
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2014

Network Interface Design for Network-on-Chip
Jiawei Zhong
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Zhong, Jiawei, "Network Interface Design for Network-on-Chip" (2014). Master's Theses and Capstones. 988.
https://scholars.unh.edu/thesis/988

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/988?utm_source=scholars.unh.edu%2Fthesis%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

NETWORK INTERFACE DESIGN FOR NETWORK ON CHIP

By

Jiawei Zhong

B.S., Nanjing University of Posts & Telecommunications, China, 2012

THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Electrical Engineering

December, 2014

This thesis has been examined and approved in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering by:

Thesis Director, Qiaoyan Yu, PhD.

Assistant Professor of Electrical and Computer Engineering

Kent A. Chamberlin, PhD.

Professor of Electrical and Computer Engineering

Andrzej Rucinski, PhD.

Professor of Electrical and Computer Engineering

Radim Bartos, PhD.

Associate Professor of Computer Science

On December 12, 2014

Original approval signatures are on file with the University of New Hampshire

Graduate School.

iii

 Acknowledgement

I would like to express my sincere gratitude to many people for their generous

help during my graduate study at University of New Hampshire.

 First, I would like to thank my advisor, Dr. Qiaoyan Yu, for her insightful

guidance and technical training through my two years’ research and study. I also thank

her for providing me this unique opportunity to learn state-of-art VLSI design.

 I want to thank all my committee members for their kind support during my

thesis: thanks to Dr. Kent Chamberlin for modifying my proposal and giving me

valuable advice on my research topic; thanks to Dr. Andrzej Rucinski for his guidance

and help when I was doing teaching assistant; thanks to Dr. Radim Bartos for helping

me to present my research work and prepare my thesis.

 I am also very grateful to other professors and researchers at UNH, especially Dr.

Lacourse, Dr. Messner, Dr. Kun, Dr. Smith, Dr. Miller and Dr. Sharif. They helped me

a lot in both coursework and academic. I also want to thank all my colleagues and

friends: Patrick Nsengiyumva, Ranita Bera, Neeraj Gill, Herman Pretorious and Drew

Stock, for their help and support in coursework and research.

 I wish to thank the ECE department at UNH for providing me financial

assistantship to support my study and research. Finally, I would like to thank my

parents for their unconditional love and support.

iv

Table of Contents

Acknowledgement ... iii

List of Tables .. vii

List of Figures .. viii

Abstract ... xiii

CHAPTER PAGE

CHAPTER 1 INTRODUCTION.. 1

1.1 Background of On-chip Communication Infrastructure .. 1

1.2 Motivations forTrustworthy IC... 3

1.3 Related Works & Contributions ... 5

1.4 Thesis Organization ... 7

CHAPTER 2 NOC BASICS .. 9

2.1 NoC Structure .. 9

2.1.1 Router .. 10

2.1.2 Links .. 11

2.1.3 Network Interface (NI) ... 11

2.2 NoC Design Problems .. 12

2.2.1 Packet Format .. 12

2.2.2 Topology.. 13

2.2.3 Packet Switching Techniques ... 13

2.2.4 Routing Scheme ... 14

2.2.5 Flow Control .. 14

2.2.6 Quality-of-Service .. 15

2.2.7 On-chip Interconnect Protocols .. 15

CHAPTER 3 PROPOSED NI DESIGN ... 18

3.1 Overview of Generic NI Design ... 18

3.2 Application of OCP to NI Design ... 20

3.2.1 OCP Signaling and Encoding ... 21

v

3.2.2 OCP Timing Diagram .. 22

3.3 Switching Technique and Routing Scheme ... 24

3.4 Packet Format .. 25

3.5 Flow Control.. 27

3.6 Initiator NI ... 28

3.6.1 Header & Payload Builder .. 29

3.6.2 Routing Table .. 29

3.6.3 Central Finite State Machine Control .. 31

3.6.4 Flit Arbiter ... 32

3.6.5 Asynchronous FIFO ... 33

3.6.6 Depacketizer & Receive Control .. 34

3.7 Target NI ... 35

3.8 Implementation and Simulation Results ... 36

CHAPTER 4 HARDWARE TROJAN ATTACK MODEL .. 39

4.1 HT Models in Previous Designs ... 40

4.2 HT Designs .. 42

4.2.1 HT Triggers in NI .. 43

4.2.2 HT Payloads in NI .. 45

4.3 Potential Trigger Signals for HTs in NIs... 46

4.3.3 Potential Trigger Signal 1: Reset Signal .. 46

4.3.4 Potential Trigger Signal 2: Unused States in an FSM 47

4.3.5 Potential Trigger Signal 3: FIFO-Full Signal .. 48

4.4 Potential Payload Locations in NI .. 50

4.4.1 Payload Objective 1: Latching Global Clock .. 51

4.4.2 Payload Objective 2: Damaging Flit Type Information 51

4.4.3 Payload Objective 3: Altering Routing Path .. 53

4.4.4 Payload Objective 4: Injecting Redundant Packets to Increase Traffic

Congestion .. 56

4.4.5 Payload Objective 5: Causing Buffer Overflow or Overwriting Memory 58

vi

4.4.6 Payload Objective 5: Modifying Protocol Specific Information..................... 60

CHAPTER 5 HT IMPACT AND PROPOSED HT COUNTERMEASURE 62

5.1 Hardware Trojan Implementation ... 62

5.1.1 Case Study 1: HT Insertion in FSM Control Logic.. 62

5.1.2 Case Study 2: HT Insertion in Routing Table .. 65

5.1.3 Case Study 3: HT Insertion in FIFO Read/Write Pointer 67

5.1.4 HT Hardware Overhead ... 69

5.2 HT Impact From Application Perspectives ... 71

5.2.1 Flit Loss in Image & Video Transmission ... 71

5.2.2 Flit Loss in Fingerprint Scanning & Identification .. 73

5.3 Proposed HT Countermeasure .. 74

5.3.1 Potential Security Threats to FSM .. 76

5.3.2 Proposed State-Obfuscation HT Countermeasure and Detection Method....... 77

5.3.3 Simulation Results ... 79

CHAPTER 6 CONCLUSIONS .. 85

REFERENCES ... 87

vii

 List of Tables

Table 3-1 Comparison of On-chip Protocols .. 20

Table 3-2 OCP Specification Signals ... 22

Table 3-3 Comparison of NI design in previous works ... 36

Table 4-1 Summary of various HT triggers and feasibility in NI .. 44

Table 4-2 Basic OCP signals.. 60

Table 5-1 Implementation result summary of HT trigger circuits .. 69

Table 5-2 Implementation result summary of HT payload circuits .. 69

Table 5-3 Area and Power of the NIs w/wo Proposed Method .. 84

viii

 List of Figures

Figure 1-1 SoC: Bus-centric communication architecture .. 1

Figure 1-2 Topological illustration of Network-on-Chip (NoC) .. 2

Figure 1-3 Trust level at each level of an IC design cycle ... 4

Figure 2-1 NoC: Network-based communication architecture .. 10

Figure 2-2 Five-port NoC Router Architecture ... 10

Figure 2-3 Generic NI architecture .. 12

Figure 2-4 Generic Packet Flit Format ... 13

Figure 2-5 Basic NoC Topologies .. 13

Figure 3-1 Overview of network interface ... 19

Figure 3-2 Timing diagram for burst write transaction ... 23

Figure 3-3 Timing diagram for bust read transaction .. 24

Figure 3-4 Direction encoding for five-port ... 25

Figure 3-5 X-Y routing from node A to node B router .. 25

Figure 3-6 NI packet format .. 26

Figure 3-7 Credit-based end-to-end flow control mechanism ... 27

Figure 3-8 Block diagram of Initiator NI ... 28

Figure 3-9 Packet builder .. 29

Figure 3-10 Conceptual view of a CAM-RAM based routing table 30

Figure 3-11 Longest prefix matching in ternary CAM .. 31

Figure 3-12 Central FSM control logic .. 32

file:///C:/Users/Yu_Lab/Desktop/Thesis_Draft2.b.docx%23_Toc399269574
file:///C:/Users/Yu_Lab/Desktop/Thesis_Draft2.b.docx%23_Toc399269575

ix

Figure 3-13 State diagram of flit arbiter ... 32

Figure 3-14 Dual-port RAM based FIFO architecture .. 33

Figure 3-15 State diagram of receiver control .. 34

Figure 3-16 State diagram of depacketizer ... 34

Figure 3-17 Block diagram of Target NI .. 35

Figure 3-18 Implementation details of different sub-modules in NI 37

Figure 3-19 The increasing trend of NI area over FIFO depth .. 38

Figure 4-1 Examples of HT with various triggers ... 41

Figure 4-2 Various scenarios of FSM based HT insertion ... 43

Figure 4-3 Examples of various HT payloads .. 46

Figure 4-4 FSM for initiator NI ... 47

Figure 4-5 FIFO full caused by writing burst ... 48

Figure 4-6 HT payload objectives on NoC network interface ... 50

Figure 4-7 HT payload at clock tree circuitry ... 51

Figure 4-8 Transmit packet format in proposed NI design .. 52

Figure 4-9 HT payload at FIFO register chain .. 52

Figure 4-10 Pseudo code for HT damaging flit type information .. 53

Figure 4-11 An example cause by an HT payload on the node current address 53

Figure 4-12 Pseudo code for HT attack model: altering packet routing path 55

Figure 4-13 Redundant packet injection caused by a triggered HT in NI 56

Figure 4-14 The impact of HT on latency .. 56

x

Figure 4-15 Pseudo code for HT attack model: duplicating packet transmission 58

Figure 4-16 Read and write FIFO pointers ... 59

Figure 4-17 Pseudo code for HT attack model: manipulating FIFO 59

Figure 5-1 Single state HT insertion in FSM .. 63

Figure 5-2 Multi-state HT insertion in FSM ... 64

Figure 5-3 HT insertion in the one-hot to binary encoder of routing table 66

Figure 5-4 HT insertion in FIFO pointer .. 67

Figure 5-5 HT attack in FIFOs with different depth ... 68

Figure 5-6 Comparison of different HTs in terms of area ... 70

Figure 5-7 Comparison of different HTs in terms of power .. 70

Figure 5-8 A series of image frames for video stream ... 72

Figure 5-9 Recovered image with single data flit loss .. 72

Figure 5-10 Recovered image with multiple adjacent data flits loss...................................... 72

Figure 5-11 Recovered image with multiple random data flits loss 73

Figure 5-12 HT impact to fingerprint identification.. 74

Figure 5-13 Initiator NI with embedded HT detection .. 76

Figure 5-14 FSM for Initiator NI ... 77

Figure 5-15 New FSM diagram after using the proposed state-obfuscation method 77

Figure 5-16 Examples of detectable HT insertion cases in FSM ... 78

Figure 5-17 Proposed HT detector that checks illegal states and illegal state transitions 79

Figure 5-18 HT detection rate for HT attacks in the FSM state registers 81

xi

Figure 5-19 HT detection rate for HT attacks in the FSM logic gates 81

Figure 5-20 Impact of key knowledge on HT attack success rate .. 83

Figure 5-21 Impact of different FSM states on HT successfully attacks 83

xii

 List of Acronyms

ASIC Application Specific Integrated Circuit

CAD Computer-aided design

CMOS Complementary metal–oxide–semiconductor

FPGA Field Programmable Gate Array

HT Hardware Trojan

IC Integrated Circuit

IP Intellectual Property

NI Network Interface

NoC Network-on-Chip

SoC System-on-Chip

VLSI Very Large Scale Integration

xiii

Abstract

NETWORK INTERFACE DESIGN FOR NETWORK ON CHIP

by

Jiawei Zhong

University of New Hampshire, December, 2014

In the culture of globalized integrated circuit (IC, a.k.a chip) production, the use

of Intellectual Property (IP) cores, computer aided design tools (CAD) and testing

services from un-trusted vendors are prevalent to reduce the time to market.

Unfortunately, the globalized business model potentially creates opportunities for

hardware tampering and modification from adversary, and this tampering is known as

hardware Trojan (HT). Network-on-chip (NoC) has emerged as an efficient on-chip

communication infrastructure. In this work, the security aspects of NoC network

interface (NI), one of the most critical components in NoC is investigated and

presented. Particularly, the NI design, hardware attack models and countermeasures

for NI in a NoC system are explored.

An Open Core Protocol compatible NI is implemented in an IBM0.18μm CMOS

technology. The synthesis results are presented and compared with existing literature.

Second, comprehensive hardware attack models targeted for NI are presented from

system level to circuit level. The impact of hardware Trojans on NoC functionality

and performance are evaluated. Finally, a countermeasure method is proposed to

address the hardware attacks in NIs.

1

CHAPTER 1

INTRODUCTION

1.1 Background of On-Chip Communication Infrastructure

Current rapid improvement of VLSI technology is yielding a more powerful,

capable and flexible system on a single silicon die. The embedded and computing

system design nowadays has moved from single core to the era of multi-core and

eventually to many core architectures [1]. The integration of numerous intellectual

property (IP) blocks on a chip has become a feasible and popular design methodology,

which is known as system-on-chip (SoC). One SoC example is shown in Figure

1-1.These heterogeneous IPs can be micro-processor, data memory, multimedia

decoder and general peripherals. They mainly communicate with each other via an

on-chip bus. Several industrial bus standards are available for SoCs, such as ARM

AXI [2], IBM CoreConnect [3] and Wishbone [4].

Figure 1-1 SoC: Bus-centric communication architecture

The traditional bus centric communication in multi-core SoC (MPSoC) has

several drawbacks, including limited bandwidth efficiency, high latency, poor

2

flexibility and extensive overhead in terms of power and area [5]. Those limitations

become more severe as the chip complexity and the number of IP cores increase. An

emerging on-chip interconnect solution, known as network-on-chip (NoC), has been

widely investigated by industry and academia communities [6-9]. The design of NoC

and its interface to SoC are pivotal in addressing all the issues mentioned above. As a

result, NoC is recognized as the mainstream communication architecture for MPSoCs.

In NoC-based MPSoCs, multiple processing IP cores are connected within a network

of routers and network interfaces (NIs), rather than the regular buses. Figure 1-2

shows a generic NoC system typically consists of routers, links and network

interfaces (NIs). Routers are the places where the data is directed to different paths,

links are wires connecting two routers and the NIs are the units implementing the

protocol and sockets between routers and IPs [6].

