
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 1999

Hardware-software codesign in a high-level
synthesis environment
Tamas L. Visegrady
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Visegrady, Tamas L., "Hardware-software codesign in a high-level synthesis environment" (1999). Doctoral Dissertations. 2086.
https://scholars.unh.edu/dissertation/2086

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/2086?utm_source=scholars.unh.edu%2Fdissertation%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send IJMI a complete
manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zed) Road, Ann Aibor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HARDW ARE-SOFTW ARE CODESIGN IN A
HIGH-LEVEL SYNTHESIS ENVIRONMENT

BY

TAMAS L. VISEGRADY

Master of Science, University of New Hampshire, 1998

DISSERTATION

Submitted to the University of New Hampshire
in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

in

Engineering

May 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9 9 2 6 0 3 5

UMI Microform 9926035
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation has been examined and approved.

\ '

Dissertation Co-Director, Dr. Peter Arato, Professor of
Electrical Engineering

Dissertation Co-Director, Dr. Andrzej Rucinski, Profes­
sor of Electrical & Computer Engineering

Dr. Phfiip J. Hatcher
Professor of Computer Science

Dr. L. Gordon Kre
Professor of Electrical & Computer Engineering

WHl
hn R. LaCourse
or of Electrical & Computer Engineering

Dr. John L. Pokoski
Professor of Electrical & Computer Engineering

Date
12 ci4ft

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D edication

Szuleimnek

ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgm ents

The valuable contribution of others have made a large portion of this dissertation possible.

I would like to express my thanks to (in alphabetical order) Erik Fischer, Amy Hatch, Pawel

Nowakowski, Ferenc Tel, and Dr. Pilar de la Torre for their support. (Meaningful questions

qualify as support.)

The work of countless volunteers has produced the tools used to create this dissertation.

I am indebted to the members of the programming community who made it possible to

finish this dissertation using solely free and open source software.

Last, but not least, the whole process would have been impossible without the continuous

parental encouragement and support. Koszonom.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f C ontents

Dedication... iii

Acknowledgments... iv

List of T ables... viii

List of F ig u re s .. ix

A bstract.. xiii

Introduction 1

Contribution 5

1 Basic Stages o f Hardware-Software Codesign 6

1.1 H ardw are.. 7

1.1.1 Full-custom h a rd w are .. 9

1.1.2 Semi-custom hardware.. 10

1.1.3 Programmable hardware (FPGA)... 12

1.2 Software.. 15

1.3 Partitioning.. 17

1.4 Clustering... 22

1.5 High-level synthesis.. 23

1.6 Register-transfer level synthesis.. 27

1.7 Code generation and compilation... 28

1.8 System-level synthesis process and classification................................... 30

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 State-of-the-Art Techniques in Codesign 43

2.1 Clustering.. 46

2.2 Partitioning... 48

2.2.1 Construction algorithms... 50

2.2.2 Improvement algorithms... 54

2.3 Scheduling.. 58

2.3.1 List schedu l in g .. 60

2.3.2 Balanced scheduling.. 62

2.3.3 Force-directed scheduling... 63

2.4 Allocation... 65

2.4.1 Topological cover.. 65

2.4.2 Concurrency.. 65

2.4.3 Software allocation... 66

2.5 Relevant research in system-level synthesis.. 67

3 M ultiple-Context High-Level Synthesis 73

3.1 Transfer model of multiple-context environments................................. 78

3.2 Multiple-context data-flow graphs.. 81

3.3 Multiple-context HLS design p rocess.. 90

3.3.1 Iterative steps... 91

3.3.2 Production step.. 106

4 Implementation 110

4.1 User interface.. 115

4.2 Front e n d .. 115

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Code generator.. 116

5 Analysis 119

5.1 F ilte rs ... 119

5.2 RC-5 encryp tion ... 123

5.3 Convergence.. 127

5.4 Performance.. 129

6 Summary 130

7 Future Developm ent 131

7.1 Integration with Visual P IP E ... 131

7.2 Algorithmic improvements... 131

7.3 Extending cost matrices to non-binary partitioning.............................. 133

7.4 Customized implementations of elementary operations........................ 133

7.5 Transfer cost functions for reconfigurable systems................................. 135

8 Glossary 138

Bibliography 144

Index 154

A Effective Graph Generation from VHDL 154

A.l Data dependency g r a p h .. 155

A. 1.1 Binary structures.. 157

A. 1.2 Linear structures... 158

A. 1.3 Transitions between binary and linear s tru c tu res.................. 161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.1.4 Fixed-width binary structures.. 162

A.2 Generation of intermediate structures using list scheduling................... 163

A.3 Properties of the intermediate s tru c tu re .. 164

A.3.1 Capacity calculation for the s t ru c tu re 166

A.4 Restrictions.. 166

B The Design Tool PIPE 169

B.l U sag e .. 169

B.2 Input... 170

B.3 Output ... 172

B.4 A PIPE exam ple.. 173

B.5 Installation ... 173

ISO 9000 Information 175

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

1.1 Trade-offs in software and hardware system s........................... 7

3.1 Elementary operation attributes in H L S 88

3.2 Elementary operation attributes in M CH LS............................ 89

3.3 Extended elementary operation attributes of GSM exam ple. 101

3.4 Extended elementary operation attributes of partitioned GSM example 105

3.5 Extended elementary operation attributes of partitioned GSM example after

context m ap p in g ... 108

B.l PIPE command-line switches.. 170

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1-1 Relative performance and cost of hardware implementations...... 12

1-2 Comparison of software and hardware performance and c o s t...... 13

1-3 Extended elementary operation graph of partitioned GSM example . . 18

1-4 Code of RC-5 main lo o p ... 31

1-5 Generated data-flow graph of RC-5 main loop with source line numbers 32

1-6 Coarse control-flow graph of RC-5 main l o o p 33

1-7 Control information of RC-5 main loop.. 34

1-8 Section of a register-transfer level description and the equivalent data-flow 35

1-9 Hardware and software development with codesign solution space . . . 37

1-10 Compilation, high-level synthesis and fixed-ratio systems in multiple-context

solution space ... 41

1-11 Functional-level designs in multiple-context solution space 42

2-1 Topological cover.. 66

3-1 Changes of attributes and representation in multiple-context HLS . . . 75

3-2 Partitioning as a filter for H L S ... 77

3-3 Elementary operation timing d iag ram ... 85

3-4 Evaluation and iteration steps in switched-context high-level synthesis 92

3-5 Approximation, scheduling and allocation of hardware modules 93

3-6 Approximation and production code generation of software modules 95

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3-7 Evaluation and iteration steps without explicit software profiling . . . 97

