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ABSTRACT

ATMOSPHERIC TRANSPORT AND DEPOSITION OF 

WATER-SOLUBLE NITROGEN TO THE GULF OF MAINE

by

Carolyn Estelle Jordan 

University of New Hampshire, December, 1999

An intensive sampling program was carried out from May 1994 through November

1997 on the shore of the Gulf of Maine in New Castle, New Hampshire. Daily (24 hour 

averages) samples of bulk aerosol and gas phase HNO3 , precipitation, and 20 aerosol size 

distributions were obtained. Particulate NH^+ and gas phase HNO3  were the dominant

water-soluble nitrogen species in the atmosphere. Nitrate was the dominant inorganic

nitrogen ion in precipitation.

These samples were used with 1000 hPa streamlines to classify sampled air masses

according to their surface level transport and chemistry. Overall, mixed conditions

occurred in 42% of the samples, continental species were dominant in 37%, and marine

species were dominant in 21%. Rain occurred frequently under sea salt dominant 

conditions; about 47% of the days classified as such had rain events. Particulate NO3 '  was

associated with sea salt Na+ in the coarse aerosol fraction peaking at approximately 4  pm in 

diameter. Particulate M fy* was associated with non-sea-salt-SO^', with the bulk of the 

NH4 + present on particles in the 0.43 -1.1 pm diameter range.

The direct atmospheric deposition of water-soluble nitrogen to the surface waters of 

the Gulf of Maine was assessed. Wet deposition dominated dry deposition, contributing 

80 - 90% of the total flux annually. The total atmospheric direct nitrogen (ADN) deposition 

numbers reported here do not include the contributions of fog and dissolved organic 

nitrogen as they were not regularly sampled during this study. Total ADN flux ranged

xii
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from 1 - 4262 pmol N m '^ d-* (median 23 (imol N m"2 d'^), depositing 52 mmol N m '^ 

yr'* to the surface waters of the Gulf of Maine, 3% of the total N input to those waters 

annually. However, this deposition was highly episodic with events over 500 pmol N m'^ 

d~l occurring in 8 % of the days sampled, but contributing 56% of the total measured flux. 

Estimates of the episodic atmospheric nitrogen flux to the Gulf of Maine surface waters 

suggest large deposition events could be sufficient to support substantial chlorophyll a 

production.

xiii
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CHAPTER 1

CHEMISTRY OF WATER-SOLUBLE NITROGEN SPECIES AT THE 

NEW HAMPSHIRE SEA COAST: HNO3 , AEROSOLS, AND PRECIPITATION

Abstract
An intensive sampling program was carried out from May 1994 through November

1997 on the shore of the Gulf of Maine in New Castle, NH. Daily (24 hour averages) 

samples of bulk aerosol and gas phase HNO3 , precipitation, and 20 aerosol size

distributions were obtained. This program was carried out to ascertain the chemistry and 

deposition of atmospheric soluble nitrogen to the surface waters of the Gulf of Maine. 

Particulate NH4+ and gas phase HNO3  were the dominant water-soluble nitrogen species

in the atmosphere. There was a summer peak in the mixing ratios of both of these species. 

Daily mixing ratios of HNO3  and all aerosol species were highly variable, yet the annual

averages tended to be similar from one year to the next. The concentrations of all the 

inorganic species measured in precipitation was generally higher than that of two National 

Acid Deposition Program (NADP) coastal sites. In particular, the annual volume-weighted 

means for NC^- (22 - 27 pmoles/liter) and NH4 + (11-17  pmoles/liter) were found to be

20% - 60% and 40% - 90% higher, respectively, than those reported from Cape Cod, MA. 

Nitrate was the dominant inorganic nitrogen ion in precipitation at New Casde. The 

prevalence of N0 3 - in rain was probably due to inefficient scavenging of submicron NH4+ 

aerosol coupled with effective scavenging of supermicron NO3 '  and highly soluble HNO3 .

In autumn, concentrations of continentally derived species in precipitation decreased 

substantially while sea salts increased. There was insufficient NH3  to fully neutralize

HNO3  and H2 SO4  in aerosols and precipitation. Chloride was depleted on average 25% in

aerosols and 13% in precipitation with respect to sea salt aerosols. Ammonium appeared to 

be present mosdy as submicron aerosol associated with non-sea-salt-SC^'. Nitrate had a

I
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2

bimodal size distribution with most of the NO3 '  seemingly associated with supermicron sea 

salt Na+. The overall atmospheric chemistry in this region was heavily dominated by 

anthropogenic pollution products.

Introduction

The Regional Marine Research Program (RMRP) was funded by the National 

Oceanic and Atmospheric Administration (NOAA) to study the Gulf of Maine ecosystem as 

a whole unit. Part of this program evaluated the nutrient budget for this system. In 

particular, a better estimate of the atmospheric nitrogen input to this system was needed as 

was an examination as to whether this input had biological significance. Most of the 

nutrients available to photosynthetic organisms in the surface waters come from the 

upwelling of nutrient rich deep waters flowing into the Gulf from the Atlantic Ocean 

(Schlitz and Cohen, 1984). A significant amount of available nutrients are also due to 

internal nitrification (Townsend, 1998) and riverine input (Schlitz and Cohen, 1984; Loder 

and Becker, 1990). Although the atmospheric input has been previously estimated to play 

a minor role (Schlitz and Cohen, 1984; Townsend, 1998), it has been poorly characterized. 

Prior estimates relied solely on wet deposition inputs of nitrogen, with dry deposition 

assumed to contribute a comparable amount to the wet deposition (Fisher and 

Oppenheimer, 1991; Scudlark and Church, 1993).

In general, discussions of the relative importance of various nutrient sources to an 

ecosystem are based on total annual fluxes. However, nutrient input is event driven and 

seasonally variable. For example, freshwater input of nutrients to the Gulf of Maine is 

greatest during the spring freshet (Loder et al., 1997). This nutrient flux helps sustain the 

spring diatom bloom. Similarly, while the input of atmospheric nitrogen is not the 

dominant annual nitrogen source to the Gulf of Maine, it may well be important in summer 

when atmospheric species such as HNO3  and aerosol N H ^  are at their peak. In addition

to higher atmospheric concentrations, the influence of riverine nutrient input is much less in 

summer than in spring. Meanwhile, cold nutrient rich deep waters cannot reach the warmer
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surface waters due to thermal stratification. In fact, during summer, the surface waters of 

the Gulf o f Maine have very low concentrations, <1.0 pM of both NO3 '  and N H ^

(Martorano, 1997; T. Loder, personal communication, 1998).

Atmospheric deposition is event driven and in summer, it may well deliver a 

biologically significant amount of nitrogen to the surface waters of the Gulf of Maine. 

Mosher (1995) found that the direct atmospheric inputs to the Great Bay Estuary (which 

flows into the Gulf of Maine) constituted about 40% of the total point source input from 

wastewater treatment and industrial sources. When considering the indirect atmospheric 

deposition to Great Bay (via watershed runoff), Mosher found that the atmospheric 

nitrogen input was equal to or greater than the point source input to the watershed.

It was within this context of limited summer nutrient input from deep ocean waters

and freshwater, that the role of atmospheric nitrogen deposition to the Gulf of Maine

needed to be critically evaluated. This deposition may contribute sufficient amounts of

nitrogen to the surface waters of the Gulf of Maine in the summer to enhance biological

productivity. The New England coast is located downwind of some of the largest urban

and agricultural source regions of nitrogen emissions in the country (Parrish et al., 1993).

It has been estimated that 61 billion moles of nitrogen oxides per summer are emitted over

eastern North America (Saeger et al., 1989), potentially leading to high deposition rates of

nitrogen along the northeastern U.S. coast (Pszenny et al., 1990). Mobile sources in the

northeast also contribute a substantial amount to the atmospheric nitrogen deposition 

(Dennis, 1995). These mobile sources emit NOx (NO + NO2 ) and possibly NH3  from

catalytic converters (Fraser and Cass, 1998).

Nitrogen tends to be the limiting nutrient in coastal waters, which makes these 

ecosystems sensitive to anthropogenic nitrogen sources, either via freshwater runoff or 

direct atmospheric deposition (Fisher and Oppenheimer, 1991; Paerl, 1993). There is 

increasing evidence that non-point source nitrogen deposition to coastal waters is a 

significant factor leading to eutrophication and both toxic and nuisance algal blooms (Fisher
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and Oppenheimer, 1991; Paerl, 1993; Scudlark and Church, 1993; Zhang, 1994; Mosher, 

1995; Puckett, 1995). In fact, the incidence of toxic and nuisance algal blooms is seen to 

be increasing worldwide as are their intensity, duration, and geographic spread (S hum way, 

1990; Zhang, 1994). Emissions of NOx, NH3 , and SO2  lead to the production of various

other species in gas, aqueous, and solid phases, many of which would remain airborne 

from days to weeks. However, at the shoreline, these anthropogenic pollution species 

encounter sea salt aerosols along with increased humidity and wind speed. The pollution 

products and sea salts react, altering the chemistry of the air mass. This, coupled with the 

meteorological change in conditions, enhances the near-shore deposition of these pollution 

species.

With our site located at New Castle, New Hampshire, on the shoreline of the Gulf 

of Maine (Figure 1.1), a variety of air masses were sampled including those which were 

heavily polluted as they moved along the eastern United States, relatively pristine from 

Canada, and dominated by sea salts from the North Atlantic. This extensive data set is 

unique and allows questions to be addressed pertaining to the atmospheric chemistry at the 

land/sea interface, the atmospheric deposition of anthropogenic nitrogen to a coastal marine 

environment, and whether that deposition leads to any significant increase in primary 

production. In this chapter, an overview is presented of this aerosol, precipitation, and size 

distribution data set. In Chapter 2, the relationship between transport and chemistry 

observed at this site is presented. Finally, Chapter 3 addresses the atmospheric deposition 

and biological significance aspects of the data set.

Experimental

The sampling site was located on the shore of the Gulf of Maine at the Portsmouth 

Harbor U. S. Coast Guard Station in New Castle, New Hampshire (Figure 1.1). Samples 

were initially collected from May to November of 1994. Beginning in March of 1995, 

samples were collected year round until November of 1997.

Precipitation samples were collected daily in a polyethylene bucket using an
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A  Acadia

Gulf of 
Maine

New Castle

Cape Cod

100 km

Figure 1.1. Location map of the southern part of the Gulf of Maine with the sampling 
site at New Castle, NH, and two NADP sites, one on Cape Cod, the other in Acadia.

Aerochem Metrics model 301 wet only sampler. The bucket was initially wiped out with a 

paper towel and deionized water. Then it was washed three times with deionized water and 

left to dry in a clean room. Blanks were run to confirm that the buckets were clean. The 

bucket was exchanged daily at the sampling site, whether or not there had been any 

precipitation.

Upon collection, precipitation samples were treated with chloroform to prevent 

biodegradation of the nitrogen species. The ions in the precipitation were measured using
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ion chromatography and were analyzed for the anions Cl~, NC^", and SC^2-, and cations 

Na+ , NH4+, K+, Mg2+, and Ca2+ (Talbot et al., 1992).

Anions in precipitation, aerosol, and HNO3  samples were all analyzed with an 

AS4 column using an eluent of 2.25 mM Na2 C0 3  and 2.8 mM NaHC0 3 - Cations were 

analyzed using a CS12 column with a 20 mM CH4 O3 S eluent.

Bulk aerosol and nitric acid samples were collected daily using a filter pack system 

(Goldan et al., 1983) mounted within a polyethylene rain shield on a 6  m tower. Campbell 

Scientific Inc. (815 West 1800 North, Logan, Utah) meteorological instruments were also 

mounted on this tower to record hourly averages of air temperature, relative humidity, wind 

speed, and wind direction. The average flow rate through the filter pack system was 108 

standard liters per minute. The average sampled volume was 153 n A  Aerosols were 

collected on a 90 mm diameter Zefluor (Gelman) teflon filter with a 2 pm pore size.

Immediately behind the teflon filter were two 90 mm diameter Nylasorb (Gelman) filters 

which had a I pm pore size. The Nylasorb filters were used to collect HNO3 .

Although several studies have recommended caution in interpreting Nylasorb- 

generated HNO3  data (Spicer et al., 1982; Hering et al., 1988; Talbot et al., 1990), in the

absence of other gases, these filters have been found to collect HNO3  with 100% efficiency

(Goldan et al., 1983). When sampling began in 1994, one Zefluor teflon filter was used 

for aerosols and one Nylasorb filter was behind it for HNO3 . Previous work (Spicer et

al., 1982) had shown that all of the HNO3  present in ambient conditions (for Claremont,

California) would be collected on a single nylon filter behind a teflon filter. On eleven 

occasions during the first sampling season, a second Nylasorb filter was placed behind the 

first and in every case HNO3  was found on the second filter. Apparently, additional

ambient gases (e.g., HCl) were leading to breakthrough from the first Nylasorb to the

second. This suggests that the samples collected on only one filter were a lower limit of the 

amount of HNO3  present. In 1995, a second Nylasorb was used about 70% of the time.

In 1996 and 1997, a second Nylasorb was used routinely (100%). When two filters were
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used, the amount of HNO3  on each filter was added together to yield the total observed 

HNO3 . To ensure that the HNO3  numbers reported for 1994 were representative of what

was actually there and comparable to the numbers reported in later years, a mathematical 

relationship was determined between the HNO3  found on the second filter as a function of 

that on the first filter. The best relationship between the HNO3  on these filters was

represented by a cubic equation with = 0.47. Although not perfect, it is a better 

approach to estimate the total HNO3 , rather than reporting lower limit values for 1994 and

part of 1995.

Size distribution data for the aerosols were collected monthly using a Graseby-

Anderson 10 stage cascade impactor with an 81 mm diameter Zefluor teflon filter with 2

pm pore size at each stage. A pre-separator was used as the first stage, due to the presence

of large sea salt aerosols in this environment. This sampler was also mounted inside a

polyethylene rain shield on the 6  m tower. Although there was a rain shield, most samples

were collected under dry conditions. The average flow rate through the impactor was 30

standard liters per minute to give the desired particle size cuts on the various stages.

Sampling times were typically 2 - 3  days, yielding an average sample volume of 108 m^.

The Zefluor filters used for the bulk aerosol and impactor samples were processed

in the same way. They were first wetted with 750 pL of methanol. They were then

extracted twice using 10 mL of deionized water each time. Ion chromatography was then 

used to analyze this solution for Cl", NO3 ", S O ^", Na+, NH4 +, K+, Mg~+, and Ca^+.

Similarly, the Nylasorb filters were extracted twice using 10 mL of deionized water each

time. The methanol step was unnecessary since the nylon filters are easily wetted. Again, 

ion chromatography was used on this solution. For the nylon filters, all of the N0 3 ~ in the 

sample was attributed to HNO3 .

To determine blank corrections for both the teflon and nylon filters, blank filters 

were processed in the same manner as samples. In the cases where a particular ion was 

below the detection limit, half the value of the lowest detectable standard solution was used
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in calculating the blank value. The following were used as below detection limit extraction 

solution values for each ion (pmol/L): Na+ = 0.45, NH4 + = 0.3, K+ = 0.27, Mg^+ = 

0.36, Ca^+ = 0.26, C l' = 0.75, NO3 '  = 0.65, and S O ^ ' = 0.67. The mixing ratios we

observed were typically so high that the blank corrections were only a very small 

percentage of the sampled values. The aerosol NO3 '  and N H ^  blanks were only 2.8% 

and 0.3% respectively, of the average measured values. For HNO3 , the blank was 0.6%

and 3.5% of the average on the first and second filters, respectively.

The experimental error for the precipitation data is solely a function of the analytical

uncertainty. The precision for our analytical method was ±3% and comparisons to aqueous

standards from the National Institute of Standards and Technology (NIST) was ±1%. The 

experimental error for the aerosol, HNO3 , and size distribution measurements depended on

several factors. To evaluate the error for these methods, an error propagation formula 

(Knoll, 1979) was used. On average, errors were found for aerosol NO3 " = ±5% and

NH4 + = ±4%, and for gas-phase HNO3  = ±5%. Size distribution data were collected on a

series of 1 0  filters, so the error calculations were done for each stage of the impactor data. 

The results were remarkably similar, with NO3 '  = ±5% and NH4 + = ±5% on most stages,

with the other few either ±4% or ±6 %.

The units used for the aerosols and for gas phase HNO3  are parts per trillion

volume. Volume mixing ratios of aerosols are equivalent to gas phase mixing ratios. By 

using these units (as opposed to pg/m^) all aerosol species and HNO3  may be compared

directly. At sea level, pptv is readily converted to nmol/m^ by dividing by 22.414. From 

there, ng/m^ is easily obtained for each species of interest. This data set is available from 

http://ekman.sr.unh.edu/Data/Talbot/index.html. For more information regarding RMRP 

and other Gulf of Maine data sets, go to http://oracIe.er.usgs.gov/gomaine/index.htm. To 

get to this data set from there, click on RMRP Projects, scroll down to Talbot and Mosher 

Atmospheric Nitrogen, and click on the link.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Data & Discussion 

Overview of aerosol & HNO3 data

The daily mixing ratios of HNO3  and aerosol NH4 +, non-sea-salt-SO^" (nss- 

S O ^ ') , and Mg^+ are shown in Figure 1.2. Nss-SO^* was calculated by assuming that 

all of the measured Mg^+ was due to sea salt (a reasonable assumption based on the

observed Mg^+/Na+ ratio). Using the measured amount of Mg^+ and multiplying by the 

ratio of S O ^ " : Mg^+ in sea water, 0.523 in equivalents units (Keene et al., 1986; Wilson,

1975), gives the amount of sea salt SO4 - '.  Subtracting this value from the observed total 

S C ^ ' leaves the portion of S C ^ "  attributable to non-sea-salt sources. The daily mixing 

ratios for these species were highly variable. Even the seven day moving averages showed 

a considerable variation in the mixing ratios (Figure 1.2). AH of these species showed 

consistent seasonal variation with a summer peak and winter low. The seasonal variations 

of HNO3 , NH4 +, and nss-SC^", were statistically significant as indicated by the p-values

(generally < 0.01 and frequently < 0.0001) of unpaired t-tests of the means. Mg~+ did not 

display the same degree of seasonal variation, nonetheless, the summer mean was 

significantly different from the other seasons observed in 1994 and 1995 (p-values <

0.097) and from winter in 1997 (p-values = 0.002). However, it was not different from 

the other seasons in 1996. The summer peak in HNO3  (Figure 1.2 and Table 1.1) may be

attributed to longer daylight hours and higher radiative flux which permit greater 

photochemical production of HNO3  from NOx emissions. In addition, NOx emissions

increase in the summer due to vacationers significantly increasing the automobile traffic in 

the northeast corridor. In particular, the tourist traffic in New Hampshire in fiscal 1996 

broke down seasonally as follows: 38.4% in summer, 25.6% in fall, 20.9% in spring, and 

15.1% in winter (Bill Boynton, personal communication, 1998).

The NH4 +  summer peak (Figure 1.2 and Table 1.1) can be attributed to the

seasonality of NH3  emissions coupled with altered winter transport from the midwest 

(Langford et al., 1992). NH3  emissions are temperature dependent and in the United
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Table 1.1. Seasonal HNO3 , NH4 + and N0 3 ‘ Averages, One Standard Deviation,
Ranges, and Medians (pptv)

Species Year Winter Spring Summer Fall
HNO3 1994 535 ± 462 

(162 -  2345) 
353

792 ± 780 
(43 -  3559) 

451

333 ± 342 
(30-1701) 

2 0 1

1995 207 ± 183 
(29-881) 

143

353 ± 392 
(23 -  2057) 

239

2 0 0  ± 162 
(20 -1043) 

154

1996 375 ± 378 
(12-1982) 

252

456 ± 375 
(17-1892) 

360

696 ± 612 
(20 -  3245) 

559

314 ±261 
(13-1127) 

219

1997 496 ± 323 
(66-1375) 

406

341± 272 
(38 -  1499) 

249

718 ±581 
(18 -  2424) 

523

327 ± 284 
(30 -1414) 

242

NH4+ 1994 1238 ± 1226 
(244 -  4981) 

825

1505 ± 1462 
(62-7986) 

562

867 ± 704 
(108-3147) 

592

1995 422 ±531 
(10-4182) 

289

740 ± 781 
(71-4278) 

436

442 ± 370 
(31-2276) 

347

1996 916 ± 953 
(49 -  4663) 

576

1059 ± 787 
(85 -  3884) 

875

1297 ± 1195 
(43-7159) 

882

847 ± 648 
(77 -  2565) 

586

1997 1113 ±693 
(195-3597) 

1 0 2 0

1110 ±982 
(124 -  7289) 

809

1616 ± 1367 
(183-6271) 

1188

882 ± 568 
(128-2051) 

732

NO3 - 1994 457 ± 368 
(26 -1309) 

427

290 ± 260 
(10-1318) 

226

302 ± 320 
(19 -1373) 

153

1995 185 ± 214 
(10-1523) 

1 2 1

273 ± 288 
(15-1986) 

178

161 ± 195 
(12-1028) 

8 8

1996 411 ±564 
(10-3258) 

194

367 ± 371 
(10-1924) 

269

322 ± 260 
(1 0 - 1089) 

237

346 ± 354 
(10-1476) 

2 1 0

1997 347 ± 346 
(10-1468) 

213

371± 372 
(11-1748) 

258

327 ±281 
(10-1284) 

228

329 ± 335 
(10 -1615) 

228

States are dominated by agricultural practices, particularly in the midwest. Langford et al. 

(1992) report that there is little difference between NH^+ concentrations in precipitation in

summer and winter in the midwest, yet there is a substantial seasonal difference in the 

eastern U.S. They attribute this seasonality to altered transport from the midwest to the
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east, coupled with reduced NH3  emissions from eastern forests which can contribute up to 

20% of the total emissions in this region. In addition, it was recently suggested that NH3

is emitted by catalytic converters on cars (Fraser and Cass, 1998). Due to increased traffic 

in New Hampshire in summer (NHDOT, 1998), this may contribute to the observed 

enhancement in NH^1-.

Aerosol NO3 ", Ca^+, Na+, and C l' are species which did not exhibit any

seasonality (Figure 1.3). Unpaired t-tests of the seasonal means confirmed there was no 

consistent seasonal variation of these species. In both Figures 1.2 and 1.3, there was 

considerable inter-annual variability. Note in Figure 1.2, HNO3  and nss-SO^" showed

particularly high mixing ratios in the summer of 1994 and low mixing ratios in 1995 

compared to 1996 and 1997. The species in Figure 1.3 showed less dramatic swings, 

although the concentrations in 1995 tended to be lower than the rest (see also Table 1.2). It 

is clear from these data that although one can discuss average values, there was in fact 

tremendous variation. This variation depends upon variable emissions of precursor gases, 

varying photochemical processes, and meteorological conditions which controlled transport 

and removal processes. Note that the spikes in the three nitrogen species were not co­

located due to the different sources which produced them, and the different processes

which affected them in the atmosphere (Roberts, 1995).

Annual mixing ratio statistics for HNO3  and the aerosol species are given in Table

1.2. The dominant species measured at our coastal site were NH4 +, S O ^ ',  Na+, and Cl'.

HNO3  and NO3 '  were present-at levels which were a factor of 2-4 less than NH^-1-.

Mg“+, K+, and Ca^+ were an order of magnitude lower than the dominant species. 

Particularly high mixing ratios were found in 1994 for several species (HNO3 , nss-S0 4 **‘,

and K+). For HNO3 , the enhancement was seen in the average, but resulted from only a

few very large events. The median value in 1994 was nearly the same as that in 1996. Not 

all species were enhanced during summer 1994, NH4 +, NO3 ',  Na+, Cl', Mg^+, and

Ca^+ showed no enhancement. Further, the sea salt species Na+ and Mg^+ showed
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higher averages and medians in 1996 and 1997 (Table 1.2). This out of phase relationship 

was not surprising as the enhanced species were primarily due to combustion, while the 

species showing no enhancement had different sources: marine origin for sea salts and 

primarily agricultural and forest sources forNH4 +.

