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A B S T R A C T

T opics in  C h a o tic  S ecu re  C o m m u n ica tio n

by

Andrew T . P arker 
University of New Hampshire, September, 1999

Results in nonlinear dynamics and chaos during this decade have been applied to prob­

lems in secure communications with limited success. Most of these applications have been 

based on the chaotic synchronization property discovered by Pecora and Carroll in 1989 [37]. 

Short [44, 45, 48] demonstrated the effectiveness of nonlinear dynamic (NLD) forecasting 

methods in breaking this class of communication schemes. In response, investigators have 

proposed enhancements to the basic synchronization technique in an  attempt to improve the 

security properties. In this work two of these newer communication systems will be analyzed 

using NLD forecasting and other techniques to determine the level of security they provide. 

It will be shown that the transmitted waveform alone allows an eavesdropper to extract the 

message.

During the course of this research, a new impulsively initialized, binaxy chaotic commu­

nication scheme has been developed, which eliminates the most significant weaknesses of its 

predecessors. This new approach is based on symbolic dynamics and chaotic control, and 

may be implemented using one-dimensional maps, which gives the designer more control 

over the statistics of the transmitted binary stream. Recent results in a  certain class of 

one-dimensional chaotic maps will be discussed in this context.

The potential for using NLD techniques in problems from standard digital communica­

tions will also be explored. The two problems which will be addressed axe bit errors due

xii
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to channel effects and co-channel interference. It will be shown that NLD reconstruction 

methods provide a way to  exploit the short-term determ in ism  that is present in these types 

of communication signals.

xiii
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C hapter 1

Background

1 .1  In tro d u ctio n

In  recent years there has been much interest in the potential application of results in  n o n lin ear  

dynamics to secure communications. In  this chapter, some of the essential developments in 

the study of nonlinear dynamics and chaos which have applications to co m m u n ica tio n  will 

be reviewed. We begin in  Section 1.2 with the discovery by Pecora and Carroll [37] that two 

chaotic systems may be synchronized via a unidirectional coupling. Early attem pts to use 

this property in the context of a  transm itter and receiver to provide a secure c o m m u n ication  

channel will be reviewed in Section 1.3. Nonlinear dynamic (NLD) forecasting will be 

summarized in Section 1.4 and its effectiveness in exposing weaknesses in co m  m u n i rati on  

systems based on a synchronized chaotic transmitter and receiver will be discussed. Two 

important chaotic systems which will be instrumental in this work will be introduced in 

Section 1.5. Finally, some recent discussions about the use of chaotic systems in a  cryptologic 

setting will be presented in Section 1.6.

1.2  C h a o tic  sy n c h r o n iz a tio n

While there is no universally accepted definition for the mathematical phenomenon known as 

chaos [3], there are three properties [56] which are typically included in its characterization: 

aperiodicity, determinism and sensitive dependence on initial conditions. The first property

1
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simply means that there exist trajectories which do not converge onto fixed points or periodic 

or quasiperiodic orbits. The second property excludes random or noisy inputs into the 

process. The third property implies that nearby trajectories separate over time, usually 

exponentially fast.

An example of a well-studied chaotic system is the Lorenz system, discovered in 1963 by 

Edward Lorenz [27] as he was modeling the behavior of atmospheric convection rolls. The 

system evolves according to the following equations:

x  =  cr(y -  x )

y =  rx  — y — x z  (1)

z  = xy  — bz,

where typically a  =  10, b =  |  and r  =  28. W ith only two nonlinear terms, these equa­

tions have surprisingly complex solutions. A plot of a  long trajectory in the x-z  plane is 

shown in Figure 1-1. The apparent intersection of trajectories is an illusion caused by the 

two-dimensional projection. The well-defined structure to which the trajectory seems to be 

attracted and confined is an example of what is c o m m o n ly  referred to as a s tra n g e  a t tra c ­

to r. In linear systems, trajectories will either be attracted to a fixed point or else be on a 

closed orbit, resulting in either a stationary or periodic flow. However, in chaotic systems,

which axe nonlinear, it is possible for trajectories to be attracted to and confined within a

finite volume in phase space, yet never becoming stationary, periodic or even quasiperiodic. 

In the Lorenz system, this attracting set has two lobes, and trajectories on each lobe spiral 

outward. However, there is a  clear division at the center of the attractor where some trajec-

2
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tories are split off and inserted into the other lobe while the rest remain on the current lobe. 

This division and reinsertion of trajectories is a  common characteristic of three-dimensional 

chaotic attractors.

Just as it is difficult to define chaos universally, there remains some disagreement on 

how to define the notion of a  strange attractor. Strogatz [56] provides a  working definition 

which will suffice in the present context. Suppose A is a closed subset of the phase space of 

a dynamical system x  =  f(x). Then A is a strange attractor if [56]

1. A is invariant: x(0) € A => V t  > 0, x (t) G A.

2. A attracts an open set of initial conditions: there exists an open set U, A  C U, such 

that x(0) €  U implies that

l̂im inf{||x(£) — a|| : a G A} =  0.

3. A is minimal: B  C A, B  ^  A  implies that B  fails at least one of 1 and 2 above.

4. Trajectories on A exhibit sensitive dependence on initial conditions.

In Figure 1-1 it appears that the trajectory does not settle onto a periodic orbit or a fixed 

point. Also, the equations (1) do not have any random inputs. Thus this system satisfies 

the two conditions of aperiodicity and determinism. To see how sensitive this system is to 

initial conditions we can start two trajectories, ( x i (£), yi(t), zi(t))  and (x2 (£), y2(t), Z2 {t)), 

very close to each other and examine their rate of separation. The graph in Figure 1-2 shows 

the log of the distance ln(||J(t)||) between two solution curves of the Lorenz system, where 

S(t) = {x2(t) —xi{t), y2(t) -  yi(t), z2(t) — -zi(£)) and ||J(0)|| «  10-14. The slope A s; 0.9 of

3
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Figure 1-1 Lorenz attractor projected onto the x-z  plane.

the line which best fits the graph is then an approximation to the exponential rate of growth 

of this separation, where ||£(£)|| ~  ||£(0)[| eXt. This number A is an estimate of the largest 

L iapunov  ex p o n en t for the system. Any chaotic system will have at least one positive 

Liapunov exponent.

Pecora and Carroll [37] discovered that if two identical chaotic circuits were coupled in 

a  simple way, their behavior would become synchronized very quickly. Synchronization in 

this context means that the state space variables in one system become identical to their 

counterparts in the other system. This was a surprising result, since normally any two 

trajectories in a chaotic system would separate exponentially fast according to the largest 

Liapunov exponent. So even if two identical, uncoupled circuits were started with the same 

initial conditions, material differences in the circuitry or internal noise would decorrelate

4
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Figure 1-2 Estimating the largest Liapunov exponent: A rj 0.9

them. Cuomo and Oppenheim [11 ] presented a simplified proof of this synchronization 

property which will be reviewed here.

Suppose we have a chaotic circuit which we would like to use as a signal generator and 

which evolves according to Equations (1). While there are several ways to design a response 

system which will synchronize with the original, in this discussion the response system is 

given by

xr = cr(yr — xT)

yr = r x  — yr — xzr

zr = xy r — bzr

5
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where x  is the transm itted variable and x r, yri Zr are the receiver variables. In practice, the 

circuitry simply has the x T wire cut and replaced by the transm itted signal x. We can now 

define a  time-varying error vector e =  (x  — xr , y — yr, z  — Zr), and thus derive the equations 

governing the error dynamics along trajectories by using the original equations:

ei =  a(e2 -  ei.)

e2 =  —e2 -  xe3 (2 )

e3 =  xe2 — be3.

If we can show that e  —>■ 0 as t —»• oo for all initial conditions, then we will have shown that 

the drive and response Lorenz circuits will synchronize. This can be achieved by finding 

an appropriate L iap u n o v  function , E(e),  which is defined to have the following properties 

[56]:

1. E ( e ) > 0 for all e  7̂  0 and E (0) =  0 (i.e. E  is positive definite).

2. E  <  0 for all e  ^  0.

In other words, E  acts like a positive measure of the energy of the error system which is 

decreasing monotonically over time. Therefore E  0 and since E  = 0 only when e =  0,

this means that the two coupled systems will synchronize. For this error system we can show

that the function

E=\  + ̂  + e0  

is a Liapunov function. Clearly, for a  > 0, E  > 0. If we take the derivative of E  along

6
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trajectories of e, using the error system equations to replace ei, e2 , and e3 , we find

E  =  — eiei +  e2e2 +  6363 a

=  -ei<r(e2 — ei) +  e2 ( - e 2 — xe3) +  e3(se2 -  be3)
O ’

=  —ef + e \e i  — e\ — be\
2

bej

< 0 ,

where in the last step we have completed the square. Thus E  is a Liapunov function as long

as b, a  > 0. Therefore, all trajectories in the error system e are attracted to the origin and

the two systems become synchronized.

It would be beneficial for applications if we knew something about the error’s rate of 

convergence toward zero. The proof of synchronization was extended in [9] to show that 

the error decays exponentially. Consider the function V  =  +  ^ 3 . Then, since typically

6 =  * > iu 3 2 '

V  — e2&2 +  6363

=  e2 ( - e 2 -  xe3) 4- e3 (xe2 -  be3)

=  - e i  -  26e |

< - e i  -  ef

=  —2V.

Thus V = o(e 2£) for all time t. So e2 and e3 decay exponentially fast. Since ei =

7
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—crei 4- ae2 , when e2 is small, e\ behaves like e <Tt. Therefore the entire error system 

converges exponentially to 0 .

1.3  C o m m u n ica tio n  m eth o d s

The idea of hiding an information-bearing signal in a noisy transm ission is not new. Exam­

ples of existing techniques include frequency-hopping, where the carrier frequency is switched 

erratically, making it difficult for an intruder to “tune in” to the signal; and spread-spectrum 

methods of transmitting information over a broad frequency band. If  the spectral range of 

the message signal is within the spectral range of the noisy carrier, this can be an especially 

effective method of hiding the information, since spectral filtering techniques used by an 

intruder on an intercepted signal will have limited success. T he problem for the intended 

receiver (as well as an intruder) is then to reproduce exactly the carrier signal in order 

to separate the message from the noise. This is what makes the synchronization of two 

chaotic circuits so interesting: the chaotic transmission has a broad spectral range, behaves 

unpredictably, yet may be reproduced almost perfectly by the intended receiver. Unfortu­

nately, the proof of synchronization discussed in the previous section holds only for a pure, 

message-free drive signal. In practice, however, the synchronization is robust enough that 

small perturbations to the drive signal have little effect on the tendency to synchronize. 

Therefore, Pecora and Carroll [5] found that a drive signal of the form s{t) =  x(t) + m(t), 

where 7n(£) is an information-bearing signal whose power is much less than that of x(t), 

allowed synchronization to occur with enough accuracy to be able to recover the message by 

calculating m(t) =  s(£) —x r{t). However, because the message signal perturbs the dynamics 

of the receiver slightly, there is some small error in the recovered message m.

8
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This problem was overcome by Wu and Chua [60] using a feedback mechanism which 

ensures that the message modulates the dynamics of both the transm itter and receiver in 

exactly the same way. The equations for the transm itter in this system are

x  =  a(y — x)

y  =  (r — y)  [x +  m] +  y x  — y  — [z + m\ z

z  =  [x 4- m] y  — bz,

and the corresponding receiver equations are

Xr — &{yr ®r)

yr =  (r — fj.) [x + m] + jjxr - y r - [ x  + m\ zT

zr =  [x +- m] yr — bzT

where a  =  16, r — 45.6, y. = 0.98, 6 =  4, and the transmitted signal is s(t) = x(t)  +  m(t).

Notice that the message signal m(t)  modulates the dynamics of both the transmitter and the

receiver. The error system for this configuration is

ei =  cr(e2 - e i )

e2 =  yei  — e2 — (x + m) e$

ez = {x + m)  e2 — 6e3.

9
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To prove that the errors decay to 0 we use the same Liapunov function as before, E  =  

+  e 2 +  4 )  which now has the derivative

E  =  -  (ex -  0.99e2 ) 2 -  0.0199ei -  bej

when we complete the square and insert the parameter values used for this system. Note that 

the synchronization criteria places no restrictions on the strength, of the message, although in 

practice one would want to keep the message power reasonably small. Since the message was 

included in the system equations, the Wu and Chua scheme has perfect message recovery.

1 .4  N o n lin ea r  d y n a m ic  (N L D ) forecastin g

The synchronization of chaotic systems is an interesting mathematical result, and has been 

shown to have potentially useful applications. The broad-band frequency spectrum of many 

chaotic systems makes it easy to hide an information-bearing signal in the same frequency 

band as the chaos, which then prevents the application of spectral filtering techniques from 

having much success in extracting the message. The difficulty for an  intruder lies in using 

the scalar chaotic carrier signal to model the underlying dynamics well enough to draw some 

conclusions about the state of the transmitter at any given time.

A theorem proved by Takens [57] provides a method of reconstructing the chaotic attrac­

tor from which the carrier signal is taken. Suppose x  =  f(x) is an  n-dimensional chaotic 

dynamical system with x(t) =  (xi (£), X2 {t), . . . ,  x n(t)). Denote the associated strange attrac­

tor by M.  Then the theorem from [57] proves that, for any 1 <  k < n  and any real r  ^ 0 ,  the 

function y(f) =  (Xk(t), Xfc(t-f-r), Xfc(t-F2 r ) , . . . ,  Xk(t+2nT)) is generically a diffeomorphism

10
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of M  in H 2n+1. In  other words, the entire geometrical structure of the original attractor may 

be reconstructed from a  single observed quantity. The theorem is more general than what 

has been stated here, but this is the form which will be most useful in this work. A similar 

theorem is proved in [57] showing that the function y(£) =  (xfc(£), ifc(£), ifc(£),. . .  ,Xj.2n^(£)), 

where the derivatives axe taken with respect to time, is a  diffeomorphism as well. In most 

of the work presented here, the time-delay method of reconstruction is used, where r  is 

typically chosen to be the first zero-crossing of the sample autocorrelation px(T) of the time 

series x(t)  [1, 31]. There axe other methods [13, 14] for choosing the time delay r ; however, in 

practice, if the choice based on the autocorrelation function results in a  clear reconstruction, 

then the other techniques will offer at best only slight improvements.

As a simple example, consider the Lorenz system (1). In Figure 1-3 a 3-dimensional 

phase-space plot of a long trajectory is shown. Suppose we observe only the state variable 

x{t) for this orbit, shown in Figure 1-4. Using the idea of the theorem by Takens, and by 

choosing r  as described above, we may reconstruct the shape of the entire 3-dimensional 

attractor by plotting the 3-dimensional curve (x(t), x ( t  + r), x(t  + 2r)). This reconstruction 

is shown in Figure 1-5. Note the similarity of the reconstructed attractor to the original.

Now, suppose that a low-power message m(£) is incorporated into the transm itted signed 

s(£), as in s(t) =  x(t)  m(£), either with or without a  feedback mechanism. Since m(t)  

will typically be uncorrelated with the underlying chaotic carrier, this addition will cause 

the trajectory of s(£) to stray from the reconstructed attractor, as well as cause trajectories 

in a  local region of the reconstruction to cross. This latter behavior is clearly inconsistent 

with any solution to a set of autonomous ODE’s such as the Lorenz system. The problem 

of extracting the message then becomes one of removing these inconsistencies from the data

11
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Original attractor
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Figure 1-3 A view of the 3-dimensional Lorenz attractor.

Observed signal x(t)

20

X

-20

20 24 3022 26 28 32 34 36 38 40
t (sec)

Figure 1-4 Observed quantity x(t).

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reconstructed attractor: t  = O.OSsec

CM+-
X -10,

- 5 15

-10
x(t+t)

-10-1 5 -15 x(t)

Figure 1-5 3-dimensional reconstruction using only x(t).

and taldng the difference between the cleaned and the received signals. Nonlinear dynamic 

(NLD) forecasting has been used to accomplish this task effectively [44, 45, 48]. A brief 

description of this technique follows—a more complete presentation may be found in [44].

Figure 1-6 shows a close-up of a  region of a reconstructed Lorenz attractor where the 

observed chaotic signal contains a low-amplitude message. The trajectories in this figure 

are sparse for the purpose of illustration—in practice one would typically have more data 

than what is shown. The dotted curves show where the pure chaotic trajectories would lie if 

there were no message signal present. In NLD forecasting, a prediction about the evolution 

of each point in the time series is made based on the local dynamics in reconstructed space, 

rather than on neighboring points in time. Suppose that the signal s(t) is sampled evenly, 

such that Si — s(iA t), and suppose a point sp is chosen in the reconstruction. In order

13
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Local modefing
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Figure 1-6 Close-up view of a reconstruction of s t .

to determine the evolution of this point based on the dominant local flow on the attrac­

tor, neighboring points axe chosen and their actual movements are recorded. In practice, 25 

neighbors are usually sufficient. Although the effect of the message will be to introduce com­

ponents lateral to the dominant local flow direction, these components will tend to average 

out over the neighborhood of sp. This is because the message and the chaos are dynamically 

uncorrelated in the reconstruction. T hat is, there will be no consistent relationship over 

the local geometry between the message signal and the chaotic carrier. The movements of 

neighboring points may be modeled in a  least-squares sense, usually using polynomial basis 

functions of degree 2. Suppose {s9l-} is the chosen set of neighbors of sp, m  is the embedding 

dimension and {0/t} is the chosen set o f basis functions. Then for the predictor function

14
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F(S,.) =  (/o (sgi), f i ( s qi) , . . . ,  f m - i(s9i)) we have

n

f j ( S Q i ) =  5 3
k=0

where n  is the number of terms in the basis and Ajk  are the expansion coefficients. The system 

of equations F (s?.) =  sqi+i may now be solved in a  least-squares sense for the coefficients 

Ajk- Once this model is constructed, a  prediction §p+i =  F (sp) may be obtained about the 

location of the point sp+i- The difference r p+i =  sp+x — sp+i should now reflect more the 

effect of the message than of the chaotic carrier. However, in regions where the attractor 

is poorly represented, or where there is an apparent self-intersection of the attractor, bad 

predictions may occur which degrade the message extraction.

