panel for each line. The corresponding depth profile is 

shown below. The RMS error for lines 1 and 4 is 11.9% and 13.2 percent respectively. 
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Chapter 4 

DISCUSSION 

The results of the acoustic survey revealed the expected complicated bathymetry of the 

Little Bay, NH. The shallow banks of the estuary, which have been excluded from previous 

multi-beam surveys due to depth limitations, extend landward from the edges of the main 

channel at a relatively constant depth. In the shallows, ringing of the initial ping and 

reverberations from volume scattering of the 24 kHz signal distorted the first bottom return to 

such an extent that coherent waveform analysis was rendered unusable. However, the 200 kHz 

signal generally appeared qualitatively undistorted and was unsaturated in all parts of the bay, 

including both shallow and deep water regions (Figure 23).  

 

 An example of a 200 kHz signal (left) and a 24 kHz signal (right) collected in a shallow 

dominantly mud area. Sample number, which can be converted to time and then depth, is 

on the y-axis. The magnitude of the measured return is shown on the x-axis. It can be seen 

that while the 200 kHz signal is a coherent and independent waveform, the 24 kHz signal is 

a fusion of numerous reflections and volume scattering which distorts the first return, 

making an accurate shape analysis difficult and introducing significant error. 

Analysis of the 200 kHz waveforms provided an adequate measure of acoustic differences 

due to bottom composition. A range dependent gain was applied to the signals to remove the 

effects of spherical spreading (as previously discussed). Differences in absorption and volume 

scattering were assumed to be negligible. Szalay and Mcconnaughey (2002) suggested that slope 

can have an adverse effect on single beam seafloor classification work. In this study, slope did 

not seem to largely effect acoustic measurements, however, observed waveform widths suggests 
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that the steep slopes of the main channel may have effected some of the waveforms responses as 

illustrated in Error! Reference source not found.4. When a spreading acoustic signal reaches a 

loping bottom, it is reflected at varying depths, causing an increase in the width of the resulting 

measured waveform. A map showing the width of the measured waveforms suggests this type of 

spreading of the signal occurred along the sides of the main channel (Figure 25). The variance 

associated with these patterns does not appear to be present in the first mode of the EOF 

decomposition, but instead appears more prevalently in the second mode suggesting that slope 

effects are of higher order. 
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 On the left, the four vertical pains show an example of an acoustic signal responding to a 

flat bottom. On the right, the four vertical pains show an example of an acoustic signal 

responding to a sloped bottom. In panel 3 of the sloped bottom example, it can be seen that 

the sloped bottom causes as spreading out of the return due to different ranges. This 

increases the width of the return waveform.  
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 Along the steep bank (marked by the red box), a slight increase can be seen in the measured 

width of the waveform. 

The first mode describes a 91% of the spatial variance of the different waveform 

properties (Figure 26). Differences in the weighting of the different waveform properties 

suggests there is a more coherent spatial distribution of variance for some properties (e.g., 

maximum intensity, mean intensity, and width) than there is for others, but that all properties 

contribute positively to the first mode.  The model (Figure 16; Eq. 3) well estimates the spatial 

variation in mud fraction (Figures 17 and 18), except where the Bellamy river flows into the 

Little Bay and modifies the porosity of the sediment layers (and hence the impedance of the 

acoustic signal; Figure 19).   
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 First mode from the EOF decomposition of the waveform properties. The waveform 

maximum, width, and mean contribute the most to the first mode, but all properties are 

important to the distribution of variance in this mode. 

The spatial variation in the predicted mud fraction (Figure 17) based on the EOF model 

closely follows water depth variations (Figure 12).  This is perhaps not surprising considering the 

effect of depth on tidal currents in the bay. During flood and ebb tides the currents in the deeper 

main channel are quite strong (up to several knots) and act to remove much of the unconsolidated 

sand, silt, and clay, leaving behind coarser gravel and rocks.  These sediments are swept 

downstream and also transported laterally to the sides of the estuary where they settle out in the 

lower flows near the banks and over the mudflats. 

However, since both depth and sediment type vary in similar patterns in many 

environments, it can be difficult to determine which factor is dominating the return acoustic 

signature. Two simple checks were done to insure that the acoustics were responding to sediment 

properties, not just depth variations. First, rise times were calculated to vary by just 3 or 4 

samples based on depth variations alone, but instead varied more typically by 10 to 20 samples. 

