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Foreword

This paper is designed to be the author’s Ph.D. dissertation. It is organized as follows:

Chapters 1, and 2 contain a short presentation of the specific area of C*-algebras in which the 

subject of this paper is placed. Chapter 3 contains a description of central sequences in certain 

C*-algebras. Chapter 4 discusses the relationship between central sequences and multiplicity 

free representations. This chapter also provides a description of certain C*-subalgebras of 

Continuous trace C*-algebras.
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Abstract

Central Sequences and C*-algebras

By

Hemant Pendharkar 
University of New Hampshire, September, 1999

We study central sequences of C*-algebras. We find connections o f the central sequences 

of a C*-algebra and its representations. More specifically, we prove the following results:

• Characterization of central sequences in certain C*-subalgebras of C ( X , M n) ,  where X  is

a compact Hausdorff space. We also state the conditions under which central sequences 

are trivial/hypercentral.

• A representation of the C*-algebra is in the point norm closure of the set of all equivalence 

classes of irreducible representation if and only if it is multiplicity free.

• For a C*-algebra A , all of whose representations are bounded by some fixed number, the 

following are equivalent:

1. A is a continuous trace C*-algebra..

2. Every central sequence in A  is trivial.

3. Irr(A, M n) is point norm closed in Rep(A, M n).

4. A  can be written as a finite direct sum of C*-algebras of the form C ( X ,M n ,~,/3)

where -  is an equivalence relation on X  and /3 :— » Un . Un is the set of n x n  unitary

matrices.

vii
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Chapter 1

Preliminaries

1.1 Introduction

Classification of C*-algebras and finding C*-algebraic invariants have always 

interested operator algebraists. In the past, some connections between central sequences and 

derivations, and automorphism groups of C*-aigebras have been established. It turns out that 

the notion of central sequences is a useful tool for classifying certain C*-algebras.

S. Sakai [13, 14] showed that every derivation of a simple unital C*-algebra is inner.

G. Elliot [4] has studied C*-algebras all of whose derivations are inner. An important step 

towards obtaining a classification theorem for C*-algebras using central sequences was taken 

by C. A. Akemann and G. K. Pedersen [1]. They established that a separable C*-algebra is a 

continuous trace C*-algebra if and only if every central sequence in it is trivial. They further 

showed that a derivation of a separable C*-algebra is implemented by a multiplier if and only 

if every summable central sequence is trivial. They went on to describe these C*-algebras as 

the direct sum of a continuous trace C*-algebra and a reduced sum of simple C*-algebras.

J. Phillips [11] established that a certain C* algebra, which is not a continuous trace 

C*-algebra, has an uncountable outer automorphism group. He also studied the relationship

1
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between the automorphism group of a separable unital C*-algebra and central sequences.

Continuous trace C*-algebras were first described by Fell [3]. His definition is not 

easy to check; for that matter it is complicated to remember. Furthermore, it is also 

difficult to determine whether every central sequence is trivial for a given C*-aIgebra.

Our primary aim is to understand separable unital C*-aIgebras whose central sequences are 

hypercentral. The goal is also to establish the relationship between central sequences and 

certain representations of the C*-algebra.

The collection of all equivalence classes of irreducible representation of a C*-algebra 

is called the spectrum. It is natural to ask, “when are two (irreducible) representations 

geometrically the same?”. Multiplicity theory came along addressing this question. Answering 

this question thus got reduced to classifying multiplicity free representation in terms of a 

suitable set of invariants.

In this work, we establish a connection between central sequences and multiplicity 

free representations. The C*-algebras in question are unital, separable, and have a bound on 

the dimension of all representations. This class of C*-algebras is a subclass of “completely 

continuous representation” C*-aIgebras.

We describe central sequences in certain C*-algebras. We also determine when central 

sequences are trivial and when they are hypercentral. We study the spectrum, topologized by 

the point norm topology, of a separable unital C*-aIgebra, whose representations are bounded

2
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by some fixed number. Using central sequences, we establish that for such C*-algebras, a 

representation is in the point norm closure of the set of irreducible representations if and only 

if it is multiplicity free. We also show that the set of irreducible representations is point norm 

closed in the spectrum if and only if every central sequence is trivial. Consequently, for any 

continuous trace C*-algebra, whose representations are bounded by a fixed number, the set of 

irreducible representations is point norm closed in the spectrum. We give a description of 

continuous trace C*-algebras whose representations are bounded by a fixed number.

3
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1.2 Definitions and Examples

Let H  be a complex Hilbert Space, and B(H)  be the algebra of all bounded linear 

operators on H .

Definition 1.2.1 A C*-algebra is a norm closed self adjoint subalgebra of B(JT).

Equivalently, it is a Banach algebra A  with an involution *: A  —> A ,  satisfying

1 . ( a * )  =  a

2 .  ( p  +  b )  — cl +  b

3. {XaJ  = Xa '

4 .(ab )  = b ‘a 

5 .1 1  a a  II =  11 a  II2

for every a, fee A,  and for every A e C

Throughout this paper, C*-algebras will be separable and unital with unit 1. 

Examples:

I. If H  is a Hilbert space then B(H)  is a C*-algebra, where the * operation is

the adjoint operation. If dimension of H  = n <  « , then B(H)  is the C*-aIgebra of all n x n

matrices.

4
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2 If X  is a compact Hausdorff space then C(X) the set of all continuous 

complex valued functions on X  , is a C*-algebra. The * operation is given by complex 

conjugation. This is a commutative C*-algebra.

3 If X  is a compact Hausdorff space then C ( X , M n) is a C*-algebra.

Definition 1.2.2 A representation of a C*-algebra A  is a unital *-homomorphism 

k  : A  —» B(H)  for some Hilbert space H , i.e. it is an algebra homomorphism and

7r(a*)=(7r (a )) \

Definition 1.2.3 Central Sequence.

