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ABSTRACT

CONSERVATION AND ECOLOGY OF FRINGING SALT MARSHES ALONG 
THE SOUTHERN MAINE/NEW HAMPSHIRE COAST

by

Pamela A. Morgan 

University of New Hampshire, September 2000

The small, fringing salt marshes that line the edges of estuaries in southern Maine 

and New Hampshire were the focus of this research. Although larger meadow marshes in 

New England have been studied extensively, little is known about the ecology of fringing 

marshes. Not only are fringing marshes much more numerous than meadow marshes in 

northern New England, they are often restored or created as mitigation for marsh impacts. 

Five ecological functions (primary production, soil organic matter accumulation, 

sediment trapping and binding, wave dampening and maintenance of plant diversity) 

were compared in meadow marsh and fringing marsh sites, and sometimes in areas where 

no marsh was present. Also explored were the relationships between these functions and 

several physical characteristics, including soil salinity, percent surface slope, elevation 

and size. Fringing marsh and meadow marsh sites differed significantly in terms of their 

physical characteristics, but functional indicator values were similar, with the exception 

of plant species richness and soil organic matter content

A field experiment tested whether marsh surface slope or north-south orientation 

affects the growth of newly planted cordgrass (Spartina altemiflora) in fringing marshes. 

These experiments were not able to show that orientation or slope had an effect on plant 

growth.
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Comparisons were also made between six constructed fringing marshes and a set 

of selected reference sites (matched to constructed marshes using principal components 

analysis) in the Great Bay Estuary. Four ecological functions (primary production, soil 

organic matter accumulation, sediment trapping and binding, and maintenance of plant 

diversity) were studied. Mean values for constructed site (n=6) and reference site (n=l 1) 

functions were significantly different. Because the age of the constructed sites ranged 

from 1-14 years, patterns of functional development could be examined. Using 

constructed marsh age as the independent variable and functional indicator values as 

dependent variables, non-linear regression analyses produced several ecologically 

meaningful trajectories (rSO.9). These models illustrate that although indicators of some 

functions (primary production, sediment deposition, and plant species richness) should 

reach natural site values in less than ten years, soil organic matter content will take more 

than fifteen years to develop.

xiii
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CHAPTER I

INTRODUCTION

Background

New England's salt marshes are unique habitats that buffer the edge of land and 

sea. At first glance they appear as no more than dense stands of green grass, but upon 

closer inspection their diversity is revealed. Not only do salt marshes contain a variety of 

plants that form complex mosaics on their surfaces; they are also home to a great number 

of microbes and invertebrates, organisms that are essential to the marsh food web. The 

surface of a salt marsh may also contain pools and pannes where birds such as the great 

blue heron and snowy egret feed on small fish like silversides and mummichogs. And 

because the tide rises and falls twice a day, sometimes covering the entire marsh surface 

and sometimes just flooding its edges, a salt marsh never looks exactly the same. 

Fortunately, people have come to appreciate the value of these unique communities, and 

over the years much has been learned about their role in the estuary. And yet despite our 

increased knowledge and appreciation of salt marshes, many are still being negatively 

impacted by human activities.

Salt marshes are commonly found in the protected areas along the edges of rivers 

and bays or behind barrier beaches (Nixon 1982). Protection from the energy of large 

waves is necessary because marshes depend on inorganic sediment deposition to help 

them keep pace with rising sea level (Redfield 1972). The process of marsh accretion is 

facilitated by stands of salt marsh grasses that slow the waters passing over the surface of 

a marsh, allowing much of the sediment suspended by these waters to be deposited.

Marsh vegetation also contributes partially decomposed plant material to the building of

1
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marsh soils. Chapman (1960) explained that the soils of New England marshes (found 

from Maine to New Jersey) are different from those of marshes located farther south 

because they are comprised primarily of peat, an organic material made of plant remains. 

The hard-rock uplands in New England provide little erosional material to the rivers and 

streams flowing into salt marshes. In contrast, rivers and streams southward from New 

Jersey contain an abundant supply of silt, which contributes to marsh accretion and is the 

predominant component of southern salt marsh soils.

The accretion of organic and inorganic sediment is essential to the persistence of 

salt marshes because they must maintain rather precise elevations relative to sea level to 

support their unique plant communities. Large-scale patterns of salt marsh vegetation 

occur largely in response to tidal flooding, the extent of which is directly related to marsh 

surface elevation. Areas of the marsh that are flooded twice a day by the tides are 

dominated by cordgrass (Spartina altemiflora), a plant that can withstand high soil 

salinity and waterlogged soils, and areas that flood only during monthly spring tides are 

dominated by stands of salt meadow hay (Spartina patens) and black grass (Juncus 

gerardii). Miller and Egler (1950) were the first to thoroughly describe a "theoretical 

upland to bay sequence" of plants after studying the vegetation of several Connecticut 

marshes. They observed the following sequence of vegetation belts from upland to salt 

water (1) the Panicum virgatum Upper Border, (2) the Juncus Upper Slope, (3) the 

Spartina patens Lower Slope and (4) the Spartina altemiflora Lower Border. However, 

they acknowledged that because of pannes, pools, erosion spots, levees, ditches and other 

features, the actual plant communities often looked more like a complicated mosaic. 

Thirty years later, Niering and Warren (1980) further investigated the structure of New 

England's salt marsh plant communities by surveying more than 100 marsh systems in 

Long Island Sound. They discovered a complexity of vegetation patterns on the high 

marsh that they attributed to differences in environmental factors, including salinity, 

hydroperiod and soil oxygen availability. They also observed that the basic belting

2
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pattern at the site originally studied by Miller and Egler no longer existed, evidence that 

marsh vegetation patterns are not static over time. Their results underscored the 

statement made by Miller and Egler in 1950: "The present mosaic may be thought of as a 

momentary expression, different in the past and destined to be different in the future and 

yet as typical as would be a photograph of moving clouds."

On the geologic time scale. New England's salt marshes are relatively young. The 

oldest marshes are estimated to be 4,000 years old, having formed well after the last 

glaciers retreated from the area (Redfield 1972). Although deglaciation of the Maine 

coast is estimated to have occurred 13,800-13,200 years ago, conditions were not right 

for the formation of extensive salt marshes until 4,000 years ago, when the rise in sea 

level slowed enough to allow for the development of barrier beaches. These barriers then 

provided the protected environment necessary for the establishment of large salt marshes 

(Kelly 1992). However many salt marshes, including Maine's smaller marshes, are much 

younger than this, having formed, eroded and reformed in a cyclical pattern in response 

to sediment inputs from adjacent bluffs and the erosive forces of waves (Kelly et al.

1988). As sea level has risen and fringing marshes have eroded along their seaward 

edges, they have colonized adjacent upland (given an adequate supply of sediment), 

thereby persisting over time (Kelly 1992).

Salt marshes are considered to be very productive ecosystems. Nixon (1982) 

summarized studies of aboveground production in New England salt marshes and 

reported values ranging from 250-705 g dry wt/m2/yr where 5. altemiflora was the 

dominant species, and from 300-2740 g dry wt/m2/yr where S. patens, / .  gerardii and 

other high marsh species were dominant. Algae (macroalgae and microalgae) growing 

on the marsh surface or on marsh plants also contribute to salt marsh primary production, 

but the contribution of algal production to total marsh production is not well understood 

(Teal 1986). Salt marsh primary production feeds detrital food webs, and to a more 

limited extent, grazing food webs within the marsh system. Some of the energy trapped

3
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by salt marshes may also contribute to estuarine and offshore food webs after it has been 

exported from the marsh (Day et al. 1989). The high primary productivity of salt 

marshes is an important function of New England salt marshes.

Salt marshes perform a number of ecological functions, and each of them can be 

associated with one or more values (Short et. al 2000). Whereas the functions of salt 

marshes are ecological processes that occur over time and do not depend on societal 

perceptions, the values associated with these functions are important to people (Brinson 

and Rheinhardt 1996, U.S. Army Corps of Engineers 199S). For example, as stated 

above, the function of marsh primary production is linked to the value of supporting fish 

and wildlife through estuarine and offshore food webs. Other examples of salt marsh 

values include their ability to improve water quality, counter the effects of sea level rise, 

and protect upland areas from the erosive forces of waves. Measurable functions that 

correspond with these values include nutrient and contaminant filtration, sediment 

filtration and trapping, and wave and current energy dampening (Short et al. 2000).

Almost all that we know today about the ecological processes of Atlantic coast 

salt marshes is based on studies conducted in large meadow marshes located south of 

Maine and New Hampshire. The term meadow marsh refers to salt marshes that are large 

in size and that have formed behind barrier beaches or in the protected areas along the 

edges of rivers and bays (Cook et al. 1993). Meadow marshes can be further separated 

into two geomorphological types, back-barrier marshes, associated with barrier beaches 

and having direct access to the ocean, and finger marshes, associated with tidal bays or 

rivers (Bryan et al. 1997). Fringing marshes are different from meadow marshes because 

they are narrow in width and are generally thought to be comprised primarily of S. 

altemiflora (Cook et al. 1993; Bryan et al. 1997). In addition, their peat soils are much 

shallower than those of larger meadow marshes, and they are much less likely to be 

preserved in the geological record than meadow marshes. Peat depths in Maine and New 

Hampshire's meadow marshes are typically 3-5 meters (Breeding et al. 1974; Jacobson et

4
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al. 1987; Kelly et al. 1988). In contrast, peat depths in fringing marshes located in 

downeast Maine have been observed to contain less than 0.5 m of peat (Jacobson et al. 

1987).

Like their larger counterparts, fringing marshes form along the protected shores of 

rivers and bays, but they remain narrow bands along the shoreline due to a combination 

of factors, including the nature of the wave and current energies affecting them and the 

sediment loads in the waters flooding their surfaces (Kelly et al 1988). Very few studies 

have focused on the smaller fringing marshes that become more common as one moves 

northward along the coast of Maine (Jacobson and Jacobson 1989).

The actual number or acreage of small, fringing marshes along the New England 

coast has not been documented, with the exception of a study conducted in the state of 

Maine. Jacobson et al. (1987) delineated the salt marshes in Maine greater than 150 m2 

using planimetry and discovered that more than 40% of the total marsh area in the state 

was comprised of marshes of mean size o f0.026 km2 (6.4 acres) and smaller. Because 

earlier surveys had not counted the many small marshes scattered along Maine's 

convoluted coastline, the number of salt marsh acres had been underestimated by a factor 

of thirteen. These results led the authors to point out the significant cumulative 

contribution that Maine's small salt marshes must make in terms of primary productivity 

to the Gulf of Maine (Jacobson et al. 1987).

To help clarify the role of fringing marshes in the estuaries of Maine and New 

Hampshire, I studied several of their ecological functions, including primary production. 

Other functions studied were the maintenance of plant biodiversity, soil organic matter 

accumulation, sediment trapping and binding, and dissipation of the physical forces of 

waves. Adding to our limited understanding of fringing marsh functions was one 

objective of this dissertation. This increased knowledge should allow resource managers 

to make better decisions concerning the future of fringing marshes, and should help 

coastal communities to better appreciate the value of these marshes. Five hinging salt

5
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marshes and five larger, meadow marshes were selected for study in southern Maine and 

New Hampshire (Figure 1), and a number of their ecological functions were compared.

Because they are located along the edges of rivers and bays, where human 

development pressures are great, fringing salt marshes are particularly susceptible to 

anthropogenic impacts. They are often abutted by residential and commercial 

development, and so can be impacted by contaminated runoff from adjacent developed 

areas (Bryan et al. 1997). Vegetation on the surface of fringing marshes can be killed 

when debris is dumped on their landward edges, or when docks and boat ramps are built 

to provide access to open water for small boats. In addition, I have observed fishermen to 

inadvertently trample vegetation so severely that it does not recover. Fringing salt 

marshes are also threatened by rising sea level if structures along their upland borders 

block their future landward migration (Kelly 1992). Although current wetland laws 

protect fringing marshes, there are certain circumstances where entire marshes may be 

lost because of coastal development currently deemed necessary by government agencies.

Both Maine and New Hampshire have laws that protect coastal marshes. In New 

Hampshire, a permit is required for activities that impact tidal wetlands. If impacts to a 

wetland are deemed unavoidable, a permit may be granted to the applicant in accordance 

with the U.S. Environmental Protection Agency and the U.S. Army Corps of Engineers 

mitigation policy (Section 404(b)(1) Guidelines Mitigation MOA, SS Fed. Reg. 9210 

(Feb 7,1990)). This policy states that permits may be granted only after applicants 

demonstrate that attempts have been made first to avoid impacts to the wetland and then 

to minimize any impacts (Berry and Dennison 1993). If a permit applicant can 

demonstrate that no practicable alternative is less damaging to the environment (cost, 

engineering and logistics are considered in this decision), a permit may be issued along 

with a requirement for mitigation (USEPA1986).

The goal of mitigation is to replace the functions and values of the impacted site 

by restoring, enhancing or preserving existing wetlands, or through the creation of new

6
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Figure 1. Locations of fringing and meadow marsh study sites. Complete site 
names and locations (latitude/longitude) are listed in Appendix Table 1. Sites 
ending in "F" are fringing marshes; sites ending in "M" are meadow marshes.
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wetlands (Kruczynski 1990). Restoration can be defined as returning an altered wetland 

to its former natural state, or to a previous altered condition, whereas enhancement is 

increasing one or more functions of an existing wetland. Creation is the conversion of 

non-wetland habitat into a wetland through some activity of man (Lewis 1990).

Salt marsh creation and restoration have occurred since the 1970s, but many 

questions remain concerning whether constructed1 sites will reach functional equivalency 

with natural salt marshes (Race and Christie 1982). Evaluating the functional success of 

created and restored salt marshes has been an active area of research among estuarine 

ecologists. Numerous studies have been conducted in New England (e.g. Roman et al. 

1984; Shisler and Charette 1984; Sinicrope et al. 1990; Burdick et al. 1997; Short et al. 

2000), but few of these have focused on salt marshes in Maine and New Hampshire, and 

none have specifically examined fringing marshes.

I investigated whether constructed fringing marshes along the southern Maine and 

New Hampshire coasts were functioning like natural fringing marshes. In addition, I 

investigated whether we could predict how long it might take for constructed sites to 

reach functional equivalency with natural salt marshes. I addressed these questions by 

studying six different-aged constructed salt marshes in the Great Bay Estuary (Fig. 2), 

and by comparing several of their functions to those of reference marshes in the Estuary.

Because the current wetland policy which allows for marsh construction as a way 

to compensate for the loss of wetland areas is not likely to change in the near future 

(Berry and Dennison 1993), scientists and resource managers need to establish a 

scientific basis for improving existing wetland construction methods. A variety of 

techniques for establishing vegetation on newly-constructed salt marshes have been 

attempted over the years, including seeding, planting greenhouse-grown seedlings, and 

transplanting field-harvested S. altemiflora plants (Broome et al. 1988). S. altemiflora is

1 The term constructed will be used to mean either restored or created.
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9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.S
O

of
t



the recommended species for planting, as sites planted with cordgrass have been more 

successful than those planted with high marsh species (Shisler and Charette 1984). A 

healthy cover of vegetation can help stabilize sediments and slow erosion, so promoting 

the early establishment and growth of S. altemiflora on newly constructed marshes can 

improve a site's chances for success (Shisler 1990).

My observations of the variability in growth among 5. altemiflora plants in 

natural and constructed marshes in the Great Bay Estuary led me to ask if marsh surface 

slope might affect the growth of transplanted cordgrass. I was also interested in 

investigating whether the north-south orientation of constructed sites affects plant 

growth. I addressed these questions by conducting a field experiment to determine if 

surface slope and north-south orientation affect the growth of newly planted S. 

altemiflora.

Objectives

Following is a list of objectives that guided my investigation of fringing salt 

marsh ecology, my study of factors affecting the growth of transplanted S. altemiflora, 

and my evaluation of constructed fringing marshes in the Great Bay Estuary.

Specifically, my research objectives were:

(1) To further our understanding of the role of fringing salt marshes 

in the estuaries of southern Maine and New Hampshire by comparing 

several of their ecological functions to those of larger, meadow salt marshes 

and to areas where no salt marsh is present. The functions assessed 

included primary production, maintenance of plant biodiversity, soil organic 

matter accumulation, sediment filtration and trapping, and dissipation of the 

physical forces of waves.
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(2) To investigate the effect of north/south orientation and marsh 

surface slope on the growth of Spartina altemiflora transplants during a 

growing season.

(3) To compare several functions of constructed fringing salt 

marshes to those of natural fringing salt marshes in the Great Bay Estuary, 

and to investigate whether a constructed site's age and level of function are 

related in a predictable way that can be modeled using trajectories The salt 

marsh functions assessed included primary production, maintenance of 

plant biodiversity, soil organic matter accumulation, and sediment filtration 

and trapping.

Organization of the Thesis

Chapter II explores the role that fringing salt marshes play in the estuaries of 

southern Maine and New Hampshire. To address this, I compared several ecological 

functions (primary production, maintenance of plant biodiversity and soil organic matter 

accumulation) in five fringing salt marshes and five meadow marshes. In addition, I 

compared the functions of sediment filtration and trapping and dissipation of the physical 

forces of waves between fringing marshes, meadow marshes, and areas where no marsh 

was present. By collecting data on several physical parameters at each site (marsh size, 

elevation, surface slope and soil salinity), I was also able to investigate the relationships 

between these parameters and salt marsh function at both fringing and meadow marsh 

sites. This work was done as part of a National Estuarine Research Reserve Graduate 

Fellowship, and has been submitted as a report to the National Oceanic and Atmospheric 

Administration along with co-author Frederick T. Short.

I then conducted a field experiment to test the effects of marsh surface slope and 

north-south orientation on the growth of young S. altemiflora transplants. The site of the 

experiment was a salt marsh in Biddeford Pool, Maine. Pots containing S. altemiflora
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plants in soil commonly used in salt marsh construction projects were buried in the marsh 

at different slopes and orientations and a number of growth parameters were measured 

over the course of the growing season. The impetus for this experiment came from 

observations made in natural fringing marshes, where the growth and production of 

marsh plants was greater on flatter marshes than on steeply sloping marshes. The results 

of this experiment are presented in Chapter m .

Chapter IV summarizes my study of six constructed salt marshes in the Great Bay 

Estuary. The method used for selecting reference sites is described, and a comparison is 

made between the constructed and reference sites for four ecological functions (primary 

production, maintenance of plant biodiversity, soil organic matter accumulation, sediment 

filtration and trapping). Trajectory models were also developed for the four functions 

assessed. These models can be used to predict the functional development of constructed 

sites; that is, to show patterns of development and to estimate the time that will be 

required for constructed sites to reach the level of function observed in natural fringing 

salt marshes in the Estuary. I was invited to submit Chapter IV as an article to 

Restoration Ecology, a peer-reviewed journal, with co-author Frederick T. Short. The 

article was submitted in May 2000 and is now in review.

Funding for this research was provided by the NOAA National Estuarine 

Research Reserve Program, the New Hampshire Port Authority, the University of New 

Hampshire and the University of New England.
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CHAPTER II

FUNCTIONS AND VALUES OF SALT MARSHES IN NORTHERN NEW 
ENGLAND: A COMPARISON OF FRINGING MARSHES AND MEADOW

MARSHES

I. Introduction

Salt marshes ate important estuarine habitats on the east coast of the United 

States, and are valued for a number of reasons, including their role as nursery grounds for 

finfish and shellfish, their ability to accrete sediments and counter the effects of sea level 

rise, their role in storm surge protection, and their recreational and aesthetic values (Teal 

1986; Short 1992; Cook et al. 1993). Maine and New Hampshire have thousands of acres 

of salt marsh, and yet they have been studied much less than Atlantic coast marshes 

further south. Jacobson et al. (1987) identified 20% of Maine’s tidally influenced 

coastline to be salt marsh habitat, totaling 7,900 ha (19,500 acres), and Cooket al. (1993) 

estimated that salt marshes in New Hampshire total 3,378 ha (7,500 acres).

Our current understanding of salt marsh ecology comes from studies of large 

meadow marsh systems, which are typically associated with barrier beaches and have 

direct access to the Atlantic Ocean (Ward et al. 1993). The coasts of Maine and New 

Hampshire include several of these large marsh systems as well as a large number of 

small marshes, sometimes referred to as fringe or fringing marshes (Cook et al. 1993; 

Bryan et al. 1997). Jacobson et al. (1987) found that nearly half of the marshes in Maine 

are 0.026 km2 (6.4 acres) or smaller. Although no universal definition exists for fringing 

marshes, they have been described as relatively narrow estuarine marshes that form in 

protected areas along the edges of rivers and bays (Cook et al. 1993; Bryan et al. 1997). 

Fringing salt marshes are in need of study not just because there is little known about
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their role in the estuary, but also because they are particularly susceptible to 

environmental impacts. On their landward borders they are often abutted by residential 

and commercial development, and on their seaward borders they are exposed to the 

erosive force of waves. Because they are narrow, impacts to the borders of a hinging 

marsh have proportionately large effects on the entire marsh. Also because they are 

narrow, fringing marshes provide convenient access to open water for fishermen and 

boaters, who impact their ecology unintentionally.

Both Maine and New Hampshire have laws that protect salt marshes. In NH,

RSA 482A established the tidal buffer zone, which extends 100 feet above the highest 

observable tide line. It requires that a permit be issued for any activities that impact tidal 

wetlands. In Maine, salt marshes are protected under the Mandatory Shoreland Zoning 

Act (38 M.R.S.A, Section 435-449), which regulates land use activities within 250 feet of 

coastal wetlands, and the Natural Resource Protection Act (38 M.R.S.A. 480-A to 480- 

Z), which regulates activities in coastal wetlands and requires a permit for most activities 

in them. In spite of these laws, human-caused impacts to fringing marshes often go 

unreported, and their small size makes these impacts easy to overlook.

Although much is known about the ecology of larger meadow marshes, little 

research has been done to assess the functions and values of fringing marshes. The 

purpose of this study was to compare the functions and values of fringing marshes to 

those of larger, meadow marshes and for some functions, to shoreline areas where no 

marsh was present. We chose to use a "functions and values" approach to studying salt 

marshes for two of reasons. First, indicators of salt marsh functions can be measured 

objectively and are quantifiable. Second, functions are linked to values, to which the 

general public can relate. The distinction between functions and values is an important 

one. Functions are ecosystem activities or processes that occur over time and do not 

depend on societal perceptions; that is, they continue to occur whether or not people care 

about them (Brinson and Rheinhardt 1996). Values are things that people care about
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because they are “worthy, desirable or useful to humans” (Mitsch and Gosselink 1993). 

Citizens can more easily understand the concept of wetland values than the concept of 

wetland functions, and values often weigh heavily in decisions concerning the future of 

coastal resources. Based on past experience and the scientific literature we developed a 

list of the functions and values of New England’s salt marshes (Table 1). We then 

selected several of these for study.

Our specific objectives were to: (1) measure several of the ecological functions 

of fringing salt marshes and meadow salt marshes, including (a) primary production, (b) 

soil organic matter accumulation, (c) maintenance of plant biodiversity, (d) 

filtration/trapping of sediments, and (e) dissipation of physical forces of waves; (2) 

compare these ecological functions (and their associated values) in fringing salt marshes 

and meadow salt marshes; and (3) determine how marsh physical characteristics (size, 

elevation, surface slope and soil salinity) are related to these marsh functions. Our 

hypotheses were (1) that the functions of fringing marshes are similar to those of meadow 

marshes, and (2) that there exist correlations between the physical characteristics and the 

ecological functions of the marshes studied.

n . Materials and Methods

A. Site Selection

Five fringing marshes and five meadow marshes were selected for study from the 

Saco River, Maine, south to the Great Bay Estuary in New Hampshire (Fig. 1). Marshes 

with a substantial amount of freshwater input (indicated by soil salinity levels less than 

20 ppt) were not included in this study. Both fringing and meadow marshes occupy areas 

that are protected from the direct wave energy of the ocean. The fringing marshes chosen 

are all located along the edges of rivers (SRF, YRF), bays or coves (BFF, ICCF, LHF), 

and the meadow marshes are found behind barrier beaches (DIM, LRM, MRM, BPM) or
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Table 1. Functions and values of New England salt marshes (modified from Short et al. 
2000).

Function Value
Primary production

Soil organic matter accumulation

Production export

Nutrient regeneration and recycling

Maintenance of plant communities

Maintenance of animal communities

Provision of habitat for fish, birds (as 
nesting, foraging and/or nursery areas)

Nutrient and contaminant filtration

Sediment filtration, trapping and 
binding
Dissipation of physical forces 
(of waves, currents and ice)

Maintenance of self-sustaining system

Support estuarine and offshore food webs

Support estuarine and offshore food webs, 
Counter effects of sea level rise

Support estuarine and offshore food webs

Support estuarine and offshore food webs

Provide habitat for animals, Provide high 
biodiversity

Support shellfish, finfish production, Provide 
high biodiversity

Support of finfish production, Recreational 
resources (hunting, observation, photography)

Improve water quality

Counter effects of sea level rise,
Improve water quality
Protect upland from erosion,
Reduce flood-related damage

Recreation, Aesthetics, Open space, 
Landscape level biodiversity, History & 
culture, Education______________________
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adjacent to tidal creeks (SCM) (Fig. 3). All of the meadow marshes are naturally divided 

into sections by large creeks or rivers; we selected one of these sections for study in each 

meadow marsh.

B. Physical characteristics of fringing and meadow marsh sites

1. Sampling design

Samples were collected on each marsh site according to a stratified random 

sampling design. The proportion of high marsh area to low marsh area was determined 

for each site using 1:2400 scale aerial photographs that were then ground truthed in the 

Held. A total of nine quadrats (1 m2) were then randomly distributed between the high 

and low marsh in proportion to these areas. In fringing marshes, an x-y coordinate system 

was used to locate the random points. In meadow marshes, a latitude/longitude grid was 

placed over a base map of the marsh area and then nine random points were chosen from 

the grid. These points were then located in the field using global positioning system 

technology (GPS). Pannes and creeks were avoided. Soil porewater salinity, surface 

elevation and percent surface slope were measured at each of the nine quadrats per site. 

The distance of each quadrat from the water’s edge was also recorded.

2. Physical characteristics measured at all sites 

al Salinity

Soil porewater was extracted using soil sippers made of 0.64 cm (1/4") PVC pipe 

inserted into the marsh to a depth of IS cm. Holes drilled in the PVC allowed water from 

10-15 cm below the soil surface to enter the sipper. The salinity of the water extracted 

was determined using a refractometer. Samples were taken twice at each site, once in 

July and once in August. The salinity readings on the two dates were averaged, 

bl Elevation

Elevations of all quadrats were determined using a Meridian L6-20 level and 

stadia pole. The relative elevations of all quadrats on a site were first measured by
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Figure 3. Relative sizes of five meadow and five fringing marsh sites (all shown 
at the same scale). Study sites are dark grey; upland is light grey; surrounding 
salt marshes are medium grey.
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surveying from the quadrats to a relative benchmark nearby each site. These relative 

benchmarks were then tied into a high tide elevation on one date, which allowed for 

comparison of elevations between all sites. To determine the high tide line, three stakes 

painted with water-soluble paint were placed in each of the ten marsh sites before high 

tide (3.6 m (11.9’) MHHW) on a windless day. Following high tide the water line on 

each stake was marked and then tied into the relative benchmark elevation at each site. 