3-8 Block diagram of GSM example... 99

3-9 Extended elementary operation graph of GSM example 100

3-10 Section of FIR weighting filter.. 102

3-11 Extended elementary operation graph of partitioned GSM example . . 104

3-12 Transfer vertices in partitioned GSM exam ple....................................... 109

4-1 HSPEPE design process without functional partitioning........................ 113

4-2 Components and data representation in the HSPIPE framework 114

4-3 Software sections of the GSM exam ple... 118

5-1 Typical final partitions of FIR f ilte rs .. 121

5-2 Hardware and software implementation costs assuming infinite software par­

allelism ... 122

5-3 Transition between mainly hardware and mainly software solution . . 123

5-4 Hardware and software implementation costs assuming finite software paral­

lelism .. 124

5-5 Transition between non-ideal software and hardware so lu tio n 124

5-6 Main loop of the RC-5 encryption algorithm.. 126

5-7 Main loop of RC5.. 128

5-8 Latency of RC5 main loop as a function of configuration.................... 128

7-1 HSPIPE design process with functional p a rtitio n in g 132

7-2 Tradeoffs between different implementations of elementary operations 135

A-l Binary structure (Triangular la y o u t) ... 159

A-2 Utilization of a binary structure.. 159

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A-3 Linear structure (Rectangular layout) .. 160

A-4 Transition between binary and linear layout... 161

A-5 Binary structure produced under a width limit 162

A-6 Generating a fixed-width binary structu re .. 165

A-7 Data connections of a struc tu re ... 167

A-8 A possible graph for digital convolution.. 168

A-9 Functional elements in a FIR f i l te r ... 168

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

H ARDW ARE-SOFTW ARE CO DESIG N IN A HIGH-LEVEL

SYNTHESIS EN V IR O N M EN T

by

Y'isegrady, Tamas L.
University of New Hampshire. May. 1999

Interfacing hardware-oriented high-level synthesis to software development is a compu­

tationally hard problem for which no general solution exists. Under special conditions, the

hardware-software codesign (system-level synthesis) problem may be analyzed with tradi­

tional tools and efficient heuristics. This dissertation introduces a new alternative to the

currently used heuristic methods. The new approach combines the results of top-down hard­

ware development with existing basic hardware units (bottom-up libraries) and compiler

generation tools. The optimization goal is to maximize operating frequency or minimize

cost with reasonable tradeoffs in other properties.

The dissertation research provides a unified approach to hardware-software codesign.

The improvements over previously existing design methodologies are presented in the frame­

work of an academic CAD environment (PIPE). This CAD environment implements a suf­

ficient subset of functions of commercial microelectronics CAD packages. The results may

be generalized for other general-purpose algorithms or environments.

Reference benchmarks are used to validate the new approach. Most of the well-known

benchmarks are based on discrete-time numerical simulations, digital filtering applications,

and cryptography (an emerging field in benchmarking). As there is a need for high-

performance applications, an additional requirement for this dissertation is to investigate

pipelined hardware-software systems’ performance and design methods. The results demon­

strate that the quality of existing heuristics does not change in the enhanced, hardware-

software environment.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction

This dissertation covers the theoretical background and implementation of a system-level

synthesis (SLS) process. The contributions of the dissertation (summarized under “Contri­

bution”, p. 5) are concentrated on a development process capable of synthesizing systems

with communicating software and hardware submodules. In addition to the theoretical

results, the improvements have been applied to an existing CAD tool.

The example used for demonstration is an engineering Computer-Aided Design (CAD)

tool, PIPE. This CAD tool has been developed at BME, Budapesti Muszaki Egyetem (Tech­

nical University of Budapest, Hungary). The PIPE environment, a tool performing opti­

mization for custom pipelined hardware systems, has been incapable of targeting mixed

hardware-software structures in the past. Using the results of this dissertation, PIPE is

capable of designing systems that operate as interconnected hardware and software-based

modules. The extensions and PIPE together form the Hardware-Software PIPE (HSPIPE)

framework, which is an excellent demonstration of the capabilities of the enhanced design

process. The dissertation discusses the problems encountered in such extensions and feasible

solutions to those problems.

Since the hardware-software codesign (HSCD) or system-level synthesis (SLS) process is

applied to diverse areas of development, none of the currently used development methods

is capable of optimizing every SLS design. Such is the case in this dissertation research as

well; the results provide solutions to some of the most frequently encountered problem types.

In addition, the results have been tested with a number of benchmarks, with remarkably

different results based on benchmark type. The dissertation includes an analysis of both

significant and negligible improvements as applications of the research, and draws reasonable

conclusions.

The dissertation results have been applied to the design of finite impulse response (FIR)

digital filters, a frequently encountered design example. The implementation produces

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

significant potential improvements over traditional, purely hardware solutions. Indeed, de­

scribing FIR filters covers a much broader set of typical signal-processing problems [Kun82].

As an extreme negative example, the RC-5 encryption algorithm is presented, where no im­

provements have been achieved in the algorithmic design when compared with a heuristic,

traditional design. Section 5.2 contains a detailed description of the failure and implications.

The negative results in this case may be attributed to the design of the algorithm.

An overview of a mixed hardware-software development process is presented in Chap­

ter 1 (““Basic Stages of Hardware-Software Codesign”, p. 6). The design environment

targeting multiple execution contests is described as an extension of the traditional hard­

ware development cycle. Additional steps are required to describe the hardware-software

target architecture. In most contemporary systems, the relative cost of inter-module com­

munications is significantly higher than the cost of functional operations.

Chapter summarizes the steps of a systematic hardware-software codesign architecture

in detail, and presents the problems encountered in each step. The primary purpose of

the chapter is a general overview without exposing the reader to an unnecessary amount

of detail. A more verbose, detailed description of problems and solutions is described in

Chapter 2 (“State-of-the-Art Techniques in Hardware-Software Codesign”).

Since the current status of the HSPIPE project is mainly hardware-centric, the code

generation tools of the hardware-software codesign framework axe not as detailed as the

hardware synthesis subsystem. Since the HSPIPE framework is designed to be completely

modular, incorporating incremented changes in the software generation sections are expected

to be relatively easy.

Literature survey forms most of Chapter 2 (“State-of-the-Art Techniques in Hardware-

Software Codesign”, p. 43). Since each major step of the hardware-software codesign devel­

opment cycle presents at least one NP-complete problem (clustering/partitioning, schedul­

ing, allocation), effective hardware-software codesign methods must employ heuristic ap­

proximations to provide feasible, solutions. A summary of currently accepted approxima­

tions is presented in the chapter.

