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Abstract

DEVELOPMENT OF THE NASA CELESTIAL NAVIGATION(CelNav)

METHOD FOR DYNAMIC EXTRATERRESTRIAL SURFACE NAVIGATION

by

Jared Perkins

University of New Hampshire, December 2014

The Celestial Navigation (CelNav) method was developed in conjunction with

NASA Goddard Space Flight Center, to provide accurate location data for ex-

traterrestrial surface navigation without the use of a global positioning system

(GPS) or a ground/relay station. CelNav is a minimal sensor/power solution

originally developed for static Lunar surface navigation. However, dynamic nav-

igation via CelNav requires high-accuracy state estimates, due to the absence of

key sensors such as a gyroscope, GPS, and a magnetometer.

In this thesis, robust nonlinear state estimation techniques (the Sliding Mode

Observer, the Extended Kalman Filter, and the H-Infinity Filter) are used with

CelNav to accurately determine dynamic latitude, longitude, and heading, for an

unmanned/manned rover or astronaut. The goal is to investigate the feasibility

of implementing a nonlinear estimation technique with CelNav for dynamic ex-

traterrestrial surface navigation when accurate location coordinates are necessary.

Preliminary results show that this research shows promise as a secondary dynamic

navigation system for future extraterrestrial exploration.
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Introduction

1 The NASA Celestial Navigation (CelNav) Method

The NASA Celestial Navigation is a technique to determine a space vehicle

(rover) or astronaut’s navigational coordinates (latitude and longitude, as well as

heading) on an extraterrestrial surface. It was developed as a low-cost secondary

system and fault checking device to facilitate greater coordinate location when

primary navigation systems no longer function (e.g. solar disruption, absence of

communication with ground stations).

This basic idea was proposed in 2006 by Quinn [22], who deduced that with

the rudimentary instruments already contained within space vehicles it would be

possible, if the error can be assumed to be small, to accurately determine one’s

location. Using small angle approximation, one can determine that the accuracy

needed in all sensors to restrict navigational error to 50m (the original NASA

target accuracy level). That is:

0.050km

RMoon

∗ 648000arcseconds

π
= 5.93arcseconds (1)

This fact was later confirmed through the first CelNav algorithm further de-

veloped by Thein et al. [2]. Using this information CelNav is further refined and
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streamlined into the algorithm that currently stands.

1.1 CelNav History

CelNav was originally designed to be used at the Lunar poles in search of pock-

ets of frozen water discovered in shielded craters, such as the Shackelton Crater

located on the south pole of the Moon (Figure 1). Future space settlements would

depend on this liquid resource. Having the ability to determine accurate location

coordinates would be critical to either an astronaut or a space vehicle, especially

during loss of communication from either a local base or a ground command center.

Figure 1: Shackelton Crater located on Earth’s Moon [22]

CelNav is not a new concept. Ancient and modern seafarers were able to

determine latitude and longitude using celestial navigation with relatively good

accuracy. Early nautical navigation was accomplished with few highly advanced

mechanical instruments (e.g. sextants, astrolabes, octants, and clocks) to measure
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the angle between certain celestial bodies such as the Sun, Moon, other planets,

or one of the 57 stars contained within a Nautical Almanac [13]. The Nautical

Almanac is based on the fact that any heavenly body has a distinct location above

the Earth’s surface during specific times of the year. This is known as the heavenly

body’s geographic position (GP) as found in the Nautical Almanac [13].

There are known relations between the angle of the celestial body and the

visible horizon, and this information has a direct relation between a GP and the

observer’s position. From these relations the observer is able to draw a line of

position (LOP), and transcribe it on a navigational chart. The observer’s position

is located on the LOP. This line can be further refined by sighting out another

heavenly body, and transposing the new LOP on the navigational chart. The

point at which these lines intersect is the observers approximate location. This

method is known as “Altitude-Intercept Method” [13].

Altitude-Intercept Method was first attempted using only the human arm

as a measurement device to attempt to achieve an accurate angle. Over time

advanced mechanical devices were developed to help more accurately measure the

angles of heavenly bodies. Of these tools, the sextant (as shown in Figure 2)

was developed by Isaac Newton as a highly accurate method for measuring the

horizon. A skilled navigator is able to navigate effectively within an error of 1.5

nautical miles. This distance is accurate enough to sight land. This method relies

heavily on an accurate chronometer, set to a clock on the Prime Meridian [11].
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Figure 2: Marine Sextant [20]

CelNav was conceived out of a need for a reliable inertial navigation sys-

tem (INS) that is self contained and independent of external sensors, such as a

Global Positioning System (GPS) type system, as shown in Figure 3, or orbiting

satellite(s).

GPS is used heavily by both military and civilians alike to accurately de-

termine the location of a receiver on Earth to within a 10-15 meter radius [12].

This is possible due to a small number (24) of satellites in mid-Earth orbit (ap-

proximately 20,000 km altitude). GPS satellites are equipped with an array of

sensors that transmit signals to the GPS receiver on Earth that contain [12]:

• the time the message was transmitted

• precise orbital information (the ephemeris)

• general system health and approximate orbits of all GPS satellites
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Figure 3: Global Positioning System [21]

Using this information (from a minimum of three satellites) it is possible to

obtain latitude, longitude, and altitude. This system is not perfect because it

is prone to miscalculations from a multitude of sources including impaired line

of sight, imperfect time information, too few satellites, solar activity and aged

satellite hardware.

Another method that is used for navigation on extraterrestrial bodies in-

volves sending, at a minimum, a single satellite to orbit the body. This allows for

a doppler type positioning system to be used. The doppler position system works

on the premise that there is a change in wave (signal) frequency for an observer

moving relative to the source of the wave [14]. The frequency received by the ob-

server is higher (when compared to the emitted frequency) during the approach,

identical at the instant of “flyover”, and lower as the signal moves further away
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[14]. The Doppler Effect is useful due to the fact that the orbital information (alti-

tude, velocity, and orbit) is known and carefully monitored. Thus, a receiver on a

rover or astronaut is able to obtain navigational information based upon the signal

received from the orbiting satellite. This navigation method too, however, is prone

to inconsistencies because of, for example, line-of-sight, limits on fuel/power, and

solar activity.

Again, these are hindrances that can add uncertainty to an already compli-

cated mission. Thus, a self-contained system, that is not reliant on outside sensors

or technology is necessary for the expansion of extraterrestrial exploration. The

research presented in this thesis involves developing CelNav for such a purpose.

In the future, long term extraterrestrial missions are expected to have lim-

ited power and sensors available. This means that although redundant sensors

could be incorporated, there would be no access to additional sensor measure-

ments. These sensors would be limited to star trackers and 3-D accelerometers.

These two sensors are used primarily in inertial navigation systems, which output

positional navigation data (heading and inertial position). Many of these inertial

navigation systems depend on either doppler or local GPS data which, as explained

above, would not always be available. These additional systems make it possible

to use CelNav to fault check position data.

A star tracker is a CCD (Charge-Coupled Device)-like optical device that

compares an image taken by the star tracker to a database of stored images. The

output of the device is a unit quaternion (to be explained in greater detail later

in this thesis). In general the unit quaternion represents the orientation (heading

and position) of an astronaut or rover. The star tracker is oriented orthogonally
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along the vehicle or astronaut’s body reference frame.

3D accelerometers, also called an accelerometer triad, are three orthogo-

nally arranged accelerometers. Orthogonality is described as the orientation of

each axis of the accelerometer, x-y-z, in relation to an astronaut’s or rover’s ref-

erence frame.

1.2 On-Board Guidance, Navigation, and Control

The function of CelNav is to act as a “stand alone” navigational determina-

tion system and may be applied to any vehicle or astronaut that would traverse

an extra-planetary body with the possibility of little to no communication with a

ground station. It may also be used if communication is ever lost. Multiple stand

alone systems are necessary to ensure self reliance. These systems have multiple

redundant sensors for which navigation data may be extracted. On-board guid-

ance and navigation are also quite useful in instances where a rover/astronaut is

significantly far away from its ground station because of the time it takes for a

signal to travel such a great distance. A communication signal is an electromag-

netic wave, a radio wave, which has a fixed amount of time it takes for a signal to

travel from one location to another. An example of this is communication from

Earth to Mars.

The radio signal travels at the speed of light (about 300000 km/s). There-

fore, using the approximation:

C =
D

T
(2)

where, D, is the shortest total distance from Earth to Mars, which is 57,936,384km,

7



and C is the speed of light, Equation 2 shows that it requires a minimum of 4

minutes for a signal from Earth to reach Mars and, therefore, at least another

4 minutes to relay any signal back from Mars. In turn, at the furthest point

away from Earth a signal from Mars can take upwards of 40 minutes to reach

Earth. This is why a great deal of the probes and rovers that are sent into space

are designed to be autonomous, since it is not feasible to manually control these

vehicles effectively in real-time.

2 Past CelNav Development

The original CelNav problem statement as stated in Thein et al. [2], was

developed for the exploration of the Lunar surface. A local coordinate system for

the Lunar surface is pre-defined as the East-North-Up (ENU) orthogonal triad.

It was assumed a priori knowledge of Lunar coordinate transformations such as

selenodetic, selenocentric and Moon center-Moon fixed are known. Given needed

accuracies, the Lunar lander was to be accurately located to within a 50m radius

of its actual location. Originally all measurements were taken in the static case,

which means the rover was considered stationary during measurements.

Future exploration to extraterrestrial bodies will most likely include sur-

veying of land, soil, minerals and especially water. Future space settlements would

depend on this information. Having the ability to accurately determine position

is required during (extra-planetary) exploration because of the possibility of los-

ing communication with a local base or ground/command station while mining or

exploring for water or minerals.

The goal of CelNav is to accurately determine the location of the astro-
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naut/rover on the Lunar surface with minimal use of sensors: a 3D accelerometer

and a star tracker.

CelNav originally was required to be accurate to within 50 meters of a

desired target location. In order to achieve this goal it was determined that the

maximum accumulated error for sensors (including measurement noise and mis-

alignment error) could be no greater that 5.97 arcsec, as described in Thein et al.

[2]. Later it was determined that on the Lunar surface, a rover or astronaut is

expected to be able to see about 2000m away and, therefore, this distance would

be an acceptable accuracy target for emergency navigation.

3 Navigational Techniques

A great deal of current research focuses on extraterrestrial navigation by means

of access to precise ephemeris data, such as with an Aeronautical Almanac. As

stated in Malay et al [15], where a Martian navigation system is examined using

an accurate star almanac as well as an extremely accurate clock, it is possible to

navigate and extract positional data to within 100m. This almanac is limited,

though, and needs updating on a regular basis. For example an Aeronautical

Almanac loses accuracy after nine months. At this point a new almanac needs to be

calculated. Updating this almanac is acceptable on missions where radio contact

is readily available. Otherwise, the star charts become completely inaccurate after

one year. CelNav is a more robust method than that relying on an Aeronautical

Almanac and can be much more easily adapted to other extraterrestrial bodies.

Another navigation method is orbital tracking, accomplished by making

use of orbiting objects such as the Moon. Such a method is a more advanced
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use of the doppler effect. As stated in Trautner et al [16], “using current Phobos

ephemeris data, the position of a Mars lander can be determined with an accuracy

of 5km (1-ϕ) with a single night image.” It is further stated that the accuracy can

be further improved with greater knowledge of the ephemeris data. This method

is useful but limited to extraterrestrial bodies with closely orbiting bodies.

4 Research Goals

The current focus of this research is to develop a dynamic navigation system

that enables autonomous extraterrestrial surface navigation. State estimators are

needed for control feedback for autonomous control. Due to this need, multiple

filter/estimation techniques which incorporate the CelNav navigation determina-

tion system are to be examined in this thesis. A simple PID controller, (without

loss of generality) will be used. Controller techniques will not be examined in this

thesis as it is out of the current scope of this research. Further study is provided

by Underwood et al. [31].

As stated in the previous section, the original CelNav algorithm ran on

artificially generated data. The “sensor” data was obtained by selecting a desired

location and calculating the corresponding accelerometer and star tracker data

for said location. This data was then corrupted with upwards of 60 arcseconds

of noise on all three axes. A problem found in the original CelNav setup, as

discussed in Thein et al., is that the system creates one of an infinite number of

possible attitude quaternions. The current scope will focus on three different areas

of development of CelNav dynamic navigation:

1. CelNav Performance
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2. Observer/Filter Development Using CelNav Feedback for Dynamic Naviga-

tion

3. Experimental Implementation on test platform

4.1 CelNav Performance

This section focuses on Monte Carlo analysis and preliminary experimental

results. Monte Carlo analysis allows for statistical analysis of a system by changing

one variable at a time. This was done for a range of latitude and longitude

comparing the navigation error at each location.

The preliminary experimental testing was done with the SkyScout, a per-

sonal astronomy system commercially available from Celestron. Skyscout contains

multiple sensor systems to be described later. This experiment was to show the

validity of the CelNav algorithm using real sensor measurements.

4.2 Observer/Filter Development Using CelNav Feedback

for Dynamic Navigation

This section looks at the performance of CelNav implemented on a simulated

four-wheeled vehicle with front or rear steering. Two separate dynamic models

will be examined. The first is a generic four wheeled vehicle with front wheel

steering. Then second is a more accurate robust model used in the experimental

test case with all wheel drive and tank like steering. A controller is not of interest

here due to the fact CelNav only focuses on the accuracy of the observers and not

the stability or validity of the controller as defined in Sun et al. [8]. The rover

model is taken from Sun et al. [8]. In place of the controller defined in Sun et al.
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a simplified PID controller is used instead.

This model is tested in simulation with three separate observer/filter algo-

rithms with CelNav quality “measurements” used as feedback. Here, the feedback

is artificially corrupted. The results from this simulation show which observers

have the least variance in the estimated signal compared to the true signal. This

comparison is slightly different for the experimental version, to be discussed later.

This model is also used for the manual version of the rover for the experimental

test simulation.

4.3 Experimental Implementation on Test Platform

Expanding on the original CelNav algorithm, it is necessary to make the system

dynamic as oppose to static. A rover has been constructed in conjunction with the

University of New Hampshire Luna Cats. Testing of this rover is to be conducted

independently of this thesis. Further information about the rover can be found in

the Appendix C.

The experimental system is used to do a comparative analysis between

Sliding Mode Observer (SMO), Extended Kalman Filter (EKF) and H-Infinity

(H∞). This is to test the accuracy of the estimation techniques and not the

controller. The goal is to increase the accuracy of the original CelNav algorithm

by estimating the desired location and heading, based on the output of the CelNav

algorithm. Results are highly dependent on the accuracy of the sensor package,

both in measurement noise and sensor misalignment. Dynamics for all of these

systems will be discussed in greater detail in later chapters.

This work focuses on proving that the areas discussed above are feasible
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separately as well as when they are combined, though some combinations may

inevitably work better than others.

5 Outline

The following is a brief description of the chapter contents:

• Chapter 1, Review of coordinate reference frames in relation to the moon and

local frames, as well as a review of Euler angle representations and attitude

transformations.

• Chapter 2, Review of the CelNav Mobility solution algorithm, as well as

corrections made to original algorithm.

• Chapter 3, Discussion of various error sources, including measurement noise,

misalignment, and bias for both the accelerometer and the star trackers.

• Chapter 4, Background on Monte Carlo history, choice of Monte Carlo sta-

tistical parameters, and analysis of results.

• Chapter 5, Preliminary experimental validation of CelNav focuses on the

first experimental tests using the Sky Scout as test sensor.

• Chapter 6, Overviews of analytical simulations focusing on both the nominal

and real rover models, as well as the controller and necessary assumptions.

• Chapter 7, Discussion focusing on relating the three estimation techniques

as well as listing pros and cons about using each type for the task of CelNav.

• Chapter 8, Summary and comparison of results of all estimation techniques.

Also possible future direction this project can take.
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Chapter I

Coordinate Reference Frames

This chapter reviews inertial and body-centered reference frames and coor-

dinate transformations. Euler angles and quaternions, as methods of defining

attitudes are also reviewed. Without loss of generality the extraterrestrial surface

used in this research is the Moon. Any generic lunar/planetary surface may be

used.

1.1 Local and Lunar Reference Frames

The two major coordinate systems for local and global reference frames are

Moon-Centered-Moon Fixed (MCMF), Figure 1.1 [22], and East-North-Up (ENU),

Figure 1.2 [22]. The coordinate systems in this research are defined such that:

x
y −→ Body-Centered Reference Frame
z

I
II −→ Selenodetic Reference Frame
III

E - East
N - North −→ Local Reference Frame
U - Up

14



Figure 1.1: Moon Centered Moon Fixed Reference Frame Shown (I-II-III Triad)

Figure 1.2: ENU Reference Frame
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A “Down” reference frame is also used. “Down” can be conveniently used

to represent the ENU coordinate system as the “negative Up” orientation and

with a generic heading ϵ (i.e., as in the resulting output of an accelerometer).

(The ENU reference frame is commonly used by aviators in navigation.)

1.2 Attitude Representation - Euler Angles and

Quaternions

The two traditional methods for defining the attitude (orientation) of an object

in three dimensional space are Euler angles and quaternions. These methods will

be discussed here, along with their respective properties.

1.2.1 Euler Angles

Euler angles are a way to describe any generic rotation as a pre-defined se-

quence of three pure rotations(i.e about the x, y, and z body-centered coordinate

axes). The corresponding angles of rotation are denoted as ϕ, θ, ψ. One example

is a 3-1-3 rotation sequence (as shown in Figure 1.3), where:

1. A rotation about the inertial Z-axis by and angle ϕ.

2. A rotation about the new X-axis(x1) by and angle θ.

3. A rotation about the new Z-axis(z2) by and angle ψ.

The 3-1-3 rotation sequence is one of 12 possible sequences. (A list can be found

in Appendix F.)
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Figure 1.3: Euler Angle Rotations [27]

1.2.2 Direction Cosine Matrix

A Direction Cosine Matrix (DCM)combines an Euler rotation sequence made

up of individual rotation matrices into an equivalent single 3 x 3 rotation ma-

trix.[25] This is done through the multiplication of the three rotation matrices.

For example the individual DCM rotation matrices that describes a 3-2-1 rotation

sequence are:

Rotation 1 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (1.1)

Rotation 2 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (1.2)

Rotation 3 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (1.3)

A complete listing of all DCM Euler angles can be found in Appendix F. [25] The

resulting DCM for a 3-2-1 rotation sequence is:


cos (ϕ) cos (θ) sin (ϕ) cos (ψ) + cos (ϕ) sin (θ) sin (ψ) sin (ϕ) sin (ψ)− cos (ϕ) sin (θ) cos (ψ)

− sin (ϕ) cos (θ) cos (ϕ) cos (ψ)− sin (ϕ) sin (θ) sin (ψ) cos (ϕ) sin (ψ) + sin (ϕ) sin (θ) cos (ψ)

sin (θ) − cos (θ) sin (ψ) cos (θ) cos (ψ)

 (1.4)

The individual rotations in an Euler angle rotation sequence is physically

realizable. As seen in Figure 1.4, the x, y, and z-axis rotations are often referred
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to respectively as “roll”, “pitch”, and “yaw.”

Figure 1.4: “Roll”,“Pitch”, and “Yaw” [28]

Although physically realizable, singularities in the attitude kinematics can

occur. A gyroscope is used to illustrate this phenomenon. In Figure 1.5 a gimbal

is a platform(or ring) that is free to rotate about a single axis. For the case of

aeronautics applications three gimbals are used. This configuration of the gimbals

is often used as an Inertial Measurement Unit (IMU). By mounting the set of

gimbals to the center of the local body-reference frame, one is able to determine the

system orientation with respect to an inertial reference frame. A problem occurs,

however, when any two gimbals are aligned in the same plane thus reducing the

movement of the gimbals to less than three degrees of freedom.[8] This phenomenon

is referred to as gimbal lock. A mathematical equivalent of this gimbal lock may

also be shown e.g. 3-1-3 rotation sequence and θ=0; resulting 3-1-3 attitude matrix

only have two rotations.
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− sin (ϕ) cos (θ) sin (ψ) + cos (ϕ) cos (ψ) sin (ϕ) cos (θ) cos (ψ) + cos (ϕ) sin (ψ) sin (ϕ) sin (θ)

− cos (ϕ) cos (θ) sin (ψ)− sin (ϕ) cos (ψ) cos (ϕ) cos (θ) cos (ψ)− sin (ϕ) sin (ψ) cos (ϕ) sin (θ)

sin (θ) sin (ψ) − sin (θ) cos (ψ) cos (θ)

 (1.5)

Gimbal lock can be corrected in a number of ways, such as adding an additional

gimbal. Another way is to physically move one of the locked gimbals to free the

motion. Alternatively, quaternion attitude representation maybe used instead of

Euler angles to avoid any such singularities.

Figure 1.5: Gimbal Lock [29]

1.2.3 Quaternions

The rotations described in the previous section can also be represented in

quaternions. A theorem by Euler states:

Any two independent orthogonal coordinate frames can be related by

a sequence of rotations (not more than three) about coordinate axes,

where no two successive rotations may be about the same axis.[25]

The basic form a quaternion takes can be seen in Equation 1.6.
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q =


q0
iq1
jq2
kq3

∣∣∣∣∣∣∣∣ (1.6)

or,

q =

[
q0
q

]
=


q0
q1
q2
q3

 =


cos(Φ

2
)

e1 sin(
Φ
2
)

e2 sin(
Φ
2
)

e3 sin(
Φ
2
)

 (1.7)

A quaternion is a tensor comprised of two distinct parts: a scalar,q0 , and a

vector,[q1 q2 q3]
T . Also shown in Equation 1.7 is the rotation axis e and the

rotation angle Φ.

i2 = j2 = k2 = ijk = −1 (1.8)

The terms of the tensor are such that they obey the following normalization:

q20 + q21 + q22 + q23 = 1 (1.9)

This proof is necessary such that if the solution does not equal 1 then

the quaternion is not a valid rotation. A major visual difference, as well as why

gimbal lock does not exist, is that a quaternion rotation is a single rotation, where

as Euler rotations are a combination of a series of separate rotations.

The equivalent DCM for a quaternion given in Equation 1.6 and 1.7 is:

A =

 q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2
2(q1q2 − q0q3 q20 − q21 + q22 − q23 2(q2q3 + q0q1)
2(q1q3 + q0q2 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 (1.10)

As shown in Equation 1.10, the major difference between the Euler angle

DCM and that of a quaternion is that the quaternion DCM has no trigonometric

functions. It is important to note that both the Euler angle rotation matrix and

the quaternion rotation matrix generate the same result for the same location.

Thus, there is an innate advantage to using the less computationally intensive

method for determining a rotation matrix.[26]

20



Both the Euler angle and quaternion attitude representations are used in

the development of CelNav and in the various estimation techniques in this re-

search.
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Chapter II

Celestial Navigation

2.1 Assumptions

The first major assumption that is made is the determination of a planetary

body’s gravity model described as [Ω]IneritalSD . The model used in this research is

based on the Lunar surface. For simplification, and because the Moon is almost a

perfect symmetrical body, we assume, without loss of generality, [Ω]IneritalSD = 1;

The second assumption was discovered during numerous statistical simula-

tions (i.e. Monte Carlo Analysis); almost all of the sensor error comes from the

misalignment of the accelerometer.

2.2 Development

Celestial Navigation (CelNav) grew out of a need for accurate, low cost and

low power position determination solution for extra planetary bodies. CelNav was

originally developed as a NASA sub-project of the Robotics Lunar Exploration

Program (RLEP). This project’s original mission was to explore craters in the
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South Pole region of the Moon for frozen water. The original CelNav algorithm

was based on work done by Swanzy et al. [1] Compass Star Tracker (CST).

However, the local nadir is not accounted for, which is affected by surface terrain

(e.g, craters, rocks,etc). This research assumed that the star tracker is always

aligned with the local zenith, unrestricted by terrain and always laying upright on

a level surface. [2]

The CelNav algorithm was originally developed in 2007 by Thein et al.

The algorithm was further refined and updated in 2008 to account for greater

measurement, alignment, and programming error, as well as defining more accu-

rate measurement data.

Both Euler angle and quaternion attitude representation were used in the

development of the CelNav algorithm. CelNav was first developed using Euler

angle attitude representation due to the ease of understanding and without con-

sideration for computational efficiency. The stage of development was run with all

sensor and alignment data given in quaternions to decrease computational effort.

This stage of development tested the speed of the CelNav algorithm using lower

memory requirement and the possibility of less access to the Central Processing

Unit (CPU). Both methods performed very well with little difference in simulation

run time. However, this may not be true when run on a slower space based system.
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2.3 Model Development and Methods for Ex-

traction of Navigational Coordinates

This section describes how sensor models are developed as well as different

extraction methods, for latitude, longitude, heading, tilt and slope. There are

two sensor models and three possible extraction methods that can be used. The

sensor models represent the accelerometer, denoted as Γ, and star tracker, denoted

as ∆. The extracted navigational coordinates are latitude(λ), longitude(ϕ) and

heading(ϵ).

The specific extraction methods used are dependent upon what sensor mea-

surements or derived information are available. This methodology is summarized

as:

1. Given Γ and ∆: Extract α, β, ϵ, λ, and ϕ

2. Given α, β and ∆: Extract λ, ϕ, and ϵ

3. Given λ, ϕ, and ∆: Extract α, β, and ϵ

Where α denotes tilt and β denotes slope.