Figure 1-2 Topological illustration of Network-on-Chip (NoC)

 NoC has superior advantages such as scalability, reusability and high

3

performance over traditional buses. However, this new infrastructure also brings in

new weaknesses to the MPSoC system [7]. In most of the previous literature, the

research on NoC mainly focuses on system topology, functionality implementation,

routing & switching techniques, traffic characterization, computer-aided design (CAD)

tools and libraries design [10-13], but security and reliability aspects in such system

have not been fully explored. Therefore, in this thesis, we address the hardware

security issues in NoC design, and particularly in the network interface.

1.2 Motivations for Trustworthy IC

Hardware security in IC is emerging as an important research topic in recent years.

Modern IC design and manufacturing often involve purchased IP cores from

third-party vendors, electronic design automation (EDA) software from different

suppliers, outsourced design, testing, assembling and packaging services. This

globalization business model helps IC companies to reduce cost and shorten the time

to market, but also makes fabricated ICs vulnerable to several malicious attacks

[14-15]. Figure 1-3 shows the trust level at different steps of an IC design cycle. Each

party associated with the design cycle can potentially compromise an IC’s

functionality by intentional modification and tempering, which is known as hardware

Trojan (HT).

4

Figure 1-3 Trust level at each level of an IC design cycle (Source: [8])

HTs can be introduced in any design phase of IC design, from RTL description,

gate-level netlist, CAD tool libraries to GDSII file [16-17]. HTs can have serious

impact on the IC while in operation, especially in security sensitive applications such

as military, communication and national infrastructure. For instances, a malicious

microprocessor with shadow mode was implemented in [9]; a back door insertion into

the MicroSemi chips was reported in [10], which brought severe economic loss; and

similar attacks are also found in military radar recently [11], which made the radar fail

to detect enemies. As more and more transistors can be integrated into a single die, we

may expect that hardware security aspect in communication infrastructure, such as the

prevalent NoC, will be another concern in the near future. The consequences of HT

attacks in NoC, particularly in NI, may be more severe than those in IP cores for the

following reasons:

 NoC is a complex network composed of a large number of heterogeneous IP cores.

In modern IC business, some of these IP cores may be possibly purchased from

third-party vendors. It is difficult to ensure that all of the IPs is trustworthy, thus

increasing the risk of hardware Trojan insertion [21-22].

 Although the IP cores on-chip are heterogeneous, the NoC infrastructure itself is

5

highly modular. The routers and NIs in a NoC can be identical in a network

[23-24]. If hardware Trojan is inserted into the NoC standard module or library,

the HT attacks can be easily manifested through the entire network.

 The NIs in NoC are not only connecting wires between IP cores and routers. The

functionalities of state-of-art NIs include packet encapsulation and de-capsulation,

routing computation, quality-of-service (QoS) and flow control [12]. As the NIs

becomes more powerful and complicated, more attack locations and opportunities

are available to adversary, and the consequences of HTs are more difficult to

predict than before as well.

Most of the previous works related to hardware trustworthy and security are

mainly focused on the functional IP cores, such as general-purpose processor [9],

cryptographic IP, memory block and peripheral interface [62]. Although simple

examples for the attacks in NoCs have been provided in previous studies [11, 26-29],

those examples are not sufficient and complete for NoC designers to create

meaningful attack models at physical level to evaluate the security performance for a

given NoC design.

1.3 Related Work &Our Contributions

Security aspects in NoCs were first discussed in [11,26]. Security attacks on

integrated circuits and their application systems are generally classified into software

attacks, physical attacks and side-channel attacks. Such classification also applies to

NoCs. Security attacks in NoCs cause denial of service, extract secret information, or

6

alter execution or configuration of a system to conduct additional duties for

adversaries (a.k.a hijacking) [13].

Diguet et al. proposed a first solution for configurable NoC based communication

system in [14]. Diguet’s security framework is composed of secure network interface

and secure configuration manager, not including NoC routers. To implement a secure

NoC, Fiorin et al. [15] highlighted the need of address protection unit in network

interface and weighted round robin arbiter in router, as well as security automata to

monitor unexpected routines. Recently, Fiorin et al. presented data protection unit

designs in details to address the secure memory access in NoC [30-31]. To tackle

power, electromagnetic and network snooping attacks on NoCs, Gebotys and Zhang

made an effort on the transport and application layers by securing the cryptographic

key exchange mechanism in NoC [16-17]. Sajeesh and Kapoor also exploited

authenticated encryption in network interface to secure communication among IP

cores [18]. LeMay and Gunter introduced a NoC Firewall implemented in a special

functional hardware description language to facilitate formal analysis and thus

detected attacks that violate NoC protocol [19]. As cryptography units are

hardware-consuming, not all NoC-based systems can afford using crypto units at

transport and application layers of NoCs. To broaden the choice of methods for NoC

security enhancement, security attacks on other NoC layers need to be investigated, as

well. Some tangible examples of security attacks are provided in existing literatures

[13, 20]; however, the attack models for NoCs are either not thorough or too

7

high-level to be directly used in the procedure of NoC security assessment. Specific

HT attack models that are tightly couple with typical NoC design details will benefit

NoC designers and users to be aware of potential HT attacks and the corresponding

HT consequence in system development stage.

Besides, NI design and implementation are extensively explored in [23,25,34-39],

but none of them ever addresses the hardware Trojan or security aspects in NI. In this

work, we will fill in the gap. Our main contributions are as follows.

 We design and implement a highly modular network interface to facilitate the

standard OCP compatible NoC design. Hardware cost, latency performance and

power consumption of our baseline NI are compared to existing NIs.

 We analyze the NI from system level to gate level and propose potential HT attack

models in terms of possible attack locations and potential low probability trigger

signals. The attack models are justified either by analytical derivation or by

practical simulation.

 The impact of HT in a NoC system is quantitatively investigated and visually

evaluated by applying the attack models to NoC applications.

 Finally, we propose HT aware detection method for HT countermeasures

embedded into the baseline design. The efficiency of our method is also assessed

with quantitative results.

1.4 Thesis Organization

The rest of the thesis is organized as below.

8

Chapter 2 briefly describes the basics of NoC, including architecture, routing

scheme, switching technique, end-to-end flow control and advanced functionalities.

Chapter 3 introduces the proposed NI design in details, including all the

sub-modules.

Chapter 4 illustrates a comprehensive hardware Trojan attack model for NI,

including HT trigger design and payload placement.

Chapter 5 presents implementation details of several practical HTs. The impact of

HTs on video and image applications is also evaluated using application. A

countermeasure method is also proposed to facilitate the HT detection.

Chapter 6 summarizes this thesis and discusses future work.

9

CHAPTER 2

NOC BASICS

NoC encompasses a wide spectrum of research topics, ranging from highly

software application related issues (e.g. network traffic characterization and routing

scheme), across system topology (e.g. NoC topologies) to physical link level

implementation (e.g. FPGA and ASIC).The design space of a NoC is considerably

larger than that of a bus-based solution, as NoC can employ different routing and

arbitration strategies can be implemented as well as different organizations of the

communication infrastructure. This enables the SoC designer to find one of suitable

NoC solutions for specific system characteristic and constraints. In this chapter, we

present the main concepts involved in NoCs. Our baseline NI design was

implemented in IBM 0.18μm technology following the digital ASIC design flow. The

synthesis results for silicon area, power and timing are compared with existing

literature.

2.1 NoC Structure

The conceptual NoC is shown in Figure 2-1.A generic Network-on-Chip system

typically consists of network interfaces (NI), routers, physical links, and intellectual

property (IP) cores [21]. The IP cores are also called functional blocks or processing

elements, which are the main on-chip resources for data computation and processing.

10

IP core can be CPU, DSP processor, on chi memory, general I/O block and video

codec.

Figure 2-1 NoC: Network-based communication architecture (Source: [22])

2.1.1 Router

Figure 2-2 Five-port NoC router architecture

The design of router is to route the data according to chosen protocols, routing

and switching techniques. A NoC router is composed of input ports and output ports

connected to the shared NoC channels, a switching crossbar connecting the input

ports to the corresponding output ports, and a local port to access the IP core at this

router node. A generic architecture of five-port NoC router can be seen in Figure 2-2

[41-42]. In addition to this physical connection infrastructure, the router also contains

11

a logic block that implements the flow control policies and defines the overall strategy

for transferring data through the NoC.

2.1.2 Links

Links provide the raw bandwidth and physical connection with routers. It is

composed of one or more logical or physical channels, and each channel consists of a

set of metal wires. Typically, a NoC link has two physical channels, making a

full-duplex connection for bi-directional transmission between the routers. The

number of parallel wires per channel is typically uniform throughout the network and

is known as the channel bandwidth.

2.1.3 Network Interface (NI)

Network Interfaces (NIs) implement the logic connection by which IP cores

connect to the NoC. Their function is to decouple the data processing of IP core from

the communication network, and make it feasible to reuse core and communication

infrastructure. In [23], the author partitions the NI into two parts: a front end and a

back end. The front end handles the core requests and is ideally unaware of the NoC.

This part is usually implemented as interconnect socket and some of the industrial

communication protocols are applied at the front end, such as OCP [24], AXI [2], and

Wishbone [4]. The back end part assembles and disassembles the packet, reorders

buffers, implements synchronization protocols, and helps the router in terms of

storage. A generic NI architecture is shown as Figure 2-3.

12

Figure 2-3 Generic NI architecture

2.2 NoC Design Problems

To provide a complete NoC solution, we need specify many aspects and

characteristics from bottom to up. The designers may also need to trade off among

functionality, overhead and reliability according to the application requirements. The

state-of-art NoCs adapt mangy advanced networking features and functionalities [25].

The main design issues of NoCs include packet format, NoC topology, switching

technique, routing strategies, flow control and quality of service (QoS) requirement

[12].

2.2.1 Packet Format

Packet format defines the structure of the basic data units in a NoC system. Since

the data flow in NoC is based on packet switching, the format will make a significant

difference to the hardware design. Typically, a packet will be further divided into

several sequential flits, which are the minimum data units in NoC communication

[23]. A packet will consist of header flit, payload flit and tail flit. The header flit

usually contains key information of a packet, such as source and destination; the

payload flit only carries the general transmitted data and tail flit is used to

13

differentiate the boundary of two packets. The flit format is illustrated in Figure 2-4.

Figure 2-4 Generic Packet Flit Format (a) Header Flit Format (b) Payload & Tail Flit Format

2.2.2 Topology

Figure 2-5 Basic NoC Topologies (Source: [22])

Topology defines how NoCs are organized. Each node is composed of a router, a

NI and an IP core. From the communication perspective, there are various topologies

for NoC architectures. These topologies include mesh, torus, ring, octagon, tree and

other irregular interconnection networks. Some sample topologies are shown in

Figure 2-5. 2-D mesh topology is adopted in most NoC designs, as it is proved to be

more efficient in terms of latency, power consumption and ease of implementation

than other topologies [22].

2.2.3 Packet Switching Techniques

Packet switching technique determines how the packets are forwarded and

transferred through the NoC network. When the first NoC was proposed in early

14

2000s, circuit switching was preferred. To execute circuit switching, a path from

source to destination is informed prior to transfer by reserving the routers and links

before packet transfer. All data will follow the exact same path and the path is torn

down after the packet transfer is completed. Currently, most of NoC implementations

are based on packet switching. In packet switching, all the packets are transmitted

without reserving the entire path. Packet switched networks can further be classified

as wormhole, store and forward, and cut through [25].

2.2.4 Routing Scheme

Routing schemes are different from the concept of switching techniques. A

routing algorithm defines the exact route or path for the data from source to

destination rather than the way how the data are transferred. Routing scheme can be

generally classified into deterministic routing and adaptive routing. In the

deterministic routing, all packets follow the same route between a given pair of source

and destination and data deadlock can be easily avoided. Unlike deterministic routing,

adaptive routing may dynamically update or change the route for packets to reduce

congestion, but requires special attention to avoid deadlock and livelock. In current

NoC design, most packet switched networks utilize deterministic routing such as XY

routing [6].

2.2.5 Flow Control

End-to-end flow control characterizes the packet movement along the NoC. A

NoC system may have lots of buffer or memory locally inside the NIs and routers.

15

When the packets are transferring through the network, they are stored temporarily in

the buffering memory and wait for next step processing. In this sense, flow control is

necessary to guarantee that these buffers will not overflow. Traditional end to end

flow control schemes have credit based scheme and ACK based scheme [25].

2.2.6 Quality-of-Service

Quality-of-Service (QoS) refers to the levels of guarantees given for data transfer.

Goossensens et al. define two types of QoS in [26]: best-effort (BE) and guaranteed

service (GS). With best-effort NoCs, only completion of the communication is

ensured and data are transferred as soon as they are ready; with guaranteed service

NoCs, some extra services or properties are ensured, such as the correctness of data,

the completion of transaction and the error free communication.

2.2.7 On-chip Interconnect Protocols

As mentioned in 2.1, the front end of network interface typically is implemented

as industrial on-chip standards or protocols. This feature allows NI to separate the IP

cores from the whole network. As a result, designers can focus on the design of

various processing IPs without concerning the integration of NoC with IP cores. The

IP cores can be in a “plug-and-play” fashion for better reusability and performance

[27].

However, the on-chip communication protocols were first designed for SoC

applications and bus centric connection. Integrating heterogeneous IP cores in a SoC

often requires the insertion of glue logic, and standards of on-chip bus protocols were

16

developed to avoid this problem [28]. As we are migrating to the era of

multi-processor SoC (MPSoC) and NoC, the on-chip protocols are also being

modified and developed to adapt the demands of NoC. This section overviews the

popular standardized on-chip interconnect protocols such as AMBA AXI [2],

CoreConnect, Wishbone [4] and Open Core Protocol (OCP) [3].

 AMBA (Advanced Micro-controller Bus Architecture) is a standard devised by

ARM Limited to support efficient on-chip communication for ARM processors.

