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ABSTRACT

Improvements o f X-band and Q-band EPR/ENDOR Spectrometers. Studies o f Ferritin 

Iron Nitrosyl and Copper cis, cis-1,3,5-Triaminocyclohexane Chloride Complexes, and the 

Application of Q-band EPR to the Dating of Fossil Teeth

by

Junlong Shao 

University o f New Hampshire, May, 2000 

Several modifications were made on a Varian Q-band EPR/ENDOR spectrometer, 

including the installation o f a microwave amplifier in the E l 10 bridge, design and assembly 

of a new cavity coupler, addition of frequency counting capability, as well as other useful 

minor changes. The performance of the spectrometer was improved in signal-to-noise 

ratio, convenience o f tuning and operation and accuracy of g-value and hyperfine coupling 

measurements. The signal-to-noise ratio was increased by a factor o f six.

Improvements were also achieved with our X-band EPR/ENDOR spectrometer by 

design and assembly o f a new printed ENDOR coil for use in a TE104 rectangular cavity. 

The Dewar and sample holder were changed to accommodate EPR tubes o f 5 mm o.d.. 

The ENDOR signal-to-noise ratio o f a sucrose standard sample was increased by a factor 

of three by these changes.

'H  ENDOR studies of ferritin iron nitrosyl complexes and other model complexes 

were carried out with the new ENDOR system. The proton ENDOR signals o f ferritin 

iron nitrosyl complexes were first observed in this laboratory. Molecular modeling

xx
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calculations and the equations derived for the iron nitrosyl complexes enable one to 

undertake a complete ENDO R data analysis. The ENDOR studies suggested that the 

local structure o f the iron site in the ferritin iron nitrosyl complex was identical to that o f a 

model complex of penicillamine with the iron atom coordinated to a sulphur atom o f a 

cysteine residue, a nitrogen atom in the protein backbone and two nitric oxide radicals.

EPR/ENDOR studies o f copper cis,cis-\, 3,5-triaminocyclohexane have shown the 

complexes to have a rhombic magnetic symmetry in powders, but axial symmetry in 

aqueous solution. When the complex was prepared in methanol, it retained its molecular 

configuration as in the crystal. However, when prepared in aqueous solution, two water 

molecules might replace one or two of the chloride ions in the equatorial plane o f the 

complex. The sample in aqueous solution had covalent in-plane sigma bonding. The out- 

plane pi bonds and the in-plane pi bond were ionic for the aqueous sample.

Finally, Q-band EPR studies of fossil tooth enamel demonstrated that X-band EPR 

could be used for routine dating o f fossil teeth samples by slightly over modulating the 

overlapping signals o f the dating and interfering radical centers. The interfering peak in 

some o f the fossil tooth enamel samples appears to arise from a slight structural 

deformation of the radical center in hydroxyapatite. The age o f the measured fossil teeth 

sample was determined to be about 1400 years old.

xxi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

EPR and ENDOR Theories 

Radicals and paramagnetic transition metal complexes widely exist in nature.*1,21 

One common characteristic o f them is that there is one or more unpaired electrons in each 

molecule. Thus, there is a net electron spin angular momentum. In a strong magnetic 

field, the degenerate energy levels o f the electron spin are separated. When a sample is 

irradiated with electromagnetic radiation o f appropriate energy (RF, microwave or IR ) and 

the incident energy matches the difference in spin energy levels, a transition occurs 

between the spin states of the electron. Electron paramagnetic resonance (EPR) 

spectroscopy is based on this principle. It is an irreplaceable method for studying radicals 

and transition metal complexes.

EPR spectroscopy measures the spin energy transitions o f samples in a magnetic 

held. EPR spectra reflect the interactions of the unpaired electron with the host atom as 

well as the surrounding atoms, and provide structural information about the spin center in 

molecules. When a sample is in a magnetic field, there exist various interactions, 

including electron spin-magnetic field, nuclear spin-magnetic field, electron spin-nuclear 

spin and nuclear quadrupole moment (I >  l/2)-gradient o f the electric field. The 

corresponding Hamiltonian operator is as follows:131

1
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ePT= PB-g-S - gNpNB 'I +HS A I  +  h l Q I 1.1

where P and pN are the Bohr magneton and nuclear Bohr magneton, respectively, and B is 

the applied magnetic field, g a symmetric electron g-tensor, S the electron spin angular 

momentum, gN the nuclear g-tensor, I  the nuclear spin angular momentum, A the 

hyperfine tensor, h Planck's constant, and Q the quadrupole tensor.

The first term PB-g-S is the operator for the electron Zeeman energy. For 

isotropic samples and samples in liquid solutions where the anisotropy is averaged out by 

fast molecular rotation, g becomes a scalar quantity. Thus, the first term reduces to 

gPB-S. When there is only one unpaired electron in the molecule, S = 1/2, and in the 

absence o f other interactions, the electron spin orientates along the applied magnetic field. 

The energy associated with the first term becomes ±l/2gPB.

The second term gNPNB‘I  is the operator for the nuclear Zeeman energy. This 

term is analogous to the electron Zeeman energy except for the negative sign due to the 

positive charge o f the nucleus. This term does not affect the EPR transition energies. It is 

usually omitted from the Hamiltonian equation for EPR.

hS A -I, the third term, is the operator for the interaction energy between the 

electron spin and the nuclear spin. A can be rewritten as a sum o f two terms, A  =  Aol +

T, where A<j is the isotropic hyperfine coupling, and 1, the unit tensor. The isotropic 

hyperfine coupling arises from the interaction o f the nuclear moment with the magnetic 

field generated at the nucleus by the electron spin. The isotropic hyperfine coupling 

constant is,[31

2
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4 > =  - y g 0 g N 0 N \ r ( o f 1.2

where i|f(0) represents the wave function of the unpaired electron evaluated at the 

nucleus. T  is the tensor for the anisotropic interactions, which comes from the dipolar 

coupling between the magnetic moments of the electron and the nucleus. The Hamiltonian 

for the dipolar interaction =  hS-TT in expanded form is given by

where r and r are the distance and vector joining the unpaired electron and nucleus, 

respectively.

For the most commonly encountered case, where B «  B^, (B is the applied 

magnetic field and B^ is the magnetic field generated at the nucleus due to the unpaired 

electron orbital distribution), the hyperfine coupling Hamiltonian for an electron in ap  

orbital centered on the interacting nucleus *s *8nPn[®//̂ z +  U -

1.4

3B sin 0 cos 0 1.5

where 6  is the angle between r and B, and m, is the spin quantum number o f the unpaired

3
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electron. B  is given by

n 8PSnPn / 3 c o s 2 a  -  l \

/  16

where a  is the angle between r and the axis o f the p  orbital.

The last term in Equation 1.1 is the quadrupole interaction energy, which needs to

be taken into consideration when I  > 1/2. The quadrupole interaction is the product o f the

nuclear quadrupole moment and the gradient o f the electric field due to all surrounding

electrons and nuclei. I f  there is a charge distribution in the bond between two atoms (e.g.

a transition metal atom and a ligand atom), the gradient is nonzero. The magnitude of the

quadrupole coupling is a measure o f the electron distribution in the bond.

For a specific case, where S = 1/2 and I = 1/2, and both the g and the hyperfine

coupling are isotropic, the Hamiltonian (eq. 1.1) reduces to

ePT= gPB-S - gNpNB*I + hAoS I  1.7

When the magnetic field is in the z-axis direction, B = Bz z = B z, and with S+,S_ = 

Sx ±  iSy, I +,I_ = I* ±  ily, then Equation 1.7 can be rewritten as

& ?=  gpBS, - g ^ B I*  + hAoS^ + l/2hAo(S J  +S.L) 1.8

When the hyperfine coupling is small compared to the electron Zeeman interaction, the 

term ,/ 2hA0(S+I.+S.I+) can be treated as perturbation. The eigenvalues for the splitting
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Figure 1.1 The schematic diagram o f energy levels for a S = Vz, I = Vz spin system.
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levels in the magnetic field to second order are given by Equation 1.9

E(ms ,ntj ) = g/3Bms -  gNfiN BmI + hA0msmI + ms -  ntj mshA02
ms 4gfiB

( / ( /  + ! ) - /My2) 1.9

The second order term can be omitted at high magnetic field, such as in Q*band 

spectroscopy or when A*, is small. The energy level diagram (to first order) from Equation 

1.9 is displayed in Figure 1.1[41

There are six possible transitions in the four-level system, but only two EPR 

transitions are allowed by the selection rule A M s = ±1, AM , = 0, (1 -  3, 2 -  4), and only 

two N M R  transitions are permitted by the selection rule AM , = ±1, A M S = 0, (1 -  2, 3 -  

4). I f  the incident microwave frequency is constant and the magnetic field is scanned, we 

see two peaks in the cw-EPR spectrum. One occurs at B, in the equation

, 1 hA02
i . i o

The other is at B, in the equation

1 , , h A 2

When Aq is small, the term hAo2/4gPHcan be neglected, and we combine Equations 1.10 

and 1.11 to obtain

hv = 1/2 gP (Bj+Bj) 1.12
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By measuring the microwave frequency and the two resonant magnetic fields, we can 

calculate the g value of the sample. Even if we cannot ignore the second-order term, the g 

value can be calculated by the computer program in Appendix E. In the same way, the 

hyperfine coupling constant Ao can be obtained from the expression

When Ao is small or B is large, is given by:

Ao = gP(B ,-B ^/h  1.14

Otherwise, we need to use the computer program which corrects for second order effects 

to determine Ao-

EPR spectroscopy provides useful information about the paramagnetic center. 

Nevertheless, in most complexes, such as ferritin iron nitrosyl and copper cis.cis-1,3,5- 

triaminocyclohexane chloride, the hyperfine splittings from the interactions between the 

electron spin and the neighboring nuclei (proton or nitrogen nuclei) are not 

distinguishable. This lack of resolution is due to the broad width o f the EPR lines and the 

relatively weak interaction of the electron with the nucleus. We can overcome this 

obstacle either by scanning the samples at lower frequencies to narrow the EPR peak 

width, such as at S-band (2-4 GHz) or L-band (1-2 GHz), or by running ENDO R
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(electron nuclear double resonance) on the samples.

Usually, ENDOR is required to resolve hyperfine lines and thus obtain hyperfine 

couplings, to identify the interacting nucleus from its nuclear gN factor, or to measure the 

quadrupole couplings in systems with I > 1. ENDOR detects the NMR transitions via the 

intensity change of a simultaneously measured EPR transition. In practice, we set the 

magnetic field at an EPR line o f interest where the microwave energy is absorbed. The 

absorbed microwave energy is released through the spin-spin and spin-lattice relaxation 

channels. This system eventually reaches equilibrium. By irradiating the sample with a 

scanning radio frequency, we can introduce NM R transitions. These NMR transitions 

interrupt the equilibrium state mentioned above, and cause an intensity variation in the 

EPR transition. This variation in the EPR signal versus the radio frequency constitutes an 

ENDOR spectrum. To first order, when the Larmor frequency of the nucleus is less than 

one half of the hyperfine coupling, the ENDOR signals appear at

A &nPn& A
vnl = 2 ~ h 2 ~ ° °

and

Urn = —  4.

2 h

A
--+ Vn2 0

where u0 = gNPNB/h. When A/2 < u0, A = and u0 = V i ( U.u+Unx). Otherwise,

when A/2 > u0, A = unI+i>„2 , and u0 = V2 (i)„,-l)n2). Thus, by measuring the ENDOR lines,

8
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Figure 1.2 The schematic diagram o f a typical X-band EPR spectrometer.
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we can calculate both the nuclear gN-values and the hyperfine coupling constants.

The optimum value o f the microwave magnetic field B,e for the steady-state 

ENDOR experiment ist5]

Ye2Ble2T ,T 2 >1

Here y e is the magnetogyric ratio o f the electron, BIe is the amplitude o f the microwave 

magnetic field, T t is the electron spin-lattice relaxation time, and T2 is the electron spin- 

spin relaxation time.

EPR and ENDOR Instrumentation 

The EPR signal derives from the reflected microwave radiation from the probe or 

cavity, in which the sample undergoes the resonant absorption during a sweep o f the static 

magnetic field. Normally, an EPR spectrometer has four parts: the microwave source 

pumping energy to the sample, the circuit generating the static magnetic field, the cavity 

holding the sample and storing the microwave energy and the detection system collecting 

the EPR signal. Figure 1.2 is the block diagram o f a typical X-band EPR spectrometer.[61

The microwave radiation generated from the klystron goes through an isolator 

protecting the klystron from reflected microwave energy, an attenuator controlling the 

microwave power irradiating the sample, a circulator directing the microwaves in one 

direction o f the circuit loop, and finally the cavity. The reflected microwave energy from 

the cavity reaches the detector through the circulator. The microwave source is 

modulated by a 70 kHz oscillator circuit, so that the detected 70 kHz electrical signal from 

the detector is used to lock the spectrometer at the resonant frequency o f the cavity. This

10
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function is the auto-frequency-control (AFC).

The static magnetic field is generated electrically by a magnet power supply and 

electromagnets, and controlled by the field scan drive. This system provides a stable, 

uniform, reproducible and linearly varied magnetic field over the sample volume. The 

magnetic field is modulated at 100 kHz by a Helmholtz coil. This modulation is essential 

for the first derivative EPR signal detection.

The rectangular cavity for X-band usually operates in the TE102 mode for single 

cavity or TE104 mode for dual cavity. The cylindrical Q-band cavity is usually in the TE I10 

mode. The mode of the cavity permits a high-energy density, allows the placement o f the 

sample at the maximum magnetic field of the standing microwave energy, and has the 

microwave magnetic component perpendicular to the static magnetic field. The 

microwave power is coupled into the cavity by the coupler. The merit of cavity is 

represented by the Q value, which is defined asm

27t (maximum microwave energy stored in the cavity)

energy dissipated per cycle

The Q value is also defined as

where vr is the resonant frequency of the cavity and, A v, the width of the frequency (the 

difference of the frequency values at the half-power point). The higher the Q value, the

11
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more sensitive the EPR spectrometer. When putting a quartz sample tube in the cavity, 

the resonant wavelength tends to increase. This is due to the quartz material, which has a 

refractive index of 1.46, hence a longer traveling length for the microwave transmission.

The detection system consists o f a diode detector, preamplifier, 100 kHz amplifier, 

phase detection circuit and recorder. The first-derivative o f the absorption signal is 

obtained by properly modulating the magnetic field. A personal computer is used to 

collect data.

For an ENDOR spectrometer, the third magnetic component, which is generated 

from the RF coil and powered by the radio frequency source, is perpendicular to both the 

static magnetic field and the microwave magnetic component. Insertion o f a coil into the 

cavity deteriorates the cavity Q value. Generally speaking, an ENDOR spectrometer is 

less sensitive than an EPR spectrometer. In practice, the ENDOR spectrum is acquired by 

setting the magnetic field at an EPR resonant position, and the microwave energy is set 

high enough to partially or fully saturate the EPR signal. Then the radio frequency is 

scanned and the change in resonant absorption of the EPR signal measured. The ENDOR 

signal is also collected by the computer.

ENDOR signals can be more readily obtained at low temperature (liquid nitrogen 

and liquid helium) than at room temperature. The samples tested in my experiments were 

usually obtained at liquid helium temperature (about 2.5 K). The cryostat system for the 

X-band ENDOR spectrometer was made by Cryo Industries o f America, Inc.. The 

operation and schematic diagram of the liquid helium system are given in Appendix B.

12
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Applications o f EPR/ENDOR Spectrometers to Transition Metal Complexes and Radicals

EPR/ENDOR spectroscopy is a powerful tool for studying chemical systems with 

unpaired electrons.1*'121 The g-values of a paramagnetic system reflect the spin-orbit 

interaction and the symmetry of the system. For example, a system with two g-values, g„ 

and gx, has axial symmetry. But one with three different g-values, gJt, g,, and g^ has a 

rhombic symmetry. The hyperfine splitting patterns, on the other hand, is determined by 

the nuclei around the central metal ion. Detailed structural information can be obtained 

from ENDOR spectroscopy. Proton and nitrogen ENDOR spectra are normally collected 

to distinguish the different proton and nitrogen atoms in a transition metal complex and to 

estimate the distances between the central metal ion and the surrounding proton and 

nitrogen atoms.

By monitoring the EPR signal amplitude, we can study the kinetics o f a reaction 

system, so as to deduce the mechanism of that system. In  conjunction with UV-Vis 

spectroscopy, the bonding parameters (molecular orbital coefficients) for the metal 

complexes can be determined.

Another application of EPR spectroscopy is the dating o f fossil teeth. The radicals 

in a fossil are generated by y-ray irradiation. By artificially irradiating the fossil tooth 

sample with a controlled dose and recording the EPR signal amplitude growth, one can 

extrapolate back in time to estimate the date o f the fossil tooth.

The modification o f the Q-band spectrometer and the improvement o f the X-band 

ENDOR spectrometer are presented in Chapter 2 and Chapter 3, respectively. Studies of 

ferritin iron nitrosyl and model complexes are given in Chapter 4 including the proton

13
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ENDOR spectra analysis and the complex modeling. Chapter 5 focuses on the structural 

characteristics o f copper cis,cis-l,3,5-triaminocyclohexane chloride complexes 

investigated by EPR, ENDOR and optical spectroscopies. Q-band EPR studies o f the 

fossil teeth samples are presented in the last chapter. The ultimate goal of this research 

project is to deepen our insight into the structure o f transition metal complexes with 

improved EPR/ENDOR spectrometers.

14
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CHAPTER 2

M ODIFICATION OF Q-BAND MICROWAVE BRIDGE

The Q-band (35 GHz) spectrometer in our laboratory was constructed with a 

Varian E l 10 microwave bridge, a Varian E-line console, a Harvey-Wells magnet, a 

Magnion power supply and a home-made cylindrical TE O il cavity. This spectrometer 

worked fine on most of chemical samples. However, the signal/noise ratio o f the Varian 

E l 10 microwave bridge was often too low for biological sample studies due to the 

relatively high noise level o f the klystron. In addition, the microwave bridge does not have 

a microwave outlet for a frequency counter which is essential for accurate g-value 

measurements. Finally, critical coupling o f the cavity at low temperature was a problem 

because the original Varian coupler frequently broke when it was adjusted at low 

temperature. Therefore, several modifications were made to improve the performance of 

our Q-band spectrometer.

Installation o f the Microwave Amplifier 

Hyde and colleagues significantly improved the signal/noise ratio o f their Varian 

Q-band microwave bridge by adding a low-noise GaAs field effect transistor microwave 

amplifier, a balanced mixer and a Gunn diode oscillator as the microwave source.1131 In 

order to fully understand the modification they made, a schematic diagram o f the original 

Varian Q-band microwave bridge is shown in Figure 2.1.

15
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Figure 2.1 The schematic diagram of the Varian Q-band E l 10 microwave bridge/131
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The Q-band microwave bridge consists o f the following major microwave components: 

klystron, isolator, directional coupler, attenuator, phase shifter, circulator, coupler 

assembly, AFC detector and signal detector. The microwave signal from the klystron 

transfers through an isolator and then splits into two signals when passing across the 

directional coupler. The major part o f the split signal transfers through an attenuator, then 

across a three port circulator and finally into the sample cavity. The microwave containing 

the EPR signal from the sample is reflected out of the cavity, transfers through the 

circulator and enters the coupler assembly. The minor split signal from the directional 

coupler propagates through the reference arm phase shifter and an attenuator, then enters 

the coupler assembly where they are mixed. The mixed microwave signals are eventually 

rectified by two diode detectors.

Hyde and colleagues used a Gunn diode oscillator as a microwave source due to 

its lower noise level compared to a klystron. On the other hand, based on the fact that a 

microwave amplifier multiplies the microwave signal amplitude by a factor o f 18 (25 db), 

but amplifies the noise by only a factor o f 1.5 (3.5 db), they installed a microwave 

amplifier in their Q-band bridge. They also employed a balanced mixer to cut the phase 

noise from the reference arm. Figure 2.2 is the schematic diagram o f Hyde’s Q-band 

bridge after the modification. The dash line marked components in Figure 2.2 that were 

modified parts. As a consequence, a signal/noise improvement o f 24.6 db or seventeen

fold was achieved.

In Hyde’s modification, the major improvement o f the signal/noise ratio arises 

from the insertion o f the microwave amplifier. It is also the simplest modification that one

17
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Fig. 2.2 The schematic diagram of modified Q-band microwave bridge by J. S. Hyde.1131 
Altered or added components are highlighted by dashes lines.
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Chasteen laboratory after the modification. Added components are highlighted by dashed
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can make to the Varian E l 10 microwave bridge without major rearrangement o f the 

components in the already crowded housing. Rationally, insertion o f a microwave 

amplifier was an effective way for us to improve the signal /noise ratio o f our Q-band 

spectrometer. Figure 2.3 shows the schematic diagram of our Varian E l 10 Q-band bridge 

after the modification. The practical problem was that there was limited space in the 

bridge. A waveguide bend was needed to fit everything in place. So, a special microwave 

bend was designed and machined to serve this purpose as shown in Figure 2.4. All the 

waveguide components used in this bend were made of unfinished copper alloy, and were 

purchased from Microwave Development Laboratories, Inc. (Needham Heights, MA), 

including two H-bends (28BH11), two E-bends (28B E I1), two flanges (F28BBC) and 

several pieces of waveguide tubing (WR28). The waveguide tubing was cut into five 

pieces of different lengths: 23.9, 8.4, 34.4, 8.4 and 41.9 mm, respectively. All these 

components were soldered together at the Space Center machine shop o f the University of 

New Hampshire. The assembled waveguide bend is shown in Figure 2.4.

The microwave amplifier (QLN-3635-AA) was purchased from Quinstar 

Technology, Inc. (Torrance, CA), which has a maximum of 3 .5 dB noise gain and 25 dB 

signal gain. The amplifier required +15 V  DC power which was generated by the +20 V  

power source (pin L on J1202) in the bridge (see Varian Technical Manual E l 10 

Microwave Bridge circuit) and a voltage regulator UA7815UC (from Texas Instruments, 

Dallas, TX ). The voltage regulator was installed by the previous technician, Dick Sweet.

When the amplifier was installed, the bend-assembly was first fixed onto the input 

port o f the microwave amplifier. Then the coupler assembly (see Figure 2.1) was taken

20
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Figure 2.4 The schematic diagram of the specific microwave bend.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.5 The photo of the Varian Q-band microwave bridge after the modifications.
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off the circulator and tightened to the outlet o f the microwave amplifier. Finally, the 

second flange of the bend-assembly was fixed to the circulator port. All the components 

nest snugly in the bridge case. Figure 2.5 shows the Q-band microwave bridge after the 

installation o f the microwave amplifier.

The signal-to-noise ratio was calculated by Equation 2.1 using a 1 s time constant 

for the measurement.1'41

S/N = 2.5 * peak-to-peak value of signal voltage 2.1

peak-to-peak value of noise voltage 

The S/N of the weak pitch samples was significantly improved after installation of 

the microwave amplifier. Figure 2.6 displays the EPR signal and the noise spectra o f the 

weak pitch standard sample before and after the modifications. Without the amplifier, the 

S/N increases and then decreases with decreasing attenuation (see Figure 2.7A, curve A). 

The maximum S/N was 10.0/1 at 10 db attenuation. After installing the microwave 

amplifier, the S/N achieved a maximum of 65/1 at 13 db (see curve B in Figure 2.7A) or 

an improvement o f 6.5-fold.

Installation o f the Microwave Frequency Counter 

The frequency displayed on the frequency dial o f the microwave bridge is only 

approximate. A  Q-band frequency counter was therefore needed. Unfortunately, there is 

no microwave output port on the bridge for connecting a counter. One way to solve this 

problem is to put a directional coupler between the circulator and the cavity. A 20 db 

coupler (R752D) was purchased from Lectronic Research Labs. Inc., Camden, NJ.

23
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Figure 2 .6 The EPR signal and the background spectra o f the weak pitch standard sample 
before and after the modifications (without the directional coupler).

Before the modifications, Experimental Conditions: Signal, Field Set, 1244.6 mT; 
Scan Range, 1 mT; Modulation Frequency, 100 kHz; Modulation Amplitude, 0.4 mT; 
Microwave
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(continued)

power, 12 dB, 3.8 mW; Microwave frequency, 34.82 GHz; Receiver Gain, 5000; Time 
Constant, 1 s; Scan Time, 4 minutes; Temperature, 298 K; Spectrometer, Q-band 
EPR/ENDOR; File Name, 97040727.fls; background, Field Set, 1234.6 mT; Scan Range, 
0 mT; Modulation Frequency, 100 kHz; Modulation Amplitude, 0.4 mT; Microwave 
power, 12 dB, 3.8 mW; Microwave frequency, 34.82 GHz; Receiver Gain, 5000; Time 
Constant, 1 s; Scan Time, 4 minutes; Temperature, 298 K; Spectrometer, Q-band 
EPR/ENDOR; File Name, 97040728.fls.

After the modifications (without the directional coupler), Experimental Conditions 
Signal, Field Set, 1242.9 mT; Scan Range, 1 mT; Modulation Frequency, 100 kHz; 
Modulation Amplitude, 0.4 mT; Microwave power, 12 dB, 3.8 mW; Microwave 
frequency, 34.819 GHz; Receiver Gain, 5000; Time Constant, 1 s; Scan Time, 4 minutes; 
Temperature, 298 K; Spectrometer, Q-band EPR/ENDOR; File Name, 99101901.fls; 
background, Field Set, 1232.9 mT; Scan Range, 0 mT; Modulation Frequency, 100 kHz; 
Modulation Amplitude, 0.4 mT; Microwave power, 12 dB, 3.8 mW; Microwave 
frequency, 34.819; Receiver Gain, 5000; Time Constant, 1 s; Scan Time, 4 minutes; 
Temperature, 298 K; Spectrometer, Q-band EPR/ENDOR; File Name, 99101902.fls.
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(continued)

modification. CurveA: without any modifications; File Name, 97040723.fls ~
97040746.fls, 97041001.fls ~ 97041016.fls; CurveB: after insertion o f the amplifier; File 
Name, 99101901.fls ~ 99101928.fls; CurveC: after insertion o f the amplifier and the 
directional coupler. File Name, 99101801.fls ~ 99701828.fls;

Before the modifications, Experimental Conditions: Signal, Field Set, 1244.6 mT; 
Scan Range, 4 mT; Modulation Frequency, 100 kHz; Modulation Amplitude, 4 mT; 
Microwave frequency, 34.82 GHz; Receiver Gain, 5000; Time Constant, 1 s; Scan Time,
4 minutes; Temperature, 298 K; Spectrometer, Q-band EPR/ENDOR; background, Field 
Set, 1234.6 mT; Scan Range, 0 mT; Modulation Frequency, 100 kHz; Modulation 
Amplitude, 0.4 mT; Microwave frequency, 34.82; Receiver Gain, 5000; Time Constant, 1 
s; Scan Time, 4 minutes; Temperature, 298 K; Spectrometer, Q-band EPR/ENDOR.