The following notation is used throughout this thesis:

[MA]
A
Body → Accelerometer Alignment with Respect to Body Frame

[MA]
A
Body is the transformation matrix relating coordinate frame of the accelerom-

eter (A) with respect to coordinate frame Body (vehicle/astronaut) (Body). That

is:
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[MA]
A
Body → Accelerometer Alignment with Respect to Body Frame

Likewise, 
x
y
z


Body

=
[
MA

]A
Body


x
y
z


A

[MA]
C
Body is the transformation matrix relating coordinate frame of the star tracker

(A) with respect to coordinate frame (Body). That is:
x
y
z


Body

=
[
MA

]C
Body


x
y
z


C

The planetary body’s gravity model can be approximated by [Ω]SDInertial. A

gravity model is a map that shows the varying gravity fields of a planetary body

that can be caused by areas of greater mass concentration. This can be shown

as in the case of craters, due to the greater gravity at the base of a crater than

along its ridge.[10] Another effect that can be shown is that there is less gravity

around the equatorial region. For this research [Ω]SDInertial will be approximated at

identity. It is first necessary to show the transformation to [Ω]SDInertial.

[Ω]SD,I = [Ω]MCMF,I [Ω]SC,MCMF [Ω]SD,SC
= I3

(2.1)

Where, Moon Centered Moon Fixed (MCMF), is the coordinate from fixed

to the center of the Moon and rotates with it. Next Selenocentric (SC), is the

coordinate from fixed to the center of the Moon but free to independently rotate.

Finally, Selenodetic (SD) is the coordinate frame used on the surface of the Moon.

First it will be shown how each sensor model (accelerometer and star

tracker) is developed then the necessary derived matrices will be derived and

shown.
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2.3.1 Accelerometer Model

The accelerometer model is based on the need for three 3-D accelerometer that

outputs in the form:

Accmeasured =

 x
y
z

 = xi+ yj + zk (2.2)

Each of the three axes of the rover’s body (x, y, and z) are oriented with the

accelerometer axes. The resulting models for the accelerometers oriented in the x,

y, and z axes are described below:

Formulation of the x-oriented 3-D accelerometer (i.e. column 1)

Each column of the accelerometer transformation matrix [MA]
A
Body must be

derived individually, such that, first it is necessary to describe the x-vector by

calculating ηx, and θ1. Where the rotation vector about the x is:

η
′

x = i x (xi+ yj + zk) = yk − zj (2.3)

Next normalizing the η
′
x produces:

ηx =
yk − zj√
y2 + z2

(2.4)

θ1 = cos−1[i · xi+ yj + zk√
x2 + y2 + z2

] = cos−1 x√
x2 + y2 + z2

(2.5)

This can then be related to a quaternion such that:

q1 =


sin θ1

2
∗ 0

sin( θ1
2
) ∗ −z√

y2+z2

sin( θ1
2
) ∗ y√

y2+z2

cos( θ1
2
)

 (2.6)
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Finally using the conversion formula for quaternions to Euler angles found in

Appendix F:

Γ1 =


x

−y√
y2+z2

∗
√
1− x2

−z√
y2+z2

∗
√
1− x2

 (2.7)

Formulation of the y-direction (i.e. column 2)

η
′

y = j x (xi+ yj + zk) = −xk + zi (2.8)

Next normalizing the η
′
y produces:

ηy =
−xk + zi√
x2 + z2

(2.9)

θ1 = cos−1[j · xi+ yj + zk√
x2 + y2 + z2

] = cos−1 y√
x2 + y2 + z2

(2.10)

This can then be related to a quaternion such that:

q2 =


sin( θ1

2
) ∗ −x√

x2+z2

sin θ1
2
∗ 0

sin( θ1
2
) ∗ z√

x2+z2

cos( θ1
2
)

 (2.11)

Again using the conversion formula for quaternions to Euler angles found in

Appendix E:

Γ2 =

 −x√
x2+z2

∗
√

1− y2

y
−z√
x2+z2

∗
√

1− y2

 (2.12)

Formulation of the z-direction (i.e. column 3)

η
′

z = k x (xi+ yj + zk) = xj − yi (2.13)
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Next normalizing the η
′
z produces:

ηz =
xj − yi√
x2 + y2

(2.14)

θ1 = cos−1[k · xi+ yj + zk√
x2 + y2 + z2

] = cos−1 z√
x2 + y2 + z2

(2.15)

This can then be related to a quaternion such that:

q3 =


sin( θ1

2
) ∗ x√

x2+y2

sin( θ1
2
) ∗ −y√

x2+y2

sin θ1
2
∗ 0

cos( θ1
2
)

 (2.16)

Lastly,

Γ3 =


−x√
x2+y2

∗
√
1− z2

−y√
x2+y2

∗
√
1− z2

z

 (2.17)

Total Γ Matrix This results in the following combined Γ Matrix:

ΓTotal =

 Γ1 Γ2 Γ3

 (2.18)

ΓTotal =


x −x√

x2+z2
∗
√

1− y2 −x√
x2+y2

∗
√
1− z2

−y√
y2+z2

∗
√
1− x2 y −y√

x2+y2
∗
√
1− z2

−z√
y2+z2

∗
√
1− x2 −z√

x2+z2
∗
√

1− y2 z

 (2.19)

Through the use of three 3-D accelerometers it is possible to reduce an

infinite number of possible rotation matrices to two unique rotation matrices. The

two possible matrices are the positive and negative of each other, which mean they

both perform the rotation to get the correct location, just in opposite directions.

2.3.2 Star Tracker Model

As previously stated the star tracker quaternion is in the form:
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StarTrackermeasured =


q1
q2
q3
q0

 (2.20)

where,

q =


sin( θ

2
) ∗ cos(βx)

sin( θ
2
) ∗ cos(βy)

sin( θ
2
) ∗ cos(βz)
cos( θ

2
)

 (2.21)

Again the quaternions are in the form of the vector first (q1,q2,q3) and then

the scaler (q0),where θ is the rotation angle and cos(βx), cos(βy), and cos(βz) are

the direction cosines locating the axes of rotation.

Another way to understand the quaternions is to convert them into a direc-

tion cosine matrix or transformation matrix. This can be accomplished by first

rewriting the unit quaternion as follows:


q1
q2
q3
q0

 =


Q(1)
Q(2)
Q(3)
Q(4)

 (2.22)

With this change the individual quaternion values can be assembled into: [32]

M =
[
Q1 Q2 Q3

]
(2.23)

where,

Q1 =
Q(1, 1)2 −Q(2, 1)2 −Q(3, 1)2 +Q(4, 1)2

2 ∗ (Q(1, 1) ∗Q(2, 1)−Q(3, 1) ∗Q(4, 1))
2 ∗ (Q(1, 1) ∗Q(3, 1) +Q(2, 1) ∗Q(4, 1))

(2.24)
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Q2 =
2 ∗ (Q(1, 1) ∗Q(2, 1) +Q(3, 1) ∗Q(4, 1))
−Q(1, 1)2 +Q(2, 1)2 −Q(3, 1)2 +Q(4, 1)2

2 ∗ (Q(2, 1) ∗Q(3, 1)−Q(1, 1) ∗Q(4, 1))
(2.25)

Q3 =
2 ∗ (Q(1, 1) ∗Q(3, 1)−Q(2, 1) ∗Q(4, 1))
2 ∗ (Q(2, 1) ∗Q(3, 1) +Q(1, 1) ∗Q(4, 1))
−Q(1, 1)2 −Q(2, 1)2 +Q(3, 1)2 +Q(4, 1)2

(2.26)

2.3.3 Rotation Correction and Alignment Matrices

An a priori source needed is the “U” transformation matrix. This matrix

converts from the standard East-North-Up (ENU) convention to the North-East-

Down (NED) convention used in this paper. The matrix can be written as follows:

 N
E
D

 =

 0 1 0
1 0 0
0 0 −1

 E
N
U

 ⇒

 N
E
D

 =
[
U

]  E
N
U

 (2.27)

Other matrices used are the body alignment matrices. These matrices rep-

resent the alignment of the sensors with respect to the vehicle body frame, des-

ignated as [M ]ABody and [M ]CBody for the accelerator and star tracker, respectively.

For this research, and without loss of generality, the body alignment matrices for

both the accelerometer and star tracker are assumed to be identity. This will

not hold true for real systems, however, as the transportation and landing of a

space vehicle will skew the alignment matrix from its initial identity configuration,

resulting in alignment error.

2.3.4 Extraction of Navigational Coordinates

The extraction methods given navigational and orientation data are discussed

in this section. That is,

1. Given Γ and ∆: Extract α, β, ϵ, λ, and ϕ
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2. Given α, β and ∆: Extract λ, ϕ, and ϵ

3. Given λ, ϕ, and ∆: Extract α, β, and ϵ

2.4 Extracting Local Coordinates from Accelerom-

eter and Star Tracker Data

[H(ϵ)]DownNED is defined as the heading transformation matrix relating ”Down“ to

NED coordinate frame and can be calculated such that,

[H(ϵ)]DownNED =

 cos ϵ sin ϵ 0
− sin ϵ cos ϵ 0

0 0 1

 (2.28)

[LL(λ, ϕ)]NEDSD is defined as the cosine latitude and longitude matrix describing

the attitude change of NED coordinate frame with respect to the selenodetic

coordinate frame:

LL(λ, ϕ)]NEDSD =

 sinλ cosλ 0
− cosλ sinϕ − sinλ cosϕ cosϕ
cosλ cosϕ sinλ cosϕ sinϕ

 (2.29)

Combining these equations create the following relationship:

[H(ϵ)]Down
NED [LL(λ, ϕ)]NED

SD =

 cos ϵ sin ϵ 0
− sin ϵ cos ϵ 0

0 0 1

 sinλ cosλ 0
− cosλ sinϕ − sinλ cosϕ cosϕ
cosλ cosϕ sinλ cosϕ sinϕ


(2.30)

Then, combining Equation 2.29 and 2.30: − cos ϵ sinλ− sin ϵ cosλ sinϕ cos ϵ cosλ− sin ϵ sinλ sinϕ sin ϵ cosϕ
− sin ϵ sinλ+ sin ϵ cosλ sinϕ − sin ϵ cosλ− cos ϵ sinλ sinϕ cos ϵ cosϕ

cosλ cosϕ sinλ cosϕ sinϕ

 = [ΦA]
Down
SD

(2.31)

This equation is equivalent to the output as it can be calculated from sensors and

”a priori” alignment matrices such that:
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[ΦA]
Down
SD = [Γ]DownA [MA]

A
Body([MC ]

C
Body)

T ([∆]InertialC )T ([Ω]SDInertial)
T (2.32)

In the above equation Γ and ∆ represent the accelerometer and star tracker

respectively. Also included are [MA]
A
Body and [MC ]

C
Body which represent the ac-

celerometer and star tracker alignments with respect to the body coordinate frame.

The above matrix [ΦA]
Down
SD is the matrix from which it is possible to calculate λ,

ϕ, and ϵ. These can be extracted as follows:

λ = tan−1

[
ΦA(3, 2)

ΦA(3, 1)

]

ϕ = tan−1

[
ΦA(3, 3)√

Φ(2, 3)2 + Φ(1, 3)2

]

ϵ = tan−1

[
ΦA(2, 3)

ΦA(1, 3)

]
(2.33)

Note that it can be seen in Equation 2.34 that it would be also possible to

extract ϕ as seen:

ϕ = sin−1[Φ(3, 3)] (2.34)

This would be a valid solution except that sin−1() requires quadrant de-

termination. This is due to having the same sign in both the first and second

quadrant.
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2.4.1 Extracting Tilt, Slope, and Star Tracker Given Lon-

gitude, Latitude and Heading

As stated above:

[ΦA]
Down
SD = [Γ]DownA [MA]

A
Body([MC ]

C
Body)

T ([∆]InertialC )T ([Ω]SDInertial)
T (2.35)

It is possible to further de-construct [Γ]DownA [MA]
A
Body and define it as:

[ST (α, β)]BodyDown = ([Γ]DownA [MA]
A
Body)

T (2.36)

Where,[ST (α, β)]BodyDown, equals:

[ST (α, β)]BodyDown =

 cos(β) sin(β) sin(α) − sin(β) cos(α)
0 cos(α) sin(β)

sin(β) − cos(β) sin(α) cos(β) cos(α)

 (2.37)

Such that [Φαβ]
Down
SD equals:

[Φαβ]
Down
SD = ([ST (α, β)]BodyDown)

T ([Ω]SDInertial[∆]InertialC [MC ]
C
Body)

= ([ST (α, β)]BodyDown)
T ([MC ]

C
Body)

T ([∆]InertialC )T ([Ω]SDInertial)
T

and,

[ΦA]
Down
SD = [Φαβ]

Down
SD (2.38)

The rest follows the same as above, − cos ϵ sinλ− sin ϵ cosλ sinϕ cos ϵ cosλ− sin ϵ sinλ sinϕ sin ϵ cosϕ
− sin ϵ sinλ+ sin ϵ cosλ sinϕ − sin ϵ cosλ− cos ϵ sinλ sinϕ cos ϵ cosϕ

cosλ cosϕ sinλ cosϕ sinϕ

 = [Φαβ ]
Down
SD

(2.39)
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Again to calculate λ, ϕ, and ϵ. They can be extracted as follows:

λ = tan−1

[
ΦA(3, 2)

ΦA(3, 1)

]

ϕ = tan−1

[
ΦA(3, 3)√

Φ(2, 3)2 + Φ(1, 3)2

]

ϵ = tan−1

[
ΦA(2, 3)

ΦA(1, 3)

]
(2.40)

2.4.2 Extracting Latitude, Longitude, and Star Tracker

Given Tilt, Slope, and Heading

A third possibility is to extract tilt slope and heading from known latitude, longi-

tude, and star tracker data.

([ST (α, β)]Body
DownH(ϵ)]Down

NED )T = ([U ]NED
ENU )T [LL(λ, ϕ)]ENU

SD [Ω]SD
Inertial[∆]InertialC [MC ]

C
Body (2.41)

=

 0 1 0
1 0 0
0 0 −1

 − sin(λ) cos(λ) 0
− cos(λ) sin(ϕ) sin(λ) sin(ϕ) cos(ϕ)
cos(λ) cos(ϕ) sin(λ) cos(ϕ) sin(ϕ)

Ω]SD
Inertial[∆]InertialC [MC ]

C
Body

=

 − cos(λ) sin(ϕ) − sin(λ) sin(ϕ) cos(ϕ)
− sin(ϕ) cos(λ) 0

− cos(λ) cos(ϕ) sin(λ) cos(ϕ) − sin(ϕ)

Ω]SD
Inertial[∆]InertialC [MC ]

C
Body (2.42)

It was previously stated that:

([ST (α, β)]Body
DownH(ϵ)]Down

NED )T =  cos(β) sin(β) sin(α) − sin(β) cos(α)
0 cos(α) sin(β)

sin(β) − cos(β) sin(α) cos(β) cos(α)

  cos ϵ sin ϵ 0
− sin ϵ cos ϵ 0

0 0 1

 T

(2.43)

A1 =

 cos(β) cos(ϵ)− sin(β) sin(α) sin(ϵ)
− cos(α) sin(ϵ)

sin(β) cos(ϵ) + cos(β) sin(α) sin(ϵ)

 (2.44)
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A2 =

 cos(β) sin(ϵ) + sin(β) sin(α) cos(ϵ)
cos(α) cos(ϵ)

sin(β) sin(ϵ)− cos(β) sin(α) cos(ϵ)

 (2.45)

A3 =

 − sin(β) cos(α)
− sin(α)

cos(β) cos(α)

 (2.46)

=
[
A1 A2 A3

]T
(2.47)

Taking the transpose yields:

B1 =

 cos(β) cos(ϵ)− sin(β) sin(α) sin(ϵ)
cos(β) sin(ϵ) + sin(β) sin(α) cos(ϵ)

− sin(β) cos(α)

 (2.48)

B2 =

 − cos(α) sin(ϵ)
cos(α) cos(ϵ)

sin(α)

 (2.49)

B3 =

 − sin(β) cos(α)
sin(β) sin(ϵ)− cos(β) sin(α) cos(ϵ)

cos(β) cos(α)

 (2.50)

=
[
B1 B2 B3

]T
(2.51)

Thus, its is possible to extract tilt, slope, and heading as follows:
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α = sin−1[Ψ(3, 2)]

β = tan−1

[
−Ψ(3, 1)

Ψ(3, 3)

]

ϵ = tan−1

[
−Ψ(1, 2)

Ψ(2, 2)

]
(2.52)

2.4.3 Extracting Tilt and Slope

Here it will be shown how the tilt and slope matrices are assembled, and how

information may be extracted from them. The tilt/slope matrix takes on the form:

[ST (α, β)]BodyDown =

 cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)

 1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)



=

 cos(β) sin(β) sin(α) − sin(β) cos(α)
0 cos(α) sin(α)

sin(β) − cos(β) sin(α) cos(β) cos(α)

 (2.53)

where,

[ST (α, β)]BodyDown = ([ΓDownAcc ][MA]
Acc
Body)

T (2.54)

such that

[Γ,MA]
Down
Body = [ΓDownAcc ][MA]

Acc
Body (2.55)

By examining Equation 2.55, it is possible to directly extract α and β:
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α = tan−1
[
[Γ,MA](3,2)
[Γ,MA](2,2)

]
β = tan−1

[
−[Γ,MA](1,3)
[Γ,MA](1,1)

]
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Chapter III

Errors and Disturbances

CelNav was developed as an inexpensive and effective mobility solution for the

navigation of extra planetary bodies. Lumped error analysis was shown by Thein

et al.[2] to achieve a 50m accuracy with a maximum lumped uncertainty/sensor er-

ror of 5.93 arcsec. Current Lunar navigational requirements allow for navigational

errors of 2000m.

CelNav has the capacity work as two different systems, a mobility solution

and a fault detection algorithm. CelNav has the capability to check for correct

heading, latitude, and longitude using different sensor data depending on what

is available. Therefore, when a rover/astronaut can communicate with a ground

station or an orbiting satellite, CelNav can be used as a local confirmation of

latitude and longitude. Or, if a rover/astronaut suddenly loses contact with said

satellite or ground station, current latitude and longitude will still be available for

navigation due to CelNav.

By using the appropriate matrices it is possible to extract all necessary

navigational data (latitude, longitude, and heading as well as tilt and slope) using

38



CelNav and accurate Γ and ∆ matrices.

This chapter focuses on the expected errors associated with the CelNav

navigational system, from an experimentally constructed star tracker system, Con-

tained Attitude Star Tracking Sensor (CASTS), and a 3-D accelerometer, as well

as errors associated with necessary initial conditions.

Figure 3.1: Rover Example [22]

In practical applications, a rover/astronaut would have an accelerometer

mounted such that it would always point towards the center-of-gravity (COG) of

the Moon and the star camera that points angled to the front and to the rear.

This reasoning will be explained later in this chapter.
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3.1 Accelerometer Errors

This section focuses on both measurement and alignment errors found in the

accelerometer implementation.

An accelerometer triad is used to determine the tilt and slope of the astro-

naut or rover. In order to accurately determine both tilt and slope only one (1)

3-D accelerometer is needed to generate a unique matrix denoted by Φ as shown

in Equation 2.35. From this unique Φ, latitude and longitude is extracted using

a Γ matrix of the form of Equation 2.19. The expected total error of the 3-D

accelerometers is expected to be on the order of 10−3, as stated by Quinn [22] and

Thein et al.[2].

The mounting of the accelerometer triad introduces a significant portion

of the total error that is expected in the system. CelNav relies on accurate sen-

sor placement to calculate the many required attitude transformations. In other

words, proper sensor aliment is critical. For accurate navigation, the accelerometer

alignment error is assumed orthogonal and is required to be within 60 arcsec. This

includes the internal orientation of the 3-D accelerometer, as well as the mount-

ing of the hardware to a rover or astronaut. This alignment error accounts for

the greatest source of navigational error for the CelNav algorithm. Reducing this

alignment error to even a conservative estimate of 10-20 arcsec, one may reduce

the maximum navigation error in CelNav within 200-300 meters as can be seen in

Figure 3.2. A rover or astronaut has a line of sight of 2000m[22]. In Figure 3.2

the three circles represent 1σ, 2σ, and 3σ, to be discussed in greater detain in

Chapter 4. It can be seen that a great deal of the possible navigational errors fall

within the 1σ circle, where 68.28% confidence interval, as calculated by CelNav.
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With the greatest error being about 600m from the actual location. Through

greater alignment error reduction or improved calibration navigational error can

be greatly reduced.

−600 −400 −200 0 200 400 600

−500

−400

−300

−200

−100

0

100

200

300

400

500

Longitude Navigational Error (meters)

La
tit

ud
e 

N
av

ia
ga

tio
na

l E
rr

or
 (

m
et

er
s)

Corresponds to Phi = 10 Lambda = 90

Figure 3.2: 10-20 Arcsec Accelerometer Alignment Noise

3.2 Simulated Star Tracker and Contained Atti-

tude Star Tracking Sensor

Contained Attitude Star Tracking Sensor (CASTS) was developed by Tyler

Wills [26] for use in swarm optimization. Further design and construction dis-

cussion can be found in Appendix C. CASTS was designed to be easily trans-

portable for installation on multiple mobile platforms. CASTS contains camera

sensor(s), an accelerometer and a “star field”, canvas enclosure containing the col-

ored “stars”, to be discussed later. CASTS is attached to a mock Lunar rover,

to be discussed later, containing a drive mechanism, camera platform and “star
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field” mounting.

Figure 3.3: CASTS

CASTS, as described above, is a two part system: cameras/3-D accelerome-

ter and a“star field”. The initial difficulty is developing a compact sensor platform

that could be easily moved. This required developing a hard mount for the cam-

eras and 3-D accelerometer. This mounting allows for the alignment of the upward

looking camera to the middle of the “star field”, as seen in Figure 3.4, reasoning

to be discussed later. Also important is the mounting of the accelerometer. The

mounting platform need to be parallel with the body of the mobile platform,

so that “down” can be determined with respect to the mobile platform’s body.

Proper mounting is critical to reducing the sensor alignment error, to be discussed

later in this chapter.
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Figure 3.4: CASTS Camera Configuration
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Figure 3.5: CASTS “Star Field” Enclosure
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3.2.1 Measurement Error

In this section two different types of measurement error are discussed. First

is the star tracker error that is artificially introduced in an analytical simulation.

Next is the error found in the CASTS’s sensor system implemented in the experi-

mental test results. In practical applications two star cameras are necessary, with

one angled towards the front of rover/astronaut and one angled to the rear. This

is necessary to account for instances when one camera may have its field of view

blocked, for example, by the local terrain.

The simulated star tracker quaternion is corrupted with a total of 60 arcsec

of error; the error is distributed with 10 arcsec along the x-axis, 10 arcsec along

the y, and 40 arcsec along the z, as per specification of NASA aerospace engineer

David Quinn.[22] It is found that only increasing or decreasing the level of noise

along the z-axis has any effect on the system; changes along and x and y-axes

have no significant effect. Though this effect is almost unnoticeable, it does, in

fact, add non-negligible error to the total navigational error. This can be seen

in Table 3.1 with three distinct test cases to display the effects for 60 arcsec of

measurement error dispersed over the x, y, and z axes.

Star Tracker Alignment Errors
Case 1 Case 2 Case 3

x-axis 40 10 10
y-axis 10 40 10
z-axis 10 10 40

Table 3.1: Latitude 89.9 and Longitude 90 - Test Case Criterion

In Figures 3.6, 3.7, and 3.8 it can be difficult to see a difference between

the three figures. But, if the 3σ circles are examined it can be seen that the radius
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is larger for Figure 3.8 when compared to Figure 3.6 or 3.7. This difference may

seem small but can matter greatly as more error conditions are added to the sensor

models.
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Figure 3.6: Case 1 - x-axis 40, y-axis 10, and z-axis 10
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Figure 3.7: Case 2 - x-axis 10, y-axis 40, and z-axis 10
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Figure 3.8: Case 3 - x-axis 10, y-axis 10, and z-axis 40
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CASTS measurement error is highly dependent on proper calibration. This

is due to colors being repeated around the outside and the“Star” patterns remain-

ing constant. The colors of the “star field” are red, green and blue, with two blues

being repeated on adjacent walls. An additional blue “star pattern” is mounted

on the “roof” of the “star field” to represent heading. The “star field” pattern

can be seen in Figure 3.9.

Figure 3.9: CASTS Experimental Platform

Another difficulty to note in CASTS is ensuring that the colored stars, (red,

blue or green) are of the appropriate brightness and not contaminated by ambient

light and/or are not overly bright. Additional error is due the cameras’ not being

able to accurately determine the exact center of each “star” due to the pixelation
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of the image. This can be accounted for by dimming the LEDs’ intensity and

making the color deeper. It may be possible by using different image processing

techniques to reduce this measurement error and significantly increase accuracy.

Again it is important to note that if the calibration is performed without

any tilt in the “star field,” measurements will be erratic. But if the calibration is

done with a moderate tilt in the “star field”, samples are less erratic. For example

if the first result could be 70deg north latitude the second could be 45◦ north

latitude with level calibration, but with the moderate tilt the first result could be

70deg north latitude the second could be 70.5◦ north latitude without moving the

CASTS experimental setup. This is due to the method used in the digital image

processing of CASTS. When the “star field” is lined up in a linear fashion, as seen

in Figure 3.10(A), during calibration, CASTS has a difficulty determining accurate

latitude and longitude. This is most likely due to an inability to accurately deter-

mine distance between the “stars” in the “star field” when linearly aligned. But

calibrating CASTS with the “star field” at an angle determining distances between

“stars” is easier, thus minimizing erratic samples. To further reduce measurement

inconsistencies in the environment such as camera blind spots, three stereoscopic

cameras, are used. Thus by seeing two walls or a wall and the ceiling it is possible

to get a unique measurement.
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Figure 3.10: CASTS Experimental Star Alignment

A final difficultly is keeping the “star field” facing the same direction while

rotating only the attached rover. Rotating the “star field” is similar to having in-

correct star tracking maps, such that and data derived/calculated with the rotated

field cannot be trusted. This difficulty produces a similar effect to the previous

difficulty with improper calibration.