AMBA is hierarchically organized into system and peripheral bus segments,

mutually connected via bridges. AMBA does not define the method of arbitration,

instead, it allows the arbiter to be designed to meet the applications needs. AMBA

is also a multi-bus system and several distinct buses are defined in the AMBA

specification: ACE (Advanced Coherency Extensions), AHB (Advanced

High-performance Bus), APB (Advanced Peripheral Bus) and AXI (Advanced

eXtensible Interface)[2]. Nowadays, AMBA AXI is already one of the leading

on-chip interconnect systems used in high-performance FPGAs, MPSoCs and

NoCs.

 CoreConnectis a bus architecture developed by IBM to ease the integration and

reuse of processors, system and peripheral cores [3]. CoreConnect is

hierarchically comprised of a processor local bus (PLB), an on-chip peripheral bus

(OPB) and a device control register bus (DCRB). These three buses provide an

efficient interconnection of cores, library macros, and custom logic within a SoC

17

or MPSoC.

 Wishbone bus architecture was first developed by Silicore Corpation, and now is

maintained by OpenCores organization [4]. In 2003, it was released to public for

free. Wishbone does not define hierarchical buses, but defines the master and

slave interfaces. It also supports different types of transaction, such as read/write.

Designer can choose the arbitration mechanism to fit the application need.

 Open Core Protocol is a standard defined by OCP-IP. Unlike other bus centric

architecture, OCP is a comprehensive, bus-independent and configurable interface

standard between IP cores and on-chip communication subsystems. It is also

openly licensed and a designer can select only those signals and features from the

palette of OCP configurations to fill the need.

18

CHAPTER 3

PROPOSED NI DESIGN

The NI design guidelines were summarized and a generic NI architecture was

presented in [23], and various NI implementations have been extensively reported in

[23,25, 34-35, 37-39].The state-of-art NI design includes more than the basic

functionalities of synchronization and protocol wrapping. Advanced networking

functionalities, such as routing schemes, quality-of-service (QoS), flow control and

error management, begin to be incorporated into the NI. Different hardware

optimizations for latency, power and area are also considered in the previous

works[12]. In this chapter we illustrate the details of our proposed NI baseline design

based on previous works.

3.1 Overview of Generic NI Design

IP cores are typically categorized into Master and Slave IPs [23]. In a NoC

infrastructure, Master IPs are active processing elements such as Reduced Instruction

Set Computing (RISC) or DSP processors. Slave IPs are passive data recipients such

as memory and I/O peripherals. Since NoC is known as a transaction-based and

message-passing communication paradigm, only Master IPs can generate transaction

requests and Slave IPs only receive the requests and send back proper responses to

Master IPs. To meet different demands of Master and Slave, bi-directional Initiator

and Target NIs are designed for Master and Slave IPs, respectively. Initiator NIs are

19

connected to Master IPs to convert IP request transactions into NoC traffic and

translate the packets received from network; in contrast, Target NIs only receive

requests from network and respond the Master according to the requests.

(a)

(b)

Figure 3-1 Overview of network interface (a) Initiator NI (b) Target NI

As shown in Figure 3-1, Initiator and Target NIs present a mirrored architecture to

each other. There are two fundamental separations in a generic NI structure: each NI

contains an upstream transmitter path and a downstream receiver path; kernel and

shell are also distinguished for NoC and IP core specified issues, respectively. A NI

shell implements the socket protocol to handshake with IP cores and forward the

requests and data to next-stage kernel. Therefore, a protocol specific shell is needed

20

for each IP core connected to the NoC. A NI kernel packetizes data from shell, and at

the same time, depacketizes the response from the receiving path. A state-of-art NI

kernel also handles flow control and routing. The separation of kernel and shell

minimizes the effort of supporting various sockets when needed and keeping the

kernel structure unchanged. In other words, whichever protocol, bus size, clock

frequency that the IP core is using, all modules in the infrastructure may communicate

with each other [12]. The transmitter and receiver paths are loosely coupled:

whenever a request is processed, the receive path is notified; whenever a response is

received, the transmit path is unblocked.

3.2 Application of OCP to NI Design

Table 3-1 Comparison of On-chip Protocols

Standard CoreConnect AMBA OCP Wishbone

Interconnect Shared Bus Shared Bus Point-to-Point
Crossbar/Shared

Bus/Point-to-Point

Bus Width 32-256 32-256 Configurable 8-64

Device
FPGA/PLD/

ASIC

FPGA/PLD/

ASIC

FPGA/PLD/

ASIC
PLD/ASIC

Application

High Speed

Embedded

System

High Speed

Embedded

System

High Speed/Low

Cost Embedded

System

High Speed/Low

Cost Embedded

System

License
Authorization

Needed

Authorization

Needed
Free Free

As IP blocks are characterized typically by memory-mapped interfaces, most

NoCs are based on message-passing networks. This demands core-centric sockets and

the corresponding protocol wrapper between the shell and IP cores. In 2.2.7, we

overview the most popular on-chip protocols including AMBA, CoreConnect,

21

Wishbone and OCP. Table 3-1 provides a more detailed comparison of their features.

Among all these standards, we adopt OCP in our particular design for several

reasons. First, it is freely distributed and no license is needed; second, OCP is bus

independent and core centric, and this feature is more suitable in separating the core

from network fabric in a NoC design than other standards; third, OCP is highly

flexible and configurable, and allows designer to select appropriate signals and

features according to designs. OCP is increasingly popular in the NoC design and has

potential to be utilized in future NoC benchmarks [29].

3.2.1 OCP Signaling and Encoding

The OCP protocol defines a point-to-point interface between Master and Slave IP

cores. Only the master can presents request commands and the slave responds to the

commands either by accepting data or providing feedback. OCP facilitates basic

transfer mode with optional extensions such as burst, tag and thread. Burst extension

has been proved to be a key feature of current NI design given its high bandwidth

usage and low jitter [30]. A data packet is further partitioned into multiple small data

flits in a burst transaction, so the transmission does not need to wait until enough

space is available for an entire packet. Therefore, the latency is reduced and the speed

increases.

Our design supports the precise burst over imprecise burst to facilitate further

hardware optimization. The burst length is known before at the start of the burst, and

it can be either single burst or multiple data. The detailed signaling of OCP is

22

presented in Table 3-2. Basic OCP signals include MCmd, MData, MAddr,

SCmdAccept, SResp and SData. The designer can also select different extension

signals according to demands.

Table 3-2 OCP Specification Signals

Group Name Width Driver Function

Basic MAddr configurable master Transfer Address

MCmd 3 master Transfer Command

MData configurable master Transfer Data

MDataValid 1 master Write Data Valid

SDataAccept 1 slave Accept Write Data

SCmdAccept 1 slave Accept Command

SData configurable slave Transfer Data

SResp 2 slave Transfer Response

Burst MBurstLength configurable master Transfer Burst Length

MBurstSeq 3 master Transfer Burst Sequence

MReqLast 1 master Last Write Request

MDataLast 1 master Last Write Data

SRespLast 1 slave Last Read Response

Threads MConnID configurable master Connection Identifier

MThreadID configurable master Request Thread Identifier

SThreadID configurable slave Response Thread Identifier

MDataThreadID configurable master Write Data Thread Identifier

Sideband SInterrupt 1 slave Slave Interrupt

3.2.2 OCP Timing Diagram

OCP specification also defines the timing diagram for various data transfers such

as simple read and write, non-post write, read with handshake and response [24]. In

our particular design, we mainly use burst based read and write transaction.

As shown in Figure 3-2, the Master IP starts the burst write by driving WR on

MCmd, the first address of the burst on MAddr, valid data on MData, the burst length

23

on MBurstLength. The Slave IP will assert SCmdAccept as soon as the MData is

accepted.

Figure 3-2 Timing diagram for burst write transaction (Source: [24])

In the burst read transaction, the Master IP starts a read request by driving RD on

MCmd, a valid address on MAddr, MBurstLength, and asserting MBurstPrecise.

MBurstLength, MBurstSeq and MBurstPrecise must be kept constant during the burst.

MReqLast must be de-asserted until the last request in the burst. The timing diagram

is shown is Figure 3-3.If the Slave IP is ready to accept one request, it captures the

address of request and keeps SCmdAccept asserted. The Slave IP also responds to the

request by driving DVA on SResp and the read data on SData. The slave must keep

SRespLast de-asserted until the last response is finished.

24

Figure 3-3 Timing diagram for burst read transaction (Source: [24])

3.3 Switching Technique and Routing Scheme

We use the most popular packet-based wormhole switching in a 4×4 mesh

topology NoC. A packet is transmitted flit by flit and flows through the network. For

regular 2-D mesh topology, the deterministic XY routing scheme is well suited for on

chip communication [48-49]. XY routing is a dimension order routing, which routes

packets first in horizontal direction to the correct column and then in vertical direction

to the receiver. In the XY routing, five bi-directional ports in each router is encoded as

a 3-bit binary code, which is shown as Figure 3-4. Each 3-bit code represents one hoc

of current flit to the output port of router. In Figure 3-5, the XY routing path from

25

node A to node B is presented in red. The routing information is saved in routing

tables and packet headers.

3.4 Packet Format

(a)

Figure 3-5 X-Y routing from node A to

node B router

Figure 3-4 Direction encoding for

five-port

26

(b)

Figure 3-6 NI packet format (a) request packet (b) response packet

Packet format for NoCs tightly affects the NI control logic design, packet

boundary scanning, and the area overhead of the NI. To reduce design complexity and

balance cost and performance, we define two types of packets: request packets and

response packets. The formats for these two types are shown in Figure 3-6. Request

packet is always sent from a Master IP to a Slave IP and response packet is from a

Slave IP to a Master IP. Each packet are divided into header, payload and tail flits.

Two bits are used to present the flit type. Typically, a header flit contains control

information and routing information. In our request packet, the header is composed of

two flits. The control information encrypts OCP signals subset. The routing

information presents route hops in XY-routing. If each hop is encoded with three bits,

18-bit routing information can support 6 hops in total, which is able to accommodate

our 4×4 mesh topology. Reserved bits are for future extension.

27

3.5 Flow Control

Figure 3-7 Credit-based end-to-end flow control mechanism (a) credit counter decrements

when one flit is transmitted (b) slave IP core accepts received flit (c) credit counter

increments when receiving feedback from slave IP

Initiator and Target NIs demand buffers to perform packet encapsulation and

de-capsulation. Therefore, end to end flow control is necessary in NI to prevent buffer

overflow in the receiver end, which could further lead NoC system crush.

Credit-based and ACK/NACK are commonly used mechanism to avoid the buffer

overflow at the destination node [25]. In the credit-based flow control, a credit

counter is implemented in the transmitter to initialize the available buffer space at

destination. The credit counter reduces one whenever the transmitter forwards a flit,

shown as Figure 3-7 (a). If the count reaches zero, the buffer at the destination node

28

reaches the full status and thus no more flits are allowed. When one flit is consumed,

the counter increases one. The credit is either piggyback in the response packet or

provided by an extra link, shown as Figure 3-7 (c).

3.6 Initiator NI

Figure 3-8 Block diagram of Initiator NI

The main tasks of Initiator NI are to receive the request from master IP core,

encapsulate into a packet, transmit the packet flit by flit to the network, and receive

response from the remote slave IP core. The proposed Initiator NI is shown in Figure

3-8. The transmitter is composed of header and payload builder, a routing table,

asynchronous FIFOs, control logic and flit arbiters. The receiver consists of receiver

FIFO, depacketizer and receive control unit. Among these sub-components, central

FSM control, depacketizer and receive control are all FSM based control logic.

29

3.6.1 Header & Payload Builder

The header and payload builder mainly handle the handshake with the Master IP,

accept and packetize the OCP signals presented by the Master IP. Particularly, payload

header encapsulates the MData signal into payload and tail flits, and header builder

encapsulates the rest of OCP signals into control information of the header flit. As

soon as such process is done, the flits are ready to write into the transmitter FIFO.

Figure 3-9 (a) and (b) present the gate level implementation of header and payload

builder, respectively. The SCmdAccept comes from the NI FSM and will be asserted

when the NI is ready to accept new transaction requests. The OCP signals except the

MData will be registered by the header builder to form the header flit; and the MData

will be registered by the payload builder to form the payload or tail flit. Tail flit is

generated when the MReqLast from Master IP is asserted.

Figure 3-9 Packet builder (a) header flit builder (b) payload & tail flit builder

3.6.2 Routing Table

Routing table, or look-up table (LUT), is a local memory in Initiator to store the

routing paths to other slaves within the NoC [31]. A routing table in NI is typically

30

implemented as a combination of content addressable memory (CAM) and random

access memory (RAM), which is shown as Figure 3-10 [32, 33]. The global address

of IP cores is written into the CAM and the routing path information is store in the

RAM. When the MAddr is presented by the Master IP, CAM searches its contents to

find a match and the routing path associated with global address will be retrieved

from the routing table, encapsulated as a header flit and sent to the FIFO. In our

design, the routing information is expressed as multiple 3-bit binary hocs.

Figure 3-10 Conceptual view of a CAM-RAM based routing table

CAM is a special type memory for high speed searching and widely used in data

compression, network switching, IP address filter and memory mapping [34-36].It can

be either configurable or hard wired [37]. Unlike previous designs in [32-33], we refer

to a configurable register-based CAM in our baseline architecture. Since a certain IP

address may correspond to several different routing paths, the longest prefix matching

method is utilized in a ternary CAM [34, 38]. As shown in Figure 3-11, the data_bits

that store IP address and the search_bits are fed into the match line comparator bit by

bit to check if they are identical. The care_bits signals are used to mask certain bits

from the comparator comparison and a specific line will be selected if the longest

31

prefix bits are matched. The match lines output from CAM is in one-hot code, and

therefore needs to be encoded as binary address before searching the routing path in

the RAM.

(a) (b)

Figure 3-11 Longest prefix matching in ternary CAM: (a) single word cell unit of ternary

CAM; (b) match line Comparator

3.6.3 Central Finite State Machine Control

The central FSM is the main control logic of transmitter in our proposed NI. The

FSM is synchronous to the OCP clock, and is responsible for reordering and writing

the flits into transmit FIFO after packetization. The details of state transition are

presented in Figure 3-12. Since the Master IP may have write and read transactions,

the FSM is therefore divided into two branches for the two types of transactions,

respectively. In the write transaction branch, two header flits containing routing and

control information and multiple payload flits are written into the asynchronous FIFO

sequentially. The suspension states are designed to prevent writing when the FIFO is

32

full. In the read transaction branch, the header flits are written but there are no

payload flits in read transaction. When the remote end provides response flits, the

FSM will be reset to the idle state. Similarly, suspension states are design to prevent

FIFO from reading when the FIFO is empty.

