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Abstract 

NETWORK INTERFACE DESIGN FOR NETWORK ON CHIP 

by 

Jiawei Zhong 

University of New Hampshire, December, 2014 

In the culture of globalized integrated circuit (IC, a.k.a chip) production, the use 

of Intellectual Property (IP) cores, computer aided design tools (CAD) and testing 

services from un-trusted vendors are prevalent to reduce the time to market. 

Unfortunately, the globalized business model potentially creates opportunities for 

hardware tampering and modification from adversary, and this tampering is known as 

hardware Trojan (HT). Network-on-chip (NoC) has emerged as an efficient on-chip 

communication infrastructure. In this work, the security aspects of NoC network 

interface (NI), one of the most critical components in NoC is investigated and 

presented. Particularly, the NI design, hardware attack models and countermeasures 

for NI in a NoC system are explored. 

An Open Core Protocol compatible NI is implemented in an IBM0.18μm CMOS 

technology. The synthesis results are presented and compared with existing literature. 

Second, comprehensive hardware attack models targeted for NI are presented from 

system level to circuit level. The impact of hardware Trojans on NoC functionality 

and performance are evaluated. Finally, a countermeasure method is proposed to 

address the hardware attacks in NIs.
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CHAPTER 1  

INTRODUCTION 

1.1 Background of On-Chip Communication Infrastructure 

Current rapid improvement of VLSI technology is yielding a more powerful, 

capable and flexible system on a single silicon die. The embedded and computing 

system design nowadays has moved from single core to the era of multi-core and 

eventually to many core architectures [1]. The integration of numerous intellectual 

property (IP) blocks on a chip has become a feasible and popular design methodology, 

which is known as system-on-chip (SoC). One SoC example is shown in Figure 

1-1.These heterogeneous IPs can be micro-processor, data memory, multimedia 

decoder and general peripherals. They mainly communicate with each other via an 

on-chip bus. Several industrial bus standards are available for SoCs, such as ARM 

AXI [2], IBM CoreConnect [3] and Wishbone [4]. 

 

Figure 1-1 SoC: Bus-centric communication architecture 

The traditional bus centric communication in multi-core SoC (MPSoC) has 

several drawbacks, including limited bandwidth efficiency, high latency, poor 
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flexibility and extensive overhead in terms of power and area [5]. Those limitations 

become more severe as the chip complexity and the number of IP cores increase. An 

emerging on-chip interconnect solution, known as network-on-chip (NoC), has been 

widely investigated by industry and academia communities [6-9]. The design of NoC 

and its interface to SoC are pivotal in addressing all the issues mentioned above. As a 

result, NoC is recognized as the mainstream communication architecture for MPSoCs. 

In NoC-based MPSoCs, multiple processing IP cores are connected within a network 

of routers and network interfaces (NIs), rather than the regular buses. Figure 1-2 

shows a generic NoC system typically consists of routers, links and network 

interfaces (NIs). Routers are the places where the data is directed to different paths, 

links are wires connecting two routers and the NIs are the units implementing the 

protocol and sockets between routers and IPs [6].  

 

Figure 1-2 Topological illustration of Network-on-Chip (NoC) 

 NoC has superior advantages such as scalability, reusability and high 
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performance over traditional buses. However, this new infrastructure also brings in 

new weaknesses to the MPSoC system [7]. In most of the previous literature, the 

research on NoC mainly focuses on system topology, functionality implementation, 

routing & switching techniques, traffic characterization, computer-aided design (CAD) 

tools and libraries design [10-13], but security and reliability aspects in such system 

have not been fully explored. Therefore, in this thesis, we address the hardware 

security issues in NoC design, and particularly in the network interface. 

1.2 Motivations for Trustworthy IC 

Hardware security in IC is emerging as an important research topic in recent years. 

Modern IC design and manufacturing often involve purchased IP cores from 

third-party vendors, electronic design automation (EDA) software from different 

suppliers, outsourced design, testing, assembling and packaging services. This 

globalization business model helps IC companies to reduce cost and shorten the time 

to market, but also makes fabricated ICs vulnerable to several malicious attacks 

[14-15]. Figure 1-3 shows the trust level at different steps of an IC design cycle. Each 

party associated with the design cycle can potentially compromise an IC’s 

functionality by intentional modification and tempering, which is known as hardware 

Trojan (HT). 
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Figure 1-3 Trust level at each level of an IC design cycle (Source: [8]) 

HTs can be introduced in any design phase of IC design, from RTL description, 

gate-level netlist, CAD tool libraries to GDSII file [16-17]. HTs can have serious 

impact on the IC while in operation, especially in security sensitive applications such 

as military, communication and national infrastructure. For instances, a malicious 

microprocessor with shadow mode was implemented in [9]; a back door insertion into 

the MicroSemi chips was reported in [10], which brought severe economic loss; and 

similar attacks are also found in military radar recently [11], which made the radar fail 

to detect enemies. As more and more transistors can be integrated into a single die, we 

may expect that hardware security aspect in communication infrastructure, such as the 

prevalent NoC, will be another concern in the near future. The consequences of HT 

attacks in NoC, particularly in NI, may be more severe than those in IP cores for the 

following reasons: 

 NoC is a complex network composed of a large number of heterogeneous IP cores. 

In modern IC business, some of these IP cores may be possibly purchased from 

third-party vendors. It is difficult to ensure that all of the IPs is trustworthy, thus 

increasing the risk of hardware Trojan insertion [21-22]. 

 Although the IP cores on-chip are heterogeneous, the NoC infrastructure itself is 
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highly modular. The routers and NIs in a NoC can be identical in a network 

[23-24]. If hardware Trojan is inserted into the NoC standard module or library, 

the HT attacks can be easily manifested through the entire network. 

 The NIs in NoC are not only connecting wires between IP cores and routers. The 

functionalities of state-of-art NIs include packet encapsulation and de-capsulation, 

routing computation, quality-of-service (QoS) and flow control [12]. As the NIs 

becomes more powerful and complicated, more attack locations and opportunities 

are available to adversary, and the consequences of HTs are more difficult to 

predict than before as well. 

Most of the previous works related to hardware trustworthy and security are 

mainly focused on the functional IP cores, such as general-purpose processor [9], 

cryptographic IP, memory block and peripheral interface [62]. Although simple 

examples for the attacks in NoCs have been provided in previous studies [11, 26-29], 

those examples are not sufficient and complete for NoC designers to create 

meaningful attack models at physical level to evaluate the security performance for a 

given NoC design. 

1.3 Related Work &Our Contributions 

Security aspects in NoCs were first discussed in [11,26]. Security attacks on 

integrated circuits and their application systems are generally classified into software 

attacks, physical attacks and side-channel attacks. Such classification also applies to 

NoCs. Security attacks in NoCs cause denial of service, extract secret information, or 
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alter execution or configuration of a system to conduct additional duties for 

adversaries (a.k.a hijacking) [13]. 

Diguet et al. proposed a first solution for configurable NoC based communication 

system in [14]. Diguet’s security framework is composed of secure network interface 

and secure configuration manager, not including NoC routers. To implement a secure 

NoC, Fiorin et al. [15] highlighted the need of address protection unit in network 

interface and weighted round robin arbiter in router, as well as security automata to 

monitor unexpected routines. Recently, Fiorin et al. presented data protection unit 

designs in details to address the secure memory access in NoC [30-31]. To tackle 

power, electromagnetic and network snooping attacks on NoCs, Gebotys and Zhang 

made an effort on the transport and application layers by securing the cryptographic 

key exchange mechanism in NoC [16-17]. Sajeesh and Kapoor also exploited 

authenticated encryption in network interface to secure communication among IP 

cores [18]. LeMay and Gunter introduced a NoC Firewall implemented in a special 

functional hardware description language to facilitate formal analysis and thus 

detected attacks that violate NoC protocol [19]. As cryptography units are 

hardware-consuming, not all NoC-based systems can afford using crypto units at 

transport and application layers of NoCs. To broaden the choice of methods for NoC 

security enhancement, security attacks on other NoC layers need to be investigated, as 

well. Some tangible examples of security attacks are provided in existing literatures 

[13, 20]; however, the attack models for NoCs are either not thorough or too 
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high-level to be directly used in the procedure of NoC security assessment. Specific 

HT attack models that are tightly couple with typical NoC design details will benefit 

NoC designers and users to be aware of potential HT attacks and the corresponding 

HT consequence in system development stage. 

Besides, NI design and implementation are extensively explored in [23,25,34-39], 

but none of them ever addresses the hardware Trojan or security aspects in NI. In this 

work, we will fill in the gap. Our main contributions are as follows. 

 We design and implement a highly modular network interface to facilitate the 

standard OCP compatible NoC design. Hardware cost, latency performance and 

power consumption of our baseline NI are compared to existing NIs. 

 We analyze the NI from system level to gate level and propose potential HT attack 

models in terms of possible attack locations and potential low probability trigger 

signals. The attack models are justified either by analytical derivation or by 

practical simulation. 

 The impact of HT in a NoC system is quantitatively investigated and visually 

evaluated by applying the attack models to NoC applications. 

 Finally, we propose HT aware detection method for HT countermeasures 

embedded into the baseline design. The efficiency of our method is also assessed 

with quantitative results. 

1.4 Thesis Organization 

The rest of the thesis is organized as below. 
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Chapter 2 briefly describes the basics of NoC, including architecture, routing 

scheme, switching technique, end-to-end flow control and advanced functionalities. 

Chapter 3 introduces the proposed NI design in details, including all the 

sub-modules. 

Chapter 4 illustrates a comprehensive hardware Trojan attack model for NI, 

including HT trigger design and payload placement. 

Chapter 5 presents implementation details of several practical HTs. The impact of 

HTs on video and image applications is also evaluated using application. A 

countermeasure method is also proposed to facilitate the HT detection. 

Chapter 6 summarizes this thesis and discusses future work. 
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CHAPTER 2  

NOC BASICS 

NoC encompasses a wide spectrum of research topics, ranging from highly 

software application related issues (e.g. network traffic characterization and routing 

scheme), across system topology (e.g. NoC topologies) to physical link level 

implementation (e.g. FPGA and ASIC).The design space of a NoC is considerably 

larger than that of a bus-based solution, as NoC can employ different routing and 

arbitration strategies can be implemented as well as different organizations of the 

communication infrastructure. This enables the SoC designer to find one of suitable 

NoC solutions for specific system characteristic and constraints. In this chapter, we 

present the main concepts involved in NoCs. Our baseline NI design was 

implemented in IBM 0.18μm technology following the digital ASIC design flow. The 

synthesis results for silicon area, power and timing are compared with existing 

literature. 

2.1 NoC Structure 

The conceptual NoC is shown in Figure 2-1.A generic Network-on-Chip system 

typically consists of network interfaces (NI), routers, physical links, and intellectual 

property (IP) cores [21]. The IP cores are also called functional blocks or processing 

elements, which are the main on-chip resources for data computation and processing. 
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IP core can be CPU, DSP processor, on chi memory, general I/O block and video 

codec. 

