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ABSTRACT

CARBON AND NITROGEN DYNAMICS OF NORTHEASTERN U.S. FORESTS IN 

RESPONSE TO ENVIRONMENTAL STRESS: MEASUREMENTS AND MODELS

AT LOCAL TO REGIONAL SCALES.

by

SCOTT V. OLLINGER 

University of New Hampshire, May, 2000

This thesis stems from several ongoing efforts to characterize patterns of 

productivity and nitrogen cycling in northeastern US forests and to address the effects o f 

nitrogen deposition, tropospheric ozone and rising atmospheric C 02. The work reported 

on involves two related projects; 1) an ecosystem model analysis that integrates 

physiological and biogeochemical processes with important environmental variables 

across the northeast region and 2) a field and remote sensing analysis that examines 

landscape-level patterns o f forest biogeochemistry in the White Mountains o f New 

Hampshire.

Chapter 1 presents a regional analysis of forest productivity using the PnET forest 

ecosystem model and discusses the relative importance o f water, temperature and 

nitrogen on predicted spatial patterns. Chapter 2 integrates ozone effects on leaf-level 

carbon gain and describes interactions with canopy and stand-level processes. Using

xiii
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ambient ozone data from across the northeast region, the model predicted declines in 

annual forest production o f between 3% and 16% and demonstrated an interaction with 

water availability whereby ozone damage declined during periods o f drought. In chapter 

3, a physiological response to C 0 2 is added to the model and applied with historical 

changes in N deposition and ozone. This analysis suggested that increased C 0 2 and N 

deposition have stimulated forest carbon uptake, but to different degrees following 

agriculture and timber harvesting. Further, the concurrent increases in ozone offset a 

large fraction of the predicted growth enhancement. This result is particularly relevant 

given the related spatial distributions o f ozone and N deposition.

The final chapter presents a field study in the White Mountain National Forest 

that examines relationships between nitrogen cycling and foliar chemistry among forests 

o f diverse history and composition. Across a wide range o f conditions, foliar lignin:N 

ratios were correlated with soil C:N ratios, providing a means o f  assessing soil N status 

using hyperspectral remote sensing. Relationships between foliar chemistry and soil N 

transformations (mineralization and nitrification) were also observed, but these trends 

differed between historically disturbed versus undisturbed stands. Disturbed stands had 

significantly lower rates of mineralization and nitrification and higher soil C:N ratios than 

undisturbed stands, but these trends were not clearly reflected in stand-level foliar 

chemistry.

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I

ESTIMATING REGIONAL PATTERNS OF FOREST PRODUCTIVITY 

AND WATER YIELD FOR THE NORTHEASTERN U.S.

Abstract

We used the PnET-II model of forest carbon and water balances to estimate 

regional forest productivity and runoff for the northeastern United States. The model was 

run at 30 arc-second resolution (approximately 1 km) in conjunction with a Geographic 

Information System that contained monthly climate data and a satellite-derived land 

cover map. Predicted net primary production (NPP) ranged from 700 to 1450 g m"2 y r  *

with a regional mean o f 1084 g m_2 yr^. Validation at a number of locations within the 

region showed close agreement between predicted and observed values. Disagreement at 

two sites was proportional to differences between measured foliar N concentrations and

values used in the model. Predicted runoff ranged from 24 to 150 cm yr^ with a regional

mean of 63 cm yr '. Predictions agreed well with observed values from U.S. Geologic 

Survey watersheds across the region although there was a slight bias towards 

overprediction at high elevations and underprediction at lower elevations.

Spatial patterns in NPP followed patterns o f precipitation and growing degree 

days, depending on the degree of predicted water versus energy limitation within each 

forest type. Randomized sensitivity analyses indicated that NPP within hardwood and 

pine forests was limited by variables controlling water availability (precipitation and soil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



water holding capacity) to a greater extent than foliar nitrogen, suggesting greater 

limitations by water than nitrogen for these forest types. In contrast, spruce-fir NPP was 

not sensitive to water availability and was highly sensitive to foliar N, indicating greater 

limitation by available nitrogen. Although more work is needed to fully understand the 

relative importance o f water versus nitrogen limitation in northeastern forests, these 

results suggests that spatial patterns of NPP for hardwoods and pines can be largely 

captured using currently available data sets, while substantial uncertainties exist for 

spruce-fir.

Introduction

Ecosystem scientists have become increasingly interested in the spatial patterns of 

important ecological processes and the environmental factors that influence them. This 

interest stems from the recognition that spatial heterogeneity of environmental and 

ecological variables interact in ways that make site-specific information alone insufficient 

for understanding natural systems and coping with the large-scale environmental 

problems society currently faces.

Several decades of ecosystems research have provided enough information about 

processes such as photosynthesis, transpiration and decomposition for scientists to build 

simulation models that predict properties such as biomass production, soil carbon storage 

and nitrogen cycling rates (e.g. Parton et al. 1988, Raich et al. 1991, Running and Gower 

1991, Aber et al. 1997). Along with remote sensing and geographic information systems 

(GIS), these models can be used to extrapolate predictions across larger spatial scales 

(Burke et al. 1990, Raich et al. 1991, McGuire et al. 1992, Neilson 1995, Vemap 1995).

2
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This approach holds great potential for assessing the effects o f factors such as air 

pollution and climate change and also provides a tool for resolving different 

environmental controls on ecosystem function (e.g. Schimel et al. 1996).

For these goals to be realized, several issues require careful attention. Because 

ecosystem models (and ecosystems) are very sensitive to the environmental factors that 

drive them, reliable spatial data sets o f important input variables must be obtained from 

remote or ground-level sources. This can be challenging and often requires making 

significant assumptions where reliable data are not available. For example, models are 

often run using potential vegetation where maps of actual vegetation have not been 

developed. Because human activities have altered the distribution and function of many 

ecosystems (e.g. Foster 1992), results from these studies may apply to something very 

different from actual conditions. Where data limitations exist, sensitivity analyses should 

be performed to test the potential effects of the resulting assumptions. This is a critical, 

but often overlooked step in ecosystem modeling. Lastly, but o f equal importance, model 

output should be validated at all possible opportunities.

In this paper, we present results from a regional modeling exercise aimed at 

predicting forest productivity and water balances across the northeastern U.S. using an 

uncalibrated ecosystem model (PnET-II Aber at al. 1995), a  regional climate data set 

(Ollinger et al. 1995) and a satellite-derived map of current vegetation (Lathrop and 

Bognar 1994). We also present validation of predicted forest productivity using data 

from independent field studies, and predicted runoff using data from U.S. Geologic 

Survey stream gauges. Regional studies are valuable because policy decisions are often 

made at regional rather than continental or global scales, and because they provide an

3
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important intermediate between detailed plot-level information and coarse-scale 

modeling o f global fluxes.

Methods 

PnET-II

PnET-II (Aber et al. 1995) is a monthly time step, canopy- to stand-level model 

that was built on several generalized relationships. Maximum leaf photosynthetic rate 

(Amax) *s determined as a linear function of foliar nitrogen content, following a strong

relationship between the two across species from diverse ecosystems (Field and Mooney 

1986, Reich et al. 1995). As such, foliar N serves as a surrogate for site nitrogen 

availability, assuming that N availability and photosynthetic capacity in foliage are 

related to N dynamics in soils. Stomatal conductance is related to the actual rate o f net 

photosynthesis, making plant water use efficiency an inverse function of the atmospheric 

vapor pressure deficit (Sinclair et al. 1984, Baldocci et al. 1987). This allows 

transpiration to be predicted from canopy photosynthesis and climate and provides a 

dynamic link between the carbon and water balance portions o f the model.

These relationships are used in the model to construct a multi-layered forest 

canopy in which available light and specific leaf weight (SLW) decline with canopy 

depth. Light attenuation is based on the Beers-Lambert exponential decay equation (y =

e-k*LAI) Changes in SLW are based on Ellsworth and Reich (1993) producing canopy 

gradients in area-based, but not mass-based foliar nitrogen concentration. Photosynthesis 

is calculated in a numerical integration over 50 canopy layers in order to capture the 

effect of gradual light extinction on total canopy carbon gain. Photosynthetic response

4
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curves for light and temperature were derived by Aber and Federer (1992). The 

photosynthetic response to vapor pressure deficit (VPD) is determined as a power 

function derived by Aber et al. (1996). Actual evapotranspiration and moisture stress are 

calculated as functions of plant water demand and available soil water, which is 

determined using equations from the Brook model (Federer and Lash 1978).

Equations in the model are structured in a series of six subroutines, the first five 

o f which operate in a monthly time step. AtmEnviron calculates vapor pressure deficit 

and cumulative growing degree days, Psn determines leaf area display and potential 

photosynthesis in the absence o f drought stress, WaterBal calculates available water, 

drought stress, actual net photosynthesis and runoff, AllocateMo calculates tissue 

respiration and allocation to wood and roots and SoilResp calculates CO2  flux from soils. 

The final subroutine, AllocateYr, allocates accumulated carbon to buds and a wood 

storage pool for next year’s leaf and wood growth.

Regional data base

The northeast study region is the portion of the U.S. north of 41 degrees N 

latitude and east o f 76 degrees west longitude. It includes the New England states, 

eastern New York and a portion of northeastern New Jersey and Pennsylvania. 

Environmental inputs required by PnET-II are monthly averages o f maximum and 

minimum daily temperature, vapor pressure and solar radiation, total monthly 

precipitation, forest type and plant-available soil water holding capacity (WHC). Climate 

inputs were generated by a statistical model known as Climcalc, developed for the 

northeast region from long-term (30 year) climate records (Ollinger et al. 1995).

5
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Monthly temperature and precipitation were estimated for each grid cell o f a 30 arc- 

second (approximately 1 km) digital elevation model (DEM) using multiple regression 

equations based on geographic position and elevation. These equations capture regional 

and temporal trends in temperature and precipitation, but do not account for local 

variation such as lake effect precipitation and nighttime valley temperature inversions. 

Atmospheric vapor pressure was determined as a function o f  the minimum daily 

temperature, assuming that nighttime air temperatures decrease only to the point at which 

dew formation begins. Solar radiation was determined by combining equations for 

potential radiation with actual radiation measurements made at 11 locations within the 

study region. Monthly potential radiation was calculated for each grid cell of the DEM 

using latitude, slope, aspect and time o f year. This was then multiplied by the ratio of 

measured to potential radiation, determined monthly for the 11 measurement stations.

Forest type was determined from a Land Use/Land Cover map (LULC), 

developed by Lathrop and Bognar (1994) using AVHRR (Advanced Very High 

Resolution Radiometer) satellite data in combination with existing USGS Land Use/Land 

Cover data (Figure 1.1). The map identifies hardwood, spruce fir, mixed 

hardwood/spruce fir and mixed hardwood/pine forest types as well as a number o f non

forest categories at 1 km resolution. Approximately 70% o f the region is classified as 

forest; the remainder is mostly agricultural and urban.

Vegetation-specific input parameters such as foliar nitrogen, specific leaf weight 

and leaf retention time were determined by Aber et al. (1995) for each forest type using 

data from field measurements within the region. The nitrogen content o f  foliage is the 

most important of these parameters because it determines the maximum attainable rate o f

6
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photosynthesis. In the absence o f a regional foliar N data layer, we assigned a single 

value to each forest type identified in the LULC map. After Aber et al. (1995), we used 

values o f 2.2% for hardwoods, 1.2% for pines and 0.8% for spruce-fir. Although 

variation in foliar N within a forest type is generally small with respect to variation across 

forest types (Newman et al. 1994, Martin and Aber 1997), these are obviously important 

generalizations.

A plant-available soil water holding capacity (WHC) map for the northeast region 

has been derived from the U.S. Soil Conservation Service’s STATSGO data base (SCS 

1991) by Lathrop et al. (1995). However, comparison of these data with the county-level 

soil survey data from which they were derived showed poor agreement (Lathrop et al.

Land Use/Land Cover

47 N ---- ------------------------------------------------------

44 N

41 N

76 W  73 W  70 W  67 W

Figure 1.1. A VHRR-derived Land Use/Land Caver map o f  the northeast study region, 
(after Lathrop and Bognar 1994).
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1995). The authors attributed this to the high degree of spatial variability exhibited by 

soils in areas of complex terrain combined with the aggregated nature of the STATSGO- 

derived data. As an alternative, we used the soil hydrology equations of Clapp and 

Homberger (1978) to evaluate plant available water under the range o f soil properties 

typically encountered in northeastern forests. Interestingly, for soils ranging from loamy 

sands to silty clays, texture had a small effect compared with the effects of rooting depth 

and the fraction of coarse fragments. Assuming a rooting depth o f 1 m and 25% coarse 

fragments, most well drained till soils produced a plant available water holding capacity 

o f 12 cm. Because of uncertainties surrounding the STATSGO-derived data, we held soil 

WHC at this value for all model runs.

Regional model runs

For regional analyses, all GIS input data layers were georeferenced and converted 

to a 30 arc second grid (approximately 1 km). For each grid cell, geographic coordinates 

and elevation were read from the DEM and used by Climcalc to calculate maximum and 

minimum temperature, vapor pressure, precipitation and solar radiation. Vegetation type 

was read from the AVHRR-derived Land Use/Land Cover map. Grid cells classified as 

mixed were run twice and the final output value was calculated as a weighted average of 

the two runs, assuming a ratio o f 40:60 for hardwood/spruce-fir and 40:60 for 

hardwood/pine. These values were determined by comparing the LULC map with USD A 

Forest Inventory data for growing stock o f these forest types (Kingsley 1985). Because 

high elevation forests experience stresses that are not included in the model, (e.g. wind 

damage), we limited model runs to grid cells located below 1200 m, roughly the elevation

8
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at which stresses unique to the subalpine zone begin (Reiners and Lang 1979).

Elevations above 1200 m represent less than one percent of the total land area o f  the 

region.

Sensitivity analysis

Predicted patterns o f forest productivity reflect how equations in the model 

respond to climatic gradients across the region. However, these trends are also dependent 

on assumptions for soil water holding capacity and foliar nitrogen concentrations. In 

order to assess the importance o f these assumptions, we performed sensitivity analyses 

using a Monte Carlo approach. This involved conducting multiple model runs where 

inputs for temperature, precipitation, foliar N and soil WHC were determined 

stochastically using appropriate distribution functions.

For each run, geographic location and elevation were chosen randomly, but were 

limited for each forest type to the range in which it occurs. For elevation, we used a 

randomization function that reproduced the skewed distribution o f the DEM. This 

effectively limited variation in climate to values experienced by each forest type within 

the region. Variation in foliar nitrogen was restricted to values reported in the literature 

for northeastern hardwoods and conifers. Those values were: 1.8 to 2.6% for hardwoods, 

0.9 to 1.5% for pines and 0.7 to 1.2% for spruce-fir (Newman et al. 1994, Bolster et al.

1996). For soil WHC, we used values ranging from 6 cm, representing a sand with 50% 

stone content, to 18 cm, representing a clay loam with no stones. For foliar N and WHC, 

we used a randomization function that produced a normal distribution as described by

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hamilton (1989). The model was run a total o f 1000 times for each forest type. The 

relative importance o f temperature, precipitation, foliar N and WHC were evaluated by 

the degree to which each were correlated with predicted NPP.

Validation

There have been relatively few measurements of forest productivity within the 

study region and at present, there are no data-driven maps with which to test predicted 

spatial patterns. Nevertheless, comparison o f predicted values with existing 

measurements can still provide insight into the model’s performance. Forest productivity 

(total or aboveground) has been measured for mature pine and hardwood forests at the 

Harvard Forest in Massachusetts (Magill et al. 1997), for hardwood forests at the Bear 

Brook watershed in Maine (Magill et al. 1996), for hardwood and mixed forests at three 

elevations in the Hubbard Brook Experimental Forest in New Hampshire (Whittaker et 

al. 1974), for young pin cherry stands in northcentral New Hampshire (Marks 1974) and 

for a high-elevation balsam fir stand on Whiteface Mountain, New York (Sprugel 1984).

We validated the model for these locations by generating pixel values for the 

latitude, longitude, elevation and forest type o f each site. Specifying the correct forest 

types removed the regional land cover map as a potential source o f error, but allowed a 

greater number o f  validation points to be used since several sites included measurements 

for more than one forest type. Potential sources error come from the model, the climate 

inputs generated by Climcalc and the parameter values used in the regional model runs. 

No adjustments were made to any o f these for the site-level validation. Predictions were

10
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generated for total NPP or aboveground only (ANPP) depending on the data available. 

Where both were reported (Whittaker et al. 1974), we used ANPP only because fine roots 

were not measured, but are included in the model and can be an important fraction o f 

belowground production.

Runoff predictions were validated against observations from gauged watersheds 

within the region that are part o f  the USGS Hydro-Climatic Data Network (HCDN, Slack 

and Landwehr 1992) and contain long term (> 30 year) streamflow records. We 

restricted the comparison to watersheds that are at least 90% forested since water 

balances of nonforested lands can vary considerably from those o f forests. We also 

eliminated watersheds where dams, reservoirs, or other human activities impede natural 

flow rates. The resulting dataset consisted of 34 watersheds ranging in size from a few to 

several thousand square kilometers, spread relatively evenly across the region.

Streamflow measurements represent water balances that are spatially-integrated 

over the entire surface of a watershed. Thus, runoff validation would ideally be 

conducted by averaging predicted values across all grid cells that lie within a given 

watershed. At present, this is not possible because the boundaries defining the necessary 

watersheds are not available in a digital format. As an alternative, we used single pixel 

values coinciding with the latitude, longitude and mean basin elevation of each watershed 

as given by HCDN. Model predictions were compared with observed mean annual 

runoff from the period of 1951-1988 (Slack and Landwehr 1992).

11
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Results and Discussion 

Model Predictions

Predicted annual net primary production ranged from approximately 700 to 1450 

g m"2 yr- ! with a regional mean of 1084 g m'2 y r  1 (Figure 1.2a). In general, predictions 

increased from north to south, following a gradient in temperature and growing season 

length, although maximum values were attained at mid elevations in the Catskill 

mountains where precipitation was high enough to reduce mid summer drought. 

Predictions were highest in areas of pure hardwood due to the higher photosynthetic rates 

of broad-leaf deciduous species, as compared to coniferous evergreen species. Lowest 

growth rates occurred in northern and high elevation spruce-fir forests which had the 

shortest growing season and lowest photosynthetic rates. Intermediate NPP occurred in 

mixed hardwood/pine forests along the coastal lowlands of central New England.

Spatial patterns in wood growth followed patterns of NPP, but exhibited a greater

range o f variation. Predictions ranged from 250 to 900 g m_2 yr-1 with a regional mean 

of 550 g m"2 yr- ! (Figure 1.2b). PnET-II calculates wood growth as a function o f the 

difference between total biomass production and leaf plus root production after a portion 

of the remaining carbon is withheld for a reserve pool. The only constraint on wood 

growth insures that under stressful conditions, the ratio o f wood to leaf growth does not 

fall below a critical level, specified as a parameter in the model (1.5 for hardwoods and 

1.25 for conifers, Aber et al. 1995).

12
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Figure 1.2. Predicted annual NPP (a), wood production (b), and runoff (c) generated 
by PnET-II in conjunction with the regional GIS data base. Blank areas are non-forest.
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Figure 1.2. Continued.

This serves to prevent foliar production in excess o f that which can be supported by new

xylem tissue. As such, wood growth is the lowest allocation priority in the model and is

least constrained by the model’s structure. Hence, it is more sensitive to environmental

fluctuations than leaf or root growth.

Predicted annual runoff averaged 63 cm, ranging from approximately 24 cm in

the northwest comer o f the region to nearly 150 cm at high elevations in the White

Mountains o f New Hampshire (Figure 1.2c).