Figure 3-12 Central FSM control logic

3.6.4 Flit Arbiter

Figure 3-13 State diagram of flit arbiter

The flit arbiter is also a simple control logic but synchronous to the network clock.

It receives the flits coming out of the transmit FIFO and sends flits to the NoC

network. Figures 3-13 shows the detailed state transition. As long as the FIFO is not

empty, flit arbiter will fetch and transmit the flits that are stored in FIFO. The credit

33

counter is also implemented with flit arbiter to realize the flow control described in

3.5.

3.6.5 Asynchronous FIFO

The OCP specific IP core and NoC network are typically operated at different

clock frequencies, so an OCP clock and a network clock are defined for these two

clock domains, respectively. Asynchronous FIFOs are therefore necessary in both

transmitter and receiver paths for flit queuing, reordering and clock domain crossing.

Figure 3-14 Dual-port RAM based FIFO architecture (Source: [39])

Dual-port RAM with asynchronous read and write pointers is a popular FIFO

architecture, as shown in Figure 3-14. We adopt a similar design described in [40, 39]

with binary and Gray code combined pointer to support high frequency

(>250MHz).The FIFO depth is largely depended on the speed of both clock domains.

Increasing the FIFO depth can help to accommodate longer size of packets and reduce

the packet miss rate, but it also increases the power and area overhead [23, 41].

34

3.6.6 Depacketizer & Receive Control

Figure 3-15 State diagram of receiver control

Figure 3-16 State diagram of depacketizer

The sub modules of receive control and depacketizer are control logic in the

receiver path. The receiver path facilitates the reversed operation. The response flits

from the Slave IP are synchronized with the receiver FIFO and then depacketized as

handshake signals at the OCP interface. Since the flits from the Slave IP can be either

35

valid data or fail response, the control logics are also partitioned into two branches, as

illustrated in Figure 3-15 and Figure 3-16, respectively.

3.7 Target NI

Figure 3-17 Block diagram of Target NI

 Implementation of the Target NI (shown in Fig. 3.17) is opposite to that of Initiator

NI in Figure 3-17. The main difference between target and initiator NIs is: the former

one is an OCP master and the latter one is an OCP slave. The OCP signals asserted by

the initiator NI (target NI) are complimentary to the target NI (initiator NI). Since

Slave IPs can only passively receive requests, Master IPs’ source address is retrieved

from the request packet to provide routing information for response path. So Figure

3-17 of Target NI presents a mirrored architecture to the Initiator NI, which also

36

includes header/payload builder, asynchronous FIFO, flit arbiter, central FSM control,

receive control logic and depacketizer.

3.8 Implementation and Simulation Results

Table 3-3 Comparison of NI design in previous works

NO.
Freq.

(MHz)
Area (mm2)

Power

(mW)

Latency

(cycles)
Protocol

Tech.

(μm)
Advanced Feature

[42] 312.5 0.43 N/A [8, 10] NA 0.13
CRC detection/

retransmission

[26]
725

/1086

0.058

/0.02
N/A [4, 6] OCP 0.13 GALS

[43] 500
0.036

/0.045

33.5

/36.9
[6, 10] OCP 0.13 Basic

[44] 500 0.169 N/A [4, 10]
OCP, AXI,

DTL
0.13 Re-ordering, QoS

[45] 490 0.056 30.5 N/A NA 0.18 Basic

[15] 500
0.141/0.172

0.166/0.172
N/A N/A OCP 0.13

Secure Memory

Access

[12] 500 N/A N/A N/A STBus 0.065
EMU/Security/QoS

/Programmability etc.

This

work
310 0.266/0.166 24.5 [6, 6] OCP 0.18 Flow control/QoS

We implemented the proposed NI design with Verilog HDL and synthesized with

Synopsys Design Compiler. Table 3-3 presents the general overview and comparison

with other works. We adopt IBM 0.18µm CMOS-7RF technology to give a closer

view. The maximum frequency, store-forward latency, area and power consumption

were evaluated based on the synthesized netlist. Our implementation shows the

comparable performance in terms of low cost and high speed with that in

smaller-feature size technology.

37

(a)

(b)

Figure 3-18 Implementation details of different modules in NI (a) Area contribution to overall

design (b) power contribution to overall design

Figure 3-18 (a) shows the complexity of each sub-module inside our NI, and

Figure 3-18 (b) presents the contribution of each module to the overall power. We can

conclude that the memory elements including asynchronous FIFO and LUT are the

most costly inside a NI (over 80% in both cases). Our baseline design fixes the depth

of asynchronous FIFO to16 support 16-flit long packet at maximum. As the FIFO

38

depth is highly parametric, it can be easily configured to a larger depth. Larger FIFO

depth is more reliable and has smaller miss rate when NI operating at high frequencies,

but it also increase the overhead [23]. Figure 3-19 shows such increasing trend on

area versus the FIFO depth. Selecting an appropriate FIFO depth is a design tradeoff

among speed, reliability and overhead.

Figure 3-19 The increasing trend of NI area over FIFO depth

39

CHAPTER 4

HARDWARE TROJAN ATTACK MODEL

The hardware attack framework or threat model to NoC was first discussed in [11,

26-27]. HT attacks in NoCs can be generally categorized into three categories as

follows.

 Denial of Service: A DoS attack attempts to degrade system performance. The

adversary may frequently send malicious requests to the victim of attack, resulting

in extra traffic congestions and the increase on network transmission latency.

More precisely, HTs can cause bandwidth reduction, incorrect routing path,

livelock and deadlock.

 Extract of Secret Information: Secret information extraction means that HT

facilitates hackers to steal sensitive or critical information from authorized

memory or registers, such as the crypto keys. With the assistance from HTs, secret

information can be extracted by unauthorized read request, buffer overflow or

duplicating read operation to transmit data to an un-trusted destination.

 Hijacking: Hijacking refers to altering the regular execution flow or modifying the

system configuration so that specific tasks set by the attacker can be executed.

One example for Hijacking is to exploit buffer overflow to bypass the digital serial

code in video games.

 The tangible security attack examples provided in [11, 26-27] are either not

thorough or in conceptual or abstract level. Other security discussions reported in [28,

40

30-32] either only study the attacks on memory blocks or assumes that the attack

come from external source. In fact, the HTs can also be inserted in NoC infrastructure

as well. In this section, we summarize a practical HT design approach and attack

model specifically for NI. Particularly, we analyze and propose multiple rare

switching nodes which can potentially be the HT trigger. Several meaningful HT

payload locations are also presented and evaluated.

4.1 HT Models in Previous Designs

DARPA issued its first call for the study of hardware Trojan. In [15-16, 63-64],

different methods were proposed to classify HTs based on various characteristics,

such as insertion phase, trigger mechanism, payload effect and location. HT can also

be either digital or analog [8]. Since the NoC infrastructure is mainly a synthesizable

digital design, here we only limit our discussion to digital HTs.

 A basic HT model consists of two parts: (a) an activation mechanism referred as

HT trigger; (b) an intrusive circuit referred as HT payload to affect original design

[65-66].HT payload can be simple logic gate such as XOR to flip or change the logic

value of original logic. However, the HT trigger is more complicated since the HT

needs to be triggered under a certain condition or over a long period of time. Several

examples of HT are shown in Figure 4-1 [8, 46].

41

Figure 4-1 Examples of HT with various triggers (a) combinational (b) synchronous counter

(c) asynchronous counter (d) hybrid (e) FSM based

Digitally triggered HTs can be again classified into combinational and sequential

types. Combinational Trojans shown as in Figure 4-1 (a) are activated by the

occurrence of rare logic value combinations. The occurrence of the condition

 at the trigger nodes causes the bit flip at node . Sequentially

triggered HT, on the other hand, are activated by the occurrence of a sequence or a

period of continuous operation. The free running synchronous trigger in Figure 4-1 (b)

is the simplest example. The Trojan will be triggered when the counter counts to

 clock cycles working as a time-bomb. The clock in Figure 4-1 (b) can also be

42

replaced by a logic gate to make it an asynchronous counter Trojan as shown in

Figure 4-1 (c). The counter will only increment when the combination

is met. Hybrid counter Trojan in Figure 4.1 (d) combines the features of

combinational and sequential Trojans. More complex state machine Trojan, shown in

Figure 4.1(e), is also recently discussed in [47-48]. The Trojan output is activated

only when reaching the last Trojan state.

4.2 HT Designs

The examples discussed in 4.1 widely exist in the HT design of various digital

applications, such as general purpose processor [18, 69], cryptographic IP [70-72],

memory [73-74] and communication interfaces [75-76]. These can be configurable IP

cores within a NoC system, but unfortunately, none of them touch upon the HT design

in NoC infrastructure. Further, one obvious shortcoming in previous work is that very

few of the authors consider a practical Trojans that would be able to avoid traditional

detection such as functional verification, code coverage and post-silicon testing [48,

49]. For example, the free running synchronous counter Trojan requires large

area/power overhead to guarantee a certain trigger time, which is not feasible in a

high speed networking system. Also, most of the designers choose randomly locate

HTs in the chip and were not able to perform meaningful attacks. So we summarize

the key features of a practical HT design in NI.

 Maintain main functionalities of original circuit when it’s not activated

 Create minimum overhead in terms of power, area and delay

43

 Locate in key points in the circuit to perform meaningful attacks

 Able to remain dormant in traditional detection techniques such as functional

verification, code coverage and post-silicon testing

4.2.1 HT Triggers in NI

The key idea of HT trigger design is to realize the significant low trigger

probability with minimum logics. Among the HT trigger examples in 4.1, FSM based

sequential Trojans have been proven to be extremely stealthy in nature in most recent

works [17, 68,77].The trigger probability can be exponentially lower by increasing the

length of rare trigger events. Another advantage of FSM HT is that it can be

embedded into the existing unused states of the FSM in original circuit. NI is a

module with numerous FSM based control logics, which creates lots of opportunities

for HT insertion. We expand the discussion in [17, 68,77] and specify several cases of

HT shown as in Figure 4-2.

Figure 4-2 Various scenarios of FSM based HT insertion

 The state transition condition of FSM depends on the rare event or rare switching

44

node in original circuit, and therefore does not cause extra overhead. Figure 4-2 (a)

passes through a series of intermediate states before activation. Figure 4-2 (b)

and (c) are slightly different. They will transmit backwards if the trigger condition is

not met. Figure 4-2 (d) requires all the trigger conditions to be met at each transition.

In [17, 68,77], the authors also provide an approach to estimate the probability of

HT trigger and the expected activation time in terms of clock cycles. Let

 denote the probability of the Trojan transition from state to , where

 and is the number of D flip-flops used in trigger, the trigger

probability and activation time can be roughly simulated using a Markov process.

Table 4-1 gives a summary of HT triggers discussed and their feasibility to

NI. denotes the number of rare event used in NI HT design and the trigger

probability can be roughly estimated using Markov chain. If the multiple trigger

signals are independent events, the activation time can be estimated using the

reciprocal of trigger probability.

Table 4-1 Summary of various HT triggers and feasibility in NI

HT Type Trigger Probability Activation Time (cycle) Feasibility to NI

Comb. Trojan

 Applicable

Sync. Counter 100% Not Applicable

Async. Counter

 Applicable

Hybrid Counter

 Applicable

FSM (a)

 Preferred

45

FSM (b)

 Preferred

FSM (c)

 Preferred

FSM (d)

 Preferred

 Besides the HT trigger models discussed in 4.1, we can conclude that various

types of FSM trigger are also perfectly feasible in NI. The number of such sequential

trigger conditions can be unmanageable large by applying different trigger sequences,

which help the Trojan hidden in conventional detection. If the attackers are intelligent

enough, the trigger nodes can be carefully picked from the original NI circuit, which

will be further discussed in 4.3.

4.2.2 HT Payloads in NI

We summarize several types of payload circuits in terms of their effects in NI,

which are shown in Figure 4-3. They can be single gate or gate array applied to

multiple bits of the intruded signals. XOR type payload in Figure 4.3 (a) typically

flips the logic value of original signal; AND type payload in (b) masks the signal

when trigger asserts; dually, OR type payload can force victim signal to logic 1 in (c);

MUX type payload in (d) can replace the target circuit with pre-set values and

DeMUX type payload can extract security sensitive information to eavesdropper. The

payload locations mainly are carefully chosen to perform meaningful attack and

largely depend on the objective of attacker. The details will be cover in Section 4.4.

46

Figure 4-3 Examples of various HT payloads

4.3 Potential Trigger Signals for HTs in NIs

4.3.3 Potential Trigger Signal 1: Reset Signal

In the NI, the Reset signal is typically required to clear storage elements; more

specifically, they are header & payload registers, asynchronous FIFO, routing table,

and state registers of FSM. Like many other digital systems, the transition frequency

of the reset signal is extremely low; thus this signal has a potential to be utilized in the

HT trigger circuit. The reset-based HTs can easily escape from the HT examination

tests, if HT designers use the reset signal as an input for a sequential HT, which is not

triggered at the first transition time of the reset signal.

47

4.3.4 Potential Trigger Signal2: Unused States in an FSM

Figure 4-4 FSM for initiator NI. Signals on arches are OCP signals and FIFO full indicator

In NI, a finite state machine (FSM) is typically needed to coordinate packet read

and write operation. Figure 4-4 shows the central FSM for a NI compatible with OCP

protocol. That FSM is composed of ten legal states, thus requiring four bits to

represent the states. As four bits can represent 16 states in total, six states will remain

as unused. Unused states in a FSM are common for a complicated control system. To

minimize hardware cost, such unused states are typically remarked as unspecified

state in logic optimization. Consequently, those unused states could be utilized by a

hacker as a HT trigger. Ideally, the state transition only happens within the legal states.

However, under certain circumstance such as voltage drop, crosstalk and substrate

noise, the FSM may switch to an unused state.

Although most of the FSMs have self-recovery and protection mechanism, the

48

transition to unused states is hard to be prevented completely. If a HT trigger circuit

takes advantage of such low-probability events, the HT effect cannot be easily

discovered by the functional verification.