Table 1.2. Annual HNO3  and Aerosol Averages, One Standard Deviation, Ranges, and
Medians (pptv)
Species 1994 1995 1996 1997 1994 -  1997
HNO3 599 ± 649 

(30-3559) 
340

247 ± 272 
(12-2057) 

154

493 ± 464 
(13-3245) 

341

487 ± 428 
(18 -  2424) 

326

449 ± 469 
(12-3559) 

291

S 1 322 ± 305 
(10-1373) 

226

200 ± 237 
(10-1986) 

118

377 ± 406 
(10-3258) 

241

340 ± 329 
(10-1748) 

229

313 ±337 
(10 -  3258) 

2 0 0

NH4+ 1245 ± 1243 
(62-7986) 

809

524 ±592 
(10 -  4278) 

338

1094 ± 963 
(43-7159) 

767

1 2 1 1  ± 1028 
(124 -  7289) 

906

1015 ± 1003 
(10-7986) 

673

nss-SO^- 1259 ± 1526 
(75-9935) 

654

314 ±372 
(20 -  2706) 

2 0 1

747 ± 669 
(62-5561) 

517

791 ±681 
(68-5471) 

596

740 ± 884 
(20-9935) 

459

Total S O ^ - 1311 ± 1540 
(115-10062) 

708

351 ± 382 
(23 -  2745) 

229

813 ± 684 
(64 -  5668) 

587

853 ± 696 
(122 -  5605) 

664

796 ± 898 
(23 -  10062) 

512

Na+ 928 ± 1192 
(10-10052) 

624

620 ±712 
(10-4915) 

337

1077 ± 1273 
(10-10897) 

671

1054 ± 1237 
(10-9511) 

651

934 ± 1149 
(10-10897) 

591

Cl* 788 ± 1430 
(10-13952) 

330

486 ± 756 
(10 -  6907) 

199

807 ± 1370 
(10-10344) 

348

734 ± 1130 
(10-8146) 

350

704 ± 1192 
(10-13952) 

292

Mg2+ 98 ±89 
(10-611) 

76

75 ±95 
(10 -  760) 

38

125 ± 145 
(10-1232) 

80

117 ± 135 
(10-1016) 

72

106 ± 125 
(10-1232) 

6 6

K+ 60 ±40 
(11-398) 

54

32 ±28 
(10-189) 

25

38 ±29 
(10-205) 

31

47 ±40 
(10-329) 

34

43 ±35 
(10 -  398) 

34

Ca2 + 73 ±44 
(10 -  307) 

67

44 ±73 
( 1 0 - 1 0 1 2 ) 

27

75 ±59 
(10 -  374) 

64

72 ±51 
(10 -  267) 

61

6 6  ± 60  
(1 0 - 1 0 1 2 ) 

54

Although daily mixing ratios of the various species were seen to vary by two orders 

of magnitude, the annual averages and medians for 1994,1996, and 1997 were quite
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similar. Only 1995 displayed unusually low mixing ratios in terms of the medians and 

averages (seasonal, Table 1.1, and annual, Table 1.2) and daily values (Figures 1.2 and

1.3). This was the case for all species, suggesting that there was something unusual about 

1995. There is no reason to conclude that there were substantially lower combustion 

emissions in 1995 or that the photochemical conditions were different (e.g., lower daytime 

temperatures, more cloud cover). An analysis of various meteorological parameters (air 

temperature, relative humidity, wind speed and direction, and barometric pressure) did not 

show any substantial differences between the four years of observations. Increased rainfall 

cannot account for the lower mixing ratios, as the rainfall was not enhanced in 1995 (Table

1.3). In the three seasons for which measurements were made that year, the rainfall 

amounts were lower than those observed in 1996. In addition, summer rainfall in 1994 

was comparable to that of 1995. Furthermore, comparison to the average rainfall seen in 

Portsmouth over the past 40 years (Table 1.3; Barry Keim, personal communication, 1998) 

shows the rainfall amounts during the sampling period were not particularly unusual.

Table 1.3. Rainfall Amount (cm)
Year Winter Spring Summer Fall
1994 *3.41 20.52 *14.29
1995 16.78 20.19 31.02
1996 9.34 28.82 30.46 *39.90
1997 15.38 26.78 19.43 *10.84

Averaget 26.94 26.77 24.97 33.49
*short sampling season
tbased on data collected from 1956-1996 at Pease International Airport, Portsmouth, NH. 
Barry Keim, personal communication.

Thus, washout of aerosols due to excessive precipitation cannot account for the lower 

aerosol mixing ratios observed in 1995. All of this suggests that transport may have been 

different during 1995, altering the typical aerosol levels in this area. Observations made at 

Summit Greenland also found unusual aerosol chemistry in 1995, which was attributed to 

atypical transport (Slater, 1999). Analysis of the transport during the years 1994,1995,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

and 1996 based on streamline flow patterns, showed that although there is some variation

in transport, concentrations from any given direction were lower in 1995, when compared

to the other two years (Chapter 2). This difference could not be attributed to the

meteorological parameters listed above. At this time, we are unable to explain the

difference in the mixing ratios between 1995 and the other years of this study.

Finally, nss-SO^" was the dominant component of the total S O ^ ' observed, even

though the site is located right on the shoreline (Table 1.2). Over the total sampling period, 

nss-SO ^' comprised 89.8% ± 0.12% of the total S O ^ ' on average. The minimum 

contribution of nss-SO ^' to the total observed was 13.9%, the maximum was 100%, and

the median was 94.3%. These aerosol observations are comparable to those

reported by various participants in the North Atlantic Regional Experiment (Banic et al.,

1996; Daum et al., 1996; Li et al., 1996; Liu et al., 1996). That body of work and this one

reinforce the fact that the Gulf of Maine is downwind of major anthropogenic pollution

sources. They corroborate the conclusion of Parrish et al. (1993) who found that during

summer, transport of anthropogenic emissions from North America, and the subsequent 

photochemical production of O3 , dominated the O3  budget in the lower troposphere over

the temperate North Atlantic. These anthropogenic emissions also dominated the air 

chemistry we observed in this region.

Size distributions

Aerosol size distributions are a critical parameter for determining the deposition 

velocity of these aerosols. These size distributions vary depending upon the source region 

of the air mass being sampled. The size distribution data is presented in greater detail in 

Chapter 2, however, the main features of NO3 " and Nlfy* aerosol size distributions

observed at New Castle, New Hampshire are illustrated here. NH4  , nss-S0 4 “\  NC>3 -,

andNa+ size distributions collected in August 1996 (Figure 1.4) show the typical features

observed in the cascade impactor samples. There is a submicron peak at about 0.7 pm 

diameter for NH4 + and nss-S(>4 ~~ which were seen to have the same distribution. This
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suggests that most aerosol NH4 + was associated with S O ^ '.  Meanwhile, NO3 " was 

found on supennicron particles (~ 6 pm) and followed the size distribution of Na+, as has 

been reported by Savoie and Prospero (1982). This suggests that most of the aerosol 

NO3 '  was in the form of NaNC^. The presence of nitrogen on supermicron particles

facilitates the deposition of nitrogen via both dry and wet processes. This association is 

produced by the reaction of HNO3  and other gases with aerosol NaCl to yield gas phase

HCl and aerosol NaNC>3 (see Section 4). Although not shown, there was typically no

substantial difference in the size distribution of nss-SO^" and total SO4 -", suggesting that

the total S0 4 ^‘ originated primarily from gas-to-particle conversion of anthropogenic SO2 .

Precipitation chemistry

Precipitation concentrations of four ions, NO3 ", NH4 +, nss-SC^-', and Na+, are

shown in Figure 1.5. The measured ion concentrations in rain were highly variable, just as 

was shown for the aerosols. There was no particular seasonality, except for sea salts such 

as Na+ which had a few very highly concentrated events mostly in the late fall and winter 

months. These high concentrations were associated with low amounts of rainfall, < 1 cm. 

Unlike in aerosols, NO3 '  appeared on average in greater quantities than NH4 +

Submicron nss-SC^" and NH4 +, although abundant in the aerosol phase, were probably 

not as readily scavenged by rain as were supermicron NO3 '  and highly soluble HNO3 .

Larger particles are much more readily scavenged than smaller pollution aerosols in the 0.1

to 1.0 pm diameter range (Slinn, 1983). Supermicron sea salts such as Na+ were

sometimes highly concentrated in rain.

The annual volume-weighted means for the chemical species in precipitation are

given in Table 1.4. Sea salt ions (Na+  and Cl') were by far the dominant species in the 

rainwater at the coast. NO3 '  and S C ^ ' followed in importance, with Nlfy* and Mg^+

intermediate between those two and the K+ and Ca~+ concentrations. This is a
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substantially different scenario than with the aerosol data. The precipitation concentrations 

were not depleted in 1995 like the aerosol mixing ratios. In fact the only notable variation 

seen from one year to the next was Na+ and Cl" in 1994, when the average concentrations 

were particularly low, less than half of that seen in the other years. This may have been 

due to the meteorology. Analysis of the meteorology associated with sampled rain events 

shows that in 1994 only 17% of these events were of marine origin as opposed to 36% and 

46%, respectively, in 1995 and 1996.

Table 1.4. Annual Precipitation Volume-Weighted Means (pmol/liter)

Species 1994 1995 1996 1997

1
1 23 24 2 2 27

NH4+ 1 1 13 1 2 17
nss-SC^- 2 1 18 15 2 1

Total S0 4 2- 24 23 2 1 27

Na+ 35 93 96 1 0 2

ci- 42 76 107 1 1 0

Mg2+ 4 9 1 1 1 1

K+ 2 3 2 2

Ca2+ 3 3 4 3

Precipitation concentrations of NO3 ' ,  NH^4-, nss-SO ^", total SO4 " ', Na+, and 

Cl- are shown for the four seasons of the year (Table 1.5). Note, there were no samples in

the winters of 1994 and 1995 and there were too few in spring of 1994 to be considered 

here. In all four years the concentrations of the pollution species NO3 ',  NH4 +, and nss- 

S0 4 ^~ dropped substantially in the fall compared to the other three seasons. The 

concentration of NO3 '  and NH4 + in fall precipitation was only 43% and 28% respectively,

of that seen during the other three seasons. Meanwhile, Na+ and C l' increased in fall and 

winter. The Na+ and C l' concentrations in fall and winter were 299% and 243%
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respectively, of that seen during the spring and summer. This behavior of lower 

anthropogenic species and higher sea salts in autumn suggests that the storm systems 

which brought precipitation to our sampling site may have been dominated in fall by coastal 

low pressure systems and onshore rains. Whereas during the remainder of the year, storm 

systems of continental origin may be delivering rain dominated by anthropogenic chemical

Table 1.5. Seasonal PrecipitationVolume-Weighted Means (pmol/liter)
Species Year Winter Spring Summer Fall

n o 3- 1994 28 7
1995 35 35 11

1996 33 27 23 15
1997 37 31 2 1 17

n h 4+ 1994 13 4
1995 2 0 2 1 6

1996 2 0 16 13 6

1997 19 2 1 17 6

nss-S04 2- 1994 28 5
1995 23 29 8

1996 17 19 2 0 8

1997 23 23 23 1 0

Total S04 2- 1994 30 9
1995 26 31 16
1996 30 25 2 2 15
1997 30 26 27 2 2

Na+ 1994 2 0 62
1995 30 2 1 176
1996 266 98 34 104
1997 139 55 69 214

ci- 1994 25 6 6

1995 41 25 130
1996 253 113 41 1 2 0

1997 143 61 80 225

species. While in spring and summer, nss-SO^" constituted approximately 80% - 90% of 

the total S O ^ ',  in fall, it was only about 50% of the total. This pattern was not seen in the

aerosols (Table 1.1), which indicates the difference was probably a function of the storm 

tracks in fall rather than a mechanism influencing the overall atmospheric chemistry. This
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is consistent with analyses which show cyclonic storms, known as nor’easters, are most

likely to occur from October through April (Davis and Dolan, 1993; Davis et al., 1993).

Precipitation data was compared with that of two coastal stations that participate in

the National Atmospheric Deposition Program (NADP). The two NADP stations are the

North Atlantic Coastal Lab (MA01) in Barnstable County, Massachusetts (referred to as

Cape Cod) and the Acadia National Park - McFarland Hill site (ME98) in Hancock County,

Maine (referred to as Acadia). The Cape Cod site is located at 41° 58’ 33” N latitude and

70° 01’ 29”  W longitude with an elevation of 41 m. The Acadia site is located at 44° 22’

26”  N latitude and 6 8 ° 15’ 38”  W longitude with an elevation of 129 m. New Castle, NH 

lies between these (43° 04’ N 70° 42’ W, elevation approximately 10 m). NOg", N H ^ ,

Na+, and Cl* in precipitation are compared on both an annual and seasonal basis between 

our site and the two NADP sites (Table 1.6). Again the continental species decreased, 

while the sea salt species increased, at all three coastal sites in fall, indicating a strong 

marine influence on precipitation chemistry at this time of year.

The volume-weighted means from New Castle tend to be higher, in general, than 

those from Cape Cod and Acadia on both a seasonal and annual basis (Table 1.6).

Although only four species are listed, this was the case for all species measured. This is 

shown more clearly in the ratios of the means from New Castle to those of Cape Cod and 

Acadia (Table 1.7). Compared to Cape Cod, the New Castle annual volume weighted 

means tend to be higher by 20% - 60% for N0 3 *, 40% - 90% for NH4 +, 30% - 50% for

Na+, and 20% - 40% for Cl*. A notable exception occurs in 1994 when Na+ and Cl*

means were only 60% of those reported from Cape Cod. Compared to Acadia, the annual 

means from New Castle are higher by 70% - 130% for NOj", 80% - 130% for NH4 +

40% - 290% for Na+, and 50% - 290% for Cl*. Here, the large disparity between the sea 

salt volume weighted mean concentrations was likely due to the proximity of our site to the 

shoreline (within 15 m), whereas the Acadia site is 3.3 km inland on Mt. Dessert Island. 

Note the seasonal ratios for both Cape Cod and Acadia show a wider range of variability
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Table 1.6. NADP Comparison Volume-Weighted Means (nmol/liter)
Location Year Annual Winter Spring Summer Fall

N O y
Cape Cod 1994 15 16 9

1995 2 0 32 2 2 9
1996 14 18 2 1 19 8
1997 2 1 13 30 32

New Castle 1994 23 28 7
1995 24 35 35 1 1
1996 2 2 33 27 23 15
1997 27 37 31 2 1 17

Acadia 1994 1 0 18 7
1995 1 2 14 13 1 0

1996 1 1 1 1 1 1 14 8

1997 16 13 14 24
n h 4 +

Cape Cod 1994 6 8 3
1995 9 18 1 0 4
1996 7 9 1 0 9 3
1997 9 4 18 8

New Castle 1994 1 1 13 4
1995 13 2 0 2 1 6

1996 1 2 2 0 16 13 6

1997 17 19 2 1 17 6

Acadia 1994 6 11 2

1995 6 11 6 4
1996 6 5 7 6 6
1997 8 4 9 11

Na+
Cape Cod 1994 59 31 76

1995 63 53 1 2 72
1996 75 129 78 37 83
1997 72 79 28 2 2

New Castle 1994 35 2 0 62
1995 93 30 2 1 176
1996 96 266 98 34 104
1997 1 0 2 139 55 69 214

Acadia 1994 25 8 26
1995 42 18 3 50
1996 25 96 31 1 0 26
1997 28 35 23 19

ci-
Cape Cod 1994 67 37 83

1995 6 6 62 13 74
1996 80 128 79 44 87
1997 80 80 30 27

New Castle 1994 42 25 6 6

1995 76 41 25 130
1996 107 253 113 41 1 2 0

1997 1 1 0 143 61 80 225

Acadia 1994 27 9 31
1995 47 19 2 58
1996 27 104 33 1 2 31
1997 32 40 26 2 2
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Table 1.7. Ratio of New Castle Volume-Weighted Means to NADP Sites
Species Year Annual Winter Spring Summer Fail

New Castle/Cape Cod
n o 3- 1994 1.5 1.7 0 . 8

1995 1 . 2 1.1 1 . 6 1 . 2

1996 1 . 6 1.9 1.3 1 . 2 1 . 8

1997 1.3 2 . 8 l . l 0.7

n h 4+ 1994 1 .8 1.7 1.5
1995 1.4 1 .1 2 . 0 1.3
1996 1 .8 2 . 2 1 . 6 1.4 2 . 0

1997 1.9 4.3 1 . 2 2 . 0

Na+ 1994 0 . 6 0 . 6 0 . 8

1995 1.5 0 . 6 1.7 2.5
1996 1.3 2 . 1 1.3 0.9 1.3
1997 1.4 1 . 8 2 . 0 3.2

ci- 1994 0 . 6 0.7 0 . 8

1995 1 .2 0.7 2 . 0 1 .8

1996 1.3 2 . 0 1.4 0.9 1.4
1997 1.4 1 . 8 2 . 1 3.0

New Castle/Acadia
n o 3- 1994 2.3 1.5 1.1

1995 2 . 1 2.5 2 . 6 1 .2

1996 2 . 0 3.0 2.5 1 . 6 1 .8

1997 1.7 2.9 2 . 2 0.9

n h 4+ 1994 1 .8 1 . 2 2 . 0

1995 2 . 1 1 .8 3.3 1.4
1996 2 . 0 4.3 2.5 2 . 0 1.1
1997 2.3 4.7 2.3 1 . 6

Na+ 1994 1.4 2.5 2.3
1995 2 . 2 1.7 7.6 3.5
1996 3.9 2 . 8 3.1 3.2 4.0
1997 3.6 4.0 2.4 3.7

ci- 1994 1.5 2.9 2 . 1

1995 1 . 6 2 . 2 1 0 . 2 2 . 2

1996 3.9 2.4 3A 3.5 3.8
1997 3.4 3.6 2.4 3.6

between the sites. Caution in the interpretation of the relationship between these data sets is 

needed given the distance and difference in settings between the three sites. However, it is 

important to note that the difference between the nitrogen species reported here and those 

reported by NADP suggest that the total wet deposition of inorganic nitrogen to some areas 

along the Gulf of Maine coast may well exceed that expected, given the data from these two 

NADP coastal sites alone. At New Castle, the annual wet deposition of total inorganic 

nitrogen is 30% • 60% greater than that recorded at Cape Cod and 55% -115% greater than 

Acadia.
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Chemical relationships

NH4 + versus the sum of n ss-S O ^ ' and NO3 '  shows that there is insufficient base

to neutralize the acids for both aerosol phase (Figure 1.6a) and precipitation (Figure 1.6b).

If the acidic species were fully neutralized, the observations should fall along the 1:1 line.

However, in both cases, the best fit line lies well below this with slopes of 0.48 for the 

aerosol and 0.19 for precipitation. As mentioned previously, NO3 '  is the dominant

nitrogen ion in precipitation due to the preferential scavenging of supermicron particles 

versus submicron particles. Plus, nitric and sulfuric acids readily dissolve in rain drops.

Thus, the precipitation was even more acidic than the aerosols would suggest.

Nonetheless, even in the aerosols, twice as much NH4 + on average, would be required to 

fully neutralize the available S C ^ - and N0 3 ~. This is similar to results found by Lefer

(1999) from measurements at Harvard Forest in Petersham, Massachusetts. He found that 

high mixing ratios of SO4 2 - in the air over the forest kept NH3  mixing ratios well below 

the compensation point. Hence the forest was releasing NH3  into the atmosphere, despite

it being nitrogen limited (Lefer, 1999). In polluted air masses, Lefer found that there was 

insufficient NH4 + to neutralize the S C ^ ' when mixing ratios exceeded = 2 2 0 0  pptv.

Although not shown, there was seasonal variation in this relationship. For the aerosols, 

summer was most acidic (slope of 0.45) and winter was least acidic (slope of 0.67). Fall 

and spring had slopes of 0.53 and 0.55, respectively. In precipitation, the summer was 

again the most acidic (slope of 0.13), while the remaining three seasons were all fairly 

similar with slopes ranging from 0.21 to 0.23. Thus, throughout the year, there was 

insufficient base to neutralize the acids.

The relationship between Cl“ and Na+ is shown for both the aerosols (Figure 1.7a) 

and precipitation (Figure 1.7b). The mean equivalents based ratio of Cl":Na+ in sea water 

is 1.16 (Keene et al., 1986; Wilson, 1975). However, in aerosols at our site, this ratio 

was only 0.87 on average. This varied somewhat seasonally with the greatest Cl~ depletion
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Figure 1.6. Relationship between NH4 + and the sum of nss-SCH^- and N 03‘ in both ‘ 
aerosols (a) and precipitation (b). The best tit line, along with the equation, is shown with 
the 1:1 line in both panels. The 1:2 line is also shown in (b).

occuring in summer (Cl‘:Na+ = 0.73) and the least in fall (Cl‘:Na+ = 0.99). Several

mechanisms have been proposed to explain the loss of Cl~ from sea salt aerosols. First, 

acidic gases, HNO3  and H2 SO4  can dissolve onto these aerosols, reduce their pH, and

drive off HC1 as follows (Robbins et al., 1959; Eriksson, 1960; Martens et al., 1973; 

Keene et al., 1990)

HNO3  (g) + NaCI (p) -> HC1 (g) + NaN03  (p) (1)
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Figure 1.7. Relationship between Cl" and Na+ in both aerosols (a) and precipitation (b). 
Cl" was depleted relative to Na+ in both aerosol and precipitation, given a sea salt ratio of 
Cl":Na+ = 1.16 (Keene et al., 1986; Wilson, 1975).

H2 S 0 4  (g) + 2NaCl (p) -> 2HC1 (g) + Na2 S0 4  (p) (2)

Second, non-acidic gases have been proposed to react with sea salt particles (Altshuller, 

1958; Schroeder and Urone, 1974; Finlayson-Pitts, 1983; Finlayson-Pitts et al., 1989; 

Keene et al., 1990), e.g.,

2N02  (g) + NaCl (p) -> NOC1 (g) +  NaN03  (p) 

CINO3  (g) +  NaCl (p) -> CI2  (g) + NaN03  (p)

(3)

(4)
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N 2°5 fe )+ NaCl <P) -> C1N° 2  (S) + NaN03  (p) (5)

In equations 3-5, the product gases all undergo rapid photolysis and hydrolysis processes 

which in the end result in HC1 and NaN03  as final products (Keene et al., 1990). These

latter three reactions are only important in polluted areas (Singh and Kasdng, 1988; Keene 

et al., 1990). Third, a proposed process in which 0 3  drives off gas phase Cl2  from sea

salt aerosols in the presence of H2 O has the following stoichiometry (Behnke and Zetzsch,

1989; Keene et al., 1990)

2C1- + 0 3  (p) -> Cl2  (g) + 20H- + 0 2  (g) (6 )

Photolysis of Cl2  results in the production of Cl atoms which lead to the production of HC1 

and C1N03  (Keene et al., 1990). Which mechanisms are important here cannot be

determined, although it is anticipated some combination of them occurs in this polluted 

coastal environment.

In precipitation, Cl":Na+ was 1.01 (Figure 1.7b), higher than in aerosols, but still 

less than that expected from sea water. This suggests that some of the Cl" driven off as 

HC1 is scavenged by precipitation. The fact that precipitation was still depleted compared 

to sea water may be due to several factors. First, not all of the available HC1 may have 

been scavenged by the rain. Second, some of the HC1 driven off from the aerosols may 

have dry deposited, especially to the water surface, prior to the rain event. HCl is highly 

soluble, so it will readily deposit to wet surfaces. Jacob et al. (1985) report results which 

suggest HCl may dry deposit more quickly to the ocean than aerosol Cl" particles, thereby 

enhancing the observed Cl" loss in fogs when the gas phase HCl should be readily 

scavenged by the water droplets. Third, if other gas phase products have been produced, 

e.g., Cl2, they are less soluble and less easily scavenged by precipitation (Graedel and

Keene, 1995).

