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ABSTRACT

THE DEVELOPMENT OF RNA PROBE AND RT-PCR ASSAYS FOR THE 
DETECTION OF ENTEROVIRUSES IN SLUDGE

by

Amy E. Moore 

University of New Hampshire, December, 1999

Many wastewater treatment plants generate more sludge than can be disposed of 

by conventional means. The United States Environmental Protection Agency (USEPA) 

has encouraged communities to dispose of sludge by land application. Sludge may 

contain enteric viruses that are known to survive for long periods o f time in sludge- 

amended soil and can travel great distances, potentially contaminating surface and ground 

water.

Standard cell culture methods for the detection of enteric viruses are costly and 

results are not obtained for 30 or more days. The development of methods that provide 

results more quickly and with lower cost are needed.

A 32P labeled RNA probe was developed for the detection o f poliovirus in sludge. 

The probe detected 10 fg o f poliovirus RNA transcripts and 90 pfu of poliovirus type 1 

(LSc). RNA probe and plaque assays were used to evaluate beef extract elution methods 

for the isolation of poliovirus from sludge. Homogenization o f sludge after the addition 

of beef extract powder at a pH of 7.0 resulted in the highest recovery of seeded 

poliovirus. Additionally, proteinase k digestion was found to result in a greater detection 

sensitivity than organic extractions.

x£
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Small reaction volumes and the presence of inhibitors in environmental samples 

have limited the use of the highly sensitive and rapid technique o f RT-PCR. A magnetic 

separation procedure using oligo dT paramagnetic beads was developed to capture 

enterovirus RNA from 900 pi of sample. This method resulted in a 90-fold sample 

concentration, removal of RT-PCR inhibitors from lime stabilized sludges, and a 

detection sensitivity of 5 pfu of poliovirus type I (LSc). Eight lime stabilized sludge 

concentrates were evaluated by RT-PCR with magnetic bead capture and by plaque 

assay. Enteroviruses were not detected by either method.

Results may be obtained from RT-PCR within hours and at a cost much lower 

than the plaque assay. This method could be useful as a rapid screening technique. The 

direct monitoring of pathogens, such as enteric viruses, instead o f the reliance upon 

indicator organisms, may reduce the risks from land application o f sludge and make this 

practice more acceptable to a greater number of communities.

xii
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Introduction

Over 120 viruses are members of a diverse group known as the human enteric 

viruses. The enteric viruses are further divided into groups based on morphological, 

physical, chemical, and antigenic differences (Straub et ah, 1993). All enteric viruses 

replicate in the gastrointestinal tract and are transmitted by the fecal-oral route. Enteric 

viruses are excreted in high numbers by infected individuals for periods of time 

averaging 50 days (Rao, 1986). Enteric viral infections are very common in young 

children. Studies have shown that approximately 10% of children in the United States 

under 15 were excreting viruses (Rao and Melnick, 1986). After the initiation of the oral 

poliovirus vaccine, the most frequent viral isolates from wastewater have been the 

vaccine strains of poliovirus (Rao and Melnick, 1986). It has been estimated that a 

concentration of more than 7000 enteric viruses per Liter is present in wastewater (Straub 

et ah, 1993).

Enteric viruses are a leading cause of gastroenteritis and include hepatitis A and E 

viruses, Norwalk virus, rotaviruses, adenoviruses, reoviruses, astroviruses, and 

enteroviruses. The enterovirus group includes polioviruses, echoviruses, and coxsackie 

viruses. As few as one virus may lead to infection. Myocarditis, meningitis, encephalitis, 

and paralysis may also result from infection with these pathogens, although 

asymptomatic infections are more common. Melnick (1947) calculated the ratio of 

asymptomatic cases from poliovirus infection to paralytic cases to be well over 100:1. In

1
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contrast, during outbreaks of hepatitis A virus, the symptomatic infection rate may be as 

high as 95% (Lednar et al., 1985).

Until the 1930’s viruses were not thought to survive outside of the host and 

poliovirus was not recognized as an enteric pathogen. Before this time, most virologists 

thought the virus entered the body through the nasal passage and proceeded directly to 

the central nervous system (Metcalf, 1995). Re-examination of a report from 1912 by 

Swedish researchers that documented the isolation of poliovirus from the feces of sick 

and healthy people refuted this theory (Metcalf, 1995). Subsequently, poliomyelitis was 

considered an enteric disease (Melnick, 1946).

Spread of poliovirus by people with asymptomatic infections was then 

demonstrated (Rao and Melnick, 1986). Steps to limit fecal contamination in households 

and hospitals were undertaken to minimize exposure to poliovirus. Transmission of 

poliovirus through ingestion of sewage contaminated water was investigated. Poliovirus 

was detected in monkeys after inoculation with environmental samples, yet after 

extensive research, only a few outbreaks o f poliomyelitis have been linked to exposure to 

polluted water (Rao and Melnick, 1986). However, numerous outbreaks from infection 

with other enteric viruses have been reported. Most noteworthy was a viral hepatitis 

epidemic in New Delhi, India where 30,000 people became ill due to contamination of a 

drinking water source with sewage (Melnick, 1957). Following this outbreak, more 

attention was placed on the study of enteric viruses and their transmission in the 

environment.

2
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Source Water Contamination

Improperly handled wastewater can lead to the contamination o f surface and 

ground waters that are used as sources of drinking water. There are an estimated 1 to 15 

million cases o f waterborne microbial illnesses in the United States each year due to 

viruses, bacteria, and protozoa. (Macler, 1996). An estimated 900 to 1800 o f these cases 

result in death (Macler, 1996). This figure is only an estimate because viral 

gastroenteritis is not a reportable illness and many cases and outbreaks are not 

recognized. Additionally, individuals with asymptomatic infections can act as carriers 

and transmit the virus to others who may develop disease (Rao and Melnick, 1986). The 

socioeconomical impact from waterborne disease is great. It has been estimated that the 

cost to the United States is over 19 billion dollars for illnesses with no consultation from 

a physician, 2.75 billion for cases requiring a visit to a physician, and 760 million for 

cases requiring hospitalization (Young, 1996). From 1971-1994, 650 drinking 

waterborne outbreaks and 569,754 cases of illness were reported in the U.S. (Craun, 

1996). Thirty-three percent of waterborne disease cases are associated with surface water 

and 58% with ground water (Craun, 1996). Viruses are the etiologic agent responsible 

for approximately 14% of all waterborne illness. (Craun, 1996)

Surface Water

Surface waters include reservoirs, rivers, and lakes. Untreated or inadequately 

treated wastewater may be discharged from an over-capacity treatment plant directly into 

the water. Some communities collect wastewater and stormwater in combined systems to

3
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be transported to a wastewater treatment plant. However, during times of heavy and 

prolonged rain, the volume of the mixed waste exceeds the capacity of the wastewater 

treatment plant and is discharged to the receiving waters prior to adequate treatment 

(Geldreich, 1990). Pathogens, including enteric viruses, are frequently isolated from 

these combined sewer outfall sites (Geldreich, 1990). Fecal contamination of surface 

water has resulted from wild animals in the watershed area and runoff from farm animal 

waste. Poorly constructed or improperly located sanitary landfills also contaminate 

source waters with fecal material from disposable diapers and pet waste (McFeters,

1990).

Ground Water

Ground water is obtained from underground aquifers and has long been thought 

of safe due to the filtering capacity of the soil layer above it. Therefore, treatment of 

groundwater is typically minimal or nonexistent. Approximately 25% of the United 

States uses groundwater as the source of drinking water. Groundwater-based public 

water systems serve over 110 million people (Macler, 1996) and many residents of rural 

communities obtain drinking water from private individual wells. Occurrence data from 

the American Water Works Association indicate that 60-70% of groundwater sources 

have been contaminated with enteric pathogens (Macler, 1996). Fecal contamination 

originates from the surface or from sewers and septic systems. In one study 20% of 

wells, each with a depth from 1 to 30 meters, contained enteric viruses (Gerba et 

al.,1988). More recently, a study of 250 ground waters found that although many had 

received disinfection, 43% were contaminated with viruses (Abbaszadegan et al., 1998).

4
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Additionally, it has been shown that viruses survive longer in groundwater than in surface 

water or seawater (Yates, 1985).

Treatment of Wastewater 

Primary Treatment

Due to the public health hazard that wastewater poses, The Clean Water Act was 

enacted which required the treatment of wastewater to reduce the numbers of pathogens 

before discharge (Figure 1). The goal of primary treatment is to reduce suspended solids. 

Upon entering a wastewater treatment plant, wastewater flows into a sedimentation tank, 

where solids are allowed to sink to the bottom. The settled material is then classified as 

raw sludge. The sludge is largely liquid in nature with only a three to six percent solid 

content. The composition of sludge is largely organic matter. Approximately 2,500 to 

3,500 liters of raw sludge are generated per million liters of wastewater (USEPA, 1992).

Secondary Treatment

The sludge and effluent are separated and each receives further treatment. 

Secondary treatment of the effluent often involves the use of a trickling filter or activated 

sludge treatment. A trickling filter is a three to six foot layer o f stones over which 

effluent is pumped. Various microorganisms grow on the stones and consume the 

organic matter in the effluent (Rao and Melnick, 1986). Activated sludge treatment is a 

more effective method. The effluent is first pumped into an aeration tank and mixed for

5
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four to five hours while the bacteria contained in the effluent multiply and break down 

organic matter (Rao and Melnick, 1986). It is then transferred to a secondary 

sedimentation tank and remains for 2-3 hours while the biological solids settle. The 

settled material is referred to as activated sludge. The activated sludge contains many 

microorganisms and a portion is returned to the aeration tank to promote further 

consumption of organic material. The unused activated sludge can be added to raw 

sludge. Tertiary treatment such as coagulation, filtration, and disinfection further purify 

the effluent.

Treatment of Sludge

Treatment of wastewater removes pathogenic microorganisms mainly by 

concentrating them in the sludge. Therefore, further processing of sludge is necessary 

prior to disposal. A variety of methods is available and two or more processes are often 

used together. Aerobic and anaerobic digestion are common means to reduce the 

pathogen content o f sludge. Aerobic digestion reduces organic matter to carbon dioxide, 

water, and nitrate nitrogen after 10-40 days of aeration with temperatures ranging from 

10 to 30°C (USEPA, 1992). Anaerobic digestion takes place in a sealed reactor at 

temperatures of 30 to 60°C for 10 to 60 days (USEPA, 1992). Ammonia is produced 

during anaerobic digestion and has been shown to be virucidal (Ward and Ashley,

1977a). Methane is generated during anaerobic digestion and can be used to generate 

power for the treatment plant. Another method is composting, where previously 

dewatered sludge is combined with wood chips or leaves and allowed to decompose. The 

greatest reduction o f pathogens occurs if  a high temperature is maintained in the compost

7
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pile. Viruses are susceptible to high temperature and some sludges are treated by thermal 

processes. Drying sludge is also used as a means of reducing the pathogen content of 

sludge. The water content o f the sludge must be reduced to less than 30% for the process 

to be effective (Ward and Ashley, 1977b). Treatment of sludge with lime (calcium 

hydroxide) also reduces pathogen content. A sufficient quantity of lime is added to 

achieve a pH of 12 or greater. This process has been shown to drastically reduce the 

levels of bacteria and viruses (Grabow et al., 1978; Sattar et al., 1976).

Sludge Disposal 

Disposal Practices

After sludge receives treatment, disposal is necessary. In the past, sludge was 

frequently disposed of in the ocean. However this practice was linked with beach 

pollution and damage to marine organisms and was banned after 1992. Approximately 

20 percent of sludge is incinerated (USEPA, 1992). Incineration significantly reduces the 

volume o f sludge that must be disposed, however the concentration of pollutants 

generated must be carefully monitored. Landfilled sludge is placed in a dedicated area, 

alone or with solid waste, and buried. Forty-one percent o f the sewage sludge disposed 

of by publicly owned treatment works (POTWs) is landfilled with solid waste (USEPA, 

1992). A small number o f POTWs dispose o f sludge in mono fills, which are landfills 

containing only sludge. Surface disposal o f sludge onto dedicated land sites is often 

used. These sites often receive large quantities o f sludge for many years.

8
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Reuse Practices

Land application of raw sewage sludge onto farmland was commonplace before 

the industrial revolution. After chemical fertilizers were developed, land application of 

sludge became unnecessary (Sattar, 1983). Due to rapid growth o f our population, many 

POTWs are over capacity and generate much more sludge than can be disposed of by the 

previously mentioned methods. The USEPA has encouraged all communities to use the 

sludge in a beneficial manner (USEPA, 1992). Many communities apply sludge to land 

as a means of disposal, while also taking advantage o f its nutrient content. Sludge 

contains organic matter and nutrients such as nitrogen and phosphorus that make it useful 

as a fertilizer.

Many communities use sludge on golf courses, median strips, and for covering 

landfills. Sludge has been successfully used in land reclamation o f strip-mined areas 

(USEPA, 1992). Sludge has also been used to re-vegetate forests destroyed by fire and to 

accelerate tree growth for shorter wood production periods. A University of Washington 

study demonstrated a two-fold growth rate increase for trees grown in sludge amended 

soil (USEPA, 1992). The majority of sludge applied to land is used to improve the yield 

of agricultural crops for grazing, animal feed, and food for human consumption. A 

USEPA survey showed that 33% o f the sewage sludge generated in the United States is 

applied to land (USEPA, 1992). This method of sludge disposal is also cost effective. 

The cost of land disposal was found to be 72% lower than incineration (Sattar, 1983).
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Survival of Viruses in Sludge-amended Soil

After sludge is applied to land, the soil matrix serves as a filter for many 

pathogens. Protozoa and bacteria are large enough to be trapped at or near the soil 

surface (Gilbert et al., 1976 and Edmonds, 1976). Sunlight and desiccation eliminates 

these microorganisms. Viruses, however, are much smaller and are not retained by the 

soil on the basis of size. Some viruses may become immobilized at the soil surface when 

embedded within sludge solids (Bitton, 1984). However, the most significant soil 

retention of viruses is caused by the adsorption of viruses onto the soil surface. Survival 

of viruses retained in the soil depends on many environmental conditions including the 

temperature and moisture content, soil microorganisms, characteristics of the soil, 

organic matter content, pH, and ionic strength.

Temperature and moisture

Temperature and moisture are the two most important factors that affect survival 

of viruses in soil. Yeager and O’Brien (1979) found poliovirus type 1 and coxsackie B3 

virus were reduced to undetectable levels in soil after 12 days at 37°C. However at 4°C, 

the viruses were still detectable after 180 days. Straub et al (1992) also demonstrated the 

importance o f temperature and moisture for the survival of viruses in a desert soil. Sagik 

et al (1979) demonstrated that a one-log decrease o f poliovirus 1 occurred after 3 months 

at 4°C, 1 month at 20°C, and less than 1 week at 30°C. Additionally, if  the moisture of 

the soil was lowered from 15-25% to 10%, the time required for a 1 log decrease of 

poliovirus 1 was reduced from 1 month to 1 week. Another study by Bitton et al (1984)
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further demonstrates the importance of moisture for survival o f viruses. They found that 

echo virus and poliovirus survived 35 days in warm wet weather during the summer in 

Florida, but only 8 days in the fall when the weather was warm and dry. Yeager and 

O’Brien (1979) determined that the critical moisture content for a sandy loam soil was 

2.9%. At soil moisture contents above 2.9% virus survival was dependent on 

temperature. Below 2.9% viral inactivation was due to dessication. Furthermore, at or 

below this moisture, viral nucleic acid was ejected after conformational changes occurred 

in the protein coat. Viral nucleic acid was rapidly degraded by indigenous soil microbe 

nucleases.

Soil Microorganisms

Microorganisms in the soil and their enzymes reduce virus survival (Rao and 

Melnick, 1986). Poliovirus survived longer in sterile soils versus non-sterile soils, 

regardless of soil type (Rao and Melnick, 1986). Soil microbes degrade viral structural 

proteins for use as a metabolic substrate (Rao and Melnick, 1986 ). It has been suggested 

that the clay particles stabilize the nucleic acid of an adsorbed virus (Gerba et al., 1981 

and Hurst et al., 1980).

Soil characteristics

Viruses are charged colloidal particles that are able to adsorb to other particles. 

Soils contain many other colloidal particles such as sand and clay. Viruses associated 

with particulate matter have increased survival rates (Sattar, 1983). Hurst et al (1980) 

demonstrated that virus adsorption to soil was one o f the most important factors affecting
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virus survival. Adsorption is highly dependent on the composition of the soil. Soils 

contain different amounts of sand, silt, and clay. An average soil contains 20% clay and 

40% of both silt and sand (Harptstead et al., 1988).

Clay. Each clay particle is composed of irregularly stacked layers o f ions with 

fractured edges due to weathering. The result is a large surface area due to external and 

internal surfaces. Clays have two basic structures. Montmorillonite, illite, and vermiculite 

are 2:1 clays containing an alumina layer (aluminum plus oxygen) which is sandwiched 

between two silica layers (silicon plus oxygen). Kaolinite is an example of a 1:1 clay. 

These clays contain a single silica layer bonded to a single alumina layer. The 2:1 and 

1:1 clays are referred to as layer lattice silicate clays due to their geometric structure.

Variations within the geometric pattern of ions form the charge on the surface of 

the particle. Most clays have a negative charge due to oxygen ions with an unsatisified 

charge along the edge of the particle. Additionally, ions can be substituted during the 

formation of the clay particle in a process known as isomorphous substitution. For 

example, approximately 25% of the aluminum ions in montmorillonite clay may be 

replaced with magnesium or iron that produces negative charges at the surface of the 

particle (Harpstead et al., 1988). The ion exchange capacity of a soil indicates the number 

o f adsorbed ion charges that can be desorbed from the soil (Sposito, 1989). These sites 

are available to adsorb other ions in the soil solution. A particle with a net negative 

charge adsorbs cations, hence the ion exchange capacity of clays is typically referred to 

as the cation exchange capacity. Clays with a 2:1 structure have a much higher cation 

exchange capacity than 1:1 clay.
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In one study, reovirus was found to adsorb to montmorillonite and kaolinite clays 

almost immediately (Lipson and Stotzky, 1983). The degree of adsorption correlated to 

the cation exchange capacity o f each clay demonstrating that adsorption was primarily 

due to negatively charged sites on the clays. The authors suggest that because the pH at 

the clay surface is much lower than the soil suspension, hydrogen ions from the clay 

surface shifted to the virus. Thus a cation exchange reation between the negatively 

charged clay and the now net positively charged virus could occur.

Sand. Sand is a poor virus adsorbent due to the small surface area of each 

relatively spherical particle. Yeager and O’Brien (1979) found that a sandy soil adsorbed 

less poliovirus than a sandy loam soil that contained 19% clay. Additionally, they found 

that poliovirus was inactivated more rapidly in the sandy soil. Other researchers have 

demonstrated that viruses survived longer in sludge amended clay loam soils than in 

sludge-amended sandy loam soils (Gerba et al., 1981, Hurst et al., 1980, Powelson et al.,

1991). Viruses that are not adsorbed to soil particles remain in the soil solution and are 

vulnerable to the proteolytic activity of microorganisms.