After the modifications (without the directional coupler), Experimental Conditions: 
Signal, Field Set, 1242.9 mT; Scan Range, 4 mT; Modulation Frequency, 100 kHz; 
Modulation Amplitude, 0.4 mT; Microwave frequency, 34.819 GHz; Receiver Gain, 500; 
Time Constant, 1 s; Scan Time, 4 minutes; Temperature, 298 K; Spectrometer, Q-band 
EPR/ENDOR; background, Field Set, 1232.9 mT; Scan Range, 0 mT; Modulation 
Frequency, 100 kHz; Modulation Amplitude, 0.4 mT; Microwave frequency, 34.819; 
Receiver Gain, 500; Time Constant, 1 s; Scan Time, 4 minutes; Temperature, 298 K; 
Spectrometer, Q-band EPR/ENDOR.

After the modifications (with the directional coupler), Experimental Conditions: 
Signal, Field Set, 1242.9 mT; Scan Range, 4 mT; Modulation Frequency, 100 kHz; 
Modulation Amplitude, 0.4 mT; Microwave frequency, 34.819 GHz; Receiver Gain, 500; 
Time Constant, 1 s; Scan Time, 4 minutes; Temperature, 298 K; Spectrometer, Q-band 
EPR/ENDOR; Background, Field Set, 1232.9 mT; Scan Range, 0 mT; Modulation 
Frequency, 100 kHz; Modulation Amplitude, 0.4 mT; Microwave frequency, 34.819; 
Receiver Gain, 500; Time Constant, 1 s; Scan Time, 4 minutes; Temperature, 298 K; 
Spectrometer, Q-band EPR/ENDOR;
(S_TO_N W ITH  AMP&COUNTER.OPJ)
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However, it was discovered that the purchased Q-band frequency counter EIP model 

548A (from EIP Microwave, Inc., San Jose, CA) sent out microwave signal which passed 

back through the directional coupler and was picked up by the EPR signal detector. As a 

consequence, a 27 db isolator KA-13-11 (Cascade Research Division of Huggins Labs., 

Inc., Sunnyvale, CA) had to be connected to the coupled port on the directional coupler. 

The outport o f the isolator is hooked up to a diode which rectifies the microwave signal. 

The rectified signal is finally sent to the frequency counter. Due to the low signal intensity 

at the branch port o f the installed directional coupler, the microwave counter only works 

when the microwave bridge is set below 30 db attenuation during the spectral scan. The 

frequency counter can be left on while scanning a spectrum providing the microwave 

power is higher than 0.06 mW (or lower than 30 dB attenuation). I f  the spectrometer 

works at 0.06 mW or lower power, the power should be raised above 0.06 mW until the 

frequency counter is triggered. After recording the frequency, the counter should be 

powered o ff and the spectrometer power should be returned to the operating power. The 

counter displays the frequency automatically after turning on the power o f the counter and 

pushing the buttons o f "band", "4" and "I" sequentially.

After the installation of the directional coupler (see Figure 2.3), the S/N 

deteriorates by 18.3% compared to that without the directional coupler. The S/N versus 

microwave power is also presented in Figure 2.7A (curve C). It has a maximum o f 50.0 at 

14 db. The overall S/N after all o f the above bridge modifications is increased by a factor 

of 4.9 at 13 db.

Figure 2.7B shows the S/N improvements after the insertion o f the amplifier and
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the directional coupler. The circle marked data were from (S /N )^  /  (S /N )^ ^  with only 

the amplifier installed. The (S /N )^  / (S/N)t>eforc with both amplifier and directional 

coupler installed are marked with squares. Excluding the data at higher microwave power 

(lower attenuation) where the improvements after these modifications were poor, we 

averaged the rest data over the ranges of 13db~25db and 14db~25db for the two sets o f 

data in Figure 2.7B. The results showed that after the installation o f the amplifier, the S/N 

was improved by a factor o f 7 .1 in our test attenuation range. Whereas, in the presence of 

the directional coupler for the frequency counter, the S/N was improved by a factor o f 6.0.

Replacement of the Magnetized RF Coaxial Cables 

The Q-band spectrometer had a large noise source which was believed not to come 

from the microwave bridge itself. Attention was drawn to the sample cavity and the 

stability o f the long waveguide (about one meter in length), which connects the cavity to 

the bridge circulator. After the Dewar and the modulation coil were dissembled, the 

cavity was visible between the magnet pole caps. When the magnetic field was increased, 

the cavity was seen to pull to one side of the magnet poles, indicating that something on 

the waveguide or cavity was magnetized. The torque generated by the scanning magnetic 

field produced the observed noise.

A compass was used to locate the magnetized part. It was found that the two RF 

cables running along the waveguide had become magnetized. Further investigation 

confirmed that the inner wires o f the RF cables were magnetized, being made o f silver 

plated steel wire. In order to eliminate the magnetization, semirigid RF cable assemblies
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Figure 2.8 The circuit o f the low gain amplifier used in Figure 2.9.
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with copper inner wire (part # 145-01-45.6) were ordered from SSI Cable Corporation 

(Shelton, W A) and the original ones replaced, eliminating the noise.

Installation of the Line Conditioner 

Increased noise was observed in the spectrometer plotter pen whenever the 

centrifuge in the adjacent lab was turned on and off. A line conditioner (SD180, Sola 

Electric Inc., NJ) was then installed. The line conditioner completely eliminated the 

interference from the centrifuge. However, no improvement in S/N was generally 

observed, suggesting that the house lines are not a significant source o f noise for the 

spectrometer.

Installation of an Oscilloscope near the Microwave Bridge 

As the E-line console was used to control both the X-band EPR/ENDOR and Q- 

band EPR/ENDOR spectrometers, the Q-band microwave bridge has to be relatively far 

away from the console. This physical arrangement made the tuning o f the Q-band 

spectrometer an inconvenient two-person job. A second oscilloscope was therefore 

installed near the Q-band microwave bridge. A Hewlett-Packard oscilloscope module 

1340A was used due to its large screen and single function. The X-axis scanning saw

tooth signal was taken from the console oscilloscope module (J201 pin F, GND and pin E, 

SWP), and the Y-axis signal was taken from the microwave bridge after the pre-amplifier 

(J1201 pin F, M OD SWP and pin E, GND. J1202 pin F and pin E were wired to J1201 

pin F and pin E, respectively). In order to match the Y-signal from the preamp to the Y -
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Oscilloscope

Outjr i A m plifier 
in Fig.2.8

Microwave
bridge

Console
oscilloscope

module

Figure 2.9 The schematic diagram for the second oscilloscope w iring

axis range o f the oscilloscope, a simple low-gain amplifier (see circuit in Figure 2.8) was 

built.1151 The schematic diagram of the wiring is displayed in Figure 2.9. After the set up 

of the second oscilloscope, the Q-band EPR/ENDOR spectrometer could be operated by 

one person only.

Innovation o f a New Robust Coupler 

The Varian E -l 10 microwave bridge and the cylindrical TE01I cavity are still 

widely used in Q-band cw-EPR and ENDOR spectroscopy. A  robust yet sensitive ribbon- 

wound TE011 cylindrical cavity for Q-band EPR/ENDOR spectroscopy, capable o f 

repeated temperature cycling down to 2 K, was developed by Wang and Chasteen.1161 

However, critical coupling o f the cavity at low temperature has been a problem because 

the original Varian coupler frequently breaks when adjusted at low temperature. The 

difference in the thermal coefficients o f expansion o f Rexolite and stainless steel causes the
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Figure 2.10 The diagram o f the newly designed Q-band cavity coupler (units in mm).
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The coupler base part 1

Material: brass 
Unit: mm

6/18/98

Figure 2.11a The mechanical drawing of the coupler base.
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The coupler base part 2

Material: brass 
unit: mm

6/18/98

Figure 2.1 lb The mechanical drawing of the coupler holder.
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The coupler finger

Material: Rexolite 
Unit: mm

6/18/98

Figure 2.1 lc  The mechanical drawing o f the coupler finger.
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threaded Rexolite coupler to grip the steel driving screw at low temperature. When 

adjusted, the fragile coupler finger tends to rotate laterally against the waveguide and

snaps.

We have therefore designed a new coupler which is easy to machine, assemble and 

adjust (see Figure 2.10). The mechanical drawings of the coupler parts are shown in 

Figure 2 .1 la to Figure 2.1 Ic. It consists of three parts: a coupler base, coupler finger 

clamp and coupler finger. The coupler base and coupler finger clamp are made of alloy 

360 standard free-cutting brass which is free o f magnetization. The coupler finger is made 

of Rexolite. The small protrusion on the bottom of the coupler base is designed to insert 

into the slot in the waveguide and guides the precise movement o f the coupler base move 

back and forth. The Rexolite finger, if  broken, is easily replaced.

The coupler is installed by first prying slightly the two guiding pins on the Varian 

waveguide and sliding the coupler base onto them. Then the coupler base is pushed 

slightly to one side and the coupler finger is inserted into the waveguide slot. The coupler 

base is released and the finger is inserted in the coupler base. Next, the coupler base is 

pushed toward the cavity. After adjusting the height of the finger so that its tip is centered 

in the opening at the top of the cavity, the finger is tightened in place by the screw. The 

positions o f the guiding pins differ for some Varian waveguides, so the appropriate 

dimensions need to be checked before machining the coupler base.[17]

Comparison of Performance Before and After the Modifications

Table 2.1 presents the improvements of our Q-band spectrometer after the
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modifications. Hyde’s results are also included in this table. After the installation o f the 

microwave amplifier, the S/N improved by a factor o f 7.1, which is almost as good as 

Hyde’s 7.8 where he replaced his noisy klystron with a Gunn diode oscillator. When a 

directional coupler was used in the spectrometer (see Figure 2.3), the S/N reduced to 6.0. 

However, the benefit o f the insertion of the directional coupler was obvious in that it 

enabled us to measure the exact cavity resonant frequency. This is crucial for measuring 

accurate g-values.

The further improvement Hyde attained by installing a balanced mixer was 2.2. 

This modification brought the total S/N improvement to 17.2-fold on his spectrometer. 

Accordingly, we can further improve the S/N of our Q-band spectrometer in the future by 

installing a balanced mixer.

A summary o f the Q-band microwave bridge modifications, costs and sources is 

presented in Table 2.2.

Table 2.1 Comparison o f the improvements after the modifications

Modifications ( S % , / P U Reference

Amplifier alone 7.1 1 This work

Amplifier &  directional coupler 6.0 2 This work

amplifier &  Gunn diode 

oscillator

7.8 Hyde’s work

above &  mixer 17.2 Hyde’s work

1. Average among data in figure 2.6B except the point at 12 db.

2. Average among data in figure 2.6B except the point at 12 and 13 db.
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Table 2.2 Summary o f the modifications made on the Q-band spectrometer.

Device Vlodel number Manufacturers Cost

Microwave

amplifier

QLN-3635-

AA

Quinstar Technology, Inc., Torrance, CA 3,470.00

Directional

coupler

R752D Lectronic Research Labs, Camden, NJ 200.00

Coaxial RF cables JS50141 Precision Tube Co. Inc., Salisbury, M D 150.00

Oscilloscope HP 1340A J. L. Stevenson Equipment Co., Hamilton, 

NJ

160.00

Waveguide bend 28BH11,
28E11,

F28BBC,
WR28

parts from M DL inc., Needham Heights, 
MA.

Assembling at the Space Center machine 
shop of University o f New Hampshire.

160.00

Frequency counter 548A EIP Microwave Inc., San Jose, CA 4700.00

Isolator K A-13-11 Huggins Labs., Inc., Sunnyvale, CA 800.00

Total 9,640.00

The EPR Spectra o f Standard Samples in Absorption Mode and Dispersion Mode 

One essential function for our Q-band EPR/ENDOR spectrometer is to operate in 

dispersion mode for the ENDOR experiment. After modification o f the Q-band bridge, 

the spectrometer still works well in dispersion mode. Figure 2.12 shows the Q-band EPR 

spectra for two standard samples, Mn27CaO and BDPA (a,y-bisdiphenylene-P- 

phenylallyi), in both absorption and dispersion modes. The tuning o f the Q-band 

spectrometer is the same as the unmodified spectrometer. The operation o f the Q-band 

spectrometer at 100 K is described in Appendix A.
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Figure 2.12 The EPR spectra of standard samples in both absorption (a) and dispersion 
(b) modes. Spectrometer settings: Mn27CaO, Absorption Mode, Field Set, 1255 mT; 
Scan Range, 100 mT; Modulation Frequency, 100 kHz; Modulation Amplitude, 0.01 mT; 
Microwave power, 0.02 mW; Microwave Frequency, 34.901 GHz, Receiver Gain, 10; 
Time Constant, 1 s; Scan Time, 16 minutes; Temperature, 298 K; Spectrometer, Q-band
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(continued)

EPR/ENDOR; File Name, 97080209.fls; Dispersion Mode, Field Set, 1255 mT; Scan 
Range, 100 mT; Modulation Frequency, 100 kHz; Modulation Amplitude, 0.05 mT; 
Microwave power, 0.06 mW; Microwave Frequency, 34.779 GHz, Receiver Gain, 4; 
Time Constant, 1 s; Scan Time, 30 minutes; Temperature, 298 K; Spectrometer, Q-band 
EPR/ENDOR; File Name, 97080207.fls;
Sucrose, Absorption Mode, Field Set, 1255 mT; Scan Range, 20 mT; Modulation 
Frequency, 100 kHz; Modulation Amplitude, 0.1 mT; Microwave power, 0.02 mW; 
Microwave Frequency, 34.600 GHz, Receiver Gain, 100; Time Constant, 1 s; Scan Time, 
4 minutes; Temperature, 298 K; Spectrometer, Q-band EPR/ENDOR; File Name,
97080201.fls; Dispersion Mode, Field Set, 1255 mT; Scan Range, 20 mT; Modulation 
Frequency, 100 kHz; Modulation Amplitude, 0.1 mT; Microwave power, 0.2 mW; 
Microwave Frequency, 34.680 GHz, Receiver Gain, 100; Time Constant, 1 s; Scan Time, 
4 minutes; Temperature, 298 K; Spectrometer, Q-band EPR/ENDOR; File Name,
97080202.fls; (dispers.opj)
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CHAPTER 3

IMPROVEMENTS IN  THE X-BAND ENDOR SPECTROMETER

Introduction

The EPR spectra of proteins and model complexes measured in our laboratory 

often have incompletely resolved hyperfine lines. The hyperfine splittings usually are less 

than the EPR line widths. Hyperfine coupling constants are used to obtain the structural 

information about the coordination environments of metal ions having unpaired electrons. 

In order to measure small hyperfine interactions, an X-band ENDOR spectrometer was 

previously built in this laboratory.

The first ENDOR spectrometer in our laboratory used a coil design developed by 

Hiiettermann and coworkers (Figure 3.1 A), which had a printed coil inserted coaxially 

inside the Dewar finger and a sample inserted inside the coil.11®1 The coil and Dewar were 

placed in a TE 104 dual cavity. The disadvantage o f this ENDOR device was its lack of 

reproducibility. When a sample tube was put in the cavity, the coil tended to shift, and the 

cavity Q-value was destroyed. Also at low temperature, ENDOR signals were observed 

from the printed coil itself in addition to those from the sample.

Subsequently, a home-made cylindrical TM 110 cavity was built which had a fixed 

coupling device, and a spiral copper RF coil inserted coaxially in the cavity and outside the 

Dewar finger (see Figure 3.1 B).l,9J This ENDOR cavity had a low Q-value (about 2500 

without RF coil and 1200 with the RF coil) and poor penetration by the 10 kHz

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sample tube o.d. 4 mm Saddle c o il 
front and back  
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C. TE104 cavity

Figure 3.1 Schematic diagrams of our ENDOR coils. (3. l.wpd)
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modulation field due to the thickness o f the aluminum walls. Therefore EPR signals 

obtained with this spectrometer tended to be extremely weak. A new stepping spiral coil 

made of copper wire (24 gauge) was also fabricated according to Lubitz's design,1201 but 

no improvement in cavity Q-value was obtained.

After several years o f research work on our ENDOR spectrometer, we decided 

once again to employ a printed coil in the Varian dual TE104 cavity. But this time, the 

coil was placed outside the Dewar finger (see Figure 3.1 C). The following sections 

describe how to make and assemble the RF coil, and describe the performance o f the 

improved ENDOR spectrometer.

The Design and fabrication o f the ENDOR Coil 

A series o f steps are required in making the printed coil. The steps are as follows:

1. designing coils on the computer and printing out an image o f the circuits; 2. making 

negative films; 3. drilling the alignment holes in the negative films; 4. processing photo 

resist in the dark room; 5. etching the copper foils; 6. soldering up both sides o f the 

circuits; 7. cutting off the substrate; and 8. rolling up and gluing the coil.

WordPerfect Coreldraw was used to design the RF coils. The designed circuits for 

both sides o f a RF coil were twice the size of the real ones (see Figure 3.2 A and B). The 

crucial points in designing the coils were that the shorter the vertical wire length, the 

better the RF coil, and that no horizontal wires, which serve as RF chokes, stayed in the 

active region of the cavity. In order to get a high Q-value o f the ENDOR cavity, the 

width of the wire should be as thin as possible. The width o f the designed coil was 0.5
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Figure 3.2a The drawing of the designed front side ENDOR coil. The negative film 
would be Vz this size. (3.2.wpd)
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Figure 3 2b The drawing o f the designed back side ENDOR coil. The negative film 
would be Vz this size. (3.2.wpd)
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mm on the printed papers (or 0.25 mm for the negative films). An even thinner wire could 

be made, but it would make the wire less durable, hard to make and carry less current.

The circuits for both sides o f a RF coil were designed to exactly match with one another 

when overlaid. Scale lines were drawn in the blue-prints (see Figure 3.2 A and B), which 

were labeled 3.5 inches to make the negative-film-making easier. On each blue-print, 

there are two groups o f two-turn coil. Thus, each side o f the coil has four turns. The 

total number o f turns for a finished coil is eight. The test coils had 4, 8, 12 and 16 turns, 

respectively.

The negative films were made in the Photo Service Center o f UNH. Dark negative 

films were required in order to get decent development o f the photo resist on the dual side 

flexible copper sheet. The two negative films of both sides o f the coil circuits were 

overlaid together. The front and back coil circuits were then adjusted to match up exactly. 

Afterwards, an aluminum plate mold, which had two alignment holes, was put onto the 

films. Then two alignment holes were drilled through the mold into the negative films.

One was at the top and the other was at the bottom of the negative films. There are two 

ways to overlay the negative films. The correct overlay was only possible when the 

current in the coils was flowing in the same direction on both sides of the printed coil.

The photo-print-processing in the dark room was carried out according to the standard 

photo-fabrication methods (see appendix D).

After the coils on the dual-sided foils were developed, they were washed and dried 

in an oven at 80 °C for five minutes. Then, the residues o f unwanted photo resist around 

the circuits were scraped off with a razor under a magnifying glass, whereas the broken
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wires were connected by a resist ink pen.

The copper foils were then suspended in a container having concentrated FeCl3 

(about 2 M ) with a stir bar at the bottom. The etching process took about one hour 

depending upon the concentration and temperature o f the etching solution. Frequent 

checking of the foils was needed to avoid over etching which resulted in a thinner or even 

broken circuit. The coils were then rinsed with distilled water and dried.

The following steps were followed to punch connecting-holes (about 0.25 mm, see 

Figure 3 .2) with a sewing needle, to place thin wires (AWG 36) through the holes, and 

finally to solder the wires on both sides o f the coil. The soldering points were flattened 

with pliers. Two threads of Scothflex flat cable wires (28 AWG, 7 x 36 or 7 x 0.127 mm) 

connected to the BNC connector were soldered onto the coils. Then, all the substrate 

inside the cavity area o f the printed coil was cut off. Next, coils were wrapped onto a 

spare Dewar finger (o.d. 10 mm), and fastened up by a few pieces o f laboratory labeling 

tape. Figure 3.3 shows the photograph o f a finished ENDOR coil.

The Spacer for the ENDOR Coil Connection 

Touch connections were used in the previous ENDOR coil o f the cylindrical cavity 

(see Figure 3.1 B). This kind of connection could not be applied in the present ENDOR 

coil due to the utilization of the Varian dual TE104 cavity. Therefore, a spacer was 

designed to make the connection (see Figure 3.4).

The spacer was made of brass which had a good conductivity for the RF circuit. 

The height o f the spacer was 16 mm. Two BNC connector threads were made on the
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Figure 3 .3 The photograph o f the ENDOR coil.
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2 x 4>4.0 for two screws to fix 
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flange (see Figure 3.8)
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cooling system top 
over (see Figure 3.8)
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the coil and the 
BNC center pin

BNC connector 
is screwed on

Figure 3.4 The drawing of the assembled coil and spacer with electrical connections. 
(3.4.wpd)
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Figure 3.5 The mechanical drawing of the spacer for the ENDOR coil. (3.5.wpd)
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front side o f the spacer. The outer diameter o f the spacer was 41 mm, which was about 

the same size as the cavity top flange. The inner diameter was 36 mm, being wide enough 

for ENDOR coil adjustment by fingers. The four 2.0 mm holes were drilled evenly 

through the spacer with the exact positions shown in Figure 3.5. Two other 2.0 mm holes 

were made on the spacer later. They were evenly located among the other three holes (see 

Figure 3 .4). One M 4 thread was made on the front side o f the spacer for the electrical 

connection in the RF circuit.

The dual cavity was used due to its excellent tolerance to the inserted ENDOR coil 

without major reduction in cavity Q. As the thread on the cryostat top piece and the 

thread on the cavity bottom were not aligned coaxially, the dual cavity was not tightened 

onto the cryostat. However, when the waveguide was connected to both the cavity and 

the bridge, the cavity was held in place firmly. The exact position of the dual cavity was 

adjusted carefully by moving the microwave bridge around so that the cavity was coaxially 

aligned with the Dewar finger.

Assembly of the ENDOR Coil 

When assembling the ENDOR coil, the two BNC connectors were tightened on 

the spacer first. Then the two wires from the coil were soldered onto each center pin of 

the two BNC connector. Afterwards, the spacer was held firmly and the coil was inserted 

into a spare Dewar finger with an O. D. of 10 mm. The coil was shaped so that the middle 

of the coil was a little bit wider than the ends. The next step was to insert the coil into the 

cavity by lowering the spacer using extreme caution not to alter the coil shape. When the
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spacer was placed on the cavity top flange, it was tightened by two screws. With the 

spectrometer operating in tune, the tune mode was watched while carefully rotating and 

moving the ENDOR coil up and down. When the sharpest mode was found, the ENDO R  

coil was left untouched. I f  no satisfactory mode was found, the coil had to be taken out o f 

the cavity and shaped again. The top cover of the cooling system was finally put onto the 

spacer and tightened up using four long screws. The ENDOR coil was finally connected 

to the RF amplifier with a heavy-duty cable and to the dummy load (or a BNC connector 

having its two pins connected together). No difference in performance o f the ENDO R  

spectrometer was observed with the two configurations. The latter configuration was 

used throughout for the ENDOR experiments reported here.

Test of Various ENDOR Coils 

A series o f ENDOR coils with different turns, shapes and wire widths were made 

in an attempt to obtain the best design. They were tested by both EPR and ENDO R  

spectra of the sucrose sample (see Figures 3.6 and 3.7, respectively). It was found that in 

comparison to circuit wires of 0.75 and 0.5 mm width, the wire o f 0.25 mm width had a 

better tune mode, as well as bigger EPR and ENDOR signal amplitudes (data not shown).

A thinner width wire was not tried due to the reasons mentioned above. Coils with 4 to 

16 total turns were made. As no ENDOR signals were obtained for both 4- and 16- turn 

coils, no points for them were drawn on Figures 3.6 and 3.7. The EPR signal amplitudes 

in Figure 3.6 show that with the same shape, fewer turns resulted in bigger EPR signals 

(see Coil A, 8-tum and Coil B, 12-tum). However, the shape o f the coil could be crucial
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to the cavity quality as well. The cavity had a larger EPR amplitude with Coil B (12-tum  

coil) than with Coil C (8-tum coil). In addition, the 8-tum coils (Coil A  and Coil C) had 

the bigger ENDOR signal amplitudes than the 12-tum coil (Coil B) in Figure 3.7. The 

weak ENDOR signal for the 12-tum coil might arise from the resistance mismatch in the 

RF circuit. No RF power saturation was found for any o f the ENDOR coils. The 

sucrose ENDOR signal obtained for each coil continued to grow up to the limit o f the 

amplifier. As Coil C gave the strongest ENDOR signal, it was taken as the best ENDOR  

coil for further use in our X-band ENDOR spectrometer.

Sample Tube Change from 4 mm to 5 mm Outer Diameter 

The sample tubes for ENDOR measurements were switched from 4 mm o.d., 3 

mm i.d. to 5 mm o.d., 4 mm i.d.. The sample volume increased by a factor of (4/3)2 =

1.78. The sample holder center hole on the top of the cooling system cover (see Figure 

3 .8) was widened to fit the bigger sample tube. A spare sample holder was made for 

quickly switching from sample to sample. The EPR and ENDOR spectra of a BDPA 

sample measured with the two sample tubes are presented in the following section.

The Modifications of the Helium Cooling System 

The complete cooling system for the X-band ENDOR spectrometer is displayed in 

Appendix B, Figure B. 1. Figure 3.8 shows a partial diagram o f the cooling system. 

Originally the cooling system was operated by pumping mainly from the back outlet o f the 

cryostat system. Since a bigger diameter sample tubing (O. D. changed from 4 mm to 5
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mm) was used, the helium flow over the sample became restricted. As a result, the 

temperature around the sample could no longer reach 2 K. When a thermosensor within a 

5 mm O. D. sample tube was put in the cavity, the temperature around the sample tube 

was measured to be about 6 K.

The flow rate o f helium gas was the dominant factor for the lowest temperature 

achieved. In the previous helium flow system, helium gas passed from the opening of the 

capillary tubing, through a piece of collar tubing (made of either quartz tubing or a Jumbo 

brand plastic straw), then passed downwards through the outside o f the collar tubing and 

out the back outlet. As the 5 mm O. D. sample tube was used in the new ENDOR  

spectrometer, the gap between the sample tube and the collar tubing became much 

smaller. The helium flow rate was thus greatly reduced.

The collar tubing was eventually removed. The back outlet could no longer be 

used and was stoppered. A brass manifold with 0.5" O. D. was made and fixed at the rear 

of the magnet. The cooling system top cover (see Figure 3.8) was rotated 135 ° toward 

the back o f the magnets in order to minimize kinking of the vacuum tubing and connected 

to the vacuum tubing ending to the brass manifold (see Figure B. 1 o f Appendix B). In this 

way helium gas was pumped over the sample tube and out of the top o f the Dewar. After 

all these modifications, the lowest temperature reached was 2.3 K.

Background Noise o f the ENDOR Spectrometer 

A significant problem in operation o f the ENDOR spectrometer is background 

noise and spurious baseline signals. The source of the noise was found to come mainly
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Figure 3 .6 The EPR signal amplitudes of sucrose standard sample versus the three 
different coils.
Coil A  •: total 8 turns; wire thickness, 0.25 mm; gap between wires, 0.5 mm; label 2d. 
Coil B A: total 12 turns; wire thickness, 0.25 mm; gap between wires, 0.5 mm; label 3d. 
Coil C T : total 8 turns; wire thickness, 0.25 mm; gap between wires, 1.5 mm; label 2a. 
Experimental Conditions:

Coil A • , Microwave Power, 6 mW; Magnetic Field, 336 mT; Scan Range, 100G; 
Modulation Amplitude, 0.1 mT; Microwave Frequency, 9.452 GHz; Time Constant, 
0.01s; Receiver Gain, 500; Modulation Frequency, 100 kHz; Scan Time, 4 minutes; File 
Name, 971002 (on EPR sheet).