The CT deficit versus N 03" is shown in Figure 1.8. This deficit is calculated by

multiplying the measured Na+ by 1.16 to get the amount of Cl" expected in sea salt 

aerosol. The calculated Cl" is subtracted from the measured Cl", with the negative result
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referred to as the Cl" deficit If all of the particulate NO3 " was produced via reactions 1,3,

4, and 5 and none of the HCl was lost, then these two species would have a 1:1 

relationship. Note, S O ^" is not considered here because this figure uses bulk aerosol data

and most of the S O ^"  present is in fine particles (Figure 1.4) with non-sea-salt origins.

Nonetheless, a simple regression with a slope of 0.92 is found, although there is a 

substantial amount of scatter yielding = 0.32. Both the slope and the scatter suggest

O’u

w
Cu
f t

200

150

100
OO

Cf Deficit = 7.83 + 0.92 NO,
5 0

>= 0.32

100 150

Figure 1.8. Aerosol Cl" deficit versus N0 3 ". If all of the particulate N0 3 " was 
produced as HCl was driven off, then this plot should yield a 1:1 relationship.

that other processes, which do not produce NaN0 3  are also important (e.g., equations 2  

and 6 ).

N ss-SO ^- versus total S O ^ "  is plotted for both aerosols (Figure 1.9a) and

precipitation (Figure 1.9b). In aerosols, the relationship was essentially 1:1, i.e. nearly all 

of the S O ^ "  observed at this site was of non-sea-salt origin. This was true despite the fact

that the site was located on the shore of the Gulf of Maine. These results illustrate the 

importance of continental sources on the air chemistry in the coastal zone. Note, in 

precipitation, the non-sea-salt portion of the total was slightly less than it was for aerosols 

(although it still contributed 92% on average). This was likely due to the types of storm
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Figure 1.9. Relationship between nss-S0 4 2 * and total SO4 - '  in both aerosols (a) and 
precipitation (b). Despite the proximity to the coast, the SO4 2 * contributed by sea salt was 
only a tiny fraction of the total SC^-observed.

systems which brought rain to this area. There are systems which come across the

continent from the west, e.g., Colorado Lows and Alberta Clippers. These systems bring 

rain in which the S O ^ ' is nearly all of non-sea-salt origin. Other systems bring rain from

a low pressure system sitting offshore, e.g. a Nor’easter. This type of rain contains a 

much higher percentage of sea salt S O ^ - than rain systems of continental origin.
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Sm nm ary

The importance of looking at atmospheric chemistry relevant to nitrogen deposition

in the coastal marine environment, particularly along the east coast of the United States, has

been presented in this chapter. Being downwind of major anthropogenic emissions can

lead to enhanced nutrient loading of the coastal ecosystem. With this in mind, an overview 

of the HNO3 , aerosol, and precipitation chemistry observed over a three and a half year

period has been presented.

This overview may be summarized as follows. Daily HNO3  and aerosol mixing

ratios were highly variable, with mixing ratios ranging over an order of magnitude. HNO3

and NH4 + were seen to have summer peaks. The HNO3  peak was due to enhanced NO

emissions coupled with longer days which enhanced its photochemical production. The 

NH4 + peak was attributed to its biogenic sources being stronger in summer, coupled with 

transport that apparently brings greater amounts of NH4 + to the eastern United States from

the midwest during this season. In addition, this peak may be enhanced due to increased 

traffic in New England releasing NH3  from catalytic converters in cars. NO3 * did not

exhibit any summer peak. Average annual aerosol mixing ratios tended to be similar, 

although 199S was anomalous and led to annual variations of about a factor of two. Gas 

phase HNO3  and particulate NH4 + were the dominant water soluble nitrogen species in the 

atmosphere, while N0 3 ~ was the dominant nitrogen ion in precipitation. This change in 

dominance was due to more effective scavenging of gas phase HNO3  and supermicron 

NO3 '  than of submicron NH4 +. This submicron NH4 + was closely correlated with nss- 

S0 4 ^‘. Most of the S C ^ ' observed, 80% - 95% was of non-sea-salt origin. Meanwhile 

the supermicron N0 3 ~ was associated with Na+ and was presumed to be in the form 

NaNC^. NO3 " ends up on supermicron sea salt particles via reaction with HNO3  and 

other gases. This process also leads to the depletion of Cl~ as particulate NaNC> 3  is formed

and gas phase HCl is driven off of the particles. There was insufficient ammonia available 

to fully neutralize the nitric and sulfuric acids present. In precipitation, the concentrations
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of continentaily derived species were seen to drop significantly, while sea salt species

increased in autumn precipitation. This was attributed to storm systems in the fall being 

predominantly of marine origin. There was significantly more NOg" and N H ^  in

precipitation at New Castle, NH than reported by two NADP coastal sites.

These observations have the following implications for the deposition of nitrogen to

the Gulf of Maine. First, more nitrogen is being deposited at some locations along the

coast of the Gulf of Maine than currently indicated by the NADP network. Second, large

particles dry deposit much more readily than small particles. Thus, the processes which 

lead to the presence of N0 3 ~ on supermicron aerosols can enhance dry deposition of NO3 '

to coastal waters. Third, there is an abundance of HNO3  in this region. Dry deposition of

HNO3  is enhanced by the higher humidity and wind speeds over the water. These three

factors combined suggest that nitrogen deposition to the Gulf of Maine has been previously 

underestimated. In addition, atmospheric mixing ratios of HNO3  and NH4 + peak in

summer. This is when NO3 " and NH^1* are most depleted in the surface waters of the

gulf. Hence, the time when the highest atmospheric deposition of nitrogen is anticipated 

coincides with the time at which this deposition may be most influential.
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CHAPTER 2

ATMOSPHERIC TRANSPORT AND RELATED CHEMICAL SIGNATURES OF 

HN03, AEROSOLS, PRECIPITATION AND FOG

Abstract

Gas phase HNO3 , aerosol, precipitation, and fog water samples collected from

1994 - 1997 at a coastal site in New Hampshire, were used in conjunction with 1000 hPa 

streamlines to classify sampled air masses according to their surface level transport and 

chemistry. Eight characteristic groups were defined, of these the three primary groups 

were polluted continental, “clean” continental, and marine. Highly variable mixing ratios 

of HNO3  and aerosol species were observed within each group from day-to-day, yet each 

group had a unique average chemical signature. On average, the HNO3  and aerosol mixing

ratios observed in 1995 were roughly a factor of two lower than seen for the groups in 

other years. Overall, mixed conditions occurred in 42% of the samples, continental species 

were dominant in 37%, and marine species were dominant in 21%. Rain occurred 

frequently under sea salt dominant conditions; about 47% of the days classified as such had 

rain events. Fog chemistry and average aerosol chemical size distributions were evaluated 

based on which species dominated their chemical signatures, marine, continental, or a 

relatively even mixture of the two. Particulate NO3 '  was associated with sea salt Na+ in

the course aerosol fraction peaking at approximately 4 pm in diameter. There was also a

distinct secondary peak in the submicron fraction observed in air dominated by continental 

aerosols. Particulate N H ^  was associated with non-sea-salt-SO^" (nss-SO ^-), with the

bulk of the N H ^  present on particles in the 0.43 - 1.1 pm diameter range. Although nss-

S042‘ was primarily found in the submicron size range, a substantial fraction (> 25%) was

found in the supermicron range for all three cases. A deficit of Cl' was observed in the sea

33
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salt aerosols, with the deficit greatest for particles in the 1.1 - 3.3 pm and 9.0 - 25 pm 

diameter ranges.

Introduction

A multi-year sampling program was carried out at the southern coast of the Gulf of Maine 

in New Castle, New Hampshire in which daily gas-phase HNO3  and bulk aerosol samples

(24 hour averages) were collected along with event based precipitation samples, fog water 

samples, and aerosol size distribution samples. Synoptic weather patterns frequently bring 

air masses of different origins and different physico-chemical properties to this sampling 

site. This variability is particularly noticeable at the land/ocean interface in the vicinity of 

substantial anthropogenic input to the atmosphere. Not only does the chemical speciation 

change between air masses exposed to anthropogenic versus natural sources, but properties 

such as aerosol size distribution vary as well.

S042- is found predominantly in the fine fraction of aerosols due to various

oxidation processes of SC>2 > In marine air masses, there is also a substantial supermicron 

mode for both non-sea-salt-SC^2- (nss-SC^2')  and sea-salt-SC^2'  (Savoie and Prospero,

1982; Milford and Davidson, 1987). Savoie and Prospero (1982) attributed the coarse nss- 

SO4 .2'  to surface processes including the heterogeneous reaction of SC> 2 on sea salt

particles and the agglomeration of small SO4 2'  aerosols with coarse sea salt particles.

They suggest the latter process is more important and they suggest that this mechanism also 

accounts for the presence of NH4 + in the coarse mode as well. Sievering et al. (1991) 

evaluated several mechanisms to explain coarse mode nss-SC^2-. Cloud conversion,

coagulation, and collision-coalescence could not account for the amount of coarse fraction 

nss-SC>4 2'  observed at Bermuda. Most cloud processes result in the production of fine

mode nss-S0 4 2~. Their results suggest diffusion of SO2  to the surface of sea salt particles

and its subsequent oxidation via O3  in the surface water layer of the particle can explain the

coarse nss-S0 4 2'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

NO3 '  also exhibits a bimodal distribution with the fine mode due to gas to particle 

conversion of NH3  and HNO3  leading to NH4 NO3 , and the coarse fraction attributed to 

adsorption of HNO3  onto soil and sea salt particles (Milford and Davidson, 1987). In

marine locations, the coarse mode is dominant and has been seen to be associated with and 

shifted to slightly smaller sizes than the Na+ peak, suggesting surface processes at work 

(Savoie and Prospero, 1982). Observations in Tokyo, showed a bimodal size distribution 

of NO3 '  due to NH4 NO3  in the fine fraction and NaNC>3 in the coarse mode (Yoshizumi 

and Hoshi, 1985). Fine mode NO3 '  was dominant in winter and coarse NO3 " was 

dominant in summer, due to increased volatility of NH4 NO3  with increasing temperature 

leading to less fine N0 3 ~ in summer. There were similar amounts of NaN0 3  in both

winter and summer, so the seasonal variation observed in the size distribution was truly 

due to the presence or absence of NH4 NO3 . At New Castle, little NH4 NO3  is anticipated 

as there are sufficient amounts of SO2  to neutralize all of the ambient NH3  (Chapter 1). As 

NH3  reacts with SO2  more readily than HNO3  and NH4 HSO4  and (NH4 )2 S0 4  are more 

stable than NH4 NO3  (Stelson et al., 1979; Stelson and Seinfeld, 1982), it is anticipated 

that NH4 NO3  will not be a dominant feature here. Aerosol size distributions made at

Harvard Forest in Petersham, Massachusetts corroborate this expectation. The fine mode 

is dominated by NH4 + and SC^*, while most of the NC>3 - is associated with coarse soil 

(Ca^+) particles and only a small fraction of the NO3 * in the fine mode (Lefer, 1997).

Several mechanisms involving acidic and non-acidic gases as well as O3  have been

proposed to explain the loss of Cl* from sea salt particles (Altshuller, 1958; Robbins et al.,

1959; Eriksson, 1960; Martens et al., 1973; Schroeder and Urone, 1974; Finlayson-Pitts, 

1983; Behnke and Zetzsch, 1989; Finlayson-Pitts et al., 1989; Keene et al., 1990). NC>3 ‘

size distributions in Finland indicated coarse N0 3 ~ formed via reactions of HNO3  with soil

and sea salt particles Pakkanen (1996). The sea salt reactions drive off HC1 resulting in Cl~ 

depletion from the sea salt particles. Coarse nss-SC ^- also suggests H2 SO4  or SO2

reacted with sea salt, further driving off HC1. The percentage of Cl~ loss was found to
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decrease with increasing particle size, suggesting a surface mechanism for the loss. There 

was nearly complete depletion of C l' in the 1 - 2 pm range.

In this work, the properties of different types of air masses which pass by the site at 

New Castle, New Hampshire, were investigated. In particular, did surface flow from 

different areas bring in air with different chemical signatures? Did the size distribution of 

chemical species change depending on the type of air being sampled? Other authors have 

reported findings of different physico-chemical properties depending on the source region 

of the sampled air mass. Results have been reported from various locations including: 

western Pacific islands (Mukai and Suzuki, 1996; Nagao et al., 1999), the Portuguese 

coast (Pio et al., 1996a and 1996b), southern Norway (Pakkanen et al., 1996), central 

Ontario (Isaac et al., 1998), and North Carolina (Ulman and Saxena, 1997; Bahrmann and 

Saxena, 1998).

In a study at South Uist, about 100 km off the northwest coast of Scotland on one 

of the Outer Hebrides, Lowe et al. (1996) found continental air masses from Europe were 

dominated by (NH4 )2 S0 4  aerosols. In maritime air masses, these aerosols dominated the

fine fraction, while sea salts dominated the coarse mode. They also observed a few air 

masses of Arctic origin which had very little pollution. Finally, they reported mixed air 

masses where either continental air had been modified by its passage over water or marine 

air was subjected to continental influences prior to reaching the site. These results are very 

similar to those reported here, on the other side of the Atlantic, with the continental air 

masses originating over North America.

Locally, several similar studies have been carried out. At Harvard Forest in 

Petersham, Massachusetts, Shipham et al. (1998) looked at regional transport to account 

for observed variations in CH4  mixing ratios. They found that transport from the

southwest quadrant was most polluted and the northeast was the cleanest. This was

attributed to the distribution of local landfills and wetlands which are strong sources of 

CH4 . Aerosol, NH3  and HNO3  observations divided into three sectors, showed the
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greatest pollution arrived from the southwest sector (180° - 270°) at Harvard Forest (Lefer,

1997). Cluster analysis of back trajectories where three trajectories per day were coupled

with three hour averages of trace gas measurements (Moody et al., 1998) showed

background conditions, with lower pollutant mixing ratios and lower variance, under north

and northwest-fast flow at Harvard Forest. Anthropogenic pollutants were highest under

southwest flow conditions which were also generally warm, moist, and relatively cloudy

(warm sector transport).

Another project carried out nearby was the North Atlantic Regional Experiment

(NARE) off the coast of New England and the Canadian Maritime provinces. This work 

was primarily concerned with O3  transport from North America over the North Atlantic.

Transport from three sectors was described (Banic et al., 1996; Li et al., 1996): source

(polluted), north (low pollution), and maritime. These sectors are very similar to those

independently defined here as groups 1,2, and 3, respectively.

In fact, observations from Harvard Forest, NARE, and now New Castle, New

Hampshire, all indicate that most pollution arrives in this region from the southwest. The

cleanest continental sector is from the north and the marine air from the east is important in

regional air chemistry. It is interesting to note, that (Jlman and Saxena (1997) also report a

3 sector system centered at Mt. Mitchell, North Carolina, with marine, polluted, and clean

continental sectors. However, their pollution arrives from the north/northeast while their

clean sector is to the southwest. This, in conjunction with the results from the northeastern

United States and southeastern Canada, suggests the strongest pollution sources in the

eastern United States lie between North Carolina and New England.

In this paper, data from New Castle, New Hampshire are presented in the context

of chemical signatures associated with air mass source regions. Three basic chemical

signatures were identified: (1) marine air dominated by the sea salt species Na+ and CT, 

(2) polluted air dominated by HNO3 , NH4 +, and S O ^ ',  and (3) “clean” continental air

also dominated by these three species, but with much lower ambient mixing ratios. These
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data were classified into eight groups which consisted of these three basic groups along 

with five combinations of the three. Twenty aerosol size distribution samples were 

analyzed to see if there were distinct size distributions characteristic of these categories. 

These data could not be sorted according to the eight groups, but they could be separated 

into the three basic classifications.

M ethods

Measurements were made on the shore of the Gulf of Maine at the Portsmouth

Harbor Coast Guard Station in New Castle, NH. These measurements included daily (24 

hour averages) bulk aerosol and HNO3  samples, event based precipitation samples, 20

aerosol size distribution samples, and 36 fog water samples. Various meteorological

parameters were also measured and saved as hourly averages. Samples were initially

collected from May through November of 1994, then starting in March of 1995 sampling

continued through November of 1997. An overview of our data set and a complete

discussion of our methods are in Chapter 1.

On average, errors for the bulk aerosol were NO3 '  = ±5% and NĤ "*" = ±4%, and

for the gas phase HNO3  = ±5% (Chapter 1). The size distribution data were collected on a

series of 10 filters, so the error analysis was carried out for each filter. The results were 

remarkably similar, with NO3 '  = ±5% and NH4 + = ±5% on most stages, with the other

few either ±4% or ±6 %. The experimental error for our precipitation and fog concentration 

data is solely a function of the analytical uncertainty. The precision of our analytical 

method was ±3% and our comparisons to the National Institute of Standards and 

Technology (NIST) standards was ±1%.

The fog sampling protocol was not described previously, so it will be presented 

here. Fog samples were collected at three locations: at New Castle, New Hampshire, 

within 1 0  m of the shore at the same location as the aerosol and precipitation samplers; at 

Plum Island, Massachusetts, within 10 m of the Gulf of Maine, and on the west side of 

Plum Island within 5 m of the water. An active sampler based on a design by Global
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Geochemistry Corporation (Hering et al., 1987) was used. A fan is used to pull the fog 

through a thick mesh of polypropylene strands. The fog water condenses on the strands 

and runs down a teflon lined PVC pipe to a sample bottle at the bottom of a V-shaped 

configuration. Fog droplets larger than 5 pm are sampled with at least 98% collection 

efficiency (Hering et al., 1987). Samples are collected over a period ranging from 30 to 90 

minutes, depending on the liquid water content of the fog, with denser fogs requiring less 

sampling time. The sample bottles are kept on ice until they can be frozen. Prior to 

analysis, they are thawed and treated with chloroform to prevent biodegradation of the 

nitrogen species. The samples are diluted and analyzed by ion chromatography to 

determine the concentrations of the following ions: Na+, NH4 +, K+, Mg2+, Ca2+, Cl',

N 0 3', and S 0 42'.

Initially, to establish whether air masses of a particular origin had a characteristic 

chemistry, hourly wind direction data corresponding to each sample were averaged with 

that average used as an indication of origin. However, those averages did not necessarily 

indicate air mass origin, due to micro- and meso-scale weather features imbedded within 

the synoptic-scale transport mechanisms, yielding misleading averages. Given that the 

bulk samples were collected over approximately 24 hour periods, using back trajectories 

seemed inappropriate as there would not be a well defined air parcel to extrapolate 

backward in time to its point of origin (Kahl, 1993). Thus, streamline maps produced by 

NASA for their Global Troposphere Experiment program (e.g., Figure 2.1) were acquired. 

Figure 2.1a is an example of a flow pattern which brings marine air onshore. Figure 2.1b 

is an example of a pattern which flows along the eastern seaboard of the United States 

advecting polluted air to New Castle, NH. These streamlines are available on their website 

(http://asd-www.larc.nasa.gov/David/gteplotpage.html) for 0 and 12 hrs UT. On average, 

there were two streamlines per daily sample. Unfortunately, due to a file format change to 

the raw data file used by NASA, their data set ends at the end of 1996. Thus, for this part 

o f the analysis, only data collected from 1994 through 1996 were evaluated.
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a .

b.

Figure 2.1. Examples of NASA GTE 1000 hPa streamline maps showing surface flow 
patterns which brought a) marine air, and b) anthropogenically polluted air up along the 
eastern seaboard of the United States to New Castle, NH.
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Streamlines were used primarily qualitatively, to indicate the flow direction at the 

surface (1000 hPa). The direction from which an air mass was advected to New Castle 

was obtained by assigning a point on a circle surrounding New Castle (Figure 2.2). A 

circle of approximately 1100 km radius centered on New Castle, NH was drawn on a 

plastic sleeve slid over each map. This was done to ensure consistency from one paper

0

*
a
s
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o

Figure 2.2.
New Castle, NH. Samples were grouped according to air mass direction and chemistry.

map to the next. Then the one or two nearest streamlines to New Castle were followed 

back to the circumference of the circle. The degrees from north were measured and that 

direction was assigned to that particular streamline. However, this is not an entirely 

straightforward procedure as the streamlines are not truly radial. In the cases where the 

streamline turned 90° between New Castle and the circumference, the streamline was

330 30
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Polar plot showing the direction from which air masses arrived at the site at
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followed back to the 90° turn and then the angle was determined from that point. The 

choice of 1 1 0 0  km as the radius was arbitrary and no conclusions have been drawn 

regarding the distance of source regions to our site. This analysis was solely used to 

determine a general direction from which the air mass was transported to the site.

Typically, a given sample had two streamlines associated with it (although, a few 

cases had a duration which led to more or less streamlines). The samples were initially 

sorted according to whether the two streamlines fora given sample came from a relatively 

consistent location or completely different locations (e.g., easterly flow in one, westerly 

flow in the other). If the streamlines were from completely different directions or were 

inconclusive due to the presence of a high or low pressure system directly over the area, 

these samples were classified as mixed streamlines. In this case, no attempt was made to 

assign a direction to the air mass origin as there were different air masses being sampled 

over the duration of the sample. For the cases where the streamlines originated from a 

similar direction, the azimuth angle of the streamline was determined. The directions for 

the streamlines associated with a given sample were then averaged and that average was 

used as the direction from which the sampled air mass came.

The point of this exercise was to determine if air masses of different origins had 

different chemical signatures. Thus, to establish final groupings for the streamlines, the 

chemistry was considered and essentially three different chemical groups were found: 

marine, polluted continental, and clean continental. Here, “clean” is used in its relative 

sense, i.e., compared to the “polluted” sector. “Clean” refers to an aged air mass without 

recent emission inputs where various mechanisms (e.g., dilution, oxidation, and 

deposition) have reduced the mixing ratios of the observed species. However, it is in no 

way “clean” compared to air parcels in remote locations. At this site, air originating from 

approximately 180° to 290° azimuth (Figure 2.2) was typically polluted continental air 

(group 1). Weather conditions that drive this pattern consist of return flow from a high
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Figure 2.3. Four examples of synoptic weather patterns which lead to surface flow to 
New Castle, NH from different directions.
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pressure system located in the mid-Atlantic states or just off the East Coast (Figure 2.3a). 

Clean continental air (group 2) emanates from 290° to 360° which is typically due to high 

pressure positioned over the Great Lakes or eastern Canada (Figure 2.3b). Marine flow 

(group 3) from 0° to 180° is usually caused by coastal northeaster conditions along the East 

Coast (Figure 2.3c). Note, that there is some overlap, though generally marginal, between 

these groups as seen in Figure 2.2. An unpaired t-test between the means of these groups 

showed that they are significantly different with p-values <0 .0 0 0 1 .

In addition, there were two groups of mixed species. These were typically seen 

when the streamlines were from two sources, including marine (group 3) and continental 

(groups 1 or 2). Group 4 is the mixture of groups 1 and 3 and is essentially southerly flow 

with higher mixing ratios observed than for group 5. Group 5 is a mixture of groups 2 and 

3 (northerly flow). Note, in Figure 2.2 groups 4  and 5 were subdivided. Groups 4.5 and 

5.5 are mixed cases when the streamlines indicated group 1 or 2, respectively, where local 

onshore flow probably enhanced sea salt mixing ratios. An unpaired t-test of the mean 

azimuth angles of these groups showed that these groups are significantly different than the 

others with p-values <0.0001, with the exception of groups 2 and 5 which had a p-value of

0.1390. Although groups 4 and 4.5 (and 5 and 5.5) were defined differently according to 

their streamlines, they were analyzed as one group in terms of chemistry since they exhibit 

the same chemical qualities. Mixed cases are defined as those in which mixing ratios of the 

sea salt species (Na+ and Cl') and continental species (gas phase HNO3  and aerosol SO4 - '  

and NH4 +) are within a factor of 2 of each other. Otherwise, the sample is considered to

be either sea salt or continental dominant.

Finally, the mixed streamline cases were subdivided into three groups depending on 

the chemical signature: marine dominant (group 6 ), continental dominant (group 7), or 

mixed species (group 8 ). hi each of these mixed group cases, either mixed scale 

interactions are taking place, or a front has passed through the region on the day in question
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(e.g., Figure 2.3d). Hence, the region was exposed to two or more different air masses 

during the sample period.