Organic Matter

In general, soils with a high organic content do not adsorb viruses as well as clay 

soils (Rao and Melnick, 1986). Soluble organic compounds also compete with viruses for 

adsorption sites on soil particles (Carlson, 1968). Sobsey et al. (1980) studied poliovirus 

and reovirus adsorption to a soil primarily composed mainly of organic matter. This soil 

was found to adsorb both viruses poorly. Stagg et al. (1977) demonstrated that the 

adsorption o f bacteriophage MS-2 to bentonite clay was reduced from 97% to 35% after
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the addition of organic carbon. Furthermore, organic matter was found to complex with 

MS-2 and prevent its adsorption to soil. Organic compounds in sludge were also found to 

reduce adsorption of poliovirus to soil. Dizer et al (1984) noted reduced adsorption of 

poliovirus 1, coxsackie viruses A9 and B l, and echovirus 7 to soil columns previously 

washed with secondary effluent. No reduction occurred when soil columns were washed 

with groundwater or tertiary effluent. The adsorption of enteroviruses, rotavirus, and 

several bacteriophages to soil was reduced when suspended in secondarily treated 

sewage versus water or soil extract (Goyal, 1979). Moore et al (1981) also found soil 

organic matter to be a poor adsorbent for poliovirus. The low pi o f organic matter results 

in a negative charge at most natural soil pH’s. Therefore the similarly charged virus and 

organic molecule would repel each other.

pH

Very little viral adsorption occurs above pH 8. Enteroviruses and soil particles 

are negatively charged at an alkaline pH and thus repel each other. Sobsey et al (1980) 

demonstrated that adsorption of poliovirus to sandy soils and soils with a high organic 

matter content was much greater at a low pH. Soils with high concentrations o f clay were 

found to effectively adsorb virus over a wide range of pH values. Goyal and Gerba 

(1979) found soil pH to be the most important factor affecting viral adsorption to soil. A 

soil pH below 5 favored adsorption o f a variety of viruses.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ionic strength

Cations, especially divalent and trivalent cations, decrease the diffuse double

layer composed of the inner layer o f negatively charged soil particles and the outer layer 

of ions in the soil solution (Sposito, 1989). Divalent and trivalent cations with a small 

diameter such as calcium, are held more closely to the soil particle surface, while 

monovalent cations with large diameters such as sodium, remain farther away (Sposito, 

1989). This cation bridging helps neutralize excess negative charge on the surface of the 

virus and clay particle allowing the virus and clay particles to approach each other and be 

bound by physical forces such as electrostatic and Van der Waals forces. (Bitton, 1984; 

Lipson and Stotzky, 1983). Van der Waals force is an attractive interaction produced 

when two nonpolar molecules collide through Brownian motion and induce dipole 

moments in each molecule (Sposito, 1989). Van der Waals forces may be significant in 

the absence of proton and cation exchange, particularly when viruses are at or near their 

isoelectric point (Lipson and Stotzky, 1983). Sobsey et al. (1980) showed that the 

addition o f MgCL greatly increased the adsorption of poliovirus to sand. Lipson and 

Stotzky (1983) demonstrated increased adsorption of reovirus to clays after the addition 

of cations. Divalent cations were found to be more effective than monovalent cations.

Virus Transport from Land Application Sites

Viruses have been shown to travel significant distances once they enter the soil 

matrix. Migration of the viruses may result in the contamination of ground water. The 

first isolation of poliovirus in contaminated ground water was in 1972 from a 30.5 meter
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deep well (Mack et al.,1972). It was believed that the water became contaminated from 

seepage of a wastewater drainfield located 91 meters from the well. Viruses 

contaminating groundwater at a site that received secondary effluent, were thought to 

have traveled 30 meters vertically and 183 meters laterally (Schaub and Sorber, 1977). 

Another wastewater infiltration site showed evidence of viral movement to a 18.3 meter 

deep well (Keswick and Gerba, 1980). Vaughn et al. (1978) isolated poliovirus, 

echoviruses, and coxsackieviruses from effluent used to recharge three aquifers. Viruses 

were subsequently isolated from two of the aquifers with depths o f 18 and 34 feet. No 

virus was foimd in the third aquifer that was located at a depth of 80 feet. Wellings et al

(1975) isolated coxsackie B4 virus from a 10 meter deep well located 7 meters away 

from a Florida cypress dome effluent discharge site. Further research (Wellings et al., 

1978) at a sludge disposal site revealed the presence of poliovirus from 8.5 and 17.7 

meter deep wells located 18 meters from the edge of the site.

More recently, an epidemiological investigation of a small community outbreak 

of hepatitis A virus was undertaken (De Serres,l999). Several people who lived adjacent 

to the index patient and consumed well water became ill. HAV was found in these wells 

which were located up to 60 m from the index patient’s septic tank. Straub et al. (1995) 

collected soil cores from a farm that had received sewage sludge for 5 years and found 

enterovirus nucleic acid at a depth of 20 meters with significant lateral movement. Other 

researchers have not found evidence of virus migration (Damgaard-Larsen et al.,1977; 

Bitton et al., 1984; and Pancorbo et al.,1988) and believe that most viruses in sludge are 

retained in the uppermost soil layer. Many factors influence the transport o f viruses once
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they are deposited in the soil, including soil type and characteristics of percolating fluid 

(Figure 2).

Soil Subsurface Structure

Fractures, channels and cracks may occur below the surface in some soils. 

Montmorillonite clay has a high affinity for water that causes the clay layers to slip past 

each other (Harpstead et al., 1988). When these soils dry, cracks of 2 inches or more may 

appear (Harpstead et al., 1988). Rapid dispersal of bacteria through fracture lines has 

been demonstrated (Keswick and Gerba, 1980). Many researchers employ soil columns 

to study the movement of viruses through soil. These columns attempt to recreate the 

natural soil matrix in the laboratory, however this type of soil substructure cannot be 

represented in a soil column. Therefore, data acquired with soil columns may not be an 

accurate predictor of viral movement in natural conditions.

Moisture

Soil that is saturated with water does not retain viruses effectively. Lance and 

Gerba (1984) demonstrated movement of viruses to a depth of 40 cm in a column of 

loamy sand soil under unsaturated conditions. However, viruses were found at the depth 

of 160 cm during saturated conditions. High infiltration rates (75-100 cm/hr) o f a coarse 

sandy soil during groundwater recharge were found to lead to poor retention of poliovirus 

(Vaugn et al, 1981). At these high rates, a significant amount of poliovirus traveled 7.5 

meters to the groundwater within 2.5 hours. At lower rates ( 6  cm/hr and 1 cm/hr) very 

little poliovirus reached the groundwater by twenty-four hours. Wang et al (1981) also
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Figure 2

Factors influencing the survival and migration of enteric viruses 
after land application of sludge
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found virus adsorption in soil columns to be negatively correlated with the flow rate of 

sewage effluent. During saturated soil conditions there is a greater thickness of water 

surrounding soil particles which reduces the probability of contact between soil and virus 

and decreases adsorption.

Desorption

Organic matter. Organic matter contained in the soil and sludge may compete 

with viruses for adsorption sites in the soil. A soil with high organic matter has a lower 

capacity to adsorb virus and may allow virus to travel further into the soil. Powelson et 

al. (1991) found that soil humic material and sludge organic matter increased the 

transport of MS-2 bacteriophage. Soluble humus such as fiilvic acid forms complexes 

with other organic compounds that can travel with the percolating water through the soil 

(Sposito, 1989). Bacteriophage MS-2 has been shown to complex with fulvic acid. 

(Bixby and O’Brien, 1979). It was shown that 80% of the poliovirus in a water sample 

with high concentrations of humic and fulvic acids passed through soil columns (Rao and 

Melnick, 1986). After the water was treated with activated carbon to adsorb the organic 

acids, the poliovirus was retained.

Ionic strength. The concentration of ions in the infiltrating liquid may affect 

desorption of viruses from soil particles. Duboise et al demonstrated the desorption of T7 

bacteriophage from a soil column after it was rinsed with deionized water. Lance et al

(1976) also reported desorption of viruses from a soil column after flooding with 

deionized water. However, addition of calcium chloride to the deionized water prevented 

most of the virus desorption. Rainwater has a low ionic strength and may similarly
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desorb viruses from soil particles. Enteric viruses were isolated in the groundwater 

below an effluent land disposal site after a heavy rainfall of 71 cm (Rao and Melnick, 

1986). Wellings et al (1975) suggests that heavy rainfall may have contributed to 

desorption of virus from a cypress dome. Landry et al (1979) demonstrated mobilization 

of poliovirus 3 Leon and poliovirus 1 and 3 field isolates after application of rainwater to 

a column containing sandy soil.

Aerosols

Sewage treatment and application of sludge to land generates aerosols. Viruses 

can be encapsulated within small airborne droplets of (Rao and Melnick, 1986). 

Inhalation of the aerosols or contact with contaminated surfaces may result in infection. 

The greatest amount of aerosolization occurs during application of sludge with a low 

solids content via high volume spray guns (Straub et al.,1993). Particles from dried 

sludges may be small and light enough to be blown from the site of land application 

(Straub et al., 1993). One study found the incidence of typhoid fever, salmonellosis, 

shigellosis, and hepatitis was 2 to 4 times higher in small agricultural communities that 

practiced sewage irrigation than control groups (Katzenelson et al., 1976). Another 

epidemiological study demonstrated that frequent occupational exposure to raw sewage 

was a significant risk factor for hepatitis A virus (HAV) infection (Heptonstall et al., 

1998). Of the 50 sewage treatment plant workers with the most exposure, 60% had 

antibody against HAV indicating previous exposure. Carducci et al (1995) monitored 

the air adjacent to an activated sludge plant and found enteroviruses in 25% of the 

samples. Furthermore, coliphages were detected 20 meters away from the plant. Another

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



study showed a 40 meter spread of endogenous enterovirus 7 from a sprinkler during 

spray irrigation with wastewater (Teltsch and Katzenelson, 1978). However Sorber et al. 

(1984) found a lower concentration of microbes in aerosols generated from application of 

liquid sludge than from wastewater spray application sites.

Plants

Many of the viruses present in sludge are retained in the first few centimeters of 

soil. However, this portion is the most likely to come into direct content with food crops. 

Many researchers have shown that viruses can survive for long periods of time on food 

crops (Sattar, 1983). Tierney et al. (1977) demonstrated poliovirus survival for 36 days 

on lettuce and radishes after crops were spray irrigated with sludge. Additionally, 

poliovirus was isolated after the plants were grown in soil flooded with sludge. Internal 

contamination of plants may result if viruses penetrate the root system. Ward and Mahler 

(1982) exposed plants to a nutrient solution containing 1010 pfu/ml of f2 bacteriophage 

during hydroponic growth. Plants whose roots had been freshly cut, contained 106 pfu/g 

of plant tissue. Plants whose roots were not cut only contained 102  pfu/g o f tissue. 

Damaged roots were quickly repaired by the plant. Therefore, the authors concluded that 

the transmission of virus through plant uptake was minimal and not a significant public 

health risk.

Animals

It is known that grazing animals consume significant amounts o f soil during 

feeding. These animals may serve as a reservoir for pathogens from sludge-amended
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soil. They may even support the replication of the pathogens, particularly parasites such 

as those within the Taeniidae family commonly known as tapeworms (Sattar, 1983 and 

Barbier, 1990) and the protozoan Cryptosporidium (Tzipori, 1983; Current, 1987). 

Burrowing animals and birds could also come into contact with land applied sludge and 

spread viruses to other areas (Straub et al.,1993). Soil macroinvertebrates such as 

millipedes, slugs, and worms are also exposed to sludge-amended soil. Metcalf et 

al.(1978) demonstrated that these macroinvertebrates could become virus carriers when 

fed virus contaminated food in the laboratory. Therefore these species have the potential 

to be carriers in the natural environment and spread viruses to other areas as they travel 

and to their predators upon ingestion.

CPA Sludge Regulations

Due to the potential harm to the environment and public health from the 

pollutants in sludge, the USEPA issued new rules for the use and disposal of sludge under 

the authority o f the Clean Water Act as amended in 1977 and the 1976 Resource 

Conservation and Recovery Act. (USEPA, 1992). The regulation encompasses sludge 

that is applied to land, distributed and marketed, placed in monofills, surface disposal 

sites, and incinerated. Limits on pollutant concentration, pathogen reduction, and 

management practices of the sludge are described.
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Pollutant Levels

The use or disposal of any sludge that may cause an underground-drinking source 

to exceed maximum containment levels of ten heavy metals and six organic compounds 

is prohibited. The maximum containment levels were established by employing 

algorithms that model the movement of the pollutant into the soil, water, and air, and 

ultimately to animals, plants, and humans.

Pathogen Reduction Requirements

Pathogen reduction may be achieved by treatment alone or in combination with 

management practices that limit access to the site of sludge application. The direct 

measurement of pathogens including viable helminth ova, Salmonella sp., and enteric 

viruses may be required or indicator organisms may be substituted. Fecal coliform 

bacteria are used as an indicator for fecal pathogens. Fecal coliforms are abundent in raw 

sewage and their presence demonstrates fecal contamination. Fecal coliforms are easily 

and inexpensively measured (USEPA, 1992). However, enteric viruses are more resistant 

to many sludge treatments (Straub et al., 1993) and disinfection than fecal coliform 

bacteria (Rao and Melnick, 1986). Viruses are protected from inactivation by chlorine 

disinfection when occluded within particulates (Hejkal et al., 1979). Numerous studies 

have demonstrated the presence of enteric viruses in environmental samples that did not 

contain fecal coliform bacteria (Rao and Melnick, 1986). Therfore, a sludge that meets 

fecal coliform standards, may contain unacceptable levels o f enteric viruses. The USEPA 

has defined two levels of pathogen reduction.
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Class A. Class A pathogen reduction is reached solely by treatment processes. 

The USEPA’s goal for the Class A requirements is the reduction of pathogens to below 

detectable levels, which are defined as fewer than 3 Salmonella colony forming units, 1 

plaque forming unit, and 1 helminth ova per 4 grams o f total sludge solids. Class A 

requirements may be met by narrowly defined processes, including a high pH-high 

temperature treatment, composting, heat drying, heat treatment, thermophilic aerobic 

digestion, beta ray irradiation, and pasteurization. These processes require the 

demonstration o f fewer than 1 , 0 0 0  fecal coliform most probable number (mpn) or fewer 

than 3 Salmonella colony forming units (cfu) per gram of total sludge solids. Sludge 

generated from processes that do not meet these conditions may require monitoring of 

fecal coliforms, enteric viruses and helminth ova. The USEPA believes that the Class A 

pathogen requirements reduce pathogen levels to an amount less than the infectious dose 

and that no access to the site is necessary.

Class B. The USEPA’s objective for Class B pathogen requirements is the 

adequate reduction, but not elimination, o f pathogens. Processes that generate Class B 

sludge may only reduce enteric virus levels by a factor of ten (USEPA, 1992).

Pathogens are assumed to be sufficiently reduced when fecal coliform levels are at or 

below 2 million cfu or mpn/g of total sludge solids. Processes that generate Class B 

sludge include aerobic digestion, air drying, anaerobic digestion, and lime stabilization. 

The sludge generated by eleven of the thirteen wastewater treatment plants applying 

sludge to land in New Hampshire are lime stabilized (Margolin, 1999).

The likelihood of pathogens remaining in Class B sludge is high, therefore access 

is limited to the application site to permit pathogen reduction by environmental factors.
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Food crops that have harvested parts above ground and touching the sludge soil mixture 

cannot be grown for 14 months after application o f sludge. There is no time restriction 

for crops with harvested parts that do not touch the ground. Food crops with harvested 

parts below the ground cannot be grown for 38 months after the application of sludge. 

Feed crops may not be harvested and animals may not graze on the site until 30 days after 

application of the sludge. Additionally, public access to the land is prevented for 12 

months.

Vector Attraction Reduction Requirements

Untreated sludge can serve as a food source for vectors, such as insects and 

rodents. Organic compounds in the sludge emit odors that attract the vectors. Vectors 

may spread pathogens to other sites. Composting, digesting, raising the pH, reducing 

moisture content, or injecting the sludge beneath the surface reduce vector attraction. 

Reduction of the volatile solids by 38% or digestion at mesophilic temperatures with a 

15% or less volatile solids reduction after 40 additional days o f digestion meets the vector 

attraction reduction requirement. Another route is to reduce the specific oxygen uptake 

rate (SOUR) of aerobically digested liquid sludge to I mg or less o f oxygen per hour per 

gram of sludge solids. Addition of sufficient alkali to raise the pH o f sludge to 12 or 

above, without further addition of alkali for 2 hours followed by 22 hours at a pH of 11.5 

or greater also satisfies the vector attraction reduction requirement. The pH requirements 

are sufficient to reduce the bacterial content of sludge and to prevent regrowth before the 

sludge is used or disposed. Drying the sludge to produce a 75% or greater solids content
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also achieves the requirement by greatly reducing bacterial growth. Finally, vector 

attraction reduction may be attained by injecting sludge below the soil surface.

Site Requirements

Monofills. Sludge that meets Class A or Class B pathogen reduction 

requirements may be used. These sites must receive a daily soil cover that reduces runoff 

and methane gas production.

Surface Disposal. Sludge must meet Class A or Class B pathogen reduction 

requirements and one method o f vector reduction. Crops cannot be grown on the site, 

public access is restricted, and methane gas generation must be limited.

Distribution and Marketing. Any sludge or product derived from sludge that is 

given away or sold must meet Class A pathogen reduction requirements and one of the 

vector attraction reduction requirements. The package must contain a list of pollutants, 

nitrogen concentrations, and appropriate application rates.

Land Application. Sludge that is liquid, composted, dried, or dewatered can be 

applied to land. The application of sludge cannot harm any endangered species or 

habitat. Sludge cannot be applied to frozen, snow covered, or flooded land. Additionally 

it cannot be applied within 1 0  meters of surface water or at rates above the nitrogen 

requirements of the vegetative growth. Pathogen and vector attraction reduction 

requirements, as previously stated, must be met.
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Recovery of Viruses from Sludge

Elution

Many studies have shown that the majority of indigenous virus in sludge are 

solids associated (Lund, 1970, Lund and Ronne, 1973, and Wellings et al., 1976). 

Furthermore, when viruses are added to sludge they rapidly adsorb to sludge solids (Hurst 

et al., 1978 and Moore et al., 1975). Therefore the removal or elution of viruses from the 

solids is a necessary step. Many eluants such as fetal calf serum in saline (Sattar and 

Westwood, 1979), high pH glycine buffer (Hurst et al., 1978), skim milk (Goddard et al, 

1981), freon (Brashear and Ward, 1982) and urea-lysine (Farrah et al., 1981) have been 

used. However, elution with beef extract has been employed most frequently (Berg and 

Sullivan, 1988, Berman et al., 1981, and Glass et al., 1978). Beef extract is a non-defined 

proteinaceous solution that displaces virus from sludge particles.

Prior to elution, a step known as conditioning is often performed to ensure virus 

adsorption to sludge solids. The pH of the sludge is reduced to 3.5 with 1 N HC1, AICI3 

is added, and the sludge is mixed (Berman et al., 1981). This step promotes the 

electrostatic attraction of viruses to sludge solids by the creation of cationic salt bridges 

and reduction of the net negative charge of the virus. Hurst and Goyke (1986) 

recommended the reduction of pH prior to the addition of AICI3 . The sludge solids are 

collected by centrifugation and eluted.