Coil B A, Microwave Power, 6 mW; Magnetic Field, 3360 mT; Scan Range, 
100G; Modulation Amplitude, 0.1 mT; Microwave Frequency, 9.451 GHz; Time
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(continued)

Constant, 0.01s; Receiver Gain, 500; Modulation Frequency, 100 kHz; Scan Time, 4 
minutes; File Name, 971002 (on EPR sheet).

Coil C A, Microwave Power, 6 mW; Magnetic Field, 336 mT; Scan Range, 100G; 
Modulation Amplitude, 0.1 mT; Microwave Frequency, 9.448 GHz; Time Constant, 
0.01s; Receiver Gain, 500; Modulation Frequency, 100 kHz; Scan Time, 4 minutes; File 
Name, 971002 (on EPR sheet). (3.6.wpd).
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Figure 3.7 The ENDOR signal amplitudes o f sucrose standard sample versus the three 
different coils.
Coil A •: total 8 turns; wire thickness, 0.25 mm; gap between wires, 0.5 mm; label 2d.
Coil B A: total 12 turns; wire thickness, 0.25 mm; gap between wires, 0.5 mm; label 3d. 
Coil C T : total 8 turns; wire thickness, 0.25 mm; gap between wires, 1.5 mm; label 2a. 
Experimental Conditions:

Coil A  • , Microwave Power, 1 mW; Radio Frequency Power, 100 W; Modulation 
Amplitude, 2.0 V; Microwave Frequency, 9.452 GHz; Time Constant, 0.03s; Receiver 
Gain, 16000; Modulation Frequency, 10 kHz; Scan Rate, 0.5 MHz/s; Scan Range, 9-19  
MHz; File Name, 97100201.

Coil B A, Microwave Power, 1 mW; Radio Frequency Power, 100 W; Modulation 
Amplitude, 2.0 V; Microwave Frequency, 9.451 GHz; Time Constant, 0.03s; Receiver 
Gain, 16000; Modulation Frequency, 10 kHz; Scan Rate, 0.5 MHz/s; Scan Range, 9-19
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(continued)

M Hz; File Name, 97100202.
Coil C T, Microwave Power, 1 mW; Radio Frequency Power, 100 W; Modulation 

Amplitude, 2.0 V; Microwave Frequency, 9.448 GHz; Time Constant, 0.03s; Receiver 
Gain, 16000; Modulation Frequency, 10 kHz; Scan Rate, 0.5 MHz/s; Scan Range, 9~19 
MHz; File Name, 97100203. (3.7.wpd)
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from induction o f the radio frequency energy in the waveguide which connects the 

microwave bridge to the ENDOR cavity. Noise is also picked up by the modulation coil 

and magnetic field probe. Both are close to the NMR coil. The 10 kHz modulation cable 

is another noise source. Several procedures were undertaken to get rid o f these sources of 

noise. The waveguide connections were insulated by pieces of well-trimmed teflon sheet 

to minimize the induced noise. Then the waveguide was grounded with four wires to the 

water pipe and the three legs of the EPR/ENDOR spectrometer bench upon which the 

bridge sits. The 10 kHz frequency modulation cable was also put as far as possible from 

the cavity to minimize the background signal. No dummy load was used through all the 

ENDOR experiments. A heavy duty coaxial cable (about four feet in length) was used to 

connect the E N I amplifier to the ENDOR coil.

Test of the ENDOR Spectrometer 

The sucrose sample, which is exactly the same one as we used before, was tested 

on our new X-band ENDOR spectrometer. Figure 3.9 shows the EPR spectrum o f the 

sucrose standard sample obtained on the present ENDOR spectrometer. The sucrose 

ENDOR signals were measured on our previous and present ENDOR spectrometers 

(Figure 3.10). According to the Equation 2.1, the S/N was measured to be 58 with the 

present system compared to 35 previously or improved by a factor o f 1.66. We also 

tested the influence o f the sample volume increase (sample tube i.d. increased from 3 mm 

to 4 mm) on the EPR and ENDOR signals. The results are presented in Figure 3.11. As 

the volume increased by a factor o f 1.78, so did the EPR and ENDOR signal amplitudes
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Figure 3.8 The partial drawing of the X-band EPR/ENDOR cooling system. (3.8.wpd).
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Figure 3.9 The EPR spectrum of sucrose standard sample from the present TE104 cavity. 
Experimental conditions: Magnetic Field, 335 mT; Scan Range, 10 mT; Microwave 
Power, 4 mW; Modulation Amplitude, 0.05 mT; Modulation Frequency, 100 kHz; 
Temperature, 298 K; Time Constant, 1 s; Receiver Gain, 100; Microwave Frequency, 
9.432 GHz; Scan time, 4 minutes; File Name, 9802170l.fls; (3.9.wpd).
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A. The ENDOR signal from the previous T M 110 cavity (see Figure 3.1 B).

-4 2•2 0 4

RF (MHz)

B. The ENDOR signal from the present TE104 cavity (see Figure 3.1 C).

Figure 3.10 The Sucrose ENDOR signals from two different spectrometers.
Experimental Conditions: A, Microwave Power, 10 mW; Radio Frequency Power, 0.4v 
PTS; Modulation Amplitude, 2.5 V  (280 kHz); Time Constant, 0.03s; Receiver Gain, 
10000; Modulation Frequency, 10 kHz; Scan Rate, 0.2 MHz/s; Scan Range, 9—19 MHz; 
number o f scans, 1; File Name, 19apr95a.fls. B, Field set, 334.74 mT; Microwave Power, 
4 mW; Radio Frequency Power, 120 W; Modulation Amplitude, 6.0 V, 660 kHz; Time 
constant, 0.03 s; Receiver Gain, 16000; Modulation Frequency, 10 kHz; Scan Rate, 0.5 
MHz/s; Scan range, 9-19 MHz; number o f scans, 1; File Name, 98021603 .fls (3.10.wpd).
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Figure 3.11 The EPR/ENDOR signals for BDPA samples in 4 mm and 5 mm tubes. 
Experimental Conditions: EPR, Magnetic Field, 334.5 mT; Scan Range, 4 mT; Microwave 
Power, 0.05 mW; Modulation Amplitude, 0.05 mT; Modulation Frequency, 100 kHz;
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(continued)

Temperature, 298 K; Time Constant, 1 s; Receiver Gain, 1000; Microwave Frequency, 4 
mm tube, 9.409 GHz; 5 mm tube, 9.391 GHz; File Name, 4 mm tube, 98030419; 5 mm 
tube, 98030417; ENDOR, Field position, 5 mm tube, 3345.36, 4 mm tube, 3348.14; 
Microwave Power, 1 mW; Radio Frequency Power, 100 W; Receiver Gain, 3200; 
Modulation Frequency, 10 kHz; Modulation Amplitude, 2.0 V  (220 kHz); Time Constant, 
0.1 s; Temperature, 298 K; Scan Rate, 0.5 MHz/s; Scan Range, 9 ~ 19 MHz; Number o f 
scans, 1; File Name, 4 mm tube, 98030420; 5 mm tube, 98030418; (2.1 l.wpd).

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by about the same factor. Table 3.1 lists the tested results for our new EPR/ENDOR  

spectrometer and the ones from Dr. Proulx-Curry. The overall S/N of our new 

EPR/ENDOR spectrometer is a factor o f 3.0 better than our previous one. This gives a 

reduction of acquisition time of 1/9 = (l/3 )2for the same S/N, enabling spectra o f weak 

signals to be observed. As a consequence, the ENDOR spectrum o f the ferritin iron 

nitrosyl complex, which was not possible to observe on the previous spectrometer, was 

obtained with the improved ENDOR spectrometer. The performance o f our new ENDOR  

spectrometer significantly exceeds the previous one regarding stability o f operation, 

modulation field penetration, tuning and sensitivity.
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Table 3.1 The comparison of our two X-band ENDOR systems

Previous 

ENDOR system

Present ENDOR system

Cavity TM 110 home

made

TE104 Varian

Cavity Q-value w/o RF coil 2,500 5,000

Cavity Q-value w / RF coil 1,200 2,050

RF coil helix 16 turns saddle 8 turns

Sample tube i. d. 3 mm; 

o. d. 4 mm

i. d. 3 mm; 

o. d. 4 mm

i. d. 3 mm; 

o. d. 4 mm

i. d. 4 mm; 

o. d. 5 mm

Test sample Sucrose Sucrose BDPA BDPA

Microwave power 10 mW 4 mW I mW 1 mW

RF power 0.4 PTS 0.24 V , 120 W 0.24v, 100 W 0.24v, 100 W

RF modulation amplitude 2.5 V, 280 kHz 6.0 V, 660 kHz 2.0 V, 220 kHz 2.0 V, 220 kHz

Sweep rate 0.2 MHz/s 0.5 M Hz/s 0.5 MHz/s 0.5 MHz/s

Time constant 0.03 s 0.03 s 0.03 s 0.03 s

S/N 35 58 j-to-p, 27807 3-to-p, 4943 1

Total S/N 35 103 “

a. The total S/N for present ENDOR system is 58 x 49431/27807 = 103.
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CHAPTER 4

ENDOR STUDIES OF FERRITIN  IRON NITRO SYL COMPLEXES

Introduction

Ferritin, the iron storage protein, has been studied extensively.121'231 Ferritin has 

twenty four subunits which assemble into a highly symmetric structure o f space group 

F432.124,251 The protein stores iron in its central cavity in the form o f ferric hydroxy 

phosphate mineral phase.1261 Ferrous iron diffuses into and out o f the ferritin cavity 

through the three-fold hydrophilic channels of the protein shell.1271 However, the 

mechanism o f iron deposition in the protein in vivo is still unclear. One possible 

mechanism for iron deposition in ferritin may involve the formation o f ferritin iron nitrosyl 

complexes.1281

Nitric oxide (NO) is an important small radical in living cells.129*321 It plays vital 

roles in many physiological functions such as digestion, blood pressure regulation, 

neurotransmission and antimicrobial defense.133*361 It may serve as a cytotoxic effector, 

neurotransmitter, immune regulator, and endothelium-derived relaxing factor.134,37*401 In 

both normal and tumor cells, iron nitrosyl complexes have been found by EPR 

spectroscopy .141*431 The EPR spectra o f ferritin in the presence o f NO is similar to those of 

liver cells.1441 This similarity suggests a possible presence o f ferritin iron nitrosyl 

complexes in liver cells. Other studies have suggested that the nitric oxide could play a 

role in iron release from the ferritin cavity.1331
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The general structure of dinitrosyl iron complexes has been described as 

tetrahedral/451 The total electron spin is S = l/2 /4Sal Thus, the g-values o f the complexes 

are near the free electron value. The EPR spectra o f such complexes generally consist of a 

resonance at g =  2.032,1461 but their structures in protein molecules are generally unknown.

Studies o f ferritin iron nitrosyl complexes o f site-directed mutant proteins were 

previously carried out in our group/281 Rhombic and axial EPR signals o f the complexes 

were found to come from the iron nitrosyl complexes coordinated at His 128 and Cysl30 

residues, respectively, in the vicinity o f the three-fold hydrophilic channels/281 However, 

the EPR spectra showed no resolved 14N or *H coupling in frozen solution, so no further 

information about the structures of the complexes was obtained. Therefore, ENDOR  

spectroscopy was used to obtain the proton hyperfine splittings for the complexes. 

Unfortunately, due to the weak ENDOR signals o f ferritin iron nitrosyl complexes, and the 

relatively low sensitivity o f our previous ENDOR spectrometer toward dilute biological 

samples, ENDOR spectra from ferritin iron nitrosyl complexes were not obtained.

However, ENDOR spectra o f model complexes were obtained, which provided indirect 

insight into the possible local configuration o f the iron nitrosyl complexes in ferritin 

itself/471

After improvement o f our ENDOR spectrometer, the ENDOR spectra o f ferritin 

iron nitrosyl complexes were again investigated and successfully observed in this 

laboratory. Two model complexes were also studied by ENDOR spectroscopy, namely 

the cysteine iron nitrosyl and penicillamine iron nitrosyl complexes. The distances from 

the iron to the surrounding protons were estimated for the protein and model complexes
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using the point dipole approximation.1471 The possible structures of the model complexes 

were generated by ChemSite, a computer molecular modeling program. The local 

structure o f ferritin iron nitrosyl complex is inferred from the data on the protein and 

model complexes.

Experimental

The X-band ENDOR spectrometer was operated according to the description in 

Appendix C. Most o f the experiments were carried out at 2.3 K. All the proton ENDOR  

spectra presented here have the off resonance background subtracted from the spectra.

All the materials were reagent grade and used without further purification unless 

otherwise indicated. Horse spleen apoferritin, 2,2'-dipyridyl, sodium chloride and ascorbic 

acid were purchased from Sigma Chemical Co., St. Louis, MO. Trace metal ions in 

ferritin were removed by the standard procedures/481 MOPS, MES and HEPES buffers 

were from Research Organics, Inc., Cleveland, OH. Sodium hydrosulfite, sodium 

hydroxide, sodium nitrite and penicillamine was obtained from Aldrich Chemical Co., Inc., 

Milwaukee, W I. Sulfuric acid and hydrochloric acid were from J. T. Baker Inc., 

Phillipsburg, NJ. Deuterium chloride, D20  and sodium deuteroxide were from Cambridge 

Isotope Laboratories, Inc., Andover, MA. Ferrous sulfate heptahydrate was from Fisher 

Chemical Inc., Fair Lawn, NJ. Cysteine was from Fluka Chemical Co., Ronkonkoma,

NY.

MOPS buffer (0.1 M  MOPS, 0.15 M  NaCl) was made for all the protein samples 

in H20  and D20 . The pH and pD o f the protein solution was adjusted to 7.0 for samples
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Figure 4.1 The schematic diagram of the apparatus for the preparation o f the ferritin iron 
nitrosyl complex. (4.1.wpd)
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in H20  and in D20  where pD = pH - 0.4. Here, pH is the meter reading for D 20  samples 

while the meter is calibrated with pH buffers. The pD adjustment o f samples in D zO was 

protected by argon gas. Similarly, the pH and pD values for the model complexes in H 20  

and in D20  were 6.0.

Ferritin was concentrated with a 3 ml ultrafiltration cell and a PM 30 membrane 

(Molecular weight cut-off 30,000, Amicon, Inc., Beverly, M A). The operating pressure 

was 20 psi. The concentration of horse spleen apoferritin was determined by its 

absorbance at 280 nm, with the molar absorptivity e  =  1.95 x 104 cm'1 M '1 per subunit.[491

The ferritin iron nitrosyl complexes were prepared by passing freshly generated 

NO gas over the top surface o f the ferritin solution, which consisted o f about 2 mM  

subunit concentration o f horse spleen ferritin and eight ferrous iron ions per protein.

Figure 4.1 shows a schematic diagram for the preparation o f the ferritin iron nitrosyl 

complexes. Usually, 700 |ll o f solution with 0.08 m M ferritin 24 mer, 0.15 M  MOPS and 

0.1 M NaCl, at pH = 7.0 was put in Vial 1 (see Figure 4.1). Then, 0.345 g o f N aN 02 was 

weighed and put in Flask 1. The preparation system was flushed with Ar gas for one hour. 

Vial 2 contains HzO (or D20 ) to moisturize the Ar gas. Before generating NO gas, a dry 

ice slush trap (mixture o f propanol and dry ice pellets) was set up to trap any acidic 

moisture and some N 20  gas. Next, 5 ml o f H20  flushed with Ar gas was put in Flask 1 to 

make a 1 M  N aN 02 solution.

Then 4.5 ill 0.1 M  FeS04 in H2S04, pH 2.0, was added anaerobically to Vial 1 

(containing ferritin). The Ar gas flow was stopped by Valve 1. Finally, the 1 M  FeS04 

solution in 1 M  H2S 04 was dripped into Flask 1 (containing 1 M  NaNO^. After five
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minutes, the solution in Vial 1 was taken immediately with a 1 ml syringe (which was 

purged with Ar gas) and transferred to an Ar gas flushed standard sample tube (o.d. 5 mm 

and i.d. 4 mm). The sample tube was then covered with a non-pierced septa and the 

sample was frozen in liquid nitrogen.

Samples o f ferritin in DzO were prepared in two ways, multi-step ultrafiltration and 

multi-step dialysis. In multi-step ultrafiltration, a 3 ml cell attached with a YM  30 

membrane was used and 1 ml ferritin solution with 2.0 mM subunit concentration was 

placed in the cell. Then, 2 ml MOPS buffer prepared in DzO was added. The operating 

pressure was 20 psi. It took about one and half hours to squeeze out 2 ml of solution. 

After 1 ml ferritin solution remained in the cell, another 2 ml MOPS buffer in DzO was 

added to the cell. A total o f three refills was done, giving a final 1 ml solution of 96.3% 

D ,0  in the solvent.

In multi-step dialysis, a Spectra/Por 3 dialysis bag with a molecular weight cut-off 

of 3,500 was used to contain 1 ml apoferritin solution with 2.0 mM subunit concentration. 

The dialysis bag was put in a 12 ml glass bottle filled with 3 ml MOPS buffer (pD = 7.0,

0.1 M  MOPS and 0.15 M  NaCl) in D20 . The small bottle was then tightened on a shaker 

and put in the 4° C refrigerator. The shaker was operated continuously in order to 

facilitate the dialysis process. It took two days for each change and two changes was 

performed for the ferritin sample giving D20  composition o f 93.7% by volume in the 

solvent.

The model complexes (cysteine nitrosyl complex and penicillamine nitrosyl 

complex) were prepared following the procedures described by Wang.[47] The solutions o f
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model complexes have 10 mM iron and 200 mM ligand concentrations.

Results

A. EPR Spectra o f ApoHoSF-Fe-NO and Model Complexes

Ferritin iron nitrosyl and model complexes were previously investigated by our 

group. [28,47] Although no effort was put into the EPR studies of these complexes in the 

present research, all the complexes studied herein were scanned on our EPR spectrometer 

equipped with a Bruker microwave bridge.1501 The EPR spectra are displayed in Figure 

4.2. All o f these EPR spectra have similar axial features. The glf and gx values for each of 

the complexes were calculated and are tabulated in Table 4.1. The g/; and g± values are 

the same for all these complexes within experimental error.

B. Proton ENDOR of Ferritin Iron Nitrosyl Complexes

The lH  ENDOR spectra o f the HoSF-Fe-NO complex at the parallel position in 

both H20  and D20  are presented in Figure 4.3. The paired bars correspond to the 

measured hyperfine couplings. Both samples have four hyperfine couplings, which were 

measured and are presented in Table 4.2. The 0.82 MHz hyperfine coupling (a) in Figure 

4.3 was partially resolved from the 1.41 M Hz (b) coupling in the H 20  sample. A bump 

(out o f the range) around -3.12 M Hz was not eliminated completely by subtracting the 

ENDOR signal with the off-resonance background having the same number o f scans. As 

it was not mirrored about the free proton Larmor frequency (14.90 M H z at 3500 G), it 

should not be from the electron spin and proton hyperfine interaction.141 The source of the
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 HoSF-Fe-NO
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Magnetic field (mT)

Figure 4.2 The EPR spectra o f HoSF-Fe-NO and model complexes. Common 
Experimental conditions: Field Set, 326 mT; Scan Range, 40 mT; Microwave power, 5 
mW; Modulation Frequency, 100 kHz; Modulation Amplitude, 0.1 mT; Time Constant, 
0.3 s; Scan Time, 500 s; Temperature, 77 K; Spectrometer, Bruker; Individual 
Experimental Conditions: Cys-Fe-NO, Concentration, 10 mM; pH, 6.0; Microwave 
Frequency, 9.1365 GHz; Receiver Gain, 0.3 V; File Name, 98120802.fls; Pen-Fe-NO, 
Concentration, 10 mM; pH, 6.0; Microwave Frequency, 9.1371 GHz; Receiver Gain, 0.3 
V; File Name, 98092402.fls; HoSF-Fe-NO, Concentration, 2.0 mM, pH, 7.0; Buffer, 0.1 
M  MOPS, 0.15 M  NaCI; Microwave Frequency, 9.1358 GHz; Receiver Gain, 0.1 V; File 
Name, 9812050l.fls; (4.2.opj)
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Table 4.1 The g„ and gx values for the studied complexes*

^ ^ apoHoSF-Fe-NO Cys-Fe-NO Pen-Fe-NO

g// 2.015 ±0.001 2.015 ±0.001 2.014 ±0.001

gx 2.033 ±0.001 2.034 ±0.001 2.033 ± 0.001

* The EPR spectra were measured at 77 K.

signal is unknown. The ENDOR signal amplitude o f the A = 0.82 M H z hyperfine 

coupling decreased but was not eliminated for the sample prepared in D20  (dotted lines), 

indicating that this hyperfine coupling arises from an exchangeable proton. The coupling d 

for the complex prepared in H 20  has a noise signal superimposed with itself. The 

coupling c for the samples prepared in both H20  and D20  was partially resolved from the 

coupling d. The stick ENDOR spectra at the bottom o f Figures 4.3, 4.5 and 4.7 - 4.10 

indicate the expected ENDOR resonance frequencies from molecular modeling 

calculations, as detailed later in this Chapter.

The sample in D20  was prepared by incubating ferritin in D 20  MOPS buffer (0.1 

M  MOPS, 0.1 M  NaCI, pD = 7.0) for two days. However, the ENDO R results indicated 

that a longer time is needed for a complete proton exchange in ferritin. Horse spleen 

apoferritin incubated in D20  buffer for seven to fourteen days gave no ferritin iron nitrosyl 

EPR signal, suggesting that deuteration o f the protein caused a structural change or 

possible damage to it. In order to minimize possible damage to the protein, two methods 

were tried in the deuteration o f the ferritin samples. One method used a series of ultra- 

filtration steps. The other one used multi-dialysis changes against the buffer in DzO. No
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Table 4.2 The lH  ENDOR couplings (M Hz) o f HoSF-Fe-NO and model complexes. *•b

at parallel position, // at perpendicular position, _l

?HCH2
HOiC—C— KHl 

1H

1-Cysteine

a b c d e a' b' c' d’ e’

(->0.60 1.48 2.90 — — 2.78 3.70 — — —

?Hme— c—cm
HOiG— o— NHl 

1H

I-Penicillamine

a b c d e a' b' c' d’ e’

0.35 118 (-)1.69 1.87 2.83 0.42 ( - ) i . n 0 2 .5 9 3.88 —

HoSF a b c d e a' b' c' d’ e’

0.82 1.41 2.32 3.06 _ (-)0.79 0 1 3 6 0 1 7 5 3.34 (•)4.30
a. Bold numbers from exchangeable protons. Error is ±  0.05 MHz. Signs o f coupling 
constants in parentheses are inferred from the dipole calculation.
b. The underlined couplings of the complexes are from the same proton, and are both 
positive at the parallel and the perpendicular field positions.

EPR signals were observed for samples prepared by either method. As the apoHoSF 

protein shell is less stable, holoHoSF was used to prepare the HoSF-Fe-NO in DzO as 

well. Still no EPR signal was obtained. All the samples in D20  were then tested by gel 

electrophoresis, which gave no indication o f molecular breakup (see Figure 4 .4). The top 

lighter bands are from dimers in the protein samples.

Figure 4.5 shows the ENDOR spectra o f ferritin iron nitrosyl complexes in H zO 

and D20  taken at the EPR perpendicular position. These spectra had stronger ENDOR  

signals than those at the parallel position. There are five apparent hyperfine couplings.
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 HoSF-Fe-NO in HzO
 HoSF-Fe-NO in D O

-3 ■2 1 0 1 2 3
Frequency (MHz)

Figure 4.3 The proton ENDOR spectra o f HoSF-Fe-NO complexes at parallel position. 
Common Experimental Conditions: Ferritin Subunit Concentration, 2.0 mM; Iron 
Concentration, 0.67 mM; Buffer, 0.1 M  MOPS; Microwave Power, 2 mW; Radio 
Frequency Power, 100 W; Modulation Depth, 2.0 V (220 kHz); Time Constant, 0.1 s; 
Scan Rate, 0.5 MHz/s; Temperature, 2.4 K; Scan Range, 10 MHz; Number o f Scans, 150; 
Individual Experimental Conditions: HoSF-Fe-NO in HzO, Receiver gain, 50,000; File 
Name, 98102302.fls; HoSF-Fe-NO in DzO, Receiver gain, 32,000; File Name,
9810230l.fls; The dotted lines are couplings from the exchangeable protons; The dash 
lines are from a  protons; The solid lines are from methylene protons; (4.3.opj).
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Figure 4.4 The molecular weight assay o f ferritin samples by Gel Electrophoresis. 
Experimental conditions: Buffer, 10 mM MOPS for 0.5 jig samples, 0.4 mM MOPS for 
12.5 jig  samples; pH, 7.0 for samples in H zO, 7.4 for samples in DzO; Voltage, 125 V; 
Current Set, 400 |lA ; Time, 1.5 hours; Gel, native, 8% Tris-Glycine Gel from NOVEX.
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Figure 4 .5 The proton ENDOR spectra o f HoSF-Fe-NO complexes at perpendicular 
position. Common Experimental Conditions: Ferritin Subunit Concentration, 2.0 mM; 
Iron Concentration, 0.67 mM; Buffer, 0.1 M  MOPS; Microwave Power, 2 mW; Radio 
Frequency Power, 100 W; Modulation Depth, 2.0 V  (220 kHz); Time Constant, 0.1 s; 
Scan Rate, 0.5 MHz/s; Temperature, 2.4 K; Scan Range, 10 MHz; Number o f Scans, 150; 
Individual Experimental Conditions: HoSF-Fe-NO in H20 , Receiver gain, 50,000; File 
Name, 98102302.fls; HoSF-Fe-NO in D20 , Receiver gain, 32,000; File Name, 
98102301.fls; The dotted lines are from exchangeable protons; (4.5.opj).
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The measured couplings are listed in Table 4.2. The A  = 1.36 MHz coupling (b’) consists 

o f three overlapped couplings (see the following section). The largest hyperfine couplings 

o f A = 4.30 and 3.34 M Hz show a smaller amplitude for the DzO sample (Figure 4.5). 

Therefore, these hyperfine coupling signals come from an exchangeable proton as well. A  

bump at -2.92 M Hz out o f the spectral range of Figure 4.5 is from the same source as that 

in Figure 4.3.

C. ENDOR Spectra o f Model Complexes

The temperature dependence of the ‘H ENDOR spectral intensity o f Cys-Fe-NO 

complex was measured. It  was found that in the range o f 10 - 30 K, the ENDOR signals 

were strong. Above 70 K and below 5 K, the signal was very weak or there was no 

ENDOR signal. Figure 4.6 shows the temperature dependence o f the Cys-Fe-NO 

complex ENDOR signal. l4N  ENDOR peaks were sought under the same conditions as 

that used to obtain ‘H ENDOR, but were not observed. As the model complexes have at 

least six and nine protons for Cys-Fe-NO and Pen-Fe-NO, respectively, some hyperfine 

couplings were not resolved in the spectra. The following are the tentative assignments of 

the hyperfine couplings. A  complete explanation of the lH ENDOR spectra o f the model 

complexes is an ongoing project.