One example of unused state transition can be caused by soft errors. In a -bit FSM,

we assume that only out of 2
k
 possible states are in use. The soft error rate is in

the range of . If one FSM state bit is flipped by a soft error, the

probability of illegal transition due to soft error can be roughly estimated in equation

(4-1).

 (4-1)

4.3.5 Potential Trigger Signal 3: FIFO-Full Signal

Figure 4-5 FIFO full caused by writing burst

FIFO buffers are essential components for data storage in NoC design. In NI,

FIFO is used to queue packets, as the IP core clock frequency is different with the

NoC clock frequency. The FIFO depth is a tradeoff between hardware cost and NoC

performance [40]. Increasing the FIFO size can optimize the NoC latency and

throughput at the cost of increased chip area and power consumption.

As the write and read operations may execute at different frequencies, the speed of

49

write-in operation should be no more than that of read-out operation; otherwise the

FIFO will be always full. Let’s use and todenote the clock frequencies for write

and read operations, respectively, and use and to represent the write-in and

read-out data rates, respectively. To avoid FIFO full, one should design a FIFO that

meet the requirement expressed in equation (4-2).

 (4-2)

However, the constraint in equation (4) only works well for average cases. If

writing burst happens and the FIFO depth is not large enough, the read operation with

the average read-out rate will cause FIFO full. As shown in Figure 4-5, in 2Nclock

cycles, there are consecutive write operations. However, during the time

period of

, there are only

 read operations. As a result, the

minimum FIFO depth for NI should be equal to the expression in (4-3).

 (4-3)

If the FIFO depth in the NI implementation is less than the value indicated in

equation (4-3), the FIFO will be full occasionally. This is because the requirement in

(4-2) is for average cases. In the specification stage, and are obtained based on

infinite time. In reality, the peak value of the read and write speed may temporally

exceed the defined data rates for a short period of time. Such temporal event could be

used in HT trigger design.

50

4.4 Potential Payload Locations in NI

Figure 4-6 HT payload objectives on NoC network interface

We classify the HT payload objectives into three categories: storage elements,

computation or flow control units, and transmission channels. The procedure to

change the content in each category is slightly different. The influence of the HT

payload location in each category is different, as well.

Figure 4-6 shows possible HT payload injection locations on a NoC NI. In the

storage elements, similar to router, one HT payload can change the FIFO content,

such as flit type, source/destination node address. Changes in the routing table can

manipulate the list of trusted IP cores and secure routing paths. The protocol specific

signals can be changed in the payload and header building registers. HT invasion on

these storage elements can authorize the access to restricted memory area and thus

cause secret information leakage and hijacking. HT influence on the control logic

such as FSM and de-packetizer can disorder the flit sequence in a packet, which

51

further causes system FSM remaining in the same state or even be crashed.

4.4.1 Payload Objective 1: Latching Global Clock

Figure 4-7 HT payload at clock tree circuitry

 The clock distribution network can be regarded as the most critical module in a

digital system. It provides global clock source to rest of the circuitry for

synchronization and in most cases, several local clocks are derived from the global

clock through a PLL. Shown as in Figure4-7, if the HT attack happens at clock

circuitry by latching or freezing it up, the entire chip does not function unless the

clock is re-enabled [46]. It may also possibly cause glitches when the HT trigger

transits from dormant to active. Either way will cause severe impact to the rest of

system. This Trojan can be inserted at design as well as fabrication phase and can be

described at gate level.

4.4.2 Payload Objective 2: Damaging Flit Type Information

Bit stream transmitted over the NoC fabric is organized with a certain format, i.e.

packet. One packet is typically composed of one (or two) header flit(s), several

payload flits and one tail flit. Figure 4-8 shows one popular packet format. Other

formats can be found in [41-43]. No matter what format is used in packetization, a

52

common feature in all packet formats is a few bits to indicate the flit type: header,

payload, or tail. Two, at least, reserved positions on each flit are used to differentiate

the flit types, as the router relies on these two bits to determine whether and how to

compute the next routing path or whether the current routing channel should be

released.

Figure 4-8 Transmit packet format in proposed NI design

Figure 4-9 HT payload at FIFO register chain

The HT payload circuit to damage the flit type bits can be any circuit that leads to a

stuck-at-0/1 or logic flipping error. HT payloads 1 and 2 shown in Fig. 4-9 are

examples for stuck-at and logic flipping payload circuits, respectively. If the 32nd flit

bit is muted by an active HT inserted in the FIFO register chain, the header flit cannot

be recognized by router, thus leading to a packet loss. We propose a pseudo-code

Reserve1 1 MCmd MAddr MBurstLength MBurstSeq MBurstPrec

33 32

31 29 28 13 12 9 8 5

MBurstSing

04 2

0 1 Source Addr

31 28 24

Routing Information

027

Dest. Addr Reserve

171823

0 0

31

MData

0

0 0 MData

1 0

31

MData

0

…Tail Flit

Payload Flit

Header Flit

53

based HT attack model in Figure 4-10. The key idea of this model is to modify the flit

bits representing the flip type. The logic flipping can be executed at gate level or

register transfer level.

Figure 4-10Pseudo code for HT damaging flit type information

4.4.3 Payload Objective 3: Altering Routing Path

Figure 4-11 An example caused by an HT payload on the node current address. Solid red line

is original routing path. Dashed blue line is livelock path caused by a HT that changes router

(2, 1) current address to (2, 2)

Malicious insertion can intentionally change the routing path either routing table

//Pseudo code for the HT attack model of losing flit type information

if(HT trigger condition is true)

 HT_payload <= on;

else

 HT_payload <= off;

//HT injection location

if(HT_payload == on)

case(loss type):

 Header lost:

flit[32]<=and(flit[32],!HT_payload) at time Tj

 Tail lost:

flit[33]<=and(flit[33],!HT_payload) at time Tj

 Packet fission:

flit[32]<=xor(flit[32], HT_payload); at time Tj?j+pktlen

 flit[33]<=xor(flit[33], HT_payload); at time Tj?j+pktlen

endcase

else

 Execute normal operations;

54

for adaptive routing to cause deadlock or livelock, thus wasting system resources and

degrading NoC performance.

 Livelock Example

Livelock means the packet is traveling through network but does not get any close

to the destination. Livelock is typically caused by illegal routing turns. Let’s use the

most popular routing algorithm, XY routing, to introduce the possible way to

introduce a HT payload that causes illegal turns. The router current address

(Addr_X/Y_curr) is hardwired for XY routing path computation. In XY routing, a

packet first goes through the hops on the X direction, and then goes through the hops

on the Y direction. As the hard wired signal does not have switching activities, the

modification by rarely-trigged HT on those signals is hard to be detected by

traditional test approaches and code coverage analysis methods.

We use a mesh NoC with 16 nodes (i.e. 16 IP cores) to explain how a livelock

happens if an HT alters the current address. The livelock example is depicted in

Figure 4-11. Assume IP core 5 attempts to send a packet Px to IP core 13, using XY

routing. The original routing path for Px is starting from router 5, through router 9 and

ending at router 13. The two-dimension representation for those three routers are (1,1),

(2,1) and (3,1), respectively. If a trigged HT changes the hardwired current address of

router (2,1) to a new address (2,2), now the packet Px will go through the west output

port of router (2,2) and reach the east input port of router (2,0). As the destination of

Px is IP core 13, Px is directed back to router (2,1) based on the rule of XY routing

55

algorithm. However, the current address of router (2,1) is maliciously hardwired as

(2,2), the packet Px is transmitted back to router (2,0) again. Consequently, the packet

Px comes back and forth between router (2,0) and router (2,1) until the HT effect is

gone; packet retransmission after using time-out mechanism does not help to resolve

the problem.

Figure 4-12 Pseudo code for HT attack model: altering packet routing path

We propose a HT attack model that alters the routing path in NoC. The pseudo

code for this model is shown in Figure 4-12. We list the potential locations for HT

insertion and the possible way to modify the content or logic in the vulnerable

locations. The ways we illustrated in Figure 4-12 are just typical examples. In reality,

there will be many equivalent approaches to perform similar attacks to alter packet

routing path.

//Pseudo code for the HT attack model of altering packet routing path

if(HT trigger condition is true)

 HT_payload <= on;

else

 HT_payload <= off;

//HT injection location

if(HT_payload == on)

case(Location):

//----------before route computation------------------

 Routing table:

//Modify content in CAM for routing calculation

 CAM[legal access request]<= untrusted IP core Address;

 Flit FIFO:

//Modify packet destination address bits in header flit

 FIFO[wr/rd_pointer][27:24]<= untrusted IP core Address;

 R-R links:

//Bit flip dest. address when header flit passes over the links.

 Link[link ID][27:24]<= untrusted IP core Address;

endcase

else

 Execute normal operations;

56

4.4.4 Payload Objective 4: Injecting Redundant Packets to Increase Traffic

Congestion

Figure 4-13 Redundant packet injection caused by a triggered HT in NI (a) Normal packet

injection from an IP core (b) A redundant packet injection between two valid packets by a HT

Livelock and deadlock interrupt the NoC normal operation. There is another HT

attack that purely degrades system performance. In NI, the triggered HT can

maliciously force one NI duplicating every packet it submitted. If the consecutive

packet arrives before the end of the duplicated packet, the starting time for that

consecutive packet will be delayed, as shown in Figure 4-13.

Figure 4-14 The impact of HT on latency (a) Average packet latency comparison for w/ and

w/o HT induced redundant packet injection (b) Percentage of increased average packet

latency by HTs

We conducted an experiment to quantitatively compare the performance

57

degradation caused by HT-induced packet redundancy. In router, we randomly

selected one router and inserted a HT on one input port. The triggered HT duplicates

any packet going through that port and connects that packet to another output port. If

a deterministic routing algorithm is used, the duplicated packet will be bounced back

and continue the rest of hops till reach its destination. In NI, we randomly selected

one NI and allowed that NI duplicating every packet it submitted. As shown in Figure

4-14, the NI and router having a triggered HT cause the increase on the average

latency. A higher packet injection rate leads to a larger average latency because of the

increased traffic congestions. The latency increasing caused by the HT in router is

higher than that caused by the HT in NI, when the packet injection rate is less than

0.12 packets per cycle. More precisely, as shown in Figure 4-14, the percentage of

increased latency from w/o HT effect to w/ HT effect on NI is less significant than

that on router. One of the reason is, the packet duplicated at NI is limited when packet

injection rate is low; however, a router in the middle of NI has a higher packet

throughput than a NI; thus, packet duplication on a router is more frequent than that

on a NI. Consequently, the latency increased on router is severer than at on a NI.

Figure 4-14 (b) also shows that, if a packet injection rate at each NI increases, the

packet latency caused by HT at NI exceeds that caused by router. The variation on the

percentage of increased latency from HT at router is less than that on a NI, as a nature

of router reaches its maximum throughput much earlier than a NI.

58

Figure 4-15 Pseudo code for HT attack model: duplicating packet transmission

We propose a pseudo code based model for this type HT. As shown in Figure

4-15, the packet duplication can be either implemented in router output port or NI

FIFO. This model arises NoC designers’ attention to strengthen their protocol by

adding redundancy checks.

4.4.5 Payload Objective 5: Causing Buffer Overflow or Overwriting Memory

The dual-port RAM based FIFO buffer is a critical component for clock

synchronization and flit queuing in NI. The FIFO full and empty signals are generated

by comparing the read and write pointers to indicate the memory availability. The

pointer comparison is based on circular addressing as shown inFigure4-16(a). When

the write pointer is one word behind the read pointer, the FIFO full signal is asserted.

//Pseudo code for the HT attack model of duplicating packet transmission

if(HT trigger condition is true)

 HT_payload <= on;

else

 HT_payload <= off;

//HT payload inserted during routing path calculation in a NoC router

if(HT_payload == on)

Req_[E, S, W, N, L]<= Route Computation in Input Port k;

 Copy ∀Req_i that value is True to ∀Req_j that value is false

 i,j,k∈[E,S,W,N,L],i≠k,i≠j;

 Output port i <= Data from Input FIFO k;

Output port j <= Data from Input FIFO k;

else

 Req_[E, S, W, N, L]= Route Computation in Input Port k;

 Output port i <= Data from Input FIFO k;

 i,k∈[E,S,W,N,L],i≠k;

//HT payload inserted during packetization in a NoC network interface

Packetize a packet PKTm with a destination address DestAddr;

Push PKTm into NI FIFO;

NI FIFO releases PKTm to NoC fabric

if(HT_payload == on)

 FIFO pointer remains same;

 NI FIFO release PKTm to NoC fabric again;

 FIFO pointer reduces one;

else

 FIFO pointer reduces one;

59

Similarly, when the write pointer is one word ahead the read pointer, the FIFO empty

signal is asserted.

Figure 4-16 Read and write FIFO pointers in (a) normal read and write operation, and (b) HT

affected situation

If a HT payload intentionally changes the pointer value, the FIFO will present

incorrect memory availability signal to the external modules, as shown in

Figure4-16(b). When a HT payload pushes the write pointer to the used memory

location, the new incoming flits overwrite the memory and corrupt the previous

packet, resulting in denial of service.

Figure 4-17 Pseudo code for HT attack model: manipulating FIFO

The HT attack model for malicious FIFO modification is shown in Figure 4-17.

//Pseudo code for the HT attack model of FIFO pointers

if(HT trigger condition is true)

 HT_payload <= on;

else

 HT_payload <= off;

//HT injection location

if(HT_payload == on)

case(FIFO pointer):

 Write Pointer:

 Write Pointer <= a certain address behind current address;

 Read Pointer:

 Read Pointer <= a certain address ahead of current address;

endcase

else

 Execute normal operations;

60

The simple way to erase the content in FIFO is to change the read and write FIFO

pointers. The changed FIFO pointer may cause an incomplete packet remain in the

FIFO forever, unless the NoC has some time-out mechanism to clear the FIFO.

4.4.6 Payload Objective 5: Modifying Protocol Specific Information

Industrial on-chip interconnect protocols, such as IBM CoreConnect, ARM AXI

and OCP, are widely adopted in NoC design. Once the communication protocols

between IP cores are determined, the exchange packet has to explicitly include the

information that the specific protocol requires. Otherwise, the received packet cannot

be de-packetized correctly. The protocol information may be changed by the HTs

placed in NI.

We use OCP, an open and free communication protocol [36], as an example.