Many eluants were used at pH levels of 9 or greater and early studies also used 

alkaline beef extract (Berg et al., 1988). To determine the optimum pH for the elution of 

enteroviruses from sludge, Berg et al. (1988) compared viral recovery with beef extract at
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pH 7.2, 9.2, and 10.2. Recovery efficiencies were equal to or in many instances better at 

pH 7.2 than the alkaline pH’s. Use of beef extract at a neutral pH also eliminated the 

rapid inactivation of enteroviruses known to occur at high pH levels (Belshe, 1991). Beef 

extract has been used at concentrations ranging from 3% to 10% (Safferman et al., 1988 

and Brashear and Ward, 1982) and volumes equaling and up to five times the sludge 

volume (Berman et al., 1981; Hurst and Goyke, 1986). Elution is enhanced with 

thorough mixing either by stirring, homogenization, or sonication (Berman et al., 1981; 

Brasher and Ward, 1982; Albert and Schwartzbrod, 1991). Centrifugation separates the 

sludge solids from the supemate, which is commonly referred to as the eluate. The 

majority of viruses are found in the eluate fraction.

Concentration

A large volume of eluate is produced after elution with beef extract. The proteins 

in the beef extract solution behave as colloids. Colloids do not dissolve in solutions but 

remain as a solid phase in suspension (Sposito, 1989). Beef extraction was previously 

known to be stable at neutral or alkaline pH’s but became unstable when the pH was 

lowered, causing coagulation or flocculation of proteins. Viruses also act as colloids and 

are co-precipitated in a procedure introduced by Katzenelson et al. (1976) known as 

organic flocculation. During organic flocculation the eluate is mixed and the pH 

maintained at 3.5 for 30 minutes. The viruses are contained within the floe, collected by 

centrifugation, and resuspended in a small volume of Na2HPC>4 . Approximately 75% of 

poliovirus seeded in a beef extract solution was recovered with this method. A method 

for the recovery of viruses from sludge is described in current regulations from the
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United States Environmental Protection Agency (1992). This method utilizes sludge 

conditioning, elution with beef extract, and organic flocculation.

Detection of Enteric Viruses 

Cell Culture

The only detection method available during early research with enteroviruses was 

animal inoculation. Primates and suckling mice were found to be susceptible to infection 

with enteroviruses. A major breakthrough in the study of poliovirus occurred in 1949 

when Enders, Weller, and Robbins reported growth of poliovirus in human embryonic 

tissues.

Many types of cell cultures have since been used for the detection of enteric 

viruses. Primary cell cultures are composed of cells from the tissues or organs of 

sacrificed animals. These cells can be grown only for a finite period of time. Until the 

1970’s, virus research in environmental and clinical laboratories relied on primary cell 

cultures of rhesus monkey and African green monkey kidney cells, resulting in the death 

of hundreds to thousands of primates weekly (Dahling et al., 1974). The loss of life and 

cost were great.

Continuous cell lines are derived from cell cultures that have been transformed 

and can then be passed hundreds of times. A continuous cell line that was comparable to 

the primary cell cultures for the detection and growth of enteric viruses was sought for 

over 20 years. In 1974 Dahling et al. studied a continuous cell line derived from the 

African green monkey and designated it Buffalo green monkey (BGM) due to its
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discovery in Buffalo, New York (Barron et al., 1970). Enteroviruses and reoviruses from 

sewage and natural waters were found to grow as well or better in the BGM cell line than 

in primary cell cultures. Later studies demonstrated that the BGM cell line was 

unsatisfactory for the isolation of coxsackie A viruses, reoviruses, and echoviruses 

(Schmidt et al., 1978 and Chonmaitree et al., 1988). Nevertheless, cell culture with the 

BGM cell line has become the standard method for the detection of enteric viruses from 

the environment (ASTM, 1992 and USEPA, 1992).

Cell culture assays begin with inoculation of the sample onto confluent 

monolayers of cells grown on the surface of cell culture flasks. Prior treatment of 

environmental samples with antibiotics or filtration is usually necessary to minimize 

contamination from bacteria and fungi. The inoculum is kept on the cell monolayer to 

allow binding of viral particles to receptors on the cell surface. Addition of a nutrient 

media is then necessary for the maintenance of the cells. The plaque assay is a common 

method in which cell cultures inoculated with a sample are covered with a solidifying 

agar medium. The solid medium localizes lysed cells that form clear areas or plaques, and 

are visualized with a vital stain. The number o f plaques is related to the number of 

viruses in the sample (Cooper, 1961 and Berg et al., 1963). The concentration of virus is 

expressed as plaque forming units per milliliter. Infected cell cultures that receive liquid 

overlays do not form plaques, but exhibit cytopathic effects such as cell rounding, 

shrinking, nuclear pyknosis, refractility and cell lysis that may be viewed microscopically 

(Belshe, 1991). Quantal assays with liquid overlays include the 50% tissue culture 

infectious dose (TCIDso) and the most probable number o f cytopathic units (MPNCU). 

The TCED5 0  measures the amount of virus required to cause CPE in 50% of the cell
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cultures. The MPNCU is based on a mathematical equation relating the number of 

cultures that exhibit CPE with the total number o f cultures.

Cell culture assays are very sensitive and have the potential to detect as few as 

one infectious virus. However many problems exist. There is no universal cell line that 

supports the growth of all enteric viruses that may be found in environmental samples 

(Schmidt, 1978). Two studies have shown that the use of multiple cell lines is necessary 

for the sensitive detection of enteric viruses (Schmidt, 1978 and Chonmaitree, 1988). 

Many enteric viruses isolated from the environment, such as hepatitis A virus and 

Norwalk virus, replicate slowly or not at all in cell culture. Other isolates may replicate 

but not produce cytopathic effects. Measures taken to reduce bacterial contamination 

may not be effective. Contamination often prevents plaque development. Environmental 

samples, particularly sludge concentrates, can be toxic to cell cultures (Hurst and Goyke, 

1983). Substances in sludge such as heavy metals and organic acids as well as beef 

extract (Richards and Weinheimer, 1985) may be toxic or reduce virus yields. 

Cytotoxicity can be mistaken for the cytopathic effects due to viruses. Some studies have 

shown that viruses could not be isolated from approximately one third of the plaques 

from wastewater concentrates (Sobsey, 1982). These “false-positive” plaques are likely 

due to toxicity, therefore plaques should be confirmed by secondary passage in cell 

culture (USEPA, 1992). Cell destruction due to sample toxicity may also occur with 

liquid overlay assays, therefore these cultures also need to be confirmed (USEPA, 1995). 

Procedures to reduce toxicity also reduces virus titer (Hurst and Goyke, 1983). 

Inoculation and monitoring o f multiple samples is cumbersome and labor intensive. 

Current USEPA regulations for the detection of viruses from sludge (USEPA, 1992)
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require monitoring o f a BGM cell plaque assay for 16 days, followed by one or two 

confirmation passages of 7days. Therefore, the cell culture assay may take up 30 days or 

more to complete. Additionally, the material costs for the cell culture assay are high.

Nucleic Acid Probes

Nucleic acid probes are labeled segments of DNA or RNA that bind specifically 

to target nucleic acid. The target nucleic acid can be applied to nylon membranes with 

the use of a dot blot apparatus. Probes may be labeled through the incorporation of 

radionucleotides or digoxigenin and conjugation of biotin or horseradish peroxidase. 

DNA probes are often labeled by nick translation or random priming (Sambrook et al., 

1989). RNA probes are synthesized in vitro by T7 and SP6  phage RNA polymerases. 

These polymerases initiate RNA synthesis only at the appropriate promoter site in a 

plasmid vector (Melton et al., 1984). Many vectors contain two promoters arranged in 

opposite orientations. These promoters typically flank a multiple cloning region where 

the DNA segment of interest is inserted. Prior to transcription, the plasmid is linearized 

at a site downstream of the promoter and inserted DNA. Defined, runoff single-stranded 

RNA transcripts are formed. Vectors containing two promoters can produce two 

complementary single-stranded RNA molecules. RNA transcripts may serve as a probe 

when labeled ribonucleosides are included in the transcription reaction.

Before the probe is allowed to anneal or hybridize to the target nucleic acid, a pre

hybridization step is often performed. Pre-hybridization solutions often contain agents 

such as Denhardt’s reagent, non-fat dried milk, sheared salmon sperm DNA, and 

detergents such as sodium dodecyl sulfate that help to prevent non-specific binding of
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probe to the membrane (Sambrook, 1992). After pre-hybridization, a high ionic strength 

hybridization solution and the probe are added. A high salt concentration maximizes the 

annealing rate of probe to target (Sambrook, 1992). To ensure specific binding, 

hybridization with RNA probes is usually conducted at 5 to 15°C below the Tm o f the 

hybrid (Titus, 1991). The hybridization fluid may also contain dextran sulfate and 

formamide. Formamide decreases the Tm o f the hybrid and allows a lower incubation 

temperature during hybridization (Sambrook, 1992). The rate of hybridization is 

increased tenfold with the inclusion of dextran sulfate in the hybridization solution. The 

effective concentration of the probe is increased because it is excluded from the portion 

o f the solution taken up by the dextran sulfate. After hybridization, the membrane is 

washed to remove unbound and non-specifically bound probe. Areas where a 

radiolabeled probe annealed can be viewed after exposing x-ray film to the membrane in 

a process known as autoradiography. X-ray film is sensitive to the energy emitted by 

radioactive molecules and becomes darker in its presence.

Radiolabeled probes have been shown to be more sensitive than non-radiolabeled 

probes (Verbeek and Tijssen, 1988; Moore and Margolin, 1993). Synthesis of RNA 

probes in vitro efficiently incorporates radiolabeled ribonucleosides and very high 

specific activities can be reached (Melton et al.,1984). RNA-RNA duplexes have been 

found to be more stable than RNA-DNA or DNA-DNA (Melton et al., 1984). The 

melting temperature (Tm) of a DNArDNA hybrid is 10°C lower than that o f the 

comparable RNArRNA hybrid (Sambrook, 1992). Many studies have shown that RNA 

probes are more sensitive than DNA probes (Melton et al., 1984; Kopecka et al., 1988; 

Jiang et al., 1987).
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Nucleic acid probes have been used to detect a variety of enteric viruses in 

clinical samples (Hyypia, et al., 1984; Lin et al., 1985; Stalhandske, et al., 1985; Takiff et 

al., 1985; Kulski and Norval, 1985; Ticehurst et al., 1987 ). These methods have been 

adapted for the detection of enteric viruses in water (Jiang et al., 1986; Jiang et al., 1987; 

Richardson et al., 1988; Shieh et al., 1991; Margolin et al., 1991), shellfish (Guyader et 

al., 1993; McCabe, 1996 ) and wastewater (Dubrou et al., 1991). Multiple samples may 

be processed simultaneously and results obtained within 3-4 days.

Reverse Transcription and the Polymerase Chain Reaction

The polymerase chain reaction is an in vitro DNA amplification procedure first 

described in 1988 by Saiki et al. Two oligonucleotide primers are selected that flank the 

DNA segment to be amplified. Temperature cycles resulting in denaturation of DNA, 

annealing of primers, and extension of annealed primers are repeated. Taq polymerase, a 

thermostable DNA polymerase purified from the thermophilic bacterium Thermus 

aquations, catalyzes the extension of the annealed primers. The result is the exponential 

increase o f target DNA. RNA segments may also be amplified by the polymerase chain 

reaction, however RNA must first be converted to cDNA by reverse transcription. This 

highly sensitive method results in the amplification of target DNA by a factor of 106 or 

greater (Sambrook et al., 1989). The DNA segment can then be detected by agarose gel 

electrophoresis and ethidium bromide staining or Southern hybridization. Results may be 

obtained in as little as five hours.

The polymerase chain reaction has been used for the detection of many enteric 

viruses (Chapman et al.,1990; Abraham et al., 1993; Birkenmeyer and Mushahwar,
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1994). Procedures for the detection of enteric viruses in environmental samples by the 

polymerase chain reaction have also been described (Atmar et al., 1993; Jaykus et al., 

1993; Le Guyader et al., 1994; Kopecka et al., 1993; Abbaszadegan et al., 1993; Schwab 

et al., 1993; Green and Lev/is, 1995; Straub et al, 1994). However, RT-PCR is limited by 

small reaction volumes. Only 10 to 20 pi of a sample concentrate can be used per 

reaction. This volume may not be an adequate representation o f the sample.

Additionally, substances that inhibit enzymatic reactions, such as metals and organic 

compounds, may be present in the sample concentrate.

A variety o f methods to remove these substances prior to PCR have been described. 

Column chromatography with resins that remove metals and exclude high molecular 

weight substances have been widely utilized (Abbaszadegan et al., 1993; Hale et al.,1996; 

Straub et al., 1994; Reynolds et al., 1998). Other researchers have extracted samples with 

guanidine thiocyanate which denatures proteins including nucleases (Gilgen et al., 1995; 

Beaulieux et al., 1997; Shieh et al., 1995). Immunomagnetic separation has also been 

used successfully (Monceyron and Grinde, 1994; Schwab et al., 1996; Graff et al., 1993). 

This method uses paramagnetic beads linked to a vims specific antibody that can be 

hybridized to viral capsid epitopes. The magnetic beads can then be washed, thereby 

removing inhibitors. Alternatively, streptavidin linked magnetic beads have been used to 

capture biotin labeled oligomers hybridized to viral nucleic acid (Gilgen et al., 1995, 

Beaulieux et al., 1997; Muir et al., 1993; Reagan and Margolin, 1997).

Magnetic beads covalently linked to an oligodT tract have been used for the isolation 

o f mRNA from a variety of sources. They are also capable of hybridization with 

enteroviruses and hepatitis A vims which contain a polyA tail (Belshe, 1991). Oligo dT
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magnetic beads have the ability to simultaneously capture these viruses without the need 

for virus specific oligomers. After washing the beads, they may be resuspended in as 

little as 10 pi of liquid. This concentration increases the amount o f the original sample 

that can be included per polymerase chain reaction. RT-PCR is not inhibited by the 

presence of the oligo dT paramagnetic beads. The oligo dT paramagnetic beads may be 

reused after treatment with 0.1M NaOH. The capture of viral RNA by oligo dT 

paramagnetic beads can be completed in as little as 5 minutes.
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METHODOLOGY

Development of a 32P labeled ssRNA Probe for the Detection of Poliovirus in Sludge

Preparation of plasticware, glassware, and water

Plasticware that was purchased sterile, such as centrifuge tubes and pipette tips was 

used as much as possible. Other plasticware, including non-sterile pipette tips and 

microcentrifuge tubes were immersed in a 0.1% solution of diethylpyrocarbonate (DEPC) 

(Sigma, St. Louis, MO) and incubated at 37°C overnight. The material was then autoclaved 

until no odor remained. The DEPC solution was removed and the plasticware was dried in 

an oven at 80°C. All glassware was baked at 100°C for 24 hours. DEPC was added to 

MilliQ water (Millipore, Bedford, MA) to a final concentration of 0.1% and autoclaved to 

eliminate RNases.

Poliovirus propagation

Buffalo Green Monkey (BGM) kidney cells (Biowhittaker, Walkersville, MD) were 

grown in equal parts Minimum Essential Medium (MEM)(Sigma) and L-15 medium 

(Sigma) supplemented with 5-8% fetal bovine serum or iron supplemented calf serum 

(Sigma). The cells were grown to confluency in 25 cm2, 75 cm2 , or 225 cm2  cell culture 

flasks (Coming, Coming, N.Y.). Cells were rinsed with IX phosphate buffered saline at a 

pH of 7.2 (Sigma). Poliovirus type 1 (Lsc) was added to confluent cell monolayers at a 

multiplicity of 10. The cells were incubated at room temperature or 37°C for 80 minutes
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with rocking every 15 minutes. MEM/L-15 medium supplemented with 2% serum was 

added to the flasks and the cells were incubated at 37°C for 24 to 72 hours. When 75% of 

the cells exhibited cytopathic effects, flasks were frozen at -80°C. Poliovirus was liberated 

from the cells by three successive freeze thaw cycles. The lysate was placed in sterile 

polypropylene Oakridge tubes (Nalgene, Rochester, NY) and centrifuged (Beckman) at 

7,500 x g for 10 minutes to pellet cellular debris. The supemate was collected and stored in 

aliquots at -80°C until further use.

Poliovirus quantification

BGM cells were grown to confluency in 25 cm2 flasks (Coming, Coming, NY). 

Ten-fold dilutions of poliovirus type 1 (Lsc) were prepared in IX PBS, pH 7.2. Duplicate 

flasks of BGM cells were rinsed with IX PBS and infected with 0.2 ml of each poliovirus 

dilution. Two negative control flasks were inoculated with 0.2 ml of IX PBS. The inoculum 

was incubated for eighty minutes at 25°C with rocking every 15 minutes. Unadsorbed virus 

was rinsed off with IX PBS and 10 mis of an agar overlay consisting of 1% flake agar 

(Difco), Medium 199 (Sigma), 2% fetal calf serum, 1% MgCh, and neutral red dye (Sigma) 

was added. Once the overlay solidified, the flasks were inverted and incubated at 37°C. 

Plaques were counted after approximately three days.

Preparation of poliovirus cDNA

Poliovirus cDNA between base pair 115 and 7440 was previously cloned into the 

Pst-1 site of pBR322 producing the plasmid pVR 104. This plasmid and Escherichia coli 

HB101 cells transformed with pVR 104 were supplied by Charles Gerba (Department of
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Soil and Water Science, University of Arizona, Tucson, Arizona). The E. coli HB101 cells 

containing pVR104 were grown overnight in Luria-Bertani (LB) medium (Difco, Detroit, 

MI) supplemented with 50 pg/ml tetracycline. Cells were centrifuged at 5,000 x g for 15 

minutes at 4°C. Plasmid DNA was released from the cells by the alkaline lysis method 

(Sambrook et al., 1992). Plasmid DNA was purified from cesium chloride gradients or by 

RNase (Sigma) treatment followed by phenol/chloroform extraction (Ameresco, Solon, OH) 

and precipitation with 2.5 volumes of 100% ethanol and 0.3M sodium acetate at -20°C. 

Poliovirus cDNA was isolated from the pBR322 vector by Pst-1 digestion (Boehringer 

Mannheim, Indianapolis, IN). Pst-1 digestion yielded four fragments o f4300 bp, 1689 bp,

1174 bp, and 434 bp. The 1174 bp fragment was sliced from agarose gels (Sigma) and 

purified by electroelution (Schleicher and Schuell, Keene, NH) or by a freeze squeeze 

procedure (Sambrook et al., 1992). Briefly, the freeze squeeze procedure consisted of 

addition of 0.3M sodium acetate and 1 mM EDTA to a polypropylene tube containing the 

gel slices. The gel slices were then broken up with a pipet tip and frozen at -80°C. The 

mixture was thawed and the liquid portion placed in another tube. The DNA was extracted 

with phenol/chloroform, and precipitated with 95% ethanol. DNA was recovered by 

centrifugation at 12,000 x g for twenty minutes at 4°C. The DNA pellet was then 

resuspended in TE buffer or DEPC treated water.

Construction of recombinant plasmid pGEM-3Z/PV 1174

The vector pGEM-3Z (Promega, Madison, WI) (Figure 3) was digested with Pst-1 

restriction endonuclease (Boehringer Mannheim). The linearized plasmid DNA was treated
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Figure 3 
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with calf intestinal alkaline phosphatase (Boehringer Mannheim) to remove 5' phosphate 

groups and prevent recirculization. Plasmid DNA was phenol/chloroform extracted and 

ethanol precipitated. Linearized pGEM-3Z and the PV 1174 bp cDNA fragment were 

ligated with T4 DNA ligase (Boehringer Mannheim) in a 1:3 vector to insert ratio. Ligation 

reactions, linearized pGEM-3Z, 1174 bp poliovirus cDNA, and lambda DNA digested with 

Hind EH and EcoRI (Sigma) were loaded into a 1% agarose gel (Sigma) and electrophoresed 

for 1 hour at 70V in IX Tris Borate EDTA (TBE) running buffer. The gel was submerged 

in a 0.1% ethidium bromide solution (Sigma) for 10-30 minutes. The gel was placed on a 

transilluminator and the DNA was viewed.