The elevations of all the quadrats on all the sites were then calculated relative to 0 m 

elevation. 

g).Surfac£ slope

Surface slope was measured at each quadrat in a direction perpendicular to the 

water’s edge using a meter tape and a water level attached to a garden hose. The 

difference in elevation (rise) between two points approximately one meter apart was 

measured, and then a line level and meter tape were used to determine the horizontal 

distance (run) between the two points. The percent surface slope at each quadrat was 

then calculated, 

dl Distance to edge

The distance from each quadrat to the water’s edge was measured using a 50 m 

tape or a Lytespeed 400 rangefinder. 

e) Area

The area of each site was determined from U.S.G.S. topographic maps with NIH 

Image 1.47 software, aerial photographs (1:2400) and field measurements. Perimeters of 

each site were digitally traced from the topographic maps, then adjusted using 

measurements made in the field. At smaller fringing marsh sites, marsh length and width 

(the mean of nine random points) were measured with a SO m tape. A Lytespeed 400 

rangefinder was used in meadow marshes to check distances along transects running from 

notable landmarks to the upland edge. Areas were then calculated using the Image 

software from the field corrected digital maps.
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3. Analysis of physical characteristics data

Means and standard errors of the nine data points for each of the physical 

characteristics (a-d) above were calculated for each marsh site. Means of the ten sites 

were compared using Analysis of Variance (ANOVA) and then pairwise comparisons 

were made with Student-Newman-Keuls or Scheffe’s S tests. (Scheffe's S test was used 

to compare mean site elevations, because variances were not homogeneous.) The overall 

means and standard errors for meadow and fringing marsh types were also determined 

and compared using ANOVA.

C. Assessment of marsh functions

1. Functions measured/metrics employed

Five salt marsh functions at each of the ten salt marsh sites were evaluated using a 

variety of indicators, each developed based on knowledge of the literature and previous 

experience. An indicator is a variable closely associated with a particular wetland 

function. Indicators should be sensitive enough to represent functional performance and 

be relatively easy to measure (Kentula et al. 1992). Measures of wetland structure are 

often used as indicators instead of direct measures of function due to economic and time 

constraints. However these structural measurements can become measures of function if 

they are made over time (Kentula et al. 1992). The functions we assessed and the 

corresponding indicators we used to measure them are listed in Table 2.

a) Primary production

The peak standing crop (including both live aboveground and live belowground 

plant biomass) served as an indicator for the function of primary production. Samples 

were collected from nine stratified random quadrats at each marsh site (the same quadrats 

from which the physical characteristic data were collected).
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Table 2. Salt marsh functions studied and corresponding indicators assessed at 
fringing and meadow marsh sites.

Function Indicator
Primary production Annual standing crop 

(above and belowground 
biomass/area/time)

Soil organic matter accumulation Soil organic content over time 
(grams organic matter/area/time)1

Maintenance of plant diversity Species richness (no. species/site); Relative 
abundance (percent cover of plant species)1

Sediment nitration, trapping and Sediment accumulation on discs
binding (grams sediment/area/time)

Dissipation of physical forces Wave profiles from video monitoring 
(reduction in wave height/distance from 
marsh edge)

1 These measurements were made only once in this study, so were not tracked over time.
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Aboveground biomass was sampled at the end of the growing season (late August 

1997) by clipping all vegetation in a 0.2S m2 quadrat. Live plants were separated from 

dead material and then dried at 60°C for 48 hr and weighed.

A sediment core (20 cm deep, 3.5 cm diam.) was taken from each quadrat after it 

had been clipped. Samples were then washed on a 2 mm screen, live roots and rhizomes 

were separated from dead material and then dried at 60°C for 48 hr and weighed to 

determine belowground biomass (Gross et al. 1991).

b) Soil organic matter accumulation

A one-time measurement of the soil organic matter content was made in August 

1997. One core (15 cm deep, 3.5 cm diam.) was taken from each of the nine quadrats per 

site, and the amount and percent of organic matter in the sediment from the 15 cm core 

was determined from weight loss upon combustion in a muffle furnace (450°C for 4 hr) 

(Craft et al. 1991). Samples were collected from nine stratified random quadrats at each 

marsh site, the same quadrats from which the physical characteristic data were collected.

c) Maintenance of plant diversity

The species richness and relative abundance of each of the higher plants were 

assessed once at each site, in late July 1997. Percent cover of all species in 1 m2 quadrats 

was estimated visually using the following cover classes: 0%, 0% < x < 1%, 1% < x <

5%, 5% < x < 10%, 10% < x < 20%, and continuing above 20% in 10% increments up to 

100%. Total percent cover per quadrat could not exceed 100%.

The numbers of quadrats sampled on fringing and meadow marshes were based 

on preliminary sampling and calculation of running averages for small and large marsh 

sites. The results of this initial analysis indicated that the minimum number of quadrats 

needed on fringing and meadow marsh sites were 10 and 30, respectively, in order to 

include the majority of plant species on the two different sized sites. These quadrats were 

then distributed in a stratified random manner, according to the proportion of high and 

low marsh at each site.
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Physical data, including percent surface slope, soil porewater salinity, distance to 

the water's edge and elevation were also collected at each of the ten quadrats at fringing 

marsh sites and 30 quadrats at meadow marsh sites,

d) Sediment filtration and trapping

This function was assessed by measuring the amount of sediment accumulated on 

sediment traps (discs) over ten days in mid-August 1997. Sediment traps were designed 

after those of Reed (1989), and consisted of a pre-weighed mylar disc (8cm diameter) 

attached to a piece of sheet metal with plastic coated clips and held onto the marsh 

surface by 6 inch long metal sod staples (Fig. 4).

Five sediment traps were distributed in a stratified random manner on each site, 

according to the amount of high and low marsh present. Five additional traps were 

placed on the marsh surface 1 m from the water's edge. These traps were randomly 

distributed along the seaward edge of each marsh site. Three traps were also placed in 

areas where no marsh was present, adjacent to the five fringing marsh sites. Discs were 

collected after two weeks, dried at 60°C for 48 hr and weighed. In addition, the elevation 

and distance to the water’s edge of each trap were measured, and the number of plant 

stems and the percent cover of plant species present in a 1 m2 quadrat around each trap 

on the marsh surface were recorded.

To determine the amount of suspended sediment in the water coming onto the 

marsh surface at high tide, water was collected at three points just seaward of the marsh 

edge. Four 2S0 ml plastic bottles were attached to each of three stakes which were 

hammered into the sediment just beyond the marsh grass so that the base of the bottle was 

on the ground and the base of the second bottle was just above the mouth of the first, etc. 

Water was collected from all sites on the same spring tide night. The concentration of 

sediment in the water column was determined by filtering the samples through pre

weighed 0.45 pm glass fiber filters, then drying the filters plus sediment at 60°C for 48 

hours.
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Figure 4. Sediment trap with mylar disc for use on marsh surface. Traps are placed 
flush with the marsh surface and held in place by sod staples.
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e) Dissipation of physical forces of waves

The energy of waves moving across a marsh is proportional to the square of the 

height of those waves (Denny 1988). Therefore to assess how well fringing and meadow 

marshes dissipate wave energy we looked at the difference in wave heights from the 

marsh/water edge to 5 m and 7 m into the marsh along a transect perpendicular to the 

edge. This was done at three of the fringing marsh sites, three of the meadow marsh 

sites, and three areas where no marsh was present.

Three transects were laid out at each site, evenly spaced along the marsh/water 

edge. Stakes with meter sticks attached were placed at 0 m, 5 m and 7 m along each 

transect. Waves were generated by the wake of a 17’ aluminum boat and then videotaped 

simultaneously at 0 m and S m, then at 0 m and 7 m. Waves from the boat were filmed 

three times (called ‘takes’) at 0 m and 5 m and three times (takes) at 0 m and 7 m along 

each transect. Videotapes were later viewed frame-by-frame (30 frames/sec.) and wave 

peaks and troughs were recorded for each take at 0 m and at 5 m or 7 m. The maximum 

trough to peak height was determined for each take, as were the two wave heights 

following the maximum wave. The percent reduction in maximum wave heights from 0 

m and S m, and from 0 m to 7 m were calculated for the three takes at each transect and 

then averaged. The mean height of three waves (maximum and two following) per take 

was also calculated and then the percent reduction in this ‘three wave mean’ height was 

determined from 0 m and S m, and from 0 m to 7 m. Finally, percent wave height 

reduction values (maximum and three wave) obtained for the three transects were 

averaged to determine means for each fringing marsh, meadow marsh and 'no marsh' site.

The percent surface slope from 0-5 m and from 0-7 m was measured along each 

transect. In addition, a 0.5 m2 quadrat was placed around each meter stick (at 0 ,5  and 7 

m) and the plants within the quadrat were clipped to within 2 cm of the soil surface.

Plants were later sorted into species and the number of stems of each species in the 0.5 

m2 area counted. Ten plants per species were randomly selected and their height and
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stem diameters measured. All plant material collected in each quadrat (live and dead)
O

was then dried at 60 C for 48 hr. and weighed to determine aboveground biomass. The 

average number of stems, stem diameter and dry weight per 0.2S m2 from 0-5 m were 

calculated by averaging the values for the 0 m and 5 m quadrats. Averages were also 

calculated for the 0-7 m distance along each transect. The depth of the water at the time 

of filming was also recorded at the 0 m, 5 m and 7 m points along the transects.

2. Comparison of fringing marsh functions to meadow marsh functions, 

al Correlations with physical characteristics

Before comparing fringing marsh and meadow marsh functions, the possible 

relationships between each of the functions and the physical characteristics measured at 

the sites were explored. Scatterplots were drawn comparing the quantitative assessment 

for each function with each of the physical characteristics investigated for that function. 

Correlation coefficients were then calculated for each function-physical characteristic 

pair. Results of these correlations aided in the choice of which variables to use as 

covariates in the means comparisons described below, 

bl Means comparisons

For each of the functions in Table 2 and their associated metrics, the means and 

standard errors of the five fringing marshes and the five meadow marshes were 

calculated. Means were also calculated for the areas where no marsh was present when 

assessing sediment filtration and trapping, and the dissipation of physical forces.

Analysis of Variance (ANOVA) or Analysis of Covariance (ANCOVA) was then 

employed to compare the mean values from the fringing marsh sites with those of the 

meadow marsh sites for each function. If data were collected at 'no marsh' sites, these 

were included in the means comparisons as well, 

cf Plant diversity

Data collected to assess the maintenance of plant diversity function were analyzed 

to compare the number of species per site, species density, and evenness (E) of higher
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plant species in meadow and fringing marshes. The percent covers of Spartina 

altemiflora and of the high marsh species Juncus gerardii, Puccinellia maritima and 

Spartina patens were also calculated for each meadow marsh site and each fringing 

marsh site. Average values for each of these plant community attributes were then 

calculated and compared using ANOVA. Calculations were based on ten random 

quadrats per fringing marsh site and ten random quadrats per meadow marsh site when 

calculating plant species evenness (E), as this diversity parameter requires an equal 

sample size to compare two communities. For the other indicators of plant species 

diversity, fringing marsh means are based on ten quadrats and meadow marsh means on 

thirty quadrats, although the means of ten meadow marsh quadrats are also presented. 

The rationale for using either ten or thirty quadrats when calculating mean values in 

meadow marshes is explained further in the Discussion section.

m . Results 

A. Sitesdtttton

The five fringing and five meadow marsh sites selected for study are located from the 

Saco River, ME to Little Harbor, NH (Fig. 1). Sites and locations are listed in Appendix 

Table Al. The tidal range for the area is approximately 9 feet, with two high and two 

low tides per day. All ten sites included distinct low marsh areas dominated by Spartina 

altemiflora and high marsh areas dominated by Spartina patens, Juncus gerardii, 

Distichlis spicata and/or Puccinellia maritima. There was a range in the salinity of the 

soil porewater sampled at the sites, as those located along the edges of large freshwater 

rivers like the Saco and the York rivers receive more freshwater input, but all sites had 

spring (May-June) porewater salinities greater than 19 ppt. The plant communities of 

these sites therefore included very few species that could not tolerate saline soils.
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B. Physical characteristics of fringing and meadow marsh sites

1. General differences

The average soil salinities of the five meadow and the five fringing marshes 

(calculated as means of five sites) were significantly different from each other, as were 

the average surface slopes, elevation and distance to the water’s edge of the nine quadrats 

(P< 0.05) (Fig. 5). The average area of meadow marshes was significantly greater than 

that of the fringing marshes (Fig. 5i). Figure 5 also shows the means and standard errors 

of the nine data points for the physical characteristics measured at each marsh site.

Means and standard errors for each marsh site are listed in Appendix Table A2.

2. Physical characteristics measured at all sites

a) Salinity

All ten sites had statistically similar porewater soil salinity levels except for one 

fringing marsh on the Saco River (SRF), which had significantly lower salinity than the 

other sites (Fig. 5b). However, most of the fringing marshes had lower porewater 

salinities than the meadow marshes; there was a significant difference between the 

average soil salinities of the five meadow marshes and the five fringing marshes 

(P=0.0484) (Fig. 5a). 

bl Elevation

Figure 5d shows the differences in the mean elevations of the ten sites. Two 

fringing marsh sites, one in Biddeford Pool (BPF) and one on the York River (YRF), 

were significantly lower in elevation than all of the meadow marsh sites, which had 

similar mean elevations. Comparing the five meadow marshes to the five fringing 

marshes we found that the meadow marshes had a significantly higher mean elevation 

(ANOVA, P=0.0038) (Fig. 5c). 

cl Surface slope

The percent surface slopes of all the fringing marshes were greater than those of 

the meadow marsh sites (Fig. 5f). The average slope for all five fringing marshes (9.2%)
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Figure 5a-d. Means of physical characteristics for each marsh type (a,c) and at each site (b,d).
Bars in each graph followed by the same letter are not significantly different from each other according 
to the pairwise comparison listed. Error bars are ±1 SE.
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was significantly greater than that of the meadow marshes, which was only 2.8% 

(ANOVA, P=0.0018) (Fig. 5e). 

d) Distance to edge

The average distance to the water’s edge of the nine quadrats on most of the 

fringing marsh sites was less than the average distance to the water’s edge of the nine 

quadrats on meadow marsh sites. The value for the fringing marsh in Biddeford Pool 

(BPF) was more like the meadow marsh site values, and one meadow marsh site (DIM) 

had a mean distance to water’s edge value similar to that of many of the fringing marshes 

(Fig. Sh). The overall mean value for the five fringing marsh sites (9.1 m) was also 

significantly different (P=0.0056) from the mean of the five meadow marsh sites (37.4m) 

(Fig. 5g). 

g) Area

The average area of the five meadow marshes was significantly greater than that 

of the five fringing marsh sites (Fig. Si).

C. Comparison o ff  ringing marsh functions to meadow marsh ftinctions

1. Primary production

al Aboveground biomass

The slope of the marsh surface appears to affect the peak standing crop to a 

greater extent in fringing marshes than in meadow marshes (Fig. 6). Correlation analysis 

of the mean slopes of the five fringing marshes with the sites’ mean aboveground 

biomass values showed that these variables were highly correlated (r=0.935). The 

correlation was not as great in meadow marshes (r=0.336). It is interesting to note that 

this relationship between surface slope and aboveground biomass in fringing marshes 

was much stronger at the site level than at the quadrat level. Site level values represent 

each site as a whole, and were calculated as the mean of the nine random quadrats at each 

site. Quadrat level correlations were calculated using biomass and slope values from all

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



500 t

S  400

300

y = 31.229x-0.8838 
r* = 0.874200

100

1
<

0 5 10 15

Surface slope (%)

Figure 6. The relationship between site-averaged percent surface slope and 
aboveground biomass for the five fringing and five meadow marsh sites. 
The line shows the linear regression of fringing marsh sites only.

♦Fringing|
O Meadow |

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nine quadrats at each site. The correlations between aboveground biomass and surface 

slope for fringing marshes calculated at the quadrat level (9 quadrats x S sites = 45 

quadrats) revealed a weak relationship, with r=0.384. The correlation at the quadrat level 

was also weak for meadow marshes, with r=0.310. Correlation values are presented in 

Appendix Table A3.

We tested the effect of marsh type (fringing vs. meadow) on the amount of 

aboveground biomass present at harvest and found no difference between the two marsh 

types (ANOVA, P=0.9239) (Fig. 7). Also, the variability in aboveground biomass from 

site to site appeared greater for fringing marsh sites than for meadow marsh sites. The 

mean and standard errors of fringing marshes and meadow marshes were 285 +/- 52 g/ 

m2 and 274 +/- 22 g/m2, respectively. The mean values for all ten sites are listed in 

Appendix Table A4.

b) Belowground biomass

As stated earlier, the mean slope of the fringing marsh sites was greater than that 

of the meadow marshes. Percent surface slope may affect belowground biomass 

production in fringing marshes. Belowground biomass values were greater in more 

steeply sloped fringing marshes than in flatter sites (r=0.939)(Fig. 8a). In the flatter 

meadow marshes, there was no correlation between surface slope and belowground 

biomass (r=0.083). Similar to aboveground biomass, the correlation between 

belowground biomass and slope in fringing marshes appears to occur only at the site 

level, and not at the quadrat level. There was no correlation between belowground 

biomass and surface slope in fringing marshes at the quadrat level, where r=0.0196 

(Appendix Table A3).

The mean elevation of a site may be an important factor in its rate of belowground 

production, as illustrated in Figure 8b. Correlation analysis between the mean elevations 

of the ten sites and their belowground biomass values showed a correlation of r=0.462. 

Again, this relationship did not appear to hold at the quadrat level. When the elevations
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of the individual quadrats were correlated with the belowground biomass values for those 

quadrats, r=0.210 (9 quadrats x 10 sites = 90 quadrats) (Appendix Table A3).

To determine if there was a difference in the belowground biomass of fringing 

and meadow marsh sites, we compared the site type means with ANOVA. Results 

showed no significant difference in the mean belowground biomass of meadow and 

fringing marshes (P=0.1951,1/x transformed data) (Fig. 9). The mean belowground 

biomass values for all ten sites are listed in Appendix Table A4. There was also no 

difference in the average total (aboveground and belowground) biomass between the 

meadow and fringing marsh sites (ANOVA, P=0.2929) (Fig. 10).

2. Soil organic matter accumulation

The percent organic matter content in the top IS cm of meadow marsh soils was 

significantly greater than that of fringing marsh soils (Fig. 11). All five meadow marsh 

sites had higher mean elevations and a greater percent soil organic matter content than the 

five fringing marshes we studied. There was good correlation between the mean 

elevations of the ten sites and the mean percent soil organic matter content (r=0.801)

(Fig. 12), although this relationship did not hold when fringing and meadow marshes 

were considered separately. The correlation was also fairly strong at the quadrat level, 

between the elevations of the 90 quadrats (all quadrats sampled in fringing and meadow 

marshes) and their percent soil organic matter content (r=0.619).

The total amount of organic matter in the top IS cm per m2 of marsh surface was also 

calculated, and found to correlate highly with percent soil organic matter values 

(r=0.954). Percent soil organic matter and total soil organic matter values for the ten sites 

are presented in Appendix Table A4. The mean percent soil organic matter was 

significantly greater in meadow marshes than in fringing marshes (/*=0.0002). This was 

the case even after removing the variability due to elevation from the model (ANCOVA 

P=0.0202, elevation P=0.00U). The mean values for all ten sites are listed in Appendix 

Table A4.
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was no significant difference between the two means (P = 0.1951,
1/x transformed).
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Figure 11. Percent organic matter content of fringing and meadow salt marsh 
soils. Error bars are +/-1 standard error from the mean of rive sites. Means are 
significantly different (P = 0.0202, elevation covariate P  = 0.0011).
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3. Maintenance of plant diversity

a) Number of species per marsh site

Using the full sample of ten quadrats in fringing marshes and thirty quadrats in 

meadow marshes, the number of plant species per marsh site (cumulative over all 10 or 

30 quadrats) was greater for meadow marshes (15.6 +/- 2.7) than for fringing marshes 

(8.8 +/- 2.0)(ANOVA, P=0.0020). When an equal number of quadrats was sampled in 

fringing and meadow marshes (ten quadrats), species richness per site was still greater for 

meadow marshes, but this difference was not statistically significant (ANOVA, 

P=0.2792) (Table 3). If elevation was included as a covariate when comparing species 

richness in fringing and meadow marshes, meadow marshes had significantly more 

species whether the full sample of ten and thirty quadrats (ANCOVA, P=0.0006, 

elevation P=0.0120) or an equal sample of ten quadrats (ANCOVA, P=0.0122, elevation 

P=0.6338) was used in the analysis. These results indicate that both marsh size and 

elevation may influence species richness. A negative correlation between percent surface 

slope and species richness was also observed (Table A3).

b) Species density

Species density, the mean number of species per sampling unit, was greater in 

meadow marshes than in fringing marshes, regardless of whether ten or thirty quadrats 

were used to calculate meadow marsh values (Table 3). So the results reported here were 

calculated from ten quadrats in fringing marshes and thirty quadrats in meadow marshes. 

There were an average of 4.84 +/-0.4 species per m2 in meadow marshes and only 2.84 

+/-0.09 species per m2 in fringing marshes (ANOVA, log transformed data, P=0.0001). 

Species density was positively correlated with the mean elevation (r=0.792) and 

negatively correlated with the percent surface slope of the quadrats sampled (r=-0.806) 

(Table A3). If species density in the two marsh types was compared using elevation as a 

covariate, there was still a significant difference between the two marsh types, even 

though the effect of elevation had been removed (ANCOVA P=0.0002, elevation
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Table 3. Plant community characteristics of fringing and meadow marsh sites. 
Means and standard deviations are of five meadow marsh or five fringing marsh 
sites. Meadow marsh values in parentheses are based on thirty quadrats sampled 
per site; all other values are based on ten quadrats sampled per site. Values for the 
same characteristic followed by a different letter are significantly different from 
each other (p<.05). H’ is the Shannon-Weiner diversity index, and E is the index 
for evenness.

Characteristic Fringing marsh
Mean S.D.

Meadow marsh
Mean S.D.

Species richness/site 8.8* 2.0 10.4? 2.3
(15.6)* (2.7)

Species density (#species/mz) 2.84? 0.09 4.50* 1.0
(4.84? (0.40)

H ' 0.522* 0.119 0.53? 0.05
E 0.55? 0.115 0.53^ 0.064

Percent cover PM,JG,SPJ)S* 26* 12 53b 21
(54? (10)

Percent coverS. altemiflora 35* 13 19* 16
(16? (5)

* PM = Puccinellia maritima, JG = Juncus gerardii, SP = Spartina patens, DS = 
Distichlis spicata
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PsO.OOOl, log transformed data). A similar result was found using slope as a covariate 

when comparing species density in fringing and meadow marshes (ANCOVA P=0.0002, 

slope P=0.0001, log transformed data).

c) Evenness

There was no difference in the distribution of individuals among the species on 

fringing and meadow marsh sites, as measured with E = H’/Hmax = H’/ln S (Magurran 

1988), an indicator of evenness (ANOVA, P=0.7214) (Table 3). This is based on ten 

quadrats sampled in both fringing and meadow marshes, as equal sample sizes must be 

used when calculating E. IT values (calculated to determine E) were also not 

significantly different between fringing and meadow marshes (Table 3).

d) Species by species comparison

Results presented here and in Table 3 are from ten sampled quadrats in fringing 

marshes and thirty sampled quadrats in meadow marshes. (Results from equal sample 

sizes are also reported in Table 3.) A comparison of the percent cover of the most 

dominant marsh plants in fringing and meadow marshes revealed some differences 

between these two marsh types. Spartina patens, Juncus gerardii, Distichlis spicata and 

Puccinellia maritima were the most prevalent species in the high marsh areas, so their 

percent cover values were combined for each site as a representation of the percent cover 

of common high marsh plants. This combined percent cover value was significantly 

greater in meadow marshes (54%) than in fringing marshes (26%) (ANOVA, P=0.0033). 

There was also a significant difference in the percent cover of Spartina altemiflora, the 

dominant low marsh species, with fringing marshes having more S. altemiflora (35%) 

than meadow marshes (ANOVA, P=0.0102, log transformed data) (Table 3). The 

percent covers of all plant species at all ten sites are listed in Appendix Table A5. In 

addition, all of the plant community characteristics (species density, evenness, etc.) for 

each site are listed in Appendix Table A6.
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4. Sediment nitration and trapping

a) Correlations with physical data

In the group of traps placed 1 m from the water’s edge of the marshes, one trap at 

DIM had an unusually large amount of sediment deposited on it (1847.89 g/ m2 /day, 

compared to the next highest value of 0.92 g/ m2 /day). This was attributed to the 

presence of a nearby culvert which greatly increased the velocity of the water moving 

through the area, most likely causing large amounts of sediment to be resuspended and 

deposited. This data point was therefore considered as an outlier and was discarded, so 

that the mean value for the sediment deposition rate at DIM was calculated from the 

remaining four sediment traps, and all correlations were calculated based on four traps for 

that site.

Of the physical characteristics measured at each sample quadrat, elevation was 

observed to correlate best with the amount of sediment deposited on the marsh surface. 

This relationship was observed at the quadrat level when considering all quadrats at 

fringing and meadow marsh sites, at traps randomly distributed on the marsh surface (r=-

0.635) as well as those only 1 m from the edge (r=-0.427), although the latter relationship 

appears to be driven by a single data point (BPF). Elevation also correlated with the 

amount of sediment deposited at the site level when traps were randomly distributed on 

the marsh surface. Sediment deposition was less at sites with a higher mean elevation, at 

both fringing and meadow marsh sites (Fig. 13a, c).

We had expected that suspended sediment concentration of the tidal water moving 

onto the marsh surface would influence the amount of sediment deposited on the 

sediment traps. However this was observed to occur only in fringing marshes, not in 

meadow marshes (Fig. 13b, d), and again this correlation was driven by the value at one 

fringing marsh site in Biddeford Pool (BPF).

In addition, we measured the percent cover of plant species around sediment traps 

to see if this biological characteristic was related to the amount of sediment deposited.
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from all ten sites. Regression lines in (b) and (d) are based on data from five fringing marshes or from five meadow marshes. 
Diamonds represent fringing marshes; open circles represent meadow marshes.



Data from the five randomly distributed traps at each site showed percent cover to be 

negatively correlated with the amount of sediment deposited (r=-0.433 all sites, r=-0.391 

fringing marshes, r=-0.235 meadow marshes),

b) Traps randomly placed

Although there was on average more sediment deposited on the traps randomly 

distributed on the surface of the fringing marshes than on the surface of the meadow 

marsh sites, this difference was not significant (Fig. 14). Areas where no marsh was 

present had an even greater mean amount of sediment deposited. However the variance 

around the mean was extremely high for 'no marsh' areas, with the standard deviation 

(6.838) greater than the mean (4.240 g/ m2 /day). A comparison of the means for 

meadow, fringing and 'no marsh' areas showed no significant difference in the amount of 

sediment deposited on these three site types, even after removing the variance associated 

with elevation, which was a significant (P=0.0006) covariate in the model (ANCOVA, 

P=0.3740, log transformed data). If elevation was not included in the model, then 

P=0.1340 (log transformed data). Sediment means for each site are presented in 

Appendix Table A7.

Because the two sites in Biddeford Pool (fringing marsh BPF and 'no marsh' area 

BPFX) had deposition rates so much greater than those observed at any other sites, the 

data were analyzed again after excluding these two sites. Figure IS shows the mean 

amounts of sediment deposited at fringing, meadow and 'no marsh' sites. After excluding 

sites BPF and BPFX from the data analysis, there was still no significant difference 

observed between these three site types (P=0.1810, log transformed data), 

cl Traps 1 m from edge

Traps placed just one meter in from the edge of the marsh sites collected more 

sediment than those that were distributed randomly. Once again there was no significant 

difference in the mean amount of sediment deposited on fringing, meadow and 'no marsh' 

sites, as determined by ANCOVA with elevation used as a covariate (P=0.1196, log
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Figure 14. Amount of sediment deposited on fringing marshes, meadow 
marshes, and areas where no marsh was present. Traps were randomly 
distributed on each marsh. Error bars are +/-1 standard error from the mean 
of five sites. There was no significant difference between the three means 
(P = 0.3740, log transformed data, elevation covariate P = 0.0006).
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Figure IS. Amount of sediment deposited on fringing marshes, meadow 
marshes, and areas where no marsh was present, excluding sites BPF and BPFX. 
Traps were randomly distributed on each marsh. Error bars are +/-1 standard 
error from the mean of five sites. There was no significant difference between 
the three means (P = 0.1810, log transformed data).
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transformed data)(Fig. 16). If the variability due to elevation was not removed,

P=0.7210 Gog transformed data). When the two sites in Biddeford Pool (BPF and 

BPFX) were again removed from the data set and means recalculated, there was still no 

significant difference in the amount of sediment deposited on traps 1 m from the marsh 

edge in fringing, meadow or 'no marsh' sites (P=0.3461, log transformed data) (Fig. 17).

