
University of New Hampshire
University of New Hampshire Scholars' Repository

Honors Theses and Capstones Student Scholarship

Spring 2018

Characterization of Palmitoyltransferase Proteins in
Arabidopsis thaliana
Danielle McGinty
University of New Hampshire, Durham, danielle.mcginty32@gmail.com

Follow this and additional works at: https://scholars.unh.edu/honors

Part of the Plant Biology Commons

This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository.
It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars'
Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
McGinty, Danielle, "Characterization of Palmitoyltransferase Proteins in Arabidopsis thaliana" (2018). Honors Theses and Capstones.
427.
https://scholars.unh.edu/honors/427

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/215521028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fhonors%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/honors?utm_source=scholars.unh.edu%2Fhonors%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fhonors%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/honors?utm_source=scholars.unh.edu%2Fhonors%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=scholars.unh.edu%2Fhonors%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/honors/427?utm_source=scholars.unh.edu%2Fhonors%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


1 

Danielle McGinty 

Spring 2018 

Honors Senior Thesis  

 

 
 
 
 
 

 

 

 
 

 
 

 
Characterization of Palmitoyltransferase Proteins in Arabidopsis thaliana 

 

 
 

 
  



2 

Introduction 

 Protein palmitoylation or S-acylation is the reversible, covalent, post-translational 

lipid modification of cysteine residues with palmitate or sometimes stearate1. Protein S-

acyl transferases (PATs) catalyze this reaction. PATs are a family of integral membrane 

proteins with four to six transmembrane domains and a conserved cytoplasmic Asp-His-

His-Cys (DHHC) Cysteine-rich (Cys-rich) motif that is thought to be essential for 

enzymatic activity2. S‐acylation increases the lipophilicity of the modified protein, which 

may promote membrane association or allow relocation of the acylated integral 

membrane protein (i.e., into lipid rafts). S‐acylation can affect protein trafficking between 

membranes, influence protein stability, modulate protein function, or mediate interaction 

of the acylated protein with other proteins1. The reversibility of S-acylation enables a 

large amount of control over the processes that this modification regulates3.  

PAT proteins are found throughout eukaryotes, ranging from yeast 

(Saccharomyces cerevisiae), where they were first described, to humans. There are 7 

DHHC-Cys-rich domain proteins in yeast, 24 in mice, and 23 in humans. Human DHHC 

genes are implicated in numerous disorders including cancers and neural diseases like 

schizophrenia and Huntington’s disease4. S-acylation influences cell size, growth, and 

polarity within many eukaryotic cells2; however, knowledge of the roles of S-acylation in 

plant cells is limited in comparison to other organisms. 

 The model plant Arabidopsis thaliana used in this study has twenty-four PAT 

genes. Arabidopsis is an effective model organism because it is small and has a fully 

sequenced genome, available genomic resources, high fecundity, a short life cycle, and 

prolific seed production5. The PAT loci in Arabidopsis are found on multiple 

chromosomes. Chromosome 3 contains ten PAT loci, chromosomes 4 and 5 each 
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contain five loci, three loci are found on chromosome 2, and only PAT22 is found on 

chromosome 11.  

PAT genes in Arabidopsis are grouped into three main clades (A, B, and C) with 

different levels of conservation1. Overall, the PAT protein family has a relatively low 

level of sequence conservation because each of the three clades evolved at different 

times. It is likely that Clade A evolved later than Clades B and C due to the higher level 

of sequence conservation between the members of Clade A1.  

Most PATs in Arabidopsis are expressed in many tissues and are expressed 

throughout development, whereas a subset of PAT genes exhibit very high expression, 

primarily in pollen and stamens1. The size of the PAT gene family (24) and diversity of 

expression indicates that there are likely a large number of targets for this lipid 

modification. Indeed, more than 600 palmitoylated proteins are predicted in 

Arabidopsis6.  One PAT expressed preferentially in pollen has been shown to be 

required for pollen development7 and this may also be true for other PATs expressed 

highly in flowers and stamen1.  

Palmitoylation of proteins in plants can occur at the Golgi, plasma membrane, 

endosomal compartments, vacuolar membrane, or the endoplasmic reticulum1. Most 

Arabidopsis PAT proteins are found in the plasma membrane. In yeast, three PATs are 

localized at the endoplasmic reticulum, two at the Golgi, and one at the vacuole and 

plasma membrane.  In human, PATs are localized at the Golgi, endoplasmic reticulum, 

and plasma membrane8. This observation indicates that S-acylation may be functionally 

different in plants than in mammals and S. cerevisiae. 
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 This study used Arabidopsis to characterize PAT mutants, which were obtained 

from various companies or academic institutions that have produced collections of T-

DNA insertion mutants. The focus of this study was predominantly on the 

characterization of PAT3, but also involves PAT16.  SALK T-DNA mutants in PAT3 

(At5g05070) were ordered by our lab and genotyped. A previous student (Judy Hoskin) 

identified homozygous pat3-2 and pat3-3 mutants.  