To combat these and other difficulties, some im portant enhancements to this technique 

were presented in [44]. For example, to make the calculations more numerically stable, local 

coordinate axes are chosen which are aligned with the dominant flow direction. Then, since 

many chaotic attractors, such as the Lorenz attractor, locally approximate a  2-dimensional 

surface, components of the neighboring trajectories which are orthogonal to this surface may 

be ignored or zeroed out. Of course, doing this for real data requires estim ating the relative 

importance of the dimensions. This may be done by perfoming a singular value decompo­

sition (SVD) on the local trajectory matrix R , where R+j =  (s9i+1 — sqi)j,  and eliminating 

the dimensions associated with very small singular values; see [44] for details. This reduces 

the size of the prediction problem to a subspace of the reconstructed space, simplifying the 

calculations and improving the robustness of the predictions. Another problem  arises in 

regions where there is an apparent self-intersection of the attractor. Neighbors might be

15
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chosen which are actually on different parts of the attractor, and which evolve in very dif­

ferent directions, resulting in poor predictions. A solution to this problem involves choosing 

neighbors based not only on proximity in reconstructed space but also on consistent tangent 

vectors in these regions [44].

Successful applications of NLD forecasting to problems in breaking chaotic communica­

tion schemes, detecting teleseismic events and other applications may be found in [47, 46, 52, 

48, 45, 44]. In 1994, Short [44] broke the original additive-message communication technique 

developed by Pecora and Carroll. In  1996, the Wu and Chua message-modulated scheme was 

also broken by Short [45]. In response to these results, researchers have proposed possible 

improvements to the design of communication schemes which axe based on chaotic synchro­

nization, specifically attem pting to foil the NLD attack. In 1995, Kocarev and Parlitz [22] 

investigated and developed a theory for synchronizing high-dimensional (>  3) chaotic sys­

tems using only a scalar signal. Another communication scheme developed in 1997 by Yang, 

Wu and Chua [63] takes a more cryptographic approach and includes a signal scrambling 

stage before transmission, with the intent that the signal may only be unscrambled by using 

a coordinate of the chaotic system that is not transmitted. Results from the analysis of these 

new systems will be presented in Chapter 2.

1 .5  O ther e x a m p le s  o f  ch a o tic  sy stem s

Besides the Lorenz system, there are many other well-studied chaotic systems. Two of 

these need to be introduced here since they will be used in later chapters. The first is a 

simple chaotic system which was discovered by Rossler in 1976 [39]. Drawing inspiration 

from a taffy-pulling machine, Rossler’s intent was to derive a continuous chaotic system

16
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whose strange attractor had a much simpler structure than that of the Lorenz system. The 

equations for the Rossler system are

x  =  - y  — z

y  =  x  + ay (3)

z  =  b + z ( x  — c)

where a chaotic attractor exists, for example, for a =  6 =  0.2, c =  5.7. A plot of a long 

trajectory for this system is shown in Figure 1-7. This system has proven to be much 

simpler to analyze, both quantitatively and qualitatively, than the Lorenz system, because 

of the single nonlinear term and the attractor’s simple structure. Similar to the Lorenz 

system, trajectories in the x-y plane tend to spiral outward, until they reach an outer limit,

beyond which they are stretched into the third dimension, folded over, and reinserted into

the spiral in the x-y plane. This picture provides some intuition into the reason why three 

dimensions axe required for continuous chaos to exist. The Rossler system will be mentioned 

and used briefly in Section 2.2.1.

In 1983 (see footnote in [29]) a simple electrical circuit was discovered which exhibited 

chaotic behavior. This system was named the “double scroll” oscillator after the shape of the 

resulting chaotic attractor. Since its discovery, a  detailed analysis of the dynamics appeared 

in 1985 [29], and a proof of the existence of chaos for this circuit first appeared in 1986 [6]. 

The circuit’s behavior is described by the equations

= -£t[G(vc2 - v Cl) - g ( v Cl)]

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rossler System

25 

20 

15 

10

5

0 
10

V - I S  - 1 0
'  x

Figure 1-7 The Rossler attractor.

=  ^ G ^ - ^ c 2) + i L ]  (4)

<&£, —1 
dt ~  L  VC2'-

where
' m\v , if - B p  < v < B p\

II'o> m Q(v -F B p) — m i B p, if v < —B p\

m 0(v — Bp) +  miBp, if v > B p,

and common parameter settings are C\ =  g, C2  = 1, L = h, G =  0.7, mo =  —0.5, m \

-0 .8 . and Bp =  1. The parameter range for which chaos persists is described in [29]. The 

state variable v c t represents the voltage across the capacitor C\, vc 2 the voltage across Co, 

and measures the current through the inductor L. Notice that the only nonlinear term  is
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Noninear Resistor
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Figure 1-8 Nonlinear resistance g{v).

the function g{v), shown in Figure 1-8, which is itself piecewise linear. The function g(v) 

represents a  simple nonlinear resistor. A plot of a long trajectory is shown in Figure 1-9. 

Similar to the Lorenz system, this attractor has two lobes, encircling unstable fixed points at 

(uc t ’ VC2'- *£,) =  ( ± ('m°G+^)0Bp' °> ± (miG+m0Bpg)- Following a  common theme, trajectories 

on each lobe tend to spiral outward, until they reach a point where some trajectories are 

folded back and reinserted into the same lobe, like the Rossler system, while others are 

split off and inserted into the opposite lobe, like the Lorenz system. Once on a  new lobe, 

any trajectory will cycle around that lobe at least twice before traveling to the other lobe. 

More details about the structure of this attractor may be found in [29. 6]. The double scroll 

oscillator will play a central role in much of Chapters 2 and 4.
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Figure 1-9 The double scroll attractor.

1.6 U sin g  ch aos in  cry p to g ra p h y

Most research in secure communication using chaotic systems has been concerned with ana­

log signals. However, there have been several recent results and discussions in the literature 

concerning the possible meeting of the fields of nonlinear dynamics and digital cryptography. 

For example, am interesting interchange occurred earlier this decade in the journal CRYP- 

TOLOGIA about the utility of chaotic systems in cryptography. The discussion began with 

an article by Robert Matthews [30] in which the author describes a  simple system for gen­

erating a random stream  of letters (here called a k ey  s tream ) using the logistic map. The 

idea is to calculate iterates of the map using previously agreed-upon precision, parameter 

and initial values. Then the last two digits in the decimal representation of the iterates

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are converted modulo 25 and added to the message text modulo 25, assuming a 25-letter 

alphabet. A responding article by Daniel Wheeler [59] alerted readers to the potential prob­

lem that this o r any digitally executed chaotic system may have with repetitions in the key 

stream, or key stream cycling. The problem lies in the fact that the digital representation 

of the chaotic system is only a finite-state machine, so that an orbit will eventually return to 

a previously occupied state. Since the equation governing the dynamics of the logistic map 

depends on only the previous iteration, the orbit is then necessarily locked in a cycle. A 

collaboration between Matthews and Wheeler [58] presented some evidence that this cycling 

problem can be prevented to any degree by using a  sufficiently high precision. But the 

final word in this interchange came from Ross Anderson in a letter to the editor [2] where 

he claims that this system has no advantages over any other random function. He further 

complained about the possibly short cycle length and the difficulty in calculating iterates of 

the logistic equation versus a  linear feedback shift register.

The system described above, as a free-running chaotic pseudo-random number generator, 

may have a  problem with producing cycles. However, in Chapter 4 a chaotic encryption 

scheme will be presented which is a message modulated system [35, 34], where each iteration 

is dependent on  the previous history of the state of the system and the message itself. Thus 

as long as there are no cycles in the message, there will not be any cycles in the key stream. 

Even if there axe some repeated elements in the message text, as long as the length of the 

repeated message segments are incommensurate with any possible natural cycle lengths of 

the chaotic system, there will be no cycles in the key stream.

Pridrich [15] observes several natural connections between a good cryptographic algo­

rithm and a chaotic dynamical system. For example, a cryptographic system must be
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sensitive to changes in  the message text; that is, changing one letter in a  block of message 

text should result in a  completely different encryption result for tha t block. This is clearly 

parallel to the characteristic of sensitive dependence on initial conditions in  chaotic systems. 

Also, the encrypted message must appear random, i.e. not show any patterns or periodicities; 

a chaotic system’s aperiodic behavior suggests the presence of a random  component where 

there is none. “However,” the author writes, “there is one im portant difference between 

chaos and encryption. Cryptosystems work on finite sets, while chaotic systems have mean­

ing only on a contiuum, an infinite set.” Thus, in order for there to be a useful interchange 

between the two fields, “the main problem that needs to be solved is a  correct generalization 

of chaos from a continuum to finite sets.” Or, looking a t the problem from the other side, a 

solution might be found in generalizing cryptographic algorithms to functions on continuous 

domains. A complete answer to this question is beyond the scope of this work, although 

some results in the field of chaotic encryption will be presented in Chapter 4.
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C hapter 2

N ew  applications o f NLD forecasting techniques to  

chaotic com m unication schem es

2 .1  In tro d u ctio n

It has been shown that nonlinear dynamic (NLD) forecasting techniques have had consid­

erable success in breaking communication schemes which are based on principles of chaotic 

synchronization. This has prompted researchers to propose more complex schemes in an at­

tempt to foil the NLD attack. One suggestion has been to employ higher-dimensional chaotic 

systems [22]. A representative system of this type will be introduced and analyzed in Sec­

tion 2.2. Another approach involves a  signal encryption step which attem pts to scramble the 

message before feeding into the chaotic circuit [63]. Several weaknesses of this approach will 

be revealed in Section 2.3. A completely new technique for encoding binary information in 

a chaotic signal using chaotic control [17] will be analyzed for security weaknesses in Sec­

tion 2.4. The results on the high-dimensional chaotic systems in Section 2.2 and the chaotic 

control method in Section 2.4 were produced jointly with Kevin Short using software tools 

already developed to implement NLD forecasting. The analysis of the signal encryption 

approach in Section 2.3 was done primarily by the author.
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2.2 N L D  fo reca stin g  tech n iq u es  a p p lied  to  h y p erch a o tic  co m m u n ica tion  

sy ste m s

Despite the weaknesses that were exposed in the early attem pts to design a  secure chaotic 

communication system, new schemes are being designed and proposed a t an increasingly 

rapid pace. Many of these systems specifically address and attempt to overcome the weak­

nesses that NLD forecasting techniques have been able to exploit. One problem with previous 

attempts is that the chaotic systems which have been used are low-dimensional, which makes 

it easy for an intruder to reconstruct accurately the chaotic attractor from an intercepted 

signal. This allows NLD forecasting techniques to be applied effectively. To combat this 

weakness, considerable interesting research has been done in the area of synchronization of 

high-dimensional (>  3) chaotic (hyperchaotic) systems.

In a  paper by Kocarev and Parlitz [22] a  generalization is made of the synchronization 

property of chaotic systems which accomodates hyperchaotic systems. They illustrate their 

theory with an example that is six-dimensional, yet which synchronizes perfectly via a scalar 

signal even when modulated by a message. However, it will be shown that an intruder 

may reconstruct much of the dynamical behavior by embedding the signal in only three 

dimensions, thereby showing that the proposed hyperchaotic system does not provide a 

significant improvement in security. An outline of the theoretical results in [22] as well as 

the six-dimensional example developed by Kocarev and Parlitz will be presented in the next 

section, and results from NLD forecasting will be presented and discussed in Section 2.2.2.
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2.2 .1  A c t iv e -p a s s iv e  d e co m p o sitio n  ap p roach  t o  c h a o tic  sy n ch ro n iza tio n

Suppose we have a  chaotic system

x  =  f(x,s(£)) (1)

where s(t) is a driving function determined by either s(£) =  h(x(£)) or s =  h(x, s). If an

information signal i(t) is to be incorporated, these equations become s(£) =  h(x(£),i(£)) or

s =  h(x, s, i). Then an  identical copy of the above system,

y  =  f(y,s(£)),

driven by the same signal s(£), will synchronize with the first system as long as the error 

system e =  x  — y, or

e =  f(x , s) -  f(y, s) = f(x , s) -  f (x  — e, s),

has a stable fixed point at e  =  0. To be practical for applications, we usually require that 

the origin be globally asymptotically stable.

As an example, Kocarev and Parlitz present in this context the synchronization scheme 

discussed in Section 1.2:

x \  =  cr(s — Xj)

± 2  = rx  i — X2  — X 1X3  (2)

£ 3  =  X1X2  — bx 3
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where s =  /i(x) =  x2. The slave system

yi = c r ( s - y i )

il2 =  r y i  -  2/2 -  2/12/3 (3)

2/3 =  2/12/2 ~  b y z

is easily seen to match the form y  =  f(y , s(£)). The proof of synchronization, i.e. the proof

that e  =  x  — y  implies e =  0 is a globally asymptotically stable fixed point, is similar to that 

in Section 1.2; see [22]. The advantage of this formulization, however, is that the generality 

attained by defining the transmitted driving signal s(t) in terms of a function h(x) gives us 

greater freedom in choosing the actual form of the signal.

The hyperchaotic scheme under investigation in this section is composed of two familiar, 

three-dimensional attractors, the Lorenz and Rossler systems (see Section 1.5), coupled by 

an intermediate variable Saux- The governing equations are:

(Rossler) (Lorenz)

r'i =  2 +  xi (x 2 — 4) x'4  =  —10x4 +  -s

X2 — X3 X5 — 23x4 X5 X4 Xg

X3 X2 2.45x3 ”F Xg — X4X5 2.666x6

Saux — 1 "i 3x3  ̂— 10xg 4" 30Sqxlx/ 3*6

where i is the information signal and the transmitter has the property that X6 > 0, so the 

division causes no problems. The parameters were carefully chosen in a region where a 

chaotic attractor existed. Notice that i is only directly added into saux. and then saux is
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coupled into the second level of the system through s. The transm itted signal is s(t) alone, 

and it would appear that the presence of the information signal is completely hidden in the 

dynamics. The equations governing the receiver are essentially the same, but coupled in the 

reverse order:

y4 =  -1 0 y 4 +  s y i =  2 -f yi(y2 -  4)

y5 =  28y4 -  ys -  V4V6 2/2 =  ~Vi ~  3/3

2/6 =  3/42/5 -  2-666y6 3/3 =  3/2 ~  2.45y3 +  saux

Saux =  (s -  10y5)y6/30 i R =  (s -  10y5)y6/30 -  3y3

where i R is the recovered information signal. Except for an initial transient, the signal is 

recovered exactly. This communication scheme has been programmed so that a numerically 

simulated transmission could be generated, and in the next section the results of the analysis 

of the transm itted signal will be presented.

2 .2 .2  R e su lts  o f  N L D  forecastin g

To test the hyperchaotic communication scheme, both a square wave and the more compli­

cated case of a speech waveform were used as simulated information signals. In both cases, 

good signal extraction was obtained. To generate the data sets, the system was numerically 

integrated with a time step A t =  0.01 using a fourth order Runge-Kutta scheme. To extract 

the signal the attractor was reconstructed in three dimensions using a time-delay embedding 

with r  =  10. In the NLD forecasting, second degree polynomials were used and 25 neighbors 

were chosen in a region of the time series where no message is present, called a "compari­

son region,” and predictions based on their evolution were made. Comparison regions may
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be blindly detected by performing NLD forecasting once and looking for regions where the 

prediction errors are relatively small.

For the square wave trial, i  was set to be a periodic square wave of amplitude 1/2. 

The numerical integration of the system provided the simulated transmission s(i). For this 

trial the comparison region consisted of the first 70000 points and contained no information 

signal, so the square wave was only turned on for the last 30000 points. We then performed 

NLD forecasting using second order polynomials and made one-step predictions for each 

point in the time series, using the techniques described in Section 1.4. Determining if signal 

extraction is possible is then a  matter of subtracting the predicted time series from the 

original and checking the result.

For this data, a portion o f the transm itted signal can be seen in Figure 2-1. The 3- 

dimensional reconstruction is shown in Figure 2-2. One can see that three dimensions is 

enough to capture much of the dynamics for this six-dimensional system. An NLD forecast­

ing model of this data was calculated and the predicted dynamics were subtracted from the 

transmitted signal. In Figure 2-3 a part of the residual after subtracting away the predicted 

data is shown, and it can be seen that where the attractor was well-represented by the re­

constructed time series, the predictions were accurate enough to show the edge transitions 

of nearly every square wave, which is the expected result for one-step predictions. However, 

in regions where trajectories axe sparse, prediction errors axe larger, as seen in Figure 2-4. 

Even though the predictions m ay be poorly behaved in these regions, the edges of the square 

waves can still be seen as spikes. Also, it is important to realize that since the predictions 

were one-step predictions, the extracted signal really just picks up the transitions in the 

square wave. These one-step residuals can be filtered to reconstruct an approximation of
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Figure 2-1 A portion of the transm itted signal, carrying square wave message.

the actual hidden signal, as described in [48]. In  this case, the residual was integrated over 

an exponentially decaying backward window to give the result in Figure 2-5 for one of the 

best regions.

The use of multi-step NLD forecasting methods was considered to extract a  faithful 

representation of the hidden square wave. Multi-step block forecasting was used to do 

this [48]. This means that predictions were made in blocks, where the block length was 

chosen to correspond to the interpeak distance detected in the square wave from the one- 

step predictions. W ithin each block, predictions axe based on previously predicted data 

points. Then, at the end of a block, the predictions are resynchronized with the data by 

taking an actual data point before going on to predict the next block. In  other words, a 

predictor function Fo is calculated based on the dynamics in a neighborhood of a  point sto 

and a prediction is made by s to+&t =  Fo (st0) as before. However, the next local predictor
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Figure 2-2 Three-dimensional reconstruction of signal, with message signal present.
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-5
8.27 8.28 8.29

Figure 2-3 Residuals after NLD forecasting in a  well-represented region of the attractor.
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Residuals After NLD Prediction
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Figure 2-4 Residuals after NLD forecasting in a poorly represented region of the attractor.
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Figure 2-5 Filtered residuals.
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Original Information Signal
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x 10*
Extracted Signal
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- 0.5

7.345 7.35 7.355 7.3657.36 7.37 7.375 7.38
x 10

Figure 2-6 Original square wave and results from multi-step predictions.

function F i  is calculated based on the dynamics in a neighborhood of §{0 + A t  rather t h a n  

St0+At, and the next prediction is sto+2At =  F i(s£o+At)- This continues for n  iterations, 

corresponding to the length of the block, at which time F „  again is based on a  true data 

point St0+nAt and the process is repeated.

Figure 2-6 shows the original square wave and the extracted square wave. It is clear that 

the information content of the extracted signal is the same as the original; however, the flat 

tops of the square waves are distorted because of the local divergence of trajectories. It is 

notable that in the 3-dimensional reconstruction, the local divergence is very strong, so the 

hyperchaotic nature of the chaos does have a  significant effect.