Chapter 2 contains a brief description of possibilities when selecting heuristics for each

stage of hardware-software codesign. The chapter introduces some of the applicable defi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

rations and properties common to state-of-the-art hardware-software codesign research. In

addition to the immediately applicable results, the chapter contains an overview of the sta­

tus of research at some of the most important institutions actively researching hardware-

software codesign or related topics (University of California at Riverside and Berkeley,

University of Washington (United States of America); ETH Zurich (Switzerland); Oxford

University (Great Britain); TIMA (France)).

Chapter 3 is dedicated to the process model and the approximation algorithms that were

found appropriate in the HSPIPE CAD system. The approximation algorithms are selected

based on the layout of the PIPE design flow and were verified with practical applications.

The chapter presents a high-level overview with justified choices.

Chapter 3 introduces the additional mathematical notations of the dissertation over the

current state of hardware-software codesign research. The chapter also presents a formal

description of the extended properties of control-data-flow graphs (CDFGs) in multiple-

context environments. The concept of a CDFG is extended in a way which is compatible

with state-of-the-art HLS design methodologies, yet incorporates the necessary extensions

to handle the unique requirements of multiple-context environments.

A separate chapter is dedicated to implementation of the hardware-software codesign

environment in the PIPE framework (HSPIPE) (“Implementation”, Chapter 4, p. 110).

The chapter contains a detailed description of PIPE internals required for understanding the

data structures and the design process inside PIPE. The selected approximation algorithms

have been implemented as modules in the PIPE design process, hence extending it to the

full HSPIPE framework. Chapter 4 summarizes the choice of implementation language,

describes the front end, the data transfers with internal representation, and the output

formats.

The results of tests and performance analysis are presented as the conclusion chapter

{“Analysis", Chapter 5, p. 119). This chapter contains three major benchmarks well-

known from the high-level synthesis community. A digital filter application and a differential

equation solver are used to demonstrate the results on classical benchmarks. In addition to

the traditional benchmark applications, the performance of the HSPIPE algorithm has been

evaluated on a cryptographic applications, RC-5 encryption. Encryption algorithms recently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

appeared as benchmarking applications for hardware, software, and mixed environment

systems [Ele98].

Chapter 6 presents a brief summary of dissertation results. The chapter enumerates the

experience gained from the benchmark applications, points out fields where the disserta­

tion results contribute to applicable design flows, and describes the cases where no serious

improvement has been observed. The analysis of the example applications covers the areas

where performance is less than optimal.

The hardware-software codesign extension of the PIPE system offers several exciting

possibilities of expansion. Some of the potential extensions are described in a dedicated

chapter (“Future Development” Chapter 7, p. 131). Without investigating them in detail,

the chapter enumerates some of the possible extensions, including, but not limited to,

interfacing to an improved user interface (Visual PIPE), algorithmic enhancements to new

architectures, support for multiprocessor systems, and reconfigurable structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontribution

The contribution of the research to the field of hardware-software codesign may be summa­

rized as follows:

1. The dissertation presents a model of a multiple-context environment as an extension

of generally accepted system descriptions used in high-level synthesis. This extended

model may be used to perform synthesis, optimization and simulation of such multiple-

context environment systems using an improved set of notations.

The extended notations of the multiple-context environment description are upwards

compatible with currently used systems.

2. The dissertation prescribes a transformation for mapping multiple-context system

specifications to system descriptions that may be processed by existing, purely hard­

ware or software-based (single-context) optimization and synthesis tools without mod­

ification.

3. The dissertation demonstrates that the above transformation preserves the necessary

information to properly simulate and optimize multiple-context designs in existing

single-context tools, while retaining properties unique to multiple-context environ­

ments.

4. The dissertation demonstrates a sample application of the results on systems which

may be considered typical target environments.

5. The dissertation describes a sample application that is a framework of heuristic blocks.

The framework is capable of obtaining results comparable to that of state-of-the-art

research, and it may be upgraded in a modular way.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

B asic Stages o f Hardware-Software

Co design

This chapter presents an overview of a mixed hardware-software development process. The

mixed environment process is described as an extension of the traditional hardware devel­

opment cycle. In addition to an abstract description of high-level synthesis, the chapter

summarizes the steps of a systematic hardware-software codesign process.

Hardware-software codesign (HSCD) is a set of structured, automated design method­

ologies that implement digital systems as communicating hardware and software mod­

ules.

System-level synthesis (SLS) is the generic name of engineering design processes where

a system description is synthesized to final, production-ready implementation in an
automated environment.

The combination of hardware performance and software flexibility offers increased free­

dom, possibly reduced development time, and an abstraction layer over purely hardware

or entirely software applications. Since the dissertation contribution to hardware-software

codesign creates hilly functional systems with a generated (synthesized) set of software and

hardware modules, the term system-level synthesis is applicable to our approach. The two

names, hardware-software codesign and system-level synthesis, are used interchangeably in

the dissertation. (The investigations do not discuss approaches that do not integrate of

hardware and software.)

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 7

Semi­ Full-
Property Software (COTS) FPG A custom ASIC
Speed Low Medium-high High Highest
Operation Serial Serial/Parallel Parallel Parallel
Flexibility Variable Medium High Highest
D esign effort Low Medium High High
U pdate effort Lowest Low High High
Development cost Low Low-Medium High High
Developm ent tim e Lowest Low-Medium High Highest
Reconfiguration tim e Lowest Low-Medium High Highest

Table 1.1: Trade-offs in software and hardware systems

The advantages and disadvantages of hardware and software environments are sum­

marized in Table 1.1. Since hardware implementations of system-level synthesis designs

are realized either in custom hardware or in programmable silicon, Table 1.1 describes

both custom ICs (ASICs) and configurable silicon (FPGAs). Software implementations are

generally executed on off-the-shelf, general-purpose processors, and are treated as COTS

(commercial, off-the-shelf) solutions for the dissertation investigations. The dissertation

investigations do not attempt to cover the possibility of synthesizing processors matched

to specific problems. (Our definition does not consider such designs as hardware-software

codesign, since the instruction-specific processor solutions do not necessarily feature multi­

ple execution contexts.)

1.1 Hardware

Understanding hardware-software codesign requires a description of the difference between

hardware and software-based implementations of systems. This section presents a high-level

overview of the properties of synthesized hardware solutions. The dissertation results are

not tied to any particular hardware technology or fabrication. This section contains an

overview of the hardware synthesis process in general.

While details of the hardware environment are important for efficient generation of hard­

ware components, the dissertation approach hides unnecessary specifics from the designer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 8

by delegating them to lower levels of abstractions (as described in Chapter 3). In the test

implementation used for experiments and benchmarking, an abstract model of hardware

synthesis appears in a technology library file. The library describes implementation prop­

erties by extracting significant information from the target system. The parameters at the

technology library level are silicon area, cost, and timing of elementary operations. Other

details of the target technology are not used directly in the logic synthesis step.