The goal of this study was to establish whether pat3-2 and pat3-3 were loss-of-

function mutants in preparation for using them to infer the normal function of PAT3. T-

DNA mapping was used to characterize the T-DNA insertion in these mutants, and the 

junction between PAT3 and the T-DNA border was sequenced to confirm the location of 

the T-DNA insertion and infer the effect of the insertion on PAT3 gene function. RNA 

collected from pat3-2 was reverse transcribed into cDNA. RT-PCR was used to detect 

mRNA transcripts and to deduce whether the mutant was likely to produce any 

functional protein. Plants transformed with PAT3-GUS constructs were used to 

determine gene expression, which helped to clarify when in the plant’s life cycle to 

collect RNA for mRNA transcript detection. As a side project, a PAT16-GUS fusion 

construct was made to deduce PAT16 gene expression in the future. Studying the 

function of PATs using various PAT mutants in Arabidopsis will give us more insight into 

protein S-acyl transferases and their importance in plants.  
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Methods 

Sterile Growth of Arabidopsis 

One mL of 70% ethanol and one drop of 10% Triton X-100 were added to approximately 

50 seeds under sterile conditions. The sample was gently agitated for 5 minutes, then 

seeds were allowed to settle. The liquid was replaced with 1 mL of 100% ethanol and 

one drop of Triton X-100 and agitated gently again for 5 minutes. The liquid was 

replaced with 1 mL of 100% ethanol and agitated for 5 minutes. After the ethanol was 

removed, seeds were air-dried under sterile conditions.  Dried seeds were added to 20 

mL of sterile Low Sucrose Medium (0.5X Murshige-Skoog Medium Plus Gamborg’s 

vitamins [Caisson Laboratories, Catalog Number: MSP0506], 1% Plant Culture Grade I 

sucrose [Sigma, St. Louis, MO], pH 5.7-.5.8 using KOH). Cultures containing seeds 

were agitated gently (164 rpm) at 25°C with a 12-h photoperiod for 2 weeks. 

 

Isolation of DNA  

DNA was isolated from 100 mg of plant tissue following the protocol for the DNeasy 

Plant Mini Kit (Qiagen, Valencia, CA). DNA was eluted with 100 μL of nuclease-free 

water. 

 

PCR DNA Cleanup 

PCR cleanup was performed using Monarch PCR DNA Cleanup Kit (New England 

Biolabs, Ipswich, MA) according to manufacturer’s instructions.  

 

Rapid DNA Extraction from Arabidopsis thaliana 
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DNA was extracted using a published method9. Briefly, leaf pieces (5 mm2) were mixed 

with 40 μL of 0.25 N NaOH and the leaf was punctured to damage the tissue. The 

sample was boiled for 30 seconds. 40 μL of 0.25 N HCl was added, followed by 20 μL 

of 0.5 M Tris-HCl, pH 8 containing 0.25% Nonidet P-40 (Sigma). The sample was boiled 

for 2 minutes.  DNA preps were stored at 4°C. 

 

PCR for Genotyping and Amplification of Desired PAT DNA Segments 

Reactions contained 0.2 mM dNTPs, 1X homemade Taq buffer (20 mM Tris-Cl, pH 8, 1 

mM DTT, 0.1 mM EDTA, 100 mM KCl, 0.5% Nonidet P40, 0.5% Tween 20, 50% 

glycerol, 0.2 mg/mL bovine serum albumin), 0.2 μM of each primer (Table 1), and 0.3 

μL homemade Taq DNA polymerase. For plasmid DNA, 5-100 ng of DNA template was 

used, whereas 0.1-2 μg was used for genomic DNA templates.  The PCR profile 

included an initial denaturation step of 94°C for 2 minutes, followed by 35 cycles of 94°C 

for 30 seconds, the calculated annealing temperature (Table 2) for 30 seconds, and 

72°C for 1-2 minutes. 

 

Gel Electrophoresis 

Either 1% or 1.5% agarose gels were used.  Samples were mixed with 0.3-0.5 μL of 

loading dye (15% Ficoll [type 400], 0.25% bromphenol blue, 0.25% xylene cyanol).  Size 

standard was 1 Kb Plus DNA Ladder (Invitrogen, Carlsbad, CA). DNA was detected 

using 0.5-1 μg/mL ethidium bromide.   
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Table 1. Primers used in this study. 