The MCmd signal defines the transfer command type of a Master IP in OCP.

Changing the value of MCmd will damage a regular transaction and cause a series of

unexpected errors, such as changing a write request to a read request and vice versa.

MAddr is the transfer address signal in OCP. The adversary can make a packet access

to a wrong memory address by altering this signal. Table 4-2presents a brief summary

of HT attacks for basic OCP signals.

Table 4-2 Basic OCP signals

OCP Signal Driver Function Possible Trojan Effects

MCmd Master Transfer command Alter transfer command type

MAddr Master Transfer address Alter transfer address; Hijacking

61

MData Master Write data Corrupt Master write data

MRespAccept Master Master accepts response Mute Master accepts and suspend Slave

SCmdAccept Slave Slave accepts transfer Mute Slave accepts and suspend Master

SData Slave Read data Corrupt Slave read data

SDataAccept Slave Slave accepts write data Mute Slave accepts and suspend Master

SResp Slave Transfer response Incorrect Slave responses

62

CHAPTER 5

HT IMPACT AND PROPOSED HT COUNTERMEASURE

This section presents the HT impact and proposed countermeasure for HTs in NI.

We implemented various HTs targeted for our NI based previous analysis and HT

design methodology. The HT attacks to the data transmission within the NoC were

either quantitatively or visually evaluated using real digital applications. Particularly,

we showed the examples fingerprint identification, image and video transmission.

Finally, we proposed a state obfuscation technique for HT countermeasure in the

proposed NI. The efficiency of method was evaluated, as well.

5.1 Hardware Trojan Implementation

We show three case studies to illustrate the details of HT insertion in NI, either at

netlist gate level or at RTL code level. The three cases are HT insertion at FSM

control, routing table and FIFO memory, respectively. We make reasonable

assumptions on the attacker’s objectives and explain in details how and where the HTs

will be placed to conduct malicious behavior. The real implementation of various HT

instances are also presented and compared in terms of area and power.

5.1.1 Case Study 1: HT Insertion in FSM Control Logic

As mentioned in Section 3, there are a great many FSM based control logic in a

modular NI. Because of the FSM unit’s role in NI, we expect that the FSM control

unit might be a critical target point of hardware attacks. We assume that the malicious

63

attacker has access to the synthesized netlist of the original design and can insert HTs

at the netlist level. By using EDA tools, the attacker can find out the number of

registers in the FSM design and examine the FSM function through a brute-force

method. HTs can therefore be placed in the FSM control unit to cause NI malfunction

and degrade NoC performance.

(a) (b)

Figure 5-1 Single state HT insertion in FSM (a) conceptual view (b) RTL insertion

For an N-bit FSM, there are available states for the designer to construct the

control logic. Typically not all the available states are utilized as legal states and the

unused states create ideal places for HT insertion from attacker’s perspective. The HT

inserted in unused state remains dormant when in normal operation and can perform

attack by disabling certain output signals. For example, Figure 5-1 (a) shows a single

// Single State HT Insertion

...

// FSM next state logic

always@(*)begin

case(curr_state)

 Idle:...

 Write_Routing:begin

...

//****HT insertion***

elseif(HT_trigger)

next_state = T0;

end

T0:next_state = Write_Data;

//*******************

...

default:...

end

endcase

end

//FSM output logic

always@(*)begin

case(curr_state)

 Idle:...

 Write_Routing:...

...

//****HT Payload*****

T0: wena = 1'b0;

//*******************

default:...

endcase

end

64

state HT inserted in the NI central FSM. The HT bypasses the state of writing control

information into the header flit by disabling the write enable signal to asynchronous

FIFO. This leads to header flit loss to a packet and when the receiving end receives

this packet, it may not be recognized as a valid packet due to the lack of control

information. Figure 5-1 (b) gives the RTL insertion of HT.

(a) (b)

Figure 5-2 Multi-state HT insertion in FSM (a) conceptual view (b) RTL insertion

The HT in FSM can also be multi-state insertion, as shown in Figure 5-2. This

HT can skip several cycle of writing data flit to the FIFO before finally being reset to

idle state. In a real application of NI, the loss of data flits of a packet can also lead to

serious impact. For instance, in the video stream transmission between a master CPU

// Multi-state HT Insertion

...

// FSM next state logic

always@(*)begin

case(curr_state)

 Idle:...

 Write_Routing:

 Write_Control:

 Write_Data:begin

if...

//****HT insertion*******

elseif(HT_trg1)

next_state = T0;

end

T0:if(HT_trg2) next_state = T1;

 T1:if(HT_trg3) next_state = T2;

 T2: next_state = Idle;

//***********************

default:...

end

endcase

end

// FSM output logic

always@(*)begin

case(curr_state)

 Idle:...

 Write_Routing:...

...

//****HT Payload*****

 T0,T1,T2: wena = 1'b0;

//*******************

default:...

endcase

end

65

and a slave MPEG decoder, the image frames of the stream may be distorted or may

not be recovered due to the data loss. More details are further presented in 5.2.

Similarly, Figure 5-2 (b) provides the RTL code description.

5.1.2 Case Study 2: HT Insertion in Routing Table

The routing table stores the routing information for all the IP cores within a NoC.

In our design, the routing table is based on a CAM plus RAM architecture. Before

fetching the routing path from the RAM, the CAM searches its contents to find a

match for a certain MAddr request. The output of CAM is in one-hot code, so it has to

be encoded to a binary address before getting the routing path from RAM. The

one-hot to binary converter is also a place where attack can easily place HTs. Since

we target for a 4×4mesh NoC, a 16-bit one-hot to 4-bit binary encoder is necessary in

our NI. Figure 5-3 (a) shows the gate-level implementation in our design. The

Enc4to1 sub-block realizes the 4-bit one-hot to 2-bit binary conversion and a

structural implementation of 4 Enc4to1 sub-blocks can realize the 16-bit to 4-bit

conversion. Figure 5-3 (b) shows the RTL insertion of HT. If the binary read address

to RAM is hacked, an incorrect routing path will be assigned to a certain packet, and

will eventually cause livelock or deadlock in NoC.

66

(a)

(b)

Figure 5-3 HT insertion in the one-hot to binary encoder of routing table (a) gate-level

implementation of one-hot binary encoder (b) HT insertion at RTL

// HT at 16/4 One-hot Binary Encoder

// 4-bit one-hot to 2-bit binary Encoder

module Enc4to2(one_hot, bin, sum,HT_trigger);

input[3:0] one_hot;

output[1:0] bin;

output sum;

wire[1:0] bin;

wire sum;// sum is true if any input is true

//*********HT Insertion******************

inputHT_trigger;

assign bin[1]=(one_hot[3]| one_hot[2])^HT_trigger;

assign bin[0]=(one_hot[3]| one_hot[1])^HT_trigger;

//***************************************

assign sum =|one_hot;

endmodule

//factored 16-bit to 4-bit encoder

module Enc16to4(one_hot, bin,HT_trigger);

input[15:0] one_hot;

output[3:0] bin;

wire[3:0] bin;

wire[7:0]temp;// intermediate result of first stage

wire[3:0] d;// if any set in group of four

//two OR gates combine output of LSB

//*********HT Insertion******************

inputHT_trigger;

assign bin[1]=(temp[1]|temp[3]|temp[5]|temp[7])^HT_trigger;

assign bin[0]=(temp[0]|temp[2]|temp[4]|temp[6])^HT_trigger;

//***************************************

//four LSB encoders each include 4-bits of the input

 Enc4to2 e0(one_hot[3:0],temp[1:0],d[0]);

 Enc4to2 e1(one_hot[7:4],temp[3:2],d[1]);

 Enc4to2 e2(one_hot[11:8],temp[5:4],d[2]);

 Enc4to2 e3(one_hot[15:12],temp[7:6],d[3]);

//MSB encoder takes summaries and gives MSB

 Enc4to2 e4(d[3:0], bin[3:2]);

endmodule

67

5.1.3 Case Study 3: HT Insertion in FIFO Read/Write Pointer

(a)

(b)

Figure 5-4 HT insertion in FIFO pointer (a) gate-level implementation of NI FIFO pointer (b)

RTL insertion of HT

The HT can also be placed in the FIFO memory itself, for example, the FIFO

pointer and its related output signals. The FIFO read and write pointers are indicator

of the memory availability and thus controlling the full and empty signals to the

external. Figure 5-4 (a) presents the general view of binary and Gray code combined

pointer used in our design. Binary counter is designed for pointer incrementing and

addressing to the FIFO RAM. When the RAM is not full (empty), the binary write

// Gray code read pointer generation

module rptr_empty(...);

...

output rempty;// FIFO read empty

parameter ADDRSIZE =4;

wire[ADDRSIZE-1:0] rgnext, rbnext;

...

//*************HT Insertion*******************************

input[ADDRSIZE-1:0]HT_trigger;

//Insertion at Binary counter

assign rbnext =(!rempty ? rbin + rinc : rbin)^HT_trigger;

//Insertion at Gray code conversion

assign rgnext =((rbnext>>1)^ rbnext)^HT_trigger;

//**

...

endmodule

68

(read) counter increments as the inc signal asserts. The Gray code counter is designed

for fast pointer comparison to assert or de-assert the FIFO full and empty signals.

Figure 5-4 (b) presents the HT attack to the write pointer at RTL. If the binary or Gray

code counters are flipped when the HT trigger asserts, they will generate incorrect full

or empty signals to external modules, or incorrect binary address to the internal RAM.

Both cases will lead to FIFO overflow and data corruption.

(a) (b)

Figure 5-5 HT attack in FIFOs with different depth (a) the probability causing overflow (b)

the average number of corrupted data flit

We justify that the HT attacks to FIFO pointer may possibly cause memory

overflow or overwriting by giving incorrect availability information to the external.

However, this situation only happens when writer pointer is changed to a certain

address behind current address or read pointer is changed to an address ahead of

current address. The results of HT attack may be slightly different over different FIFO

depth due to its different addressing. If we assume the HT randomly flips the FIFO

pointers, Figure 5-5 (a) shows the probability that memory overflow happens. The

probability is slightly increasing but still in the range of 46% to 48.5%. Figure 5-5 (b)

69

shows the average number of corrupted flits if such attack happens. The number of

corrupted flits is increasing almost linearly with the FIFO depth, meaning the impact

of attack will become more serious in a larger FIFO.

5.1.4 HT Hardware Overhead

Table 5-1and 5-2give the implementation details of several practical HTs discuss

previously. HT trigger circuits can be combinational, asynchronous counter based,

hybrid and FSM based, which are shown in Table 5-1; HT payloads can be placed at

global clock, routing table, FIFO pointer, FSM and header flit links, which are shown

in Table 5-2.

Table 5-1Implementation result summary of HT trigger circuits

Trig. Type Circuit Structure Comb. Gate NO. of DFFs

Comb. Trigger 1 XOR 1 0

Async. Counter XOR+4-bit counter 14 4

Hybrid XOR+2 4-bit counters 27 8

FSM (a) 4-state FSM 7 2

FSM (b) 4-state FSM 6 2

FSM (c) 4-state FSM 8 2

FSM (d) 4-state FSM 7 2

Table 5-2 Implementation result summary of HT payload circuits

Payload Location Comb. Gate Effect

Payload1 global clock 1 Latching clock source

Payload2 routing table 2 Causing incorrect routing path

Payload3 FIFO pointer 4 Causing FIFO overflow

Payload1 FSM logic NA Causing header/payload flit loss

Payload5 header flit links 2 Damaging flit type

70

Figure 5-6 Comparison of different HTs in terms of area

Figure 5-7 Comparison of different HTs in terms of power

The synthesized results in IBM 0.18μm technology are also provided in Figure

5-6 and Figure 5-7 in terms of area and power, respectively. HT instances present

trivial overhead in all cases, less than 0.45% in area and less than 0.25% in power.

Among them, combinational triggered HTs present minimum result, hybrid triggered

HTs present maximum overhead.

71

5.2 HT Impact From Application Perspectives

Though the HT insertion in NI may have various types of instances, the main

effect of HT is to cause data or header flit loss through different ways. In this section,

we provide two digital application examples visually evaluate the impact of flit loss

caused by HTs. More specifically, we show the examples of the video stream

transmission and fingerprint identification.

5.2.1 Flit Loss in Image & Video Transmission

Lost flits in the data transmission of NI will present significant impact to the

image and video applications. Assuming that a NI is the bridge between a MPEG

decoder and a graphical processor, we conduct experiments to simulate a series of

image frames or video fragments are transmitting via the NI, which are shown as in

Figure 5-8 (a) to (c). Each image is in a 326×260 RGB pixel format and finally

converted to 63570 32-bit data flits when being transmitted. The lost or corrupted flits

will distort or shift the images at display. Figure 5-9 shows the situation when only

single data flit is lost. The distortion is noticeable in the first image frame, but the

second image is still in great quality with negligible shifting. Figure 5-10 and 5-11

presents the cases of six adjacent flits lost and six random flits lost, respectively. If the

flits are adjacent, the first image are seriously distorted but the second image are only

shifted with the information of next image frame, as shown in Figure 5-10; if the lost

flits are randomly chosen, both of the images are distorted and shifted, which are

shown as in Figure 5-11. In all the cases above, the last image frame cannot be

72

recovered since there is no enough flit data to recover a complete image frame.

(a) (b) (c)

Figure 5-8 A series of image frames for video stream

 (a) (b)

Figure 5-9 Recovered image with single data flit loss

(a) (b)

Figure 5-10 Recovered image with multiple adjacent data flits loss

73

 (a) (b)

Figure 5-11 Recovered image with multiple random data flits loss

5.2.2 Flit Loss in Fingerprint Scanning & Identification

Flit loss may also cause similar impact to identification or verification application.

Assuming the NI is transmitting data from a fingerprint scanner to a central processor,

the corrupted flits will make the identification more difficult. The original fingerprint

is shown in Figure 5-12 (a). Similarly, the fingerprint image is first converted to a

long sequence of binary data flits, and we simulate the case that image is corrupted

during transmission by flipping the binary information. We explore the cases that the

fingerprint image is corrupted with 0.1%, 0.5% and 1% data flits when transmitted,

respectively. The recovered fingerprints at the receive end are shown in Figure 5-12 (b)

to (d), correspondingly. The corrupted data are negligible in Figure 5-12 (b), become

noticeable in Figure 5-12 (c) and continue to be more serious in Figure 5-12 (d). We

expect the image quality will further degrade with more data flits are corrupted.