The hardware component of multiple-context environment systems is usually entirely

application-specific hardware, semi-custom integrated circuits or FPGA-based. Even if cus­

tom, semi-custom and programmable silicon may coexist in an embedded environment, the

different behavior of FPGA and custom silicon devices makes it difficult to integrate them

properly [HB95b]. The problem is caused by the FPGA internal timings being outside

the control of the designer, as they are determined by the efficiency of the routing algo­

rithm and supporting hardware [HBE94]. An important implication of the FPGA routing

problems is that routing algorithms require knowledge of FPGA geometry and interconnect

information, and this dependency reduces portability [BR96].

Some of the problems of non-deterministic FPGA behavior may be handled by very

high-level descriptions, where the whole set of FPGA input-output ports may be treated

as a design block. Practical results have been demonstrated at the University of California

at Riverside by Dr. Frank Vahid, where a high-level partitioning approach {Junctional par­

titioning) is used to manipulate problem descriptions over the flow-graph level [Vah97b].

(High-level synthesis operates on a flow-graph system description, as described in Section 1.3

and in Section 1.5.) Functional partitioning approach has been successfully applied to sev­

eral designs at the University of California. Functional partitioning requires an extensive

knowledge base of previous designs. Lacking such an extensive design database, the disser­

tation results are limited to flow-graph level partitioning and optimization.

Since FPGA internal timings are usually functions of different physical and topological

parameters instead of predetermined input specifications, they may not be timed without

additional rounds of iterative experiments. In fact, in some FPGA systems, even such per­

formance tuning might be unavailable for designers. Practical FPGA applications indicate

that most FPGAs available today also exhibit definitely non-deterministic pseudo-random

routing behavior, and may produce extreme variations in measured system t imings, even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 9

under controlled, identical design settings. Since the detailed investigation of FPGA tim­

ing phenomena is outside the range of this dissertation, unpredictable FPGA timings are

treated as worst-case values for the purposes of timing. Such worst-case treatment is re­

quired for both scheduling and allocation, since both depend on exact timing information,

and timing violations are not permitted.

Choosing between a custom and a programmable hardware subsystem is an impor­

tant design choice at the start of the system-level synthesis process. Performance-critical

applications are usually implemented in full-custom hardware, which offers the highest per­

formance. Semi-custom implementations are more useful if the application requires either

faster reconfiguration, or if the turnaround time offered by full-custom ASICs does not meet

design criteria.

1.1.1 F u ll-custom hardware

Full-custom application-specific integrated circuits (ASICs) generally offer the highest per­

formance for all possible solutions. Since ASICs are custom-designed for each application,

they are the most flexible. The only practical limitations to the capabilities of custom

hardware components are those of the manufacturing process and the available design tools.

(The development of microelectronic design tools does not follow the pace of manufacturing

improvements, resulting in a widening performance gap between available and fully utilized

silicon area [VG99].) An entirely different type of constraint is system cost and development

time, which tend to be much higher than the cost of partially or fully off-the-shelf solutions.

Since hardware devices operate in a parallel fashion, full-custom hardware solutions

may parallelize a problem in a variety of ways. ASIC implementations are flexible enough

to explore additional hardware-specific tradeoffs in performance optimization. The pos­

sible speed-increasing techniques include, but are not limited to, combinational circuits

instead of sequential solutions (at the price of increased silicon area), massive paralleliza-

tion by physical replication, and geometry optimization. CAD tool support is available for

some of these techniques, while others must be applied in an iterative, manually assisted

trial-and-error process. The design cycle of full-custom systems is generally much longer

than programmable implementations. (When compared to gate-array or sea-of-gates de­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 10

signs (Section 1.1.2), full-custom VLSI differs only in the additional step of transistor-level

layout design, and these differences are usually minor for general-purpose applications.)

Implementation times are generally also higher for than for programmable devices.

Since custom hardware components are manufactured using a large number of custom

fabrication steps, overall system costs are generally much higher than either FPGA-based

or software solutions. One must note that custom hardware fixed costs are decreasing

with an increase in production volume, even more than semi-custom and FPGA-based

implementations.

For practical systems, turnaround time is decreased by relying on a set of available low-

level modules, using them as bottom-up blocks in the top-down design process. By using

well-known and tested module libraries, the necessary simulation, testing, and verification

time may be decreased, which in turn may reduce the number of manufacturing iterations.

In fact, simulation at extremely low levels (such as register-transfer or gate level) without

having such libraries is infeasible in most practical systems [LLSV98, VG99]. (The same idea

of standardization and subsystem is present in an organized way in the design of standard

cell structures.)

1.1 .2 S em i-cu stom hardw are

Representing a higher level of abstraction than application-specific hardware, semi-custom

hardware solutions are based on low-level primitives to describe hardware systems with

higher level constructs. Typical representatives of semi-custom systems axe gate-arrays and

standard-cells.

Gate-arrays are hardware systems that are created by programmed interconnects be­

tween general-purpose, pre-fabricated transistors [WE93, p. 409]. The transistors them­

selves are manufactured before customization; identical wafers are reused in a wide range

of gate-array designs. Customization prescribes contacts to wafers and the layout of metal­

lization layers. Gate-arrays produce application-specific integrated circuits, but the reduced

number of application-specific manufacturing steps decreases cost and fabrication time com­

pared with full-custom designs. Base wafers, containing large regular arrays of unconnected

transistors, may be reused in a wide variety of applications without modification, which in­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 11

creases production volume, and decreases the number of application-specific manufacturing

steps and masks. The contemporary variant of gate-array technology, sea-of-gates (SOG),

uses transistors in a two-dimensional transistor array layout. Such transistor arrays may

contain hundreds of thousands of usable transistors in a single device.

Since gate-array and SOG designs create logic gates by connecting predefined and ex­

isting transistors, these technologies sire synthesized at the transistor level. For practical

purposes, efficient generation of gate-array or SOG designs must rely on a set of higher-level

primitives built in a bottom-up fashion. Without access to these basic blocks, traditional

top-down designs must descend to the transistor level in synthesis, which increases problem

sizes considerably over designs at higher levels of abstraction.

Standard-cell hardware systems standardize architecture at a logic or function level

[WE93, p. 413]. Reusing existing logic building blocks, hardware design attempts to par­

tition the problem into subsystems matching already existing components. Basic building

blocks (standard cells) are generally available for logic functionality up to the level of basic

arithmetic units, comparators, datapath manipulation, registers, and memories. At the

level of schematic capture, a top-down design may be matched against the set of available

standard cells. Identified modules may then be directly implemented by reusing standard

cell layouts. The whole system is placed and routed automatically; standard cell designs

tend to show regularity in their layout.