The ENDOR spectra o f Pen-Fe-NO in H20  and D20  at the parallel position are 

presented in Figure 4.7. The sample in H20  has five hyperfine couplings. The measured 

hyperfine splittings are given in Table 4.2. The decrease in intensity o f the hyperfine 

splittings of 2.83 (coupling e) and 0.35 (coupling a) M H z indicates that these couplings
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Figure 4.6 Temperature dependence o f ENDOR signal amplitude o f Cys-Fe-NO complex. 
Experimental conditions: Buffer, None; pH, 6.0; Concentration o f Complex, 10 mM; 
Radio Frequency Power, 100 W; Modulation Depth, 1.0 V  (110 kHz); Time Constant, 0.1 
s; Scan Rate, 0.5 MHz/s; Temperature, Various; Scan Range, 10 M Hz; Microwave 
Power, 2 mW; Receiver gain, Various; Number of Scans, 20; File Name, 99112420 - 
99112427.fls; (4.6.opj).
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Figure 4.7 The 'H  ENDOR spectra o f Pen-Fe-NO at parallel position. Common 
Experimental Conditions: Buffer, None; pH, 6.0; Concentration o f Complex, 10 mM; 
Radio Frequency Power, 100 W; Modulation Depth, 2.0 V  (220 kHz); Time Constant, 0.1 
s; Scan Rate, 0.5 MHz/s; Temperature, 2.35 K; Scan Range, 10 MHz; Individual 
Experimental Conditions: Pen-Fe-NO in HzO, Microwave Power, 1 mW; Receiver gain, 
50,000; Number o f Scans, 50; File Name, 98102303.fls; Pen-Fe-NO in D20 , Microwave 
Power, 10 mW; Receiver gain, 32,000; Number o f Scans, 10; File Name, 98101907.fls; 
The stick ENDOR spectrum at the bottom o f the graph was obtained from the model 
calculations with the axis tilt of -9°. The dotted lines represents the couplings from the 
exchangeable protons, dashed lines from the a  protons and solid lines from the methyl 
protons (4.7.opj).
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Figure 4.8 The 'H  ENDOR spectra o f Pen-Fe-NO at perpendicular position. Common 
Experimental Conditions: Concentration of complex, 10 mM; Buffer, None; pH, 6.0 for 
complex in HzO, 6.4 for complex in D20 ; Radio Frequency Power, 100 W; Modulation 
Depth, 2.0 V; Time Constant, 0,1 s; Scan Rate, 0.5 MHz/s; Scan Range, 10 MHz; 
Individual Experimental Conditions: Pen-Fe-NO in H20 , Microwave Power, 1 mW; 
Receiver gain, 50,000; Number o f Scans, 50; File Name, Temperature, 2.31 K;
98102305.fls; Pen-Fe-NO in D ,0 , Microwave Power, 10 mW; Receiver gain, 32,000; 
Number o f Scans, 10; File Name, 98101908.fls; The line types are the same as in Figure 
4.7 (4.8.opj).
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Figure 4.9 The proton ENDOR spectra o f Cys-Fe-NO complexes at the parallel field 
position. The EPR spectra were the same for the samples in H20  and D20 . The steps on 
the curve could be the artifacts due to the ENDOR circuit of the spectrometer. Common 
experimental conditions: Complex concentration, 10.0 mM; Buffer, none; pH, 6.0; 
Microwave power, 2 mW; Radio frequency power, 100 W; Modulation depth, 1.0 V  (110 
kHz); Time constant, 0.03 s; Scan rate, 0.5 MHz/s; Temperature, 24.0 K; Scan range, 10 
MHz; Number o f scans, 200; Individual experimental conditions: In H20 , Receiver gain, 
25,000; File name, 99112431.fls; In D20 , Receiver gain, 8,000; File name, 99112430.fls; 
The inset graph shows the full scale ENDOR signals for both samples at the parallel field 
position. The line types are the same as in Figure 4.7. (4.9.opj).
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Figure 4.10 The proton ENDOR spectra o f Cys-Fe-NO complexes at perpendicular 
position. The steps on the curve could be the artifacts due to the ENDOR circuit o f the 
spectrometer. Common experimental conditions: Complex concentration, 10.0 mM; 
Buffer, none; pH, 6.0; Microwave power, 2 mW; Radio frequency power, 100 W; 
Modulation depth, 1.0 V  (110 kHz); Time constant, 0.03 s; Scan rate, 0.5 MHz/s; 
Temperature, 24.0 K; Scan range, 10 MHz; Number o f scans, 50; Individual experimental 
conditions: In H20 , Receiver gain, 4,000; File name, 99112428.fls; In D20 , Receiver gain, 
1,600; File name, 99112429.fls; The in inset graph shows the full scale ENDOR signals for 
both samples at perpendicular position. The line types are the same as in Figure 4.7 
(4.10.opj).
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arise from exchangeable protons (dotted lines). The 1.18 M Hz peak (coupling b) is from 

the summation o f five closely distributed peaks (see below).

Figure 4.8 displays the ENDOR spectra o f Pen-Fe-NO in H ,0  and D20  at the 

perpendicular position in the spectrum of Figure 4.2. Four hyperfine couplings were 

observed (Table 4.2). The exchangeable proton responsible for the 1.17 and 2.59 M H z 

couplings b' and c' were present in the HzO sample and absent or partially absent in the 

D20  sample. The center peak a' o f 0.42 M Hz represents many overlapped hyperfine 

couplings. The exchangeable proton splittings at the parallel position were different from 

that at the perpendicular position, 0.35 and 2.83 (a and e in Figure 4.7) vs. 1.17 and 2.59 

M H z (b' and c’ in Figure 4.8), respectively.

Similarly, ENDOR spectra were obtained for Cys-Fe-NO complexes. The parallel 

and perpendicular ENDOR spectra of samples in both H20  and D ,0  are displayed in 

Figure 4.9 and Figure 4.10, respectively. The three hyperfine splittings at the parallel field 

position and two hyperfine couplings at the perpendicular field positions were measured 

(Table 4.2). The center a1 peak represents unresolved couplings.

D. Molecular Modeling of Iron Nitrosvl Complexes

In order to make correct assignments o f the peaks in the ENDOR spectra, 

molecular modeling calculations were carried out for all the complexes. Bond lengths 

were taken from the CRC Handbook of Chemistry and Physics 79 ed. and the literature,1571 

and are presented in Table 4.3. The models o f the complexes were made and energetically 

minimized with ChemSite software using quenched molecular dynamics and are displayed
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Table 4.3 The bond lengths chosen for the model complex modeling.

Bond type * r(A ) Reference

Csp3 - Csp3 1.53 100

Csp3 - Csp2 1.51 100

Csp3 - H(methylene) 1.09 100

C sp3 - H(methyl) 1.06 100

C sp3 - N(4) 1.48 100

C sp3 - S(2) 1.82 100

C sp2 = 0 (2) 1.21 100

Csp2 - 0(2) 1.31 100

N(4) - H 1.03 100

0 (2 ) - H 1.02 100

N (4) - Fe(4) 2.18 57

S(2) - Fe(4) 2.34 57

ON - Fe(4) 1.68 57

N = 0 1.15 57

a. Specification of elements in the bond, with coordination number given in parentheses, 
and bond type (single, double, etc.). For carbon, the hybridization state is given.
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in Figure 4.11 and 4.12 for Cys-Fe-NO (monodentate ligation through sulfur and a water 

molecule H-bonded with the two sulfur atoms) and Pen-Fe-NO (bidentate ligation through 

sulfur and the amine nitrogen), respectively. The distance between each proton to the iron 

center was determined from the program.

The ChemSite Molecular Modeling program was also used to envision the local 

structure o f the HoSF-Fe-NO complex (bidentate ligation). Only the three fold channel 

part of the protein structure was regenerated and manipulated here.

First, the protein file pdbllier.pdb1581 o f the tetragonal crystal structure o f native 

horse spleen ferritin was abbreviated by deleting unwanted structural data from the 

original file, leaving only the three subunits surrounding the three-fold channel, and saved 

in hrs3fold.ent. Then, hrs3fold.ent was loaded in the ChemSite program. Later, an iron 

atom was added and bonded to both S and N on the Cysl30 residue. Then, two NO 

molecules were added and bound with the iron atom. Finally, three protons were 

introduced into the complexes, one on the a  carbon and the other two on the methylene 

carbon of Cysl30. Afterwards, the S, N, Fe, two NO and the three proton atoms or 

molecules were selected as moveable atoms or molecules. Then, an energy minimization 

(quenched molecular dynamics) was performed on these groups o f atoms holding the bond 

lengths fixed but varying the bond angles. The structure o f the HoSF-Fe-NO complex 

near the ferritin three fold channel is shown in Figure 4.13. The enlarged view o f the 

complex structure is in Figure 4.14.

The angle <J>0 between the iron-proton vector and the pseudo symmetry axis which 

approximately bisects the ON-Fe-NO angle (see Figure 4.17) could not be determined
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symmetry

Figure 4.11 The model o f Cys-Fe-NO complex. 0 is Fe; 3,5,14 and 26 N; 4, 6, 9, 10, 21 
and 22 are O; 2, 7, 8, 18, 19 and 20 C; 1 and 17 S; 11, 12, 13, 15, 16, 23, 24, 25, 27, 28, 
29, 30, 31 and 33 H. File name, 4.1 l.wpd.
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Figure 4.12 The model o f Pen-Fe-NO complex. 0 is Fe; 1, 6 and 8 N; 7, 9, 12 and 13 are 
O; 5, 10, 11 and 19 C; 4 S; 2, 3, 14, 16, 17, 18, 20, 21 and 22 H. File name, 4.12.wpd.
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Figure 4.13 The visual local structure of HoSF-Fe-NO in ferritin 3-fold channel generated 
with Chemsite Molecular Modeling. File name, 4 .13.wpd
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Figure 4.14 The enlarged view o f the complex structure o f ferritin iron nitrosyl complex. 
File name, 4 .14.wpd.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.15 The schematic diagram for the vector operation on Penicillamine iron nitrosyl 
complex. File name, 4.15.wpd.
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directly by ChemSite. Thus, vector operation was used to determine the <j>0 along with a 

triangle method as an independent check of the calculation (see Appendix H). The 

schematic diagram o f the vector operation on the cysteine iron nitrosyl complex is shown 

in Figure 4.15, where the M  vector represents the pseudo-symmetry axis. The coordinates 

of the atoms in complexes are arbitrarily generated in ChemSite. The system origin is first 

moved to the iron center by Ai(xi-xFe, yr yFc, Zi-ZpJ, where Aj represents any atom in the 

complex. Then the coordinates of the midpoint between the two nitrosyl nitrogens are 

obtained with M ((xNI+xN-2)/2, (ym+Y s d ^  (zni+zn2)/2). The vector from the iron origin to 

any proton and the vector from the midpoint M  to the iron can then be expressed by 

Hj(Xhi, yw, z j  and MC-x,,,, -ym, - z j .  From the vector dot product M *H  = |M| |H| cos(<J>0), 

we obtain

, M H
6n = cos (----------) 4.1

Here, M  H = xmxh + y„yh + z ^  and |M| = (xm- + ym~ +zm2) /l and |H| = (xh~ + yh“ +  zh“) / 

In order to tilt the g-tensor axis toward the normal o f the Nl-Fe-N2 plane where the 

vector M  o f the pseudo symmetry axis lies, a unit vector V  is generated by the vector 

cross product

N 1 x N 2
V  =

Nl|| N2|
4.2

where,

N1 x N2 = y N i
\  +

Z N\ X N \
j  +

x m  y n \

y N 2 Z N2 Z N2 X b'2 X N 2  y N 2
4.3
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Here, i, j  and k are the unit vectors o f the arbitrary axis system. The sum of the two 

vectors M  and kV (where k is a scalar constant) gives a new vector M 1 corresponding to 

the principle axis o f the g tensor.

M ' = M  + kV = (xM + kxv)x + (yvl + kyv)y + (zM + kzN1)z 4.4

Equation 4.1 is used to calculate the angle 4>0 between M 1 and H . The tilt angle can be 

obtained by adjusting the scalar k. When k = 0, M' = M  and the pseudo symmetry axis 

and the principle axis of the g-tensor coincide.

By changing the tilt angle and calculating the hyperfine couplings with Equation 

4.6 (see next section), we were able to match the calculated couplings with the 

experimental ones rather well for the protein complex but less so for the model complexes 

(see Figures 4.3, 4.5, 4.7 - 4.10). The tilt angle of the g-tensor axis out o f the N-Fe-N  

plane and the corresponding hyperfine couplings are presented in Table 4.4. The 

calculated stick bar spectra are presented at the bottom of the experimental spectra in 

Figures 4.3, 4.5 and 4.7 - 4.10. The calculated couplings also enable us to assign the sign 

for the experimental couplings. The bond lengths and angles for the first coordination 

sphere ligand atoms are listed in Table 4.4a.

The model calculation for HoSF-Fe-NO gives four separate couplings at the 

parallel field position and eight partially mixed couplings at the perpendicular position 

(symmetrically placed pairs o f bars at the bottom of Figures 4.3 and 4.5). The 

exchangeable proton gave the smallest splitting (0.74 MHz) at the parallel position but the 

largest ones (3.41 and 4.15 M Hz) at the perpendicular position. Three adjacent peaks 

with coupling b' in the perpendicular spectrum near 1.4 M Hz (i.e. -1.27, -1.41 and -1.56
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M Hz) arise from each o f the three different non-exchangeable protons (one a  proton and 

two methylene protons). The smallest splitting o f 0.22 MHz at the perpendicular position 

from methylene proton 3 (see Figure 4.14) could not be distinguished in the spectra.

Thus, four peaks at the parallel position and five at the perpendicular position were 

observed in the proton ENDOR spectra. A  tilt angle o f 10.5° off the pseudo symmetry 

axis out o f the N-Fe-N plane toward the amide nitrogen was required to fit the spectra. 

Such a large tilt is most likely due to the restriction imposed by the protein shell on the 

ligand coordination.

In Pen-Fe-NO, there are a total o f nine protons, including six methyl protons, two 

amine protons and one a  carbon proton. A tilt angle o f - 9° off the pseudo symmetry axis 

out o f the N-Fe-N plane was made to fit the ENDOR spectra (Figure 4.7). At the parallel 

position, there are nine splittings (Table 4.4). The two exchangeable protons generate two 

experimental splittings, one is the smallest splitting (0.35 MHz, similar to that in HoSF-Fe- 

NO) and another is the largest coupling (2.83 M Hz) (see Tables 4.2 and 4.4). The 

calculated values are 0.25 and 2.44 M Hz (Table 4.4). The experimental coupling o f 1.69 

M Hz is from the a  carbon proton. Five splittings are crowded around 1.2 M Hz, which 

are from five methyl protons. The sixth methyl proton gives a coupling o f 1.87 MHz, 

distinct from the other five protons. Consequently, five splittings are resolved from the 

ENDOR spectra.

The total number o f possible splittings is eighteen from the nine protons at the 

perpendicular position (Figure 4.8). The methyl proton couplings are crowded around the 

center peak, which is not exchangeable.
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The modeling calculations o f bidentate ligation o f cysteine with iron do not give 

stick spectra that match with the ENDOR spectra. Thus, monodentate cysteine ligated 

complexes were sought with water molecule H-bonded with NO or S in the complexes. It 

is found that, with a water molecule H-bonded between the two sulfur atoms, the stick 

spectra basically fit the ENDOR spectra at both parallel and perpendicular positions.

Better resolved ENDOR spectra (measured by Wang1471) along with the stick spectra for 

both Pen-Fe-NO and Cys-Fe-NO are presented in Appendix I.

The methylene protons in Cys-Fe-NO give large couplings (6.21,5.39, 4.49 and 

3.62 MHz) at the parallel position. The two a  protons have couplings of-0.66 and -0.27 

M Hz. The exchangeable protons are crowded around the center peak and revealed by the 

fact that the spectra for Cys-Fe-NO prepared in D20  has a narrower center peak than does 

Cys-Fe-NO in H20 . At the field perpendicular position, there are too many couplings 

spreading ±  1 MHz around the Larmor frequency. So couplings are barely resolved 

couplings in the ENDOR spectra.

There are several pairs o f A,, and A j* '^ 0. (exclude A/*0) in Table 4.4 (underlined) 

which are both positive. This is true for a proton located at a certain geometric position 

relevant to the iron center. Figure 4.16 shows the angle dependence of the hyperfine 

couplings on the proton spherical positions. Figure 4.16 shows that the hyperfine 

couplings at both parallel and perpendicular positions are positive when <j>0 of a proton is 

between 35 and 55 degrees (Tables 4.4 and 4.5).
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E. Distances o f Fe Ion to the Surrounding Protons

The measured hyperfine couplings o f the iron nitrosyl complexes can be used to 

calculate the distances from the center iron to the surrounding protons. Since the EPR 

spectra have g-values near 2.0, a single S = 1/2 unpaired electron is responsible for the 

spectrum. The electron-nuclear dipole-dipole interactions dominate the electron nuclear 

hyperfine coupling. In addition, according to our previous work,[47] it is likely that these 

iron nitrosyl complexes have tetrahedral structures. As a result, little unpaired electron 

density is expected on the ligand nuclei. So the isotropic hyperfine coupling (which arises 

from Fermi contact) can be ignored and the point dipole approximation used.

Equation 4.5 is a general formula for the hyperfine interactions under the condition 

of the point dipole approximation.1511

Aob, = pepngegn(3cos2<t>-l)/hr3 + 4.5

Figure (4.17) is the schematic diagram o f the coordination system for the hyperfine 

interaction. In Equation 4.5, r is the distance between the proton and the unpaired 

electron. Aobs is the experimentally observed hyperfine splitting. A ^ is the isotropic 

hyperfine coupling. Pe and P„ are electron magneton and nuclear magneton, respectively. 

gn is the nuclear g-value. ge is the effective g-value given by g = (g2//cos20+g2Jsin20 )'\ 

where 0 is the angle between B0 and the pseudo symmetry axis o f the complex, i.e. the 

principle axis o f the g-tensor (see Figure 4.17). <f) is the angle between the magnetic field 

and the r vector connecting the unpaired electron and the interacting hydrogen nucleus.

By neglecting the isotropic component and keeping only the dipolar term,

Equation 4.5 can be rewritten as Equation 4.6.
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Table 4.4 The calculated <t>0 and proton hyperfine couplings with a tilted pseudo symmetry
axis.

Ferritin-Fe-NO
Protonsa no tilt tilt 10.5° 1 d>n change A //c,f A, (90 °-4>0) f A " r(A )d

1 61.1 51.2 -9.9 0.74 3.41 -4.15 2.75
4 7.9 18.4 10.5 3.09 -1.27 -1.81 2.62
3 30.9 38.4 7.5 1.19 0.22 -1.41 3.81
2 32.5 27.9 -4.6 2.09 -0.53 -1.56 3.93

Pen-Fe-NO
Protonsa no tilt tilt - 9° b d>o change A //c A,(90°-4>o) A ” r(A )d

2 62.0 53.6 -8.4 0.25 4.14 -4.38 2.70
3 51.8 44.2 -7.6 2.44 2.06 -4.51 2.67
14 32.4 -113.0 -145.4 -1.43 4.06 -2.64 3.20
16 22.1 24.4 2.3 1.18 -0.39 -0.79 4.77
17 38.3 38.7 0.4 1.63 0.34 -1.97 3.52
18 36.6 42.3 5.7 0.74 0.41 -1.15 4.22
20 8.3 15.7 7.4 1.11 -0.48 -0.62 5.18
21 25.0 33.7 8.7 0.75 -0.05 -0.70 4.98
22 27.2 33.3 6.1 1.02 -0.09 -0.93 4.53

Cys-Fe-NO e

Protons1 no tilt tilt 0° b 4>o change A, ,6 A,(90°-<l>n') r(A)d
11 81.6 81.6 0.0 -0.66 1.37 -0.70 4.91
12 62.3 62.3 0.0 4.49 3.52 1.89 4.43
13 79.0 79.0 0.0 5.39 2.77 1.74 3.53
15 98.0 98.0 0.0 -0.34 0.70 -0.36 6.16
16 97.3 97.3 0.0 -0.51 1.03 -0.53 5.39
23 71.4 71.4 0.0 -0.27 1.03 -0.76 4.26
24 46.8 46.8 0.0 3.62 7.49 -1.21 4.58
25 28.5 28.5 0.0 6.21 3.02 0.66 4.00
27 46.0 46.0 0.0 0.43 -0.03 -0.40 6.00
28 61.6 61.6 0.0 0.10 0.21 -0.31 6.19
29 56.2 56.2 0.0 0.18 0.15 -0.33 6.20
30 84.2 84.2 0.0 -0.35 0.72 -0.36 6.11
31 28.6 28.6 0.0 4.57 -1.79 -2.79 3.11
33 27.3 27.3 0.0 4.29 -1.52 -2.77 3.12

a. The proton numbers are the same as in Figure 4.11, 4.12 and 4.14.
b. A positive sign means the pseudo symmetry axis is tilted out o f the N -Fe-N  plane 
toward the normal in the general direction o f the amine protons.
c. The hyperfine couplings are in units o f M Hz.
d. Fe-H distance from molecular modeling program.
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e. The hyperfine couplings presented include the isotropic couplings.
f. The underlined couplings of the complexes are from the same proton, and are both 
positive at the parallel and the perpendicular field positions.

A o b ,D =  P e P n g e g n O c O S ^ - i y h r 3 4.6

As the EPR spectra o f the ferritin iron nitrosyl complex and the model complexes 

have an axial feature, it is reasonable to assume that the pseudo symmetry axis is the axis 

corresponding to g,,.

Also, if we assume <t> = <t>0 when the magnetic field is set at parallel position, then, 

at perpendicular position, <J) = 90° - <|>0. We therefore have

When g7/ is close to g±, such as in the iron nitrosyl complexes, we can replace g„ and gx by

g. By setting C = PePngegn/h, we have

V 5 =  P eP n g //g n (3 c o s ~ c J )0*  1 )/hr^

=  P e P n g x g n (3 c o s 2(9 0 ° -< |> 0) - l ) / h r 3 

= PePngxgnO sin2<t>0- 1 ) / h r 3 4.8

4.7

A„D = COcos2̂ - ! ) / ! -3 

A °  = C ^ s in ^ o -iy r3 4.10

4.9

Addition of 4.9 and 4.10 gives

A„D + A ,D = C[(3(cos2<f)0+sin2(|)0)-2)/r3 

= C/r3 4 . 1 1

4 . 1 2

Substituting Equation 4.11 into Equation 4.9, we obtain
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Table 4.4a The bond lengths and angles for the first coordination sphere ligand atoms o f 
the iron nitrosyl complexes.

Cys-Fe-NO angle (°)

N8-Fe0-N6 S4-Fe0-N6 S4-Fe0-N8 S4-Fe0-Nl

114.0 113.7 111.9 89.7

Cys-Fe-NO bond length (A )

Fe0-N8 Fe0-N6 Fe0-S4 FeO-Nl

1.68 1.68 2.34 2.18

Pen-Fe-NO angle (°)

N8-Fe0-N6 S4-Fe0-N6 S4-Fe0-N8 S4-Fe0-Nl

114.3 113.6 111.9 89.1

Pen-Fe-NO bond length (A)
Fe0-N8 Fe0-N6 Fe0-S4 FeO-Nl

1.68 1.68 2.34 2.18

HoSF-Fe-NO angle (°)

N8-Fe0-N6 S4-Fe0-N6 S4-Fe0-N8 S4-Fe0-Nl

113.6 110.3 112.1 88.8

HoSF-Fe-NO bond length (A)
Fe0-N8 Fe0-N6 Fe0-S4 FeO-Nl

1.68 1.68 2.34 2.18
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Figure 4.16 The graph o f the angle function o f 3cos2«J>-1.
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Bo Pseudo-symmetry axis
4  B.

Ligand

Figure 4.17 The schematic diagram o f the iron nitrosyl complex. The iron, sulphur and 
nitrogen atoms are in the paper plane. The two nitrosyl radicals stick forward and 
backward outside the paper. B , is the applied magnetic field.
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Equation 4.13 can be reduced to

4.14

At the perpendicular position, the measured hyperfine couplings are the integration 

of all the complexes over 360° in the plane normal to the symmetry axis. However, only 

at the turning points o f «J> = 90°-<J>0, 90°-hj>0 90° and 270° are ENDOR peaks expected. 

Angles 90°-<j>0 and 90°-H|>0 give the same resonance. For those protons with 4> = 90°, A j"  

can be used to calculate r,

4.12, 4.14 and 4.15,4.16. In Equation 4.12, AXD is given by A^90 * *°. The calculated 

results are presented in Table 4.5 along with the results from the molecular modeling 

calculations.

4.15

Thus, <|>0 can be determined by the following equation,

4.16

From the hyperfine couplings in Table 4.2 and assignments o f the sign for each 

peak according to the modeling results, we calculate values for r and <J)0 using Equations
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Discussion

The ferritin iron nitrosyl complex has been a difficult system to investigate. As the 

EPR spectrum o f the complex reveals no hyperfine splittings from ligand nuclei, and the 

protons do not coordinate with the iron atom directly, all the information from EPR and 

!H  ENDOR collected to date provide only indirect evidence for structure of the complex. 

14N  ENDOR studies o f the iron nitrosyl complexes could possibly determine the number of 

nitrogen atoms coordinated with the iron ion, and thus prove the bidentate binding o f the 

ligand to the iron. Although nitrogen ENDOR spectroscopy was previously attempted for 

both ferritin iron nitrosyl complex and the model complexes on both cw and pulsed 

ENDOR spectrometers and was also sought in this research, no nitrogen spectra were 

obtained. Relaxation properties of the ligand nuclei may be a key factor for the failure to 

obtain the nitrogen ENDOR spectra. However, the lH  ENDOR spectrum of HoSF is 

readily obtained and its analysis presented here provides strong evidence for the structure 

of its iron nitrosyl complex as shown in Figure 4.14.

A. EPR Studies o f the Model Complexes

In our previous EPR studies on the ferritin iron nitrosyl complex of site-directed 

mutants o f ferritin, three possible docking positions for this complex were Hisl 18, His 128 

and C y s ^ .*2®1 These residues are all near the ferritin three-fold channels. The Cysl30 

residue is in the vicinity o f the outer opening of the three-fold channels. The complex 

coordinated at Cysl30 was produced in the first minutes o f passing NO gas over the top 

of the ferritin solution (see Section 4.2 Experimental). After five minutes, a new species
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Table 4.5 The calculated distance for the protons to the iron center from ENDOR data.