To test the capability of the NLD forecasting on a signal carrying a speech message, a 

voice trace of the phrase, “testing, one, two, three . . . ,  testing, one, two, three,” sampled at
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22050 Hz was used as the information signal in the modulated hyperchaotic communication 

scheme. The original voice trace is shown in Fig. 2-7. The transmission from the transm itter 

to the receiver was then modulated by the voice, where the speech begins at sample 95850 

(although a lead-in hiss begins a t point 83850). The resulting signal is shown in Fig. 2- 

8. The three-dimensional time-delay reconstruction is nearly identical in appearance to 

Figure 2-2. NLD forecasting was then used to  predict the background dynamics. The 

extracted speech appears in Fig. 2-9, and although there is some error introduced by the 

forecasting process, it does not interfere with intelligibility, and all listeners found it easy 

to understand the speech. For the example in Figs. 2-7-2-9, the data was scaled so that 

the range of the chaos was [-25.9, 25.1] and the maximum amplitude in  the speech was 1.74. 

However, the speech extraction could be achieved for a wide range of voice amplitudes, since 

we were able to extract intelligible speech for maximum speech amplitudes of 0.9, 0.32, and 

0.16. At amplitudes much greater than 1.74, the speech can be heard unaided in the chaotic 

transmission. Consequently, there does not appear to be a range of values of the speech 

power which yields a  secure communication system.

2 .2 .3  D isc u ss io n

While the test information signals used here included a quiet region to improve the local 

modeling, several trials were also done where the message was present throughout the signal. 

This had the effect of enlarging some of the residuals in the extracted signals, resulting in 

only a few more potential bit errors in the square wave, and only a slight reduction in 

intelligibility in the voice signal.

Two important points must be emphasized here. First, in this hyperchaotic circuit it
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Original Voice Data

<D ° - 5  T3 3
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Figure 2-7 Original voice trace ( “testing 1-2-3...”).

Transmitted Hyperchaotic Signal Including Voice Data
3 0 1--------------1---------------------------- 1-----------------------------1---------------------------- 1----------------------------- 1----------------

- 3 0 1--------------1---------------------------- 1----------------------------- 1---------------------------- 1---------------------------- 1----------------------------- 1--------------------- — I
0.9 1 1.1 1.2 1.3 1.4 1.5

sample number x io s

Figure 2-8 Hyperchaotic signal carrying voice data.
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Extracted Speech
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Figure 2-9 Extracted speech.

appeared that the information signal was buried deeply in the dynamics of the tr a n sm itter  

and consequently modulated the transmitter dynamics. However, the resulting perturbations 

apparently resembled the original message enough that the extracted message was easily 

recognizable as a human voice, and the words were clearly understood. Thus a suggestion for 

future work might be to study the manner in which an  information-bearing signal modulates 

the carrier dynamics, to have the resulting perturbations differ significantly from the original 

message.

The second and perhaps more important point is that high-dimensional chaotic systems 

do not necessarily exhibit an attractor which is locally high-dimensional. Just as the 3-D 

Lorenz attractor is locally approximated by a 2-D surface, the six-dimensional hyperchaotic 

system studied in this section is also suspected to have a locally low-dimensional attractor, 

which makes the NLD forecasting process much easier. Thus it is important when designing a 

high-dimensional chaotic circuit to determine if the local dynamics are also high-dimensional.
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2 .3  R e co n str u c tin g  th e  k e y  s tr e a m  from  a  ch a o tic  e n c r y p tio n  sch em e

2 .3 .1  In tro d u ctio n

The results in the previous section and in [54, 52, 44, 45, 48] show that it is possible to 

use NLD forecasting to break keyless communication schemes which are based on the syn­

chronization property of chaotic systems. Consequently, researchers have developed chaotic 

cryptographic techniques which attem pt to foil the NLD forecasting attack by using key 

systems which increase the sensitivity to modeling errors [24, 63]. T hat is, achieving syn­

chronization is only the first step in the recovery of a  message: an additional decryption 

stage, which depends on a secret “key” or key stream, is required to extract the message. 

The encryption/decryption process is made to be sensitive to errors in this key stream. The 

key stream  does not have to be communicated to the receiver because it can be dynami­

cally reconstructed from the state of the receiver, once synchronization has been achieved. 

Nonetheless, it will be shown that it is possible, although computationally difficult, to take 

an intercepted chaotic transmission and recover the plaintext message with good accuracy.

2 .3 .2  H y b r id  C o m m u n ica tio n  S y s te m  U s in g  E n cry p tio n  a n d  S y n ch ro n iz ­

in g  C haos

One of the more interesting examples of this type of system is the hybrid chaotic communi­

cation scheme developed by Yang, W u and Chua [63]. This new scheme combines key-based 

nonlinear data encryption with chaotic communication. As mentioned above, the crucial de­

velopment is that the message is encrypted with one component of a chaotic signal playing 

the role of the key stream, but this component is not transm itted to the receiver. However.
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the component that is transm itted can be used by the receiver to recreate the key stream , 

allowing decryption to occur. This design is intended to thwart an eavesdropper, since the 

information necessary to decode the message is not in  the transmission.

This scheme is applied to the double scroll oscillator, which is described by the equations

dvi
dt

dvi
dt

diL
dt

£ r [G {v2 - v i ) - g ( v R)\ 

— [G[v\ — v2) + i l ] (4)

where
' m\v ,  if —B p < v < B p;

g(v) =  < mo(v + B p) — m i B p, if v < —Bp;

m 0(v — B p) + miBp,  if v > B p.

Parameter settings are Ci = 5.56, Ci  =  50, G =  .7, L  =  7.14, m 0 =  —0.5, m i  = —0.8, and

B p =  1. The transm itted signal is obtained by vR(t) =  v\(t) —e(p(t)), where p(t) is the 

plain text signal and e(p{t)) is the encrypted plain text signal. The encryption function is

e(?(*)) =  /1  (—  /i( /i(p (* ) , v2{t)),v2( t ) ) , . . . , v 2{t)),

where f \  is the piecewise linear function

f i { x , k )  =

' (x + k) +  2h, if —2h < {x +  h) < —h:

(x + h), if — h < (x + h) < h:

k {x +  h) — 2h, if h < (x +  h) < 2h.
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-2

Figure 2-10 Encryption function.

This function may be seen in Fig. 2-10. The parameter h must be chosen such that both 

p(t) and V2 (t) lie in (—h,h).  For this example h =  0.4 and n =  30. When the sinusoidal 

signal in Fig. 2 - l la  is used for p(t), the cipher function produces the sawtooth-like wave in 

Fig. 2 -llb  which is then used to find v r  by v r  =  t?i — e(p(f)), as shown in Fig. 2 -llc .

2 .3 .3  R eco v er  E n c ry p te d  S ig n a l

The assault on this hybrid scheme proceeded in stages. First, a reconstruction of the trans­

mitted signal v r  was done to reveal the underlying structure, as seen in Fig. 2-12. While 

the random-like behavior of the signal makes NLD forecasting difficult, a low-pass filtered 

version v r  shows the underlying structure quite well, as seen in Fig. 2-13. It turns out that 

this is a sufficiently accurate estimate of v\ for the encrypted plain text signal to be recov­

ered from the difference e(p(t)) = VR(t) — VR(t). Consequently, while the transmission will 

deny the intercepter the proper chaotic signal, it may give access to the encrypted signal.
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Figure 2-11 Stages in a  sample transmission.

Thus the problem really reduces to the well-established category of breaking an encrypted 

message without access to the key stream. So, the strength of the scheme would seem to 

lie in the strength of the encryption and the fact that the transm itted information allows 

the remote receiver to reconstruct the key stream, with the intent to deny the eavesdropper 

the same opportunity. Both the original encrypted signal and this estimate are shown in 

Fig. 2-14. For a  measure of progress at this stage, the author assumed knowledge of the key 

signal V2 (£) and the encryption function. The estimated encrypted signal e(p(t)) could then 

be fed into the decrypting function which is the same as the encrypting function. The result 

is shown in Fig. 2-15, where the smoother line indicates the original plain text signal. Notice 

that there is a  clear correlation between the estimated and the original signals, even though 

noise introduced by filtering was amplified by the decryption process.
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Oelay Reconstruction of Tranantfted Signal
3<-----------------------1----------------------- 1----------------------1----------------------- p

-3 1  ̂ "* i ■ « ■ i i i ■ ■ .
- 3 - 2 - 1 0  1 2  3

Figure 2-12 Reconstructed intercepted signal.

Delay Reconstruction of RRered Signal

Figure 2-13 Reconstructed low-pass filtered signal.
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Figure 2-14 Estimated encrypted signal: dotted line represents the original.

,j--------------- ,--------------- ,----------------,--------------- ,--------------------------

8*(-

Figure 2-15 Decryption using estimated encrypted signal.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To proceed with this problem and decrypt the message, one still needs to know the 

encryption technique and the key stream, but the key stream  is not included in the trans­

mission. Rather, what is transm itted allows the receiver to reconstruct the key stream once 

synchronization is achieved, assuming that the true equations of motion are known by the 

receiver. The idea is that an  eavesdropper would not be able to perform the key reconstruc­

tion step of the process, since there would be (presumably) a large space of functions from 

which to choose. So, the eavesdropper may be able to reconstruct the ciphertext, but would 

not have access to the key stream , leaving a ciphertext-only attack which can presumably 

be made difficult. However, in the next section, a method of reconstructing the key stream 

from only an intercepted signal will be presented.

2 .3 .4  R ecover  K e y  S tr e a m

The next stage of progress came when it was shown that an  intruder can use the intercepted 

signal alone to reconstruct the key stream with enough accuracy to partially decrypt the 

plaintext signal, without knowledge of the carrier system. This is a much harder problem, 

because the encrypting and decrypting function magnifies errors in the key stream. The true 

key stream is shown in Fig. 2-16a. From the delay reconstruction in Fig. 2-13, it can be 

inferred by the intercepting party  that the carrier system has a  double-scroll shaped attractor. 

Assuming that the intruder has some prior knowledge about this type of encryption scheme, 

it can be expected that he or she will know that the key stream  will be some component of the 

chaotic system other than what is transmitted. To estimate v2 it was clear that one needed to 

rotate and project the delay reconstruction in a way that produced a time series similar to the 

tm e V2 - To accomplish this a  reconstructed trajectory m atrix R  was created where each row
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i is given by Rj. = . The singuiax value decomposition onV R . { i )  VR(i -F r )  vR{i +  2 r)

R  returns a  matrix V  which can be used to rotate the reconstructed attractor along principal 

axes. Let the rotated coordinates be given by R  =  R V .  The resulting projections are shown 

in Fig. 2-16b-d. It turns ou t that a simple linear combination of these principal components 

does quite well in approximating the key stream V2 - An example where t/2 =  —0.3R.1 +O.5 R .3 

is shown in Fig. 2-16e. In practice, the correct rotation would be difficult to find, so one 

presumably would be forced to do an extensive search. However, partial decryptions result 

when the estimated key stream  is close to the original, so the search is directed.

This estimated key stream  can now be tested by feeding it into the (assumed known) 

decrypting function with the estimated encrypted signal. As one measure of progress, the 

frequency spectra of the message, transmitted and extracted signals may be compared. The 

spectra of the transm itted signal and the plain signal appear in Fig. 2-17. Notice that there 

is no spectral evidence of the message in the transmission. The spectrum of the decrypted 

signal appears in Fig. 2-18. The presence of the sine wave clearly has been revealed. The 

equivalent signals in the time domain appear in Fig. 2-19.

2 .3 .5  R eco v er  E n c r y p tio n  F u n ction

The final stage of the analysis of the hybrid chaotic communication scheme involves de­

veloping methods for determining the encryption function by comparing the reconstructed 

key stream to the encrypted signal. Similar weaknesses in encrypting with chaotic maps 

have been discussed by Zhou et al in [64, 65]. The shift map for this system was seen in 

Fig. 2-10. Notice that it sim ply sums the arguments and wraps the sum into the interval 

[—h,h\.  Assuming for the moment that the plaintext is zero, the effect of iterating this map
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Figure 2-16 Singular value decomposition of intercepted signal.
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Figure 2-17: Frequency spectrum of transmitted signal: dotted line indicates the spectral 
peak of the message signal.
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Figure 2-18 Frequency spectrum of decrypted intercepted signal.
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Figure 2-19 Signals in the time domain.
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in the encryption function e(p(t)) is that of adding the key stream  v i  to itself n  times, while 

wrapping around the interval [—h, h]. Suppose two adjacent samples in the key stream  dif­

fer by a small amount 6. Then, the slope of the line connecting these points is After 

iterating the function f i  as above (with a zero plaintext) these points will be separated by 

n6, modulo the interval [—h, /i]. If these points are on the same (continuous) segment of the 

encrypted signal, the slope of the line connecting these adjacent points is or n  times the 

slope of the line joining the original points in the key stream . Therefore a comparison of 

slopes of the segments in our estimated encrypted signal to the corresponding slopes in the 

estimated key stream  provides an approximation to the number of iterations n  in the cipher 

function. The effect of the plain signal, since it is only added in once during the encryption, 

is negligible, especially if it has a  mean of zero.

A more common and slightly more complex case would be when the linear segments 

in the continuous shift cipher f i  had a slope p greater than one in magnitude. Then the 

information obtained by the above comparison should approximate the value np, and an 

assumption must be made about either n  or p. The authors of [64, 65] propose a  method of 

choosing n large enough such that there are no adjacent pairs of points on the same segment 

of the encrypted signal, thus destroying any information about n, p, and the shift cipher f i . 

This would foil the approach described here.

To extract the characteristics of the shift cipher function f \ ,  the estimates of the value 

np were obtained by searching for points on the same linear segments of the cipher e(f) and 

their corresponding points in the estimated key stream  k(t).  Then an estimate for the value
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rap was obtained by
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An average value was taken over the entire time series. Preliminary trials yielded estimates 

between 25 and 35 for n  =  30 and p =  1. More precision in these estimates would likely be 

attained by calculating weighted averages based on the actual distribution function of the 

quotient.

The final parameter necessary in determining encryption functions of this type is the 

cutoff h. This parameter can be estimated by looking a t the mean range of the estimated 

encrypted signal. An average of the peak values of this time series gives a reasonable 

approximation for h. Also, in the case presented in [63], the value of h is chosen to reflect 

the range of the key stream, although this is not necessary. Therefore, in this case the range 

of the estimated key stream will provide a rough estimate of h as well.

2 .3 .6  T ria l o n  V o ice  D a ta

So fax our trial plaintexts have only consisted of sine wave signals. To test the ability of 

these eavesdropping techniques on speech, p(t) was set equal to a voice trace of the words 

“testing, 1-2-3, testing, 1-2-3.” The results are shown in Fig. 2-20. The first plot is of the 

message signal p(t). The transm itted signal is shown in the second plot. The original speech 

is preceded by a moment of silence, during which the transm itter seems to be driven onto 

a periodic orbit. This is surprising behavior for a chaotic system, and must be related to 

the modulation of the system by the encrypted signed. It is important to remember that 

feeding the system a null message signal still results in a nonzero encrypted signal, since the
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Figure 2-20 Results using speech data.

encryption stage relies heavily on V2 (t). To see if this periodic orbit reappeared occasionally 

during the actual speech, the spectrum of the transmitted signal in the periodic region was 

compared to spectra taken from other portions of the signal, and no evidence of the orbit 

was found elsewhere. The results from the attem pt to decrypt the message axe shown in the 

last plot. While the extracted voice signal looks noisy, the words are clear and intelligible.
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2 .3 .7  D isc u ss io n

It is clear now that the chaotic encryption system developed by Yang et al reveals information 

which may cause security weaknesses. The fact that one can reconstruct the key stream 

from the transm itted signal alone is problematic, since the main advantage of the scheme was 

in the key stream ’s secrecy. But there are also several clues left about the cipher function 

itself, so that all of the components of this encryption system can be reproduced from only 

one brief transmission. Although the cipher function in the cases studied above was quite 

simple, a motivated intruder is likely to determine characteristics of a more complex function 

in a way similar to what has been presented here.

2 .4  N L D  d e te c tio n  o f  con tro ls

2 .4 .1  In tro d u ctio n

The prim ary focus of chaotic communication schemes discussed above has been the use 

of synchronizing chaotic circuits to produce a  communication channel where the receiver 

could be made to synchronize with the transm itter. Then, a message signal may be en­

coded into the transmission, and may be recovered without the need to exchange keys 

[37, 38, 5, 10, 12, 16, 18, 23, 36, 60, 22]. A different approach to chaotic co m m u n ication  is 

developed by Hayes, Grebogi and O tt (HGO) [17], in which they use a new way of controlling 

chaos to transm it binary information. The scheme controls the double scroll oscillator using 

small perturbations to follow a “prescribed symbolic sequence” which contains the encoded 

information. Although this was not intended to be a  secure communication method, the 

design of the system attem pts to hide the presence of the controls in the transm itted s ig nal
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Since this is an innovative control technique, it becomes an important question whether 

NLD techniques can be successful in detecting evidence of a  control mechanism in the trans­

mitted signal. Here we show that, in the HGO implementation, the controls are detectable, 

compromising security. However, this control method will in fact be an im portant p a rt of 

the digital chaotic communication scheme which will be developed in Chapter 4.

2 .4 .2  C o n tro l m e th o d

Any chaotic attractor may be used, but for illustrative purposes, the technique will be 

developed for the double scroll chaotic attractor. Recall that this system evolves according 

to the equations

=  ^ -[G (u c2 ~ v Cl) -  g(vCl)]

dvc , = -pr[G(vCl -  vCi) +i£,] (5)dt C2

die - 1
I T  =

where
' m iv ,  if  —B p <  v < Bp;

g(v) =  mo(v + B p) — m i B p , if  v <  — B p\

mo(v — B p) + miBp ,  if  v > B p.

The parameters used were the same as those used by Hayes et al: Ci =  C2  =  1, L  = 

k, G = 0.7, mo =  —0.5, m i =  —0.8, and B p =  1. A plot of a long trajectory appears 

in Figure 2-21. It may be seen in this figure that the attractor has two lobes, each of 

which surrounds an unstable fixed point. It is easy to show that these fixed points are at

A,* -* ^   (  t {TnQ—m\)Bj3  /, 1 {ttii—7np )BpG\
V u C i -  VC2■ L )  ^  G+mo  ’ U ’  ^  G + m o  ) '
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Figure 2-21 Double scroll oscillator showing surfaces.