The distributions o f  predicted NPP and wood production show three distinct

peaks (Figure 1.3 a, b), corresponding to areas o f  hardwood (highest values), mixed

hardwood/conifer (intermediate values) and spruce-fir (lowest values). This

discontinuous pattern results from the fixed hardwood/conifer composition assigned to

mixed pixels in the AVHRR land cover map. In reality, these areas undoubtedly contain

14
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a range of hardwood/conifer ratios which would produce a more continuous distribution 

of values. In contrast, predicted runoff showed a unimodal distribution (Figure 1 .3c). 

Although potential transpiration is driven by photosynthesis, and is generally higher for 

hardwood than coniferous forests, this was offset by the longer growing season and 

higher precipitation interception rate o f conifers. Differences that do occur between 

forest types are masked by the greater importance o f variation in precipitation.

Comparison of the spatial patterns o f predicted growth with those o f  input climate 

variables revealed several interesting trends. In general, predicted growth rates were 

related to precipitation and annual growing degree days as these variables relate to the 

availability o f water and energy. Between vegetation types, however, distinct differences 

occurred. For hardwoods, the strongest correlation occurred between NPP and 

precipitation (Figure 1.4a) with a much weaker correlation between NPP and growing 

degree days. This results from the relatively high photosynthetic rates o f hardwoods, 

which drive transpiration and soil water consumption to a point where water limitations 

occur. For pine, NPP was correlated with both growing degree days and precipitation, 

but in different parts of its range. In northern areas, the relationship was strongest with 

growing degree days because growth rates were low enough that available water supplies 

were not depleted. Through warmer areas to the south, this trend was replaced by a 

stronger correlation with precipitation as transpirational demands increasingly depleted 

available soil water (Figure 1.4b). For spruce-fir, which has the lowest photosynthetic 

rate and is restricted to northern and high-elevation areas, the only significant trend was 

with growing degree days (Figure 1.4c).

15
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Figure 1.3. Histograms o f  predicted annual NPP (a), wood production (b), and  runoff 
(c) showing the distributions o f  values given in Figure 1.2. In (c), a small number o f  
data points representing high elevation areas lie o ff  the scale to the right.
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Figure 1.4. Relationships between predicted NPP and climate fo r  each forest type: (a) 
hardwood NPP vs. annual precipitation, (b) pine NPP vs. annual growing degree days 
and (c) spruce-fir NPP  vs. annual growing degree days. In 1.4a, data points falling o ff  
the relationship to the upper right reflect high elevation areas where temperature 
limitations become increasingly important.
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Table 1.1. Results o f  randomized Monte Carlo analyses indicating sensitivity o f  
predicted NPP to climate, foliar N  and soil WHC fo r  each forest type as shown by 
correlation coefficients (Ft )  from  regression o f  NPP against each variable alone and in 
combination. Climate data are summarized as annual precipitation (PPT) and annual 
growing degree days (GDD). Foliar N  (FolN) is mass-based leaf nitrogen concentration 
and soil WHC is plant-available soil water at field  capacity, n = 1000for each forest 
type. All variables were significant a tp  < 0.05) except where listed as NS.

R2 Standard Error
Hardwood Pine Spruce-fir Hardwood Pine Spruce-fir

PPT 0.46 0.27 NS 83 92 78
GDD 0.02 0.02 0.10 108 106 74
FolN 0.16 0.18 0.74 101 100 40
WHC 0.27 0.25 NS 93 93 78
PPT + GDD 0.54 0.32 0.11 81 89 73
Fol N + WHC 0.40 0.38 0.74 83 84 40
ALL 0.90 0.78 0.90 35 51 25

Sensitivity analyses

The relationships in Figure 1.4 indicate an interaction between model sensitivity 

to temperature and precipitation, variables for which regional data are available. Results 

o f randomized sensitivity analysis (Table 1.1) indicate additional interactions with foliar 

nitrogen and plant-available soil water holding capacity (WHC), variables for which 

reliable data layers are not currently available at the regional level. As such, these results 

represent the degree to which the trends in Figures 1.4a-c depend on assumptions made 

about these missing data layers.
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Within the randomized model runs, the strongest predictors o f NPP for hardwood 

and pine forests were precipitation and soil WHC, indicating that water limitations were 

common in both forest types under the range o f conditions simulated. The stronger 

correlation with precipitation than WHC indicates that regional variation in precipitation 

had a greater effect on available water than did our simulated range o f WHC. Spruce-fir 

NPP showed the opposite trend, being unrelated to water availability and strongly 

correlated with foliar N. This results from the fact that spruce-fir transpiration rates were 

rarely high enough to exhaust soil water supplies and induce water stress.

The model’s relatively low sensitivity to foliar nitrogen for hardwood forests 

countered our expectations based on earlier, site-level analyses which showed foliar N to 

be a critical input parameter for this forest type (Aber et al. 1996). These results are not 

contradictory, but rather demonstrate the influence o f scale in determining the relative 

importance o f different ecological processes. Foliar N varies over finer spatial scales 

than precipitation, and for local areas, appears to control patterns of productivity via its 

affect on photosynthesis and carbon gain (Martin and Aber 1997). At the broader 

regional level, however, variation in precipitation overshadowed variation in available N, 

and water limitation became the dominant factor.

These trends also suggest interactions between water, nitrogen and carbon 

dynamics that were observed in several previous modeling exercises (Schimel et al. 1996, 

Aber et al. 1997). Although nitrogen limitations in terrestrial ecosystems often occur 

locally through both time and space, large scale patterns of productivity are more often 

related to patterns of temperature and rainfall. Schimel et al. (1996) addressed this 

conflict by using the Century model to evaluate the relative importance o f water and
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nitrogen limitations globally. The model predicted that, under steady-state conditions, 

nitrogen limitations and water limitations become correlated. This was due to the 

simultaneous control o f carbon and nitrogen fluxes by the water budget. Aber et al. 

(1997), using a version o f the PnET model that includes coupled C and N cycles, reached 

similar conclusions predicting that N cycling rates in the northeastern U.S. were 

ultimately limited by water or energy, depending on the C fixation efficiencies o f 

different forest types. The paradox of growth limitations by both water and nitrogen was 

suggested by both authors to be a function of disturbance, whereby periodic perturbations 

alter rates of C and N cycling which in turn are constantly moving towards - if  never 

achieving - a state o f equilibrium with the ultimate controls set by the physical 

environment.

Overall, the combined influence of precipitation, growing degree days, foliar N 

and soil WHC explained between 78 and 90% of the variation in predicted NPP 

within the randomized model runs (Table 1.1). Table l.l  also shows the degree to which 

predicted NPP is correlated with PPT and GDD together versus foliar N and WHC 

together. These combinations are presented to provide an indication o f the amount of 

spatial variation in regional NPP which can be explained by factors for which spatial data 

bases presently exist versus those for which further data development are required. The 

strong dependence o f NPP on precipitation among hardwoods and pines suggests that 

regional patterns may be at least partly captured by available data, with uncertainty 

introduced by the absence o f WHC and foliar N data planes. For spruce-fir, the 

importance of foliar N raises considerable uncertainties in current predicted spatial 

patterns across the study region.
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Validation

Predicted forest production rates were generally in good agreement with measured 

values (Table 1.2). The mean absolute error between predicted and observed values was 

12.5%. The two sites with poorest agreement were the high elevation balsam fir stand, 

where the predicted value was less than half o f  that measured, and the Harvard Forest 

hardwood stand, where the model overpredicted by 20%. In both cases, measured values 

for foliar nitrogen were reported and appear to explain much of the disagreement.

Table 1.2. Predicted and measured biomass production (g m 2 y r 1) fo r  several locations 
across the northeastern U.S. Abbreviations are: BB = Bear Brook watershed, ME; HF  = 
Harvard Forest, MA; HB = Hubbard Brook, N H  (low, mid and high elevations); NNH  = 
Northern NH and WF = Whiteface Mt., NY. ANPP is aboveground net primary 
production, NPP is total net primary production.

Site
Variable
Measured Forest Type PnET-n Observed Source

BB ANPP HW 909 893 Magill et al. 1997
HF ANPP HW 1010 843 Magill e ta l. 1996
HF ANPP Pine 795 757 Magill e ta l. 1996
WF ANPP Balsam fir 456 960 Sprugel 1984
HB low ANPP HW 1032 1094 Whittaker et al. 1974
HB mid ANPP HW 1013 1010 Whittaker et al. 1974
HB high ANPP HW-SF 876 751 Whittaker et al. 1974
NNH NPP Pin Cherry 1295 1264 Marks 1974

Sprugel (1984) measured an average foliar N o f  1.59% at Whiteface Mountain, which is 

high relative to other values reported for balsam fir (Newman et al. 1994, Bolster et al. 

1996) and almost twice that used for spruce-fir forests in this study. At Harvard Forest,
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Magill et al. (1997) reported a foliar N o f  1.9% for the hardwood stand, which is low for 

this forest type and lower than the value o f 2.2% used in the model. Using the measured 

foliar N values resulted in considerably closer agreement for both Whiteface and Harvard 

Forest (predicted ANPP = 980 and 905, respectively) and reduced the average absolute 

error to only 5.2% for all validation sites combined.

Predicted runoff was in good agreement with measured values for forested 

watersheds in the USGS Hydro-Climatic Data Network (Figure 1.5). Mean annual runoff 

among the HCDN watersheds was 71.1 cm, compared with the mean predicted value of 

72.6 cm. Regression o f predicted against observed values produced an r^ o f 0.73, a 

standard error o f 6.0 cm (8.4%), and a slope and intercept not significantly different from 

1 and 0, respectively. Although this indicates generally good spatial agreement across 

the region, residuals indicated a slight elevation bias whereby the model tended to 

overpredict runoff at higher elevations and underpredict at lower elevations (Figure 1.6). 

At present, it is unclear whether this bias results from the elevation coefficients used to 

estimate precipitation, the model’s calculation o f canopy transpiration, the use of a fixed 

water holding capacity or the use of single pixel values for each watershed (as opposed to 

extracting predictions from the entire surface o f each watershed). Although any of these 

may have caused the observed bias, the precipitation-elevation coefficients used by 

Climcalc are perhaps most suspect because they were derived from relatively few high 

elevation weather stations. Additional efforts aimed at resolving this issue should lead to 

improvements in future runoff predictions.
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etc.). n = 34.

eo
(5>a>
LU

20

10

0

-10

-20
0 1 0 0 2 0 0 0 0 0 4 0 0 3 0 0 6 0 0  700 8 0 0 0 0 0

Predicted - observed runoff (cm y r1)

Figure 1.6. Differences between predicted and observed runoff (Figure 1.5) in relation 
to the mean basin elevation.
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Conclusions

This analysis provided regional estimates o f  forest production and water yield for 

the northeastern U.S. using a satellite-derived map o f current vegetation and an 

uncalibrated model o f forest carbon and water balances. Several interesting trends 

between forest production and regional gradients in climate were suggested. Among 

hardwood forests, NPP was strongly correlated with precipitation suggesting water 

limitation as an important factor controlling regional patterns o f productivity. NPP 

within pine forests was correlated with precipitation across much of the region, except in 

northern and upper elevation areas where transpirational demands are low. In these 

areas, stronger relationships were observed between NPP and annual growing degree 

days. Among spruce-fir forests, which are found only in northern and high elevation 

areas, NPP was rarely limited by water and was most strongly related to growing degree 

days.

Randomized sensitivity analyses showed that model sensitivity to inputs for soil 

water holding capacity (WHC) and foliar nitrogen varied between forest types. Under the 

range of temperature, precipitation, foliar N and WHC values expected across the region, 

precipitation was the strongest predictor o f NPP among hardwoods and pines, followed 

by WHC and foliar N. Within spruce-fir forests, water limitations were absent and 

predicted growth were related only to foliar N. Further research will be needed to 

determine the actual importance of nitrogen versus water limitation on spatial patterns of 

productivity.

Model validation showed good agreement between predicted and measured forest 

productivity and runoff at a number o f sites across the region. Differences between
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predicted and measured forest productivity at two sites were related to data inputs for 

foliar nitrogen. Differences between predicted and observed runoff were positively 

correlated with elevation, suggesting an elevational bias in inputs for water availability 

(precipitation or soil water holding capacity) or processes simulated by the model (e.g. 

transpiration). Because water and nitrogen are the two most important factors limiting 

northeastern forest productivity, future efforts should be directed towards obtaining or 

improving high-resolution data planes for these variables.
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CHAPTERn

SIMULATING OZONE EFFECTS ON FOREST GROWTH: SCALING LEAF AND 

STAND-LEVEL PROCESSES TO REGIONAL PATTERNS OF PRODUCTIVITY

Abstract

Ozone pollution in the lower atmosphere is known to have adverse effects on 

forest vegetation, but the degree to which mature forests are impacted has been very 

difficult to assess directly. In this study, we combined leaf-level ozone response data 

from independent ozone fumigation studies with a forest ecosystem model in order 

simulate the effects o f ambient ozone on mature hardwood forests. Reductions in leaf 

carbon gain were determined as a linear function o f ozone flux to the leaf interior, 

calculated as the product o f ozone concentration and leaf stomatal conductance. This 

relationship was applied to individual canopy layers within the model in order to allow 

interaction with stand- and canopy-level factors such as light attenuation, leaf 

morphology, soil water limitations and vertical ozone gradients.

The resulting model was applied to 64 locations across the northeastern United 

States using ambient ozone data from 1987 to 1992. Predicted declines in annual net 

primary production ranged from 3 to 16% with greatest reductions in southern portions of 

the region where ozone levels were highest, and on soils with high water holding capacity 

where drought stress was absent. Reductions in predicted wood growth were slightly 

greater (3 to 22%) because wood is a lower carbon allocation priority in the model than
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leaf and root growth. Interannual variation in predicted ozone effects was small due to 

concurrent fluctuations in ozone and climate. Periods of high ozone often coincided with 

hot, dry weather conditions, causing reduced stomatal conductance and ozone uptake. 

Within-canopy ozone concentration gradients had little effect on predicted growth 

reductions because concentrations remained high through upper canopy layers where net 

carbon assimilation and ozone uptake were greatest.

Sensitivity analyses indicate a tradeoff between model sensitivity to available soil 

water and foliar nitrogen and demonstrate uncertainties regarding several assumptions 

used in the model. Uncertainties surrounding ozone effects on stomatal function and 

plant water use efficiency were found to have important implications on current 

predictions. Field measurements of ozone effects on mature forests will be needed before 

the accuracy o f model predictions can be fully assessed.

Introduction

Tropospheric ozone is one of the most pervasive and detrimental air pollutants 

known to affect forest vegetation. Repeated studies have demonstrated that ozone 

concentrations commonly observed in polluted air masses can have substantial impacts 

on plant function. Despite regulatory efforts aimed at controlling emissions o f the 

precursor compounds (nitrogen oxides and volatile organics), ozone levels have 

continually exceeded national ambient air quality standards (NAAQS) across much of the 

United States and are expected to increase into the foreseeable future (National Research 

Council 1992).

A large body of research has documented the mechanisms by ■which ozone affects
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plants. A number o f reviews are available for comprehensive discussion of these 

mechanisms (Guderian et al. 1985, Pye 1988, Heck et al. 1988), but in general, observed 

responses can be viewed as those involving either the acquisition or allocation of carbon. 

At the physiological level, the most pronounced effect o f ozone on plant carbon gain is a 

reduction in net photosynthesis resulting from the oxidation o f pigments and 

photosynthetic enzymes (Guderian et al. 1985, Reich and Amundson 1985, Pell et al. 

1992, Tjoelker et al. 1995). Because injury occurs at the leaf interior, factors affecting 

leaf gas exchange rates are important in determining plant response to a given level o f 

external exposure (Reich 1987, Taylor and Hanson 1992). Species with high gas 

exchange rates, such as early-successional hardwoods, exhibit the greatest growth 

reductions, while slow-growing species such as spruce are less affected (e.g. Reich and 

Amundson 1985, W anget al. 1986, Skarbyetal. 1995).

Because plant allocation patterns have evolved towards optimized use of available 

carbon to meet the requirements o f a particular growth strategy, any change in C fixation 

is likely to affect subsequent partitioning into different plant tissues (Mooney and Winner 

1991). In seedlings, ozone has been observed to induce reductions in root/shoot ratios as 

allocation shifts towards the maintenance or replacement o f  ozone-damaged foliage at the 

expense of root growth (Hogsett et al 1985, Laurence et al. 1994, Pell et al. 1994, 

McLaughlin and Downing 1995, McLaughlin et al. 1994).

Although ozone damage mechanisms have been well studied at the seedling and 

leaf level, it is still difficult to assess impacts on mature forests across real landscapes. 

Direct application o f seedling-level results is problematic for several reasons. Factors 

such as light availability, leaf morphology and ozone concentrations all vary within a
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forest canopy. This complicates estimation o f pollutant uptake via their effects on 

stomatal conductance and ozone exposure levels (Pye 1988). Additional uncertainty 

stems from differences in growth patterns and resource constraints o f  seedlings versus 

mature trees (Pye et al. 1988, Edwards et al. 1994, Fredericksen et al. 1994). Seedlings 

are at a flexible ontogenetic stage, are often grown in pots with ample water and nutrients 

and therefore have more dynamic carbon economies than mature trees, which are less 

allocationally plastic and must compete for light, water and other resources.

One method o f addressing these scaling issues is to incorporate ozone-response 

relationships into process models that simulate tree growth and ecosystem function. 

Several studies have used models to simulate the plant-level response o f conifers (Chen 

et al. 1994, Laurence et al. 1993, Weinstein and Yanai 1994), but the approach has not 

been applied to mature hardwood forests under ambient field conditions. The purpose of 

this study was to integrate physiological ozone response data into a forest ecosystem 

model known as PnET-II (Aber et al. 1995, 1996) in order to simulate the effects of 

ozone on mature hardwood forests in the northeastern U.S. PnET-II is a physiologically- 

based model that was designed to capture important ecosystem processes while retaining 

enough simplicity to be run on the types o f data available across large regions. Our 

approach was to characterize leaf-level ozone effects on carbon fixation and add the 

resulting algorithms to individual canopy layers within the model. By combining this 

with measured canopy ozone gradients, ozone effects are assessed for each canopy layer 

as influenced by variation in light, water and ozone exposure.

We applied the model using ambient ozone data from 64 locations across the 

northeastern U.S., a region dominated by hardwood forests that is chronically impacted
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by ozone and other urban and industrial air pollutants. Predictions are given for ail 64 

sites using mean climate and ozone from the period o f 1987-1992 and for a subset o f  12 

o f these sites using monthly climate and ozone for the same time period. In addition to 

estimating ozone effects on regional forest growth, questions we sought to address were 

1) how do predictions vary with respect to site moisture status, 2) what are the effects o f 

year-to-year fluctuations in climate and 3) what are the potential consequences of 

assumptions used in the model.

Methods 

PnET-II

PnET-II is a monthly time step model of forest carbon and water balances that is 

built on several generalized relationships. Maximum leaf photosynthetic rate (A ^ J  is 

determined as a linear function of foliar nitrogen content, following a strong relationship 

between the two across species from diverse ecosystems (Field and Mooney 1986, Reich 

et al. 1995). Stomatal conductance is related to the actual rate o f net photosynthesis, 

making plant water use efficiency an inverse function o f the atmospheric vapor pressure 

deficit (Sinclair et al. 1984, Baldocci et al. 1987). This allows transpiration to be 

determined from canopy photosynthesis, providing a link between forest carbon uptake 

and site water balances.

These relationships are used in constructing a multi-layered forest canopy in 

which available light and specific leaf weight (SLW) decline with depth through the 

canopy. Light attenuation is based on the Beers-Lambert exponential decay equation (y = 

e-k*LAi) with a light extinction coefficient of 0.58 for hardwood forests. Changes in SLW

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



through the canopy are based on Ellsworth and Reich (1993), resulting in a gradient of 

area-based, but not mass-based foliar nitrogen concentration (Ellsworth and Reich 1993). 