Transformation of E. coli J M 101

E. coli JM 101 cells were grown in LB broth with vigorous shaking to early log 

phase. Competent cells were prepared by the CaCh method (Sambrook, 1992). A 30-50 ng 

amount of pGEM-3Z/PV 1174 DNA was added to 200 pi of competent cells. The mixture 

was heated to 42°C for 90 seconds and chilled on ice for 1-2 minutes. Eight hundred pi of 

LB broth was added and the cells were incubated at 37°C for 1 hour to allow for expression 

of ampicillin resistance. Cells were plated onto Violet Red Bile (VRB) medium (Difco) 

supplemented with 50 pg/ml ampicillin and incubated at 37°C for approximately 16 hours.

Selection of transformants

Colonies were selected on the basis of blue/white color screening. Colonies 

containing the recombinant plasmid do not ferment lactose and appeared white or colorless 

due to loss of p-galactosidase activity resulting from the insertion of PV cDNA within the
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lacZ gene of pGEM-3Z. Blue colonies retained (3-galactosidase activity because there was 

no insertion of poliovirus cDNA within the lacZ gene of pGEM-3Z. White colonies were 

selected and grown in 5 ml o f LB broth overnight. Plasmid DNA was isolated using the 

following mini-prep procedure (Titus, 1991). One ml o f cells was centrifuged for 30 

seconds at 12,000 x g. The pellet was resuspended in 100 pi of TE (pH 7.6) and 200 pi of a 

0.2N NaOH/1% SDS solution was added. The mixture was gently inverted several times 

and placed on ice for 5 minutes. One hundred and fifty pi of 5M potassium acetate was 

added and the lysate was briefly vortexed and placed on ice for 5 minutes. Cell debris and 

chromosomal DNA were pelleted by centrifugation at 12,000 x g for 1 minute. The 

supemate was carefully removed and mixed with 100% ethanol. The plasmid DNA was 

precipitated by centrifugation at 12,000 x g at 4°C and resuspended in TE buffer. Plasmid 

DNA was digested with Pst-1 restriction endonuclease (Boehringer Mannheim) to excise the 

poliovirus cDNA insert. The DNA fragments were separated by agarose gel electrophoresis 

and viewed after ethidium bromide staining. Plasmid pGEM 3Z/PV 1174 was isolated 

using the large scale plasmid preparation procedures previously mentioned for subsequent 

experimentation.

Determination of insert orientation

The PV 1174 cDNA was inserted in one of two possible orientations because the 

plasmid and insert were digested with a single restriction endonuclease. It was necessary to 

know the insert orientation to determine which RNA polymerase would produce negative 

sense RNA transcripts and which would produce positive sense transcripts. The poliovirus 

cDNA contained a Kpn I restriction site at the 3 ’ end of the segment (Rancaniello and
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Baltimore, 1981) and the pGEM-3Z multiple cloning site also contained a Kpn I restriction 

site. Using this sequence data, it was determined that digestion of pGEM-3Z/PV 1174 with 

Kpn I would result in two DNA band patterns dependent on the insert orientation (Figure 4). 

Orientation 1 would produce DNA fragments of 800 and 3100 bp, while orientation 2 would 

produce DNA fragments o f450 and 3500 bp.

The plasmid pGEM-3Z/PV 1174 was digested with the restriction endonuclease 

Kpn I (Boehringer Mannheim) and the fragments were separated by 1% agarose gel 

electrophoresis and viewed after ethidium bromide staining. The size of the DNA fragments 

was determined after comparison with a Hind HI and EcoRI digest of lamda DNA (Sigma).

Production of positive sense poliovirus RNA transcripts

The plasmid pGEM-3Z/PVl 174 was linearized with Hind HI restriction 

endonuclease (Boehringer Mannheim). The restriction site is located in the multiple cloning 

region and downstream of the T7 promoter (Figure 5). The template was added at a final 

concentration of 20 pg/ml to the following reaction mixture: IX T7 RNA polymerase buffer 

(Boehringer Mannheim), 2 mMUTP, GTP, CTP, ATP (BM), 1 pi RNasin (Promega), 100 

pg/ml bovine serum albumin (Sigma), 5 mM DTT (Boehringer Mannheim), 125 units T7 

RNA polymerase (Boehringer Mannheim), and DEPC treated water to a final volume o f 25 

pi. The mixture was incubated at 37°C for 90 minutes. The RNA transcription reaction, 

linearized pGEM-3Z/PV 1174, and a molecular weight marker o f Hind III and EcoRI 

digested lamda DNA were separated by agarose gel electrophoresis and viewed after 

ethidium bromide staining.
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Figure 4

Restriction mapping of pGEM-3Z/PV 1174
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Synthesis of positive and negative sense RNA transcripts
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Optimization of negative sense poliovirus RNA transcript production

The plasmid pGEM-3Z/PVl 174 was linearized to completion with Sal I restriction 

endonuclease (BM). The restriction site is located in the multiple cloning region and is 

downstream of the SP6 promoter (Figure 5). The template was added at a final 

concentration of 20 pg/ml to the following reaction mixture: IX SP6 RNA polymerase 

reaction buffer (Boehringer Mannheim), 400-1200 pM ATP, CTP, GTP, UTP, 1 pi RNasin, 

100 pg/ml bovine serum albumin (Boehringer Mannheim), 1 mM DTT (Boehringer 

Mannheim), 7.5 units o f SP6 RNA polymerase (Boehringer Mannheim), and DEPC treated 

water to a final volume of 25 pi. Tubes containing the mixture were incubated at 37°C for 

30-120 minutes. RNA transcription reactions, linearized pGEM-3Z/PV 1174, and a 

molecular weight marker of Hind HI and EcoRI digested lamda DNA were separated by 

agarose gel electrophoresis and viewed after ethidium bromide staining. Optimization of 

RNA transcript production was repeated twice to ensure reproducibility.

Removal of DNA template

One to two units of DNase I (RNase free) (Sigma) was added per pg of plasmid 

DNA and incubated for 10-15 minutes at 37°C. The mixture was extracted with 

phenol/chloroform and the RNA was precipitated with 2.5 volumes of 100% ethanol and 

0.3M sodium acetate at -20°C. The RNA was collected by centrifugation at 12,000 x g for 

20 minutes at 4°C. RNA pellets were resuspended in DEPC treated water and stored at - 

80°C.
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Determination of RNA transcript yield

RNA yields were determined by spectrophotometric readings (Beckman DU/Gilford 

Detector) at 260 nm. An optical density of 1 corresponded to 40 pg/ml of RNA (Sambrook 

et al, 1989). Alternatively, RNA yields were estimated after viewing RNA bands from a 1% 

agarose gel stained with ethidium bromide.

Production of negative sense 32P labeled RNA probe

SP6 RNA polymerase reaction buffer (Boehringer Mannheim), 500 pM ATP, GTP, 

CTP (Boehringer Mannheim), 1 mM DTT (Boehringer Mannheim), 20 pg/ml of Sal I 

linearized pGEM-3Z/PVl 174, 15 units SP6 RNA polymerase (Boehringer Mannheim), and 

150 pCi 32P-UTP (3000 Ci/mmole) (NEN-Dupont) were combined in a volume of 25 pi and 

incubated at 37°C for 120 minutes with an extra addition of polymerase at 60 minutes. The 

reaction mixture was treated with DNase I as previously described.

Determination of RNA yield and specific activity

A 1 pi aliquot of the RNA transcription reaction was removed and added to 5 pi of 1 

mg/ml yeast tRNA (Sigma)and 94 ml of DEPC-treated water. Two 5 pi aliquots of this 

dilution were spotted onto two small glass fiber filters (Whatman, Clifton, NJ). RNA was 

precipitated from one filter by placing the filter in 5 ml of cold 10% trichloroacetic acid/1% 

sodium pyrophosphate (Sigma) and swirling for 5 minutes. The filter was washed four 

times by swirling for 5 minutes in 5 ml of 5% trichloroacetic acid per wash. The filter was 

then washed in 100% ethanol for 2 minutes. The remaining unwashed filter and the washed 

filter were allowed to air dry. The filters were placed in scintillation vials with 5 ml of
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scintillation fluid (Sigma) and counts per minute (cpm) were determined on a Beckman 

scintillation counter.

Calculation of the specific activity of radioisotope:

cpm unwashed filter X total reaction volume = cpm/pmol labeled 
total pmol labeled NTP volume sampled NTP

Calculation of the RNA yield:

precipitable cpm X total reaction volume X * 4 pmol NTP X **1 =pg 
specific activity volume sampled pmol labeled NTP 3225

* An average of four nucleotides will be incorporated into the RNA for every 
labeled NTP that is scored by this assay.

** 1 fug RNA = 3225 pmol

Calculation of Specific Activity of RNA probe:

specific activity X dilution factor = cpm/pg RNA 
of radioisotope

Purification of RNA probes

Unincorporated NTP's were removed with a Nensorb 20 Nucleic Acid Purification 

Cartridge (NEN-Dupont). The cartridge was equilibrated with methanol and 50 mM 

triethylamine. The sample was loaded and washed with 50 mM triethylamine. The RNA 

probe was eluted with 50% n-propanol. The probe was used immediately or stored at 

-20°C for no longer than one week.
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Preparation of dot blot apparatus

The dot blot apparatus (Biorad, Hercules, CA) was autoclaved for 20 minute and 

placed in a 10% solution of sodium dodecyl sulfate (SDS) for 30 minutes. Each piece of 

the apparatus was rinsed with MilliQ water until all SDS was removed. Each piece was 

placed in an 80° C oven until dry.

Application of sample to hybridization membranes

Samples were digested with proteinase 1C (Sigma) at a final concentration of 400 

|.ig/ml for 60 minutes at 56°C. The sample was placed on ice until it reached room 

temperature. The appropriate size piece of Gene Screen Plus™ nylon hybridization 

membrane (NEN-Dupont) was cut, wetted with DEPC treated water, and placed between 

the upper and lower portions of the dot blot apparatus. The dot blot apparatus was 

assembled according to manufacturer’s instructions. Multiple layers o f perifilm were placed 

on areas of the dot blot apparatus not used. A maximum of 1 ml was applied to each well. 

After sample application, membranes were baked at 80°C for 2 hours in a Fisher Isotemp® 

500 series oven. Membranes were completely covered with plastic wrap and stored at room 

temperature until use.

Pre-hybridization

Membranes were placed in 50 ml disposable polypropylene centrifuge tubes 

(Coming). Five ml of a pre-hybridization fluid consisting of 6X SSPE, 0.5% SDS, 10% 

dextran sulfate, and 50% deionized formamide was added to the tubes and allowed to coat 

the membranes. Membranes were secured to the sides of the tubes and freed of any air
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bubbles. Tubes were placed into a rotisserie-type hybridization oven (Vanguard 

International, Inc.) and rotated for at least two hours at 50°C.

Hybridization and optimization of RNA probe concentration

Tubes were removed from the oven and RNA probe was added to the hybridization 

fluid. The tubes were returned to the oven and rotated for 12 hours at 50°C. To determine 

the optimum probe concentration, dilutions of positive sense poliovirus RNA transcripts 

were spotted onto separate hybridization membranes. Each membrane was probed with 1 x 

106, 5 x 106, or I x 107cpm/ml of hybridization fluid with a negative sense poliovirus RNA 

probe with a specific activity of 1.7 x 109 cpm/(.ig. Comparison of RNA probe 

concentration was repeated twice to ensure reproducibility.

Washing hybridization membranes

Tubes were removed from the hybridization oven. Hybridization fluid was poured 

out and quickly replaced with 10 ml of 2X SSPE. The tubes were placed on a cell 

production roller apparatus (Bellco Glass, Inc.) and rotated for 5 minutes at room 

temperature. This step was repeated followed by two washes with 5 ml of 2X SSPE/0.5% 

SDS for 30 minutes at 65°C in the hybridization oven. The final washing consisted of two 

10 ml washes of 0.1X SSPE for 30 minutes each, at room temperature. The membranes and 

wash fluid were checked with a geiger counter to determine if  the background was 

adequately reduced. Membranes were allowed to dry on filter paper at room temperature.
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Autoradiography

Membranes were wrapped in a single layer of plastic wrap and placed on a X-ray 

cassette with an intensifying screen (NEN-Dupont), The membranes were exposed to 

Kodak XAR-5 x-ray film (Eastman Kodak Co.) for 24-48 hours, at -80°C. The film was 

processed with Kodak D-l I developer (Eastman Kodak Co.) for 5 minutes followed by a 30 

second wash with lukewarm water, and fixed for 5 minutes in Kodak fixer (Eastman Kodak 

Co.). The autoradiograph was then submerged in lukewarm water for 15 minutes and hung 

to dry.

Evaluation of poliovirus negative sense RNA probe sensitivity

Positive sense RNA transcripts. Positive sense RNA transcripts were quantified 

spectrophotometrically, diluted with DEPC treated water, and applied to duplicate 

hybridization membranes with the dot blot apparatus. The membranes were hybridized with 

the negative sense RNA probe for 12 hours and exposed to Kodak XAR-5 x-ray film 

(Eastman Kodak Co.) for 36 hours. Sensitivity determination was repeated twice to ensure 

reproducibility.

Poliovirus type IfLscT Poliovirus type 1 (Lsc) with a titer of 1.8 x 108pfu/ml, was 

treated with proteinase K as previously described. Ten-fold dilutions o f liberated poliovirus 

RNA were prepared in DEPC water and 500 pi was applied to duplicate hybridization 

membranes with the dot blot apparatus. The membranes were hybridized with the negative 

sense RNA probe for 12 hours and exposed to Kodak XAR-5 x-ray film (Eastman Kodak 

Co.) for 36 hours. Sensitivity determination was repeated three times to ensure 

reproducibility.
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Evaluation of negative sense RNA probe specificity

Propagation and quantification of MS-2. Escherichia coli C3000 was grown 

overnight with shaking in heart infusion broth (HTB)(Difco) supplemented with 5 x 10'3M 

MgCh and CaCl2. The culture was diluted 1:50 in HIB and incubated for 3 hours with 

shaking. MS-2 bacteriophage was added to the culture at a multiplicity of infection of 2 and 

shaken slowly at 37°C until clearing was apparent. The lysates were chloroform treated and 

centrifuged at 7,500 x g for 10 minutes at 4°C. The supemate was retained and the MS-2 

titer was determined by a standard double agar overlay plaque assay.

Propagation and quantification of HAV. Fetal rhesus kidney (FRhK-4) cells 

(ATCC, Rockville, MD) were grown in equal parts of MEM and L-15 medium (Sigma), 

supplemented with 20% fetal bovine serum (Sigma). Confluent monolayers of FRhK-4 

cells grown in 75cm2 flasks were rinsed with IX PBS and inoculated with HAV strain HM- 

175 at a multiplicity of 10. Flasks were incubated at 37°C for 60 minutes with rocking 

every 15 minutes. Cells were freeze/thawed 3 times after 75% CPE was reached. Cells 

were pelleted at 7500 x g and the supemate was stored in aliquots at -80°C. HAV was 

quantified using the same plaque assay procedure for poliovirus, however plaques were 

viewed after 7 to 10 days.

Propagation of other Enteroviruses. Confluent monolayers of BGM cells were 

grown in 75 cm2 flasks and inoculated with coxsackie A7 (ATCC VR-1012), coxsackie B3 

(strain Nancy)(ATCC VR-30), poliovirus 2 (strain MEF-1)(ATCC VR-61), poliovirus 3 

(strain Leon)(ATCC VR-1004), and echovirus 7 (strain Wallace)(ATCC VR-1047) as 

previously described for poliovirus. Cells were incubated at 37°C until 75% CPE was
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reached. Cells were freeze/thawed three times and centrifuged to pellet cellular debris. The 

supemates were stored in aliquots at -80°C.

Isolation of viral nucleic acid. All viruses were phenol/chloroform extracted to 

remove any proteinaceous material followed by ether extraction to remove any residual 

chloroform.

Evaluation of cross-reactivitv. Ten-fold dilutions of viral nucleic acid were prepared 

in DEPC water and applied to a hybridization membrane with the dot blot apparatus. The 

membrane was probed with the 32P labeled negative sense RNA probe, hybridized for 12 

hours, and autoradiographed for 36 hours. Evaluation of cross-reactivity of the negative 

sense probe was repeated twice to ensure reproducibility.

Elution of seeded poliovirus from sludge

Sludge characteristics. The sludge was obtained from a municipal wastewater 

treatment plant in Ogunquit, Maine. The sludge contained approximately 2% solids and had 

been aerobically digested.

Adsorption of seeded poliovirus to sludge. One ml of poliovirus type 1 (LSc) with a 

titer of 3.7 x 107 pfti/ml was added to 180 ml of room temperature sludge. The seeded 

sludge was kept at room temperature for I hour to allow adsorption o f poliovirus to sludge 

solids. Twenty ml samples were collected while the sample was gently mixed on a magnetic 

stirrer.

Eluant. Beef extract V (Becton Dickinson) was used to elute poliovirus type 1 (Lsc) 

from the sludge. The use o f beef extract in liquid or powder form and at two pH’s was 

compared. A sterile 3% beef extract solution supplemented with 90 mM glycine was used
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at pH 7.0 or 9.5. Alternatively, beef extract powder was added directly to the sludge to a 

final concentration of 3% with subsequent adjustment of the pH to 7.0 or 9.5.

Elution of poliovirus with beef extract solution. Sludge solids were collected after 

centrifugation at 1700 x g for 30 minutes. The supemate was discarded and the sludge 

solids were mixed on a magnetic stirrer with 20 ml o f 3% beef extract supplemented with 

90 mM glycine. Once the solids were resuspended the pH was adjusted to 7.0 or 9.5 and 

mixed for 10 minutes at room temperature. The sludge was centrifuged at 5000 x g for 10 

minutes. The sludge solids were discarded and the pH of the eluate was adjusted to 7.0 if 

necessary.

Elution of vims with beef extract powder. Beef extract powder was added to sludge 

to a final concentration of 3% and mixed until dissolved. The pH was adjusted to 7.0 or 9.5 

and the sludge was mixed on a magnetic stirrer for 10 minutes and centrifuged at 5000 x g 

for 10 minutes. The sludge solids were discarded and the pH of the eluate was adjusted to 

7.0 if necessary.

Concentration of eluate. The eluates were concentrated by organic flocculation 

(Katzenelson, 1976). AICI3 was added to each eluate to a final concentration of 0.005M and 

the pH was lowered to 3.5. The solution was mixed on a magnetic stirrer for 10 minutes and 

centrifuged at 7500 x g for 10 minutes. The floe was resuspended in 0.15M NaH2P0 4  at a 

pH o f 9.5, mixed for 5 minutes, and centrifuged at 7500 rpm for 10 minutes. The pH of the 

supemate was lowered to 7.5 and stored at -80°C.

Detection of recovered poliovirus. The sludge concentrates were diluted with IX 

PBS and recovered poliovirus was detected by plaque assay with BGM cells, using a 1 ml 

inoculum of sludge concentrate per 25 cm1 flask. Additionally, 100 pi o f each sample was
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proteinase k treated, spotted onto a hybridization membrane and probed with the 32P labeled 

negative sense poliovirus RNA probe. The entire procedure was repeated twice.