A bounded sequence [an} in a C*-algebra A , is called a Central Sequence, provided 

II an x  — xan II —» 0, as n <=«, for each x  e. A .

Example:

Suppose [an} c  A  is a sequence that converges to 0. Then clearly [an} is a central 

sequence.

Another example of a central sequence is a  bounded sequence {an} in Z( A),  where 

Z( A ) is the center of A . Observe that if {an} and {bn} are central sequences then 

[an + bn} is a central sequence. In particular, a sequence {zn + wn} which is the sum of a null- 

convergent sequence {zn} and a sequence {wn} of elements in the center of A,  is also a 

central sequence. For suppose, x e  A .  Then

5
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II x(zn + wn) — (zn + wn )x II <11 xzn — znx  II + II xwn — wnx II —> 0, as n —» °o.

Definition 1.2.4 Trivial central sequence.

A central sequence in a C*-aIgebra A  is called a trivial central sequence provided, it 

can be written as the sum of a null sequence and a sequence of elements in the center of A .

Definition 1.2.5 Hypercentral sequence

A central sequence {an} in a C*-algebra A  is said to be hypercentral provided, for 

any central sequence {bn}, II anbn - bnan II—> 0 as n —» °o.

Remark: Clearly for a C*-algebra A , if all central sequences are trivial, then they are also 

hypercentral.

Proof. Suppose every central sequence in A  is trivial. Let [an} be such a sequence. To show 

that {an} is hypercentral. Let {bn} be any central sequence. Since {an} is trivial, we can 

write {an} = {zn + wn}, the sum of a null sequence [zn} and a sequence {vvn} of elements in 

the center of the C*-algebra. Now,

II bn (z„ + wn) -  (zB + vv„ )bn II <11 bnzn -  znbn II + II bnwn -  wnbn II.

The second summand on the right hand side is clearly zero for each n , and

II bnZn - z nbn II<11 bnzn 11+11 znbn II.

Now since {bn} is bounded and {z„} is null convergent, both the summands on the right 

hand side converge to zero as n —» °o. This implies that [an} is hypercentral.

6
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Questions. Suppose A  is a C*-aIgebra.

1. When is every central sequence in A  trivial?

2. When is every central sequence in A  hypercentral?

We will discuss the above questions for a  certain class of C*-algebras. We now 

introduce examples that provide the motivation for some of the ideas in this paper.

Example 1.2.6 Let A  = C([0,1],M2) , the C*-algebra of all 2 x  2 complex 

matrix valued continuous functions on the closed interval [0,1]. The norm of an element

/  e  A  is given by II /  11 = sup,e[0„  II / ( f )  II.

Remark: Every central sequence in A  is trivial.

Proof. Suppose {/„}= { n " } is a central sequence in .4. Then { /  }must
c r dn n n

asymptotically commute with every element o f A . In particular, { fa} must

asymptotically commute with the constant functions,

Pit) =

i.e. we have,

0 = limn_>„ II f np - p f n II

7
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II
( a n b An n f l 0" f l

°1
<an b A II = lim „ _  II

r o - b A
c dV " " 0\ 0 / 0 ° J A d A

n—
A 0 J

and

0 = limn̂  \\fnq - q f n II

= II

This implies bn —> 0, cn —> 0, and dn —an —» 0, as n —> 

Thus we can write,

b A  f  0 h
fn ~

a_
c d  \  n n i Cn d n ~ an

(  a b An n rQ r f 0 n '*n b A II = lim„. II
f - c  a —d An n n

cn dn \  n n J 0V 0 / 0V 0 A d A
n—

0 Cn\ n J

which is the sum of a null sequence and a sequence of elements of the center. Thus every 

central sequence in A  is trivial.

We can get interesting examples by looking at certain elementary subalgebras of

A .

Example 1.2.7 Let D  be a unital C*-subaIgebra consisting of diagonal elements 

in M 2, and let B  = [ f s  A:  / ( 0 ) e  D  }, where A  is the algebra in example 1.2.6.

For each n, define the mapping f n : [0,1] —»[0,1] given by,

/„ W = 0  

f r (f) = 4nr -1

0 < r  < —  
An

—  < f  <  —  
An 2 n

8
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Now for any element A in D , if a n (t) = f n (t) A for t e  [0,1], then the sequence 

{an} is a central sequence. It is enough to check in the neighborhood of 0. And in the 

neighborhood of 0, functions take values that are close to the algebra D . Now by the 

definition of a n, the elements in the sequence take values close to D  in the 

neighborhood of 0 (since A is an element of D). Since diagonal matrices commute, it 

follows that the sequence [an} asymptotically commutes with every element of A . Also

observe that the constant function p(t) =
"1 0^ "1 0^

° J
is in B . Taking A= p(t) =

0 0\ J

0" ri (T f l  o >11=11 —1 0\ 0
y 0 1V /

I > 0 as n —> °o.

By definition, a sequence [(3n} in A ,  is trivial if and only if it can be written as a 

sum of a null convergent sequence {z„} and a sequence {vv„} of elements in the center of 

A , i.e., {J3n} is trivial if and only if Pn —wn =zn. In the above example, the elements in 

the center of B  are functions that take values in the center of M , These are 2 x 2  scalar 

matrix valued continuous functions on [0, I]. It follows that {a n} is a non-trivial central 

sequence.

It turns out, (and follows from the theorem in this paper, which will characterize 

central sequences) that every central sequence in this algebra is hypercentral.

9
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Chapter 2

Representations

2.1 Spectrum

Definition 2.1.1 Let i t : A —> B ( H ) , be a representation of A  on a Hilbert space

H. Then 7t (A) is a C*-subalgebra of B(H ) . A representations is called nondegenerate, 

provided the norm closed linear span of [it ( A ) H ] = H .