Primer Name Sequence (5’ → 3’) Location Function 

DHC15-5’ GAT CAC CAT TGT CCA TGG 

GTT GGT 
forward primer in PAT3 1st 

exon upstream of pat3-2 and 

pat3-3 T-DNA insertion sites 

T-DNA Mapping 

DHC15-3' ACT TGG GCA AGT CTA GTT 

GAG ATG 
reverse primer in PAT3 3rd 

exon downstream of pat3-2 

and pat3-3 T-DNA insertion 
sites 

T-DNA Mapping 

JMLB1-S GTT GCC CGT CTC ACT GGT G primer faces out the left 

border of T-DNA lines from 

Salk Institute 

T-DNA Mapping 

RB CGC AAT AAT GGT TCC TGA 

CGT A 
primer faces out the right 

border of T-DNA lines from 

Salk Institute 

T-DNA Mapping 

PAT3-A CTT GCT TGC TCT ATC GTC  forward primer in 2nd exon of 

PAT3 
RT-PCR 

PAT3-B ATA GCT TCC CAG GTT GTC reverse primer in 3rd exon of 

PAT3  
RT-PCR 

PAT3-C GGA GGA CAA TGT CTG ATG forward primer in 3rd exon of 

PAT3 upstream of T-DNA 

insertion site 

RT-PCR 

PAT3-D GAG ATC TAG TTG CGA AGG reverse primer in 4th exon of 

PAT3 downstream of T-DNA 

insertion site 

RT-PCR 

PAT3-E ATA CCT CCT CCG TGA GAT 

AC 
forward primer in 4th exon of 

PAT3 
RT-PCR 

PAT3-F TGG GCA AGT CTA GTT GAG reverse primer in 4th exon of 
PAT3 

RT-PCR 

PAT16-C CTC TAC TTT GGT TGT CGC 

ACT TAC 
forward primer in PAT16 

“promoter”,1210 bases before 

translation start 

TOPO Cloning 

pPAT16 
reverse 

ATG TTT TGT TTC AGA TGA 
ATC AGG  

reverse primer that ends at 
last amino acid codon in 

PAT16   

TOPO Cloning 
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Table 2. Primer pairs and conditions used for PCR . 

Forward 
Primer 

Reverse 
Primer 

Annealing 
temperature 

Elongation 
Time 

DHC15-5’ DHC15-3’ 68°C 2 minutes 

DHC15-5’ JMLB1-S 62°C 2 minutes 

DHC15-3’ JMBL1-S 62°C 2 minutes 

DHC15-5’ DHC15-5’ 68°C 2 minutes 

DHC15-3’ DHC15-3’ 68°C 2 minutes 

JMLB1-S JMLB1-S 62°C 2 minutes 

JMLB1-S RB 62°C 2 minutes 

DHC15-5’ RB 62°C 2 minutes 

DHC15-3’ RB 62°C 2 minutes 

RB RB 62°C 2 minutes 

PAT3-A PAT3-B 49°C 1 minute 

PAT3-C PAT3-D 49°C 1 minute 

PAT3-E PAT3-F 49°C 1 minute 

PAT16-C pPAT16 
reverse 

62°C 2 minutes 

 

 

 

RNA and DNA Quantitation 

RNA and DNA were quantitated using the Qubit fluorometer (Invitrogen) following the 

manufacturer’s instructions. 
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DNA-Free RNA Isolation 

20-30 mg of 2-week-old seedlings, 4-week-old seedlings, siliques, or a combination of 

flower buds and open flowers were frozen using liquid nitrogen and ground to a fine 

powder. The frozen, ground tissue was quickly added to 300 μL of cell lysis solution (2% 

SDS, 68 mM sodium citrate, 132 mM citric acid, 1 mM EDTA). The sample was 

vortexed for 2 seconds and incubated at room temperature for 5 minutes. 100 μL of 

protein-DNA precipitation solution (4 M NaCl, 16 mM sodium citrate, 32 mM citric acid) 

was added to the cell lysate. The sample was mixed gently and incubated at 4°C for 10 

minutes, then centrifuged at 4°C for 10 minutes. All centrifugations were carried out at 

top speed. 300 μL of isopropanol was added to the supernatant. The sample was mixed 

by inversion and centrifuged for 4 minutes. The pellet was washed with 70% ethanol 

and dried. RNA was resuspended in 25 μL distilled water (RNase free). 1X RQ1 DNase 

buffer and 2 μL of RQ1 DNase I (Promega, Madison, WI) were added. The sample was 

incubated for 30 minutes at 37°C, then 1μL DNase stop was added before heat 

inactivating the DNase for 10 minutes at 65°C. 50 μL of 7.5 M NH4Ac and 400 μL of 

100% ethanol were added and the sample was centrifuged for 20 minutes at 4°C. The 

pellet was washed with 70% ethanol. The RNA was dried, resuspended in 20 μL 

RNAse-free water, and stored at -80°C.  