Secondly, depth was plotted against the independent variables to see if they were totally 

correlated (Figure 27). Despite significant variability, no property showed a strict correlation to 

depth; the maximum shows this well. The maximum return increases with depth to about 12 
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meters depth but then varies little in areas where typically no sediment exists. There is practically 

no change in the maximum return in the deepest 10 meters of the surveyed area, demonstrating 

that the acoustic response is more correlated to sediment variations than to depth. This is 

supported by video work which shows a gradation in sediment time in shallower waters, but 

essentially no variation below 10 to 15 meters. 

 

 Individual maximum returns are plotted against their corresponding depth values. The red 

lines show a linearly fit line from 0 to 12 m and 12 to 25 m to demonstrate how the 

maximum response is not correlated to depth, particularly in the deeper areas of the estuary 

where most sediment has been windowed away and only rock remains, unvarying in the 

deepest 10 meters.  

The model (Eq. 3) created using the first mode of the EOF decomposition can be used to 

directly estimate surficial mud fraction in the shallow and highly variable Little Bay, NH. There 

are strengths and weaknesses to this type of model. The model explains approximately 43 

percent of the variance of the mud fraction measured from bottom samples. This skill may be 

lower than expected due to small scale variability and model resolution which limits the model 
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from predicting mud fractions at single point locations such as those measured with the bottom 

sampling methods. There are also uncertainties associated with the estimated location where the 

sediment samples were collected due to tidal currents, the motion of the vessel relative to the 

currents and ground, and the inaccuracies in the hand-held (autonomous) GPS used to record the 

sample location (schematically shown in Figure 288).  Often the grab sampler would be moved 

away from the recorded location by tidal currents present in the little bay and there was visible 

bowing of the line during bottom sampling and drop camera work.  GPS locations were recorded 

at the boat’s position creating a discrepancy between the measured and actual location of 

samples, potentially contributing to errors associated with the model. Sampling position 

uncertainties are difficult to quantify are likely on the order of 10 meters. 

 

 

 Schematic showing the displacement of the grab sampler relative to the vessel location and 

the recorded position due to tidal currents. 

Model results are well suited to estimate an average mud fraction within each 10 by 10 m 

cell where small scale variations are smoothed out. While this decreases the resolution of the 

model, it also reduces the effect of small scale variability and the errors associated with sampling 

locations.  There were some variations in bottom type observed in the video data over only a few 

meters. These variations were sometimes due to biological material and sometimes due to an 

actual change in sediment composition. In some of these images, plant growth (Figure 29) 

changes the character of the bottom, despite a similar sediment type observed nearby. 
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 Example video images showing aquatic plants (top image) within a couple meters of bare 

sediment areas (bottom image) but with similar visual bed characteristics. 

On a larger scale, the model successfully predicts spatial patterns in the mud fraction, 

particularly the high mud fractions on the flats and decreased mud fraction nearing the main 

channel. These types of predictions are useful for estimates of nutrient fluxes and potential 

habitats which frequently use more robust measures of sediment type such as the dominant 

sediment component (e.g. sand or mud) (Dyer, 1994 and Sakamaki, 2006) (Figure 30).  
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 Modeled mud fraction partitioned into areas exceeding a 50% threshold (green) and areas 

below that threshold (red). 

 A potential weakness of this model is the direct relationship formed between mud 

fraction and the acoustic response. Mud fraction is a valuable geologic property of sediment that 

can be used in numerous fields of study, but there is not a well-defined direct relationship 

between mud fraction and acoustic backscatter which can be more directly related to the acoustic 

impedance of the target (Kinsler, 2000). Sediment size distribution is one property of the 

sediment that contributes to the impedance of the acoustic return, and in this study well predicts 

the spatial distribution of the mud about the bay. However, the compactness and roughness of the 

surficial sediments can greatly affect the acoustic response. Observations of bulk density along 

line 4 show large variations in bulk density and porosity between the northern and southern 

banks (Figure 19).  