Because of the chaotic nature of this system’s dynamics, it is possible to take advantage 

of sensitive dependence on initial conditions by carefully choosing s m a ll perturbations to 

direct trajectories around each of the loops of the attractor. In this way, a desired message 

bit stream can be transmitted by steering the trajectories around the appropriate lobes of 

the attractor, suitably labeled 0 and 1, and then tra n sm ittin g  one of the variables. A t the 

receiver end, the message is just read from the peaks of the transmission, where a  positive 

peak would indicate a  1 and a negative peak would correspond to a  0 (or vice versa). An 

example of this appears in Fig. 2-22.

The generation of the desired transmission requires a control mechanism for the transm it­

ter. A useful technique in studying the qualitative behavior of an n-dimensional continuous 

chaotic system is to observe the intersection of trajectories along a n n - 1  dimensional sur-
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Figure 2-22 Controlled signal showing information bit stream .

face which intersects the attractor, called a  Poincare surface of section, or more simply 

a Poincare section. So for this system, to specify the bits “1” and “0” more precisely, a 

Poincare section is defined on each lobe by intersecting the attractor with the half-planes 

iL =  G F  with vci > F, and i l  = —G F  with uct < F,  where F  = Bp(mo — m {) / (G  -f- mo). 

The edge of each half-plane intersects the fixed point at the center of each lobe. One half­

plane is labeled “1” and the other is labeled “0”. This is indicated in Fig. 2-21. When a 

trajectory intersects one of these sections, the corresponding bit can be recorded. Then, a 

function r,y(x) is designed to take any point on either section and return the future symbolic 

sequence of length N  for trajectories passing through that point. If £\,£i~ P-2 -. ■ ■ - represent 

the lobes that are visited on the attractor (so £{ is either a 0 or a 1), and the future evolution 

of a given point x 0 is such that x 0 —> £x, £2 , £3 , . . . , i y  for some number N  of loops around
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the attractor, then the function r^(x)  is chosen to map x a to an  associated binary fraction, 

i.e. x0 0.^i^2^3 • - • &N- Then, when r^r(x) is calculated for every point on the cross- 

section, the future evolution of any point on the cross-section is known for N  iterations. The 

resulting function has the interesting fractal-like structure seen in Fig. 2-23, where r^(x)  

has been calculated for N  =  12.

To control the trajectory, wait for it to pass through one of the sections, say at xo- Now, 

the value of r^(xo)  tells us the future symbolic sequence followed by the current trajectory 

for N loops. If transmission of our desired message bit stream  requires a  different symbol 

in the N th  position of the sequence, search rjv(x) for the nearest point on the section which 

will produce the desired symbolic sequence. As long as the trajectory has been controlled 

for at least N  loops, only the N th  bit will need to be changed. Simply perturb the trajectory 

to this new point, and let the system continue to its next encounter with a surface. Repeat 

this procedure until all desired information has been transmitted. Notice that it requires N  

loops for any given message bit to appear in the transmitted signal.

It should be noted that trajectories on the double scroll attractor exhibit a “limited 

grammar,” which means that not all sequences of l ’s and 0’s cam be directly encoded. 

This is because trajectories always loop at least twice in succession around each lobe. For 

example, a  sequence of bits containing 00100 is not in the grammar since it requires a single 

loop around the 1-lobe. A simple remedy is to repeat every b it in the code or append a 1- 

or 0-bit to each contiguous grouping of 1- or 0-bits, respectively. Obeying the grammar of 

the chaotic system is required to guarantee that searching r/v(x) for a new position as above 

will be successful. This gram m ar limitation is the cause of the large discrete jum ps in r_y(x) 

seen in Fig. 2-23.
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Function r(x) encapsulating symbolic dynamics
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Figure 2-23 Function 7-12(2:)

For this system, the actual transm itted signal is the coordinate so the message bit 

stream  is simply read off from the peaks and valleys in (there are small loops/minor peaks 

which occur as the trajectory is switching lobes of the attractor, but these are ignored). An 

important point to notice is that the perturbation is applied at constant ic,  so there is no 

discontinuity in the transm itted trajectory.

2 .4 .3  D e te c t io n  o f  C o n tr o ls

To analyze the effects and detectability of these controls, a simulated controlled signal was 

generated. The controlled transmission was then analyzed using reconstruction techniques 

and NLD forecasting [44, 48]. Both approaches can be used to detect the controls [49].

The analysis of most chaotic communication schemes usually begins with a reconstruc-
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Time-Oeiay Reconstruction of Controlled Signal. ts*50
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Figure 2-24 Time-delay reconstruction of controlled signal

tion of the phase space dynamics. Applying the time-delay reconstruction technique to the 

transm itted i t  coordinate reveals the underlying double scroll a ttractor seen in Fig. 2-24, 

but there is no sign of the controls. The perturbations in this scheme axe cleverly applied in 

a direction perpendicular to the transmitted coordinate (i.e., at constant i t ) ,  so no discrete 

jumps can be seen in the original time series.

An alternative reconstruction uses numerical derivatives with respect to time, i.e. (x(t), x(t), x(t)), 

where x(t)  is the signal. When forming the approximations of the derivatives for this data, 

the first derivative of the signal does not reveal much about the controls. The second deriva­

tive, however, exhibits spikes at the moments when the controls were applied. As can be 

seen in Fig. 2-25, a  derivative state space reconstruction shows not only that the system 

is being controlled, but it also shows approximately where the surface of section is on the
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Derivative Reconstruction of Controlled Signal
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Figure 2-25 Derivative reconstruction of controlled signal

attractor. Once the controls are detected, it becomes clearer that the information is coded 

into the loops around the two lobes. The binary sequence can be read by inspection and the 

problem becomes one of interpreting the message.

Previously it has been shown that when the intercepted signal allows for a reconstruction 

of the phase space dynamics, NLD forecasting can often detect hidden signals in chaotic 

systems, even when the presence of signals is not obvious in the reconstruction. As a test 

for this scheme, NLD forecasting was applied to the time delay reconstruction to see if the 

controls can be detected. In this case, for each data point in the reconstruction, a prediction 

was made about its future evolution. Wherever the controls were applied, the future evolution 

was altered and these trajectory changes were readily detected by the algorithm, as seen in 

Fig. 2-26, where the sharp spikes in the residual represent places where the application of
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Controls Detected Using NLD Forecasting0.050
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Figure 2-26 Residuals from NLD forecasting

the controls caused the dynamics to deviate from that predicted by the forecasting.

2 .4 .4  D isc u ss io n

Although hiding the evidence of the controls in the signal was not necessarily a  primary 

concern to the inventors, the fact that the controlling mechanism was not obvious in the 

transmission made it an interesting detection problem. The results here provide further 

proof that any chaotic communication scheme which reveals information that may yield a 

reconstruction of the phase space of the transmitter is difficult to make secure. However, in 

Chapter 4 the HGO chaotic control method will be used to build a  new digital chaotic com­

munication which eliminates the weakness inherent in revealing the state of the transmitter.
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C hapter 3 

A pplications o f NLD forecasting techn iques to  

nonchaotic com m unications problem s

3.1  In tro d u ctio n

Two problems that plague standard digital communication systems are b it errors and co­

channel interference. Bit errors occur when message symbols axe not received correctly, 

and are commonly caused by either added noise or distortions to the signal which occur in 

transit. The medium through which a signal passes, e.g. an  optical fiber, a copper wire or the 

atmosphere, is called a channel, and the distortions to the signal caused by passing through 

these channels are called channel effects. For example, a  sound wave traveling through a 

long corridor will be distorted not only by such things as differences in air temperature and 

movement along the corridor, but also by reflections of the sound wave off of the walls, ceiling 

and floor. These are examples of channel effects associated with a particular channel. All 

channels introduce channel effects independent of the digital modulation technique used to 

generate the signal. Distortions may also be introduced by various p re-tra n s m iss io n  filtering. 

For example, the FCC has divided the usable radio frequency range into equal sections, or 

bands, and requires that any given radio transmission be limited to only one band. Therefore, 

radio signals often have to be passed through a  band-limiting filter to satisfy this regulation. 

Distortions caused by filtering or channel effects can increase the probability that a bit will 

be received incorrectly. However, most channel effects may be modeled by convolving the
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signal with a  particular response function which represents the channel. For example, if there 

is a  single echo introduced by the channel, such as a  reflection off of a wall, the associated 

response function will be the sum of two delta functions, £(0) +  <5(ti), where £1 is the echo 

delay. If the channel filters out high-frequency components in the signal, this filtering may 

be modeled by either a low-pass filter in the frequency domain or by a convolution with that 

filter's inverse Fourier transform in the time domain. See [41] for a good introduction to the 

principles of channel effects and response functions.

Co-channel interference occurs when two or more communication signals are received 

over the same or overlapping frequency bands. This problem is particularly common in 

the use of mobile phones when two users in adjacent cells in a cellular network axe near a 

common border between the cells. One receiving tower in one cell may pick up the signals 

from both users simultaneously. Another example occurs when your vehicle is at the edge 

of the range of one radio station and your car radio begins receiving another station’s signal 

before the first has completely faded out. Co-channel interference can also occur when 

signals are transmitted along adjacent copper wires, where the current through one wire 

may induce a current in another, partially transferring the signal. The goal of digital co­

channel demodulation is, ideally, to separate and demodulate all of the received signals, or at 

least to separate the strongest signal from the interferers, with as few bit errors as possible. 

Fortunately, all communication systems are subject to conditions, such as channel effects or 

FCC mandated filtering, which introduce a certain degree of short-term determinism into 

the transmitted signal. This short-term determinism contains information about the recent 

past and near future evolution of the signal, and will be studied from a geometric viewpoint. 

It will be shown that this information can be useful to combat the problems of bit errors
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and co-channel interference.

The digital communication techniques which will be used to generate simulated signals 

in this chapter will be introduced in Section 3.2. The problem of bit error correction will 

be addressed in Section 3.3. Dynamic co-channel demodulation will be discussed in Sec­

tion 3.4. Finally, the geometric approach will be applied to a hardware-generated digital 

signal prepared by the National Security Agency (NSA) in Section 3.5.

3 .2  D ig ita l co m m u n ica tio n  te c h n iq u e s

There are many different methods for modulating a  carrier signal to transm it binary data. 

The simplest method is called on-off keying (OOK) where the carrier is turned on or off 

according to the bit stream. That is, if the bit stream  6t- is a sequence of 1’s and 0’s, then 

an OOK signal may be written as Si(t)  =  6t- cos 2irfct  for (i — 1)T <  t  < iT,  where T  is 

the length of time that one bit (or symbol) is transm itted and f c is the carrier frequency. 

A slightly more complex technique is called frequency-shift keying (FSK), where the carrier 

signal oscillates between two frequencies according to the bit stream. This may be written 

as Si(t) = cos 27r( /c +  6, A /) t  where —y  <  t  <  y  and the bit stream 6,- now has values of 

—1 and 1. Phase-shift keying (PSK) encodes the b it stream  in 180° phase shifts of a single 

carrier frequency, as in Si{t) =  6,- cos 2irfct where 6t- again take on values of —1 and 1. It may 

be shown that PSK has an advantage over the first two modulation techniques in combating 

channel noise [33].

These techniques transm it only one bit per T-second interval. A method for transm itting 

two bits at a time is called quaternary  PSK (QPSK) and may be written as S{(t) = cos(2irt + 

&k), where k =  1 ,2 .3 ,4  and 9^ is a phase angle associated with one of the four possible pairs
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of bits [41]. A natural mapping of these angles to the pairs of bits arises from rewriting the 

formula for st-(£) using the trigonometric identity for a  sum:

Si(t) = di cos 2irfct  -F bi sin  2irfct.

After a scaling by a factor of it may be shown that the angles — ̂7r  t t  3 7T
4 1 4 7  4 7 —̂  correspond

to the pairs (1, 1), (1, —1), (—1, —1), (—1, 1), respectively. Notice that when both a* and bi 

switch, the result is a phase shift of 7r radians. This maximum phase shift may be reduced 

by allowing only one bit to switch at a time. This m ay be done by offsetting one bit in 

the pair of bits by T /2  seconds, with the result that the maximum phase shift is now ir/2 

radians. This method is called offset QPSK (OQPSK).

The benefit of limiting the phase discontinuity is realized when the resulting signal is 

passed through a band-limiting filter to satisfy FCC requirements. Large phase discontinu­

ities result in variations in the amplitude after band-limiting. Therefore, to maintain a  stable 

amplitude, a digital signal w ith zero phase shift would be an improvement. An example of 

a  signal with this characteristic is called m in u m u m  s h if t  key ing  (M SK ), and because of 

its phase continuity it has become a common modulation scheme in practice. This scheme 

may be derived as a  special case of OQPSK, where the square binary signals at and 6j are 

shaped by multiplying them with a  sinusoidal weighting term. This signal is written

Si(t) = ai cos cos 2irfct  +  6,- sin sin2ivfct. ( 1)

In Figure 3-1 the various stages in the construction of this signal are shown for a sample trans-
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mission. The bitstream  shown is { . . . ,  —1,1, —1,1,1,1, —1, —1, —1, —1, —1,1, —1,1, —1, —1 ,. . .

where alternate bits are respectively labeled a,- and 6t-. Figures 3-l(a) and 3-l(c) show the 

product of the bit stream  square waves and the sinusoidal weighting, and 3-l(b) and 3-l(d) 

show the product of these signals with waves at the carrier frequency, cos 2irfct  and sin 2irfct. 

The modified bit streams act as am envelope for these carrier signals, while the resulting 

sum Si(<) shown in Figure 3-1 (e) has a  constant envelope. There will be no discontinuity in 

phase as long as the carrier frequency f c is a  multiple of ^  [41].

From Figure 3-1(e) it appears that an MSK signal oscillates between two distinct fre­

quencies with zero phase shift. This relationship with FSK becomes clearer when the MSK 

signal (1) is rewritten using a  simple trigonometric identity [41]:

The spacing between the carrier and either transmitted frequency is thus A /  =  , and

it may be shown [41] that this is the minimum  frequency spacing which allows for robust 

demodulation of am FSK signal. Hence the designation as minimum-shift keying.

Since the MSK modulation technique was derived as a case of QPSK, it may be de-

(2)

or

(3)

where

0 a* =  1
9 =

7r a,i =  —1.
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Figure 3-1 MSK waveform construction. 
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modulated using methods associated with that class of signals [33]. But MSK may also 

be represented as a  special type of FSK, although since two bits axe being transmitted at 

the same time, the frequency shifts have different meanings than in  true FSK. High fre­

quency tones are now associated with a  transition from one bit to the opposite bit, while 

low frequency tones mean that the bit parity stays the same. That is, high frequencies will 

be transmitted for bit pairs (1, —1) and (—1, 1), and low frequencies for pairs (1, 1) and

(-1 . - I ) -

As was mentioned previously, to satisfy FCC narrow-band regulations it is often neces­

sary to limit the frequency bandwidth of a  digital signal. While the phase continuity of MSK 

results in a signal with a  narrower frequency range than PSK, G a u ss ia n -filte re d  M SK  

(G M SK ) modulation provides even greater improvement. This is simply MSK modulation 

where the data stream  is passed as a  square wave through a Gaussian filter. The impulse 

response of a Gaussian filter may be obtained from the Gaussian distribution function

pdf(t)  =  -4=e-f2.
>A

The result of passing the data stream  through this type of filter is to smooth out the edges 

of the squaxe wave and to reduce the high frequencies associated w ith these discontinuities. 

The frequency shifts in the transm itted signal now occur more gradually than in the original 

MSK signal. This has the benefit of producing a signal which uses a  narrower frequency 

band, at the cost of introducing some level of inter-symbol interference (ISI), or blurring of 

symbol transitions. The hardware-generated data in Section 3.5 will be in this form.
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3 .3  B it  error c o r r e c tio n

The basic technique used to study the geometric properties of a digital signal such as MSK 

was a two-dimensional time-delay reconstruction with r  =  T /4 , seen in Figure 3-2(a), where 

T  is the symbol interval. In this figure, T  corresponds to 100 samples. As was mentioned 

in the introduction to this chapter, channel effects may be modeled by convolving the signal 

with an equivalent channel response function. To model a simple channel which introduces 

a detectable level of ISI, the MSK signal from Figure 3-2 (a) was convolved with an exponen­

tially decaying response function one symbol in width. The resulting reconstruction is shown 

in Figure 3-2(b). Since trajectories in both reconstructions exhibit a  clear structure, relative 

to the reconstructions of chaotic signals seen in Chapters 1 and 2, they will be referred to 

as wire diagrams.

In the previous section it was shown that the transm itted MSK signal oscillates between 

two frequencies, which are f c ±  If the signal is a  single pure sine wave, as in s{t) = 

sin27r/c£, then the reconstruction ior r  ^  for k — 0, ±1, ± 2 , . . .  will be in the shape 

of an oval. If r  =  then the reconstruction will be a perfect circle, since the first

coordinate will be sin 2irfct and the delayed coordinate will be

In both reconstructions in Figure 3-2, the high and low frequencies appear as two ovals with

cos 27r f ct.
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major axes along the lines y  =  —x  and y  =  x, respectively. In Figure 3-2(a), the ovals are 

equal in size, while on the right, due to  the convolutional effects of the channel, the oval 

with major axis along y  =  — x  has become small enough to fall within the boundary of the 

other. This is because the channel response attenuates high frequencies while allowing lower 

frequencies to pass. The key observation to make, however, is that the convolution with 

the exponentially decaying window introduces slight variations in trajectories, both near 

the ovals and in transitional paths, which are dependent on the recent past and near future 

dynamics. That is, the convolution introduces short-term determinism in the signal, even if 

the transmitted bit stream  is random. In  particular, because the response function was one 

symbol wide and the coordinates of each point in the time-delay reconstruction are separated 

by T/4, points on the reconstruction contain information from as many as three neighboring 

symbols. For example, if we consider a  point on the inner oval, by carefully studying which 

part of the trajectory the point is on, one may be able to determine if the next symbol will 

occur on the inner oval or if the point will evolve towards the outer oval. Similarly, we 

may look backwards to the previous symbol. Therefore, given a point on a trajectory, it is 

possible in this simple example to determine up to three bits in the t r ansmission- In the 

reconstruction of the clean signal, if a  point is chosen on either oval, there is no evidence of 

the signal’s previous or future evolution.

The fact that short-term correlations introduce separation of trajectories in the phase- 

space reconstruction implies that the geometry can indicate a great deal about the underlying 

bit stream. This has the potential to provide an error detection and correction method. 

For example, suppose that a transmission was interrupted, or an error was introduced 

due to excessive noise, as in Figure 3-3. In  this example two symbols were lost, and the
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(a) Unfiitered MSK wire diagram (b) MSK wire diagram from filtered signal0.6
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Figure 3-2: (a) Pure MSK signal reconstruction, (b) Reconstruction of signal after passing 
through a  channel.

dotted curves in the figure show two possible correct transmissions which would fill the void. 