 
Figure 2-1 NoC: Network-based communication architecture (Source: [22]) 

2.1.1 Router 

 

Figure 2-2 Five-port NoC router architecture 

The design of router is to route the data according to chosen protocols, routing 

and switching techniques. A NoC router is composed of input ports and output ports 

connected to the shared NoC channels, a switching crossbar connecting the input 

ports to the corresponding output ports, and a local port to access the IP core at this 

router node. A generic architecture of five-port NoC router can be seen in Figure 2-2 

[41-42]. In addition to this physical connection infrastructure, the router also contains 
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a logic block that implements the flow control policies and defines the overall strategy 

for transferring data through the NoC. 

2.1.2 Links 

Links provide the raw bandwidth and physical connection with routers. It is 

composed of one or more logical or physical channels, and each channel consists of a 

set of metal wires. Typically, a NoC link has two physical channels, making a 

full-duplex connection for bi-directional transmission between the routers. The 

number of parallel wires per channel is typically uniform throughout the network and 

is known as the channel bandwidth. 

2.1.3 Network Interface (NI) 

Network Interfaces (NIs) implement the logic connection by which IP cores 

connect to the NoC. Their function is to decouple the data processing of IP core from 

the communication network, and make it feasible to reuse core and communication 

infrastructure. In [23], the author partitions the NI into two parts: a front end and a 

back end. The front end handles the core requests and is ideally unaware of the NoC. 

This part is usually implemented as interconnect socket and some of the industrial 

communication protocols are applied at the front end, such as OCP [24], AXI [2], and 

Wishbone [4]. The back end part assembles and disassembles the packet, reorders 

buffers, implements synchronization protocols, and helps the router in terms of 

storage. A generic NI architecture is shown as Figure 2-3. 
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Figure 2-3 Generic NI architecture 

2.2 NoC Design Problems 

To provide a complete NoC solution, we need specify many aspects and 

characteristics from bottom to up. The designers may also need to trade off among 

functionality, overhead and reliability according to the application requirements. The 

state-of-art NoCs adapt mangy advanced networking features and functionalities [25]. 

The main design issues of NoCs include packet format, NoC topology, switching 

technique, routing strategies, flow control and quality of service (QoS) requirement 

[12]. 

2.2.1 Packet Format 

Packet format defines the structure of the basic data units in a NoC system. Since 

the data flow in NoC is based on packet switching, the format will make a significant 

difference to the hardware design. Typically, a packet will be further divided into 

several sequential flits, which are the minimum data units in NoC communication 

[23]. A packet will consist of header flit, payload flit and tail flit. The header flit 

usually contains key information of a packet, such as source and destination; the 

payload flit only carries the general transmitted data and tail flit is used to 
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differentiate the boundary of two packets. The flit format is illustrated in Figure 2-4. 

 

Figure 2-4 Generic Packet Flit Format (a) Header Flit Format (b) Payload & Tail Flit Format 

2.2.2 Topology 

 
Figure 2-5 Basic NoC Topologies (Source: [22]) 

Topology defines how NoCs are organized. Each node is composed of a router, a 

NI and an IP core. From the communication perspective, there are various topologies 

for NoC architectures. These topologies include mesh, torus, ring, octagon, tree and 

other irregular interconnection networks. Some sample topologies are shown in 

Figure 2-5. 2-D mesh topology is adopted in most NoC designs, as it is proved to be 

more efficient in terms of latency, power consumption and ease of implementation 

than other topologies [22]. 

2.2.3 Packet Switching Techniques 

Packet switching technique determines how the packets are forwarded and 

transferred through the NoC network. When the first NoC was proposed in early 
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2000s, circuit switching was preferred. To execute circuit switching, a path from 

source to destination is informed prior to transfer by reserving the routers and links 

before packet transfer. All data will follow the exact same path and the path is torn 

down after the packet transfer is completed. Currently, most of NoC implementations 

are based on packet switching. In packet switching, all the packets are transmitted 

without reserving the entire path. Packet switched networks can further be classified 

as wormhole, store and forward, and cut through [25]. 

2.2.4 Routing Scheme 

Routing schemes are different from the concept of switching techniques. A 

routing algorithm defines the exact route or path for the data from source to 

destination rather than the way how the data are transferred. Routing scheme can be 

generally classified into deterministic routing and adaptive routing. In the 

deterministic routing, all packets follow the same route between a given pair of source 

and destination and data deadlock can be easily avoided. Unlike deterministic routing, 

adaptive routing may dynamically update or change the route for packets to reduce 

congestion, but requires special attention to avoid deadlock and livelock. In current 

NoC design, most packet switched networks utilize deterministic routing such as XY 

routing [6]. 

2.2.5 Flow Control 

End-to-end flow control characterizes the packet movement along the NoC. A 

NoC system may have lots of buffer or memory locally inside the NIs and routers. 
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When the packets are transferring through the network, they are stored temporarily in 

the buffering memory and wait for next step processing. In this sense, flow control is 

necessary to guarantee that these buffers will not overflow. Traditional end to end 

flow control schemes have credit based scheme and ACK based scheme [25]. 

2.2.6 Quality-of-Service 

Quality-of-Service (QoS) refers to the levels of guarantees given for data transfer. 

Goossensens et al. define two types of QoS in [26]: best-effort (BE) and guaranteed 

service (GS). With best-effort NoCs, only completion of the communication is 

ensured and data are transferred as soon as they are ready; with guaranteed service 

NoCs, some extra services or properties are ensured, such as the correctness of data, 

the completion of transaction and the error free communication. 

2.2.7 On-chip Interconnect Protocols 

As mentioned in 2.1, the front end of network interface typically is implemented 

as industrial on-chip standards or protocols. This feature allows NI to separate the IP 

cores from the whole network. As a result, designers can focus on the design of 

various processing IPs without concerning the integration of NoC with IP cores. The 

IP cores can be in a “plug-and-play” fashion for better reusability and performance 

[27]. 

However, the on-chip communication protocols were first designed for SoC 

applications and bus centric connection. Integrating heterogeneous IP cores in a SoC 

often requires the insertion of glue logic, and standards of on-chip bus protocols were 
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developed to avoid this problem [28]. As we are migrating to the era of 

multi-processor SoC (MPSoC) and NoC, the on-chip protocols are also being 

modified and developed to adapt the demands of NoC. This section overviews the 

popular standardized on-chip interconnect protocols such as AMBA AXI [2], 

CoreConnect, Wishbone [4] and Open Core Protocol (OCP) [3]. 

 AMBA (Advanced Micro-controller Bus Architecture) is a standard devised by 

ARM Limited to support efficient on-chip communication for ARM processors. 

AMBA is hierarchically organized into system and peripheral bus segments, 

mutually connected via bridges. AMBA does not define the method of arbitration, 

instead, it allows the arbiter to be designed to meet the applications needs. AMBA 

is also a multi-bus system and several distinct buses are defined in the AMBA 

specification: ACE (Advanced Coherency Extensions), AHB (Advanced 

High-performance Bus), APB (Advanced Peripheral Bus) and AXI (Advanced 

eXtensible Interface)[2]. Nowadays, AMBA AXI is already one of the leading 

on-chip interconnect systems used in high-performance FPGAs, MPSoCs and 

NoCs. 

 CoreConnectis a bus architecture developed by IBM to ease the integration and 

reuse of processors, system and peripheral cores [3]. CoreConnect is 

hierarchically comprised of a processor local bus (PLB), an on-chip peripheral bus 

(OPB) and a device control register bus (DCRB). These three buses provide an 

efficient interconnection of cores, library macros, and custom logic within a SoC 
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or MPSoC. 

 Wishbone bus architecture was first developed by Silicore Corpation, and now is 

maintained by OpenCores organization [4]. In 2003, it was released to public for 

free. Wishbone does not define hierarchical buses, but defines the master and 

slave interfaces. It also supports different types of transaction, such as read/write. 

Designer can choose the arbitration mechanism to fit the application need. 

 Open Core Protocol is a standard defined by OCP-IP. Unlike other bus centric 

architecture, OCP is a comprehensive, bus-independent and configurable interface 

standard between IP cores and on-chip communication subsystems. It is also 

openly licensed and a designer can select only those signals and features from the 

palette of OCP configurations to fill the need. 
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CHAPTER 3  

PROPOSED NI DESIGN 

The NI design guidelines were summarized and a generic NI architecture was 

presented in [23], and various NI implementations have been extensively reported in 

[23,25, 34-35, 37-39].The state-of-art NI design includes more than the basic 

functionalities of synchronization and protocol wrapping. Advanced networking 

functionalities, such as routing schemes, quality-of-service (QoS), flow control and 

error management, begin to be incorporated into the NI. Different hardware 

optimizations for latency, power and area are also considered in the previous 

works[12]. In this chapter we illustrate the details of our proposed NI baseline design 

based on previous works. 

3.1 Overview of Generic NI Design 

IP cores are typically categorized into Master and Slave IPs [23]. In a NoC 

infrastructure, Master IPs are active processing elements such as Reduced Instruction 

Set Computing (RISC) or DSP processors. Slave IPs are passive data recipients such 

as memory and I/O peripherals. Since NoC is known as a transaction-based and 

message-passing communication paradigm, only Master IPs can generate transaction 

requests and Slave IPs only receive the requests and send back proper responses to 

Master IPs. To meet different demands of Master and Slave, bi-directional Initiator 

and Target NIs are designed for Master and Slave IPs, respectively. Initiator NIs are 
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connected to Master IPs to convert IP request transactions into NoC traffic and 

translate the packets received from network; in contrast, Target NIs only receive 

requests from network and respond the Master according to the requests. 

    

(a) 

 

(b) 

Figure 3-1 Overview of network interface (a) Initiator NI (b) Target NI 

As shown in Figure 3-1, Initiator and Target NIs present a mirrored architecture to 

each other. There are two fundamental separations in a generic NI structure: each NI 

contains an upstream transmitter path and a downstream receiver path; kernel and 

shell are also distinguished for NoC and IP core specified issues, respectively. A NI 

shell implements the socket protocol to handshake with IP cores and forward the 

requests and data to next-stage kernel. Therefore, a protocol specific shell is needed 
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for each IP core connected to the NoC. A NI kernel packetizes data from shell, and at 

the same time, depacketizes the response from the receiving path. A state-of-art NI 

kernel also handles flow control and routing. The separation of kernel and shell 

minimizes the effort of supporting various sockets when needed and keeping the 

kernel structure unchanged. In other words, whichever protocol, bus size, clock 

frequency that the IP core is using, all modules in the infrastructure may communicate 

with each other [12]. The transmitter and receiver paths are loosely coupled: 

whenever a request is processed, the receive path is notified; whenever a response is 

received, the transmit path is unblocked. 

3.2 Application of OCP to NI Design 

Table 3-1 Comparison of On-chip Protocols 

Standard CoreConnect AMBA OCP Wishbone 

Interconnect Shared Bus Shared Bus Point-to-Point 
Crossbar/Shared 

Bus/Point-to-Point 

Bus Width 32-256 32-256 Configurable 8-64 

Device 
FPGA/PLD/ 

ASIC 

FPGA/PLD/ 

ASIC 

FPGA/PLD/ 

ASIC 
PLD/ASIC 

Application 

High Speed 

Embedded 

System 

High Speed 

Embedded 

System 

High Speed/Low 

Cost Embedded 

System 

High Speed/Low 

Cost Embedded 

System 

License 
Authorization 

Needed 

Authorization 

Needed 
Free Free 

As IP blocks are characterized typically by memory-mapped interfaces, most 

NoCs are based on message-passing networks. This demands core-centric sockets and 

the corresponding protocol wrapper between the shell and IP cores. In 2.2.7, we 

overview the most popular on-chip protocols including AMBA, CoreConnect, 
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Wishbone and OCP. Table 3-1 provides a more detailed comparison of their features. 