Standard cells at a much higher level of abstraction are widely used in modern em­

bedded systems in the form of Intellectual Property (IP) modules. Such IP blocks contain

complete synthesizable subsystems, for example communication protocols or complete com­

plex functional modules. The complexity of such IP blocks enables designers to completely

automate the generation of hardware-software interfaces [ET98]. Since IP blocks are “ba­

sic” in the sense of very high-level system descriptions, they are extremely easy to integrate

in specification-level synthesis [GDZ98, VG98].

Even if semi-custom hardware is synthesized from using more complex building blocks

than full-custom hardware, semi-custom implementations are still not reprogrammable with­

out redesign. Once committed to a particular design, the realized functionality may not

be changed in a device without replacing it physically. Because of the lack of reprogram-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 12

Semi-custom

Programmable

Figure 1-1: Relative performance and cost of hardware implementations

ming capability, semi-custom hardware implementations are considered to be similar to

full-custom solutions for the purposes of this dissertation.

1.1 .3 P rogram m able hardware (F P G A)

Considering systems which contain both software and hardware components, programmable

integrated circuits are off-the-shelf hardware units that may be “reconfigured” at the struc­

ture level after fabrication. Programmable solutions generally select the desired functional­

ity from a set of possible configurations rather than implementing functions from extremely

low-level building blocks. Containing general-purpose, configurable logic blocks, recon-

figurable hardware may be reprogrammed to perform different functions inside the same

hardware device. Some programmable devices are one-time programmable, retaining one,

immutable configuration indefinitely, while others may be repeatedly configured. Different

FPGA types are used in different target environments, based on the relative importance of

quick changes (fast reprogramming) or external device support (programming in the target

environment).

As an example of one-time programmable devices, antifuse FPGAs contain their pro­

gram in a set of switches (antifuses) which are turned into permanent short-circuits if the

appropriate programming voltage is applied. Altera FPGAs are typical representatives of

this programming method. Since such a permanently programmed device does not require

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 13

(COTS)
Software
sotadioa
space

Figure 1-2: Comparison of software and hardware performance and cost

additional components for program storage, the amount of support logic is decreased. In

addition to the self-contained nature of permanently programmed devices, they do not have

programming overhead in usage (i.e., the initialization sequence of such systems is shorter

than soft-programmable solutions, where configuration is supplied by an external device).

Because of the permanent programming, replacing or upgrading such devices requires re­

placing the FPGA itself, which requires physical access to the system.

Static RAM-based (soft-programmable) FPGAs, which contain interconnect configura­

tion in local memory, may be repeatedly programmed. FPGAs from Xilinx FPGA fam­

ilies are the most important soft-programmable devices today. Xilinx FPGAs are two-

dimensional matrices of configurable logic blocks, CLBs, where CLB logic functions

interconnects between CLBs are set by RAM storage inside the FPGA. CLBs are individu­

ally programmable, basic FPGA functional units, capable of implementing small amounts

of memory as several small look-up tables, combinatorial logic, small multiplexer blocks, or

combinations thereof.

The properties of soft-programmable FPGAs are well suited to the requirements of

system prototyping and are used extensively for rapid prototyping and development. Since

the programs of soft FPGAs are stored in RAM, these devices have an initial overhead when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 14

the system is started. In addition to the programming overhead, static RAM-based FPGAs

require external components to store the FPGA configuration , which must supplied from

custom-programmed (E) EPROM memory or through a serial connection.

As programmable hardware components may be used for different purposes without

modification, manufacturing volume of silicon in FPGA production may be higher them full-

custom ASICs. The increase in volume numbers lowers the cost of programmable hardware,

if compared with full-custom or semi-custom ASICs; FPGA solutions are available for single­

unit (prototype) or extremely low volume systems at a cost of severed hundred dollars per

unit (as of May, 1999). For comparison, the manufacturing costs of full-custom ASICs

are an order of magnitude higher for every mask in the manufacturing process; the first

prototype of a full-custom hardware solution may cost several hundred times more than one

in programmable hardware.

As programmable hardware is simply using predefined logic blocks, it requires signifi­

cantly larger silicon area than equivalent functionality in full-custom circuitry. In addition,

because of the inherent overhead in programmable devices, FPGAs are generally slower

than their full-custom equivalents. Other important limitations of FPGAs include, but

are not limited to, inadequate support for asynchronous operation, different performance

metrics imposed by the fixed structure, and difficulties of estimating system performance.

A brief summary of FPGA performance metrics is presented in [VH98]. [Pag95] also

provides an overview of current limitations of reconfigurable logic devices and develop­

ment tool support. An overview of alternate problem description methods is available in

[LSVS98]; some of the transformations in the article are used in FPGA designs to transform

high-level problem descriptions to a representation which is more appropriate to the target

FPGA architecture. To separate the dissertation results from quickly changing hardware

parameters of FPGA implementations, the above changes are not modeled at the level of

multiple-context high-level synthesis (MCHLS).

As mentioned before, reprogrammable hardware may be customized faster than the

development of equivalent full-custom devices. Turnaround times are typically measured in

hours instead of weeks or months (as for full-custom devices), or even minutes in case of

minor changes. The reduced development time makes programmable devices more attractive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 15

for prototyping and small-volume systems. Since the available gate count is smaller in

programmable devices than in ASICs of the same silicon area, FPGA-based designs may

spread to multiple FPGAs if necessary. T iming problems of such an environment may be

much more serious than single-package solutions, and due to the complexity of the topic

they are not within the scope of this dissertation. Some of the multi-FPGA problems are

summarized briefly in [HB95b]; similar problems are present in the routing issues and the

related performance variance.

1.2 Software

Software modules of mixed hardware-software systems are traditionally compiled binaries

executed on a separate, dedicated microprocessor. In addition to the functioned code exe­

cuting the subtask, software modules must contain interface code to synchronize program

execution with hardware [JRV+98, TV97].

Software development is generally faster than most hardware design cycles. Compiled

code (an executable binary) is typically executed on a hardware environment which is

(preferably) standardized. Software development for an initially known, fully (or suffi­

ciently) specified, ideal hardware environment is possible using a virtual environment that

replicates the ideal working hardware. (In fact, the development of universal virtual envi­

ronments is a field of active research [Knu99].)

Most embedded systems feature emulators and development tools for a virtual, ideal

hardware environment, which enables software to be developed based on simulations. Since

development in such a virtual environment does not have to rely on the status of potentially

buggy or incomplete hardware, software may be developed at the same time [Bro95]. A

similar approach is used in practical hardware-software codesign environments, where an

idealized boundary is created between the hardware and software subsystems [LLSV98,

Kal95, BS98, Ros98]. The interactions on the simulated boundary may be monitored during

the design process, and the system response may be compared with system specifications.