Definition 2.1.2. Let it and cr be two representations of A  on Hilbert spaces H  

and K  respectively. Then, it and a  are said to be equivalent if there is a unitary 

operator U : H  K  such that cr(x) = Uit(x)U' for all x e  A .  This equivalence is 

denoted by it ~ G .

Definition 2.1.3. A  non-zero representation it is said to be irreducible provided, the

C*-algebra it {A )  is irreducible, i.e. it [A )  has no non-trivial invariant subspace.

Definition 2.1.4 An invariant subspace M for the C*-algebra s  (A )  is said to be 

cyclic, provided there exists a vector £ in H  such that the closed linear span of the

10
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vectors of the form j z ( x )  x s  A , is all of M . A representation7T is called a cyclic 

representation of A  on a Hilbert space H  provided, H  is a cyclic subspace for K . 

Note: A cyclic representation is nondegenerate.

Some notations:

Repf A  ) will denote the class of all representations of the C*-algebra A .

Irrf A ) will denote the class of all irreducible representations of A .

Irr( A , M n) / -  will denote the set of equivalence classes of irreducible

representations into M n for some fixed n.

Definition 2.1.5 A linear functional /  on a C*-algebra A  is said to be positive if 

f ( z z ) >0, V  z e  A .  If  /  (1) = 1, then /  is called a state.

Theorem 2.1.6 (Gelfand-Naimark-Segal)

Every C*-algebra A  is isometrically *-isomorphic to a C*-algebra of operators on some 

Hilbert space H .

When we write an irreducible representation K , we mean the unitary equivalence class 

[Tzr].

1 1
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2.2 Topologies

Definition 2.2.1 Let A  be a C*-aigebra. Then the set of all equivalence classes of

A

irreducible representations of A  (denoted by A ) is called the spectrum of A .

Definition 2.2.2 An ideal /  in A  is called a primitive ideal provided there exists an

irreducible representation k  of A  such that J  = kernel i t .

Definition 2.2.3 Let prim( A ) denote the set of all primitive ideals in A . Let S  be a

subset of the set of prim( A ). We define the closure of S to be the set

{m : m 3  P |y  }.
j e S

This defines a topology on the set of all primitive ideals of A  called the hull-kemel 

topology.

Consider the mapping,

A A

a : A  —> {ker7T : n  e A  } given by a(it)  = ker7T.

A

Remark 2.2.3.1 The range of K is given the relative hull-kemel topology, and A  is

A

topologized by pulling back this topology using the map a . Thus a subset of A  is open 

if and only if it has the form a~x (5) for some open subset S of prim( A ).

12
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Definition 2.2.4 Point-norm topology on A

A sequence of representations {rcn} of A , converges to a representation K in the 

point-norm topology provided Kn {a) —»K(a), for every a e  A .

13
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Chapter 3

Some Results on Central Sequences

In this chapter we characterize central sequences in certain C*-algebras. These 

results will be used later to establish a relationship between central sequences and 

multiplicity free representations.

Definition 3 .1 Let A  be a C*-algebra. Let S be a subset of A . We define the

commutant of S in A ,  denoted by S ', to be the set

S' = {ae  A:  as = s a , V s e  S } .

In particular the commutant of A  in A  is the center of A .

Theorem 3.2 Let A  be a unital C*-subalgebra of M k . Let X be a compact

Hausdorff space, let x0 be a limit point of X, and let B  be the C*subalgebra of 

C( K ,M k) where given by,

B= { f  & C(X ,Mk) I / ( x 0) e  A} .

L et{/n} be a bounded sequence in B . Then {/„} is a central sequence in B  if  and only if

1. for some sequence of scalar-valued functions Xn , ! ! / „ -  AnIk II —> 0 uniformly on

compact subsets of X \ {jc0 }, and

14
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2 . distance ( /„ , A ) —» 0 uniformly on X.

Proof : Let {/„} be a central sequence. Then,

sup ,^  II /„ (t)g(t) — g ( t ) f n (t) II -» 0 for every g e  B . Suppose distance ( f n, A'  ) does not 

go to zero. This implies that s u p ^  in f ^ .  II f n (r) — a II does not go to zero. Thus there 

exists an e > 0 and a subsequence {nt } such that, for every k,

suPkx inf*** II fnt 0 ) ~ a II > £-<

i.e. 3 { ^ } c X ,^  =  1,2,3,... such that, infaeA. II f nt (tk) - a \ \>  £.

Therefore 3 s' > £ such that, V a e  A ' , II f nt (tk) — a II > e '. Using the compactness 

argument, we can find a convergent subsequence { / (tk)} a  M k that converges to some 

w e M k. Then distance (w, A ' ) = lim̂ . ,,, distance ( /  (tk),A' )> £'.

This implies that w£ A ' . Therefore we can find an a e A  such that, wa *aw,

i.e. a limt_*. /„ t (tk) I i m ^  f nt (tk )a. This implies that II f nt (tk )a -  afnt (tk) II does

not go to zero. Define g e  B  such that, g(t) = a, t e  X. Then clearly,

II /„, «*(0 -  *«/„, (0 II > II /., (f, )s(h )-g(.h >/„. (h) II

which is bounded away from zero. This is a contradiction since {/„} is a central

sequence. Hence condition (2) of the theorem is true.

It remains to show that condition (1) is true. We want to show that distance 

(/„  ( t ) ,Mk') —> 0 uniformly on compact subsets of X \ {x0}. Suppose not. This implies

that there exists a neighborhood U^  of xQ such that on X \  U , distance ( / n (r), C -Ik )

does not go to zero uniformly, i.e. s u p ^ ^  infaeW (C). II f n( t ) - a  II does not go to zero.