This allows interaction between mass-based and area-based light interception within 

each canopy layer. These equations are used in a numerical integration over 50 canopy 

layers in order to capture the effect of gradual light attenuation on photosynthesis over 

the entire canopy. Photosynthetic response curves for light and temperature were derived 

by Aber and Federer (1992). The photosynthetic response to vapor pressure deficit 

(VPD) is based on a power function described by Aber et al. (1996). Actual 

evapotranspiration and moisture stress are calculated as functions of plant water demand 

and available soil water which is determined using equations from Federer and Lash 

(1978).

Leaf production is initiated as a function o f cumulative growing degree days and 

is drawn from bud carbon reserves accumulated during the previous year. Maximum 

foliar biomass is a function of available light, foliar N and SLW, but is also affected in a 

given year by stress-induced reductions in foliar mass during the previous year (Aber et 

al 1995). This has the effect of minimizing intra-annual variation in leaf area display 

due, for instance, to mid-summer drought. Root growth is based on the linear 

relationship between aboveground litter production and root allocation determined by 

Raich and Nadelhoffer (1989). This relationship produces a decrease in proportional 

belowground allocation with increasing allocation to foliage. Annual allocation to wood 

is determined as a fraction of the remaining plant C pool after production o f foliage and 

roots. The only constraint on wood production ensures that the ratio of wood C to bud C 

does not fall below a critical level, specified as a parameter in the model. For hardwoods,
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this parameter is set to 1.5 and serves to prevent foliar growth in excess o f that which can 

be sustained by production o f new xylem tissue each year (Aber et al. 1995). When 

wood growth falls below this level, carbon is drawn from bud C until this ratio is 

maintained. Thus, wood represents the lowest carbon allocation priority and is the most 

responsive growth compartment to environmental fluctuations.

The model has performed well at predicting wood growth, net primary production 

and water runoff at diverse locations across North America (Aber and Federer 1992, Aber 

et al. 1995), and has also been successfully tested against eddy flux CO, exchange 

measurements (Aber et al. 1996).

Ozone response relationships

Photosynthesis. Data from the literature demonstrate strong relationships 

between cumulative ozone exposure and reductions in both net photosynthesis and plant 

growth (e.g. Guderien et al. 1985, Reich and Amundson 1985, Reich 1987, Pell et al.

1992, Volin et al. 1993, Skarby et al. 1995, Tjoelker et al. 1995). These relationship can 

vary among and even within species, although much o f this variation is related to 

differences in stomatal conductance (Thome and Hanson 1972, Reich 1987). Because 

conductance is the most important regulator of ozone uptake under a given external 

concentration (Taylor and Hanson 1992, Munger et al. 1996), this suggests that ozone 

effects on photosynthesis can be determined largely as a function o f ozone uptake to 

internal leaf surfaces (Reich 1987, Laisk et al. 1989, Taylor and Hanson 1992). This is 

not to say that other factors are unimportant. Differences in plant sensitivity per unit 

ozone uptake have also been noted and are likely related to differences in leaf
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Figure 2.1. Percent reduction in net photosynthesis in relation to ozone uptake fo r  
hardwoods. From Reich 1987 using data from independent studies conducted over 
periods o f  several days to several months on a variety o f  hardwood seedlings.

biochemistry or cellular anatomy (Taylor and Hanson 1992). However, when 

considering the range o f species that typically occur across natural landscapes, these 

differences appear much smaller proportionally than differences attributed to 

conductance, and hence uptake. Differences in response per unit uptake also tend to be 

greater in magnitude between functional groups (e.g. hardwoods vs. conifers) where leaf 

structure and plant growth strategy differ most widely (Reich 1987). If we limit the 

literature data examined by Reich (1987) to hardwoods, 81% of the variation in observed 

photosynthetic response can be explained by cumulative ozone uptake alone (Figure 2.1). 

Given the strength o f this relationship and uncertainties surrounding additional sources of 

variation, examining its implications across natural forested landscapes represents a 

valuable way to advance current understanding of ozone effects, even while recognizing 

the limitations o f its simplicity.

Although most o f the data relating ozone exposure to changes in photosynthesis

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



come from seedlings, several studies conducted on mature trees indicate similar or 

perhaps greater responses. Tjoelker et al. (1995) obtained a response consistent with that 

shown in Figure 2.1 from mature sugar maple leaves, suggesting that at the leaf level, 

seedlings and mature trees respond similarly. In contrast, Edwards et al. (1994) 

compared the photosynthetic responses of mature and seedling red oak trees and found 

mature trees to exhibit greater reductions than seedlings. This was attributed to 

differences in seedling versus mature-tree carbon allocation. Seedlings consistently 

produced multiple leaf flushes and exhibited indeterminate stem growth whereas mature 

trees produced only a single growth flush each spring. Although changes in seedling 

photosynthesis were not reported with respect to leaf age or ozone uptake, indeterminate 

growth patterns can result in lower responses at the plant level because only a fraction of 

the leaves produced are exposed to ozone for the entire growing season. Such differences 

in ozone exposure have been demonstrated by Fredericksen et al. (1994) between open- 

grown seedling and mature black cherry trees. Although seedlings exhibited greater 

instantaneous rates o f ozone uptake than mature trees, their indeterminate shoot growth 

resulted in reduced average exposure times and subsequently lower cumulative uptake.

Indeterminate growth can also lead to lower reductions or even increases in 

whole-plant photosynthesis by allowing mid-season adjustments in allocation of carbon 

and nutrients. Pell et al. (1994) reviewed several studies where increased photosynthesis 

was observed in younger foliage o f free-growing seedlings after older foliage suffered 

damage from ozone. This compensation mechanism was less important for species with 

a limited number o f growth flushes and is not expected to occur in mature, closed-canopy 

trees which produce all of their foliage at the beginning of the growing season and
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typically never flush again.

These results suggest that differences between seedling and mature-tree allocation 

patterns can cause differences in ozone response at the plant level, but do not indicate 

differences in the relationship between cumulative ozone uptake and net photosynthesis 

among individual leaves. This underscores the importance o f distinguishing between 

leaf- and plant-level responses in extrapolating seedling response data to mature, field- 

grown trees.

For the present study, we pooled data from Figure 2.1 (Reich 1987) and Tjoelker 

et al. (1995) in order to derive a leaf-level ozone response equation for broad-leaved 

deciduous species that could be incorporated into the PnET-II model. To minimize 

differences caused by seedling versus mature-tree allocation patterns, the data were 

summarized on an individual leaf basis using initial growth flush foliage where possible. 

Thus, the response o f each leaf could be related to cumulative ozone uptake calculated 

over its own lifespan. From the resulting data set we obtained the following response 

equation:

1) d 0 2 = 1 - (.0026 * g  * D40)

where d 0 3 is the ratio o f  ozone-exposed to control photosynthesis, .0026 is an empirically 

derived ozone response coefficient, g  is mean stomatal conductance to water vapor (in 

mm s 1) and D40 is the cumulative ozone dose (in ppm-h) above a threshold 

concentration o f 40 ppb. The diflusivity ratio of ozone to water vapor is not explicitly 

used in the equation, but as a  constant, is accounted for by the calculated ozone response
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coefficient. The D40 dose is accumulated over the entire growing season and is 

calculated as the sum o f all hourly values > 40 ppb after subtracting 40 from each. We 

use this threshold because 40 ppb is the approximate level at which negative impacts 

begin to appear in the pooled data set and because lower concentrations become confused 

with natural background levels. Other studies have also found 40 ppb to be the level at 

which growth effects begin to occur (Fuhrer 1994, McLaughlin and Downing 1995) and 

this was the threshold used by Weinstein and Yanai (1994) in modeling ozone effects on 

red spruce and ponderosa pine.

Stomatal conductance. Stomatal conductance is calculated as a linear function of 

net photosynthesis, based on the strong relationship (r2 = 0.93) derived by Aber and 

Federer (1992) using data from the literature (Abrams et al. 1990, Amthor et al. 1990, 

Aubuchon et al. 1978 and Hinckley et al. 1978):

2) g  = -0.3133 + 0.8126 * NetPsn

where g  is stomatal conductance to water vapor (in mm s 1) and NetPsn is the actual rate 

o f net photosynthesis (in pmol m 2 s l).

Given this relationship, conductance should be expected to decline along with 

photosynthesis in response to ozone. Among data reported in the literature, the effect of 

ozone on conductance is reasonably consistent, although there is some indication that the 

response varies with the light environment o f treated foliage (Reich and Lassoie 1984, 

Volin et al. 1993). In both of these cases, sunlit leaves showed slight declines in 

conductance with ozone treatment while shaded leaves showed no change or moderate
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increases. In other studies, declines in conductance were observed in both sun and shade 

leaves (Tjoelker et al. 1995), and in sun leaves where only well-lit foliage was examined 

(Pell et al. 1992). In most cases, changes in conductance were small and occurred after 

the photosynthetic response. We incorporated this effect into the model by including a 

simple feedback whereby a reduction in photosynthesis for a given month causes a 

proportional reduction in conductance during the following month. This was done to 

reproduce the observed lag between declines in photosynthesis and conductance. In the 

model, it has the effect o f reducing subsequent ozone uptake following damage, assuming 

that photosynthesis and conductance remain coupled. An uncoupling o f these two 

variables would have important implications for interactions between ozone and water 

stress as discussed in a following section.

Allocation. In addition to the leaf-level responses o f photosynthesis and 

conductance, many seedling studies have observed reductions in the ratio of below- to 

above-ground production following exposure to ozone (e.g. Hogsett et al. 1985, Laurence 

et al. 1994, Pell et al. 1994, McLaughlin et al. 1994). This is often viewed as a 

compensation mechanism whereby additional carbon is allocated to the replacement of 

damaged foliage. This can offset or prevent reductions in photosynthesis at the plant 

level, but comes at the expense o f allocation to other plant tissues. For the present 

exercise, ozone effects on carbon allocation are not explicitly included in the model, but 

rather, reductions in carbon uptake are allowed to interact with the model’s existing 

allocation priorities. Because the model allocates preferentially to the canopy and lastly 

to wood, elevated ozone will result primarily in decreased wood growth and increased 

proportional allocation to foliage. In light o f differences between seedling and mature-
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tree allocation constraints and available data suggesting that mature trees have a lower 

capacity for compensation (Edwards et al. 1994), we view this as a more reasonable 

approach than attempting to reproduce the dynamic root/shoot ratio patterns often 

observed among seedlings and potted plants. Nevertheless, uncertainties in this area are 

well recognized and should highlight the need for further experimental work on mature 

forests.

Canopy ozone gradients

One uncertainty in extrapolating ozone effects to whole forests is the question of 

how ozone concentrations vary within a forest canopy (Pye, 1988). Canopy ozone 

gradients are expected to result from several factors, but their importance in moderating 

growth reductions has not been rigorously tested. To address this, we used ozone data 

from Munger et al. (1996) collected over a three year period at 8 positions within a mixed 

hardwood canopy at the Harvard Forest eddy correlation tower in central Massachusetts. 

The tower is located in a 24 m tall hardwood forest that consists mainly of 50 to 70 year- 

old red oak and red maple. Hourly ozone concentrations were measured by UV- 

absorbance.

For the present study, we calculated ozone D40 values for each tower position and 

plotted the resulting patterns for all months of the growing season (Figure 2.2). In typical 

results from May and July o f 1992, D40 values below the canopy decreased to 72 and 

18% of the above-canopy values, respectively. These patterns are consistent from month 

to month, whereby the rate of depletion increases with depth through the canopy. For all
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Figure 2.2. Ozone dose > 40ppb in relation to canopy position a t the Harvard Forest in 
Central Massachusetts fo r  May and July o f 1992. Both axes have been normalized to a 
scale o f  0 to 1. Data are from Munger et al. (1996).
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Table 2.1. Solutions to equation 3, showing canopy gradients o f  ozone exposure (D40) 
at Harvard Forest from  1991 to 1993. a represents the ozone extinction coefficient from  
eq. 3, R2 is the nonlinear least squares coefficient o f  determination and %red. is the 
percent reduction in D40 from above to below the canopy. Data were not available fo r  
October o f 1992.

Month a

1991

R2 % red a

1992

R2 % red. a

1993

R2 %red.

May .67 .98 70 .65 .96 72 .73 .98 64
June .90 .96 25 .79 .95 49

C
O

0
0 .98 44

July 1.00 .97 09 .96 .99 18 .81 .98 49
Aug. .96 .97 17 .90 .95 29 .92 .90 30
Sept. 1.05 .96 01 .92 .98 26 .85 .96 41
Oct.

0
0 .98 36 - - - .79 .84 42

years examined, ozone profiles followed seasonal canopy development, becoming 

established around the time of spring leaf expansion, increasing through mid-summer and 

declining at the end o f the growing season. These trends can be closely approximated by 

the equation:

3) rfD40(. = ! - ( / ' *  a f

where <fD40, is the proportion o f the above-canopy D40 at a given canopy level, / is the 

normalized canopy level from 0 at the top o f the canopy to 1 at the ground and a is the 

ozone extinction coefficient, determined for each month (Figure 2.2). Table 2.1 shows 

monthly values o f a along with the corresponding percent change in D40 from above to
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Figure 2.3. Canopy ozone gradient coefficient (a from equation 2) in relation to monthly 
lea f area index (LAI data are from  Aber et al. 1996). Higher values o f  a correspond to 
steeper canopy ozone gradients.

below the canopy.

Munger et al. (1996) determined that ozone deposition at Harvard Forest is related 

to stomatal conductance o f water vapor, indicating stomatal uptake as the dominant 

deposition pathway. Other factors expected to influence canopy ozone gradients are 

canopy resistance to vertical mixing, ozone deposition directly onto leaf surfaces and 

scavenging by reactive gases such as VOC’s and nitrogen oxides. Because most o f these 

are influenced by canopy leaf area, we compared the observed monthly ozone extinction 

coefficients with monthly leaf area index. In absence of measured LAI data for this time 

period, we used values generated by a daily version of PnET, parameterized for the 

Harvard Forest site using measured canopy biomass and validated against eddy 

correlation C 0 2 flux measurements obtained at the tower (Aber et al. 1996). This
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comparison showed LAI to be a strong predictor o f vertical ozone depletion (r2 = 0.80, 

Figure 2.3) suggesting that canopy structure plays an important role in vertical ozone 

gradients. To include this in the model, predicted monthly LAI is used to calculate the 

ozone extinction coefficient (eq. 3) which then determines the relative D40 for each 

canopy layer. We cannot presently evaluate the extent to which this relationship might 

differ in other forests. However, we expect differences to be small for other closed- 

canopy hardwood forests within the northeast, where canopy structure and atmospheric 

conditions are similar to those at Harvard Forest. Greater differences may be anticipated 

in other regions or for other forest types where these factors differ more dramatically.

Interactions between ozone and drought

For each canopy layer, the model calculates photosynthesis with and without 

ozone in order to determine the potential, integrated ozone effect for the whole canopy. 

This is necessary in order to allow interaction with drought stress, which is calculated 

once and applied to the entire canopy rather than being explicitly included in each canopy 

layer. After the calculation o f potential photosynthesis over all canopy layers, the 

model’s water balance routine determines potential transpiration and performs a 

comparison with the amount o f available soil moisture. If soil moisture is not adequate to 

meet the transpirational demand, water stress ensues and canopy photosynthesis is 

reduced.

Because the primary physiological response to water limitation is stomatal closure 

and ozone effects are calculated as a function of stomatal conductance, the potential (pre

drought) whole-canopy ozone effect is reduced each month in proportion to the degree o f
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Figure 2.4. Simplifiedflow diagram o f  processes included in PnET-O}.

water stress experienced during that month. For example, if water stress causes a 20% 

reduction in potential photosynthesis and the potential ozone effect - integrated across all 

leaf layers - is also a 20% reduction, the final ozone effect is reduced by a factor o f 0.8 to 

16% (d 0 3 = 0.84). This assumes that ozone has no negative impact on the ability of 

stomates to regulate transpiration. As such, the primary water-ozone interaction is for 

water limitation to reduce ozone uptake, a response which has been observed under 

experimental conditions (Dobson et al. 1990, Fredericksen et al. 1994) and has been 

included in model analyses for ponderosa pine seedlings (Chen et al. 1994). Some 

studies have suggested that under certain conditions, usually after intense and prolonged 

ozone exposure, stomatal function can become impaired (Reich and Lassoie 1984, 

Tjoelker et al. 1995). If  this occurs, water-ozone interactions would become more
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complicated and may include situations where ozone exacerbates drought stress via 

reductions in water use efficiency. Although this is an area that warrants further 

investigation, there is presently too little information to include such a feedback in the 

model.

Model application

A simplified flow diagram o f the PnET-03 model is shown in Figure 2.4. For the 

prediction of ozone effects on forest growth, equation 1 was incorporated into the model’s 

photosynthesis routine for each individual canopy layer. For each layer, leaf conductance 

is determined as a function o f net photosynthesis, and is thus affected by available light at 

that layer, foliar nitrogen content, temperature and vapor pressure deficit. Monthly D40 

values are estimated for each layer by combining ambient ozone concentrations with the 

calculated ozone depletion profiles. Monthly ozone effects are determined from May 

through October and are based on cumulative exposure over the entire season for each 

canopy layer.

Ozone data. Ambient ozone data for the northeastern U.S. were obtained from 

the U.S. Environmental Protection Agency’s Aerometric Information Retrieval System 

for the period of 1987 to 1992. For each collection station, we used raw, hourly 

concentrations to calculate monthly D40 values and long-term monthly means. We only 

considered measurements from between 7AM and 7PM to exclude unusually high 

nighttime concentrations. To minimize error caused by missing data, we imposed a 75% 

completeness criterion on each month within the data record. For each station, any 

month containing less than 75% of the expected number of observations was omitted
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from the calculation o f long-term monthly means. Months with between 75 and 100% 

data completeness were corrected for missing periods by dividing the measured D40 

value by the proportion of data completeness. This assumes that the distribution of 

concentrations within the missing period was the same as that of the observed data. The 

majority o f sites where this correction was performed had less than 1 0 % missing data. 

After data screening was complete, we eliminated sites that contained less than a three 

year record. The resulting data set included 64 sites (from an initial total of 

approximately 100), each with 3 to 6  years of data from the period of 1987 to 1992 

(Figure 2.5). In computing long-term mean D40 values, some bias between sites may 

result from differences in the years for which data were available.

00
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Figure 2.5. Locations o f EPA ozone monitoring stations used fo r  this study. Circled 
stations represent sites where monthly climate and ozone data were used in addition to 
long-term mean values.
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M odel application using mean climate and ozone. Climate inputs required to 

run the model are monthly averages o f  maximum and minimum daily temperature, solar 

radiation and vapor pressure deficit along with total monthly precipitation. For model 

application under average climate and ozone at all 64 ozone monitoring sites, we used 

long-term mean climate values calculated for each site by a statistical climate model 

developed for the northeast region (Ollinger et al. 1995). We used a foliar nitrogen 

concentration o f 2 .2 %, based on values measured among a variety o f  hardwood species at 

the Harvard Forest (Martin and Aber 1997). To evaluate the effects o f  site moisture 

conditions, we ran the model under a range o f soil water holding capacity values (WHC) 

representing optimal to severely limited soil water retention. We chose this approach 

instead o f using fixed values for each site because soil properties vary over much 

finer spatial scales than ozone. Hence, ozone levels encountered in the area o f each 

monitoring station may interact with a wide range of soil moisture conditions over the 

local landscape. The WHC values used ranged from 2 cm, representing a shallow sand 

with 50% large fragments, to 36 cm, representing a clay loam with no large fragments 

and 2 m rooting depth. The intermediate value o f 12 cm is considered most common for 

the northeast region, representing a typical glacial till soil with 25% large fragments and 

1 m rooting depth (Federer 1982).

We performed an additional set o f  analyses in order to test the model’s sensitivity 

to canopy ozone gradients (eq. 3). For this, the model was re-run at all 64 sites with 

ozone held constant through all canopy layers. Canopy gradient effects were assessed by 

comparing declines in annual NPP with intact gradients versus those after gradients were 

removed.
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Table 2.2. Locations o f 12 ozone monitoring stations and associated weather stations 
used fo r  analysis o f temporal variation in predicted growth impacts. Stations marked * 
represent rural sites located near the town or city listed. A ll stations include data from  
the entire 1987-1992period.