The correct curve has a  local maximum at sample number 400. To correct this error, one 

may form a reconstruction and find where the signal was interrupted and regained. The 

reconstructions for the pure signal in Figure 3-3 as well as the same signal convolved with 

the channel response axe shown in Figure 3-4, where the dotted curve indicates the correct 

but missing section of the transmission. Trajectories evolve in a clockwise direction over 

the reconstructions. Notice that there is no evidence of the correct signal in the unconvolved 

diagram: with the dotted portion missing, there is nothing to indicate that the signal ever 

deviated from the solid oval. But in Figure 3-4(b) where the signal that passed through a 

channel is regained, i.e. when the trajectory in Figure 3-4(b) goes from dotted to solid, there 

is enough separation present to determine that the trajectory is heading towards the outer 

oval from the inner one. This observation provides the receiver with enough information to
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Figure 3-3 Clean, interrupted MSK signal, showing two possible correct transmissions.

correctly deduce the two missing symbols in the transmission. The receiver will typically 

have the entire wire diagram  for comparison, so that the dotted line will simply be tracing 

over a previously observed trajectory, making it easier to predict the evolution of the signal.

3.3 .1  E ffect o f  d is p e r s io n  and  fa d in g  o n  error c o rrec tio n

Digital signals are often subject to a number of distorting channel effects. Two of these 

effects axe dispersion and fading, where energy is lost and the signals become distorted. 

Fading occurs when power is lost in transmission. Commonly, this power loss is frequency- 

dependent; higher frequencies are absorbed more quickly than low frequencies. Dispersion 

occurs when different frequency components propagate at different rates through a medium, 

like light through a prism, introducing a frequency-dependent phase shift. These effects 

were investigated to determine what impact they would have on the geometric approach to 

signal demodulation. Some tests were rim on a simulated MSK signal using simplified mod­

els for the different distortions. In  Figure 3-2(a) the time-delay reconstruction of an MSK 

signal was shown. This will be used as a reference diagram for comparing the distorting 

effects of dispersion and fading on the signal reconstruction. To model the dispersion ef-
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(a) MSK signal with no channel affects (b) MSK signal, passed through a  channel
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Figure 3-4: (a) Pure interrupted MSK signal reconstruction, (b) Reconstruction of inter­
rupted signal after passing through a channel.

feet, a frequency-dependent phase shift was introduced by taking the FFT  of the signal and 

converting the real and imaginary parts of the complex amplitudes to an amplitude-phase 

representation. Then the phase relationships were changed by adding a linear component to 

the argument of the FFT of the signal. The time-delay reconstruction of the distorted signal 

is shown in Figure 3-5. Notice that although some of the nodes/vertices have undergone 

splitting, the overall structure in this reconstruction is essentially the same as before. There 

remain two distinguishable ovals oriented as in Figure 3-2(a), representing the two frequen­

cies. although the phase shift has reduced the amplitude of the higher frequency more than  

the low frequency. Transitional trajectories on the reconstruction in Figure 3-5 from one 

oval to the other begin earlier than in Figure 3-2(a), which indicates the introduction of some 

level of ISI. This was shown to provide error-correcting information in Section 3.3.

The effect of fading was tested similarly by decreasing the magnitude of a portion of
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Effect of Dispersion
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Figure 3-5 Effect of dispersion on MSK signal reconstruction.

the FFT linearly from low to high frequencies by a factor from 1 to 0, and comparing the 

reconstruction of the inverse transform to the original. Figure 3-6 shows the reconstruction 

of the result. Again, other than a simple deformation, the overall structure is unchanged In 

[33], Pahlavan and Levesque show that “frequency-selective fading in the frequency domain 

is manifested as ISI in the time domain.” Since the type of fading introduced by this simple 

model was frequency-dependent, we can view the splitting of trajectories in the deformed 

reconstruction as a  type of ISI. So the error-correction technique presented in the previous 

section may be applied to this signal in much the same way. Thus it seems from these 

preliminary tests that fading and dispersion will produce deformations which should not 

greatly affect the potential for signal classification or error-correction.
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Effect of Fading
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Figure 3-6 Effect of fading on MSK signal reconstruction.

3 .4  C och an n el d em o d u la tio n

Thus far, properties of MSK digital signals have been discussed, and time-delay recon­

structions have been shown to provide a  certain amount of error-correction capability. One 

motivation for studying these digital signals was to attem pt to solve the problem of sepa­

rating two signals that have been passed through the same channel, i.e. reducing cochannel 

interference. Now the case when two signals are being received in the same frequency band 

will be considered. The cochannel data initially examined was generated using a simple 

model, where it was assumed that the bit transmission rate and the amplitudes for both 

signals were identical. The signals were MSK modulated, sampled at a  rate of 100 samples 

per symbol. A time scale was not defined, but could be assigned arbitrarily  to determine
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a bit transmission rate and sampling rate in Hertz. The assumption of equal amplitudes 

may actually make the problem more difficult since it removes one way of d is tin gu ish in g  

one sign a l from the other.

To obtain the data two M SK  signals were simulated with identical bit tran sm ission  

rates and amplitudes, transmitting messages that were independent random bitstreams. It 

is assumed that the two signals are transmitted independently, but using the same M SK  

communication technique on the same frequencies. Consequently, the independence means 

that there can be a lag between the symbol timing in each channel. T hat is, the b e ginning  

of one symbol in signal A may not coincide with the beginning of a symbol in signal B. If 

this is the case, let the symbol offset be defined to be the shortest length of time between the 

beginning of a  symbol in signal A to the beginning of a symbol in B. Given that the sig nals axe 

transmitting data at the same rates, this symbol offset will rem ain fixed for the duration of 

the transmissions. Two typical signals from these systems are seen in Figures 3-7a and 3-7b, 

where random bits are being transmitted. They can be added together a ssu m in g  various 

symbol offsets between the channels. When the symbol offset between rhannpls is zero, 

complete cancellation of certain bits of information can occur, as can be seen in Figure 3-7c. 

If the symbol offset is not equal to zero, then the compound signal is similar to that in 

Figure 3-7d. Some portions of the compound signal reveal which two symbols are being 

transmitted. For example, it is sometimes easy to detect when both signals are transmitting 

a high-frequency symbol, because the combined signal will also reflect the higher frequency, 

such as near the point 21400 in Figure 3-7c or d. However, it is difficult using only the 

one-dimensional time series data to assign symbols to the separate transm itters and thus 

to keep track of the data encoded in each signal. The geometric approach provides better
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separability.

The compound signal may be reconstructed using time-delay coordinates as described 

previously. The resulting structure provides a  wire diagram which catalogs all possible 

combinations of symbols and transitions from both signals. So, for a  fixed time lag between 

the channels, the states of the channels are encoded into the branches of the wire diagram. If 

a different time lag existed between the channels, a somewhat different wire diagram results, 

but it has similar topological structure. Since the structure changes (apparently smoothly) 

with each different time lag between the channels, the time lag was incrementally varied and 

the corresponding wire diagram was generated; then a set of frames was compiled into an 

MPEG movie to see how the wire diagram deforms. Several frames of this movie are seen in 

Figures 3-8-3-11, and the entire MPEG movie may be viewed by following the link from the 

Web page at http://ww w .m ath.unh.edu/~km short. It seems that as long as the phase lag is 

not zero there are two distinct sets of trajectories, and the wire diagram can be decomposed 

into two congruent parts with interconnecting transitions. Given an unknown data stream 

composed of two transmitters, one would be able to perform the reconstruction of the wire 

diagram, and then compare the result with the configurations in the MPEG movie to find 

the symbol offset between the channels. Once this is known, it is possible to determine when 

the different channels axe changing symbols.

To illustrate, let A  and B  be two such signals, and suppose that the symbol offset is one 

tenth of a symbol. Suppose both signals are transmitting all — l ’s. until at some point one 

of them changes to all l ’s. We would like to know if a difference can be seen between the 

two cases where either A  or B  is the signal which changes bit streams. These cases with the 

resulting (very similar-looking) compound signals may be seen in Figures 3-12a-f. In the first
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Signal A, random bits
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x 10Signal B. random bits
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Compound Signal, zero offset

2.122.1 2.14 2.18 2.22.16

x 10*

-2
2.02 2.062 2.04 2.08 2.122.1 2.14 2.18 2.22.16

Compound Signal, 10% offset

-2
2.02 2.062 2.04 2.08 2.1 2.12 2.14 2.16 2.18

x 10*

Figure 3-7 Example of cochannel interference.
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Sum. zero offset t=25
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Figure 3-8 Cochannel reconstruction, zero symbol offset.

Sum, 0.3 symbol offset. t=25
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Figure 3-9 Cochannel reconstruction with an offset of 0.3 symbol.
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Sum, 0.5 symbol offset. t=25
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Figure 3-10 Cochannel reconstruction with an offset of 0.5 symbol.

Sum. 0.8 symbol offset. t=25
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Figure 3-11 Cochannel reconstruction with an offset of 0.8 symbol.
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case, signal B switches bits, while in the second case signal A switches bits. Remember that 

the symbol offset between the two signals remains the same for both cases. The compound 

signals for both cases axe seen in Figures 3-12c and 3-12f. It may be difficu lt distinguish 

between the two cases using standard demodulation techniques, since the structures of the 

received signals axe very similar; the high-amplitude sine wave is suddenly reduced by 

some unknown interfering signal. The differences between these two c o m p o und signals axe 

amplified by the time-delay reconstructions in Figures 3-13 and 3-14. Both reconstructions 

exhibit a large and a small oval oriented with m ajor axes along y = x. Keeping in m in d 

that the trajectory generally travels in a clockwise direction, we notice that not only does 

the trajectory in case 2 diverge earlier from the outer oval, at the point marked with the 

symbol “©,” but its path towards the inner oval is vastly different than the path taken by 

the trajectory in case 1. Thus in this elementary example is it easy to see that one can 

distinguish between the two cases and therefore be able to assign the appropriate bit stream  

to each signal.

To further test this ability to sepaxate b it streams by studying the wire diagram, two 

MSK signals transmitting the ASCII equivalents of the words “Eureka” and “Ansatz” were 

numerically simulated, then were added together at different powers and with a symbol 

offset of 0.3T where T  is the symbol interval. The amplitude of the signal carrying the word 

“Ansatz” was 77% that of the other signal, and identical transmission rates were assumed. 

The signals and sum axe shown in Figure 3-15, and the reconstruction of the compound 

signal appears in Figure 3-16. After determining the appropriate wire diagram, it is a 

simple matter of tracing the evolution of the compound signal along the reconstruction, and 

properly identifying the individual arcs in the diagram with the correct bits in both bit
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Figure 3-12 Determining which bitstream  is associated with which signal.
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Case 1, Compound Signal
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-0 .5
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Figure 3-13 Reconstruction for first case where signal B switches bits.

C ase 2. Compound Signal
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Figure 3-14 Reconstruction for second case where signal A switches bits.
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J________I________ I________ I_______ I_______ 1________1________I________
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Compound Signal

-2
1000 1500 2000 2500  3000 3500 4000 4500 5000 5500 6000500

Figure 3-15 Interfering MSK signals at different amplitudes.

streams. It is much easier in the reconstruction to determine which symbol transitions are 

associated with each signal source. To simplify this example, Figure 3-17 shows just one 

ASCII letter from each signal: “E” from the full power signal, and “A” at reduced power, 

offset by 0.3T. If we compare this case to one where the letters have switched roles, i.e. “A” 

at full power and “E” from the weaker signal, seen in Figure 3-18, one can readily detect 

the difference in trajectories over the reconstruction. Since there axe 8 bits (symbols) per 

ASCII letter, these reconstructions are more complex than those in Figures 3-13 and 3-14, 

but by demodulating one pair of transm itted symbols at a time we reduce the problem of 

separating the bitstreams to one which was solved in the previous paragraph.

To summarize the results in this chapter thus fax, the first step in the study of digital 

communication from a geometric viewpoint was to determine whether a typical communica-
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Reconstruction of Compound Signal

-0 .5

-1

-2-2 -1 -0.5 1.5

Figure 3-16 Reconstruction of interfering signals transm itting “Eureka” and “Ansatz”.

Compound Signals: *E.* full power; “A,* 77% power, lag 30

0.5

-0 .5  r

-2-2 -1.5 -0.5•1 0 0.5 21.51

Figure 3-17 Case where signal carrying “E” is a t full power.
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Compound Signals: ’A.* fun power; "E.~ 77% power, lag 30

0.5

-1 .5 1.5-2

Figure 3-18 Case where signal carrying “A” is at full power.

tion signal could be reconstructed. It was found that the resulting wire diagram of a c o m m on  

type of digital signal (MSK) was clear and consistent. Then it was considered what deforma­

tions of the wire diagrams resulted if the communication signal was convolved with certain 

channel effects. There it was found that the overall topological structure was generally pre­

served. In addition, it was found that if the channel introduced short-term determinism into 

the signal, then the nodes in the wire diagram split, and this had the desirable property that 

it allowed for a form of dynamical error correction. When the channel introduced fading 

or dispersion, the wire diagram was deformed, bu t retained its topological structure. A 

geometric approach to cochannel demodulation was also considered. Given a compound 

signal composed of two interfering digital transmissions, the resulting reconstructed wire 

diagram was essentially a  combination of the wire diagrams of the two individual channels
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themselves, and the specific wire diagram was related to the symbol offset between the chan­

nels. The geometric structure allows for the separation of the bit stream s transmitted by 

the interfering MSK signals. In the next section, these techniques will be applied to a  real, 

hardware-generated GMSK signal.

3 .5  E x a m in a tio n  o f  reeil G M S K  D a ta

3 .5 .1  B a ck g ro u n d

The potential application of NLD techniques to c o m m o n  problems in the demodulation 

of standard digital signals has been discussed, including channel distortion effects, error- 

correction and co-channel demodulation. Most of the experiments and results were based 

on simple simulations of digital modulation methods, MSK in particular. For more realistic 

testing, hardware-generated GMSK data was obtained from an unclassified CD-ROM pre­

pared at the National Security Agency. The signal data was examined for properties which 

were similar to those exhibited by the simulated signals from the previous section.

3 .5 .2  P r o c e d u r e  and  R esu lts

The GMSK data examined was generated using an HP ESG-D4000A analog signal generator, 

sampled at 5.12023Msamples/sec. Once the raw data was extracted from the CD-ROM, the 

examination began by looking at the sampled time series shown in Figure 3-19. The data at 

the top of Figure 3-19 exhibits an intermittent behavior due to a communication standard 

called time-division multiple access (TDMA) which allows many users to communicate over 

the same channel by transmitting in short, rapid bursts, alternating among the users. In this 

sample, only one user was transmitting. The sampling rate is close to Nyquist, i.e. there are
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Raw data. GSM 1 .DAT
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-4 0 0 0
2.202 Z21

s a m p le
2.214 2.216 2.22

x 10*

Figure 3-19 Raw GMSK data.

only approximately two samples per cycle, so to determine the presence of any geometric 

structure which could be exploited, a  time-delay reconstruction was generated with delay 

r  =  1.953 x 10-osec (i.e. 1/sampling rate), plotted without connecting the points, as shown 

in Figure 3-20. This view shows a simple underlying structure to the signal, but the sample 

rate is too slow to obtain useful dynamical information. Thus the next step was to remove 

the carrier signal from the transmission, which is called basebanding the signal.

Basebanding a digital signal can be  achieved by first transforming the signal into the 

frequency domain via a Fourier transform. The resulting spectrum is then convolved with
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Reconstruction of GSM1.0AT
4000
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-4000  -3000 -2000 -1 0 0 0 1000 2000 3000 4000

Figure 3-20 Reconstructed raw GMSK data.

a delta function chosen a t the desired base frequency. The result is transformed back to the 

time domain. The basebanded data can be seen in Figure 3-21b, and a delay reconstruction 

is shown in Figure 3-22. As expected, this reconstruction has a  shape that is much closer to 

the reconstruction of numerically simulated baseband GMSK data seen in Figure 3-23. Both 

exhibit the characteristic ovals associated with the two transm itted frequencies. However, 

the transitional trajectories in the basebanded real GMSK data do not line up as cleanly 

as in the simulated signal reconstruction. The cause for this is that the sample rate of the 

original signal as well as the result of the basebanding did not result in an  integer number 

of samples per cycle, either for the high or low frequency symbols. This causes the point at 

which a trajectory leaves one oval to precess around that oval. Correcting for this precession 

will be the subject of future investigation.
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Raw data. GSM1JDAT
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Figure 3-21 Original data and results of basebanding.
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Figure 3-22 Reconstructed basebanded GMSK data.

Simulated GMSK
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Figure 3-23 Reconstructed simulated GMSK data.
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MSK signals can be described as a  special case of FSK modulation, which also alternates 

between high and low frequency symbols, although the data is encoded somewhat differently 

into the frequency shifts. In  fact, in practice, MSK signals are often generated and demod­

ulated directly in its FSK form [33]. Using a numerical signal demodulation routine in the 

MATLAB signal processing toolbox, it was possible to  demodulate the GMSK data  files 

(both the real and the simulated series) as FSK signals. A comparison of the demodulation 

of the basebanded signal to that o f the raw data (using the hardware settings as parameters) 

provided a check that the basebanding process preserved the symbol structure. The results 

of the demodulations of both signals are shown in Figure 3-24, where peaks and valleys rep­

resent high- and low-frequency symbols, respectively (the basebanding process apparently 

stabilizes the frequency of the received signal, which would account for the smoother demod­

ulated signal in 3-24(a) versus 3-24(b)). To extract the correct bit stream , recall that a  high 

frequency symbol represents a pair of alternate bits, and a low frequency symbol represents 

a pair of identical bits. Also recall that only one bit in a pair will switch at any symbol 

transition. In Figure 3-24(a), the sequence and widths in symbols of the peaks and valleys, 

beginning with the first large peak, are: five-symbol peak, four-symbol valley, one-symbol 

peak, five-symbol valley, etc. These symbol widths may be determined by correcting the 

signal for the mean and recording the length of time between zero-crossings. Thus, assuming 

that the bit stream begins with a  1, we can write down the transm itted sequence:

...10101000001111110100111101110110101001001101110  . . .