15
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Therefore there exists an e > 0, and a subsequence {ny} such that for each k,

SUPrjZXUĴ  II fn, ) ~ a H >

i.e. distance ( /^  (ry.), Ik) > e.

Again using the compactness argument, we can find a convergent subsequence which we 

will still call { f  (t), that converges to some w e  M k. Then,

distance (w,C • /*) = lim; , . distance (/„ (fy), Ik) > £. Thus w e  M k'. We can find an 

a e  M k such that aw & wa. This implies that II /  (tj)a — afnj (ry) II does not go to zero. 

Define using Urysohn’s lemma, a continuous function h : X —> [0,1] such that, 

h(t) = 1, t e  X  \ U Xn and h(x0) = 0, where U^  is a neighborhood of xQ. And now define, 

g : X —» M k given by g{t) = /z(f)a.Then clearly g e  B , and

SUP,e.Y II fn, (0 g (0  -  8(0  fn, (0  Ĥ H fn, (* j)g(t j) ~ U j) H ̂

This is a contradiction, since [ f n} is a central sequence.

Conversely, let us suppose that conditions (1) and (2) hold. We will show that 

{/„}is a central sequence. Let g e  B , and let £ > O.Then using continuity we can find a

neighborhood U  of x0such that, whenever t e  U, we have II g(t) — g(xQ) ll<£. Also by

condition (1), for t e X \ U , we have II f n (t)g(t) -  g( t ) fn (t) II —> 0 uniformly. Now,

II fn (t)g(t) -  g(t)fn (0 II =11 fn (0(g(0 ~ g(X0) + g(X0)) -  (g(t) ~  g(xQ ) + g(xQ ))/„ (t) II

Using boundedness of the sequence {/„}, we can find some positive number M  such that

II /„  II < M,  V«. By condition (2), we know that the sequence takes values close to the

16
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commutant of A.  It follows now from triangle inequality that {/„} is a central sequence.

Theorem 3.3 Let A  be a unital C*-subalgebra of M k . Let x0 be a limit point

of X. Also let B  = { /  e  C(X, M k): f ( x Q) e  A  }. Then every central sequence in B  is 

hypercentral if and only if A' is abelian.

Proof: Suppose A  is abelian. Let { f n} and {g„} be two central sequences. Let U be a 

neighborhood of .r0. We know that, [ fn} and {gn} are close to scalars when restricted to 

X \ U (since X \ U  is a compact subset in X). Hence they commute asymptotically when 

restricted to the compact subset X \ U . In the neighborhood U of jc0 , the functions take 

values close to the commutant of A , i.e.,

II fnSn - Snf n  ^ SUp,eXVf/ II /„ ( t)gn (t) ~ g n (t) f n (t) ll+SUPK{/ II /„ ( t )gn (t) ~ g n ( t ) fn (t) II.

The two summands are uniformly small. This gives that the sequence is hypercentral.

Conversely, suppose that the commutant of A  is not abelian. Let {tn} be a 

sequence in X such that tn —» xQ. and let F  be the neighborhoods of tn ,n = 1,2,3... that 

do not contain x0. Choose a,b in the commutant of A,  such that ab & ba. Also, using 

Urysohn’s lemma, define continuous functions

/„ : X [0,1] such that /„ l*Vf = 0 and /„  (f„) = 1.
ln

Then the sequences a n (r) = f n (t)a and (r) = f n (t)b are central sequences that do not

commute asymptotically. For,

17
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II a j n  ('„ ) ~ Pna n ('» ) H = II ab ~ bCl II /I = 1,2,3,... 

which is clearly not zero. Hence if commutant of A  is abelian, then every central 

sequence is hypercentral.

Theorem 3.4 Let A  be a unital C*-subalgebra of M k . Let xQ be a limit point of

X. Also let B  = { /  e C ( X ,M k): f ( x 0)& A  }. Then every central sequence in B is trivia! 

if and only if A' consists of scalar multiples of the identity. (In other words; The algebra 

B  has nontrivial central sequences precisely when A  is a proper subalgebra of M k.

Proof. Suppose A  is not all of M k . We can use the functions defined above in the 

second half of the proof of Theorem 3.4 to construct a non-trivial central sequence. 

Choose a non scalar matrix a e  A ’ and define a n (r) = /„ (t)a . Then {an (r)} is a central 

sequence. This sequence is not uniformly close to the scalars since,

« n( U -
' 1  0 " 0 "

11=11 a -
0  1

V )
0  1V J

I > 0, n = 1,2,3,.... (as a is a non-scalar matrix).

Conversely, suppose every central sequence is trivial. We will show that A  is all 

of M k . Using the Theorem 3.2, we know that if { f n} is a central sequence, then

1 • II fk  (0  — K  (Of„ H —> 0 uniformly on compact subsets of X \ {x0} and

2. distance( f n(t), A')  —» 0 uniformly on X.

But by the hypothesis, we get that distance (A ' , Scalars) goes to zero. This implies that 

A' is the scalar multiples of the identity.

18
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Corollary 3.5 (To Theorem 3.2) Let A  be a unital C*-subalgebra of M k . Let C

be the C*-subalgebraof C(({1 — —} u  {l}),Mt ), j  =  1,2,3,—given by
j

C  = { / : { 1 - - } u { 1 } ^  M k l / ( l ) e  A} .
J

Let {/„} be a bounded sequences in C . Then [ f  n} is a central sequence in C if and only 

if there exists a sequence of scalar valued functions \  such that

1- il /„  (0 ~ \  ft —> 0 uniformly on compact subsets of {I — —}, and
j

2. distance ( / n (t),A'  ) —> 0 uniformly on {1— —} u  {1}.
j

Remark 3.5.1 When X = {1 — —: j  -  1,2,3,...} u  {1} and xQ = I , then
j

X \{x0} = {l ——: j  — 1,2,3,...}, and compact subsets of X \{x0} are just finite sets.
j

Uniform convergence on finite sets is the same as pointwise convergence. Therefore 

condition (1) above can be written as follow:

I . There exists scalar valued functions O’) , such that

II /„(1 — —) — \ ( J )  II—» Oas n —» “  for every j.
j

Corollary 3.6 Every central sequence in C is hypercentral if and only if A' is

abelian.