74

(a) (b)

 (c)(d)

Figure 5-12 HT impact to fingerprint identification (a) original fingerprint (b) fingerprint

with 0.1% flit data corrupted (c) fingerprint with 0.5% flit data corrupted (d) fingerprint with

1% flit data corrupted

5.3 Proposed HT Countermeasure

We discussed the HT insertion and HT impact to data transmission in previous

sections of this chapter. In this section, we explored the countermeasure technique for

HT detection at runtime. More specifically, we propose to exploit state obfuscation to

facilitate hardware Trojan (HT) detection in the network interface (NI) of

Network-on-Chips (NoCs). Secure memory access in NoCs has been studied in

75

previous work. Unfortunately, in addition to memory blocks, HT payloads might be

inserted at other places in NoCs to cause NoC malfunctions and allow unauthorized

accesses. In the first phase of our method, we add key bits to the finite state machine

for the NI control unit and create dummy states to increase the difficulty for the HT

attacker to perform meaningful attacks. In the second phase, we examine the illegal

states and illegal state transitions induced by a wrong key to detect the occurrence of

HTs. Similar concepts, e.g. logic encryption and obfuscation [50, 51], were mainly

used for IP authentication, rather than HT detection. In [50], the obfuscation modes

are decoupled from the normal operation modes and need be executed before the real

function starts. In contrast, our method tightly integrates the obfuscation states with

normal states. Moreover, we exploit the obfuscation states to detect HTs at runtime,

with minor area and power overhead. The HT detection efficiency of our method is

also evaluated.

76

Figure 5-13 Initiator NI with embedded HT detection

5.3.1 Potential Security Threats to FSM

As we discussed before, the FSM control unit in NI contains the main control

logic of the transmitter. The FSM is synchronous to the OCP clock, and is responsible

for reordering and writing the flits into transmit FIFO after packetization. Because of

the FSM unit’s role in NI, we argue that the FSM control unit might be a critical target

point of hardware attacks. In our method, we assume that HTs are placed in the FSM

control unit to cause NI malfunction and degrade NoC performance. Our HT

countermeasure method is thus embedded in the FSM control unit, as shown in dark

shadow area in Figure 5-13. The details of state transition are presented again in

Figure 5-14.

77

Figure 5-14 FSM for Initiator NI

5.3.2 Proposed State-Obfuscation HT Countermeasure and Detection Method

Figure 5-15 New FSM diagram after using the proposed state-obfuscation method

Our method is composed of two phases: (1) insert key bits to the FSM state

transition conditions, and (2) detect illegal states and illegal state transitions. The key

idea for the first phase is shown in Figure 5-15. One key bit is added to the condition

of each state transition. Without knowing the key bits, the attacker cannot precisely

control the effect of the HT insertion. If randomly modifying the FSM logic, the

78

attacker may lead the FSM turn into a default or illegal state. To confuse the attacker,

we add obfuscation states in the FSM and connect each true state to a dummy state. If

hardware cost is restricted, multiple true states can share one dummy state. Moreover,

all the dummy states are connected, so that the FSM cannot jump back to a legal state

after the FSM enters one of the illegal and dummy states. This arrangement facilitates

to increase the HT detection rate. To further confuse the attacker, we can also put a

key bit and a dummy transition condition between two dummy states. Examples of

two detectable scenarios are shown in Figure 5-16.

(a) (b)

Figure 5-16 Examples of detectable HT insertion cases in FSM (a) Single and (b) multiple

illegal states and illegal state transitions

The second phase is to examine whether two consecutive FSM states are defined

in the FSM. To save the previous FSM state, we double the registers for the FSM

states. The abnormal state transitions together with undefined FSM states are detected

in the illegal state and illegal state transition detector unit, as shown in Figure 5-17.

Dummy states introduced in the first phase are a portion of the illegal states. As the

key sequence and the location of each key bit are unknown to the attacker, the effect

79

of HTs is likely to be one of our detectable illegal cases in the detector.

Figure 5-17 Proposed HT detector that checks illegal states and illegal state transitions

5.3.3 Simulation Results

We applied the proposed state-obfuscation based HT detection method to the NIs.

We implemented the NI a TSMC 65nm technology. Post-synthesize simulation was

performed in Cadence NC-Verilog. To validate the efficiency of our method, we

examined the HT detection rate for the situation that the HT payloads were placed in

flip-flops and logic gates of the NI FSM control unit. For single- and double-HT

insertion cases, we examined all possible cases. To save simulation time, we use

Monte Carlo random simulation method to examine the impact of three, four and five

HTs insertion on logic gates. 2,400,000 simulation cases were executed for each data

point.

 HT Detection Rate

We believe that security check on NIs is vital to ensure the security and

availability of the entire network and the system employing the NoC. The FSM

80

control unit is the most critical component in the NI, as the flit packetization and OCP

protocol interpretation are mainly controlled by the FSM control unit. Malfunction on

NI causes packet loss, unauthorized IP access and NoC performance degradation. In

the following experiments, we examined our HT detection rate in the FSM control

unit. Without a high HT detection rate, the risk of NI functionality being modified by

malicious hackers is correspondingly high.

In our NI FSM, we utilized five bits to represent different states. We assumed that

the most effective way to hack the FSM is directly inverting the content stored in the

FSM registers. Therefore, we examined the HT detection rate under the occurrence of

one to five HTs in the FSM unit. As fifo_full, MCmd, MReqLast and to_transmit are

the control signals (shown in Figure 5-14) to trigger the FSM transitions, we also

varied those control signals in our experiments. We define the HT detection rate as the

ratio of HT detected cases over the total evaluation cases. As shown in Figure 5-18,

the proposed HT detection method achieves over 97.5% HT detection rate in various

test cases. If the number of HT payloads increases to four and five, our method

obtains 100% HT detection rate. The HT detection rates for one HT and two HTs are

slightly lower than other cases; this is because Hamming distance between two FSM

states is one. We expect that the HT detection rate can be further improved by

carefully assigning binary value for each state.

81

Figure 5-18 HT detection rate for HT attacks in the FSM state registers

Figure 5-19 HT detection rate for HT attacks in the FSM logic gates

Certainly, HT payload can also be placed in any logic gates in the FSM control

unit. In fact, it is easier to hide the HT insertion in logic gates than to hide in the FSM

registers. However, the former one is less effective than the latter one. One of the

reasons is, the effect of the HT payload in logic gate maybe diminish due to logical

masking. As shown in Figure 5-19, the HTs inserted in logic gates can be detected

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

1 HT 2 HTs 3 HTs 4 HTs 5HTs

H
T

 D
et

ec
ti

o
n
 R

at
e

fifo_full=0

fifo_full=1

Mcmd=read, fifo_full=0

MCmd=write, fifo_full=0

MCmd=read, fifo_full=1

MCmd=write, fifo_full=1

MReglast=1

to_transmit=1

97.2%

97.4%

97.6%

97.8%

98.0%

98.2%

98.4%

98.6%

98.8%

99.0%

99.2%

99.4%

1 HT 2 HTs 3 HTs 4 HTs 5HTs

H
T

 D
et

ec
ti

o
n
 R

at
e

fifo_full=0

fifo_full=1

Mcmd=read, fifo_full=0

MCmd=write,

fifo_full=0

MCmd=read,

fifo_full=1

MCmd=write,

fifo_full=1

MReglast=1

to_transmit=1

82

with a probability of over 98%. Generally, the HT detection rate for less HT payloads

is higher than that for more HT payloads, as the overall effect of less HTs are more

likely to be filtered by logic inherent masking effects.

 Reduction on HT Attack Success Rate

We define the HT attack success rate as the probability of a HT successfully

changing the FSM from one legal state to another legal state. As we discussed in

Section 3, the application of key and dummy states in the FSM increases the number

of possible states and state transitions. Without knowing the key, the HT inserted is

very likely to lead the FSM enter the illegal states or illegal state transition. By using

the proposed method, we can reduce the attack success rate of HTs inserted by

attackers, even when the FSM state transition diagram is leaked.

83

Figure 5-20 Impact of key knowledge on HT attack success rate

Figure 5-21 Impact of different FSM states on HT successfully attacks

As shown in Figure 5-20, without the correct key on the FSM state transition

diagram, the probability of a HT successfully modifying the FSM state is 71.5% less

than that of knowing the exact key value. We further examined the impact of different

FSM states and control signals on the HT attack success rate. As shown in Figure 5-21,

the most frequently used states (e.g. s0 and s3) are easier to be changed by HTs than

other states. When the control signal associated with the particular state is asserted,

the impact of HTs is more significant than the control signal is not enabled.

 Area and Power Comparison

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1.60E-01

1.80E-01

H
T

 A
tt

ac
k
 S

u
cc

es
s

R
at

e

Unknown key Known Key

0

500

1000

1500

2000

2500

3000

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

N
u
m

b
er

 o
f

S
u
cc

es
s

A
tt

ac
k
s

fifo_full=0

fifo_full=1

MCmd=read

MCmd=write

MReqLast=1

to_transmit=1

84

The proposed method achieves a high HT detection rate and reduces the

probability of a HT attack successfully modifying the FSM. As the critical path for NI

w/wo our method is less than 1ns, we set the clock frequency of the NIs to 500MHz.

As shown in Table 5-3, our method has 3.2% area overhead and consumes 1.7% more

total power, compared to the baseline NI design.

Table 5-3 Area and Power of the NIs w/wo Proposed Method

Design for Comparison Area (µm
2
) Power (mW)

Baseline NI (no key insertion and HT detection) 19133.2 (100%)
6.491

(100%)

NI with proposed state obfuscation and HT detection 19747.7 (103.2%)
6.605

(101.7%)

85

CHAPTER 6

CONCLUSIONS

Network-on-Chip (NoC) is emerging as a prevalent on-chip communication

infrastructure. The flexibility and scalability of NoC make it feasible to migrate to the

era of many heterogeneous IP cores on a single die. As the scale and complexity of a

NoC system increase, the security of on-chip communication is expected to be

another concern. Although the globalization of current IC industry helps to reduce

design cost and shorten the time to market, it also makes the fabricated chips

vulnerable to hardware tampering and Trojan insertion. In this thesis, a highly

modular network interface is designed and implemented for OCP compatible NoC

systems. The hardware security aspects of NI are analyzed and addressed.

For the future work in this topic, the HT implementation in a system level

emulation platform using FPGA or ASIC technology is highly expected. Also, more

advanced and efficient HT countermeasure techniques need to be explored as well.

The key contributions of this thesis are summarized as follows.

This thesis starts with basic introduction of NoC development, hardware security

issues in IC chips. In Chapter 2, we review the basics of NoC design problems. Based

on the design problems analyzed, we proposed our baseline NI design in Chapter 3.

The proposed NI was implemented with an IBM 0.18μm CMOS technology and

compared with exiting designs reported in literature. The synthesis results in terms of

86

power, timing and area reported. The hardware cost of our NI design is comparable

performance with previous work.

In Chapter 4, we analyzed the network interface circuit at the system level and

presented comprehensive and meaningful HT attack models from attackers’

perspectives. The impact of multiple practical HT triggers and payloads on NI

performance and NoC applications are evaluated with simulations. Chapter 5 presents

the detailed implementation results of HTs. The corresponding effect of HT insertion

was also assessed with real digital application examples. Finally, a state obfuscation

technique is proposed for HT countermeasure and detection. Our method obtains a

relatively high detection rate of over 98% for all test cases and reduces the HT attack

success rate by 71.5%, at the cost of 3.2% area increase and 1.7% more power

consumption in the TSMC 65nm CMOS technology.

87

 REFERENCES

[1] J. D. Owens, W. J. Dally, R. Ho, D. Jayasimha, S. W. Keckler and L. S. Peh, “Research

Challenges for On-Chip Interconnection Networks,” IEEE Micro, vol. 27, no. 5, pp.

96-108, 2007.

[2] ARM Ltd., “AMBA Specifications,” 2013. [Online]. Available:

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php.

[3] IBM MicroelectronicsIBM, “CoreConnect Bus Architecture,” January 2006. [Online].

Available:

https://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/CoreConnect_Bus_A

rchitecture.

[4] OpenCores, “SoC Interconnection: Wishbone,” [Online]. Available:

http://opencores.org/opencores,wishbone.

[5] Arteris, Inc., “A comparison of Network-on-Chip and Busses,” 2005. [Online].

Available:

http://www.design-reuse.com/articles/10496/a-comparison-of-network-on-chip-and-buss

es.html.

[6] A. Agarwal, C. Iskander and R. Shankar, “Survey of Network on Chip (NoC)

Architecture & Contributions,” Journal of Engineering, Computing and Architecture,

vol. 3, no. 1, 2009.

[7] L. Fiorin, C. Silvano and M. Sami, "Security Aspects in Networks-on-Chips: Overview

and Proposals for Secure Implementations," in Proc. of 10th Euromicro Conference on

Digital System Design Architectures, Methods and Tools, Aug. 2007.

[8] R. Chakraborty, S. Narasimhan and S. Bhunia, "Hardware Trojan: Threats and emerging

solutions," in Proc. of IEEE International High Level Design Validation and Test

Workshop, Nov. 2009.

[9] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang and Y. Zhou, “Designing and

implementing malicious hardware,” in Proc. of the 1st Usenix Workshop on Large-Scale

Exploits and Emergent Threats, 2008.

[10] S. Skorobogatov and C. Woods, "Breakthrough silicon scanning discovers backdoor in

military chip," in Proc. of International Conference on Cryptographic Hardware and

Embedded Systems, Sept. 2012.

[11] S. Adee, “The Hunt For The Kill Switch,” IEEE Spectrum , vol. 45, no. 5, pp. 34-39,

May, 2008.

[12] S. Saponara, T. Bacchillone, E. Petri, L. Fanucci, R. Locatelli and M. Coppola, “Design

of a NoC Interface Macrocell with Hardware Support of Advance Networking

Functionalities,” IEEE Trans. on Computers, vol. 63, pp. 609-621, March 2014.

[13] S. Evain and J.-P. Diguet, "From NoC security analysis to design solutions," in IEEE

Workshop on Signal Processing Systems Design and Implementation, Nov. 2005.