Among all these standards, we adopt OCP in our particular design for several 

reasons. First, it is freely distributed and no license is needed; second, OCP is bus 

independent and core centric, and this feature is more suitable in separating the core 

from network fabric in a NoC design than other standards; third, OCP is highly 

flexible and configurable, and allows designer to select appropriate signals and 

features according to designs. OCP is increasingly popular in the NoC design and has 

potential to be utilized in future NoC benchmarks [29]. 

3.2.1 OCP Signaling and Encoding 

The OCP protocol defines a point-to-point interface between Master and Slave IP 

cores. Only the master can presents request commands and the slave responds to the 

commands either by accepting data or providing feedback. OCP facilitates basic 

transfer mode with optional extensions such as burst, tag and thread. Burst extension 

has been proved to be a key feature of current NI design given its high bandwidth 

usage and low jitter [30]. A data packet is further partitioned into multiple small data 

flits in a burst transaction, so the transmission does not need to wait until enough 

space is available for an entire packet. Therefore, the latency is reduced and the speed 

increases. 

Our design supports the precise burst over imprecise burst to facilitate further 

hardware optimization. The burst length is known before at the start of the burst, and 

it can be either single burst or multiple data. The detailed signaling of OCP is 
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presented in Table 3-2. Basic OCP signals include MCmd, MData, MAddr, 

SCmdAccept, SResp and SData. The designer can also select different extension 

signals according to demands. 

Table 3-2 OCP Specification Signals 

Group Name Width Driver Function 

Basic MAddr configurable master Transfer Address 

MCmd 3 master Transfer Command 

MData configurable master Transfer Data 

MDataValid 1 master Write Data Valid 

SDataAccept 1 slave Accept Write Data 

SCmdAccept 1 slave Accept Command 

SData configurable slave Transfer Data 

SResp 2 slave Transfer Response 

Burst MBurstLength configurable master Transfer Burst Length 

MBurstSeq 3 master Transfer Burst Sequence 

MReqLast 1 master Last Write Request 

MDataLast 1 master Last Write Data 

SRespLast 1 slave Last Read Response 

Threads MConnID configurable master Connection Identifier 

MThreadID configurable master Request Thread Identifier 

SThreadID configurable slave Response Thread Identifier 

MDataThreadID configurable master Write Data Thread Identifier 

Sideband SInterrupt 1 slave Slave Interrupt 

 

3.2.2 OCP Timing Diagram 

OCP specification also defines the timing diagram for various data transfers such 

as simple read and write, non-post write, read with handshake and response [24]. In 

our particular design, we mainly use burst based read and write transaction.  

As shown in Figure 3-2, the Master IP starts the burst write by driving WR on 

MCmd, the first address of the burst on MAddr, valid data on MData, the burst length 
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on MBurstLength. The Slave IP will assert SCmdAccept as soon as the MData is 

accepted.

 

Figure 3-2 Timing diagram for burst write transaction (Source: [24]) 

In the burst read transaction, the Master IP starts a read request by driving RD on 

MCmd, a valid address on MAddr, MBurstLength, and asserting MBurstPrecise. 

MBurstLength, MBurstSeq and MBurstPrecise must be kept constant during the burst. 

MReqLast must be de-asserted until the last request in the burst. The timing diagram 

is shown is Figure 3-3.If the Slave IP is ready to accept one request, it captures the 

address of request and keeps SCmdAccept asserted. The Slave IP also responds to the 

request by driving DVA on SResp and the read data on SData. The slave must keep 

SRespLast de-asserted until the last response is finished. 
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Figure 3-3 Timing diagram for burst read transaction (Source: [24]) 

3.3 Switching Technique and Routing Scheme 

We use the most popular packet-based wormhole switching in a 4×4 mesh 

topology NoC. A packet is transmitted flit by flit and flows through the network. For 

regular 2-D mesh topology, the deterministic XY routing scheme is well suited for on 

chip communication [48-49]. XY routing is a dimension order routing, which routes 

packets first in horizontal direction to the correct column and then in vertical direction 

to the receiver. In the XY routing, five bi-directional ports in each router is encoded as 

a 3-bit binary code, which is shown as Figure 3-4. Each 3-bit code represents one hoc 

of current flit to the output port of router. In Figure 3-5, the XY routing path from 
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node A to node B is presented in red. The routing information is saved in routing 

tables and packet headers.

 

3.4 Packet Format 

 

(a) 

Figure 3-5 X-Y routing from node A to 

node B router 

Figure 3-4 Direction encoding for 

five-port 
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(b) 

Figure 3-6 NI packet format (a) request packet (b) response packet 

Packet format for NoCs tightly affects the NI control logic design, packet 

boundary scanning, and the area overhead of the NI. To reduce design complexity and 

balance cost and performance, we define two types of packets: request packets and 

response packets. The formats for these two types are shown in Figure 3-6. Request 

packet is always sent from a Master IP to a Slave IP and response packet is from a 

Slave IP to a Master IP. Each packet are divided into header, payload and tail flits. 

Two bits are used to present the flit type. Typically, a header flit contains control 

information and routing information. In our request packet, the header is composed of 

two flits. The control information encrypts OCP signals subset. The routing 

information presents route hops in XY-routing. If each hop is encoded with three bits, 

18-bit routing information can support 6 hops in total, which is able to accommodate 

our 4×4 mesh topology. Reserved bits are for future extension. 
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3.5 Flow Control 

 

Figure 3-7 Credit-based end-to-end flow control mechanism (a) credit counter decrements 

when one flit is transmitted (b) slave IP core accepts received flit (c) credit counter 

increments when receiving feedback from slave IP 

Initiator and Target NIs demand buffers to perform packet encapsulation and 

de-capsulation. Therefore, end to end flow control is necessary in NI to prevent buffer 

overflow in the receiver end, which could further lead NoC system crush. 

Credit-based and ACK/NACK are commonly used mechanism to avoid the buffer 

overflow at the destination node [25]. In the credit-based flow control, a credit 

counter is implemented in the transmitter to initialize the available buffer space at 

destination. The credit counter reduces one whenever the transmitter forwards a flit, 

shown as Figure 3-7 (a). If the count reaches zero, the buffer at the destination node 
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reaches the full status and thus no more flits are allowed. When one flit is consumed, 

the counter increases one. The credit is either piggyback in the response packet or 

provided by an extra link, shown as Figure 3-7 (c). 

3.6 Initiator NI 

 

Figure 3-8 Block diagram of Initiator NI 

The main tasks of Initiator NI are to receive the request from master IP core, 

encapsulate into a packet, transmit the packet flit by flit to the network, and receive 

response from the remote slave IP core. The proposed Initiator NI is shown in Figure 

3-8. The transmitter is composed of header and payload builder, a routing table, 

asynchronous FIFOs, control logic and flit arbiters. The receiver consists of receiver 

FIFO, depacketizer and receive control unit. Among these sub-components, central 

FSM control, depacketizer and receive control are all FSM based control logic. 
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3.6.1 Header & Payload Builder 

The header and payload builder mainly handle the handshake with the Master IP, 

accept and packetize the OCP signals presented by the Master IP. Particularly, payload 

header encapsulates the MData signal into payload and tail flits, and header builder 

encapsulates the rest of OCP signals into control information of the header flit. As 

soon as such process is done, the flits are ready to write into the transmitter FIFO. 

Figure 3-9 (a) and (b) present the gate level implementation of header and payload 

builder, respectively. The SCmdAccept comes from the NI FSM and will be asserted 

when the NI is ready to accept new transaction requests. The OCP signals except the 

MData will be registered by the header builder to form the header flit; and the MData 

will be registered by the payload builder to form the payload or tail flit. Tail flit is 

generated when the MReqLast from Master IP is asserted. 

  
Figure 3-9 Packet builder (a) header flit builder (b) payload & tail flit builder 

3.6.2 Routing Table 

Routing table, or look-up table (LUT), is a local memory in Initiator to store the 

routing paths to other slaves within the NoC [31]. A routing table in NI is typically 
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implemented as a combination of content addressable memory (CAM) and random 

access memory (RAM), which is shown as Figure 3-10 [32, 33]. The global address 

of IP cores is written into the CAM and the routing path information is store in the 

RAM. When the MAddr is presented by the Master IP, CAM searches its contents to 

find a match and the routing path associated with global address will be retrieved 

from the routing table, encapsulated as a header flit and sent to the FIFO. In our 

design, the routing information is expressed as multiple 3-bit binary hocs.  

 

Figure 3-10 Conceptual view of a CAM-RAM based routing table 

CAM is a special type memory for high speed searching and widely used in data 

compression, network switching, IP address filter and memory mapping [34-36].It can 

be either configurable or hard wired [37]. Unlike previous designs in [32-33], we refer 

to a configurable register-based CAM in our baseline architecture. Since a certain IP 

address may correspond to several different routing paths, the longest prefix matching 

method is utilized in a ternary CAM [34, 38]. As shown in Figure 3-11, the data_bits 

that store IP address and the search_bits are fed into the match line comparator bit by 

bit to check if they are identical. The care_bits signals are used to mask certain bits 

from the comparator comparison and a specific line will be selected if the longest 
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prefix bits are matched. The match lines output from CAM is in one-hot code, and 

therefore needs to be encoded as binary address before searching the routing path in 

the RAM. 

  

(a)                             (b)    

Figure 3-11 Longest prefix matching in ternary CAM: (a) single word cell unit of ternary 

CAM; (b) match line Comparator 

3.6.3 Central Finite State Machine Control 

The central FSM is the main control logic of transmitter in our proposed NI. The 

FSM is synchronous to the OCP clock, and is responsible for reordering and writing 

the flits into transmit FIFO after packetization. The details of state transition are 

presented in Figure 3-12. Since the Master IP may have write and read transactions, 

the FSM is therefore divided into two branches for the two types of transactions, 

respectively. In the write transaction branch, two header flits containing routing and 

control information and multiple payload flits are written into the asynchronous FIFO 

sequentially. The suspension states are designed to prevent writing when the FIFO is 
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full. In the read transaction branch, the header flits are written but there are no 

payload flits in read transaction. When the remote end provides response flits, the 

FSM will be reset to the idle state. Similarly, suspension states are design to prevent 

FIFO from reading when the FIFO is empty. 

 
Figure 3-12 Central FSM control logic 

3.6.4 Flit Arbiter 

 

Figure 3-13 State diagram of flit arbiter 

The flit arbiter is also a simple control logic but synchronous to the network clock. 

It receives the flits coming out of the transmit FIFO and sends flits to the NoC 

network. Figures 3-13 shows the detailed state transition. As long as the FIFO is not 

empty, flit arbiter will fetch and transmit the flits that are stored in FIFO. The credit 
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counter is also implemented with flit arbiter to realize the flow control described in 

3.5. 