S. Dissipation of physical forces of waves

An example of the wave profiles generated from videotaping passing waves at 0 

m and at 5 m can be seen in Figure 18. Along all transects at all sites, the heights of the 

largest waves at 0 m ranged from 3.5 cm to 27.3 cm, averaging 12 cm tall. The 'three 

wave mean’ height (the mean height of three waves - maximum and two following - per 

take) at 0 m ranged from 2.7 cm to 21.2 cm, with an average of 7.8 cm.

It should be noted that the waves used to calculate percent height reductions along 

each transect were not shallow water waves. We determined this by measuring 

wavelengths of suspect waves on the video screen and comparing them to water depths at 

those points. The water depth was always significantly greater than 1/20 of the 

wavelength, so waves were deep or intermediate water waves (Denny 1988). 

al Correlations with physical data

Several of the physical characteristics measured correlated with a site’s ability to 

reduce the height of incoming waves. The water depth at 5 m and 7 m along the transects 

was negatively correlated with the percent wave height reduction (r = -0.421 for 

maximum waves, r  = -0.464 for 'three wave mean’). The reduction in wave height was 

most highly correlated with the vegetation characteristics along the transects, such as the 

mean stem area/m2 and the mean dry weight of plants at 0-5 m and 0-7 m. All 

correlation values are presented in Table 4. 

bl Comparing fringing, meadow and ’no marsh' areas

As is evident in Figure 19, there was little difference in the ability of fringing and 

meadow marshes to reduce the height of the largest waves as they moved across the
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Fringing Meadow 

Marsh Type
No marsh

Figure 16. Amount of sediment deposited on fringing marshes, meadow 
marshes, and areas where no marsh was present. Traps on fringing and 
meadow marshes were placed lm  from the water's edge. Error bars 
are +/-1 standard error from the mean of five sites. There was no significant 
difference between the three means (P = 0.1196, log transformed data, 
elevation covariate P = 0.0340).
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10 1

9  •

8 -

Fringing Meadow No marsh

Marsh Type

Figure 17. Amount of sediment deposited on fringing marshes, meadow 
marshes, and areas where no marsh was present (excluding sites BPF and 
BPFX). Traps on fringing and meadow marshes were placed lm from the 
water’s edge. Error bars are +/-1 standard error from the mean of five sites. 
There was no significant difference between the three means (P -  0.3461, log 
transformed data).
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Figure 18. Wave profiles at MRM, a meadow marsh. Values for wave peaks and 
troughs were taken from videos simultaneously recording the passing waves at (a) 0m 
and (b) Sm along the transect.
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Table 4. Correlations between the percent reduction in wave height and 
physical/biological characteristics along transects.

Correlation coefficients (r)
Physical characteristic Maximum wave* Three wave mean**

Percent surface slope -0.017 0.098
No. stems/0.25nf (0-5m) 0.443 0.562
No. stems/0.25nf (0-7m) 0.455 0.611

Stem height (0-5m) -0.060 0.061

Stem height (0-7m) -0.071 -0.042

Stem diameter (0-5m) -0.386 -0.381

Stem diameter (0-7m) -0.490 -0.563
Stem area/0.25nf (0-5m) 0.433 0.555
Stem area/0.25nf (0-7m) 0.473 0.677

Dry weight of plants/0.25m? (0-5m) 0.534 0.633
Dry weight of plants/0.25irf (0-7m) 0.480 0.563

Water depth -0.421 -0.464

Maximum wave height at Om -0.058 -0.123

* The percent reduction in height o f the largest wave as it moved from 0m-5m or 0m-7m 
(indicated in parentheses following each physical characteristic).
** The percent reduction in mean height of the largest wave and the two waves following it as 
they moved from 0m-5m or 0m-7m.
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Figure 19. Percent reduction in maximum wave height in fringing, meadow and no 
marsh areas. Error bars are +/-1 standard error from the mean.
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no marsh areas. Error bars are +/-1 standard error from the mean.
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marsh surface. By the time they had traveled 7 m into the marsh, wave heights were 

reduced an average of 62% and 64% in fringing and meadow marshes, respectively. But, 

both fringing and meadow marshes were more effective at damping wave heights than 

were areas where no marsh was present. Where no marsh was present, wave heights were 

reduced by only 33%. This difference between marsh and 'no marsh' areas was 

statistically significant only at 7 m, however (ANOVA, P=0.0488, square root 

transformed data, Student-Neuman-Keuls test, P<0.05). ANOVA results showed no 

significant difference in the mean percent wave height reduction in fringing, meadow and 

'no marsh' areas at 5 m (P=0.0890, square root transformed data).

The percent reduction in wave height was less when we considered the ‘three 

wave mean’ height (Fig. 20). Again there were no significant differences in the reduction 

in wave height after waves had traveled 5 m into fringing, meadow and 'no marsh' sites 

(ANOVA, P=0.2966). Although the ‘three wave mean’ height percent reduction was 

greater in the marsh sites (55% in fringing and 52% in meadow marshes) than in the 'no 

marsh' sites (28%) at 7 m, this difference was not significant (ANOVA P=0.0548, log 

transformed data). Wave data for the three transects at each site are included in 

Appendix Tables A8 and A9.

IV. Discussion

Much of the southern Maine/New Hampshire coast is lined with fringing salt 

marshes, and yet very little was known about them. To clarify their role(s) in the estuary, 

we studied how they function relative to the large meadow marshes found in the same 

areas. We discovered that fringing marshes are diverse in terms of their physical 

characteristics and that this diversity is sometimes reflected in their ecological functions. 

We also found that despite this diversity, in most cases fringing marshes as a group 

function at levels similar to what we observed in meadow marshes.
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Previous studies have shown that the physical characteristics of salt marsh sites 

can influence some of their ecological functions (e.g. Gleason et al. 1979; Jacobson and 

Jacobson 1989; Knutson et al. 1982; Osgood and Zieman 1993; Warren and Niering 

1993; Kastler and Wiberg 1996). We therefore measured several physical characteristics 

that might influence the functions we were investigating and looked for correlations 

between them. This allowed us to better understand the relationships, if any, between 

these physical characteristics and the marsh functions in which we were interested. Also, 

understanding these correlations allowed us to adjust for differences in important 

physical characteristics when testing the effects of marsh type on a particular function.

Comparison of fringing and meadow marsh functions

1. Primary production

No significant difference in mean peak-season standing crop was observed 

between fringing marsh sites and meadow marsh sites (Fig. 7). However there was a 

strong correlation between the mean percent surface slope and aboveground biomass in 

the fringing marshes (r=0.935), which were more steeply sloped than the meadow 

marshes (Fig. 6). In general, marsh surfaces are more steeply sloped where they are 

adjacent to tidal waters, either along the edge of a creek or along the seaward edge of the 

marsh. The “streamside effect” has been investigated by a number of researchers who 

observed that aboveground primary production is greater along the edge of marsh streams 

than it is further back on the marsh (Gallagher and Kibby 1981; Burdick et al. 1989). 

Soils in areas exposed more often to tidal waters are typically better drained, and 

sediment oxidation rates are higher, so gas exchange between roots and the surrounding 

soils can take place more rapidly than in waterlogged areas (Burdick et al. 1989).

The positive correlation we observed between the slope of fringing marshes and 

aboveground biomass is also similar to that observed by Steever et al. (1976) between 

tidal range and the standing crop production of Spartina altemiflora, where r= 0.963.
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They concluded that tidal action contributed significantly to primary production, and their 

results supported the ‘tidal energy subsidy’ hypothesis first proposed by Odum and 

Fanning (1973). The mechanism of this ‘tidal energy subsidy’ to S. altemiflora 

production was later explained as an irrigation force that brings nutrients and oxygen to 

roots while flushing away waste materials (Odum 1980). Later research demonstrated 

that sediment oxygen levels were the primary factor controlling the aboveground 

production of S. altemiflora in a Massachusetts salt marsh (Howes et al. 1986). 

Additionally, the availability of oxygen has been shown in turn to influence nitrogen 

uptake rates by plant roots (Morris and Dacey 1984). Nutrients in salt marsh sediments 

become more available as tidal waters drain away and oxygen enters sediment pores 

(Howes et al. 1986).

The most steeply sloped fringing marsh had three times the aboveground biomass 

of the flattest fringing marsh. The high correlation between surface slope and 

aboveground biomass leads us to conclude that the more steeply sloped sites, which were 

flooded more often by the tides, were receiving a greater ‘tidal subsidy.’ This ‘tidal 

subsidy,’ coupled with good sediment drainage, likely resulted in more oxidized soils, 

greater nitrogen uptake rates, and higher aboveground production by the plants growing 

there.

The other physical factor that we expected to correlate with aboveground biomass 

was salinity. High soil salinity causes physiological stress to plants and may cause plant 

tissues to lose water to the surrounding hypertonic soil. Although many species have 

adapted to these conditions by developing strategies to prevent water loss, these strategies 

require an expenditure of energy by the plant (Teal 1986) which can result in reduced net 

primary productivity. Linthurst (1980) found that increasing soil salinity by IS ppt 

resulted in a 42% reduction in biomass of S. altemiflora. Results of controlled 

experiments with S. patens have also shown a reduction in productivity with increasing 

salinity (Pezeshki and DeLaune 1993). The mean soil porewater salinity of the five
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meadow marsh sites was significantly greater than that of the fringing marsh sites we 

sampled (Fig. Sa), and most of the fnnging marshes had lower porewater salinities than 

the meadow marshes. However we found no correlation between soil salinity and 

aboveground biomass at the quadrat level (r=-0.076 all sites, r=-0.026 fnnging marshes, 

r=-0.089, meadow marshes).

Although comparing the aboveground biomass values we obtained to those of 

other studies is difficult because of the variety of sample methods that have been 

employed to measure aboveground production (Marinucci 1982), our values are in the 

same range as those found in studies of other Maine and New Hampshire salt marshes 

(Lindthurst and Reimold 1978; Gross et al. 1991). It should be noted that our method 

does not account for the turnover of new plant tissues during the growing season. 

Previous studies have shown that harvesting the peak season standing crop as a measure 

of aboveground production underestimates true aboveground net production by 10-15% 

(Nixon and Oviatt 1973).

Studies of salt marsh belowground biomass production are few in number 

compared to studies of aboveground biomass production due to the difficulty of 

sampling and processing belowground tissues (Gross et al. 1991). However investigating 

the belowground component of production is important, as it can be 4-7 times greater 

than that of aboveground production (Marinucci 1982). Our values for belowground 

biomass agree with what others have found in New England marshes (Lindthurst and 

Reimold 1978; Gross et al. 1991).

Although there was on average a greater amount of belowground biomass in 

meadow marshes than in fnnging marshes, this difference was not statistically significant 

(Fig. 9). Some have hypothesized that in the high marsh, there is a  greater allocation of 

biomass to underground reserves because interspecific competition among plants 

growing there is greater than between plants in the low marsh (Gross et al. 1991). Given 

that the proportion of high marsh to low marsh is much greater in meadow marshes than
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in fringing marshes, one might expect therefore to see greater amounts of belowground 

biomass per unit area in meadow marshes than in fringing marshes.

The high positive correlation (r=0.939) (Fig. 8a) we observed between 

belowground biomass and percent surface slope in fringing marshes may be caused by 

the same factors as those discussed above for aboveground biomass. Although 

differences in belowground biomass production in Spartina marshes have not been well 

studied, Gallagher and Kibby (1981) did find that streamside plants had greater 

recoverable underground reserves than back marsh plants in a Carex lyngbyei tidal 

marsh. Ellison et al. (1986) also found that belowground production in a Massachusetts 

salt marsh was greater at the marsh edge than on other parts of the marsh.

Our results demonstrate that the primary productivity of fringing marshes is as 

great as that of meadow marshes, indicating they are important contributors to estuarine 

food webs. Mean aboveground biomass in fringing marshes was almost equal to that in 

meadow marsh sites (Fig. 7), and although the mean belowground biomass in meadow 

marsh sites was 20% greater than that in fringing marsh sites, this difference was not 

significant (Fig. 9). When considering the salt marsh function of primary production in 

estuaries that contain both fringing and meadow marshes, such as those in New 

Hampshire and southern Maine, fringing marshes should not be overlooked. This is 

especially true in estuaries where fringing marshes predominate.

2. Soil organic matter accumulation

It should be acknowledged that a "one time" percent organic matter measurement 

is not necessarily an indicator of organic matter accumulation. For example, one site may 

have a higher percent organic matter content than a second site, but this may be due to a 

proportionally small rate of inorganic sediment deposition onto the marsh surface of the 

first site (compared to organic depostion). The second site may have a much lower 

percent soil organic matter value because inorganic sediment inputs to it were 

proportionally greater. Ideally, to assess the function of soil organic matter
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accumulation, one would monitor the amount of organic matter present over time. 

However given that the soil percent organic matter and the total amount of organic matter 

present in the top IS cm of the marshes surveyed was so highly correlated (r=0.95), this 

"one time" measurement expressed as a percent can provide insight into the accumulation 

of organic matter that occurred at these fringing and meadow marsh sites.

If salt marshes are to keep pace with rising sea level, they must be able to accrete 

at a rate equal to or greater than that of sea level rise. Along the Gulf of Maine, sea level 

has been rising between 0.9 and 3.9 mm/yr., and there is evidence that along parts of 

Maine’s coast, salt marshes are not keeping up with the rate of sea level rise (Kelly 

1992). Vertical accretion relies on two sources of sediment; one from waters that flood 

the marsh surface, and the other from above and belowground plant biomass which does 

not completely decompose, contributing organic material to marsh soils (Redfield 1972; 

Nixon 1982).

The build up of organic matter in marsh soils appears to be most important in the 

high marsh zone. Schmitt et al. (1998) found an increase in the amount of organic matter 

deposited on the marsh surface and in the sediment with increasing elevation in a 

Massachusetts salt marsh. In a study of five Rhode Island salt marshes, Bricker-Urso et 

al. (1989) found that the contribution of organic matter to accretion on the high marsh 

was more than twice that of inorganic sediments, but in the low marsh the contribution of 

inorganic and organic sediments was equal. In addition, Ellison et al. (1986) also found 

that the decomposition rate of live roots and rhizomes was slower in the high marsh zone 

than at the marsh edge, which would lead to a greater accumulation of organic matter in 

high marsh soils.

Our results show that the percent organic matter content of meadow marsh soils is 

more than three times that of fringing marsh soils (Fig. 11). We also found a positive 

correlation between elevation and percent soil organic matter values (Fig. 12), which 

agrees with the findings of Schmitt et al. (1998). Because the mean elevation of the
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meadow marshes we studied was significantly greater than the mean elevation of the 

fringing marshes (Fig. Sb), one would expect the soil organic matter content of meadow 

marshes to be greater. However, when elevation was removed as an effect, the effect of 

marsh type was still significant, indicating that factors other than elevation also 

contribute to the difference we observed in percent soil organic matter between fringing 

and meadow marshes.

The distance from the marsh edge has also been observed to correlate with soil 

percent organic matter content. The percent organic matter in sediments of two Virginia 

salt marshes was lowest at the water’s edge and increased along a 30 m transect into their 

interiors (Kastler and Wiberg 1996). In our study, the average distance from the edge of 

the marsh to the nine quadrats sampled on meadow marshes was greater than on fringing 

marsh quadrats (Fig. Sd), and the soil organic matter content did correlate with the 

distance from the edge of the marsh to the quadrats sampled at all sites (r = 0.643). Tidal 

waters contain suspended sediment that can be deposited on the marsh surface, 

contributing to the inorganic content of marsh soils. Marsh areas farther from the water’s 

edge are covered by tidal waters for less time and so are not exposed to this sediment 

load for as much time as areas that are flooded more frequently. In addition, most of the 

sediment in waters coming onto the surface of a salt marsh is deposited close to the 

water’s edge. Stumpf (1983) found that 80% of the suspended sediment load was 

deposited within the first 12 m of the creek edge in a Delaware salt marsh. Marsh soils 

farthest from the water’s edge should therefore have proportionally a lower inorganic and 

a higher organic matter content than soils closer to the water’s edge, and the results of 

our study support this.

It is difficult to sort out whether the greater organic matter content of meadow 

marsh soils is more influenced by the higher elevations of the meadow marsh sites 

compared to the fringing marsh sites, or to the fact that the quadrats sampled at meadow
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marsh sites were farther from the edge than the quadrats sampled at fringing marsh sites, 

because these two physical parameters are correlated with each other (r = 0.483).

Marsh age and ice scouring are two additional factors that could help explain the 

lower soil organic matter content in fringing marshes than in meadow marshes. Meadow 

marshes, which are probably older than fringing marshes, would have a longer time to 

accumulate soil organic matter, and would be more likely to contain peat IS cm deep (the 

depth of the sampled cores). And finally, salt marshes in Maine and New Hampshire are 

subjected to ice scouring, which occurs most at the seaward edge of the marshes. 

Scouring by ice may remove a proportionally greater amount of peat from narrower 

fringing marshes than from wider meadow marshes.

In summary, the results of this study indicate that meadow marshes along the 

southern Maine/New Hampshire coast rely more on soil organic matter accumulation for 

accretion than fringing marshes do. We conclude that the salt marsh function of soil 

organic matter accumulation is performed to a greater extent in meadow marshes than in 

fringing marshes. If this is the case, then to keep pace with sea level rise, fringing 

marshes must rely to a greater extent on the trapping of inorganic sediments as their 

predominant mechanism of accretion.

3. Maintenance of Plant diversity

To compare plant diversity in fringing and meadow marshes, the first question we 

addressed was, “Do meadow marshes contain a greater number of species than fringing 

marshes?" To answer this question completely, one would have to do a census of all the 

plants growing at each site, a formidable task for any site of significant size. Second best 

would be to sample all sites using the same sampling intensity. Results of our earlier 

studies of fringing marshes informed us that a minimum sample size of ten quadrats per 

marsh site would be needed to adequately sample species richness at fringing marsh sites. 

We had determined this by sampling more than 60 random quadrats on several fringing 

marshes, and calculating running means of the number of species per site. To sample
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meadow marshes with the same sampling intensity, we would have had to sample over 

one hundred 1 m2 quadrats at the larger meadow marsh sites. Because this was not 

practical, we decided to sample thirty 1 m2 quadrats at meadow marsh sites, which at least 

would give a better representation of the species richness per site than if we sampled only 

ten quadrats at those sites. However because it is well known that as sample size 

increases, the number of species sampled also increases (Magurran 1988), we also 

calculated meadow marsh species richness based on only ten random quadrats per site, 

the same number used in fringing marshes. By holding the number of quadrats constant 

(at ten) we were able to remove the "area effect" when looking at species richness. This 

allowed us to explore factors other than sample size that might influence the differences 

in species richness we observed between meadow and fringing marshes.

Our results using the full sample of ten quadrats in fringing marshes and thirty 

quadrats in meadow marshes did show that meadow marshes had significantly greater 

species richness than fringing marshes at the whole site level. The much larger size of 

meadow marshes compared to fringing marshes certainly contributed to the differences 

we observed in species richness, but size does not appear to be the only factor influencing 

species diversity. The hypothesis that the size of a habitat is related to the number of 

species it supports was proposed by MacArthur and Wilson (1967), who studied the 

species richness of different sized tropical islands. The basic premise of their island 

biogeography hypothesis that species richness increases as the area of an island increases 

has also been observed in a variety of non-island habitat types (Cox 1993). Although 

MacArthur and Wilson (1967) showed that area alone accounted for most of the 

difference in species richness between large and small islands, they acknowledged that 

habitat area was correlated with environmental diversity. That is, larger habitats often 

have greater environmental diversity than smaller habitats, and this increase in habitat 

diversity likely contributes to the greater species richness of larger sites.
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In our study of fringing and meadow salt marshes, sampling at a number of scales 

allowed us to observe correlations between species richness and a variety of the physical 

parameters (soil salinity, elevation and percent surface slope) that contribute to 

environmental diversity at these different scales. At the whole site level, species richness 

was greater in meadow marshes than in fringing marshes. Is this simply an area effect? 

Using the full sample of quadrats (10 FM and 30 MM), species richness was correlated 

with area (r=0.818), but it also correlated with slope (r=-0.726) and somewhat with 

elevation (r=0.460). When an equal sample size was used on both marsh types (10 FM 

and 10 MM), the area effect of our sampling protocol was removed, and although species 

richness was still greater on meadow marshes, this difference was no longer significant, 

although it became significant if elevation was included as a covariate. The positive 

relationship we observed between elevation and species richness could be due to 

differences in the degree of stress that salt marsh plants experience at different elevations. 

Plants experience less stress at higher elevations where flooding is decreased and soil 

oxygen content is greater. In addition, physical disturbances to the marsh surface and 

interspecific competition have been observed to increase diversity in the high marsh zone 

(Bertness and Ellison 1987).

Most interesting, however, are the results of the species density analysis. At this 

very small scale of 1 m2, meadow marshes support a significantly greater number of 

species than fringing marshes. Species density correlated with both elevation (r=0.792) 

and percent surface slope (r=-0.806) at this scale.

Because elevation and percent surface slope are somewhat autocorrelated (r=- 

0.614), it is difficult to separate out the effects of these two environmental parameters. 

The steepest slopes were located in low marsh areas closest to the water’s edge, and the 

flatter areas were in the high marsh, where elevations were greater. Low marsh areas in 

New England salt marshes are typically dominated by Spartina altemiflora, and the sites 

we studied fit this pattern. However the high marsh zones of most of the meadow
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marshes in our study did not completely fit the zonation pattern of the typical southern 

New England high marsh, which have distinct zones of S. patens and J. gerardii (Niering 

and Warren 1980). Although these high marsh species were the dominant plant species 

at most of our meadow marsh sites (Appendix Table AS), the sites also contained many 

patches of forbs, similar to those described by Miller and Egler (19S0) in a Connecticut 

salt marsh. They discovered that high marsh plant communities dominated by forbs and 

stunted 5. altemiflora develop in low areas of the high marsh, where soil Eh is lower, and 

salinity and sulfide levels are higher. This patchy distribution of forbs on the high marsh 

may account for the greater species richness we observed in the high marsh of meadow 

marsh sites, even at the quadrat level. Jacobson and Jacobson (1989) also found mosaic 

patterns of vegetation in a number of the Maine salt marshes they sampled, which they 

hypothesized was due to greater microrelief in high marsh areas.

Another possible explanation for the greater species richness observed in meadow 

marshes may be related to the relative age of the sites. Jacobson and Jacobson (1989), in 

their study of Maine tidal marshes, also found that small marshes (0.01-0.04 km2 in area) 

had fewer species than larger marshes. However they attributed this not to differences in 

area but to the relatively young age (5-100 years old) and geological instability of the 

smaller marshes. If the fringing marshes we studied are younger than the meadow 

marshes, their high marsh zones may not have had the time necessary to develop more 

species rich plant communities.

Although meadow marshes have greater species richness, their plant communities 

are comparable to those of fringing marshes in terms of evenness (Table 3). The evenness 

index we employed is the ratio of observed diversity to maximum diversity, E =

H’/Hmax = H’/ln S (Magurran 1988). Values for E describe how close the set of species 

abundances for a marsh site is to having maximum diversity, where the relative 

abundances for all species are equal. Our results show that the relative abundances of 

species were similar in the fringing and meadow marsh sites we sampled.
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Fringing marshes in this area have previously been described as having plant 

communities dominated by S. altemiflora, with limited high marsh development (Bryan 

et al. 1997; Cook 1993). The fringing marsh sites we sampled contained a good 

proportion of low marsh, dominated by S. altemiflora (20-46%) (Table A6). However, 

all of the fringing marsh sites we studied had well defined high marsh areas, and all sites 

included S. patens (Appendix Tables AS, A6). In two sites (YRF and BPF), there was 

more S. patens than 5. altemiflora. So, although the proportion o f high marsh to low 

marsh in fringing marshes (0.7:1) is less than in meadow marshes (3.4:1), high marsh 

species are an important component of fringing marsh plant communities.

To summarize; (1) the greater plant species richness observed in meadow marshes 

is not due solely to their larger size. Marsh surface slope and elevation are also 

correlated with species richness, at both the whole marsh scale and at the 1 m2 scale. (2) 

The fringing marsh plant communities we studied did have a distinct high marsh zone. 

And although most of the sites we studied had proportionally more low marsh than high 

marsh, this was not always the case. (3) The relative abundances of plant species, as 

described by the evenness index E, were similar in fringing and meadow marshes.

4. Sediment filtration and trapping

Reed (1989) first developed the technique of trapping sediment on filter paper 

discs attached to the marsh surface. Due to the activity of green crabs in our area, we 

modified her design and used discs made of Mylar, which crabs do not find so appetizing. 

In one study of sediment deposition on Louisiana tidal marshes, Reed (1989) found rates 

of 2.9 g/m2 /day (excluding winter storm events, when sedimentation rates were much 

higher). We obtained similar values for sediment deposition, with marsh site means 

ranging from 0.44-4.31 g/m2 /day for traps randomly distributed on fringing marshes and 

0.20-1.51 g/m2 /day for traps randomly distributed on meadow marshes (Appendix Table 

A7).
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We found that sediment deposition rates decreased with increasing elevation, 

probably because tidal waters cover marsh areas at higher elevations for a shorter period 

of time (Fig. 13a). In addition, as mentioned above, others have observed that the 

suspended sediment concentration of water moving onto the marsh surface drops rapidly 

in the first few meters after it enters the marsh due to marsh vegetation slowing tidal 

waters and trapping suspended sediment (Stumpf 1983). Negative correlations between 

elevation and sediment deposition have also been observed in Massachusetts (Schmitt et 

al. 1998) and North Carolina (Leonard 1997) salt marshes.

The negative correlation between plant percent cover and sediment deposition is 

not what we expected (Appendix Table A3), as Gleason (1979) found that the density of 

planted S. altemiflora had a positive influence on the amount of sediment deposited, with 

higher grass stem densities trapping greater amounts of sediment. However our percent 

cover estimates include all plant species present, even high marsh species. And percent 

cover was positively correlated with elevation (r=0.56), so the decrease we saw in 

sediment deposited in areas with greater percent cover could be a result of increasing 

elevation. Also, the plants themselves trap some sediment on their stems and leaves 

(Stumpf 1983). In high marsh areas with dense mats of S. patens covering the marsh 

surface, much of the sediment in the water column may not reach the disc, but may 

remain on the vegetation.

In addition to the sediment traps placed in fringing and meadow marsh sites, traps 

were placed in intertidal areas where no marsh vegetation was present (designated as ‘no 

marsh’ areas). This was to allow us to investigate whether the presence of a salt marsh 

was related to the amount of sediment deposited, or if other factors such as surface slope 

were more important.

Our expectation was that per unit area, more sediment would be deposited on 

marsh areas than on ‘no marsh’ areas, primarily because of the results of previous studies 

which related the presence and density of marsh vegetation to sediment deposition. We
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also expected greater sediment deposition per unit area on fringing marshes than on 

meadow marshes. This was because, considering the length of marsh bordering tidal 

waters, fringing marshes have a greater edge: area ratio than meadow marshes. As 

mentioned earlier, previous studies have shown that more sediment is deposited on the 

marsh surface near the water’s edge than farther back into the marsh (Stumpf 1983; Reed 

1988; Reed 1992; Leonard 1997). Our results showed that on average, the rate of 

sediment deposition was greatest on ‘no marsh’ areas, followed by fringing marsh sites 

and meadow marsh sites, but these differences were not significant (Fig. 14). This may be 

due to the high variability between sites within each site type, especially between 'no 

marsh' sites, where the mean amount of sediment deposited on each of the fr ve sites 

ranged from 0.62-16.44 g/ m2 /day (Appendix Table A7). Because Biddeford Pool 

appears to be an area of high sediment deposition, we reanalyzed the data after excluding 

BPF and BPFX from the data set. The cause of the large amount of sediment deposited 

on sites in Biddeford Pool is not clear, since we do not know the source of the sediment 

deposited on the traps. The sediment deposited could have come from the sites 

themselves, as reworked surface sediment, or from eroding marshes elsewhere in the 

Pool. Another possibility is that tidal or fresh waters entering the Pool could have 

contained large amounts of sediment. However eliminating sites in Biddeford Pool from 

the data analysis did not substantially alter the outcome; there was still no significant 

difference between site types (Fig. IS).