 

 

 

Reverse Transcription Using Super Script IV 
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First strand cDNA synthesis was performed on RNA from 2-week-old seedlings, 4-

week-old-seedlings, siliques, and flowers.  For primer annealing, 2.5 μg anchored oligo 

dT primer (Invitrogen) and 5 μg of RNA were mixed with 1 μL of 10 mM dNTPs and 

brought to 13 μL. The sample was heated at 65°C for 5 minutes, then quickly 

transferred to ice for 1 minute. The reverse transcription reaction contained the 13 μL 

primer annealing reaction in a 1.7 mL tube, 1X first strand buffer (Invitrogen), 5 mM 

DTT, 40 U RNasIn (Promega), and 200 U SuperScript IV Reverse Transcriptase 

(Invitrogen). The reaction was incubated for 60 minutes at 50°C. The reverse 

transcriptase was inactivated at 70°C for 15 minutes. cDNA was stored at -20°C. 

 

PAT16-GUS Construct 

PCR 

PCR was performed to amplify PAT16 genomic DNA from the PAT16 promoter to its 

last codon before the stop codon using PAT16-C and pPAT16 reverse primers and Q5 

high fidelity 2X master mix DNA polymerase (New England Biolabs).  

Addition of 3’ A Overhangs 

The reaction contained 1X homemade Taq buffer, 0.33 μM of dATPs, and 0.5 μL of 

homemade Taq DNA polymerase, and 638 ng purified PCR product in a final volume of 

15 μL. The sample was incubated for 20 minutes at 72°C.  

 

 

TOPO Cloning 
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4 μL of PCR product with 3’ A overhangs was mixed with 1 μL of salt solution and 1 μL 

of the pCR8/GW/TOPO vector (Invitrogen). The TOPO cloning reaction was incubated 

at room temperature for 30 minutes.  

DNA Sequencing 

DNA sequencing was performed by Genewiz (South Plainfield, New Jersey).  

Gateway Cloning to pGWB203 

pGWB203 is a Gateway destination vector that contains the HPT hygromycin resistance 

gene, the CAT chloramphenicol acetyl transferase resistance gene, and a promoterless 

GUS β-glucuronidase reporter gene - all located between T-DNA left and right 

borders10. 150 ng of supercoiled pGWB203 (with attR sites) was added to 100 ng of 

supercoiled PAT16-TOPO plasmid (with attL sites) and brought to a total volume of 9 μL 

using TE buffer (1 mM EDTA, 10 mM Tris-Cl, pH 8). 1 μL of LR Clonase (Invitrogen) 

was added and the reaction was incubated at 25°C for one hour. After incubation,1 μL 

of Proteinase K (Invitrogen) was added for 10 minutes at 37°C to remove the LR 

Clonase. 

Electroporation 

40 μL of electrocompotent E.coli TOPO10 cells or Agrobacterium tumefaciens GV3101 

cells was added to plasmid DNA in a sterile 1-mm gap cuvette. After electroporation at 

18,000 V/cm, 500 μL of SOC growth medium (2% Bacto-tryptone, 0.5% yeast extract, 

10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose) was 

added immediately. For E. coli, the culture was incubated for one hour at 37°C with 

agitation, and for Agrobacterium, at 28°C for 4 hours. The cultures were spread on LB 

plates (1% Bacto-tryptone, 0.5% yeast extract, 0.17 M NaCl) containing either 100 
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μg/mL spectinomycin to select for colonies containing the PAT16-TOPO plasmid or 50 

μg/mL kanamycin to select for PAT16-GWB203 colonies. Cultures were incubated 

overnight at 37°C for E. coli or at 28°C for 2-3 days for Agrobacterium. 

Plasmid Purification  

Individual E. coli colonies were inoculated in LB broth with antibiotic (kanamycin [50 

μg/mL] or spectinomycin [100 μg/mL]) and incubated overnight at 37°C with strong 

agitation. Plasmid purification was performed using Monarch Plasmid Miniprep Kit (New 

England Biolabs). Plasmid DNA was eluted with 30 μL of nuclease-free water heated to 

50°C prior to the elution to increase yield if necessary.  

Restriction Digestion  

Restriction digestion was performed on purified plasmid DNA. 10 μL digests containing 

0.2 μL of restriction enzyme, 1X restriction enzyme buffer, and 66-250 ng of plasmid 

(depending on restriction enzyme) were incubated at 37°C for one hour. The digests 

were analyzed using gel electrophoresis with a 1.5% agarose gel. 