88

[14] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat and E. Juin, "NOC-centric Security of

Reconfigurable SoC," in Proc. of First International Symposium on Networks-on-Chip

(NOCS), May 2007.

[15] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano and C. Silvano, “Secure Memory

Accesses on Networks-on-Chip,” IEEE Trans. on Computers, vol. 57, no. 9, pp.

1216-1229, Sept. 2008.

[16] C. Gebotys and R. Gebotys, "A framework for security on NoC technologies," in Proc.

of IEEE Computer Society Annual Symposium on VLSI, Feb. 2003.

[17] C. Gebotys and Y. Zhang, "Security wrappers and power analysis for SoC technology,"

in Proc. of First IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, Oct. 2003.

[18] K. Sajeesh and H. Kapoor, "An Authenticated Encryption Based Security Framework

for NoC Architectures," in Proc. of 2011 International Symposium on Electronic System

Design (ISED), Dec. 2011.

[19] M. LeMay and C. A. Gunter, “Network-on-Chip Firewall: Countering Defective,” 2014.

[Online]. Available: http://arxiv.org/abs/1404.3465.

[20] P. Kocher, R. Lee, G. McGraw, A. Raghunathan and S. Ravi, "Security as a new

dimension in embedded system design," in Proc. of 41st Design Automation Conference,

July 2004.

[21] E. Cota, A. d. M. Amory and M. S. Lubaszewski, “Chapter2: NoC Basics,” in

Reliability, Availability and Serviceability of Networks-on-Chip, New York City, NY,

Springer, 2012, pp. 11-24.

[22] E. Salminen, A. Kulmala and T. D. Hamalainen, “Survey of Network-on-Chip

Proposals,” OCP-IP, March 2008. [Online]. Available:

http://ns2.ocpip-server.com/uploads/documents/OCP-IP_Survey_of_NoC_Proposals_W

hite_Paper_April_2008.pdf.

[23] G. De Micheli and L. Benini, Network-on-Chips: Technology and Tools, San Francisco,

CA: Morgan Kaufmann, 2006.

[24] OCP-IP, “OCP Specifications 3.0,” [Online]. Available:

http://www.ocpip.org/uploads/dynamic_areas/Xu4qydXgbYWof7Ihz3Uh/947/Open%20

Core%20Protocol%20Specification%203.0.pdf.

[25] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks, San

Francisco, CA: Morgan Kaufmann, 2004.

[26] T. Bjerregaard, S. Mahadevan, R. Olsen and J. Sparsoe, "An OCP Compliant Network

Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip," in Proc.

of International Symposium on System on Chip, Nov. 2005.

[27] S. E. Lee, J. H. Bahn, Y. S. Yang and N. Bagherzadeh, "A Generic Network Interface

Architecture for a Networked Processor Arrary (NePA)," in Proc. 21st International

Conference on Architecture of Computing Systems (ARCS), Dresden, Germany, Feb.

2008.

89

[28] M. Mitic, M. Stojcev and Z. Stamenkovic, “An Overview of SoC Buses,” in The

Computer Engineering Handbook: Digital Systems and Applications, Boca Raton,

Florida, CRC Press, 2007.

[29] C. Grecu, A. Ivanov, R. Pande, A. Jantsch, E. Salminen, U. Ogras and R. Marculescu,

"Towards Open Network-on-Chip Benchmarks," in Proc. of First International

Symposium on Networks-on-Chip, May 2007.

[30] T. Bjerregaard and J. Sparso, "Packetizing OCP Transactions in the MANGO

Network-on-Chip," in Proc. of 9th EUROMICRO Conference on Digital System Design:

Architectures, Methods and Tools, 2006.

[31] B. Attia, A. Zitouni, W. Chouchenne, K. Torki and R. Tourki, “A Modular Network

Interface Design and Synthesis Outlook,” International Journal of Computer Science

(IJCSI), vol. 9, no. 3, pp. 470-482, May 2012.

[32] L. Fiorin and M. Sami, "Fault-Tolerant Network Interfaces for Networks-on-Chip,"

IEEE Trans. on Dependable and Secure Computing, vol. 11, no. 1, pp. 16-29, 2014.

[33] L. Fiorin, L. Micconi and M. Sami, "Design of Fault Tolerant Network Interfaces for

NoCs," in Proc. of 14th Euromicro Conference on Digital System Design (DSD), August

2011.

[34] Altera Corporation, "Implementing High-Speed Search Applications with Altera CAM,"

2001. [Online]. Available: www.altera.co.jp/literature/an/an119.pdf.

[35] K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM) circuits

and architectures: a tutorial and survey," IEEE Journal of Solid-State Circuits, vol. 41,

no. 3, pp. 712-727, 2006.

[36] M. Peng and S. Azgomi, "Content-Addressable memory (CAM) and its network

applications," Altera International Ltd., 2000.

[37] I. Loi, F. Angiolini and L. Benini, "Synthesis of low-overhead configurable source

routing tables for network interfaces," in Proc. of Design, Automation & Test in Europe

Conference & Exhibition (DATE), April, 2009.

[38] M. Akhbarizadeh, M. Nourani, D. Vijayasarathi and P. Balsara, "PCAM: a ternary CAM

optimized for longest prefix matching tasks," in Proc. of International Conference on

Computer Design: VLSI in Computers and Processors (ICCD), Oct. 2004.

[39] C. E. Cummings and P. Alfke, “Simulation and Synthesis Techniques for Asynchronous

FIFO Design with Asynchronous Pointer Comparisons,” Sunburst Design, Inc., 2002.

[Online]. Available:

http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf.

[40] C. E. Cummings, “Simulation and Synthesis Techniques for Asynchronous FIFO

Design,” Sunburst Design, Inc., 2002. [Online]. Available:

www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf.

[41] T. T. Ye, L. Benini and G. De Micheli, "Packetized On-chip Interconnect

Communication Analysis for MPSoC," in Proc. of the Design Automation and Test in

Europe Conference and Exhibition (DATE), 2003.

90

[42] Y.-L. Lai, S.-W. Yang, M.-H. Sheu, Y.-T. Hwang, H.-Y. Tang and P.-Z. Huang, "A

High-Speed Network Interface Design for Packet-Based NoC," in Proc. of International

Conference on Communications, Circuits and Systems Proceedings, June 2006.

[43] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi and G. De Micheli, "×pipes

Lite: a synthesis oriented design library for networks on chips," in Proc. of Design,

Automation and Test in Europe, March 2005.

[44] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema and P. Wielage, "An efficient

on-chip network interface offering guaranteed services, shared-memory abstraction, and

flexible network configuration," in Proc. of Design, Automation and Test in Europe

Conference and Exhibition (DATE), Feb. 2004.

[45] D. Matos, M. Costa, L. Carro and A. Susin, "Network interface to synchronize multiple

packets on NoC-based Systems-on-Chip," in Proc. of 18th IEEE/IFIP VLSI System on

Chip Conference (VLSI-SoC), Sept. 2010.

[46] M. Tehranipoor and C. Wang, Introduction to Hardware Security and Trust, New York,

NY: Springer, 2012.

[47] X. Wang, S. Narasimhan, A. Krishna, T. Mal-Sarkar and S. Bhunia, "Sequential

hardware Trojan: Side-channel aware design and placement," in Proc. of IEEE 29th

International Conference on Computer Design (ICCD), Oct. 2011.

[48] J. Zhang and Q. Xu, "On hardware Trojan design and implementation at register-transfer

level," in Proc. of IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), June 2013.

[49] Y. Jin, N. Kupp and Y. Makris, "Experiences in Hardware Trojan design and

implementation," in Proc. of IEEE International Workshop on Hardware-Oriented

Security and Trust, July 2009.

[50] R. Chakraborty and S. Bhunia, "HARPOON: An Obfuscation-Based SoC Design

Methodology for Hardware Protection," IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493-1502, Oct. 2009.

[51] J. Rajendran, Y. Pino, O. Sinanoglu and R. Karri, "Logic encryption: A fault analysis

perspective," in Proc. of Design, Automation & Test in Europe Conference & Exhibition

(DATE), March 2012.

[52] R. Karri, J. Rajendran, K. Rosenfeld and M. Tehranipoor, “Trustworthy Hardware:

Identifying and Classifying Hardware Trojans,” IEEE Computer , vol. 43, no. 10, pp.

39-46, Oct. 2010.

[53] L. Benini and G. De Micheli, “Network on Chips: A New SoC Paradigm,” IEEE

Computer, vol. 35, no. 1, pp. 70-78, 2002.

[54] P. P. Pande, G. De Micheli, C. Grecu, A. Ivanov and R. Saleh, “Design, synthesis, and

test of networks on chips,” IEEE Design & Test of Computers, vol. 22, no. 5, pp.

404-413, 2005.

[55] Altera Corporation, “Avalon Interface Specifications,” 2014. [Online]. Available:

www.altera.com/literature/manual/mnl_avalon_spec.pdf.

91

[56] K. Goossens, J. Dielissen and A. Radulescu, “Aethereal Network on Chip: Concepts,

Architectures, and Implementations,” IEEE Design & Test of Computers, vol. 22, no. 5,

pp. 414-421, 2005.

[57] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices of

Network-on-Chip,” Journal of ACM Computing Surveys (CSUR), vol. 38, no. 1, pp.

1-51, 2006.

[58] S. Butler, “Managing IP quality in the SoC era requires a purpose-built DM approach,”

Methodics LLC, Sept. 2011. [Online]. Available:

http://www.eetimes.com/author.asp?section_id=36&doc_id=1266011.

[59] S. Malviya and A. Jaiswal, “Five Port Router for Network on Chip,” in Proc. of ARRL

and TAPR Digital Communications Conference, 2010.

[60] V. Rantala, T. Lehtonen and J. Plosila, “Network on Chip Routing Algorithms,” Turku

Center for Computer Science, August, 2006.

[61] M. Beaumont, B. Hopkins and T. Newby, "Hardware Trojans – Prevention, Detection,

Countermeasures (A Literature Review)," DSTO Defence Science and Technology

Organisation, Edinburgh, Australia, July, 2011.

[62] Trust-hub, [Online]. Available: https://www.trust-hub.org/.

[63] D. Stefan, C. Mitchell and C. G. Almenar, "CSAW Embedded System Challenge 2008,"

[Online]. Available: isis.poly.edu/~vikram/cooper.pdf.

[64] A. Baumgarten, M. Steffen, M. Clausman and J. Zambreno, "A case study in hardware

Trojan design and implementation," International Journal of Information Security, vol.

10, no. 1, pp. 1-14, 2011 .

[65] L. Fiorin, G. Palermo, S. Lukovic and C. Silvano, "A data protection unit for NoC-based

architectures," in Proc. of 5th IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), Sept. 2007.

[66] W. Chouchene, B. Attia, A. Zitouni, N. Abid and R. Tourki, "A low power network

interface for network on chip," in Proc. of 8th International Multi-Conference on

Systems, Signals and Devices (SSD), March 2011.

[67] J.-H. P. S.-C. Lee, "A Practical Design and Implementation of On-Chip NI for

Integrating Bus Based IP Legacies," in Proc. of 6th WSEAS International Conference on

Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 2007.

[68] M. Tehranipoor and F. Koushanfar, "A Survey of Hardware Trojan Taxonomy and

Detection," IEEE Design & Test, vol. 27, no. 1, pp. 10-25, 2009.

[69] B. Zitouni and R. Tourki, "Design and implementation of network interface compatible

OCP For packet based NOC," in Proc. of 5th International Conference on Design and

Technology of Integrated Systems in Nanoscale Era (DTIS), March 2010.

[70] J. Santos and Y. Fei, "Designing and implementing a Malicious 8051 processor," in

Proc. of IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), Oct. 2012.

[71] X. Wang, M. Tehranipoor and J. Plusquellic, "Detecting malicious inclusions in secure

92

hardware: Challenges and solutions," in Proc. of IEEE International Workshop on

Hardware-Oriented Security and Trust, June 2008.

[72] A. Das, G. Memik, J. Zambreno and A. Choudhary, "Detecting/preventing information

leakage on the memory bus due to malicious hardware," in Proc. of Design, Automation

& Test in Europe Conference & Exhibition (DATE), March 2010.

[73] M. Dehyadgari, M. Nickray, A. Afzali-kusha and Z. Navabi, "Evaluation of Pseudo

Adaptive XY Routing Using an Object OrientedModel for NOC," in Proc. of 17th

International Conference on Microelectronics, March 2005.

[74] S. Narasimhan, R. Chakraborty and S. Bhunia, "Hardware IP Protection During

Evaluation Using Embedded Sequential Trojan," IEEE Design & Test, vol. 29, no. 3, pp.

70-79, 2012.

[75] S. Bhasin, J.-L. Danger, S. Guilley, X. Ngo and L. Sauvage, "Hardware Trojan Horses in

Cryptographic IP Cores," in Proc. of 2013 Workshop on Fault Diagnosis and Tolerance

in Cryptography (FDTC), Aug. 2013.

[76] W. Shi, J. Fryman, G. Gu, H.-H. Lee, Y. Zhang and J. Yang, "InfoShield: a security

architecture for protecting information usage in memory," in Proc. of International

Symposium on High-Performance Computer Architecture, Feb. 2006.

[77] W. Dally and B. Towles, "Route packets, not wires: on-chip interconnection networks,"

in Proc. of Design Automation Conference, 2001.

[78] J. Rajendran, E. Gavas, J. Jimenez, V. Padman and R. Karri, "Towards a comprehensive

and systematic classification of hardware Trojans," in Proc. of IEEE International

Symposium on Circuits and Systems (ISCAS), May 2010.

[79] F. Wolff, C. Papachristou, S. Bhunia and R. Chakraborty, "Towards Trojan-Free Trusted

ICs: Problem Analysis and Detection Scheme," in Proc. of Design, Automation and Test

in Europe (DATE), March 2008.

[80] D. Bertozzi and B. L., "Xpipes: A Network-on-Chip Architecture for Gigascale

Systems-on-Chip," IEEE Circuits and Systems, vol. 4, no. 2, pp. 18-31, 2004.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2014

	Network Interface Design for Network-on-Chip
	Jiawei Zhong
	Recommended Citation

	tmp.1528815248.pdf.pPNwB