Data & PiscussiQn 

HNO3 and Aerosol Average Chemistry for each Group

Using all of the data from 1994 through 1996, HNO3  and aerosol chemical data 

were separated according to the streamline classes. The average chemistry for each group 

was then calculated. Table 2.1 shows the average of each species for each group, the 

standard deviation, along with the minimum, maximum, and median mixing ratios 

observed for that species within each group. As reported for the overall data (Chapter 1), 

there was wide variation in the mixing ratios observed for a species within a given group.

The average chemistry of groups 1 through 8  is shown in Figure 2.4. In groups 1 

and 2, polluted and clean continental, respectively, gas-phase HNO3  and aerosol S O ^"

and NH4 + were the dominant species observed. Note the mixing ratios of these dominant

species were approximately a factor of 4 lower in group 2 than group 1 (e.g., =

2000 pptv for group 1 versus = 500 pptv for group 2). Group 3 (marine flow) was 

dominated by the sea salts Na+ and Cl". On average, the magnitude of the mixing ratios of 

the dominant species in group 3 and 1 were about the same (=2000 pptv for Na+ and Cl" in 

group 3 and NH4 + in group 1). Groups 4 and 5 (mixed southerly and northerly flow,

respectively) had sea salts and continental species appearing at similar strengths (e.g., Na+ 

and NH4 + = 1200 pptv in group 4 and = 340 pptv in group 5). As with groups 2 and 1,

mixing ratios of group 5 were approximately a factor of 4 lower than group 4. Groups 6 ,

7, and 8  were the mixed streamline groups, where no attempt was made to define a 

direction of origin. These three groups were separated according to their chemical 

signature, with the sea salts dominant in group 6 , the continental species dominant in group 

7, and group 8  showing a comparable mixture of sea salts and continental species. This 

subdivision of the mixed streamline samples was done to evaluate the relative dominance of 

a particular chemistry over another during the course of the field study.
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Figure 2.4. Average mixing ratios for HNO3  and eight aerosol species for all samples 
collected from 1994 - 1996, sorted according to air mass origin and chemistry. Each group 
has a characteristic chemical signature.
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Table 2.1. 1994-1996 HNO3 and Aerosol Averages, One Standard Deviation, Ranges,
and Medians Sorted According to Group Classification____________________________
Grp.

HNO-* ci- NOv S042* nss-SO^- Na+ NHd+ K+ Mg2+ Ca2+
I 931 ±765 160 ±167 282 ±273 1803 ±1848 1770 ±1828 484 ±412 1935 ± 1367 50 ±34 63 ±50 69 ±42

(95-3559) (2-889) (8-1313) (116-10062) (113-9935) (2-1891) (218-7159) (6-179) (0-238) (6-175)
667 99 204 1118 1106 434 1584 45 52 64

2 217 ± 154 86 ±68 67 ±64 361 ±211 352 ±208 127 ±110 516±314 19 ±14 17± 11 64 ±61
(41-765) (4-337) (1-345) (49-860) (46-841) (2-506) (35-1473) (0-66) (0-47) (2-360)

163 74 43 291 289 98 458 IS 15 42
3 158 ±142 2197 ±2181 288 ±281 386 ±336 275 ±283 1904 ±1635 383 ±299 44 ±27 208 ± 152 56 ±44

(13-774) (172-13952) (21-1373) (34-1943) (25-1766) (187-10052) (59-1252) (4-154) (16-775) (2-307)
108 1398 179 286 190 1491 272 41 184 49

4 649 ±457 751 ±551 558 ±385 990 ±698 914 ±668 1245 ±854 1264 ±770 59 ±50 144 ±88 72 ±44
(96-2057) (18-2743) (5-1986) (74-2986) (74-2862) (174-4853) (134-4000) (7-398) (10-368) (9-214)

515 602 494 757 697 1065 1095 52 133 68
5 170 ±124 270 ±203 U 4± 109 290 ±211 271± 196 332 ±268 339 ±228 25 ±21 37 ±35 62 ± 119

(12-765) (35-946) (8-583) (23-1075) (20-957) (3-1992) (0-1180) (2-140) (0-222) (1-1012)
130 204 86 246 231 263 288 19 29 35

6 209 ±184 1787 ± 1854 441 ±506 471 ±408 352 ±326 1931± 1766 552 ±564 48 ±35 223 *211 67 ±61
(22-1100) (84-10344) (33-3258) (65-2054) (47-1551) (293-10897) (74-3854) (4-205) (19-1232) (6-374)

153 1032 320 367 271 t527 428 38 164 51
7 648 ±539 158 ±172 258 ±319 1104 ±964 1078 ±947 385 ±366 1494 ±1312 42 ±29 51 ±44 66 ±67

(34-2589) (3-1059) (1-2249) (66-5708) (62-5607) (8-1768) (132-7986) (1-186) (0-242) (1-355)
556 116 140 883 845 276 1139 36 41 50

S 394 ±332 498 ±489 362 ±327 637 ±558 589 ±530 796 ±648 798 ±670 42 ±29 91 ±70 61 ±45
(38-2317) (9-3472) (19-2102) (43-3651) (39-3518) (70-4029) (27-4663) (3-208) (8-428) (0-195)

302 370 253 465 422 651 629 34 76 55
Units in parts per trillion by volume.

Annual Variations in the Chemistry and Occurrence of Groups

As reported previously, widely varying chemistry was observed, not only from day 

to day, but also from year to year. Tables 2.2,2.3, and 2.4 are similar to Table 2.1; they 

show the average, the standard deviation, minimum, maximum, and median mixing ratios 

for each species for each group for the years 1994,1995, and 1996, respectively. In 1995, 

mixing ratios were about a factor of 2 lower than in 1994 or 1996. It was first suspected 

that the “cleaner” chemistry was due to markedly different transport in 1995 than the other 

years which brought aged air (i.e., northerly flow) to our site. Although the transport was 

somewhat different in 1995, a comparison of the mixing ratios for a particular group 

between the three years still shows 1995 mixing ratios which on average were 

approximately a factor of 2 lower than those seen in the other years. Precipitation,
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Table 2.2. 1994 HNO3  and Aerosol Averages, One Standard Deviation, Ranges, and
Medians Sorted According to Group Classification_____________________________
Grp.

# HNOi a- NO,- SOa2- nss-SO^- Na+ NHd+ K+ Mr2+ Ca2-*-
I 1215 ±922 200 ±212 276 ±263 2979 ±2395 2933 ± 2370 649 ±484 2340 ±1461 65 ±26 86 ±58 80 ±33

(107-3559) (2-889) (24-1045) (270-10062) (263-9935) (2-1891) (326-S398) (28-161) (8-238) (21-143)
934 145 226 2492 2432 624 2208 61 83 79

2 268 ±207 117 ±70 71 ±49 452 ±206 443 ±205 142 ±148 633 ±389 32 ±14 18 ±6 83 ±38
(77-765) (37-286) (25-192) (214-796) (207-782) (8-506) (237-1473) (14-66) (12-32) (21-167)

225 92 43 352 344 84 428 28 15 76
3 223 ± 191 3358 ± 3380 458 ±415 560 ±563 449 ±502 2467 ±2605 454 ±424 59±34 207 ±146 74 ±70

(30-774) (582-13952) (23-1373) (115-1943) (75-1766) (521-10052) (62-1252) (14-154) (55-611) (12-307)
180 2206 263 299 201 1479 230 56 176 54

4 854 ±551 956 ±623 534 ±302 1385 ±774 1311 ±749 1297 ±916 1625 ±913 88 ±77 139 ±69 73 ±44
(173-1992) (64-2743) (139-1318) (371-2986) (330-2862) (347-4640) (305-4000) (23-398) (21-283) (17-211)

725 774 452 1120 1031 1090 1725 76 133 70
5 206 ±104 411 ±244 137± 117 356 ±171 334 ±162 319 ±178 354 ±166 39 ±16 41 ± 23 79 ±49

(77-435) (133-841) (37-478) (141-886) (133-842) (107-624) (95-792) (11-65) (12-88) (18-168)
181 319 97 320 307 314 324 43 37 66

6 187 ±138 1721 ±1011 493 ±320 624 ±496 524 ±455 1991± 1233 582 ±364 65 ±24 188 ±98 56 ±26
(62-527) (494-3837) (89-1130) (243-1636) (215-1489) (511-4831) (222-1429) (33-112) (54-393) (6-87)

148 1555 380 408 323 1612 513 58 193 58
7 647 ±551 202 ±153 229 ± 210 1612 ±1332 1583 ±1312 422 ±402 1800 ±1762 61 ±35 54 ±44 66 ±46

(119-2345) (3-657) (1-708) (247-5708) (234-5607) (15-1576) (231-7986) (25-186) (8-190) (3-171)
520 151 129 1196 1175 321 1218 55 44 57

S 474 ±481 681 ±669 396±318 891 ±737 840 ±711 850 ±616 892 ±642 58 ±33 96 ±63 68 ±44
(49-2317) (28-3472) (19-1309) (167-3651) (155-3518) (94-2694) (281-2641) (19-208) (16-251) (5-182)

331 520 265 627 582 710 699 50 79 66
Units in parts per trillion by volume.

temperature, relative humidity, barometric pressure, and wind speed were analyzed to try to 

find a reason for this behavior, but these have not appeared to explain the variation.

The entire year was not sampled during 1994 and 1995; data extends from May - 

November, 1994 and from March - December, 1995. Although sampling could have been 

conducted for all of 1996, a failure of the power line to our site prevented sample collection 

from November 7 - December 18,1996. So care must be taken in comparing data too 

closely from one year to the next. For the entire data set, 1994 -1996, the relative 

occurrence of each group is shown in Figure 2.5a. Polluted continental air (group 1) 

occurred slightly more frequently than either the clean continental or marine air (groups 2  

and 3), 95 versus 82 and 84 days, respectively. The number of days each group occurred 

during each year is given in Table 2.5. Polluted continental flow occurred as frequently
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Table 2.3. 1995 HNO3  and Aerosol Averages, One Standard Deviation, Ranges, and
Medians Sorted According to Group Classification_____________________________
Grp.

# HNO, a - NO,- SOd2- nss-SOd2- Na+ NHd+ K+ Mf?2+ Ca2+

I 622 ±504 101 ±81 224 ±213 906 ±859 886 ±850 264 ±247 1481± 1294 55 ±50 37 ±31 59 ±55
(95-1912) (6-310) (20-955) (116-2745) (113-2706) (9-904) (218-4278) (6-179) (0-131) (6-174)

416 88 174 464 444 171 871 41 34 44
2 136 ±68 61 ±51 47 ±44 200 ±99 195 ±97 % ±75 305± 188 18 ±12 10±7 25±27

(41-324) (4-191) (1-156) (49-518) (46-504) (3-295) (35-908) (4-46) (0-26) (4-147)
121 58 34 176 172 89 243 14 9 21

3 146 ±127 1197 ±712 177 ±119 214 ± 147 144 ±120 1200 ±684 277 ±179 30 ±16 132 ±80 34 ± 19
(20-498) (172-3355) (50-551) (34-646) (25-485) (187-2835) (59-710) (4-78) (16-329) (2-76)

106 1085 121 158 95 984 218 26 109 26
4 480 ±419 452 ±328 468 ±403 505 ±345 455 ±322 822 ±500 781 ±453 55 ±42 98 ±61 54 ±39

(96-2057) (68-1583) (39-1986) (74-1580) (74-1495) (185-1944) (134-2139) (7-189) (10-229) (9-164)
363 356 437 499 418 721 812 41 111 42

5 103 ±67 175 ± 134 67 ±66 181± 142 171 ±134 224± 166 227± 153 17 ±12 22 ±23 60± 171
(12-283) (35-614) (8-338) (23-648) (20-586) (3-904) (0-697) (2-52) (0-117) (1-1012)

94 125 53 152 138 202 186 14 16 18
6 169 ±111 13% ±1399 343 ±329 328 ±235 226 ±164 1478 ± 1064 439 ±339 37 ±26 191± 166 55 ±49

(22-488) (84-6907) (33-1523) (65-1062) (47-736) (293-4915) (74-1554) (4-131) (35-760) (8-241)
140 899 304 262 169 1229 372 33 152 40

7 304 ±245 94±64 127 ±123 437 ±340 425 ±332 183 ±1% 661 ±499 31 ±19 26 ±20 42 ±43
(40-1130) (26-236) (2-611) (66-1142) (62-1126) (8-706) (132-1724) (6-68) (1-76) (3-142)

211 69 107 308 305 122 487 27 20 27
8 239 ± 139 286 ±270 213 ±178 311 ±261 281 ±240 469 ±409 468 ±422 28 ±21 55 ±52 35 ±31

(53-541) (9-1387) (21-638) (43-1506) (39-1366) (72-2033) (27-2030) (7-95) (8-263) (5-U4)
220 215 132 224 202 309 326 22 36 24

Units in parts per trillion by volume.

(34 d) as clean continental and marine flow combined (33 d) in 1994. While in 1995, both 

marine (35 d) and clean continental flow (27 d) occurred more frequently than polluted 

flow (21 d). In 1996, polluted (40 d) and clean continental flow (38 d) occurred a bit more 

frequently than marine flow (33 d). Considering the mixed flow cases, clean continental 

(group 2 and group 5) and marine air (group 3) dominated the samples in 1995, while 

polluted air (group 1 and group 4) dominated in 1994. Clean continental and marine air 

were also more frequent in 1996, but to a lesser extent than 1995. Thus, there was 

somewhat different prevailing transport in 1995. However, as noted earlier, this does not 

account for the lower mixing ratios observed that year as even within a given group, the 

mixing ratios observed in 1995 were lower (Tables 2.2,2.3, and 2.4).

The relative occurrence of continental, marine, and mixed chemistry was as
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Figure 2.5. Pie charts showing the relative occurrence of the eight chemical groups for 
all the samples collected and for sample days with precipitation. The overall breakdown of 
the occurrence of samples dominated by marine species, continental species, or a mixture 
of both are also shown.

follows: mixed chemistry occurred 42% of the time, followed by continental at 37%, and 

marine the least frequent at 21%, (Figure 2.5b). In all years, mixed chemistry was 

observed nearly equally, about 42% of the time (Table 2.5). In addition, all years show 

that air dominated by continental species occurred more frequently than marine dominated 

air (Table 2.5). This is to be expected as west is the prevailing wind direction in New
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Table 2.4. 1996 HNO3  and Aerosol Averages, One Standard Deviation, Ranges, and
Medians Sorted According to Group Classification_______________________________ _
Grp.

# HNO, ci- NO,- sod2* ass-S042' Na+ NH4+ K+ Mk2+ Ca2+
I 860 ±666 155 ±148 319 ±309 1275 ±1038 1245 ±1022 454 ±357 1829 ±1255 34 ± 24 58 ±43 64 ±40

(216-3245) (5-561) (8-1313) (291-5668) (268-5561) (4-1451) (559-7159) (6-1 I t) (6-201) (6-175)
586 119 221 939 901 345 1570 28 46 57

2 253 ± 152 90 ±72 85 ±83 437 ±209 426 ±206 138 ±105 617 ±277 15 ±12 21 ±14 84±73
(61-642) (6-337) (6-345) (118-860) (116-841) (2-494) (226-1413) (0-62) (1-47) (2-360)

198 73 64 370 363 117 546 13 19 77
3 140 ±124 2709 ± 2098 326 ±282 487 ±248 331± 190 2394± 1518 460 ±303 52 ±26 292 ±173 70 ±39

(13-463) (687-8364) (21-1174) (111-1232) (62-900) (753-7190) (77-1240) (14-131) (84-775) (12-168)
99 2075 253 464 318 2105 388 46 249 65

4 643 ±381 829 ±555 631 ±410 1080 ±657 986 ±622 1489 ±913 1382 ±712 46 ±24 177 ±99 83 ±43
(162-1892) (18-2047) (5-1924) (263-2970) (249-2844) (174-4853) (279-2949) (8-95) (25-368) (17-214)

593 628 614 951 878 1465 1187 48 196 70
5 235 ±148 312 ±197 160 ±126 392 ±240 365 ±223 477 ±345 474 ±265 27 ±27 52 ±45 55 ±55

(70-765) (65-946) (8-583) (105-1075) (97-957) (88-1992) (149-1180) (7-140) (6-222) (5-224)
186 293 123 332 298 391 418 19 38 39

6 259 ±245 2230 ± 2400 527 ±685 564 ±478 421 ±359 2393 ± 2365 661 ±773 52 ±44 270 ±272 84 ±78
(37-1100) (531-10344) (64-3258) (137-2054) (67-1551) (561-10897) (85-3854) (8-205) (19-1232) (9-374)

218 1147 332 393 299 1581 473 38 188 56
7 888 ±559 182 ±219 363 ±415 1282 ±763 1248 ±747 512 ±382 1895 ±1163 39 ±27 64 ±48 82 ±84

(34-2589) (8-1059) (8-2249) (378-3610) (377-3575) (72-1768) (173-5205) (1-134) (0-242) (1-355)
732 138 190 1153 1109 382 1621 36 52 63

8 468 ± 289 556 ±438 460 ±380 743 ±486 682 ±455 1024 ±719 1003 ±752 41 ±28 116 ±76 76 ±46
(38-1443) (64-2975) (26-2102) (87-2621) (82-2393) (70-4029) (130-4663) (3-131) (8-428) (0-195)

386 490 392 620 543 793 819 34 98 73
Units in parts per trillion by volume.

England (U. S. Department of Commerce, 1995). However, the partitioning between 

these two differ from year to year. For example, continentally dominated air was observed 

43% of the time in 1994, compared with 15% for the marine air. In 1995, marine air was 

dominant 26% of the time compared to 31% for the continental air. In 1996, the 

continental air was dominant 39% of the time compared with 20% for the marine cases.

Precipitation Average Chem istry for  Each Group

Using the same classification scheme developed for the HNO3  and aerosol data, the

precipitation data were sorted according to the group number assigned to the day the sample 

was collected. The volume-weighted means of the precipitation chemistry were then 

calculated for each group. These means (Figure 2.6) resembled those of the aerosols. 

Groups 3 (marine flow) and 6  (mixed streamlines - sea salt) are dominated by the sea salts,
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Table 2.5. Number of Total Days Sampled and Precipitation Days for Each Group and
the Percent of Days Classified as Marine, Continental, and Mixed___________________
________________________________ 1994 1995 1996 1994 1995 1996

Sample Days (# o f days) Precipitation Days (# o f  days)
Group i 34 2 1 40 1 1 4 8

Group 2 17 27 38 0 2 3
Group 3 16 35 33 6 1 2 2 2

Group 4 2 1 25 37 6 5 15
GroupS 16 37 29 3 9 4
Group 6 11 31 29 5 13 15
Group 7 24 30 44 1 0 1 1 14
Group 8 36 47 61 1 0 2 0 2 2

Sample Days (%) Precipitation Days (%)
Marine (G3+G6) 15 26 2 0 2 2 33 36
Continental (G1+G2+G7) 43 31 39 41 2 2 24
Mixed (G4+G5+G8) 42 43 41 37 45 40

Na+ and Cl". These groups had the most rainfall of all eight groups, 72.4 and 39.3 cm, 

respectively. Groups 4 (mixed southerly flow) and 8  (mixed streamlines - mixed) are 

mixed, as expected, with sea salts and continental species appearing at similar strengths. 

Groups 1 (polluted continental) and 7 (mixed streamlines - continental) both were 

dominated by continental species, but not by as large a margin as were the aerosols.

Groups 2 (clean continental) and 5 (mixed northerly flow) however, did not exhibit the 

same behavior as the aerosols. Both of these groups had the fewest events and least 

amount of rainfall contributing to them, 4 events for a total of 1.6 cm of rain for Group 2 

and 13 events for a total of 4.6 cm of rain for Group 5. Group 2 showed fairly evenly 

mixed continental species and sea salts, with the exception of N0 3 ~. This is due to

unusually high N0 3 " from one of the 4 events, and is likely an artifact of averaging over so

few events. Group 5 was dominated by continental species rather than being mixed as in 

the aerosol case. Note, N0 3 ~ is more prevalent in precipitation than aerosols, frequently 

exceeding both NH4 + and SO4 2". This is probably due to efficient scavenging of gas 

phase HNO3  and coarse fraction particulate N0 3 ~.

In general, precipitation occurs under frontal conditions, where opposing air 

masses meet, with denser colder air forcing warmer lighter air aloft. One such example
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Figure 2.6. Volume-weighted means of precipitation samples collected from 1994 - 
1996, sorted according to the group classification of their sample days.
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includes a cold continental air mass at the surface being lifted and overrun by warm marine 

air along a cold frontal boundary. Another example would include a northeaster, where a 

cold marine air mass is present at the surface which is overrun by warm marine air along a 

warm frontal boundary. In the former case, the balance between continental and marine 

species scavenged and deposited in precipitation is determined by the distance of the 

sampling site from the front and by the relative depth of the warm and cold layers over the 

site through which the precipitation passes. This leads to the difference observed between 

the average precipitation chemistry versus the average aerosol chemistry for a given group,

i.e., the continental species are not as dominant in precipitation as they are in aerosols for 

any of the groups. The latter case of two marine air masses leads to the strong dominance 

of the sea salts Na+ and Cl" seen for groups 3 and 6 . Here, an offshore low pressure 

system brings rain onshore, with minimal influence from continental air.

Occurrence of Each Precipitation Group

The occurrence of precipitation during these types of patterns was also investigated. 

On average, over the entire data set, precipitation was most likely to occur during marine 

flow, group 3, and least likely to occur during clean continental flow, group 2, (Figure 

2.7). This makes sense in view of the synoptic meteorology of the Gulf of Maine area. 

Rain brought in on northeasterly winds is typically due to an offshore northeaster (Figure 

2.3c). Whereas, rain coming from a low pressure system to the west of the site will 

include a stronger component of south or southeasterly winds, and typically do not include 

northerly or northwesterly winds. Rain occurred on nearly 50% of the days classified as 

group 3, while for group 2, rain only occurred on about 5% of those days. Precipitation 

was unlikely for groups 2 and 5 due to weather conditions in which a high pressure system 

builds into New England from Canada or from over the Great Lakes, bringing static 

stability to the site. Northerly flow experienced the fewest rain days (groups 2 and 5), 

southerly flow produced rain on about 24% (group 1) and 30% (group 4) of those days, 

and about 47% of the marine dominant (group 3) days had rain (Figure 2.7). A pie chart of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

Group #

Figure 2.7. The likelihood that a given flow pattern produces rain. Here, nearly 50% of 
the days classified as groups 3 and 6  had precipitation, while only about 5% of the group 2 
days produced rain.

how much each group contributed to the total days of rain (Figure 2.5c), shows a very 

different distribution than for the sample days (Figure 2.5a). Here, marine flow (group 3) 

dominated continental flow (groups 1 and 2 ), with very few occurrences of rain from the 

clean continental sector (group 2). This was also true in both 1995 and 1996 (Table 2.5), 

but not in 1994. Group 2 produced no rain in the 1994 samples, however, group 1 

produced more rain days than any of the other groups that year. Mixed northerly flow 

(group 5) produced less rain than mixed southerly flow (group 4) in both 1994 and 1996, 

but not in 1995. In 1994 and 1996, the mixed streamline days (groups 6 ,7 , and 8 ) yielded 

about 50% of the rain days, but in 1995, they accounted for slightly more of the rain days, 

about 58%.

In general, including mixed streamline cases, more rain was produced in marine 

than continental air, except for 1994, and mixed air produced the most rain in 1995 and 

1996 (Table 2.5). Over the whole data set (Figure 2.5d), mixed air produced 41% of the 

rain days, marine air 32%, and continental 27%. The year 1994 was anomalous with 

continental air yielding 41% of rain days, mixed air 37%, and marine air 22%. The years
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1995 and 1996 had 45% and 40%, respectively, of their rain occurring on mixed days, 

33% and 35% on marine days, and 22% and 24% on continental days (Table 2.5).

Fog Chem istry

Fog sampling was conducted only at the end of the field program. Commencing in

July 1996 and ending in May 1998,36 samples were collected during 8  fog events.