Station Name Latitude Longitude Weather Station

New York, NY. 40.68 74.01 New York, NY.
Danbury, CT. 41.42 73.47 Shepaug Dam, CT.
Chelsea, MA. 42.44 71.06 Boston, MA.
Ware, MA. 42.33 72.35 Amherst. MA.
Cape Elizabeth, ME. 43.62 70.25 Portland, ME.
Bangor, ME.* 44.70 6 8 . 8 6 Bangor, ME.
Manchester, NH. 43.03 71.47 Nashua, NH.
Portsmouth, NH. 43.08 71.77 Durham, NH.
Syracuse, NY.* 43.11 76.16 Syracuse, NY.
Lake Placid, NY.* 44.37 73.95 Lake Placid, NY.
Schnectady, NY. 42.81 73.97 Albany, NY,
Bennington. VT. 42.90 73.27 -------- Reads boro^YL------

M odel application using m onthly climate and ozone. To examine temporal 

interactions between ozone and climate and to determine year-to-year variability in 

predicted ozone effects, we selected a subset of 1 2  sites for analysis using actual monthly 

ozone and climate values (Figure 2.5, Table 2.2). Site selection was aimed at attaining 

even distribution across the study region, but was constrained to stations having ozone 

records for the entire 1987 to 1992 period with minimal missing values. Monthly climate 

data were obtained from the Northeast Regional Climatic Data Center for weather 

stations nearest to the ozone monitoring stations (Table 2.2). The weather stations 

recorded maximum and minimum daily temperature and precipitation, but not solar
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radiation. Instead, we used values calculated by the statistical climate model (Ollinger et 

al. 1995) for each location. Soil WHC was held at 12 cm for all sites. For each site, 

initial conditions for forest structure and productivity were determined by allowing the 

model to reach equilibrium under long-term mean climate and ozone as discussed in the 

previous section. From these initial conditions, predictions were generated using 

monthly climate and ozone data from 1987 through 1992.

Sensitivity analyses

Sensitivity analyses provide a means o f  testing the importance of assumptions 

made in developing and parameterizing a model. Many parameters and algorithms used 

in PnET-II have been tested previously (Aber and Federer 1992, Aber et al. 1995, 1996) 

and will not be reexamined here. However, several assumptions used in adding ozone 

effects to the model warrant further attention as they have potentially important 

implications on predicted forest response. Those assumptions are: 1) the model’s 

allocation priorities assume that mature trees prioritize foliar production over other plant 

compartments and that decreases in carbon gain are taken from wood growth over leaf 

and root growth; 2 ) in our treatment of interactions between ozone, conductance and 

water stress, we assume that the ability o f stomates to regulate transpiration is not 

hampered by ozone.

To test the effects of assumption 1, we altered the carbon allocation routine such 

that ozone effects on photosynthesis were distributed more evenly across all growth 

compartments. This was done by decreasing allocation o f available C to buds for next 

year’s foliage in proportion to the decrease in this year’s carbon gain. We labeled this the
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BudC effect. Testing assumption 2 required changes at several places in the model.

First, if stomatal function becomes impaired, photosynthesis and conductance may 

gradually become uncoupled such that conductance no longer down-regulates with 

photosynthesis. Second, an uncoupling of these variables could cause a decrease in plant 

water use efficiency (WUE). We included these effects in the model based on the results 

o f Tjoelker et al. (1995) in which the relationship between photosynthesis and 

conductance remained intact through the initial phase of a 2 x ozone fumigation 

experiment, but began to break down during later stages of treatment. Using approximate 

dose values from Tjoelker et al. (1995), the down-regulation o f conductance with 

photosynthesis is maintained in the model up to a threshold D40 o f  11 ppm-h. Between 

11 and 41 ppm-h, conductance increases linearly until reaching pre-ozone levels. At the 

same time, WUE is scaled downward in proportion to ozone effects on total 

photosynthesis. These changes produce a gradual decline in stomatal function and have 

the effect of increasing ozone uptake and canopy transpiration. We labeled this the WUE 

effect.

Previous sensitivity analyses have suggested that foliar nitrogen concentration 

(FolN) and soil water holding capacity (WHC) are critical parameters in determining 

rates o f photosynthesis and growth in northeastern hardwoods. To examine interactions 

between these parameters and the above assumptions, we used a randomized, Monte 

Carlo approach. First, the model was run for the 64 ozone monitoring sites using mean 

ambient ozone and randomized inputs for FolN and WHC. Values for FolN ranged from

1.8  to 2.6 mg g-*, the approximate range that occurs among northern hardwoods. Soil 

WHC ranged from 2 to 36 cm. The model was run 10 times for each site for a total of
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640 ozone-effect predictions under a range o f possible WHC and FolN combinations. 

This process was then repeated using each scenario o f altered model assumptions. The 

resulting predictions were used to relate regional mean ozone effects to variation in WHC 

and FolN under each model scenario. This approach was used in order to detect 

nonlinear interactions that may be missed by single factorial analyses.

Results and Discussion 

Mean climate and ozone

Results o f model runs using mean climate and ozone indicate decreases in annual 

net primary production (NPP) o f from 3 to 16% as a result of mean ozone levels from 

1987 to 1992 (Figure 2.6a) with greatest reductions in southern New York and southern 

New England where ozone levels and canopy conductance were greatest. The predicted 

decrease was weakly, but negatively correlated with latitude, following a trend o f 

decreasing ozone from south to north across the region (Figure 2.7). Predictions varied 

substantially across the range o f soil WHC values (2-36 cm), with smaller growth 

reductions occurring on drier sites where lower rates o f conductance limited ozone uptake 

by foliage.

At WHC = 36 cm, water limitations on NPP and wood production were 

eliminated for all sites, so these values can be used as a reference in estimating drought 

effects resulting from other soil moisture conditions (Table 2.3). Under all but the two 

wettest conditions, water limitation caused greater declines in growth than did ozone. At 

WHC = 12 cm, representing a typical northeastern glacial till, ozone-induced declines in 

NPP averaged 81% o f those predicted at WHC = 36. At WHC = 2cm, an extreme
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Figure 2.6. Predicted change in a) mean annual NPP and b) mean annual wood 
production at 64 sites across the study region in response to mean ozone levels from  
1987-1992. Predictions are shown fo r  3 levels o f soil water holding capacity to show the 
change in response from  well-watered (WHC = 36) to severely drought-stressed (WHC = 
2 ) conditions
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Figure 2.7. P redicted change in NPP due to ozone in relation to latitude.

condition for this region, ozone effects averaged 62% o f the drought-free values, despite 

substantially lower total growth.

Reductions in predicted wood production ranged from 3 to 22% across all ozone 

and soil moisture conditions (Figure 2.6b). This wider range o f variation is a result o f  the 

model’s carbon allocation priorities which value leaf and root production above wood 

growth. With high soil moisture (WHC = 24 to 36 cm), ozone effects on total plant 

growth are taken entirely from wood production, with no declines in canopy leaf area or 

root growth. This occurs because under these conditions, wood growth is high enough 

that it can be reduced without reaching the critical ratio o f wood to foliage production 

specified in the model. On progressively drier sites, the ratio o f wood to foliar
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production decreases until reaching this critical value. Beyond this point, leaf, wood and 

root growth become more tightly coupled such that further growth declines necessarily 

affect all three compartments. At WHC = 2 cm, reductions in wood growth accounted 

for approximately half of the total decline in growth (Table 2.3).

Table 2.3. Predicted net primary production (NPP) and wood growth (g m ’2 y r l) 
with and without ozone effects at 5 levels o f soil water holding capacity (cm). Values 
shown are means and standard deviations (in parentheses) from  all 64 study sites.

NPP WOOD

Control Ozone %red. Control Ozone %red.

2 723 (37.1) 682 (35.4) 5.7 (1.4) 372(19.1) 351 (18.2) 5.6 (1.4)
6 1136 (70.9) 1054 (56.2) 7.1(1.9) 610(61.1) 546 (34.7) 10.1 (4.4)
12 1354 (80.3) 1254 (66.6) 7.4 (1.8) 792 (89.5) 694 (70.7) 12.2 (3.1)
24 1732 (72.0) 1584(59.7) 8.5 (2.2) 1124 (77.6) 976 (63.5) 13.1 (3.2)
36 1840 (85.7) 1672 (65.7) 9.1 (2.4) 1228(93.1) 1060(71.6) 13.6 (3.4)

Changes in ozone D40 with depth through the canopy had a minimal effect on 

predicted growth reductions. Canopy gradients did offset declines in NPP, but by an 

average o f  only 0.6 percent (max = 1.5%) with respect to results obtained with canopy 

gradients removed. Although the gradients produced substantial declines in ozone D40 

values through the mid and lower canopy (Figure 2.2), ozone in the upper canopy 

remained high. Because this is where light levels and hence photosynthesis and 

conductance are greatest, canopy gradients had only a small effect on total canopy ozone 

uptake. This suggests that unless canopy ozone profiles are substantially different in
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other forest types or geographic regions - with concentrations falling off sharply through 

upper canopy layers - vertical ozone gradients are not an important factor in scaling 

ozone effects to mature forests. These results are consistent with a similar analysis made 

previously with a simpler canopy photosynthesis model (Reich et al. 1990).

Interactions between climate and ozone

For the 6  year period from 1987 to 1992, the only unusual year with respect to 

ozone was 1988 which had significantly higher levels than all other years except 1991
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Figure 2.8. Distributions o f  a) ozone D40, b) annual precipitation, c) percent change in 
NPP and d) percent change in wood production across the 12 study sites fo r individual 
years from  1987 to 1992. Boxes show median values and quartile ranges.
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(Figure 2.8a). This was also an anomalous climate year, being one o f the warmest on 

record in the northeast region and having the lowest precipitation of the 6  year period. 

Precipitation was more variable than ozone, being consistently greater from 1989 to 1991 

than during the other three years (Figure 2.8b). Despite these differences in climate and 

ozone (significant at p < .05 using Scheffe’s multiple comparison ANOVA), there were 

no significant year to year differences in predicted growth reductions (Figure 2.8c-d). 

This largely reflects the tendency for high ozone levels to be associated with hot, high-
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F igure 2.9. D istributions o f  a) ozone D40, b) annual precipitation, c) percen t 
change in N P P  and  d) percent change in w ood production across the 6  yea r  
period fro m  1987 to 1992fo r  a ll 12 study sites.
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pressure air masses, which often coincide with increased water limitations. Periods o f 

high ozone (e.g. mid-summer 1988) were commonly offset by co-occurring reductions in 

conductance, induced by high temperatures and low precipitation.

Whereas temporal variation in predicted growth reductions was minimal, growth 

reductions across sites were not only variable, but were more variable than either climate 

or ozone (Figure 2.9, between-site differences determined at p <  0.05 using Scheffe’s 

multiple comparison ANOVA). This reflects spatial relationships between conductance 

and ozone that counter the dominant temporal trends. Although high ozone often 

coincided with low conductance on a temporal basis, high ozone more often coincided 

with high conductance on a spatial basis. This is at least partially due to the fact that both 

ozone production and conductance, in general, decrease from south to north within the 

study region. For ozone, this is driven by the high density o f  urban areas along southern 

portions of the region, whereas patterns of conductance tend to follow latitude gradients 

in temperature and summer precipitation.

Among the 12 intensive study sites, the greatest growth reductions were predicted 

for New York City and Ware, Ma., located in central Massachusetts (Figure 2.9), the two 

sites with the highest ozone levels. Ozone levels were lower in Ware than in New York 

City, but Ware had higher predicted rates o f conductance and thus showed similar growth 

declines to NYC.

Although there is a general trend o f decreasing ozone concentrations with 

distance from population centers, a clear distinction between urban and rural areas is 

difficult to make. Urban areas have higher emissions of the nitrogen oxides and volatile 

organic compounds that lead to ozone production, but ozone concentrations are often
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lower in cities than in nearby rural areas because other compounds present in polluted air 

(e.g. NO) cause a destruction of ozone. Note for example that Chelsea, Ma., an urban 

area adjacent to Boston, had lower ozone levels than Ware, Ma., Bennington, Vt. and the 

site near Syracuse, NY., all located in less densely populated areas (Figure 2.9a).

Because ozone and its precursor compounds can be transported considerable distances, 

rural, down-wind locations can experience unusually high concentrations. This probably 

explains the relatively high ozone levels and large growth reductions predicted for Cape 

Elizabeth, Me. and the site near Lake Placid, NY., located at an elevation o f 

approximately 600m. High concentrations are known to occur at coastal and upper 

elevation sites because o f long-range transport o f air that has had little contact with 

ozone-depleting surfaces. High ozone levels at the rural Bennington, Vt. site may reflect 

its location downwind o f the Albany, N.Y. area. Conversely, Schenectady, N.Y., which 

is adjacent to, but upwind of Albany, experienced lower ozone levels and lower growth 

impacts.

Sensitivity analyses

Randomized sensitivity analyses indicate nonlinear interactions between model 

sensitivity to FolN and WHC through their effects on photosynthesis, transpiration, water 

limitations and ozone uptake. Figure 2.10 shows predicted response surfaces indicating 

the regional mean ozone effect on NPP at various levels o f FolN and WHC under three 

model scenarios. Figure 2.10a shows standard PnET-03 model results and Figures 2.10b 

and 10c show results from scenarios that include ozone effects on allocation (BudC 

effect) and water use efficiency (WUE effect) respectively. Each surface was generated
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F igure 2.10. R esults o f  M onte C arlo sensitivity analyses show ing the regional 
mean ozone e ffect on NPP in relation to variation in fo lia r  N  and  so il WHC. 
Results are show n fo r  three scenarios indicating m odel behavior under a) 
standard PnET-O 3 configuration, b) the BudC  effect w here allocation to fo lia g e  is 
no longer p rio ritized  above w ood and root growth and c) the W UE effect where 
ozone exposure causes a gradual decline in stom atal fu n c tio n  and  water use 
efficiency. See text fo r  thorough description o f  these scenarios.
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from 640 model runs (64 sites x 10 runs each) conducted under ambient ozone, but with 

randomized inputs for FolN and WHC. Values shown represent regional mean ozone 

injury from all 64 sites.

Using standard model assumptions, model sensitivity to FolN varied with WHC. 

On dry sites, FolN had little effect on predicted ozone injury because ozone uptake was 

controlled largely by water availability. On progressively wetter sites, drought stress was 

diminished and FolN became an increasingly important regulator of photosynthesis and 

hence uptake. At WHC = 36 cm, mean ozone injury increased from 6 . 6  to 10.4 % as 

FolN increased from 1.8  to 2.6 mg g 1 (Figure 2.10a). Similarly, model sensitivity to 

WHC tended to be greatest at high FolN where large transpirational demands led to rapid 

depletion of soil water. At low FolN, water limitations were less common and so WHC 

had less influence on predicted ozone damage. The mean decline in regional NPP under 

the full range o f FolN and WHC was 7.6% (std. dev. = 1.02), similar to the value 

obtained using average FolN and WHC values (Table 2.3).

Imposing an ozone effect on allocation to foliage did not change the nature of 

interactions between FolN and WHC, but did cause an increase in model sensitivity to 

WHC (Figure 2 .10b). Across the lower end o f WHC values used (2-16 cm), predicted 

ozone injury was less than or equal to predictions made under standard assumptions.

This was due to a subtle feedback that occurred between ozone and drought stress. At 

low WHC, the reduction in foliar biomass imposed by the BudC effect caused a small 

decrease in the transpirational water demand. Where this occurred, the loss o f 

photosynthetically-active leaf area was offset by a decrease in drought stress. At higher 

WHC, where drought was less common, this tradeoff was not important and ozone-
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induced declines in foliar biomass led to greater total injury. The mean decline in 

regional NPP under this scenario was 8.03% (std. dev. = 4.33).

Imposing an ozone effect on stomatal conductance and water use efficiency 

caused significant changes in both the location and magnitude o f ozone injury (Figure 

2.1 Oc). Most noticeable is the fact that ozone injury was no longer greatly offset by water 

limitations at low WHC. Instead, ozone injury exacerbated water limitations and this had 

the greatest effect on dry sites. At WHC = 2, ozone injury caused more than a 12% 

decline in predicted NPP, roughly twice that observed in the previous two scenarios. 

Lower levels o f injury occurred towards the endpoint of low FolN and high WHC where 

water availability was high and transpirational demands were low. As in the previous 

two scenarios, the greatest growth declines occurred at high FolN and high WHC where 

ozone uptake was at its maximum. In this case, uptake was further elevated by the lack 

o f stomatal down-regulation following reductions in photosynthesis. The mean decline in 

regional NPP under this scenario was 11.43% (std. dev. = 5.0).

Conclusions

In this study, we synthesized information regarding plant response to ozone and 

applied it in a modeling framework to mature hardwood forests growing under ambient 

conditions. Our approach was to summarize leaf-level ozone effects on carbon uptake in 

a forest productivity model that was designed to simulate the growth o f mature, closed- 

canopy forests. Model runs using 6  years o f concentration data from 64 sites across the 

northeastern U.S. indicate reductions in annual dry matter accumulation o f between 3 and 

16% for the period o f 1987 to 1992 (mean = 7.4%). Reductions in predicted wood
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production ranged from 3 to 22% (mean = 12.2%).

In general, growth declines were greatest near urban areas in southern portions o f 

the region and in locations where drought stress was absent. Canopy ozone gradients had 

little effect because ozone depletion was minimal through the upper canopy layers where 

light levels and stomatal conductance were greatest. Year-to-year variation in predicted 

growth declines was small because there was a tendency for ozone and stomatal 

conductance to be inversely correlated on a temporal basis. Periods o f  high ozone often 

occurred during hot, dry weather conditions which induced drought stress and limited 

ozone uptake. Although ozone effects were greatly moderated by variation in climate 

and soil moisture, growth reductions were substantial even under the driest conditions 

simulated.

Sensitivity analyses demonstrated how model behavior is influenced by several 

important assumptions and how predictions might be affected if those assumptions prove 

wrong. Results o f these analyses revealed interactions between foliar nitrogen and soil 

water holding capacity whereby model sensitivity to one o f  these parameters depended on 

the value of the other. Adding an ozone effect on allocation to foliage did not greatly 

alter the mean regional growth response, but did cause an increase in sensitivity to 

available soil water. Adding an ozone effect on stomatal function and plant water use 

efficiency altered both the nature and magnitude o f predicted growth declines. In 

particular, the ozone-water interaction observed under standard model configuration was 

replaced by a situation in which ozone caused an increase in transpirational water loss 

and hence drought stress. The mean regional growth decline under this scenario was

11.4%. Although the standard assumptions used in the model may be reasonable given
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available data and current ozone levels, these results demonstrate the need for additional 

field research on mature forest stands. Such work will be necessary for improving our 

understanding o f important processes and assessing the accuracy of model predictions.
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CHAPTER m

TROPOSPHERIC OZONE AND LAND USE HISTORY AFFECT REGIONAL 

FOREST CARBON UPTAKE IN RESPONSE TO C 0 2 AND N DEPOSITION

Abstract

To examine potential controls on current forest growth and carbon storage, we 

analyzed the effects o f historical increases in tropospheric ozone, nitrogen deposition and 

elevated C 0 2 on northeastern U.S. forests. We included these factors individually and in 

combination in a forest ecosystem model which was run from 1700 to 2000 under 

different scenarios of land use history. The analyses suggest that historical increases in 

C 0 2 and N deposition have stimulated forest growth and carbon uptake, but to different 

degrees following agriculture and timber harvesting. Further, inclusion of tropospheric 

ozone offset a substantial portion o f the predicted increases caused by C 0 2 and N 

deposition. This result is particularly relevant given that ozone pollution is widespread 

across much of the world and is spatially correlated with nitrogen deposition.