Liberation of viral nucleic acid from sludge concentrates

Three methods were compared for their ability to efficiently liberate poliovirus 

nucleic acid from sludge concentrates. Nine ml portions of a sludge concentrate were 

seeded with 1 ml of poliovirus type 1 (LSc) with a titer o f 1.8 x 108 pfu/ml or I ml of 

serially diluted poliovirus. One third of each seeded sludge concentrate aliquot was 

proteinase k treated as previously described. Another third of each portion was proteinase k 

treated then extracted with phenol/chloroform until no protein layer was visible, followed by 

extraction with chloroform and ether. The remaining third of each seeded sludge 

concentrate aliquot was only phenol/chloroform, chloroform, and ether extracted. One 

hundred (al aliquots of each sample was spotted onto duplicate hybridization membranes as 

previously described. The membranes were hybridized with the negative sense poliovirus 

RNA probe and autoradiographed as previously described. Comparison of viral liberation 

methods was repeated twice to ensure reproducibility.
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Development of a Reverse Transcription-Polvmerase Chain Reaction Assay 
for the Detection of Enteroviruses in Sludge

Preparation of plasticware, water, and work area

All plasticware was purchased pre-sterilized and RNase/DNase free. As an added 

precaution microfiige tubes (U.S.A. Scientific) were exposed to ultraviolet (UV) light in a 

biological safety hood for 20 minutes prior to use. All pipet tips were purchased pre

sterilized and with aerosol resistant plugs (CLP, San Diego, CA). Molecular biology 

grade water (Sigma) that was certified RNase/DNase free by the manufacturer was used. 

Twenty to thirty ml portions of this water were poured into sterile 50 ml disposable 

centrifuge tubes (Fisher, Pittsburgh, PA) and exposed to UV light in a biological safety 

hood for 20 minutes prior to use. All reverse transcription and polymerase chain reaction 

work was performed in a dedicated area. The area, including benchtop and pipettors, was 

sprayed with 70% ethanol before work was begun.

Reverse transcription

The sample was placed in a 0.2 ml UV treated thin walled microtube and put in a 

Perkin Elmer Thermal Cycler model 2400 (Perkin Elmer, Norwalk CT). Alternatively, 

the sample was placed in a 0.65 ml UV treated microtube, overlaid with 50 pi of 

RNase/DNase free mineral oil (Sigma), and placed in a Perkin Elmer Thermal Cycler. 

This thermal cycler was the first model produced by Perkin Elmer and it was not given a 

model number. Viral RNA was liberated by digestion with 400 pg/ml proteinase K at 

56°C for 60 minutes. After digestion, the sample was heated to 99°C for 5 minutes to 

inactivate the proteinase K and placed on ice.
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The reverse transcription (RT) procedure was modified from Morteza et al.(1996). 

The reverse transcription reaction mixture consisted o f up to 10 pi of sample RNA, 50 

pM downstream primer (5’-ACC GGA TGG CCA ATC CAA-3’), 3 pi of 10X PCR 

buffer (Perkin Elmer), 7 pi o f dNTP’s (Perkin Elmer), 6 pi of MgCU, 1.5 pi of RNase 

inhibitor (Perkin Elmer), 1.5 pi of MuLV reverse transcriptase (Perkin Elmer) and UV 

treated water to achieve a final volume of 30 pi. The mixture was placed in either 

thermal cycler and heated to 42°C for 45 minutes followed by 99°C for 5 minutes and 

then immediately placed on ice.

Polymerase chain reaction

The polymerase chain reaction (PCR) reagents were added directly to the 

completed reverse transcription reaction. To each tube 50 pM of upstream primer (5’- 

CCT CCG GCC CCT GAA TG-3’), 7 pi of 10X PCR buffer, 2 pi of MgCl2, and UV 

treated water were added for a total reaction volume o f 100 pi. The tubes were heated to 

85°C for 2-3 minutes and 0.5 pi of AmpliTaq DNA polymerase (Perkin Elmer) was 

added. An initial denaturation at 95°C for 5 minutes was performed and then PCR 

continued for 35 cycles of denaturation, annealing and extension. Reactions in the Perkin 

Elmer Thermal Cycler 2400 were cycled at 95°C for 30 seconds, 55°C for 30 seconds, 

and 72°C for 30 seconds, with a final extention at 72°C for 7 minutes. Reactions in the 

Perkin Elmer Thermal Cycler were cycled at 95°C for 1 minute and 55°C for 1 minute, 

followed by a final extention at 72°C for 7 minutes. Completed reactions were stored at 

4°C until they were loaded with a 100 bp DNA ladder (Gibco) onto a 1.5% agarose gel
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containing ethidium bromide and electrophoresed for 1-2 hours at 70-100 volts. The gel 

was placed on a UV transilluminator and 196 bp RT-PCR products were viewed.

Determination of sensitivity of RT-PCR assay

Poliovirus type I (LSc) was previously quantified by plaque assay and the titer 

was determined to be 1 x 108 plaque forming units/ml. Poliovirus was proteinase K 

digested as previously described and viral RNA was serially diluted in UV treated water. 

These dilutions, a negative control consisting of UV treated water, and a positive control 

of 103 plaque forming units of proteinase k digested poliovirus type 1 (LSc) were 

analyzed by RT-PCR. Determination of RT-PCR sensitivity was repeated 5 times to 

ensure reproducibility.

Demonstration of RT-PCR inhibitors in sludge

Sludge concentrates are known to contain substances that inhibit RT-PCR. To 

demonstrate the presence of RT-PCR inhibitors, 100 pi of a sludge concentrate was 

seeded with 104 pfii of poliovirus type 1 (LSc) to achieve a concentration of 103 pfu/pl. 

One hundred pi of UV treated water was also seeded with 104 pfu of poliovirus to serve 

as a positive control. These two samples and a negative control consisting of UV treated 

water were proteinase k digested and analyzed by RT-PCR. Demonstration of RT-PCR 

inhibitors in sludge was repeated twice to ensure reproducibility.
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Column purification

Columns composed of Sephadex G-100 (Sigma) and Chelex 100 (Bio-Rad) resins 

were made for purification of sludge concentrates prior to RT-PCR. Slurries of both 

resins were made with UV treated water. Sterile glass wool (Fisher Scientific, 

Springfield, NJ) was placed at the bottom of a sterile 1 cc plastic syringe. Depending on 

the thickness of the resin slurry, 0.5 to 1.0 ml of Chelex 100 was added to the syringe. 

The syringe was placed in a sterile 15 ml disposable centrifuge tube without a cap and 

centrifuged at 1000 x g for 5 minutes at room temperature. This step was repeated, if 

necessary, until a packed Chelex resin volume was achieved. The Sephadex slurry was 

added on top of the packed Chelex resin and the centrifugation was repeated. The total 

packed volume of the column was approximately 0.8 ml. The column was transferred to 

a clean 15 ml centrifuge tube. A 200 pi portion of the sample was placed onto the 

column and centrifuged at 1500 x g for 5 minutes at room temperature. The column was 

discarded and the filtrate was immediately analyzed by RT-PCR.

Determination of sensitivity of RT-PCR with column purification

The sensitivity o f RT-PCR with and without column purification was compared. 

Serial dilutions o f polivirus type 1 (LSc) with a titer of 1 x 108 pfu/ml were made in sterile 

IX PBS. A 200 pi portion of dilutions containing 103, 102, 10,1, and 0.1 pfu/ml were 

purified with Chelex 100/Sephadex G-100 columns. The remaining portion of each dilution 

was untreated. Column purified poliovirus dilutions, non-purified poliovirus dilutions, a 

negative control consisting of UV treated water, and a positive control of 103 pfu of 

poliovirus were proteinase K digested and analyzed by RT-PCR. Determination of RT-
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PCR sensitivity with column purification was repeated twice to ensure reproducibility.

Oligo dT paramagnetic bead capture: 100 pi sample volume

Before use, oligo dT paramagnetic beads (Dynai) were gently resuspended in the 

manufacturer’s storage buffer. Ten to 50 pi of the paramagnetic beads was placed in a

1.5 ml microfuge tube. The tube was placed in a magnetic bead capture rack (Promega) 

for 30 seconds. The storage buffer was carefully withdrawn with a pipet tip and the tube 

was removed from the rack. The magnetic beads were washed with two hundred pi of 

2X binding buffer containing 20 mM Tris-HCl (pH 7.5), 1.0M LiCl, and 2 mM EDTA. 

The magnetic beads were resuspended in the buffer by gently shaking the tube. The tube 

was placed in the magnetic bead capture rack for 30 seconds and the buffer was removed. 

This washing procedure was then repeated. After the last wash, the magnetic beads were 

resuspended in 100 pi of 2X binding buffer.

At the same time, 100 pi of sample was proteinase K. digested and heated to 65°C 

for 2 minutes. The heated sample was added immediately to the washed magnetic beads 

and incubated for 10 minutes at room temperature to allow for hybridization of the viral 

RNA 5’ poly A tail and oligo dT tract on the magnetic beads.

The mixture was then placed in the magnetic capture rack for 30 seconds and the 

binding buffer was carefully withdrawn with a pipet tip. The tube was removed and 200 

pi of washing buffer composed of 10 mM Tris-HCl (pH 7.5), 0.15 M LiCl, and 1 mM 

EDTA was added. The beads were gently resuspended in the washing buffer and 

returned to the magnetic bead capture rack. The washing procedure was repeated. After 

the last wash, buffer was completely removed and 10 pi of UV treated water was added.
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The magnetic beads and water mixture was placed on ice and immediately analyzed by 

RT-PCR.

Determination of optimum paramagnetic bead volume. Three volumes of oligo dT 

paramagnetic beads were compared to determine the amount that was optimum for the 

capture ofpoliovirus RNA from 100 pi of sample. Oligo dT magnetic beads were washed 

as previously described. Ten, twenty five, or fifty jj.1 o f washed magnetic beads was placed 

into 1.5 ml microfiige tubes. Poliovirus type 1 (LSc) with a titer of 7.5 x 107 pfli/ml was 

diluted with IX PBS. Dilutions containing 7.5 x 104, 7.5 x 103, 7.5 x 102 pfu/ml were 

proteinase k digested and heated as previously described. One hundred pi of each dilution 

was added to tubes each containing one of the three volumes of washed oligo dT 

paramagnetic beads and incubated for 10 minutes at room temperature. Washing was 

performed as previously described. The captured RNA, a negative control consisting of UV 

treated water, and a positive control o f 103 plaque forming units of proteinase k digested 

poliovirus LSc-l were analyzed by RT-PCR. Optimization of paramagnetic bead volume 

was repeated twice to ensure reproducibility.

Determination of optimum incubation conditions. Three different incubation 

conditions were compared to determine the optimum incubation for the capture of poliovirus 

RNA from 100 pi o f sample. Oligo dT magnetic beads were washed as previously 

described. Twenty five pi of washed magnetic beads was placed into 6 1.5 ml micro fuge 

tubes. Poliovirus type 1 (LSc) with a titer o f 7.5 x 107 pfu/ml was diluted with IX PBS. 

Dilutions containing 7.5 xlO3 and 7.5 x 104pfu/ml were proteinase k digested and heated. 

One hundred pi of each dilution was added to three tubes containing washed oligo dT 

paramagnetic beads. One tube from each dilution was incubated for 10 minutes at room
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temperature, 10 minutes on ice, or 5 minutes at room temperature followed by 5 minutes on 

ice. Washing was performed as previously described. The captured RNA, a negative control 

consisting of UV treated water, and a positive control of 103 pfu of proteinase k digested 

poliovirus LSc-1 were analyzed by RT-PCR. Optimization of incubation conditions 

during magnetic bead capture was repeated twice to ensure reproducibility.

Oligo dT paramagnetic bead capture: 900 pi sample volume

A modification of the previously described 100 pi oligo dT paramagnetic bead 

capture method was used. Before use, oligo dT paramagnetic beads (Dynal) were gently 

resuspended in the manufacturer’s storage buffer. Fifty to 150 pi o f the paramagnetic 

beads was placed in a 1.5 ml microfiige tube. The tube was placed in a magnetic bead 

capture rack (Promega) for 30 seconds. The storage buffer was carefully withdrawn with 

a pipet tip and the tube was removed from the rack. The magnetic beads were washed 

with 1 ml of 10X binding buffer containing 1M Tris-HCl (pH 7.5), 5.0 M LiCl, and 10 

mM EDTA. The magnetic beads were resuspended in the buffer by gently shaking the 

tube. The tube was placed in the magnetic bead capture rack for 30 seconds and the 

buffer was removed. This washing procedure was then repeated. After the last wash, the 

magnetic beads were resuspended in 100 pi of 10X binding buffer.

At the same time, 900 pi of sample was proteinase K digested and heated to 65°C 

for 5 minutes. The heated sample was added immediately to the washed magnetic beads 

and incubated for 15 minutes at room temperature followed by 5 minutes on ice. The 

mixture was then placed in the magnetic capture rack for 30 seconds and the binding 

buffer was carefully withdrawn with a pipet tip. The tube was removed and 1 ml of
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washing buffer composed of 10 mM Tris-HCl (pH 7.5), 0.15 M LiCl, and I mM EDTA 

was added. The beads were gently resuspended in the washing buffer and returned to the 

magnetic bead capture rack. The washing procedure was repeated. After the last wash, 

buffer was completely removed and 10 pi of UV treated water was added. The magnetic 

beads and water mixture were placed on ice and immediately analyzed by RT-PCR.

Determination of optimum paramagnetic bead volume. Three volumes of oligo 

dT paramagnetic beads were compared to determine the optimum volume for the capture 

of poliovirus RNA from 900 pi of sample. Oligo dT magnetic beads were washed as 

previously described. Fifty, 100, and 150 pi of washed magnetic beads were placed into 3

1.5 ml microfuge tubes. Poliovirus type 1 (LSc) with a titer of 5 x 107 pfu/ml was diluted 

with IX PBS. Dilutions containing 500 and 50 pfu/ml of poliovirus were proteinase k 

digested and heated. Nine hundred pi of each dilution was added to a tube containing 

washed oligo dT paramagnetic beads and incubated for 15 minutes at room temperature and 

5 minutes on ice. Washing was performed as previously described. The captured RNA, a 

negative control consisting o f UV treated water, and a positive control o f 103 pfu of 

proteinase k digested poliovirus type 1 (LSc) were analyzed by RT-PCR. Optimization 

of paramagnetic bead volume was repeated twice to ensure reproducibility.

Comparison of rocked or stationary conditions during incubation. Rocked or 

stationary incubations were compared to determine the optimum condition for the capture 

o f poliovirus RNA from 900 pi o f sample. Poliovirus type 1 (LSc) with a titer o f 5 x 107 

pfu/ml was serially diluted with IX  PBS. Dilutions containing 5 xlO3 and 5 xlO2 pfu of 

poliovirus were proteinase k digested and heated. Nine hundred pi of each dilution was 

added to two tubes containing 100 pi of washed oligo dT paramagnetic beads. One tube
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from each dilution was incubated at room temperature on a platform rocker (Speci Mix) 

for 15 minutes, while the other tubes remained stationary. All tubes were then placed on 

ice for 5 minutes. Washing was performed as previously described. The captured RNA, a 

negative control consisting of UV treated water, and a positive control of 103 pfu of 

proteinase k digested poliovirus type 1 (LSc) were analyzed by RT-PCR. Comparison of 

rocked or stationary conditions during magnetic capture was repeated twice to ensure 

reproducibility.

Determination of RT-PCR sensitivity in a sludge concentrate 
with the 900 pi oligo dT paramagnetic bead capture method

A poliovirus seeded sludge concentrate was used to determine the sensitivity of 

RT-PCR with the 900 pi sample volume magnetic bead capture methods. Sludge 

concentrates contain RT-PCR inhibitors that may affect the sensitivity of the methods. 

Prior to seeding, it was necessary to remove any indigenous nucleic acid. This must be 

accomplished without elimination of the RT-PCR inhibitors.

Removal of indigenous nucleic acid from sludge concentrate. The pH of the 

sludge concentrate was raised to 12 or above with 5NNaOH. After 60 minutes, the pH 

was reduced to 7.0 with 5N HC1. Concentrated NaOH and HC1 were used to reduce 

dilution of the sample from pH adjustment. The pH treated sludge concentrate was 

proteinase K treated as previously described. Two 900 pi aliquots were placed in 1.5 ml 

microfuge tubes and subjected to magnetic bead capture. To determine if  indigenous 

viral nucleic acid was eliminated by the high pH treatment, one tube o f magnetic beads 

was resuspended in 10 pi o f UV treated water. Oligo dT paramagnetic beads in the other 

were resuspended in 9 pi o f UV treated water and seeded with 1 pi o f 105 pfu/ml of
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proteinase k digested poliovirus type l(LSc) to demonstrate the absence of RT-PCR 

inhibitors. Additionally, nine pi of sludge concentrate that had not undergone magnetic 

bead capture was seeded with 1 pi o f 105 pfu/ml of proteinase k digested poliovirus type 

1 (LSc) to determine whether the high pH treatment eliminated RT-PCR inhibitors. 

These samples, a negative control consisting of UV treated water, and a positive control 

o f 103 pfu of proteinase k digested poliovirus type I (LSc) were analyzed by RT-PCR.

Determination of sensitivity. To determine the least amount of polio vims in a 

sludge concentrate that could be detected using RT-PCR with the 900 pi oligo dT 

paramagnetic bead capture method, a sludge concentrate was seeded with a known 

quantity o f poliovirus. A lime stabilized sludge concentrate that had been pH treated and 

shown to be free of any indigenous nucleic acid by the previously described method was 

used. Poliovirus type 1 (LSc) with a titer of 5 x 107 pfu/ml was diluted in the pH treated 

sludge concentrate. The first dilution was a 1:100 dilution comprised of 990 pi of pH 

treated sludge concentrate and 10 pi of poliovirus. The remaining dilutions were 1:10 

with 100 pi o f diluted polio vims added to 900 pi of pH treated sludge concentrate. Nine 

hundred pi of sludge concentrate dilutions containing 500, 50, 5, and 0.5 plaque forming 

units/ml of poliovirus were proteinase k digested, heated and added to 100 pi of washed 

magnetic beads. The magnetic bead mixture was incubated for 15 minutes at room 

temperature on a platform rocker followed by 5 minutes on ice. Magnetic beads were 

washed and resuspended in 10 pi of UV treated water as previously described. The 

captured RNA, a negative control consisting o f UV treated water, and a positive control 

o f  103 pfu. of proteinase k digested poliovirus type 1 (LSc) were analyzed by RT-PCR. 

Determination of sensitivity was repeated three times to ensure reproducibility.
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Comparison of 100 pi and 900 pi sample volume oligo dT paramagnetic bead 
capture methods in a sludge concentrate seeded with poliovirus

To compare the sensitivity o f RT-PCR with 100 pi and 900 pi sample volume 

oligo dT paramagnetic bead capture methods in a sludge concentrate, a mock sample 

consisting of a sludge concentrate seeded with a known quantity of poliovirus was used. 

Twenty-five and 100 pi aliquots o f oligo dT magnetic beads were washed as previously 

described. A lime stabilized sludge concentrate that had been pH treated and shown to be 

free of any indigenous nucleic acid by the previously described method was used. 