Unfortunately, unlike other years where fog was frequent, during this period of time, fog

was particularly infrequent. Only two of the events sampled occurred in 1996, for the

remaining 6 , there are no streamlines available. However, the chemistry observed fits in

well with the trends in aerosols and precipitation. Three fog events were dominated by sea

salt Na+ and Cl', 1 June 1997, 29 August 1997, and 14 September 1997. Four events

were dominated by continental species, 25 July 1996, 8  August 1996,16 April 1998 and 4

May 1998. One event was mixed, 2 September 1997. The chemical signature of a marine

fog event is shown in Figure 2.8a. The concentrations of Na+ and C l' are nearly an order 

of magnitude greater (= 1500 jimol/L) than the third most concentrated species, S O ^ ' (=

150 pmol/L). Two different chemical signatures are shown for continentally dominated 

fogs in Figure 2.8b and 2.8c. In one type of continental fog (Figure 2.8b), NO3 '  was the 

dominant species (= 1600 pmol/L), more than twice that of NH4 + (= 700 pmol/L) and

nearly eight times greater than Na+ and Cl~ (= 200 and 250 pmol/L, respectively). In the 

other (Figure 2.8c), NH4 + and S C ^ ' are the most concentrated species (= 750 and 500

pmoI/L, respectively). The difference between these two is likely due to the presence of 

HNO3  in the precursor air mass. If there is a substantial amount of HNO3 , NO3 " will

likely be the dominant species due to the high solubility of this gas phase species. If there 

is relatively little HNO3 , then NH4 + and S C ^ ' will dominate the continental signature

given their prevalence in aerosol form. Finally, a fog event with a mixed signature is 

shown in Figure 2.8d. Here, NH4 +, Na+, NO3 ',  and C l' all appear at comparable

concentrations.
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dominant (b and c), and mixed (d) cases are shown.
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Seasonal C om parisons

There was nearly a complete year of data in 1996 for the aerosols, HNO3 , and

precipitation. Note, winter of 1996 also includes a  few days at the end of 1995 (from 22

December onward). Unfortunately, due to a power failure, about a month of fall 1996 data

was missed. Therefore, care must be taken in evaluating Table 2.6 which shows the

percentage of the occurrence of each group during the four seasons of that year.

Table 2.6. Percent of Days Each Group Occurred During the Four Seasons of 1996
Winter__________ Spring Summer_________ Fall____

3 36 33 28
28 39 10 23
21 33 24 21
23 34 34 9
63 14 17 6

24 24 35 17
25 23 39 14
28______________28_____________ 34_____________ 10

Group 1 
Group 2 
Group 3 
Group 4 
Group 5 
Group 6  

Group 7 
Group 8

Nonetheless, 1996 may be used to illustrate seasonal variability. Polluted continental flow 

(group 1) rarely occurred in winter, only 3% of all group 1 days occurred in winter. Clean 

continental flow (group 2) occurred least frequently (10%) in summer. Marine flow (group 

3) occurred nearly evenly throughout 1996. Both the mixed northerly flow (group 5) and 

mixed southerly flow (group 4) were least likely to occur in the fall, 6 % and 9%, 

respectively. Mixed northerly flow (group 5) appeared most often in winter, 63% of the 

group 5 days. While this pattern may not hold every year, given annual variations, it does 

give a sense of the extent of seasonal variation possible between groups.

Aerosol Size D istributions

The nature of the impactor samples precluded the determination of the aerosol size 

distribution for each group. The impactor was typically operated over three days to ensure 

measurable quantities were collected on the middle stages. Over this period of time, several 

weather patterns would typically bring varying air masses to the site. Two short samples 

(33 and 30 hrs) were collected which fortuitously were a  classic marine and polluted
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Figure 2.9. Average NH4 + size distributions for three types of air masses, marine 
dominant, continental dominant, and mixed. These distributions are normalized both for 
the total amount of the sample collected and for the width of the size fraction.

continental air mass, respectively. The ambient mixing ratios were high enough during 

these two events, that all of the impactor stages had measurable quantities of all species 

sampled. The remaining impactor samples had mixed streamlines, with the bulk of the 

samples being mixed species (13). However, there were 4 cases of sea salt dominant air 

masses and 3 cases of continental dominant air masses sampled. The samples collected for 

each of these three groups were averaged to yield a typical size distribution for that group.
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Figure 2.10. Average nss-SO ^- size distributions for three types of air masses, marine 
dominant, continental dominant, and mixed. These distributions are normalized both for 
the total amount of the sample collected and for the width of the size fraction.

There was variation between all of the chemical species size distributions collected. 

However, there were certain properties typical of the marine, continental, and mixed 

groups. Figures 2.9-2.14 show the size distributions of selected chemical species for each 

of these three types. Note, the mixing ratio of a given species for each size cut of a sample 

was normalized to the total collected for that sample to minimize bias towards highly 

concentrated samples. Further, the width of each size bin was normalized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

eoe

O<*>

>
<

Marine 

Averages©.2.

2

1.5 

1

0.5

0

2

1.5 

1

0.5

0.01

. , ,111 . ’ ’! ..................... Continental
.Av*rag.e..SQ4Ll.._:

...........m i rm 111 m i it IIUIIIIUIIIIH.............. :

..................... . • 1 ..................... Mixed

..Ay*rags.SQ*.?....j
:

i

III [ I T T

£$■ :

y.fy. 1JlHwfeai IIIIIIIIIIIIIHI..............
0.1 1

Diameter (pm)
10 100

Figure 2.11. Average total SO4 .2 - size distributions for three types of air masses, marine 
dominant, continental dominant, and mixed. These distributions are normalized both for 
the total amount of the sample collected and for the width of the size fraction.

The nitrogen species, NO3 '  and NH4 + are of particular interest due to their nutrient 

input potential for the Gulf of Maine. Beginning with the NH4 + (Figure 2.9), for all three 

cases, most of the NH4 + (84% - 94%) present was in the submicron (<1 pm diameter) 

fraction. Very little NH4 + (6 % - 16%) appeared in the supermicron (>1 pm diameter) 

stages. The average marine size distribution, shows that the NIfy* was enhanced in the 

smallest size fraction (< 0.43 pm diameter) relative to the average continental and mixed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

cases (20% vs. 4% and 7%, respectively). The average continental NH4 + size distribution 

shows the greatest amount (85%) in the 0.43 - 1.1 pm range. In this size range, NH4 + 

seems to be associated with non-sea-salt S C ^ ' (Figure 2.10). For the non-sea-salt 

fraction of S C ^ ',  there was an appreciable amount in the supermicron size range. This

was true for all three averages, with the supermicon fraction constituting 39% of the total 

for the marine case, 28% for the continental case, and 25% for the mixed case. However, 

most of the non-sea-salt S C ^ "  was in the submicron fraction, with a peak from 0.43 - l.l 

pm, just as in NH4 +. This is not surprising, as there was an excess of acidic species 

observed at our site (Chapter 1). As (NH4 )2 S0 4  is formed via gas to particle conversion 

and is quite stable in the atmosphere (Bassett and Seinfeld, 1984), it was anticipated these
A

two ions would have similar size distributions. Total S0 4 ~‘ (Figure 2.11) had a similar 

size distribution to that of nss-SC^-', but with the course fraction enhanced. This was

especially true of the marine case, where there was a distinct bimodal distribution of the 

S0 4 “'  with both a submicron and supermicron peak. The supermicron peak diminishes

substantially in comparison to the submicron peak for continental and mixed cases.

NO3 '  had a very different distribution (Figure 2.12) than NH4 +. This species was

predominantly on the course fraction of the aerosol in all three cases, peaking at about 4 

pm. In all three cases, there was also an enhancement in submicron NO3 * in the 0.43 -

0.65 size fraction. In the continental case, the submicron enhancement was a substantial 

secondary peak, where the three smallest size bins contributed 2 0 % of the total N0 3 ~,

compared to 9% for both the marine and mixed averages.

N0 3 ~ in the supermicron mode appears to be associated with Na+ (Figure 2.13).

The average marine size distribution of Na+ showed the strongest peak in the 5.8 - 9.0 pm 

size range, while the other two cases have a peak shifted to slightly smaller sizes. In all 

three cases, the peak tapered off slowly with decreasing diameter. The continental case 

showed the slowest decrease through these sizes. Similarly CT, another sea salt, was 

predominandy distributed among the supermicron size fractions (Figure 2.14). Here,
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Figure 2.12. Average NO3' size distributions for three types of air masses, marine 
dominant, continental dominant, and mixed. These distributions are normalized both for 
the total amount of the sample collected and for the width of the size fraction.

however, there was a small but distinct secondary peak in the submicron fraction 0.43 - 

0.65 pm for the continental case. This secondary peak did not exist in the marine case, and 

may reflect NH4 CI formed over continental areas from NH3  and anthropogenic HC1

emissions.

As mentioned previously, various mechanisms have been proposed to explain the 

loss of Cl" from sea salt particles. Some of these mechanisms result in particulate NaNOj,
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Figure 2.13. Average Na+ size distributions for three types of air masses, marine 
dominant, continental dominant, and mixed. These distributions are normalized both for 
the total amount of the sample collected and for the width of the size fraction.

which explains why NOj" is found on the-larger particles in the impactor samples. 

Looking at the Cl“ depletion relative to Na+ given the expected sea salt ratio of C l' to Na+ 

of 1.16 (Keene et al., 1986; Wilson, 1975) the greatest depletion was from the 1.1 - 3.3 

pm and the 9.0 - 25 pm particles (Figure 2.15). This is similar to the results of Pakkanen

(1996) where nearly all of the Cl" in the 1 - 2 pm range had been driven off. Note, the 

amount of Cl" depletion was a function of the air mass origin as well as particle size.
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Figure 2.14. Average Cl~ size distributions for three types of air masses, marine 
dominant, continental dominant, and mixed. These distributions are normalized both for 
the total amount of the sample collected and for the width of the size fraction.

Group 3 (marine aerosols) showed very little depletion, with a linear regression of Cl* 

(neq/m^) = 3.256 + 1.157 * Na+ (neq/m^) with = 0.471. Whereas, group 1 aerosols 

showed the greatest depletion with a linear regression of Cl* (neq/m^) = 4.047 + 0.143 * 

Na+ (neq/m^) with = 0.15. As indicated by the R“ values there is a lot of scatter in the 

data. Nonetheless, except for the two marine groups (3 and 6 ), all of the other groups 

showed Cl* to Na+ ratios which were less than half that o f sea water. Thus the processes
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which lead to the Cl'deficit are clearly important here.

Sum m ary

In this paper the chemical signature of various air masses sampled at New Castle, 

New Hampshire has been described. Using air parcel streamlines applied to each sample, 

it was possible to assign an origin to the air masses sampled. The combined streamline and 

chemical data were sorted into 8  characteristic groups: 1  - polluted continental air masses 

originating from approximately 180° - 290° azimuth; 2 - clean continental air from 290° - 

360°; 3 - marine air from 0° - 180°; 4 - mixed species, southerly flow; 5 - mixed species, 

northerly flow; 6  - mixed streamlines, sea salt dominant chemistry; 7 - mixed streamlines, 

continental dominant chemistry; and 8  - mixed streamlines, mixed chemistry.

Highly variable mixing ratios were observed from day to day as well as from year 

to year. The lower mixing ratios observed in 1995 could not be attributed to annual
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differences in the general transport outlined here, as even within a given group, the average 

values were roughly a factor of two lower in 1995. Over the entire sampling period, 

polluted conditions occurred slightly more frequently than either clean or marine 

conditions. Including the mixed streamlines, mixed conditions occurred 42% of the time, 

while continental and marine dominant days occurred 37% and 21% of the time, 

respectively, over the entire study. Note, these percentages may be slightly biased as all 

four seasons were not sampled equally over the three years reported here. Given the 

observations from 1996, where polluted flow was least likely in winter and clean 

continental flow was least likely in summer, these overall percentages may have been 

somewhat different had all four seasons been equally represented.

Precipitation chemical signatures for the eight groups were similar to those of the 

aerosols. Although, in general, NO3 '  was enhanced relative to the other continental

species, since precipitation NO3 " is a combination of scavenged gas-phase HNO3  and 

particulate N0 3 ~. Rain was most likely to occur under sea salt dominant conditions (about 

47% of days for both groups 3 and 6  had precipitation) and least likely to occur during 

clean continental flow (about 5% of group 2 days had precipitation). Overall 41% of the 

rain days occurred when mixed species were prevalent (indicative of a frontal passage), 

32% and 27% for marine and continental dominant conditions, respectively.

Fog chemistry was a reflection of the chemistry of its precursor air mass. While 

there were too few samples and insufficient streamline information to classify the fog data 

into the eight groups, the chemical signatures observed all fit in with the three general 

categorizations of marine, continental, and mixed. As seen in the precipitation data, in 

continental and mixed fogs NO3 * is enhanced relative to the other continental species 

observed in the aerosol signatures, since it is a combination of both gas-phase HNO3  and 

particulate NO3 '.

Finally, the size distribution data were averaged according to whether marine or 

continental species were dominant or whether there was a relatively even mixture of both.
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NH4 + was observed to be associated with n ss-S O ^ ' and was primarily found on 

submicron particles. Total SO ^~ showed a bimodal distribution in the marine case, with

the submicron fraction the primary peak and the supermicron fraction the secondary peak. 

This secondary peak nearly disappeared in comparison to the submicron peak under 

continental and mixed conditions, when nss-SO^* constitutes the bulk of the total SO4 - '.  

Even 11SS-SO4 -" was seen to have a substantial coarse mode fraction in all three cases, 

ranging from 25% - 39% of the total. NO3 '  was primarily found in the supermicron 

fraction, associated with Na+. Although, there was also submicron NO3 - for all three

cases, with a distinct secondary peak for the continental case (2 0 % of the total compared to 

9% for the other two cases). CT was mostly on supermicron particles in all three cases, 

but the continental case showed a small submicron peak. The C l' deficit, was found to be 

greatest for particles 1.1 - 3.3 pm and 9.0 - 25 pm in diameter.
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CHAPTER 3

DIRECT ATMOSPHERIC DEPOSITION OF WATER-SOLUBLE NITROGEN

TO THE GULF OF MAINE

A bstract

Measurements were made at New Castle, New Hampshire, on the shore of the Gulf 

of Maine from 1994 -1997 to assess direct atmospheric deposition of water-soluble 

nitrogen to the surface waters of the Gulf. Daily dry deposition was highly variable and 

ranged from about 1 - 144 pmol N m"^ d'* (median 16 pmol N m"^ d"*). Wet deposition 

dominated dry deposition, contributing 80 - 90% of the total flux annually. Wet deposition 

was also highly variable and ranged from 3 - 4264 pmol N m"^ d'* (median 214 pmol N 

m~2 d~l). Fog water nitrogen deposition could contribute as much as large precipitation 

nitrogen deposition events, in excess of 500 pmol N m'^ d'*. Dissolved organic nitrogen 

(DON) in precipitation constituted only a small fraction (3%) of the total precipitation 

nitrogen flux most of the year, except in spring where it comprised 14%, on average, of the 

total. The total atmospheric direct nitrogen (ADN) deposition numbers reported here do not 

include the contributions of fog and DON as they were not sampled regularly over the 

course of this study. The total ADN flux ranged from 1 - 4262 pmol N m '^ d~  ̂ (median 

23 pmol N m'2 d‘*), depositing 52 mmol N m '^ yr-* to the surface waters of the Gulf of 

Maine, 3% of the total N input to those waters annually. However, this deposition was 

highly episodic with events over 500 pmol N m"^ d“  ̂occurring in 8 % of the days 

sampled, but contributing 56% of the total measured flux and events in excess of 1000 

pmol N m~2 d'^ occurring in 2% of the samples and contributing 22% of the total 

measured flux. It is these large events which may influence biological productivity of the 

Gulf of Maine. The annual wet deposition of inorganic N measured at New Castle 

exceeded that reported by two NADP sites by 43% on average of that reported from Cape
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Cod, Massachusetts, and by 70% of that at Mt. Dessert Island, Maine. Estimates of the 

episodic atmospheric nitrogen flux to the surface waters of the Gulf of Maine suggest large 

deposition events could be sufficient to support substantial chlorophyll a production, 

especially under calm conditions.

Introduction

Atmospheric nitrogen deposition has been suggested to play a role in the 

eutrophication of coastal ecosystems, the primary productivity in oligotrophic surface 

waters of oceans, and the increasing occurrence of toxic and non-toxic algal blooms. This 

nitrogen can be deposited to aquatic ecosystems either directly or indirectly (via deposition 

to a watershed and subsequent downstream transport). Indirect atmospheric nitrogen 

deposition to watersheds has been suggested to contribute to eutrophication of coastal 

waters by several authors (e.g., Peierls et al., 1991; Jaworski et al., 1997; and Howarth et 

al., 1996). Ten watersheds in the northeastern United States have been reported to have 

nitrate fluxes which increased 3 -8  fold since 1900 as nitrogen oxide emissions increased 5 

fold over this period (Jaworski et al., 1997). An analysis of the watersheds which flow 

into the North Atlantic found that although the Amazon contributed the largest fraction of 

nitrogen per year (3.3 Tg/yr of 13.1 Tg/yr), the largest nitrogen fluxes on a per area basis 

came from the most disturbed watersheds around the North Sea, northwestern Europe, and 

northeastern United States (Howarth et al., 1996). Howarth et al. (1996) also report that 

atmospheric deposition of nitrogen, primarily of industrial origin, is the major control over 

nitrogen export in some areas, such as the northeastern United States.

Direct atmospheric nitrogen deposition to various coastal and oceanic areas has been 

reported by some authors to have negligible importance on biological productivity (e.g., 

Knap et al., 1986; Michaels et al., 1993) and by others to have a significant role (e.g., 

Paerl, 1985,1993,1995; Glover et al., 1988; and Owens et al., 1992; Zhang and Liu, 

1994). Comparison of atmospheric deposition with riverine flux of nitrogen to the Yellow 

Sea showed that atmospheric deposition may have an equal or greater influence on the
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productivity of this region than the riverine flux (Zhang and Liu, 1994). Paerl (199S) 

reported that contributions of atmospheric nitrogen deposition to total external nitrogen 

loading ranged from 10% to over 50%. Nanomolar changes in nitrate concentration led to 

high productivity in the surface waters of the Sargasso Sea (Glover et al., 1988). A nine 

year record of atmospheric nitrogen deposition to the Sargasso Sea found that episodic 

events could contribute an important proportion of new production (Owens et al., 1992). 

Atmospheric nitrogen deposition has also been suggested to play a role in toxic and non­

toxic algal blooms worldwide (Paerl, 1993,1995; Zhang, 1994; Zhang and Liu, 1994). 

These blooms have been increasing worldwide in frequency, size, geographic extent, and 

species complexity (Shumway, 1990; Smayda, 1990; and Pelley, 1998).

This study estimates the direct atmospheric nitrogen deposition to the Gulf of 

Maine, a coastal marine ecosystem downwind of substantial anthropogenic nitrogen 

sources to the atmosphere (Saeger et al., 1989; Parrish et al., 1993; Chapter 1, this work). 

The Gulf of Maine is essentially an inland sea with the exchange of water between it and 

the Atlantic far more restricted than its shoreline would suggest (Figure 3.1). This is due to 

Browns Bank, Georges Bank, and Nantucket Shoals effectively isolating the Gulf from the 

Atlantic below 100 m (Brooks and Townsend, 1989; Townsend, 1991; 1998). Between 

Browns and Georges Bank lies the Northeast Channel, through which nutrient rich slope 

water can enter the Gulf from the Atlantic. This slope water is one of the main sources of 

nitrogen to the surface waters of the Gulf of Maine (Schlitz and Cohen, 1984; Townsend, 

1998). The Gulf is subject to strong tidal mixing, particularly in the eastern portion and in 

the Bay of Fundy. This tidal forcing is primarily responsible for mixing the nutrient rich 

deep water into the surface waters thereby elevating the concentrations of nitrogen. It is 

also partly responsible for driving the coastal current, which then transports the nitrogen 

down along the coast to the western and central Gulf (Brooks and Townsend, 1989; 

Townsend, 1991; 1998). Following the spring bloom, the nitrogen supply is severely 

depleted in the surface waters of the western Gulf due to vertical stratification of the water
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Figure 3.1. Map of the Gulf of Maine showing the banks which isolate the Gulf from 
the Atlantic and the three basins (from Townsend, 1998).

column. During the warm months of the year, both N0 3 ~ and N H ^  concentrations are

<1.0  |jM in these surface waters (Martorano, 1997; T. Loder, personal communication, 

1998).

The daily direct atmospheric nitrogen deposition from mid-1994 through 1997 has 

been estimated to assess the atmospheric contribution to the nitrogen budget in the Gulf of 

Maine. Annually, the atmospheric component is minor compared to upwelling of nutrient
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rich deep ocean water, contributing only a small fraction of the total new nitrogen flux to 

the Gulf each year (about 3%, this work and Townsend, 1998). However, atmospheric 

deposition is highly variable with daily deposition values ranging over 3 orders of 

magnitude. Deposition events of 500 pmol m"^ or more occurred only 8 % of the time, but 

deposited 56% of the total nitrogen over the span of our measurements. Deposition events 

of 1 0 0 0  pmol m“ 2  occurred only 2 % of the time, yet contributed 2 2 % of the total nitrogen 

deposited. There is no seasonal pattern in these deposition events. However, the events 

which occur during the period when the surface waters of the Gulf are stratified and 

isolated from the nutrient rich deeper waters (May through September, Bub, 1997) may be 

an important mechanism for delivering nitrogen to the surface waters. This direct 

atmospheric N deposition may be important on an event basis and sufficient to support 

substantial chlorophyll a production.

Methods

Data

Measurements were made on the shore of the Gulf of Maine at the Portsmouth

Harbor Coast Guard Station in New Castle, NH. These measurements included daily (24 

hour averages) bulk aerosol and HNO3  samples, event based precipitation samples, 20

aerosol size distribution (cascade impactor) samples, and 36 fog water samples. Various 

meteorological parameters were also measured and saved as hourly averages. Samples 

were initially collected from May through November of 1994, then starting in March of 

1995 sampling continued through November 1997. An overview of this data set and a 

complete discussion of the methods used are presented in Chapters 1 and 2.

On average, errors for the bulk aerosol were NO3 * = ±5% and NH^+ = ±4%, and

for the gas phase HNO3  = ±5% (Chapter 1). The size distribution data were collected on a

series of 10 filters, so the error analysis was carried out for each filter. Results were 

remarkably similar, with N0 3 ~ = ±5% and NH4 *  = ±5% on most stages, with the other

few either ±4% or ±6 %. The experimental error for the precipitation and fog concentration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

data is solely a function of the analytical uncertainty. The precision of the analytical method 

was ±3% and our comparisons to the National Institute of Standards and Technology 

(NIST) standards are ±1%.

The organic nitrogen sampling protocol has not been described in the previous 

chapters, so it will be presented here. Dissolved organic nitrogen (DON) in precipitation 

samples is unstable, with losses approaching 1 0 0 % within a few hours of collection 

(Scudlark et al., 1998). These losses are minimized by freezing the sample during 

collection and keeping it stored at dry ice temperatures until the sample may be analyzed 

(Scudlark et al., 1998). Using samplers designed at the University of Virginia - 

Charlottesville (UVA), and following the sampling protocol described by Southwell

(1997), 22 precipitation samples were collected from 17 events from July 1997 through 

June 1998. Two liter polyethylene bottles and funnels were prepared for use in the field by 

washing with Liqui-Nox soap, followed by an HC1 rinse, then repeated rinsing with DI 

water. Washed funnels and bottles were stored in a clean room until their use. Sample 

bottles were placed in modified styrofoam coolers packed with dry ice, such that the top of 

the bottle extended about S cm through a hole cut in the lid of the cooler. A funnel was 

attached to the top of the bottle at the sampling site. Samplers were put out within an hour 

of the start of a rain event and retrieved within a few hours of the end of the event such that 

there was still plenty of dry ice in the cooler to keep the sample frozen. Samples were 

stored on dry ice until they were shipped overnight to UVA for analysis. Samples were 

analyzed for total N, NC>3 ‘, NO2 ',  and NH4 +. The difference between the measured total

N and the three inorganic species is defined as DON. DON ranged from < I pM N to 16 

pM N.