While software development may be significantly faster than creating the equivalent

hardware system, there are serious limitations of traditional embedded software environ-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 16

meats. Similar to hardware systems, software development is possible at multiple layers

of abstraction. High-level programming languages usually offer faster development than

lower-level languages, while low-level languages are typically much more efficient. (As an

exception, in Reduced Instruction Set Computer (RISC) systems, programming at a very low

level is not always more effective.) Regardless of the development language, the function­

ality of the generated executables is bounded by the capabilities of both the programming

language and the development environment.

Software, even if bounded by the development environment, is a useful tool for mixed

hardware-software system designs. Since software is easier to modify than hardware, and

more portable for different platforms, software may serve as a useful interface layer in

embedded applications. By layering software and separating most of the application from

the internals of the hardware environment, a reusable and portable application may be

created. Because of the continuous improvements in the underlying hardware systems, even

inefficient software may be used with a reasonable performance level if hardware support

enables the system to reconfigure the software environment on-line [VH98].

Even if modem operating systems and programming languages offer support for multi­

tasking and multithreaded execution, typical embedded systems may not be able to exploit

such features. Because of this limitation, most hardware-software codesign systems are ex­

ecuting code in a traditional, entirely sequential fashion. Unlike hardware, such executed

code may not automatically take advantage of parallelism. In a multiprocessor environment,

where processors may execute different instruction streams (i.e., a Multiple-instruction-

multiple-data (MIMD) architecture [HX98, Qui94]), software parallelism is possible and

should not be inhibited by the applied MCHLS heuristics. By applying heuristics that

do not imply an entirely sequential execution, without unnecessary reduction of degrees of

freedom, the dissertation results may easily be extended to the synthesis of multiprocessor

embedded systems (Chapter 7, “Future development”).

This dissertation covers some implementation details and suitable models of such mul­

tiprocessor systems, but does not include detailed descriptions of an example in such a

system. Utilizing the simulation results and building such a multiprocessor system based

on these dissertation results is outside the range of the dissertation investigations. Most of

the necessary extensions are covered in Chapter 7 (“Future developments”, p. 131).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN

1.3 Partitioning

17

In a multiple-context environment system, selecting an efficient combination of hardware

and software subsystems may be formulated as a special case of the partitioning problem.

This step of the design process assigns design subsystems to hardware and software environ­

ments, creating partitions of the set of functional blocks (such as subsystems in the system

block diagram).

Execution contexts are the largest possible subsystems in the target environment where

direct communication is possible between components in the same context. Commu­

nication is considered to be direct if it may be realized using entirely combinatorial

(i.e., stateless) logic.

All communication between operations in the different contexts must pass through a

context-switch.

The execution context of elementary operation e* is x*. The set of all execution

contexts is X .

In an example taken from GSM speech compression in Figure 1-3 (replicated from

Figure 3-11, p. 104), there are two execution contexts. The hardware context (x, = 1)

contains vertices 1, 2, 8, 9, 13, 14, 15, and 16. The software context (x, = 2) contains

vertices 3, 4, 5, 6, 7, 10, 11, 12, 17, and 18. Obviously, X = {1,2}

Context switch d a ta connections (CSDCs) are edges (e,, e-j) in the system flow-graph

where a context switch occurs between e* and e}. Using set notation, the CSDC set

W is defined as:

W = {ei->ej : x i ^ Xj}

M ultiple-Context Environm ents (MCEs) are design target systems where functional

units are mapped to multiple execution contexts.

Figure 1-3 shows a sample MCE, where parts of the GSM speech compression algo­

rithm are implemented in software, while others are in hardware. In this case, there

are two execution contexts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 18

Figure 1-3: Extended elementary operation graph of partitioned GSM example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 19

Flow-graphs are graph-based description of problems, formulated as a set of vertices (V)

describing operations and a set of directed edges (E) describing direct dependencies

between operations.

Control-data-flow g raph (CDFG) is a special flow-graph that carries both control and

data information. Attributes related to data transfers are contained in direct data

dependencies (edges) while control information is present in global properties of the

graph, such as sequences of edges. (The details of such control information are de­

scribed in Chapter 3)

E lem entary operations are functional operations that may be realized directly with one

register-transfer level primitive (i.e., a single element of the underlying technology

library).

The number of elementary operations is denoted with n.

C ontext switch occurs between elementary operations e, and e7 if and only if they are in

different execution contexts (a:,- ^ Xj) and a direct data connection exists between e,

and ej.

In the example system (Figure 3-11, p. 104) context switches occur during the follow­

ing data transfers: e<i -* e3 , ej -*■ eg, eg -»• eio, and ei6 -> ei7 .

Context switch com plexity (n,-j) is the significant size of context switch e* -* e_, in

the system cost function. In most systems, the complexity of the context switch is a

monotonically increasing function of the number of bits in the data transfer.

Context switch weight (tUjj) is the weight factor of context switches in the system cost

function. The weight depends on the source and destination contexts, and the com­

plexity of the context switch:

w i J ~ w i J (x i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 20

C ontext boundary (set) of an execution context C {Be) is the set of context-switch

edges such that one of the edges is in C and one is in C = V — C. Obviously, every

CSDC must be an element of at least one context boundary:

W = (J Bc
C € X

In graph terms, a context boundary is a cut of the system flow-graph. In the above

example, since there are exactly two execution contexts, the context boundary contains

all the context switch edges (e2 —>■ ez, ej —> e%, eg —>• eio, and ei6 —► en).

T he partitioning problem in hardware-software codesign is finding partitions of the set

of data-flow graph vertices such that the total cost of edges connecting vertices in

different partitions, defined by a suitable cost metric, is minimal.

Note that the above formulation of the partitioning problem does not attempt to mini­

mize the difference between the number of vertices in execution contexts [Las93, p. 3]. The

definition does not inhibit non-binary partitioning, where the target environment contains

more than two execution contexts. Because of this relaxed requirement, the dissertation re­

sults may easily be applied to systems beyond traditional single-processor hardware-software

codesign (such as multiple microprocessors).

The binary partitioning problem, most often encountered in hardware-software codesign,

attempts to find a set of edges in a graph that, when removed, separates the graph into two

components. The cost of a solution is taken as a function of edge weights and component

distribution in the result. Since the distribution of vertices does not implicitly influence

the cost of a solution, cost function in MCHLS is based entirely on the cost of edges in the

partition cut, as shown later.