Arabidopsis Transformation 

Agrobacterium tumefaciens GV3101 cells carrying the PAT16/GWB203 plasmid were 

grown overnight in LB broth containing 50 μg/mL kanamycin at 28°C with agitation. The 

cells were centrifuged at 5000 x g for 5 minutes. The pellet was resuspended in 50 mL 

of resuspension buffer (5% sucrose and 0.05% Silwet [Lehle Seeds, Round Rock, 

Texas]). The concentration was adjusted with additional resuspension buffer to optical 

density 0.6-0.8 at 600 nm. Flowers of wildtype Arabidopsis thaliana Colombia-0 were 

dipped in the Agrobacterium suspension for about 10 seconds. The plants were kept in 

high humidity conditions overnight. The next day, the plants were rinsed with cool water 
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to remove sucrose. Plants were placed in the growth room (18h photoperiod; 21°C) until 

seeds were harvested. 

 

GUS Histochemical Assay 

50 mL of GUS assay solution11 was made using 0.1 M NaPO4, 1 mM of both potassium 

ferricyanide and potassium ferrocyanide, 0.01 M EDTA, 1000 μL of Triton X-100, and 25 

mg/mL X-Gluc (Rose Scientific, Edmonton, Alberta). (X-Gluc was dissolved in 

dimethylformamide before adding to the GUS assay solution.) Plant tissue was 

submerged in GUS assay solution and vacuum infiltrated for 5 minutes, then incubated 

at 37°C for 7-24 hrs, depending on the assay. Tissue was decolorized with 95% 

ethanol, then through a stepwise series of 70% ethanol, 50% ethanol, water to transition 

the tissue back to aqueous conditions.  Samples were mounted in water for microscopy. 
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Results 

T-DNA Mapping of pat3-2 and pat3-3 

 T-DNA mapping uses PCR to characterize the number of T-DNAs at the insertion 

site, the structure and orientation of the T-DNA, and the gain or loss of DNA at the site 

of insertion.  In the hypothetical T-DNA insertion (Figure 1), we would not expect a PCR 

product from genomic primers DHC15-5’ and DHC15-3’ because they flank the large T-

DNA insert. We would expect a product from JMLB1-S and DHC15-5’ that confirms that 

the left border in the T-DNA, which binds JMLB1-S, faces upstream. We would also 

expect a product from RB and DHC15-3’, which would confirm that there is a right 

border in the T-DNA facing downstream. 

 

 

 

 

Figure 1. Structure of a theoretical T-DNA insertion showing locations of 

primers that produced PCR products during T-DNA mapping. 

 

For pat3-2 (SALK_074034) and pat3-3 (SALK _122426) mutants, PCR was 

performed with two T-DNA primers (JMLB1-S and RB) and two PAT3 gene-specific 

primers (DHC15-5’ and DHC15-3’) in all possible combinations (Tables 1 and 2; Figure 

2). PCR products were generated with DHC15-5’ and JMLB1-S, as well as with  

 

 

Template DNA 

Primers 
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Figure 2. PCR products from T-DNA mapping of pat3-2 and pat3-3. PCR was 

performed using all combinations of PAT3 genomic (DHC15-5’ + DHC15-3’) and T-DNA 

(JMLB1-S + RB) primers in order to characterize the T-DNA insertion. neg = negative 

control; WT = wildtype Col-0 genomic DNA; 3-2 = pat3-2 genomic DNA; 3-3 = pat3-3 

genomic DNA; LB = JMLB1-S. 

 

DHC15-3’ and JMLB1-S, indicating that the T-DNA has left borders on each end 

(Figures 2 & 3A). Sequencing of these PCR products revealed a 76 basepair deletion 

immediately upstream of the T-DNA insertion site. PCR product with JMLB1-S and RB 

indicates one or more internally-facing right and left borders of unknown orientation, 

indicating the presence of multiple T-DNAs at the insertion site. Primers DHC15-5’ and 

DHC15-3’ did not initially give a product when genomic wildtype DNA was used as 

template but a repeat reaction did have the expected sized product (data not shown), 

indicating that the primers were functioning properly. Due to their similar product sizes 
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and identical T-DNA/genomic junction sequences, we concluded that pat3-2 and pat3-3 

were the same allele.  

The T-DNA begins at the first codon of the fourth exon, which corresponds to the 

cytosolic tail of PAT3, after the fourth transmembrane domain (Figure 3B). This area 

contains several regions that are conserved across Clade A (PAT1 through PAT9) 

proteins, including NxoTTxE and NPY motifs1. NPY is proposed to be required for 

enzymatic activity1. Although a T-DNA insertion at the beginning of the PAT3 coding 

region would perhaps be more likely to create a knockout mutant, the mutation in pat3-

2/pat3-3 in the cytosolic tail has the potential to destabilize or inactivate the protein.  In 

addition, because the SALK T-DNA left border contains an outward-facing 35S 

promoter12, antisense pat3 RNA may be synthesized which could hybridize to the sense 

pat3 mRNA and trigger RNA interference and gene silencing. 