To eliminate the effect of the greater edge: area ratio of fringing marshes, we 

placed traps at fringing and meadow marsh sites just 1 m from the water’s edge. The 

mean rate of sediment deposition was much greater near the water’s edge than when traps 

were randomly distributed on the meadow and fringing marsh sites. But there was no 

difference in the rate of deposition (1 m from the water’s edge) between fringing, 

meadow and ‘no marsh’ sites (Fig. 16). Again the two sites we studied in Biddeford Pool 

(BPF and BPFX) had very high deposition rates, which contributed to the high errors
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around the means for fringing and ‘no marsh’ sites. When we analyzed the data without 

these two sites, the variability was greatly reduced. Mean sediment deposition values for 

meadow and fringing marsh sites were greater than for areas where no marsh was 

present, although again there was no significant difference between these three site types 

(Fig. 17), indicating that marsh type does not influence the amount of sediment deposited 

at the marsh edge.

The rates of deposition and erosion of sediment at a salt marsh site will determine 

whether the site is drowning, expanding or being maintained over time (Phillips 1986). 

Factors contributing to deposition of sediments include the amount of sediment in waters 

flooding the marsh surface, the energy of the site (which is related to how protected it is 

from wind, waves and currents), and the amount of organic matter input from the site 

itself. Contributors to erosion are sea level rise, wide fetches and large waves, three 

factors that can reinforce each other. Finkelstein and Hardaway (1988) studied long-term 

sediment accumulation in fringing salt marshes along the York River, Virginia, and 

determined that these sites were eroding faster than they were accreting. They concluded 

that higher wave energies and sea level rise were primarily responsible for the loss of 

fringing marsh area. They also concluded that whether salt marshes erode or accrete is 

site specific. Fringing marshes, because they are located along the edges of rivers and 

bays, are exposed to a wide range of fetches and wave energies. For example, site LHF is 

exposed to greater wave energy than site ICCF, which is located along the edge of a 

small cove. The inorganic sediment input to fringing marshes is also quite variable, as 

our suspended sediment values indicate (Appendix Table A7). The variability in 

sediment input, fetch and the energy of the fringing marsh sites we studied is likely 

related to the variability we observed in the amount of sediment deposited at these sites, 

and ultimately to whether they will be maintained as sea level rises in the future.

After observing that meadow marsh soils have higher organic matter content than 

fringing marsh soils, we had concluded that fringing marshes must be relying more on
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inorganic sediment deposition to keep pace with sea level rise. However our sediment 

trap results do not clearly support this conclusion. Although our results suggest that 

fringing marshes trap greater amounts of sediment per unit area than meadow marshes 

(Figs. 14 and IS), the variability between sites was too high and our sample size of five 

fringing and five meadow marsh sites was too small to definitely support this conclusion. 

Whether fringing and meadow marshes in this area are performing the function of 

sediment nitration and trapping at levels sufficient to ensure that their rates of accretion 

will keep pace with sea level rise is an important question that needs further 

investigation.

It should also be noted that although original objective was to look at differences 

in sediment filtration and trapping at meadow marshes, fringing marshes and 'no marsh' 

areas, the sediment deposited on the traps we used included both resuspended and newly- 

deposited sediments. To get a better picture of the net amount of sediment deposited on 

marsh surfaces, techniques that measure longer-term accretion should accompany the 

shorter-term measurements made using sediment traps. Marker horizons such as feldspar 

or brick dust can be employed to estimate accretion rates over a time scale of less than a 

year (Cahoon and Turner 1989).

5. Dissipation of physical forces of waves

Previous studies have shown that salt marshes do reduce the height and energy of 

incoming waves, helping to protect the adjacent upland from erosion (Knutson et al.

1982; Moeller et al. 1996). In addition, salt marshes reduce water velocity, resulting in 

increased sediment deposition on the marsh surface and decreased sediment erosion 

(Leonard and Luther 1995). As mentioned earlier, sediment deposition on the marsh 

surface is important if a marsh is to keep pace with rising sea level. We were interested 

in knowing if marsh type (fringing or meadow) affected a marsh’s ability to reduce the 

height (energy) of incoming waves. We also studied the influence of a site’s physical
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characteristics (vegetation, surface slope, and water depth) on its ability to dampen 

waves.

We observed vegetative cover to be an important factor in the reduction of wave 

heights as they traveled onto the marsh. The density of plant stems and the biomass of 

plants per unit area along transects both correlated positively with a decrease in wave 

heights (Table 4). Leonard and Luther (1995) found the total kinetic energy present in 

waters flooding dense S. altemiflora to be 2-3 times less than in adjacent open water 

areas. We found stem diameter to be negatively correlated with the reduction in wave 

energy; wave heights were reduced less in areas where stems were large than in areas 

where stems were small. However this is partly due to the fact that stems are widest 

when plant stem density is low. Stem width and stem density were negatively correlated 

along our 7 m transects (r=-0.713). When we calculated total stem area per unit area of 

marsh surface (stem density * stem diameter), we found this parameter to correlate 

positively with sediment deposition (r=0.473).

Waves lost less energy as they traveled along the transects when water depth was 

greater (Table 4), which agrees with the findings of Moeller et al. (1996) who studied 

wave energy loss in a S. altemiflora marsh and an adjacent sand flat. In addition, they 

found that water depth was more highly correlated with reduction in wave height across 

the salt marsh (n= -0.73) than across the sandflat (r=-0.46). At our sites, a similar 

relationship occurred, with the water depth/height reduction correlation greater in marsh 

sites (rs-0.359) than in areas where no marsh was present (r=-0.142).

Our results led us to conclude that marsh type did not affect a site’s ability to 

reduce the height of incoming waves, with fringing and meadow marshes both causing 

waves to lose energy as they traveled 7 m across the marsh surface (Figs. 19 and 20). 

The maximum wave height was reduced 62% in fringing marshes and 64% in meadow 

marshes after traveling 7 m across the marsh surface. These values are similar to those 

obtained by Knutson et al. (1982), who found wave heights reduced by 57% five meters
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into a S. altemiflora marsh, and 65% ten meters in. Leonard and Luther (1995) found a 

65% reduction in the turbulent energy of water coming onto the marsh after it had 

traveled just 3m in from the marsh edge.

Areas where no marsh was present were much less effective at reducing the 

height of maximum waves (33% over 7 m), as expected. In the Moeller et al. (1996) 

study of a S. altemiflora marsh in England, they found that low marsh areas absorbed 2-3 

times as much wave energy as adjacent sand flats. Wave height reduction in their study 

was 58% across salt marsh and only 14% across the sand flat (the distance waves traveled 

was approximately 190 m).

Our results demonstrate that for waves up to 27 cm in height (typical of boat or 

wind generated waves) even narrow fringing marshes are capable of reducing wave 

energies to the point that adjacent shorelines will not experience their erosive forces. 

Although fringing marshes are narrow, they are wide enough to have the same 

dampening effect on incoming waves as a meadow marsh. This is because most of a 

wave’s energy is dissipated within the first 7 m as it travels onto a marsh surface, 

regardless of whether the marsh is a fringing or meadow marsh. As mentioned earlier, 

fringing marshes are located in parts of the estuary where wave energies tend to be higher 

than they are near meadow marshes. These higher wave energies are due to the presence 

of larger fetches, as well as to greater amounts of boat traffic typically associated with 

these parts of the estuary. These greater wave energies could contribute to increased 

shoreline erosion. However, the presence of fringing marshes in these areas helps 

mitigate the erosive effects of waves generated there. The role of fringing marshes as 

buffers against the erosive forces of waves is therefore of particular importance.
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V. Significance of Results and Importance to Management of Coastal Resources

A. Fringing salt marshes defined

Although fringing salt marshes are extremely common in northern New England, 

they have not yet been specifically defined. They have been described as marshes that 

are found along the edges of bays and rivers and are relatively long and narrow in shape. 

We can now more clearly define fringing marshes as having steeper slopes, lower 

elevations and soils with less organic matter than those of larger marshes. In addition, 

their plant communities usually contain both low marsh and high marsh zones, although 

in more equal proportions than is seen in larger marshes, where the high marsh 

dominates.

B. Functions and values of fringing marshes In the estuary

Fringing marshes have important functions and values in the estuary that had not 

been studied prior to this project. They are as productive as meadow marshes, making 

valuable contributions to detrital and grazing food webs. Their ability to filter and trap 

sediments from the water column improves water quality and contributes to the accretion 

of marsh surfaces, which is important in helping them keep pace with sea level rise. By 

dampening the energy of incoming waves, they protect the adjacent shoreline from 

erosion. The fact that wave heights were reduced by 62% only 7 m into the marsh means 

that these long narrow marshes are important coastal buffers against the energy of the 

sea. This is especially important because fringing marshes are often the only buffer 

between the erosive forces of waves and valuable upland coastal property. And finally, 

we now know that although fringing marshes may not contain as many plant species as 

larger meadow marshes, the relative abundances of the species present are similar in both 

marsh types. Also, fringing marshes do contain distinct high marsh zones dominated by 

the same plant species that dominate the high marsh in meadow marshes. Fringing
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marshes are therefore important contributors to salt marsh plant biodiversity in the 

estuary.

C. Information for decision-making and monitoring of resources

Knowing what fringing marshes are and understanding more about the values 

they provide (described above) can help coastal resource managers make more informed 

decisions about their fate. The outcomes of allowing impacts to fringing marshes will be 

better understood (eg. increased upland erosion). The results of this study could also be 

helpful in ongoing efforts to evaluate and monitor salt marshes in Maine and New 

Hampshire. Results of this study will be distributed to the authors of the Maine Citizens 

Guide to Evaluating, Restoring and Managing Tidal Marshes, and the Method for the 

Evaluation and Inventory o f Vegetated Tidal Marshes in New Hampshire, both manuals 

for citizens to use in inventorying and evaluating local salt marshes. Both manuals use a 

scoring system that is based on marsh functions and values.

P. Baseline data for comparisons to created/restored fringing marshes

There are numerous created and restored salt marshes in southern Maine and New 

Hampshire. In any study of their success, comparisons must be made to nearby natural 

salt marshes. Our results contribute to the existing knowledge of meadow marsh 

ecology. More important, they provide some of the first quantitative information specific 

to bringing marshes, whose ecological functions had not previously been studied. This 

baseline information could be compared to data collected at impacted, restored or created 

salt marshes in the ME/NH area.

In addition, there is currently an effort underway in the Gulf of Maine (sponsored 

by the Global Programme of Action Coalition for the Gulf of Maine) to identify impacted 

salt marshes in need of restoration. Plans are also being made to monitor sites that have 

been restored and to compare their functions to those of healthy salt marshes. All of this
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information will be included in a common database for the Gulf of Maine. The results of 

this study could contribute to this developing database.

E. Methods developed for this study

Finally, this study also tested several field sampling methods that could be used 

by others studying salt marshes in this area. For example, the method of trapping 

sediments using Mylar discs is now being used by researchers at the University of New 

Hampshire and at the Wells National Estuarine Research Reserve. In addition, other 

researchers who want to compare elevations between sites could use our method for tying 

the elevations of all ten sites together in reference to a common point, high tide.

Our method for measuring wave dissipation was a synthesis of techniques used by 

Knutson (1982) and Moeller et al. (1997). Knutson (1982) also generated waves using a 

boat and measured wave energy along transects. However he used capacitance-type 

gages to measure waves and data were collected on a battery operated strip chart. We 

recorded wave heights with video cameras as the waves moved past stationary meter 

sticks. This technique was employed by Moeller et al. (1997) to check wave 

measurement data they had collected using pressure transducers mounted 5-10 cm above 

the sediment surface. Although viewing the wave videos was a time-intensive effort, the 

hand-held cameras we used to record wave heights may be more accessible to some 

researchers than pressure transducers or capacitance-type gages.

VI. Summary/Conclusions

Our results indicate several important differences in the physical characteristics of 

the fringing and meadow marsh sites we studied, and suggest relationships between 

several of these characteristics and marsh functions. The percent surface slope was 

greater in fringing marshes than in meadow marshes. The variation in the slope of

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fringing marshes was related to aboveground biomass production, with greater 

productivity occurring on more steeply sloped marshes. There were significant 

differences in elevation between the two marsh types, with the five meadow marshes 

having a greater mean elevation than the five fringing marshes, and elevation was 

positively correlated with the soil organic matter of the marsh sites. Although fringing 

marshes had statistically lower mean soil salinity than the meadow marshes, this 

difference was primarily due to the very low soil salinity at one fringing marsh site. We 

found no strong correlations between salinity and any of the functions we studied. The 

fact that meadow marshes were so much larger than fringing marshes was in part the 

cause for the greater number of plant species found on meadow marsh sites, although 

surface elevation and percent slope were also correlated with plant species richness. The 

relative abundances of plant species were similar in fringing and meadow marsh sites.

Meadow marshes had significantly greater soil organic matter content than FMs 

(12.2% FMs, 42.0% MMs), but we saw no statistical difference between fringing and 

meadow marshes in their levels of primary production, sediment deposition or wave 

dampening. The mean aboveground, belowground and total biomass values for FMs and 

MMs were similar. Although our results suggest that FMs trap more sediment per unit 

area than MMs, this difference was not significant, probably due to the great variability 

among sites. However both site types trapped more sediment close to the marsh edge 

than further back into the marsh, as expected. Traps located 1 m from the edge trapped 

an average of 21.6 ±18.6 g/m2/day (FMs) and 3.2 ±0.8 g/m2/day (MMs), and traps 

randomly distributed on the marsh surface trapped an average of 1.6 ±0.7 g/m2/day (FMs) 

and 0.6 ±0.2 g/m2/day (MMs). When we investigated a site’s ability to reduce the height 

of waves coming onto the marsh surface, we found that maximum wave heights were 

reduced by approximately 63% after traveling only 7 m in both marsh types. Of the 

characteristics we measured, the density and amount of vegetative cover were most 

highly correlated with reduction in wave height
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Although our knowledge of the role of fringing marshes has improved, the extent 

of the contribution they make to the estuary cannot be determined until we have an 

accurate picture of their total acreage. As Jacobson et al. (1987) pointed out, the number 

of small salt marshes far exceeds that of large marshes in Maine. In area, marshes 

smaller than the mean size for the state (0.026 km2) comprise more than 40% of the total 

salt marsh acres. However, salt marshes smaller than ISO m2 were not included in their 

study, so the authors recognized that theirs is a conservative estimate. As long as the sum 

total contribution of fringing marshes remains obscure they will not be adequately valued 

or protected (Table 1).

In addition, many of their functions have yet to be studied (Table 1). For 

example, because fringing marshes are often found along developed shorelines, they may 

be important in removing nutrients and contaminants from waters entering the estuary. 

This function has yet to be investigated. And although we now have some information 

about the sediment trapping ability of fringing marshes, we do not know if they are 

accreting fast enough to keep pace with sea level rise. Fringing marshes are often the 

only buffer existing between developed shorelines and the erosive action of waves, so 

their ability to accrete fast enough to maintain adequate elevations relative to sea level is 

very important and deserves further study.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER in

TESTING THE INFLUENCE OF MARSH SURFACE SLOPE AND NORTH- 
SOUTH ORIENTATION ON THE GROWTH OF Spartina altemiflora

I. Introduction

Both the restoration and the creation of salt marsh habitat are presently occurring 

throughout New England, often to mitigate for unavoidable impacts to salt marshes in the 

area (Shisler 1990; Short et al. 2000). The construction of coastal marshes along the 

Atlantic and Gulf coasts of the United States dates back to the 1970s, when the U.S.

Army Corps of Engineers created salt marshes by planting Spartina altemiflora on 

dredged material in an effort to stabilize eroding shorelines (Race and Christie 1982). A 

variety of techniques for establishing vegetation on newly constructed marshes have been 

attempted over the years, including seeding, planting greenhouse-grown seedlings, and 

transplanting field-harvested S. altemiflora plants (Broome et al. 1988). Through trial 

and error, methods have been developed that are likely to result in the establishment of S. 

altemiflora on the surface of newly constructed marshes. These methods, as summarized 

by Matthews and Minello (1994), are as follows: (1) young healthy plants should be used 

and should be obtained from as close to the planting area as possible, (2) planting should 

be conducted early in the growing season to provide adequate time for establishment, (3) 

the soil must contain adequate nutrients, (4) proper elevation (0.2-0.5 m above Mean Low 

Water) at the site is critical, (S) a gentle slope of 1-10% grade provides sufficient width 

and drainage for the marsh to develop, (6) protection from waves is particularly important 

for new plantings (the fetch should be less than 2 km), (7) protection of the new plants 

from pests such as herbivorous fish, insects, small mammals and man is often needed,
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and (8) protection from activities on adjacent lands has become increasingly important as 

coastal development continues.

Although the design of new salt marshes and methods for their construction have 

improved greatly over the years, questions still remain about how effective these marshes 

will be at replacing the functions and values of impacted salt marshes in the long term 

(Race and Fonseca 1986; Short et al. 2000). Just because a marsh is covered with S. 

altemiflora and looks like a salt marsh from a distance, one cannot assume that it is 

functioning as a healthy ecosystem, or that it is equivalent to a natural salt marsh 

(Broome et al. 1986; NRC 1992). However, current wetland policy in the United States 

allows for marsh construction as a way to compensate for the loss of wetland areas, and 

this policy is unlikely to change in the near future (Berry and Dennison 1993). So 

scientists and resource managers continue to try to improve existing wetland construction 

methods.

Along the Atlantic coast, recently constructed marshes face a number of physical 

stresses which can cause newly planted cordgrass to be uprooted and constructed marsh 

soils to erode. Waves generated by wind and boat traffic can cause erosion, and Canada 

geese have been observed to feed on underground rhizomes of young plants (Garbisch 

and Garbisch 1994). In addition to these stresses, constructed marshes in New England 

are exposed to freezing winter temperatures that can cause ice to form on their surfaces.

In addition, ice floes often move across and gouge their surfaces. On natural salt marshes 

in the area, the break up in the spring of these large pieces of ice can rip up established 

marsh plants and scour away marsh soil (Bertness 1992). The detrimental impacts of ice 

are even more severe for young constructed marshes, where plants are not yet firmly 

rooted and where loose soils are more susceptible to erosion (Shisler and Charette 1984; 

Burdick et al. 1996). In addition, most of the constructed salt marshes in New England 

are smaller in size than those further south (Shisler 1990), and due to their relatively large
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length to width ratios, they are more susceptible to the erosive forces of wind, waves and 

ice than are larger constructed salt marshes.

The development of vegetation on constructed marshes can help to stabilize 

sediments and slow erosion, as S. altemiflora has been shown to dampen wave energies 

and trap sediments in waters moving across the marsh surface (Knutson et al. 1982; 

Shisler and Charette 1984; Broome et al. 1988; Leonard and Luther 1995; Moeller et al. 

1996). Results from my study of fringing salt marshes showed wave dampening to occur 

to a greater degree in areas where marsh was present than where it was not (see Chapter 

2). In addition, once transplanted cordgrass has developed sufficient aboveground and 

belowground biomass, Canada geese no longer pose a serious threat to the plants, as 

geese will not land in tall vegetation and rarely feed on plant rhizomes once a thick root 

mat has developed (Shisler 1990; Garbisch and Garbisch 1994). The early establishment 

of healthy S. altemiflora can therefore make an important contribution to the success of a 

constructed site (Shisler 1990).

The correct surface slope is an important criterion in the design and construction 

of created salt marshes. The slope should be steep enough to allow for proper soil 

drainage but not so steep that erosion becomes a problem (Bosworth and Short 1993; 

Matthews and Minello 1994). Garbisch and Garbisch (1994) recommend a surface slope 

of 10:1 for constructed marshes, although the slope may be less in certain circumstances. 

This agrees with Matthews and Minello's (1994) report of a desired slope of 1-10%.

My observations of the variability in growth among S. altemiflora plants in the 

natural and constructed marshes in the Great Bay Estuary led me to ask if marsh surface 

slope might affect the growth of transplanted cordgrass. I was also interested in 

investigating whether the north-south orientation of constructed sites affects plant 

growth, since planting recommendations call for newly planted sites to be exposed to 

direct sunlight for at least six hours per day (Garbisch and Garbisch 1994). The objective 

of this study was therefore to determine if surface slope and north-south orientation affect
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the growth of newly planted S. altemiflora. My hypotheses were (1) that the growth of 

newly-planted S. altemiflora would be greater on steeper slopes than on shallower slopes 

during the first growth season after transplanting, and (2) that the growth of newly- 

planted S. altemiflora would be greater on south-facing slopes than on north-facing 

slopes during the first growth season after transplanting.

II. Materials and Methods 

A. Survey of created and natural fringing marsh sites

Before setting up the slope-orientation experiment, a number of sites were 

surveyed to determine the range of slope and orientation values among existing natural 

and constructed fringing salt marshes. I measured the north-south orientations and the 

surface slopes of six constructed and 26 natural hinging salt marshes in the Great Bay 

Estuary. The predominant orientation in a north-south direction was determined by 

taking a compass reading while facing open water, with the upland behind one’s back. 

Values were then converted to a linear north-south scale, from 0* (north) -180* (south), 

by subtracting readings greater than 180* from 360*. Surface slopes were measured along 

three equally spaced transects running perpendicular to the upland edge of the marsh. All 

slopes were measured using a water level attached to a hose, and a 50 m tape. An 

average of these three values was then calculated.

I found that 63% of the natural fringing marshes and 67% of the constructed 

marshes faced north. The natural marshes and constructed marshes had similar mean 

surface slopes: 10.4+/- 5.3% for natural sites and 13.8+/-11.9% for constructed sites. The 

range of slope values for natural sites was 3.8-25.1%, and for constructed sites the range 

was 1-33.5%. Based on these data, I selected slopes at the experimental marsh site of 

3%, 10% and 25%.

I also collected end-of-season standing aboveground biomass from eleven of the 

26 natural salt marshes I surveyed in the Cheat Bay Estuary. All vascular plant
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vegetation was clipped in six randomly distributed 0.5 m2 quadrats, after which live 

plants were separated from dead material and dried at 60°C for 48 hr.

B. Experiments involving slope and orientation

1. Site description

The experiment was conducted along the seaward edge of a salt marsh in 

Biddeford Pool, Maine (43S27'16"N, 70°22'26"W), which is located approximately SO km 

north of the Great Bay Estuary. This part of the marsh consisted of several finger-like 

projections, which provided both north-facing and south-facing slopes. The marsh 

vegetation in this area was almost exclusively S. altemiflora, which is flooded twice a 

day (MHHW=3.6 m).

2. Experimental Design

The experimental design was a two factor Analysis of Variance (ANOVA) with 

equal replication. Treatments were surface slope (with levels 3%, 10% and 25%) and 

orientation (with levels north-facing and south-facing). There were a total of n = 5 

replicates for each slope/orientation combination, so there were a total of N = 30 

observations in the experiment (Table 5).

Late in the spring (May 28), when S. altemiflora plants were large enough to be 

transplanted, 100 young plants were collected from the base of a shallow tidal creek 

adjacent to the experimental site. Roots and rhizomes were washed in seawater, and the 

leaf widths, leaf lengths, shoot height (the distance from the soil surface to the growing 

shoot tip), and rhizome length of each plant were measured. In addition, the number of 

leaves on each plant was counted. Sixty of these plants were then potted into black 

plastic pots (two plants per 3-liter pot). The top of each pot was covered with a dark gray 

landscape fabric (Typar Landscape Fabric, spunbonded polypropylene), in which two 

small holes were cut for the young plants. The soil was obtained from Blue Rock 

Industries in Westbrook, ME, and was similar to that used in marsh construction projects
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Table S. Experimental design for slope-orientation experiment, n = 5.

3% slope 10% slope 25% slope

North

........................

South

\
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in this area. It was a mixture of fine sand (80%) and clay (20%), and its organic matter 

content was determined through loss on ignition to be 0.28%.

The other forty plants were divided into aboveground and belowground sections, 

dried at 60°C and weighed. The relationships between the plants' dry weights and the 

measured characteristics were determined by multiple regression.2 These equations were 

then used to calculate the initial biomass of plants used in the experiment

The thirty pots, each containing two young plants, were buried at the experimental 

site so that they faced either south or north, and were at a slope of 3%, 10% or 25%. Pots 

were buried so that the level of the soil in them was flush with the surface of the marsh. 

All the existing plants in a 0.5 m2 area around each pot were clipped to prevent shading 

of the young plants in the pots. After one month, some shoots had died, so the least 

healthy extra shoot was removed from any pots with two shoots remaining, leaving one 

plant per pot for the duration of the experiment. The elevations of the soil levels in the 

30 pots were measured using standard survey equipment, so that elevation could be 

included as a covariate in the data analysis. Elevations were calculated relative to the pot 

at the lowest elevation, which was assigned a relative elevation of zero.

Approximately every three weeks throughout the summer, the number of live and 

dead leaves per plant was counted, and the leaf lengths and shoot heights were measured. 

The plants in a 0.5 m2 area around each pot were clipped as needed to prevent shading.

In addition, the temperature of the soil in each pot and the soil adjacent to each pot (7 cm 

depth) was recorded at low tide on August 5.

At the end of the summer (86 days after planting), S. altemiflora plants were 

harvested and the characteristics measured at the beginning of the experiment were

2 Equations used to estimate initial dry weight values for plants are as follows:
Aboveground biomass = -0.195 + [0.051*(Total number leaves)] + [0.033*(Mean leaf length x width)] 
(1^=0.698); Belowground biomass=-0.583 +■ [1.103*(Mean leaf length x width)] + [0.01*(rhizome 
length)] (rM).638); Total biomass = -0.799 + [1.92*(Mean leaf length x width)] + [0.0l*(rhizome length)] 
(1^=0.707).
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measured again. In addition, the above and belowground parts of each plant were dried 

at 60°C and weighed.

3. Data analysis

The initial and final total leaf areas per plant were calculated as (mean leaf length) 

x (mean leaf width) x (number of live leaves/plant). Differences between the final 

measurements (at 86 days) and the initial measurements were calculated for all 

characteristics for each of the 26 plants that survived for the entire experiment. The 

effect of slope or orientation on plant growth (for each characteristic) was then 

determined by two way ANOVA, with elevation as a covariate. Correlations between 

elevation and the characteristics measured were also calculated.

The average values for plant height, leaf length and number of live and dead 

leaves were also plotted over time for plants facing north and south, and for plants 

growing at the three different slopes.

HI. Results

A scatterplot of the results of the survey of natural fringing marshes in the Great 

Bay Estuary demonstrated no strong relationship between surface slope and the end-of- 

season aboveground biomass in these eleven sites (Figure 21).

To determine if surface slope or north-south orientation had an effect on the 

growth of newly transplanted shoots, the mean difference between initial and final 

measurement for each growth characteristic was calculated and compared using two 

factor ANOVA. The values for the four plants that died over the course of the 

experiment were omitted from the data set. Neither slope nor orientation had a 

significant effect on plant growth for any of the growth characteristics measured. In 

addition, the slope x orientation interaction term was not significant in any case, 

indicating that the two treatments were independent of each other. Elevation was
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Figure 21. Correlation between surface slope and end-of-season standing 
aboveground biomass on eleven natural salt marshes in the Great Bay 
Estuary (r=-0.529).
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included in the models as a covariate at first, but because it was not significant in any 

case, it was removed. ANOVA results are summarized in Table 6.

The elevations of all transplants were within a range of 21 inches (S3 cm). 

Correlation analysis was also conducted to explore possible relationships between the 

elevations of plants and their growth. Calculated correlation coefficients were less than 

0.125 for all growth characteristics except for the number of live leaves, which was 

slightly correlated with elevation (r=0.368).