3.2.2 “Star Tracker”Alignment Error

In this section two different types of alignment error are discussed: (1) star

tracker alignment error used in the analytical simulation, and (2) alignment error.

For simulation purposes the star tracker alignment matrix is constructed to

have a max of 60 arcsec of artificially corrupted error. It is found that increasing

and decreasing the amount of noise in this measurement has negligible effect on

the total navigational error. Again, although this effect is almost unnoticeable, it

does, in fact, add non-negligible error to the total navigational error, not shown

here.

CASTS alignment error is highly dependent on the rigidity of the experi-
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mental setup.

Figure 3.11: CASTS Experimental Star Setup

As can be seen in Figure 3.11 placement of the cameras inside the CASTS platform

must be consistent. If the CASTS “star cameras” are not placed properly it is

possible that some of the “star field” may not be within the viewing angle of

the “star cameras” as seen in Figure 3.12. Each of three cameras face forward,

right(not shown in Figure 3.12) and up. If any of these cameras move during

testing the calibration is invalid, and needs to be repeated.

Again, placing the “star cameras” consistently in the same location will

produce repeatable results.
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Figure 3.12: CASTS Star Camera Viewing Angle

3.3 Initial Conditions

An important assumption that is made in the implementation of CelNav algo-

rithm into a dynamic navigation system is that the last valid location, described

with latitude and longitude coordinates, are known. This is important due to

implementation of dynamic observers to improve the accuracy of CelNav results.

Observers are being implemented to help “clean up” the data generated by CelNav,

for use in feedback for on-board controllers. These observers will be discussed at

length in Chapter 7. For analytical simulation and experimental testing purposes,

a priori data for latitude and longitude can be extracted from an Inertial Navi-

gation System (INS), GPS, or other methods for determining location. CelNav,

itself, does not require accurate initial conditions. However, the more accurate the

initial conditions, the faster the implemented observers are be able to converge,

returning accurate location data.
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3.4 Inertial Navigation System (INS)

During testing it is found that the CASTS “star tracker” is impractical as it

does not yield consistent “measurements.” Due to the inconsistency in the ability

to calibrate CASTS it is determined that an Inertial Measurement Unit (IMU)

containing a GPS, 3-D magnetometer, and 3-D accelerometer should be used in

place of a CASTS experimental setup to mimic the sensor output from a star

tracker. Additional information can be found in Appendix C.
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Chapter IV

CelNav Performance Analysis

4.1 Monte Carlo Analysis

Monte Carlo is the name associated with a mathematical technique developed

by scientists working at Los Alamos National Lab in 1940.[3] The solutions sought

through Monte Carlo simulations form a statistical answer; these are governed by

the laws of chance. A good use of Monte Carlo analysis is when the answer is

known a priori and it is necessary to find out how accurately an experiment is

to providing said answer. Monte Carlo Analysis develops a range of possible an-

swers which increases in accuracy with the increase of the number of experiments

performed. According to Kalos, Monte Carlo can be defined as “[a] method that

involves deliberate use of random numbers in a calculation that has the struc-

tures of a stochastic process”; with stochastic process defined as “a sequence of

states whose evolutions [are] determined by random events.” [3] The Monte Carlo

method, as a result, is an appropriate application for CelNav. In this chapter the

simulation parameters of the analytic simulations, as well as random noise levels,
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are discussed.

This testing “field” studies a “global map” of the Lunar surface, specifically

looking at latitudes and longitudes with great distances between, then moving

to latitudes and longitudes approaching the polar regions where latitudes and

longitudes converge. This chapter analyzes the navigational error associated with

both expected and “worst case” noise levels and how Monte Carlo parameters are

calculated.

4.2 Monte Carlo Parameters

For this set of Monte Carlo simulations three parameters are chosen: required

sample size, incremental propagation and noise levels. The calculation of a confi-

dence interval is not required because the required accuracy of the simulations is

known.

4.2.1 Sample Size

The number of required sample points is dependent upon the predicted sam-

pling error and some bounding term B such that [2]:

ε ≈ B = 2
√

0.25/n = 1/
√
n (4.1)

This can, in turn, be simplified to:

1/ε2 ≈ 1/B2 = n. (4.2)

Since between 2.5% and 3% error is expected, Equation 4.2 shows that

approximately 1000 and 1600 samples are required for a large enough random
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sample pool. Table 4.1 shows that CelNav is able to produce 2028 samples in

a single simulation of a chosen latitude and longitude. This greatly exceeds the

calculated number of necessary samples 1000-1600, from the above equation.

Number of Data Points per ϕ and λ

Minimum 1000

Simulated 2028

Table 4.1: Number of Simulated Data Points

In the future it may be necessary to take a larger sampling size with the

inclusion of real sensors instead of simulated ones. This larger sample size is

necessary to reduce the variance generated by sensors producing something other

than what can be modeled as white noise.

4.2.2 Sample Locations

One must also choose which latitudes and longitudes to sample. It is important

to note that for this Monte Carlo analysis, testing encompasses the entire Lunar

surface in latitude and longitude. This is important for repeatability of certain

samples, as the simulation should, for example, have the same sample distribution

for a constant latitude while rotating the body about different longitudes. This

should hold true for regions regardless of the distances between latitudes and

longitudes, which can be found in Table 4.2:
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Increments Range

5◦ −80◦ ⇒ 80◦

1◦ 80 ⇒ 89◦ and -80◦ ⇒ −89◦

.01◦ 89 ⇒ 90◦ and− 89◦ ⇒ −90◦

Table 4.2: Sampling Intervals

4.3 Uncertainties and Biases

Three noise cases are examined: no noise, expected noise, “worst case” noise.

These levels are chosen due to the unknown levels of both sensor and alignment

noise found in the potential mobility solution. Table 4.3 contains the maximum

levels of expected noise in real world mobility solution:

Noise Type Sensor Noise Magnitude

Measurement Accelerometer 1 ∗ e−6

Measurement

X=10 Arcsec

Star tracker Y=10 Arcsec

Z=40 Arcsec

Alignment Star Tracker 60 Arcsec

Alignment Accelerometer 60 Arcsec

Table 4.3: Monte Carlo Noise Power

57



4.4 Data Distribution

Below is the standard form for a probability density function (PDF)[3]:

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (4.3)

The mean(µ) and the standard deviation(σ) for a generalized data set for a latitude

can be seen in Table 4.4: This mean and standard deviation for a generalized data

Statistics Example
Mean(µ) 57.2001

Standard Deviation(σ) 508.1359

Table 4.4: Monte Carlo mean (µ) and standard deviation (σ)

set in Table 4.4 can be shown graphically in Figure 4.1. Figure 4.1 is the probability

distribution function for the generalized latitude. This figure was generated by

performing a simulation and plotting the navigational error for said latitude. This

concludes that the noise as modeled in the CelNav algorithm presents itself as a

gaussian distribution. Showing the above is necessary for the development of the
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Figure 4.1: Probability Distribution Function - CelNav Simulation
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Extended Kalman Filter (EKF). This is due to how the EFK models noise, which

requires noise to be in a gaussian distribution.

4.5 Results

In this section it will be discussed how the three different noise levels work

to decrease the accuracy of the CelNav algorithm. The noise levels are: no noise

(zero (0) measurement and alignment noise), expected noise (1∗10−6 measurement

and little to no alignment noise due to expected calibration), and maximum al-

lowable noise, (1∗10−1 of measurement noise and 60 arcsec of alignment noise).

Three different Lunar regions will be explored in this thesis, including the

equatorial and the polar regions (North Pole/South Pole). In each of the figures

in this chapter, three circles are drawn which coincide with specific confidence

intervals(1σ, 2σ, and 3σ) specified in Table 4.5. The latitude navigational error

Confidence Interval

1-Sigma 68.26% Confidence Interval

2-Sigma 95.45% Confidence Interval

3-Sigma 99.73% Confidence Interval

Table 4.5: Confidence Intervals

can be calculated as:

ϕnaverr =
ϕe
180

∗RMoon ∗ π (4.4)

The longitude navigational error can be calculated as:

λnaverr =
λe
360

∗ (Rmoon ∗ cos(ϕtrue) ∗
π

180
) ∗ (2π) (4.5)

Table 4.6 shows the criterion used in each test case.
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Location Sensors Errors
Latitude Longitude Star Tracker Accelerometer Accelerometer

Alignment Alignment Noise
Case 1 0 90 0 0 0
Case 2 0 90 0 0 1 ∗ e−6

Case 3 0 90 60 arcsec 60 arcsec 1 ∗ e−6

Table 4.6: Latitude 0 and Longitude 90 - Test Case Criterion

4.5.1 Test Case - Latitude 0 and Longitude 90

First the “no noise” simulation is examined. This simulation contains no mea-

surement or alignment error. It is found that with this “no noise” case all the

points fall to one point with no variability (less numerical error). As can be seen

in Figure 4.2 below, with no error, neither measurement nor alignment errors, the

location error is negligible (magnitude on the scale of 10−10).
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Figure 4.2: Case 1 (No Noise) - Latitude 0◦ Longitude 90◦
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Next, only accelerometer measurement noise for the “expected noise” simu-

lation is discussed. It can be seen in Figure 4.3 that there is more scattering

of locations as compared to Figure 4.2. With only marginal measurement noise

almost all of the sample data points fall within a 4m radius 2-σ circle.
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Figure 4.4 shows the “worst case” noise. Here, the navigational error in-

creases to 2000m. This is a great increase in distance. However, an astronaut

is able to clearly see upwards of 2500m on the Lunar surface.[22] As long as a

majority of the possible locations sampled appear within the 3-σ circle, the error

though large, is still deemed as acceptable.[22]
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Figure 4.4: Case 3 (Worst Case Noise) - 0◦ Longitude 90◦
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4.5.2 Test Case - Latitude 89.9 Longitude 90

The next test case is chosen to be in close proximity to the Lunar north pole.

The next set of test cases are shown in Table 4.7:

Location Sensors Errors
Latitude Longitude Star Tracker Accelerometer Accelerometer

Alignment Alignment Noise
Case 1 89.9 90 0 0 0
Case 2 89.9 90 0 0 1 ∗ e−6

Case 3 89.9 90 60 arcsec 60 arcsec 1 ∗ e−6

Table 4.7: Latitude 89.9 and Longitude 90 - Test Case Criterion

Here it can again be seen in Figure 4.5 that with no error, neither mea-

surement nor alignment error, navigational error decreased to a magnitude on the

scale of 10−10. This is the same magnitude that was seen previously in Figure 4.2,

meaning that when instrumentation is even extremely close to the polar regions

it is still possible to obtain acceptable navigational results, with reasoning to be

explained later in this chapter.
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Figure 4.6 shows an interesting occurrence at extreme latitudes such as

that shown in Table 4.7. Sometimes there are between 1-100 outliers whose errors

are so great that they do not shift sigma circles. These outliers occur naturally in

normally distributed data, such as this data, where the observed data point can

be up to twice the standard deviation with the possibility of the point being up to

three times the standard deviation.[3] With these outliers removed these results

resemble the previous Case 2 simulations of Figure 4.5. In practice, a mobility

solution would compare the current position to an estimated position to calculate

the error. With the implementation of a state observer, the estimator works to

smooth out anomalous spikes in data. As such, this anomalous point would likely

be ignored. This will be further explained in a later chapter.
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Even at this extreme latitude of 89.9◦ Figure 4.8 still follows the same pattern

as other simulations at the worst case scenario (Example Figure 4.4).
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4.5.3 Test Case - Latitude 90 Longitude 90

Location Sensors Errors
Latitude Longitude Star Tracker Accelerometer Accelerometer

Alignment Alignment Noise
Case 1 90 90 0 0 0
Case 2 90 90 0 0 1 ∗ e−6

Case 3 90 90 60 arcsec 60 arcsec 1 ∗ e−6

Table 4.8: Latitude 90 and Longitude 90 - Test Case Criterion

This final simulation focuses on the most extreme case, that of 90◦ north or

south latitude. This is to simulate being exactly at the poles of the Lunar body.

As can be seen in Figure 4.10 the same visual can be seen as in the previous

cases with no noise, and navigational errors on the order of magnitude of 10−11m,

still showing small enough error to be considered numerical error.
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Once noise is added to the systems it is possible to see an interesting effect.

In Figure 4.10 there is no longitudinal error. This is because all longitudinal lines

converge to a point at the poles as seen in Figure 4.11. Thus, the polar regions

navigational angle error (λe) can be large, which could still translate to a small

navigational error. This is due to how close the lines of longitude exist to each

other. A small location error can translate to many degrees of latitude away from

a desired location. Again it can be observed that with only accelerometer and star

tracker measurement error, the total navigational error is very small, extending

only 4 meters.
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Figure 4.11: Latitude and Longitude Line Convergence [30]
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Similar results can be seen in Figure 4.12. But again using the “worst case”

noise scenario the error jumps to 1500m with some samples occurring over 1500m.

(Recall that 2500m is at the upper limit of visibility on the Lunar surface.)
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Figure 4.12: Case 3 (Worst Case Noise) - Latitude 90◦ Longitude 90◦
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4.6 Conclusions of Monte Carlo Analysis

Monte Carlo analysis shows that over a large sampling population (n = 2000+),

there is a larger variance of possible locations based on the different levels of sensor

noise and alignment error. CelNav shows a gaussian distribution of results for all

levels of noise, excluding no noise. The results shown in this chapter are very

promising considering that analyses are performed for a worst case un-calibrated

scenario. Thus, even in the worst case scenario, minus a full sensor failure, CelNav

appears to perform acceptably, within the upper limit of line of sight on the Lunar

surface.
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Chapter V

Preliminary Experimental

Validation of CelNav - SkyScout

In this chapter preliminary verification of CelNav using hardware is performed

using the SkyScout personal astronomy system produced by Celestron. The

SkyScout is a hand-held device and is commercially available. This home as-

tronomy device has the ability to detect its pointing direction and the celestial

body the user is currently viewing, as well as the ability to give directions as to

how to orient the SkyScout to view a chosen celestial body.

The SkyScout contains an internal inertial measurement unit (IMU) as well

as a GPS. This information is available in single sample form from a user menu but

requires using proprietary software from the vendor. Using this information it is

possible to extract raw data from the SkyScout. SkyScout outputs several variables

such as GPS coordinates, time, altitude, azimuth, rotation, right ascension, and

declination. Using this information it is possible to construct all the necessary

matrices (startracker (∆) and Accelerometer (Γ) to verify the CelNav algorithm.
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5.1 Developing CelNav Matrices

In this section, the Celestron SkyScout data is incorporated into the CelNav

algorithm to confirm the algorithm’s legitimacy. It should be noted that the

Skyscout is used only as a “stand alone” sensor platform supplying the measure-

ment data necessary for the CelNav algorithm. The development of both the

startracker (Delta) and accelerometer (Gamma) was discussed earlier in Chapter

2. Here only the information supplied from the Skyscout to populate matrices, ∆

and Γ, are examined against the “true” latitude and longitude extracted from the

internal GPS unit.

5.1.1 Converting Julian Time to Earth-Center-Earth-Fixed

Sidereal time is an astronomical timekeeping system that allows astronomers to

determine where to look for certain celestial bodies in the night’s sky. This is due

to the fact that if one is able to determine an object’s location in the night’s sky at

a given time, on the next night the celestial object should be in the same location.

Such information can be obtained from U.S. Navel Observatory[18]. Sidereal time

can then be converted into Greenwich Hour Angle (GHA), which is a measure of

the angle (in degrees) from any point on Earth to the prime meridian.

In order to accurately transform from the Earth-Center-Inertial (ECI) co-

ordinate system, (which do not rotate with Earth), to that of the Earth-Center-

Earth-Fixed (ECEF) coordinate system, which does rotate with Earth, the current

number of days in Julian time must first be determined. Julian Time can be ob-

tained via a Julian calender or calculated by the number of days that have passed

since January 1, 4713 BC Greenwich noon.[17] This can then be converted into
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Sidereal Time.

The GHA can be easily derived from Sidereal time by taking the remainder

of:

GHA = (Sidreal Time + 450)/360 (5.1)

this angle can then be converted into the rotation matrix ΩECEF
ECI , which describes

rotation from the Earth-Center-Inertial coordinate system to that of the Earth-

Center-Earth-Fixed coordinate system such that:

ΩECEF
ECI =

 cos(GHA) sin(GHA) 0
− sin(GHA) − cos(GHA) 0

0 0 1

 (5.2)

5.2 Constructing Startracker (∆) and Accelerom-

eter (Γ)

The SkyScout is used to extract the raw data, startracker (∆) and Accelerom-

eter (Γ), necessary to verify the CelNav algorithm. The initial results are tested

in Greenbelt, Maryland (latitude 39.0◦N and long 76.89◦W). All the tests, 28

included, were performed outside in a clearing, with the SkyScout mounted to

a tripod for stability.[22] Each test was performed in the same location at the

same altitude, only the heading and the angle of the Skyscout are modified.[22]

Extracting ∆ and Γ is easily achieved since the SkyScout has the capacity

to calculate the local latitude and longitude from internal sensors. The resulting Γ

and ∆ matrices can be inserted into the traditional CelNav equation for extracting

latitude and longitude:

Φ = [Γ−1][Ma−1][Mc][∆][Ω−1] (5.3)
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These results can then be compared to the “True” (experimental) latitude and

longitude from GPS data.

Gamma is given as:

Γ = [Ma][ST ] (5.4)

where Ma is the accelerometer misalignment matrix and [ST] is the slope tilt

matrix from Equation. (2.37). Ma represents an orthogonal misalignment. [ST]

is constructed from the altitude and azimuth data such that:

[ST ] =

 cos(Altitude) sin(Altitude) ∗ sin(Azimuth) − sin(Altitude) ∗ cos(Azimuth)
0 cos(Azimuth) sin(Azimuth)

sin(Altitude) − cos(Altitude) ∗ sin(Azimuth) cos(Altitude) ∗ cos(Azimuth)


(5.5)

Delta is given, such that:

∆ = [Mc]
−1[STH][U][LL][Ω] (5.6)

where [STH] is the slope, tilt, and heading matrix as defined as:

[STH] = ([ST(α, β)][H(ϵ)])T (5.7)

[STH]T =

 cos(β) sin(β) sin(α) − sin(β) cos(α)
0 cos(α) 0

sin(β) − cos(β) sin(α) cos(β) cos(α)

 cos(ϵ) sin(ϵ) 0
− sin(ϵ) cos(ϵ) 0

0 0 1

T

(5.8)

As seen in Chapter 2 LL is the latitude (ϕ) and longitude (λ) matrix as defined

as:  − sin(λ) cos(λ) 0
− cos(λ) sin(ϕ) sin(λ) sin(ϕ) cos(ϕ)
cos(λ) cos(ϕ) sin(λ) cos(ϕ) sin(ϕ)

 (5.9)

Again U can be defined as:

U =

 0 1 0
1 0 0
0 0 −1

 (5.10)

Finally [Mc]
−1 and [Ω] are the transformation matrix relating coordinate frame star

tracker with respect to coordinate frame Body and the planetary body’s gravity

model respectively.
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When these matrices are combined they form:

[STH]1 =

 cos(β) cos(ϵ)− sin(β) sin(α) sin(ϵ)
cos(β) sin(ϵ) + sin(β) sin(α) cos(ϵ)

− sin(β) cos(α)

 (5.11)

[STH]2 =

 − cos(α) sin(ϵ)
cos(α) cos(ϵ)

sin(α)

 (5.12)

[STH]3 =

 − sin(β) cos(α)
sin(β) sin(ϵ)− cos(β) sin(α) cos(ϵ)

cos(β) cos(α)

 (5.13)

=
[
[STH]1 [STH]2 [STH]3

]
(5.14)

5.3 Results

Test cases are performed for CelNav algorithm verification. Without loss of

generality, two randomly selected test case studies, test case 14 and 28 are rep-

resented here. These two cases are typical tests that reflect overall what is seen

using the Skyscout as the main sensor for the CelNav algorithm.

It is assumed that a 3σ max of 60 arcsec noise represents the maximum

misalignment in the accelerometer and star camera. Therefore, this noise is arti-

ficially introduced into the raw data. Three different situations are examined: no

noise, expected noise, and 60 arcsec noise. Note all noise are evenly distributed

about the x-y-z axes of each sensor. In Table 5.1 the “true” values of latitude,

longitude and heading from the SkyScout’s GPS can be found for Case 14. Ad-

ditional sensor noise is not applied due to the use of real sensor data from the

SkyScout.
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5.3.1 Case 14

Case 14 is performed at the NASA Goddard Space Flight Center (Greenbelt,

Maryland)[22]. It is performed on an open structure with a clear view of the sky.

The “true” values for the first test is provided in Table 5.1.

Truth Latitude Truth Longitude Heading

76.859◦N 38.805◦W 2.48◦N

Table 5.1: Skyscout Truth Values Case 14

These values correspond to, within the margin of error of a standard GPS unit,

the location of where the test is performed. It is possible to artificially corrupt the

alignment matrices after the data is initially collected. Through manipulation of

the alignment matrices it is possible to add error to each individual axis (x-y-z).

The first test case, as seen in Table 5.2, has no added misalignment error.

As can be seen here, errors are insignificant. This test shows that with low

error measurements CelNav is able to return accurate data. Navigational error

can be calculated as:

Position Error = arccos(cos(RASS ∗ Π
180

) ∗ cos(DecSS ∗ Π
180

) ∗ (5.15)

cos(RACN ∗ Π
180

) ∗ cos(DecCN ∗ Π
180

) +

sin(RASS ∗ Π
180

) ∗ cos(DecSS ∗ Π
180

) ∗

sin(RACN ∗ Π
180

) ∗ cos(DecCN ∗ Π
180

)

Where, RASS, is right ascension as determined by the skyscout, RACN , is the

right ascension as determined by CelNav, DecSS, is declination from the SkyScout

measurement, and DecCN , is the declination from CelNav.

The next test case is with added misalignment error, 20 arcsec of noise
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Trial 1 - 0 Arcsec Error
Location Error(Degree) Navigational Error (meter)

Latitude 76.858◦N 0
Longitude 38.805◦W 0 0
Heading 2.47◦N 0

Table 5.2: Skyscout Case 14 Trial 1 - 0 Arcsec Error

is chosen to represent expected levels of measurement noise. As can be seen in

Table 5.3 the misalignment noise adds -0.007 degrees of error and 566.25m in

navigational error. This shows that errors as small as 0.007 degrees result in

significant navigational errors.

Trial 3 - 20 Arcsec Error
Location Angle Error(Degree) Navigational Error (meter)

Latitude 76.866◦N -0.007
Longitude 38.810◦W 0.007 566.25
Heading 2.48◦N 0

Table 5.3: SkyScout Case 14 Trial 2 - 20 Arcsec Error

The next trial incorporates what is considered as a high amount of misalign-

ment. As can be seen in Table 5.4 misalignment adds -0.021 and 0.018 degrees of

error and 1571.15m in navigational error. Here it can be seen that the larger the

misalignment, the greater the resulting latitude/longitude and navigational error.

Trial 3 - 60 Arcsec Error
Location Angle Error(Degree) Navigational Error(meter)

Latitude 76.879◦N -0.021
Longitude 38.822◦W 0.018 1571.15
Heading 2.47◦N -0.003

Table 5.4: Skyscout Case 14 Trial 3 - 60 Arcsec Error
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5.3.2 Case 28

The following tables show a test case and at the same location as in Case 14

but with a different heading. The results are very similar to results previously

discussed.(Overall noise levels are held constant.)

True Latitude True Longitude Heading

78.86◦N 38.30◦W 90.69◦E

Table 5.5: Skyscout Truth Values Case 28

Trial 1 - 0 Arcsec Error
Location Error(Degree) Navigational Error (meter)

Latitude 78.858◦N 0
Longitude 38.805◦W 0 0
Heading 90.69◦E 0

Table 5.6: Skyscout Case 28 Trial 1 - 0 Arcsec Error

Trial 2 - 20 Arcsec Error
Location Error(Degree) Navigational Error (meter)

Latitude 76.850◦N 0.007
Longitude 38.811◦W 0.006 566.14
Heading 90.69◦E 0

Table 5.7: Skyscout Case 28 Trial 2 - 20 Arcsec Error

Trial 3 - 60 Arcsec Error
Location Error(Degree) Navigational Error (meter)

Latitude 76.836◦N 0.022
Longitude 38.822◦W 0.017 1569.78
Heading 90.69◦E 0

Table 5.8: Skyscout Case 28 Trial 3 - 60 Arcsec Error
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In examining Case 28 the results are quite comparable to those discussed

in Case 14. As can be seen from preliminary experimental data, CelNav results

show negligible latitude and longitude error using the GPS information when no

misalignment exists. With additional misalignment error, and sensor noise held

constant, even greater navigational errors result. Again remember, as little as

0.001 degree error translating into large navigational errors.
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Chapter VI

Simulation Model

The analytical rover model used in this research is that of Sun et al.[8], which

was originally a wheeled vehicle model designed to work with a Particle Swarm

Optimizer application. This rover model is generic enough to be modified to fit

the needs and scope of this research.