The main tradeoff involved in  using GMSK over MSK is the introduction of greater
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(a) Demodulation of "basebanded* GMSK data
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Figure 3-24 Demodulated raw and basebanded signals.
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ISI. This is one of the most noticeable characteristics of the signals in Figure 3-24(a)— 

it may be harder to distinguish symbols in regions where the frequency shifts occur in 

rapid succession. This is because the difference between the high and low frequency levels 

in Figure 3-24(a) is smaller for peaks that are only one symbol in width. However, in a 

way similar to channel effects, this type of ISI introduces short-term determinism which 

is preserved and used for error-correction when reconstructed. A reconstruction of the 

demodulation of the basebanded real GMSK signal appears in Figure 3-25. The separation 

of trajectories in this reconstruction provides valuable information about the past and future 

symbolic evolution of the signal. The reconstruction may be generally described as having 

the shape of a football, where the corners of the football fall along the line y  =  x. The 

points at the upper right and lower left corners of the reconstruction represent high and 

low frequency symbols, respectively, and the paths the signal takes from one corner to 

the other determine the sequence of symbols, as was described in the previous paragraph. 

Near the corners appear distinct paths which pass close to, but do not actually reach, the 

corners of the football. These paths represent the peaks and valleys in Figure 3-24(a) which 

axe two symbols in width. Two other paths which pass across the middle of the football 

represent the peaks and valleys which are one symbol in width. Trajectories which arrive 

at the corners represent peaks or valleys which axe three or more symbols in width. These 

features provide a clearer picture of the short-term determinism present in the signal than 

the transitional orbits between ovals do in Figure 3-22, and convert the higher level of ISI 

into useful information for dynamical error correction.

In conclusion, while ISI may introduce bit errors in demodulating digital communication 

signals using standard techniques, it has been shown that reconstruction techniques used
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Demodulation oI 'basebanded' GMSK data. t»15
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Figure 3-25 Reconstruction of the demodulated basebanded GMSK signal.

in NLD forecasting can unlock a considerable amount of error-correcting information con­

tained in ISI. Other types of signals besides MSK and GMSK need to be examined in the 

same manner, although the expectation is that only the reconstructed wire diagram will be 

different, while the methods presented here may be applied with little modification.
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C hapter 4

D igita l chaotic com m unication system

4 .1  In tro  d u ction

In  this chapter a chaotic communication, scheme will be developed which uses control of chaos 

to produce a digital chaotic communication channel. The approach uses the control scheme 

developed by Hayes, Grebogi & Ott (HGO) [17], introduced in Section 2.4.2, where small 

controls are used to steer the trajectories of the double scroll attractor around each of the 

two loops in the attractor, with each circuit around a loop corresponding to a 1- or 0- bit in 

an encoded message. In the HGO approach, the transm itted signal is essentially analog and 

the bit value is determined by observing whether the oscillation is above or below a reference 

value, as was shown in Section 2.4.2. Such a scheme was not intended to be secure; however, 

it will be shown that the scheme can be adapted so that if an identical tra n sm itter and 

receiver axe used, communication can be achieved simply by transmitting a binary signal 

corresponding to control or no control. This binary signal can be made to bear no correlation 

to the original message to be encoded and to have a delta-like autocorrelation function. In 

fact, the encryption and decryption will depend on the history of both the chaos and the 

message. Further, the receiver can be initialized remotely. There are three main points in this 

chapter. One is to show that such a communication channel effectively nullifies the nonlinear 

dynamic forecasting attack which has been effective on chaotic communication schemes which 

transm it a chaotic waveform. The second point is to show that a binary stream is all that is
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necessary to achieve rem ote initialization and to maintain synchronization. The final point 

is to show that chaotic systems may be able to make a legitimate contribution to the field 

of cryptography.

In Section 4.2 it will be shown how the control scheme may be adapted so that a  binary 

data stream can be used to  keep an identical transm itter and receiver synchronized. This 

allows an encoded message to be delivered while making it impossible to extract the message 

by applying the techniques in Section 2.4.3. Section 4.3 shows that it is possible to initialize 

the receiver remotely by driving it onto a periodic orbit. Section 4.4 describes how this new 

system may be based on one-dimensional chaotic maps, which may be chosen to improve 

the statistics of the transm itted  bit stream. Section 4.5 then analyzes some of the statistical 

properties of the binary communications and several failed attempts to find and exploit 

determinism in the transm itted  signal. Section 4.6 discusses this scheme in a  more traditional 

cryptographic context. Finally, Section 4.7 will offer some discussion of the security aspects 

of the approach, and the potential and probable security flaws.

The work in Section 4.4 and much of Section 4.5 was done primarily by the author, while 

the work in the other sections are the result of a collaboration with Kevin Short.

4 .2  B in a ry  C h a o tic  C om m u n ication s

The chaotic control scheme discussed in Section 2.4.2 can be used to develop a  communi­

cation protocol which involves a digital transmission between a chaotic transm itter and an 

identical receiver to achieve communications in a manner which is not amenable to breaking 

by NLD techniques [50, 51, 53]. What is needed is a way to send the receiver information 

that lets the receiver rem ain synchronized with the transm itter without transm itting a con-
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tinuous waveform. To do this, the function r^(ar) defined in Section 2.4.2 is used, which 

can be determined independently when calibrating the transm itter and receiver, and can be 

assumed to be known information for the transmitter and receiver. If the two systems are 

initially synchronized, so long as both the transmitter and the receiver have knowledge of 

v n (x ), then all that must be done for the synchrony to be preserved is for the transmitter to 

tell the receiver when it has applied a control, under the assumption that the control moves 

the trajectory to the nearest location on the cross-section which gives the desired symbolic 

sequence.

For the purpose of simulation some techniques have been implemented which improve the 

performance of the numerically implemented control system from Section 2.4.2. Since the 

controls are executed along the two-dimensional surface o f the Poincare section defined on 

page 53, it is imperative that accurate calculations of the intersection between trajectories 

on the chaotic a ttractor and the Poincare section be obtained. However, many common 

numerical integration algorithms result in a sequence of integration points which are evenly 

spaced in time, and would rarely, if ever, fall on the Poincare section in phase space. This 

is because time is an independent variable, and it is difficult to calculate a time step which 

will result in a solution point on the Poincare section. Henon [19] described a simple trick 

for autonomous dynamical systems which temporarily reverses the roles of time and space, 

allowing an integration step to be calculated using a spatial variable. This technique will be 

discussed here for the double scroll equations and the Poincare section previously defined—a 

more general treatment may be found in [19].
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Recall the equations governing the double scroll system:

tfoct _  _1 
dt C]

dvc2 _  1

£ t[G (u c 2 -  «Ci) -  9ivcx)] 

— [G(vCl -  vc2) + il ] (1)dt
d i i
dt

- 1
L  VC2’

where
771 lU , if —Bp < v <  B p;

g(v) = m 0(y + Bp) -  m iB p , if v < —B p;

ttiq(v — Bv) + m iBp,  if v > B p.

The Poincare section consists of two half-planes, one intersecting each lobe, fixed at a 

constant level i l =  ±GF, \vcl | <  F,  where F  = B p(mo — m i) /(G + m o ) .  When a trajectory 

passes through these half-planes, the quantity S  =  T GF  will change sign. W hen this 

happens, we want to back up one iteration and define a  new integration step that will allow 

us to use the same integration scheme but will provide a solution point on the Poincare 

section. We would like to make ic  the independent variable in the differential system. This 

is done by dividing the first two equations in (1) by the third one and inverting the third 

equation:

Now the system is in a form which makes the independent variable. It is therefore trivial

(2 )

dt _  —L  
diL vc2'
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to calculate an integration step which will bring the trajectory  to the Poincare section, and 

it is given by A =  ± G F  — »£. This is ju s t the distance in the direction from the last 

(or previous) integration point to the half-plane which was crossed in the previous iteration. 

Once the integration is performed, continue along the trajectory  using the original system 

(1) until the next time a  sign change in 5  is detected.

To simplify the implementation, the systems (1) and (2) may be combined into one form:

dvCl
dr =  K - ^ -  [ G { v c 2 -  vCl) -  g(vCl)]

dvC2
dr =  K — [ G { v c 2 ~ vc2) +  i l]

diL
d r

U1SstJII

dt
=  K ,d r

where t  is the current independent variable and K  =  1 or K  =  as appropriate.

The Poincare section is two-dimensional, but because the attractor is also nearly two- 

dimensional near these half-planes, the intersection between the attractor and the Poincare 

section is approximately one-dimensional. Figure 4-1 shows a top view of one branch of 

the Poincare section, where the asterisks mark the intersections of a trajectory with the 

half-plane. This set of points may be approximated quite accurately by a line extending 

from the corresponding unstable fixed point fitted with a  least-squares method. This is 

an important simplification, because it allows us to calculate the symbolic dynamics (i.e. 

r,v(x)) on a one-dimensional domain versus a  two-dimensional surface. Now r,y may be 

defined as r,y : [a, 6] x {0, 1} —y [0, 1] such that (d, Eq) •-+ J2iLi E{2~1 where d is the distance 

along the fitted line between the appropriate fixed point and the point of interest on the
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Poincare section w/ linear least squares fit

0.4

0.35

0.3

0.15

-1.3 -1 .15 -1 .05 -0.95- 1.1 -1

Figure 4-1 Poincare section of the double scroll attractor, showing best fit line.

Poincare section, £q is an indicator variable denoting the current lobe and {^i, £2 , ■■ ■ • £n} 

is the future sequence of lobes visited by a  trajectory starting at the current point on the 

surface. The interval [a, 6] is chosen to be large enough to contain the attractor, since the 

attractor has finite width. The values a =  0.1 and b =  0.7 are sufficient for the present 

implementation of the double scroll system. The distance d  may be found by the formula 

d — {F — \vcx |) cos 6 -f- |uc2l sin#, where 9 is the angle between the fitted line and the plane 

defined by vc2 =  0 [17]. By only considering the distance from the corresponding fixed 

point, the point of intersection is rotated slightly about the fixed point onto the line before 

proceeding.

In the numerical implementation, the calculation of r l\ ( x )  was done discretely by dividing 

up each of the cross-sections into 2001 partitions and calculating the future evolution of the
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Index d ry (d ,0 ) ugt_______ vg2 Control

717 0.3148 0.18750 -1.245731 0.185597 5
718 0.3151 0.18750 -1.245488 0.185774 4
719 0.3154 0.18750 -1.245246 0.185951 3
720 0.3157 0.18750 -1.245004 0.186127 2
721 0.3160 0.18750 -1.244761 0.186304 1
722 0.3163 0.21875 -1.244519 0.186481 -1
723 0.3166 0.21875 -1.244277 0.186658 -2
724 0.3169 0.21875 -1.244035 0.186835 -3
725 0.3172 0.21875 -1.243792 0.187012 -4
726 0.3175 0.21875 -1.243550 0.187189 -5
727 0.3178 0.21875 -1.243308 0.187366 -6
728 0.3181 0.21875 -1.243065 0.187542 -7

Table 4.1 A portion of the table containing control instructions.

central point in the partition for up to 12 loops around the attractor. However, the controls 

were applied so that effects of a perturbation to a trajectory will be evident after only 5 

loops around the attractor, i.e. N  =  5. In addition to recording rs(x), a look-up table was 

constructed for each branch which contains the coordinates for the central points in the 

partitions, as well as instructions concerning the controls a t these points. The table has one 

row for each bin. A portion of the table for the “0” branch appears in Table 4.1. The columns 

are: the row number; the distance d from the fixed point; r ^ (d ,  Q); the coordinates vc t and 

vc2 for the central point in the partition; and control instructions telling how many partitions 

up or down one needs to perturb in order to change the iVth symbol in the future. Because of 

the symmetry of the double scroll system, the table for the “1” branch is essentially the same 

as above: the first two columns are the same; r^(d ,  1) =  1 — 2'v — r,v(d, 0); change the signs 

on the 4th and 5th columns; and the 6th column is the same. The control instructions may be
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found well ahead of time. Since we have already found rw(d, £q) for all partitions, it is simply 

a matter of finding a location d! on the section for which \r^(dr, £q) — r^ (d ,  £q) | =  2~N. For 

example, at an  intersection point xo of a trajectory with a cross-section, if rs(xo) indicates 

that the trajectory will trace out the sequence 11001, then one searches for the bin nearest 

to xo which will give the sequence 11000 and places this information in M  (if the nearest 

bin is not unique, then there must be an agreement about which bin to take; one may take 

the bin further from fixed point at the center of the loop). If, however, the current point will 

trace out the sequence 10011, the search will fail to find any location, near or not, which 

will produce the sequence 10010: this is due to the grammar limitation discussed on p. 54 

for the double scroll oscillator. These impossible bit sequences result in large gaps in the 

values of r# ,  seen in Figure 2-23.

Since the new starting point after a perturbation will visit the same lobes as the point xo 

until the ATth loop, only two options at each intersection need to be considered; control or 

no control. Consequently, when the chaotic dynamics of the transm itter are being perturbed 

to trace out a given message, the set of controls which are applied can be translated into 

another binary sequence. I t will be shown later that the map between a  string of message 

bits and the associated binary sequence of controls changes as a function of the history of 

both the transm itter’s chaotic dynamics and the message.

At each intersection where no control needs to be applied, the trajectory may be reset 

so that it starts at the central point of whatever partition it is in (this resetting process 

may be thought of as a system of microcontrols) . This removes any accumulation of round­

off error and minimizes the effects of sensitive dependence on initial conditions when the 

simulations are run, making the communication technique more robust. It also has the
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effect of restricting the dynamics of the transm itter to a  finite subset of the full chaotic 

attractor, although the dynamics still visit the full phase space. These restrictions can be 

relaxed by calculating r(x) and M  on a  finer grid at the outset.

The communications possibility arises since both transm itter and receiver have a copy 

of rjv(x) and the table M , so assuming that a protocol has been established such that the 

receiver knows when to s tart applying the controls, all tha t must be passed between the 

transm itter and receiver is the sequence of control instructions in binary form, telling the 

receiver when to perturb the trajectory. The table M  holds the information about which 

partition should hold the new starting point for the perturbed trajectory, so once the receiver 

is told to perturb the orbit, it immediately knows where and how to achieve the desired 

perturbation. As the transm itter is controlled to trace out the desired trajectory, it is noted 

at each intersection whether or not a perturbation is needed. A “1” now indicates that a 

control was applied, and a “0” means that the trajectory was left to pass through the section 

unperturbed. This new sequence now forms the transm itted signal. The transm itted signal 

is thus a  digital stream, which should have the added benefit of producing a more robust 

co m m unic a tio n  technique which could be tra n sm itter! using current hardware and could 

incorporate error-correction technology to produce the digital transmission. The receiver 

has an identical system, along with a copy of M  and r ^ ( x ) ,  so all the receiver needs is 

some starting point and the transmitted control information. As the receiver’s trajectory 

passes through some prescribed partition, or, as will be described in Section 4.3, after the 

receiver has been driven onto a  periodic orbit, the control sequence is applied. The receiver 

is then controlled to follow the same dynamics as the transm itter and the message can be 

read simply by observing the sequence of lobes of the attracto r visited by the receiver.
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4 .3  R e m o te  In itia liza tio n  o f  R e ce iv e r

One crucial element of this binary chaotic communication scheme remains to be developed. 

So far, it has been assumed that the transm itter and receiver have been synchronized from 

the start. For this scheme to be practical, there must be a mechanism in place to initialize 

the receiver into a  known state. Promising research is currently being conducted into related 

questions from the perspective of impulsive differential equations [26] and several researchers 

have investigated the possibility of using impulses to synchronize a receiver [62, 55], or to 

control a chaotic system onto some regular behavior [28, 61]. Consequently, this discussion 

will be restricted to a numerical demonstration that it is quite easy to send a  sequence of 

controls to the receiver which will drive the receiver onto a  periodic orbit. Once on the 

periodic orbit, the message bits can be incorporated into the dynamics of the transmitter, 

with the resulting transm itted bits causing the receiver to leave the periodic orbit, which 

serves to alert the receiver to the beginning of the message.

At a fundamental level, when microcontrols are used in the binary communication 

scheme, there are only a finite number of orbits on the attractor, so periodicity of the 

dynamics would eventually be guaranteed. However, it is true that there are short periodic 

orbits which are (numerically) stabilized by the microcontrols. More importantly, it was 

found that the receiver could be driven onto a periodic orbit by sending it a repeating code. 

Different repeating codes led to different periodic orbits. The resulting periodic orbit was 

dependent only on the code segment which was repeated, and not on the initial state of the 

receiver (although the time to get on the periodic orbit can vary depending on the initial 

state). Consequently, it may be possible to send an initialization control sequence to the
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Period 5 Orbit
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Figure 4-2 Period-5 orbit, resulting from the initialization code “01011.”

receiver which drives the receiver and transmitter onto the same periodic orbit.

This initialization property will be illustrated with a single example. Using the double 

scroll system, the binary sequence of control instructions 01011 is repeatedly fed through 

both the transm itter and receiver. The result is that both the transm itting and receiving 

systems quickly settle on a periodic orbit, in phase (modulo the length of the periodic orbit), 

no matter what their separate initial conditions were. This orbit is shown in Figure 4-2. 

Only one slight perturbation is noticeable in the figure which is due to one of the control 

bits. This controlled orbit then seems to occur very close to a true unstable periodic orbit 

of order 5 in the uncontrolled system. The task of providing a rigorous explanation of this 

apparent stabilization of unstable periodic orbits is progressing and will appear in a future 

paper.
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The remote initialization property provides the final component o f the binary chaotic 

communication scheme. There may be other, be tter ways to achieve initialization, but 

they could simply be used to replace the current initialization scheme without changing the 

remainder of the method.

4 .4  B in a ry  C o m m u n ica tio n  w ith  O n e -D im en sio n a l M a p s

The symbolic dynamics of this scheme can. be reproduced exactly by an  approximate one­

dimensional Poincare map. The Poincare surface in this case has two branches, one on 

each lobe of the attractor. The partitioning of the surface and the use of microcontrols 

allows for the easy calculation of a  map which exhibits all of the symbolic dynamics of the 

full microcontrolled system. The evaluation of this map is much simpler and faster than 

integrating between intersections with the Poincare surface. To find the map, the center 

point in each bin of the partition is taken as an initial condition (since these are the points 

to which the microcontrols “reset” trajectories) which is then integrated forward in time 

until the next intersection with either branch of the Poincare surface, and the branch and 

distance d. at which the trajectory lands is noted. For any two consecutive intersections with 

the surface, represented by (do, ^o) and (dL, £L), this map may be w ritten as

M  : [a, 6] x {0, 1} —>■ [a, 6] x {0, 1}

such that M(do, ^o) =  {d\. ii) .  where the interval [a, 6] is the same as in Section 4.2. For 

a given set of integration parameters (time step, method, etc.) and for a  given partition of 

the surface, the trajectory from the center of any bin in the partition to its next intersection
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with the surface will not vary. Therefore, the map mimics exactly the behavior of the full 

microcontrolled system for a  given integration method.