Bulk density measurements fit the data from the grain size analysis; there is sandier and 

consequently denser sediment on the northern bank than the southern bank. The porosity is also 
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notably lower on the northern bank. This suggests that the Bellamy River may be a source of 

sandy sediment which rapidly settles onto the relatively shallow Northern bank once the fluvial 

input reaches the less constricted bay environment. Previous work (LeBlanc et al., 1992) has 

shown a strong inverse relationship between porosity and acoustic impedance and a strong 

positive relationship between seafloor density and acoustic impedance.  Variations in porosity 

can result from both variations in grain size distribution and from the compactness of the 

surficial sediments. Following the relationship described by LeBlanc et al (1992), it is 

understood that while the increased porosity on the Northern bank decreases the acoustic 

impedance and reflectivity of that sediment, the increased density of the sediment on that bank 

has opposing effects on the acoustic response. The acoustic properties consequently only 

partially represent the variation in sediment type. It is clear that the relationship between grain 

size, porosity, and wet bulk density is complex and not fully captured by the measured acoustic 

properties. The final mud fraction prediction from acoustic properties is thus distorted by the 

porosity and density anomalies on the northern bank. The sandy sediment near the Bellamy river 

mouth could not be fully differentiated from more muddy sediment which produces similar 

acoustic properties (Figure 31).  
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 The modeled mud fraction from the EOF decomposition (thick black in cross sectional 

plots on right) predicts a higher mud fraction on the shallow bank near the Bellamy River 

mouth than actually exists. The area within the blue circle correlates to the cross section 

areas marked by blue squares.  

It is also worth considering the possibility of temporal variation in surficial sediment in 

this area due to fluvial currents sediment inputs. Differences in mud fraction measurements 

between the initial grab samples and the bulk density samples suggests a possible increase in 

mud fraction on this northern bank during the intervening time period. It should then be 

considered plausible that the surficial sediment composition could have also varied in this area 

during the period between acoustic sampling and grab sampling. To eliminate the uncertainties 
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arising from temporal variability of the sediment composition, samples would need to be 

collected during the acoustic survey.  

Selectively eliminating sediment samples from the area near the mouth of the Bellamy 

River increases the skill of the model to 61% (Figure 3232). In this newly fit line, α1 = -0.13917 

and α1 = -0.021526. However, using the current analytical techniques and without consideration 

of sediment samples, this area appears acoustically similar to other areas and cannot be 

differentiated from other less sandy areas without additional information.  

 

 A curve fit to mud fraction and EOF data excluding data points from near the Bellamy 

River mouth. The skill of the model is increased to 61%. 

 There were multiple advantages to using this methodology and model for predicting mud 

fraction in the Little Bay which can hopefully be extended to other shallow water environments 

using combined acoustic and sediment sampling. The 10 m gridded model provides a 

substantially more comprehensive and higher resolution map of mud fraction than any direct 

sampling method, and in far less time both in the field and in the lab. The process additionally 

produces a bathymetric map for the area, another important tool for most scientific studies.  

 The model developed in the Little Bay was tested by applying it to a new area, the Great 

Bay, NH. Of the four lines surveyed, two were collected using intentionally varied sonar settings 

to explore the models robustness to changes in the sonar’s transmit power, gain, and pulse width. 
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The Great Bay is connected to the Little Bay, but differs in fluvial inputs, depth, plant growth, 

and exposure to air. The Great Bay is generally very shallow with significant portions of the bay 

exposed during low tide. Increased eel grass growth was observed in several areas of the Great 

Bay. The main channels of the Great Bay are deeper than the surrounding mud flats, but are still 

significantly shallower than the main channel of the Little Bay.  

 The predicted mud fraction along lines 1 and 4, those collected using the same sonar 

settings used in the Little Bay, showed a strong correlation to the measured mud fractions. There 

was an increase in the variability of the predicted mud fraction relative that found in the Little 

Bay, but the model was still quite accurate with RMS errors just over 10% for these lines. 

Variations in mud fraction relating to the currents in the main channels were generally well 

captured by the model. 

 Predictions for lines 2 and 3 were less accurate. RMS errors surpassing 50% suggest that 

by varying the sonar setting, the original model was rendered obsolete. Therefore, for this 

particular model, the sonar and sonar settings must be kept the same as those used in the Little 

Bay. Fortunately, the sonar used is of high quality (Q=1) and the optimal sonar settings for most 

shallow water environments were used.       
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Chapter 5 

CONCLUSIONS 

Empirical Orthogonal Functions were utilized as an objective method to determine 

patterns of spatial variability from an ensemble of 7 different properties of acoustic waveforms. 