3.6.5 Asynchronous FIFO 

The OCP specific IP core and NoC network are typically operated at different 

clock frequencies, so an OCP clock and a network clock are defined for these two 

clock domains, respectively. Asynchronous FIFOs are therefore necessary in both 

transmitter and receiver paths for flit queuing, reordering and clock domain crossing. 

 
Figure 3-14 Dual-port RAM based FIFO architecture (Source: [39]) 

Dual-port RAM with asynchronous read and write pointers is a popular FIFO 

architecture, as shown in Figure 3-14. We adopt a similar design described in [40, 39] 

with binary and Gray code combined pointer to support high frequency 

(>250MHz).The FIFO depth is largely depended on the speed of both clock domains. 

Increasing the FIFO depth can help to accommodate longer size of packets and reduce 

the packet miss rate, but it also increases the power and area overhead [23, 41]. 
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3.6.6 Depacketizer & Receive Control 

 
Figure 3-15 State diagram of receiver control 

 

Figure 3-16 State diagram of depacketizer 

The sub modules of receive control and depacketizer are control logic in the 

receiver path. The receiver path facilitates the reversed operation. The response flits 

from the Slave IP are synchronized with the receiver FIFO and then depacketized as 

handshake signals at the OCP interface. Since the flits from the Slave IP can be either 
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valid data or fail response, the control logics are also partitioned into two branches, as 

illustrated in Figure 3-15 and Figure 3-16, respectively. 

3.7 Target NI 

 
Figure 3-17 Block diagram of Target NI 

 Implementation of the Target NI (shown in Fig. 3.17) is opposite to that of Initiator 

NI in Figure 3-17. The main difference between target and initiator NIs is: the former 

one is an OCP master and the latter one is an OCP slave. The OCP signals asserted by 

the initiator NI (target NI) are complimentary to the target NI (initiator NI). Since 

Slave IPs can only passively receive requests, Master IPs’ source address is retrieved 

from the request packet to provide routing information for response path. So Figure 

3-17 of Target NI presents a mirrored architecture to the Initiator NI, which also 
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includes header/payload builder, asynchronous FIFO, flit arbiter, central FSM control, 

receive control logic and depacketizer. 

3.8 Implementation and Simulation Results 

Table 3-3 Comparison of NI design in previous works 

NO. 
Freq. 

(MHz) 
Area (mm2) 

Power 

(mW) 

Latency 

(cycles) 
Protocol 

Tech. 

(μm) 
Advanced Feature 

[42] 312.5 0.43 N/A [8, 10] NA 0.13 
CRC detection/ 

retransmission 

[26] 
725 

/1086 

0.058 

/0.02 
N/A [4, 6] OCP 0.13 GALS 

[43] 500 
0.036 

/0.045 

33.5 

/36.9 
[6, 10] OCP 0.13 Basic 

[44] 500 0.169 N/A [4, 10] 
OCP, AXI, 

DTL 
0.13 Re-ordering, QoS 

[45] 490 0.056 30.5 N/A NA 0.18 Basic 

[15] 500 
0.141/0.172 

0.166/0.172 
N/A N/A OCP 0.13 

Secure Memory 

Access 

[12] 500 N/A N/A N/A STBus 0.065 
EMU/Security/QoS 

/Programmability etc. 

This 

work 
310 0.266/0.166 24.5 [6, 6] OCP 0.18 Flow control/QoS 

 

We implemented the proposed NI design with Verilog HDL and synthesized with 

Synopsys Design Compiler. Table 3-3 presents the general overview and comparison 

with other works. We adopt IBM 0.18µm CMOS-7RF technology to give a closer 

view. The maximum frequency, store-forward latency, area and power consumption 

were evaluated based on the synthesized netlist. Our implementation shows the 

comparable performance in terms of low cost and high speed with that in 

smaller-feature size technology. 
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(a) 

 
(b) 

Figure 3-18 Implementation details of different modules in NI (a) Area contribution to overall 

design (b) power contribution to overall design 

Figure 3-18 (a) shows the complexity of each sub-module inside our NI, and 

Figure 3-18 (b) presents the contribution of each module to the overall power. We can 

conclude that the memory elements including asynchronous FIFO and LUT are the 

most costly inside a NI (over 80% in both cases). Our baseline design fixes the depth 

of asynchronous FIFO to16 support 16-flit long packet at maximum. As the FIFO 
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depth is highly parametric, it can be easily configured to a larger depth. Larger FIFO 

depth is more reliable and has smaller miss rate when NI operating at high frequencies, 

but it also increase the overhead [23]. Figure 3-19 shows such increasing trend on 

area versus the FIFO depth. Selecting an appropriate FIFO depth is a design tradeoff 

among speed, reliability and overhead. 

 

Figure 3-19 The increasing trend of NI area over FIFO depth 
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CHAPTER 4  

HARDWARE TROJAN ATTACK MODEL 

The hardware attack framework or threat model to NoC was first discussed in [11, 

26-27]. HT attacks in NoCs can be generally categorized into three categories as 

follows. 

 Denial of Service: A DoS attack attempts to degrade system performance. The 

adversary may frequently send malicious requests to the victim of attack, resulting 

in extra traffic congestions and the increase on network transmission latency. 

More precisely, HTs can cause bandwidth reduction, incorrect routing path, 

livelock and deadlock.  

 Extract of Secret Information: Secret information extraction means that HT 

facilitates hackers to steal sensitive or critical information from authorized 

memory or registers, such as the crypto keys. With the assistance from HTs, secret 

information can be extracted by unauthorized read request, buffer overflow or 

duplicating read operation to transmit data to an un-trusted destination.  

 Hijacking: Hijacking refers to altering the regular execution flow or modifying the 

system configuration so that specific tasks set by the attacker can be executed. 

One example for Hijacking is to exploit buffer overflow to bypass the digital serial 

code in video games. 

 The tangible security attack examples provided in [11, 26-27] are either not 

thorough or in conceptual or abstract level. Other security discussions reported in [28, 
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30-32] either only study the attacks on memory blocks or assumes that the attack 

come from external source. In fact, the HTs can also be inserted in NoC infrastructure 

as well. In this section, we summarize a practical HT design approach and attack 

model specifically for NI. Particularly, we analyze and propose multiple rare 

switching nodes which can potentially be the HT trigger. Several meaningful HT 

payload locations are also presented and evaluated. 

4.1 HT Models in Previous Designs 

DARPA issued its first call for the study of hardware Trojan. In [15-16, 63-64], 

different methods were proposed to classify HTs based on various characteristics, 

such as insertion phase, trigger mechanism, payload effect and location. HT can also 

be either digital or analog [8]. Since the NoC infrastructure is mainly a synthesizable 

digital design, here we only limit our discussion to digital HTs. 

 A basic HT model consists of two parts: (a) an activation mechanism referred as 

HT trigger; (b) an intrusive circuit referred as HT payload to affect original design 

[65-66].HT payload can be simple logic gate such as XOR to flip or change the logic 

value of original logic. However, the HT trigger is more complicated since the HT 

needs to be triggered under a certain condition or over a long period of time. Several 

examples of HT are shown in Figure 4-1 [8, 46]. 
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Figure 4-1 Examples of HT with various triggers (a) combinational (b) synchronous counter 

(c) asynchronous counter (d) hybrid (e) FSM based 

Digitally triggered HTs can be again classified into combinational and sequential 

types. Combinational Trojans shown as in Figure 4-1 (a) are activated by the 

occurrence of rare logic value combinations. The occurrence of the condition 

           at the trigger nodes causes the bit flip at node    . Sequentially 

triggered HT, on the other hand, are activated by the occurrence of a sequence or a 

period of continuous operation. The free running synchronous trigger in Figure 4-1 (b) 

is the simplest example. The Trojan will be triggered when the counter counts to 

  clock cycles working as a time-bomb. The clock in Figure 4-1 (b) can also be 
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replaced by a logic gate to make it an asynchronous counter Trojan as shown in 

Figure 4-1 (c). The counter will only increment when the combination         

is met. Hybrid counter Trojan in Figure 4.1 (d) combines the features of 

combinational and sequential Trojans. More complex state machine Trojan, shown in 

Figure 4.1(e), is also recently discussed in [47-48]. The Trojan output is activated 

only when reaching the last Trojan state. 

4.2 HT Designs 

The examples discussed in 4.1 widely exist in the HT design of various digital 

applications, such as general purpose processor [18, 69], cryptographic IP [70-72], 

memory [73-74] and communication interfaces [75-76]. These can be configurable IP 

cores within a NoC system, but unfortunately, none of them touch upon the HT design 

in NoC infrastructure. Further, one obvious shortcoming in previous work is that very 

few of the authors consider a practical Trojans that would be able to avoid traditional 

detection such as functional verification, code coverage and post-silicon testing [48, 

49]. For example, the free running synchronous counter Trojan requires large 

area/power overhead to guarantee a certain trigger time, which is not feasible in a 

high speed networking system. Also, most of the designers choose randomly locate 

HTs in the chip and were not able to perform meaningful attacks. So we summarize 

the key features of a practical HT design in NI. 

 Maintain main functionalities of original circuit when it’s not activated 

 Create minimum overhead in terms of power, area and delay 
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 Locate in key points in the circuit to perform meaningful attacks 

 Able to remain dormant in traditional detection techniques such as functional 

verification, code coverage and post-silicon testing 

4.2.1 HT Triggers in NI 

The key idea of HT trigger design is to realize the significant low trigger 

probability with minimum logics. Among the HT trigger examples in 4.1, FSM based 

sequential Trojans have been proven to be extremely stealthy in nature in most recent 

works [17, 68,77].The trigger probability can be exponentially lower by increasing the 

length of rare trigger events. Another advantage of FSM HT is that it can be 

embedded into the existing unused states of the FSM in original circuit. NI is a 

module with numerous FSM based control logics, which creates lots of opportunities 

for HT insertion. We expand the discussion in [17, 68,77] and specify several cases of 

HT shown as in Figure 4-2. 

 

Figure 4-2 Various scenarios of FSM based HT insertion 

 The state transition condition of FSM depends on the rare event or rare switching 
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node in original circuit, and therefore does not cause extra overhead. Figure 4-2 (a) 

passes through a series of intermediate states      before activation. Figure 4-2 (b) 

and (c) are slightly different. They will transmit backwards if the trigger condition is 

not met. Figure 4-2 (d) requires all the trigger conditions to be met at each transition. 

In [17, 68,77], the authors also provide an approach to estimate the probability of 

HT trigger and the expected activation time in terms of clock cycles. Let         

     denote the probability of the Trojan transition from state      to   , where 

       and   is the number of D flip-flops used in trigger, the trigger 

probability and activation time can be roughly simulated using a Markov process. 

Table 4-1 gives a summary of HT triggers discussed and their feasibility to 

NI.   denotes the number of rare event used in NI HT design and the trigger 

probability can be roughly estimated using Markov chain. If the multiple trigger 

signals are independent events, the activation time can be estimated using the 

reciprocal of trigger probability. 