Poliovirus type 1 (LSc) was diluted in the pH treated sludge concentrate to ensure that the 

RT-PCR inhibitors were not reduced by dilution. The first dilution was a 1:100 dilution 

comprised of 1.98 ml of pH treated sludge concentrate and 20 pi of poliovirus. The 

remaining dilutions were 1:10 with 200 pi of diluted poliovirus added to 1.8 ml o f pH 

treated sludge concentrate. Sludge concentrate dilutions containing 500 and 50 pfu /ml of 

poliovirus were proteinase K digested and heated. One hundred pi aliquots of each 

dilution was placed in the tubes containing 25 pi of magnetic beads, while 900 pi of each 

dilution was placed in the tubes containing 100 pi o f magnetic beads. Reactions with a 

100 pi sample volume were incubated for 5 min at room temperature followed by 5 

minutes on ice. Reactions with a 900 pi sample volume were incubated for 15 minutes at 

room temperature on a platform rocker followed by 5 minutes on ice. All reactions were 

washed as previously described. The captured RNA, a negative control consisting of UV 

treated water, and a positive control of 103 pfu of proteinase k digested poliovirus type 

l(LSc) were analyzed by RT-PCR. Magnetic capture methods were compared twice to 

ensure reproducibility.
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Comparison of column purification and oligo dT paramagnetic bead capture methods

A lime stabilized sludge concentrate that had been pH treated and shown to be 

free of any indigenous nucleic acid by the previously described method was used. 

Poliovirus type 1 (LSc) was diluted in the pH treated sludge concentrate. The first 

dilution was a 1:100 dilution comprised of 1.98 ml of pH treated sludge concentrate and 

20 pi of poliovirus. The remaining dilutions were 1:10 with 200 pi of diluted poliovirus 

added to 1.8 ml of pH treated sludge concentrate. One hundred pi o f the dilution 

containing 100 plaque forming units/ml of poliovirus type 1 (LSc) was proteinase K 

digested, heated, and added to 25 pi of washed magnetic beads as previously described. 

After capture was completed, the magnetic beads were resuspended in 10 pi o f UV 

treated water. Nine hundred pi of the same dilution was also proteinase K digested, 

heated, and added to 100 pi of washed magnetic beads as previously described. After 

capture was completed, the magnetic beads were resuspended in 10 pi of UV treated 

water. Two hundred pi of the dilution was purified with a Chelex 100/Sephadex G-100 

column and then proteinase K digested. The RNA samples, a negative control consisting 

of UV treated water, and a positive control of RNA from approximately 103 plaque 

forming units of poliovirus type 1 (LSc) were analyzed by RT-PCR. Comparison of 

columns and magnetic bead capture methods was repeated twice to ensure 

reproducibility.
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Evaluation of sludge concentrates by RT-PCR with the 900 pi sample volume oligo 
dT paramagnetic bead capture method and by plaque assay

Eight lime stabilized sludges and three untreated (raw) sludges were eluted with 3% 

beef extract and concentrated by organic flocculation (EPA, 1992). Raw sludge 

concentrates were diluted 1:2, 1:5, and 1:10 with IX PBS while lime stabilized sludge 

concentrates were used undiluted. Two 900 pi aliquots of each concentrate or dilution 

were proteinase K digested, heated, and added to 100 pi of washed magnetic beads as 

previously described. After capture was completed, one set o f captured magnetic beads 

from each sample was resuspended in 10 pi of UV treated water. The other set was 

resuspended in 9 pi of UV treated water and seeded with 1 pi of 105 plaque forming 

units/ml of poliovirus type 1 (LSc) that had been proteinase k digested. The RNA 

samples, a negative control consisting of UV treated water, and a positive control of 

RNA from approximately 103 plaque forming units o f  poliovirus type 1 (LSc) were 

analyzed by RT-PCR. Evaluation of sludge concentrates by RT-PCR with magnetic 

bead capture was repeated twice to ensure reproducibility.

Additionally, the sludge concentrates were analyzed by plaque assay with BGM 

cells as previously described. The sludge concentrates were diluted with IX PBS and 

viruses was detected by plaque assay with BGM ceils, using a 1 ml inoculum o f sludge 

concentrate per 25 cm2 flask. Four flasks were used per dilution.
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RESULTS

Detection of poliovirus in sludge with a 32P labeled RNA probe

Orientation of pGEM 3Z/PV 1174

The plasmid pGEM 3Z/PV 1174 was digested with restriction endonuclease Kpn 

I and the fragments were separated by agarose gel electrophoresis and viewed after 

ethidium bromide staining (Figure 6). Bands of 3100 and 800 bp were produced and 

demonstrated that the insert was in orientation I (Figure 4). Based on the arrangement of 

the promoters within pGEM-3Z, it was determined that SP6 RNA polymerase would 

result in the production of negative sense RNA transcripts, while T7 RNA polymerase 

would produce positive sense RNA transcripts.

Optimization of negative sense poliovirus RNA transcript production

The RNA yields from reactions containing five different concentrations of NTP’s 

were compared. RNA yields were determined by spectrophotometric readings. It was 

determined that a 500 pM NTP concentration resulted in the greatest RNA transcript 

production (Figure 7).

The RNA yields from reactions incubated at 37°C for 15, 30,60, 90, 120 minutes, 

and 120 minutes with an extra addition of SP6 RNA polymerase midway through the 

incubation were compared. RNA yields were compared after agarose gel electrophoresis
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Figure 6

Determination of poliovirus cDNA insert orientation

1 2 3 4  5 6

Agarose gel stained with ethidium bromide showing restriction digests of 
the vector pGEM-3Z/PV 1174. Lanes: 1, empty; 2, pGEM-3Z/PV 1174;
3, lambda Hind III and EcoRI digest; 4, pGEM-3Z/PV 1174 digested with 
Kpn I; 5, pGEM-3Z/PV 1174 digested with Pst I.
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Figure 7

Optimization of negative sense poliovirus RNA transcript production
NTP concentration

— pGEM-3Z/PV 1174

*— RNA transcripts

1 2 3 4 5 6 7 8 9

Agarose gel analysis demonstrating poliovirus in vitro RNA synthesis with 
SP6 RNA polymerase with varied NTP concentrations. Lanes: 1, yeast tRNA; 
2, yeast tRNA; 3, linearized pGEM-3Z/PV 1174; 4, RNA transcription with 
400 fiM NTP’s; 5, RNA transcription with 500 fiM NTP’s; 6, Hind III/EcoRI 
digest of lambda DNA; 7, RNA transcription with 600 fiM  NTP’s; 8, RNA 
transcription with 800 ftM NTP’s; 9, RNA transcription with 1200 fiM NTP’s.
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and ethidium bromide staining (Figure 8). It was determined that a 120 minute 

incubation with extra enzyme produced the greatest amount of RNA

Production of positive sense poliovirus RNA transcripts

RNA transcript production from reactions incubated at 37°C for 90 minutes were 

evaluated after agarose gel electrophoresis and ethidium bromide staining (Figure 9). 

RNA yields were determined to be consistently high using this procedure.

Optimization of RNA probe concentration

Membranes spotted with positive sense poliovirus RNA transcripts were 

hybridized with a negative sense poliovirus RNA probe with a specific activity of 1.7 x 

109cpm/(.ig at concentrations o f 1 x 106, 5 x 106, and 1 x 107cpm/ml of hybridization 

fluid. It was determined that probe concentrations o f 5 x 106and 1 x 107cpm/ml 

resulted in the greatest sensitivity, however, the 1 x 107cpm/ml probe concentration 

produced significant background as seen after autoradiography (Figure 10). Therefore, 

the 5 x 106 cpm/mi probe concentration was used in subsequent experimentation.

Sensitivity of negative sense RNA probe

Dilutions of positive sense RNA transcripts and proteinase K digested poliovirus 

type 1 (LSc) were applied to hybridization membranes and probed with the negative 

sense RNA probe. The detection limit o f the probe was 10 fg o f positive sense RNA 

transcripts and 90 plaque forming units o f poliovirus LSc-1 (Table 1).
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Figure 8

Optimization of negative sense poliovirus RNA transcript production
Incubation conditions

pGEM 3-Z/PV 1174

RNA transcripts

2 3 4 5 6  7 8 9

Agarose gel analysis demonstrating poliovirus in vitro RNA synthesis with SF6 
RNA polymerase with varied incubation conditions. Lanes: 2, RNA transcription 
for 30 minutes; 3, RNA transcription for 60 minutes; 4, RNA transcription for 15 
minutes; 5, Hind III/EcoRI digest of lambda DNA; 6, RNA transcription for 120 
minutes with extra enzyme; 7, RNA transcription for 90 minutes; 8, RNA 
transcription for 120 minutes; 9, linearized pGEM-3Z/FV 174.
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Figure 9

Production of positive sense RNA transcripts

pGEM-3Z/PV 1174

RNA transcripts

3 4  5 6 7

Agarose gel analysis demonstrating poliovirus in vitro RNA synthesis with 
T7 RNA polymerase. Lanes: 3, pGEM-3Z/PV 1174 digested with Hind III; 
4, lambda DNA digested with Hmd III and EcoRI; 5, pGEM-3Z/PV 1174 
digested with Hind III and positive sense RNA transcripts generated with 
T7 RNA polymerase; 6, yeast tRNA; 7, yeast tRNA.
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Figure 10

Optimization of RNA probe concentration

1 x 106 cpm/ml

5 x 106 cpm/ml

1 x 107 cpm/ml

♦ ♦ ♦ ♦
4  5 6 7

Autoradiograph of three identical hybridization membranes containing positive 
sense RNA transcript dilutions, applied with the dot blot apparatus, and 
individually probed with three concentrations of negative sense RNA probe. 
Top row of wells: 1, negative control (DEPC treated water); 2; 0.5 fg RNA;
3,5 .0  fg. Bottom row of wells: 4 ,50 fg; 5,500 fg; 6 ,5  pg; 7 ,50  pg.
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Table 1

Detection o f poliovirus type 1 (LSc) and RNA transcripts with a 32P labeled RNA probe

poliovirus pfu

Lowest RNA 
detected

9 x 103 9 x  104 9 x  103 9 x  102 9 x  101 9 x  10°

10 fg + + + + + •

+ viral RNA detected 
- viral RNA not detected
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Specificity of poliovirus RNA probe

Dilutions o f bacteriophage MS-2, hepatitis A virus, coxsackie B3 virus, poliovirus 

1, poliovirus 2, poliovirus 3, and echovirus 7 RNA were applied to a hybridization 

membrane and probed with the negative sense RNA probe. The negative sense 

poliovirus RNA probe strongly hybridized with poliovirus 1, 2, and 3 RNA (Table 2). 

There was a weak signal produced after hybridization with echovirus 7 RNA.

Comparison of beef extract elution methods

Poliovirus type 1 (LSc) seeded sludge was eluted with a 3% solution of beef 

extract V supplemented with 90 mM glycine at pH 7.0 or 9.5. Alternatively, beef extract 

V powder was added directly to the sludge and the pH was adjusted to 7.0 or 9.5. During 

elution, the sludge was mixed on a magnetic stirrer for 10 minutes or homogenized for 2 

minutes. Poliovirus recovery was determined by plaque assay and hybridization with the 

negative sense poliovirus RNA probe (Table 3). Overall, beef extract powder at either 

pH or mixing technique yielded a higher poliovirus recovery as measured by plaque 

assay and RNA probe than elution with beef extract solution. Use of beef extract powder 

at pH 7.0 with homogenization resulted in slightly higher poliovirus recovery as 

measured by plaque assay than other elution methods.

Comparison of viral nucleic acid liberation methods from sludge concentrates

Proteinase k digestion, phenol/chloroform/ether extraction, and proteinase k 

digestion followed by phenol/chloroform/ether extraction were compared for the 

liberation of poliovirus RNA from sludge concentrates. RNA from the three methods
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were spotted onto a hybridization membrane and probed with the negative sense RNA 

probe (Table 4). Phenol/chloroform/ether extraction, with or without proteinase k 

digestion, resulted in the detection of 1.8 x 104 pfu o f poliovirus. However proteinase k 

digestion alone resulted in the detection of 1.8 x 102 pfu o f poliovirus.
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Table 2

Specificity o f poliovirus 32P labeled RNA probe

Dilution

Virus 10’" 10‘3 10-4

Poliovirus-1 + + +

Poliovirus-2 + +

Poliovirus-3 + + -

Echovirus 7 + - -

Coxsackie A7 - - “

Coxsackie B3 - - -

Hepatitis A virus - “ “

+ viral RNA detected 
- viral RNA not detected
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Table 3

Comparison of eluant and mixing technique for the recovery
of poliovirus type 1 (LSc) from sludge

plaque
assay

RNA probe
dilution

eluant mixing pH pfu/ml a10° 10'1 10*2
b3% be (1) mag. stirrer 7.0 1.3 x10s + + +

mag. stirrer 9 .5 1.0 x 10s + + -

homogenizer 7.0 1.0 x 10s + + -

homogen izer 9 .5 1.1 x 10s + + -

c3% be (s) mag. stirrer 7.0 1.3 x 105 + + +
mag. stirrer 9 .5 1.7 x 10s + + +

homogenizer 7.0 2.6 x 10s + + +
homogenizer 9 .5 2.4 x 10s + + +

a 100 pi o f each dilution was spotted onto hybridization membrane 
b 3% beef extract solution supplemented with 90 mM glycine 
c beef extract powder added to a final concentration of 3%
+■ viral RNA detected 
- viral RNA not detected
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Table 4

Comparison o f viral liberation method for the detection o f
Poliovirus with 32P labeled RNA probe

Poliovirus pfu/100 M-l
method 1.8 x 10v 1.8 x 10° 1.8 x lO 5 1.8 x 104 1.8 x 10J 1.8 x 102
aprot. k c+ + + + + +

p/c/e + + + + - -

Prot. K + 
p/c/e

+ + - ■

a proteinase k digestion 
b phenol/chloroform and ether extraction 
+ viral RNA detected 
- viral RNA not detected
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Detection of Enteroviruses in Sludge with RT-PCR

Sensitivity of RT-PCR assay

Poliovirus type I (LSc) was proteinase K digested and diluted in UV 

treated water. RT-PCR was performed with negative and positive controls. After agarose 

gel electrophoresis and ethidium bromide staining, 196 bp RT-PCR products were 

viewed (Table 5). One plaque forming unit of poliovirus per 10 pi was the lowest 

amount detected.

Demonstration of RT-PCR inhibitors in sludge

A sludge concentrate was seeded with poliovirus type l(LSc) to obtain a 

concentration of 103 pfu/10 pi of concentrate. The seeded concentrate, a positive control 

containing 103 pfu polio virus/10 pi o f UV treated water, and a negative control were 

proteinase k digested and assayed by RT-PCR. After agarose gel electrophoresis and 

ethidium bromide staining, 196 bp RT-PCR products were viewed. Amplification 

occurred in the positive control but not in the concentrate, demonstrating the presence of 

RT-PCR inhibitors in the sludge concentrate.

Sensitivity of RT-PCR with column purification

Aliquots of poliovirus type 1 (LSc) dilutions were purified with Chelex 

100/Sephadex G-100 columns. Non-column purified dilutions, column purified dilutions, 

and controls were proteinase K digested and assayed by RT-PCR. After agarose gel 

electrophoresis and ethidium bromide staining, 196 bp RT-PCR products were viewed
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Table 5

Sensitivity o f  RT-PCR assay for the detection o f  poliovirus

Poliovirus (pfu/10 pi)

100 10 1.0 0.1

+ + + -*

+ 196 bp RT-PCR product detected by agarose gel analysis 
- 196 bp RT-PCR product not detected by agarose gel analysis
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(Table 6 ). The dilution that contained 5 pfu/10 jj.1 of poliovirus and did not receive 

column purification was the last dilution that yielded a product. However, with column 

purification, the last dilution of poliovirus that yielded a product contained 5 x 1 0  pfu/ 

10 pi.

Optimization of oligo dT paramagnetic bead capture: 100 pi sample volume

Three volumes of magnetic beads were compared to determine the optimum 

amount required for the capture poliovirus RNA. Dilutions of proteinase k digested 

poliovirus type 1 (LSc) were added to tubes containing 10, 25, or 50 pi of magnetic 

beads. Magnetic bead capture and RT-PCR were performed.. After agarose gel 

electrophoresis and ethidium bromide staining, 196 bp RT-PCR products were viewed 

(Table 7). Use of 25 or 50 pi of magnetic beads resulted in a greater sensitivity than the 

use of 10 pi, and resulted in the detection of 75 pfu of poliovirus per 100 pi. There was 

no difference in the detection sensitivity with the use of 25 or 50 pi volumes of magnetic 

beads. Therefore, to conserve the reagent, 25 pi of oligo dT paramagnetic beads was 

used in subsequent experiments.

Three temperatures were compared to determine the optimum hybridization 

conditions for the capture of poliovirus RNA. Dilutions of poliovirus containing 7.5 x 

103 and 7.5 x 102 pfii/100 pi were added to 25 pi o f magnetic beads and incubated for 10 

minutes at room temperature, 10 minutes on ice, or 5 minutes at room temperature 

followed by 5 minutes on ice. Magnetic bead capture and RT-PCR were performed.. 

After agarose gel electrophoresis and ethidium bromide staining, 196 bp RT-PCR
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Table 6

Sensitivity o f  RT-PCR with Chelex 100/Sephadex G-100 columns
for the detection o f poliovirus

Po iovirus (pfu/10 HD
method 10J 1 x 10* 10 1.0 0.1

no column + + + + -

column + + - - -

+ 196 bp RT-PCR product detected by agarose gel analysis 
- 196 bp RT-PCR product not detected by agarose gel analysis
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Table 7

Optimization o f oligo dT paramagnetic bead volume
100 pi sample volume

Poliovirus (pfu/100 pi)
volume of mag. beads 7.5 x 10J 7.5 x 102 7.5 x 101

10 pi + + -
25 pi + + +
50 pi + +

+ 196 bp PCR product detected by agarose gel analysis 
- 196 bp PCR product not detected by agarose gel analysis
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products were viewed (Figure 11 and Table 8). Both dilutions were detected using all 

three hybridization temperatures, although incubation for 5 minutes at room temperature 

followed by 5 minutes on ice resulted in DNA bands o f much greater intensity.

Optimization of oligo dT paramagnetic bead capture: 900 pi sample volume

Three volumes of magnetic beads were compared to determine the optimum 

amount required for the capture poliovirus RNA. Dilutions of proteinase k digested 

poliovirus type I (LSc) containing 500 and 50 pfu/ml were added to tubes with 50, 100, 

or 150 pi of magnetic beads. Magnetic bead capture and RT-PCR were performed. After 

agarose gel electrophoresis and ethidium bromide staining, 196 bp RT-PCR products 

were viewed (Table 9). All three volumes yielded products from the dilution containing 

500 pfu/ml o f poliovirus, however only 100 and 150 pi magnetic bead volumes yielded 

products from the dilution containing 50 pfu/ml. There was no difference in the detection 

sensitivity o f assays using 100 or 150 pi of magnetic beads; therefore 100 pi was used in 

subsequent experiments.

Hybridizations with or without rocking were compared to determine the optimum 

conditions required for the capture of poliovirus RNA. Dilutions of proteinase k 

digested and heated poliovirus type 1 (LSc) containing 5 x 103 and 5 x 102 pfu/ml were 

added to tubes with 100 pi o f magnetic beads. During room temperature hybridization, 

one set of tubes was rocked on a platform rocker while the other remained stationary.

The remaining portions o f the procedure were followed and RT-PCR was performed. 