Ligand Assignment o f the protons //,x - r<A)k <M °) Equations

HoSF exchangeable proton OvD 2.75 (2.75) 50.8 4.15 and 4.17

exchangeable proton (a,e'> 2.72 (2.75) 58.7 4.18 and 4.19

a  carbon proton (<U0 3.70(3.62) 15.0 4.15 and 4.17

methylene proton (c,a ■) 3.83 (3.81) 23.7 4.15 and 4.17

Penicillamine exchangeable proton (e,C) 2.72 (2.70) 41.0 4.15 and 4.17

methyl proton OvO 4.84 (4.77) 22.7 4.15 and 4.17

a  carbon proton (c,d*) 3.50 (3.20) 81.2 4.15 and 4.17

Cysteine exchangeable proton — — — —

a. A„ and Ax in the parentheses were used to calculate r and <}>0.
b. The distances from the energy minimization calculation using ChemSite are given in 
parentheses.

accumulated.

The EPR spectrum o f ferritin iron nitrosyl complex at 77 K  revealed only two 

broad peaks (parallel and perpendicular), which indicated an axial or pseudo axial 

structure for the complex. This spectrum is similar to those o f the model complexes.

Based on the EPR spectra, a reasonable proposal was that the local structure o f the ferritin 

iron nitrosyl complex had a similar structure to the complexes produced with cysteine and 

its derivative as ligands. Much effort was therefore put into the structural studies of these 

model complexes.1471

The EPR and lH  ENDOR data of model complexes measured by Wang are listed 

in Table 4.6. When ethanethiol (ETH, SHCH2CH3) was a ligand, there was an isotropic 

EPR signal at 77 K. When the functional thiol group was replaced by the amino group in
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Table 4.6 The g-values and hyperfine couplings for the model complexes from previous
work.1471

fH
cm

hojc—c— vhi 
1
H

Lructpinp

\ epr
peaks

epr
g-value

epr
hyperfine
splitting

endor
//

endor
X

room 13 2.030 aN=2.2
a„=1.15

77 K 2 g, =2.035 0.211.03 ll.4412.013.0 0.22 1 0.9 1 4.0
fH

HJC— c—crj 
HOlC—c— NHJ 1

H

1-Penicillamine

\ epr
peaks

epr
{-value

epr
hyperfine
splitting

endor
//

endor
X

room 5 2.028 aN=2.5

77 K 2 g,.=2.034 
*,,=2.015 0.22 1.16 1.71 3.09 0.22 1.07 2.39

fHCHl
1HO — CHl

Mercaptoethanol

Nepr
peaks

epr
{-value

epr
hyperfine
splitting

endor

room 13 2.029 aN=2.1

77 K >2 2.003 0.22 2.66

fHCHl
1COOH

Thioglycolic Acid

\ epr
peaks

epr
{-value

epr
hyperfine
splitting

endor
//

endor
X

room 1 2.030 X T
77 K 2 8i =2-033 

g„=2.014 ' X 0.22 1.07 2.73 3.5 H.22 1.01 2.0'7 2.72

SH
CHl
1CHj

Ethanethiol

\ epr
peaks

epr
{-value

epr
hyperfine
splitting

endor

room

77 K >2 2.003

f HCHl1 \ epr
peaks

epr
{-value

epr
hyperfine
splitting

endor
//

endor
X

HlN—CHl room 13 2.030 aN=2.2
a„=1.15

r t J  I III 1U C II l i l l  IC U  U U I 77 K 2 gt =2.035 
&,=2.016 0.22 1.16 2.03 3.07 0.22 1.12 1.55
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ethylamine (NH2CH2CH3), there was no EPR signal. This result indicated that the thiol 

group was essential in forming a stable iron nitrosyl complex.

When one o f the protons in the ETH methyl group is replaced by an amino group 

or a hydroxyl group, we have aminoethanethiol (AET, SHCH2CH2NH t)  and 

mercaptoethanol (M ER, SHCH2CH2OH), respectively. At 77K, both E TH  and M ER iron 

nitrosyl complexes had an isotropic EPR spectrum with the same g-value o f2.003. 

Whereas, the AET complex had an axial spectrum with g , =  2.0016 and gx=  2.035. The 

room temperature EPR spectra of both MER and AET complexes had the isotropic g 

values o f 2.030 and 2.029, which was consistent with a similar configuration for both 

complexes in room temperature solution.

Replacement o f the second proton in the AET ethylene group adjacent to the 

amino group with a carboxylate group produces a cysteine (Cys, SHCH2C H (C 02H)NH2). 

As all the g values and hyperfine couplings were the same for Cys-Fe-NO and AET-Fe- 

NO at both room temperature and 77 K, the configurations of the two complexes should 

be the same. The proton EPR spectrum was obtained for ethyl ester o f cysteine as a 

ligand and an axial EPR spectrum was seen. This result precludes carboxylate 

coordination.

In pencillamine (Pen, SHC(CH3)C H (C 02H )N H 2), the two protons on the same 

Cys methylene group were replaced by two methyl groups. The g-values o f go = 2.028,

= 2.015 and gx= 2.034 were obtained.

The further ISNO isotopic studies on Cys-Fe-NO,1521 Pen-Fe-NO 1471 and Mer-Fe- 

N O [47] complexes gave more information about the configurations o f the complexes.
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Both Cys-Fe-NO and Mer-Fe-NO complexes have thirteen lines in the room temperature 

EPR spectrum fitting the assumption of two nitrogen and four hydrogen hyperfine 

couplings with aN = 2.2, aH = 1.15 for the former and aN = 2.1, aH = 1.1 for the latter 

complexes, respectively. Normally, two identical nitrogen atoms give five peaks with the 

peak intensity pattern o f 1.2:3:2:1, and four identical hydrogen atoms have five peaks with 

the 1:4:6:4:1 intensity pattern. The maximum number o f hyperfine splittings should be 

twenty-five. As the proton hyperfine coupling is about half o f the nitrogen hyperfine 

coupling, the twelve proton splitting peaks overlapped with the five nitrogen splitting 

peaks and were not observed. Thus, thirteen peaks appeared in the EPR spectra. Upon 

the isotopic substitution o f WN  by ,5N in NO, only nine peaks are present in the EPR 

spectra of both complexes. The hyperfine couplings from nitrogen and hydrogen atoms 

still fit the assumption of two nitrogen and four hydrogen atoms. In the 1SN  isotopic 

complex, the two identical nitrogen atoms (I = Vz) have three peaks with 1:2:1 intensity 

pattern. As the Ah is still about half o f the AN, only the two hydrogen splittings in the field 

range of the nitrogen peaks and the four hydrogen splittings outside the field range o f the 

nitrogen splittings are observed. These results unambiguously indicate that there are two 

nitric oxide molecules coordinating to the iron atom. In addition, the Pen-Fe-NO complex 

has five peaks in the room temperature EPR spectrum o f Pen-Fe-14NO, but three peaks for 

Pen-Fe-lsNO. Once again, the experimental results reinforces our conclusion that two 

nitrosyl molecules bind to the iron.

Wang's proton ENDOR spectra for model complexes are better resolved 

(Appendix I) and are not identical to the present ones. The spectral change is most likely
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due to the different conditions o f the sample preparations, perhaps from inadequate pH 

control in either her samples or mine.

B. Molecular Modeling Calculations

Molecular modeling calculations on the iron nitrosyl complexes reveal rich 

information in proton ENDOR spectra. First, the possible hyperfine couplings and signs 

can be determined. Second, as a rule o f thumb, the angle <J>0 between the g principal axis 

and the metal-to-proton vector is crucial in obtaining the correct hyperfine couplings, 

especially when the angle <|>0 is close to the magic angle o f 54.7° at the parallel and 35.3° at 

the perpendicular positions. Thus, a slight tilt o f the g principle axis out o f the N-Fe-N 

plane gives pronounced changes in the couplings for the protons 1, 2 and 3 in HoSF-Fe- 

NO and for the protons 2, 3, 14, 17 and 18 in Pen-Fe-NO. Finally, unlike conventional 

proton ENDOR studies, where the couplings have opposite signs at the parallel and 

perpendicular field positions, the results presented here show that certain protons have a 

positive sign at both the parallel and perpendicular positions (Table 4.4). The modeling 

calculation and the angular term 3cos2<f>-l analysis (Figure 4.16) show that if  a proton has 

a <j>0 value between 35.3° and 54.7°, its hyperfine couplings are positive at both the parallel 

and perpendicular positions.

Generally, the stick spectra from the modeling calculations for horse spleen ferritin 

match the observed proton ENDOR spectra quite well, and enable us to assign the 

hyperfine couplings to specific protons and to determine the sign o f the couplings, thus 

confirming the structure o f the protein complex.

I l l
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C. Proton ENDOR Results

The metal-to-proton distances determined with the above equations (£  0 .1 A) are 

in substantial agreement with our molecular modeling calculations for most o f the protons 

(see Table 4.5). For those protons having large deviations (> 0 .1 A) between modeling 

and experimental results, the mismatch arises mainly from the fact that the ENDOR  

spectra are only partially resolved.

The angles o f <t>„ in the experimental results are also in good agreement with those 

in the modeling results for most protons (compare <j>0 in Table 4.4 and 4.5). Better 

resolved proton ENDOR spectra and perhaps lateral tilt o f the g-axis are both needed to 

obtain a better agreement between the two results. The deviation o f the angle <j)0 (50.8° 

from 58.7°) for the same exchangeable proton in HoSF-Fe-NO (proton 1 in Figure 4.14) 

from the Equation 4.12, 4.14 and 4.15, 4.16 indicates that better resolved spectra are 

needed to accurately determine <t>0.

The structure o f the complexes slightly changes in solution, which leads to a small 

alternation o f the angle <J>0. Thus, a spread of hyperfine couplings from the same proton in 

a complex is expected to give rise to ENDOR peak broadening as seen in our proton 

ENDOR spectra.

In order to get completely resolved proton ENDOR spectra for the iron nitrosyl 

complexes in the future, protons in the ligand should be selectively substituted with 

deuterium. A smaller frequency modulation amplitude is also suggested to help further 

resolve the narrowly distributed peaks.
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D. Comparison o f Our Proton Couplings with Those in Literature

The small isotropic hyperfine coupling from Fermi contact in the iron nitrosyl 

complexes are similar to those o f vanadyl complexes. However, the general structure of 

vanadyl complexes is square pyramid where protons are either located on the symmetry 

axis of the complex or in the equatorial plane.1531 For pure dipole-dipole interaction, these 

positions have large hyperfine couplings with opposite signs (refer to Equation 4.2). For 

example, an equatorial proton 2.5 A from the metal ion has a pure dipolar hyperfine
o

coupling o f 11 M Hz at the perpendicular field position. Similarly, an axial proton 2.9 A  

from the metal ion generates 6 M Hz hyperfine splitting at the parallel field position.1511 

The protons o f a water molecule in the second coordination sphere ~ 5 A from the metal 

ion have hyperfine couplings o f only ~ 1 MHz or less.1511 On the contrary, for a tetrahedral 

complex, such as iron nitrosyl complexes, ligands are neither along the symmetry axis or 

on the equatorial plane. Thus, smaller hyperfine couplings are expected. For a proton at a 

certain geometric position where the «j)0 is between 35.3° and 54.7°, the hyperfine 

couplings have positive signs at both the parallel and the perpendicular position.

The proton spectra for all the complexes studied here have hyperfine couplings 

between 0.35 and 5.72 M H z (Table 4.2, 4.4 and 4.5). All the exchangeable protons in the 

samples studied were assigned to the protons in the amine group. Although the 

exchangeable protons observed in aqueous myoglobin and the [4Fe-4S]+ cluster o f 

aconitase have hyperfine couplings as large as 4 - 6 M H z covering the exchangeable 

proton couplings in our experiments,154,551 since no distinct changes in the hyperfine pattern 

or line width for the model complexes prepared in DzO, indicating no water in the first
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coordination sphere,[47] it is unlikely that a water molecule might coordinate with the iron 

at 77 K. On the other hand, if  the water molecules were not bound to the iron center, 

such as in uteroferrin-molybdate complex, then the hyperfine coupling should be around 1 

M Hz.[56' Although our exchangeable proton hyperfine couplings are from 0.35 to 5.72 

M Hz within the range o f the couplings of both coordinated proton and the remote 

protons, the model calculations with only the amino acid ligand coordination match with 

the ENDOR spectra. However, models with a HzO coordination do not match the 

ENDOR spectra, thus precluding either a coordinated water molecule or remote water 

molecules. Our results here are consistent with the tetrahedral structure for iron dinitrosyl 

complexes described by McDonald and collaborators.1521 The experimentally measured 

iron-exchangeable proton distances are 2.75, 2.73 and 2.72 A for HoSF-Fe-NO, Pen-Fe- 

NO and Cys-Fe-NO, respectively. Other nonexchangeable protons are in the reasonable 

range of 3.70 - 4.84 A away from the iron center. All these distances are in good 

agreement with our molecular modeling calculations.

The EPR spectra for HoSF-Fe-NO are identical to those of Cys-Fe-NO, Pen-Fe- 

NO and AET-Fe-NO. The g7 = 2.015 and gx= 2.035 o f HoSF-Fe-NO are the same as 

those for these model complexes. However, the *H ENDOR data and the molecular 

modeling calculations show that both HoSF and Pen bound with the iron center through 

bidentate coordination. Thus, an identical local structure o f HoSF-Fe-NO to that o f the 

model complex of Pen-Fe-NO is inferred. In accordance with this idea, the mutant studies 

o f HoSF-Fe-NO support that the iron ion is coordinated to the sulphur atom of the 

cysteine residue Cys 130. The recent proton ENDOR studies obtained on ferritin (this
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work) indicate that the largest hyperfine splittings at the perpendicular position are from 

the exchangeable protons. This result is consistent with the iron being bound with the 

nitrogen in an amino group.

In summary, the local structure o f HoSF-Fe-NO involved the iron atom 

coordinating with the sulphur atom in Cys 130, the nitrogen atom in the peptide backbone 

and two nitrosyl molecules.

Conclusions

The HoSF-Fe-NO and model complexes had similar EPR features and g-values. 

The local structure o f the ferritin iron nitrosyl complex is very likely identical to that o f the 

Pen-Fe-NO complex with the iron atom coordinating with thiol, amino groups and two 

nitrosyl molecules, but not so for the Cys-Fe-NO complex which has monodentate ligation 

from two cysteines. All the complexes have near axial symmetry with a structure close to 

tetrahedral. Since the proton hyperfine couplings are sensitive to their geometric 

positions, and the complexes studied here have different numbers o f protons, the proton 

ENDOR spectra are expected to be different. More sophisticated molecular modeling 

calculations and selectively deuterated ligands are required to clarify the 'H  ENDOR 

spectra o f the model complexes.
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CHAPTER 5

EPR AND ENDOR STUDIES OF COPPER TACH CHLORIDE COMPLEXES

Introduction

Copper tach chloride complexes, like other macrocyclic copper complexes, are 

potential synthetic metallopeptideases which hydrolytically cleave nucleic acids.159"661 

Hydrolysis o f D N A  is an important enzymatic reaction. However, it is extremely difficult 

to achieve in the laboratory due to the stability o f DNA toward hydrolysis.1671 Study of 

DNA cleavage by small molecules has focused on either hydrolysis o f activated substrates 

or oxidative degradation o f the sugar backbone o f DNA. Oxidative cleavage agents 

require activation by a stoichiometric co-oxidant or by light.

One advantage o f hydrolytic cleavage agents is that they do not require coreactants 

and therefore are potentially more useful in drug design. Compared to oxidative cleavage 

agents which tend to produce diflu sable free radicals, hydrolytic agents do not suffer from 

these shortcomings. In addition, the hydrolysis o f phosphodiester bonds activated by 

metals in enzymes is not well-understood. Small metal complexes promoting the 

hydrolysis o f D N A  therefore could be useful in elucidating the precise role o f metal ions in 

enzyme catalysis.16*"701

Burstyn and coworkers reported that [Cu([9]aneN3)ClJ promotes the hydrolytic 

cleavage o f plasmid DNA with a low hydrolytic rate constant o f0.04-0.09 h"1.1621 More 

effective hydrolytic agents, namely copper tach chloride complexes, (tach = cis.cis-

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.1 The X-ray structure o f [Cu(N-Et)3tach(Cl)x(Br)2.J complex.1711 (5. l.wpd)
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1,3,5-triaminocyclohexane), have been studied and exhibit a hydrolytic rate constant o f 4.3

h-'.[591

The structure o f copper N-ethyl tach chloride, [Cu(N-Et)3tachCl J , has been 

determined by X-ray crystallography (Figure 5.1).1711 The structure is close to a square 

pyramid with the two nitrogen and the two chloride atoms displaced a slightly o ff the 

plane, and the two chloride atoms having a longer distance to the copper ion than the two 

nitrogen atoms, 2.3948(6) vs. 2.053(2) A, due to the larger radius o f coordinated chloride 

over coordinated amino nitrogen. The apical nitrogen atom tilts 6.1° towards the other 

two basal nitrogen atoms and has a Jahn-Teller-lengthened Cu-N distance o f 2.218(5) A.
A schematic diagram of the d orbital energy levels o f the copper ion under a series of 

symmetric crystal fields is shown in Figure 5.2.1721

The collaborative research described herein focuses on the bonding properties of 

the tach derivatives as the ligands for the preparation of the catalytically active copper 

complexes. X-band and Q-band EPR spectroscopies, in conjunction with visible-near IR  

ligand-field spectra, have been used to study the structure around the copper ion. Optical 

and EPR spectra of these copper tach complexes have been used to determine orbital 

bonding coefficients. The ultimate goal is to understand the function o f these complexes 

in terms of their structures.

Experimental

All the copper tach complexes were prepared as 5 mM of copper ion in HEPES 

buffer (50 mM HEPES, pH = 7.0) and in methanol by G. Park of Professor Planalp's
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Figure 5.2 The schematic diagram of the d  orbital energy levels under a series o f 
symmetric crystal fields.
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group. Powder samples o f the copper tach complexes were obtained by grinding 

crystalline samples. The EPR spectra were obtained at either X-band or Q-band 

frequency. The Q-band spectrometer was equipped with an improved Varian E -l 10 

microwave bridge, an E-line console and a home-made cylindrical TE0Il cavity operating 

at 100 K with nitrogen gas flow cooling system (see Chapter 2). The X-band EPR 

spectrometer was equipped with a Bruker ER 041 XK -H  microwave bridge and a Varian 

TE102 cavity as described elsewhere.1501 X-band EPR spectra were obtained at either 77 K  

using a finger dewar filled with liquid nitrogen or at room temperature. At room 

temperature, a sensitive quartz flat cell for lossy solutions was used. In order to position 

the cell in the cavity for all the measurements, a Philips PM 3050 oscilloscope was 

connected to the spectrometer display module and placed near the cavity for the flat cell 

adjustments. Five individual flat cell adjustments were made and the EPR spectra for 1 

mM [Cu(N-Me)3tachCl2] complex in pH 7.0 HEPES buffer were scanned. A 

reproducibility in EPR intensity o f ±  2% was obtained for the room temperature EPR 

spectra.

Both X-band and Q-band spectrometers were field calibrated with Mn27CaO  

mixed with coal as standard samples (gVta2+/Cj0 = 2.0011, gCOil = 2.0035 and field span (M , 

= ±5/2 lines) = 43.573 mT for Mn27CaO).1731 The HP 5350A microwave frequency 

counter was used for the X-band spectrometer and an EIP model 548A microwave 

frequency counter was used for the Q-band spectrometer.

The EPR spectra o f powder and solution samples were collected at both X-band 

and Q-band frequencies. All o f the optical spectra were measured using a Cary 5 UV-Vis
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spectrometer with a 1 ml quartz cuvette most by G. Park o f Dr. Planalp's group to obtain 

the absorption bands for all copper complexes. The bonding parameters for [Cu(N- 

Et)3tachCy has been calculated and is reported here.

Results

Table 5.1 lists all o f the measurements made for the copper tach chloride 

complexes. Complete EPR studies were carried out on the powder samples and solution 

samples in HEPES buffer. [Cu(N-Et)3tachCy complex prepared in a series of solutions 

was studied thoroughly by EPR and optical spectroscopies.

A. g- and A-values o f the Cooper Tach Complexes

The low temperature (100 K) Q-band EPR spectra of powder samples of copper 

tach halide complexes are presented in Figure 5.3. Only [Cu(N-Et)3tachCy has an EPR 

spectrum attributed to a single species. Other samples have complicated EPR spectra 

indicating the presence of more than one species, due to chemical or crystallographic 

inequivalence o f the copper centers. The g-values for powdered [Cu(N-Et)3tachCy are 

listed in Table 5.2 along with the g-values o f the complex prepared in HEPES buffer and 

CAPS buffer.

At 100 K, the Q-band EPR spectrum o f [Cu(N-Et)3tachClJ complex shows a 

parallel peak and an unresolved perpendicular peak (Figure 5.3). The spectrum does not 

provide good evidence of rhombicity in the complex. The poor resolution of the spectrum 

was caused by the microwave power saturation at 100 K. As the tune mode of the Q-
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Table 5.1 The complete list of the experiments carried out on the copper tach chloride complexes.

\

EPR spectroscopy Optical spectroscopy

Powder Complex in Hepes buffer Complex in 
methanol

Complex in 
Caps buffer

Powder Complex in 
Hepes buffer*

Complex in 
methanolb

Complex in 
Caps bufferc

Q-band
100K

X-band 
298 K

X-band 
77 K

Q-band 
100 K

Q-band 
100 K

Q-band 
100 K

Cu(N-Me)j tach Cl2 ✓ ✓ ✓ ✓ ✓

Cu(N-Et)3 tach Cl2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cu(N-Pr)3 tach Cl2 ✓ ✓ / ✓ ✓

Cu(Thioph)} tach Cl2 ✓ ✓ ✓ ✓ ✓

Cu(Furan)3 tach Cl2 ✓ ✓ ✓

a. Complex concentration was 5 mM, HEPES buffer 50 mM and pH 7.0.
b. Complex concentration was 5 mM. Methanol was analytical grade.
c. Complex concentration was 2.5 mM, CAPS buffer 50 mM and pH 10.1.



[Cu(N-CH2-2-thioph)3tachCI2J
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__________A .
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___________________

1050 1150 12001100
Magnetic field (mT)

Figure 5.3 The Q-band powder EPR spectra o f copper tach chloride complexes.
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(continued)

Common Experimental Conditions: Field Set, 1120 mT; Scan Range, 200 mT; 
Microwave power, 0.01 mW, 37 dB; Modulation Frequency, 100 kHz; Time Constant, 0 
s; Scan Time, 30 minutes; Temperature, 100 K; Spectrometer, Q-band EPR/ENDOR; 
Individual Experimental Conditions: [CuCN-Me^tachClJ, Modulation Amplitude, 0.05 
mT; Receiver Gain, 4; Microwave Frequency, 35.0377 GHz; File Name, 98052002.fls; 
[CuCN-EQjtachClJ, Modulation Amplitude, 0.1 mT; Receiver Gain, 20; Microwave 
Frequency, 35.0482 GHz; FUe Name, 98052003 fls; [Cu(N-CH2-2-thioph)3tachCl2J, 
Modulation Amplitude, 0.1 mT; Receiver Gain, 20; Microwave Frequency, 35.0447 GHz; 
File Name, 98052004.fls; [Cu(N-Et)3tachClJ (room temp), Field Set, 1170 mT; Scan 
Range, 200 mT; Microwave power, 0.1 mW, 27 dB; Modulation Frequency, 100 kHz; 
Time Constant, 0 s; Scan Time, 30 minutes; Modulation Amplitude, 0.02 mT; Receiver 
Gain, 6.3; Microwave Frequency, 34.7262 GHz; File Name, 99100502.fls; (5.3.opj)
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Figure 5.4 The X-band EPR spectra o f copper tach chloride complexes at 77 K. 
Common experimental conditions: Field set, 300 mT; Scan range, 100 mT; Microwave
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(continued)

power, 5 mW; Receiver gain, 0.1 V; Modulation frequency, 100 kHz; Time constant, 0.3 
s; Scan time, 1000 s; Temperature, 77 K; Spectrometer, Bruker; Individual experimental 
conditions: [Cu(N-M e)3tachClJ, Modulation amplitude, 0.1 mT; Microwave frequency, 
9.1548 GHz; File name,
98061501.fls; [Cu(N-Et)3tachClJ, Modulation amplitude, 0.2 mT; Microwave frequency, 

9.1523 GHz; File name, 98061502.fls; [CuCN-Pr^tachClJ, Modulation amplitude, 0.1 
mT; Microwave
frequency, 9.1523 GHz; File name, 98061503.fls; [Cu(N-CH2-2-thioph)3tachCl2], 
Modulation amplitude, 0.1 mT; Microwave frequency, 9.1548 GHz; File name,
98061504.fls; (5.4.opj)
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band spectrometer is shallow at lower nonsaturating microwave power (;> 45 db), the 

AFC (auto frequency control) in the bridge did not function properly when scanning 

through the EPR absorption region, so higher power saturating microwave levels were 

required for the spectrometer to function properly. At room temperature, the spectrum o f 

this same complex showed a clear rhombic feature o f three peaks with g* = 2.061 ± 0.001, 

gy = 2.071 ±0.001, gz = 2.262 ±0.001.

Figure 5 .4 shows the frozen (77 K) X-band EPR spectra o f four o f the copper 

complexes in 50 mM HEPES pH 7.0 buffer (HEPES: glycerol = 2:1). The copper 

concentrations were 5 mM in all cases. In Figure 5.4, all four complexes have similar 

spectra. The parallel peaks are not completely separated from the perpendicular peaks. 

Although accurate parallel and perpendicular g-values can be measured from these spectra 

through simulations, they are more easily obtained from Q-band spectra. Unlike the 

spectra for powder samples in Figure 5.3, there is no evidence o f any rhombicity in the X - 

band spectra o f these complexes (Figure 5.4). Moreover, the width o f the parallel peaks 

increases slightly with the ligand size. The axial spectra for all the copper complexes in 

solution are also seen in the Q-band EPR spectra, presented below.

Isotopic 63Cu was used to narrow the EPR lines in order to distinguish the 

hyperfine couplings from the coordinated nitrogen atoms. (Naturally abundant Cu is a 

mixture o f 63Cu and 65Cu with similar nuclear moments.) Unfortunately, the line width 

was not sufficiently narrowed by isotopic replacement to reveal the hyperfine couplings. 

Thus, an S-band spectrometer is needed to resolve these parallel peaks.174*771 In order to 

obtain g-values and hyperfine couplings for these complexes, Q-band EPR spectra were
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measured.

Figure 5.5 shows the Q-band EPR spectra o f frozen copper tach chloride 

complexes in solution at 100 K. All the aqueous copper complex samples were prepared 

with 5 mM o f copper concentration in 50 mM HEPES buffer, pH = 7.0 (HEPES :glycerol 

= 2:1). Glycerol was added to form a glass upon freezing the solution. The parallel and 

perpendicular peaks were separated completely. The and A,, were calculated from the 

four parallel peaks (Table 5.2). The perpendicular peaks do not show any hyperfine 

splittings. Only a gx value was measured for each o f the spectra (Table 5.2). The six 

small peaks in the high field range are from Mn2~ contamination, which was introduced 

into the samples from syringe needles used with acidic solutions during the neutralization 

of the samples. All the complexes of tach ligands have similar values o f g/;, gx, and A,, 

values (Table 5.2).

The Q-band EPR spectrum of ethyl copper tach complex prepared wet methanol is 

also shown in Figure 5.5. The broad and unresolved peaks at the perpendicular field 

indicate that more than one species exist in the solution. The g-vaiues and hyperfine 

couplings were g* = 1.987, gy = 2.108, gz = 2.260 and A„ =  157.3 x 10*4 cm'1.