Table 4-1 Summary of various HT triggers and feasibility in NI 

HT Type Trigger Probability Activation Time (cycle) Feasibility to NI 

Comb. Trojan    

 

   
 

 

   
 
   

 Applicable 

Sync. Counter 100%    Not Applicable 

Async. Counter     

 

   
  

 
 

  

   
 
   

 Applicable 

Hybrid Counter  
 

   
    

 

   
  

  
 

      

   
 
   

 Applicable 

FSM (a)    

   

   
  

 

  

   

   
 Preferred 
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FSM (b)    

   

   
 

 

   
   
   

 Preferred 

FSM (c)    

   

   
 

 

   
   
   

 Preferred 

FSM (d)     

 

   

   

   
 

 

    
 
   

   
   

 Preferred 

 Besides the HT trigger models discussed in 4.1, we can conclude that various 

types of FSM trigger are also perfectly feasible in NI. The number of such sequential 

trigger conditions can be unmanageable large by applying different trigger sequences, 

which help the Trojan hidden in conventional detection. If the attackers are intelligent 

enough, the trigger nodes can be carefully picked from the original NI circuit, which 

will be further discussed in 4.3. 

4.2.2 HT Payloads in NI 

We summarize several types of payload circuits in terms of their effects in NI, 

which are shown in Figure 4-3. They can be single gate or gate array applied to 

multiple bits of the intruded signals. XOR type payload in Figure 4.3 (a) typically 

flips the logic value of original signal; AND type payload in (b) masks the signal 

when trigger asserts; dually, OR type payload can force victim signal to logic 1 in (c); 

MUX type payload in (d) can replace the target circuit with pre-set values and 

DeMUX type payload can extract security sensitive information to eavesdropper. The 

payload locations mainly are carefully chosen to perform meaningful attack and 

largely depend on the objective of attacker. The details will be cover in Section 4.4. 
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Figure 4-3 Examples of various HT payloads 

4.3 Potential Trigger Signals for HTs in NIs 

4.3.3 Potential Trigger Signal 1: Reset Signal 

In the NI, the Reset signal is typically required to clear storage elements; more 

specifically, they are header & payload registers, asynchronous FIFO, routing table, 

and state registers of FSM. Like many other digital systems, the transition frequency 

of the reset signal is extremely low; thus this signal has a potential to be utilized in the 

HT trigger circuit. The reset-based HTs can easily escape from the HT examination 

tests, if HT designers use the reset signal as an input for a sequential HT, which is not 

triggered at the first transition time of the reset signal. 
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4.3.4 Potential Trigger Signal2: Unused States in an FSM 

 

Figure 4-4 FSM for initiator NI. Signals on arches are OCP signals and FIFO full indicator 

In NI, a finite state machine (FSM) is typically needed to coordinate packet read 

and write operation. Figure 4-4 shows the central FSM for a NI compatible with OCP 

protocol. That FSM is composed of ten legal states, thus requiring four bits to 

represent the states. As four bits can represent 16 states in total, six states will remain 

as unused. Unused states in a FSM are common for a complicated control system. To 

minimize hardware cost, such unused states are typically remarked as unspecified 

state in logic optimization. Consequently, those unused states could be utilized by a 

hacker as a HT trigger. Ideally, the state transition only happens within the legal states. 

However, under certain circumstance such as voltage drop, crosstalk and substrate 

noise, the FSM may switch to an unused state.  

Although most of the FSMs have self-recovery and protection mechanism, the 
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transition to unused states is hard to be prevented completely. If a HT trigger circuit 

takes advantage of such low-probability events, the HT effect cannot be easily 

discovered by the functional verification.  

One example of unused state transition can be caused by soft errors. In a  -bit FSM, 

we assume that only   out of 2
k
 possible states are in use. The soft error rate is in 

the range of           . If one FSM state bit is flipped by a soft error, the 

probability of illegal transition due to soft error can be roughly estimated in equation 

(4-1). 

                    
   

      (4-1) 

4.3.5 Potential Trigger Signal 3: FIFO-Full Signal 

 
Figure 4-5 FIFO full caused by writing burst 

FIFO buffers are essential components for data storage in NoC design. In NI, 

FIFO is used to queue packets, as the IP core clock frequency is different with the 

NoC clock frequency. The FIFO depth is a tradeoff between hardware cost and NoC 

performance [40]. Increasing the FIFO size can optimize the NoC latency and 

throughput at the cost of increased chip area and power consumption.  

As the write and read operations may execute at different frequencies, the speed of 
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write-in operation should be no more than that of read-out operation; otherwise the 

FIFO will be always full. Let’s use   and   todenote the clock frequencies for write 

and read operations, respectively, and use    and    to represent the write-in and 

read-out data rates, respectively. To avoid FIFO full, one should design a FIFO that 

meet the requirement expressed in equation (4-2). 

              (4-2) 

However, the constraint in equation (4) only works well for average cases. If 

writing burst happens and the FIFO depth is not large enough, the read operation with 

the average read-out rate   will cause FIFO full. As shown in Figure 4-5, in 2Nclock 

cycles, there are       consecutive write operations. However, during the time 

period of     
 

  
, there are only     

 

  
      read operations. As a result, the 

minimum FIFO depth for NI should be equal to the expression in (4-3). 

                     
 

  
                (4-3) 

If the FIFO depth in the NI implementation is less than the value indicated in 

equation (4-3), the FIFO will be full occasionally. This is because the requirement in 

(4-2) is for average cases. In the specification stage,    and   are obtained based on 

infinite time. In reality, the peak value of the read and write speed may temporally 

exceed the defined data rates for a short period of time. Such temporal event could be 

used in HT trigger design. 
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4.4 Potential Payload Locations in NI 

 

Figure 4-6 HT payload objectives on NoC network interface 

We classify the HT payload objectives into three categories: storage elements, 

computation or flow control units, and transmission channels. The procedure to 

change the content in each category is slightly different. The influence of the HT 

payload location in each category is different, as well.  

Figure 4-6 shows possible HT payload injection locations on a NoC NI. In the 

storage elements, similar to router, one HT payload can change the FIFO content, 

such as flit type, source/destination node address. Changes in the routing table can 

manipulate the list of trusted IP cores and secure routing paths. The protocol specific 

signals can be changed in the payload and header building registers. HT invasion on 

these storage elements can authorize the access to restricted memory area and thus 

cause secret information leakage and hijacking. HT influence on the control logic 

such as FSM and de-packetizer can disorder the flit sequence in a packet, which 
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further causes system FSM remaining in the same state or even be crashed. 

4.4.1 Payload Objective 1: Latching Global Clock 

 

Figure 4-7 HT payload at clock tree circuitry 

 The clock distribution network can be regarded as the most critical module in a 

digital system. It provides global clock source to rest of the circuitry for 

synchronization and in most cases, several local clocks are derived from the global 

clock through a PLL. Shown as in Figure4-7, if the HT attack happens at clock 

circuitry by latching or freezing it up, the entire chip does not function unless the 

clock is re-enabled [46]. It may also possibly cause glitches when the HT trigger 

transits from dormant to active. Either way will cause severe impact to the rest of 

system. This Trojan can be inserted at design as well as fabrication phase and can be 

described at gate level. 

4.4.2 Payload Objective 2: Damaging Flit Type Information 

Bit stream transmitted over the NoC fabric is organized with a certain format, i.e. 

packet. One packet is typically composed of one (or two) header flit(s), several 

payload flits and one tail flit. Figure 4-8 shows one popular packet format. Other 

formats can be found in [41-43]. No matter what format is used in packetization, a 
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common feature in all packet formats is a few bits to indicate the flit type: header, 

payload, or tail. Two, at least, reserved positions on each flit are used to differentiate 

the flit types, as the router relies on these two bits to determine whether and how to 

compute the next routing path or whether the current routing channel should be 

released.  

 
Figure 4-8 Transmit packet format in proposed NI design 

 

Figure 4-9 HT payload at FIFO register chain 

The HT payload circuit to damage the flit type bits can be any circuit that leads to a 

stuck-at-0/1 or logic flipping error. HT payloads 1 and 2 shown in Fig. 4-9 are 

examples for stuck-at and logic flipping payload circuits, respectively. If the 32nd flit 

bit is muted by an active HT inserted in the FIFO register chain, the header flit cannot 

be recognized by router, thus leading to a packet loss. We propose a pseudo-code 

Reserve1 1 MCmd MAddr MBurstLength MBurstSeq MBurstPrec

33 32

31 29 28 13 12 9 8 5

MBurstSing

04 2

0 1 Source Addr

31 28 24

Routing Information

027

Dest. Addr Reserve

171823

0 0

31

MData

0

0 0 MData

1 0

31

MData

0

…Tail Flit

Payload Flit

Header Flit
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based HT attack model in Figure 4-10. The key idea of this model is to modify the flit 

bits representing the flip type. The logic flipping can be executed at gate level or 

register transfer level. 

 

Figure 4-10Pseudo code for HT damaging flit type information 

4.4.3 Payload Objective 3: Altering Routing Path 

 
Figure 4-11 An example caused by an HT payload on the node current address. Solid red line 

is original routing path. Dashed blue line is livelock path caused by a HT that changes router 

(2, 1) current address to (2, 2) 

 

Malicious insertion can intentionally change the routing path either routing table 

//Pseudo code for the HT attack model of losing flit type information 

if(HT trigger condition is true) 

    HT_payload <= on; 

else 

    HT_payload <= off; 

//HT injection location 

if(HT_payload == on) 

case(loss type): 

            Header lost: 

flit[32]<=and(flit[32],!HT_payload) at time Tj 

            Tail lost: 

flit[33]<=and(flit[33],!HT_payload) at time Tj 

            Packet fission: 

flit[32]<=xor(flit[32], HT_payload); at time Tj?j+pktlen 

    flit[33]<=xor(flit[33], HT_payload); at time Tj?j+pktlen 

endcase 

else 

    Execute normal operations; 
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for adaptive routing to cause deadlock or livelock, thus wasting system resources and 

degrading NoC performance. 

 Livelock Example 

Livelock means the packet is traveling through network but does not get any close 

to the destination. Livelock is typically caused by illegal routing turns. Let’s use the 

most popular routing algorithm, XY routing, to introduce the possible way to 

introduce a HT payload that causes illegal turns. The router current address 

(Addr_X/Y_curr) is hardwired for XY routing path computation. In XY routing, a 

packet first goes through the hops on the X direction, and then goes through the hops 

on the Y direction. As the hard wired signal does not have switching activities, the 

modification by rarely-trigged HT on those signals is hard to be detected by 

traditional test approaches and code coverage analysis methods.  

We use a mesh NoC with 16 nodes (i.e. 16 IP cores) to explain how a livelock 

happens if an HT alters the current address. The livelock example is depicted in 

Figure 4-11. Assume IP core 5 attempts to send a packet Px to IP core 13, using XY 

routing. The original routing path for Px is starting from router 5, through router 9 and 

ending at router 13. The two-dimension representation for those three routers are (1,1), 

(2,1) and (3,1), respectively. If a trigged HT changes the hardwired current address of 

router (2,1) to a new address (2,2), now the packet Px will go through the west output 

port of router (2,2) and reach the east input port of router (2,0). As the destination of 

Px is IP core 13, Px is directed back to router (2,1) based on the rule of XY routing 
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algorithm. However, the current address of router (2,1) is maliciously hardwired as 

(2,2), the packet Px is transmitted back to router (2,0) again. Consequently, the packet 

Px comes back and forth between router (2,0) and router (2,1) until the HT effect is 

gone; packet retransmission after using time-out mechanism does not help to resolve 

the problem.  