The first EOF was compared with measured mud fractions and provided a means to objectively 

estimate the spatial distribution of surficial mud fractions in the Little Bay from acoustic 

backscatter properties. This method increases both the coverage and resolution of mud fraction 

measurements compared to sediment sampling techniques. The model’s skill varied based on 

waveform properties and samples included in the analysis, ranging from 43 to 61%.  The skills of 

the modes were subject to the direct comparison of smoothed acoustic responses with discrete 

samples of mud fractions, and were therefore subject to an inherent uncertainty associated with 

small scale variability not quantified. Still, applying the model to acoustic data collected in a new 

area with the same sonar and sonar settings showed promising results. The RMS error of the 

predicted mud fraction using the Little Bay model fell below 15% for the two surveyed lines in 

the Great Bay.   

In general, EOF mode one spatial variation based on 7 acoustic waveform properties can 

be used to estimate surficial mud fraction on spatial grid scales of order 10 m. Finer scale 

resolution is not easily modeled owing to the uncertainty in the sediment grain size sampling 

locations and the unresolved small scale sediment variability. Sediment characteristics 

considered in this study are focused mainly on surficial mud fractions, with some consideration 

of acoustic response to sediment compactness quantified with observations of bulk density and 

porosity. Results from the bulk density work were encouraging, but further work is needed on a 

broader scale, a difficult task considering the laborious efforts required to obtain undisturbed 

sediment cores over larger scales. Recent advancements in sediment load strength obtained with 

easily (and rapidly) deployed (from surface vessels) seabed penetrometers (Stark et al., 2010) 

would be particularly useful in comparing to both surficial sediment grain size distributions and 

bulk density.  

Methods for remote and objective estimation of seafloor sediment properties are 

important to aiding further scientific research and policy decisions. Remote acoustic methods for 

determining sediment properties are advantageous compared to traditional methods in terms of 
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speed and spatial coverage. Whereas specific measurements of sediment properties are needed at 

a specific points, sample collection and laboratory work are still preferred, but where general 

predictions over a large area will suffice, remote methods are becoming favorable. Remote 

acoustic measurements of surficial seafloor sediment properties looks to be a promising path for 

providing scientists and policy makers with the necessary information to make more educated 

decisions.  
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Chapter 6 

Appendices 

A - Videography 

A significant amount of bottom video was collected to explore the in situ appearance and 

characteristics of bottom sediment along the sampling lines. The video was not used in a 

qualitative analysis, but does serve as a visual affirmation of the acoustic, sediment size, and 

bulk density data. The following pictures are extracted from the videos collected at the 

designated lines. Time of collection and GPS coordinates of the boat at the time of collection are 

included in the upper right hand corner of each picture. 

Line 1: 
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Line 2: 
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Line 3: 
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Line 4: 
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Video data from Line 6 and 7 is unavailable because of high turbidity in the water during the 

time of collection (see below). 

 

B – Additional Models and Mud Fraction Predictions 

Waveform data and EOF data was produced and analyzed in a few different ways by 

averaging waveforms and using different properties for the EOF analysis. Ultimately, in an effort 

to remove any bias from the analysis, individual waveform properties were used and all 

properties were included in the EOF analysis. However, some of the other approaches suggest 

ignoring the non-linear wave form properties produce a better model. Also, trials averaging 2, 5, 

10, and 20 pings produced more spatially consistent waveform properties. The results of some of 

these different trials are presented below.  

 

 

 

 

 

 

 



 57 

Model and Specifications Predicted Mud Fraction 

 

2 Waveforms Averaged 

 
  

 

5 Waveforms Averaged 

 

 

10 Waveforms Averaged 
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20 Waveforms Averaged 

 

 

Individual Waveform Properties 

Depth included 

 

 

Individual Waveform Properties 

Linear Properties only (Maximum, 

Mean, Width, Rise Time) 
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 C – Sediment Size Distributions 

A sediment size distribution was obtained for ever grab sample. All of the size 

distributions for every sample that could be run through the Mastersizer are presented below and 

identified by Line number and Latitude and Longitude. 

 

Line 1: 
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Line 2: 
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Line 3: 
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Lines 4 and 5: 
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Line 6: 
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Line 7: 
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D – EOF Modes 

Though only the first mode of the EOF analysis was considered for purposes of 

modelling, there are as many modes as there are properties used in the EOF analysis. Below are 

the 7 modes (in order from 1 to 7) resulting from the EOF analysis of all 7 waveform properties. 
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