The soil temperatures both inside and next to the pots on Aug 25 ranged from 22- 

26°C. Inside the pots, the mean soil temperature was 24.2°C +/- 0.2 SE, and outside the 

pots the mean soil temperature was 23.8°C +/- 0.2 SE. A two-way ANOVA showed no 

significant difference in the soil temperatures between pots at the three slopes (p =

0.197), or between pots facing north versus south (p = 0.628). There was also no 

significant interaction between slope and orientation (p = 0.225).

Figure 22 illustrates the relationship between north-south orientation and plant 

growth as measured by change in total leaf area, number of live leaves, rhizome length, 

aboveground and belowground dry weight, and total dry weight. The effect of surface 

slope on these same growth characteristics is shown in Figure 23. Initial measurements 

of transplanted 5. altemiflora were very similar in all experimental groups. Growth did 

occur in all treatment groups for all of the characteristics measured, with the exception of 

rhizome length. The average rhizome length of plants growing at a 25% slope actually 

decreased from the original value (Fig. 23c). The mean rhizome length of north-facing 

plants also decreased slightly (Fig. 22c).

The rate of plant growth at different slopes and orientations was explored using 

plant measurement data collected approximately every twenty days throughout the course 

of the growing season. Figure 24 shows how the growth rates of north-facing and south-
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Table 6. Summary of two factor ANOVA results. Treatments were surface slope 
and north-south orientation.

Dependent Variable
(trto)

df SS F P

Total leaf area
Slope 2 1360.448 1.344 .2833
Orientation 1 6.493 .013 .9109
Slope x Orientation 2 480.469 .475 .6289
Total 20 10121.477

Number live leaves
Slope 2 2.424 .225 .8005
Orientation 1 6.216 1.154 .2955
Slope x Orientation 2 9.750 .905 .4205
Total 20 107.750

Rhizome length
Slope 2 77.174 .777 .4738
Orientation 1 53.761 1.083 .3111
Slope x Orientation 2 5.209 .052 .9490
Total 20 943.373

Aboveground biomass
Slope 2 .072 .182 .8350
Orientation 1 .019 .094 .7618
Slope x Orientation 2 .008 .021 .9790
Total 20 3.969

Belowground biomass
Slope 2 .074 .054 .9472
Orientation 1 .025 .036 .8516
Slope x Orientation 2 1.280 .935 .4090
Total 20 13.692

Total dry weight
Slope 2 .136 .045 .9560
Orientation 1 .002 .001 .9729
Slope x Orientation 2 1.178 .389 .6827
Total 20 30.277
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facing plants compared as indicated by changes in leaf length, shoot height and the 

number of dead and live leaves over time. In Figure 25, the growth over the summer 

season of plants at different slopes is illustrated. These figures show very little difference 

in the total growth or the growth rate of plants at different slopes or orientations.

IV. Discussion

The results of this experiment did not support my original hypotheses that marsh 

surface slope and north-south orientation will affect the first season's growth of 5. 

altemiflora transplants. Slope and orientation had no significant effect on any of the 

growth characteristics I assessed (Fig. 22 and 23). Aside from a possible relationship 

between surface slope and rhizome growth, no trends were evident. I also found no 

correlation between the growth of the transplants and their elevations in the intertidal 

zone. This was expected, since I minimized the effect of this variable by locating all 

transplants within a narrow elevational range.

Other studies have found that the elevation at which S. altemiflora seedlings are 

planted on created salt marshes does affect their rates of growth and survival (Shisler 

1990). In an experiment to test the effects of elevation on S. altemiflora growth in a 

constructed salt marsh in Texas, Webb and Dodd (1989) found significant differences in 

the height, density and survival of transplants growing at different elevations. They 

attributed this to the various lengths of time that plants were inundated by tidal waters.

At my experimental site, all plants were within an elevation range of 21 inches, so that 

the amount of time they were inundated differed by at most only an hour each day. I 

might have seen differences in growth if transplants had been planted at a wider range of 

elevations, but this was not my goal. By placing all thirty pots within such a narrow band 

of elevation, I minimized the effects of this variable on plant growth.
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The fact that there were no significant differences in above- or belowground plant 

growth between plants on north-facing and south-facing slopes indicates that all plants 

were receiving adequate sunlight for growth. In terrestrial systems, south-facing slopes 

typically have greater temperatures than north-facing slopes, which can contribute to 

increased plant growth (Aber and Melillo 1991). I recorded the temperature of the soil in 

all the experimental pots and found no significant difference in temperature between 

north-facing and south-facing pots. Because the plants were growing in the low marsh 

zone, tidal waters covered the pots twice a day, and probably had a stabilizing effect on 

soil temperatures.

I chose 3%, 10% and 25% slopes for this experiment because they were 

representative of the range of slopes I had observed in natural fringing salt marshes 

(3.8%-25%). The range of slopes I had measured in the six constructed marshes was 

somewhat larger than that of the natural marshes. One of the constructed salt marshes 

had a surface slope of only 1%, and another was quite steep (33% slope). Given that 

there is such a wide range of slopes in both natural and constructed salt marshes in the 

area, and given the positive correlation (r=0.935) I had observed between surface slope 

and aboveground production in fringing marshes from the Saco River to the Great Bay 

Estuary (Figure 6) (discussed in Chapter 2), I was surprised to find that in my 

experiment, I saw no effect of slope on plant growth. Although as Figure 21 illustrates, 

this positive slope/aboveground biomass relationship was not observed in the eleven sites 

I sampled in the Great Bay Estuary. In the two most steeply sloped sites, where the 

surface slope was greater than 15%, aboveground biomass values were low (<300 g/m2).

It is possible that it is not the slope of the marsh surface itself, but some other, 

related factor that is responsible for the differences in plant growth I observed in natural 

marshes. Several environmental parameters have been shown to affect the growth and
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production of S. altemiflora in natural salt marshes, including sediment oxidation status 

(Eh), salinity, sulfide concentrations, and nitrogen availability (Linthurst 1980; Morris 

and Dacey 1984; Howes et al. 1986; Teal 1986). In portions of the marsh that are 

inundated frequently by the tides, soils are typically more well drained and sediment 

oxidation rates are higher than in areas where soils have a higher peat content and are 

more waterlogged (Burdick et al. 1989). This leads to more rapid gas exchange between 

plant roots and the surrounding soil, which can result in higher rates of aerobic 

respiration in plant root cells in more well drained soils. In addition, the availability of 

oxygen in soils has been shown to influence nitrogen uptake rates by plant roots (Morris 

and Dacey 1984), and nitrogen is a limiting nutrient for S. altemiflora (Teal 1986).

However there is a trade-off in well-drained soils between greater oxygen content 

and nutrient levels. Salt marshes that have been constructed with soils that are 

predominantly sand have nitrogen levels that are too low to sustain vigorous plant 

growth, as sand does not retain nutrients due to its low cation exchange capacity (Shisler 

and Charette 1984; Broome et al 1988). This is why current recommendations are that 

created marsh soils contain a mixture of sand, clay and organic rich soil (Bosworth and 

Short 1993). And in natural fringing marshes, sites with very steep slopes (>15%) may 

drain too quickly, so that plants cannot obtain the water and nutrients they need for 

optimum growth.

The trends in plant growth I observed in natural salt marshes of different surface 

slopes are therefore probably not due directly to the slope of the marsh surface, but to the 

characteristics of the soil in which the plants are growing. Generally, more steeply 

sloped fringing marshes are better drained, resulting in more oxidized soils (Burdick et al.

1989), and experience a greater "tidal subsidy," which brings nutrients to plant roots and 

flushes away waste materials (Odum 1980). However there is an upper limit to the

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



slope/production relationship observed in natural fringing salt marshes. In this 

experiment, although the slope was varied, all edaphic factors were controlled, as the soil 

was identical in all 30 pots. This could explain why I did not observe any differences in 

plant growth.

Another possibility is that if plants had not been harvested at the end of the first 

growing season, but had overwintered and grown for another year, differences in growth 

may have been evident after the second growing season. Transplanting causes stress to 

plants, and I observed that the newly planted S. altemiflora did not produce new leaves 

for several weeks after transplanting (Fig. 24d). In addition, at the time of harvest, plants 

growing in the pots were substantially smaller in size than plants growing nearby in the 

marsh. Giving the plants an earlier start might help lessen the problem of transplant 

stress. At one constructed site in the Great Bay Estuary, researchers found that planting 

in the late fall gave plants a head start in spring growth (Short, pers. obs.). Plant growth 

at this constructed site during the following summer season was much greater than at 

sites where transplanting had taken place in the spring.

The results of this experiment did not support my hypothesis that surface slope 

and north-south orientation affect the first season’s growth of 5. altemiflora plants 

transplanted to created marsh soils. However, because this was a one-year study, I 

cannot draw any conclusions concerning the long-term growth of S. altemiflora 

transplants in constructed marshes of different slopes and north-south orientations. 

Although I observed no differences in the growth of transplants during the first growing 

season, further research is needed to determine whether it is necessary to consider these 

two environmental parameters as one designs created salt marshes and selects sites for 

their construction in New England.
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CHAPTER IV

USING FUNCTIONAL TRAJECTORIES TO MODEL CONSTRUCTED SALT 
MARSH DEVELOPMENT IN THE GREAT BAY ESTUARY, ME/NH, USA

I. Introduction

There has been growing awareness in recent years of the value of tidal wetlands to 

the economy and sustainability of coastal ecosystems in the Gulf of Maine (Comelisen 

1998). However, development pressures on coastal environments have been at odds with 

the goal of maintaining the ecological integrity of marshes, and anticipated growth and 

sprawl in the region is likely to further exacerbate the problem. Coastal salt marsh 

habitats in particular have been susceptible to a variety of anthropogenic impacts, 

including point and nonpoint source pollutants, invasive plant species, tidal restrictions, 

ditching, draining, and dredging of nearby waterways (Nixon 1982; Comelisen 1998). In 

addition, salt marshes are still vulnerable to permitted destruction in cases where impacts 

are deemed by regulators to be unavoidable due to necessary coastal development. These 

permitted impacts continue, despite estimates that only 50-75% of the coastal wetlands 

present before colonial times remain in the states of Massachusetts, Maine and New 

Hampshire (Cook et al. 1993).

The growth of coastal populations that has occurred over the past thirty years in 

northern New England is expected to continue (Culliton et al. 1990). The population of 

the coastal counties of New Hampshire almost doubled from 1970-2000, and even in a 

state like Maine, which is considered by many to be "remote,1' growth continues (Culliton 

et al. 1990). This has been evident in the southern Maine coastal town of Wells, which 

grew 28% from 1970-96 (SMRPC 1996). In response to development pressures that have 

accompanied the growth, there have been increasing efforts to restore salt marshes or
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create new ones to mitigate for permitted impacts or historic damage. Unfortunately, it is 

unclear to what degree constructed wetlands actually function like natural ones, and if 

they do, how long it takes for a constructed marsh to approximate the functions of a 

natural marsh.

A goal of this study was to evaluate the success of six constructed (both created 

and restored) salt marshes in the Great Bay Estuary, located along the Maine/New 

Hampshire border. All of the sites were constructed to compensate for impacts to natural 

salt marshes in the area. Although constructed salt marshes located further south along 

the East Coast have been studied, little research had been conducted to assess the success 

of projects as far north as Maine and New Hampshire. Constructed salt marshes in 

northern New England are generally smaller in size than those found further south, and 

they are subject to more severe weather conditions, including winter ice formation and 

ice movement onto marsh surfaces.

Determining whether a constructed wetland project is a success can be difficult 

because no standard method exists for determining success or failure, and in fact, there is 

still no agreed upon definition of success (Roberts 1993; Short et al. 2000). We used 

Quammen's (1986) definition of functional success to guide our evaluation of the 

constructed salt marshes in the Great Bay Estuary. After reviewing a range of studies 

that evaluated wetland mitigation projects, she categorized them as either achieving 

compliance success (meeting permit requirements) or functional success (replacing the 

functions of the impacted wetlands). She found that most studies of mitigated wetlands 

addressed their compliance success, but not functional success, and argued for 

comparisons of created or restored wetlands with control sites in “long-term, well- 

designed studies’* (Quammen 1986). Her definition of success based on wetland 

functions agrees with the U.S. government’s “no net loss” policy for wetlands, which 

specifies that impacted wetland functions should be replaced by the created or restored 

sites (Brinson and Rheinhardt 1996; Zedler 1996).
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To study the functional success of a constructed wetland, the desired functions of 

the system first must be identified. Brinson and Rheinhardt (1996) defined wetland 

functions as ecosystem activities or processes that occur over time and do not depend on 

societal perceptions; that is, they continue to occur whether or not people care about 

them. The U.S. Army Corps of Engineers (199S) defines wetland functions similarly, as 

the self-sustaining properties of a wetland ecosystem that exist in the absence of society.

Early studies designed to assess whether constructed salt marshes are equivalent 

to natural marshes in terms of their functions produced mixed results, but in general the 

success rate of projects was low (Race and Christie 1982; Race and Fonseca 1996). 

Evaluating the functional success of created and restored salt marshes has continued to be 

an active area of research among estuarine ecologists. Carefully designed scientific 

studies where a created or restored site is paired with one (or sometimes two) reference 

site(s) and their structures and functions compared have been conducted in many coastal 

states, including California (Zedler and Callaway 1999), Connecticut (Sinicrope et al.

1990), Maine and New Hampshire (Short et al. 1998), North Carolina (Levin et al. 1996; 

Craft et al. 1999), Virginia (Havens et al. 1995), and Washington (Simenstad and Thom 

1996).

To see if the functions of created and restored salt marshes follow any particular 

patterns of development over time, some investigators have explored the use of 

functional trajectory models, also known as performance curves. To build these models, 

two approaches have been used. In the Erst, data are collected at a single constructed site 

over a period of many years, whereas in the second, data are collected from many 

constructed sites of varying ages at one point in time. In both cases, the constructed sites 

are compared to one or more reference sites. As time goes on, the level of function of the 

created or restored wetland should approach that of the natural, reference wetlands if it 

has been appropriately designed and built (Kentula et al. 1992). Kentula states that 

trajectories could be used to determine how frequently to monitor projects (by noting
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yearly changes of variables of interest) and to address management questions. Important 

questions are: (a) what level of function is achievable for natural wetlands and projects in 

particular settings? (b) do the projects achieve the same level of function as natural 

wetlands? (c) how long does it take for projects to achieve the desired level of function? 

and (d) how can monitoring be timed so as to obtain the most reliable information 

(Kentula et al. 1992)? Whether development of functions in constructed marshes follow 

predictable trends is still being debated, as is the potential value of trajectory models in 

assessing constructed salt marsh projects (Zedler and Callaway 1999; Simenstad and 

Thom 1996).

The constructed salt marshes we evaluated in the Great Bay Estuary ranged in age 

from 1-14 years in age, which allowed us to investigate whether the functions we 

assessed showed developmental trends over time. By assessing one or more indicators 

associated with a function and correlating the level of the indicator with the ages of the 

constructed marshes, we could determine whether the level of function of the created 

wetland was approaching that of the natural, reference marshes.

The specific objectives of this study were to (1) compare several of the functions 

of created fringing salt marshes to those of natural fringing salt marshes in the Great Bay 

Estuary, and (2) determine if the relationship between the ages of the constructed sites 

and their levels of function could be modeled using functional trajectories.

II. Materials and Methods

A. Description of study sites

The Great Bay Estuary is a complex embayment on the Maine-New Hampshire 

border that has high tidal energy and includes mud flat, eelgrass, channel bottom, rocky 

intertidal and salt marsh habitats (Short 1992). The Estuary’s salt marshes are either the 

typical New England salt marsh type, larger meadow marshes found primarily at the
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mouths of most of the rivers and dominated by high marsh, or the smaller fringing salt 

marsh type, narrow in width and forming a discontinuous band around the periphery of 

the Estuary. The six constructed salt marshes were all fringing salt marshes, located 

along the edges of the Estuary’s bays, rivers or streams (Fig. 26). Fringing marshes in 

this area typically have greater surface slopes, less soil organic matter content, and plant 

communities comprised of greater proportions of Spartina altemiflora than nearby 

meadow marshes. They are also more variable in terms of physical characteristics and 

levels of function than larger meadow marshes (Morgan and Short 2000).

As mentioned earlier, most of the constructed sites we studied had been created or 

restored as mitigation for natural salt marshes that were destroyed as a result of 

development projects, including the expansion of a private marina (site 3) and the Port of 

New Hampshire (sites 1,4,5 and 7). Another salt marsh was constructed at a site where 

an existing natural marsh had been impacted when a loading platform for a retail store 

was built. The state had required that the structure be removed and the site be restored to 

salt marsh habitat (site 31). At the time of our study, the constructed sites ranged in age 

from one to fourteen years.

B. Sdtttlag reference sites

Based on past experience and the scientific literature, we first developed a list of 

the functions and values of New England’s salt marshes (Table 1) and selected several of 

the functions for study, including primary production, sediment trapping and binding, 

organic matter accumulation, and maintenance of plant diversity. Next we chose a 

number of natural sites to serve as reference sites. We based our choice of reference sites 

on several physical characteristics that had been observed to correspond with the 

functions that we were interested in studying (Gleason et al. 1979, Stumpf 1983,

Jacobson and Jacobson 1989, Kastler and Wiberg 1996). These physical characteristics 

were the north-south orientation of the site, percent surface slope, fetch, width and length.
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Figure 26. Location of constructed and reference sites within the Great Bay Estuary. 
Constructed sites are indicated by circled numbers.
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Measurements were made first at the six constructed sites so that the range of values for 

each physical characteristic could be determined. We then collected similar data from 26 

natural fringing marshes in the Estuary.

North-south orientation was determined by taking a compass reading while facing 

open water. Values were then converted to a linear north-south scale, from 0* (north) - 

180* (south), by subtracting readings greater than 180* from 360*. Surface slopes were 

measured along three transects running perpendicular to the upland edge of the marsh. 

Slopes were determined using a water level attached to a hose and a SO-m tape, and 

measurements were averaged. Fetch measurements were made using a rangefinder for 

smaller distances or a U.S.G.S. topographic map for greater distances. We measured the 

distance between the marsh edge and the nearest land across the water in the 

perpendicular direction, as well as the distances to the nearest land 45s to either side of 

the perpendicular line. The three values were averaged to determine mean fetch. The 

length and width of each salt marsh was measured with a SO-m tape. The mean width of 

each marsh was calculated from measured widths along five equally spaced transects 

which ran from the upland to the edge of the marsh along the water.

The physical characteristic data collected from the constructed and natural salt 

marshes were reviewed to identify reference sites for each created or restored site. The 

data from all 32 surveyed sites were analyzed using Principal Components Analysis 

(PCA). The PCA resulted in the sites being sorted so that those most similar in terms of 

the physical characteristics measured were clustered together on a two dimensional graph 

(Fig. 27). We then located the points representing each and identified the two natural 

marshes closest to each of these constructed sites on the graph. The six constructed sites 

and 11 reference sites selected for study are shown in Figure 26.
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Figure 27. Principal Components Analysis of the physical characteristics of created and 
natural salt marsh sites. Filled circles represent constructed marshes; diamonds represent 
natural marshes. The two reference sites closest to each constructed site on the PCA 
diagram are circled. Each constructed site and its two reference sites are labeled with 
their site numbers. Loadings of each variable on the final rotation are listed in Table 9.
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C. Measuring salt marsh functions

We next measured indicators of each of the four chosen salt marsh functions at 

the six created/restored and the 11 reference sites (Table 7). An indicator is a variable 

closely associated with a particular wetland function. Indicators should be sensitive 

enough to represent functional performance and be relatively easy to measure (Kentula et 

al. 1992). Measures of wetland structure (eg. soil organic matter) are often used as 

indicators instead of direct measures of function (eg. organic matter accumulation) due to 

economic and time constraints. However these structural measurements can become 

measures of function if they are made over time (Kentula et al. 1992).

The peak aboveground standing crop served as an indicator for the function of 

primary production. It should be noted that using the standing crop as an indicator of 

primary production underestimates true aboveground net production by 10-15% because 

it does not account for the turnover of new plant tissues during the growing season 

(Nixon and Oviatt 1973). At the reference sites and at the two oldest constructed sites, all 

vascular plant vegetation was clipped in six randomly distributed 0.5 m2 quadrats at the 

end of the growing season. Algae were removed from the sample. Live plants were 

separated from dead material and then dried at 60*C for 48 hr. To avoid adversely 

impacting the still sparsely-vegetated constructed sites, aboveground biomass was 

estimated from percent cover and shoot area according to the equation: Biomass = 0.658 

* (% cover) + 0.557 * (Shoot area) (developed by Short et al. 1998)3.

Soil organic matter content was measured by loss on ignition. Three cores (5 cm 

deep, 3.5 cm diam.), evenly spaced along the middle of the site, were sampled from each 

marsh. Percent organic matter in the sediment was then determined from weight loss 

upon combustion in a muffle furnace (450*C for 4 hr) (Craft et al. 1991).

3 Shoot area=0.776 * shoot height -2.26 for two leaves, +0.49 for three leaves, +6.57 for four leaves, 
+11.24 forfive leaves, +45.29 fo r 6-8 leaves: r2 =0.933.
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Table 7. Salt marsh functions studied and indicators assessed at constructed and 
reference marsh sites.

Function Indicator
Primary production Annual standing crop 

(above and belowground 
biomass/area/time)

Soil organic matter accumulation Soil organic content over time 
(grams organic matter/area/time)1

Maintenance of plant diversity Species richness (no. species/site); relative 
abundance (percent cover of plant species)1

Sediment filtration, trapping and Sediment accumulation on discs
binding

t -m.__' ________ 1 “ ______ J___i_____

(grams sediment/area/time)

1 These measurements were made only once in this study, so were not tracked over time.
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The ability of sites to trap and bind sediments was assessed by measuring the 

amount of sediment accumulated on the marsh surface over a period of time. Sediment 

was collected on mylar discs (8 cm diameter) distributed on the surface of each marsh for 

two experimental intervals of three weeks, one beginning on July 18 and the second 

beginning on August 7. Five traps (Fig. 4) (modified from Reed (1989)) were evenly 

spaced in the middle of each marsh, along a line running parallel to the water’s edge.

The ability of the marsh sites to maintain a diverse plant community was assessed 

by determining the species richness and relative abundance of vascular plants at each site. 

Sampling occurred along at least three band transects running from the water’s edge to 

the upland edge. Quadrat size was 1 mz and the distance between transects was 20 m at 

most sites. To more adequately sample smaller sites, quadrat size and the distance 

between transects were reduced while maintaining similar sampling intensity. Percent 

cover of all species in quadrats was estimated visually using the following cover classes: 

0%, 0% < x < 1%, 1% < x < 5%, 5% < x £ 10%, 10% < x < 20%, and continuing above 

20% in 10% increments up to 100%. Total percent cover per quadrat did not exceed 

100%.

D. Data analysis

Mean values for the six created and eleven natural sites were calculated for 

aboveground production, sediment deposition and soil percent organic matter, and were 

then compared using analysis of variance (ANOVA), with ‘group’ as a blocking factor.

A site’s ‘group’ designation referred to the matching of each constructed site with its two 

reference sites (Fig. 27). Plant diversity data were analyzed to compare the mean number 

of species per site and the mean species diversity as measured by the Shannon-Weiner 

index (H) in constructed and reference marshes (Goldsmith et al. 1986). In addition, 

plant species composition and abundances at each constructed and natural site were 

compared using Detrended Correspondence Analysis, a type of ordination analysis (Hill 

andGauch 1980).
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The relationship between the ages of the created/restored sites and their level of 

function was explored by plotting the data for each indicator measured, with age of the 

constructed sites as the independent variable. The objective was to see if the data fit 

trajectories that could be used to describe general patterns in the development of the 

constructed sites over time. We determined that the 95% confidence intervals around the 

means of the indicators (dependent variables) measured at the reference sites would be 

the desired outcome values for the constructed sites. After observing any apparent trends 

in the data, we fit nonlinear models to the constructed site data (S YSTAT 9). The 

maximum value for the dependent variable (or minimum, in the case of sediment 

deposition) was set at the 95% confidence interval around the mean of the eleven 

reference sites. Models tested for each indicator were selected or rejected based on their 

coefficients of determination (r2) and on whether they made sense ecologically, given our 

current understanding of constructed salt marsh development and salt marsh ecology. 

Thus, the trajectory models show the degree to which the dependent variables (indicators) 

from the constructed sites approach reference values and in addition, the rate at which 

this happens.

Aerial photographs indicated that reference site 30 was not present before the 

construction of a road across Inner Cutts Cove 22 years earlier, so after nonlinear models 

were developed using constructed site data, values for site 30 were plotted to see how 

they compared to the trajectories.

in . Results

A. Selection of reference sites

Results of the initial study of the physical characteristics of the six constructed 

marshes and 26 natural salt marsh sites (potential reference sites) are summarized in 

Table 8. All of the sites were relatively narrow in width (29 m or less), and had distinct 

north-south orientations which ranged widely from facing due north (0*) to due south
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Table 8. Summary of results of physical characteristics measured at 32 salt marsh sites 
(six constructed and 26 natural) in the Great Bay Estuary. Numbers are means +/-1 
standard error.

Length Cm) Width Cm)
North/south 

orientation (°) Fetch (m)
Surface 

slope (%)
All sites (n=32) 100+/-11 11+/-1 105 +/-10 296+M 2 10+/-1

Constructed sites (n=6) 90+/-27 9+/-3 114+/-29 181 +/-92 9 +/-3
Natural sites (n=26) 102 +/-12 11+/-1 103 +/-10 323 +/-46 10+/-1

Table 9. Principal Components Analysis loadings of five 
physical characteristics measured. Total variability accounted 
for by axis 1 was 44.4%, and for axis 2 axis was 20.1%.

Variable Factor 1 Factor 2
Length 0.423 -0.852
Width 0.871 0.045
North/south orientation 0.321 -0.057
Fetch 0.722 0.522
Surface slope -0.811 0.047
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(180*). The average fetch varied considerably from site to site, as some of the marshes 

were on the edges of bays, whereas others were located along very small creeks. In 

general, constructed sites were located in more protected areas, although the fetch at 

created marsh site 3 was quite large (583 m). The surface slope of the 32 marshes ranged 

from 1 - 25%, with a mean of 10%.

Principal components analysis showed that 64.5% of the variability in the data set 

is explained by the first two components (axes) (Table 9). The component loadings for 

each variable (physical characteristic measured) show that marsh width, fetch and surface 

slope had the greatest influence on where sites were plotted on the x axis (factor 1), and 

length was most important in determining where sites would lie on the y axis (factor 2). 

The two natural sites on the graph that were the shortest distance from each constructed 

marsh site on the graph were chosen as reference sites for that constructed site (Fig. 27).

B. Comparison of constructed and reference site functions 

There was high variability among both constructed sites and reference sites for 

most of the indicators measured (Fig. 28). Although mean values for constructed and 

reference sites were significantly different for aboveground production, amount of 

sediment deposited and soil organic matter content, there was overlap between values for 

some individual reference and constructed sites.

Mean values of constructed (n=6) and reference (n=ll) sites were compared using 

ANOVA, with 'group' (representing each group of one constructed and two reference 

sites) included as a blocking factor. Both aboveground biomass production (P=0.0096, 

block P=0.0703) and percent soil organic matter (P=0.0001 log transformed data, block 

P=0.2118) were significantly greater at reference sites (Fig. 28a, b), but the average 

amount of sediment deposited on the surface of constructed marshes over the time 

measured was greater than that deposited on reference sites (P=0.0086, block P=0.2466) 

(Fig. 28c). Because the relative amounts of sediment deposited on the created and
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reference sites were similar over the two sampling periods, the results of the two trials 

were averaged.

The mean number of plant species at reference sites (11) was significantly greater 

than at the created/restored sites (6 species) (P=0.0201) (Fig. 28d). The range of values 

was quite large for reference sites, from two species to 13 species per site. In addition, 

the oldest constructed marsh (site 31) had greater species richness than the mean of the 

reference sites, and two of the reference sites had lower species richness than the mean of 

the constructed sites. Even with this degree of overlap we found a significant difference 

in species richness because we were able to objectively select reference sites. To 

compare plant diversity between constructed and reference marshes using the Shannon- 

Weiner index (H), we randomly selected nine quadrats from among those sampled at 

each site, as this was the minimum number sampled at any site. We found no difference 

in diversity as measured by this index (P=0.1155) (Fig. 28e).