In order to obtain the perpendicular hyperfine couplings for all the aqueous copper 

complexes, X-band room temperature EPR spectra were measured with a flat cell (see 

Figure 5 .6). Because o f the averaging effect o f the tumbling of the complexes in the 

solution, only the isotropic hyperfine couplings were observed. The single sharp peak at 

high magnetic field was DPPH (g = 2.0036) used as a reference mark. The decrease in 

amplitude o f the low field peaks relative to the high field peaks for the large complexes
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Figure 5 .5 The Q-band EPR spectra of copper tach chloride complexes at 100 K.
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(continued)

Common Experimental Conditions: Field set, 1138 mT; Scan range, 200 mT; Modulation 
frequency, 100 kHz; Modulation amplitude, 0.2 mT; Time constant, 1 s; Scan time, 16 
minutes; Temperature, 100 K; Spectrometer, Q-band EPR/ENDOR; Individual 
experimental conditions: [(^(N-M e^tachClJ, Receiver gain, 200; Microwave frequency, 
34.8516 GHz; Microwave power, 0.06 mW; File name, 9806150l.fls; [Cu(N-Et)3tachCl2], 
Receiver gain, 32; Microwave frequency, 34.8190 GHz; Microwave power, 0.6 mW; File 
name, 9807220.fls; [CuCN-Pr^tachClJ, Receiver gain, 200; Microwave frequency, 
34.8453 GHz; Microwave power, 0.06 mW; File name, 98061503.fls; [Cu(N-CH2-2- 
thioph)3tachCl2], Receiver gain, 100; Microwave frequency, 34.8058 GHz; Microwave 
power, 0.19 mW; File name, 98072203.fls; [CuCN-CH^-furanyOjtachCIJ, Receiver 
gain, 40; Microwave frequency, 34.8070 GHz; Microwave power, 0.19 mW; File name, 
98072205.fls; (5.5.opj)
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ee

350300 310 330 340320290

Magnetic field (mT)

Figure 5.6 The room temperature X-band EPR spectra o f copper tach chloride 
complexes. Common Experimental Conditions: Field Set, 326 mT; Scan Range, 60 mT; 
Microwave power, 10 mW; Receiver Gain, 0.1 V; Modulation Frequency, 100 kHz; Time
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(continued)

Constant, 0.3 s; Scan Time, 500 s; Temperature, 297 K; Spectrometer, Bruker; Individual 
Experimental Conditions: A, [Cu(N-Me)3tachClJ, Modulation Amplitude, 0.5 mT; 
Microwave Frequency, 9.5290 GHz; File
Name, 98111802.fls; B, [Cu(N-Et)3tachClJ, Modulation Amplitude, 0.5 mT; Microwave 
Frequency, 9.5290 GHz; File Name, 98111803.fls; C, [Cu(N-Pr)3tachCl2], Modulation 
Amplitude, 0.5 mT; Microwave Frequency, 9.5291 GHz; File Name, 98111804.fls; D, 
[Cu(N-CH2-2-thioph)3tachCl2], Modulation Amplitude, 0.5 mT; Microwave Frequency, 
9.5292 GHz; File Name, 98111805.fls; E,
[Cu(N-CH2-2-Furanyl)3tachCl2], Modulation Amplitude, 0.5 mT; Microwave Frequency, 
9.5287 GHz; File Name, 98111806.fls; The high field peak is from DPPH used as a 
reference (5.6.opj).
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Table 5.2 The g-values and hyperfine couplings for the copper tach chloride complexes

Measured at 100 K by Q-band EPR and at room temperature by X-band EPR *

Copper complexes go g// gx A0(10'4 cm'1) A/; (10~* cm'1) A, (10-4 cm"1) c

5mM [Cu(N-Me)3tachCI2] in Hepes bufferd 2.127 2.264 2.066 58.0 166.9 3.5

5mM [<3Cu(N-Me)3tachCI2] in Hepes bufferd 2.265 2.066 164.2

5mM [Cu(N-Et)3tachCl2] in Hepes bufferd 2.128 2.266 2.066 55.5 164.3 1.2

5mM [Cu(N-Et)3tachCl2] in Caps bufferc 2.263 2.061 165.0

[Cu(N-Et)3tachCI2] powderb & = 2.262 gm = 2.061
gy = 2.071

5mM [Cu(N-Pr)3tachCl2] in Hepes bufferd 2.127 2.266 2.065 59.3 164.6 6.7

5mM [Cu(N-CH2-2-furanyl)3tachCI2] in Hepes bufferd2.127 2.261 2.064 58.8 164.0 6.2

5mM [Cu(N-CH2-2-thioph)3tachCI2] in Hepes bufferd 2.124 2.261 2.063 60.5 165.7 8.0

a. All the g-values presented in the table have errors of ± 0.001. All the hyperfine couplings listed here have errors of ± 0.2 x 104
b. [Cu(N-Et)3tachCl2] powder sample was rhombic symmetry in its g-values,
c. All the Ai listed here are calculated by Â  = 1/3 A,, +2/3 Ai .
d. The complexes prepared in HEPES buffer have 5 mM complex, 50 mM HEPES buffer and pH = 7.0.
e. The complex concentration was 2.5 mM, CAPS buffer 50 mM and pH = 10.1.



(such as [Cu(N-CH2-2-furanyl)3tachCy) arises from the slower tumbling rate for the large 

complexes.1781 The isotropic g-value and isotropic hyperfine splitting corrected to second 

order were calculated by a software written in the C/C++ language (see Appendix E). All 

the isotropic g-values and hyperfine splittings are listed in Table S.2.

The [Cu(N-Et)3tachClJ complex (5 mM) in CAPS buffer (50 mM, pH =  10.1) was 

measured on the Q-band spectrometer at 100 K as well. The features o f the spectrum 

were similar to those in Figure 5.5, but are not displayed here. The g-values and hyperfine 

couplings are listed in Table 5.2.

B. Optical Transitions o f Copper Tach Complexes

All the copper complexes were also investigated by optical spectroscopy. Figure 

5.7 displays the optical spectra for copper tach chloride complex samples in methanol.

Two peaks are observed, one around 700 nm which is not symmetric, and the other near 

1100 nm. The unsymmetric peak at ~ 700 nm is assigned to a superimposition o f the two 

electronic transitions o f d^^^d^.^and dxy“td x2.>̂  for the Cu2+ d9 system (Figure 5.2)(79*821. 

The transition around 1100 nm is assigned to d^^d^.^ . The unsymmetric transition 

peaks are also present when the spectra are plotted against wavenumber (see Figure 5.8). 

Therefore, a Gaussian function was used to simulate the optical spectra. Three
U—U; 1

~la2<~B~ )Gaussian terms ( A t e ' ) were summed.1831 By manually adjusting the height

Aj, width Bj and wavenumber for each peak in the spectrum, the simulated spectrum 

was obtained, which exactly matched the experimental spectrum (Figure 5.9). A  standard
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Figure 5.7 The optical spectra o f copper tach chloride complexes prepared in methanol. 
The complex concentrations are 5 mM in analytical grade methanol (5.7.opj).
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Figure 5.8 The optical spectra o f copper tach chloride complexes prepared in methanol. 
The complex concentrations are 5 mM in analytical grade methanol (5.8.opj).
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Figure 5.9 The experimental and simulated optical spectrum o f [CuCN-Et^tachClJ 
prepared in methanol. (5.9.opj). Note: The experimental curve (solid) was offset by 0.01 
to show the match with the simulated curve (dot).
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deviation o f ̂ 0.01 in the absorbance was obtained for each simulated spectrum. The 

program, Origin.exe, has a multiple-peak Gaussian curve fitting function under the analysis 

menu bar. However, the fitting results were not good for all the spectra since the long 

wavelength peaks in the optical spectra were partially cut off. Figure 5.9 displays the 

experimental spectrum of the [Cu(N-Et)3tachClJ complex and the simulated spectrum.

The three individual peaks correspond to the three transitions mentioned above, and the 

final simulated spectrum was from the summation of these three peaks. The transition 

wavenumber for each peak was taken from the Gaussian function used in the simulation, 

and is listed in Table 5.3. The oscillator strengths of these complexes were calculated and 

are listed in Table 5.3a.

The [CuCN-EtJjtachClJ complex in HEPES buffer and CAPS buffer were also 

investigated by optical spectroscopy. As was the complex in a powder sample, the optical 

spectra o f these samples were similar to those in Figure 5 .7 and are not presented here.

The three transitions for each samples were measured and their maximum wavelengths and 

molar absorptivities are listed in the Table 5.3.

C. Orbital Bonding Coefficients o f Copper Tach Complexes

The orbital bonding coefficients o f metal complexes can be calculated provided 

that EPR and optical data are available.184*87,941 As copper tach complexes have a square 

pyramidal structure, Neiman’s method was used in calculating the bonding parameters.1851 

Neiman’s notation is used in the following equations. The antibonding molecular orbitals 

for the “hole” configuration of the copper tach complex can be formed from the central
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Table 5.3 The transition assignments for the optical spectra of the copper tach chloride complexes with errors of ± 10 cm'1. *

Complexes AE bxz,yz AE bxy A E z2 b

[Cu(N-Me)3tachCI2] in MeOH 14252 (76.2) 12316(24.4) 8388 (31.8)

[Cu(N-Et)3tachCI2] in Hepes buffer 15075 (54.4) 14214 (17.8) 8670 (22.0)

[Cu(N-Et)3tachCI2] in MeOH 14252 (76.2) 12321 (23.8) 8398 (31.8)

[Cu(N-Et)3tachCI2] Powder 14496 12544 8223

[Cu(N-Pr)3tachCI2] in MeOH 14482 (75.0) 12491 (19.4) 8588 (31.8)

[Cu(N-CH2-2-furanyl)3tachCl2] in MeOH 14472 (56.2) 12481 (11.8) 8698 (26.2)

[Cu(N-CH2-2-thioph)3tachCI2] in MeOH 14892(43.0) 12656 (4.4) 9128(19.2)

a. Molar absorbtivities, M '1cm'1, in parentheses.
b- AE xj,yj! -  E x2.y2 - E X3,yz; AE xj, -  E x2.y2 ■ E xyi AE n = E x2.y2 - E n



Table 5.3a The oscillator strength for the copper tach complexes

Complex U; (cm1) Aj 2Bj (cm 1) fx  106

[Cu(N-Me)3tachClJ 14252 0.381 1731 6.07

12316 0.122 1593 1.79

8388 0.159 1755 2.57

[Cu(N-Et)3tachClJ 14252 0.381 1731 6.07

12321 0.119 1603 1.75

8398 0.159 1755 2.57

[Cu(N-Pr)3tachClJ 14482 0.375 1862 6.42

12491 0.097 1703 1.52

8588 0.159 1765 2.58

[Cu(N-CH2-2-fiiranyl)3tachCl2] 14472 0.281 1732 4.48

12481 0.059 1703 0.92

8698 0.131 1755 0.21

[Cu(N-CH2-2-thioph)3tachCl2] 14892 0.215 2001 3.96

12656 0.022 2103 0.43

9128 0.096 1825 1.61
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atom 3d and the ligand 2s and 2p orbitals. These anti-bonding molecular orbitals are 

labeled according to symmetry species and are presented below.

B,g = a d ^  - a ,(-ox(1)+oy(2)+ox(3)-oy(4))/2 5.1

B2g = P.d^ - Pi'(py(I)+Px<2)*Py(3)-Px<4))/2  5.2

AIg = a,d3z2̂  - a I,(ax(1)+oya)-ax{3)-oy(4))/2 5.3

Eg =  ,PcU -  p'Cp^-p”*)^ * 5.4

Pdyz - P'(pza)-Px(4))/2^ 5.5

Where o(l) = np(i) ±  (l-n ^ ’V 0, 0 £ n £ 1. n reflects the hybridization o f the ligand's sigma 

orbitals.

a 2+ a ,2-2 aa 'S  = 1 5.6

The wave functions o f Eq. 5.1-5.5 can be used to solve the total Hamiltonian to second 

order.1841

Assuming Blg is the ground state, the resulting spin Hamiltonian is

H = P0[g//H zSz + g ^ S + H y S ,)] + A IZSZ + BCIA+IySy) 5.7

Thus, we have

g„ - 2.0023 = -8p[0Cp, - a 'P ,S  - a '( l-p ,2)*T(n)/2] 5.8

gx - 2.0023 = -2p [ap  - a 'P S  - a '( l-P 2)HT(n)/2*] 5.9

A// =  P [-a2(4/7+Ko) + (g//-2.0023)+3/7(gx - 2.0023) -8p {a 'P ,S

+ a '( l-p ,2)HT(n)/2 - 6/7p{ a'PS + a X l-P ^ T C n )/^ ] 5.10

As well as,
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_ h a p\
P ~  A E ^

5.11

A0aj3
V  =  5 1 2

where, A.0 is the spin-orbit coupling constant which is chosen to be -828 cm'1.1,51 Kq is the 

Fermi-contact term which is taken as Kq = 0.43 for the free ion.1851 AE^ and AE^ are E^.- 

Ex2-y2 and E^-E^.y,, respectively. S is the overlap integral o f the copper ion and ligand B,g 

orbitals. The values o f = 0.093 and Soxygen = 0.076.f85] T(n) = n + l/2 (l-n 2),/j RiJ, is 

a function o f the metal-ligand intemuclear distance (R), the effective nuclear charge (Q ) 

and the s-p hybridization o f the ligand orbitals (n), and takes the values o f T(n)oilrogen = 

0.333 and T(n)oxygen = 0.220.

Microcal’s Origin was used to calculate all the bonding parameters (see Appendix 

F). The protocol file named Bondingpara.org was set up with the script language to do the 

calculation. Given the g„, gx and A,, from the EPR measurements and the AE^ and AE^ 

from the optical spectra, the bonding parameters a 2, P2 and p ,2 were calculated and are 

tabulated in Table 5 4

D. ENDOR Studies o f the rCu(N-MeY.tachCU1 Complex

As the EPR spectra o f the copper tach chloride complexes did not resolve the 

hyperfine couplings from the apical and basal coordinated nitrogen atoms, ENDOR
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Table 5.4 The calculated bonding parameters of the Cu(N-Et)3 tach Cl2 complex in HEPES buffer and in methanol

Copper complexes g„ -2.0023 g ,-2.0023 A//
(cm'1)

AEVyz 
(cnv)

a e
(cm )

a 2 P2 P.2

in Hepes buffer 0.2636 0.0633 0.0164 15075 14214 0.78 0.92 0.88



§)

*J r

[Cu(N-ft),tachCL]

2 6-8 0 2 4 8-6 -4

RF frequency (M Hz)

Figure 5.10 The ‘H  ENDOR spectra at the parallel field position o f M , = -1/2 for the 
copper complex in H20  and D20 . Common experimental conditions: Microwave power, 2 
mW; Radio frequency power, 100 W; Modulation depth, 1.75 V , 180 kHz; Time constant, 
0.1 s; Scan rate, 0.8 MHz/s; Temperature, 2.4 K; Scan range, 16 MHz; Number o f scans, 
150; Individual experimental conditions: in H20 , Receiver gain, 25,000; File name, 
99041508.fls; in D20 , Receiver gain, 50,000; File name, 99041516.fls; The inset are the 
full scale *H ENDOR spectra at the parallel field position. (5. lO.opj)

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 -6 -4 2 0 62 84

RF frequency (MHz)

Figure 5.11 The ENDOR spectra at perpendicular position for the copper complex in 
H 20  and DzO. These spectra were obtained from the subtraction o f the ENDOR signals by 
the background (o ff EPR lines). Common experimental conditions: Microwave power, 2 
mW; Radio frequency power, 100 W; Modulation depth, 1.75 V, 180 kHz; Time constant, 
0.1 s; Scan rate, 0.8 MHz/s; Temperature, 2.4 K; Scan range, 16 M Hz; Scan times, 150; 
Individual experimental conditions: in H20 , Receiver gain, 2,500; File name, 99041523.fls; 
in D20 , Receiver gain, 3,200; File name, 99041512.fls; (5.1 l.opj)
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Table 5.5 The *H hyperfine couplings (M Hz) and UN peak positions o f aqueous [Cu(N- 
Me)3tachCl2] sample. *  b The measurement error was ±  0.02 MHz.

Parallel position, // Perpendicular position, _l

Proton ENDOR  
hyperfine 
couplings 

(M Hz)

a b c d e a' b' c'

0.22 1.70 2.27 3.07 6.47 0.22 1.54 3.48

Nitrogen ENDOR  
peak positions 

(M Hz)

a b c d

0.78 1.54 2.64 3.40

a. The complex concentration was 5 mM, HEPES buffer 50 mM and pH 7.0.
b. The bold numbers are the hyperfine couplings from the exchangeable protons.

spectroscopy was applied to obtain more information about the structure of these 

complexes.

Figure 5.10 shows the proton ENDOR spectra o f [CuCN-MeEt^tachClJ samples 

(in H20  and D 20 )  at the parallel field position o f M, = -1/2. The measured hyperfine 

couplings are presented in Table 5.5. There are four hyperfine splittings, 6.47, 3.07, 2.27 

and 1.70 MHz. The 2.27 M Hz coupling decreased in amplitude in the D zO sample, which 

indicated that the coupling was from an exchangeable proton.

The proton ENDOR spectra at perpendicular position for both samples in H20  and 

D20  are presented in Figure 5.11. The two hyperfine couplings o f 3.48 and 1.54 M Hz are 

also listed in Table 5.5. The 3.48 MHz coupling disappeared upon deuteration. As there 

is more than one exchangeable proton in the complex, we are not able to assign the 

exchangeable protons at present.

The nitrogen ENDOR spectrum was scanned as well (see Figure 5.12). A tentative
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Figure 5.12 The WN  ENDOR spectra of [Cu(N-Et)3tachClJ complex in HzO.
Common experimental conditions: Microwave power, 1 mW; Radio frequency power, 100 
W; Modulation depth, 1.75 V, 180 kHz; Time constant, 0.1 s; Scan rate, 0.25MHz/s; 
Temperature, 2.3 K; Scan range, 5 MHz; Scan times, 10; Individual experimental 
conditions: At Parallel position, Receiver gain, 8,000; File name, 99041521.fls; At 
Perpendicular position, Receiver gain, 63,000; File name, 99041522.fls; 
(Cu_Nitrogen_H20.ORG)
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assignment o f the peaks for one o f the two kinds of nitrogen atoms was made with the 

0.78, 1.54, 2.64 and 3.40 M Hz for the four peaks which are listed in Table 5.5. Thus, we 

have the following four equations14*

0.78 =  ANa/2 - UN -Qn/2 5.13

1.54 =  ANa/2 - UN +Qn/2 5.14

2.64 =  A ^/2 + UN -Qn/2 5.15

3.40 =  An/ 2  + UN +QN72 5.16

Here uN is the nitrogen nuclear Larmor frequency taken as 1.077 M H z at 350 mT.*4* 

Solving Equations 5.13 - 5.16 gives A Na = 4.18 M Hz and QN = 0.76 M Hz. The spectrum 

was not good enough for the assignment o f the second type o f nitrogen atom.

Discussion

A. The Structure o f Copper Tach Complexes

The [Cu(N-Et)3tachCI J  complex has a distorted square-pyramidal solid-state 

structure. The two nitrogen and two chloride atoms are displaced from the basal plane 

slightly. The apical nitrogen-copper bond is not perpendicular to the basal plane, but is 

tilted 6.1° towards the other two nitrogen atoms. EPR spectroscopy is sensitive to the 

structure o f the complex. The powder EPR spectrum of [Cu(N-Et)3tachClJ is rhombic, 

which is consistent with the X-ray structure.*71* Thus, the small difference between gx = 

2.061 and gy = 2.071 may reflect the slight tilt o f the apical nitrogen atom as well as the 

inequivalence o f the chloride vs. amine nitrogens in the basal plane.

When the complex is in aqueous solution, its EPR spectrum loses the rhombic
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feature. An axial spectrum exists in both X-band and Q-band spectra (Figures 5.4 and 

5.5). Thus, EPR spectra support a structure which is more symmetric for the complexes 

in aqueous solution. The complex does not have true axial symmetry, however. The 

cause of the slight structural change might arise from the flexible environment around the 

complex in solution.

Generally, copper(II) complexes with nitrogen or oxygen atoms bound to the 

metal ion in a square or square pyramidal structure give g,. ~ 2.230 and g± = 2.060,1881 

similar to the values reported here (Table 5.2). The optical spectra for these copper 

complexes have three transitions, but the two peaks in the higher energy band 

superimpose with each other in some complexes.1801 The other reasonable alternative is a 

trigonal bipyramidal structure.183,841 However, the positions and intensities o f two high- 

energy optical absorbances o f [Cu(N-Et)3tachClJ in MeOH (Figure 5.9 and Table 5.3) are 

not consistent with a trigonal-bipyramidal structure.

The similar EPR and optical spectra for all the copper tach chloride complexes (see 

Figures 5.4 to 5.7) suggests an identical structure for all these complexes. However, the 

Q-band EPR spectrum o f the ethyl copper tach complex in wet methanol shows three 

peaks at the perpendicular field position, which indicates that more than one species exist 

in the solution. A  reasonable explanation is that water molecules replace one or two of 

the coordinating chloride ions in the aqueous sample. Since HzO is a stronger field ligand 

than Cl' ion in the spectrochemical series,1891 smaller g„ and A„ are expected in water. 

Similarly, when the complex was prepared in CAPS buffer with pH = 10.1, OH' may 

replace HzO as a ligand. The titration o f a mixture o f (N -E t)3tach and CuCl2 in water is

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



consistent with the presence o f one coordinated hydroxide ligand at pH 10. l . [8Sal The 

optical spectra are consistent with the above explanation as well. In aqueous samples, 

water molecules replace the chloride atoms as ligands. Since water is a stronger field 

ligand than chloride, the energy o f the d^.^ level is expected to be higher for the aqueous 

complex (see Figure 5.2). Thus, higher energy transitions are expected for the samples in 

aqueous solution. The optical spectra clearly reflect the ligand exchange (see Table 5.3).

Copper(II) complexes with nitrogen atoms bound to the copper ion in square or 

square pyramidal structures have been widely studied by ENDOR spectroscopy.190"931 As 

the unpaired electron resides in the copper d ^ , orbital, the ligand atoms (hydrogen and 

nitrogen) have large Fermi contact with the electron spin. Thus, large nitrogen and 

hydrogen hyperfine splittings with large isotropic couplings may be observed. 

Comparatively, an axial nitrogen or hydrogen has much smaller isotropic couplings, thus 

small hyperfine couplings. The typical basal nitrogen and hydrogen hyperfine couplings 

are 40.0 and 10.0 MHz, respectively.192,931 An apical proton has a typical hyperfine 

coupling of 7 MHz.[901

The An = 4.18 M Hz at parallel field position seen for [Cu(N-M e)3tachClJ is most 

likely from the apical nitrogen, since the value is much smaller than 40.0 MHz. Ignoring 

the isotropic component, the distance from the apical nitrogen atom to the copper ion is 

estimated as 2.74 A from Equation 4.6. This value is larger than 2.218(5) A distance 

determined from the X-ray data.1711 The deviation of the nitrogen ENDOR result from the 

X-ray result could arise from ignoring the isotropic coupling for the nitrogen atom and the 

slight structural change in solvent for the complex. Further nitrogen ENDOR experiments
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need to be done in order to determine the distance between the basal nitrogen and the

copper ion.

It is difficult to assign the proton hyperfine couplings, since the angle effect 

reduces the basal proton hyperfine coupling to half o f its maximum value (5.0 M Hz). 

There are two types of basal exchangeable protons and one apical exchangeable proton. 

The experimental hyperfine couplings could not be unambiguously assigned to any 

exchangeable protons. The nonexchangeable protons also could not be assigned without 

selective deuteration of the ligand.

B. The Orbital Bonding Coefficients o f fCufN-EtT.tachCU

The bonding parameters of the aqueous [Cu(N-Et)3tachCl J  complex is presented 

in Table 5.4. A bonding parameter o f 0.5 corresponds to a "pure" covalent bond and a 

parameter o f 1.0 to a "pure" ionic bond. The in-plane O bond (expressed by a 2) is less 

sensitive to the ligand change, whereas the in-plane TZ bond (depicted by P t2) is more 

sensitive to the ligand change. The out-plane 7t bonds (expressed by P2) are in between. 

For the aqueous complex, the in-plane and out-plane TZ bonds are rather ionic (Table 5.4). 

However, its in-plane O bond is more covalent in character.

Nieman and collaborators found that P ,2 is a better indicator o f covalent charactor 

than is a 2. [8S1 Their finding is consistent with the results presented here. Most complexes 

with nitrogen or oxygen coordinated with a metal ion have an in-plane sigma bonding a 2 

close to 0.8.[8S| The results derived here are also in the same range.
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Conclusions

The [Cu(N-Et)3tachClJ complex has a crystal structure which is close to a square 

pyramid with the apical nitrogen tilted 6.1° towards the other two basal nitrogen atoms. 

EPR spectroscopy supports this structure by showing a slightly rhombic spectrum for the 

powder. Contrary to the crystal structure, the complex in solution has an axial EPR 

spectrum which suggests a more symmetric, pseudo-C4V structure. In pure methanol, 

there is no ligand exchange in the complex. However, the chloride atoms are replaced by 

water molecules in aqueous solution, as indicated by optical spectroscopy and EPR 

spectroscopy. The in-plane O bonds are covalent, but the out-plane n  bonds are ionic for 

the complex in aqueous solution. The in-plane n  bond is ionic for the aqueous sample.
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CHAPTER 6

THE APPLICATION OF Q-BAND EPR TO THE FOSSIL TO O TH DATING

Introduction

EPR tooth dating is one of the successful applications of EPR in the earth sciences 

and archaeology.[9S1 Tooth enamel is a desirable material for dating by EPR due to its 

characteristics which satisfy the criteria for crystalline substance dating.1961 Like other 

crystalline insulating materials, tooth enamel has two energy bands which electrons may 

occupy (see Figure 6.1). One band is called the valence band (ground state), and the other 

one is the conductance band (excited state). All electrons exist in the ground state when 

the mineral is formed. Afterwards, successive natural irradiation (such as a , P, or y  

particles) over time excites electrons into the conduction band. Most o f the electrons 

relax to the ground state, but a few difiiise through the crystal and are trapped in charge 

defect sites, forming paramagnetic centers. The trapped electrons can be detected by EPR 

spectroscopy. The intensity o f the EPR signal is proportional to the strength o f the 

radioactive field (dose rate) and the time (age) o f the irradiation.

The EPR age is determined by the following equation:1971

t t

— A. int*f- A<*= j  Dz(t)dt = |(Dmt(r) + M ' P  6 .1
0 0

where Az = the total accumulated dose in the sample,
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Figure 6.1 The trapping scheme of electrons in minerals.
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A^, = the internally derived accumulated dose component due to internal radiation 

sources (such as uranium impurities) within the sample,

A^, = the externally derived accumulated dose component from naturally 

occurring radiation external to the sample,

D£(t) = the total dose rate,

DjmCt) s the total dose rate from within the sample,

D J t )  = the total dose rate from the external environment, 

t = the sample’s age.