19
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Corollary 3.7 Every central sequence in C  is trivial if and only if A  consists of

scalar multiples of the identity.

Definition 3.8 Let A  be any C*-algebra. Let jr,7Ul ,7T2,7r3,...: A  —> M k be

disjoint irreducible representations such that 7tn(a) —» iz(a) V a e  A.

Then we define p(A) = {7C{a)@7Cl(a)©7U1(a)®7C3(a)@... : a s  A }.

Theorem  3.9 Let p(A)  be as defined above in 3.8. Then p(A)  is * - isomorphic

to the C*-algebra C in Corollary 3.5.

Proof: Define the mapping <p : p(  A ) = {7r(a)@7Cl (a)©  7T2 (a)®  7r3(a)© ...} —» C =

{ /  :{ 1 -—}U{1} -> M k I / ( I ) e  7v(a) }, given by 
n

0( 7t{a) ©Jix{a )© K ^ a )© K i {a) ©...) = f a where, f a( \ - —)=JCn(a), n = 1,2,3,4,... and
n

/„ (  1) = K{a). Then the map is clearly well defined and is a C*-homomorphism. Also the 

map is one to one. For suppose, f a = f h, a, b e  A.  Then

f a (1 —-)  = /*( 1 -  —), for each n. This implies that Kn (a) = n  (b), for each n. Hence 
n n

C7t(a) © k x (a ) © K f a )  © rc3(a) ©...) = (iz{b) © 7r, (i>) © n 2(jb) © 7t3(b) ©...).

Thus the C*-algebra p(p(A)  is the C*-subalgebra

{/„ : { 1 -—}u{l} -» M k such that /„ ( l ) e  K(A) : a e  A}  of C . 
n

We will now show that p(A)  3  C.

20
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Since i tx is disjoint from K , there exists an a e  A such that 7t(a)= 0 and 7r,(<z) = 1. Also 

since izn (a) —»jt(a) = 0 there exists an N  such that n > N  implies that

[I k„ (a) II < —. Let g be a continuous function on the reals such that g I , = 0 and 
n 2 [ o . I ]

4

g I . = 1, e > 0 (small).
[ r e.-)

Let b =  g(a * a). Then we get that k x (b) = I . And for n > N  we have II 7tn (a * a) II < —.
4

Therefore

II Kn (b) II =11 Kn (g(a * a )) II=11 g(7tn (a * a)) II =  0.

Using disjointness again for 2 < j  < N , we can find a c  e  A  such that n x (c) = 1 

and 7tj (c) = 0. Let x  = be. Then 7r, (x) = 1 and k (x) = 0, j  = 2,3,4,.... Now using the x

above we get that

p(x)p(A) = {0© ^,(<3)© 0© 0© ...l<2e A}.

= {0© T © 0@ ...I T e  M k}.

= Bx (say).

Thus p(A) 2  Bx. Continuing the same way for each ic ■, j  = 2,3,4,... we get that 

the set Bj  = {0® 0...© T  © 0© ...l T e  M k} c  p(A).Now since p ( A ) is a C*-algebra, 

we get that p(A) contains the norm closed span of D = {0© 7j © 2”, ©... I Tn —» 0}.

Now suppose /  : {1 — — }u{l} —> M k such th a t/( l)  e  7V(A). Write
n

f  = {^,5, ,^2,...} where sn s e  k (A). Choose a we A such that 7c(w) = s. Then

21
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clearly /  -  p(w) s  D  c  pG4).This implies that /  e  £> c  p(w) + p(^4) c  p(yl). Thus 

p ( A ) is isomorphic to C.

22
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Chapter 4

Some Applications

4.1 Hypercentral Sequences

Definition 4.1.1 A representation it of a C*-algebra A  is said to be multiplicity

free provided 7T(A)' is abelian.

Definition 4.1.2 Suppose jt is a representation of a C*-algebra A  on a. Hilbert

space H. Then the dimension of the representation it is the dimension of the Hilbert 

space j t(A)H.

Theorem 4.1.3 Let A  be a unital separable C*-algebra. Let N  be a fixed

natural number such that, dimension it < N  for every irreducible representation k  of 

A . Then the following are equivalent:

(1) Every central sequence in A  is hypercentral.

(2) If a representation it is in the point norm closure of Irr(A,M k),  k < N  , in 

the set of all representations of A , then n  is multiplicity free.

Proof. Suppose every central sequence is hypercentral. Let it be a representation of

23
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A,  in the point norm closure of IrrC ^M *) for some k < N . If k  belongs to 

Irr(A , M k) ,  then there is nothing to prove, so suppose it does not. Then we can let 

[n:n} be a sequence of pairwise disjoint irreducible representations in l r r (A,Mk) 

such that, 7tn(a) —» 7t(a), V a  e  A . To show that K is multiplicity free, by Definition 

4.1.1, we must show that n{A)' is abelian.

Consider the C*-algebra

p(A)  = { ff (a )@ ^ (f l)© r2(fl)^3(f l)© ...:f ls  A  }.

Then by Theorem 3.8, p(A)  is *-isomorphic to a C*-subalgebra of

C = { /  : {1 — —} u  {1} —» M t I / ( l ) e  7T( A)}.  But then, every central sequence in p(A) 
n

is hypercentral. Using Theorem 3.9 and Corollary 3.6, we get that 7t(A)' is abelian.

Conversely, let us suppose that not every central sequence is hypercentral.