 

pat3-2 mRNA Transcript Detection 

 To determine the presence of pat3 transcript during plant development, tissue 

was isolated from multiple stages of the Arabidopsis lifecycle for RNA extraction. We 

arbitrarily chose one of the pat3 mutants for mRNA transcript detection, because pat3-2 

and pat3-3 appeared to be the same allele based on T-DNA mapping.  
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Figure 3. Schematic of pat3-2 T-DNA insertion based on T-DNA mapping and 

sequencing. A) Simplest interpretation of the structure of the T-DNA in pat3-2 and pat3-

3 mutants.  B) The location of pat3-2 and pat 3-3 T-DNA insertion in the cytosolic tail, 

after the fourth transmembrane domain. T-DNA is in blue. (figure modified from 

www.intechopen.com) 

 

RNA was isolated from the following tissues from pat3-2 mutants: 2-week-old 

seedlings, 4-week-old seedlings, siliques, and flowers which consisted of the cluster of 

buds and flowers at the top of the inflorescence stem (Table 3). In lieu of wildtype RNA, 

RNA from pat16-3 mutants isolated at the same developmental stages was used as the 

positive control (Table 3). The mRNA from the pat3-2 and pat16-3 samples was reverse 

transcribed into cDNA. The cDNA was used as a template for PCR. Whenever possible, 

primers were located in different exons to distinguish PCR products generated from 

genomic DNA contamination of samples vs. cDNA products. Three primer pairs were 

used to amplify the PAT3 cDNA. Primers PAT3-A and PAT3-B (referred to as A+B in 

tables and figures) were upstream of the T-DNA insertion site and spanned an intron, 

PAT3-C and PAT3-D flanked the T-DNA insertion site and spanned an intron, and 

PAT3-E and PAT3-F were located downstream of the T-DNA but did not span an intron 

(Tables 1, 2 & 4; Figure 4). Wildtype Columbia-0 genomic DNA was used as a template 

B. A. 
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with each primer pair to determine the size of the product that would be generated if 

there was genomic DNA contamination of the RNA samples. 

 

Table 3. Concentration of pat16-3 (positive control) and pat3-2 RNA samples. 

 
pat16-3 pat3-2 

2-week-old seedlings 1008 ng/μL 200 ng/μL 

4-week-old seedlings 976 ng/μL 198 ng/μL 

Siliques  40.4 ng/μL 62.2 ng/μL 

Flowers 272 ng/μL  752 ng/μL 

 

 

 

 

Figure 4. Location of primers for RT-PCR in PAT3 gene in relation to the T-DNA 

insertion site. light blue boxes = untranslated regions; dark blue boxes = coding regions; 

lines = introns; arrows = primers.  

 

Table 4. Expected RT-PCR product sizes. 

Primer Pairs 
Genomic 

product 
Expected cDNA 

product (wildtype) 
Observed cDNA 

product (wildtype) 

Expected cDNA 

product (pat3)  
Observed cDNA 

product (pat3) 

A + B 305 bp 213 bp 
~200 bp (flowers 

only) 
No product 

~200 bp (flowers 

only) 

C + D 328 bp 236 bp 
~260 bp (flowers 

only) 
No product 

~260 bp (flowers 

only) 

E + F 198 bp 198 bp 
inconclusive 

No product 
inconclusive 
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Figure 5. mRNA transcript 

detection by RT-

PCR. 

 

 

 For primers A+B and primer C+D, cDNA-sized products were detected only in 

flowers and not in 2- or 4 week-old seedlings or in siliques. There is evidence of 

genomic DNA contamination in 2- and 4 week-old seedlings and siliques of both pat3-2 

and pat16-3 mutants. Since the pat16-3 mutants have a wildtype PAT3 gene, the pat16-

3 results indicate that most PAT3 transcription is in flowers.  In addition, product from 

A+B primers in pat3-2 is not unexpected because the T-DNA is in the cytosolic tail of 

PAT3, so upstream transcript is likely being made from the native PAT3 promoter.  

However, transcript from primers C+D in pat3-2 flowers indicates that mRNA spanning 

the T-DNA insertion site is being produced; the simplest explanation for this result is 

that the pat3-2 mutant plants were not homozygous. We would not expect a product 

from primers C+D because they flank the T-DNA insertion site. The expected product 

sizes from cDNA and genomic templates are the same for primers E+F because the 

Primers C + D 

genomic & cDNA 

genomic 

genomic 

cDNA 

cDNA 

Primers A + B 

Primers E + F 

pat16-3 pat3-2 
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primers do not span an intron. Because primer pairs A+B and C+D showed evidence of 

genomic DNA contamination in most samples, we could not draw conclusions based on 

the E+F primer pair. However, in the flowers, where we haven’t observed genomic DNA 

contamination, a product was amplified with primers E+F. This indicates either that 

PAT3 transcript downstream of the T-DNA is being produced, perhaps by the 35S 

promoter near the left border, or that the mutants are heterozygous. 