With the exception of the oldest constructed site, the plant communities of all of 

the constructed sites were dominated by Spartina altemiflora, the dominant low marsh 

species in Maine and New Hampshire. The fourteen year old constructed site contained 

S. altemiflora and the high marsh plant Spartina patens in equal amounts. S. patens was 

also present in constructed site 3 (six years old), but comprised less than 1% of the 

percent cover. The proportions of the dominant low and high marsh plant species varied 

among reference sites, although the plant communities at all but three sites contained 

more S. altemiflora than high marsh species (S. patens, Distichlis spicata and Juncus 

gerardii) (Table 10).

Results of the ordination analysis (Fig. 29) indicate that with the exception of the 

oldest constructed marsh (site 31,14 years old), all of the constructed sites are clustered 

to the left along the abscissa, indicating that their species compositions were different 

from those of the reference sites. The species composition of reference site 30 (identified 

as <22 years old) was most similar to that of the five youngest constructed sites.
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Table 10. Percent cover of dominant low marsh 
(Spartina altemiflora) and high marsh (S. patens, 
Juncus gerardii & Distichlis spicata) plant species 
at constructed and reference salt marsh sites.

Site Type

Percent cover
Spartina

altemiflora
S. patens, 

Juncus gerardii & 
Distichlis spicata

1 C 11 0
3 C 38 <1
4 c 1 0
5 c 8 0
7 c 42 0

31 c 29 37
2 R 20 47
6 R 22 22
8 R 35 21
12 R 34 11
19 R 26 12
22 R 35 5
24 R 25 9
26 R 19 38
29 R 26 13
30 R 55 1
32 R 5 84
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Figure 29. Ordination analysis of plant species percent cover data at six constructed and 
eleven reference salt marshes. Constructed sites are represented by open circles, reference 
sites by triangles.
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C. Functional trajectory models of marsh development

Functional trajectory models for aboveground biomass, soil organic matter 

content, sediment deposition and plant species richness are illustrated in Figure 30-33. 

Constructed marsh values for all of these indicators followed a discemable pattern as 

indicated by the regression line. The other indicator of plant diversity, the Shannon- 

Weiner index (H), did not show any relationship with the increasing age of constructed 

marsh sites (Fig. 34).

Peak season aboveground biomass, the indicator for primary production, followed 

a logistic curve, leveling off at 310 g/m2, a value that is less than the mean of the 

reference sites (348 g/m2), but that is within the 95% confidence interval around the mean 

(Fig. 30). Aboveground biomass values at constructed site 7 were much greater than 

those of the other constructed sites, and greater than two thirds of the reference sites. 

Because we believe this to be due to excess nitrogen input to North Mill Pond from 

sewage waste, we present trajectories calculated with the value from site 7 included (Fig. 

30a), as well as with the site 7 value excluded (Fig. 30b). The percent soil organic matter 

curve was logistic, having been constrained to level off at 23%, the mean of the eleven 

reference sites (Fig. 31). Sediment deposition was much greater at younger constructed 

sites than at older constructed sites. The trajectory for this indicator followed a curve 

resembling that of exponential decay, but was constrained to level off at the reference site 

mean (2.6 g/m2/day) (Fig. 32). The trajectory curve for plant species richness plateaued 

at 9.7 species, compared to the mean reference value of 8.4 species per site (Fig. 33).

Values for site 30, the reference site that was 22 or fewer years old, fell close to 

the calculated trajectory lines for the four functions illustrated in Figure 30-33. This was 

not the case for site 30's Shannon-Weiner diversity index value however, which fell 

outside of the 95% confidence interval around the reference site mean. Also, there was 

no pattern to the constructed sites' Shannon-Weiner index values (Figure 34).
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Figure 30. Trajectory models for aboveground biomass at constructed sites of varying 
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IV. Discussion

A. Selection of reference sites

The six constructed sites we studied in the Great Bay Estuary were not all 

adjacent to each other, but rather were distributed throughout the Estuary (Fig. 26). We 

wanted to choose reference sites for comparison purposes that would represent natural 

fringing salt marshes in the Estuary, and that were similar to the constructed sites in terms 

of their physical characteristics. Underlying current methods of selecting reference sites 

is a basic assumption that there is a relationship between the physical characteristics of 

wetland systems and their functions (Brinson and Rheinhardt 1996), so we made this 

assumption explicit in our site-selection process.

Several of the physical characteristics we measured (surface slope, fetch, width, 

length) had been identified in the literature to correlate with the functions we were 

interested in studying (Gleason et al. 1979; Stumpf 1983; Jacobson and Jacobson 1989; 

Kastler and Wiberg 1996). The north-south orientation of the site was also included, as 

our previous investigations of fringing salt marshes had revealed a possible correlation 

between orientation and aboveground production. The physical characteristic data 

gathered from the constructed sites and the potential reference sites were then analyzed 

using PCA, which allowed us to quickly determine which of the natural sites were most 

similar to the constructed sites. PCA is a statistical method that reveals patterns in 

multivariate data (S YSTAT 9). Once the sites that were most similar to each other in 

terms of their physical characteristics were clustered together on a two-dimensional 

graph, the two natural sites most similar to each constructed site could easily be identified 

(Fig. 27). These eleven natural sites would serve as replicates when comparing the mean 

values for aboveground production, sediment deposition and soil percent organic matter 

between created (n=6) and natural (n= ll) sites. Using PCA allowed us to be more 

objective in the reference site selection process.
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Most studies evaluating the structure and functions of constructed salt marshes to 

date have compared a constructed site to one or at most two reference sites (e.g. Moy and 

Levin 1991; Havens et al. 1995; Craft et al. 1999; Zedler and Callaway 1999). Usually, 

the selection of reference sites is left up to the “best professional judgement” of experts 

who rely on their experience and the scientific literature (Brinson and Rheinhardt 1996). 

In published studies of created and restored salt marshes, the rationale for choosing 

reference sites most often given is that they are located nearby the study site(s) (e.g. Moy 

and Levin 1991; Chamberlain and Bamhardt 1993; Havens et al. 1995; Scatolini and 

Zedler 1996; Burdick et al. 1997; Melvin and Webb 1998). In some cases, researchers 

have explicitly stated that their choice of references sites was based on particular criteria, 

such as comparable sediment composition (Packard and Stiverson 1975), similar 

hydrology (Langis et al. 1991; Levin et al. 1996), or presence of vegetation typical of a 

well developed wetland (Chamberlain and Barnhart 1993). Melvin and Webb (1998) 

chose reference sites based on whether their size, exposure, region of the bay, and level 

of disturbance (by adjacent human development) were similar to what was observed at 

the created site.

The choice of reference sites is very important, as these sites are used as 

benchmarks against which constructed sites are evaluated. Because variability is high 

among natural salt marshes, the selection of reference sites can greatly affect a study's 

outcome. Whether a constructed site is deemed a success or a failure could depend on 

the natural site to which it is compared. This is evident in Figure 28, which illustrates the 

variability among natural reference sites in the Great Bay Estuary. Because there is 

currently no consistent protocol used in the selection of reference sites for comparison to 

constructed salt marshes, there is the potential for experimenter bias, albeit unconscious. 

We believe that a more quantifiable, objective approach would improve the reference site 

selection process, and that PCA is a logical choice for doing this.
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It should be noted that in all cases, one of the two reference sites selected for each 

constructed site using PCA was also located near the constructed site in the Estuary. 

Natural sites that are "nearest neighbors" to constructed sites are often similar to them in 

terms of their physical characteristics.

In addition, in some highly developed coastal areas, natural salt marshes may not 

exist in close proximity to the constructed site being studied. The lack of nearby natural 

wetlands to use as reference sites is a problem for researchers working in many urban 

waterfront settings (Clark 1990). In some embayments along the southern coast of 

California, for example, there are no natural salt marsh acres remaining (Zedler 1988). 

This problem will become more common as the number of natural salt marsh acres 

continues to decline.

B. Comparison of constructed and reference site functions

Functional indicators for primary production, soil organic matter content and 

plant species richness had significantly lower mean values in constructed sites compared 

to reference sites (Fig. 28). Previous studies of constructed salt marsh sites along the 

East Coast have found that primary production rates in constructed sites are similar to 

those of reference sites after four or fewer years (Levin et al. 1996; Craft et al. 1999).

The mean age of the constructed sites we studied was 4.7 years, so it appears that more 

time may be needed for constructed marshes in the Great Bay Estuary to reach reference 

levels of aboveground production than for constructed marshes further south. In addition, 

the trajectory model generated shows that biomass values did not reach the reference 

value (or even the 95% confidence interval value) for 6-7 years (Figure 30b). This is two 

to three years longer than what has been observed at more southerly sites, indicating that 

this function takes longer to develop in marshes constructed in the colder New England 

climate.

The low soil organic matter content in all but one of the constructed marshes we 

studied was not unexpected (Fig. 28b). Earlier studies have shown that the soil organic
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matter content of constructed sites is slow to develop. Studies of constructed marshes less 

than five years of age on the East Coast have shown significantly lower levels of organic 

matter in constructed marsh soils than in reference site soils (Craft et al. 1988; Moy and 

Levin 1991). In their study of two constructed salt marshes in North Carolina (22-26 

years old), Craft et al. (1999) found the soil organic matter content at one constructed site 

to be similar to its paired reference site, but at a second constructed site the percent soil 

organic matter was still significantly less than that of its reference site. The maintenance 

of adequate soil organic matter content is important for a number of reasons. Organic 

matter inputs to salt marsh soils help marshes keep pace with rising sea levels and 

provide an important food source for the marsh detrital food web (Redfield 1972; Nixon 

1982). Organic matter reservoirs may also provide nutrients to organisms in the marsh 

and adjacent waters (Craft et al. 1989). And low soil organic matter content in young 

constructed salt marsh soils has been correlated with low infaunal diversity (Moy and 

Levin 1991; Sacco et al. 1994).

The trapping and binding of sediments is an important function of coastal salt 

marshes, as the rates of deposition and erosion of sediment at a salt marsh site are 

important factors in determining whether the site is drowning, expanding or being 

maintained over time (Phillips 1986). If salt marshes are to keep pace with rising sea 

level, they must be able to accrete at a rate equal to or greater than that of sea level rise. 

Along the Gulf of Maine, sea level has been rising between 0.9 and 3.9 mm/yr., and there 

is evidence that along parts of Maine’s coast, salt marshes are not keeping up with the 

rate of sea level rise (Kelly 1992). Vertical accretion relies on two sources of sediment; 

one from inorganic materials borne by waters that flood the marsh surface, and the other 

from above and belowground plant biomass which does not completely decompose, 

contributing organic material to marsh soils (Redfield 1972; Nixon 1982).

In a study of sediment deposition on Louisiana tidal marshes, Reed (1989) found 

rates of 2.9 g/mVday (excluding winter storm events, when sedimentation rates were
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much higher), which is close to our mean of 2.60 g/mVday for reference sites in the Great 

Bay Estuary. However we observed significantly greater amounts (6.90 g/mVday) of 

sediment deposited on all but one of the constructed sites over the same sampling period 

(Fig. 28c). This was not expected, as previous studies had shown sediment deposition 

rates to be correlated with plant stem density (Gleason et al. 1979), and the mean percent 

vegetative cover was much less in the constructed sites (31% +/-11 SE) than in reference 

sites (58% +/-5 SE). This led us to hypothesize that surface sediments on the constructed 

sites were being resuspended due to wave action, and that the greater amounts of 

sediment we observed on constructed site sediment traps were due to the redeposition of 

this suspended material. Thus, in young constructed sites, our measure of sediment 

deposition is more related to sediment resuspension, and does not likely reflect accretion, 

but rather a site's sediment binding ability. To get a better measure of net sediment 

accumulation over a longer time period in constructed sites, marker horizon methods 

would be more effective. Feldspar marker horizons have been successfully used to 

measure 6-12 month sediment accumulation rates in coastal Louisiana marshes (Cahoon 

and Turner 1989).

A simple measure of the plant diversity of a site is its species richness. While the 

mean number of species was significantly less for constructed sites than for reference 

sites (Fig 28d), the range of values for reference sites was high (from 2-13 species per 

site), and there was considerable overlap between individual constructed and reference 

sites. The diversity at individual sites as calculated by the Shannon-Weiner index also 

varied widely among reference sites (Fig. 28e). This high variability among reference 

sites points out the danger of using species richness or the Shannon-Weiner index as an 

indicator of plant diversity when comparing a constructed site to a single reference site.

The ordination results give a better picture of how the constructed and reference 

sites compare in terms of species composition and abundance (Fig. 29). Ordination 

analysis indicates how similar the plant communities of different sites are with respect to
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the types of species they contain (composition), as well as the percent cover (abundance) 

of those species. Clearly, all but the oldest constructed site (site 31,14 years old) are still 

quite different from the reference sites in species composition and abundance. While we 

might not expect a site constructed as a low marsh site to develop a large percent cover of 

high marsh species, we would expect these sites to be similar to at least some of the 

natural fringing salt marshes in the Estuary. This goal has not yet been obtained for the 

five youngest constructed sites, but it has for the 14-year-old site.

Evaluations of constructed salt marsh plant species diversity have been rare for 

created sites on the East Coast. Havens et al. (1995) reported that the species 

composition of a five year old created site (excavated upland) in Virginia was similar to 

that of two nearby reference sites, with Spartina altemiflora and Spartina patens being 

the most common species at all three sites. Studies of plant diversity in salt marshes to 

which tidal flushing has been restored show both high marsh and low marsh species 

recolonizing after as little as two years. Approximately ten years after tidal flow was 

restored to an impounded Connecticut salt marsh, Sinicrope et al. (1990) saw S. 

altemiflora increase to 45% cover, compared to <1% cover before restoration; the high 

marsh species D. spicata, J. gerardii, 5. patens, which were not present prior to 

restoration, comprised 10% of the vegetative cover. Burdick et al. (1997) found that only 

two years after tidal flow was restored to a New Hampshire salt marsh, Spartina patens 

comprised a large proportion of the site's vegetative cover, making it similar to the high 

marsh vegetation observed at the reference site. After three years, zonation patterns were 

beginning to emerge at the restored site, with S. altemiflora growing near tidal creeks.

No patterns of plant zonation had formed in the five youngest constructed sites we 

studied in the Great Bay Estuary. Only the six-year-old site contained the high marsh 

species S. patens, which comprised <1% of the vegetative cover. However the 14-year- 

old constructed site did contain distinct high marsh and low marsh areas (Table 10). In 

the reference marshes, the proportion of high marsh vegetation varied from site to site.
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Although all natural sites contained some amount of S. patens, D. spicata and/or J. 

gerardii, not all sites had distinct bands of high and low marsh vegetation. Also, seven 

out of the 11 natural sites had more S. altemiflora than the three high marsh species 

combined (Table 10).

C. Functional trajectory models of marsh development

The term "trajectory" has appeared relatively recently in restoration ecology, and 

has been used to describe the hypothetical path that a restored system takes to reach the 

level of function observed in healthy, natural ecosystems (Zedler and Callaway 1999). 

Trajectory models are smooth curves with particular shapes that illustrate patterns of 

functional development in restored or created sites. They have distinct end-points 

representing the level of function observed in natural systems. Although the models 

predict that created and restored site functions will increase to hit an end-point, in reality 

they may overshoot or never reach the target value (Kentula et al. 1992). The question is, 

do restored or created systems actually follow these hypothetical trajectories?

Having six constructed salt marshes of different ages all located within the Great 

Bay Estuary provided us with a unique opportunity to investigate possible patterns of 

functional development for constructed salt marshes in this part of New England, and to 

see if the patterns we observed would fit trajectory models. Most of the indicators we 

selected fit some form of trajectory model for the functions assessed (primary production, 

soil organic matter accumulation, maintenance of plant diversity, and sediment trapping 

and binding) (Figures 30-33). The trajectories we developed for each function were 

smooth curves, and indicator values fit nonlinear models well (all r2 values greater than 

0.9). The exception was the Shannon-Weiner index of plant diversity, which did not 

increase with the increasing age of constructed marsh sites (Fig. 34). Plant species 

richness was a better indicator of plant diversity in terms of fitting some reasonable 

trajectory.
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The curves we generated using nonlinear regression are good fits that make sense 

ecologically, although they are not necessarily the best statistical fit for the data. In all 

cases, there is some upper (or lower) limit to the curve, and this limit is within the 95% 

confidence interval of the mean reference site values. Both the aboveground biomass and 

the soil percent organic matter curves are logistic, increasing slowly at first and then 

rapidly toward reference values (Figs. 30,31). It appears to take a few years for a 

constructed site's vegetation to fill in and become established, after which time there is 

more source material available to contribute to the soil organic matter content. The 

increase in soil organic matter content is also related to the rates at which soil Eh values 

and belowground biomass decomposition decrease. The curve for aboveground biomass 

is much steeper than that for organic matter, showing that it takes constructed marsh sites 

longer to build up soil organic matter than it does for them to attain aboveground 

production values similar to those observed in reference sites. This agrees with what has 

been reported in other studies of constructed salt marshes along the East Coast (Craft et 

al. 1999).

Several researchers studying created and restored tidal marshes have attempted to 

fit constructed site data to trajectories. Simenstad and Thom (1996) tracked a restored 

tidal wetland in Washington state for several consecutive years, assessing a large number 

of structural and functional attributes. They found that while some indicators tracked 

along predictable trajectories over the five-year study period, many did not. Measures of 

epibenthic and fish taxa richness, fish density, and three indicators of bird use followed 

reasonable trajectories. Other indicators, including sediment organic matter content, 

increased slowly toward reference levels (as our trajectory indicates) or not at all. The 

authors questioned whether this was because the restored marsh was still in an early stage 

of its development They pointed out that some indicators might not be good measures of 

function. However, awareness of a long-term logistic trajectory, as we show with the
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development of soil organic matter over 14 years, may provide assurance that some 

constructed marshes can develop predictably.

Zedler and Callaway (1999) reported on four soil and vegetation indicators they 

had followed for up to ten years in a constructed salt marsh in California. The 

constructed site and its paired reference site showed high interannual variation, and only 

soil organic matter content values fit a trajectory model. They warned against making 

long term predictions using trajectories that are developed from short term observations.

In North Carolina, Craft et al. (1999) monitored two constructed salt marshes over 

the course of 22-25 years. Although they did not call them trajectories, they developed 

nonlinear models that fit data they collected at the two constructed sites and at their 

paired reference sites. At both constructed sites, aboveground biomass values overshot 

reference values approximately three years after construction, but later dropped to 

reference site levels. Macro-organic matter (a measure of the living and dead root and 

rhizome mat) values increased steadily toward reference site values, reaching them much 

earlier (after 3-5 years) in one site than in the other (after 20+ years). Sediment C:N 

ratios appeared to follow a linear trajectory, reaching reference site ratios in 10-25 years.

Our study differed from these three in that a number of different-aged constructed 

salt marshes were compared to a population of reference marshes in the same estuary at a 

single point in time. The constructed salt marshes we studied did fit trajectory models of 

functional development for the functions we assessed. The proximity of reference site 30 

(estimated to be at most 22 years old) to the trajectory paths in Figures 30-33 lends 

further support to the models. In addition, the trajectories we generated illustrate once 

again that while some functions, such as aboveground production, may develop in eight 

years or less in constructed salt marshes, others will take much longer. Our results 

indicate that the soil organic matter content of constructed sites will take 15-30 years to 

reach levels observed in most natural salt marshes in the Great Bay Estuary.
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We think that trajectories do have potential to address management questions 

related to salt marsh construction projects. Tracking the functional development of 

constructed salt marshes over time and comparing this development to trajectory models 

should help managers predict whether projects will reach reference levels at some point 

in time, and may help them determine when this will occur. Also, once trajectories have 

been developed for constructed salt marshes in a particular area, more effective 

monitoring protocols can be developed. The best indicators to monitor, as well as the 

most effective timing and frequency of monitoring can be determined. Trajectories may 

also provide managers and decision-makers with information they need to establish 

mitigation goals and ratios. In the Great Bay Estuary, our results indicate that to assess 

the functions of primary production, maintenance of sediment organic matter, sediment 

trapping and binding, and maintenance of plant diversity, monitoring should occur more 

frequently for the first five years, but should continue for at least IS years. Also, while 

the soil organic matter content should be monitored for up to 35 years, few aboveground 

biomass measurements should be necessary beyond 8 -1 0  years post-construction.

We carefully selected reference sites using PCA, acquired long-term data on 

marsh development and calculated trajectories to be used for evaluation of salt marsh 

restoration. Once established for other locations, such trajectories may improve both the 

planning and monitoring of salt marsh construction.
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Table Al. Locations of fringing and meadow marsh sites.
Site name Marsh type Location Latitude/Longitude

SRF Fringing Saco River, Biddeford, ME 43°24’24"N/70°32'29"W
BPF Fringing Biddeford Pool, Biddeford, ME 43°26'58"N/70°21'51"W
YRF Fringing York River, York, ME 43o8’10"N/70°39’13"W
ICCF Fringing Inner Cutts Cove, Portsmouth, NH 43°5'8"N/70o45'59"W
LHF Fringing Little Harbor, Rye, NH 43°3,21,N/70°43'53"W
BPM Meadow Biddeford Pool, Biddeford, ME 43°27'15"N/70°22'29"W
MRM Meadow Mousam River, Kennebunk, ME 43o20'49"N/70°30'39"W
LRM Meadow Little River, Wells, ME 43°20’24"N/70°32,39"W
DIM Meadow Drake's Island, Wells, ME 43°19,37"N/70°33,46"W
SCM Meadow Seavey Creek, Rye, NH 43°2'53"N/70°43'25"W
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Tabic A2. Physical characteristics of fringing and meadow marsh sites. Values are means of nine quadrats per site.

SITE Distance to edge (m) Std.Error Slope (%) Std.Error Salinity (ppt) Std.Error Elevation (in)' Std.Error Area (m!)

FRINGING MARSHES

SRF 5.24 1.32 10.9 2.5 23.3 2.4 96.8 4.5 1,784
BPF 20.70 4.29 5.1 1.1 30.1 1.0 90.9 9.0 18,951
YRF 6.01 1.72 8.4 1.9 32.6 2.0 111.2 2.6 9,067
ICCF 3.42 0.61 15.6 2.2 293 1.0 111.4 8.4 2,155

LHF 10.09 1.41 7.3 1.1 31.5 2.4 115.1 3.3 4,905
mean 9.12 3.09 9.2 3.5 29.4 1.6 105.1 4.7 7372

MEADOW MARSHES

BPM 40.78 16.15 1.6 0.5 35.3 1.2 126.0 2.9 173,603

MRM 27.00 7.44 3.7 1.6 31.3 2.3 120.6 3.7 147,146

LRM 53.56 11.83 2.1 0.4 33.8 2.6 129.3 1.0 133,918

DIM 13.67 3.65 3.9 0.8 37.9 1.2 122.2 2.3 169318

SCM 51.78 10.92 2.7 0.8 31.8 1.9 128.7 1.0 223320

mean 37.40 7.58 2.8 0.4 34.1 2.7 125.4 3.9 169,441

1 Elevation values are in inches above mean low tide.



Physical characteristics at (ringing and meadow marsh sitss. Raw data, collected 1997.

Site Quad Distance to Edos (m) <e 1 / Salinltv foot) Elevation
SRF 1 4.4 9.58 25 93.8625
SRF 2 10.7 3.23 19 113.7375
SRF 3 11.1 2.90 11 109.4875
SRF 4 4.9 1.39 25 100.8625
SRF S 2 9.50 27 90.3625
SRF 6 2.6 18.40 27 85.2375
SRF 7 8.8 12.32 113.8625
SRF 8 1.4 20.00 88.1125
SRF 9 1.3 20.90 29 75.8625
BPF 1 33.7 2.96 27 135.6125
BPF 2 10.3 4.95 25 68.7375
BPF 3 20.S 4.82 33 102.4875
BPF 4 24.9 3.63 30 104.3625
BPF 5 9.7 10.10 33 86.4875
BPF 6 33.5 0.38 31 101.2375
BPF 7 12.5 4.17 33 81.1125
BPF 8 2.2 4.68 27 50.1125
BPF 9 39 10.63 32 108.1125
YRF 1 2.1 17.44 106.175
YRF 2 1 8.97 94.675
YRF 3 6.2 5.75 42 111.675
YRF 4 12.2 0.96 36 111.425
YRF S 14.1 12.80 30 118.8
YRF 6 10.2 6.41 30 111.175
YRF 7 0.5 15.52 33 111.8
YRF 8 1.4 5.84 25 113.05
YRF 9 6.4 1.86 32 122.175
LHF 1 8.5 10.96 28 103.55
LHF 2 8.3 5.86 29 98.425
LHF 3 9.1 6.22 117.175
LHF 4 5.7 10.30 26 112.3
LHF 5 18.9 7.00 40 123.675
LHF 6 12.2 6.06 38 119.8
LHF 7 12.1 0 .22 131.05
LHF 8 6.1 9.34 111.175
LHF 9 11.9 9.66 28 119.05
CCF 1 3.3 26 .47 26 107.05
CCF 2 3.8 7.83 28 110.3
CCF 3 2.2 16.67 31 102.55
CCF 4 3.3 8.48 32 115.3
CCF 5 7.1 16.84 127.425
CCF 6 0.8 10.75 28 101.05
CCF 7 4.6 20.45 120.3
CCF 8 1.8 11.41 31 107.925
CCF 9 3.9 21 .73 111.05
UNEM 1 6 0.70 30 125.55
UNEM 2 4 0.83 30 109.3
UNEM 3 3 5.69 37 115.55
UNEM 4 5 0.96 36 121.925
UNEM 5 34 1.42 37 133.05
UNEM 8 20 1.76 39 131.3
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Physical characteristics at fringing and meadow marsh sites. Raw data, collected 1907.

Site Quad Distance to Edae fm) Slooe (%) Sallnltv (Dot) Elevation
UNEM 7 53 0.59 36 134.55
UNEM 8 120 1.78 40 129.175
UNEM 9 122 0.41 35 133.425
MRM 1 56 1.13 20 117.925
MRM 2 3 8.73 32 102.425
MRM 3 3 0.00 36 114.05
MRM 4 4 3.69 30 108.3
MRM 5 50 1.50 20 125.925
MRM 6 41 0.30 37 123.55
MRM 7 19 1.19 35 124.3
MRM 8 17 14.71 35 136.05
MRM 9 51 2.48 37 132.925
LRM 1 45 2.54 42 127.363
LRM 2 54 1.38 30 131.113
LRM 3 97 2.36 16 132.238
LRM 4 24 3.10 36 128.363
LRM 5 22 0.75 35 129.613
LRM 6 49 0.59 35 130.238
LRM 7 84 4.42 37 131.363
LRM 8 105 1.47 42 130.988
LRM 9 2 2.63 31 122.363
DIM 1 36 2.34 37 129.3
DIM 2 13 1.84 30 132.175
DIM 3 12 4.40 42 124.925
DIM 4 5 2.77 41 116.925
OIM 5 26 6.22 41 128.8
DIM 6 3 4.25 36 115.925
DIM 7 4 7.55 38 112.175
DIM 8 15 5.21 40 117.925
DIM 9 9 0.47 36 121.55
SCM 1 53 3.06 26 127.425
SCM 2 94 0.70 26 129.8
SCM 3 36 1.11 31 132.925
SCM 4 111 2.25 35 127.175
SCM 5 52 2.33 24 125.175
SCM 6 52 2.38 40 130.175
SCM 7 5 8.81 40 124.3
SCM 8 36 2.37 33 128.175
SCM 9 27 1.29 29 133.3
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Tabic A3. Correlations between physical characteristics and indicators of salt marsh functions.
Site level correlations are based on site mean values (mean of nine quadrats at each site).
Quadrat level correlations are based on individual quadrat values.