Drv Deposition

Two models were used to estimate dry deposition velocities, one for gas phase 

HNO3  and the other for aerosol particles. HNO3  deposition velocities were calculated 

using Valigura’s bulk exchange model (199S). This model assumes the HNO3  flux is
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unidirectional, i.e., it deposits to the surface and is not re-emitted from it. Further, given 

the high solubility of HNO3 , dry deposition to a water surface can be simplified as the 

quasi-boundary layer resistance is negligible compared to the aerodynamic resistance (Ra) 

even in very light wind conditions. Thus, the HNO3  flux may be approximated as follows: 

F = ([HN03 ]0 -[H N 0 3 ]z)/Ra 

where [HN0 3 ] 0  = HNO3  concentration at the surface 

[HNOsk = HNO3  concentration at height z 

Assuming the concentration of HNO3  at the surface is zero (it all deposits), the flux may be 

written:

F = Vd[HN03]z

where the deposition velocity (Vd in m/s) is the inverse of the aerodynamic resistance. The 

air/water exchange of sensible heat is also controlled by the aerodynamic resistance (Rajj) . 

Assuming Ra= Ra pj, the deposition velocity can be written in terms of the heat transfer

coefficient, which in turn is determined from bulk exchange equations. 

v d = 1/Ra,H = d Huz

where Djj  =  dimensionless heat transfer coefficient 

uz = wind speed at height z

For a thorough discussion of bulk transfer equations see Valigura (1995), Hicks 

(1975), and Liu and Schwab (1987). The advantage of this approach is that the deposition 

velocity may be estimated from four readily measured parameters: wind speed, relative 

humidity, and air and sea surface temperatures. Valigura (1995) anticipates that this 

method underestimates the deposition velocity somewhat since the assumption of 

equivalent transfer rates for heat and HNO3  does not account for scavenging of HNC^by

aerosol particles or water droplets, which would enhance the deposition rates. He also 

notes that the conditions required by the assumptions of the bulk transfer equations may be 

violated under very low wind speeds (e.g., < 2  m/s).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

Hourly wind speed, air and water temperatures were obtained from NOAA buoy 

44007 (43° 31* N 70° 8 ’ W, near Portland, Maine). None of the Gulf of Maine buoys have 

dew point data, so relative humidity recorded at our tower site was used. These hourly 

meteorological parameters were used to calculate the HNO3  deposition velocity. The

hourly deposition velocities were then averaged over the sample interval (typically 24 

hours) to get an average deposition velocity for each HNO3  measurement. The HNO3  flux

was determined by multiplying the measured mixing ratio by the average deposition 

velocity as well as the period of each sample to obtain flux in pmol m"^. Note, the wind 

speed averaged over the sample interval was < 2  m/s in only 2 % of the samples.

Aerosol particle deposition velocities were calculated using the Williams (1982) 

model. This model uses a similar formalism to the Valigura (199S) model which considers 

dry deposition in terms of resistances and bulk transfer equations. In this model, Williams 

(1982) incorporates the effects of spray formation in high winds, increased gravitational 

settling due to particle growth in the high humidity near the air/water interface, as well as 

the variation of turbulent transfer with wind speed, air/water temperature difference, and 

surface roughness. The processes involving spray formation and particle growth near the 

air/water interface both enhance the dry deposition such that wind speed and particle size 

were found to be the most important parameters in determining the particulate deposition 

velocities (Williams, 1982). Thus, these are the input parameters used here. For a 

thorough discussion of the equations used, see Williams (1982).

The wind speed averaged over each chemical sampling interval was input to the 

Williams model along with 9 particle diameters, representing the mid-point of each size 

fraction measured by a Graseby-Anderson cascade impactor to determine the deposition 

velocity for each particle size. All of the chemical measurements were classified into three 

categories: marine, continental, and mixed (Chapter 2). Impactor samples for each of 

these three cases were averaged together to arrive at a  “typical” size distribution for each
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classification. These size distributions were used to calculate the percent of the bulk 

measurement of each species present in each size fraction.

Occasionally, there were gaps in either the meteorological or buoy data when we 

had chemical data. To obtain the most complete deposition record possible, data from 

either buoy IOSN3 (42° 58’ N 70° 37’ W, Isle of Shoals, New Hampshire) or from the 

weather record at Pease International Tradeport Airport (43° 4’ N 70° 43’ W, Portsmouth, 

New Hampshire) were used to fill gaps. A linear regression was used to find a relationship 

between Pease RH (relative humidity, calculated from dew point, air temperature, and 

station pressure) and New Castle RH,

New Castle RH = 16.867 + 0.904*Pease RH, R2  = 0.708 

This relationship was used to approximate the relative humidity at New Castle when those 

data were absent. For times when wind speed was missing from the 44007 buoy records, 

IOSN3 buoy data was used to fill the gaps. Again a linear regression was applied to find a 

relationship between 44007 and IOSN3 wind speeds,

44007 W. Sp. = 0.669 + 0.646*IOSN3 W. Sp., R2  = 0.572 

This is not a strong correlation, but it is preferable to having a data gap. By filling in the 

missing ancillary data in this way, the temporal coverage of the dry deposition calculations 

was improved from 30% to 48% of 1994,60% to 70% of 1995,72% to 8 6 % of 1996, 

and 41% to 85% of 1997. Note, the large discrepancy in 1997 was due to a period 

extending over several months during which no wind speed was available from buoy 

44007.

Wet Deposition

Inorganic N Species. Wet deposition of nitrogen is a straightforward calculation 

where the concentrations of NO3 '  and NH4 + (pmol L"*) are multiplied by the rainfall 

amount for an event (cm) to arrive at the flux in pmol m-2. The N0 3 _ and NH4 + fluxes

are summed to get the total N wet deposition for an event.
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Dissolved Organic Nitrogen. Globally, DON in precipitation has been found to 

range from 7 - 3 7  pM ( Scudlark et al., 1998; Southwell, 1997). While there is no 

apparent geopgraphical pattern (Scudlark et al., 1998), there is a seasonal pattern with more 

DON observed in the warmer months (Southwell, 1997). Twenty two precipitation 

samples from 17 events from July 1997 to June 1998 were collected to assess the 

contribution of DON to the total nitrogen deposited via rain. Throughout most of the year, 

DON is frequently <1.0 pM N, contributing on average 3% of the total nitrogen in 

precipitation when it was detectable (0.9 pM volume-weighted mean). However, in the 

spring, there was a peak in DON with a volume weighted mean of about 3.9 pM. At this 

time of year, DON contributed, on average, 14% of the total nitrogen in precipitation.

These results are similar to those reported in Virginia (Southwell, 1997), where DON was 

found to comprise <2.5 - 23% of the total N in precipitation with a mean of 9.8%. Due to 

this seasonal variability and the limited number of samples, DON has not been included in 

the total N deposition numbers. This is of little importance throughout most of the year, 

although in spring, this leads to a slight underestimate of the deposition. In terms of 

biological productivity in the Gulf of Maine, it may not matter, as it is still unclear whether 

DON is available for phytoplankton production.

Fog Deposition

To determine the amount of nitrogen deposited via fog, the deposition of fog water 

(g m ' 2  s '1) using Arp’s (1995) equation was calculated, based on the Unsworth-Crossley 

(1987) equation:

Dfw = w  (vs + k2 p/ln(z/zo)}

where, W = liquid water content (g/m^) 

vs = sedimentation velocity(m/s)

k = von Karman’s constant (= 0.41) 

p = wind speed (m/s) at z 

z = reference height (m)
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z0  = roughness length (m)

Here, we used Arp’s values for the following: 

vs = 0.0213 m/s

p = 8 . 6  m/s (wind speed at the top of fog banks)

z = 224 m (height of fog banks)

zQ = 0 . 0 1  m

We used our own measured W. Nitrogen deposition (pmol m '^ s'*) via fog is then 

calculated by:

Dn  = Dfw (C]Nf/rw)

where, Dfw = fog water deposition (g m*^ s_1)

= concentration of N species in fog water (pmol/m^) 

rw = density of water (g/m^)

Liquid water content was determined from the weight of the fog water sample (g) divided 

by the volume of air pulled through the Global Geochem Mesh Sampler (Hering et al., 

1987), corrected for the amount of water lost in the instrument (i.e., stuck to the mesh or 

the sides of the sampler). The fog sampling protocol is described in detail in Chapter 2.

Results
Prv Deposition

Daily dry deposition values for all years of the sampling program are shown in 

Figure 3.2. Note the data gap late in 1996 was due to a power failure at the site during 

which time no measurements could be made. These deposition values were highly 

variable, ranging over two orders of magnitude from about 1 -144 pmol N m-^ d-* . The 

daily dry flux tended to be lower in 1995 than the other three years. This was due to the 

lower mixing ratios observed during that year (Chapters 1 and 2).

The total N dry flux is the sum of gas phase HNO3  deposition, and bulk aerosol

N0 3 ~ and NH4 + deposition (Figure 3.3). Gas phase HNO3  contributes the most to the 

dry flux of all three species (Figure 3.3) due to its high atmospheric mixing ratios and
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Figure 3.2. Daily total dry nitrogen (sum of gas-phase HNO3 , particulate N0 3 ~ and 
NH4 +) deposition values over the course of the study at New Castle, New Hampshire. 
The data gap in 1996 was due to a power failure at the site.
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Figure 3.3. 1996 daily dry deposition values (total, HNO3 , N0 3 ’, and NH4 +). HNO3  

and NC>3 ~ dominate the total dry nitrogen flux. The data gap in 1996 was due to a power 
failure at the site.
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Figure 3.4. Percent of the total dry flux as a function of particle size. Most of the NH4 + 
flux is carried by submicron particles, with a substantial fraction deposited by the coarsest 
fraction. The largest sizes carry most of the N0 3 " flux.

solubility. Particulate NC^", also comprised a substantial fraction of the dry flux. Most 

NO3 '  was found on large particles (Chapter 2) with the coarsest size fraction depositing 

over 40% of the total NO3 '  (Figure 3.4). The next two smaller sizes (4.7 - 5.8 pm and 5.8 

- 9.0 pm) each contributed about 18% of the total, with the smaller size fractions 

contributing less.

Although NH4 + was present at much higher mixing ratios in the atmosphere than 

N0 3 “ (Chapter 1), it contributed less to the dry flux (Figure 3.3). This was due to NH^+

being present primarily on submicron particles, which deposit less readily than 

supermicron particles. For NH4 + the 0.43 - 0.65 pm aerosol size fraction deposited more

than any of the others, carrying about 30% of the total NH4 + (Figure 3.4). The 0.65 -1.1 

pm size fraction deposited about 22% of the total while the coarsest fraction (>9 pm)
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Figure 3.5. Daily total wet nitrogen (sum of NC>3 ~ and NH4 +) deposition values over 
the course of the study at New Castle, New Hampshire. Note, 1996 is on a different scale 
than the other years due to a particularly large event which exceeded 4000 pmol N m'^. 
The data gap in 1996 was due to a power failure at the site.
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Figure 3.6. 1997 daily wet deposition values (total, NO3 ' ,  and NH4 +). NC>3 - 
dominates the total wet nitrogen flux.

contributed about 17%. Given the average N H ^  size distribution for a mixed air mass at 

New Castle had 51% in the 0.43 - 0.65 pm fraction, 26% in the 0.65 - 1.1 pm fraction, 

and 1 % in the coarsest fraction, this illustrates the bias of coarse particles and their 

associated chemical species on the deposition compared to the atmospheric mixing ratio.
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Wet Deposition

The total wet deposition is shown in Figure 3.5. Note, that 1996 is on a different 

scale than the other three years due to a particularly large event which exceeded 4000 

pmol m‘“. Note the scale of the wet deposition is an order of magnitude greater than the 

dry deposition (Figure 3.2). Hence, most of the nitrogen deposition to the Gulf of Maine 

is carried by precipitation (80 - 90% of the total, Table 3.3). As with the dry deposition, 

wet deposition is highly variable from one event to the next depending on the 

concentrations of NO3 '  and NH4 + in the precipitation as well as the amount of 

precipitation. Also like dry deposition, NO3 * tends to exceed NH^1- in precipitation in

most, but not all, cases (Figure 3.6).

Foe Deposition

Fog can also lead to a substantial amount of nitrogen deposition. Although, fog 

deposits less water than precipitation, the concentrations of chemical species can be so 

much higher than precipitation, that more of a solute can be deposited via a fog event. 

Characteristic chemical signatures are shown for four fog events in Figure 3.7. Note, as 

reported by Klemm et al. (1994) the variation of the chemistry during an event tends to be 

less pronounced than the chemical variation observed from one event to another. The 

chemical signature of a given fog event was found to reflect the chemistry of its precursor 

air mass (Chapter 2). As was done for the chemical signatures of air masses (Chapter 2), 

the chemistry of a fog event can be viewed in terms of an overall marine, continental, or 

mixed signature. The terms marine fog, continental fog, and mixed fog in this context refer 

only to the chemistry and not to fog formation processes (e.g., advection or radiation fog). 

The event on August 29,1997 was typical of a marine fog (Figure 3.7). The sea salt 

species Na+ and Cl" were dominant. The events on April 16,1998 and August 8,1996

represent two types of fogs formed in continental air. The former is more typical, with 

HNO3  and NO3 '  in the precursor air mass combining to make NO3 * the dominant species 

in solution. However, NH^+ can also be the dominant species in a continental fog as seen
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Table 3.1. Influence of Fog N Flux on Total N Flux

Start Date Stop Date

Wet + Dry 
N Flux,

umol/m2

Fog 
N Flux, 

umol/m2

Total 
N Flux, 

mnol/m2

7/24/96 7/25/96 2 29 31
8/8/96 8/8/96 1 1 1 93 204

5/31/97 6/1/97 94 229 323
8/29/97 8/29/97 8 2 1 29
9/2/97 9/2/97 85 371 456

9/13/97 9/14/97 8 63 71
4/16/98 4/16/98 672
5/4/98 5/4/98 274

in the latter case. The fourth example shows the chemistry of a fog formed in a mixed air 

mass. Here, the sea salts and nitrogen species appear at comparable strengths.

In addition to the concentrations of the nitrogen species in fog water, the duration 

and the liquid water content of a fog determine whether a substantial amount of nitrogen is 

deposited. Table 3.1 lists the calculated fog N flux during 8  events. In all but one case, 

the fog contributes more than the combined wet and dry N flux on those days. For the two 

fog events from 1998, we have no aerosol or precipitation data, but it is clear from the 

April 16,1998 case, that fog can deposit as much nitrogen as a high N depositing 

precipitation event.

Note, as with precipitation, it would be anticipated that DON would enhance fog N 

deposition in spring, but that during the remainder of the year, it would play a minor role if 

any. Due to insufficient data, no fog deposition has been calculated to add to the daily total 

N flux presented here. However, fog may play a substantial role in nitrogen deposition to 

the Gulf of Maine as it frequently occurs in this area. The coast along the Gulf of Maine 

experiences in excess of 60 days with fog a year (Stone, 1936; Court and Gerston, 1966). 

A day with fog is defined as a day during which fog obscures visibility to a given distance 

for an hour or more (Court and Gerston, 1966). Further, dense fog occurs 10-20 days a 

year along the southern Gulf of Maine coast and 20-40 days a year along the northern 

coast, with areas over the Gulf itself experiencing more the 50 days a year of dense fog
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Table 3.2. Fog and Mist Hours at Pease International Tradeport Airport

Total
Winter

(Jan-Maich)
Spring

(April-June)
Summer

(July-Sent)
Fall

(Oct-Dec)

1994 753 94
All

207 372 80
1995 740 235 140 233 132
1996 817 123 173 352 169
1997 481 8 6 8 6 246 63

1994 449
Low visibility (<5 km) 

50 153 207 39
1995 446 171 82 130 63
1996 525 89 107 2 2 1 108
1997 274 46 42 152 34

1994 164
Very Low Visibility (<2 km) 

27 63 63 1 1

1995 269 141 53 45 30
1996 260 61 41 104 54
1997 127 32 15 56 24

(Court and Gerston, 1966). Dense fog is defined as that with visibility < 0.25 miles (or 

< 0.40 km) (Court and Gerston, 1966). Data from the Pease International Tradeport 

Airport weather station, shows fog observations during this study (Table 3.2). A fog 

“hour” is defined here as an hour in which fog was observed, it may or may not have lasted 

an entire hour. The greatest deposition will occur during the lowest visibility fogs, when 

the liquid water content is highest.

Total Deposition

Daily total N deposition for the duration of this study is shown in Figure 3.8.

Note, the open circles mark dates of precipitation events for which we had no data and the 

open diamonds mark the dates of fog events. These are shown to indicate where the flux 

was probably higher, but how much higher is unknown. The open diamonds indicate fog 

events which persisted longer than 5 hours for continental and mixed chemistry fogs 

(presumed higher N concentrations), and longer than 10 hours for oceanic fogs (presumed 

lower N concentrations). As with the wet deposition, 1996 is shown at a different scale 

due to an unusually large event, over 4000 pmol m'^. The deposition was highly variable 

from one day to the next, ranging over 4  orders of magnitude.
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Table 3.3. Total N Deposition: Sampled and Corrected to Complete Years

Fraction of Time 
Sampled

Fraction of 
Precipitation 

Sampled

Sampled 
Total N 

Deposition 
umol/m^

Corrected 
Total N 

Deposition 
umol/m^

1994 0.48 0.34 dry 4433 9235
wet 13247 38736

total 17680 47971

1995 0.70 0.63 diy 3164 4534
wet 25746 40783

total 28910 45317

1996 0 . 8 6 0.80 dry 7640 8847
wet 40976 51179

total 48616 60026

1997 0.85 0.71 diy 8149 9617
wet 32741 45841

total 40890 55458

Annual nitrogen deposition estimates are shown in Table 3.3. The total deposition 

is shown both in terms of the total calculated from our samples and corrected for the entire 

year. The dry deposition is corrected using the fraction of time sampled and the wet 

deposition is corrected using the fraction of precipitation sampled. This approach allows 

for some comparison of deposition from one year to the next. Less deposition was found 

in 1995 than the other three years, due to lower ambient mixing ratios observed that year 

(Chapters 1 and 2). Nonetheless, the annual nitrogen deposition was relatively consistent 

from year to year, with the average annual deposition equal to 52 ± 7 mmol m'^.

Given the highly variable nature of the daily deposition (Figure 3.8), the 

contribution of events relative to the total deposited was investigated (Table 3.4). Two 

thresholds were considered: first, where the daily deposited nitrogen exceeded 500 

pmol m‘“, and second, where it exceeded 1000 pmol m*^. Events of 500 pmol m '^ or 

more occurred in 8 % of the samples (Table 3.4a), yet they contributed 56% to all of the 

observed deposited nitrogen (Table 3.4b). Events exceeding 1000 pmol m"^ occurred only 

in 2% of the samples (Table 3.4a), but contributed 22% to the total observed(Table 3.4b).
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Figure 3.8. Daily total N flux (sum of wet and dry inorganic N species) over the course 
of the study at New Castle, NH. The open circles denote precipitation events for which we 
had no chemical data to calculate N deposition. The open triangles denote fog events which 
may have potentially deposited a substantial amount of N, but for which we had 
insufficient information to estimate the flux. The data gap in 1996 was due to a  power 
failure at the site.
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It is these infrequent, yet very large pulses of nitrogen deposition that may play a role in the 

productivity distribution of the Gulf of Maine ecosystem.

Table 3.4a. Number of Events (n) Compared to Total Observations

Total n

n where 
deposition 

>500 umol/m^ % of Total n

n where 
deposition 

> 1 0 0 0  umol/m^ % of Total n
1994 176 1 1 6 2 I
1995 261 2 0 8 3 1

1996 318 31 1 0 7 2

1997 313 24 8 7 2

1994-1997 1068 8 6 8 19 2

Table 3.4b. Contribution of Events to Total N Deposition

Total N 
Deposition, 
nmol/m^

Events (> 500) 
Total N 

Deposition, 
limol/m^

% Contribution 
to Total by 

Events

Events (> 1000) 
Total N 

Deposition,
nmol/m^

% Contribution 
to Total By 

Events
1994 17680 8620 49 2781 16
1995 28910 16982 59 4153 14
1996 48615 29384 60 12700 26
1997 40890 21252 52 9724 24

1994-1997 136095 76238 56 29358 2 2

Pi$gH?$ton 

Comparison to Other Measurements

Wet deposition of nitrogen from this study can be compared to other measurements 

made in New England and in the western Atlantic. Measurements made at Bermuda from 

1980 through 1989 reported by Owens et al. (1992) show atmospheric wet deposition 

events similar to those reported here (Table 3.5). Most of the events measured at Bermuda 

(90%) deposited less than 400 pmol N m'^, although there were several events which 

exceeded 500 pmol N m-^ and a few above 1000 pmol N m“̂ . The wet deposition values 

reported here are somewhat higher, with a median value of 242 pmol N m~^ compared to a 

median at Bermuda of 85 pmol N Large events in both locations are rare. The largest 

ones at New Castle are over 1000 pmol N m~^ and are comparable to the largest events
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seen in Bermuda, although they are more frequent at New Castle. In addition, two events 

in New Castle exceeded 2000 pmol N m"^ The higher N deposition at New Castle is 

likely the result of its proximity to anthropogenic sources. At Bermuda, air masses have 

travelled further from source regions, allowing additional removal of nitrogen by dry and 

wet deposition.

Number of Events Total Wet N Flux, 
nmol m' 2  event”*

Newcastle* 300 Min 3.28
(1994-1997) Max 4262.24

Median 241.50

Bermuda 512 Min 0.70
(1980-1989) Max 1470.00

Median 85.10

lThis study 
^Owens et al., 1992

Annual wet deposition for various sites along the western Atlantic Ocean are given 

in Table 3.6 (modified from Duce et al., 1991). Considering the first group of numbers in 

Table 3.6 (from Duce et al., 1991), there is clearly a north-south gradient in the wet 

deposition flux, with the peak deposition occurring in New Jersey (41 mmol N m"^ yr'*), 

Delaware (37 mmol N m '^ yr‘*), and New York (34 mmol N m‘^ yr’*). To the north and 

south of this area, the annual wet nitrogen flux drops off to about 14 mmol N m~^ yr'* in 

Newfoundland and Florida. The average annual deposition from two National Acid 

Deposition Program (NADP) coastal sites (ME98, Mt. Desert Island, Maine and MA01, 

Cape Cod, Massachusetts) during the course of this study are comparable to the values 

reported a decade earlier by the same sites (31 v. 28 mmol N n f^  yr-* in Massachusetts; 

26 v. 27 mmol N m’^ yr‘* in Maine). However, the wet nitrogen deposition measured at
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Table 3.6. New Castle, NH Wet Deposition Compared to Other Western Atlantic Sites
Inorganic N 

Wet Deposition 
mg N m" 2  yr~*

Inorganic N
Wet Deposition

2 I mmol N m yr
Bermuda* 32°N 65°W April 1980-May 1984 141 1 0

Florida2 24°N 80°W 1984-1985 203 14
Florida2 30°N 82°W 1984-1985 340 24
Georgia2 33°N 82°W 1984-1985 301 21
N. Carolina2 37°N 77°W 1984-1985 350 25
Delaware2 39°N 75°W 1979-1983 512 37
New Jersey2 40°N75°W 1984-1985 570 41
New York2 41°N 73°W 1979-1983 471 34
Massachusetts2 42°N70°W 1984-1985 387 28
Massachusetts 42°N71°W 1984-1985 392 28
Nova Scotia** 44°N65°W 1985-1986 339 24
Maine2 44°N68°W 1984-1985 375 27
Nova Scotia** 45°N64°W 1985-1986 317 23
New Brunswick^ 2 46°N65°W 1985-1986 291 2 1

Maine 47°N68°W 1984-1985 267 19
Newfoundland**12 48°N 55°W 1985-1986 2 0 2 14
Newfoundland**12 49°N 55°W 1985-1986 94 7

NADP/NTN:MA016 1994-1997 31
New Castle^ 1994-1997 44
NADP/NTN: ME986 1994-1997 26
* Galloway et al., 1989; Duce et al., 1991 
2NADP 1986; 1987; Duce et al., 1991 
2Dana and Easter, 1987; Duce et al., 1991 
**Vet et al., 1986; Duce et al., 1991
2 R. J. Vet, personal communication as cited by Galloway and Whelpdale, 1987; Duce et al., 1991 
6NADP data from website: http://nadp.sws.uiuc.edu/
2This study

New Castle, NH was substantially higher than that of the neighboring NADP sites (MA01 

andME98).