 

Figure 4-12 Pseudo code for HT attack model: altering packet routing path 

We propose a HT attack model that alters the routing path in NoC. The pseudo 

code for this model is shown in Figure 4-12. We list the potential locations for HT 

insertion and the possible way to modify the content or logic in the vulnerable 

locations. The ways we illustrated in Figure 4-12 are just typical examples. In reality, 

there will be many equivalent approaches to perform similar attacks to alter packet 

routing path. 

//Pseudo code for the HT attack model of altering packet routing path 

if(HT trigger condition is true) 

    HT_payload <= on; 

else 

    HT_payload <= off; 

//HT injection location 

if(HT_payload == on) 

case(Location): 

//----------before route computation------------------ 

        Routing table: 

//Modify content in CAM for routing calculation 

             CAM[legal access request]<= untrusted IP core Address; 

        Flit FIFO: 

//Modify packet destination address bits in header flit 

            FIFO[wr/rd_pointer][27:24]<= untrusted IP core Address; 

        R-R links: 

//Bit flip dest. address when header flit passes over the links. 

            Link[link ID][27:24]<= untrusted IP core Address; 

 

endcase 

else 

    Execute normal operations; 
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4.4.4 Payload Objective 4: Injecting Redundant Packets to Increase Traffic 

Congestion 

 

Figure 4-13 Redundant packet injection caused by a triggered HT in NI (a) Normal packet 

injection from an IP core (b) A redundant packet injection between two valid packets by a HT 

Livelock and deadlock interrupt the NoC normal operation. There is another HT 

attack that purely degrades system performance. In NI, the triggered HT can 

maliciously force one NI duplicating every packet it submitted. If the consecutive 

packet arrives before the end of the duplicated packet, the starting time for that 

consecutive packet will be delayed, as shown in Figure 4-13.  

 

Figure 4-14 The impact of HT on latency (a) Average packet latency comparison for w/ and 

w/o HT induced redundant packet injection (b) Percentage of increased average packet 

latency by HTs 

We conducted an experiment to quantitatively compare the performance 
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degradation caused by HT-induced packet redundancy. In router, we randomly 

selected one router and inserted a HT on one input port. The triggered HT duplicates 

any packet going through that port and connects that packet to another output port. If 

a deterministic routing algorithm is used, the duplicated packet will be bounced back 

and continue the rest of hops till reach its destination. In NI, we randomly selected 

one NI and allowed that NI duplicating every packet it submitted. As shown in Figure 

4-14, the NI and router having a triggered HT cause the increase on the average 

latency. A higher packet injection rate leads to a larger average latency because of the 

increased traffic congestions. The latency increasing caused by the HT in router is 

higher than that caused by the HT in NI, when the packet injection rate is less than 

0.12 packets per cycle. More precisely, as shown in Figure 4-14, the percentage of 

increased latency from w/o HT effect to w/ HT effect on NI is less significant than 

that on router. One of the reason is, the packet duplicated at NI is limited when packet 

injection rate is low; however, a router in the middle of NI has a higher packet 

throughput than a NI; thus, packet duplication on a router is more frequent than that 

on a NI. Consequently, the latency increased on router is severer than at on a NI. 

Figure 4-14 (b) also shows that, if a packet injection rate at each NI increases, the 

packet latency caused by HT at NI exceeds that caused by router. The variation on the 

percentage of increased latency from HT at router is less than that on a NI, as a nature 

of router reaches its maximum throughput much earlier than a NI. 
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Figure 4-15 Pseudo code for HT attack model: duplicating packet transmission 

We propose a pseudo code based model for this type HT. As shown in Figure 

4-15, the packet duplication can be either implemented in router output port or NI 

FIFO. This model arises NoC designers’ attention to strengthen their protocol by 

adding redundancy checks. 

4.4.5 Payload Objective 5: Causing Buffer Overflow or Overwriting Memory 

The dual-port RAM based FIFO buffer is a critical component for clock 

synchronization and flit queuing in NI. The FIFO full and empty signals are generated 

by comparing the read and write pointers to indicate the memory availability. The 

pointer comparison is based on circular addressing as shown inFigure4-16(a). When 

the write pointer is one word behind the read pointer, the FIFO full signal is asserted. 

//Pseudo code for the HT attack model of duplicating packet transmission 

if(HT trigger condition is true) 

    HT_payload <= on; 

else 

    HT_payload <= off; 

 

//HT payload inserted during routing path calculation in a NoC router 

if(HT_payload == on) 

Req_[E, S, W, N, L]<= Route Computation in Input Port k; 

    Copy ∀Req_i that value is True to ∀Req_j that value is false 

    i,j,k∈[E,S,W,N,L],i≠k,i≠j; 

    Output port i <= Data from Input FIFO k; 

Output port j <= Data from Input FIFO k; 

else 

    Req_[E, S, W, N, L]= Route Computation in Input Port k; 

    Output port i <= Data from Input FIFO k; 

       i,k∈[E,S,W,N,L],i≠k; 

 

//HT payload inserted during packetization in a NoC network interface 

Packetize a packet PKTm with a destination address DestAddr; 

Push PKTm into NI FIFO; 

NI FIFO releases PKTm to NoC fabric 

if(HT_payload == on) 

    FIFO pointer remains same; 

    NI FIFO release PKTm to NoC fabric again; 

    FIFO pointer reduces one; 

else 

    FIFO pointer reduces one; 
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Similarly, when the write pointer is one word ahead the read pointer, the FIFO empty 

signal is asserted. 

  
Figure 4-16 Read and write FIFO pointers in (a) normal read and write operation, and (b) HT 

affected situation 

If a HT payload intentionally changes the pointer value, the FIFO will present 

incorrect memory availability signal to the external modules, as shown in 

Figure4-16(b). When a HT payload pushes the write pointer to the used memory 

location, the new incoming flits overwrite the memory and corrupt the previous 

packet, resulting in denial of service.  

 

Figure 4-17 Pseudo code for HT attack model: manipulating FIFO 

The HT attack model for malicious FIFO modification is shown in Figure 4-17. 

//Pseudo code for the HT attack model of FIFO pointers 

if(HT trigger condition is true) 

    HT_payload <= on; 

else 

    HT_payload <= off; 

//HT injection location 

if(HT_payload == on) 

case(FIFO pointer): 

            Write Pointer: 

        Write Pointer <= a certain address behind current address; 

            Read Pointer: 

        Read Pointer <= a certain address ahead of current address; 

endcase 

else 

    Execute normal operations; 
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The simple way to erase the content in FIFO is to change the read and write FIFO 

pointers. The changed FIFO pointer may cause an incomplete packet remain in the 

FIFO forever, unless the NoC has some time-out mechanism to clear the FIFO.  

4.4.6 Payload Objective 5: Modifying Protocol Specific Information 

Industrial on-chip interconnect protocols, such as IBM CoreConnect, ARM AXI 

and OCP, are widely adopted in NoC design. Once the communication protocols 

between IP cores are determined, the exchange packet has to explicitly include the 

information that the specific protocol requires. Otherwise, the received packet cannot 

be de-packetized correctly. The protocol information may be changed by the HTs 

placed in NI.  

We use OCP, an open and free communication protocol [36], as an example.  

The MCmd signal defines the transfer command type of a Master IP in OCP. 

Changing the value of MCmd will damage a regular transaction and cause a series of 

unexpected errors, such as changing a write request to a read request and vice versa. 

MAddr is the transfer address signal in OCP. The adversary can make a packet access 

to a wrong memory address by altering this signal. Table 4-2presents a brief summary 

of HT attacks for basic OCP signals. 

Table 4-2 Basic OCP signals 

OCP Signal Driver Function Possible Trojan Effects 

MCmd Master Transfer command Alter transfer command type 

MAddr Master Transfer address Alter transfer address; Hijacking 
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MData Master Write data Corrupt Master write data 

MRespAccept Master Master accepts response Mute Master accepts and suspend Slave 

SCmdAccept Slave Slave accepts transfer Mute Slave accepts and suspend Master 

SData Slave Read data Corrupt Slave read data 

SDataAccept Slave Slave accepts write data Mute Slave accepts and suspend Master 

SResp Slave Transfer response Incorrect Slave responses 
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CHAPTER 5  

HT IMPACT AND PROPOSED HT COUNTERMEASURE 

This section presents the HT impact and proposed countermeasure for HTs in NI. 

We implemented various HTs targeted for our NI based previous analysis and HT 

design methodology. The HT attacks to the data transmission within the NoC were 

either quantitatively or visually evaluated using real digital applications. Particularly, 

we showed the examples fingerprint identification, image and video transmission. 

Finally, we proposed a state obfuscation technique for HT countermeasure in the 

proposed NI. The efficiency of method was evaluated, as well. 

5.1 Hardware Trojan Implementation 

We show three case studies to illustrate the details of HT insertion in NI, either at 

netlist gate level or at RTL code level. The three cases are HT insertion at FSM 

control, routing table and FIFO memory, respectively. We make reasonable 

assumptions on the attacker’s objectives and explain in details how and where the HTs 

will be placed to conduct malicious behavior. The real implementation of various HT 

instances are also presented and compared in terms of area and power. 

5.1.1 Case Study 1: HT Insertion in FSM Control Logic 

As mentioned in Section 3, there are a great many FSM based control logic in a 

modular NI. Because of the FSM unit’s role in NI, we expect that the FSM control 

unit might be a critical target point of hardware attacks. We assume that the malicious 
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attacker has access to the synthesized netlist of the original design and can insert HTs 

at the netlist level. By using EDA tools, the attacker can find out the number of 

registers in the FSM design and examine the FSM function through a brute-force 

method. HTs can therefore be placed in the FSM control unit to cause NI malfunction 

and degrade NoC performance.  

     

(a)                                      (b) 

Figure 5-1 Single state HT insertion in FSM (a) conceptual view (b) RTL insertion 

For an N-bit FSM, there are    available states for the designer to construct the 

control logic. Typically not all the available states are utilized as legal states and the 

unused states create ideal places for HT insertion from attacker’s perspective. The HT 

inserted in unused state remains dormant when in normal operation and can perform 

attack by disabling certain output signals. For example, Figure 5-1 (a) shows a single 

// Single State HT Insertion 

... 

// FSM next state logic 

always@(*)begin 

case(curr_state) 

        Idle:... 

        Write_Routing:begin 

... 

//****HT insertion*** 

elseif(HT_trigger) 

next_state = T0; 

end 

T0:next_state = Write_Data; 

//******************* 

... 

default:... 

end 

endcase 

end 

//FSM output logic 

always@(*)begin 

case(curr_state) 

        Idle:... 

        Write_Routing:... 

... 

//****HT Payload***** 

T0: wena = 1'b0; 

//******************* 

default:... 

endcase 

end 
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state HT inserted in the NI central FSM. The HT bypasses the state of writing control 

information into the header flit by disabling the write enable signal to asynchronous 

FIFO. This leads to header flit loss to a packet and when the receiving end receives 

this packet, it may not be recognized as a valid packet due to the lack of control 

information. Figure 5-1 (b) gives the RTL insertion of HT.  