After agarose gel electrophoresis and ethidium bromide staining, 196 bp RT-PCR
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Figure 11

Optimization of hybridization temperature during oligo dT magnetic bead capture
100 j i \  sample volume

1 2 3 4 5 6 7 8 9  10

Agarose gel analysis of RT-PCR products from samples containing dilutions 
of poliovirus type 1 (Lsc) in IX PBS after 100 jA sample volume oligo dT 
paramagnetic bead capture. Samples were incubated during magnetic bead 
capture for 10 minutes at room temperature (r.t.), 10 minutes on ice, or 5 
minutes at r.t. followed by 5 minutes on ice. Lanes: 1, negative control 
(U.V. treated water); 2,10 min. r.t. with 7.5 x 103 pfu poliovirus; 3,
10 min. ice with 1 3  x 103 pfu poliovirus; 4 ,5  min. r.t./5 min ice with
7.5 x 103 pfu poliovirus; 5 , 10 min r.t. with 7.5 x 102 pfu poliovirus; 6,
10 min. ice with 1 3  x 102 pfu poliovirus; 7, 5  min. r.t./5 min. ice with
7.5 x 102 pfu poliovirus; 8,100 bp DNA ladder; 9, negative control (U.V. 
treated water).
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Table 8

Optimization o f hybridization temperature during oligo dT magnetic bead capture
100 pi sample volume

Poliovirus 'pfu/lOOpl)
Temperature 7.5 x 10J 7.5 x 10z

10 min room temp (RT) a
-

10 min ice + +
5 min RT/5 min ice +++ ++

a representitive of DNA band intensity as seen on a 1.5% agarose gel after ethidium 
bromide staining 
+++ high intensity 
++ mid intensity 
+ low intensity 

negative
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Table 9

Optimization o f oligo dT paramagnetic bead volume
900 pi sample volume

Poliovirus (pfu/ml)
volume of mag. beads 500 50

50 + -

100 + +
150 + +

+ 196 bp PCR product detected by agarose gel analysis 
- 196 bp PCR product not detected by agarose gel analysis
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products were viewed (Table 10). Rocked and stationary conditions resulted in the 

detection of 5 x 103 pfu of poliovirus, however 5 x 102 pfu o f poliovirus were only 

detected when tubes were rocked during hybridization.

Sensitivity of RT-PCR in a sludge concentrate using the 900 pi sample volume 
oligo dT paramagnetic bead capture method

Removal of indigenous nucleic acid from a sludge concentrate. Indigenous 

nucleic acid from a limed sludge concentrate was removed by raising the pH to 12. 

Magnetic bead capture was performed with two 900 pi aliquots of the pH treated sludge 

concentrate. After capture, one of the two aliquots was seeded with poliovirus type 1 

(LSc). A 9 pi aliquot of sludge concentrate that did not undergo magnetic capture was 

also seeded with poliovirus. RT-PCR was performed on all reactions and 196 bp RT- 

PCR products were viewed after agarose gel electrophoresis and ethidium bromide 

staining. Non-seeded sludge that underwent magnetic capture did not yield a product, 

demonstrating that any indigenous nucleic acid was removed. Seeded sludge that 

underwent magnetic capture yielded a product, demonstrating that the method removed 

RT-PCR inhibitors that would have prevented detection of any indigenous nucleic acid. 

No product was formed with seeded sludge concentrate that did not undergo magnetic 

capture, demonstrating that the high pH treatment did not eliminate the RT-PCR 

inhibitors in the sludge.

Sensitivity of RT-PCR in a sludge concentrate with the 900 ul oligo dT 

paramagnetic bead capture method. Indigenous virus was removed from a sludge 

concentrate as previously described. The sludge concentrate was seeded with 500, 50, 5, 

or 0.5 pfii of poliovirus type I (LSc) per ml. Magnetic capture and RT-PCR were

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 10

Comparison o f rocked and stationary hybridization for oligo dT magnetic bead capture
900 pi sample volume

poliovirus (pfu/ml)
hybridization condition 5 x 10J 5 x  102

rocked + O .i

stationary + -

+■ 196 bp PCR product detected by agarose gel analysis 
- 196 bp PCR product not detected by agarose gel analysis
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performed on all reactions. RT-PCR products were viewed after agarose gel 

electrophoresis and ethidium bromide staining (Table 11). The lowest poliovirus 

concentration detected with this method was 5 pfu/ml o f sludge concentrate.

Comparison of 100 pi and 900 pi sample volume oligo dT paramagnetic bead 
capture methods using a poliovirus seeded sludge concentrate

Comparison of oligo dT magnetic bead methods. Indigenous virus was removed 

from a sludge concentrate as previously described. Sludge was seeded with 50 or 500 pfu 

of poliovirus per ml. Magnetic capture with 100 pi and 900 pi sample volumes and RT- 

PCR were performed on all reactions. RT-PCR products were viewed after agarose gel 

electrophoresis and ethidium bromide staining (Table 12). Fifty pfu of poliovirus per ml 

of sludge concentrate was easily detected with the 900 pi sample volume magnetic bead 

capture method. The same amount of poliovirus was not detected with the 100 pi sample 

volume magnetic bead capture method.

Comparison of 100 pi and 900 pi sample volume oligo dT paramagnetic bead 
capture methods and Chelex 100/Sephadex G-100 columns using a 
poliovirus seeded sludge concentrate

Indigenous virus was removed from a sludge concentrate as previously described. 

The sludge concentrate was seeded with 100 pfu of poliovirus type 1 (LSc) per ml. 

Column purification and magnetic capture using 100 pi and 900 pi sample volumes were 

performed. All reactions were assayed by RT-PCR and 196 bp RT-PCR products were 

viewed after agarose gel electrophoresis and ethidium bromide staining (Figure 12). 

Poliovims was detected only with the 900 pi sample volume magnetic bead capture 

method.
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Table 11

Sensitivity o f RT-PCR with 900 p.1 sample volume oligo dT magnetic bead capture for
the detection o f  poliovirus in a sludge concentrate

poliovirus (pfu/ml)
500 50 5 0.5
+ + + -

+ 196 bp PCR product detected by agarose gel analysis 
- 196 bp PCR product not detected by agarose gel analysis
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Table 12

Comparison of 100 pi and 900 pi oligo dT paramagnetic bead capture methods

poliovirus (pfu/ml)
500 50

100 pi sample volume + -
900 pi sample volume + "f

+ 196 bp PCR product detected by agarose gel analysis 
- 196 bp PCR product not detected by agarose gel analysis
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Figure 12

Comparison of 100 /d and 900 /d oligo dT paramagnetic bead capture methods and 
Chelex 100/Sephadex G-100 columns

3 4 5 6 7 8

Agarose gel analysis of RT-PCR products from a lime stabilized sludge 
concentrate seeded with 100 pfu of poliovirus type 1 (LSc). The seeded 
sludge sample was treated by Chelex 100/Sephadex G-100 columns or 
oligo dT paramagnetic bead capture methods using 100 /d or 900 /d 
sample volumes. Lanes: 3,100 bp DNA ladder; 4, column; 5, 100 /d 
sample volume magnetic bead capture; 6,900 ji\ sample volume magnetic 
bead capture; 7, negative control (UV treated water); 8, positive control 
CIO3 pfu of poliovirus type 1).
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Evaluation of sludge concentrates by RT-PCR with the 900 jal sample volume oligo 
dT paramagnetic bead capture method and by plaque assay

Eight lime stabilized sludge concentrates and three raw sludge concentrates were 

evaluated by plaque assay and RT-PCR with oligo dT magnetic bead capture for the 

presence of enteroviruses. Enteroviruses were not detected in the lime stabilized sludge 

concentrates by plaque assay (Table 13) or RT-PCR with magnetic bead capture (Table 14). 

When seeded, the concentrates yielded a RT-PCR product, demonstrating the removal o f 

inhibitors in the lime stabilized sludges by the oligo dT magnetic bead capture method. No 

toxicity from the lime stabilized sludge concentrates was observed during plaque assay.

Enteroviruses were detected in the raw sludge concentrates by plaque assay (Table 

13). Plaques were not formed with the undiluted concentrates due to sample toxicity that 

resulted in the destruction o f the cell monolayer. Sample toxicity was reduced after 1:10 

dilution o f concentrates. Low numbers o f plaques were counted in each of the four flasks 

of BGM cells inoculated with 1 ml of sample. Enteroviruses were not detected in the raw 

sludge concentrates by RT-PCR with magnetic capture (Table 15). When seeded, one of the 

concentrates did not yield a RT-PCR product until diluted 1:2, while the remaining two 

required a 1:10 dilution. This demonstrates the incomplete removal of inhibitors in these 

raw sludges by the oligo dT magnetic bead capture method.
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Table 13

Evaluation o f lime stabilized and raw sludge concentrates
Plaque assay

Enterovirus di ution (pfu/ml)
Sample Undiluted 10-1

Limed sludge 1 0 0
Limed sludge 2 0 0
Limed sludge 3 0 0
Limed sludge 4 0 0
Limed sludge 5 0 0
Limed sludge 6 0 0
Limed sludge 7 0 0
Limed sludge 8 0 0
Raw sludge 1 a0 4.3
Raw sludge 2 a0 1.5
Raw sludge 3 a0 5.0

a BGM cell monolayer was destroyed due to sample toxicity

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 14

Evaluation of lime stabilized concentrates 
RT-PCR with 900 pi sample volume oligo dT paramagnetic bead capture

Sample Non-seeded Seeded with poliovirus
Limed sludge I - +
Limed sludge 2 -

Limed sludge 3 - +
Limed sludge 4 - +
Limed sludge 5 - +
Limed sludge 6 - 4*
Limed sludge 7 - +
Limed sludge 8 - +

+ 196 bp PCR product detected by agarose gel analysis 
- 196 bp PCR product by agarose gel analysis
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Table 15

Evaluation of raw sludge concentrates 
RT-PCR with 900 pi sample volume oligo dT magnetic bead capture

Dilution of non-seeded concentrate Dilution of seeded concentrate
sample Undil. 1:2 1:5 1:10 Undil. 1:2 1:5 1:10
Raw 1 - - - - - - - +
Raw 2 - - - - - + + +
Raw 3 - - - - - - - +

+ 196 bp PCR product detected by agarose gel analysis 
- 196 bp PCR product not detected by agarose gel analysis
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DISCUSSION

Introduction to the Detection of Viruses in Sludge

Due to rapid population growth, many wastewater treatment plants generate much 

more sludge than can be disposed o f by traditional practices, such as incineration and 

landfilling. In response, the USEPA has encouraged communities to use sludge in a 

beneficial manner. Sludge contains organic matter and nutrients that make it useful as a 

fertilizer. Sludge has been used to fortify the soil in golf courses, median strips, forests, 

and agricultural crops (USEPA, 1992).

However, land application of sludge may result in the contamination of surface 

and groundwater with pathogens. Although sludge must be treated prior to land 

application, these treatments do not completely eliminate pathogens. Protozoa and 

bacteria are large enough to be trapped at or near the soil surface where they are 

destroyed by sunlight and desiccation (Gilbert et al., 1976 and Edmonds, 1976). Viruses, 

however, are much smaller and are not retained by the soil on the basis of size. Viruses 

may travel with the infiltrating fluids through deep channels in the soil. Spread of viruses 

through aerosolization, ingestion of contaminated crops, and by animals located in the 

area may occur.

Due to the potential risk to the public health from the pollutants in sludge, the 

USEPA issued regulations that control the application o f sludge to land. Sludge must 

meet pathogen reduction standards with or without site restrictions. The direct
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measurement of pathogen levels, such as enteric viruses may be required. However, most 

of the sludge that is disposed of through land application only requires monitoring of 

fecal coliform levels. It is known that the presence of fecal coliform bacteria does not 

correlate with the presence of pathogens, such as enteric viruses (Rao and Melnick,

1986). However, methods to detect and quantify fecal coliforms are inexpensive and 

easy to perform.

The standard method for the detection of enteric viruses in sludge is the plaque 

assay with Buffalo green monkey (BGM) kidney cells. Sludge samples are inoculated 

onto monolayers of BGM cells and covered with a solid medium that localizes lysed cells 

that form clear areas or plaques. The plaques are counted and the concentration of 

viruses is determined. Cell culture assays, such as the plaque assay, are very sensitive 

and have the potential to detect as few as one infectious virus. However, there are many 

shortcomings as well. As yet, there is no cell line that supports the growth of all enteric 

viruses that may be found in sludge. Some viruses, such as hepatitis A virus and 

Norwalk virus, replicate slowly or not at all in cell culture. Other viral isolates may 

replicate but not produce cytopathic effects such as plaques. Sludge concentrates must be 

treated prior to inoculation of cell cultures to reduce bacterial contamination. These 

treatments may reduce the viral titer and are sometimes ineffectual. Additionally, sludge 

concentrates can be so toxic to cell cultures that the cells are destroyed within minutes of 

sample inoculation. Cytotoxicity may result in plaque-like areas of clearing that can be 

mistaken for true plaques. The USEPA regulations require monitoring of a BGM cell 

plaque assay for 16 days, followed by one or two confirmation passages o f 7 days. 

Therefore, the BGM cell plaque assay may take up to 30 days or more to complete.
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Inoculation and monitoring o f multiple samples is cumbersome and labor intensive. The 

material cost is very high due to the expense o f cell culture plasticware and serum.

Molecular techniques, such as ssRNA probes and RT-PCR, detect the nucleic acid 

of the vims and avoid many o f the problems associated with cell culture assays. 

Radiolabeled RNA probes are efficiently synthesized in vitro to a high specific activity 

by T3, T7, or SP6 bacteriophage RNA polymerases with the addition of one or more 32P 

labeled rNTP’s to the transcription reaction. Additionally, multiple samples can be 

processed simultaneously and results obtained within 3-4 days. These factors help to 

lower the cost of the RNA probe assay.

The polymerase chain reaction is an in vitro DNA amplification procedure that 

results in the exponential increase of target DNA. RNA must be converted to cDNA by 

reverse transcription prior to PCR. The amplified DNA can then be viewed after agarose 

gel electrophoresis and ethidium bromide staining. Depending on the thermal cycler 

model and assay, twenty-four or more samples can be processed at the same time. Results 

may be obtained within hours and material costs are low.

Although PCR has a high degree of sensitivity, its use in environmental samples 

is limited by the presence o f substances in the samples that inhibit PCR and small 

reaction volumes. Magnetic separation procedures using paramagnetic beads linked to 

virus specific antibody or streptavidin have also been used for hybridization o f viral 

capsid epitopes or biotin labeled oligomers bound to viral nucleic acid. Once 

hybridization is complete the magnetic beads are washed and the inhibitors are removed. 

Paramagnetic beads covalently linked to an oligo dT tract have primarily been used for 

the isolation of mRNA. However they can also hybridize with the polyA tail of the
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enteroviruses and hepatitis A virus. Oligo dT magnetic beads have the ability to 

simultaneously capture these viruses without the need for virus specific oligomers during 

hybridization. After washing the beads, they may be resuspended in as little as 10 p.1 of 

liquid or added directly to the RT-PCR reaction. This concentration increases the amount 

of the original sample that can be included per polymerase chain reaction

Development of ssRNA Probe for the Detection of Poliovirus in Sludge

Optimization of negative sense RNA probe

Optimization of negative sense RNA transcript yields was initially conducted with 

non-labeled rNTP’s. RNA yields were greatly increased when the polymerase reaction 

was extended to 120 minutes with further addition o f RNA polymerase after 60 minutes. 

A concentration of the probe equaling 5 x 106 cpm/ml of hybridization fluid, was found 

produce a good signal without excess background following autoradiography of 

hybridization membranes. The probe was able to detect 10 fg o f positive sense RNA 

transcripts and 90 plaque forming units of poliovirus type 1 (LSc).

Specificity of negative sense RNA probe

Following hybridization with MS-2 bacteriophage, several enteroviruses, and 

hepatitis A virus, the probe was found to strongly hybridize with only poliovirus types 1, 

2, and 3. The probe hybridizes to the region of pohovirus RNA that is translated into 

viral protein I (VP 1). VP 1 is the major neutralizing epitope o f the enteroviruses and 

thus the area where they share the least homology (Belshe, 1991). The probe was also
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found to weakly hybridize with echo virus 7. This may be due to the approximately 20% 

RNA homology between groups of enteroviruses (Belshe, 1991).

Elution of seeded poliovirus from sludge with beef extract

Many methods for the elution of viruses from environmental samples used beef 

extract at alkaline pH’s (Berg and Sullivan, 1988). It was determined by plaque assay 

that elution o f poliovirus at pH 7.0 was no less effective and may have resulted in a 

greater recovery of poliovirus from sludge than elution at pH 9.5. The difference 

between the poliovirus recovery at pH 7.0 and 9.5 may be due to the instability of 

enteroviruses at highly alkaline pH’s.

Elution of poliovirus from sludge with beef extract powder resulted in nearly two 

times the recovery of poliovirus than elution with a beef extract solution. Although 

elution with a beef extract solution is a more common practice, the simple addition of 

beef extract powder reduces the time required for preparing and performing the 

procedure.

Mixing during elution by homogenization or magnetic stirring was also 

compared. Little difference between the mixing techniques was noted during elution with 

3% beef extract solution. However, approximately 60% more poliovirus was recovered 

during elution with beef extract powder with homogenization. This may be due to better 

incorporation o f the beef extract within the sludge resulting in a greater amount of 

poliovirus eluted from the sludge. Most likely it is not from the release o f embedded 

viruses, as this would have been evident during elution with beef extract solution.
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Poliovirus recoveries ranging from 12% to 31% were obtained. The elution 

method that resulted in the most recovered poliovirus was the use of beef extract powder 

at a pH of 7.0 with homogenization. The amount of poliovirus recovered by this 

procedure is comparable or greater than recoveries by other methods (Farrah et al., 1981; 

Pancorbo et al., 1981). A sterile beef extract solution does not need to be prepared and 

mixing time is reduced with this method. Therefore, this method substantially reduces 

the time required for elution.

Viral liberation methods

Proteinase k digestion was found to result in a greater detection sensitivity of 

poliovirus in a sludge concentrate than phenol/chloroform/ether extraction or proteinase k 

digestion followed by organic solvent extraction. Sludge concentrates generated from 

beef extract elution and organic flocculation, remain highly proteinaceous. Sludge 

concentrates required several extractions with phenol/chloroform to eliminate the protein 

layer. Poliovirus RNA may have been retained in the extensive protein layer during 

extractions. Multiple extractions may have resulted in loss of poliovirus RNA. 

Additionally, proteinase k digestion is preferred because the method is simple, less time 

consuming, and does not require the use or disposal of organic solvents.

Detection of poliovirus from sludge with plaque assay and RNA probe

Poliovirus recovered by the previously described elution procedures were 

detected by plaque assay and RNA probe. Many of the problems often encountered with 

cell culture assays such as toxicity, false positives, and lack of cytopathic effect
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development did not occur. The sludge was seeded with a high concentration of 

poliovirus type 1 (LSc) and the concentrate required dilution prior to inoculation of the 

cells to achieve a countable number of plaques. Dilution also reduces toxic substances 

consequently eliminating the possibility of cell destruction and false-positives. 

Additionally, poliovirus type 1 (LSc) is a fast growing lab strain that produces large 

plaques. Use o f this virus simplified experimentation, yet it did not accurately model the 

behavior of viruses that do not grow well in cell culture.