Finding the partitions with the minimum cost in a system, even as a binary (two-

context) partitioning problem is NP-complete [Hoc97, Chapter 5, p. 192] [GJ79]. As the

the partitioning problem is not tractable, several heuristic approximations have emerged.

Literature divides partitioning heuristics into two definitely distinct groups, differentiating

between global or construction algorithms and local or improvement algorithms [Las93, p. 4].

Construction algorithms are used for generating a partition based on performance metrics,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 21

and are generally applied in a non-iterative fashion. Improvement algorithms use an already

existing system partition as a starting point and attempt to enhance system properties by

applying incremental changes to it. Most generally used partitioning approaches combine

the two solutions by selecting construction and improvement heuristics that complement

each other [HB95a, KL97, VNG97].

Given the extensive literature and research on partitioning, partitioning heuristics must

be selected based on the target application, since some of the algorithms are limited to

the problem category where they were developed. As an example, partitioning research in

supercomputing differs from hardware-software codesign because of an additional require­

ment in supercomputing, balanced load [YW94]. (In addition to minimizing communication

costs, as the case of hardware-software codesign partitioning, supercomputing also attempts

to minimize overall calculation time, which is bounded below by the processing time of

the slowest computing vertex.) The increase of partitioning computational requirements

because of the need for balancing, makes supercomputing-derived heuristics inefficient in

hardware-software codesign.

Similar to the inefficiency of heuristics targeting balanced partitioning, geometry-based

partitioning techniques (such as line bisection, [Las93, p. 15]) are generally not useful for

hardware-software codesign partitioning. In geometry-based heuristics, edge cuts are made

based on geometry-related information, and solutions are investigated as functions of angles

and graph layouts. Most geometry-based partitioning heuristics axe derived from systems

where communication costs are directly related to physical system layout. These geometry-

based heuristics are applicable where data transfers are affected by physical placement, num­

ber of hops and other related parameters. There is very limited support, for cost functions

based on abstract properties (such as penalties for wide data transfers) in geometry-derived

heuristics. Since the partitioning process relies on abstract cost functions of partition cuts,

and has practically no relation between geometry and system data-flow graph (DFG) lay­

out, most of the geometry-oriented partitioning algorithms have to be excluded from the

dissertation investigations.

Several of the most popular, practically used partition improvement techniques rely on

the incremental Kemighan-Lin algorithm [KL70], or, more precisely, a particular extension

of it, the Fiduccia-Mattheyses algorithm [FM82]. Both algorithms take an initial partition as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 22

input, and attempt to refine it by relocating vertices between partitions. Both algorithms

are capable of converging to local optima [Vah97a] since they terminate when no local

change improves the current cost value. Several extensions attempt to increase algorithm

robustness around local extreme values, but no generally useful solution has been found. In

fact, even some of the most popular practical hardware-software codesign design tools, such

as VULCAN [Gup93] has been observed to terminate in oscillation because of convergence

problems around local extreme values [Knu95, p. 31, “Previous approaches”].

1.4 Clustering

In some hardware-software codesign environments, graph transformations are applied to the

system description before the partitioning step to reduce the size of the solution space during

the partitioning step. Such reduction of the solution space is feasible if there are groups

of elementary operations that should not be delegated to different execution contexts. By

inhibiting the partitioning process from separating such elementary operations, the problem

size of the partitioning problem may decrease considerably. Even if the problem formulation

may be similar to partitioning this process is part of the design for a slightly different reason

than the partitioning problem.

The primary effect of graph transformations before partitioning is to create groups of

locally connected vertices. The best results are usually achieved when the groups are highly

connected; finding highly connected subgraphs in a graph is a computationally expensive

problem with extensive coverage in literature [Hoc97, Chapter 6, p. 236]. As opposed to

partitioning, where global metrics are important, local grouping serves a different purpose,

and this additional step has a separate name, clustering.

The clustering process prescribes vertex groups to be assigned to the same partition

(execution context); such vertex groups are called clusters. Forming clusters reduces the

number of possible context switches, and so reduces the runtime of the partitioning step.

Creating clusters of locally connected vertices improves the performance of partitioning

in several ways. As well as reducing the number of vertices, clustering vertices that are

“close” to each other may inhib it unnecessary steps and local minima of the cost function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 23

by inhibiting vertex movement inside groups.

Since the cost of a multiple-context environment implementation is related to partition

cuts, elementary operations connected by wide data transfers are “close”. Such elementary

operations should be placed in the same execution context so that data transfers do not

have to cross execution context boundaries.

As well as clustering “close” vertices before partitioning, a closeness heuristic may be

used after partitioning to merge partitioned clusters to implementation blocks, i.e., FPGAs

or separate subsystems [VG95a]. Since closeness metrics and the corresponding theory are

most useful in functional specifications and the necessary high level of abstraction, the

dissertation research does not consider applying closeness-based partitioning extensions to

the design process. Should the algorithm be extended to handle functional specifications of

the incoming high-level description, closeness-based cost functions could become valuable

additions to the partitioning process.

For established hardware-software codesign environments, where a large database of

standard modules is available, an efficient way of clustering before partitioning is the iden­

tification of vertex groups that could be easily implemented in an already existing module.

Identifying such vertex groups is a computationally expensive problem with a number of

alternative heuristic methods. The existence of available modules is generally tied to a

certain hardware environment, and not easily portable without encapsulation at a higher

level of abstraction. Because of the lack of useful algorithms for this encapsulation, the

necessary hardware detail may not be represented in the design process at the level of the

dissertation research.

1.5 H igh-level synthesis

High-level synthesis, the process of transforming abstract (high-level) hardware descriptions

into silicon, is widely practiced by the CAD community.

High-Level Synthesis (HLS) The automated design of an advantageous register-transfer

level (RTL) description of a system from an abstract high-level description.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 24

Register-Transfer Level (RTL) An intermediate-level description of structures, defined

in terms of storage (registers), elementary functional units, and interconnects between

storage elements, with the necessary control logic.

Practical applications of high-level synthesis (HLS), do not exist for hardware-software

environments as of today. The traditional HLS process transforms high-level (data-flow

graph) descriptions to an intermediate-level, connection-oriented description of the design

(register-transfer level description). An alternative to terminating at an intermediate de­

scription is called “silicon compilation” [Gaj88]. In silicon compilation, high-level system

descriptions are directly transformed to transistor or layout-level. Such a direct, one-step

synthesis process offers significant savings in time, but usually at the expense of silicon

area. A direct transformation from a high-level description to silicon offers some unique

advantages (such as testability and verification), but without substantial heuristic support,

the silicon-related costs may be too high for practical usage (especially in large systems).