A plot of the map described above for the double scroll system is shown in Fig. 4-3. The 

primarily unimodal shape is not surprising, since it is known that unimodal maps can exhibit 

chaotic properties. However, we do not yet know, using only this map, when trajectories will 

switch lobes, which is crucial information about the communication scheme. By studying 

the structure of the double scroll attractor, seen again in Figure 4-4, it may be discerned 

that there is a sharp division between trajectories which remain on the same lobe and those 

which travel towards the opposite lobe. It turns out that, for the current parameter settings, 

any trajectory which begins on a  section within about 0.641 units from either fixed point will 

intersect the Poincare surface on the same lobe. Otherwise it will traverse to the other lobe 

before intersecting with the surface again. This transistion point will be denoted x /<,&,. This 

region is magnified in Figure 4-5. More details about the dynamics of this one dimensional, 

approximate map may be found in [7].

To implement this map in the communication scheme on the computer, two more columns 

may be placed in the instruction table corresponding to the value of M{di, i) at each row i. 

The bin number can be calculated by the function

index„(d) =  ^— -(p  — 1) -+- 1, 
b — a

where p is the number of bins defined by the partition. Simulated data transmission and 

reception using this new table is essentially the same as transmission and reception using 

integration. For a given intersection with the surface (do, Zq), the transmitter still uses the
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Approximate Poincare Map for Double-Scroll Oscfllator
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Figure 4-3 One-dimensional Poincare map for the double scroll oscillator.
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Figure 4-4 Double scroll oscillator, showing surfaces.
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Approximate location of separation point
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Figure 4-5 Expanded view of Figure 4-3.

function rjv(do> ^o) to compare the symbolic dynamics N  bits in the future with the message 

bit. If the iVth bit in the future symbolic sequence for that bin differs from the current 

message bit, the control instructions are used to move to the nearest bin that will produce 

the desired sequence, and a “I” is sent. Otherwise, a  “0” is sent. Then the new columns 

axe used to find the location of the next intersection with the surface under the map, and 

the process is repeated with the next message bit. The receiver uses the map in a  s im ilar  

fashion, allowing the transmitted bitstream  to dictate when to use the control instructions 

to find a new bin. The use of this map eliminates all of the time-consuming numerical 

integration, allowing for faster and more extensive testing.

To summarize the results so far, the entire continuous double scroll system has been 

replaced by an iterated, primarily unimodal chaotic map. Although in the 3-D system
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there were two branches of the Poincare section, one on each lobe, the attractor is perfectly 

symmetric about the origin, so that the Poincare maps on both branches axe identical. This 

allows us to iterate only one version of the map, while keeping track of the lobes w ith an 

indicator variable £* 6  {0, 1}.

This map differs from a conventional Poincare map in a  couple of aspects. First, our 

Poincare section is two-dimensional, but it is approximated by a pair of lines extending from 

the unstable fixed points fitted with a  least-squares method. Whenever a  trajectory intersects 

the section, by considering only the distance from the corresponding fixed point, the point 

of intersection is essentially rotated about the fixed point onto the line before proceeding. 

In  this way the three-dimensional dynamical system is reduced to a one-dimensional map. 

Secondly, the point of intersection is reset to the center of its current bin to simulate the 

microcontrols. However, since we axe only concerned with the dynamics occurring within a 

finite number of iterations, N,  of the map, the actual resolution required in this discretization 

may be quite coarse. Thus the microcontrols axe not viewed as restricting significantly the 

chaotic dynamics.

Periodic orbits axe of particular interest for the remote initialization of the receiver, and 

can be found through the study of the approximate Poincare map defined above. Period­

icity is guaranteed in the free-running (null message) micro controlled system as soon as a 

trajectory lands in a bin which it has visited before. Running the microcontrolled system 

corresponds to iterating the Poincare map, so periodic orbits for all points in our partition 

may be found by starting trajectories in each bin and iterating the map until periodicity is 

reached. Some preliminary results will be discussed in  Section 4.3.

This reduction of the binary chaotic communication scheme to the Poincare map version
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allows for the generalization of the scheme to any chaotic one-dimensional map. It is simply a 

matter of defining “lobes”—what section of the domain implies a switching of bits—recording 

the symbolic dynamics in r ^ (x )  and finding appropriate controls as before. For example, 

one could take the logistic map xn = aa:n_ i( l  — zn- i )  defined on [0, 1] and arbitrarily say 

that for any Xk > xiobe, where 0 <  x*06e <  L the next bit ik+\ will be £k+i =  1 — £k', 

otherwise ik+i =  Ik- This provides the symbolic dynamics necessary to build the system. In 

Section 4.4.2 the symbolic dynamics will be simplified by explicitly labelling disjoint intervals 

with “1” or “0” , bu t for now the former definition will continue to be used, which parallels 

the 3-D double scroll system.

The system designer now has the freedom to improve the scheme in at least two ways. 

One can choose maps which would eliminate any gram m ar restrictions as well as optimize 

the system statistically, in the sense of generating random-looking bit strea m s . M in im a lly  

one would want a  uniform distribution and a £-like autocorrelation function—see [21] for 

many other statistical tests of randomness. Eliminating the g ra m m ar restrictions will help 

in many ways to improve the statistics. To eliminate the restriction that bits must at least 

come in pairs, the map has to allow trajectories to remain in the “switching” region for two 

or more iterations in a row. While the dynamics of the 1-D map for the double scroll system 

have been studied thoroughly in [7], a  simple illustration will be used here to explain how 

to choose a map and define the symbolic dynamics such that there are fewer restrictions on 

the grammar.

In Figure 4-6 the 1-D map associated with the double scroll system again is shown, with 

the different symbolic intervals labelled and shaded. Let the function M  : I  —> I  represent 

the curve in the figure, where I  =  [0.1, 0.7], and let A  and B  be the intervals under the
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Figure 4-6 Illustrating one cause of gram m ar limitations

unshaded and shaded regions, respectively. Suppose x n G I  with associated bit bn. Using 

the symbolic dynamics from the 3-D system, if x n €  B ,  then 6n+i =  1 — 6n; otherwise x n €  A  

and 6n+i =  bn. It should be clear from the figure that if x n €  5 ,  then xn+1 =  M {xn) e  A. 

The rules governing the symbols then imply that bn+i =  1 — 6n, but bn + 2  =  bn + Thus there 

will never be more than one successive transition of bits, which eliminates the possibility that 

a singleton will appear in any symbolic sequence. We can summarize the possible sequence 

of intervals visited by a trajectory by the following simple diagram :

G
In order to allow a trajectory to remain in B  for more than one iteration, a por­

tion of the interval B  must be mapped into itself by M .  Stated more precisely, there
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should exist a non-empty open set U  C I  such that U  C B  D M[B], where M[B] =  

{y  €  /  | 3x  €  B  such that y  = M {x)}.  This may be achieved simply by widening the in­

terval B  to include a  fixed point of the map M , or by raising a section of M \ b  above the 

line y =  inf B.  If B  includes a fixed point of M , then trajectories will be allowed to remain 

in B  for many more than one or two iterations. These are guidelines toward choosing a new 

chaotic map which has no grammar limitations. The desired diagram  will then look like:

O O
As a first example, one could consider the second iterate of the logistic map, xn+1 =  

f ( x n) =  a2x n( l  — xn)( l  — axn(l — x n)), with a =  3.99. Since this map is symmetric 

about the vertical line x  =  0.5, a logical choice for X(06e to preserve the symmetry would 

be xi0be =  0.5. All short n-bit words are possible under this map since both regions of the 

map contain an unstable fixed point, which may hold trajectories close for several iterations. 

Therefore, preprocessing the message bitstream  is unnecessary. Another possibility is the 

simple, tent-like piecewise-linear map

' 4xn, if 0 <  x n <

2 — 4xn, if |  <  x n <
(4)

4xn -  2, if 4 <  Xn <

3

x n + l  — 5 ( a' n )  —  <

„ 4 — 4xn, if I  <  x n < 1.

This map will be used below in some of our statistical testing and experiments. Both 

examples are shown in Fig. 4-7.
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Two Chaotic Maps
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Figure 4-7 Two candidate maps for this system.

4 .4 .1  In it ia liza tio n  o f  m a p -b a sed  sy ste m s

Remote initialization of map-based systems may be achieved in exactly the same way as 

before. For an example of initialization using a system based on the piecewise-linear map 

g(xn) defined above, the sequence 1111000 was used as an initialization code as in Section 4.3. 

The resulting orbit for this code appears as a dotted line in Figure 4-8. Remarkably, this 

orbit is very close to a  true periodic orbit of the uncontrolled iterated map, represented 

by a solid line in Figure 4-8. The slight differences between the two orbits are due to the 

small controls. As was mentioned before in Section 4.3, a  rigorous proof of the relationship 

between the initialization process and unstable periodic orbits is in progress and will be the 

focus of future work.
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Period 7  orbit
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Figure 4-8 True period-7 orbit, without controls.

4 .4 .2  A  class o f  o n e -d im e n s io n a l m ap s w ith  p erfect s ta t is t ic s

The dynamics of one-dimensional chaotic maps have been thoroughly studied, but only 

recently have these maps been considered in a cryptographic context as pseudorandom 

number generators. Some maps which have been proven to exhibit a J-like autocorrelation 

function may provide a good foundation for the digital chaotic communication scheme, and 

will be discussed here.

In addition to many recent attem pts to design a secure communication scheme based on 

chaotic systems, there have been several proposed pseudo-random number generators based 

on chaotic one-dimensional maps [8, 20]. In [8], the focus is to generate numerical sequences 

which have a certain distribution using a simple one-dimensional map. The authors consider
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the piecewise linear map

Xxn if  x n <  j-
X f i + 1  —  J ~ ( x n ,  A )  —  < (5)

j r t  (f  x n )  if  x n  ■'> X

where A >  1. The function T  is often called the skew tent map. A proof is given of the 

uniformity of the distribution on [0,1] of iterates {arfc}, as well as the existence and instability 

of periodic orbits of length n, where n  is any natural number. A sequence of numbers with a 

desired cumulative distribution function F(x)  is then obtained by simply transforming the 

iterates according to

Vn =  F ~ l (xn).

For example, to transform to a  uniform distribution on [a, 6], use yn =  (6 — a)xn 4- a. For 

an exponential (p., A) distribution, transform according to yn = p  — ln (l — x n)/X [8]. It is 

clear that, if x n is uniformly distributed on [0,1], then the resulting sequence yn will have 

the desired distribution. However, the authors of [8] repeatedly refer to the sequences as 

“random signals,” implying a  time ordering. It is when this time ordering is considered 

that the structure of the one-dimensional map appears. The authors of [8] provide a table 

of 100 “random” points with a uniform distribution on [—2,2]. This table is reproduced in 

Table 4.2. Plotting a delay reconstruction of these numbers as a time series with time delay 

equal to 1 reveals the hidden structure in this sequence (rounded to the nearest hundredth), 

seen in Figure 4-9. This is the simplest form of this type of reconstruction. The authors 

suggest that their number generator may be appropriate for Monte Carlo analysis, but it is 

clearly inappropriate for time-ordered cryptographic use.
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71 71 71 71 Xn
1 - 1.17 26 - 1.36 51 0.46 76 - 1.47
2 0.41 27 0.08 52 0-56 77 - 0.11
3 0.80 28 1.54 53 - 1.79 78 0.77
4 - 1.31 29 - 0.92 54 - 0.66 79 - 1.51
5 0.17 30 0.85 55 1.30 80 - 0.18
6 1.91 31 - 1.98 56 - 1.47 81 0.48
7 - 0.02 32 - 0.99 57 - 0.11 82 1.17
8 1.13 33 0.73 58 0.76 83 - 1.80
9 - 1.87 34 - 1.82 59 - 1.63 84 - 0.67

10 - 0.80 35 - 0.71 60 - 0.39 85 1.28
11 1.06 36 1.21 61 1.77 86 - 1.53
12 - 1.12 37 - 1.70 62 - 0.37 87 - 0.21
13 0.51 38 - 0.50 63 1.79 88 0.35
14 0.59 39 1.57 64 - 0.31 89 1.73
13 - 1.78 40 - 0.85 65 1.90 90 - 0.47
16 - 0.65 41 0.98 66 - 0.05 91 1.62
17 1.32 42 - 1.45 67 1.00 92 - 0.71
18 - 1.43 43 - 0.07 68 - 1.36 93 1.21
19 - 0.04 44 0.95 69 0.08 94 - 1.70
20 1.06 45 - 1.57 70 1.55 95 - 0.50
21 - 1.10 46 - 0.28 71 - 0.89 96 1.57
22 0.54 47 1.95 72 0.89 97 - 0.84
23 - 2.00 48 0.05 73 - 1.79 98 0.99
24 - 1.02 49 1.44 74 - 0.66 99 - 1.39
25 0.68 50 - 1.14 75 1.30 100 0.03

Table 4.2 100 “random ” numbers from the pseudo-random number generator in [8].
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Figure 4-9 Structure in “random” numbers revealed.

The pseudo-random number generator described in [20] may provide considerably more 

security. Rather than taking numbers directly calculated by a one-dimensional map, the 

authors of [20] propose to partition the interval into subintervals labeled “1” and “0,” and 

letting the bits of the pseudo-random numbers be determined by the sequence of intervals 

through which a  trajectory travels. This abstraction provides much needed separation be­

tween the chaotic attractor and the output, and denies an intruder much of the information 

needed to expose any hidden structure.
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The class of functions considered in [20] is given by

4>p(x) =  «

- 1  +  2(x  -  ai)/{ai+1 -  ai) if x  6  [a*, ai+ i)

<pp(—x) i f x e [ —1,0) (6)

1 if x  =  1

where p >  1, 0 =  a o < a i < - - - < O p <  Op+1 =  1, and the set {a*} divide [0,1] into p +  1 

subintervals. The proof of the ergodicity and un iform  distribution of these maps is similar 

to that which appears in [8]. Now divide the interval [—1, 1] into two sets Iq and T\ of equal 

measure and which are both  finite unions of intervals such that IqUIi =  [—1, 1] and IqC\I\ =  

0. When an iterate x n falls in Iq, a “0” is recorded; otherwise, a “1” is recorded. Bitstreams 

axe then generated by the sequence of intervals through which a trajectory passes. The 

authors prove that the sequences have a delta-like autocorrelation function, the probabilities 

of a “1” and a “0” axe equal, and the cross-correlation between any two distinct sequences is 

zero. In the next section, it will be shown that various reconstructions have so fax revealed 

little structure in the bitstream.

A “key” may now be defined for this system in the following way. For any natural number 

n, divide the interval [—1, 1] into 2n equal subintervals, labelled in order / f ,  / ? , . . . ,  I^n as 

in [20]. Now when an iterate x n lands in an odd-labelled interval, record a “1”; otherwise, 

record a “0". We now have a “key space” that consists of the set

K. =  {(p, a\, a i . . . , a p,n )  : p >  0, 0 <  a i <  <22 <  . -. <  ap <  1, n > 0}

where n  and p axe natural numbers.
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The method in  [20] holds much more promise as a  pseudo-random number generator 

than that presented in [8]. More work needs to be done in the area of detecting patterns in 

this type of scheme, although it seems to pass the simplest reconstruction and information 

measure tests. The performance of this map in the chaotic communication scheme will be 

compared to the tent-like map described earlier.

The symbolic dynamics may be defined in any number of ways, and for this m ap the 

implementation differed from previous work in the following manner. The symbolic dynamics 

had previously been defined to m im ic  that of the double scroll Poincare map, where there was 

a “s w itch in g” region which indicated a  transition of bits (or “lobes”) a t the n e x t  iteration 

of the map, i.e. 6n+ i =  1 — 6n - Otherwise, bn+ i =  bn . Rather than following this convention 

for this map, the symbolic dynamics were defined more simply by breaking the interval into 

subintervals labelled “0” and “1” in accord with [20]. While this slightly affects how the 

symbolic dynamics is recorded, the remainder of the algorithm is unchanged—controls are 

chosen to alter the symbolic d yn am ics  only after the iVth iteration.

4 .5  T estin g  for  D e ter m in ism

To generate a sample bitstream  from the Zhou e t  a l  binary scheme, given by Equation (6), 

let p  =  1, ai =  0.33, I q =  [-1 ,-0 .5 )  U [0,0.5) and I\_ =  [—0.5,0) U [0.5,1]. The resulting 

map 4> is shown in Figure 4-10.

For an experimental data set, the entire ASCII text of Shakespeare’s “King Henry V” 

was encoded using the double scroll Poincare map, the tent-like map g [ x n ) given on page 111, 

and ( p ( x n ) described above. This provided 1,298,040 bits for statistical testing. As the first 

test of the binary communication process, the mapping between a sequence of message bits
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Example chaotic map: a,«0.33
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Figure 4-10 Sample map from Zhou et al family.

and the corresponding transmitted bits was examined, and it was found that the process 

was many-to-one and one-to-many. For example, Figure 4-11 illustrates in histograms the 

mapping between 3-bit words in the message and the corresponding 3-bit words in the 

transmission for the map g(xn) using the “King Henry” data. The numbers on the x-axes 

and in the titles represent base-10 conversions of 3-bit words, i.e. 3io =  01l2> 5io =  IOI2 , 

etc. The histograms show that a given sequence of message bits can be encoded in many 

ways: similarly, a  given sequence of transmitted bits can represent many different sequences 

of message bits. It is only the dynamics of the chaotic transmitter which allows the proper 

meaning to be discerned, and the encoding is entirely dependent on the history of both the 

chaos and the message.

An attempt was made to investigate whether it is possible to find a way to construct some
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kind of dynamical model from the transm itted bit stream . In order to do this, sequences of 

bits from the transm itted signal were interpreted as integer binary numbers. By considering 

sequences of bits, it is possible to consider statistical and dynamical tests for determinism. 

To do this, sequences of 4, 8, and 16 bits taken from the transm itted signal were considered. 

As an example, consider the following sequence of transm itted data:

0011100011001011011100001100100101001111110. . .

Assume that disjoint sequences of 4 bits are to be interpreted as decimal numbers. Then the 

first “data value” would be s i =  OOII2 =  3, the second would be S2 =  IOOO2 =  8 and so on.

For these tests N  =  7. The autocorrelation of the transm itted bit stream  using g(xn ) 

gives the <S-like plot at the top of Figure 4-12. If the cross correlation between the message 

bit stream and the transm itted bit stream is calculated, the result in the second plot in 

Fig. 4-12 shows that there is very little correlation, since a strong correlation at any lag 

would have a  value close to 1. However, there appears to be remaining evidence of the 8-bit 

ASCII structure in the cross-correlation plot, seen as a  small bump occurring at regular 

intervals. The correlation plots, seen in Figure 4-13, of the transmitted bit stream  using the 

map (f> reveal none of the ASCII patterns.