    

(a)                                      (b) 

Figure 5-2 Multi-state HT insertion in FSM (a) conceptual view (b) RTL insertion 

The HT in FSM can also be multi-state insertion, as shown in Figure 5-2. This 

HT can skip several cycle of writing data flit to the FIFO before finally being reset to 

idle state. In a real application of NI, the loss of data flits of a packet can also lead to 

serious impact. For instance, in the video stream transmission between a master CPU 

// Multi-state HT Insertion 

... 

// FSM next state logic 

always@(*)begin 

case(curr_state) 

        Idle:... 

        Write_Routing: 

        Write_Control: 

        Write_Data:begin 

if... 

//****HT insertion******* 

elseif(HT_trg1) 

next_state = T0; 

end 

T0:if(HT_trg2) next_state = T1; 

        T1:if(HT_trg3) next_state = T2; 

        T2: next_state = Idle; 

//*********************** 

default:... 

end 

endcase 

end 

// FSM output logic 

always@(*)begin 

case(curr_state) 

        Idle:... 

        Write_Routing:... 

... 

//****HT Payload***** 

        T0,T1,T2: wena = 1'b0; 

//******************* 

default:... 

endcase 

end 
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and a slave MPEG decoder, the image frames of the stream may be distorted or may 

not be recovered due to the data loss. More details are further presented in 5.2. 

Similarly, Figure 5-2 (b) provides the RTL code description. 

5.1.2 Case Study 2: HT Insertion in Routing Table 

The routing table stores the routing information for all the IP cores within a NoC. 

In our design, the routing table is based on a CAM plus RAM architecture. Before 

fetching the routing path from the RAM, the CAM searches its contents to find a 

match for a certain MAddr request. The output of CAM is in one-hot code, so it has to 

be encoded to a binary address before getting the routing path from RAM. The 

one-hot to binary converter is also a place where attack can easily place HTs. Since 

we target for a 4×4mesh NoC, a 16-bit one-hot to 4-bit binary encoder is necessary in 

our NI. Figure 5-3 (a) shows the gate-level implementation in our design. The 

Enc4to1 sub-block realizes the 4-bit one-hot to 2-bit binary conversion and a 

structural implementation of 4 Enc4to1 sub-blocks can realize the 16-bit to 4-bit 

conversion. Figure 5-3 (b) shows the RTL insertion of HT. If the binary read address 

to RAM is hacked, an incorrect routing path will be assigned to a certain packet, and 

will eventually cause livelock or deadlock in NoC. 
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(a) 

 

 
(b) 

Figure 5-3 HT insertion in the one-hot to binary encoder of routing table (a) gate-level 

implementation of one-hot binary encoder (b) HT insertion at RTL 

 

// HT at 16/4 One-hot Binary Encoder 

// 4-bit one-hot to 2-bit binary Encoder 

module Enc4to2(one_hot, bin, sum,HT_trigger); 

input[3:0] one_hot; 

output[1:0] bin; 

output sum; 

wire[1:0] bin; 

wire   sum;// sum is true if any input is true 

//*********HT Insertion****************** 

inputHT_trigger; 

assign bin[1]=(one_hot[3]| one_hot[2])^HT_trigger; 

assign bin[0]=(one_hot[3]| one_hot[1])^HT_trigger; 

//*************************************** 

assign sum =|one_hot; 

endmodule 

//factored 16-bit to 4-bit encoder 

module Enc16to4(one_hot, bin,HT_trigger); 

input[15:0] one_hot; 

output[3:0]  bin; 

wire[3:0] bin; 

wire[7:0]temp;// intermediate result of first stage 

wire[3:0] d;// if any set in group of four 

//two OR gates combine output of LSB 

//*********HT Insertion****************** 

inputHT_trigger; 

assign bin[1]=(temp[1]|temp[3]|temp[5]|temp[7])^HT_trigger; 

assign bin[0]=(temp[0]|temp[2]|temp[4]|temp[6])^HT_trigger; 

//*************************************** 

//four LSB encoders each include 4-bits of the input 

  Enc4to2 e0(one_hot[3:0],temp[1:0],d[0]); 

  Enc4to2 e1(one_hot[7:4],temp[3:2],d[1]); 

  Enc4to2 e2(one_hot[11:8],temp[5:4],d[2]); 

  Enc4to2 e3(one_hot[15:12],temp[7:6],d[3]); 

//MSB encoder takes summaries and gives MSB 

  Enc4to2 e4(d[3:0], bin[3:2]); 

endmodule 
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5.1.3 Case Study 3: HT Insertion in FIFO Read/Write Pointer 

 

(a) 

 

(b) 

Figure 5-4 HT insertion in FIFO pointer (a) gate-level implementation of NI FIFO pointer (b) 

RTL insertion of HT 

The HT can also be placed in the FIFO memory itself, for example, the FIFO 

pointer and its related output signals. The FIFO read and write pointers are indicator 

of the memory availability and thus controlling the full and empty signals to the 

external. Figure 5-4 (a) presents the general view of binary and Gray code combined 

pointer used in our design. Binary counter is designed for pointer incrementing and 

addressing to the FIFO RAM. When the RAM is not full (empty), the binary write 

// Gray code read pointer generation 

module rptr_empty(...); 

... 

output rempty;// FIFO read empty 

parameter ADDRSIZE =4; 

wire[ADDRSIZE-1:0] rgnext, rbnext; 

... 

//*************HT Insertion******************************* 

input[ADDRSIZE-1:0]HT_trigger; 

//Insertion at Binary counter 

assign rbnext =(!rempty ? rbin + rinc : rbin)^HT_trigger; 

//Insertion at Gray code conversion 

assign rgnext =((rbnext>>1)^ rbnext)^HT_trigger; 

//******************************************************** 

... 

endmodule 
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(read) counter increments as the inc signal asserts. The Gray code counter is designed 

for fast pointer comparison to assert or de-assert the FIFO full and empty signals. 

Figure 5-4 (b) presents the HT attack to the write pointer at RTL. If the binary or Gray 

code counters are flipped when the HT trigger asserts, they will generate incorrect full 

or empty signals to external modules, or incorrect binary address to the internal RAM. 

Both cases will lead to FIFO overflow and data corruption. 

 

(a)                                   (b) 

Figure 5-5 HT attack in FIFOs with different depth (a) the probability causing overflow (b) 

the average number of corrupted data flit 

We justify that the HT attacks to FIFO pointer may possibly cause memory 

overflow or overwriting by giving incorrect availability information to the external. 

However, this situation only happens when writer pointer is changed to a certain 

address behind current address or read pointer is changed to an address ahead of 

current address. The results of HT attack may be slightly different over different FIFO 

depth due to its different addressing. If we assume the HT randomly flips the FIFO 

pointers, Figure 5-5 (a) shows the probability that memory overflow happens. The 

probability is slightly increasing but still in the range of 46% to 48.5%. Figure 5-5 (b) 
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shows the average number of corrupted flits if such attack happens. The number of 

corrupted flits is increasing almost linearly with the FIFO depth, meaning the impact 

of attack will become more serious in a larger FIFO. 

5.1.4 HT Hardware Overhead 

Table 5-1and 5-2give the implementation details of several practical HTs discuss 

previously. HT trigger circuits can be combinational, asynchronous counter based, 

hybrid and FSM based, which are shown in Table 5-1; HT payloads can be placed at 

global clock, routing table, FIFO pointer, FSM and header flit links, which are shown 

in Table 5-2. 

Table 5-1Implementation result summary of HT trigger circuits 

Trig. Type Circuit Structure Comb. Gate NO. of DFFs 

Comb. Trigger 1 XOR 1 0 

Async. Counter XOR+4-bit counter 14 4 

Hybrid XOR+2 4-bit counters 27 8 

FSM (a) 4-state FSM 7 2 

FSM (b) 4-state FSM 6 2 

FSM (c) 4-state FSM 8 2 

FSM (d) 4-state FSM 7 2 

 

Table 5-2 Implementation result summary of HT payload circuits 

Payload Location Comb. Gate Effect 

Payload1 global clock 1 Latching clock source 

Payload2 routing table 2 Causing incorrect routing path 

Payload3 FIFO pointer 4 Causing FIFO overflow 

Payload1 FSM logic NA Causing header/payload flit loss 

Payload5 header flit links 2 Damaging flit type 
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Figure 5-6 Comparison of different HTs in terms of area 

 
Figure 5-7 Comparison of different HTs in terms of power 

The synthesized results in IBM 0.18μm technology are also provided in Figure 

5-6 and Figure 5-7 in terms of area and power, respectively. HT instances present 

trivial overhead in all cases, less than 0.45% in area and less than 0.25% in power. 

Among them, combinational triggered HTs present minimum result, hybrid triggered 

HTs present maximum overhead. 
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5.2 HT Impact From Application Perspectives 

Though the HT insertion in NI may have various types of instances, the main 

effect of HT is to cause data or header flit loss through different ways. In this section, 

we provide two digital application examples visually evaluate the impact of flit loss 

caused by HTs. More specifically, we show the examples of the video stream 

transmission and fingerprint identification. 

5.2.1 Flit Loss in Image & Video Transmission 

Lost flits in the data transmission of NI will present significant impact to the 

image and video applications. Assuming that a NI is the bridge between a MPEG 

decoder and a graphical processor, we conduct experiments to simulate a series of 

image frames or video fragments are transmitting via the NI, which are shown as in 

Figure 5-8 (a) to (c). Each image is in a 326×260 RGB pixel format and finally 

converted to 63570 32-bit data flits when being transmitted. The lost or corrupted flits 

will distort or shift the images at display. Figure 5-9 shows the situation when only 

single data flit is lost. The distortion is noticeable in the first image frame, but the 

second image is still in great quality with negligible shifting. Figure 5-10 and 5-11 

presents the cases of six adjacent flits lost and six random flits lost, respectively. If the 

flits are adjacent, the first image are seriously distorted but the second image are only 

shifted with the information of next image frame, as shown in Figure 5-10; if the lost 

flits are randomly chosen, both of the images are distorted and shifted, which are 

shown as in Figure 5-11. In all the cases above, the last image frame cannot be 
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recovered since there is no enough flit data to recover a complete image frame. 

 
(a)                       (b)                      (c) 

Figure 5-8 A series of image frames for video stream 

 

                   (a)                                (b)     

Figure 5-9 Recovered image with single data flit loss 

 

(a)                                (b)     

Figure 5-10 Recovered image with multiple adjacent data flits loss 
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                   (a)                                (b)     

Figure 5-11 Recovered image with multiple random data flits loss 

5.2.2 Flit Loss in Fingerprint Scanning & Identification 

Flit loss may also cause similar impact to identification or verification application. 