Introduction

Eastern U.S. forests have been subjected to a number o f environmental changes 

that stem from human industrial and agricultural activities. Although recent studies 

suggest an important role for these systems as carbon sinks (Turner et al. 1995, Fan et al. 

1998, Houghton et al. 1999), carbon budget estimates vary widely and our understanding
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of underlying mechanisms remains incomplete. To date, attention to environmental 

factors that alter rates o f forest carbon uptake has focused on interactions between 

elevated CO2 and nitrogen deposition. Elevated CO2 stimulates photosynthesis and tree 

growth in both seedlings and mature forests (Curtis and Wang 1998, Ellsworth 1999), but 

the degree to which this leads to increased carbon storage depends on feedbacks with 

plant C:N ratios, litter decomposition and soil N availability (Comins and McMurtrie 

1993, Lloyd 1999). Elevated N deposition can increase growth in N-limited systems 

(Vitousek and Howarth 1991), but its effect on long-term carbon storage may be limited 

if increased growth occurs in the form of low C:N ratio tissues with fast turnover rates 

(Townsend et al. 1996, Nadelhoflfer et al. 1999).

Model analyses that include C and N feedbacks have estimated large terrestrial 

carbon sinks resulting from the widespread occurrence o f N deposition (Lloyd 1999, 

Townsend et al. 1996, Holland et al. 1997). Although models differ in the magnitude of 

predicted carbon sequestration, most agree that the current spatial distribution o f N 

deposition combined with a relatively young age distribution make eastern North 

American forests an important regional sink. However, the effects of disturbance and 

land use history were not included in these analyses, yet these have significant effects on 

current forest growth and response to N deposition via their long-term effects on soil C 

and N pools (Aber and Driscoll 1997).

An additional factor that has important implications for forest carbon storage, but 

has received surprisingly little attention, is tropospheric ozone. Among common air 

pollutants, ozone is probably the most damaging to terrestrial vegetation and frequently 

occurs at high concentrations over large portions o f the world (Chamedes et al. 1994).
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Ozone concentrations that are common in industrialized regions are known to cause large 

reductions in carbon fixation and biomass production in native plants as well as 

agricultural crops (Chamedes et al. 1994, Reich 1987, McLaughlin and Downing 1995, 

Chapelka and Samulson 1998) and to alter patterns of plant carbon allocation (Laurence 

et al. 1994). All of these suggest a strong potential for ozone to alter rates of carbon 

storage in native ecosystems, perhaps offsetting the effects o f  elevated CO2 and N 

deposition (Volin et al. 1998).

Although ozone continues to receive attention for its harmful effects on human 

health, food production and plant growth, it has never been included in analyses of broad- 

scale carbon fluxes. This stems in part from the inherent variability o f ozone 

concentrations and observed plant responses (Chapelka and Samulson 1998), but also 

reflects a gap between the scientific communities studying ecological ozone effects and 

those concerned with terrestrial carbon fluxes.

Methods

In this analysis, we examine potential effects of tropospheric ozone, elevated CO2 

and N deposition under two land use history scenarios in order to determine the relative 

importance of each factor on predicted forest growth and carbon storage. We combined 

response algorithms for all factors in the PnET-CN forest ecosystem model, a model of 

carbon, nitrogen and water balances that has been previously applied and tested across 

the northeast study region (Aber et al. 1995, 1997, Ollinger et al. 1998). Algorithms for 

canopy physiology, carbon allocation, N cycling and water balances have been described 

previously (Aber et al. 1997, Ollinger et al. 1998) as have algorithms for the individual 

effects o f tropospheric ozone and N deposition (Aber and Driscoll 1997, Ollinger et al.
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1997). Here we add new equations for the photosynthetic response to atmospheric CO2 

and integrate all factors under different scenarios o f  land use history. As our treatment o f 

each factor is necessarily limited, our goal is not to conduct an exhaustive analysis o f all 

possible multiple stress outcomes, but rather to examine how interactions among a 

number o f important responses might be affecting present-day forest carbon fluxes.

Ozone

Physiological ozone response algorithms were derived from a number o f 

controlled exposure studies and are based on cumulative ozone uptake to internal leaf 

surfaces (Reich 1987). Ozone effects on photosynthesis are based on the equation:

1) dO} = l - ( k  g  D40)

where dC>3 is the ratio o f ozone-exposed to control photosynthesis, k  is an empirically 

derived ozone response coefficient with a value o f 2 . 6  x 1CT6 for hardwood forests, g  is 

mean stomatal conductance (mm s'1) and D40 is the cumulative ozone dose above a 

threshold concentration o f 40 ppb. Vertical ozone concentration gradients are calculated 

from canopy leaf area index, which influences resistance to vertical mixing and ozone 

depletion on leaf surfaces (Ollinger et al. 1997). Because ozone uptake is dependent on 

stomatal conductance, factors that affect conductance (e.g. foliar N concentrations and 

drought stress) are important regulators o f ozone damage.

Nitrogen Deposition

N deposition and land use history act through their effects on soil carbon and 

nitrogen pools, plant and soil C:N ratios, rates o f N supply to vegetation and losses to
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drainage water (Aber et al. 1997). Nitrogen fluxes are determined for all plant pools 

based on rates of supply versus plant demand. The C:N ratio o f plant tissues are reflected 

in litter which decomposes into a single soil organic matter pool. Nitrogen mineralization 

is affected by soil C:N ratios, with high C:N ratio material increasing immobilization and 

decreasing N supply to vegetation. Prior analyses of these interactions indicate that 

historical disturbance effects on soil C and N dynamics can persist for several hundred 

years, depending on disturbance severity and rates of atmospheric N deposition (Aber 

and Driscoll 1997).

CO,

Leaf photosynthetic rates are driven by foliar N concentrations and atmospheric 

CO, levels. The photosynthetic response to CO, algorithm derived for the present study 

uses a Michalis-Menton equation, fit to normalized A-Ci curves (scaled from 0 to 1, 

where 1 is C0 2 -saturated carbon fixation) taken from a number of eastern tree species 

grown in CO2 exposure studies (Pettersson and McDonald 1992, Curtis et al. 1995, 

Ellsworth et al 1995, Lewis et al. 1996, Figure 3.1). The CO2 response is described by the 

equation

2) RCa = 1-22 * (C, - 68) / (C, + 136)

where Rca is the proportional difference in photosynthesis between that which occurs at 

current CO2 and the CO2 concentration simulated in the model (Ca) for a given year. For 

this purpose, ambient CO2 is assumed to be 350 pmol/mol. Although atmospheric CO2 

concentrations are presently higher and continuing to rise, 350 pmoL/mol more closely
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Figure 3.1. a) Photosynthesis in relation to internal lea f CO2 concentrations (Ci) fo r  
conifer (Pinus taeda) and hardwood (Betula pendula and Populus euroamericana) 
species taken from  the literature, b) Data from  Figure 3. la  with photosynthtic rates 
normalized to CC>2 -saturating rates. The line represents the Michalis-Menton function  
(ean. 2) incorporated into the PnET-CN model.

represents the majority o f ambient CO2 photosynthetic rates reported in the literature 

over the past decade and thus made a reasonable baseline for use in the model. C, is the 

internal leaf CO2 concentration that occurs at the ambient concentration Ca, which varies
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over time in accordance with the Mauna Loa C 0 2 record and data from ice cores. The 

constant 6 8  represents the photosynthetic C 0 2 compensation point, 136 is the half 

saturation concentration and 1.22 is an empirically-derived constant. The equation takes 

a similar form to that used in other models o f leaf photosynthesis (e.g. McMurtrie and 

Wangl993), but here is fit to data for eastern U.S. hardwood and conifer tree species 

(using data from Pettersson and McDonald 1992, Curtis et al. 1995, Ellsworth et al. 1995 

and Lewis et al. 1996).

Internal leaf C 0 2 concentrations (Q) are predicted from an inverse relationship 

between the C;/Ca ratio and foliar nitrogen concentrations (Farquhar and Wong 1982). 

This ratio varies from 0.8 to 0.65 as foliar N increases from 1 to 3 %, reflecting greater 

internal C 0 2 fixation in foliage with higher N concentrations. Photosynthetic capacity at 

ambient C 0 2 and response to variation in foliar nitrogen concentrations are described by 

equations from Reich et al. (1995).

Although there has been considerable discussion surrounding the effects of 

elevated C 0 2 on stomatal conductance (e.g. Field et al. 1995), recent evidence from a 

comprehensive meta-analysis (Curtis and Wang 1998) and a mature-forest C 0 2 exposure 

experiment (Ellsworth 1999) suggests that this may not be as important as previously 

anticipated. Our model includes an optional conductance response, driven by C 0 2 

gradients across the stomatal boundary, but we did not invoke this response for the 

present analysis in light of these recent findings.

Using a purely conceptual approach, stomatal response to C 0 2 can be 

characterized as follows: if conductance and photosynthesis are treated as coupled 

processes (Jarvis and Davies 1998) and Q/Ca ratios remain unaffected by altered C 0 2 (as
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shown by Drake and Gonzalez-Meler 1996), then COi-induced increases in 

photosynthesis should cause proportional reductions in conductance as the absolute CO2 

gradient across the leaf surface increases. Such a response has been used by other models 

(McMurtrie and Wang 1993), and has been included as an optional response in our model 

causing an inverse interaction between CO2 concentration and ozone uptake. However, 

experimental evidence for this effect has been inconsistent. A negative interaction 

between CO2 and ozone uptake has been observed in some seedling studies (Volin et al

1998), but has not occurred others (Kull et al. 1996). These inconsistencies point to a 

lack of basic understanding regarding factors that determine stomatal conductance, 

particularly when examined over a wide range of time scales.

Model Analyses

Multiple factor interactions occur through a series of feedbacks involving leaf 

physiology, moisture availability, foliar N concentrations, carbon allocation and biomass 

production, litterfall and litter C:N ratios, decomposition, soil N supply and plant N 

demand. Acclimation to any environmental change occurs through source-sink 

interactions between soil nitrogen availability and plant demand. For instance, an 

increase in photosynthesis due to elevated CO2 creates increased plant demand for N and 

reduced foliar N concentrations, which affects subsequent rates of photosynthesis, litter 

C:N ratios and decomposition.

We applied the model to 64 sites across the northeastern United States where 

ground-level ozone data were available for the period o f 1987-1992 from U.S. EPA 

monitoring stations (Ollinger et al. 1997, Figure 3.2). Ozone data used in the model
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Figure 3.2. Locations o f 64 ozone monitoring sites in northeastern US where model 
simulations were performed.

represent long-term mean monthly values measured at each site. Annual rates of wet + 

dry N deposition were determined for each site using a regional deposition gradient 

analysis (Ollinger et al. 1993). Deposition rates declined along a SW to NE gradient 

from a high of 12 Kg ha"1 yr"1 to a low of 4 Kg ha"1 yr"1. Monthly climate data (maximum 

and minimum temperature, precipitation and solar radiation) were calculated by a 

statistical climate model, derived from over 300 weather stations within the region 

(Ollinger et al. 1995). We used mean rather than historical climate data in order to more 

clearly identify effects o f the environmental factors this study was intended to examine. 

The model was parameterized for northern hardwoods and run for each site under 

historical scenarios o f agriculture and timber harvesting. We ran all sites with both 

disturbance regimes to allow clear identification o f site history effects and because 

detailed site history data were not available for each location.
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The timber harvest scenario was based on the site history o f the Hubbard Brook 

Experimental Forest in New Hampshire as described by Whittaker et al. (1974). We 

simulated the following treatments: a 50% harvest in 1850, a 20% thinning treatment in 

1909, and an 80% harvest in 1917. In each case, 80% o f harvested biomass was removed 

and 20% was assumed to remain as slash. We also included a 20% mortality event in 

1938, with 40% o f dead biomass removed. This follows damage caused by a major 

hurricane and a subsequent salvage logging operation. We view this scenario as 

representative o f many northeastern forests that have a history of timber harvesting.

The agriculture scenario was based on the site history records for the Harvard 

Forest in Central Massachusetts. Although precise removal rates for carbon and nitrogen 

are unknown, the land within Harvard Forest was farmed from approximately 1750 to 

1850 and so a significant fraction o f production would have been removed annually. 

Following forest regrowth, a large portion of the area was also harvested around 1945.

We simulated these patterns in the model with the following treatments: agricultural 

cultivation between 1750 and 1850 with continuous removal o f 5%  of biomass 

production, and an 80% timber harvest in 1945, 20% o f  which was left as slash.

The model was run at monthly intervals from 1700 to the year 2000 with and 

without transient increases in CO2, O3 and N deposition. Atmospheric CO2 

concentrations were determined using an algorithm that follows ice core CO2 data and the 

Mauna Loa CO2 record. CO2 concentrations are held at 280 ppb for all years prior to 

prior to 1800 and then increase nonlinearly to the present day level of 363 ppb (Houghton 

et al. 1995). The CO2 ramp is described by:
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3) C 0 2 = 280 + [0.0188 * (year - 1800)] 335

where CO? concentrations are in ppm and year refers to the year simulated beyond the 

year 1800. The equation projects exponential increases in C 0 2 concentrations into the 

future, reaching a level o f 600 ppb by 2100. Although this is within the range o f current 

predictions for the future, C 0 2 concentrations beyond 2100 are expected to eventually 

level out (Houghton et al 1995) and so this ramp should not be used for longer-range 

projections.

After Aber and Driscoll (1997), N deposition was held at 25% o f its current levels 

prior to 1930 and then increased linearly to the present. Because ozone results from 

similar forms o f industrial activity as N deposition, this same ramp was used for ozone.

Results and Discussion

Running all sites with an agricultural site history and background (pre-industrial) 

levels of C 0 2 , O3 and N deposition produced year-2000 NPP values of from 863 to 1021 

g m ' 2 yr' 1 (dry biomass) with a mean o f 944 g m ' 2 yr'1. Total annual carbon 

accumulation, or net ecosystem production (NEP) ranged from 8 6  to 123 gC m ' 2 yr' 1 with 

a mean of 105 gC m ' 2 yr'1. This positive carbon balance reflects the long-term effects of 

18th and 19th century agriculture on soil carbon pools, soil respiration and biomass 

accumulation. Simulating the historical increase in atmospheric C 0 2 caused a 17.2% 

increase in NPP and a 52.3% increase in NEP (Fig. 3a, b). The greater increase in NEP 

than NPP occurred because of the slow turnover rates for woody biomass and soil organic 

matter, which create long lag times between increased growth and increased soil
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Figure 3.3. Predicted mean net primary production (NPP, g  m ' 2 y r 1)  and net ecosystem 
production (NEP, gC m 2 y r 1)  under different combinations o f CO 2, Os and N  deposition 
and two land use history scenarios. Values shown are means (n = 64) ofpredictions fo r  
the year 2000, a t the end of300-year simulations (1701-2000).

respiration. Including the historical increase in ozone offset much (41 %) of the growth 

increase caused by elevated CO2 and resulted in a regional mean NPP o f 1040 g m ' V ' 1 - 

NEP remained elevated with respect to the control run, but was 14% lower than under 

elevated CO2 and no ozone.
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The combination o f rising N deposition and CO2 (with no ozone) caused large 

gains in both NPP and NEP, which averaged 1185 g m ' 2 yr' 1 and 184 gC m ' 2 yr*1 

respectively, increases o f 25 and 75% over pre-industrial conditions. Simulating 

increases in all factors simultaneously, which represents the most complete o f all 

scenarios, produced NPP estimates ranging from 1037 to 1207 g m ' 2 yr"1 (mean = 1109 g 

m*2 yr'1) and NEP values o f 137 to 185 gC m ' 2 yr' 1 (mean = 158 gC m- 2 yr'1), increases 

o f 17 and 50% with respect to the control scenario. These values are similar to those 

observed under rising CO2 alone, indicating that the effect o f N deposition on carbon 

sequestration across the region was largely offset by ozone-induced declines in 

photosynthesis. Ozone effects on photosynthesis were slightly greater in the presence o f 

elevated N deposition because the added N caused increases in foliar N concentrations, 

leaf gas exchange and ozone uptake. When compared to the scenario o f elevated CO2 

and N deposition, (but no ozone) the combined scenario indicated ozone effects on NEP 

o f from - 6  to -22 % with a regional mean o f -14% (Fig. 3b).

As discussed earlier, these simulations did not include a CO2 effect on stomatal 

conductance, the implications o f which are that conductance would have been higher in 

the past, under lower CO2 concentrations, and would have produced higher rates o f 

historical ozone uptake. Including this effect in trial simulations (results not shown) had 

a minimal effect, however, because the increase in conductance occurred at times o f low 

ozone concentrations. This will become a more important issue for extrapolation into the 

future, given that CO2 and O3 are both expected to continue increasing.

When all sites were simulated with a history o f  timber harvesting instead o f 

agriculture, NPP averaged 1096 g m' 2 yr' 1 and NEP averaged 41 gC m' 2 yr"1 under control
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conditions. The higher rate o f NPP and lower rate o f NEP relative to simulations with an 

agricultural history reflects the lower intensity o f disturbance to soil C and N pools 

imposed by timber harvesting than by agriculture. The simulated agricultural disturbance 

included continuous biomass removals for the 100 year period from 1750 to 1850. This 

caused depletion o f soil C and N pools which had not recovered afrer 150 years of 

regrowth, even when the last half of that period experienced rising N deposition. 

Following the less severe effects of timber harvesting (as simulated in our analysis), 

faster recovery o f  N cycling and higher foliar N concentrations led to higher rates of 

productivity. Because soil pools were disturbed to a lesser degree, soil respiration 

remained higher, keeping total carbon fluxes more tightly balanced than were observed 

following agriculture.

Interactions among CO2, O3 and N deposition were qualitatively similar following 

timber harvesting to those observed following agriculture (Fig. 3 c, d). However, 

because N limitations were weaker in the timber harvest simulations, plant C:N ratios 

were lower, causing plant growth to become more responsive to CO2 and less responsive 

to N deposition. The historical rise in CO2 produced increases in NPP and NEP of 25 

and 232 % (reaching values of 1370 g m ' 2 yr"1 and 136 gC m' 2 yr' 1 respectively) while N 

deposition had a minimal effect. Declines in growth due to ozone in the CO2 + O3 and 

combined scenarios were greater than those observed following agriculture because of 

higher foliar N concentrations and greater ozone uptake by foliage. Compared to the 

scenario o f increased CO2 and N deposition, the combined scenario produced a mean 

ozone effect on NEP o f -37.6 gC m ' 2 yr' 1 or -29 % (Figure 3.3 d).
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Figure 3.4. Predicted change in current annual net ecosystem production (NEP) in 
response to ambient ozone concentrations across the northeastern U.S. under two land 
use history scenarios. Reductions in NEP represent the difference between predictions 
generated with rising in CO2 + O3 + N  deposition and those with rising CO2 + N  
deposition, but no ozone. Ozone Dose > 40 ppb is the sum o f hourly daytime 
concentrations above a threshold concentration o f 40 ppb, accumulated over one growing 
season. Ozone data shown are mean values over the Deriod o f1987 and 1992.

The predicted rate o f carbon accumulation under the combined scenario following 

agriculture (158 gC m ' 2 yr'1) is within the measured range o f  140 - 280 gC m ' 2 yr' 1 from 

eddy flux tower measurements at the Harvard Forest in central Massachusetts (Wofsy et 

al. 1993) and also agrees reasonably well with an estimate for the northeast region o f 

approximately 175 gC m ' 2 yr' 1 from forest inventory data (Turner et al. 1995). However, 

predictions following a history o f  timber harvesting (regional mean = 92 gC m ' 2 yr'1) fell 

below these estimates, possibly indicating the predominance of more intensive 

disturbance histories within the region.
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Figure 3.5. Mean ozone Dose > 40 ppb in relation to annual wet + dry nitrogen 
deposition (kg ha ' 1 y r '1) fo r  the 64 study sites across the northeastern U.S. region.