The total accumulated dose (Av) is usually determined by the additive dose 

method, in which more than eight sample aliquots are irradiated with successive doses o f 

increasing y or P radiation. The EPR signal amplitudes grow larger accordingly. By 

extrapolating the curve to zero amplitude, Av can be derived. The total dose rate Dv(t) is 

usually determined empirically. I f  the dose rate, Dv(t), is a constant, then Equation 6.1 

reduces to

t = - ^ -  = --------=~—  6.2
Am + e x t

X-band EPR spectra of fossil tooth powder show an axial structure.1981 However, 

for some tooth enamel samples, the dating peak is not well resolved at X-band. In order 

to completely resolve these peaks, Q-band EPR spectroscopy is needed. The Q-band 

study described below is a collaborative project with Dr. Anne R. Skinner o f Williams 

College. These Q-band spectra were obtained to determine the suitability o f X-band EPR 

spectroscopy for routine fossil tooth dating.
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Experimental

The Q-band spectrometer is the assembly o f a modified Varian Q-band E -l 10 

microwave bridge, a Varian E-9 console and a home made cylindrical TE 011 cavity as 

described in Chapter 2. The EPR spectra were obtained at room temperature. One 

sample was scanned at 100 K  to study the microwave power saturation characteristics of 

an artificially irradiated sample.

Results and Discussion

Figure 6.2 shows the X-band EPR spectrum o f the fossil tooth sample artificially 

irradiated for 200 Grays (the SI unit, 1 Gray = 1 joule deposited per kilogram of silicon). 

The gx and g„ peaks arise from radical centers in hydroxyapatite.[981 The dating peak is the 

gx peak at 2.0018, and the g„ is 1.9996. However, at the perpendicular position, there 

exists another peak which overlaps with the dating peak. The interfering peak potentially 

limits the application o f X-band EPR spectroscopy for fossil tooth dating. In order to 

solve this problem, we need to know the source and characteristics o f the interfering peak. 

Therefore, Q-band EPR spectroscopy was applied to fully separate the dating peaks from 

the interfering peak.

Figure 6.3 displays the Q-band EPR spectrum o f the sample in Figure 6.2. Here, 

four peaks were resolved with the dating peak having gx = 2.0016 ±  0.0002 and g„ =

1.9970 ± 0.0002. The Q-band gx value is in agreement with the X-band g-value of 

2.0018, but the Q-band g,, value is not. The two extra peaks seen in Figure 6.3 having gA 

= 2.0050 ±  0.0002 and gB = 2.0002 ±  0.0002 were not resolved at X-band from the gx
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Figure 6.2 The X-band EPR spectrum of a fossil tooth enamel sample (59-200). 
Experimental Conditions: Microwave power, 0.2 mW; Modulation Amplitude, 0.03 mT; 
Field Set, 327.4 mT; Scan Range, 2.4 mT; Receiver Gain, 0.003 V; Modulation 
Frequency, 100 kHz; Time Constant, 1 s; Scan Time, 500 s; Temperature, 298 K; 
Spectrometer, Bruker; Microwave Frequency, 9.1639 GHz; File Name, 99112501.fls; (X - 
band fossil, opj)
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Figure 6.3 The Q-band EPR spectrum of the fossil tooth enamel sample o f Figure 6.2. 
Experimental Conditions: Microwave power, 0.06 mW; Modulation Amplitude, 0.1 mT; 
Field Set, 1237 mT; Scan Range, 10 mT; Receiver Gain, 32; Modulation Frequency, 100 
kHz; Time Constant, 1 s; Scan Time, 8 minutes; Temperature, 297 K; Spectrometer, 
Varian Q-band; Microwave Frequency, 34.6995 GHz; File Name, 5910200.fls; 
(FOSSIL-59-200.OPJ)
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Figure 6.4 The EPR amplitudes of the dating (gx = 2.0016) peak and the interfering (gA= 
2.0050) peak versus the irradiation dose. Experimental Conditions: Microwave power,
0.06 mW; Modulation Amplitude, 0.1 mT; Field Set, 1237 mT; Scan Range, 10 mT; 
Receiver Gain, 20-400; Modulation Frequency, 100 kHz; Time Constant, 1 s; Scan Time, 
16 minutes; Temperature, 100 K; Spectrometer, Varian Q-band; Microwave Frequency, 
34.7057 GHz; File Name, 59100.fls, 59101.fls, 59104.fis, 59108.fls,
591016.fls,591032 fls, 591064.fls, 5910128.fls, 5910256.fls, 5910512.fls; (fossil.opj)
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Figure 6.5 The EPR signal amplitude versus the artificially irradiated dose for the fossil 
teeth samples (59-0 ~ 59-512). Experimental conditions: Microwave power, 0.06 mW; 
Modulation Amplitude, 0.1 mT; Field Set, 1237 mT; Scan range, 10 mT; Receiver gain, 
20-400; Modulation frequency, 100 kHz; Time constant, 1 s; Scan time, 16 minutes; 
Temperature, 100 K; Spectrometer, Varian Q-band; Microwave frequency, 34.7057 GHz; 
File Name, 59100.fls, 59101.fls, 59l04.fls, 59108.fls, 591016.fls,591032.fls, 591064.fls, 
5910128.fls, 5910256.fls, 5910512.fls; (fossil.opj)
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Figure 6.6 The EPR signal amplitude versus the artificially accumulated dose for the fossil 
teeth samples (59-0 ~ 59-512). Experimental conditions: Microwave power, 0.06 mW; 
Modulation Amplitude, 0.1 mT; Field Set, 1237 mT; Scan range, 10 mT; Receiver gain, 
20-400; Modulation frequency, 100 kHz; Time constant, 1 s; Scan time, 16 minutes; 
Temperature, 100 K; Spectrometer, Varian Q-band; Microwave frequency, 34.7057 GHz; 
File Name, 59100.fls, 59101.fls, 59104.fls, 59108.fls, 591016.fls,591032.fls, 591064.fls, 
5910128 fls, 5910256.fls, 5910512.fls; (fossil.opj)
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peak.

Q-band EPR spectra were measured for a series o f fossil tooth samples from a 

mastadon exposed to various doses o f artificial irradiation. The peak intensities o f gA and 

the dating peak at g± were measured for each sample and are plotted as a function of 

irradiation dose in Figure 6.4. Except for artificial doses above — 300 Grays, both the 

interfering peak and the dating peak intensities are linear functions o f the artificial dose. 

So, both the dating peak and the interfering peak are proportional to the irradiation dose. 

Ignoring the saturated points at 256 and 512 Grays and fitting the rest o f the data points 

for the dating peak in Figure 6.4 gives a straight line which is presented in Figure 6.5 for 

the lower doses. The accumulated dose A£ before artificial irradiation o f the fossil teeth 

was determined from the fitted line in Figure 6.6 to be 7.0 Grays. Assuming that a typical 

natural dose rate, Dv, is about 5 mGray/year,1951 the age of the fossil teeth is about 1400 

years old.

The dating peak and the interfering peak were also tested for microwave power 

saturation at low temperature. At 100 K, the sample having 200 Grays irradiation was 

measured under various microwave powers. The intensities o f the dating and interfering 

peak intensities were measured and are plotted in Figure 6.7. Both peaks became 

saturated above 3 p.W power as indicated by the deviation from linearity in the intensity 

vs. square-root o f power. The maximum power of the microwave bridge is 60 mW. On 

the other hand, no power saturation was observed for both the dating peak and the 

interfering peak at room temperature.

Based on the above Q-band EPR study of the fossil tooth samples, we found that
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the dating peak and the interfering peak have the same sensitivity to radiation dose and 

microwave power. These similarities suggest that the sources of the interfering peaks is 

also a hydroxyapatite defect. Multiple potential sites that vary slightly from each other are 

probably present in the mineral. Because o f the linear correlation between the dating and 

interfering peak intensities, X-band spectroscopy can be used in fossil tooth dating even 

though the two signals overlap. However, higher field modulation amplitude is used to 

smooth the interfering and dating peaks.f991

Conclusions

The interfering peak which overlays the dating peak probably arises from a 

hydroxapatite defect site in the fossil tooth enamel. By smoothing the composite dating 

peak with a high modulation, X-band spectroscopy can be reliably used in routine fossil 

tooth dating. It is also possible to eliminate the effect o f the interfering peak by 

determining the height o f the peak at = 1.9996 ±  0.0002 relative to the spectral baseline 

in the X-band spectrum, a measurement which is unaffected by this particular interference. 

Since the gA, peak is much smaller than the primary one at gx = 2.0018 ±  0.0002, the 

uncertainties o f measurement increase considerably. Finally, the age o f the measured fossil 

teeth is estimated to be about 1400 years old.
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Figure 6.7 The microwave power saturation characteristics of the fossil tooth enamel 
sample. Experimental Conditions: Modulation Amplitude, 0.1 mT; Field Set, 1241 mT; 
Scan Range, 10 mT; Receiver Gain, 630; Modulation Frequency, 100 kHz; Time 
Constant, 1 s; Scan Time, 16 minutes; Temperature, 100 K; Spectrometer, Varian Q-band; 
Microwave Frequency, 34.8244 GHz; File Name, 98070603~98070607.fls; (fossil.opj)
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APPENDIX A

OPERATION OF THE Q-BAND EPR/ENDOR SPECTROMETER

Console control is converted from X-band to Q-band by the procedures described 

in the Appendix E in Wang’s dissertation.[4?1 The spectrometer operations are also the 

same as before except that the phase adjustment is less sensitive than before. The detector 

current is still set at 50 }lA.

Setup o f the low temperature nitrogen flowing system

Figure A. 1 is the schematic diagram of the low temperature nitrogen flowing 

system used in the Q-band EPR/ENDOR spectrometer. Nitrogen gas flows out o f the gas 

cylinder being regulated by the regulator (output pressure is usually set at 10 psi), passes a 

flow rate gauge (controlled at 25 SCFH), then runs through a piece of ~ 5 meters long 

rubber tubing or a large liquid nitrogen container (41 liter) to minimize any fluctuations in 

flow. The stabilized nitrogen gas goes through a circular wound copper tube immersed in 

liquid nitrogen, a piece o f transfer line, the Dewar containing the cavity and finally through 

a piece of insulating foam tubing. The cavity temperature can be adjusted by controlling 

the nitrogen gas flow, and is monitored by a copper-constantan thermocouple. The 

reference junction temperature is kept at 0 °C by immersing it in a beaker containing ice 

water. A DC millivolts meter (Univac Inc., Remington Rand, NJ) is used to measure the 

voltage.
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After the completion o f low temperature operation and no liquid nitrogen remains 

in the liquid nitrogen dewar, nitrogen gas is then passed through the whole system for at 

least two hours to keep moisture away from the cavity.

Thermocouple

Regulator
Insulating 

foam tubing

Rubber tubing

Dewar

Screw clamp

Transfer tubingaSnap clamp 

Foam cover
Cavity

Liquid
nitrogen
Dewar

Liquid
nitrogen

Circularly wound 
metal tubing

Figure A. 1 The schematic diagram of the Q-band liquid nitrogen flow system. (A . 1. wpd)
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APPENDIX B

OPERATION OF L IQ U ID  HELIUM  COOLING SYSTEM  IN  THE X-BAND
EPR/ENDOR SPECTROMETER

The schematic diagram of the helium flow cryostat system is displayed in Figure

B. 1. The temperature is monitored by the model 330 autotuning temperature controller 

(Lake Shore Cryotronics, Inc., Westerville, OH). The low temperature sensor is a 

GaAIAs Diode with TG-120P Package, serial number 10017 (Lake Shore Cryotronics, 

Inc., Westerville, OH). The working curve used in the temperature controller is number 

12. The liquid helium level in the reservoir is measured by the Liquid Helium Level meter 

model 1200 S/H (Cryomagnetics, Inc., Oak Ridge, TN). The high vacuum (lxlO*6 torr) is 

achieved with a Varian SD-200 pump system (Varian, Inc., Walnut Creek, CA).

High Vacuum Pump

Usually, before carrying out ENDOR experiment at liquid helium temperature, the 

transfer line and the cryostat should be pumped by the diffusion pump system for 48 hours 

to 1 x 10 ^ torr. The connection between the high vacuum system, the transfer line and 

the cryostat system is presented in Figure B .l. The pumping steps are described in the 

following:

1. Check the status o f all the values according to Table B. 1.

2. Power on the Mechanical Pump A (Varian SD-200) and pump the bellowed steel
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vacuum tubing for 1/2 hour.

3. Open Valve A, Valve B and Valve E, respectively.

4. Pump the whole system with only the Mechanical Pump A for about another 1/2 hour. 

Check the system vacuum by the thermocouple Vacuum Gauge (operation range, 1 x 10'3 

torr - 760 torr).

5. When the system vacuum is about 1 x 10'3 torr, power on the Diffusion Pump.

Table B. 1 The status of all the valves in Figure B. 1 at the beginning and the end o f an 
ENDOR experiment.

Valves A B C D E F G H P R T

Beginning closed closed closed closed closed closed closed opened closed

End closed closed H P closed opened closed closed closed closed

6. Pump the whole system for 48 hours. Check the system vacuum with the Cold Cathode 

Vacuum Gauge (operation range, I x l 0 ' 3 - l x l 0 ' 7 torr). The system vacuum should be 

around 1 x 10 torr.

7. Close Valve E on the transfer line, Valve A, Valve B and Valve D, respective'y.

8. Open Valve C, disconnect the transfer line from the Adaptor A and Close Adaptor A 

with a stopper.

9. Connect the Mechanical Pump B (Varian SD-450) to the connector A  and power on the 

Mechanical Pump B for 15 minutes.

10. Close Valve C, shut down the power for the Mechanical Pump B and disconnect the 

Mechanical Pump B.
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11. Open Valve D  slowly, until it is wide open, then open Valve A  and Valve B again.

The high vacuum system is left on for the entire period of the cryostat temperature 

experiment.

Flushing the Whole Cooling System with Helium Gas

Just before cooling down the cryostat system, the flow route is flushed with helium 

gas from a cylinder for 15 minutes. An empty sample tube should be put in the cavity and 

tightened up. Valve H  is opened, but Valve P is closed. A rubber tubing is used to connect 

the helium gas cylinder to Vent I above the reservoir. The helium gas goes through Vent 

I, the Reservoir, the Pancake, the Dewar inside the cavity, the top cover, and out from 

Valve H. Valve R can be set at large opening, say 10 turns (clockwise) to facilitate the 

gas flow.

Close the valve o f the helium gas cylinder, set Valve R at 2 turns, close Valve H, 

then disconnect the rubber tubing from Vent I, and connect the rubber tubing from the 

helium cylinder to the transfer line Tip I. Open Valve T widely (5 turns clockwise) and 

open the helium gas cylinder. Flush the transfer line for 2 minutes. Then set valve T at 2 

turns. Turn o ff the helium gas, and disconnect the rubber tubing from the transfer line Tip 

I. Immediately proceed to the next step before air is allowed to enter the transfer line.

Cooling down the System

The following steps should be followed when cooling down the cryostat system.

A. Two people are needed to put the transfer line into the liquid helium tank and
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the cryostat system. First, the helium tank pressure should be released through a vent 

valve at the top of the storage dewar, then the tank vent valve should be closed. One 

person should hold the transfer line and put the Tip I slowly into the liquid helium tank. 

The second person at the rear o f the magnet holds the transfer line above the Tip I I  and 

tries to insert the Tip I I  into the transfer line inlet above the reservoir. When the Tip I I  is 

in the inlet completely, a clamp is used to tighten the connection.

B. Now the helium gas flows out of Vent I. The pressure in the storage dewar is 

high (about 10 psi) due to evaporation of liquid helium when the transfer line is put in. It 

will drop gradually afterwards. When it is below 3 psi, a helium cylinder regulated at 3 psi 

should be connected to the storage dewar through the storage dewar vent. Then, turn on 

the temperature and liquid level monitors.

C. It takes about 40 minutes to cool down the reservoir and accumulate liquid 

helium in the reservoir.

D. When the liquid helium accumulates to about 1.5 inches, turn on the Pump C, 

tum the Valve P half way open and begin to pump helium through the cryostat system.

E. Adjust the transfer line Valve T and reservoir capillary Valve R to reach the 

lowest temperature (about 2.3 K). The transfer line should be about one and half turns 

open, and the reservoir valve should be about a half tum clockwise open. I f  a temperature 

higher than 2.3 K  is wanted, partially close Valve R and Valve P.

Changing Samples

When changing samples, Valve P is closed. The temperature in the cavity
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increases quickly. When the temperature rises to about 77 K, take o ff the nitrogen 

defrosting case cover and swiftly screw o ff the sample cap and take out the sample. 

Meanwhile, insert the new sample tube in and screw the sample cap tightly as quickly as 

possible. Put the defrosting case cover back again. Then open the Valve P half way 

again. The temperature should drop to 2.3 K.

Shutting down the Cooling System

When the helium in the tank is used up, the helium level in the reservoir begins to 

drop. When the temperature in the cavity cannot hold at ~ 2.3 K, the helium is empty. 

Now is the time to raise the temperature in the cryostat system back to room temperature.

A. Close the transfer line valve T and shut down Pump C.

B. Connect a rubber tubing from the helium gas cylinder to Vent I, close Valve P, open 

Valve H, open the helium gas cylinder with the regulator set at 3 psi and blow helium gas 

through the cryostat system for one hour.

C. When the temperature rises to 100 K, the helium gas is replaced by cheaper nitrogen 

gas and the gas is left to flow overnight.

D. Take the transfer line Tip II  out o f the Transfer Line Inlet, clamp a cover on Inlet, and 

take the transfer line Tip I out o f the liquid helium tank.

E. After the temperature rises to 100 K, close Valve A and Valve B, unplug the Diffusion 

pump cord, wait for an hour, then Shut down the Mechanical pump A.

At the end, the status o f all the valves in Figure B. 1 should be kept as in Table B. 1.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cover ' 
Sample Tube •“  

N: in =

Nitrogen Defrost Case

Valve HValve G

Valve F
Varian Cavity Rubber 

Vaccum Tubing

Valve A

Pancake Vent II

Cryostat
System Valve B

Vent I
To

Ventilation
Transfer Line 

Inlet Valve P

Hgh- Pump C
V alve R. Reservior

T  A daptor J
Bellowed Steel Vaccum Tubing

Valve THigh Vaccum 
System Tip IIAdaptor A Valve E

Valve DValve C
Transfer Line

---------
Connector A

Diffusion
PumpM echanical 

Pump A Tip I

M echanical 
Pump B

Figure B. 1 The complete liquid helium cooling system in the X-band EPR/ENDOR  
spectrometer. (B .l.w pd)
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APPENDIX C

OPERATION OF THE X-BAND EPR/ENDOR SPECTROMETER

The E-9 EPR System Manual is completely followed in obtaining EPR spectrum 

on the improved X-band EPR/ENDOR spectrometer. A  home-made channel selector is 

put at the rear o f the console for switching between high frequency of 100 kHz and low 

frequency of ^ 10 kHz modulation channels. The channel selector is set at high for 

collecting EPR signal (see Figure C. 1). Figure C.2 is the wiring of the radio frequency 

circuit. The procedures for collecting ENDOR spectrum are presented below.

a. The software used for running ENDOR is called endor.bat. First, simply type endor 

followed by your name, then return. Refer to the instruction menus for all the functions o f 

the program.

b. After scanning the EPR spectrum, the recorder is stopped. The plotting pen is moved 

to the specific field position where ENDOR spectrum will be scanned. Then, the recorder 

is turned off, and the time constant, the 100 kHz modulation amplitude and the receiver 

gain on the 100 kHz module are set to zero.

c. Switch the channel selector to low.

d. Switch both the Oscilloscope Monitor and the Recorder Input on the System Function 

Selector module to LOW FREQ.

e. On the Low Frequency module, set the time constant to 0.1 s, modulation amplitude to 

5 G, Frequency to lxlO4 Hz, phase to Mark ENDOR, and the receiver gain to a value
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where the current needle is at or below the center of the current meter receiver. I f  the 

ENDOR signal is strong, the receiver gain is adjusted until the full scale ENDOR signal is 

not off o f the computer screen.

f. Set RF power to desired value (typically 100 to 120 W), set RF power by turning the 

signal synthesizer level knob so that the EN I amplifier output is 100 W  at 9 M Hz (for 

scanning from 9 to 19 MHz). Set modulation to 2.0 V (220 kHz modulation depth, or the 

value you choose referring to the chart in front o f the modulator, see Appendix G).

g. As the detector current in the microwave bridge increases with the RF power, the cavity 

iris needs be adjusted to bring back the current to 200 |i.A. The flow rate o f nitrogen gas 

blowing through the cavity should be increased if  too much heat is generated in the cavity 

from the ENDOR coil.

h. The typical sweep rate is 1 MHz/s. The time constant is 0.1 s.

i. The RF power is usually set at 100 W  (0.24 V  on PTS) for proton ENDOR starting 

from 9 MHz.

Now, the spectrometer is ready to collect ENDOR data.
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Figure C. 1 The schematic diagram of the channel selector wiring. (C. 1. wpd)
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Figure C.2 The wiring of the RF circuit in the X-band ENDOR spectrometer. (C.2.wpd)
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APPENDIX D

PROCEDURES FOR M AKING  THE ENDOR COILS

A standard photo fabrication method was used in making printed ENDOR coil. 

Each copper coil was cut into pieces o f 130 mm x 35 mm (see Figure D. 1). One comer of 

the foil piece was cut off for the side identification in the dark room. Two alignment holes 

were drilled with the plate mold.

Pieces o f the copper foil (FQ40649, DuPont Electronics Inc., Waltham, M A) were 

coated Naval Jelly Rust Dissolver (Loctite Corporation, Cleveland, OH) with a brush and 

left for about ten minutes to dissolve any corrosion followed by rinsing with water 

afterwards. Then the pieces o f copper foil were immersed in acetone for a few minutes to 

remove any grease from the copper surface. Finally, they were dried under the hood for 

five minutes and then put in a 80° oven for 1/2 hour.

The photo resist coating of the copper foil was carried out in the dark room in the 

hood. Each piece of the foil was clamped with a clipper and was dipped into a petri dish 

half filled with KPR-3 photo resist (Kepro Circuit Systems, Inc., St. Louis, M O ). Then 

the foils were hung in the hood for curing overnight. Then, they were put in a brown 

bottle (covered and wrapped with aluminum foil) and were baked in the 80° oven for half 

an hour. I f  the photo resist was not dry, the absorption of ultraviolet radiation by the 

material was low and no adequate exposure could be done.

The exposure of the coil circuit onto the copper foil was processed in the dark
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room. Figure D.2 is the schematic diagram o f the exposure process. The Photo ECT (500 

W, 120 V, 3200 K) bulb (Osram Sylvania Inc., St. Marys, PA) was hung about 300 mm 

above the desk top. Under the red light o f the dark room, the negative film (see Chapter 3) 

was put on the copper foil and was orientated so that the two alignment holes exactly 

matched the holes in the foil. Several pieces o f heavy metal blocks were put on the edges 

of the negative film to flatten the film. Then the bulb was lit and the timer was started.

The exposure time was 30 minutes for each side. The same steps were taken for the 

exposure o f the other side. Then, the exposed foil was put into the petri dish half filled 

with developing solution K D -IQ T (Kepro Circuit Systems, Inc., St. Louis, M O ) for two 

minutes. The foil was then flushed with warm water to remove any trace o f photo resist.

I f  the foil was not developed enough, it was dried first and then developed for a second or 

a third two-minute time period. The foil was then rinsed completely, dried up and 

examined under a magnifying glass. I f  over developed spots were found, a Resist Ink pen 

(Radio Shack Inc., Ft. Worth, TX ) was used to redraw the wire. In case of 

underdeveloping, the residuals were scratched o ff with a razor.
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Figure D. 1 The schematic diagram o f one piece of the copper foil. (D . l.wpd)
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Figure D.2 The schematic diagram of the exposure process. (D.2.wpd)

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX E

CALCULATION OF ISOTROPIC g-VALUES AND ISOTROPIC HYPERFINE
COUPLINGS

At X-band, the positions of all the lines in a spectrum can be expressed in the 

following equation to second order,

B = £ (0) + Bw + B(2)
E .l

I f  there is only one kind o f hyperfine coupling, then we have,

B = BC0) - a M  — ^ l _ [ / ( 7  +1) - A /,2]
2goflV0

E.2

Also we have,

hv0 =  go/te<0) 

^ A o  =  go/feo E.4

E.3

Equations E.2 ~ E.4 are used for the calculation of go and A<,.

The following are the steps for the go and Aq calculation.

a. Take the experimental line positions to estimate values for B(0>, ao and go-
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n

BC0) E.5
n

n -  1 E.6

/ j o
E.7

Soft*
A

E.8

where n is the number o f lines observed.

b. Calculate the second order term with E.7 and E.8.

c. Calculate B(0) again with Equation E.2. rather than E.5, and go with the more accurate

B(0).

Repeat the steps b and c until the calculated go and Ao no longer change.

The calculation is achieved by a program in Dell-ITC named g_a_2ndorder.exe 

written in C/C++. The flow chart o f the calculation is presented in Figure E. 1. The 

experimental lines and the calculated line positions from Equation E. 1 will be displayed on 

the screen, so are the values o f go, ao, Ao.