Assuming the NI is transmitting data from a fingerprint scanner to a central processor, 

the corrupted flits will make the identification more difficult. The original fingerprint 

is shown in Figure 5-12 (a). Similarly, the fingerprint image is first converted to a 

long sequence of binary data flits, and we simulate the case that image is corrupted 

during transmission by flipping the binary information. We explore the cases that the 

fingerprint image is corrupted with 0.1%, 0.5% and 1% data flits when transmitted, 

respectively. The recovered fingerprints at the receive end are shown in Figure 5-12 (b) 

to (d), correspondingly. The corrupted data are negligible in Figure 5-12 (b), become 

noticeable in Figure 5-12 (c) and continue to be more serious in Figure 5-12 (d). We 

expect the image quality will further degrade with more data flits are corrupted. 
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(a)              (b) 

 

 
                   (c)(d)        

Figure 5-12 HT impact to fingerprint identification (a) original fingerprint (b)  fingerprint 

with 0.1% flit data corrupted (c) fingerprint with 0.5% flit data corrupted (d) fingerprint with 

1% flit data corrupted 

5.3 Proposed HT Countermeasure 

We discussed the HT insertion and HT impact to data transmission in previous 

sections of this chapter. In this section, we explored the countermeasure technique for 

HT detection at runtime. More specifically, we propose to exploit state obfuscation to 

facilitate hardware Trojan (HT) detection in the network interface (NI) of 

Network-on-Chips (NoCs). Secure memory access in NoCs has been studied in 
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previous work. Unfortunately, in addition to memory blocks, HT payloads might be 

inserted at other places in NoCs to cause NoC malfunctions and allow unauthorized 

accesses. In the first phase of our method, we add key bits to the finite state machine 

for the NI control unit and create dummy states to increase the difficulty for the HT 

attacker to perform meaningful attacks. In the second phase, we examine the illegal 

states and illegal state transitions induced by a wrong key to detect the occurrence of 

HTs. Similar concepts, e.g. logic encryption and obfuscation [50, 51], were mainly 

used for IP authentication, rather than HT detection. In [50], the obfuscation modes 

are decoupled from the normal operation modes and need be executed before the real 

function starts. In contrast, our method tightly integrates the obfuscation states with 

normal states. Moreover, we exploit the obfuscation states to detect HTs at runtime, 

with minor area and power overhead. The HT detection efficiency of our method is 

also evaluated. 
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Figure 5-13 Initiator NI with embedded HT detection 

5.3.1 Potential Security Threats to FSM 

As we discussed before, the FSM control unit in NI contains the main control 

logic of the transmitter. The FSM is synchronous to the OCP clock, and is responsible 

for reordering and writing the flits into transmit FIFO after packetization. Because of 

the FSM unit’s role in NI, we argue that the FSM control unit might be a critical target 

point of hardware attacks. In our method, we assume that HTs are placed in the FSM 

control unit to cause NI malfunction and degrade NoC performance. Our HT 

countermeasure method is thus embedded in the FSM control unit, as shown in dark 

shadow area in Figure 5-13. The details of state transition are presented again in 

Figure 5-14.  
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Figure 5-14 FSM for Initiator NI 

5.3.2 Proposed State-Obfuscation HT Countermeasure and Detection Method 

 

Figure 5-15 New FSM diagram after using the proposed state-obfuscation method 

Our method is composed of two phases: (1) insert key bits to the FSM state 

transition conditions, and (2) detect illegal states and illegal state transitions. The key 

idea for the first phase is shown in Figure 5-15. One key bit is added to the condition 

of each state transition. Without knowing the key bits, the attacker cannot precisely 

control the effect of the HT insertion. If randomly modifying the FSM logic, the 
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attacker may lead the FSM turn into a default or illegal state. To confuse the attacker, 

we add obfuscation states in the FSM and connect each true state to a dummy state. If 

hardware cost is restricted, multiple true states can share one dummy state. Moreover, 

all the dummy states are connected, so that the FSM cannot jump back to a legal state 

after the FSM enters one of the illegal and dummy states. This arrangement facilitates 

to increase the HT detection rate. To further confuse the attacker, we can also put a 

key bit and a dummy transition condition between two dummy states. Examples of 

two detectable scenarios are shown in Figure 5-16.  

   

(a)                                 (b) 

Figure 5-16 Examples of detectable HT insertion cases in FSM (a) Single and (b) multiple 

illegal states and illegal state transitions 

The second phase is to examine whether two consecutive FSM states are defined 

in the FSM. To save the previous FSM state, we double the registers for the FSM 

states. The abnormal state transitions together with undefined FSM states are detected 

in the illegal state and illegal state transition detector unit, as shown in Figure 5-17. 

Dummy states introduced in the first phase are a portion of the illegal states. As the 

key sequence and the location of each key bit are unknown to the attacker, the effect 
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of HTs is likely to be one of our detectable illegal cases in the detector. 

 
Figure 5-17 Proposed HT detector that checks illegal states and illegal state transitions 

 

5.3.3 Simulation Results 

We applied the proposed state-obfuscation based HT detection method to the NIs. 

We implemented the NI a TSMC 65nm technology. Post-synthesize simulation was 

performed in Cadence NC-Verilog. To validate the efficiency of our method, we 

examined the HT detection rate for the situation that the HT payloads were placed in 

flip-flops and logic gates of the NI FSM control unit. For single- and double-HT 

insertion cases, we examined all possible cases. To save simulation time, we use 

Monte Carlo random simulation method to examine the impact of three, four and five 

HTs insertion on logic gates. 2,400,000 simulation cases were executed for each data 

point.  

 HT Detection Rate 

We believe that security check on NIs is vital to ensure the security and 

availability of the entire network and the system employing the NoC. The FSM 
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control unit is the most critical component in the NI, as the flit packetization and OCP 

protocol interpretation are mainly controlled by the FSM control unit. Malfunction on 

NI causes packet loss, unauthorized IP access and NoC performance degradation. In 

the following experiments, we examined our HT detection rate in the FSM control 

unit. Without a high HT detection rate, the risk of NI functionality being modified by 

malicious hackers is correspondingly high.  

In our NI FSM, we utilized five bits to represent different states. We assumed that 

the most effective way to hack the FSM is directly inverting the content stored in the 

FSM registers. Therefore, we examined the HT detection rate under the occurrence of 

one to five HTs in the FSM unit. As fifo_full, MCmd, MReqLast and to_transmit are 

the control signals (shown in Figure 5-14) to trigger the FSM transitions, we also 

varied those control signals in our experiments. We define the HT detection rate as the 

ratio of HT detected cases over the total evaluation cases. As shown in Figure 5-18, 

the proposed HT detection method achieves over 97.5% HT detection rate in various 

test cases. If the number of HT payloads increases to four and five, our method 

obtains 100% HT detection rate. The HT detection rates for one HT and two HTs are 

slightly lower than other cases; this is because Hamming distance between two FSM 

states is one. We expect that the HT detection rate can be further improved by 

carefully assigning binary value for each state. 
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Figure 5-18 HT detection rate for HT attacks in the FSM state registers 

 

 
Figure 5-19 HT detection rate for HT attacks in the FSM logic gates 

Certainly, HT payload can also be placed in any logic gates in the FSM control 

unit. In fact, it is easier to hide the HT insertion in logic gates than to hide in the FSM 

registers. However, the former one is less effective than the latter one. One of the 

reasons is, the effect of the HT payload in logic gate maybe diminish due to logical 

masking. As shown in Figure 5-19, the HTs inserted in logic gates can be detected 
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with a probability of over 98%. Generally, the HT detection rate for less HT payloads 

is higher than that for more HT payloads, as the overall effect of less HTs are more 

likely to be filtered by logic inherent masking effects.  

 Reduction on HT Attack Success Rate 

We define the HT attack success rate as the probability of a HT successfully 

changing the FSM from one legal state to another legal state. As we discussed in 

Section 3, the application of key and dummy states in the FSM increases the number 

of possible states and state transitions. Without knowing the key, the HT inserted is 

very likely to lead the FSM enter the illegal states or illegal state transition. By using 

the proposed method, we can reduce the attack success rate of HTs inserted by 

attackers, even when the FSM state transition diagram is leaked.  
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Figure 5-20 Impact of key knowledge on HT attack success rate 

 

Figure 5-21 Impact of different FSM states on HT successfully attacks 

As shown in Figure 5-20, without the correct key on the FSM state transition 

diagram, the probability of a HT successfully modifying the FSM state is 71.5% less 

than that of knowing the exact key value. We further examined the impact of different 

FSM states and control signals on the HT attack success rate. As shown in Figure 5-21, 

the most frequently used states (e.g. s0 and s3) are easier to be changed by HTs than 

other states. When the control signal associated with the particular state is asserted, 

the impact of HTs is more significant than the control signal is not enabled.  
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The proposed method achieves a high HT detection rate and reduces the 

probability of a HT attack successfully modifying the FSM. As the critical path for NI 

w/wo our method is less than 1ns, we set the clock frequency of the NIs to 500MHz. 

As shown in Table 5-3, our method has 3.2% area overhead and consumes 1.7% more 

total power, compared to the baseline NI design.  

Table 5-3 Area and Power of the NIs w/wo Proposed Method 

Design for Comparison Area (µm
2
) Power (mW) 

Baseline NI (no key insertion and HT detection) 19133.2 (100%) 
6.491 

(100%) 

NI with proposed state obfuscation and HT detection 19747.7 (103.2%) 
6.605 

(101.7%) 
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CHAPTER 6  

CONCLUSIONS 

Network-on-Chip (NoC) is emerging as a prevalent on-chip communication 

infrastructure. The flexibility and scalability of NoC make it feasible to migrate to the 

era of many heterogeneous IP cores on a single die. As the scale and complexity of a 

NoC system increase, the security of on-chip communication is expected to be 

another concern. Although the globalization of current IC industry helps to reduce 

design cost and shorten the time to market, it also makes the fabricated chips 

vulnerable to hardware tampering and Trojan insertion. In this thesis, a highly 

modular network interface is designed and implemented for OCP compatible NoC 

systems. The hardware security aspects of NI are analyzed and addressed. 

For the future work in this topic, the HT implementation in a system level 

emulation platform using FPGA or ASIC technology is highly expected. Also, more 

advanced and efficient HT countermeasure techniques need to be explored as well. 

The key contributions of this thesis are summarized as follows.  

This thesis starts with basic introduction of NoC development, hardware security 

issues in IC chips. In Chapter 2, we review the basics of NoC design problems. Based 

on the design problems analyzed, we proposed our baseline NI design in Chapter 3. 

The proposed NI was implemented with an IBM 0.18μm CMOS technology and 

compared with exiting designs reported in literature. The synthesis results in terms of 
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power, timing and area reported. The hardware cost of our NI design is comparable 

performance with previous work. 

In Chapter 4, we analyzed the network interface circuit at the system level and 

presented comprehensive and meaningful HT attack models from attackers’ 

perspectives. The impact of multiple practical HT triggers and payloads on NI 

performance and NoC applications are evaluated with simulations. Chapter 5 presents 

the detailed implementation results of HTs. The corresponding effect of HT insertion 

was also assessed with real digital application examples. Finally, a state obfuscation 

technique is proposed for HT countermeasure and detection. Our method obtains a 

relatively high detection rate of over 98% for all test cases and reduces the HT attack 

success rate by 71.5%, at the cost of 3.2% area increase and 1.7% more power 

consumption in the TSMC 65nm CMOS technology.  
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