Indicator of 
marsh function

Physical
characteristic

Marsh sites
incuded

Site level 
correlation

Quadrat level 
correlation

Aboveground biomass Surface slope (%) Fringing 0.935 0384
Meadow 0336 0310

Belowground biomass Surface slope (%) Fringing 0.939 0.020
Meadow 0.083 0767

Belowground biomass Elevation Fringing and Meadow 0.462 0710

Soil organic matter (%) Elevation Fringing and Meadow 0301 0.619

Plant species richness Surface slope (%) Fringing and Meadow •0726 -

Plant species richness Elevation Fringing and Meadow 0.46 -

Plant spedes density Surface slope (%) Fringing and Meadow •0306 •

Plant species density Elevation Fringing and Meadow 0792 •

Sediment deposited - Elevation Fringing and Meadow -0721 -0.635
Traps randomly distributed

Sediment deposited • Elevation Fringing and Meadow •0732 -0.427
Traps lm  horn marsh edge

Sediment deposited - Suspended sediment Fringing and Meadow 0.069 -0.051
Traps randomly distributed Fringing 0.982 0.456

Meadow •0.481 •0733

Sediment deposited - Suspended sediment Fringing and Meadow 0769 0.101
Traps lm  from marsh edge Fringing 0.999 0.693

Meadow 0.193 0.097
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Table A4. Aboveground biomass, belowground biomass and percent soil organic matter 
values fo r fringing and meadow marsh sites. Values are means of nine samples per site.

MARSH Aboveground Biomass Belowground Biomass %Soil
SITE TYPE (g/m 1) (g/nvJ) Organic Matter
SRF Fringing 329.4 1436.4 10.9
BPF Fringing 193.7 958.4 7.4
YRF Fringing 290.5 1461.6 16.6
LHF Fringing 160.7 9823 43
ICCF Fringing 451.5 2055.0 21.8
BPM Meadow 249.1 1285.9 43.1
MRM Meadow 358.2 1931.6 40.9
LRM Meadow 279.9 15823 32.9
DIM Meadow 2393 1366.7 38.8
SCM Meadow 244.6 32533 54.3
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Aboveground and belowground biomaee valuoe at fringing and
meadow aalt marah sites. Raw data col (acted summer 1997.

Aboveground Belowground
Site Quad Drv Wt fa/mA2) Drv Wt fa/m*21
SRF 1 509.424 1080.68
SRF 2 39.648 1426.50
SRF 3 74.448 155.23
SRF 4 229.04 2033.65
SRF 5 269.12 1760.53
SRF 6 575.28 840.97
SRF 7 199.6 683.78
SRF 8 398.848 3035.73
SRF 9 669.456 1910.84
BPF 1 430.944 2230.13
BPF 2 102.816 864.55
BPF 3 170.032 1002.09
BPF 4 228.224 265.26
BPF 5 122.032 1974.70
BPF 6 280.4 687.71
BPF 7 89.84 481.39
BPF 8 34.864 0.00
BPF 9 283.76 1119.98
YRF 1 61.328 677.88
YRF 2 247.36 1650.50
YRF 3 164.416 2839.25
YRF 4 354.08 559.99
YRF 5 288.08 1316.47
YRF 6 420.08 88.42
YRF 7 340.16 1188.75
YRF 8 436.624 1837.16
YRF 9 302.72 2996.44
LHF 1 6.288 0.00
LHF 2 72.048 209.26
LHF 3 239.28 2188.87
LHF 4 140.368 1121.94
LHF 5 86 610.09
LHF 6 137.36 1610.22
LHF 7 277.84 86.45
LHF 8 342.56 2647.67
LHF 9 144.96 368.41
CCF 1 793.184 1786.07
CCF 2 380.656 2061.15
CCF 3 811.312 5607.76
CCF 4 237.568 1477.59
CCF 5 83.072 93.33
CCF 6 888.976 2956.16
CCF 7 291.92 2307.75
CCF 8 460.336 2205.57
CCF 9 116.288 0.00
UNEM 1 136.88 2377.50
UNEM 2 214.224 658.23
UNEM 3 373.248 844.90
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Aboveground and belowground biomaaa valuee at fringing and
meadow aalt marsh sites. Raw data collected summer 1997.

Aboveground Belowground
Slto Quad Drv Wt (o/m*2) Drv Wt (o/mA2)
UNEM 4 529.44 2092.59
UNEM 5 319.12 1277.17
UNEM 6 282.144 1198.57
UNEM 7 221.84 1994.35
UNEM 8 65.168 58.95
UNEM 9 99.456 1070.86
MRM 1 314.96 1190.71
MRM 2 551.04 1760.53
MRM 3 487.344 1037.45
MRM 4 450.96 306.52
MRM 5 249.6 1264.40
MRM 6 247.84 1861.72
MRM 7 311.104 2487.53
MRM 8 398.224 4260.63
MRM 9 213.04 3214.54
LRM 1 136.8 1293.87
LRM 2 180.352 0.00
LRM 3 404.336 1551.27
LRM 4 161.248 763.35
LRM 5 254 1062.02
LRM 6 168.448 2630.97
LRM 7 443.28 2417.78
LRM 8 341.056 3249.90
LRM 9 429.504 1273.24
DIM 1 73.36 765.32
DIM 2 50.48 250.52
DIM 3 254.176 2539.60
DIM 4 323.04 1352.82
DIM 5 278.192 810.51
DIM 6 450.4 1653.44
DIM 7 310.48 2584.79
DIM 8 255.408 1810.63
DIM 9 157.76 532.48
SCM 1 336.512 3981.82
SCM 2 342.064 1231.98
SCM 3 239.76 4997.66
SCM 4 206.96 2184.94
SCM 5 183.44 6273.85
SCM 6 250 2645.71
SCM 7 192.8 3877.68
SCM 8 346.032 839.00
SCM 9 103.552 3246.96
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Soil organic matter in fringing and maadow salt
marahae. Raw data collected summer 1997.

Grams organic
SITE Quadrat %OM matter oar mA2
BPF Q1
BPF Q2 2.6 3661
BPF Q3 9.8 6818
BPF 0 4 7.9 6336
BPF Q5 3.4 4355
BPF 0 6 9.7 8026
BPF 0 7 1.4 2094
BPF Q8 • •

BPF 0 9 17.3 9700
DM Q1 48.8 9931
DM Q2 72.5 14952
DM Q3 • •

DM 0 4 21.8 9142
DM OS 47.5 10135
DM 0 6 18.8 8866
DM Q7 26.3 7929
DM Q8 38.2 9441
DM Q9 36.6 8960
CCF 01 17.1 8039
CCF Q2 19.4 9012
CCF 0 3 19.6 7790
CCF 0 4 35.7 7908
CCF QS 9.2 7365
CCF 0 6 • •

CCF Q7 24.2 8813
CCF Q8 27.3 9175
CCF 0 9 • •

LHF Q1 4.4 5201
LHF Q2 m •

LHF 0 3 1.3 1663
LHF 0 4 7.4 7030
LHF 0 5 6.1 7026
LHF 0 6 8.6 7969
LHF Q7 0.9 1319
LHF Q8 2.5 3246
LHF 0 9 • •

LRM 01 4.8 5389
LRM 0 2 • m

LRM 0 3 •

LRM 0 4 • •

LRM 0 5 • •

LRM 0 6 33.7 7737
LRM 0 7 53.8 10620
LRM 0 6 55.1 10812
LRM 0 9 17.0 9009
MM Q1 69.3 9649
MM Q2 26.5 11276
MM Q3 15.5 8963
MM 0 4 18.0 10702
MM 0 5 72.1 15590
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Soil organic matter In fringing and meadow salt
marshoB. Raw data collected summer 1997.

Grains organic
SITE Quadrat %OM matter oar mA2
mm 06 47.S 10610
hm Q7 SO.O 8674
him 06 13.0 10316
MRM 09 56.4 5360
SCM Q1 e

SCM Q2 62.9 12791
SCM Q3 63.6 11247
SCM 04 49.8 11832
SCM QS 53.7 11547
SCM 06 52.8 11988
SCM 1 Q7 <e •

SCM 08 32.7 10245
SCM Q9 64.5 11376
UN? 01 9.8 9603
i t ? Q2 4.3 5511
UNEF 03 6.0 3945
UNEF 04 18.2 9347
UN? QS 10.9 7114
UN? 06 15.3 11503
UN? Q7 5.3 2609
I f ? 08 17.2 6978
UN? Q9 • •

UNBM 01 23.3 10136
UNBM 02 20.5 8179
UNBM 03 • a

UNBM 03 22.5 8372
UNEM 04 • a

UNBM 05 52.0 9177
UNBM 06 51.3 8281
UNBM 07 56.9 10139
UNBM 08 56.5 8401
UNBM 09 61.7 10343
V ? Q1 4.6 5435
Y ? 02 4.9 5136
Y ? Q3 6.7 6237
Y ? 0 4 14.1 8612
Y ? QS 24.2 9036
Y ? 06 26.9 8914
Y ? 0 7 26.8 7264
Y ? 08 27.8 8575
Y ? 09 12.9 7907

* no data
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T able A6. P lan t com m unity characteristics of h in g in g  and  m eadow  m arsh  sites.
M eadow  m arsh  values in  parentheses are based on  th irty  quadrats sam pled  per site; 
all o ther values are based on ten  quadrats sam pled p e r site.

SITE TYPE H ’ E
Percent cover 
S. altemiflora

Percent cover 
PM,JG,SP,DSl

Species density  
(#speries/m J)

BPM m eadow 0.572 0.600 40(22) 20(42) 2.9 (4.4)

LRM m eadow 0.473 0.523 29 (19) 54(56) 4.5 (5.1)

DIM m eadow 0.561 0.561 19 (12) 49(48) 5.4 (5.4)

SCM m eadow 0.585 0.562 2 (9 ) 78 (69) 4.0(4.7)

MRM m eadow 0.495 0.432 4(16) 62(55) 5.5 (4.6)

YRF h in g in g 0.613 0.726 20 43 2.9

SRF h in g in g 0.495 0.519 46 15 2.8

BPF h in g in g 0.665 0.616 22 33 2.9

LHF h in g in g 0.367 0.434 42 21 2.7

ICCF h in g in g 0.469 0.492 44 17 2.9

1 PM = Puccinellia maritima , JG =Juncus gerardii, SP = Spartina patens, DS = Distichlis spicata
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Table A7. Sediment deposition on fringing marshes, meadow marshes and areu where no mush was present. All'random'and'lm from edge' 
value* are means for five trap*, and all 'no maroh areas' are means for three traps.

SITE Trap location
MARSH

TYPE
Sedim ent deposited 

(g/m V day)
Suspended sedim ent 

(K/I) %SLOPE Ei(in)
Plant 

% cover/m 1
Distance 

to Edge (m)
BPF random F 4.31 0.226 4.9 84.0 57.4 17.3
ICCF random F 1.48 0.037 15.2 1103 75.0 3.2
LH F random F 0.71 0.011 8.6 110.1 53.6 8.3
SRF random F 0.44 0.020 12.6 98.1 84.0 5.7
YRF random F 1.07 0.017 9.0 112.1 85.8 4.7

D IM random M 0.44 0.108 3 A 126.2 79.8 18.0
LRM random M 0.20 0.229 13 130.1 95.2 63.6

MRM random M 0.63 0.069 4.3 122.4 91.0 33.6

SCM random M 0.32 0.436 3.8 126.9 94.4 54.6

BPM random M 131 0.107 1.0 1263 84.0 37.0

BPF lm  in  from  edge F 95.90 0.226 » 56.1 26.0 1.0

ICCF lm  in from  edge F 8.33 0.037 * 94.2 62.4 1.0

LH F lm  in from  edge F 0.88 0.011 • 86.9 56.0 1.0

SRF lm  in from  edge F 0.64 0.020 • 77.1 52.5 1.0

YRF lm  in from  edge F 2.26 0.017 • 103.7 77.0 1.0

D IM lm  in from  edge M 0.77 0.108 * 106.3 68.0 1.0

LRM lm  in  from  edge M 3.37 0.229 • 116.6 92.4 1.0

MRM lm  in from  edge M 5.56 0.069 » 104.6 77.0 1.0

SCM lm  in  from  edge M 3.99 0.436 • 103.3 78.0 1.0

BPM lm  in from  edge M 2.04 0.107 » 121.4 91.0 1.0

BPX no m arsh area X 16.44 # • 63.4 0 n /a

ICCX no m arsh area X 1.96 • ♦ 90.6 0 n /a

LHX no m arsh area X 0.97 • • 89.6 0 n /a

SRX no m arsh area X 1.21 • * 89.5 0 n /a

YRX no m arsh area X 0.62 • • 106.8 0 n /a



Sadimant data from fringing, maadow and 'no marah' illaa.
Raw data col lac fad 1997.

Sad/araa/time
SITE* QUADRAT A/B** Ja/mA2/dav1
BPF 2 A 11.04
BPF 2 B 10.21
BPF 3 A 1.71
BPF 3 B 300.12
BPF 5 A 0.81
BPF 5 B 8.31
BPF 6 A 0.92
BPF 6 B 3.42
BPF 7 A 7.07
BPF 7 B 157.43
DIM 1 A 0.07
DIM 1 B 1847.89
DIM 2 A 1.03
DIM 2 B 0.80
DIM 3 A 0.43
DIM 3 B 0.48
DIM 5 A 0.03
DIM 5 B 0.89
OIM 6 A 0.65
DIM 6 B 0.92
LHF 1 A 0.77
LHF 1 B 0.87
LHF 2 A 1.16
LHF 2 B 1.11
LHF 3 A 1.17
LHF 3 B 0.64
LHF 4 A 0.29
LHF 4 B 1.65
LHF 9 A 0.17
LHF 9 B 0.36
LRM 1 A 0.36
LRM 1 B 10.39
LRM 3 A 0.00
LRM 3 B 0.78
LRM S A 0.00
LRM 5 B 1.02
LRM 6 A -0.04
LRM 6 B 2.33
LRM a A 0.70
LRM 8 B 2.31
MRM 1 A 0.24
DAM 1 B 11.80
MRM 4 A 1.53
IflM 4 B 8.96
MRM 5 A •0.01
MRM 5 B 2.40
MRM 6 A 0.66
MRM 6 B 2.57
MRM 8 A 0.72
MRM 8 B 2.07
CCF 1 A 1.81
CCF 1 B 31.82
CCF 2 A 2.22
CCF 2 B 5.12
CCF 4 A 0.98
CCF 4 B 1.57
CCF 8 A 2.05
CCF 8 B 1.26
CCF 9 A 0.34
CCF 9 B 1.89
SCM 1 A 0.22
SCM 1 B 7.89
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Badimant data from fringing, maadow and 'no marah' sltaa.
Raw data eollactad 1M7.

Sed/area/time
SITE* QUADRAT A/B** ta /m ^ /d a v )
SCM 4 A 0.18
SCM 4 B 2.23
SCM S A 0.20
SCM 5 B 4.46
SCM 6 A 0.41
SCM 6 B 2.09
SCM 7 A 0.S8
SCM 7 B 3.28
SRF 1 A 0.49
SRF 1 B 1.34
SRF 3 A 0.56
SRF 3 B 0.48
SRF 6 A 0.39
SRF 6 B 0.20
SRF 7 A 0.30
SRF 7 B 0.26
SRF 8 A 0.44
SRF 8 B 0.94
UNEM 3 A 3.49
UNEM 3 B 7.52
UNEM 5 A 0.33
UNEM S B 1.53
UNEM 6 A 1.00
UNEM 6 B 0.34
UNEM 7 A 1.24
UNEM 7 B 0.58
UNEM 9 A 1.49
UNEM 9 B 0.22
YRF 2 A 2.07
YRF 2 B 5.71
YRF 5 A 0.30
YRF S B 1.69
YRF 7 A 0.58
YRF 7 B 2.34
YRF 8 A 0.77
YRF 8 B 0.79
YRF 9 A 1.62
YRF 9 B 0.78
BPFX X 1 3.64
BPFX X 2 43.20
BPFX X 3 2.47
LHFX X 1 1.28
LHFX X 2 0.67
LHFX X 3
IOCFX X 1 1.24
IOCFX X 2 3.92
IOCFX X 3 0.73
IOCFX X 1
SRFX X 2 1.36
SRFX X 3 1.06
YRFX X 1
YRFX X 2 0.42
YRFX X 3 0.81

* Ladara at and ol iNa namaa daaignata iHa typa: fringing, maadow or no marah. 
** A traps warn randomly disritxjlad; B trapa wara 1m from tha marsh adga.
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Table A8. Percent reduction in the height of the tallest wave as it traveled 5m or 7m into 
fringing m arsh, meadow marsh and no marsh sites. Values are means of three 'takes' 
per transect

SUE
MARSH
TYPE* Transect

% wave ht. reduction Mean % wave reduction/site
5m 7m 5m 7m

BPF F 1 38.9 46.9 42.0 52.1
BPF F 2 40.4 56.5
BPF F 3 46.9 52.7
SRF F 1 42.6 55.7 35.4 49.9
SRF F 2 23.5 »

SRF F 3 40.0 44.1
YRF F 1 55.1 79.7 65.1 85.1
YRF F 2 75.0 90.5
YRF F 3 ♦

DIM M 1 88.4 94.7 67.0 69.1
DIM M 2 36.6 33.6
DIM M 3 75.9 79.1
MRM M 1 51.3 79.7 42.4 70.2

MRM M 2 21.6 46.1
MRM M 3 54.4 84.8
BPM M 1 38.9 41.7 52.9 52.2

BPM M 2 100.0 99.2
BPM M 3 19.9 15.7
BPX X 1 33.5 50.1 33.8 33.5
BPX X 2 35.2 39.8
BPX X 3 32.6 10.5
SRX X 1 38.1 16.3 29.0 43.8

SRX X 2 22.0 49.8
SRX X 3 26.8 65.3
YRX X 1 24.6 16.6 30.7 22.2

YRX X 2 18.0 »

YRX X 3 49.4 27.7

1F = hinging, M = Meadow, X = 'no marsh'
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Table A9. Percent reduction in the average height o f the tallest wave and the two waves 
following it as they traveled 5m or 7m into fringing m arsh, meadow marsh and no marsh 
sites. Values are means of three 'takes' per transect.

SITE
MARSH
TYPE1 Transect

% wave ht. reduction Mean % wave reduction/site
5m 7m 5m 7m

BPF F 1 15.89 26.29 21.84 38.33
BPF F 2 15.28 39.04
BPF F 3 34.33 49.66
SRF F 1 44.00 47.25 34.25 47.25
SRF F 2 29.13 »

SRF F 3 29.63 *

YRF F 1 48.05 71.77 60.93 79.18
YRF F 2 73.82 8638
YRF F 3 » »

DIM M 1 86.55 92.93 62.86 63.14
DIM M 2 29.41 20.53
DIM M 3 72.61 75.96
MRM M 1 52.28 7337 37.43 56.20
MRM M 2 14.62 2433
MRM M 3 45.39 70.71
BPM M 1 2730 27.96 50.11 37.98
BPM M 2 100.00 9930
BPM M 3 23.04 -1331
BPX X 1 18.71 29.16 18.01 2336
BPX X 2 9.65 34.73
BPX X 3 25.67 630
SRX X 1 30.93 -3.66 33.73 3139
SRX X 2 35.74 41.48
SRX X 3 3433 56.04
YRX X 1 16.48 30.42 35.98 29.71
YRX X 2 56.90
YRX X 3 3438 29.01

1F = hinging, M = Meadow, X = 'no marsh'
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Tim* 1 maaauratmitts - Stop*/ort*nUtion axpartmant

3 N 1 I 1 2 .5 D E W 1 3 6 / 1 7 / 9 8
3 N 1 w 1 2 .5 D E W 1 1 6 / 1 7 / 9 8
3 N 2 7 1 5 12 4 1 6 / 1 7 / 9 6

N 2 7 2 3 6 / 1 7 / 9 8
N 7 1 7 6 / 1 7 / 9 8
N 2 7 22 6 / 1 7 / 9 8

3 N 4 3 2 4 1 4 4 1 6 / 1 7 / 9 8

3 N 2 4 3 1 9 6 / 1 7 / 9 8
N 4 3 1 9 6 / 1 7 / 9 9
N 2 4 3 12 6 / 1 7 / 9 8
N 21 1 7 1 2 .5 2 21 6 / 1 7 / 9 8

3 N 9 21 1 5 6 / 1 7 / 9 8

9 N 4 7 1 6 1 5 .5 3! 1 6 / 1 7 / 9 8

9 N 4 7 21 6 / 1 7 / 9 8
3 N 4 7 21 6 / 1 7 / 9 8

9 N 25 21 1 4 3 1 6 / 1 7 / 9 8

9 N 29 1 8
N 29 1 8

3 N 12 1 8 a 0 6 / 1 7 / 9 8
3 N 12 1 9 6 / 1 7 / 9 8
3 N 12 1 3 9 / 1 7 / 9 8
3 N ts 1 5 a 1 6 / 1 7 / 9 8
3 N 5 1 9 1 9 6 / 1 7 / 9 8
3 N 5 1 8 1 6 6 / 1 7 / 9 8
3 N s 1 8 12 6 / 1 7 / 9 8

19 N 1 48 1 5 1 4 1 6 / 1 7 / 9 8

19 N 1 4 5 1 8

19 N 1 4 9 2 5 1 5 1
19 N 1 4 9 21 6 / 1 7 / 9 8

19 N 1 4 9 2 0 .5 6 / 1 7 / 9 8

19 N 2 5 8 1 6 1 7 1 6 / 1 7 / 9 8

19 N 2 5 8 21 6 / 1 7 / 9 6

19 N 2 5 8 2 5 6 / 1 7 / 9 8

19 N 6 1 7 7 1 6 / 1 7 / 9 8

19 N 2 6 1 5 6 / 1 7 / 9 8

19 N 3 11 1 6 9 1 6 / 1 7 / 9 8

19 N ? 11 1 5 6 / 1 7 / 9 8

19 N
3 11 1 9 6 / 1 7 / 9 8

19 N 11 6 6 / 1 7 / 9 8

19 N 2 7 20 7 0 6 / 1 7 / 9 6

19 N 2 7 21 6 / 1 7 / 9 8

19 N 2 7 1 5 6 / 1 7 / 9 8

19 N 2 7 1 6 6 / 1 7 / 9 8

19 N 3 5 21 1 4 2 8 / 1 7 / 9 8

19 N 3 5 1 6 8 / 1 7 / 9 8

19 N 3 5 1 6 8 / 1 7 / 9 8

19 N 3 5 22 6 / 1 7 / 9 6

19 N 1 7 21 10 2 6 / 1 7 / 9 8

19 N 1 7 1 7 6 / 1 7 / 9 8

19 N 1 7 1 6 8 / 1 7 / 9 8

19 N 1 7 . . .  12 9 / 1 7 / 8 8

19 N 3 1 B 20 1 6 1 8 / 1 7 / 9 8

19 N 3 1 B 2 4 8 / 1 7 / 9 8

19 N s 3 1 B 2 6 8 / 1 7 / 9 9

19 N E 8 1 6 1 4 1 6 / 1 7 / 9 6

19 N 9 9 2 5 6 / 1 7 / 9 8

19 N 9 1 9 8 / 1 7 / 9 8

19 N 9 8 2 5 8 / 1 7 / 9 8

2 9 M 1 8 3 1 5 1 4 2 1 8 / 1 7 / 9 6

29 N i 8 3 1 6 6 / 1 7 / 9 6

29 N 2 E 22 1 3 3 1 6 / 1 7 / 9 8

29 N 2 E 20
29 N 2 E 2 7

29 N 2 8 1 20 0 E A D  110) 2 1
29 N 2 6 1 15 1 8 / 1 7 / 9 8 1

29 N 3 2 3 1 6 a 4 2
29 N 3 2 3 21
2 9 N 9 2 3 2 5 6 / 1 7 / 9 6

2 9 N 9 2 3 12 6 / 1 7 / 9 6

2 9 N ___ j S 5 A 10 0 E W 2
2 9 N ___ 4 4 1 4 9 2
29 N 4 6 1 1 6 / 1 7 / 9 8 1

29 N 4 2* 20 1 3 4 2
29 N _____ 4 2* 1 7

29 N 4 2* IB 6 / 1 7 / 9 6

2 9 N _____4 2* 12 6 / 1 7 / 9 8

29 N 9 1 6 1 9 11 2
29 N 9 1 6 IB 1 1
29 N 1 6 9 .5 1
29 N ___ £ 3 7 20 8 3 1 1
29 N 9 9* 22 1 6 / 1 7 / 9 8 1
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TIiim  1 iM uurM m ntt - Stopa/orientation experiment

-P WMH S 37 IS a/i 7/90s 1 41 13OEM) (8) 1 1 a/i7/9a33 1 aa 16 13 2 2 6/17/9093 1 . «a 18 6/17/98
98 2 51 15.5 11 2 1 6/17/98S 2 51 16 6/17/9838 2 0 17 14 3 1 8/17/9833 2 a 21 6/17/9833 2 a 23 6/17/903S 3 54 ia DEAD 1 1 6/17/88
93 3 57 24 14 3 0 e/17/96

8 3 57 10,5 6/17/9838 3 57 20.5 6/17/9638 4 50 20 15 3 1 6/17/983S 4 ao 26.6 6/17/9838 4 eo 14 6/17/9838 4 30 23 11 4 0 6/17/96
98 4 30 ia 6/17/98

8 4 30 18
8 4 30 24
8 s 50 19 13 1 2 6/17/98
8 S 44 19.5 7 3 1 6/17/98S 8 44 15 8/17/98
8 44 17 6/17/98

10 8 31A 0E4D 9/17/98
10 8 39 16.5 7 2 2 6/17/98
198 3t 14 6/17/99
10 8 SSB 19 16 3 1 6/17/99
198 566 14 9/17/89
10 8 566 19 6/17/99
198 40 24 17 4 2 8/17/98
198 40 18 6/17/98
198 40 26.5 6/17/98
103 40 21 6/17/98
10 8 62 20.5 12 3 1 6/17/98
193 62 25 9/17/98
198 a2 16.5 6/17/98
10 8 32 IB 10 3 2 6/17/98
193 32 19 6/17/98
198 32 16 9/17/98
198 4a 11.5 12 3 1 6/17/98
193 4a 20.5 6/17/98
19S 40 24.6 6/17/99
198 E 17.5OEM) 1 1
10 3 w 15OEM) 2 1
10 8 w 20.5

8 53 19.5 11 4 2 6/17/98
8 S3 23 6/17/98
8 53 19 6/17/98
8 1 53 24
3 1 2 17.6 11.5 2 2a 2 18
8 2 58 19 7.5 31 li 6/17/981
8 2 58 19
8 2 58 14,5

2 48 21 14.5 2 22 44 21,5 1 6/17/983 65 14 9 4 23 65 21.53 65 16.63 65 20__J 36 17 11.5 3 1__1 36 17__2 36 214 33 20 15 1 3__4 64 19OEM) 1 2__2 3 20 11 3 2 8/17/96__^ 3 17 6/17/98__j 3 23__j 15 20 10 4 1
8 __j 15 15
8 9 16 20.5
8 __9 19 15.5
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Time 2 measurements - Slope/orisntation experiment

Slope Orientation P o t« Plant # Leaf Lenoth (cm) Shoot Heiaht (cm) Total * Leave* # Dead Leave* Date
3 N 1 DEAD DEAD DEAD DEAD DEAD 7 /8 /9 8
3 N 2 7 23 17.5 5 2 7 /8 /9 8
3 N 2 7 25 7 /8 /9 8
3 N 2 7 21 7 /8 /9 8
3 N 2 7 24 7 /8 /9 8
3 N 2 7 22.5 7 /8 /9 8
3 N 3 47 21 16 2 1 7 /8 /9 8
3 N 3 47 21 7 /8 /9 8
3 N 4 25 22 21 4 1 7 /8 /9 8
3 N 4 25 22.5 7 /8 /9 8
3 N 4 25 22.5 7 /8 /9 8
3 N 4 25 21 7 /8 /9 8
3 N 5 18 18.5 15 4 2 7 /8 /9 8
3 N 5 18 19 7 /8 /9 8
3 N 5 18 17 7 /8 /9 8
3 N 5 18 17.5 7 /8 /9 8