In this research, a rover is controlled via an observer-based controller. The

observers use CelNav data for feedback updates. As the goal of this research is to

analyze and compare the efficiency of the applied estimators/filters using CelNav

feedback and not the controller, a simple PID controller is used without loss of

generality.
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6.1 Rover Model

In this model, for simplicity, a two-dimensional system is discussed, although

in practical application a three-dimensional model would more closely represent

an extra-planetary body. A brief description of vehicle dynamics as they appear

in Sun et al. is discussed here, after examining how the model is modified to meet

the needs of the CelNav algorithm.

Figure 6.1: Simulation Model

First an overview of the vehicle dynamics as they appear in Figure 6.1 here

in Table 6.1.

x Vehicles position on the x axis
y Vehicles position on the y axis
θ angle between the velocity direction and the inertial X-Axis (Heading)
l length of the vehicles wheels front to back
ϕ steering angle of front wheels
q1 error term of the degree variation of front wheels
q2 error term of the acceleration variation of the vehicle

Table 6.1: Variable from Rover Model in Sun et al.
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Figure 6.2: Rover Model [8]

As seen above, the vehicle’s coordinate frame is given in the body coordi-

nate system. This is different than how it will be discussed later, where it will

be converted from inertial to body-centered coordinates. Here, using body coor-

dinates is acceptable due to the fact that only a local system is being simulated.

ẋ
ẏ

θ̇
v̇
ȧ

ϕ̇

 =


v cos(θ)
v sin(θ)
v
l
tan(ϕ)
a
0
0

+


0 0
0 0
0 0
0 0
1 0
0 1


[
q1
q2

]
(6.1)

For this application the input variables q1 and q2 are removed and replaced

with a ϕ correction term (to be discussed further in the next section). The v̇, ȧ,

and ϕ̇ terms are also removed in order to further simplify the system, leaving only

the terms found in Equation 6.2.

 ẋ
ẏ

θ̇

 =

 v cos(θ)
v sin(θ)
v
l
tan(ϕ)

 (6.2)
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Velocity is now a fixed constant 0.1 m
s
. The velocity term is found in Fig-

ure 6.3 under the block labeled “velocity” This block controls the system velocity

based on x and y error. When this error decreases to within a predetermined

threshold the velocity is set to zero, signaling that the vehicle has reached its des-

tination. The current system is tuned so that when the error of x and y reaches

0.1 meters from is its intended destination the velocity is disabled.

Additional modifications are made to effect a more practical model. Satu-

ration terms are placed on θ, x, and y due to their limited nature. For this system

there is a limit to how much the vehicle is allowed to turn at each time step, as

well as how far the vehicle is allowed to travel in the x and y direction. The

system is such that the x and y displacements are limited to 180◦ to -180◦ latitude

and 90◦ to -90◦ longitude, respectively, to simulate longitudinal and latitudinal

limitations.

Figure 6.3: General Model for Rover
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6.2 Proportional-Integral-Derivative (PID) Con-

troller

It is important to reiterate that the actual controller is not the focus of this

research. Rather, the focus is on the platform for testing estimators using Cel-

Nav. A simple PID controller is developed to replace the original Input-Output

Linerization control applied in Sun et al. Stability is of prime importance since

reaction speed is mostly dependent upon the reaction speed of the estimators.

Figure 6.4: Controller Model

The control, as stated above, is a simple Proportional-Integral-Derivative

(PID) controller. Again, the controller is not of interest in this research; only the

performance of the three observers are to be analyzed.

For this example only the position error, x (Latitude) and y (Longitude),

are calculated as can be seen in Figure 6.3. Only heading (θ) is taken into account

for feedback due to the added complexity to the PID controller. These gains can

be found in Table 6.2. Again the main goal for this controller is stability, with

a focus on the analysis of the performance of the applied estimation techniques.

In order to control the system via its heading, it is necessary to calculate

86



P I D

1000 2450 0

Table 6.2: PID Gains

a heading correction factor (α). This is accomplished by feeding the heading as

defined from the Plant in Figure 6.1 back into the controller. This correction

factor, α, can be found in Equation 6.3:

α = tan−1
(y
x

)
; (6.3)

By taking the previous heading (θ) and subtracting if from α the corrected heading

term can is realized, as seen in Equation 6.4:

ϕ = α− θ; (6.4)

Now that the correct heading term is known new x and y coordinates can

be calculated. This is a simplified method for calculating a corrected heading,

though it is possible to have a PID or other type of controller effectively manage

this calculation.

Due to the difficulty of controlling this general rover model with a PID, as

can be seen by the large gains in Table 6.2 and using a correction factor as the

control input, there is a very large control effort, as seen in Figure 6.5. Attempts

are made to reduce the magnitude of the control effort, but resulted in the inability

to accurately control the system, sometime causing unstable conditions.
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Figure 6.5: Control Effort

6.3 Results

For this simulation only accuracy and prevention of overshoot are deemed as

the limiting factors. As can be seen in Figure 6.6 the rover moves to the desired

location in almost a stepped fashion. The x value increases only when the y

value achieves certain thresholds. The figure below shows that there is little to no

overshoot which is what this simulation is trying to achieve and both the x and y

error reach the desired boundary conditions within a few time steps.

Heading can also be seen in Figure 6.6, fluctuating between +4 degrees and

-4 degrees. This coincides with the what is seen in the x and y plots in the same

figure.
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Figure 6.6: PID Results (X, Y, and Heading)

The rover’s trajectory can be seen in Figure 6.7. When Figure 6.7 is com-

pared to Figure 6.6 one may observe the same oscillations in the x vs y trajectory

as in the heading. This is due to the rover system trying to arrive at the de-

sired location as quickly as possible, which in this case happens to be almost in a

straight line.

The error x and y error can be seen in Figure 6.8 it can be seen that the

system does eventually reach 0 error after 2000 seconds, in much of the same

fashion that the system reaches its destination.
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Figure 6.7: X and Y Trajectory

It can be seen in Figure 6.7 that the vehicle does not travel in a perfectly

straight path. This is due to the nature of the controller, with the heading being

determined by a correction factor rather than a PID or other such controller. It

may be possible to further refine the controller to improve the results, but this

is not the focus of this research. Also, the elimination of the higher order terms

seem to have little effect on the vehicle model as a whole, which may lead to the

speculation that even though the model is a generic 2-D model, it can accurately

describe a four wheel, front turning vehicle. The model as described above is

further compared to a tread vehicle in later chapters. It can also seem that the

system may benefit from the use of an estimator to help dampen out some of the

existing chattering motion.
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Chapter VII

Simulation Results

This chapter focuses on analytical results from various simulation conditions

using three different estimation techniques: Extended Kalman Filter, H-Infinity,

and Sliding Mode Observer. Each of these techniques are analyzed individually.

An overall comparison is provided in the next chapter. Each technique is analyzed

with a focus on accuracy to true measurement, overall noise reduction and sim-

ulation efficiency. Additionally, two different analyses will be looked at, (1) the

performance of each of the estimators running “outside of the loop” of the rover

model, (2) the performance of each of the estimators running “in the loop” using

CelNav as “sensor” feedback. This allows for a comparison and the performance

of the three different estimators and how they react to possible erroneous and/or

noisy CelNav output.

The controller of the nonlinear rover plant is highly dependent on the ac-

curacy of measurement (or estimate) feedback. Thus, state estimators are needed

to ”clean” inaccurate sensor feedback data. The simplified version of the rover

control system can be seen in Fig 7.1. This model has a PID controller which is
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updated using only one of the three available states (heading θ), and the nonlinear

plant model shown in Equation 7.1. Only measurement noise is investigated in the

following chapters, although alignment error has a significant effect on the CelNav

algorithm.

Figure 7.1: PID Feedback Control System

In Equation 7.1 is the rover plant model. Where v is the velocity of the rover, θ

is the rover’s heading, and l is the length of the rover. ẋ
ẏ

θ̇

 =

 v · cos θ
v · sin θ
v
l
· tan θ

 (7.1)

The values for the PID system are as follows in Table 7.1:

PID Gains
P 1000
I 2450
D 0

Table 7.1: PID Gains

It is determined that the system needs to be able to react quickly to changes in

location, which is the determining factor in selecting the proportional gain. The
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integral gain is chosen such that system will be quickly driven to the set point.

The initial conditions for the PID controlled rover system can been seen

in Table 7.2. These conditions are the same for each of the estimators. The final

Initial Conditions
Latitude 0
Longitude 0
Velocity .1 m

s

Table 7.2: Rover Initial Conditions

conditions for the PID system can be found in Table 7.3:

Final Conditions
Latitude 20
Longitude 100
Velocity 0 m

s

Table 7.3: Rover Desired Coordinates

The observers are tested in the simulated environment as measurement

based control with the addition of the CelNav algorithm (i.e. open-loop estima-

tion) to observe the algorithm performance under high noise environments.

The rover based autonomous navigation system is highly dependent on

measurements with minimal noise residual. To accomplish this, four different es-

timation techniques are examined; Luenberger Observer, Extended Kalman Filter

(EKF), Sliding Mode Observer (SMO), and H-Infinity (H-∞) filter. Each observer

and its associated properties are discussed at length in the following sections.

This chapter will focus on the comparison of two levels of noise: expected

noise levels and “worst case” levels. The reader should note that the goal is

to test the validity of the EKF(and the other estimators) on the defined rover
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system model being used and not the performance of the controller. Two different

simulations are run for each observer, (1) Expected Noise Levels and (2) “Worst

Case” Noise Levels.

The estimators to be discussed below are to examine the ability for im-

proved location determination of the CelNav algorithm by accounting for: 1. mea-

surement noise, 2. process noise, and 3. other unknown uncertainties. Again, all

noise is assumed to be Gaussian. Each section compares the estimators under the

expected and “worst” case noise levels as stated above in three different formats:

1.) Trajectory plot which shows the path the “rover” travels to reach its destina-

tion, 2.) Error Plot (Meters) which shows the location error of the rover in meters,

and 3.) Error Plot (Degrees), a plot that shows the location error in degrees from

true latitude and longitude. Two different conditions are examined with respect

to: observer-based control and measurement-based control.
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7.1 Extended Kalman Filter

Optimal Estimation of the Extended Kalman Filter (EKF) works on the premise

of returning the best statistical state estimate. As defined in Gelb [23] an optimal

estimator is a computational algorithm that processes measurement to deduce the

minimum error estimate of the state of a system by utilizing: 1.) knowledge of the

system and measurement dynamics, 2.) assumed statistics of system noise and

measurement errors, 3.) initial condition information.

This method, though, is sensitive to incorrect or erroneous plant and mea-

surement models. The EKF can also be computationally expensive due to a re-

quired matrix inversion at each iteration. The EKF works by using a linearized

model of a nonlinear system. This is accomplished by re-deriving a new state

matrix at each new time step using information from the previous and current

iteration. The EKF simulation model can be seen in Figure 7.2.
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Figure 7.2: Extended Kalman Filter Simulation Model
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7.1.1 EKF Governing Equations

The EKF is applied to general nonlinear system and measurement equations

assumed of the following form:

xk = Fk−1(xk−1, uk−1, wk−1)
yk = Hk(xk, υk)

(7.2)

The equations above contain both measurement and system noise terms, υk and

wk, respectively. Also contained above are xk and xk−1 which are the current

and previous state values, and uk is the controller gain. Here yk is defined at the

sensor measurement. The following equation sets can be readily followed using

those contained in Simon [8].

When computing the Kalman filter equations, two partial differential equations

need to be calculated. First is the system partial with respect to x+k−1 as can be

seen below:

Fk−1 =
δfk−1

δx

∣∣∣
x̂+k−1

(7.3)

This must be updated at each time step to account for new x+ values. Next it is

necessary to update the estimate covariance matrix:

Pk−1 = Fk−1P
+
k−1F

T
k−1 − Lk−1Qk−1L

T
k−1 (7.4)

The state estimate is given as:

x̂−k = fx−1(x̂
+
k−1, uk−1, 0) (7.5)

The above calculations are performed using previous time-step information. The

following equations are calculated using both current measurements as well as the

above updates. First it is necessary to update a Kalman gain as follows:

Kk = P−
k H

T
k (HkP

−
KH

T
K +MkRkM

T
k )

−1 (7.6)

97



Here, Hk is the matrix used to define state parameters corresponding to mea-

surement output and Mk is assumed to be 1 due to unknown measurement noise

models. The final state estimate update law is as follows:

x̂+k = x̂−k +Kk[yk − hk(x
−
k , 0)] (7.7)

with the resulting estimation-error covariance matrix as:

P+
k = (I −KkHk)P

−
k (7.8)

The EKF is updated at each time step. Due this constant update, a one sample

time lag occurs, meaning the state estimates and the measurements lag by one

sample time step. The process noise covariance , Q, and the measurement noise

covariance matrix, R, in this thesis are given as follows:

Q =


λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(7.9)

R =


1000 0 0 0 0 0
0 2500 0 0 0 0
0 0 2500 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (7.10)

It is important to note that there is no cross correlation between the process noise

and the measurement noise. Q is determined by performing the least squares

method on the process noise, then further refining the values to account for un-

modeled bias and noise. R is determined from the predicted sensor noise variance.
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7.1.2 EKF Simulation Results

Results from the closed-loop EKF as applied to the nonlinear simulated system

with “expected” noise of 1 ∗ 10−4 magnitude are shown in Figure 7.4. A table of

values can be found at the end of this section (Tables 7.4 and 7.5). Figure 7.3

shows the trajectory of the rover. The plot shows that the “rover” traverses the

distance in a relatively straight line. There is a very slight wobble in the trajectory

(seen more clearly in Figure 7.4). This wobble occurs because the difficulty the

“rover” has to travel in a straight line due to the EKF estimate error.
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Figure 7.3: EKF - Estimated Trajectory
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The position error (in degrees) is shown in Figure 7.4. Here it can be seen

that there is an offset in both the x and y directions. This offset is due to the

lag in the EKF being at least one time step behind. In Table 7.4 the mean of the

position error is 0.282 degrees in latitude and 0.089 in longitude. Although this

seems to be a relatively small error, (as described previously) this can translate

into large position errors. Also important to note is the“tight” error band for

Figure 7.4 where the rover travels in a relatively straight line.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

−0.4

−0.2

0

0.2

0.4

0.6

Samples

E
st

im
at

e 
E

rr
or

 X
 (

D
eg

re
es

)

Postion Estimate Error (Degrees)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

−0.4

−0.2

0

0.2

0.4

0.6

Samples

E
st

im
at

e 
E

rr
or

 Y
 (

D
eg

re
es

)

Figure 7.4: EKF - X and Y Estimate Error (Degrees) with Expected Noise
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Mean [µ](Degrees) Standard Deviation[σ] (Degrees)
Latitude Longitude Latitude Longitude
0.28238 0.08892 0.07800 0.02564

Table 7.4: EKF Mean [µ] and Standard Deviation[σ] for Expected Noise

Here in Figure 7.5 the error band for both the x and y directions is approxi-

mately 500 meters. As discussed in previous chapters navigational errors less than

2000 meters are acceptable, although smaller navigational errors are preferred. In

Table 7.5 it can be seen that the maximum navigational error is 1300.10m with a

standard deviation of 377.16m. The results are very reasonable when compared to

that of the Monte Carlo simulation in Chapter 4, which shows the possibility for

errors approaching 2000 meters. With the addition of an estimator it is possible

to mitigate some of the instantaneous high error outliers that may have existed

previously.

Max Navigational Error (Meters) Standard Deviation[σ](Meters)
Latitude Longitude Latitude Longitude
1300.10 1027.70 377.16 314.43

Table 7.5: EKF Max Navigational Error and Standard Deviation[σ] for Expected

Noise
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Results from the closed-loop EKF as applied to the nonlinear simulated

system with “higher” levels of noise, 1 ∗ 10−2 magnitude, are shown in Figure 7.7.

A table of values can be found at the end of this section (Table 7.6 and Table 7.7).

The trajectory of the “rover” is shown in Figure 7.6. The trajectory plot shows

that the “rover” traverses the distance in a relatively straight line. There is a

significantly greater wobble in the trajectory, which is due to the increased diffi-

culty the “rover” has to travel in a straight line, because of the higher EKF state

estimate errors.
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Figure 7.6: EKF - X and Y Estimate Trajectory with High Noise Levels
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The position error can be seen in Figure 7.7. Here it can be seen that there

is again an offset in both the x and y directions. Again, this is due to the lag

in the EKF being at least one time step behind. In Table 7.6 the mean of the

position error is 0.281 degrees in latitude and 0.0866 in longitude.
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Figure 7.7: EKF - X and Y Estimate Error with “Worst” Noise (Degrees)

Mean [µ] (Degrees) Standard Deviation[σ] (Degrees)
Latitude Longitude Latitude Longitude
0.28167 0.08667 0.14064 0.10675

Table 7.6: EKF Mean [µ] and Standard Deviation[σ] for “Worst” Noise
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A small angular error can translate into hundreds or thousands of miles

in position error. In Figure 7.8 the error bands for both the x and y directions

are approximately 5000 meters. Again, navigational errors less that 2000 meters

are acceptable, as stated previously. This navigational error of 5000 meters far

exceeds the line-of-sight range of a rover or astronaut. This shows how important

reducing the overall error is in extra-terrestrial navigation. In Table 7.7 it can be

seen that the maximum navigational error is 14105.86m with a standard deviation

of 3712.74m.
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Figure 7.8: EKF - X and Y Estimate Error Higher Noise (Meters)
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Max Navigational Error (Meters) Standard Deviation[σ](Meters)
Latitude Longitude Latitude Longitude
14105.86 10376.66 3712.74 3146.43

Table 7.7: EKF Max Navigational Error and Standard Deviation [σ] with Higher

Noise

7.2 H-Infinity (H∞)

H-Infinity (H∞) is very similar to that of the EKF method. H∞ was created as

a way to add more robustness to the original Kalman Filter as well as removing

the “need to know” a priori statistics about system noise. [6] This type of observer

is known as the worst case observer since certain aspects of the system may not be

known, thus maximizing the cost function. In plain terms this means the observer

is more robust against un-modeled terms. The dynamics and updated equations

of the H∞ look similar to that of an EKF but the H∞ filter has a few extra terms.

It is possible to reduce the H∞ Filter to a Kalman Filter based on the parameters

chosen for the system. This method has been determined to be the most efficient

way to create a robust Kalman-type Observer. [6]
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Figure 7.9: H-Infinity (H∞) Simulation Model
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7.2.1 H∞ Governing Equations

The H∞ filter assumes a system of the following form [5]:

xk+1 = Fkxk + wk

yk = Hkxk + υk

zk = Lkxk (7.11)

Here, wk and υk are process and measurement noise terms, respectively. zk is the

state to be estimated. Lk is a user-defined matrix necessary to estimate xk. If Lk

is assumed to be an identity matrix (full state estimation), then an H∞ observer

becomes a Kalman filter.

The H∞ estimator is a cost minimization solution governed by the following

cost function:

J1 =
ΣN−1
k=0 ||zk − ẑk||2Sk

||xk − x̂k||2P−1
0

+ ΣN−1
k=0 (||wk||2Q−1

k

+ ||vk||2R−1
k

)
(7.12)

Here, Sk, P0, Qk, and Rk are user-defined matrices that are symmetric and positive

definite. The estimation goal is to minimize (zk − ẑk) based upon our initial

conditions x0 and noise terms.

The additional term to the EKF that defines the H∞ filter is θS̄kPk where

Sk can be defined as a symmetric positive definite matrix that is pre-defined by

the user and is shown to affect the Kk filter gains such that

S̄k = LTk SkLk (7.13)

Where θ is defined as a performance bound which seeks to minimize J such that

J < 1
θ
. The resulting H∞ filter is given as:

Kk = Pk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1HT
k R

−1
k (7.14)
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x̂k+1 = Fkx̂k + FkKk(yk −Hkx̂k) (7.15)

Pk+1 = FkP −K[I − θS̄kPk +HT
k R

−1
k HkPk]

−1F T
k +Qk (7.16)

If θ = 0, then the H∞ becomes identical to that of the Extended Kalman Filter.

[6]

The function below ensures that there is a valid estimator solution at each

time step k :

P−1
k − θS̄k +HT

k R
−1
k Hk > 0 (7.17)

If at any time-step “k” this function does not prove true, then the estimate for

that time step is not a valid solution to the problem. For this above function to

hold true and be positive-definite, the requirements on θS̄k are such that:

• θS̄k is small if θ is small.

• θS̄k is small if Lk is small.

• θS̄k is small if Sk is small.

7.2.2 H∞ Simulation Results

Results from the closed-loop H∞ as applied to the nonlinear simulated system

with “expected” noise of 1 ∗ 10−4 magnitude are shown in Figure 7.10 and Fig-

ure 7.11. The first trajectory graph is similar to the one presented in the EKF,

but it can be seen that there is slightly more wobble in the trajectory plot (more

clearly seen in Figure 7.11). This again is most likely do to the difficulty of this

“rover” model to travel in a straight line. The rover does arrive at the desired

location again without any arching paths, which means the rover did not deviate
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more in either the x or y directions. Below are the covariance matrices for use

with both the “expected” and “worst case” noise scenarios:

Q =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 R =


2400 0 0 0 0 0
0 2400 0 0 0 0
0 0 5 0 0 0
0 0 0 5 0 0
0 0 0 0 5 0
0 0 0 0 0 5



L =


.5 0 0 0 0 0
0 .5 0 0 0 0
0 0 .1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (7.18)
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Figure 7.10: H∞ - X and Y Estimate Trajectory Expected Noise
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The position error (in degrees) is shown in Figure 7.11. Here, it can be seen

that there is an offset only in the y direction, most likely due to the x direction

having less estimation lag than the y direction. In Table 7.8 the mean of the po-

sition error is 0.0247 degrees in latitude and 0.1070 in longitude. Also important

to note is the tight error band for Figure 7.11. Again the “rover” does not deviate

significantly from the target point but does stray more than with the EKF with

the same initial conditions.
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Figure 7.11: H∞ - X and Y Estimate Error with Expected Noise (Degrees)

Mean [µ](Degrees) Standard Deviation[σ](Degrees)
Latitude Longitude Latitude Longitude
0.0247 0.1070 0.1019 0.0251

Table 7.8: H∞ - Mean [µ] and Standard Deviation [σ] for Higher Noise
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As can be seen in Figure 7.12, the navigational error is approximately ±500

meters. This is to be expected due to the fact that EKF and H∞ are so similar in

application and the noise magnitude is held constant. Note that there are many

more shape spikes in Figure 7.12 when compared to Figure 7.5. This is most

likely caused by the choices in the covariance matrices potentially not being opti-

mal. These sharp peaks can potentially be resolved by investing more time into

choosing a better weighted covariance matrix. The mean and standard deviation

for the navigational error can be found in Table 7.9. They are 1302.98m and

329.71m, respectively, in the x and y directions These values confirm the visual

observation in Figure 7.12 of a ±500 meter error band. Less than ±500 meters

error is considered a very good result and shows promise for greatly reducing nav-

igational error with tuned observers.
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Figure 7.12: H∞ - X and Y Estimate Error Expected Noise (Meters)
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Maximum Navigational Error (Meters) Standard Deviation [σ](Meters)
Latitude Longitude Latitude Longitude
1302.97 1043.39 329.716 316.914

Table 7.9: H∞ - Maximum Navigational Error and Standard Deviation [σ] for

Expected Noise

Results from the H∞ as applied to the nonlinear simulated system with

“worst” noise of 1 ∗ 10−2 magnitude are seen in Figure 7.14, and to a lesser extent

Figure 7.13. Again the first figure to be examined is the rover trajectory seen in

Figure 7.13. There is a significant amount of “wobble” in the trajectory of the

rover. The rover’s movements are jagged sharp turns, which expends significant

control effort. Also, as the “rover” begins to reach its desired location, the “rover”

overshoots the location multiple times. This may be do to the fixed velocity con-

dition of the “rover”, such that if a variable speed is used the overshoot may be

negated. In other words if the rover is allowed to decrease velocity as it approaches

the desired location, this would reduce the chance of overshoot.

112



0 20 40 60 80 100 120
0

5

10

15

20

25

Estimate X

E
st

im
at

e 
Y

Postion Estimate (H−Infinity)

Figure 7.13: H∞ - X and Y Estimate Trajectory with “Worst Noise” (Meters)

The H∞ position error (in degrees) is shown in Figure 7.14. Here it can be

seen again that there is an offset only in the y direction. In Table 7.10 the mean

of the position error is 0.0123 degrees in latitude and 0.1045 degrees in longitude.

The error band for Figure 7.14 is significantly larger than the expected noise case.

This is consistent with the trajectory shown in Figure 7.14.

Mean [µ] (Degrees) Standard Deviation [σ] (Degrees)
Latitude Longitude Latitude Longitude
0.0123 0.1045 0.1477 0.1101

Table 7.10: H∞ Mean [µ] and Standard Deviation [σ] with “Worst” Noise (De-

grees)
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Figure 7.14: H∞ - X and Y Estimate Error “Worst” Noise (Degrees)

In Figure 7.15 the navigational error is approximately ±5000 meters, sim-

ilar to the navigational error seen in the EKF “worst” noise Figure 7.8, which is

expected as the EKF and H∞ filer are so closely related. Many sharp peaks can

again be seen in Figure 7.15, similar to the expected noise simulation Figure 7.12.