The RNA probe had previously been demonstrated to detect 90 pfu o f poliovirus, 

but was unable to detect 100 pfu o f poliovirus from sludge. However, it was able to 

detect 130 pfu of poliovirus from sludge. This slight discrepancy in sensitivity may be 

the result of viral RNA destruction due to RNase activity from contaminating 

microorganisms within the concentrate. Additionally, only 100 pi of each dilution was 

able to be spotted onto hybridization membranes. Greater volumes, such as 500 or 1000 

pi, did not pass through the membrane or did so with great difficulty. A non-specific 

signal around the circumference of the well often resulted when a sample required an 

extended period under vacuum before it passed through the membrane. Smaller sample 

volumes may not be representative of the sample due to the tendency of viruses to form 

aggregates with each other and other particles in solution.

Conclusions

Overall, results from the RNA probe assay can be obtained within 3 days as 

compared to 30 or more days for cell culture assay. The RNA probe assay can be scaled 

up to easily accommodate multiple sludge samples. Evaluation o f multiple samples with

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the cell culture assay significantly increases the cost and the amount o f labor required to 

perform the assay. The RNA probe assay is less sensitive than the cell culture assay, but 

may be useful as a quick screening method.

Development of RT-PCR Assays for the Detection of Enteroviruses in Sludge 

RT-PCR without prior treatment

It has been demonstrated that reverse transcription is only approximately 5% 

efficient (Zhang et al., 1991). Therefore 20 RNA templates may be necessary to produce 

one cDNA. It has been estimated that 10-100 copies o f template cDNA are required to 

produce a sufficient amount o f DNA after 30 cycles of PCR to be visualized in an 

agarose gel (Hale et al., 1996). Therefore, approximately 200 viral genomes may be 

required as a starting template for successful RT-PCR. Due to aggregation and defective 

interfering particles, there are about 100 poliovirus genome copies per plaque 

(Richardson, 1989) for cell culture-adapted viruses.

Poliovirus type l(LSc) was diluted in IX PBS and viral RNA was liberated by 

digestion with proteinase k. Using the previously described reaction conditions, dilutions 

o f poliovirus containing 1 pfu/10 pi were consistently detected by RT-PCR. Given the 

probable minimum amounts o f RNA necessary for successful RT-PCR, this result 

approaches or is equal to the sensitivity limit that may be obtained by reverse 

transcription with a single round o f PCR. The sensitivity obtained with RT-PCR is 

equivalent to the sensitivity obtained with the cell culture plaque assay. However, the 

sensitivity o f RT-PCR was greatly diminished, when poliovirus was present in sludge
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concentrates. Sludge concentrates contain inhibitors of RT-PCR and include metals and 

organic acids that may bind divalent magnesium required by the polymerases (Tsai and 

Olson, 1992). Additionally, the beef extract used as an eluant in the standard methods for 

the isolation of viruses from sludge is also inhibitory.

RT-PCR with column purification

In an effort to reduce the inhibitors in sludge concentrates, Chelex 100/Sephadex 

G-100 columns were used prior to RT-PCR. Chelex 100 resin binds cations including 

metals and Sephadex G-100 is a size exclusion resin. Treatment of environmental 

samples with a combination of these resins has been shown to reduce inhibitors (Morteza, 

1993). Initial experiments were preformed with poliovirus type 1 (LSc) diluted with IX 

PBS. Column treatment of poliovirus dilutions resulted in a 2-log decrease of sensitivity 

as compared to non-treated poliovirus dilutions. The loss of sensitivity may be due to the 

retention of viruses within the column. Other researchers have also noted a significant 

decrease of sensitivity after column purification (Ma et al, 1995). Although these 

columns can be prepared quickly and easily, the reduction of poliovirus detection 

sensitivity precludes the uses of the columns to diminish RT-PCR inhibition.

Optimization of oligo dT paramagnetic bead capture

The oligo dT paramagnetic beads were designed by the manufacturer for the 

isolation of mRNA. Enterovirus RNA is of positive polarity and contains a polyA tail at 

the 3’ end and is therefore similar to mRNA. The viral RNA is hybridized to the oligo
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dT tract linked to the paramagnetic beads. The beads are washed and resuspended in a 

small volume of UV treated water.

Two magnetic bead capture procedures were developed. One procedure captures 

RNA from a 100 pi sample, while the second uses a larger sample volume of 900 pi. The 

manufacturer’s protocol suggested using a volume of magnetic beads based on the 

amount o f RNA in the sample with hybridization for 2-3 minutes at room temperature. 

However, the amount o f RNA in a sludge concentrate is not known prior to analysis. 

Initial experimentation using a 2-3 minute room temperature hybridization resulted in 

low detection sensitivity. Optimization of these procedures was required. It was 

determined that magnetic capture of RNA from a 100 pi sample was optimum with the 

use of 25 pi o f magnetic beads and hybridization for 5 minutes at room temperature 

followed by 5 minutes on ice. Specificity during the hybridization step was not necessary 

because the captured RNA is amplified by RT-PCR using enterovirus specific primers. 

These conditions resulted in a several-log increase in the detection sensitivity. Five pfu 

of poliovirus type 1 (LSc) per 100 pi was detected. This magnetic capture procedure also 

resulted in a 10-fold concentration of the sample.

In order to evaluate a greater amount of sample per RT-PCR reaction, a 900 pi 

sample volume magnetic capture procedure was developed. It was determined that the 

use of 100 pi of magnetic beads with a hybridization of 15 minutes at room temperature 

with rocking, followed by 5 minutes on ice was optimum. The viral RNA was not eluted 

from the magnetic beads, therefore the magnetic beads were present in the RT-PCR 

reaction. The increased amount o f beads necessary for the capture of RNA from a large 

volume o f sample did not inhibit RT-PCR. Solution hybridization is dependent on
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physical contact between the nucleic acid molecules. To increase the likelihood of this 

occurrence, the hybridization time was lengthened and the reactions were rocked. 

Rocking of the tubes kept the magnetic beads in solution where they were available for 

hybridization. Rocking the tubes dramatically increased the detection sensitivity.

To determine the least amount of poliovirus in a sludge concentrate that would be 

detected by RT-PCR with the 900 pi sample volume oligo dT paramagnetic bead capture 

method, a sludge concentrate was seeded with known amounts o f poliovirus. However, 

prior to seeding with poliovirus type 1 (LSc), the sludge concentrate required a treatment 

that removed indigenous nucleic acid yet retained RT-PCR inhibitors. Raising the pH of 

the sludge concentrate to 12 was shown to be an effective and simple method. Five pfu 

of poliovirus type 1 (LSc) per 1000 pi of lime stabilized sludge concentrate were detected 

with this method. A 90-fold concentration of the sample was attained.

Comparison of Chelex 100/Sephadex G-100 columns and oligo dT paramagnetic 
bead capture methods using a sludge concentrate

A mock sample consisting o f a lime stabilized sludge concentrate seeded with 100 

pfii/ml of poliovirus type 1 (LSc) was used to compare Chelex 100/Sephadex G-100 

columns and 100 pi and 900 pi sample volume oligo dT paramagnetic bead capture 

methods. Sludge concentrates were seeded with poliovirus and the appropriate amounts 

of sample were analyzed by each method. The 900 pi magnetic bead capture method 

consistently achieved a greater poliovirus detection sensitivity than the other methods. 

This result is primarily due to the increased sample volume that is analyzed per PCR 

reaction. The number o f viruses in an environmental sample is usually low, therefore 

analysis o f  a greater portion o f the sample leads to a higher sensitivity. As previously
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mentioned, viruses have a tendency to form aggregates with each other and particles in 

solution. Therefore it is difficult to obtain a completely homogeneous sample. Aliquots 

of identical volume may contain different amounts of virus depending on the degree of 

viral aggregation. This phenomenon was demonstrated during experimentation that 

compared the three methods. The sludge concentrate was seeded with poliovirus type I 

(LSc) to a final concentration of 100 pfu/ml. Thus the amount o f poliovirus in each 

portion that was used in the 100 pi and 900 sample volume magnetic bead capture 

methods should have been within the detection limits of each assay. However, a PCR 

product was not formed after the 100 pi sample volume magnetic bead capture, although 

previous experimentation demonstrated a poliovirus detection sensitivity of 7.5 pfu/100 

pi. No PCR product was formed after treatment o f the seeded sludge concentrate with 

Chelex 100/Sephadex G-100 columns, thus confirming the inadequacy of this method.

Evaluation of sludge concentrates by RT-PCR with the 900 pi sample volume oligo 
dT paramagnetic bead capture method and by plaque assay

Eight lime stabilized sludge concentrates and three raw sludge concentrates were 

evaluated by plaque assay and RT-PCR with the 900 pi sample volume oligo dT 

magnetic bead capture method for the presence of enteroviruses. Enteroviruses were not 

detected in the lime stabilized sludge concentrates by plaque assay or RT-PCR with 

magnetic capture. When properly operated, treatment o f sludge by lime stabilization 

reduces viral densities by 2-3 logs (Straub et al., 1993). Therefore, depending on the 

concentration of enteric viruses in the raw sludge, it is not unusual to find undetectable 

levels o f enteric viruses after lime stabilization. However, the absence of infectious virus 

does not always indicate the absence of viral RNA.
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Inactivation of a virus renders it non-infectious and may result from damage to 

the capsid, viral RNA, or damage to both. Damage to the capsid that alters the capsid 

proteins, may prevent the virus from adsorbing and thus infecting host cells. Viruses 

inactivated in this manner would not be detected by the plaque assay, however, the viral 

RNA may remain intact and detected by RT-PCR. Damage to viral RNA would prevent 

the transcription and replication of the viral genome. Extensive damage to the capsid 

may cause the viral RNA to be released. Liberated viral RNA is rapidly degraded by 

RNases that are present in environmental samples (Limsawat and Ohgaki, 1997; Tsai et 

al., 1995). The plaque assay or RT-PCR may not detect viruses inactivated by damage to 

the RNA. Therefore, under certain circumstances, the results obtained from the plaque 

assay and RT-PCR may not agree. One study demonstrated that after poliovirus was 

exposed to various disinfectants, the virus was undetectable by plaque assay, however the 

viral RNA was still detected by a nucleic acid probe (Moore, 1994). Ma et al. (1994) 

demonstrated the total loss of poliovirus infectivity following a 5-minute exposure to 1 N 

HC1, as measured by cell culture. However, poliovirus RNA was still detected by RT- 

PCR.

Therefore, because enteroviruses were not detected by plaque assay or RT-PCR, 

lime treatment may have caused the destruction of viral RNA. RNA is known to be very 

susceptible to degradation by alkali (Freifelder, 1987). In contrast to exposure with HC1, 

Ma et al. (1994) found that after a 3-minute exposure to 1 N NaOH, poliovirus was 

undetectable by cell culture and RT-PCR. Proper treatment of sludge by lime 

stabilization requires the pH to be maintained above 12.0 for 2 hours. Given these 

conditions, it is likely that viral RNA is destroyed during lime stabilization of sludge.
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Due to the rapid degradation of viral RNA, detection of full length viral RNA would be 

rare and may indicate the presence o f infectious virus. The oligo dT magnetic bead 

method captures enterovirus RNA at the 3’ polyA tail and the primers for RT-PCR are 

located at the 5’ noncoding region. Detection of viral RNA by this method suggests that 

the RNA was full length and may indicate the presence or recent presence of infectious 

virus

All three raw sludge concentrates were found to contain low numbers of 

enteroviruses as measured by the plaque assay. Undiluted concentrates were very toxic 

and resulted in the destruction of the BGM cell monolayer. A 1:10 dilution of the 

concentrates reduced the sample toxicity and allowed for the development of a few 

plaques. Four milliliters of sample was evaluated by plaque assay, with the inoculation of 

1 ml o f sample per 25 cm2 flask of BGM cells. Plaques were not evenly distributed 

among the flasks. Some flasks contained multiple plaques, while plaques were absent on 

others. Therefore, if  only 1 ml of sample had been evaluated, it is possible that plaques 

would be absent.

Enteroviruses were not detected in the raw sludge concentrates by RT-PCR with 

the 900 p.1 sample volume oligo dT magnetic bead capture method. To determine if 

inhibitors were still present in the samples, sludge concentrates and diluted concentrates 

that had undergone magnetic bead capture were seeded with poliovirus and amplified by 

RT-PCR. One concentrate did not yield a RT-PCR product until it was diluted 1:2, while 

the remaining two concentrates required a 1:10 dilution. This demonstrates the 

incomplete removal o f inhibitors in these raw sludge concentrates by the oligo dT 

magnetic bead capture method. Other studies have demonstrated the inability of accepted
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methods, such as organic solvent extraction (Kopeka et. al., 1993), column 

chromatography (Abbaszadegan, 1993), and guanidinium isothiocyanate extraction 

(Shieh et al., 1995) to remove inhibitors from every sludge concentrate, particularly raw 

sludge concentrates.

After dilution, the concentration of enteroviruses as measured by the plaque assay 

may have been below the detection limit of RT-PCR with the 900 pi sample volume 

oligo dT magnetic capture method. The primers used during RT-PCR only amplify 

human enteroviruses, however plaques on BGM cells may develop from infection with 

other human enteric viruses, such as reovirus, and viruses o f animal origin. It is possible 

that some of the viruses present in the raw sludge concentrates would not be amplified by 

RT-PCR.

Conclusions

Due to rapid population growth, many wastewater treatment plants produce more 

sludge than can be disposed of by conventional methods. Recognizing this problem, the 

USEPA has encouraged communities to dispose of sludge by applying it to land. Sludge 

contains nutrients and has been demonstrated to improve the yields of many types of 

vegetation (USEPA, 1992). At least one third of the sludge generated in the United 

States is applied to land (USEPA, 1992).

However, sludge may contain pathogens such as enteric viruses. Land application 

of sludge may expose humans to these pathogens through direct contact or contamination 

of surface and ground waters. The USEPA has established regulations that reduce the 

possibility o f contact with sludge-derived pathogens. The USEPA has defined two
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classes of sludge that may be applied to land, based on the amounts of pathogens that 

may be present. Class A sludge is presumed to contain undetectable levels of pathogens 

due to strict adherence to defined treatment regimes. Class B sludge does not receive the 

same level of treatment and is known to contain pathogens. Some treatments may only 

reduce the amount of enteric viruses by a factor of ten (Straub et al., 1993).

The direct monitoring of pathogens such as enteric viruses, Salmonella sp., and 

helminth ova are required for some types of Class A sludge. However, for many types of 

Class A sludge and all Class B sludges, the direct monitoring o f pathogens is not 

required. Instead, the measurement of fecal coliform bacteria is required. Class A sludge 

must contain fewer than 1,000 mpn of fecal coliforms per gram of total sludge solids and 

Class B sludge must contain less than 2 million mpn or cfu of fecal coliforms per gram of 

total sludge solids. Fecal coliform bacteria are often used as indicators of fecal 

contamination. Treatments that reduce fecal coliform bacteria to below acceptable levels 

are also presumed to reduce the levels of pathogens, such as enteric viruses. However, 

enteric viruses are more resistant to some sludge treatments (Straub et al., 1993) and 

disinfection (Rao and Melnick, 1986). Therefore, sludge may contain unacceptably high 

levels of enteric viruses, even though the reduction requirements for fecal coliform 

bacteria were met.

The use o f fecal coliform bacteria for monitoring pathogen reduction gained 

widespread acceptance due to the rapid, simple, and low cost methods used to measure 

these indicators. It is necessary to use methods for pathogen monitoring that provide 

results in a short period of time because sludge cannot be applied to land until it is shown 

to meet pathogen reduction requirements (USEPA, 1992). Low costs ensure that
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monitoring can be performed frequently and without burdening communities with higher 

charges for wastewater treatment.

The standard method for the detection of enteric viruses in sludge is the plaque 

assay (USEPA, 1992). Results may not be obtained by this method for 30 or more days. 

Additionally, material and labor costs for the plaque assay are very high. These factors 

make the plaque assay an impractical method for routine monitoring. The development 

of methods for the detection of enteric viruses that provide results more quickly and with 

lower cost may make the direct monitoring of enteric viruses more pragmatic. Detection 

of enteroviruses in sludge by RT-PCR with the 900 pi sample volume oligo dT 

paramagnetic bead capture method resolves both of these problems. Results may be 

obtained within a few hours and at a cost much lower than the plaque assay. RT-PCR 

with the 900 pi sample volume oligo dT paramagnetic bead capture method was found to 

be most effective for evaluation of lime stabilized sludges. Currently, lime stabilization 

is favored by eleven of the thirteen New Hampshire wastewater treatment plants that 

practice land application o f sludge. This method would be very useful as a rapid 

screening technique that would alert handlers to sludges that may contain infectious 

virus. Officials may then decide if  the confirmation by the plaque assay is warranted. 

The direct monitoring of pathogens, such as enteric viruses, instead of the reliance upon 

indicator organisms, may further reduce the risks from land application of sludge and 

make this practice more acceptable to a greater number of communities.
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Future experimentation

A combination of methods may be required to remove inhibitors from some 

sludges. For instance extraction with guanidinium thiocyanate could be performed prior 

to oligo dT magnetic bead capture. It also possible to further increase the sample volume 

during oligo dT paramagnetic bead capture. With proper optimization, a volume of 15 ml 

may be analyzed.

A second round of PCR may increase the detection sensitivity. After PCR with 

one set o f primers is performed, a portion of the reaction is amplified again with a new 

set of primers positioned within the original amplicon. This process is known as nested 

PCR. One study demonstrated a detection sensitivity of 1.4 pfii o f poliovirus after 30 

cycles of PCR and a sensitivity of 0.02 pfu after an additional 30 cycles o f nested PCR 

(Ma et al.,1994).

Finally, evaluation of sludge samples by integrated cell culture-RT-PCR may 

combine the best attributes from both methods. The sample is first inoculated onto cells 

and incubated for a few days to allow the growth of any viruses present. The cell culture 

lysate is then assayed by RT-PCR. Liberated RNA will not be detected by this method 

because it is rapidly degraded during incubation. After addition of cell culture media, the 

sample and RT-PCR inhibitors are diluted. The concentration o f virus will increase after 

growth in cell culture and the inhibitors are often diluted enough to allow successful RT- 

PCR.
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APPENDIX A

PREPARATION OF MEDIA

Flake agar (2%)
2 g flake agar (Difco, Detroit, MI)
Bring up to 100 ml with reagent grade water. Autoclave ISminutes. Leave at 
5 6 V  until use.

Medium 199 (2X)
1.96 g Medium 199 (Sigma)
0.13 gN aH C03
0.95 g hepes
0.06 g L-glutamine
2 ml antibiotic/antimycotic (Gibco)
1.2 ml neutral red solution (Sigma)
1 ml 1% MgCh
Bring up to 100 ml with reagent grade water. Filter sterilize.

Minimal Essential Media'll-15 Growth Medium 
2.65 g MEM (Sigma)
3.45 g L-15 Medium Leibovitz (Sigma)
5 ml non-essential amino acids (Sigma)
2 g hepes
0.5 g NaHC03 
5 ml antibiotic/antimycotic 
5 ml kanamycin (Gibco)
40 ml heat inactivated iron supplemented fetal calf serum
Ajust pH to 7.0. Bring up to 500 ml with reagent grade water. Filter sterilize.
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APPENDIX B

BUFFERS AND SOLUTIONS

Phosphate buffered saline (IX  PBS)
9.785 g of PBS powder (Sigma)
Bring lip to 1000 ml with reagent grade water. Autoclave for 15 minutes. Store 
at 4 V. Final pH 7.0.

T ris-Borate-EDT A (5X)
54.0 g Tris base (Sigma)
27.5 g boric acid (Sigma)
20 ml 0.5 M EDTA (pH 8.0)
Bring volume up to 1000 ml with reagent grade water. Store at room 
temperature.
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