We will show that 7t(A)' is not abelian for some jz . Let [an} be a central sequence

that is not hypercentral. Then there exists a central sequence {bn} and an e > 0 be such

that, after restricting to a subsequence if necessary, II anbn —bnan II > £ .

Using GNS construction, for each n we can find an irreducible representation Kn such 

that

II K n  ( a n b „  —  b „ a n  ) H = H n b _ ~ II > £n ^ n n n n '  n ft n n

where Kn: A  —> M k(n), 1 < k(n) < N.  (A:(n)} is a sequence in {1,2,3,..., N}.  Let {£} be

the constant subsequence. Passing to the corresponding subsequence, we get that

Kn : A —> M k ,n = 1,2,3,...

24
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By using the compactness argument we get that (after passing to a subsequence 

if required) Kn (a) —> rz(a) for some k  and for each a e  A . As before, we can define

the C*algebra p(A) = {7r(a)@7Cl(a)®7V2(a)7C3(a)©. . . :aG A} .  Also note, the

central sequences {p(an)},{p(bn)} are not hypercentral. Now once again using the

Theorem 3.9, we get that tt(A)'  is not abelian.

25
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4.2 Trivial central sequences

In this section, we give the description of a certain subclass of continuous trace 

C*-algebras. Akemann and Pedersen [1] have characterized continuous trace 

C*-algebras using central sequences. Their result states that a separable C*-algebra is 

continuous trace if and only if every central sequence in it is trivial. The C*-algebra 

need not be unital.

Lemma 4.2.1 Suppose A  is a separable unital C*-algebra, and suppose k  is a

finite dimensional irreducible representation of A . Let E c  Irr ( A ) such that

7T£ E “ (closure in the spectrum, see remark 2.2.3.1). Then there is an a s  A  such that 

7r(a) =  1 and for each p e  E, p (a )=  0.

Proof. Since it £ E " , it follows from definition 2.2.3 that E ker p  cz  ker7T.

Hence there exists a b e  A,  with 7t(b) ^  0 and for every p e  E, p(b) = 0. However via 

unitary equivalence, we can assume that k  : A  —» M n. Since it is irreducible, we must 

have k ( A )  = M n. Since 0 &Tc(b)e M n, 3 s l, t l,...,sn,ta e  M nsuch that,

n

^ s kK{b)tk = L  Since 7Tis onto, there exists cl , d l,...,cn,dn e A  such that,
i=I

n

7t{ck ) = sk, Tt{dk ) =  tk , l <  k  <  n. Let a  =  ^  ckb d k. Then Jt(a) =  l . And for each
*=i

p e  E, p{a)  = 0. We can get 0 < a < I by replacing a with f ( a ' a ) ,  where
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f i t )  =  m i n { r , l } .

Definition 4.2.2 Suppose X is a compact Hausdorff space, n is a natural number 

and ~ is an equivalence relation on X such that ~ is a closed subset of X xX . Also 

suppose P :— > Un, where Un is the set of unitaries in M n, is a map such that 

V( x , y ) , ( y , z ) e ~ ,  P ( x , y ) p ( y , z ) e  P(x, z)C.

Then we say that (X, P,n)  is an equivalence system. We define,

C(X, ~, p , M n) = { f e  C(X, M J  : /(* )/? (* ,> ) = P ( x , y ) f ( y ) } .

We say (X, ~,P,n)  is regular, if for every

x e  X, for every T e  M „ ,3 / e  C(X, ~, P , M n) such th a t / (x )  = 7\

Note: We do not yet know whether every equivalence system is regular.

Lemma 4.2.3 Suppose (X, ~, P,n)  is a regular equivalence system, and B  a

unital C*-subalgebra of C ( X , P , M n) such that,

1. for every x  e  X and every T e M n there is a g  e  B  such that g(x) = T,  and

2. for every x, y  e X, if x & y, there exists a g e  B  with g(x) = 0, g(y) = 1.

Then B = C ( X , ~ , p , M n).

Proof: Note that any pure state (p of C(X, ~, P , M n) can be extended to a pure state 

of C ( X, Mn) , and can be represented by an r e X  and a unit vector e e  C" as

<P(f) = (f ( x ) e , e), V  /  e  C(X, M „).

27
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However, since /  t-» / ( x )  is an irreducible representation on C ( X , ~ , ( b e c a u s e  

of regularity), it follows that every functional cp represented in terms of a pair (x,e) as 

above, is a pure state on C(X, ~, P , M n). Hence the set of pure states on 

C(X,~, p , M n), being a continuous image of the compact set X x { e e C "  :ll e 11= 1}, is 

closed in the weak* topology. Suppose now that (p,y/ are pure states on 

C(X ,~,/?,M „) with

(p{f)  = ( /(x )« , u) andi( f ( f )  = ( /(y )v , v) for x, y  e  X and u, v are unit vectors in C".

Suppose ( p on C (X ,~ ,/3 ,M „). Then there exists an / e  C(X,~,/3,M „) 

such that (p(f)  We want to find a g e  B  such that (p(g) If x is  not

equivalent to y , then by (2), there exists a g e  B  with g(x) = 0 and g(y)  = 1. Hence 

<Pig) =Oandi//'(g) = 1. So ̂ (g) ^i/r(g). On the other hand, if x ~ y, then by (1), we 

can choose a g e B  with g(x) = / (x ) .  Since g e  C(X,~,/3,M n) and x ~ y, It 

follows that g(y) = f ( y ) -  Hence cp(g) = 9 ( / )  ^ y { f )  =y(g) -  Hence B  separates 

the closure of the pure states on C(X, ~, /?, M n). And by the Stone-Weirstrass 

theorem of J. Glimm [6], B  =C(X, ~,

Proposition 4.2.4 Suppose, A  is a unital C*-algebra and n is a natural number. 