These can most likely be resolved by investing more time into tuning the PID

controller. The mean and standard deviation for the navigational error, found Ta-

ble 7.9, correspond to the visual information seen in Figure 7.15 and Table 7.11,

with the maximum navigational error of 12494.29m and the standard deviation of

3147.54m. Again note that these values are outside the acceptable upper visual

limit of 2000 meters.
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Figure 7.15: H∞ - X and Y Estimate Error with “Worst” Noise (Meters)

Maximum Navigational Error (Meters) Standard Deviation [σ] (Meters)
Latitude Longitude Latitude Longitude
12494.29 10437.39 3147.54 3138.20

Table 7.11: H∞ Maximum Navigational Error and Standard Deviation [σ] with

“Worst” Noise (Meters)
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As seen with the EKF, there is also an offset in the H∞ estimator for the

“expected” case (Table7.5 and Table 7.9). Again, the remaining signal deviation

is ±0.02 degrees, in the x -direction. The same can be seen in the y-direction.

The offset is seen again for the “worst” case, in both the x and y-direction. The

remaining signal deviation is ±0.2 degrees. The same can be seen in the y.

7.3 Sliding Mode Observer

The Sliding Mode Observer (SMO) as used in this thesis works on the as-

sumption that it is easier to work with a first order system than to work with an

nth-order as defined by nth-order differential equations [24]. SMO has the capa-

bility of providing excellent stability and performance when dealing with possible

modeling errors.

SMO works in a two phase process: the reaching phase and the sliding

phase. The reaching phase consists of the system error trajectory converging to

a sliding surface(s) where the surface is defined such as s = 0= ˙̃x + λx̃. The

sliding phase consists of the error trajectory moving along s. As long as the error

trajectory remains on s, the error trajectory converges to the origin. Switching

along the path of s is not instantaneous however, and chattering about the sliding

surface tends to occur.

7.3.1 SMO Governing Equations

The SMO assumes the system of the following form:

x(k+1) = fk(xk) +Bkuk + ηk

yk = gk(xk) + νk (7.19)
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One difference for the SMO, when compared to EKF and the H∞, is the

lack of a covariance matrix, such that the standard form of the SMO is:

x̂0 = E(x0) (7.20)

x̂k|k−1 = f(x̂k−1)

ỹ = yk − g(x̂k|k−1)

1(S) = sat(αỹ)

x̂k|k = x̂k|k−1 +GSMOỹ −KSMO1(S)

For this system 1(S) is defined as a switching function, which is in turn a function

of the defined sliding surface S, Figure 7.16. This function is occasionally defined

as either a signum or saturation function. The saturation function is defined below:

sat(s) = +1 if s > 0

sat(s) = −1 if s < 0 (7.21)

The saturation function is favored in this research due to the increased chattering

reduction. The SMO is much less computationally intensive than either EKF

or H∞ due to not needing to calculate a matrix inverse at each iteration. The

disadvantage of SMO is that it has decreased resistance to measurement noise.

[25]

7.3.2 SMO Simulation Results

Results from the closed-loop SMO as applied to the nonlinear simulated sys-

tem with “expected” noise of 1 ∗ 10−4 magnitude are shown in Figure 7.17 and

Figure 7.18. It can be seen in Figure 7.17 that there is noticeable low level “wob-

ble” on the trajectory and these levels are significantly higher than that of the

EKF and H∞ methods. This is most likely do to the position estimate oscillating
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Figure 7.16: Sliding Mode Observer Saturation Function

along the sliding surface. The rover, however, is still able to travel directly to the

desired location.

Below the gain choice for the SMO is shown: As seen previously in the

Phi
x y θ

0.01 0.01 2

Table 7.12: Phi Gains

Gains
x y θ

K 1 1 .1
C 1 1 1

Table 7.13: Gains

EKF Figure 7.4, there is again an offset in both the x and the y directions with the

x being more significant than the y direction. It is possible to see this in greater

detail in Table 7.14 with the mean of the x -direction being 0.0917 degrees and the

y-direction being 0.0121 degrees, with the error band for both the x and y being

approximately ±0.04 degrees. When compared to the other two estimator, EKF
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Figure 7.17: SMO - X and Y Estimate Trajectory with Expected Noise

and H∞, the SMO has overall less position error.

Mean [µ] (Degrees) Standard Deviation [σ] (Degrees)
Latitude Longitude Latitude Longitude
0.0917 0.0121 0.2199 0.2290

Table 7.14: SMO Mean [µ] and Standard Deviation [σ] for Expected Noise (De-

grees)

In Figure 7.19 it can be seen that the navigational error is approximately

±2000 meter, which this is at the upper limit of the acceptable vision range of

2000 meters. This means that some of the estimated positions measurements are

outside of the acceptable visual boundary and would likely need to be ignored.
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Figure 7.18: SMO - X and Y Estimate Error “Expected” Noise Levels (Degrees)

The large error is most likely due to overshoot when approaching the sliding sur-

face and a difficultly staying on the sliding surface. It can be seen in Table 7.15

that the maximum navigational error is 2646.98m and the standard deviation is

702.18m. This is greater than both the EKF and H∞ techniques.

Maximum Navigational Error (Meters) Standard Deviation [σ] (Meters)
Latitude Longitude Latitude Longitude
2003.31 2646.98 652.87 702.18

Table 7.15: SMO Maximum Navigational Error and Standard Deviation [σ] with

Expected Noise
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Figure 7.19: SMO - X and Y Estimate Error with “Expected” Noise Levels

Results from the closed-loop SMO as applied to the nonlinear simulated

system with “worst” noise of 1 ∗ 10−2 magnitude are shown in Figure 7.20 and

Figure 7.21. It can be seen in Figure 7.20 that there are high levels of noise on

the trajectory plot, and it easily has the highest noise band of all the estimators.

This means that a significant amount of control effort is required to be expended

in order for the “rover” to continue on its relatively straight path. It should be

noted there is no overshoot, even with all the noise on the trajectory of the SMO,

as compared to the H∞, which showed a significant amount of overshoot. This is

most likely do to the position estimate oscillating about the sliding surface.

Different from the previous “worst” case instances, there is little to no offset
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Figure 7.20: SMO - X and Y Estimate Trajectory with “Worst Case” Noise

in either the x and the y directions. This can be seen in Table 7.16 with the mean

of the x -direction being 0.0935 degrees and the y-direction being 0.0175 degrees,

with the error band for both the x and y about ±0.6 degrees. A standard devia-

tion of the position error in the x -direction, 0.0271 degrees, and the y-direction,

0.0229 degrees, can also be found in Table 7.16. Although there is high position

error it should be noted that there is a very tight error band, as opposed to the

previous estimators where error bands are more erratic.

Mean [µ] (Degrees) Standard Deviation [σ] (Degrees)
Latitude Longitude Latitude Longitude
0.0935 0.0175 0.0271 0.0229

Table 7.16: SMO Mean [µ] and Standard Deviation [σ] for “Worst” Noise
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Figure 7.21: SMO - X and Y Estimate Error “Worst” Noise Levels

In Figure 7.22 it can be seen that the navigational error is approximately

±20000 meters. This is the largest navigational error of all the estimators, being

almost double the EKF or H∞ for the equivalent error magnitude. The large error

is due to excessive chattering along the sliding surface. This could be due to the

signal band being too large so the estimation is not able to settle out. Table 7.17

shows that the maximum navigational error is 26787.03m and the standard devi-

ation is 7013.25m. This is greater than the previous two estimators.
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Figure 7.22: SMO - X and Y Estimate Error “Worst” Noise Levels in Meters

Maximum Navigational Error (Meters) Standard Deviation [σ] (Meters)
Latitude Longitude Latitude Longitude
19971.82 26787.03 6543.59 7013.25

Table 7.17: SMO Maximum Navigational Error and Standard Deviation [σ] with

“Worst” Noise (in Meters)

7.4 Comparative Analysis of Estimation Tech-

niques

After examining each of these estimators individually, the EKF and H∞ behave

similarly, as expected. The SMO has the fastest simulation time. This is due to

not having to perform matrix inverse operation at each time step. H∞ has the best

performance of the three estimators. All of the estimators are able to converge
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and all are able to reach the desired location. It must almost be noted that both

EKF and H∞ did have an offset error because the system lags behind by two time

steps. This, however, does not prevent the filters’ estimates from converging.
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Chapter VIII

Conclusions

This research reviews topics regarding CelNav.

1. Statistical Analysis

2. SkyScout Simulations

3. Analytical Simulations

The statistical analysis shows CelNav reacting extremely well at different

levels of noise and at different latitudes and longitudes. This can be seen in

Table 4.3. This can further be seen when comparing Figure 4.12 and Figure 4.4,

where even with high levels either at the North Pole or the Equator the maximum

error is 2000 meters, which again is at the upper end of the viewable area on the

Lunar surface. CelNav can still accurately determine latitude and longitude. The

tables and figures, shown in Chapter IV, are a good preliminary indication of the

versatility of the CelNav algorithm.

As shown in the Celestron experiment even small angular errors, as little as

0.001 degrees, can translate into large navigational errors on the scale of hundreds
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to thousands of meters, as seen in Table 5.8. Both trials are good representations

of using an experimental sensor in conjunction with CelNav, where the error for

both trials are very close to each other. The Celestron Skyscout is an experi-

mental sensor platform for preliminary real world experimental testing, although

repeatability is difficult due to standard GPS error. In the future the Celestron

Skyscout could and should be integrated into a test platform as an accurate sensor

platform for comparison to the proposed experimental setup.

The length of time to perform analytical experiments show insight into

the computational power and memory that are required for both CelNav and the

proposed estimators (EKF, H∞ and SMO). This information is important for the

future work of determining an effective controller that will also be integrated into

the simulation. These results could be further improved upon with the addition

of a tuned control system.

It was found that the EKF and H∞ have very similar results, with the H∞

having the better results, when comparing maximum navigational error (EKF -

14000m,H∞ - 12000m, and SMO - 26000m). Although the H∞ has the best results

the SMO is computationally the fastest of the three estimators. Additionally all

three estimators converge, showing stability in the system. H∞ also had the least

amount of “wobble” and SMO the most when comparing Figure 7.6, Figure 7.13,

and Figure 7.20. With moderate noise of 10−6 all of the estimators results’ are

well within the 2000m upper visual limit of sight on the Lunar surface. These

simulations show that the H∞ has the fastest response time and the least residual

noise.
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Future analysis of CelNav-based state estimate involves repeating the sta-

tistical analysis with the following combinations: (1) CelNav and estimator, (2)

CelNav and controller and (3) CelNav estimator and controller. Future exper-

imental testing involves an experimental validation of CelNav-based navigation

using various terrain and geographical locations.

The goal of this research it to further the development of an extraterrestrial

mobility solution. Future research should incorporate an observer-based control

for autonomous navigation. Testing would involve a comparison of CelNav-based

navigation determination to GPS readings. Future testing should incorporate

observer-based controllers to determine a low-memory, low-power autonomous mo-

bility solution, with a focus on minimizing computational effort and control effort,

while increasing robustness to noise, CelNav error, and external disturbances.
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Appendix A

CelNav Algorithms

A.1 Original CelNav Algorithm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% run_data_xxxx.m - extension of data_gen_xxxx.m

% confirms calculations of lambda, phi

%

% - calculates Gamma ("truth" data) given Delta and SC

% - yields: unit vector Gamma

% unit quaternion Delta

% - confirms normalization of quaternions

% - recalculates lambda, phi, and epsilon given Gamma and Delta

% - calls rand_q.m, xprod_mat.m, qprod.m, q2rotmat.m

%

% - generates vectors of data

% - test for lander "sight" viewing angle (Beta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Variable Definitions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% R_x = rotation matrix for x

% x_vec = vector for x

%

% eta = unit vector (defined for quaternion)

% thetha = rotation angle (defined for quaternion)

%

% Gamma --> Accelerometer

% Delta --> Star Tracker
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% Phi --> M__ENU_SD (function of lambda and phi)

% Omega --> Moon

%

% n = number of star tracker measurements

% n_lambda = iterations of lambda (full 0 to +360 degree coverage)

% n_phi = iterations of phi (full -90 to +90 degree coverage)

% d - 1 = number of acceptable data points

%

% Beta = lander "sight" angle (not boresight angle) according to 30 deg

% crater slope

%

% "lambda" = longitude

% "phi" = lattitude

%

% lambda_true = lambda truth data

% phi_true = phi truth data

% lambda_mR = extracted lambda

% phi_mR = extracted phi

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

clear

close all;

%N = 1; % Number of tests generated

Beta = 60;

Body_z = [0 0 1]’;

%j=1;

n=1;

% n_lambda=36;

% n_phi=37;

% n_epsilon=36;

n_lambda=10;

n_phi=10;

n_epsilon=6;

d=1;

moon_long = 1;

moon_lat = 1;

count(1,1) = 0;

i = 1;

e = 1;

max_lambda=0;

min_lambda=0;

max_phi=0;

min_phi=0;

rad_fac = 1e0;

% Define Accelerometer alignment

% mag_noise_Gamma = 5e-5;
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% mag_noise_Gamma = 1e-6;

mag_noise_Gamma = 1e-6;

Acc_vec = [0 0 1]’; % Accelerometer z-vector

Acc_down = -Acc_vec;

Gamma__Body_sAcc_eta = cross(Acc_vec,Body_z);

Gamma__Body_sAcc_theta = acos(Acc_vec’*(Body_z)); % degrees

Gamma__Body_sAcc_quat = Gamma__Body_sAcc_eta*sin(Gamma__Body_sAcc_theta

/2);

Gamma__Body_sAcc_quat0 = cos(Gamma__Body_sAcc_theta/2);

R_Gamma__Body_sAcc = q2rotmat(Gamma__Body_sAcc_quat,

Gamma__Body_sAcc_quat0);

% Define Star tracker alignment

% mag_noise_Delta_theta = 1e-3;

% mag_noise_Delta_theta = 3e-3;

mag_noise_Delta_theta = 3e-6;

Star_tracker_vec = [0 0 1]’; % Star tracker z-vector

Delta__Body_sST_eta = cross(Star_tracker_vec,Body_z);

Delta__Body_sST_theta = acos(Star_tracker_vec’*Body_z); % degrees

Delta__Body_sST_quat = Delta__Body_sST_eta*sin(Delta__Body_sST_theta/2);

Delta__Body_sST_quat0 = cos(Delta__Body_sST_theta/2);

R_Delta__Body_sST = q2rotmat(Delta__Body_sST_quat,Delta__Body_sST_quat0)

;

% Star_tracker_plane = 2; % 1=yz plane, 2=xz plane, 3=xy plane

% 4=xyz plane

% if Star_tracker_plane = 1,

% rotate_Star_tracker = ;

% else

% end;

% Define lunar coordinate transformation

R_moon = 1738.2*1e3; % m

Omega__SC_I = eye(3);

Omega__SD_SC = eye(3);

Omega__SD_I = Omega__SD_SC*Omega__SC_I;

R_Omega__SD_I = Omega__SD_I;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate random star tracker quaternion

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[Delta_quat,Delta_quat0] = rand_q(n);

R_Delta_raw = q2rotmat(Delta_quat,Delta_quat0);

% for p=1:n,

% Delta_vec(:,p) = R_Delta_raw(:,:,p)*Star_tracker_vec;

% end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Lunar Surface Map

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Latitude lines

for moon_lat_p=1:5,

phi_lat = (moon_lat_p-1)*5 - 90;

for moon_lat_l=1:19,

lam_lat = (moon_lat_l-1)*20;

Moon_lat_z(moon_lat) = R_moon*sin(phi_lat*pi/180);

Moon_lat_x(moon_lat) = R_moon*cos(lam_lat*pi/180)*cos(phi_lat*pi

/180);

Moon_lat_y(moon_lat) = R_moon*sin(lam_lat*pi/180)*cos(phi_lat*pi

/180);

moon_lat=moon_lat+1;

end;

end;

% Longitude lines

for moon_long_l=1:19,

lam_long = (moon_long_l-1)*20;

for moon_long_p=1:5,

phi_long = (moon_long_p-1)*5 - 90;

Moon_long_z(moon_long) = R_moon*sin(phi_long*pi/180);

Moon_long_x(moon_long) = R_moon*cos(lam_long*pi/180)*cos(phi_long

*pi/180);

Moon_long_y(moon_long) = R_moon*sin(lam_long*pi/180)*cos(phi_long

*pi/180);

moon_long=moon_long+1;

end;

end;

moon_long = 1;

moon_lat = 1;

% Latitude lines

for moon_lat_p=1:19,

phi_lat = (moon_lat_p-1)*10-90;

for moon_lat_l=1:19,

lam_lat = (moon_lat_l-1)*20;

Moon_Lat_z(moon_lat) = R_moon*sin(phi_lat*pi/180);

Moon_Lat_x(moon_lat) = R_moon*cos(lam_lat*pi/180)*cos(phi_lat*pi

/180);

Moon_Lat_y(moon_lat) = R_moon*sin(lam_lat*pi/180)*cos(phi_lat*pi

/180);

moon_lat=moon_lat+1;

end;

end;

% Longitude lines

for moon_long_l=1:19,

lam_long = (moon_long_l-1)*20;

for moon_long_p=1:19,
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phi_long = (moon_long_p-1)*10-90;

Moon_Long_z(moon_long) = R_moon*sin(phi_long*pi/180);

Moon_Long_x(moon_long) = R_moon*cos(lam_long*pi/180)*cos(phi_long

*pi/180);

Moon_Long_y(moon_long) = R_moon*sin(lam_long*pi/180)*cos(phi_long

*pi/180);

moon_long=moon_long+1;

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate test data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j=1:n,

old_d = d;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define Star Tracker alignment and measurement errors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define Star Tracker Measurement Errors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate random noise vector eta and angle theta

% noise_Delta_vec = mag_noise_Delta*(2*rand(3,1) - 1); % uniform

noise

noise_Delta_vec =(rand(3,1) - 0.5); % uniform noise

% noise_Delta_quat = mag_noise_Delta*(2*randn(3,1) - 1); % normaly

distributed noise

noise_Delta_eta = noise_Delta_vec/norm(noise_Delta_vec);

noise_Delta_theta = mag_noise_Delta_theta*(2*randn - 1);

% Delta_m = Delta_quat(:,j) + noise_Delta_quat;

% Obtain normalized noise quaternion

noise_Delta_q_raw = noise_Delta_eta*sin(noise_Delta_theta*(pi/180)

/2);

noise_Delta_q0_raw = cos(noise_Delta_theta*(pi/180)/2);

norm_noise_Delta_q_raw = norm([noise_Delta_q_raw’ noise_Delta_q0_raw

]);

noise_Delta_q(:,j) = noise_Delta_q_raw/norm_noise_Delta_q_raw;

noise_Delta_q0(j) = noise_Delta_q0_raw/norm_noise_Delta_q_raw;

% Obtain noise-corrupted measurement quaternions

[Delta_quat_m_raw, Delta_quat0_m_raw] = qprod(noise_Delta_q(:,j),

noise_Delta_q0(j), Delta_quat(:,j), Delta_quat0(j));

norm_Delta_quat_m_raw = norm([Delta_quat_m_raw’ Delta_quat0_m_raw]);

Delta_quat_m(:,j) = Delta_quat_m_raw/norm_Delta_quat_m_raw;

Delta_quat0_m(j) = Delta_quat0_m_raw/norm_Delta_quat_m_raw;

% Delta_quat_m(:,j) = Delta_m/mag_Delta_quat_m;
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% Delta_quat0_m(j) = Delta_quat0(j)/mag_Delta_quat_m;

R_Delta_m_raw(:,:,j) = q2rotmat(Delta_quat_m(:,j),Delta_quat0_m(j));

% Check Star Tracker noise angle

[check_noise_Delta_q_raw, check_noise_Delta_q0_raw] = qprod(

Delta_quat_m(:,j), Delta_quat0_m(:,j), -Delta_quat(:,j),

Delta_quat0(j));

norm_check_n_Delta_q = norm([check_noise_Delta_q_raw’

check_noise_Delta_q0_raw]);

check_n_Delta_q = check_noise_Delta_q_raw/norm_check_n_Delta_q;

check_n_Delta_q0 = check_noise_Delta_q0_raw/norm_check_n_Delta_q;

check_n_Delta_theta_s(j) = 2*asin(norm(check_n_Delta_q))*180/pi;

check_n_Delta_theta_c(j) = 2*acos(check_n_Delta_q0)*180/pi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define Star Tracker Alignment Errors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for k=1:n_lambda,

lambda = (k-1)*30;

for l=1:n_phi,

for m=1:n_epsilon

epsilon = m*50;

%%%%%%%%%%%%%%%%%%%%%%

% Test parameters

%%%%%%%%%%%%%%%%%%%%%%

%phi = (l-1)*0.125 - 89.5;

phi = (l-1)*20 - 89.5;

if phi > 89.5,

phi = 89.5;

end;

if phi < -89.5,

phi = -89.5;

end;

cl = cos(lambda*pi/180);

sl = sin(lambda*pi/180);

cp = cos(phi*pi/180);

sp = sin(phi*pi/180);

ce = cos(epsilon*pi/180);

se = sin(epsilon*pi/180);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculation Setup - assume no errors in Gamma, Delta

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate M__Up_SC

M__Up_SD(1,1) = -ce*sl - se*sp*cl;
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M__Up_SD(1,2) = ce*cl - se*sp*sl;

M__Up_SD(1,3) = se*cp;

M__Up_SD(2,1) = se*sl - ce*sp*cl;

M__Up_SD(2,2) = -se*cl - ce*sp*sl;

M__Up_SD(2,3) = ce*cp;

M__Up_SD(3,1) = cp*cl;

M__Up_SD(3,2) = cp*sl;

M__Up_SD(3,3) = sp;

% Phi(1,1) = -sl;

% Phi(1,2) = cl;

% Phi(1,3) = 0;

% Phi(2,1) = - sp*cl;

% Phi(2,2) = - sp*sl;

% Phi(2,3) = cp;

% Phi(3,1) = cp*cl;

% Phi(3,2) = cp*sl;

% Phi(3,3) = sp;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate quaternion Gamma

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

R_Delta_tot(:,:,j) = R_Delta__Body_sST*R_Delta_m_raw(:,:,j

);

%R_Gamma_raw = R_Gamma__Body_sAcc’*R_Delta_tot(:,:,j)*

R_Omega__SD_I’*Phi’;

R_Gamma_raw = R_Gamma__Body_sAcc’*R_Delta_tot(:,:,j)*

R_Omega__SD_I’*M__Up_SD’;

Gamma_vec_raw = R_Gamma_raw*Acc_down; % Acc measurement

vector

Up_vec = -Gamma_vec_raw;

Gamma_uvec_raw = Gamma_vec_raw/norm(Gamma_vec_raw);

Up_uvec_raw = -Gamma_uvec_raw;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Check reality of data angle of Up_vec with respect to

star

% tracker data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Beta_m_raw = acos(Up_uvec_raw’*Body_z)*180/pi; % "sight"

cone (deg)

if abs(Beta_m_raw) > Beta % discard "unseeable" data

continue;

% else % keep reasonable data (counter

d)

% elseif phi > -80
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% continue;

else % keep reasonable data (counter d)

Beta_m(d) = Beta_m_raw;

R_Delta(:,:,d) = R_Delta_tot(:,:,j);

R_Gamma(:,:,d) = R_Gamma_raw;

% Gamma_uvec(:,d) = Gamma_uvec_raw;

Up_uvec(:,d) = Up_uvec_raw;

lambda_true(d) = lambda;

phi_true(d) = phi;

epsilon_true(d) = epsilon;

R_Delta_m(:,:,d) = R_Delta_m_raw(:,:,j);

Gamma_uvec(:,d) = Gamma_uvec_raw;

noise_Delta_quat(:,d) = noise_Delta_q(:,j);

noise_Delta_quat0(d) = noise_Delta_q0(j);

noise_Delta_angle(d) = 2*asin(norm(noise_Delta_quat(:,

d)))*180/pi;

% Determine minimum and maximum lambda and phi

if lambda > max_lambda

max_lambda = lambda;

end;

if lambda < min_lambda

min_lambda = lambda;

end;

if phi > max_phi

max_phi = phi;

end;

if phi < min_phi

min_phi = phi;

end;

Moon_x_m(d) = R_moon*cos(lambda*pi/180)*cos(phi*pi

/180);

Moon_y_m(d) = R_moon*sin(lambda*pi/180)*cos(phi*pi

/180);

Moon_z_m(d) = R_moon*sin(phi*pi/180);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define Accelerometer alignment and measurement

errors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% noise_Gamma_vec = mag_noise_Gamma*(

randn(3,1) - 0.5); % evenly

noise_Gamma_vec = mag_noise_Gamma*(randn(3,1) - 0.5);

% evenly

% noise_Gamma_quat = mag_noise_Gamma*(2*

randn(3,1) - 1); % normaly
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Gamma_vec_m(:,d) = Gamma_vec_raw + noise_Gamma_vec;

Gamma_uvec_m(:,d) = Gamma_vec_m(:,d)/norm(Gamma_vec_m

(:,d));

check_n_Gamma_theta(d) = acos(Gamma_uvec(:,d)’*

Gamma_uvec_m(:,d))*180/pi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define alignment and measurement errors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% R_Delta_m = R_Delta;

% Gamma_uvec_m = Gamma_uvec;

end;

d=d+1;

end;

end;

end;

count(:,j) = [d-old_d];

%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % Define Star Tracker alignment and measurement errors

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Delta_quat(:,j)

% mag_noise_Delta = 1e-6;

% noise_Delta_quat = mag_noise_Delta*(2*rand(3,1) - 1);

% Delta_m = Delta_quat(:,j) + noise_Delta_quat;