As the next test, it was considered whether the reconstructed data points taken from 

the disjoint time series would fill all possible positions in phase space. The results shown 

here will be limited to 2-dimensional reconstructions, bu t it will be shown below that the 

results will hold in higher dimensions as well. In Fig. 4-14, reconstructed data points of 

the form Xi =  (si,Sj+i) axe plotted, where Sj is defined as above, except that disjoint 16-bit
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Figure 4-12 Correlation plots for the “King Henry V” data using the map g{xn).

sequences axe used. This plot shows that most grid points are covered for 16-bit sequences. 

Consequently, it seems as though it will not be possible to use reconstructions to find a 

distinguished subset of reconstructed points that can be used to determine the state of the 

hidden chaotic transmitter.

Metric (or Kolmogorov) entropy measurements provide a way to quantify the rate at 

which dynamical data fills A:-dimensional phase space, based on information theory [42]. If 

the metric entropy is denoted K , then K  =  0 for periodic or quasi-periodic data, 0 <  K  < oc 

for chaotic data and K  —> oo for random data. The presence of predictable structure would 

lead to a lower entropy value. A plot of the metric entropy measurements for the sample bit 

stream for 1 <  k  < 22 can be seen in Fig. 4-16, where it is superimposed on the entropy plot 

of random data. It is clear that the transmission does not reveal any nonrandom sequence
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Figure 4-13 Correlation plots for the “King Henry V” data using the map 4>(xn ).

structure for reasonable sequence lengths (the deviations at the upper end are more likely to 

be related to the size of the data set—larger data sets would have to be used to probe a  regime 

of longer sequences). The statistical imperfections remaining in the tent map transmission 

seem to have been eliminated or significantly reduced by this type of chaotic map.

It was considered whether there was a consistent pattern to the d y n am ical evolution 

of the reconstructed points. To examine this question, phase space reconstructions were 

created to search for a  consistent flow pattern, i.e. for some regularity to the plotted points

or to the dynamical behavior as si —>• S2 —> S3  The hope was that if any predictable

dynamical behavior was revealed, it might be possible to determine something about the 

hidden chaotic system which composes the transmitter and receiver. However, it was not 

surprising to find that the flow patterns appeared as random lines connecting the grid points.
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Figure 4-14 16-bit reconstruction of “King Henry V” transmission using g(xn), N  =  7.

so there was no dynamical information which could be gleaned from the transm itted data, 

and NLD forecasting was completely ineffective.

The important aspect of the development of this communication technique is that since 

the transmitted signal is just a  binary sequence, there is no information which can be used 

to produce a time-delay phase space reconstruction in the usual sense. Consequently, the 

techniques which were used to break chaotic communication schemes in [48, 45, 43, 44] are 

no longer applicable to this problem, since there is no obvious way to extract geometric 

information from the transm itted signal. Even from these preliminary tests, it appears that 

this chaotic communication scheme is much more difficult to analyze from an NLD perspec­

tive than earlier chaotic communication techniques which transm itted a chaotic waveform. 

This does not mean that other techniques will not work.
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Figure 4-15 16-bit reconstruction of “King Henry V” tra n sm iss io n  using cj>{xn), N  =  7.

4 .6  C ry p to g ra p h ic  c o n te x t

To understand the advantages of this digital chaotic communication scheme when compared 

to existing encryption algorithms, it is helpful to review some of the general classes of 

encryption methods. Then common features will be discussed as well as those features 

which set this scheme apart. Much of the following information on standard encryption 

techniques has been condensed from Schneier’s book Applied. Cryptography [40].

There are two general classes of encryption algorithms—block ciphers and stream  ci­

phers. A block cipher performs its functions on sequential blocks of data, usually 64 bits 

at a time. A stream cipher operates on individual bits or bytes. While the digital chaotic 

communication scheme may be facially classified as a stream cipher based on these defini-
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tions, there are characteristics of both types of schemes which are shared and need to be 

discussed.

There are several different modes in which traditional encryption algorithms may op­

erate. These are usually a combination of feedback loops, chaining and simple operations 

which assist in hiding patterns in the plaintext and randomizing the input to the encryption 

algorithm. These modes have various effects on the security, efficiency and error-propagation 

properties of the implementation of the pure algorithms.

4 .6 .1  B lo ck  c ip h er  m o d es

The simplest implementation of a  block cipher is to encode each block of plaintext with a 

given algorithm and transm it the result without any feedback loop. A given (e.g., 64-bit) 

ciphertext block is dependent only on the corresponding (64-bit) plaintext block. This is 

called e lec tron ic  code b o o k  mode, or E C B . The name comes from the purely theoretical 

possibility that one could keep track of all possible corresponding ciphertext and plaintext 

blocks in a code book, since the same block of plaintext will always encrypt to the same block 

of ciphertext. If K  is any given key, E r  and D r  are the encryption and decryption functions, 

respectively, and Pi and Ci are the zth plaintext and ciphertext blocks, respectively, then 

this mode is easily represented by

Ci = E K{Pi)

Pi = D K(Ci).
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The main advantage of this mode is that since there is no interdependency between blocks, 

encryption and decryption may be done in parallel, improving the efficiency. This also makes 

it a good mode to implement for access to files in a database. The m ain disadvantages are 

that patterns in the plaintext are not completely hidden, and that the plaintext is easy for 

an intruder to manipulate; it is difficult to detect when blocks axe omitted, repeated or 

rearranged.

The other block cipher mode which will be discussed here (there are several others) is 

called c ip h er b lo ck  ch a in in g  (C B C). In this mode each plaintext block is added bitwise 

(modulo 2) to the previous ciphertext block before encryption. Using the notation from 

above, this can be denoted

Ci = Eic{Pi © Ci-i)

Pi =  Ci—i®Df((Ci)

where “©” is bitwise addition modulo 2. Thus a  given ciphertext block is dependent not only 

on the corresponding plaintext block but also on every previous plaintext block. This mode 

helps to obscure patterns in the plaintext. In order to staxt the c h a in in g  and to randomize 

the first block of plaintext, an in itia liza tio n  v ec to r (TV) is needed. This does not need to 

be kept secret, since the security of any good encryption algorithm should be in its key. It 

is important to change the IV for each message, but it does not need to be random. CBC 

is generally best used for encrypting files.
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4 .6 .2  S tr e a m  c ip h er  m o d es

Stream ciphers are methods of generating a stream of bits, ki, called the k ey  s tre am , which 

is then added modulo 2 to the bits in the plaintext to form the ciphertext, or q  =  pi®kt . The 

key stream must look random, yet it must be deterministic in order to be reproduced exactly 

at the receiving end where the message is recovered by pi =  C£ © k{. Most common stream 

cipher modes have an analogous block cipher mode, where individual bits are replaced by 

blocks.

The simplest mode is called a synch ronous s t r e a m  cipher, where the key stream is 

independent of the plaintext or ciphertext, although the key stream  may be fed back into the 

key stream generator. This mode has the advantage that b it errors in the ciphertext occurring 

in transmission will only affect the corresponding bit in the plaintext upon decryption. The 

main disadvantage is that a  loss of synchronization is unrecoverable, unless there is some 

structure present which allows both the sender and receiver to resynchronize. On the other 

hand, this can be viewed as a  security advantage, since manipulative insertions or deletions 

by an intruder will be immediately detected.

A self-sy n ch ro n iz in g  s tre a m  c ip h er generates each key stream bit using a function 

of a key and a fixed number of ciphertext bits. In this mode the receiver will be fully syn­

chronized with the transm itter as soon as n  ciphertext bits are received. This eliminates the 

need for an IV—the sender can encrypt n  bits of random data before starting the messaage. 

The receiver will decrypt the first n  bits incorrectly, but thereafter will be synchronized 

just in time to decrypt the message properly. Also, if synchronization is lost during the 

transmission, it will be regained after n bits, unlike the synchronous stream  cipher mode.
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where a loss of synchronization is unrecoverable. But this means that one bit error in the 

ciphertext results in n  errors in the plaintext, an increase in the error expansion over the 

previous mode.

The main advantage which the digital chaotic communication presented in this chapter 

has over other chaotic communication systems is that the state space of the transmitter is 

completely hidden. Hiding the state space of the transm itter was the primary objective in 

its design.

The digital chaotic communication scheme has several characteristics in com m on with 

established encryption methods, but it is impossible to classify fully this scheme using tradi­

tional cryptographical terminology. The main difference is that the internal state of standard 

cryptographical algorithms are composed of shift registers or blocks of bits, whereas the dig­

ital chaotic scheme’s internal state involves an orbit on a chaotic attractor. This issue of 

cryptography using discrete versus continuous sets has been discussed briefly in [15, 25]. 

The notion of a “key” is also unique for this system. The chaotic system may be chosen 

from a large class of simple one-dimensional maps, each of which may be compactly repre­

sented. The maps along with the number N  of bits chosen to record the symbolic dynamics 

as well as the choice of controls form a  very large key space.

Aside from these unique characteristics, because the ciphertext is generated one bit at a 

time, this scheme may be classified as a  type of a stream cipher. The following table summa­

rizes some of the security, efficiency and error propagation properties of these communication 

methods.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B lock  c ip h er m od es S tream  c ip h er  m odes
Property ECB CFB Synchronous Self-synchron. Digital Chaotic
Initializa­
tion

not needed needs IV, does 
not need to be 
secret, should 
change for each 
message

needs an IV, 
does not need 
to be secret, 
must change for 
each message

not needed: 
initialization 
may be done 
dynamically

d y n a m ic :
receiver may be 
initialized 
remotely, 
initialization 
does not need 
to be secret

Bit Error 
Propaga­
tion

corrupts one 
full block of 
plaintext

corrupts one 
full block of 
plaintext plus 
one bit in the 
next block

corrupts only 
one bit in the 
plaintext

corrupts n bits 
of plaintext

unrecoverable

Synchron.
Error

unrecoverable unrecoverable unrecoverable resynchronizes 
after n  bits

unrecoverable

Security plaintext 
patterns not 
concealed; 
plaintext easily 
manipulated by 
an intruder

plaintext 
patterns are 
very well 
concealed; 
harder to 
manipulate 
plaintext 
undetected

patterns well 
concealed; 
plaintext easy 
to manipulate 
bitwise, but 
insertions and 
deletions axe 
immediately 
detectable

patterns well 
concealed; 
plaintext 
harder to 
manipulate

patterns are 
very well 
concealed by 
the chaotic 
dynamics; 
plaintext very 
hard to 
manipulate 
since all 
changes to 
ciphertext are 
immediately 
detected

Efficiency/
Applica­
tions

most efficient: 
very good for 
software imple­
mentations, 
especially for 
random-access 
databases

slightly less 
efficient: good 
for software im­
plementations, 
especially for 
general data 
encryption and 
storage

most efficient 
in a hardware 
implementation

excellent choice 
for constant 
flow of data, 
e.g. cellular 
phones or T -l 
computer 
connections

has the 
hardware- 
efficiency 
advantage of a 
stream cipher, 
but is also 
easily
implemented in 
software

While a synchronization error causes difficulty with most schemes, including the present 

system, it is common to impose structures on the transm itted bit stream which would allow 

the receiver to resynchronize with the transmitter. Bit errors can also be corrected using 

existing error-correction technology, so that neither type of error shown in the table above 

are forseen to pose a problem with the implementation of this system.

The advantages of this digital chaotic communication scheme include:
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• E fficiency—One of the reasons chaotic systems are increasingly being considered as 

a basis for cryptographic algorithms [63, 4, 30] is that they produce highly complex 

dynamics from very simple mathematical equations. This makes the digital chaotic 

scheme very efficient to implement, particularly in silicon, but also in software.

• S e c u rity —The chaotic system to be used may be chosen such that the output has 

perfect statistics, no matter how repetitive the plaintext. I t also entirely defends itself 

against intruders attempting to manipulate the plaintext, since any change to the 

transmission will be immediately detectable. Also, the nonlinear dynamic forecasting 

attack which has been successful against ail major proposed chaotic communication 

systems has been completely ineffective.

• In itia liz a tio n —The receiver may be remotely synchronized with the transmitter dy­

namically, similar to the self-synchronizing stream  cipher, without any need to ex­

change an IV.

• L a se r  T echno logy—There is very good potential that this communication scheme 

may be combined with current research in chaotic lasers to provide an extremely high 

data transmission rate.

4 .7  D is c u s s io n  a n d  C o n c lu s io n s

The work in this chapter represents just a first step toward developing chaotic communication 

schemes which bring together aspects of chaotic control, impulsive differential equations, and 

transmissions which hide the phase space. The key elements of this binary chaotic commu­

nication scheme are the fact that the message rind transm itted bit streams are independent,
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the encoding of message bits to transm itted bits is many-to-one while the decoding of trans­

mitted bits to recovered message bits is one-to-many, and the binary information passed 

between tra n sm itte r  and receiver cannot be used for reconstructions or NLD forecasting. 

Also, the ability to do remote initialization is especially interesting, since it is in some ways 

equivalent to communicating without key exchange. Instead, the security aspects are encom­

passed in the shared knowledge of r ^ (x )  and M , as well as the fact tha t the transm itter and 

receiver circuits would have to be well-matched or tuned to behave the same. There is work 

underway on problems related to remote initialization [61], but there is a great deal more 

which needs to be done on the theoretical side. This method of communication completely 

foils the NLD forecasting attack, at least to date. O f course, that does not imply that the 

method is particularly secure, so potential security weaknesses will be discussed below.

An interesting perspective on the binary communication approach can be gained by 

considering the chaotic transm itter as a key generating device. In  fact, as long as the 

microcontrols are non-zero, the system will have only a finite number of possible trajectories, 

so it is fair to consider this as a  key generation scheme. Prom this viewpoint, the interesting 

aspect of this approach is that the “key” would change at every iteration, but the changes 

would not follow a pre-determined functional pattern  and would, in fact, be a function of the 

previous history of the chaos and the message. This would alter the nature of a brute-force 

attack on the transmission, since it would make little sense to try all possible keys when the 

key changes at every iteration. O ther attacks might be more successful.

In [63] the maps discussed in Section 4.4.2 are presented in the context of a pseudo­

random keystream generator for one-time pad cryptographic systems. Problems with keystream 

cycling in digital implementations of chaotic maps have been discussed in [59. 58, 2], How-
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ever, the digital chaotic communication system described in this chapter is a  message mod­

ulated system, where each iteration is dependent on the previous history of both the state 

of the system and the message itself. Thus as long as there are no cycles in the message, 

there will not be any cycles in the keystream. Even if there are some repeated elements in 

the plain text, as long as the length of the repeated message segments axe incommensurate 

with any possible natural cycle lengths of the chaotic system, there will be no cycles in the 

keystream.

Now that the positive aspects of the approach have been discussed, it is worth consid­

ering potential security flaws. The first obvious security flaw is that the microcontrols stop 

the dynamics from being truly chaotic. It is certainly possible to calculate r{x) and M  on a 

much finer grid, thereby reducing the size of the microcontrols. In  theory, the microcontrols 

could be eliminated; however, with real circuitry, some level of stabilization would probably 

be necessary. The most obvious weakness of the scheme is also one of its most desirable 

properties, namely the remote initialization of the receiver. In  this case, since the initial­

ization code is repeated, it is detectably periodic with a short period. This would flag the 

beginning of the message for the party intercepting the transmission. Again, it remains to 

be seen how this could be exploited. However, a protocol could be developed where the 

initialization code is sent only once, perhaps hidden among some random bits, or encrypted 

using a public-key algorithm.

One important consideration in determining the security potential of a communication 

scheme is that it is usually the case that the method of co m m u n ication  is assumed to be 

known, so the security must be in something like private keys. For the binary communication 

scheme discussed here, that would imply that the system generating the chaos would be
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known (although it is arguable whether the intercepting party would need to know all of 

the operating parameters of the circuitry). If it is assumed that the transm itter and receiver 

systems are known, the security in this approach lies in the private function r(x ), which could 

be calculated using any number of loops around the attractor, as well as the perturbation 

rules stored in M . As the method has been described here, a brute-force approach to 

breaking the transmission would be to calculate a  set o f functions r^ x ) ,  where i represents 

the number of loops which were used in the calculation. Then, the intercepting party could 

try  each potential key function sequentially until the message was decoded. Of course, the 

goal of the system designers must be to try to make this a difficult calculation, thereby 

achieving some degree of computational security.

The final message is that it appeaxs to be possible to create chaotic communication 

schemes which nullify the NLD forecasting phase-space attack. However, while it appears 

that the binary chaotic communication scheme developed here achieves this goal, it does not 

necessarily imply that the technique provides any practical security. Such considerations 

can only be made after studying the method from the perspective of key generation schemes. 

It is hoped that further developments in chaotic communication using impulsive control and 

a  binary communication channel will lead to a com m unication scheme which provides a high 

degree of computational security.
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C hapter 5

F uture D irections

Current research is continuing along the interface between nonlinear dynamics and cryptog­

raphy. Skeptics would say that there is no legitimate overlap between the fields—the author 

believes that the potential exists for a  beneficial interchange between these two subdisciplines 

of mathematics, bu t that there is much work left to be done. In  particular, for trustworthy 

algorithms to be developed, there must be a balance between the designers of chaos-based 

cryptographic algorithms and the evaluators of the corresponding security claims, or “crypt­

analysts.” It seems at present that the scale is tipped heavily towards those that propose 

systems with limited security testing. It is the author’s intent to continue to examine new 

work in chaotic cryptography for security weaknesses. As an example, a recent paper by 

Minai and Pandian [32] presents a  system which uses elements from the scheme by Yang et 

al [63], which was shown to have serious flaws in Chapter 2. It is important that these flaws 

be discussed openly.

To aid in the reconciliation of chaotic cryptography to traditional cryptographic algo­

rithms, the author intends to broaden his background in the field of standard pseudorandom 

number generation. This background would help put newer results in a  more realistic and 

traditional context.

In addition, the potential for application of the HGO control scheme seems far from 

exhausted. The author intends to investigate the possibility of using the control system 

in a data compression algorithm. Also, the many well-studied 2-dimensional chaotic maps
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may provide an  interesting source of systems for the binary chaotic communication scheme 

presented in Chapter 4.

The pursuit of a  chaotic communication scheme which offers a high level of security has 

generated some interesting mathematical results, and continues to produce ideas that must 

be evaluated carefully and objectively.
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