The following are equivalent:

1. Every irreducible representation of A is n-dimensional.

2. A  is *-isomorphic to C(X,~, (3,Mn) for some regular equivalence system 

(X ,- ,£ ,« ) .

Proof.: (2) implies (1).
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It follows from the characterization of the pure states of C(X, (3,Mn) given 

in the proof of Lemma 4.2.3, combined with the uniqueness part of the GNS 

construction that every irreducible representation of C(X, /?, M n) is unitarily 

equivalent to a representation given in terms ofan x e X  by / h  / ( x ) .  Hence every 

irreducible representation of C(X,~, is n-dimensional.

(1) implies (2).

Suppose every irreducible representation of A is n -dimensional. Suppose 7ris 

an n - dimensional representation of A. Then jz is the direct sum of irreducible (thus 

n-dimensional) representations. Hence tz is irreducible. Thus

Irr( A,  M n) =  Rep( A ,  M n).

Let X = Irr( A ,  M n) with the point norm topology. Since

Irr( A , M n) = Rep ( A , M n), X  must be compact. Suppose 7T, p  e  X. We say that

K ~ p <̂> 3 a unitary u, 3 iz{.) = u.'p(.)u. Thus ~ is an equivalence relation on X. If

Ttk ~ p x for some nets {7Cx },{px } and p k —» p  and k - k —>7V, then there exists a net of

*
unitarys {ha }such that ux 7ix (.)ux = p x. But the set {«e M n : u is a unitary} is 

compact. So there exists a convergent subnet u^ —> u for some unitary a. Thus 

uiz(.)u = p. Hence ~ is closed in X x X. For each K , p e X ,  choose /?(7r, p)  = uJzp, 

unitary, i.e. uK p p =  p ( . ) .  Then suppose that p  ~ T .  Then up T'p(.)up T = t ( . ) .

Hence up^u.K p K(.)ua pup z = t( .) . But we also have = t( .) . Thus

=  K . p “ p .r"^ .r’ ,p « p ,A 1k.x )  =  * ( • ) •
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But range K —M n so uK pup zuKZ e C. Hence uKpupxuttx e  CuKS. Now define the 

mapping a  : A  —»C (X ,M n) by a{a)K = /r (a). Then clearly a (  A ) c z C ( X , M n,~,u).  

However a(  A )  satisfies the hypothesis of Lemma 4.2.3. Thus

a ( A ) = C ( X , ~ , P , M n).

Now k e ra  = ^„ eirru.M.) ker7T = ker;r = {0}. Thus a  is one to one. It follow

that a  is a *-isomorphism from A onto C(X, (3,Mr ).

Proposition 4.2.5 Suppose (X, (3, n) is a regular equivalence system with X

metrizable. Then every central sequence in C(X, j3, M „) is trivial.

Proof. Suppose [ f k} is a central sequence in C(X, M  n).

Claim: lim *^ sup distance ( f k (x), C • 1) = 0.

Assume via contradiction that the claim is false. Then, by restricting to an 

appropriate subsequence if necessary, we can assume that there is an £ > 0 and a 

sequence {xk} in X such that distance (f k (xk), C • 1) > £ , for k = 1,2,3,.... Using the 

compactness of X, we can also assume that xk —> x  for some r e X .  Suppose y e  X. 

Then { f k (y )} is a central sequence in M n, and hence distance ( f k (y), C • 1) -» 0. 

Thus there exists a positive integer k0 such that, k > k Q=> distance ( f k (y),C • 1) < £. 

If xk ~ y, then f k{xk) ~  f k(y), f k e  C(X. ~ , p , M n),

so distance (f k (y),C • 1) =  distance ( f k (xk ),C • 1). It follows that, if xk ~ y, then 

k < k0. Thus only finitely many xk ~ y for any particular y e  X. It follows that we
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can find a subsequence, which we will still call {x,.} such that for all 1 < k  < j  we 

have, x is not equivalent to xk and xk is not equivalent to x ]. It follows from the 

proof of Proposition 4.2.4 that we can assume X = Irr(C(X, ~, P, M n)) and ~ is the 

same as unitary equivalence. Thus x i , j  = 1,2,3,... are inequivalent representations of 

C(X, }3, M n) and xk —> x  in the point norm topology. It follows that no xk is in the 

closure (in the spectrum of C(X, ~, p,  M n)) of {x; : j  * k } .  Thus, by Lemma 4.2.3, 

for each k  there is a gk e  C(X, ~, P, M n) such that,

1- **(**) = 1

2. g t (x7-)= 0  for j * k .

Define i t : (C(X, ~, (C*-product, i.e. bounded sequences)
t=i

by ? r(/)  = { f ( x k )}7=i • By considering 7t(gk) we see that the range of k  contains

: ILAjt II—> 0}. On the other hand, since xk —> x ,  it follows

-  | 0
that the range of k  is included in {{A*} e  JQ  M n : lim Ak exists.} := B . We will show

that the range of it is B .

Suppose {Ak} e B , and Ak —> A. It follows from regularity that there is an 

/  e  C(X, ~, p,  M n) such that f ( x )  = A. f ( x k) —> / ( x )  = A. It follows that

{Ak} -  t t ( / )  e  c  range k . Hence {Ak} e Tt(f) + range n  = range K. Hence

range 7t = B . However, if D  is the commutative C*-aIgebra of all convergent 

sequences in C, then B is isomorphic to M n( D ) or M n(C(Y)) for some compact 

Hausdorff space Y. Hence range ft has the property that every central sequence is
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trivial. Also the center of B  is the set of all convergent sequences of scalar multiples 

of the identity matrix. Since [ f k} is a central sequence in C(X, ~, (3, M n),

[iz(fk)} must be a central sequence in B , and thus must be trivial. Hence there is a

natural number k such that, for some {Ay -1} in the center of B ,

II* ( / * ) - V i "  < § •

£
In particular, looking at the k ,h coordinate gives II ( f k) — A; 1II < —; which contradicts

distance (f k (xk ),C • 1) > e . This proves the claim, i.e.

sup x X  distance ( f k ( at) ,  C -1) =  0.