% mag_Delta_quat_m = norm([Delta_m’ Delta_quat0(j)]);

% Delta_quat_m(:,j) = Delta_m/mag_Delta_quat_m;

% Delta_quat0_m(j) = Delta_quat0(j)/mag_Delta_quat_m;

% R_Delta_m(:,:,j) = q2rotmat(Delta_quat_m(:,j),Delta_quat0_m(j));

% R_Delta_m = R_Delta;

% Gamma_uvec_m = Gamma_uvec;

end;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % Define alignment and measurement errors

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% R_Delta_m = R_Delta;

% Gamma_uvec_m = Gamma_uvec;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Extract lambda, phi, eta - main part of program
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Loop to check all good data (counter=i)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:d-1,

% Given: quaternion Delta, unit vector Gamma

% R_Delta_m = R_Delta;

% Acc_meas = Gamma_uvec_m(:,i);

Acc_meas = Gamma_uvec_m(:,i);

Gamma_theta = acos((-Acc_meas)’*Body_z); % radians

Gamma_cross = cross((-Acc_meas),Body_z);

Gamma_eta = Gamma_cross/norm(Gamma_cross);

Gamma_quat = Gamma_eta*sin(Gamma_theta/2);

Gamma_quat0 = cos(Gamma_theta/2);

R_Gamma_m(:,:,i) = q2rotmat(Gamma_quat,Gamma_quat0);

% Calculate quat[inv(Gamma)*Delta]

R_invGamma_Delta(:,:,i) = R_Gamma_m(:,:,i)’*R_Delta_m(:,:,i);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Extraction of lambda, phi, epsilon from measurements

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lambda_mR_raw = atan(R_invGamma_Delta(3,2,i)/R_invGamma_Delta(3,1,i)

)*180/pi;

phi_mR(i) = asin(R_invGamma_Delta(3,3,i))*180/pi;

test_ep(i) = epsilon_true(i);

epsilon_mR_raw(i) = atan(R_invGamma_Delta(1,3,i)/R_invGamma_Delta

(2,3,i))*180/pi;

% % Check of quadrant of lambda

%

% cl = cos(lambda_mR_raw*pi/180);

% sl = sin(lambda_mR_raw*pi/180);

% cp = cos(phi_mR(j,i)*pi/180);

% sp = sin(phi_mR(j,i)*pi/180);

% ce = cos(epsilon_mR(j,i)*pi/180);

% se = sin(epsilon_mR(j,i)*pi/180);

% Check and correct for errors in lambda, 90 <= lambda <= 270

if R_invGamma_Delta(3,1,i) < 0

lambda_mR_check = lambda_mR_raw + 180;

else

lambda_mR_check = lambda_mR_raw;

end;

if R_invGamma_Delta(2,3) < 0
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epsilon_mR_check = epsilon_mR_raw(i) + 180;

else

epsilon_mR_check = epsilon_mR_raw(i);

end;

% Account for full rotation in lambda, i.e. for lambda >= 360

if lambda_mR_check < 0

lambda_mR(i) = lambda_mR_check + 360;

else

lambda_mR(i) = lambda_mR_check;

end;

if epsilon_mR_check < 0

epsilon_mR(i) = epsilon_mR_check + 360;

epsilon_mR_check;

else

epsilon_mR(i) = epsilon_mR_check;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate errors in lambda and phi

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

error_lambda(i) = lambda_true(i) - lambda_mR(i);

error_phi(i) = phi_true(i) - phi_mR(i);

error_epsilon(i) = epsilon_true(i) - epsilon_mR(i);

% % Account for full rotation in error_lambda >= 360

% if error_lambda(i) < -350

% error_lambda(i) = -(error_lambda(i) + 360);

% elseif error_lambda(i) > 360

% error_lambda(i) = error_lambda(i) - 360;

% end;

% Check for errors in lambda and phi

% if abs(error_lambda(i)) >4e-4 | abs(error_phi(i)) >5

e-3

if abs(error_lambda(i)) > 270

error_lambda(i) = asin(sin(error_lambda(i)/180*pi))*180/pi;

end;

if abs(error_epsilon(i)) > 270

error_epsilon(i) = asin(sin(error_epsilon(i)/180*pi))*180/pi;

end;

if error_epsilon(i) < -180

error_epsilon(i) = error_epsilon(i) + 360;

end;
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error_horiz(i) = (error_lambda(i)/360)*(R_moon*cos(phi_true(i)*pi

/180))*(2*pi); % meters

error_vert(i) = error_phi(i)/180*R_moon*pi; % meters

error_radius(i) = sqrt(error_horiz(i)^2 + error_vert(i)^2); % meters

error_rad_angle(i) = atan(error_horiz(i)/error_vert(i))*180/pi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% More error data for plots

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if error_horiz(i) < 0

error_rad_angle(i) = error_rad_angle(i) + 180;

error_radius_long(i) = -error_radius(i);

else

error_radius_long(i) = error_radius(i);

end;

if error_vert(i) < 0

error_radius_lat(i) = -error_radius(i);

else

error_radius_lat(i) = error_radius(i);

end;

if error_radius(i) > 50 % maximum error radius = 50m

l_mR(e) = lambda_mR(i);

p_mR(e) = phi_mR(i);

err_l(e) = error_lambda(i);

err_p(e) = error_phi(i);

l_true(e) = lambda_true(i);

p_true(e) = phi_true(i);

e_mR(e) = epsilon_mR(i);

Del_q_m(:,e) = Delta_quat_m(:,j);

Del_q0_m(:,e) = Delta_quat0_m(:,j);

R_Del_m(:,:,e) = R_Delta_m(:,j);

e_rad(e) = error_radius(i);

e_hor(e) = error_horiz(i);

e_ver(e) = error_vert(i);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot Navigation key errors on lunar surface plot

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ENav_x_m(1,e) = R_moon*cos(lambda_mR(i)*pi/180)*cos(phi_mR(i)*pi

/180);

ENav_y_m(1,e) = R_moon*sin(lambda_mR(i)*pi/180)*cos(phi_mR(i)*pi

/180);

ENav_z_m(1,e) = R_moon*sin(phi_mR(i)*pi/180);

ENav_x_m(2,e) = R_moon*(1 + error_radius(i)/R_moon*rad_fac)*cos(

lambda_mR(i)*pi/180)*(1 + error_radius(i)/R_moon*rad_fac)*cos
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(phi_mR(i)*pi/180);

ENav_y_m(2,e) = R_moon*(1 + error_radius(i)/R_moon*rad_fac)*sin(

lambda_mR(i)*pi/180)*(1 + error_radius(i)/R_moon*rad_fac)*cos

(phi_mR(i)*pi/180);

ENav_z_m(2,e) = R_moon*(1 + error_radius(i)/R_moon*rad_fac)*sin(

phi_mR(i)*pi/180);

e = e + 1;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot Navigation errors on lunar surface plot

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

eNav_x_m(1,i) = R_moon*cos(lambda_mR(i)*pi/180)*cos(phi_mR(i)*pi

/180);

eNav_y_m(1,i) = R_moon*sin(lambda_mR(i)*pi/180)*cos(phi_mR(i)*pi

/180);

eNav_z_m(1,i) = R_moon*sin(phi_mR(i)*pi/180);

eNav_x_m(2,i) = R_moon*(1 + error_radius(i)/R_moon*rad_fac)*cos(

lambda_mR(i)*pi/180)*(1 + error_radius(i)/R_moon*rad_fac)*cos(

phi_mR(i)*pi/180);

eNav_y_m(2,i) = R_moon*(1 + error_radius(i)/R_moon*rad_fac)*sin(

lambda_mR(i)*pi/180)*(1 + error_radius(i)/R_moon*rad_fac)*cos(

phi_mR(i)*pi/180);

eNav_z_m(2,i) = R_moon*(1 + error_radius(i)/R_moon*rad_fac)*sin(

phi_mR(i)*pi/180);

i = i + 1;

end;

tot_poss_iter = n*n_lambda*n_phi*n_epsilon;

tot_iter = d - 1;

star_tracker_n = n

frac_iter = tot_iter/tot_poss_iter

mu = mean(error_radius)

sig = std(error_radius)

% mag_noise_Gamma

% mag_noise_Delta_theta

% max_lambda

% min_lambda

% max_phi

% min_phi

% Up_angle = acos(Up_uvec’*[0 0 1]’)*180/pi;

% mu_Up_angle = mean(acos(Up_uvec’*[0 0 1]’)*180/pi)
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% [noise_Delta_angle(d-1) mean(check_n_Gamma_theta) std(

check_n_Gamma_theta)]

ci_limit = mu + 3*sig;

ci_limit_stat = [mu sig ci_limit];
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A.2 Current CelNav Algorithm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% confirms calculations of lambda, phi

%

% - calculates Gamma ("truth" data) given Delta and SC

% - yields: unit vector Gamma

% unit quaternion Delta

% - confirms normalizations of quaternions

% - recalculates lambda, phi, and epsilon given Gamma and Delta

% - calls rand_q.m, xprod_mat.m, qprod.m, q2rotmat.m

% - generates vectors of data

% - test for lander "sight" viewing angle (Beta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Variable Definitions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% R_x = rotation matrix for x

% x_vec = vector for x

%

% eta = unit vector (defined for quaternion)

% thetha = rotation angle (defined for quaternion)

%

% Gamma --> Accelerometer

% Delta --> Star Tracker

% Phi --> M__ENU_SD (function of lambda and phi)

% Psi --> Accelerometer Output

% Omega --> Moon

%

% n = number of star tracker measurements

% n_lambda = iterations of lambda (full 0 to +360 degree coverage)

% n_phi = iterations of phi (full -90 to +90 degree coverage)

% d - 1 = number of acceptable data points

%

% Beta = lander "sight" angle (not boresight angle) according to 30 deg

% crater slope

%

% "lambda" = longitude

% "phi" = lattitude

% "Heading" = heading

% "alpha" = tilt

% "beta" = slope

%

% lambda_true = lambda truth data

% phi_true = phi truth data

% lambda_mR = extracted lambda

% phi_mR = extracted phi

%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Monte Carlo Simulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Clears Data after every run

clc

close all

clear all

for phi=0;

% Generates Folders to be Used in Data Sorting

folders(phi)

%Beginning of Monte Carlo Loop

for lambda =0;

alpha = 30; % Tilt

beta = 2; % Slope

alignment_error_star= 60; % Arcsec (Error Star)

alignment_error_Acc = 60; % Arcsec (Error Accelerometer)

mag_noise_Gamma = 1e-6; % Magnitude

% Body Labels

Body_z = [0 0 1]’;

% Counters for Number of runs to be performed during each iteration

d = 1;

n = 1;

p = 1;

n_lambda = 13;

n_phi = 12;

n_epsilon = 13;

% Define Accelerometer alignment

Acc1_vec_r = [1 0 0]’;% Acc x-vector

Acc2_vec_r = [0 1 0]’;% Acc y-vector

Acc3_vec_r = [0 0 1]’;% Acc z-vector

Acc1_vec = Acc1_vec_r/norm(Acc1_vec_r);% Acc x-vector normalized

Acc2_vec = Acc2_vec_r/norm(Acc2_vec_r);% Acc y-vector normalized

Acc3_vec = Acc3_vec_r/norm(Acc3_vec_r);% Acc z-vector normalized

% Define M__A_Body with respect to Acc1

% Creates Scalar Portion of Quaternion Vector

M__A1_Body_eta = cross(Body_z,Acc1_vec);

% Degrees

M__A1_Body_theta = acos(Body_z’*(Acc1_vec))*180/pi;

% Quaternion Vector Body to Acc z-vector

M__A1_Body_quat = M__A1_Body_eta*sin(M__A1_Body_theta/2*pi/180);
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% Quaternion Scalar Body to Acc z-vector

M__A1_Body_quat0 = cos(M__A1_Body_theta/2*pi/180);

% Total Quaternion

Q_Acc_1 = [M__A1_Body_quat(1),M__A1_Body_quat(2),

M__A1_Body_quat(3),M__A1_Body_quat0]’;

% Normalizes Acc1 Quaternion

Q_Acc_1_n = Q_Acc_1/norm(Q_Acc_1);

%Rotation Matrix

R_M__A1_Body = Q2A(Q_Acc_1_n);

% Define M__A_Body with respect to Acc2

% Creates Scalar Portion of Quaternion Vecter

M__A2_Body_eta = cross(Body_z,Acc2_vec);

% Degrees

M__A2_Body_theta = acos(Body_z’*(Acc2_vec))*180/pi;

% Quaternion Vector Body to Acc z-vector

M__A2_Body_quat = M__A2_Body_eta*sin(M__A2_Body_theta/2*pi/180);

M__A2_Body_quat0 = cos(M__A2_Body_theta/2*pi/180);

% Total Quaternion Matrix

Q_Acc_2 = [M__A2_Body_quat(1),M__A2_Body_quat(2),

M__A2_Body_quat(3),M__A2_Body_quat0]’;

% Normalizes Acc2 Quaternion

Q_Acc_2_n = Q_Acc_2/norm(Q_Acc_2);

% Rotation Matrix

R_M__A2_Body = Q2A(Q_Acc_2);

% Define M__A_Body with respect to Acc3

% Creates Scalar Portion of Quaternion Vecter

M__A3_Body_eta = cross(Body_z,Acc3_vec);

% Degrees

M__A3_Body_theta = acos(Body_z’*(Acc3_vec))*180/pi;

% Quaternion Vector Body to Acc z-vector

M__A3_Body_quat = M__A3_Body_eta*sin(M__A3_Body_theta/2*pi/180);

M__A3_Body_quat0 = cos(M__A3_Body_theta/2*pi/180);

% Total Quaternion

Q_Acc_3 = [M__A3_Body_quat(1),M__A3_Body_quat(2),

M__A3_Body_quat(3),M__A3_Body_quat0]’;

% Normalizes Acc3 Quaternion

Q_Acc_3_n = Q_Acc_3/norm(Q_Acc_3);

% Rotation Matrix

R_M__A3_Body = Q2A(Q_Acc_3);

% Define Star tracker alignment

% Star tracker z-vector

neg_Star_tracker_vec = [0 0 1]’;

% Star tracker z-(unit) vector

neg_Star_tracker_vec_unit = neg_Star_tracker_vec/norm(

neg_Star_tracker_vec);

% Creates Scalar Portion of Quaternion Vecter

M__C_Body_eta = cross((Body_z),neg_Star_tracker_vec_unit);

% Degrees
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M__C_Body_theta = acos(neg_Star_tracker_vec_unit’*Body_z);

% Quaternion Vector Body to Acc z-vector

M__C_Body_quat = M__C_Body_eta*sin(M__C_Body_theta/2*pi/180)

;

M__C_Body_quat0 = cos(M__C_Body_theta/2*pi/180);

% Total Quaternion

Q_star = [M__C_Body_quat(1),M__C_Body_quat(2),

M__C_Body_quat(3),M__C_Body_quat0]’;

% Normalize Star Tracker Alignment Quaternion

Q_star_n = Q_star/norm(Q_star);

% Rotation Matrix

R_M__C_Body = Q2A(Q_star_n);

% Alignment Matrix

R_M__C_Body_ae = RR_b(alignment_error_star);

% Define lunar coordinate transformation

% Moon Radius(Meters)

R_moon = 1738.2*1e3;

% NASA Lunar Models

Omega__SC_I = eye(3);

Omega__SD_SC = eye(3);

% Total Model

Omega__SD_I = Omega__SD_SC*Omega__SC_I;

% Alignment Model

R_Omega__SD_I_E = eye(3);

% Needs to be updated with NASA lunar model and need earth geoide model

for testing

R_ Omega__SD_I = Omega__SD_I;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate random star tracker quaternion

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Body reference frame

body = [1 0 0;0 1 0;0 0 1];

% Quaternion Generator "True" Star Tracker Quaternion

[Delta_quat,Delta_quat0] = rand_q(n);

% Generates Rotation Matrix(Extracts, Normalize, Create Rotation)

Q_Delta = [Delta_quat(1),Delta_quat(2),Delta_quat(3),Delta_quat0

]’;

Q_Delta_n = Q_Delta/norm(Q_Delta);

R_Delta__I_C = Q2A(Q_Delta_n);

for j=1:n

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define Star Tracker measurement errors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Noise in Arc seconds (X,Y,Z Axes)

noise_x = 10;

noise_y = 10;

noise_z = 40;

% Raw Quaternion for NASA Star Tracker Model

Delta_raw = [1,Delta_quat0(j),Delta_quat(1,j,1),Delta_quat(2,j,1)

,Delta_quat(3,j,1)];

% NASA Star Tracker Noise Model

[Delta_quat_n,flag,frame] = standard_ast_model(Delta_raw,noise_x,

noise_y,noise_z,body);

% Quaternion Extraction and Normalization

Q_Startracker = [Delta_quat_n(3),Delta_quat_n(4),Delta_quat_n(5)

,Delta_quat_n(2)]’;

Q_Startracker_n = Q_Startracker/norm(Q_Startracker);

% Generates a Rotational Matrix from a quaternion

R_Delta__I_C_m = Q2A(Q_Startracker_n);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate test data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

old_d = d;

old_p = p;

% Longitued -180->180

for k=1:n_lambda,

for l=1:n_phi,

for m=1:n_epsilon

% Heading

epsilon = (m-1)*15;

%Generate ST(alpha, beta)

cb = cos(beta*pi/180);

sb = sin(beta*pi/180);

ca = cos(alpha*pi/180);

sa = sin(alpha*pi/180);

%Actual ST Matrix

ST = [ cb sb*sa -sb*ca;

0 ca sa;

sb -cb*sa cb*ca];

%Gamma Rotation Matrices

% Note in actual practice all three 3D accelerometers

will be needed

R_Gamma1 = ST’*R_M__A1_Body’;

154



R_Gamma2 = ST’*R_M__A2_Body’; % Not Used

R_Gamma3 = ST’*R_M__A3_Body’; % Not Used

%Sets up sin and cos for ’true’ rotation matrix

cl = cos(lambda*pi/180); % Cosine

Lambda

sl = sin(lambda*pi/180); % Sine Lambda

cp = cos(phi*pi/180); % Cosine Phi

sp = sin(phi*pi/180); % Sine Phi

ce = cos(epsilon*pi/180); % Cosine

Epsilon

se = sin(epsilon*pi/180); % Sine Epsilon

% Heading Matrix

He__Down_NED = [ce se 0; -se ce 0; 0 0 1];

% Latitude and Longitude

LL__ENU_SD = [-sl cl 0; -cl*sp -sl*sp cp; cl*cp sl*cp

sp];

% Conversion Matrix from ENU to SD to NED to ENU

U__NED_ENU = [0 1 0; 1 0 0; 0 0 -1];

% Generates ’truth’ model

Phi__Down_SD = He__Down_NED*U__NED_ENU*LL__ENU_SD;

% Generates Delta ’truth’ model

Delta = Omega__SD_I’*Phi__Down_SD’*R_Gamma3*

R_M__A3_Body*R_M__C_Body;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate quaternion Gamma

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generates Upsilon model

Upsilon = (Omega__SD_I*Delta*R_M__C_Body)’*(

U__NED_ENU*LL__ENU_SD)’;

% Extracts alpha, beta, epsilon from upsilon matrix

% Extracts Tilt

alpha_U = asind(Upsilon(2,3));

alpha_U_1 = atan2(Upsilon(2,3),...

(sqrt(Upsilon(2,1)^2+Upsilon(2,2)^2)))

*180/pi;

% Extracts Slope

beta_U = atan2(-Upsilon(1,3),Upsilon(3,3))*180/pi;

% Generates ’truth’ gamma model

R_Gamma__Down_A3_r = Phi__Down_SD*R_Omega__SD_I*...

R_Delta__I_C_m*R_M__C_Body*...

R_M__A3_Body’;
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% Generates Gamma3 Vector(1,2,3)

Gamma_vec1_raw = R_Gamma__Down_A3_r*Acc1_vec;

Gamma_vec2_raw = R_Gamma__Down_A3_r*Acc2_vec;

Gamma_vec3_raw = R_Gamma__Down_A3_r*Acc3_vec;

% Generates Phi Test Matrix

Phi__Down_SD_test(:,:,d) = Phi__Down_SD;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Check reality of data angle of Up_vec with respect to

star

% tracker data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Setting True Latitude(Lambda), Longitude(Phi) and

Heading(Epsilon) Data

lambda_true(p) = lambda;

phi_true(p) = phi;

epsilon_true(p) = epsilon;

% Sets up True Gamma Vector and Normalizes Each Vector

R_Gamma__Down_A3r(:,:,p) = R_Gamma__Down_A3_r;

Gamma_vec1(:,d) = Gamma_vec1_raw/norm(

Gamma_vec1_raw);

Gamma_vec2(:,d) = Gamma_vec2_raw/norm(

Gamma_vec2_raw);

Gamma_vec3(:,d) = Gamma_vec3_raw/norm(

Gamma_vec3_raw);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define Accelerometer alignment and measurement

errors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generates Noisy Gamma Vectors (1,2,3) Evenly

Distributed

noise_Gamma_vec1 = mag_noise_Gamma*(randn(3,1)

- 0.5);

noise_Gamma_vec2 = mag_noise_Gamma*(randn(3,1)

- 0.5);

noise_Gamma_vec3 = mag_noise_Gamma*(randn(3,1)

- 0.5);

% Generates Measured Gamma Vectors (1,2,3)(True +

Noise)
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Gamma_vec1_m = Gamma_vec1(:,d) +

noise_Gamma_vec1;

Gamma_vec2_m = Gamma_vec2(:,d) +

noise_Gamma_vec2;

Gamma_vec3_m = Gamma_vec3(:,d) +

noise_Gamma_vec3;

% Generates Normalized Gamma Vectors (1,2,3)

Gamma_uvec1_m(:,d) = Gamma_vec1_m/norm(

Gamma_vec1_m);

Gamma_uvec2_m(:,d) = Gamma_vec2_m/norm(

Gamma_vec2_m);

Gamma_uvec3_m(:,d) = Gamma_vec3_m/norm(

Gamma_vec3_m);

% Counters

p = p+1;

d = d+1;

end;

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Extract lambda, phi, epsilon - main part of program

% Solver Part of CelNAV Algorithm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=old_p:p-1,

% Assigns Accelerometer Vector (1,2,3) from Gamma Vector 1,2,3

Acc1_m(:,i) = Gamma_uvec1_m(:,i);

Acc2_m(:,i) = Gamma_uvec2_m(:,i);

Acc3_m(:,i) = Gamma_uvec3_m(:,i);

% Assembles Accelerometer Rotation Matrix from Accelerometer

Vectors

R_Gamma__Down_A3_test(:,:,i) = [Acc1_m(:,i) Acc2_m(:,i)

Acc3_m(:,i)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate Phi__Down_SD_e

% (extracted Phi from measurements Delta and Gamma)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Creates Accelerometer Alignment Error Matrix

R_Error_Body = RR_b(alignment_error_Acc);

% Gamma Rotation Matrix with Noise Addition

Phi__Down_SD_e(:,:,i) = R_Gamma__Down_A3_test(:,:,i)*...

R_Error_Body*R_M__A3_Body*...
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R_M__C_Body’*R_M__C_Body_ae’*...

R_Delta__I_C_m’*...

R_Omega__SD_I’*R_Omega__SD_I_E’;

% Generates Latitude

lambda_mR(i) = atan2(-Phi__Down_SD_e(3,2,i),-Phi__Down_SD_e

(3,1,i))*180/pi;

% Generates Longitude

if -Phi__Down_SD_e(3,3,i)>1

phi_mR(i) = 90;

elseif -Phi__Down_SD_e(3,3,i)<-1

phi_mR(i)= -90;

else

phi_mR(i) = atan2(-Phi__Down_SD_e(3,3,i),(sqrt(

Phi__Down_SD_e(2,3,i)^2+Phi__Down_SD_e(1,3,i)^2)))

*180/pi;

end;

% Generates Heading

epsilon_mR(i) = atan2(-Phi__Down_SD_e(2,3,i),Phi__Down_SD_e

(1,3,i))*180/pi;

% Generates Error Maticies for Lambda, phi and epsilon

error_lambda(i) = lambda_true(i) - lambda_mR(i);

error_phi(i) = phi_true(i) - phi_mR(i);

error_epsilon(i) = epsilon_true(i)- epsilon_mR(i);

% Generated Errors in degrees

error_alpha_Upsilon = alpha-alpha_U;

error_alpha_Upsilon1 = alpha-alpha_U_1;

error_beta_Upsilon = beta-beta_U;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Account for greater than 360 lambda and epsilon error

% (If available)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Error Lambda

if error_lambda(i) >= 350

error_lambda(i) = error_lambda(i) - 360;

elseif error_lambda(i) <= -350

error_lambda(i) = error_lambda(i) + 360;

end;

% Error Epsilon

if abs(error_epsilon(i)) >= 350

error_epsilon(i) = error_epsilon(i) - 360;

elseif error_epsilon(i) <= -350
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error_epsilon(i) = error_epsilon(i) + 360;

end;

% Note: error_radius will only work if errors are small.