The New Castle wet deposition is corrected for the year by dividing the total 

deposited by the fraction of precipitation sampled. Similarly, NADP, corrects for annual 

deposition by determining the volume-weighted mean concentrations and multiplying by 

the total precipitation for the year. Averaging all four years at each of these three sites, we 

report 43% more N deposition than reported on Cape Cod and 70% more than reported at
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Mt. Dessert Island. The higher deposition compared to that of NADP is due to the higher 

concentrations of NO3 '  and N H ^  measured at New Castle (Chapter I). Annual

precipitation amounts at these three sites are comparable averaging 125 cm (MA01), 120 

cm (New Castle), and 140 cm (ME98) from 1994 through 1997. The reason for the higher 

concentrations observed at New Castle are unclear, but may be related to the different 

sampling protocols. The NADP samples are weekly bulk samples, whereas as New Castle 

precipitation samples were collected daily and preserved immediately to prevent 

biodegradation. However, without side by side comparisons, it cannot be confirmed 

whether there are nitrogen losses from the NADP samples or whether there is some 

unknown local source of nitrogen near New Castle (although, this latter possibilty is 

unlikely in our opinion).

In addition to the contribution of N to the Gulf of Maine via direct atmospheric 

deposition to its surface, indirect atmospheric deposition of N to the watershed may also 

contribute a significant amount of N to the Gulf. Mosher (1995) estimated that atmospheric 

N deposition to the Great Bay Estuary and its watershed input more nitrogen to the Bay 

than point sources. Further, he found that atmospheric N deposition was greater than or 

equal to all other non-point sources of nitrogen to the Bay. Jaworski et al. (1997) found 

that in watersheds saturated with nitrogen, which is common in the northeastern United 

States, nearly all atmospheric N deposition via wet and dry processes was exported from 

rivers. They found a  linear relationship between both nitrogen oxide emissions and 

atmospheric N deposition to the watersheds, and the subsequent riverine flux. Thus, it is 

expected that a large precipitation N deposition event would not only input an immediate 

pulse of N directly into the Gulf, but that a subsequent pulse would follow as atmospheric 

N deposition to the watershed is washed downstream into the Gulf.

It is also expected that deposition over the Gulf of Maine may be enhanced by 

chemical processing which occurs over the Gulf. For example, HN03 is produced by the 

reaction of N 02 with OH. Thus, as N 02 is transported off the continent, and HN03 is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

produced, deposition will be enhanced by this additional supply of HN03. Also, 

peroxyacetylnitrate (PAN), another gas phase N species produced by the oxidation of 

NOx, can also enhance the mixing ratios of HN03 over the Gulf of Maine as it thermally 

breaks down to N 02 in summer and then produces HN03 via the pathway mentioned 

above. NOy which denotes the total reactive nitrogen in the atmosphere (including NOx, 

HN03, PAN, and aerosol N03-) has been reported to have a geometric mean mixing ratio 

ranging from about 3100 to 3500 pptv from July to September at Harvard Forest in 

Petersham, Massachusetts (Munger et al., 1998). The Harvard Forest site (42.53°N 

72.18° W; 340 m elevation) is 100 km inland from the Gulf of Maine. At Sable Island (43° 

55’ N 60° 01’ W), east of the Gulf of Maine, the median NOy mixing ratio was 266 pptv 

(arithmetic mean, 376 pptv) during the 1993 summer intensive, July - September, (Wang et 

al., 1996), approximately an order of magnitude lower than observed at Harvard Forest. It 

has been suggested that only a small fraction of this NOy vents into the free troposphere 

from the boundary layer (Munger et al., 1998). Further, only a small fraction of these 

nitrogen oxides are transported from North America beyond 60° W longitude (Galloway 

and Whelpdale, 1987; Galloway, 1990). This suggests, that most of the observed nitrogen 

transported off the coast of New England deposits in western North Atlantic waters. Thus, 

continuing gas phase and heterogeneous reactions which occur as continental air masses 

move offshore are anticipated to enhance direct atmospheric N deposition compared to the 

numbers reported here.

N budget of the Gulf of Maine

The exchange of water between the Atlantic Ocean and the Gulf of Maine is more 

restricted than its shoreline indicates (Brooks and Townsend, 1989; Townsend, 1991; 

Townsend, 1998). The Gulf is separated from the Atlantic below 100 m by the Nantucket 

Shoals, Georges Bank and Browns Bank (Figure 3.1), except for a narrow channel 

through which Atlantic water enters between Georges and Browns banks called the 

Northeast Channel. This deep water (>150 m) then flows into the three basins o f the Gulf,
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Georges, Jordan, and Wilkinson. Georges Basin is the deepest (370 m) and is an 

extension of the Northeast Channel. The three basins all exceed 250 m depth and are 

isolated from each other below 200 m (Figure 3.1). Shallower water (<75 m) enters both 

over the Northeast Channel and around Nova Scotia, flows generally counter-clockwise 

around the Gulf and exits to the south around Cape Cod and to the east above the northern 

edge of Georges Bank (Townsend, 1991). The counter-clockwise flow at the surface 

follows the coastline (the coastal current), as well as forming gyres over the three basins 

(Figure 3.9). Tides range from 2-3 m along the Massachusetts coastline to about 5 m along 

the eastern Maine coastline, and peak in the Bay of Fundy at >15 m. In the eastern Gulf, 

strong tidal forcing drives currents and effectively mixes the water column limiting thermal

70* M* g6.

NOVA
S C O T I A

70* *6* ss*

Figure 3.9. Map showing the flow of water entering the Gulf of Maine. Black arrows 
indicate the influx of deep water through the Northeast Channel, white arrows illustrate the 
surface circulation (from Townsend, 1992).
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stratification in the warmer months (Townsend, 1991). In the western part of the Gulf, 

however, the water column does become stratified in the warmer months with the mixed 

surface layer extending 10 - 20 m in depth (Bub, 1997). Riverine flux leads to a spring 

freshet which is important in the development of the coastal current in the spring. Most of 

this riverine freshwater flows along the coast into the western Gulf. Scotian Shelf water is 

another significant source of freshwater. It enters around the southwest of Nova Scotia 

and affects currents in the eastern Gulf (Townsend, 1991).

Nitrogen enters the surface waters in the Gulf of Maine primarily by: (1) vertical

mixing by tides and upwelling in the eastern Gulf and on the southwest Scotian Shelf, (2)

vertical fluxes across the seasonal pycnocline, and (3) winter convection (Townsend, 1991;

1998). Internal waves have also been suggested as a mechanism by which nitrogen may

reach the surface waters (Townsend, 1998). On an annual basis the flux of nitrogen from

atmospheric and riverine sources adds only a small fraction (about 3%) to the nitrogen

supplied by the slope water and Scotian Shelf water (Schlitz and Cohen, 1984; Townsend

1998; see Table 3.7 modified from a table in Townsend, 1998). About 44% of the

nitrogen which enters the Gulf via the Northeast Channel reaches the surface waters of the

eastern Gulf in the Grand Manan area (Townsend et al., 1987; Brooks and Townsend,

1989; Townsend, 1991). Grand Manan Island is near the U.S.-Canadian border at the 

entrance to the Bay of Fundy. In winter, N0 3 _ concentrations in the upper water column

can reach 8 pM (Townsend, 1991). This nitrogen is then transported to the western and 

central Gulf via the coastal current. In evaluating the primary production in the Gulf of 

Maine, Townsend (1998) found that the influx of nitrogen was insufficient to support all of 

the observed primary production, as a substantial amount of that nitrogen flows out of the 

Gulf before becoming available to the primary producers. He suggested that the 

intermediate layer of water (between the surface and deep layers) is a nitrite reservoir which 

mixes a sufficient amount of nitrogen into the surface waters to support the relatively high 

rates of primary production.
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Table 3.7. Comparison of Various N Sources to the Gulf of Maine Surface Waters
Volume, [N], N flu x y rl,

10l2m3 y r l  nmol N 1~1 IQ ^m olN vrl
Inflows to the Gulf Atmosphere (wet+ dry) 5.38
of Maine Rivers

Scotian Shelf Water 
Slope Water 
(NE Channel)

0.08
6.31

8.7

10
5.0
17

0.8
31.5

147.9

Total 185.58
From Townsend (1998) with revised atmospheric contribution (this study).
Other numbers modified by Townsend from Christensen et al., 1995 and McAdie, 1994.

II  0Fluxes are for area of Gulf, assumed = 1.03 x 101 1 n r

Phytoplankton production tends to be limited either by light or nutrients. Light and 

nutrient availability depend on mixing of the water column. A deep well mixed layer tends 

to have sufficient nutrients, but light limits the extent of productivity, whereas a vertically 

stratified layer has sufficient light, but limited nutrients (Townsend, 1991). In the Gulf of 

Maine both exist. Along the Maine coast, the 100 m isobath (Figure 3.1) delineates the 

regions in which light limited production occurs (to the east) and nutrient limited production 

occurs (to the west), (Townsend, 1991). In the stratified waters, there is a pronounced 

spring diatom bloom which depletes the surface waters of nitrogen. The stratification 

restricts the resupply of nitrogen from below, such that the N0 3 ~ concentrations in the

surface waters remain < 1 .0  pM throughout the summer (Townsend, 1991; Martorano, 

1997; T. Loder, personal communication, 1998). In addition to the spring bloom, there 

can also be a substantial fall diatom bloom as the stratified waters overturn and nutrients are 

again mixed into the surface from the deeper waters (Townsend, 1991). In the well-mixed 

eastern waters, production continues throughout the warmer months, and the spring bloom 

is only a small enhancement to that production (Townsend, 1991). Most of the production 

in the Gulf is in these well mixed waters (Yentsch and Garfield 1981; Townsend, 1991). 

This production is supported by a  plentiful supply of nutrients from deep waters. In this 

region, the atmospheric contribution to the nitrogen supply is expected to be a small 

percentage of the total.
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Biological Significance

Experiments have shown that adding rainwater to seawater samples can lead to

enhanced chlorophyll a levels and primary production (Paerl, 1985,1993; Willey and

Cahoon, 1991). In these experiments, sea water samples were collected, rainwater added

in proportions typical of a large rain event, and bioassays performed. Willey and Cahoon 

(1991) found N0 3 ~ concentrations typical of continental storm systems increased

chlorophyll a production after the addition of 5% by volume of a synthetic rainwater 

solution. After incubation for two days, the chlorophyll a increased 2.5 times relative to 

controls. Paerl (1985) collected seawater samples from various locations off the North 

Carolina coast, then added rainwater at 10% and 20% levels by volume. These additions 

were chosen based on typical rainwater dilutions of near-surface (0 - 5 m) water following 

large (1 -5 cm) deposition events, prior to enhanced dilution by freshwater runoff from 

rivers following these events. He found that the nitrogen in the rainwater led to enhanced 

chlorophyll a production for 6  - 7 days following the addition of rainwater with high 

nitrogen levels (continental rain) and for 2 - 3 days following the addition of rainwater with 

relatively low nitrogen levels (oceanic rain). Samples collected before and after storm 

events off North Carolina’s coast supported the bioassay results, in that precipitation 

nitrogen input led to significant enhancement of phtoplankton production in these N limited 

waters. Paerl (1985) also reported that a two day lag occurred between extensive rainfall 

and enhancement of near-shore chlorophyll a levels.

Observations reported by Glover et al., (1988) from the Sargasso Sea showed that 

417 pmol NO3 '  m~2 in the upper water column (above 25 m) supported a bloom of

Synechococcus. They also found that grazers rapidly removed 70% of the Synechococcus 

cells produced. The source of this NO3 * was uncertain. Although, major storms preceded 

these observations, the authors felt the rainfall could not account for all of the added N0 3 ~.

Other studies in the Sargasso Sea have yielded mixed results. Owens et al. (1992) reported 

that atmospheric deposition of nitrogen could lead to substantial new production, while
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Michaels et al. (1993) reported atmospheric additions of nitrogen to the mixed layer in the 

summer and fall would add only a negligible amount to the productivity observed.

Here, there is insufficient data to determine whether atmospheric N deposition 

supported any increased productivity in the Gulf of Maine over the course of these 

measurements. However, the production of chlorophyll a can be estimated from the 

Redfield Ratio of 6 . 6  mol C/mol N and the approximation that 60 pg C produce 1 pg 

chlorophyll a (Michaels et al., 1993). The results of this calculation are shown in Table 3.8 

for three levels of atmospheric N deposition events, 500,1000, and 4000 pmol N m'^.

Table 3.8. Estimate of Potential Chlorophyll a Production from a Direct Atmospheric 
Deposition Event_________________________________________________________

Total N Total N N:Chl a , Chlorophyll a Mixed Chlorophyll a
Deposition, Deposition, Mg N/pg Chi Production, Depth, Production,
umol/m2 M8 N/m2 a ue Chi a/m2 m ue Chi a/m2

500 7003.35 10.60 661 1 661
5 132

10 66
15 44
20 33

1000 14006.7 10.60 1321 1 1321
5 264

10 132
15 88
20 66

4000 56026.8 10.60 5285 1 5285
5 1057

10 528
15 352
20 264

The largest number reflects the largest deposition event observed here. Depending on the 

rate at which the precipitation nitrogen mixes into the mixed layer, different concentrations 

of chlorophyll a could be found. In the warmer months of the year, the depth of the mixed 

layer of the Gulf of Maine is about 10 - 20 m (Bub, 1997). If all of the nitrogen is used in 

chlorophyll a production, there would be a  noticeable increase in chlorophyll a for all 

events above 500 pmol m~2, even if the rainwater was quickly mixed to 20 m. Mixing of
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surface waters is primarily a function of wind stress. Michaels et al. (1993) report that for 

wind speeds in excess of 3 m/s, the fresh surface layer mixed to 10 m in the Sargasso Sea 

in 2 - 4  hours. However, for calm conditions with wind speeds < Im/s, the very shallow 

rain layer can persist for more than a day. The SeaWiFS (Sea-viewing Wide Field-of-view 

Sensor) satellite instrument is capable of detecting 0.01 mg Chi a m~3. Thus, using data 

from this instrument to look for changes in chlorophyll a prior to and following a large 

deposition event may reveal whether or not direct atmospheric deposition leads to increased 

primary productivity.

These results suggest that if atmospheric nitrogen deposition enhances productivity 

in the Gulf of Maine, the best time to look for evidence of it would be following a large 

deposition event, especially if calm conditions exist during or following such an event. 

Large precipitation events occur both as a result of high volumes of water being deposited, 

even with relatively low N concentrations, and as a result of high nitrogen concentrations 

transported by smaller amounts of water. In addition to rainfall events, long duration fog 

events should also be considered. Fog may be particularly important as it tends to occur 

under calm conditions and a long duration event with sufficient NO3 " and N H ^

concentrations can deposit in excess of 300 pmol N m~^ (Table 3.1). The observations 

reported here did not overlap SeaWiFS observations long enough for a thorough analysis 

of chlorophyll a concentrations compared to atmospheric N deposition. However, future 

studies could certainly take advantage of those satellite observations. Given the results 

here, fog and rain events from weather systems of continental origin (i.e., high nitrogen) or 

which deposit large amounts of water even with low nitrogen, under calm conditions are 

the most likely to result in enhanced productivity in the surface waters in the stratified part 

of the Gulf of Maine. If it is found that these large events do lead to discernible new 

production, then further investigation could reveal how much production is the result of 

these episodic events and what is the threshold required to induce such production. Note, 

there may well be other factors involved should enhanced productivity be found, trace
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metals may play a role as well as nitrogen, or the chemical properties of the rainfall may be 

less important than the physical forcings of a storm. Some care will be required to sort out 

all of these factors.

Much has been suggested about increased point and non-point source pollution 

leading to eutrophication of coastal waters and the increased occurrence, frequency, 

distribution, and species diversification of nuisance and toxic algal blooms (e.g., Smayda, 

1990; Paerl, 1993,1995; Zhang, 1994; and Zhang and Liu, 1994). Worldwide there are 

several different species which can have various adverse effects on ecosystems (Shumway, 

1990). In the Gulf of Maine, the most common bloom problem involves the toxic 

dinoflagellate Alexandrium tamarense. This species is consumed by filter feeding shellfish, 

which become toxic as the dinoflagellate builds up in their system. This in turn is 

unhealthy for human consumption, hence the shellfish beds are closed until the episode 

passes and the shellfish flush the toxin. Blooms of this species date back to 1958 along the 

Maine coast, and have been an annual occurrence along the north shore of Massachusetts 

from May to October since 1972, except for 1987 (Loder and Becker, 1990; Franks and 

Anderson, 1992). While atmospheric deposition has been implicated in the occurrence of 

nuisance and toxic algal blooms elsewhere, it is unlikely that a direct link will be found 

between them in the Gulf of Maine due to the fact that Alexandrium has a very complicated 

life cycle and multiple factors are likely to be important in creating bloom conditions.

While the atmosphere cannot be ruled out in terms of either physical or chemical forcings 

related to the occurrence of blooms of this toxic species in the Gulf of Maine, it would be 

advantageous to look first at the production of a ubiquitous phytoplankton species such as 

chlorophyll a to establish the role the atmosphere plays in the primary productivity of the 

Gulf of Maine.

Summary

Measurements have been made at New Castle, New Hampshire from 1994 through 

1997 to assess direct atmospheric nitrogen deposition to the surface waters of the Gulf of
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Maine. Daily dry deposition ranged over two orders of magnitude from about 1 -144 

(imol N m‘2 d"l (with a median of 16 (imol N m*^ d'*) with HNO3 and particulate NOj-

dominating the dry nitrogen flux. The year 1995 had lower dry nitrogen deposition than 

the other years observed. Wet deposition dominates dry deposition, contributing 80 - 90% 

of the total inorganic nitrogen flux annually. Wet deposition was highly variable from one 

event to the next ranging over three orders of magnitude from 3 - 4262 pmol N m '^ d"*, 

with a median of 241 pmol N m '^ d- i . Large deposition events could be attributed both to 

large water fluxes with moderate nitrogen concentrations and to moderate water fluxes with 

high nitrogen concentrations. N0 3 ~ wet deposition tended to exceed that of NH4 +. Fog

can also lead to substantial nitrogen deposition if the event persists long enough (several 

hours) with sufficient liquid water content (dense fog), particularly for those formed in 

continental air masses. Dissolved organic nitrogen contributes little to wet deposition, 

except in spring, when it contributes about 14% to the total on average. Note, the 

deposition reported here is underestimated somewhat as both fog deposition and organic 

nitrogen deposition were not included in the numbers reported here, due to insufficient 

sampling. Also, gas phase processes which continue to produce HNO3  from NO2 , PAN, 

and OH, over the Gulf of Maine, which could then potentially deposit via dry, wet, and 

occult (fog) processes were not included in the estimated deposition here, due to 

insufficient data. Thus, the deposition inputs reported here should be considered a lower 

limit on the direct atmospheric N flux to the Gulf of Maine.

Total direct atmospheric nitrogen deposition to the Gulf of Maine was highly 

variable from one day to the next, ranging over three orders of magnitude (from about 1 - 

4262 pmol N m-^ d-*) with a median daily deposition rate of 23 pmol N m-^ d-*. Annual 

atmospheric nitrogen deposition (on average 52 mmol N m*^ yr~*) only contributes about 

3% of the total nitrogen input to the surface waters of the Gulf of Maine (5 of 186 x 1 0 ^ 

mol N yr‘ l). However, this mechanism is highly episodic with events over 500 

(imol N m~2 d~l occurring only 8 % of the time, yet depositing 56% of the annual flux and
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events over 1000 pmol N m"^ d"* occurring only 2% of the time and depositing 22% of 

the annual flux. Thus, it is estimated that atmospheric nitrogen deposition may be an 

important source of nitrogen to the Gulf of Maine on an event basis.

The atmospheric nitrogen deposition events reported here are similar to 

observations from Bermuda. The annual nitrogen flux observed at New Castle was 

substantially higher than that reported by two nearby NADP coastal sites, exceeding the 

reported deposition from Cape Cod by 43% and from Mt. Dessert Island by 70% and from 

reports of other studies in Maine and Massachusetts by about 60%. It is not clear whether 

these differences are due to nitrogen losses from weekly sampling protocols (as opposed to 

the daily event based sampling at New Castle) or whether there is a local source of nitrogen 

near the New Castle sampling site.

The Gulf of Maine has limited access to nutrient rich deep Atlantic waters, although 

it is well mixed due to tidal forcing. In summer, in the western Gulf of Maine, the water 

column becomes stratified and the isolated surface waters become severely nitrogen 

depleted. It is during this time of year, when episodic direct atmospheric nitrogen 

deposition may enhance the productivity of the Gulf of Maine. It is suggested that large 

atmospheric nitrogen deposition episodes be used in conjunction with SeaWiFS 

chlorophyll a data to ascertain whether these events lead to discernible blooms, particularly 

when calm conditions prevail during or following an event. Dense fogs of long duration 

may be especially suitable for investigation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U ST OF REFERENCES

Arp, P. A., Fog contributions to the deposition of heavy metals in the Gulf of Maine: 
Algorithm, In: Atmospheric Deposition to the Gulf o f Maine, by H. G. McAdie, 
International Joint Commission, Ottawa, Ontario and Washington D.C., pp. 60-73, 
September, 1995.

Altshuller, A. P., Natural sources of gaseous pollutants in the atmosphere, Tellus, 10, 
479-492, 1958.

Bahrmann, C. P., and V. K. Saxena, Influence of air mass history on black carbon 
concentrations and regional climate forcing in southeastern United States, / .  Geophys.
Res., 103, 23,153-23,161, 1998.

Banic, C. M., W. R. Leaitch, G. A. Isaac, M. D. Couture, L. I. Kleinman, S. R. 
Springston, and J. I. MacPherson, Transport of ozone and sulfur to the North Atlantic 
atmosphere during the North Atlantic Regional Experiment, J. Geophys. Res., 101, 
29,091-29,104, 1996.

Bassett, M. E., and J. H. Seinfeid, Atmospheric equilibrium model of suifate and nitrate 
aerosols-II. Particle size analysis, Atmos. Environ., 18, 1163-1170, 1984.

Behnke, W. and C. Zetzsch, Smog chamber investigations of the influence of NaCl aerosol 
on the concentrations of O3  in a photosmog system, in Ozone in the Atmosphere,
Proceedings o f the Quadrennial Ozone Symposium 1988 and Tropospheric Ozone 
Workshop, B. D. Bojkov and P. Fabian (eds.), pp. 519-523, A. Deepak, Hampton, VA, 
1989.

Brooks, D. A., and D. W. Townsend, Variability of the coastal current and nutrient 
pathways in the eastern Gulf of Maine, Journal o f Marine Research, 47, 303-321,1989.

Bub, F., Isles of Shoals area climatology for the open ocean aquaculture demonstration 
project, published on the web at http://ekman.sr.unh.edu/AQUACULTURE, 1997.

Court, A. and R. D. Gerston, Fog frequency in the United States, Geograph. Rev., 56, 
543-550, 1966.

Dana, M. T., and R. C. Easter, Statistical summary and analyses of event precipitation 
chemistry from the MAP 3S network, 1976-1983, Atmos. Environ., 21, 113-128,1987.

Daum, P. H., L. I. Kleinman, L. Newman, W. T. Luke, J. Weinstein-Lloyd, C. M. 
Berkowitz, and K. M. Busness, Chemical and physical properties of plumes of 
anthropogenic pollutants transported over the North Atlantic during the North Atlantic 
Regional Experiment, / .  Geophys. Res., 101, 29,029-29,042, 1996.

Davis, R. E., and R. Dolan, Nor’easters, American Scientist, 81, 428-439, 1993.