Our simulations suggest that over the past several decades, increases in 

atmospheric CO2 and N deposition have caused substantial increases in current rates of 

growth and carbon accumulation across northeastern forests, but that the magnitude of 

these gains has been considerably reduced by concurrent increases in ozone (Figure 3.4). 

The larger relative declines in NEP than NPP stems from the fact that ozone has a 

proportionately greater effect on predicted wood growth than on leaf or root growth. 

Hence, relatively small reductions in biomass production can translate to greater 

reductions in ecosystem carbon gain because o f the decades to centuries required before 

reductions in wood growth translate to reduced soil respiration.

These results have implications for areas beyond the northeastern U.S. because 

many regions experience higher-than-background ozone levels and because the spatial 

distributions of nitrogen deposition and ozone are not independent. Whereas cycles of C
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and N are coupled within the biosphere, patterns o f N deposition and surface ozone 

concentrations are linked in the atmosphere due to the dependence o f ozone formation on 

nitrogen oxide emissions. This is demonstrated by a correlation across the northeast 

region between rates o f N deposition and ozone exposure (Fig. 5), a relationship that has 

been predicted to occur globally (Chamedes et al. 1994, Holland et al. 1997). Variation 

in this trend should result from differences in N sources (e.g. ozone should follow N 

deposition to a lesser extent in areas where N deposition results primarily from 

agricultural ammonium emissions instead o f industrial NOx emissions) and from climate 

variables that affect ozone formation and uptake independently o f N emissions. 

Nevertheless it seems reasonable to suggest that the reduction o f  N-induced carbon sinks 

by ozone may be a general phenomenon across broad spatial scales. Further, as forests 

mature and recover from past disturbance, the response to N additions will decrease as N 

limitations are alleviated, but the damaging effects o f ozone will remain.

At present, experimental evidence for the results of this analysis are lacking, and 

so they should be treated as hypotheses that stem from the interactions explicitly included 

in the model. Although the processes included have all been identified as important 

responses to the environmental factors addressed, other processes that are either beyond 

the scope o f the model (e.g. ozone effects on tree survival or forest composition) or for 

which little information is presently available (e.g. long-term acclimation to elevated 

C 0 2) may be of equal or even greater importance. While we view the synthesis o f 

existing information and advancement o f new hypotheses as a useful step, efforts to 

verify predicted ozone - C 0 2 - N deposition - land use history interactions are greatly 

needed before the results o f simulation models can be confidently accepted.
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CHAPTER IV

FOLIAR CHEMISTRY IN RELATION TO NITROGEN CYCLING AND NITRATE 

PRODUCTION ACROSS A TEMPERATE FOREST LANDSCAPE: INFLUENCE OF 

DISTURBANCE HISTORY AND SPECIES COMPOSITION

A b s t r a c t

Although understanding of nitrogen cycling and nitrification in forest ecosystems 

has improved greatly over the past several decades, our ability to characterize spatial 

patterns is still quite limited. A number o f studies have shown linkages between canopy 

chemistry and N cycling, but few have considered the degree to which these trends can 

provide an indicator o f forest N status across large, heterogeneous landscapes. In this 

study, we examined relationships among canopy chemistry, nitrogen cycling and soil 

carbon to nitrogen ratios across 30 forested stands in the White Mountains o f New 

Hampshire. Plots included a wide range o f species (sugar maple, red maple, American 

beech, yellow birch, paper birch, red spruce, balsam fir, eastern hemlock) and were 

broadly grouped into two disturbance categories; those that were historically affected by 

intensive logging and/or fire and those that have experienced minimal human 

disturbance.

Across all plots, rates of net N mineralization and nitrification were correlated 

with canopy nitrogen concentrations, but the relationships differed between disturbance 

treatments. In deciduous forests, historically undisturbed stands had significantly higher
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rates o f N mineralization and nitrification than previously disturbed stands, but these 

differences were not clearly reflected in patterns of stand-level canopy chemistry. 

Although soil C:N ratios also differed between disturbed and undisturbed stands, a 

relationship between soil C:N ratios and canopy ligninrN ratios did not appear to vary 

with either forest type or disturbance, suggesting that this trend can provide a robust 

indicator across diverse conditions.

Relationships between foliar chemistry and N cycling within individual species 

revealed interesting differences between species and functional groups. For 4 out of 5 

deciduous species, foliar N increased with increasing N mineralization, indicating that 

species were responsive to changes in N availability and suggesting a positive feedback 

between foliar chemistry and soil N status. These patterns led to significant differences 

in foliar N between disturbance treatments for some species, but these differences were 

masked at the stand level by successional changes in species composition. Among 

coniferous species, foliar N showed no variation across wide N cycling gradients 

suggesting a fundamentally different plant-soil interaction.

We also examined the potential for extending observed field relationships to the 

entire region using a high-quality data set of high spectral resolution remote sensing, 

obtained from NASA’a AVIRIS instrument (Airborne Visible and InfraRed Imaging 

Spectrometer). Cloud-free AVIRIS data from 56 scenes covering the White Mountain 

National Forest were successfully calibrated to canopy ligninrN ratios and applied to 

prediction o f  C:N ratios in soils. Validation at 10 independent plots showed a reasonable 

prediction accuracy, but suggest some overprediction at the low end o f the range. 

Preliminary regional estimates o f soil C:N ratios indicate that 63% o f the region’s land
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area falls below a value of 22. This value is significant because our field data, as well as 

data from other studies, have identified this as a threshold for the onset o f nitrification. 

Below 22, we expect increasing, but variable rates o f  nitrification, depending on other 

factors such as disturbance and species composition.

Introduction

The production o f nitrate in forest soils represents a key ecological process that 

can affect the chemistry and nutrient capital o f soils and drainage waters and can alter the 

dynamics of plant communities. Following disturbances that reduce plant demand for 

available N, production and leaching of nitrate can lead to depletion of soil N pools and 

elevated NO3' concentrations in streams (Bormann and Likens 1979, Vitousek et al.

1979, Aber et al. 1997). In intact ecosystems, nitrate production is often associated with 

reduced plant demand relative to N supply, for example, as biomass accumulation 

declines (Bormann and Likens 1979, Vitousek and Reiners 1975 Aber et al. 1997), or as 

excess N accumulates from high levels of atmospheric N deposition (e.g. Aber et al.

1989, Gunderson et al. 1998). In all cases, NO3' production is considered an important 

issue because o f the potential for elevated NO3' concentrations and acidity in surface 

waters and concurrent removal o f  base cations from soils (e.g. Aber et al. 1989, Murdoch 

and Stoddard 1992, Bailey et a. 1996, Peteijohn et al. 1996, Likens et al. 1996).

Despite considerable attention given to studying patterns o f nitrogen cycling and 

nitrate production during forest development, our understanding o f environmental 

controls remains incomplete and our ability to predict and/or detect spatial patterns across 

forested landscapes is presently very limited. The identification o f simple and observable
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indicators o f forest nitrogen status would greatly enhance our ability to characterize 

spatial patterns and would help resolve relationships with possible environmental drivers. 

A large and growing body of literature has documented linkages among foliar chemistry, 

decomposition, N cycling and productivity in forest ecosystems (e.g. Fogel and Cromack 

1977, Melillo et al. 1982, Pastor et al. 1984, McClaugherty and Berg 1987, Aber et al. 

1990, Stump and Binkley 1993, Scott and Binkley 1997), which raises the question of 

whether foliar chemistry might serve as such an indicator.

At local to continental scales, N mineralization has been related to foliar and 

Iitterfall N (Yin 1992, NadelhofFer et al. 1985), lignin (Wessman et al. 1988) and the ratio 

o f lignin to N (Stump and Binkley 1993, Scott and Binkley 1997). Aboveground 

production has been related to Iitterfall N (Pastor et al. 1984, NadelhofFer et al. 1985), 

foliar N content or concentration (Pastor et al. 1984, Smith 2000) and N mineralization 

(Pastor et al. 1984, Reich et al. 1997). Experimental N additions in the United States and 

Europe have shown that forest response to N amendments consists o f simultaneous 

changes in N mineralization, soil C:N ratios, nitrification potential, productivity and 

foliar N concentrations (Magill et al. 1996, 1997, Gunderson et al. 1998). Concurrent 

with these changes are increased potential for NO3'  losses to ground and streamwater, a 

response that has been related to both soil C:N ratios (Dise and Wright 1995, Gunderson 

et al. 1998) and foliar N concentrations (Tietema and Beier 1995).

Although foliar chemistry is not an easily observable property across broad spatial 

scales, the capacity for detection with high spectral resolution remote sensing has been 

recognized for some time (Wessman et al. 1988) and this ability has been identified as a 

useful approach to studying terrestrial biogeochemical cycles (Schimel 1995). Further,

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



recent advances with hyperspectral remote sensing capabilities (ACCP 1994, Martin and 

Aber 1997) and development and launch o f space-borne sensors (e.g. NASA’s Hyperion 

instrument on the EO-1 platform) make this a reasonable avenue for further investigation.

In this study, we use spatially extensive field measurements to examine 

relationships among canopy chemistry, soil C and N ratios and soil N transformations 

across the White Mountain National Forest in New Hampshire, USA. Results are 

presented with respect to variation in species composition and disturbance history. We 

also present estimates o f soil C:N ratios for the White Mountain region, derived by 

combining observed field relationships with image data collected by an airborne high 

spectral resolution remote sensing instrument.

Methods 

Study Area

The White Mountain National Forest covers 3650 km2 in central New Hampshire 

and includes areas o f low, rolling hills as well as large mountains that extend above 

treeline. Forests range from 200 to 1400m in elevation. The White Mountain region 

includes a wide variety o f vegetation and site types, representative of those present across 

most o f the northeastern U.S. These types range from oak-pine valley bottoms on 

lacustrine and glacio-fluvial substrates, to northern hardwood mid-slopes on basal and 

ablation glacial tills, to spruce-fir on upper mountain slopes and alpine tundra mountain 

tops. Soils are coarse-textured spodosols and inceptisols formed on glacially-deposited 

tills or sandy outwash with shallow bedrock histosols on upper slopes. Soils have high 

stone contents and this property often exerts equal or greater influence on water holding
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Figure 4.1. Map o f  the White Mountain National Forest showing locations o f sample 
sites. Stars = hardwood stands, circles = conifers; closed symbols are stands that were 
historically affected by logging or fire, open symbols are undisturbed.

capacity than texture.

For the current analysis, a network o f 30 plots were established for sampling of 

foliar chemistry and soil nitrogen fluxes (Figure 4.1). Plot selection was aimed at 

capturing a range of forest communities and disturbance histories, although these factors 

are often interdependent. Plot elevations ranged from approximately 300 to 800 meters. 

Major tree species represented include paper birch (Betula papyrifera Marsh.), yellow 

birch (Betula alleghaniensis Britt.), red maple (Acer rubrum  L.), white ash (Fraxinus 

americana L.), sugar maple (Acer saccharum L.), American beech (Fagus grandifolia
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Ehm.), eastern hemlock (Tsuga canadensis L. Carr.), red spruce (Picea rubens Sarg.) and 

balsam fir (Abies balsamea (L.) Mill.). Most plots contained mixtures o f  two or more

species.

Prior to European settlement, the most common natural disturbances in the region 

were wind and fire, which occurred at intervals of hundreds to thousands of years 

(Lorimer 1977, Fahey and Reiners 1981). Between approximately 1850 and 1920, large 

tracts o f forest were intensively logged and severe slash fires followed by heavy soil 

erosion were common (Chittenden 1905). Public concern led to the Weeks Act in 1911 

which allowed federal purchase o f  the White Mountain National Forest, largely as a 

means o f reducing soil erosion and river sedimentation. At present, most of the region 

has returned to forest, but many areas continue to be harvested as successional forests 

mature.

When land was purchased for the National Forest, forest surveyors mapped forest 

type (hardwood, spruce-fir, or subalpine) and condition, making reference to the locations 

of major disturbances that had occurred. Major categories o f forest condition included 

undisturbed forest, lightly culled, second growth and cutover (both o f  which indicate 

large areas o f clearcut forest) and burned (which often indicate slash fires that occurred 

after major cutting activities). Following Goodale and Aber (2000), who found 

differences in nitrification and soil C:N ratios between old growth and disturbed sites, but 

not between areas that had been burned versus those that had been logged, we grouped 

logged and burned sites into a single class. For stands with minimal human disturbance, 

we grouped sites determined to be old growth, of which there were relatively few, with 

plots that were mapped as lightly culled, which represent areas where low-intensity
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selective cutting occurred. Today, these areas share many structural characteristics with 

old growth stands, suggesting that disturbance was either absent or relatively minor 

compared to the large scale clear cuts and fires that occurred elsewhere. We refer to this 

group as “undisturbed” for simplicity, although “undisturbed and minimally disturbed” 

would be more accurate. In all, 14 plots were determined to be undisturbed or minimally 

disturbed (10 hardwood and 4 conifer) and 16 plots had been heavily disturbed by 

logging and/or fire (9 hardwood and 7 conifer).

Field Sample Collection and Analysis

Soils. Rates o f  N mineralization and nitrification were measured using the 

polyethylene bag method (Nadelhoffer et al. 1983, Pastor et al. 1984) and a combination 

o f field and laboratory incubations (Zak et al. 1989). The widespread distribution o f  plots 

in remote locations prevented us from conducting repeat in situ incubations on all plots. 

As an alternative, we used 4-week laboratory incubations, and on a subset o f ten plots, we 

conducted annual measurements using successive field incubations.

Following the results o f Zak et al. (1989) and Carlyle et al. (1998), we anticipated 

that within plots where both lab and annual field incubations were performed, a 

correlation between the two would provide confidence that the laboratory method 

adequately captured spatial variability and would allow estimation o f annual cycling rates 

on all 30 plots. A similar data set collected for a related study at the Bartlett 

Experimental Forest in the central White Mountains allowed us to expand this 

comparison from 10 to 24 plots (Ollinger unpublished data, Goodale and Aber 2000). All
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groups o f  plots (Bartlett, WMNF field and WMNF lab) contain all major forest types 

included in this study.

For plots where annual N cycling measurements were made, soils were incubated 

in situ for 5-6 week periods throughout the 1998 growing season, with one over-winter 

incubation from October 1998 to May 1999. Two plots were sampled during the 1997 

growing season through May o f 1998. Two other plots that were sampled in both years 

(1997 and 1998) revealed little between-year variation, so we included the 1997 plots in 

the present analysis. For each incubation, net N mineralization and net nitrification were 

determined as the increase in NH4 -N plus NO3-N (mineralization) or NO3 -N 

(nitrification) relative to an initial soil core, taken from alongside the incubated core. Soil 

cores were 6  cm in diameter and included the organic horizon plus the top 1 0  cm of 

mineral soil, unless restricted by impenetrable soil material or bedrock. Within each 0.1

ha plot, five subplots were established and, for each sample period, three cores were 

incubated at each subplot making a total of 15 soil cores per plot.

For laboratory incubations, samples were collected during mid July using the 

same plot design and sampling methods as used for annual measurements, but soil cores 

were incubated for 4 weeks in the laboratory at approximately 22°C before KC1 

extraction and chemical analysis. A limitation of the buried bag method is that core 

moisture contents remain constant throughout the incubation period, whereas moisture 

levels in natural soils typically fluctuate. We attempted to avoid the potential bias of 

extreme conditions by sampling when soils were moist, but not saturated (not within 2  

days of a hard rainfall event).
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After collection (initial samples) or incubation (field and lab incubated samples), 

samples were separated into organic and mineral horizons, homogenized and composited 

by subplot. Approximately 10 g o f each sample were then extracted in 1 mol/L K.C1 for 

48 hours. A subsample was oven dried at 105°C for determination o f soil moisture 

contents. Soil extracts were filtered and analyzed for NH4+ and NO3' on a Bran &

Leubbe TrAAcs 800 autoanalyzer (Bran & Leubbe, Buffalo Grove, Illinois, USA). Net 

N mineralization was calculated as the difference between extractable N R ^ N  plus NO3 - 

N in the incubated versus initial samples. Net nitrification was determined similarly, but 

using extractable NO3 -N only. Total carbon and nitrogen contents were determined for 

both organic and mineral soils using a Fisons CHN Elemental Analyzer (Fisons 

Instruments, Beverly Massachusetts, USA). Organic and mineral soil samples were also 

analyzed for pH in 0 .0 IN CaCU

Values presented for all soil variables are plot-level averages. Values presented 

for N mineralization and nitrification are totals for organic plus mineral soil unless 

otherwise noted.

Foliar Chemistry. Shotguns were used to obtain upper and mid canopy foliage 

from three to five trees each o f all dominant and co-dominant species on a plot. Green 

foliage samples were obtained in late July to coincide with the peak of the growing 

season and with overflights o f an airborne remote sensing instrument. Samples were 

dried (70°C) and ground through a 1 mm mesh sieve and analyzed for nitrogen, lignin 

and cellulose using previously tested methods o f near-infrared spectroscopy (McLellan et 

al. 1991, Bolster etal. 1996).
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The relative abundance of each species by fraction of leaf area in the canopy was 

determined using a camera point sampling technique developed by Aber (1979). Vertical 

transects were sampled by varying the focal plane o f  a 35 mm camera and recording the 

presence of foliage by species from the bottom to the top of the canopy. The method 

weights detection o f  foliage in the upper canopy more heavily than in the lower canopy to 

account for the higher probability that upper canopy foliage will be obscured. Species 

abundance values determined in this way were used to weight species-specific foliar 

chemistry measurements in calculating whole-plot canopy chemistry. Plot-level canopy 

chemical concentrations were calculated as the mean of foliar concentrations for 

individual species, weighted by fraction o f canopy foliar mass per species. Fraction of 

species by leaf area was converted to fraction by weight using measured specific leaf 

weights for each species.

We used this method o f quantifying canopy composition instead o f a simpler 

approach based on basal area, because the latter approach was found to yield less 

accurate results, particularly in stands of mixed species composition. The accuracy of the 

camera point method was validated against canopy composition measurements obtained 

directly from leaf litter collections (Smith 2000).

Remote Sensing. High spectral resolution remote sensing image data were 

obtained for the White Mountain region using NASA’s Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS). The AVTRIS instrument is flown aboard an ER-2 

aircraft at an altitude o f 2 0 , 0 0 0  m and measures upwelling radiance from the solar 

reflected spectrum in 224 contiguous channels from 0.4 to 2.5 pm with a spectral 

resolution of 0.01 pm (Green et al. 1998). On August 12, 1997, we obtained fifty-six
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contiguous 1 0 x 1 0  km scenes with a spatial resolution o f approximately 17 m covering the 

entire White Mountain region under cloud-free conditions. On the ground, foliar 

chemistry data were collected at 81 plots (using the same methods described in the 

preceding section) within 3 days o f the AVIRIS overflight. Although image data from 

the same year as our soil analyses would be ideal, complete coverage could not be 

obtained in 1998 due to cloud cover. Multi-year foliar chemistry data for a number of 

plots indicated that between year differences were minimal, particularly with respect to 

the degree of spatial variation encountered over the region (Smith 2000).

AVIRIS at-sensor radiance data were transformed to apparent surface reflectance 

using the ATREM model (Gao et al. 1992). After geometric registration, AVIRIS 

reflectance spectra for 2 x2  pixel areas covering each sample plot were extracted. 

Reflectance spectra were converted to absorbance prior to calibration in order to linearize 

spectral response to chemical constituent concentration. A first-order derivative 

transformation was then applied to each absorbance spectrum in order to resolve 

overlapping spectral peaks and to remove baseline offsets, caused by varying sun-sensor- 

target geometry over the study area (Hruschka 1987).

Partial least squares (PLS) regression was used to relate AVIRIS spectral 

response to canopy chemistry data for each sample stand. PLS regression methods 

reduce the full spectrum data to a smaller set of independent latent variables, or factors, 

with the constituent concentration data used directly during the spectral decomposition 

process (Shenk and Westerhaus 1991). As a result, full spectrum wavelength loadings 

for significant PLS factors, from which regression coefficients are derived, are directly
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related to constituent concentration and thus describe the spectral variation most relevant 

to the modeling o f variation in the chemical data.