% Gernerates the error result in Latitude, Longitute and heading

error_horiz(i) = (error_lambda(i)/360)*(R_moon*cos(phi_true

(i)*pi/180))*(2*pi); % meters

error_vert(i) = error_phi(i)/180*R_moon*pi;

% meters

error_radius(i) = sqrt(error_horiz(i)^2 + error_vert(i)^2);

% meters

error_rad_angle(i) = atan2(error_horiz(i),error_vert(i))*180/

pi; % degrees

end;

end;

% End of Monte Carlo for Loop

% Beginning of Data Recording

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Creates Files for Data Recording and Changes Directory %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Creating Dynamic File Names for CelNav Data

s = sprintf(’24-June-09 Stocastic Mean Phi = %d Lambda = %d’,phi,

lambda);

% Creating Dynamic File Names for Stocastic Data

s1 = sprintf(’24-June-09 Stocatsic Phi=%d Lambda=%d Results’,phi,

lambda);

% Changes Working Directory

%Folder3 = sprintf(’C:\\Documents and Settings\\controls\\Desktop

\\CelNav\\CelNav Versions\\NASA Rework with Tilt Slope -

Current\\Run Results\\Monte Carlo Results\\Phi = %d\\Data’,

phi);

%cd(Folder3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generates Data For Sigma Circles %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Returns to Actual Working Directory

cd(’C:\Documents and Settings\controls\Desktop\CelNav\CelNav

Versions\NASA Rework with Tilt Slope - Current’);

% Generates Sigma Circle Data
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[X,Y,X1,Y1,X2,Y2,A,B,r1,r2,r3] = circle(error_horiz,error_vert);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Records Stocastic Data %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Changes Working Directory

Stoc = sprintf(’C:\\Documents and Settings\\controls\\Desktop\\

CelNav\\CelNav Versions\\NASA Rework with Tilt Slope -

Current\\Run Results\\Monte Carlo Results\\Phi = %d\\

Stocastic’,phi);

cd(Stoc);

% Format Variables

X=X’;

Y=Y’;

X1=X1’;

Y1=Y1’;

X2=X2’;

Y2=Y2’;

A=A’;

B=B’;

Stocast_Sigma=[r1 r2 r3];

%Stocast_Sigma=[X,Y,X1,Y1,X2,Y2];

mean=[A,B];

% Standard Deviation(Sigma-1x)

save(s, ’mean’,’-ASCII’,’-double’,’-tabs’);

save(s1, ’Stocast_Sigma’,’-ASCII’,’-double’,’-tabs’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generating Error Plot %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot Latitude and Longitude %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Creates Graph of Distance from Actual Location

h1=figure(1);

set(h1,’visible’,’off’);

plot(lambda_mR-lambda,phi_mR-phi,’.’);

grid on

xlabel(’Difference in True to Measured Lambda (Degrees)’);

ylabel(’Difference in True to Measured Phi (Degrees)’);

s2 = sprintf(’Latitude and Longitude Plot Phi=%d Lambda=%d

’,phi,lambda);
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s3 = sprintf(’Differnece Phi=%d Acc Align=%d Star Align=%d

Acc Noise=%d’,phi,alignment_error_Acc,

alignment_error_star,mag_noise_Gamma);

zlabel(’Latitude and Longitude Plot’);

title({s2;s3});

s1 = sprintf(’Latitude_and_Longitude_Plot_Phi=%d_Lambda=%d

’,phi,lambda);

% Changes Working Directory

Folder4 = sprintf(’C:\\Documents and Settings\\controls\\

Desktop\\CelNav\\CelNav Versions\\NASA Rework with Tilt

Slope - Current\\Run Results\\Monte Carlo Results\\Phi = %

d\\Error’,phi); cd(Folder4);

% Prints Graph to Current Directory

print(’-f1’, ’-depsc’, s1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generates 3-Sigma Plots

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Creates Graph of Location Error

h2=figure(2);

set(h2,’visible’,’off’);

plot(error_horiz,error_vert,’.r’); % Scatter

Plot of Error Data

hold on;

idd = plot(A,B,’b’); %

Center

set ( idd, ’Marker’, ’*’ )

set ( idd, ’MarkerSize’, 20 )

set ( idd, ’Color’, ’Blue’ )

hold on;

plot(X,Y,’-b’); % Sigma-1

Circle

hold on;

plot(X1,Y1,’-b’); % Sigma-2

Circle

hold on;

plot(X2,Y2,’-b’); % Sigma-3

Circle

hold on;

id=plot(0,0);

set ( id, ’Marker’, ’.’ )

set ( id, ’MarkerSize’, 20 )

set ( id, ’Color’, ’Black’ )

grid on;

hold off;

axis equal;
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xlabel(’Longitude Navigational Error (meters)’);

ylabel(’Latitude Naviagational Error (meters)’);

s6 = sprintf(’Corresponds to Phi = %d Lambda = %d’,phi,

lambda);

s5 = sprintf(’Acc Align = %d Star Align = %d Acc Noise = %

d’,alignment_error_Acc,alignment_error_star,

mag_noise_Gamma);

ss = sprintf(’Mean Location (X=%4.2f,Y=%4.2f)’,A,B);

title({s6;s5;ss});

s4 = sprintf(’Phi=%d_Lambda=%d_Acc_Align=%d_Star_Align=%

d_Acc_Noise=1_e_-_6’,phi,lambda,alignment_error_Acc,

alignment_error_star);

% Changes Working Directory

Folder5 = sprintf(’C:\\Documents and Settings\\controls\\

Desktop\\CelNav\\CelNav Versions\\NASA Rework with Tilt

Slope - Current\\Run Results\\Monte Carlo Results\\Phi = %

d\\Location’,phi);

cd(Folder5);

% Prints Graph to Current Directory

print(’-f2’, ’-depsc’, s4);

% Returns to Actual Working Directory

cd(’C:\Documents and Settings\controls\Desktop\CelNav\CelNav

Versions\NASA Rework with Tilt Slope - Current’);

end;

end;
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Appendix B

CelNav Models

B.1 System Model

Figure B.1: System Model
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Figure B.5: Plant Setup (Rover Model)

B.2.1 Velocity Determination

if((abs(error(1,1)) < .1) && (abs(error(2,1)) < .1))

velocity = 0;

else

velocity = vel;

end

B.2.2 Theta (Heading)

Theta_dot = v/.5*tan(phi);

B.2.3 Velocity x-direction

x_dot = v*cos(theta);

B.2.4 Velocity y-direction

y_dot = v*sin(theta);

B.2.5 Heading Correction

if(x<=0)

x=1;

end

alpha = atan(y/x);

phi = alpha-theta;
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B.3 EKF
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Figure B.7: EKF Setup

if t>.1

xk = [xk1(1,1) xk1(2,1) xk1(3,1) xk1(4,1) xk1(5,1) xk1(6,1) ];

else

xk = [ .1 .1 .1 .1 .1 .1 ];

end

% Calculate the Jacobians at each time step

F=[ 1 0 0 0 0

0;

0 1 0 0 0

0;

-h*xk(1,4)*sin(xk(1,3)) h*xk(1,4)*cos(xk(1,3)) 1 0 0

0;

h*cos(xk(1,3)) h*sin(xk(1,3)) h*tan(xk(1,6))/l 1 0

0;

0 0 0 h 1

0;

0 0 h*xk(1,4)/l*(1+tan(xk(1,6)^2)) 0

0 1]’;

H = [1 0 0 0 0 0;

0 1 0 0 0 0;
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0 0 1 0 0 0;

0 0 0 0 0 0;

0 0 0 0 0 0;

0 0 0 0 0 0];

M=1;

xk2 = [ xk(1,4)*cos(xk(1,3));

xk(1,4)*sin(xk(1,3));

xk(1,4)/l*tan(xk(1,6));

0;

0;

0].*h + xk1; % Projected State

Pk1= F*Pk*F’ + L*Q*L’; % Projected Covariance

K = Pk1*H’/(H*Pk1*H’+M*R*M’); % Kalman gain

xk3 = xk2+K*(z-H*xk2); %Estimated State

Pk2 = (eye(6)-K*H)*Pk1*(eye(6)-K*H)’+K*R*K’; %New Covarience Matrix
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B.4 H-Infinity (H∞)
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Figure B.8: H-∞ Setup

xk = [xk1(1,1) xk1(2,1) xk1(3,1) xk1(4,1) xk1(5,1) xk1(6,1) ];

% Calculate the Jacobians at each time step

A=[ 1 0 0 0 0

0;

0 1 0 0 0

0;

-h*xk(1,4)*sin(xk(1,3)) h*xk(1,4)*cos(xk(1,3)) 1 0 0

0;

h*cos(xk(1,3)) h*sin(xk(1,3)) h*tan(xk(1,6))/l 1 0

0;

0 0 0 h 1

0;

0 0 h*xk(1,4)/l*(1+tan(xk(1,6)^2)) 0

0 1]’;

xkn = [xk1(1,1) xk1(2,1) xk1(3,1) xk1(4,1) xk1(5,1) 0 ]’;

% Propagate your EKF equations

Sk = [10 0 0 0 0 0;

0 1 0 0 0 0;

0 0 1 0 0 0;

0 0 0 0 0 0;

0 0 0 0 0 0;

0 0 0 0 0 0];

Pk = [10 0 0 0 0 0;

0 10 0 0 0 0;

0 0 10 0 0 0;

0 0 0 10 0 0;

0 0 0 0 10 0;

0 0 0 0 0 10];
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xkx = [0;

0;

0;

0;

0;

0];

if t > .1

Sk1 = L’*Sk2*L;

K = Pk1*inv(eye(6) - phi*Sk1*Pk1 + H’*R_inv*H*Pk1)*H’*R_inv; % Kalman

gain

xk3 = A*xkn+A*K*(z-H*xkn); %Estimated State

Pk2 = A*Pk1/(eye(6)-phi*Sk1*Pk1+H’*R_inv*H*Pk1)*A’+ Q;

else

Sk1 = L’*Sk*L;

K = Pk*inv(eye(6)-phi*Sk1*Pk+H’*R_inv*H*Pk)*H’*R_inv; % Kalman gain

xk3 = A*xkx+A*K*(z-H*xkx); %Estimated State

Pk2 = A*Pk/(eye(6)-phi*Sk1*Pk+H’*R_inv*H*Pk)*A’+Q;

end
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B.5 Sliding Mode Observer (SMO)
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Figure B.9: SMO Setup

x=x_hat;

l=5;

x_hat = [x(1,1); x(2,1); x(3,1);0;0;0];

% Calculate the Jacobians at each time step

A_hat = [ x_hat(4,1)*cos(x_hat(3,1));

x_hat(4,1)*sin(x_hat(3,1));

x_hat(4,1)/l*tan(x_hat(6,1));

0;

0;

0]; % Projected State

y_tild3 = [y_tild; y_tild1; y_tild2;0;0;0];

%A_hat = A_d*x_hat;

Bu = [0,0;0,0;0,1;0,0;0,0;0,0]*[u(1,1);u(2,1)];

L_ytild = L’*y_tild3;

x_hat_dot = A_hat + Bu + L_ytild + SGN;
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Appendix C

CelNav Simulation
(Experimental)

C.1 Hardware

Multiple different pieces of hardware are used in the construction of a test environ-
ment run the simulation using the CelNav algorithm. The main sensors that are used
to test the CelNav algorithm are an accelerometer triad, a light sensing array, and a
single board computer ro record and distribute all sensor data to a computational math-
ematics interface. A test enclosure has been constructed for confirmation of the CelNav
algorithm. It will be assumed that all hardware will only have orthogonal misalignment
errors.

C.1.1 Lunabot

The Lunabot came out of a lunar mining competition that is held by NASA, since
2010. The rover was designed to be light and easily portable. The Lunabot is con-
trolled by remote connection to a laptop. The lunabot is a four (4) wheeled, tank drive
rover, this means it can independently control the left or right side wheels. The Lun-
abot contains an integrated sensor platform, containing the aforementioned sensors, and
oriented along the x-y-z body (Lunabot) coordinate frame. Sensor data is fed into a
computational mathematics program for analysis; this program will exist on a stand
alone computer that will also be attached to the experimental rover. The computer will
transmit data to a simulated ground station (laptop). This will allow for monitoring of
location as well as the ability for manually control during non-autonomous simulations.

C.1.2 3D - Accelerometer

A 3-D accelerometer is required to accurately determine the Lunabot’s current loca-
tion. Accelerometer triad is a device where there are three separate single axis accelerom-
eters oriented along the X, Y, and Z axes of an integrated sensor. An accelerometer
describes body with respect to the selenodetic center of a planetary body, as explained
in Chapter I. The accelerometer used here would be of a special type, and would always
point down towards the center to the planetoid. The data produced by this accelerome-
ter allows for the extraction of both tilt and slope, which is necessary to fully determine
the attitude of the rover or astronaut in relation to the extra-planetary reference frame.

The measurement output from the accelerometer is given as Γ. This output
is assumed to be given such that Γ provides the ”Down” position with respect to the
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accelerometer coordinate system, such that:

[ Γ ]DownAcc −→ Accelerometer Measurement

C.1.3 Contained Attitude Star Tracking Sensor (CASTS)

The Contained Attitude Star Tracking Sensor (CASTS) is used to calculate a unit
quaternion that will indicate the vehicles pointing direction and rotation. CASTS con-
sists of a three camera array positioned on the top of the vehicle and arranged such that
each camera has a different pointing direction. The CAST algorithm can be found in
Appendix D for further investigation.

The images taken from these cameras are transferred to an algorithm developed
by Tyler Wills, a fellow graduate student at the University of New Hampshire. This
algorithm transforms known information about the unique images from a database, also
developed by Tyler Wills, into an unit quaternion.

CASTS works by matching known color patterns stored in a local database. The
patterns consist of red, blue, and green LEDs arranged in patterns of two LEDs per
surface. By knowing how far each LED was placed from each other a proper quaternion
can be developed. In order to account for inconsistencies in the environment such as
blind spots, three stereoscopic cameras, as stated above, will be used. Thus by seeing
both sides of the wall or a wall and the ceiling it is possible to get a unique quaternion.
The quaternion is defined as followed:

q =


sin( θ2) ∗ cos(βx)
sin( θ2) ∗ cos(βy)
sin( θ2) ∗ cos(βz)

cos( θ2)

 =

 q1
q2
q3
q0

 (C.1)

The quaternion is in the form of the vector first (q1,q2,q3) and then the scaler
(q0) and θ is the rotation angle and cos(βx), cos(βy), and cos(βz) are the direction cosines
locating the axis of rotation.

Quaternions can be easily effected by noise, so having an accurate quaternion
relative to your location is important. This system must have low to medium mea-
surement and alignment noise. Currently the system has variable measurement noise.
Although the measurement error is low when it is translated into arcseconds it can be
seen to grow exponentially. The error is due the cameras’ not being able to accurately
determine the exact center of the light due to the pixelation of the image. This can be
accounted for by dimming the LEDs intensity and making the color deeper. It maybe
possible by using different estimation techniques to reduce this measurement error and
significantly increase accuracy.

The measurement output from the star tracker is given as ∆. This output is assumed
to be given such that ∆ provides the inertial coordinates with respect to the star tracker
coordinate system, such that:

[ ∆ ]InertialC −→ Star Tracker Measurement

C.1.4 OmniFlash - Single Board Computer

The OmniFlash single board computer processes all the sensor data to be sent to
the math simulation program interface and routes all control signals from the interface
to the prototype vehicle. The OmniFlash was chosen due to its adaptability by having
a small surface area and all the necessary ports,2 serial ports, 16 digital I/O lines and
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Array 1 Array 2 Array 3 Array 4 Array 5 (ceiling)
Red Green Blue Red Blue
Red Green Blue Red Blue

Table C.1: Possible light array setups.

Ethernet. This means that we have the ability to increase the number of number of
sensors used on the prototype vehicle. Having ethernet ability also allows for wireless
transfer of data between our home base and the vehicle, the allows for greater auton-
omy in the simulations. The OmniFlash comes loaded a 200 Mhz ARM processor, 32
MegaBytes RAM,16 MegaBytes Flash and preloaded with Linux, which makes for ease
of programming and fast sensor polling.

One problem encountered is with realtime sensor polling, there is a delay between
polling processing and receiving of data. Another problem is it is difficult to maintain
connection to the cameras, this may be due to the amount of power that is able to be
transferred at any one time over the USB protocol which is a maximum of 500mA, it is
possible that the system is activating too many cameras at one time thus overloading the
USB demand and closing the COM port. This can be corrected by writing a protocol
to make sure that all cameras are off before turning a different camera on.

C.2 Test Environment

The test environment consists of a blacked out encloser. The encloser is 36” x 36” x
36’. Each wall will contain a ”colored star pair” arranged in on of the patterns shown
below:

Each pattern consists of two colored lights, either the same color or some com-
bination of green, blue, or red. The two long walls will have three sets of two lights the
ceiling will have one set of two lights and the short walls will have two sets of two lights.
These patterns allow the CASTS too look into it’s database to find the appropriate
configuration to output the proper quaternion. In order to prevent over lap on set of
blue lights are placed on the ceiling of the enclosure and one pair or red lights are placed
on opposite walls.

Also inside of the encloser there will be ”obstacles”. These ”obstacles” will be
designed as miniature wall, both traversable and not, as well as simulated hills and
craters. It is possible that these ”obstacles” will both inhibit movement as well as line
of sight. This will potentially prove troublesome, but it an integral part of testing.
In actual exploration one camera may be faulty or be obstructed and the star tracker
CASTS will have to compute the best quaternion with given information.

The enclosure is large enough for the prototype rover to move freely about and
around/over obstacles. Due to the limited size of the enclosure though certain values
will have to be scaled to work in this small scale test, due to the nature of latitude and
longitude. At the equator there is great distance between even 1◦ latitude and longitude,
which means long distances must be traversed in order to move small distances according
to latitude and longitude. Although at the polar regions this is different. Here there may
be only a few meters difference between one line of longitude and the next. Using this
assumption we will set up our test enclosure to mimic the polar region of a planetoid.

It was later determined that due to the inconsistency in the ability to calibrate
the CASTS system that an inertial navigation system (INS) in the form of an inertial
measurement unit (IMU) would be used.
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Mean STD Dev Variance
Accelerometer

x -0.0876 0.0280 0.0008
y -0.0678 0.0239 0.0006
z 9.6351 0.0341 0.0012

IMU
roll 0.2069 0.2099 0.0441
pitch -0.5497 0.0606 0.0037
yaw 221.4822 0.1265 0.016

magnetic heading -131.452 0.4319 0.1866
GPS

Latitude 43.205047 1.181E-5 1.40E-10
Longitude -70.873453 1.217E-5 1.48E-10

Table C.2: Sensor Statistics [31]

C.3 Inertial Navigation System (INS)

It is determined that an INS/IMU must be chosen that has the ability for consis-
tent calibration. This means that a well documented sensor platform with calibratable
sensors is to be chosen. The IMU contains three sensor platforms, a 3-D accelerometer,
a 1-axis gyro, a 2-axis gyro, and a magnetometer. On an adjacent sensor platform a
GPS is also available. The IMU and GPS is processed through an Arduino this allows
for polling of the sensors through a math simulation interface. The following experi-
mental simulations were performed and piloted by Amy Underwood, using the CelNav
algorithm and model developed in this document.

The experimental test platform used was a DFRobotShop differential drive rover
and controlled by a Anrduino Uno micro-controller[Amy]. The sensors contained in
the IMU are as stated above a 3-D accelerometer, a 1-axis gyro, a 2-axis gyro, and a
magnetometer as well as an additional GPS shield. [31] The sensor platform is capable
of realtime communication with an external wireless communication system. Using
this sensor platform the Arduino is able to control the rover’s desired heading, thus
driving the rover to its final destination.[31] Using this sensor information it is possible
to determine all data necessary to use the CelNav algorithm.

One data set that must be generated is the star tracker data. It is not feasible
to directly sample star tracker data due to cost, complexity, and light pollution, thus
the necessary star tracker data will be determined using one of CelNav’s backtracking
methods, this specific method is discussed in Chapter 2. Determining star tracker data
using this method is possible since the IMU has sensors capable of determining position,
GPS, tilt and slope, accelerometer, and heading from the magnetometer, which first
needed to be converted into local heading from global.[31] It is important to note that due
to the resolution of the mirco-controller significant error introduced into backtracking
method which allows for a worst-cast scenario to be tested.[31] Please note this testing
is to be a proof of concept for CelNav, and not the final experimental results.
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Appendix D

CAST Algorithm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This is the main program!

%It relies on the .m files contained in this folder

%The goal of this program is the determine attitude(yaw, pitch, roll) of

a

%rover using multiple cameras.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function [angleA]=startracker()

clc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Global Control Variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

num_aquisitions=2;

disk_size=6;%This couldn’t find stars at 12

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %Red green and blue values

R=’Red’;

G=’Green’;

B=’Blue’;

% D=’Blue & Red’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Start of the Initialization Program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%How to do user replies

message = sprintf(’Initialization of Cameras?’);

reply = questdlg(message, ’Initialization?’, ’Yes’,’NO’, ’Yes’);

if strcmpi(reply, ’Yes’)

% User wants to initialize the system to initial reference points

174



%Get and Image snapshot forward

%%Initialize Each Camera for reference points if reply is YES

% cam_yaxis = videoinput(’winvideo’,1,’YUY2_1280x960’);

% cam_xaxis = videoinput(’winvideo’,2,’YUY2_1280x960’);

% cam_zaxis = videoinput(’winvideo’,3,’YUY2_1280x960’);

%IF it thinks it is an RGB camera

cam_xaxis = videoinput(’winvideo’,1,’RGB24_1280x960’);

cam_yaxis = videoinput(’winvideo’,2,’RGB24_1280x960’);

cam_zaxis = videoinput(’winvideo’,3,’RGB24_1280x960’);

[R1x_xaxis,R2x_xaxis,R1y_xaxis,R2y_xaxis,Color_Ref_xaxis]=initilize(

cam_xaxis,disk_size);

[R1x_yaxis,R2x_yaxis,R1y_yaxis,R2y_yaxis,Color_Ref_yaxis]=initilize(

cam_yaxis,disk_size);

[R1x_zaxis,R2x_zaxis,R1y_zaxis,R2y_zaxis,Color_Ref_zaxis]=initilize(

cam_zaxis,disk_size);

Ref_case_1=strcmp(Color_Ref_xaxis,B) && strcmp(Color_Ref_yaxis,G);

Ref_case_2=strcmp(Color_Ref_xaxis,R) && strcmp(Color_Ref_yaxis,B);

Ref_case_3=strcmp(Color_Ref_xaxis,B) && strcmp(Color_Ref_yaxis,R);

Ref_case_4=strcmp(Color_Ref_xaxis,G) && strcmp(Color_Ref_yaxis,B);

if Ref_case_1==1;

disp(’<==Ref_Case 1==> Blue and Green’)

Ref_case=1;

end

if Ref_case_2==1;

disp(’<==Ref_Case 2==> Red and Blue’)

Ref_case=2;

end

if Ref_case_3==1;

disp(’<==Ref_Case 3==> Blue and Red’)

Ref_case=3;

end

if Ref_case_4==1;

disp(’<==Ref_Case 4==> Green and Blue’)

Ref_case=4;

end

%clear the trigger

flushdata(cam_xaxis)

flushdata(cam_yaxis)

flushdata(cam_zaxis)

%This is where the omni is initialized

init_omni
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Start of the Main Program!!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Ready to Aquire rotation data?

message = sprintf(’Ready to Aquire Rotation Data?’);

reply = questdlg(message, ’Ready to Aquire Rotation Data?’, ’OK’,’Cancel

’, ’OK’);

if strcmpi(reply, ’Cancel’)

% User canceled so exit.

return;

end

% Tell the program what cameras to use when not initializing

% cam_yaxis = videoinput(’winvideo’,1,’YUY2_1280x960’);

% cam_xaxis = videoinput(’winvideo’,2,’YUY2_1280x960’);

% cam_zaxis = videoinput(’winvideo’,3,’YUY2_1280x960’);

%

% % %If it thinks its an RGB camera

cam_xaxis = videoinput(’winvideo’,1,’RGB24_1280x960’);

cam_yaxis = videoinput(’winvideo’,2,’RGB24_1280x960’);

cam_zaxis = videoinput(’winvideo’,3,’RGB24_1280x960’);

%clear the trigger

flushdata(cam_xaxis)

flushdata(cam_yaxis)

flushdata(cam_zaxis)

%This opens the file to write the quaternion measurments

fid = fopen(’quat.txt’, ’wt’); % was using ’wt’

% fid_ang = fopen(’angle.txt’, ’wt’);

% fprintf(fid_ang, ’The Angles in X,Y,Z\n’);

counter=0;

%This is the loop of the program

for index=1:num_aquisitions

%This figures out what the angle is given the reference points and a

camera

disp(’Adjust the attitude....Press [Enter] to continue...’)

commandwindow;

pause;

% tic

counter=counter+1;

disp(’Aquiring Star Locations...’)

[Angle_yaxis, Color_xaxis]=angle(cam_xaxis,R1x_xaxis,R2x_xaxis,R1y_xaxis

,R2y_xaxis,disk_size);

[Angle_xaxis, Color_yaxis]=angle(cam_yaxis,R1x_yaxis,R2x_yaxis,R1y_yaxis

,R2y_yaxis,disk_size);
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[Angle_zaxis, Color_zaxis]=angle(cam_zaxis,R1x_zaxis,R2x_zaxis,R1y_zaxis

,R2y_zaxis,disk_size);

if Angle_zaxis==-1 ||Angle_xaxis==-1 || Angle_yaxis==-1

disp(’++++ Could NOT find Stars ++++’)

fprintf(fid, ’++++ Could NOT find Stars ++++\n’);

else

Angle_Degrees=[’X Angle: ’ num2str(Angle_xaxis,’%f’),’ Y Angle: ’

num2str(Angle_yaxis,’%f’),’ Z Angle: ’ num2str(Angle_zaxis,’%f’)];

disp(Angle_Degrees)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The logic of facing a different direction

%We will add 90 degrees based on what way it is facing!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%strcmp compares two strings and returns true==1 if they are the same.