#include <stdio.h>
#include <graph.h>
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#define len 20 
#define scale 1

struct col{
short x; 
short y; 
float value; 
char explanin[len];
};

struct collect{
short x; 
short y; 
double value; 
char explain[Ien];
};

struct inform{
struct col pkno; 
struct collect fc; 
struct collect range; 
struct collect freq; 
struct collect crtratio; 
struct collect stdfield; 
struct collect stdg; 
struct collect peaks[8]; 
struct collect crtpeak[8]; 
struct collect firstodpk[8]; 
struct collect deltah; 
struct collect gO; 
struct collect aO; 
struct collect AO;
};

mainO
{

int x,xx;
static struct inform data;
x=121;
xx=121;
w h ile (xx=  121 ||xx=89 ||xx=  10) !
initstruct(&data);
initO;
noofpeak(&data);
peaksite(&data);
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inputdata(&data);
peakvalue(&data);
crtpeak(&data);
firstodpk(&data);
raw_peaks(&data);
crt_peaks(&data);
x=10;

w h ile (x =1 21 ||x =8 9 ||x= I0 ){
postaOgO(&data);
firstodpk(&data);
fstod_peaks(&data);
_moveto(50,300);
_setco!or(12);
_outgtext("Do you want to iterate the calculation?");
x=_getch0;
_moveto(50,300);
_setcolor(0);
_outgtext("Do you want to iterate the calculation?");
}

_mo veto(50,300);
_setcolor(12);
_outgtext("Do you want to analyze another sample?"); 
xx=_getch();
_moveto(50,300);
_setcolor(0);
_outgtext("Do you want to analyze another sample?");
}

_setvideomode(_TEXTC80);

initstruct(data) 
struct inform *data;
{

data->pkno ,x=3 0; 
data->pkno.y=95; 
data->fc.x=10; 
data->fc.y=145; 
data->range. x= 195; 
data->range. y= 145; 
data->ffeq. x=400; 
data->freq.y= 145; 
data->crtratio. x= 10; 
data->crtratio. y= 195;

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



data->stdfield.x=260; 
data->stdfield.y= 195; 
data->stdg.x=400; 
data->stdg.y=l 95;

}

initO
{
/*  the following paragraph is to initialize the monitor */

_setvideomoderows(_VRES 16COLOR.20); 
_setviewport(0,0,639,479);
_setcolor(14);
_rectangle(_GBORDER, 1,1,638,318); 
_rectangle(_GBORDER, 1,319,638,479); 
_moveto(20,3 80);
_lineto(619,3 80);

mo veto(20,3 81);
_lineto(619,381);

I *  * * * * * * * * * *  writing the labels * * * * * * * * * *  */
noofpeak(data) 

struct inform *data;
{
char x[3]; 
int i;

_registerfonts("c:\\windows\\system\\*.fon");
_setfont(',h30t'roman'w24p");
_moveto(70,30);
_setcolor(12);
_outgtext("gO and AO Calculation"); 
_setfont("hl6t'roman'wl2p");

i=0;
while(i<=l||i>=9){
_moveto((*data).pkno.x,(*data).pkno.y); 
_outgtext("How many peaks do you see:"); 
_settextposition(7,45);
_settextcolor(0);
printfC ");
_settextposition(7,45);
scanfC'%f',&data->pkno.value);
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i=(int)data->pkno. value;
}

}

/*  * * * * * * * * * * * * *  rea(J in the data needed * * * * * * * * * * * * * * *  * /
inputdata(data) 
struct inform *data;
{

float x;
_setfont("hl4t'roman'wl lp");
_moveto((*data).fc.x,(*data).fc.y);
_setcolor(3);
_outgtext("Field Center:");
_settextposition( 10,19);
scanf("%f\&x);
data->fc.value=x;
_moveto((*data).fc.x,(*data).fc.y);

_moveto((*data).range.x,(*data).range.y);
_outgtext("Scan Range:");
_settextposition( 10,41); 
scanf("%f\&x); 
data->range. value=x;

_moveto((*data).freq.x,(*data).freq.y);
_outgtext("Frequency (GHz): ");
_settextposition( 10,73); 
scanfC%f',&x); 
data->freq. value=x;

_moveto((*data).crtratio.x,(*data).crtratio.y); 
_outgtext("Correction ratio:");
_settextposition( 13,23); 
scanf("%f',&x); 
data->crtratio. value=x;

_moveto((*data).stdfield.x,(*data).stdfield.y);
_outgtext("Std Field:");
_settextposition( 13,46);
scanfC%f',&x);
data->stdfield.value=x;
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mo veto(( * data). stdg. x, ( * data). stdg. y);
_outgtext("Standard g value:");
_settextposition( 13,74); 
scanf("%f',&x); 
data->stdg. value=x;

_setcolor(2);
_moveto(20,225);
_outgtext("Low Field");
_moveto(512,225);
_outgtext("High Field");

}

/*  * * * * * * * * * * * *  calculate the position of the peaks * * * * * * * *  */
peaksite(data) 
struct inform *data;
{

int i,peakno;
peakno=(int)data->pkno. value; 
for(i= 1 ;i<=peakno;i++){

data->peaks[i-1 ]. x= 17; 
data->peaks[i-1 ].y=(i- l)*68/(peakno-1 )+4; 
}

* * * * * * * * * * * *  fea{j jn magngtjp fields of the peaks * * * * * * * *  */  
peakvalue(data) 
struct inform *data;
{

int i,peakno; 
float x; 
char num[2];
peakno=(int)data->pkno. value; 
for(i= 1 ;i<=peakno;i++) {
_settextposition((*data).peaks[i-l].x,(*data).peaks[i-l].y);
_settextcolor(2);
_outtext("Peak");
_itoa(i,num,10);
/*printf("% i",i);*/

outtext(num);
_settextposition((*data).peaks[i-1 ].x+l,(*data).peaks[i-1 ].y-1);
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scanf("%f\&x); 
data->peaks[i-1 ]. value=x;

}
}

/*  * * * * * * * *  calculate the caliberated peak positions * * * * * * * * *  * /
crtpeak(data) 
struct inform *data;
{

int i,peakno; 
float pkno; 
double pn;

peakno=(int)data->pkno. value; 
pkno=data->plcno. value;
data->deltah.value=714.4844*data->freq.value/data->stdg.value-data->stdfield. value; 

for(i= 1 ;i<=peakno;i++){

data->crtpeak[i-l].value=data->crtratio.value*(data->peaks[i-l].value-data->fc.value)+da 
ta->fc.value+data->deltah. value;

}
data->aO. value=(data->crtpeak[peakno-1 ]. value-data->crtpeak[0]. value)/(pn-1);

data->gO. value= 1428.9688 * data->freq. value/(data->crtpeak[0]. value+data->crtpeak[peak 
no-1], value);
}

/ * * * * * * * * * * * *  calculate the 2nd-order terms and the Ist-order peaks * * * * * * * /
firstodpk(data)
struct inform *data;
{

int i,peakno; 
float x;
double sndodpeak,pkno,sum,y;
sum=0.0;

pkno=data->pkno value; 
peakno=(int)data->pkno .value; 
for(i=l ;i<=peakno;i++){

sndodpeak=data->aO. value*data->aO. value*data->gO. value*(0.25 *(pkno+1 )*(pkno-1.)-(( 
pkno-1 ,)/2.-i+l ,)*((pkno-l ,)/2 .-i+ l .))/(1428.9688*data->freq. value); 

data->firstodpk[i-1 ].value=data->crtpeak[i-1 ] value+sndodpeak;
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y=data->firstodpk[i-1 ]. value;
sum=sum+y;

}
data->aO. value=(data->firstodpk[peakno-1 ]. value-data->firstodpk[0]. value)/(pkno-1.); 
data->gO. value=4. *714.4844*data->freq. value/sum; 
data->AO.vaIue=data->gO,value*data->aO. value/21539.65937;

}

/ * * * * * * * * * * * * * * * * * *  draw the raw peaks * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
raw_peaks(data) 
struct inform *data;
{

int peakno,i; 
double peakfield[8]; 
float pf[8];
peakno=(int)data->pkno.value;
_setcolor(13);
_moveto(320,379);
_lineto(320,329); 
for(i= 1 ;i<=peakno;i++) {

peakfield[i-1 ]=320+600*scale*(data->peaks[i-1 ].value-data->fc. value)/data->range. value;
pf[i-1 ]=peakfield[i-1 ];
_setcolor(5);
_moveto((int)pf[i-1 ],379);
_lineto((int)pf[i-1 ],349);
}

draw the caliberated peaks * * * * * * * * * * * * * * * * * * * * * * * /

crt_peaks(data) 
struct inform *data;
{

int peakno,i; 
double peakfleld[8],fc; 
float fee;
peakno=(int)data->pkno.value;
fc=320+600*scale*data->deltah.value/data->range. value; 
fcc=fc;

setcolor(lO);
_moveto((int)fcc,382);
_lineto((int)fcc,400);
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for(i= 1 ;i<=peakno;i++) {

peakfield[i-1 ]=320+600*scale*(data->crtpeak[i-1 ]. value-data->fc. value)/data->range. valu
e;

_setcolor(2);
_moveto((int)peakfield[i-1 ],3 82);
_lineto((int)peakfield[i-1 ],4 12);
}

/ * * * * * * * * * * * * * * * * * *  draw the lst-order peaks * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
fstod_peaks(data) 
struct inform *data;
{

int peakno,i;
double peakfield[8],fcc;
float fc;
peakno=(int)data->pkno. value; 
for(i=l ;i<=peakno;i++){

peakfield[i-1 ]=320+600*scale*(data->firstodpk[i-1 ]. value-data->fc. value)/data->range. val
ue;

_setcolor(4);
_moveto((int)peakfield[i-1 ],3 82);
_lineto((int)peakfield[i-1 ],432);
}

fcc=(peakfield[0]+peakfield[peakno-1 ])/2; 
fc=fcc;
_setcolor(12);
_moveto((int)fc,382);
_lineto((int)fc,440);

}

/ * * * * * * * * * * * * * *  post the a0 ^  gQ * * * ♦ * * * * * * * * ♦ * * * /

postaOgO(data)
struct inform *data;

{
float x; 

x=data->a0. value;
_setcolor(14);
_settextposition(28,20); 
printf("a0=%7.4f G",x);
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_settextposition(29,36);
x=data->gO. value;
printfC!gO=%6.4f’,x);
_settextposition(28,3);
x=data->AO. value;
printf("A0=%6.4fy'cm",x);
_setcolor(13);
_moveto(570,350);
_lineto(610,350);
_moveto(470,342);
_setcolor(13);
_outgtext("Raw lines");
_setcolor(10);

mo veto(570,430);
Jineto(610,430);
_moveto(410,422); 
_setcolor(10);
_outgtext("Corrected lines");
_setco!or(12);
_moveto(570,460);
_lineto(610,460);

mo veto(394,452); 
_setcoIor(12);
_outgtext("First-order lines");

}
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APPENDIX F

CALCULATION OF BO NDING  PARAMETERS

Numeric calculation is used to derive the bonding parameters. For convenience, 

the Equations 5.6 ~ 5.12 are also listed here.

a 2+ a '2-2 a a 'S =  1 F .l

g// - 2.0023 = -8p [ap , - a'PjS - a 'O -P ^ T C n )^ ] F.2

g , - 2.0023 = -2 |i[a p  - a'pS - a '( l-p 2)'^T(n)/2H] F.3

A,, = P [-a2(4/7+Ko) + (g//-2.0023)+3/7(gx - 2.0023) -8p{a'P,S

+ a '( l-P ,2)*T(n)/2 - 6/7p{ a'PS + a ’( l-p 2)4T(n)/2!/2 F.4

&E *z.r-

Wu. = — ——  F.6
A E zy-

From Equation F. 1, we can solve for CL', 

a ' =  (2aS ±(4a2S2-4a2+4)*)/2 

As a 2 ^ 1, thus, 4a 2S2-4 a 2+4 £ 4a2S2. In order to get a positive CL', we have

cl' = (2aS+(4a2S2-4a2+4)*)/2 F.7

Substituting Equation F.5 into F.2, we obtain,
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-  — - 28°°23)AE"  =  - e,a S p >  - F 8
8 -^0  ^

-  (g„ -  2 .0023)A £ '
I f  we set, 4̂, = -------------- — ------------------; A, =  a 2 - a a 'S  and A3 = T (n )aa '/2 , then,

o A q

we obtain a simplified equation,

A, = A ,P ,j -A 3 (P ,2- P , T  F 9

Equation F.9 is solved in the following way,

-A1 + A2Pl2 =  A3(P ,2- P 1T

A22P,4 -2 A, A2P,2 + A ,2 = A32 P,2 - A32 p t4 

(A22 + A32)P ,4 - (2 A, A2 +  A32)P ,2 + A,2 = 0

2 AlA2 + A 2 ±  V ( 2 AtA2 + A32)2 -  4 A 2(A 22 -f A 2) 

Pl 2(A22 + A32)

2AxA2 + A 2 ±  A3^ A 2 + 4AlA2 - 4 A 2)

= 2(a422 + A 2)

Considering the physical meaning, P,2 should be close to 1. So, we take,

, 2 A ^ + A 2 + A3<Ja 32 +4AtA, -4A,2) F 1 °
= 2 ( A 2 + A 2)

In the same way, we can derive P2. Substituting Equation F.6 into F.3, We have,

( * ± -  2.0023)A E ^ T(n) . n r - z z  F U
---------------Yl = a P - a a  Sp -  - j ^ a a  yjp -  p
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-  (g , -  2.0023)A£_ „
I f  we define, 5, = ------------—— -— ^ = -; B2 = a 2 - aa 'S and B3 = T (n )a a '/2

2 X q

B2 = A2 and B3 = A3 are redefined for the clarity in writing program), 

we obtain a simplified equation,

b .-b ^ -B jC P ’-PY  

The solution for Equation F. 12 is,

_ 2B,B2 + B,2 + B jB ,1 + 4B,B2 -  4fi,2)
2(B 22 +  S 32)

Now we have all the equations needed to calculate the bonding parameters. The 

procedures in the calculation is described below. The protocol program is called 

Bondingpara.org.

1. The initial a 2 is calculated by the following Equation F.14.[*SI

a 2=  -(A /P) + (g/,-2.0023) + (3 /7 )^ -2 .0023 ) + 0.04

2. Calculate CL' with Equation F.7.

3. Calculate A,, A2, A3, B,, B2 and B3, respectively.

4. Calculate P,2 by Equation F. 10.

5. Calculate P2 by Equation F. 13.

6. Calculate K by K = 0.43 a 2.1®51

The following are the iteration steps.

7. Calculate p by Equation F.5.
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8. Calculate by Equation F.6.

J \ - p 2T(n)
9. Calculate Ct by C , = a  fixS  + ------- ----------

J \  -  p z T(ri)
10. Calculate Q  by C2 — oc fiS + .

11. Calculate a 2 by Equation F.4.

12. Calculate a '  by Equation F.7.

13. Calculate A,, A2, A3, B„ B2 and B3, respectively.

14. Calculate Pt2 by Equation F.10.

15. Calculate P2 by Equation F.13.

16. Calculate K by K = 0.43 a 2.

Step 1 to 6 is arranged in IN IT IA T IO N  button, and Iteration is put in the 

ITERATION button. The Origin LabTalk script language was used to write the program. 

The program ofBondingpara.org is in Dell-ITC. Table F. 1 is the arrangement o f all the 

data used and parameters in the bonding parameter calculations. Column A is the input 

data. The program is presented below.
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Table F. 1 The arrangement o f all the data used and resolved in the bonding parameter 
calculations.

Col A Col B Col C

1 g// K K

2 gx a 2 a 2

3 A# P2

CO.

4 A , P2 P2
5 k

6 P a ' a'

7 AE^y* A, A,

8 AE^ a 2 A2

9 s a 3 a 3

10 T(n) B, B,

11 b 2 b 2

12 b 3 b 3

13

14 P
15 P
16 C,
17 c,

data2_b[2]=-data2_a[3]/data2_a[6]+data2_a[l]-2.0023+(data2_a[2]-2.0023)*3/7+0.04; 

data2_b[6]=sqrt(data2_b[2])*data2_a[9]+sqrt(data2_b[2] *(data2_a[9]A2 -1)+1); 

data2_b [7]=-(data2_a[ 1 ]-2.0023)*data2_a[8]/(8*data2_a[5]); 

data2_b[8]=data2_b[2]-sqrt(data2_b[2])*data2_b[6]*data2_a[9]; 

data2_b[9]=sqrt(data2_b[2])*data2_b[6]*data2_a[ 10]/2;
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data2_b[ 10]=-(data2_a[2]-2.0023)*data2_a[7]/(2*data2_a[5]);

data2_b[ 11 ]=data2_b[2]-sqrt(data2_b[2])*data2_b[6] *data2_a[9];

data2_b[ 12]=sqrt(data2_b[2])*data2_b[6] *data2_a[ 10]/sqrt(2);

data2_b[4]=2*data2_b[7]*data2Jb[8]+data2_b[9]A2+data2_b[9]*sqrt(data2_b[9]A2+4*da

ta2_b[7]*data2_b[8]-4*data2_b[7]A2)/(2*(data2_b[8]A2+data2_b[9]A2));

data2_b[3 ]=2*data2_b[ 10]*data2_b[ 11 ]+data2_b[ 12]A2+data2_b[ 12] *sqrt(data2_b[ 12]A2

+4*data2_b[ 10]*data2_b[ 11 ]-4*data2_b[ 10]A2)/(2*(data2_b[ 11 ] A2+data2_b[ 12]A2));

data2_b[ 1 ]=0.43 *data2_b[2];

data2_c[ 14]=data2_a[5] *sqrt(data2_b[2])*sqrt(data2_b[4])/data2_a[8]; 

data2_c[ 15]=data2_a[5]*sqrt(data2_b[2])*sqrt(dat£i2_b[3])/data2_a[7]; 

data2_c[ 16]=data2_b[6]*(sqrt(data2_b[4])*data2_a[9]+sqrt( 1 - 

data2_b[4])*data2_a[10]/2);

data2_c[ 17]=data2_b[6]*(sqrt(data2_b[3])*data2_a[9]+sqrt( 1 - 

data2_b[3 ])*data2_a[ 10]/sqrt(2));

data2_c[2]=-data2_a[3]/data2_a[6]+data2_a[l]-2.0023+(data2_a[2]-2.0023)*3/7- 

8 *data2_c[ 14] *data2_c[ 16]-data2_c[ 15] *data2_c[ 17] *6/7; 

data2_c[6]=sqrt(data2_c[2])*data2_a[9]+sqrt(data2_c[2] *(data2_a[9] A2-1)+1); 

data2_c[7]=-(data2_a[ 1 ]-2.0023)*data2_a[8]/(8*data2_a[5]); 

data2_c[8]=data2_c[2]-sqrt(data2_c[2])*data2_c[6]*data2_a[9]; 

data2_c[9]=sqrt(data2_c[2])*data2_c[6] *data2_a[ 10]/2; 

data2_c[ 10]=-(data2_a[2]-2.0023)*data2_a[7]/(2*data2_a[5]);
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data2_c[ 11 ]=data2_c[2]-sqrt(data2_c[2])*data2_c[6] *data2_a[9];

data2_c[ 12]=sqrt(data2_c[2])*data2_c[6]*data2_a[ 10]/sqrt(2);

data2_c[4]=2*data2_c[7]*data2_c[8]+data2_c[9]A2+data2_c[9]*sqrt(data2_c[9]A2+4*da

ta2_c[7]*data2_c[8]-4*data2_c[7]A2)/(2*(data2_c[8]A2+data2_c[9]A2));

data2_c[3 ]=2*data2_c[ 10] *data2_c[ 11 ]+data2_c[ 12] A2+data2_c[ 12] *sqrt(data2_c[ 12]A2

+4*data2_c[ 10] *data2_c[ 11 ]-4*data2_c[ 10]A2)/(2*(data2_c[ 11 ] A2+data2_c[ 12]A2));

data2_c[ 1 ]=0.43 *data2_c[2];

data2_b[2]=data2_c[2];

data2_b[3]=data2_c[3];

data2_b[4]=data2_c[4];

data2_b[6]=data2_c[6];

All the data are listed in data sheet 2 named data2. Column b in data2 is labeled 

data2_b and the cell in the nth row of data2_b is data2_b[n]. For instance, the is in 

data2_a[l] and a 2 is in data2_c[2].
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APPENDIX G

MEASUREM ENT OF FREQUENCY M ODULATION DEPTH

The wiring o f the modulation depth measurement is in Figure G. 1. The signal 

from the synthesizer is modulated by the modulator with the modulating signal from the 

console. Ten cycles o f the sine signal are displayed on the oscilloscope. The tenth sine 

signal is spread out. The width of the spread signal at the tenth circle is then measured 

with the unit o f time (see Figure G.2). A series o f At were measured for the modulation 

amplitude changing in steps. As we have

t__ \_
10 ~ v

G .l
A/ A v
T o " v2

Then,

A t
A v = — v 2 G.2

10

All the Au are calculated with the Equation G.2. The data in Table G. 1 are plotted in

Figure G.3.
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Figure G. 1 The wiring for the modulation depth measurement. (G. 1. wpd)
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A twwww4r
Ten cycles

Figure G.2 The diagram o f the modulated signal displayed on the oscilloscope. (G.2.wpd)
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Figure G.3 The measured modulated frequency depth versus the modulation signal 
amplitude. The least-square fitting line is y = 103022.2*x. (G.3.wpd)
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Table G. 1 The frequency modulation depth at (14 M Hz) versus the modulation voltage for 
10 kHz modulation on Varian console set at 5 G.

Voltage
(V )

Broadening in 10 cycles 
(ns)

Broadening in 1 cycle 
(ns)

Frequency broadening 
(kHz)

0 0 0 0

0.5 3.50 0.35 68.6

1.0 6.00 0.60 117.6

1.5 9.00 0.90 176.4

2.0 11.50 1.15 225.4

2.5 14.00 1.40 274.4

3.0 16.50 1.65 323.4

3.5 19.00 1.90 372.4

4.0 21.50 2.15 421.4

4.5 24.00 2.40 470.4

5.0 26.50 2.65 519.4

5.5 29.00 2.90 568.4

6.0 31.50 3.15 617.4

6.5 34.00 3.40 666.4

7.0 36.00 3.60 705.6

7.5 38.00 3.80 744.8

8.0 39.50 3.95 774.2
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APPENDIX H

DETER M IN A TIO N  OF THE ANGLES BETWEEN THE PSEUDO SYM M ETRIC  
AXIS AND THE VECTOR OF THE CENTRAL M ETAL IO N  TO THE

SURROUNDING PROTONS

Figure H. 1 is the schematic diagram of the geometric position o f one proton atom 

relevant to the iron center. The pseudo symmetric axis is assumed to be in the O l-Fe-02  

plane and bisect the angle Z01-Fe-02. It crosses the line 0 1 -0 2  at the midpoint M . Two 

lines normal to the symmetric axis and the line 0 1 -0 2  cross at V  and W , respectively. For 

convenience in deriving following formula deduction, we assign the lengths a = O l-Fe. b 

S r01-02V 2. c s Fe-M: x = Fe-V. y s H V , z = MW: 1 = Fe-H. m h H -O l and n s H-Q2 

(distance between two points are underlined here). From the triangle H-Fe-V, we have

1, = x2 + y2 H.1

cos(4 ,)=y H.2

From triangles H -W -O l and H -W -02, we have

m2 - (b + z)2 = n2 - (b - z)2 H.3

Equation H.3 can be rearranged and deduced to

m 2 -  n2
2 =  A A H  44 b

From triangle H -W -M , H-W -Ol and H -M -V , we obtain
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m2 - (b + z)2 + z2 = (x + c)2 + y2 H.5

Substituting y o f Equation H .l into Equation H.5, we obtain

m 2 + n 2 -  212 -  2b 2 -  2 c2
x  =

4c 

m 2 + n 2 -  212 -  2 a 2 

4c

H.6

Substituting x o f Equation H.6 into Equation H.2, we finally obtain

(m2 + n2 -  2a1 -  2lz)
A - ' " ' 1 M   H ?

By measuring 1, m, n, a, b and c, we can calculate <{>0 with Equation H.7.

The distances from each proton to the Fe, 0 1 and 0 2  in the two model complexes 

were measured and are presented in Table H. 1. Using 1 = r and <j>0 in this table and 

Equation 4.2 (see Chapter 4), we calculated the hyperfine couplings for each protons at 

both parallel and perpendicular field positions and present the results in Table H. 1 as well.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1

02

'—I

O l

Figure H. 1 The schematic diagram for the determination o f <j>0. (H. 1.wpd)
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Table H. 1 The measured bond lengths and the calculated <J>0 and proton hyperfine 
couplings.

Cys-Fe-NO
jrotona i(A) m (A) n(A) 4>o(°) V A (90 °-4>0) A 90

2 2.71 4.68 4.05 62.8 -1.61 5.93 -4.33
3 2.67 3.95 4.99 51.3 0.78 3.74 -4.53
14 3.21 5.85 4.34 33.3 2.85 -0.25 -2.60
15 4.06 6.21 5.89 12.6 2.39 -1.10 -1.29
16 3.51 5.00 6.00 18.9 3.36 -1.37 -1.99

Pen-Fe-NO
2 2.7 4.69 4.03 62.5 -1.57 5.95 -4.38
3 2.67 3.94 4.98 52.1 0.60 3.93 -4.53
14 3.2 5.82 4.36 33.3 2.88 -0.25 -2.63
17 3.51 4.29 6.26 38.0 1.72 0.28 -1.99
18 4.21 5.15 6.76 36.4 1.09 0.07 -1.15
16 4.77 5.99 7.27 21.4 1.27 -0.48 -0.79
20 5.18 7.28 6.93 8.9 1.19 -0.57 -0.62
21 4.97 6.89 6.76 24.3 1.05 -0.35 -0.70
22 4.53 6.97 5.76 27.1 1.28 -0.35 -0.93

Ferritin-Fe-NO
1 2.75 4.84 4 60.5 -1.14 5.28 -4.14
2 3.81 6.39 4.91 31.5 1.84 -0.28 -1.56
3 3.94 6.42 5.14 31.5 1.66 -0.25 -1.41
4 3.63 5.68 5.67 7.6 3.51 -1.71 -1.80

a. The proton numbers are the same as in Figure 4.11, 4.12 and 4.14.
b. The hyperfine couplings are in unit o f MHz.
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APPENDIX I

MOLECULAR M O DELING  CALCULATIONS FOR THE PREVIOUS PROTON 
ENDOR SPECTRA OF CYSTEINE AND PENIC ILLAM INE IRON NITROSYL

COMPLEXES

The analysis on the previous 'H  ENDOR spectra was also carried out with 

molecular modeling calculations. The calculation procedures are demonstrated below.

a. Build complexes with ChemSite. Give each atom correct properties, such as charge, 

hybridization, number o f bonds and bond lengths. Then, do energy minimization on the 

complex. Finally, save the complex in a file.

b. Use word reading program (such as WordPad) to read in the complex file. Delete all 

useless information in the complex file and copy the coordinates o f all the atoms in the 

complex.

c. Open Excel and paste the copied coordinates into the A N G LEII worksheet. The 

calculated hyperfine couplings are then copied and rearranged in a spare worksheet. Copy 

the rearranged proton hyperfine couplings.

d. Open Origin and paste the calculated hyperfine couplings in a worksheet and plot them 

as stick spectrum with the proton ENDOR spectrum in separated layers.

The modeling calculations usually do not give a matched stick spectra with 

ENDOR spectra. The tilt o f the pseudo symmetry axis, the type o f ligation by ligands 

(monodentate or bidentate) and the consideration o f H-bonded water molecule are taken 

into account to obtain the well matched stick spectra with ENDOR spectra.
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Figure 1.1 - 1.4 are the ENDOR spectra (obtained by Wang[471) treated with the 

modeling calculations. It turned out that the bidentate ligation with the pseudo axis tile o f 

- 9° fits proton ENDOR spectra o f the Pen-Fe-NO complex. But a monodentate ligation 

and the insertion of a water molecule H-bonded with the two sulfur atoms generate stick 

spectra basically matched with the ENDOR spectra of Cys-Fe-NO complex.

In order to obtain exact matched stick spectra and ENDOR spectra o f the model 

complexes, more sophisticated modeling calculations151*' 51b| and selectively deuterated 

ligands are required.
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Figure 1.1 The proton ENDOR spectrum o f Cys-Fe-NO along with the modeling 
calculation results at the field parallel position. The dot lines represent the couplings from 
the exchangeable protons, dashed line frome a  protons, solid line from methylene protons.
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Figure 1.2 The proton ENDOR spectrum of Cys-Fe-NO along with the modeling 
calculation results at the field perpendicular position. The line types are the same as in 
Figure 1.1.
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Figure 1.3 The proton ENDOR spectrum of Pen-Fe-NO along with the modeling 
calculation results at the field parallel position. The dot lines represent the couplings from 
the exchangeable protons, dashed line frame a  protons, solid line from methyl protons.
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Figure 1.4 The proton ENDOR spectrum of Pen-Fe-NO along with the modeling 
calculation results at the field perpendicular position. The line types are the same as in 
Figure 1.3.
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