 

PAT3-GUS Histochemical Assays 

 Histochemical GUS assays were done on wildtype Arabidopsis thaliana 

Colombia-0 plants that had been transformed previously with the PAT3-GUS construct 

made by BMCB 754 class in Fall 2015. Transformants were selected for hygromycin 

resistance and genotyped to confirm presence of the transgene. The PAT3 genomic 

fragment that was fused to the GUS (β-glucuronidase) gene contained 989 bp upstream 

of the PAT3 start codon and is expected to contain sufficient PAT3 regulatory 

sequences to result in authentic gene expression. The construct also contained all 

introns and exons up to the final codon of the open reading frame.  The uidA or GUS 

gene encodes β-glucuronidase (GUS), an enzyme activity lacking in Arabidopsis that 

can be easily detected in planta using a histochemical assay. Thus, when PAT3 is 

transcribed and translated, the protein produced will be fused in-frame with the GUS 

protein.  GUS cleaves X-Gluc to create a blue product in cells where PAT3 is 

expressed. Tissue from plants transformed with T-DNA carrying PAT3-GUS hybrid gene 

was submerged in GUS assay solution.  In preliminary GUS assays, PAT3 expression 

was shown in the anthers of Arabidopsis, most likely in the pollen (Figure 6). 
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Figure 6. PAT3 expression in anthers of Arabidopsis thaliana detected with a GUS 
histochemical assay. 

 
 

PAT16 cloning 

 Characterizing expression of PAT genes helps us to understand when our genes 

of interest are expressed, to determine where and when to collect samples for mRNA 

transcript detection, and to conjecture where mutant phenotypes are likely to be found. 

To observe PAT16 gene expression, a plasmid that expresses a PAT16-GUS hybrid 

gene was made.  

The PCR product was amplified using PAT16-C, a forward primer located 1210 

bp upstream of the PAT16 translation start site and located in the 7th exon of the 

upstream gene (At3g09330), and pPAT16 reverse, which ends after the last amino acid 

codon of PAT16 (At3g09320). The PAT16 PCR product was the expected size (3179 

bp; Figure 7) and was purified and quantitated (73.8 ng/uL). After adding 3’ A 

overhangs, the PAT16 product was ligated into pCR8/GW/TOPO by TOPO cloning. The 

pCR8/GW/TOPO contains  attL1 and attL2 sites for subsequent Gateway cloning of the 
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gene of interest into a destination vector, primer binding sites for DNA sequencing, and 

the spectinomycin resistance gene for selection in E. coli . 

Cloning products were transformed into electrocompetent E. coli and 

transformants were selected on spectinomycin plates. Plasmids were purified from three 

transformants and quantified at 123.6 ng/uL, 172.4 ng/uL, and 112 ng/uL. Restriction 

digestions using EcoRV were used to determine which plasmids had the PCR product 

cloned in the correct orientation relative to the attL sites in pCR8/GW/TOPO (Figure 8, 

Table 5). Plasmid 1 (Figure 8) had the PAT16 PCR product in the correct orientation, 

while plasmids 2 and 3 had the insert in the reverse orientation. The PAT16 gene in 

plasmid 1 was sequenced to confirm that there were no PCR errors. 

 

 

 

 

 
 

 
 

Figure 7. Amplification of PAT16 PCR product using PAT16-C and 
pPAT16 reverse gave product of the expected size. 

3179 bp 
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Figure 8. Determination of orientation 

of PCR products in pCR8/GW/TOPO with restriction digestion using 

EcoRV. 

 

 

Table 5. Expected product sizes for restriction digests after TOPO cloning into 

pCR8/GW/TOPO and Gateway cloning into reporter plasmid GWB203. Gateway cloning 
only produces one orientation. 