% case_0=Initialization_Colors

case_1=strcmp(Color_xaxis,B) && strcmp(Color_yaxis,G);

case_2=strcmp(Color_xaxis,R) && strcmp(Color_yaxis,B);

case_3=strcmp(Color_xaxis,B) && strcmp(Color_yaxis,R);

case_4=strcmp(Color_xaxis,G) && strcmp(Color_yaxis,B);

%Angles are in Degrees at this point!

if case_1==1;

case_actual=1;

disp(’<==Case 1==> Blue and Green’)

Angle_zaxis=Angle_zaxis+90*(abs(case_actual-Ref_case));

end

if case_2==1;

case_actual=2;

disp(’<==Case 2==> Red and Blue’)

Angle_zaxis=Angle_zaxis+90*(abs(case_actual-Ref_case));

end

if case_3==1;

case_actual=3;

disp(’<==Case 3==> Blue and Red’)

Angle_zaxis=Angle_zaxis+90*(abs(case_actual-Ref_case));

end

if case_4==1;

case_actual=4;

disp(’<==Case 4==> Green and Blue’)

Angle_zaxis=Angle_zaxis+90*(abs(case_actual-Ref_case));
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% disp(’ ======================================================= ’);

% disp(’Angle_xaxis %f,Angle_yaxis %f,Angle_zaxis %f’,Angle_zaxis,

Angle_xaxis, Angle_yaxis);

%

% Angle_zaxis

% Angle_xaxis

% Angle_yaxis

Angle_Degrees=[’X Angle: ’ num2str(Angle_xaxis,’%f’),’ Y Angle: ’

num2str(Angle_yaxis,’%f’),’ Z Angle: ’ num2str(Angle_zaxis,’%f’)];

Colors=[’X Color: ’ num2str(Color_xaxis,’%f’),’ Y Color: ’ num2str(

Color_yaxis,’%f’),’ Z Color: ’ num2str(Color_zaxis,’%f’)];

disp(Angle_Degrees)

disp(Colors)

%Convert the angles from DEGREES to RADIANS

Angle_forward=deg2rad(Angle_zaxis);

Angle_right=deg2rad(Angle_xaxis);

Angle_left=deg2rad(Angle_yaxis);

% Stored_Angle(index,1:3)=[Angle_xaxis Angle_yaxis Angle_zaxis];

%Convert from yaw, pitch and roll to a quaternion

Quaternion=angle2quat(Angle_zaxis,Angle_xaxis,Angle_yaxis,’ZXY’);

disp(’Quaternion:’)

disp(Quaternion)

% Stored_Angle(index,1:3)=[Angle_xaxis Angle_yaxis Angle_zaxis];

Stored_Quaternion(index,1:4)=Quaternion;

%Write the quaternion data to the file specified above

fprintf(fid, ’%5.4f %5.4f %5.4f %5.4f\n’,Quaternion);

disp(’ ======================================================= ’);

disp(’ ======================================================= ’);

% Orientation(index,1)=Angle_forward;

% Orientation(index,2)=Angle_right;

% Orientation(index,3)=Angle_left;

%Orientation(index,4,)=Quaternion;

flushdata(cam_zaxis)

flushdata(cam_xaxis)

flushdata(cam_yaxis)

toc

end

end

%Run the matlab files to command the accelerometer and send the data via

ftp(ip transfer)

accel_readings(num_aquisitions)
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%Close the file after writing

% fclose(fid_ang);

fclose(fid);

delete(cam_zaxis)

delete(cam_xaxis)

delete(cam_yaxis)

clear cam_zaxis cam_xaxis cam_yaxis

disp(’ ===== Collection Complete =====’);

%%

load quat.txt

load Accel.csv

disp(’The Acceleration readings:’)

disp(Accel)

disp(’The Startracker readings:’)

disp(quat)

% toc

%% Inputs

[rows,cols]=size(Accel);

i=rows;

for i=0:rows,

y = -Accel(i,2);

z = Accel(i,3);

x = Accel(i,4);

fprintf(’\n\nStartracker Quaternion\n’);

q0 = quat(i,1);

q1 = quat(i,2);

q2 = quat(i,3);

q3 = quat(i,4);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%Definitions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%Define Lunar Coordinate Transformations%%%

R_moon = 6371*1e3;

Omega__SC_I = eye(3);

Omega__SD_SC = eye(3);

Omega__SD_I = Omega__SD_SC*Omega__SC_I;

Q_Omega__SD_I = A2Q(Omega__SD_I);

R_Omega__SD_I_E = eye(3);

Q_R_Omega__SD_I_E = A2Q(R_Omega__SD_I_E);

R_Omega__SD_I = Omega__SD_I;

Q_R_Omega__SD_I = A2Q(R_Omega__SD_I);

%%%Alignment%%%

% Correction Rotation

U__NED_ENU = [0 1 0; 1 0 0; 0 0 -1];

179



% Body Alignment

Body = [1 0 0;0 1 0;0 0 1];

% Accelerometer Alignment

Acc = [1 0 0;0 1 0;0 0 1];

%%%Body with respect to Accelerometer%%%

% Creates Scalar Portion of Quaternion Vecter

Body_eta = cross(Body(3,:),Acc(3,:)’);

% Degrees

Body_theta = acos(Body(3,:)*Acc(3,:)’)*180*pi;

% Quaternion Vector Body to Acc z-vector

Body_quat = Body_eta*sin(Body_theta/2*pi/180);

% Quaternion Scalar Body to Acc z-vector

Body_quat0 = cos(Body_theta/2*pi/180);

% Total Quaternion

Q_Acc_1 = [Body_quat(1),Body_quat(2),Body_quat(3),

Body_quat0]’;

% Normalizes Acc1 Quaternion

Q_Body = Q_Acc_1/norm(Q_Acc_1);

% Rotation Matrix

R_Body = Q2A(Q_Body);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%Body with respect to Star Tracker%%%

% Star tracker z-vector

neg_Star_tracker_vec = [0 0 1]’;

% Star tracker z-(unit) vector

neg_Star_tracker_vec_unit = neg_Star_tracker_vec/norm(

neg_Star_tracker_vec);

% Creates Scalar Portion of Quaternion Vecter

M__C_Body_eta = cross((Body(3,:)),

neg_Star_tracker_vec_unit);

% Degrees

M__C_Body_theta = acos(neg_Star_tracker_vec_unit’*Body
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(3,:)’);

% Quaternion Vector Body to Acc z-vector

M__C_Body_quat = M__C_Body_eta*sin(M__C_Body_theta/2*pi

/180);

% Quaternion Scalar Body to Acc z-vector

M__C_Body_quat0 = cos(M__C_Body_theta/2*pi/180);

% Total Quaternion

Q_star = [M__C_Body_quat(1),M__C_Body_quat(2),

M__C_Body_quat(3),M__C_Body_quat0]’;

% Normalize Star Tracker Alignment Quaternion

Q_star_n = Q_star/norm(Q_star);

% Rotation Matrix

R_M__C_Body = Q2A(Q_star_n);

% Alignment Matrix

R_Error_Body = RR_b(0);

R_M__C_Body_ae = RR_b(0);

Q_R_M__C_Body_ae = A2Q(R_M__C_Body_ae);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%Accelerometer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%Read in Accelerometer Sensor Data%%%

% Voltages to Angles

%x_axis_angle = acc(:,2);

%y_axis_angle = acc(:,3);

%z_axis_angle = acc(:,4);

x_axis_angle = x;

y_axis_angle = y;

z_axis_angle = z;

% Angles to Rotation Matrix

Gamma_A_Down = [x_axis_angle,0,0;

0,y_axis_angle,0;

0,0,z_axis_angle];

% Rotation Matrix to Quaternion

Gamma = [x_axis_angle,y_axis_angle,z_axis_angle]’;
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%%%Assemble Alpha/Beta/Upsilon Matrix%%%

%%%Alpha/Beta%%%

% ST_Down_Body = (Gamma_A_Down*M_Body_A)’;

%%%Upsilon Check%%%

% Upsilon = (Omega_Inertial_SD*Delta_C_Inertial*M_Body_C)’*(

U_NED_ENU *LL_SD_ENU)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Star Tracker

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%Read in Startracker Sensor Data%%%

% Delta = star;

%%%Assemble Delta Matrix%%%

%Delta1=[Delta(1);Delta(2);Delta(3)];

%Delta0=Delta(4);

Delta1 = [q1;q2;q3];

Delta0 = [q0];

Delta_Rot = q2rotmat(Delta1,Delta0);

Delta__C_Inertial = Delta_Rot;

%%%Assemble Phi Matrix%%%

Phi__Down_SD_e = Gamma_A_Down*...

% Gamma Rotation Matrix with Noise Addition

R_Error_Body*R_Body*... %

Accelerometer Alignment and Body

Rotation Matrixes

R_M__C_Body’*R_M__C_Body_ae’*...

% Star Tracker Alignment and Body

Rotation Matrixes

Delta__C_Inertial’*...

% NASA Model

R_Omega__SD_I’*R_Omega__SD_I_E’;

% Place Holder for NASA Gravity

Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%Extraction
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%Extraction of Lambda/Phi%%%

Lambda(i) = atan2(-Phi__Down_SD_e(3,2),-Phi__Down_SD_e(3,1))*180/pi;

Phi(i) = atan2(-Phi__Down_SD_e(3,3),(sqrt(Phi__Down_SD_e(2,3)^2+

Phi__Down_SD_e(1,3)^2)))*180/pi;

epsilon(i) = atan2(-Phi__Down_SD_e(2,3),Phi__Down_SD_e(1,3))*180/pi;

%%%Extraction Alpha/Beta%%%

%alpha = atan2(ST_Down_Body(3,2),ST_Down_Body(2,2));

%beta = atan2(-ST_Down_Body(1,3),ST_Down_Body(1,1));

%%%Outputs%%%

fprintf(’Outputs\n\n’);

fprintf(’Lambda %3.3f\n\n’,Lambda(i));

fprintf(’Phi %3.3f\n\n’,Phi(i));

fprintf(’Epsilon %3.3f\n\n’,epsilon(i));

LLH(i,:) =[Lambda(i);Phi(i);epsilon(i)];

end

%% Save

fid = fopen(’Locations.csv’,’w’);

for ii = 1:rows,

fprintf(fid,’%s’,’Latitude = ’);

fprintf(fid,’%5.2f\n’,LLH(ii,1))

fprintf(fid,’%s’,’Longitude = ’);

fprintf(fid,’%5.2f\n’,LLH(ii,2))

fprintf(fid,’%s’,’Heading = ’);

fprintf(fid,’%5.2f\n’,LLH(ii,3));

fprintf(fid,’\n’);

end

fclose(fid);
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Appendix E

Skyscout Recorder

% SkyScoutRecorder: records data from a SkyScout for a specified

quantity of seconds

% Author : Charles E. Campbell, Jr., GSFC

% Based on code by : Mike Lemp, Celestron

% Date : Jun 12, 2009

% =====================================================================

% Header Section: {{{1

% ---------------------------------------------------------------------

% Includes: {{{2

#include <iostream>

#include <stdio.h>

#include <windows.h>

#include <stdlib.h>

#include <time.h>

#include <sys/timeb.h>

#include <string>

#include <ctype.h>

#include <sys/select.h>

#include <errno.h>

using namespace std;

% ---------------------------------------------------------------------

% Definitions: {{{2

#define BUFSIZE 256

#define USE_ORIENTATION

% ---------------------------------------------------------------------

% Typedefs: {{{2

typedef int (__stdcall *BulkOpenTYPE)( void );

typedef void (__stdcall *BulkCloseTYPE)( void );

typedef int (__stdcall *versionCmdTYPE)( unsigned short& majorVersion,

unsigned short& minorVersion, unsigned short& buildVersion );

typedef int (__stdcall *getGPSCmdTYPE)( double& latitude, double&

longitude, double& elevation, unsigned int& time, int& source, int&

status );
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typedef int (__stdcall *getLastTargetCmdTYPE)( float& altitude, float&

azimuth, float& rotation, float& rightAscension, float& declination);

#ifdef USE_ORIENTATION

typedef int (__stdcall *getOrientationCmdTYPE)(float& altitude, float&

azimuth, float& rotation);

#endif

% ---------------------------------------------------------------------

% Global Variables: {{{2

HINSTANCE driverDll;

BulkOpenTYPE BulkOpenAddr;

BulkCloseTYPE BulkCloseAddr;

versionCmdTYPE versionCmdAddr;

getGPSCmdTYPE getGPSCmdAddr;

getLastTargetCmdTYPE getLastTargetAddr;

#ifdef USE_ORIENTATION

getOrientationCmdTYPE getOrientationAddr;

#endif

FILE *fp = NULL;

unsigned long qtysec = 0L;

char *outputfile = NULL;

% ---------------------------------------------------------------------

% Prototypes: {{{2

int main(int, char **); %/* SkyScoutRecorder.cpp */

int SkyScoutInit(void); %/* SkyScoutRecorder.cpp */

void SkyScoutClose(void); %/* SkyScoutRecorder.cpp */

int PrintVersion(FILE *); %/* SkyScoutRecorder.cpp */

int PrintSkyScoutData(FILE *); %/* SkyScoutRecorder.cpp */

% =====================================================================

% Functions: {{{1

% ---------------------------------------------------------------------

% main: it all starts here {{{2

int main(

int argc,

char **argv)

{

char buf[BUFSIZE];

int markcnt= 0;

int result;

fd_set rmask;

struct timeval timespec;

SkyScoutInit(); % load the library

% handle command line

outputfile= ,SkyScout.out,; % default: <SkyScout.out>

qtysec = 600; % default: ten minutes

if(argc > 1) {
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for(--argc, ++argv; argc > 0; --argc, ++argv) {

if(isdigit(**argv)) sscanf(*argv,’%lu’,&qtysec);

else if(isascii(**argv)) outputfile = *argv;

}

}

fp = fopen(outputfile,’w’); % default: <SkyScout.out>

fprintf(stderr,’SkyScoutRecorder: Will run for %d sec. Output goes to <%

s>\n’,qtysec,outputfile);

% give version

PrintVersion(fp);

% get data from SkyScout once a second for qtysec seconds

while(qtysec--) {

PrintSkyScoutData(fp);

// get an input string from the user. non-blocking. one second

intervals

FD_ZERO(&rmask);

FD_SET(STDIN_FILENO,&rmask);

timespec.tv_sec = 1L;

timespec.tv_usec = 0L;

result = select(STDIN_FILENO+1,&rmask,NULL,NULL,&timespec

);

if(result < 0) {

fprintf(fp,’***error*** select failure#%d\n’,errno);

break;

}

if(FD_ISSET(STDIN_FILENO,&rmask)) {

if(!fgets(buf,BUFSIZE,stdin)) {

fprintf(fp,’***error*** fgets indicates end of

stdin\n’);

break;

}

fprintf(fp,’Mark#%-3d: %s’,++markcnt,buf);

}

}

% close things down

SkyScoutClose();

fclose(fp);

return 0;

}

% ---------------------------------------------------------------------

% SkyScoutInit: this function loads the scoutDriver.dll library {{{2

int SkyScoutInit(void)

{

driverDll = LoadLibrary( ’scoutDriver.dll’ );

if(!driverDll) {

fprintf(stderr,’***error*** unable to open <scoutDriver.dll>\n’);
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exit(1);

}

% get the addresses for dll functions

BulkOpenAddr = (BulkOpenTYPE) GetProcAddress( driverDll, ’

BulkOpen’ );

BulkCloseAddr = (BulkCloseTYPE) GetProcAddress( driverDll, ’

BulkClose’ );

versionCmdAddr = (versionCmdTYPE) GetProcAddress( driverDll, ’

versionCmd’ );

getGPSCmdAddr = (getGPSCmdTYPE) GetProcAddress( driverDll, ’

getGPS’ );

getLastTargetAddr = (getLastTargetCmdTYPE) GetProcAddress( driverDll, ’

getLastTarget’ );

#ifdef USE_ORIENTATION

getOrientationAddr = (getOrientationCmdTYPE) GetProcAddress( driverDll,

’getOrientation’ );

#endif

int retval = BulkOpenAddr(); // open connection to SkyScout

if(retval != 0) fprintf(stderr,’***warning*** problem connecting to

SkyScout\n’);

return retval;

}

% ---------------------------------------------------------------------

% SkyScoutClose: this function closes the SkyScout connection {{{2

void SkyScoutClose(void)

{

BulkCloseAddr(); % now call close

if(driverDll) FreeLibrary( driverDll ); % free the library

fprintf(stderr,’connection to SkyScout closed\n’);

}

% ---------------------------------------------------------------------

% PrintVersion: this function obtains version info from SkyScout and

prints it {{{2

% Returns 0=success

% something else otherwise

int PrintVersion(FILE *fp)

{

int retval= 0;

unsigned short majorVersion;

unsigned short minorVersion;

unsigned short buildVersion;

%call the get version command

retval = versionCmdAddr(majorVersion,minorVersion,buildVersion);

if(retval != 0) {
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fprintf(stderr,’***error** Couldn’t get Version information from

SkyScout’);

SkyScoutClose();

return retval;

}

fprintf(fp,’Version: Major#%d Minor#%d Build#%d\n’,majorVersion,

minorVersion,buildVersion);

fflush(fp);

return retval;

}

% ---------------------------------------------------------------------

% PrintSkyScoutData: this function gets time+pose data from SkyScout

{{{2

% Returns 0=success

% something else otherwise

int PrintSkyScoutData(FILE *fp)

{

double elevation;

double latitude;

double longitude;

int retval = 0;

int source;

int status;

unsigned int time;

% get gps info

retval = getGPSCmdAddr( latitude, longitude, elevation, time, source,

status);

if(retval != 0) {

fprintf(stderr,’***error*** can’t get GPS information from

SkyScout’);

SkyScoutClose();

return retval;

}

fprintf(fp,’latitude=%f longitude=%f elevation=%f time=%d source=%d

status=%d ’,

latitude,longitude,elevation,time,source,status);

% Get last target data

float altitude;

float azimuth;

float rotation;

float rightAscension;

float declination;

retval = getLastTargetAddr( altitude, azimuth, rotation, rightAscension,

declination);
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if(retval != 0) {

fprintf(stderr,’***error*** can’t get last-target information

from SkyScout’);

SkyScoutClose();

return retval;

}

#ifdef USE_ORIENTATION

retval = getOrientationAddr(altitude,azimuth,rotation);

if(retval != 0) {

fprintf(stderr,’***error*** can’t get orientation information

from SkyScout’);

SkyScoutClose();

return retval;

}

#endif

fprintf(fp,’’altitude=%f azimuth=%f rotation=%f rightAscension=%f

declination=%f\n’,

altitude, azimuth, rotation, rightAscension, declination);

fflush(fp);

return retval;

}

% ---------------------------------------------------------------------

% Modelines: {{{1

% vim: fdm=marker
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Appendix F

Euler Angle Rotation Matrices
(Direction Cosine Matrix)

all in order of ϕ, θ, ψ
Roll - Pitch - Yaw (123)

 cos (θ) cos (ψ) cos (θ) sin (ψ) − sin (θ)

sin (ϕ) sin (θ) cos (ψ)− cos (ϕ) sin (ψ) sin (ϕ) sin (θ) sin (ψ) + cos (ϕ) cos (ψ) sin (ϕ) cos (θ)

cos (ϕ) sin (θ) cos (ψ) + sin (ϕ) sin (ψ) cos (ϕ) sin (θ) sin (ψ)− sin (ϕ) cos (ψ) cos (ϕ) cos (θ)


RPR (121)

 cos (θ) sin (θ) sin (ψ) − sin (θ) cos (ψ)

sin (ϕ) sin (θ) − sin (ϕ) cos (θ) sin (ψ) + cos (ϕ) cos (ψ) sin (ϕ) cos (θ) cos (ψ) + cos (ϕ) sin (ψ)

cos (ϕ) sin (θ) − cos (ϕ) cos (θ) sin (ψ)− sin (ϕ) cos (ψ) cos (ϕ) cos (θ) cos (ψ)− sin (ϕ) sin (ψ)


RYR (131)


cos (ψ) sin (ψ) cos (ψ) (sin (ψ))2

− cos (ϕ) sin (ψ) cos (ϕ) (cos (ψ))2 − sin (ϕ) sin (ψ) cos (ϕ) cos (ψ) sin (ψ) + sin (ϕ) cos (ψ)

sin (ϕ) sin (ψ) − sin (ϕ) (cos (ψ))2 − cos (ϕ) sin (ψ) − sin (ϕ) cos (ψ) sin (ψ) + cos (ϕ) cos (ψ)


RYP (132)

 cos (θ) cos (ψ) sin (θ) − cos (θ) sin (ψ)

− cos (ϕ) sin (θ) cos (ψ) + sin (ϕ) sin (ψ) cos (ϕ) cos (θ) cos (ϕ) sin (θ) sin (ψ) + sin (ϕ) cos (ψ)

sin (ϕ) sin (θ) cos (ψ) + cos (ϕ) sin (ψ) − sin (ϕ) cos (θ) − sin (ϕ) sin (θ) sin (ψ) + cos (ϕ) cos (ψ)


PYR (231)

 cos (ϕ) cos (θ) cos (ϕ) sin (θ) cos (ψ) + sin (ϕ) sin (ψ) cos (ϕ) sin (θ) sin (ψ)− sin (ϕ) cos (ψ)

− sin (θ) cos (θ) cos (ψ) cos (θ) sin (ψ)

sin (ϕ) cos (θ) sin (ϕ) sin (θ) cos (ψ)− cos (ϕ) sin (ψ) sin (ϕ) sin (θ) sin (ψ) + cos (ϕ) cos (ψ)


PYP (232)

 cos (ϕ) cos (θ) cos (ψ)− sin (ϕ) sin (ψ) cos (ϕ) sin (θ) − cos (ϕ) cos (θ) sin (ψ)− sin (ϕ) cos (ψ)

− sin (θ) cos (ψ) cos (θ) sin (θ) sin (ψ)

sin (ϕ) cos (θ) cos (ψ) + cos (ϕ) sin (ψ) sin (ϕ) sin (θ) − sin (ϕ) cos (θ) sin (ψ) + cos (ϕ) cos (ψ)


PRP (212)

(cos (ϕ))2 − (sin (ϕ))2 cos (θ) sin (ϕ) sin (θ) − cos (ϕ) sin (ϕ)− sin (ϕ) cos (θ) cos (ϕ)

sin (ϕ) sin (θ) cos (θ) cos (ϕ) sin (θ)

cos (ϕ) sin (ϕ) + sin (ϕ) cos (θ) cos (ϕ) − cos (ϕ) sin (θ) − (sin (ϕ))2 + (cos (ϕ))2 cos (θ)
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PRY (213)

 cos (ϕ) cos (ψ)− sin (ϕ) sin (θ) sin (ψ) cos (ϕ) sin (ψ) + sin (ϕ) sin (θ) cos (ψ) − sin (ϕ) cos (θ)

− cos (θ) sin (ψ) cos (θ) cos (ψ) sin (θ)

sin (ϕ) cos (ψ) + cos (ϕ) sin (θ) sin (ψ) sin (ϕ) sin (ψ)− cos (ϕ) sin (θ) cos (ψ) cos (ϕ) cos (θ)


YRP (312)

 cos (ϕ) cos (ψ) + sin (ϕ) sin (θ) sin (ψ) sin (ϕ) cos (θ) − cos (ϕ) sin (ψ) + sin (ϕ) sin (θ) cos (ψ)

− sin (ϕ) cos (ψ) + cos (ϕ) sin (θ) sin (ψ) cos (ϕ) cos (θ) sin (ϕ) sin (ψ) + cos (ϕ) sin (θ) cos (ψ)

cos (θ) sin (ψ) − sin (θ) cos (θ) cos (ψ)


YRY (313)

 − sin (ϕ) cos (θ) sin (ψ) + cos (ϕ) cos (ψ) sin (ϕ) cos (θ) cos (ψ) + cos (ϕ) sin (ψ) sin (ϕ) sin (θ)

− cos (ϕ) cos (θ) sin (ψ)− sin (ϕ) cos (ψ) cos (ϕ) cos (θ) cos (ψ)− sin (ϕ) sin (ψ) cos (ϕ) sin (θ)

sin (θ) sin (ψ) − sin (θ) cos (ψ) cos (θ)


YPY (323)

 cos (ϕ) cos (θ) cos (ψ)− sin (ϕ) sin (ψ) cos (ϕ) cos (θ) sin (ψ) + sin (ϕ) cos (ψ) − cos (ϕ) sin (θ)

− sin (ϕ) cos (θ) cos (ψ)− cos (ϕ) sin (ψ) − sin (ϕ) cos (θ) sin (ψ) + cos (ϕ) cos (ψ) sin (ϕ) sin (θ)

sin (θ) cos (ψ) sin (θ) sin (ψ) cos (θ)


YPR (321)

 cos (ϕ) cos (θ) sin (ϕ) cos (ψ) + cos (ϕ) sin (θ) sin (ψ) sin (ϕ) sin (ψ)− cos (ϕ) sin (θ) cos (ψ)

− sin (ϕ) cos (θ) cos (ϕ) cos (ψ)− sin (ϕ) sin (θ) sin (ψ) cos (ϕ) sin (ψ) + sin (ϕ) sin (θ) cos (ψ)

sin (θ) − cos (θ) sin (ψ) cos (θ) cos (ψ)
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