Davis, R. E., R. Dolan, andG. Demme, Synoptic climatology of Atlantic coast north­
easters, International Journal o f Climatology, 13 ,171-189,1993.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ekman.sr.unh.edu/AQUACULTURE


106

Dennis, R. L. Using the Regional Acid Deposition Model to determine the nitrogen 
deposition airshed of the Chesapeake Bay Watershed. Accepted for publication in 
Atmospheric Deposition to the Great Lakes and Coastal Waters, Joel Baker (ed.). To be 
published by the Society of Environmental Toxicology and Chemistry, 1995.

Duce, R. A., P. S. Liss, J. T. Merrill, E. L. Atlas, P. Buat-Menard, B. B. Hicks, J. M. 
Miller, J. M. Prospero, R. Arimoto, T. M. Church, W. Ellis, J. N. Galloway, L. Hansen, 
T. D. Jickells, A. H. Knap, K. H. Reinhardt, B. Schneider, A. Soudine, J. J. Tokos, S. 
Tsunogai, R. Wollast, and M. Zhou, The atmospheric input of trace species to the world 
ocean, Global Biogeochem. Cycles, 5, 193-259,1991.

Eriksson, E., The yearly circulation of chloride and sulfur in nature; Meteorological, 
geochemical, and pedalogical implications, 2, Tellus, 12, 63-109,1960.

Finlayson-Pitts, B. J., Reaction of NO2  with NaCl and atmospheric implications of NOC1 
formation, Nature, 306, 676-677,1983.

Finlayson-Pitts, B. J., M. J. Ezell, and J. N. Pitts, Jr., Formation of chemically active 
chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2 O5  and
C10N02, Nature, 337, 241-244, 1989.

Fisher, D. C. and M. Oppenheimer. Atmospheric nitrogen deposition and the Chesapeake 
Bay Estuary, Ambio, 20, 102-108, 1991.

Franks, P. J. S., and D. M. Anderson, Alongshore transport of a toxic phytoplankton 
bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Maine, Marine 
Biology, 112, 153-164, 1992.

Fraser, M. P., and G. R. Cass, Detection of excess ammonia emissions from in-use 
vehicles and the implications for fine particle control, Environ. Sci. & Technol., 32, 1053 - 
1057, 1998.

Galloway, J. N., The intercontinental transport of sulfur and nitrogen, In: The Long- 
Range Atmospheric transport o f Natural and contaminant Substances, A. H. Knap (ed.), 
Kluwer Academic Publishers, Netherlands, pp. 87-104,1990.

Galloway, J. N., and D. M. Whelpdale, WATOX- 8 6  overview and western North Atlantic 
Ocean S and N budgets, Global Biogeochem. Cycles, 1, 261-281,1987.

Galloway, J. N., W. C. Keene, R. S. Artz, J. M. Miller, T. M. Church, and A. H. Knap, 
Processes controlling the concentrations of S0 4 =, NO3 ',  NH4 +, H+, HCOGp and 
CH3 COOT in precipitation on Bermuda, Tellus, Ser. B, 41, 427-433,1989.

Glover, H. E., B. B. Prezelin, L. Campbell, M. Wyman, and C. Garside, A nitrate- 
dependent Synechococcus bloom in surface Sargasso Sea water, Nature, 331,161-163, 
1988.

Goldan, P. D., W. C. Kuster, D. L. Albritton, F. C. Fehsenfeld, P. S. Connell, R. B. 
Norton, and B. J. Huebert, Calibration and tests of the filter-collection method for 
measuring clean-air, ambient levels of nitric acid. Atmos. Environ., 17, 1355-1364,1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

Graedel, T. E., and W. C. Keene, Tropospheric budget of reactive chlorine, Global 
Biogeochem. Cycles, 9, 47-77, 1995.

Hering, S. V., D. L. Blumenthal, R. L. Brewer, A. Gertler, M. Hoffman, J. A. Kadlecek, 
and K. Pettus, Field intercomparison of five types of fogwater collectors, Environ. Sci. & 
Technol, 21, 654-663, 1987.

Hering, S. V., D. R. Lawson, I. Allegrini, A. Febo, C. Perrino, M. Possanzini, J. E. 
Sickles, n, K. G. Anlauf, A. Wiebe, B. R. Appel, W. John, J. Ondo, S. Wall, R. S. 
Braman, R. Sutton, G. R. Cass, P. A. Solomon, D. J. Eatough, N. L. Eatough, E. C. 
Ellis, D. Grosjean, B. B. Hicks, J. D. Womack, J. Horrocks, K. T. Knapp, T. G. 
Ellestad, R. J. Paur, W. J. Mitchell, M. Pleasant, E. Peake, A. MacLean, W. R. Pierson, 
W. Brachaczek, H. I. Schiff, G. I. Mackay, C. W. Spicer, D. H. Stedman, A. M. Winer, 
H. W. Biermann, and E. C. Tuazon, The nitric acid shootout: Field comparison of 
measurement methods, Atmos. Environ., 22, 1519-1539,1988.

Hicks, B. B., A procedure for the formulation of bulk exchange coefficients over water, 
Boundary Layer Meteorol., 8, 515-524, 1975.

Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. 
Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. 
Murdoch, Z. Zhao-Liang, Regional nitrogen budgets and riverine N & P fluxes for the 
drainages to the North Atlantic Ocean: Natural and human influences, Biogeochemistry,
35, 75-139, 1996.

Isaac, G. A., C. M. Banic, W. R. Leaitch, K. G. Anlauf, M. D. Couture, P. S. K. Liu,
A. M. Macdonald, K. I. A. MacQuarrie, K. J. Puckett, and H. A. Wiebe, Vertical profiles 
and horizontal transport of atmospheric aerosols and trace gases over central Ontario, J. 
Geophys. Res., 103, 22,015-22,037, 1998.

Jacob, D. J., J. M. Waldman, J. W. Munger, and M. R. Hoffman, Chemical composition 
of fogwater collected along the California coast, Environ. Sci. & Technol., 19, 730-736, 
1985.

Jaworski, N. A., R. W. Howarth, and L. J. Hetling, Atmospheric deposition of nitrogen 
oxides onto the landscape contributes to coastal eutrophication in the northeast United 
States, Environ. Sci. & Technol., 31, 1995-2004, 1997.

Kahl, J. D., A cautionary note on the use of air trajectories in interpreting atmospheric 
chemistry measurements, Atmos. Environ., 27A, 3037-3038,1993.

Keene, W. C., A. A. P. Pszenny, J. N. Galloway, and M. E. Hawley, Sea-salt 
corrections and interpretation of constituent ratios in marine precipitation, J. Geophys.
Res., 91, 6647-6658, 1986.

Keene,W.C., A. A. P. Pszenny, D. J. Jacob, R. A. Duce, J. N. Galloway, J. J. Schultz- 
Tokos, H. Sievering, and J. F. Boatman, The geochemical cycling of reactive chlorine 
through the marine troposphere, Global Biogeochem. Cycles, 4, 407-430,1990.

Klemm, O., A. S. Bachmeier, R. W. Talbot, and K. I. Klemm, Fog chemistry at the New 
England coast: Influence of air mass history, Atm. Environ., 28, 1181-1188,1994.

Knap, A., T. Jickells, A. Pszenny, and J. Galloway, Significance of atmospheric-derived 
fixed nitrogen on productivity of the Sargasso Sea, Nature, 320, 158-160,1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

Knoll, G. F., Radiation Detection and Measurement, 816 pp., John Wiley & Sons, New 
York, NY, 1979.

Langford, A. O., F. C. Fehsenfeld, J. Zachariassen, and D. S. Schimel, Gaseous 
ammonia fluxes and background concentrations in terrestrial ecosystems of the United 
States, Global Biogeochem. Cycles, 6, 459-483, 1992.

Lefer, B. L., The Chemistry and Dry Deposition o f Atmospheric Nitrogen at a Rural Site in 
the Northeastern United States, Ph.D. Thesis, University of New Hampshire, Durham, 
New Hampshire, December, 1997.

Lefer, B. L., R.W. Talbot, and J. W. Munger, Nitric acid and ammonia at a rural 
northeastern U.S. site, J. Geophys. Res., 104, 1645-1661, 1999.

Li, S.-M., C. M. Banic, W. R. Leaitch, P. S. K. Liu, G. A. Isaac, X.-L. Zhou, and Y.- 
N. Lee, Water-soluble fractions of aerosol and their relations to number size distributions 
based on aircraft measurements from the North Atlantic Regional Experiment, J. Geophys. 
Res., 101, 29,111-29,121, 1996.

Liu, P. C., and D. J. Schwab, A comparison of methods for estimating u* from given air- 
sea temperature differences, J. Geophys. Res., 92, 6488-6494, 1987.

Liu, P. S. K., W. R. Leaitch, C. M. Banic, S.-M. Li, D. Ngo, W. J. Megaw, Aerosol 
observations at Chebogue Point during the 1993 North Atlantic Regional Experiment: 
Relationships among cloud condensation nuclei, size distribution, and chemistry, J. 
Geophys. Res., 101, 28,971-28,990, 1996.

Loder, T. C., m , and S. Becker, A perspective on eutrophication and the Gulf of Maine, 
in The Gulf o f Maine: Sustaining Our Common Heritage, Konrad, V., et al. (eds.), Maine 
State Planning Office and the Canadian-American Center of the University of Maine, 
Orono, ME, pp. 69-87, 1990.

Loder, T., 1H, M. Evans, R. Boudrow, C. Coniaris, H. Benway, C. Martorano, and A. 
Schoudel, Spring pulse and annual nutrient input by the Kennebec River to the western 
Gulf of Maine coastal zone, in Proceedings o f the Gulf o f Maine Ecosystem Dynamics 
Scientific Symposium and Workshop, G. T. Wallace and E. F. Brasch (eds.), RARGOM 
Report 97-1. Hanover, NH: Regional Association for Research on the Gulf of Maine, 
1997.

Lowe, J. A., M. H. Smith, B. M. Davison, S. E. Benson, M. K. Hill, C. D. O’Dowd, R. 
M. Harrison, and C. N. Hewitt, Physicochemical properties of atmospheric aerosol at 
South Uist, Atmos. Environ., 30, 3765-3776, 1996.

Martens, C. S., J. J. Wesolowski, R. C. Harriss, R. Kaifer, Chlorine loss from Puerto 
Rican and San Francisco Bay area marine aerosols, J. Geophys. Res., 78, 8778-8792, 
1973.

Martorano, C. D., Nutrient dynamics during blooms of Alexandrium Spp. in the 
southwestern Gulf of Maine, M.S. thesis, University of New Hampshire, Durham, NH,
1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

Michaels, A. F., D. A. Siegel, R. J. Johnson, A. H. Knap, and J. N. Galloway, Episodic 
inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and 
phytoplankton blooms, Global Biogeochem. Cyces, 7, 339-351,1993.

Milford, J. B., and C. I. Davidson, The sizes of particulate sulfate and nitrate in the 
atmosphere - A review, AirPollut. Control Assoc. J., 37, 125-134,1987.

Moody, J. L., J. W. Munger, A. H. Goldstein, D. J. Jacob, and S. C. Wofsy, Harvard 
Forest regional-scale air mass composition by Patterns in Atmospheric Transport History 
(PATH), J. Geophys. Res., 103, 13,181-13,194, 1998.

Mosher, B. W. Assessment of atmospheric non-point source nitrogen input to the Great 
Bay Watershed and Estuary. Final report submitted to the NH Coastal Program, Office of 
State Planning, Concord, NH, 1995.

Mukai, H., and M. Suzuki, Using air trajectories to analyze the seasonal variation of 
aerosols transported to the Oki Islands, Atmos. Environ., 30, 3917-3934, 1996.

Munger, J. W., S.-M. Fan, P. S. Bakwin, M. L. Goulden, A. H. Goldstein, A. S. 
Colman, and S. C. Wofsy, Regional budgets for nitrogen oxides from continental sources: 
Variations of rates for oxidation and deposition with season and distance from source 
regions, J. Geophys. Res., 103, 8355-8368, 1998.

Nagao, I., K. Matsumoto, and H. Tanaka, Characteristics of dimethylsulfide, ozone, 
aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean, 
J. Geophys. Res., 104, 11,675-11,693, 1999.

National Atmospheric Deposition Program (NADP), NADP/National Trends Network 
annual data summary: Precipitation chemistry in the United States for 1984, NADP/NTN 
Coord. Off., Natl. Resource Ecol. Lab., Colo. State Univ., Fort Collins, 1986.

NADP, NADP/National Trends Network annual data summary: Precipitation chemistry in 
the United States for 1985, NADP/NTN Coord. Off., Natl. Resource Ecol. Lab., Colo. 
State Univ., Fort Collins, 1987.

NHDOT, Traffic Volume Report 1997, The State of New Hampshire, Department of 
Transportation, Bureau of Transportation Planning, Concord, New Hampshire, 1998.

Owens, N. J. P., J. N. Galloway, and R. A. Duce, Episodic atmospheric nitrogen 
deposition to oligotrophic oceans, Nature, 357, 397-399,1992.

Paerl, H. W., Enhancement of marine primary production by nitrogen-enriched acid rain, 
Nature, 315, 747-749, 1985.

Paerl, H. W., Emerging role of atmospheric nitrogen deposition in coastal eutrophication: 
Biogeochemical and trophic perspectives. Can. J. Fish. Aquat. Sci., 50, 2254-2269,1993.

Paerl, H. W., Coastal eutrophication in relation to atmospheric nitrogen deposition:
Current perspectives, Ophelia, 41, 237-259,1995.

Pakkanen, T. A., Study of formation of coarse particulate nitrate aerosol, Atmos.
Environ., 30, 2475-2482, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

Pakkanen, T. A., R. E. Hillamo, P. Keronen, W. Maenhut, G. Ducastel, and J. M. 
Pacyna, Sources and physico-chemical characteristics of the atmospheric aerosol in 
southern Norway, Atmos. Environ., 30, 1391-1405, 1996.

Parrish, D. D., J. S. Holloway, M. Trainer, P. C. Murphy, G. L. Forbes, and F. C. 
Fehsenfeld, Export of North American ozone pollution to the North Atlantic Ocean, 
Science, 259, 1436 - 1439, 1993.

Peierls, B. L., N. F. Caraco, M. L. Pace, J. J. Cole, Human influence on river nitrogen, 
Nature, 350, 1991.

Pelley, J., What is causing toxic algal blooms?, Environ. Sci. & Technol., 26-30, 1998.

Pio, C. A., M. A. Cerqueira, L. M. Castro, and M. L. Salgueiro, Sulphur and nitrogen 
compounds in variable marine/continental air masses at the southwest European coast, 
Atmos. Environ., 30, 3115-3127, 1996a.

Pio, C. A., L. M. Castro, M. A. Cerqueira, I. M. Santos, F. Belchior, and M. L. 
Salgueiro, Source assessment of particulate air pollutants measured at the southwest 
European coast, Atmos. Environ., 30, 3309-3320, 1996b.

Pszenny, A. A. P., Galloway, J. N., Artz, R. S., Boatman, J. F. Global Biogeochem. 
Cyc., 4, 121, 1990.

Puckett, L. J. Identifying the major sources of nutrient water pollution, Environ. Sci. & 
Technol., 29, 408A-414A, 1995.

Robbins, R. C., R. D. Cadle, and D. L. Eckhardt, The conversion of sodium chloride to 
hydrogen chloride in the atmosphere, J. Meteorol., 16, 53-56,1959.

Roberts, J. M., Reactive odd-nitrogen (NOy) in the atmosphere, in Composition,
Chemistry, and Climate o f the Atmosphere, H. B. Singh (ed.). Van Nostrand Reinhold, 
New York, New York, 1995.

Saeger, M., et al. "The 1985 NAPAP emissions inventory (Version 2): Development of 
the annual data and modelers’ tapes." EPA Rep. 600/7-89-012a, U. S. Environmental 
Protection Agency, Washington, DC, 1989.

Savoie, D. L., and J. M. Prospero, Particle size distribution of nitrate and sulfate in the 
marine atmosphere, Geophys. Res. Lett., 9, 1207-1210, 1982.

Schlitz, R. J., and E. B. Cohen, A nitrogen budget for the Gulf of Maine and Georges 
Bank, Biological Oceanography, 3, 203-222,1984.

Schroeder, W. H., and P. Urone, Formation of nitrosyl chloride from sea particles in air, 
Environ. Sci. & Technol., 8, 756-758,1974.

Scudlark, J. R., and T. M. Church. Atmospheric input of inorganic nitrogen to Dc'aware 
Bay, Estuaries, 16, 747-759, 1993.

Scudlark, J. R., K. M. Russell, J. N. Galloway, T. M. Church, and W. C. Keene, 
Dissolved organic nitrogen in precipitation at the mid-Atlantic U.S. coast: Methods 
evaluation and preliminary data, Atmos. Environ., 3 2 ,1719-1728,1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l

Shipham, M. C., P. M. Crill, K. B. Bartlett, A. H. Goldstein, P. M. Czepiel, R. C. 
Harriss, and D. Blaha, Methane measurements in central New England: An assessment of 
regional transport from surrounding sources, J. Geophys. Res., 103, 21,985-22,000,
1998.

Shumway, S. E., A review of the effects of algal blooms on shellfish and aquaculture, 
Journal o f the World Aquaculture Society, 21, 65-104,1990.

Sievering, H., J. Boatman, J. Galloway, W. Keene, Y. Kim, M. Luria, and J. Ray, 
Heterogeneous sulfur conversion in sea-salt aerosol particles: The role of aerosol water 
content and size distribution, Atmos. Environ., 25A, 1479-1487, 1991.

Singh, H. B., and J. F. Kasting, Chlorine-hydrocarbon photochemistry in the marine 
troposphere and lower stratosphere, J. Atmos. Chem., 7, 261-285, 1988.

Slater, J. F., Source apportionment of chemical species in Greenland snow and fim, M.S. 
Thesis, University of New Hampshire, Durham, New Hampshire, 1999.

Slinn, W. G. N., A potpourri of deposition and resuspension questions, in Precipitation 
Scavenging, Dry Deposition, and Resuspension, Vol. 2 Dry Deposition and Resuspension, 
H. R. Pruppacher, R. G. Semonin, and W. G. N. Slinn (eds.), Proceedings of the Fourth 
International Conference, Santa Monica, California 29 November - 3 December, 1982, 
Elsevier, New York, NY, 1983.

Smayda, T. J., Novel and nuisance phytoplankton blooms in the sea: Evidence for a 
global epidemic, pp. 29-39, In: Toxic Marine Phytoplankton, E. Graneli, B. Sundstrom, 
L. Edler, and D. M. Anderson (eds.), Elsevier, New York, 1990.

Southwell, M., Quantitative determination of dissolved organic nitrogen in precipitation 
using cold collection and storage, Undergraduate Honors Thesis, Department of 
Environmental Sciences, University of Virginia, Charlottesville, Virginia, 1997.

Spicer, C. W., J. E. Howes, Jr., T. A. Bishop, L. H. Arnold, and R. K. Stevens, Nitric 
acid measurement methods: An intercomparison, Atmos. Environ., 16, 1487-1500,1982.

Stelson, A. W., and J. H. Seinfeld, Relative humidity and pH dependence of the vapor 
pressure of ammonium nitrate-nitric acid solutions, Atmos. Environ., 16, 993-1000,1982.

Stelson, A. W., S. K. Friedlander, and J. H. Seinfeld, A note on the equilibrium 
relationship between ammonia and nitric acid and particulate ammonium nitrate, Atmos. 
Environ., 13, 369-371, 1979.

Stone, R. G., Fog in the United States and adjacent regions, Geograph. Rev., 26, 111- 
134, 1936.

Talbot, R. W., A. S. Vijgen, and R. C. Harriss, Measuring tropospheric HNO3 :
Problems and prospects for nylon filter and mist chamber techniques, / .  Geophys. Res., 
95, 7553-7561, 1990.

Talbot, R. W., A. S. Vijgen, and R. C. Harriss, Soluble species in the Arctic summer 
troposphere: Acidic gases, aerosols, and precipitation, J. Geophys. Res., 97, 16,531- 
16,543, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 1 2

Townsend, D. W., Influences of oceanographic processes on the biological productivity of 
the Gulf of Maine, Rev. Aquat. Sci., 5, 211-230, 1991.

Townsend, D.W., An overview of the oceanography and biological productivity of the 
Gulf of Maine, pp. 5-26 In: The Gulf o f Maine. NOAA Coastal Ocean Program, Regional 
Synthesis Series,Townsend, D.W. and P.F. Larsen, (eds.), No. 1. 135 p., 1992.

Townsend, D. W., Sources and cycling of nitrogen in the Gulf of Maine, Journal of 
Marine Systems, 16, 283-295, 1998.

Townsend, D. W., J. P. Christensen, D. K. Stevenson, J. J. Graham, and S. B. 
Chenoweth, The importance of a plume of tidally mixed water to the biological 
oceanography of the Gulf of Maine, J. Mar. Res., 45, 699-728,1987.

Ulman, J. C., and V. K. Saxena, Impact of air mass histories on the chemical climate of 
Mount Mitchell, North Carolina, J. Geophys. Res., 25, 451-465, 1997.

U. S. Department of Commerce, Climatic Averages and Extremes fo r U. S. Cities, 
Historical Climatology Series 6-3, Eds. R. G. Quayle, R. S. Cram, and M. G. Burgin, 
National Climate Data Center, Asheville, North Carolina, 1995.

Unsworth, M. H., and A. Crossley, Consequences of cloud water deposition on 
vegetation at high elevation. In: Effects o f Atmospheric Pollutants on Forests, Wetlands 
and Agricultural Ecosystems, T. C. Hutchinson and K. M. Meema (eds.), Springer- 
Verlag, Berlin, 1987.

Valigura, R. A., Iterative bulk exchange model for estimating air-water transfer of HNO3 , 
J. Geophys. Res., 100, 26,045-26,050, 1995.

Vet, R. J., W. B. Sukloff, M. E. Still, and R. Gilbert, Canadian Air and Precipitation 
Network (CAPMoN) precipitation chemistry data summary 1983-1984, Report AQRB-86- 
001-M, 544 pp., Atmo. Environ. Serv., Downsview, Ontario, Canada, 1986.

Wang, T., M. A. Carroll, G. M. Albercook, K. R. Owens, K. A. Duderstadt, A. N. 
Markevitch, D. D. Parrish, J. S. Holloway, F. C. Fehsenfeld, G. Forbes, and J. Ogren, 
Ground-based measurements of NOx and total reactive oxidized nitrogen (NOy) at Sable 
Island, Nova Scotia, during the NARE 1993 summer intensive, J. Geophys. Res., 101, 
28,991-29,004, 1996.

Willey, J. D., and L. B. Cahoon, Enhancement of chlorophyll a production in Gulf Stream 
surface seawater by rainwater nitrate, Marine Chemistry, 34, 63-75,1991.

Williams, R. M., A model for the dry deposition of particles to natural water surfaces, 
Atmos. Environ., 16, 1933-1938, 1982.

Wilson, T. R. S., Salinity and the major elements of sea water. In: Chemical 
Oceanography, vol. 1, 2nd ed., J. P. Riley and G. Skirrow (eds.), pp. 365-413, 
Academic, Orlando, FL, 1975.

Yentsch, C. S., and N. Garfield, Principal areas of vertical mixing in the waters of the 
Gulf of Maine, with reference to the total productivity of the area, pp. 525-533, In: 
Oceanography from Space, J. F. R. Gower (ed.), Plenum, New York, 1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

Yoshizumi, K., and A. Hoshi, Size distributions of ammonium nitrate and sodium nitrate 
in atmospheric aerosols, Environ. Sci. Technol., 19, 258-261,1985.

Zhang, J. Atmospheric wet deposition of nutrient elements: Correlation with harmful 
biological blooms in northwest Pacific coastal zones, Ambio, 23,464-468,1994.

Zhang, J., and M. G. Liu, Observations on nutrient elements and sulphate in atmospheric 
wet depositions over the northwest Pacific coastal oceans - Yellow Sea, Marine Chemistry, 
47, 173-189, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 1999

	Atmospheric transport and deposition of water -soluble nitrogen to the Gulf of Maine
	Carolyn Estelle Jordan
	Recommended Citation


	tmp.1525704849.pdf.YNo9y