Results 

Soil N transformations

At plots where mineralization and nitrification rates were measured using both lab 

incubations and successive field incubations, there was a strong correlation between the 

two methods (Figure 4.2). Similar results were obtained from a related study at the 

Bartlett Experimental Forest located in the central White Mountains (Ollinger 

unpublished data, Goodale and Aber 2000). Together, these relationships indicate that 

lab incubations were a good measure o f relative N cycling across the study area and can 

be reliably used to estimate annual rates. Because annual rates are more easily compared 

to results published elsewhere, we used these trends to extrapolate lab incubation data to 

annual N transformation rates and will refer to these values throughout the remainder of 

this paper. Relationships reported between soils and other variables (e.g. foliage) are 

qualitatively similar using either lab or field N cycling data given the linear relation 

between the two.

Across all plots, mean annual N mineralization ranged from 32.0 to 162.2 kg ha' 1 

yr' 1 (Table 4.1). In general, mineralization was lowest on plots dominated by red spruce 

or hemlock and highest in northern hardwood-dominated plots, although considerable 

variation was observed in both groups. Nitrification ranged from near zero to 135.9 kg 

ha' 1 yr'1, or from 0 to 84 percent of N mineralized, and was strongly related to N
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Figure 4.2. Comparison o f  lab incubated (kg N  ha' 1 2 8 d l)  and annual fie ld  measured 
(kg N  ha' 1 y r 1)  rates o f a) net N  mineralization and b) net nitrification. The 
mineralization relationship is described by Nmin(annual) = 2.44 x  Nmin(lab) - 5.94 
(R2 = 0.88). The nitrification relationship is Nitr(annual) = 2.52 x  Nitr(lab) +0.60 (R2

= 0.96).
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Table 4.1. P lot characteristics and plot-level mean concentrations o f  fo lia r nitrogen 
and lignin.

Site Community Type Disturbance
History

Foliar Chemistry 
%N %Lignin

10 Sugar Maple Select Cut 2.35 19.09
14 Sugar Maple Select Cut 2.13 18.69
7 Sugar Maple Uncut 2.27 19.28
6 Sugar Maple/Beech Select Cut 2.13 21.13
5 Sugar Maple/Beech Select Cut 1.87 20.42
13 Beech/Maple/Birch Uncut n.a. n.a.
12 Beech/Sugar Maple Uncut n.a. n.a.
9 Beech/Yellow Birch Uncut 2.13 23.82
11 Beech/Maple/Birch Uncut n.a. n.a.
8 Beech Select Cut 2.36 23.02

29 Sugar Maple Heavy Logging 2.10 17.9
26 Beech/Yellow Birch Logged/Burned 2.21 25.37
24 Sugar Maple/Birch Heavy Logging 2.28 18.41
21 Sugar Maple/Beech Logged/Burned 1.77 17.82
23 Paper Birch/Beech Burned 2.28 21.12
25 Red Maple/Beech Heavy Logging 2.27 21.59
20 Red Maple/Beech/Birch Heavy Logging 1.61 20.14
22 Sugar Maple/Yellow Birch Heavy Logging 2.01 21.93
27 Beech/Red Maple Logged/Burned 1.72 22.79
3 Red Spruce Select Cut 1.38 23.18
2 Hemlock Uncut 1.22 15.97
4 Red Spruce Select Cut 1.49 25.75
1 Red Spruce Select Cut 1.17 23.96

30 Balsam Fir Heavy Logging 1.75 23.62
19 Balsam Fir/Red Spruce Heavy Logging 1.54 23.59
28 Balsam Fir/Red Spruce Heavy Logging 1.54 24.07
15 Red Spruce/Hemlock Heavy Logging 0.98 22.03
16 Hemlock/Red Sprcue Logged/Burned 1.05 19.87
18 Red Spruce Burned 1.33 24.07
17 Red Spruce/Hemlock Logged/Burned 1.1 22.65

n.a. = data not available
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Table 4.1, continued. Soil C:N ratios o f the forest floor, top 10 cm o f mineral soil and 
total fo r organic plus mineral soil. Values are plot-level means and standard errors.

_________  ______________C:N Ratio _________

Site Forest Floor Mineral Total

Mean S.E. Mean S.E. Mean S.E.

10 16.5 1.16 13.4 0.31 13.6 0.32
14 17.2 1.52 15.6 1.87 16.3 1.66
7 18.1 0.70 16.0 0.78 16.5 0.57
6 18.7 0.90 15.6 0.70 16.5 0.40
5 18.6 0.18 17.7 0.11 17.9 0.12
13 21.2 0.89 18.2 0.70 18.6 0.61
12 20.4 0.79 17.5 0.93 18.9 0.85
9 17.9 0.05 19.6 0.38 19.2 0.25
11 19.3 0.39 19.3 0.53 19.3 0.39
8 23.3 0.74 20.2 1.28 21.4 1.21

29 15.9 0.31 13.1 0.41 13.5 0.37
26 20.0 0.77 16.5 0.30 18.2 0.56
24 20.7 0.50 18.6 0.99 19.1 0.86
21 21.2 0.37 19.1 0.98 19.9 0.69
23 20.6 0.37 19.8 0.79 20.2 0.50
25 21.4 1.07 20.4 0.85 21.1 0.86
20 23.4 0.71 20.1 0.49 21.8 0.58
22 22.7 1.28 21.4 1.16 22.0 0.99
27 25.1 1.04 23.9 1.70 24.2 0.78
3 23.1 0.96 22.6 0.58 22.9 0.74
2 28.8 1.09 26.6 1.36 28.2 1.09
4 31.9 1.00 27.0 1.52 30.2 0.39
1 34.6 1.25 35.3 1.93 33.0 1.26

30 20.7 1.78 21.0 0.97 21.0 1.63
19 22.6 1.61 20.5 0.83 22.1 1.35
28 23.2 1.81 22.9 1.25 23.0 1.56
15 28.9 2.24 22.5 1.93 26.1 1.96
16 33.2 0.91 29.1 1.85 31.8 1.39
18 35.8 1.54 30.7 1.29 34.8 1.40
17 41.1 0.82 31.9 1.53 36.0 0.96
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Table 4.1, continued. Net N  mineralization and net nitrification, calculated by 
combining measured data from 28 day laboratory incubations with the relationship 
between lab and annual values shown in Figure 4.2. Standard errors were calculated as 
proportions from  laboratory incubations applied to estimated annual values and do not 
reflect any additional error introduced by the relationship in figure 4.2.

__________ N Cycling (kg ha'1 yr'1)________

M Uitwraib^iwn Nitrification

Site Mean

uiCO Mean S.E.

10 162.2 21.8 135.9 15.2
14 111.6 14.0 34.0 7.6
7 126.1 22.3 82.2 5.2
6 143.1 42.3 78.8 25.8
5 101.7 13.3 34.8 11.0
13 122.2 23.8 20.7 4.2
12 122.0 11.9 31.9 6.5
9 111.2 8.8 54.1 6.7
11 110.8 6.8 36.8 7.3
8 102.2 9.5 27.1 9.7

29 74.8 11.0 29.1 2.1
26 51.3 15.1 16.5 5.6
24 69.6 11.7 13.7 1.6
21 69.5 10.9 6.2 3.5
23 117.4 9.6 13.3 3.9
25 117.1 11.5 41.2 16.5
20 33.4 7.3 1.9 16.8
22 92.9 7.3 30.7 6.7
27 68.7 11.8 3.4 2.4
3 41.5 9.0 9.1 3.0
2 47.3 14.4 3.4 0.2
4 54.5 14.2 1.5 0.9
1 47.7 13.4 0.2 0.4

30 114.7 8.2 48.2 2.1
19 117.0 16.5 20.3 7.9
28 82.2 17.3 2.9 2.1
15 42.6 10.1 1.6 2.1
16 42.4 6.9 1.5 60.7
18 47.9 9.1 1.1 1.7
17 32.0 7.9 1.4 1.1
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Table 4.1, continued. Soil p H  fo r  organic and mineral horizons. Values are plot-level 
means and standard errors.

______________ Soil pH______________

organic mineral

Site Mean S.E. Mean S.E.

10 3.86 0.03 3.62 0.04
14 4.64 0.08 4.46 0.07
7 3.72 0.11 3.78 0.16
6 4.03 0.28 4.08 0.12
5 3.65 0.07 3.65 0.06
13 3.36 0.04 3.71 0.12
12 3.31 0.06 3.64 0.06
9 3.21 0.04 3.51 0.11
11 3.37 0.04 3.60 0.08
8 3.44 0.10 3.46 0.07

29 4.75 0.13 4.64 0.13
26 3.81 0.09 3.78 0.05
24 3.56 0.05 3.93 0.05
21 3.41 0.06 3.72 0.17
23 3.28 0.06 3.32 0.10
25 3.56 0.04 3.93 0.08
20 3.68 0.18 3.85 0.18
22 3.35 0.07 3.51 0.11
27 3.68 0.14 4.04 0.15
3 3.22 0.09 3.05 0.05
2 n.a. n.a. n.a. n.a.
4 3.03 0.04 3.40 0.11
1 n.a. n.a. n.a. n.a.

30 3.37 0.05 3.39 0.10
19 3.22 0.12 3.54 0.19
28 3.33 0.07 3.09 0.04
15 3.22 0.03 3.34 0.03
16 3.14 0.05 3.50 0.12
18 2.75 0.04 3.27 0.18
17 2.64 0.04 3.40 0.21

n.a. = data not available

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1000.0

w.
100.0

oo
10.0co

«5u
1.0

o0 e 1 -------------------------------------------------------------------------

0  60 120 180

N mineralization (kg ha*1 yr'1)

Figure 4.3. Net nitrification (shown on a log scale) in relation to net N  mineralization 
(FT =0.77, p  <0.001).

mineralization (R2 = 0.77, p < 0.001 for log-transformed nitrification versus N 

mineralization, Figure 4.3).

Within soils, N  mineralization and nitrification were related to soil C:N ratios 

(calculated as total soil N to total soil C across organic and mineral horizons, Figure 4.4), 

but the relationship was stronger for nitrification than for mineralization. For both 

mineralization and nitrification, the observed trends were fitted with exponential 

functions (N mineralization = 277 x  e[-° °°57j:s0lIC:Nl 5 r 2 = 0.51, p < 0.001; nitrification = 

1996 x e[-° 2343 R2 = 0.73, p < 0.001), but both could also be described as linear

below a threshold C:N ratio o f approximately 22. Above this threshold, nitrification rates 

remained at or close to zero. These trends were observed within individual soil horizons, 

but were stronger in mineral than organic soils (Table 4.2). Soil C:N ratios were linearly 

related to pH, although the relationship was stronger in organic than mineral horizons

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

atjg
c
s
5
s

oo
60

10 20 30
Soil C:N Ratio

40

b. 180

>»

at
120

c
£
s£*c*

60 —

10 20 30 40
Soil C:N Ratio

Figure 4.4. Soil C:N ratios (forest floor  + top 10 cm mineral soil) in relation to a) net N  
mineralization and b) net nitrification.

(Table 4.2). Soil pH was not related to N mineralization in either organic or mineral 

horizons, and was only weakly related to nitrification in the organic horizon.

Within hardwood-dominated plots, there were significant differences in N cycling 

rates between plots with different disturbance histories (Figure 4.5a, differences in mean 

values tested with one-way analysis o f variance at p < 0.05). Plots that were undisturbed 

had significantly higher rates of N mineralization and nitrification and slightly but

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.2. Correlation matrix fo r  relationships within and between soils horizons (O = 
organic, M  = mineral) among N  mineralization (Nmin), nitrification (Nitr.), soil C:N  
ratios and soil pH. Regression R2 values are shown with P  values in parentheses, n.s. = 
not significant at p  < 0.05).

Variable Nmin-M Nmin-O Nitr.-M Nitr.-O CN-M CN-O pH-M

Nmin-O n.s.

Nitr.-M 0.8 
(<0.001)

n.s.

Nitr.-O 0.35
(0.001)

0.3
(0.003)

0.60 
(<0.001)

CN-M 0.45 
(<0.001)

n.s. 0.53 
(<0.001)

0.28
(0.004)

CN-O 0.72 
(<0.001)

0.11
(0.05)

0.69 
(<0.001)

0.035
(0.001)

0.89 
(<0.001)

pH-M n.s. n.s. n.s. n.s. 0.33
(0.002)

0.22
(0.015)

pH-O n.s. ns 0.13 0.15 0.62 0.51 0.73

significantly lower soil C:N ratios than heavily disturbed sites. For undisturbed sites, N 

mineralization and nitrification averaged 121.3 and 58.6 kg ha ' 1 yr'1, respectively, while 

soil C:N ratios averaged 17.82. For disturbed sites, N mineralization and nitrification 

averaged 77.18 and 17.35 kg ha"1 yr'1, respectively, while soil C:N ratios averaged 20.00. 

It should be noted that we did not attempt to control for differences between sites other 

than disturbance history and forest type, and factors such as soil texture could explain 

some o f the observed differences in N cycling. However, it is noteworthy that N 

mineralization rates on undisturbed plots showed relatively little variation, while 

disturbed plots had consistently lower values and exhibited much greater variability.
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Figure 4.5. Comparison o f  mean N  mineralization and nitrification (kg ha ' 1 y r 1) and 
soil C:N ratios between undisturbed (old growth or lightly culled) and disturbed (heavily 
logged and/or burned) stands fo r  a) deciduous and b) coniferous forests. Error bars 
show standard deviations.

Within conifer-dominated stands, disturbance effects were the reverse o f  those 

observed in hardwoods; N mineralization and nitrification rates were higher in stands that 

had been disturbed than in those that had not (Figure 4.5b). However, our sample size for 

undisturbed conifers was small (n = 4) and these differences were not significant. Soil
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C:N ratios were nearly identical between the two groups, averaging 28.58 and 28.12 in 

undisturbed and disturbed sites, respectively.
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Figure 4.6. Net nitrification in relation to mass-basedfoliar N  concentrations for 
disturbed and undisturbed stands. The relationship is shown on a log scale due to the 
nonlinear response o f nitrification (see inset). The trends are described by Log(N03) = 
2.75 (folN) - 2.96 (R~ = 0.81, P < 0.001) fo r  undisturbed stands and Log(N03) -  
2.94(FolN) - 4.28 (R2 = 0.63, p  < 0.001) fo r  disturbed stands.

Foliar chemistry and soil N status

Mass-based canopy nitrogen concentration ranged from 1.61 to 2.36 % in hardwood- 

dominated stands and from 0.98 to 1.75 % in conifer-dominated stands (Table 4.1). 

Lignin concentrations ranged from 17.82 to 25.38 % in hardwood stands and from 15.97 

to 25.75 % in conifer stands. Conifer stands typically had higher lignin than deciduous
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Table 4.3. Stepwise regression results showing best-fit predictions o f soil N  variables 
against fo liar chemistry along with slope and intercept dummy variables fo r  
disturbance history andforest type. Data shown are coefficients fo r each variable (p 
values in parentheses) and overall regression R2.

Foliar ChemiHrv DlHurtoanca Forest Type
%N Lignin/N slope intercept alope intercept R2 (P)

ALL PLOTS:

Soil C:N Ratio 1.212 
(<0.001)

0.71 
(<0.001)

N Mineralization 86.760 
(<0.001)

-11.421
(0.026)

21.053
(0.044)

0.68 
(<0.001)

Nitrification (log) 2.372 
(<0.001)

-1.003
(0.016)

0.73 
(<0.001)

HARDWOODS:

Soil C:N Ratio 1.320
(0.040)

0.47
(0.040)

N Mineralization 64.667
(0.029)

-35.381
(0.02)

0.63
(0.002)

Nitrification (log) 2.556
(0.008)

-1.220
(0.01)

0.70 
(<0.001)

CONIFERS:

Soil C:N Ratio -14.52
(0.040)

0.40
(0.040)

N Mineralization 96.392
(0.003)

0.63
(0.003)

Nitrification (log) 3.700
(0.021)

0.52
(0.021)

stands, with the exception of a plot dominated by eastern hemlock, a species that has 

much lower foliar lignin concentrations than most other conifers. Canopy N 

concentrations showed a strong linear correlation with soil C:N ratios (R2 = 0.65, p < 

0.001) and were also related with both N mineralization and nitrification. For N 

mineralization, the trend was best fit with a linear regression (R2 = 0.54, p < 0.001). For 

nitrification the trend was nonlinear and was best fit with regression of log-transformed 

nitrification rates against foliar %N (R2 = 0.67, p < 0.001).
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Further, relationships between foliar chemistry and nitrification showed different 

patterns between disturbed and undisturbed sites, with undisturbed sites having higher 

nitrification per unit foliar N than previously disturbed sites (Figure 4.6). Differences in 

these trends were significant at p < 0.05 using regression of log-transformed nitrification 

rates on foliar N concentrations with inclusion o f slope and intercept dummy variables 

for disturbance history (Table 4.3). If  only hardwood stands were considered, the 

disturbance interaction increased the regression R2 from 0.51 to 0.70 over using foliar 

nitrogen alone, indicating that differences in nitrification between disturbance treatments 

were not clearly reflected in foliar N concentrations. Foliar nitrogen was the best 

predictor o f  nitrification among conifers, although our sample set for conifer stands was 

limited and nitrification rates were generally much lower than in hardwood stands.

Relationships between foliar chemistry and N mineralization showed similar 

differences across disturbance treatments and also differed between coniferous and 

deciduous forests, with conifers having lower foliar N concentrations at a given N 

mineralization rate than hardwoods (Table 4.3). Foliar lignin was not related to N 

mineralization, but was weakly correlated with soil C:N ratios (R2 = 0.13, p = 0.06) and 

the ratio o f lignin to N improved the fit slightly over using foliar N alone (R2 increased 

from 0.65 to 0.72, Figure 4.7). Although soil C:N ratios differed between undisturbed 

and disturbed stands, there were no differences in the relationships with foliar nitrogen or 

lignin to N ratios suggesting that disturbance effects on C:N ratios were reflected in foliar 

chemistry.

Despite this, differences in plot-level foliar N concentrations between disturbance 

regimes were relatively small and not significant. Among hardwoods, foliar N averaged
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Figure 4.7. Soil C:N ratios in relation to mass-based foliar lignin:N ratios (R2 = 0.72, p  
< 0.001, SoilC.N = 1.2118 (Foliar Lig.N) + 6.7717).

2.18% in undisturbed stands and 2.04% in disturbed stands, but again, this difference was 

not significant. That foliar chemistry appeared to capture disturbance effects on C:N 

ratios, but not N mineralization or nitrification may stem from the small magnitude o f  

change in C:N ratio and the non-linearity of trends in N cycling, especially nitrification. 

Similarly, conifer foliar N averaged 1.32% and 1.35% in disturbed versus undisturbed 

stands, differences that were not significant.

Species interactions with N cycling and foliar chemistry

Another factor to consider in explaining variability surrounding trends between N 

cycling and foliar chemistry is the concurrent effect o f  species composition, which 

normally changes over the course of succession, and in our study, differed between
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Table 4.4. Fractional species abundance in the canopies o f  sample plots by disturbance 
and forest type. Species included are: AB  = American beech, BF  = balsam fir, EH  = 
eastern hemlock, Pb = paper birch, R M  = red maple, SM  = sugar maple, RS = red 
spruce and YB = yellow birch. Other species that occurred at low frequencies included 
white ash, mountain ash and striped maple.