 

 Next, the PAT16 region was moved from pCR8/GW/TOPO into the pGWB203 

Gateway destination vector via Gateway Cloning. pGWB203 destination vector has 

several important components including an HPT hygromycin resistance gene, a 

chloramphenicol acetyl transferase resistence gene, a GUS β-glucuronidase reporter 

plasmid restriction enzyme correct (forward) 

orientation (bp) 
incorrect orienation 

(bp) 

PAT16 in 

pCR8/GW/TOPO  
EcoRV  2557, 3459 874, 5122 

PAT16 in pGWB203 PvuII 457, 1699, 1928, 4218, 

5081, 5889 
— 

PAT16 + pGWB203 SspI 1414, 1947, 2048, 2515, 

3250, 4871 
— 
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gene, and attR1 and attR2 sites.  These components are all found between the left and 

right borders7. The Gateway cloning reaction products were transformed into E. coli 

TOP10 cells by electroporation and the desired plasmids were selected on LB plates 

containing 50 μg/mL kanamycin. Six individual plasmids were isolated, purified, and 

quantified. Their concentrations were 23.6 ng/uL, 13.76 ng/uL, 19.1 ng/uL, 13.5 ng/uL, 

32.2 ng/uL, and 11.94 ng/uL. To confirm plasmid structure, restriction digests were 

performed on each of the six plasmids using the restriction enzymes PvuII and SspI 

(Figure 9).  The restriction digests of plasmids 7 and 10 showed products of the 

expected size using both PvuII and SspI restriction enzymes (Figure 9).  The other four 

plasmids did not have the correct fragment patterns. 

Both pGWB203-PAT16 plasmids were transferred into Agrobacterium GV3101 

electrocompetent cells using electroporation. The transformants were streaked onto 

plates containing kanamycin. Individual colonies were then inoculated into LB broth 

containing kanamycin and grown for two days. Both pGWB203-PAT16 plasmids 7 and 

10 were used for Agrobacterium transformation of wildtype Arabidopsis thaliana 

Colombia-0 plants. Three pots containing several flowering wildtype Arabidopsis plants 

were transformed with T-DNA from plasmid 7, and two pots of plants were transformed 

with T-DNA from plasmid 10 transformants. 

 

 

 

 

 
A B 



25 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 
 

Figure 9. Agarose gels showing the expected sizes for pGWB203-PAT16 plasmids 7 
and 10 using restriction enzymes A) PvuII and B) SspI. 
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Discussion 

 

 PAT genes are ubiquitous among eukaryotes and have been well studied in 

yeast, but have not been characterized extensively in plants. PATs have a relatively low 

level of sequence conservation, but several motifs are conserved among PAT families1. 

All PATs have the essential DHHC site necessary for catalytic activity. The overarching 

goal of this study was to characterize palmitoyl transferase mutants using the model 

plant Arabidopsis. T-DNA mapping, mRNA transcript detection, and the GUS reporter 

gene system were used to characterize pat3-2 and pat3-3 mutants. In addition, a 

PAT16-GUS construct was made to analyze PAT16 gene expression in future studies.  

 T-DNA mapping using PCR uncovered a partial structure of the T-DNA and of 

the PAT3 gene at the site of T-DNA insertion. T-DNA mapping and sequencing of the T-

DNA junctions with the genomic DNA showed that pat3-2 and pat3-3 are likely the same 

mutant. Sequencing revealed that the T-DNA was located in the cytosolic tail of PAT3, 

after the fourth transmembrane domain. The T-DNA insertion caused a 76 base pair 

deletion in PAT3 in an area containing two regions that are highly conserved across 

Clade A PATs. The T-DNA insertion would be more advantageous if it were located at 

the beginning of the gene, but it could still prevent functional protein from being made in 

this location. 

 RT-PCR and GUS histochemical assays showed that PAT3 is expressed in 

flowers, which is supported by microarray data on Arabidopsis eFP Browser13. cDNA 

was detected using primers upstream of and flanking the T-DNA in pat3-2. The 

amplification of products from mutant tissue samples using primers flanking the T-DNA 



27 

called into question whether pat3-2 mutant plants are actually homozygous. Future 

studies should include verifying that we have a homozygous mutant before we can 

move forward with additional mRNA transcript detection and mutant characterization. 

Additionally, pat3-3 plants should be genotyped to verify that those mutants are also 

homozygous. If the pat3-2 plants are homozygous, it is possible that the T-DNA is 

spliced out of the primary transcript because of its location at an intron-exon junction 

and that is why transcript is being detected using primers flanking the insertion. Studies 

involving protein assays like immunodetection using antibodies instead of mRNA 

transcript detection could be done if this is the case. 

 Further future work includes isolation of PAT16-GUS transformed plants via 

hygromycin selection, collection of seeds from first generation PAT16-GUS plants and 

genotyping. GUS histochemical assays on these plants should be performed in order to 

characterize PAT16 gene expression. Additional assays of PAT3-GUS and other PAT-

GUS constructs would help tell a better story of PAT gene expression. Characterization 

of PAT mutants helps us determine if mutants are knockouts before we search for a 

phenotype and infer the function of the gene. Mutant characterization is an essential 

step in studying PAT proteins. Utilizing PAT mutants in Arabidopsis to analyze the 

function and importance of PAT genes will help us understand the role of PAT genes in 

plants and other organisms. 
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