Suppose T  e  M  n, and choose X e. C such that IIT — X 1II= distance ( J ,  C l ) .  Then if t„ 

is the normalized trace on M n,

\ rn(T)-X\<\ \  t n l l l i r - A l l l =  distance(T,C-1), 

so, II T  - t „  (T)l II <11 T -  X 1II + 1X - r „  (T) I < 2 distance (T,C • 1). It follows that if 

/  e  C(X, ~, (3, M n) then, the function x nf  : x  i—> xn (f { x )) ■ 1 is also in 

C(X, ~, p,  M n) since unitarily equivalent matrices have the same trace. Also Tnf  is 

in the center of C(X, ~, (3, M n) . Moreover, we have

11 f - * n f  II =  suP *e x  11 / W - ^ C / C ^ - l l l ^ s u p ^  distance ( / (x),C • 1).

It follows that ( t  nf k } is a sequence in the center of C(X, ~, /3, M n) and it follows 

from the claim that II f k - r  nf k II —> 0. Hence [ f k } is a trivial sequence.

Theorem  4.2.6 Suppose Af is a natural number and A is a unital separable C*-
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algebra, such that every element of Irr( A ) has dimension at most A/'. Then the 

following are equivalent:

(1) A  is a continuous trace C*-algebra.

(2) Every central sequence in A  is trivial.

(3) Irr(^4, M k) is point norm closed in Rep( A , M k), k < N . .

(4) A  is a finite direct sum of C*-algebras of the form C(X, M k

Proof: (1) is equivalent to (2). [1, Theorem 2.4].

(2) implies (3).

Let k  be in the point norm closure of irreducible representations of A . Then 

we can find a sequence of irreducible representations {izn} such that

Kn {a) —> 7t(a), V ae  A.  Again we can define the algebra p ( A ) as in the proof of 4.4. 

Using the hypothesis we get that every central sequence in p  ( A)  is trivial. Now using 

Theorem 3.8, we get that 7t{A)' consists of scalar multiples of identity or K is onto. 

This implies that k  is irreducible.

(3)implies (4).

Let J  = {k : I < k < N,  Irr(y4, M k) ^  0}. It follows from (3) that Irr( A , M k) is 

point norm compact in Rep(y4, M k) for each f c e / ,  since Rep(j4, M  k) is point norm 

compact. Suppose k , j s  J , k *  j. Suppose 7T<= Irr(^4, M k) and p e  Jxv(A, M j=).
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Then there exist an a& A ,0<  a < \ such that it {a) = 0, p(a) = 1, since p,7t are 

clearly disjoint representations. Let U  p = j r  e  Irr(A,My.) :ll p(a)—r(a)\\< .

Since p(a) = 1 and a > 0 we have for every r  e l / . ,  0 < r(a)  and 1 -  r{a) < —. Thus
9 3

2
— < T(a). If 0 < g < 1 is a continuous function defined on the real numbers such that

8 *[0.1/31 = ,[2/3.-)= L Then i t (g(a))=  Oand r(g(a)) = l , V t e  Up. Note, Up is

point-norm open. Denote g(a) by x p . Note that xp >0. Fix it.

Then p : p  e  Irr( A, M y)j forms an open cover of Irr(A,My) . Thus there exists

.v

p , , p , ,..., p s such that Irr(A, M j ) c  ( J UPm . Let x = x P] + x p̂  +... + x Pt.
m —I

Then it(x) = 0 and for each p e Irr(.A,My), p{x)>  1 (since p  e  U Pm, and p{xPm )=  1, 

for some m.). Again using our function g , we have it(g(x)) = 0 and for each 

p e  Irr(A,M y.) , p(g(x)) = g(p(x)) = 1. Call g(x) = ykJ. Let yx = g J y x. . .

Then yK > 0,it(yn )= 0 . And for every y e . / \ {£}, Vp e  Irr(A,M y), pCy,,.) = I.

Now let

VK = j a e  Irr(A,M t ) II cr(yff) - ^ ( y ff) l l < ^ | .

Then VK is a point norm neighborhood of it in Irr(A, M k). SinceTrCy,,.) = 0, we have

O^crCy,,.) <- j ,V<re VK. Let zK = g(y*)-  Then for every a s  VK,

c7{zk ) = cr(g(y„ )) = g(<T(y,)) = 0 

and V j e  J \ { k } , V p  e  Irr(A,Mj),
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p f a ) =  P ( g ( y * )) =  g ( p ( y K)) =  i-

Then f a  : k  e  \n (A ,M k)} is an open cover and has a finite sub-cover, say V ,..., .

Let b = zKi ■ zK, ■ zKt. Then for every it e  Irr(A, M k), it{b) =  0. And for every

j  e  J  \  {k}, Vp e  Irr( A, M }), p {b) = 1.

Since every element of Irr( A)  is unitarily equivalent to an element of Irr(A, M k),
ke J

it follows that O ker7r = {0}. For each j e  J,  define i t ; = V e , it and let
I I  1 1  J -£-iaeU z(AM  )

jre ( J  Irr( A M t ) 
keJ

p  = jTtj. Then p  is one-to-one.

Hence A is isomorphic to p  (A),  and the preceding arguments show that 

p(A)  = j it j (A ). Moreover, it follows from the definition that for each y e / ,

every irreducible representation of itj (A) is j  — dimensional. Thus (4) now follow 

from Proposition 4.2.4.

(4)implies (2). This follows from Proposition 4.2.5.
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