AB BF EH PB RM SM RS YB Other

Undisturbed
Cut/Burned

0.30
0.16

0.00
0.02

0.00
0.07

Hardwood
0.03 0.03 
0.15 0.12

0.47
0.28

0.05
0.02

0.08
0.11

0.04
0.08

Undisturbed
Cut/Burned

0.01 
0.01

0.09
0.26

0.25
0.12

Conifer
0.05 0.07 
0.08 0.04

0.00
0.02

0.49
0.42

0.01
0.04

0.03
0.01

disturbed and undisturbed sites (Table 4.4). Among deciduous forests, disturbed stands 

had greater overall canopy diversity than undisturbed stands, with mixtures o f sugar 

maple and beech, early to mid successional species such as paper birch and red maple, 

and a moderate presence of conifers (22 % on average). In undisturbed deciduous stands, 

overall canopy diversity was lower, conifers were less abundant in the canopy and sugar 

maple and/or beech had become dominant.

These differences are important because there were significant interactions 

between N cycling and the abundance o f some tree species in the canopy, with sugar 

maple in particular showing a significant positive correlation with N mineralization and 

nitrification and a negative correlation with soil C:N ratios (Table 4.5). Because sugar 

maple abundance is related to disturbance history, it is difficult to assess whether trends 

in soil properties reflect the singular effects o f one o f  these or are the result o f  an 

interaction between the two, i.e. whereby disturbance alters the length o f time over which 

a particular plant-soil feedback can occur. However, an analysis for deciduous stands
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Table 4.5. Regression coefficients (P values in parentheses) fo r  relationships between 
species abundance in the canopy and soil C:N ratio (forest floor  + mineral soil), net N  
mineralization and net nitrification (kg ha'1 y r ' )  fo r  three species that exhibited 
significant trends across hardwood (sugar maple) and conifer (red spruce and balsam 
fir) plots sampled.

Sugar Maple (n = 12) Had Spruce fn = 10) Balaam Fir (n = 8) 
coef- (P) R* coal. (P) R*______coef. (P) R2

C:N Ratio -14.69 0.62 10.75 0.29 -18.03 0.46
(0.01) (0.08) (0.02)

Net N Min 82.323 0.35 -83.356 0.43 107.665 0.51
(0.04) (0.03) (0.03)

Net Nitr 3.757 0.53 -3.604 0.34 4.376 0.51
-0.01 -0.09 0.05

using stepwise linear regression o f log transformed nitrification rates against foliar 

nitrogen, percent sugar maple in the canopy and a disturbance history interaction term 

indicated that disturbance history explained a greater amount o f variation than did sugar 

maple abundance, which was not significant in the combined regression (R2 = 0.70, Table 

4.3), but was significant when the disturbance interaction variables were left out. This 

should not be taken to suggest that variation in nitrification is caused solely by direct 

disturbance effects, irrespective o f associated changes in species composition, but it does 

suggests that there is at least some effect of disturbance that is not also explained by the 

increase in sugar maple.

Other species whose abundance in the canopy was correlated with soil 

characteristics were red spruce and balsam fir. Red spruce was inversely related with N 

mineralization and nitrification, and positively related with C:N ratios (Table 4.5).
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Trends for balsam fir were opposite those o f  red spruce, being positively related to N 

mineralization and nitrification and negatively related to soil C:N ratio. Although 

nitrification was generally low among conifer stands, ranging from near zero to 

approximately 24% o f N mineralized (Table 4.1), the percent o f the canopy occupied by 

balsam fir was the strongest overall correlate o f log-transformed nitrification rates, 

explaining 51% o f the observed variation within conifer stands (R2 = 0.51, p < 0.04). 

Because balsam fir also had the highest foliar N concentration among conifers, these 

trends were also reflected in patterns o f foliar chemistry (Table 4.3).

Foliar N concentrations also exhibited interesting trends within and between 

species. For sugar maple, red maple, American beech and yellow birch, but not paper 

birch, foliar N increased with increasing N mineralization rates. Further, these trends 

showed distinct differences between species (Figure 4.8a). Yellow birch had the highest 

foliar N concentrations, followed by American beech, red maple and sugar maple. These 

trends were pronounced enough that sugar maple and red maple growing on rich sites 

often had foliar N  concentrations similar to those o f birch and beech on poorer sites. In 

addition, while there were no differences in plot-level foliar chemistry across disturbance 

treatments, there were differences within species. Sugar maple and beech both had 

significantly lower foliar N concentrations in disturbed than undisturbed stands (one-way 

analysis o f variance at P < 0.05). Foliar N concentrations for red maple, yellow birch and 

paper birch also tended to be lower on heavily disturbed sites, but differences were not 

significant.

In contrast to the patterns observed among hardwoods, there were no significant 

trends between foliar N and N mineralization among conifers (Figure 4.8b). Hemlock
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foliage was collected along a relatively small N cycling gradient, but additional data from 

a related study (Ollinger unpublished data) show no change in foliar N along a greater 

range o f N cycling rates.

a. 3

wa
ou.

1  ------  a Yellow Birch o Beech -----
□ Red Maple o Sugar Maple

0 .5 ------ —----------------- - - --------  '
0 60 120 180

N Mineralization (kg ha'1 yf1)

b. 3 ---------------------------------------------------------------

2 j s  o Balsam fir a  Hemlock □ Red spruce

0 J S ----------------------- ----------------------------------------------
0 60 120 180

N Mineralization (kg ha*1 yr*1)

Figure 4.8. Mass-basedfoliar N  concentrations fo r individual species within a) 
deciduous and b) coniferous forests in relation to N  mineralization rates fo r  plots on 
which they were sampled. Relationships were significant at p  < 0.05 fo r  all deciduous 
species except paper birch. Regression R2 values were 0.42 fo r  yellow birch, 0.49 fo r  
beech, o.51 fo r red maple and 0.57 fo r  sugar maple. Trends were significant for  
coniferous species.
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Remote detection o f canopy chemistry and soil C;N ratios

Previous remote sensing analyses have demonstrated that high spectral resolution 

data can be used to estimate canopy nitrogen and lignin concentrations with a high degree 

of accuracy (Wessman et al. 1988, Martin and Aber 1997). Using Partial Least Squares 

regression (PLS), we obtained a 2 factor calibration equation relating AVTRIS spectral 

data to measured canopy lignin:N ratios directly. The equation had a calibration R2=0.69 

and a standard error o f calibration (SEC) of 2.3 or 16.7% o f measured lignin:N ratios 

from Table 4.1. This level of accuracy is within that required to detect important spatial 

patterns over the range of canopy chemistry values experienced (Schimel 1995).

Although greater calibration accuracy has been achieved for single remote sensing scenes 

covering relatively small areas, our calibration included 36 of the 56 scenes that cover the 

White Mountain region.

The ability to detect canopy lignin to nitrogen ratios with a reasonable level of 

accuracy allowed us to extend the relationship in Figure 4.7 to estimate spatial patterns of 

soil C:N ratios across the White Mountain region (Figure 4.9). Although 20 o f  the 30 

plots used in this study were also sampled for foliar chemistry image calibration, the 

remaining 1 0  provide some means of assessing prediction accuracy against independent 

data. A plot o f AVTRIS-predicted versus measured values (Figure 4.10) for these plots 

shows generally good agreement with a standard error o f prediction o f 2.34, or 12.8% of 

observed C:N ratios, but suggests a tendency towards overprediction at the low end o f the 

range. Although we do not consider this small validation exercise to be adequate for such 

a large region, it does provide some confidence that hyperspectral image data can be used
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14 18 22 26 30 34 38

Figure 4.9. Predicted soil C:N ratio fo r  the White mountain National Forest, derived 
by combining the trend in figure 7 with A VIRIS-estimated fo liar lignin:N ratio.

to detect important spatial variability in soils through related patterns in canopy 

chemistry.

Figure 4.11 shows the distribution o f predicted values over the entire White 

Mountain region, indicating that roughly 64% of the area is predicted to fall below 22, 

the observed threshold for nitrate production. Below this, we expect increasing, but 

variable rates o f nitrification depending on additional factors such as disturbance history 

and species composition and perhaps others we have not addressed (e.g. soil mineralogy,
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Figure 4.10. Soil C:N ratios as predicted from A VIR1S imagery (Figure 4.8) in 
relation to measured values at 10 plots that were not used in A VIRIS foliar chemistry 
calibrations. The line shows a 1:1 relationship.
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Figure 4.11. Distribution o f  predicted soil C:N ratios across the White Mountain 
National Forest. Approximately 63% o f  the region contains predicted values below the 
nitrification threshold o f  22. Below that value we expect increasing,nitrification with 
high variability caused by disturbance history and/or other factors that are not 
reflected in fo liar lignin :N ratios.

Hombeck et al. 1997). We view these results as preliminary given the lack of 

comprehensive validation and we anticipate that future improvement in image calibration 

can be achieved by more careful correction for atmospheric effects and within scene sun- 

sensor-target geometry effects (Smith 2000).

TfWn̂ -
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Discussion

Plant-soil interactions

Across the White Mountain study area, patterns o f nitrification in soils were 

strongly related to rates of N mineralization and soil C:N ratios and these were broadly 

reflected in forest canopy chemistry. These results are consistent with previous analyses 

of N cycling and leaf chemistry (most of which have come from the western and mid- 

western U.S.) in demonstrating the coupled nature o f carbon-nitrogen interactions 

between forest canopies and soils (e.g. Wessman et al 1988, Scott and Binkley 1997, 

Ferrari 1999), but are different in that foliar nitrogen and not lignin showed a greater 

degree o f connection with soil N status. This could stem from differences between the 

chemistry o f leaf litter, which has been the focus o f many prior analyses, and that of 

whole-canopy green foliar chemistry, which we have examined here to evaluate its 

potential to serve as an indicator of ecosystem N status and for application with remote 

sensing.

We have also demonstrated that variation surrounding relationships between 

foliar chemistry and N cycling is related to differences in disturbance history. The same 

was not true for relationships between foliar chemistry and soil C:N ratios, indicating that 

foliar chemistry is a good predictor o f C:N ratios across forest types and disturbance 

history gradients. This is due in part to the linear nature o f foliar chemistry-soil C:N 

relationships and the relatively small difference in C:N ratios between disturbance 

regimes. In contrast, nitrification varied more dramatically between disturbance 

treatments and increased exponentially with both foliar N concentrations and soil C:N 

ratios. Despite the relatively strong overall relationship between foliar N and
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nitrification, this non-linearity produces increasing variation at sites with high foliar N 

concentrations and low C:N ratios (see inset o f Figure 4.6).

Although distinguishing cause from effect is an inherent problem in studies o f  

plant-soil interactions, trends between N mineralization and foliar nitrogen concentrations 

within species suggest that some species are responsive to differences in site quality and 

that observed patterns o f N cycling were not simply due to different combinations o f  

species, each with characteristic and implastic leaf traits. The increase in foliar N 

concentrations with increasing rates of N mineralization observed for most deciduous 

species is indicative o f  a positive feedback between plant and soil N status whereby 

plants respond to increased N availability in such a way that can further increase N 

cycling rates; by producing foliage with higher N contents, which leads to faster leaf litter 

turnover, narrower soil C:N ratios and increased N mineralization (e.g. Hobbie 1992).

The higher rates o f N mineralization in undisturbed versus disturbed hardwood stands is 

likely the result of this feedback being reiterated over longer periods o f time than has 

occurred on heavily disturbed sites. This should emphasize the fact that plant-soil 

relations are interactive and can lead to changes in both over time.

These patterns should also be considered with respect to changes in species 

composition since individual species showed distinct patterns o f foliar N along N cycling 

gradients. Sugar maple was the most dominant late successional species in deciduous 

forests among our sample set and yet it had the lowest foliar N concentration of all 

hardwood species examined. Based on this alone, we might expect undisturbed stands 

with high sugar maple abundance to have low foliar nitrogen, wider soil C:N ratios and 

low nitrification rates than early successional hardwood stands. However, sugar maple
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on undisturbed stands had higher foliar N than on disturbed stands, reaching 

concentrations similar to those o f early successional species on disturbed stands with 

lower N cycling rates. This, along with higher foliar N concentrations in co-occurring 

species (e.g. American beech and yellow birch), led to the small, but not significant 

increase in plot-level foliar N in undisturbed stands. The association between sugar 

maple abundance and nitrification is consistent with a number o f recent studies that have 

linked sugar maple abundance with nitrate production (Goodale and Aber 2000, Lovett 

and Reuth 1999, Ferrari 1999, Finzi et al. 1998). In our study, we could not identify an 

effect o f sugar maple that was separate from that o f disturbance history. Others who have 

examined sugar maple more explicitly have indicated a significant species effect that did 

not appear to be related to differences in disturbance history (Lovett and Reuth 1999, 

Ferarri 1999).

In marked contrast to hardwood species, conifers had consistently lower and less 

plastic foliar N concentrations across relatively wide N cycling gradients. These patterns 

suggest a plant-soil interaction for conifers by which litter inputs can cause N cycling 

rates to decline over time (e.g. Pastor et al. 1987, van Cleve et al. 1993). However, the 

association between balsam fir abundance with elevated nitrification might represent 

exception. Although our sample size was relatively small (balsam fir occurred on 8 out 

of 11 conifer plots sampled) and most conifer stands had relatively low nitrification rates, 

balsam fir abundance was the best overall correlate, explaining 55% o f the variation in 

nitrate production among stands dominated by conifers.

There are at least two possible explanations for the trends observed for balsam fir. 

The first is that balsam fir has a positive effect on N mineralization and nitrification,
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relative to other conifer species it coexists with (primarily red spruce). Balsam-fir foliage 

does have relatively high N concentrations among conifers (Figure 4.8), but it also has 

high lignin and has previously been associated with inhibition and not stimulation o f  

nitrification (Olson and Reiners 1983). The second is that balsam fir abundance and 

nitrification both reflect some other site property such as the severity or timing o f past 

disturbance. Balsam fir is adapted to growth in disturbed environments, often occurring 

in areas where wind damage is common (Marchand et al. 1986). If disturbance leads to 

elevated rates of nitrification in these systems, a relationship with balsam fir abundance 

may be observed without implying a causal effect. Sasser and Binkley (1989) studied 

patterns o f nitrogen cycling with stand development in wind-generated fir waves and 

found that nitrification was high following mortality and declined in regenerating stands, 

but then became elevated again in mature stands. These observations could reflect either 

possibility, but in combination with our data, suggest that differences between the foliar 

chemistry-N cycling interactions o f spruce and fir should be considered when making 

generalizations about spruce-fir forest types.

Disturbance History

Differences in N cycling between sites that were heavily impacted by logging

and/or fire and sites that were undisturbed or only selectively cut indicate significant 

long-term impacts of disturbance on present-day rates o f  N  mineralization and 

nitrification. Model analyses have suggested that, in the absence o f disturbance, 

maximum rates o f N cycling would be determined by energy or moisture availability as 

they constrain plant growth and N turnover via organic matter inputs (Schimel et al.

1996, Aber et al. 1997). The fact that undisturbed or lightly cut forests in our study had
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higher and less variable rates o f N cycling may be an indication that these stands have 

reached such a state. Heavily disturbed stands, on the other hand, exhibited lower and 

more variable N cycling rates, presumably reflecting variation in the severity and/or 

timing o f the disturbances experienced.

However, a related analysis of land use history in White Mountain forests found 

no differences in N cycling rates between old growth, cut and burned stands, but did find 

lower C:N ratios and elevated nitrification in old growth stands, consistent with our own 

results (Goodale and Aber 2000). The difference in results for N mineralization could be 

due to several factors. First, Goodale and Aber (2000) located plots adjacent to one 

another across known land use history boundaries. This was useful for reducing variation 

in unrelated factors (e.g. soil type, climate), but may have limited the severity of 

disturbance treatments sampled. We did not attempt to control for site factors, which 

could have introduced an unrecognized bias to our results, but also allowed us to sample 

from areas that may have been more heavily disturbed than areas near the edge of a given 

treatment (for example, if the edge of a bum represents an area where fire was waning in 

intensity). Another possible difference stems from our inclusion o f lightly culled areas 

along with undisturbed stands. The decision to combine these two categories was based 

on current stand structural characteristics and evidence that cutting in these areas was 

very limited. Although the similarity between selectively cut sites and old growth sites in 

terms of current N status suggests that this decision was warranted, it is also possible that 

selective removal o f conifers from some areas could actually have improved site quality 

and led to elevated rates of N mineralization over areas that were truly undisturbed. In 

either case, this discussion should serve to highlight the complexity of issues surrounding

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



disturbance history and the obvious limitations o f summarizing such varied conditions 

into few broad categories.

Finally, a study conducted in the White Mountains by Thome and Hamburg 

(1985) found decreasing nitrification potentials in soils along an old-field 

chronosequence, counter to the findings of both this study and those of Goodale and Aber 

(2000). The decrease in nitrification found by Thom and Hamburg was related to 

declines in soil pH (and increases in soil C:N ratios) from initial values in young stands 

that were relatively high for soils o f the region (e.g. Bormann and Likens 1979). This 

suggests that agricultural practices may have resulted in elevated soil pH and reduced soil 

C:N ratios and that the decline in nitrification potential reflected a return to conditions 

more characteristic of forest soils. Our study did not include agriculture as a disturbance 

treatment and, although nitrification rates were weakly correlated with forest floor pH, 

we did not observe a difference in pH between disturbance treatments.

Collectively, these results indicate that fundamentally different patterns of 

nitrogen cycling with stand development during secondary succession can result from 

differences in initial conditions that, in turn, stem from differences in the nature o f the 

disturbance experienced. Such differences must be carefully considered before making 

generalizations about widespread effects of disturbance and subsequent patterns of 

nutrient cycling during stand development.

Remote detection of canopy chemistry and regional ecological analysis

Early work with hyperspectral remote sensing held much promise for its role in 

analyses of ecosystem biogeochemistry (Wessman et al. 1988). Although there have
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been significant improvements in detector technology and application techniques since 

that time (e.g. ACCP 1994, Asner 1998 ), its use has been relatively limited, owing, in 

part, to the limited availability of hyperspectral image data. Nevertheless, interest in the 

approach has persisted, or even grown, as a result o f the increasing scientific importance 

o f terrestrial carbon and nitrogen cycles (e.g. Schimel 1995), leading to development o f 

new hyperspectral sensors for upcoming orbital platforms (e.g. NASA’s Hyperion on the 

EO-1 platform scheduled for launch in July, 2000).

Whereas previous hyperspectral analyses have been limited to single remote- 

sensing scenes covering relatively small areas, here we have demonstrated that 

applications across large, multi-scene landscapes are also possible. That the observed 

relationship between foliar chemistry and soil C:N ratios was consistent across a range o f 

forest communities and disturbance histories suggests that patterns o f soil C:N ratios 

across complex forested landscapes can be broadly characterized by patterns of canopy 

chemistry. A number o f studies in both Europe and north America have identified soil 

C:N ratios as a key ecological variable and several, in addition to this one, have identified 

C:N ratios o f between 22 and 24 as a critical threshold for nitrification and nitrate 

leaching (McNulty et al. 1991, Emmett et al. 1998, Lovett and Reuth 1999, Goodale and 

Aber 2000). Although our analysis also indicates that ancillary information regarding 

disturbance history, species composition and perhaps other variables will be important for 

making precise estimates o f soil N transformations, the ability to detect fine-scale 

patterns o f foliar chemistry and soil C:N ratios over large areas represents a useful step 

towards conducting regional biogeochemical analyses.
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Whereas this study has focused on canopy chemistry and forest nitrogen status, 

future efforts will examine relationships between canopy chemistry and forest 

productivity. Establishment o f such relationships would greatly enhance our ability to 

use canopy chemistry as a means o f studying patterns o f carbon-nitrogen relations in 

forest ecosystems.

Although high spectral resolution remote sensing cannot replace more 

conventional sensors that provide data over larger areas and at greater frequencies 

continued development o f the approach we have applied here stands to benefit regional 

ecological analyses by making it possible to derive spatially-explicit data that could not 

be attained through even the most ambitious field campaigns nor through conventional 

remote sensing. If  such efforts incorporate rigorous field analyses, they can perhaps even 

compliment broader-scale, coarser-resolution sensors by providing a much needed bridge 

between kilometer-scale grid cells and plot-based field measurements.
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