10 N 1 49 17 18 3 • 1 7 /8 /9 8
10 N 1 49 25 7 /8 /9 8
10 N 1 49 25 7 /8 /9 8
10 N 2 56 14 2 2 4 3 7 /8 /9 8
10 N 2 56 19 7 /8 /9 8
10 N 2 56 18 7 /8 /9 8
10 N 2 56 14 7 /8 /9 8
10 N 3 11 13 19 3 4 7 /8 /9 8
10 N 3 11 22 7 /8 /9 8
10 N 3 11 21 7 /8 /9 8
10 N 4 35 21 18 5 2 7 /8 /9 8
10 N 4 35 25 7 /8 /9 8
10 N 4 35 21 7 /8 /9 8
10 N 4 35 23 7 /8 /9 8
10 N 4 35 22 7 /8 /9 8
10 N 5 9 26 23 .5 4 2 7 /8 /9 8
10 N 5 9 25 7 /8 /9 8
10 N 5 9 2 2 7 /8 /9 8
10 N 5 9 25.5 7 /8 /9 8
25 N 1 97 24 13 4 2 7 /8 /9 8
25 N 1 97 21 7 /8 /9 8
25 N 1 97 23 7 /8 /9 8
2 5 N 1 97 14 7 /8 /9 8
25 N 2 61 26 15 .5 4 3 7 /8 /9 8
25 N 2 61 29 7 /8 /9 8
25 N 2 61 2 2 7 /8 /9 8
25 N 2 61 28 7 /8 /9 8
25 N 3 2 3 23 2 0 5 2 7 /8 /9 8
25 N 3 23 27 7 /8 /9 8
2 5 N 3 23 22 7 /8 /9 8
2 5 N 3 23 23 7 /8 /9 8
2 5 N 3 23 23 7 /8 /9 8
2 5 N 4 26 21 13 4 2 7 /8 /9 8
2 5 N 4 2 6 14 7 /8 /9 8
2 5 N 4 26 19.5 7 /8 /9 8
2 5 N 4 26 20 .5 7 /8 /9 8
25 N 5 3 7 22 .5 1 2 4 3 7 /8 /9 8
2 5 N 5 3 7 23 7 /8 /9 8
25 N 5 37 23 7 /8 /9 8
2 5 N 5 37 15.5 7 /8 /9 8

3 S 1 68 17 1 4 3 3 7 /8 /9 8
3 S 1 6 8 20 7 /8 /9 8
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Time 2 measurements - Slope/orientation experiment

SIOM Orientation Pot * Plant # Leaf Length (cm) Shoot Height (cm) Total * Leaves # Dead Leaves Date
3 S 1 68 17 7 /8 /9 8
3 s 2 8 20 .5 10 4 2 7 /8 /9 8
3 s 2 8 20 .5 7 /6 /9 8
3 s 2 8 17 7 /8 /9 8
3 s 2 8 14 7 /6 /9 8
3 s 3 57 2 4 13 4 2 7 /8 /9 8
3 s 3 57 2 5 7 /8 /9 8
3 s 3 57 23 7 /8 /9 8
3 s 3 57 23 7 /8 /9 8
3 s 4 30 2 5 25 5 2 7 /8 /9 8
3 s 4 30 2 7 7 /8 /9 8
3 s 4 3 0 2 3 7 /8 /9 8
3 s 4 30 2 4 7 /8 /9 8
3 s 4 30 19 7 /8 /9 8
3 s 5 44 19 9 4 » 7 /8 /9 8
3 s 5 44 18 7 /8 /9 8
3 s 5 44 2 0 7 /8 /9 8
3 s 5 44 15 7 /8 /9 8

10 s 1 30 13 15 4 1 7 /8 /9 8
10 s 1 39 2 0 7 /8 /9 8
10 s 1 3 9 21 7 /8 /9 8
10 s 1 39 15 7 /8 /9 8
10 s 2 40 2 5 29 4 2 7 /8 /9 8
10 8 2 40 27 7 /8 /9 8
10 s 2 4 0 2 7 7 /8 /9 8
10 s 2 40 2 6 7 /8 /9 8
10 s 3 6 2 19 15 5 3 7 /8 /9 8
10 s 3 62 23 7 /8 /9 8
10 s 3 62 20 7 /8 /9 8
10 s 3 6 2 19 7 /8 /9 8
10 s 3 6 2 2 5 7 /8 /9 8
10 s 4 32 19 14 4 2 7 /8 /9 8
10 s 4 32 19 7 /8 /9 8
10 s 4 3 2 16 7 /8 /9 8
10 s 4 3 2 18 7 /8 /9 8
10 s 5 5 DEM) DEM) DEM) DEM) 7 /8 /9 8
2 5 s 1 53 2 4 24 5 2 7 /8 /9 8
2 5 s 1 53 2 4 7 /8 /9 8
2 5 s 1 53 2 5 7 /8 /9 8
2 5 s 1 53 2 3 7 /8 /9 6
2 5 s 1 5 3 2 4 7 /8 /9 8
2 5 s 2 46 2 0 20 3 5 7 /8 /9 8
2 5 s 2 46 19 7 /8 /9 8
2 5 s 2 4 6 16 7 /8 /9 8
2 5 s 3 3 6 2 2 12 4 3 7 /8 /9 8
2 5 s 3 36 2 0 7 /8 /9 8
2 5 s 3 36 18 7 /8 /9 8
2 5 s 3 36 17 7 /8 /9 8
2 5 s 4 64 18 N/A 1 1 7 /8 /9 8
2 5 s 5 15 19 13 4 4 7 /8 /9 8
2 5 s 5 15 19.5 7 /8 /9 8
2 5 s 5 1S 2 0 7 /8 /9 8
2 5 s 5 15 15 .5 7 /8 /9 8
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Time 3 measurements - Slope/orientation experiment

Date F iaa* Stone Orientation Leaf Lenoth Shoot Heiaht Total * Leaves Total Dead Leaves
7 /2 9 /9 8 25-1S 25 S 24 3 0 8 4
7 /2 9 /9 8 33
7 /2 9 /9 8 33
7 /2 9 /9 8 28
7 /2 9 /9 8 3-3S 3 S 27 15 7 3
7 /2 9 /9 8 31
7 /2 9 /9 8 19
7 /2 9 /9 8 32
7 /2 9 /9 8 10-4S 10 S 14 8 6 3
7 /2 9 /9 8 24
7 /2 9 /9 8 22
7 /2 9 /9 8 10-2N 10 N DEAD DEAD DEAD DEAD
7 /2 9 /9 8 2 5 -1 N 25 N 21 17 7 4
7 /2 9 /9 8 17
7 /2 9 /9 8 19
7 /2 9 /9 8 3 -1N DEAD DEM) DEAD DEAD DEAD DEM)
7 /2 9 /9 8 10-1N 10 N 12 3 5 3
7 /2 9 /9 8 9
7 /2 9 /9 8 3-3N 3 N 14 9 8 4
7 /2 9 /9 8 14
7 /2 9 /9 8 12
7 /2 9 /9 8 9
7 /2 9 /9 8 3-1S 3 S 29 12 6 3
7 /2 9 /9 8 30
7 /2 9 /9 8 20
7 /2 9 /9 8 30
7 /2 9 /9 8 10-1S 10 S 30 21 6 3
7 /2 9 /9 8 32
7 /2 9 /9 8 21
7 /2 9 /9 8 10-2S 10 S 30 2 2 7 3
7 /2 9 /9 8 28
7 /2 9 /9 8 27
7 /2 9 /9 8 32
7 /2 9 /9 8 NEW 5
7 /2 9 /9 8 SHOOT 3
7 /2 9 /9 8 25-3N 25 N 27 3 5 8 4
7 /2 9 /9 8 35
7 /2 9 /9 8 35
7 /2 9 /9 8 23
7 /2 9 /9 8 3-5N 3 N 22 18 8 4
7 /2 9 /9 8 27
7 /2 9 /9 8 27
7 /2 9 /9 8 12
7 /2 9 /9 8 3-4N 3 N 26 2 6 8 4
7 /2 9 /9 8 29
7 /2 9 /9 8 30
7 /2 9 /9 8 16
7 /2 9 /9 8 10-3N 10 N 27 17 8 4
7 /2 9 /9 8 22
7 /2 9 /9 8 30
7 /2 9 /9 8 20
7 /2 9 /9 8 25-5N 2 5 N 28 2 3 7 3
7 /2 9 /9 8 27
7 /2 9 /9 8 24
7 /2 9 /9 8 13
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Time 3 measurements - Slope/orientation experiment

Data Flag # Slope Orientation Leaf Lenoth Shoot Height Total # Leaves Total Dead Leaves
7 /2 9 /9 8 25-4N 2 5 N 15 6 8 4
7 /2 9 /9 8 10
7 /2 9 /9 8 11
7 /2 9 /9 8 14
7 /2 9 /9 8 10-4N 10 N 26 2 6 9 5
7 /2 9 /9 8 31
7 /2 9 /9 8 18
7 /2 9 /9 8 31
7 /2 9 /9 8 3-2N 3 N 25 2 5 8 3
7 /2 9 /9 8 30
7 /2 9 /9 8 29
7 /2 9 /9 8 16
7 /2 9 /9 8 25
7 /2 9 /9 8 2S-2N 2 5 N 33 30 6 2
7 /2 9 /9 8 32
7 /2 9 /9 8 42
7 /2 9 /9 8 18
7 /2 9 /9 8 10-5N 10 N 31 2 2 8 4
7 /2 9 /9 8 24
7 /2 9 /9 8 30
7 /2 9 /9 8 26
7 /2 9 /9 8 25-4S 2 5 S ALREADY DEAD DEAD DEM)
7 /2 9 /9 8 10-5S 10 S ALREADY DEAD DEAD DEAD
7 /2 9 /9 8 25-5S 2 5 S 23 2 6 8 4
7 /2 9 /9 8 28
7 /2 9 /9 8 28
7 /2 9 /9 8 15
7 /2 9 /9 8 3-5S 5 S 18 9 7 3
7 /2 9 /9 8 24
7 /2 9 /9 8 22
7 /2 9 /9 8 15
7 /2 9 /9 8 3-2S 3 S 19 14 7 3
7 /2 9 /9 8 27
7 /2 9 /9 8 18
7 /2 9 /9 8 2 2
7 /2 9 /9 8 25-3S 2 5 S 30 19 8 5
7 /2 9 /9 8 26
7 /2 9 /9 8 24
7 /2 9 /9 8 28-2S 2 5 s 37 3 0 5 3
7 /2 9 /9 8 30
7 /2 9 /9 8 3-4S 3 s 34 2 2 7 3
7 /2 9 /9 8 35
7 /2 9 /9 8 28
7 /2 9 /9 8 30
7 /2 9 /9 8 10-3S 10 s 34 2 4 7 4
7 /2 9 /9 8 27
7 /2 9 /9 8 32
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H im  4 measurements - Slopa/oiientation experiment

FLAG# PLANT# LEAFLENGTH SHOOTHT «UVE LEAVES # DEAD LEAVES NOTES
25*1 N 97 25 21.5 3 2

26.6
21

10-2N DEAD DEAD
3-3N 47 19.5 13 3 1 CRABSUCED

19.5
17

10-1N 49 19 7 3 0
16
24

3*1 N DEM) DEAD
3-5S 44 23.5 14.5 4 2

26
25

24.5
3-2S 8 22.5 23.5 4 2

31
32
24

3-1S 68 28 20.5 4 2
28.5
26.5

31
10-1S 39 31 23.5 3 1

25.5
30

10-2S 40 30 24 4 3
27.5

22
31

25-3N 23 27 31 5 3
35

35.5
25
34

3-5N IB 33 18 3 5
26
31

3-4N 25 31 24 4 5
28.5

25
26

10-3N 11 28 25 3 3
28
30

25-5N 37 30 20 4 4
25
30
27

25-4N 26 28 13 4 5
19
21
12

10-4N 35 25 15 5 4
30
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Tim# 4 measurements - Slope/orientation experiment

FLAG# PLANT# LEAF LENGTH SHOOTHT #UVE LEAVES # DEAD LEAVES NOTES
30
28
21

3-2N 7 23 14 5 3
29
20
25
29

2S-2N 61 31 40 4 3
40
35
39

10-5N 9 31 31 3 4
26
30

2S-4S 64 NO PLANTS
10-5S DEM) DEAD
25-5S 15 30 20 4 3

30
21
28

2S-3S 36 30 23 3 2
28
29

36NS 9.7 9 1 2
2S-2S 46 37 19 3 3

27
35

10-3S 62 35 20 5 3
26
34
29
21

3-4S 30 30 12 5 2
35
21
29
32

25*1 S 53 35 25 4 5 VBTYDRY
31
26
32

3-3S 57 DEAD 0EAD
57NS

10-4S 32 25 13 3 4
22

24.5
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Slopa/orlantation sxparlmant - Soil tamparaturaa In 
pota and naxt to pots on Aug. 25,1998

SLOPE N/S TEMP IN POT PC) TEMP NXT TO POT PC)
3 N 24 25
3 N 25 26
3 N 25 24
3 N 25 23
3 N 25 24

10 N 24 22
10 N 26 26
10 N 24 23
10 N 23 23
25 N 24 23
25 N 23 22
25 N 24 24
25 N 22 23
25 N 23 24
3 S 25 24
3 S 25 25
3 S 24 25
3 S 23 23
3 S 24 25
10 S 24 25
10 S 24 24
10 S 23 23
10 S 25 24
10 S 26 26
25 S 26 22
25 S 23 23
25 S 25 23
25 S 23 24
25 S 24 23
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Neaulta of phyaleal ehanetarlatlca meaaurad at 12 aalt marati aliaa (aia conatructad and 2a natural)
In Ilia Oraat Bay Eatuary, Summer IBM. All valuaa a rt maan par alia except tor langtha and alia orlantatlona.

Marati
Tvoa

Site Langth
1ml

Width
1ml

Slta 
Orlantation 1*1

Fateh
tm l

Slope
(ml

North-aouth

Conatructad 1 17 7 42 70 14.9 42
Conatructad 3 100 20 171 583 1.0 171
Conatructad 4 154 3 225 103 5.9 135
Conatructad 5 38 2 180 13 21.9 160
Conatructad 7 182 19 351 310 4.8 9
Conatructad 31 47 3.6 192 3 3.6 168

Natural 2 193 11 63 107 12.0 63
Natural 8 148 IB 159 517 6.5 159
Natural 8 188 13 180 303 7.8 180
Natural 8 179 32 238 387 3.8 122
Natural 10 72 9 145 197 6.9 145
Natural 11 118 11.4 130 203 7.0 130
Natural 12 128 7 245 140 14.4 115
Natural 13 81 17 95 277 8.5 95
Natural 14 77 7.8 170 470 11.0 170
Natural 15 54 12.8 156 493 6.5 156
Natural 18 51 16.6 348 623 3.9 12
Natural 17 84 16.4 166 323 12.5 166
Natural 18 87 9.3 228 197 7.5 132
Natural 19 28 6 58 123 12.1 58
Natural 2 0 124 4.6 36 250 25.1 36
Natural 21 65 18.4 68 817 6.7 68
Natural 22 72 3.4 48 53 19.4 48
Natural 23 144 6.8 0 45 11.6 0
Natural 24 99 12.9 78 710 9.4 78
Natural 25 32 7.2 90 803 13.1 90
Natural 28 172 10.3 142 425 7.3 142

Natural 27 62 11 166 527 9.6 166
Natural 28 272 8 .6 214 193 7.9 146
Natural 29 79 6.1 64 45 23.7 64
Natural 30 71 7.6 48 170 7.2 48
Natural .32 41 M 274 6 ____ ,J M M

* II compaaa raading waa graatar man 180, It waa subtracted from 360 to giva tha N/S oriamatian valua
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Aboveground btonwM  raw data from •  conatructad and 11 reference salt marah aitee
in the Great Bay Estuary, aummer 1996.

SHE QUADRAT
Aboveground biomasa 

ic /m A21
1 1 3.3
1 2 21 .4
1 3 11.7
1 4 13.1
1 S 9.9
1 6 26 .3
2 1 2 14
2 2 5 46
2 3 722 .8
2 4 598 .4
2 5 476 .8
2 6 265 .76
3 1 536 .6
3 2 274 .48
3 3 41 .32
3 4 317 .84
3 5 0
3 6 27 .56
4 1 2.0
4 2 1.3
4 3 1.9
4 4 3.2
4 S 2.6
4 6 7.4
5 1 25 .8
5 2 10.5
5 3 11.9
5 4 19.6
5 5 66 .0
5 6 62 .3
6 1 2 23 .72
6 2 3 43 .64
6 3 340 .84
6 4 2 04 .12
6 5 853 .76
6 8 105.28
7 1 1108 .76
7 2 72 .28
7 3 472 .12
7 4 506 .84
7 5 32 .92
7 8 180.92
8 1 186.2
8 2 3 61 .44
8 3 6 7 0 .4 4
8 4 5 15 .44
8 5 133.44
8 6 978 .8

s h e QUADRAT
Aboveground biomasa 

fo /m A21
12 1 3 16 .56
12 2 3 2 1 .9 2
12 3 131 .04
12 4 136.84
12 5 2 7 0 .1 2
12 6 2 9 6 .4
19 1 3 55 .28
19 2 167 .2
19 3 6 3 3 .2 4
19 4 6 1 7 .2 8
19 5 135 .36
19 6 2 0 5 .2 4
2 2 1 4 3 6 .0 4
2 2 2 2 4 9 .6
2 2 3 30 5 .7 6
2 2 4 30 0 .3 6
2 2 5 6 7 .2 4
2 2 6 2 7 3 .4
24 1 20 1 .3 2
24 2 51 .9 6
24 3 119 .92
24 4 180 .04
24 5 3 9 .1 2
24 6 150 .04
26 1 20 4 .6
2 6 2 103 3
2 6 3 196 .6
2 6 4 4 1 8 .6
2 6 5 4 6 1 .8
26 6 26 8 .6 4
29 1 141 .4
2 9 2 30 3 .6 8
29 3 3 9 5 .1 2
29 4 174 .76
29 5 116 .08
29 6 170 .56
3 0 1 169 .28
3 0 2 31 1 .7 2
3 0 3 39 7 .5 6
3 0 4 179 .32
3 0 5 6 0 6
3 0 6 52 3 .6 8
31 1 2 1 1 .5 2
31 2 4 3 0 .1 2
31 3 17 7 .6 8
31 4 3 6 5 .5 2
31 5 2 9 5 .4
31 6 3 7 8 .4 8
3 2 1 7 3 .8 4
3 2 2 6 6 0
3 2 3 7 5 7 .0 4
3 2 4 3 5 9 .8
3 2 5 8 3 3 .4
3 2 6
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Amount of oodimont dapoaitad on individual trapa at conatructad and tafdranca sitaa.
Trapa wara loft on tha marati aurfaca for tfiraa waafca, bagfnning on July 18 (Trial 1)
and Auguat 7 (Trial 2), 1*M.

Trial Sita
Marati
Tvoa Trao*

Sed/araa/timo
(g/mz/day)

MEAN
(g/m2/day)/aite SD £

1 1 C 1 9.0926 5.9318 2.7274 1.2197
1 1 C 2 8.7206
1 1 C 3 3.7699
1 1 C 4 3.7739
1 1 C S 4.3021
1 3 C 1 0.5267 3.3060 2.5963 1.1611
1 3 C 2 2.3318
1 3 C 3 4.4270
1 3 C 4 2.0177
1 3 C 5 7.2268
1 4 C 1 3.0349 4.3516 3.2600 1.4579
1 4 C 2 2.9961
1 4 C 3 2.7235
1 4 c 4 2.8250
1 4 c 5 10.1788
1 5 c 1 6.1006 11.6936 13.4779 6.0275
1 S c 2 5.9772
1 s c 3 3.3880
1 5 c 4 7.3360
1 5 c 5 35.6663
1 7 c 1 4.4113 15.3744 23.0301 10.2994
1 7 c 2 7.3451
1 7 c 3 4.1663
1 7 c 4 56.6057
1 7 c S 4.4437
1 31 c 1 1.2683 0.9038 0.2283 0.1021
1 31 c 2 0.8515
1 31 c 3 0.7212
1 31 c 4 0.9639
1 31 c S 0.7142
1 2 N 1 8.2362 2.8124 3.2541 1.4553
1 2 N 2 1.3846
1 2 N 3 0.3094
1 2 N 4 0.7391
1 2 N 5 3.3929
1 6 N 1 0.1759 0.3214 0.1286 0.0575
1 6 N 2 0.2063
1 6 N 3 0.3895
1 6 N 4 0.3629
1 6 N 5 0.4827
1 8 N 1 5.2835 7.6132 5.2857 2.3638
1 8 N 2 4.0343
1 8 N 3 8.7880
1 8 N 4 3.6186
1 8 N 5 16.3415
1 12 N 1 2.3734 1.4346 0.8648 0.3867
1 12 N 2 1.0753
1 12 N 3 0.6973
1 12 N 4 0.6694
1 12 N S 2.3575
1 19 N 1 3.2557 2.0903 0.9634 0.4308
1 19 N 2 1.8780
1 19 N 3 2.2699
1 19 N 4 0.6197
1 19 N 5 2.4281
1 22 N 1 0.4486 1.5440 2.0468 0.9153
1 22 N 2 0.2338
1 22 N 3 1.7089
1 22 N 4 5.0422
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Amount of oodlmont dapoaitad on individual traps at conatructad and rafawnco aHaa.
Trapa wore loft on tlia marati aurfaea tor ttm o waaka, baginning on July 1$ (Trial 1)
and Auguat 7 (Trial 2), 1PM.

Trial Sits
Marth
Tvoo Trao*

Sed/iraa/timo
(g/mVday)

MEAN
(g/m*/day)/aite SD SE

1 22 N 5 0.2B8S
1 24 N 1 0.1654 1.8742 1.9258 0.8612
1 24 N 2 4.8207
1 24 N 3 0.1571
t 24 N 4 2.4051
1 24 N 5 1.8225
1 26 N 1 2.9831 1.4577 0.9326 0.4171
1 26 N 2 1.1905
1 26 N 3 0.8596
1 26 N 4 1.6303
1 26 N 5 0.6251
1 29 N 1 0.7480 1.2042 0.8324 0.3723
1 29 N 2 1.6084
1 29 N 3 0.3113
1 29 N 4 2.4370
1 29 N 5 0.9161
1 30 N 1 4.6851 2.6117 1.4796 0.8817
1 30 N 2 2.0302
1 30 N 3 1.2245
1 30 N 4 1.5130
1 30 N 5 3.6058
1 32 N 1 0.5073 1.0886 1.0251 0.4684
1 32 N 2 0.4735
1 32 N 3 2.8737
1 32 N 4 1.0464
1 32 N S 0.5421
2 1 C 1 9.4108 9.1945 8.4446 3.7765
2 1 C 2 23.6379
2 1 C 3 2.9082
2 1 C 4 4.0042
2 1 C S 6.0117
2 3 C 1 0.5363 7.3255 9.8323 4.3972
2 3 C 2 4.7622
2 3 C 3 4.5632
2 3 C 4 2.1353
2 3 C 5 24.6306
2 4 C 1 3.9861 12.2213 19.3017 8.6320
2 4 C 2 4.1723
2 4 C 3 2.8756
2 4 c 4 3.3359
2 4 c 5 46.7368
2 S c 1 5.6020 5.9954 2.1669 0.9691
2 S c 2 9.4597
2 s c 3 4.0521
2 5 c 4 4.3794
2 S c S 6.4837
2 31 c 1 1.0065 0.9862 0.3164 0.1415
2 31 c 2 0.6104
2 31 c 3 0.8627
2 31 c 4 1.4794
2 31 c S 0.9721
2 2 N 1 0.5625 1.3401 1.2783 0.5717
2 2 N 2 2.7309
2 2 N 3 0.1402
2 2 N 4 2.7255
2 2 N 5 0.5417
2 6 N 1 0.0945 0.4097 0.3100 0.1387
2 6 N 2 0.1782
2 6 N 3 0.8637

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Amount of oodimont dapoaltad on Individual trap* at eonotructod and lofaronco aitaa.
Trapa woro loft on tho marali aurfaeo for thrao waafca, baglnnlng on July IS (Trial 1)
and Aufluat 7 (Trial 2), ISM.

Trial Site
Marsh
Tvoa Trao#

Sad/araa/time
(g/mVday)

MEAN
(g/mz/day)/«ite SO £

2 6 N 4 0.3S31
2 6 N 5 0.SS87
2 7 N 1 4.2672 5.5561 2.5995 1.2997
2 7 N 2 2.S07S
2 7 N 3
2 7 N 4 7.S606
2 7 N 5 7.8690
2 8 N 1 11.0786 13.2041 6.6020
2 8 N 2 4.2093
2 8 N 3 6.0901
2 8 N 4 3.2112
2 8 N 5 30.8036
2 12 N 1 24.1027 6.5231 9.9978 4.4711
2 12 N 2 0.5227
2 12 N 3 2.6712
2 12 N 4 0.4142
2 12 N S 4.9048
2 19 N 1 2.9055 2.1903 0.5380 0.2406
2 19 N 2 2.4226
2 19 N 3 2.3014
2 19 N 4 1.5608
2 19 N 5 1.7615
2 22 N 1 0.6529 1.5537 2.2374 1.0006
2 22 N 2 0.3608
2 22 N 3 0.7461
2 22 N 4 5.5469
2 22 N 5 0.4630
2 24 N 1 0.3490 0.9790 1.0773 0.4818
2 2 4 N 2 0.0406
2 24 N 3 0.2445
2 2 4 N 4 2.4254
2 24 N 5 1.6352
2 26 N 1 3.4276 1.4536 1.1805 0.5279
2 26 N 2 1.2591
2 26 N 3 1.4697
2 26 N 4 0.8731
2 26 N 5 0.4385
2 29 N 1 0.5154 2.0063 1.7263 0.7720
2 29 N 2 1.0680
2 29 N 3 4.3424
2 29 N 4 3.3468
2 29 N 5 0.7551
2 30 N 1 3.7219 4.8303 3.3641 1.5045
2 30 N 2 3.3920
2 30 N 3 2.8973
2 30 N 4 3.3151
2 30 N 5 10.8251
2 32 N 1 0.3264 0.8560 0.6619 0.2960
2 32 N 2 0.2324
2 3 2 N 3 1.8266
2 32 N 4 1.1964
2 32 N S 0.6981
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Percent eoll organic matter raw data from 6 conatructad and 11 reference
•alt marah sltas In the Great Bay Estuary, summer 1996.

STTE TYPE %OM
1 C 1.177
1 C 1.221
1 C 1.383
2 N 26.237
2 N 31.514
2 N 35.360
3 C 3.465
3 C 1.141
3 C 2.181
4 C 2.418
4 C 1.636
4 C 1.452
5 C 1.490
5 C 1.221
5 C 1.134
6 N 5.272
6 N 11.777
6 N 4.393
7 C 6.295
7 C 1.636
7 c 1.696
a N 11.014
8 N 18.614
8 N 20.088

12 N 26.847
12 N 30.135
12 N 30.723
19 N 21.657
19 N 37.353
19 N 28.129
22 N 37.916
22 N 29.535
22 N 29.665
24 N 7.474
24 N 3.324
24 N 12.744
26 N 30.920
26 N 30.006
26 N 31.721
29 N 28.543
29 N 31.633
29 N 1.125
30 N 9.592
30 N 25.575
30 N 25.234
31 C 13.769
31 C 14.523
31 c 17.525
32 N 16.395
32 N 34.526
32 N 33.972
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Dacorana results (PC-ORD) for plant apaciaa psrcsnt eovar 
valusa at aix conatructad and alavan rafsranca aalt marah 
aitas in tha Great Bay Eatuary, aummsr 1996.

SITE_______ AXIS 1 AXIS 2
1 7.24 106.12
3 6.06 107.56
4 4.04 109.49
5 0 119.35
7 6.86 106.59

31 105.55 45.57
2 135.14 0
6 88.52 46.66
8 70.67 61.89

12 47.75 81.12
19 57.74 67.62
22 27.18 90.84
24 51.19 73.86
26 140.39 113.61
29 68.07 83.84
30 10.98 103.22
32 168.21 3.38
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