This dissertation relies on the underlying module generators and compilers and proceeds

to an intermediate abstraction level, utilizing external, specialized tools to synthesize the

register-transfer level description. The heuristics of RTL synthesis are different from those

used in HLS and are not discussed in this dissertation. Since the locality of registers affects

the performance of the partitioning process [Hea93, Chapter 7, p. 43, “Variable-Register

Communications”], heuristics in MCHLS have to address the issue of storage optimization.

The dissertation research attempts to reduce designer degrees of freedom as late as

possible. By keeping more design paths open, the chances of generating a suboptimal prob­

lem because of converging to a local optimum are reduced considerably. (One must note

that this “safe” approach increases the time complexity of the design process considerably.)

There are practical hardware-software codesign environments, where multiple-context envi­

ronment systems are designed in a different way. Some practical codesign approaches, for

example, are limited to certain (fixed) ratios of hardware and software, presenting a limited

choice of useful designs to the designer without exploring large sections of the design space

[AJ97].

While traditional hardware-related HLS is a well-known process, it is practically inca­

pable of handling problem relocation between hard and soft computing environments. One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 25

of the primary reasons for the lack of multiple-context environment capabilities is the unpre­

dictable timing of software systems, especially in RISC environments [Ker93, SW95, Cor96].

Since most practical HLS algorithms rely on fixed timings, they are unable to easily ad­

dress the unique problems of multiple-context environment systems. For the same reasons,

well-known HLS algorithms are incapable of designing for FPGAs, except for worst-case ap­

proximations. Worst-case FPGA designs are usually inefficient because of the high variance

of routing-related FPGA parameters. This might change if the current trend continues in

the accuracy of FPGA routers and simulators. (The predictability of some FPGA fam ilies

has shown a long-term tendency of increasing accuracy.)

To extend a HLS process for the broader HSCD environment, clustering and partition­

ing extensions must be appended to the HLS design process. The iterative flow of the

HLS design process is then extended with the additional iterative rounds of clustering and

partitioning (Figure 3-2, p. 77). To keep the optimization time complexity low, the clus­

tering and partitioning steps must be controlled with fast feedback possibilities to discard

a solution that does not meet performance criteria before executing the computationally

expensive tasks of scheduling and allocation. The extended HLS design process, with the

external partitioning, clustering, and feedback system, is referred to as multiple-context

high-level synthesis.

M ultiple-C ontext High-Level Synthesis (MCHLS) is an algorithmic extension of a

traditional High-Level Synthesis design process, capable of synthesizing systems with

multiple execution contexts.

Even if the MCHLS extends the target environment of a HLS design process to more

complex architectures, it may rely on the established HLS heuristics by using a set of

notations upwards compatible with those of HLS.

Since the HLS process requires a graph-based problem description as input (either a

data-flow graph, DFG, or a control-flow graph, CFG), a suitable description should be able

to embed partitioning information in the graph description. There are several well-known

ways of transforming high-level descriptions from natural and programming languages to

DFGs, and our implementation does not deal with the details of generating the system

DFG. (In fact, in most established HLS processes, designer freedom is present only in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 26

generation of the system DFG, since further steps are automated and proceed without

designer interaction.) In the implemented MCHLS system, the front end supplying a high-

level description such as SpecCharts [VNG95] or VHDL [AV98] is not considered to be an

internal part of the MCHLS design environment.

The two primary stages of HLS (scheduling and register allocation) require initial knowl­

edge of placement (partition information), so execution context information must be at least

partially included in one of the graphs. Both data-flow graphs and control-flow graphs are

capable of conveying context information, the former with vertex attributes, the latter

with control information for context switches. Chapter 3 presents a solution for describing

execution context information in a system CDFG.

By applying a suitable transformation and embedding context switches as protocol de­

lays in the CDFG, one retains the accumulated heuristic knowledge of scheduling and al­

location methods, since the data model of elementary operations is practically unchanged

compared with HLS (the negligible differences are discussed in Section 3.2). The chosen

transformation preserves partitioning information without loss of sig n ific a n t information.

As a disadvantage, the algorithm increases the number of vertices in the system, since

context switches are represented as individual vertices instead of properties of edges.

The HLS process developed at BME (Technical University of Budapest, Hungary) is

based on a control-data-flow graph or CDFG. This flow-graph combines the information

content of traditional DFGs and control-flow graphs by embedding control information in

graph vertices. Such a combined solution is useful since a single graph is used during

synthesis, as the necessary control information is extracted only during the last stages

of the design process. Since the available BME module library consists of data-oriented

modules and source code, a natural approach is to design the data-flow in the system,

and supply the necessary control information only later. The data-oriented usage of the

CDFG enables designers to generate control information after completing all initial steps

on data operations. A number of control-oriented boundary conditions are applicable to

data-oriented synthesis; these conditions are covered in greater detail in Chapter 3. Control-

oriented boundary conditions represent physical and organizational constraints of hardware

components in the control circuitry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 27

This dissertation assumes that the HLS process terminates at the register-transfer level

(RTL). In other words, dissertation investigations do not target the complete design pro­

cess (silicon compilation [Gaj88]), rather they concentrate on the abstract representation

of lower-level steps. This way the system may use optimized low-level hardware primitives

and reusable software modules while retaining the design freedom of a complete design

process. In performance-critical problems, the RTL description may further be optimized

to improve performance; time-to-market and lower personnel costs are becoming more and

more important than resource utilization or subsystem performance [Wir98]. BME (Tech­

nical University of Budapest, Hungary) already has an extensive library of proven hardware

primitives, and the PIPE CAD system relies on these libraries. The code generator and

the external (auxiliary) software module library of PIPE are currently (as of May 11, 1999)

incapable of producing industrial-quality results. (The requirements of industrial and aca­

demic CAD tools are definitely different, as outlined in [Fuh91].)

1.6 Register-transfer level synthesis

Following the steps of allocation and scheduling (Figure 4-1), a hardware system is often

expressed as a connection network of registers, multiplexers, primitive arithmetic units

(ALUs), basic logic functions, and the necessary control logic (Figure 1-8). All control

information, including timing and direct data dependencies, is included in this register-

transfer level (RTL) description. RTL descriptions offer much lower flexibility than the

different flow-graph representations since design alternatives or different schedules are not

represented in the transfer-level description at all. The step of translating RTL descriptions

to fabrication input is referred to as “RTL synthesis".

Since the level of abstraction at the RTL level is very low, efficient RTL synthesis

algorithms have been devised based on advances in hardware characterization and compiler

research. Most practical approaches rely on an extensive set of standard cells and perform

the RTL synthesis step by selecting the standard cell presenting the closest match to the

desired submodule. For further discussion of RTL synthesis, the following references are

recommended: [Jha95, DK91].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 28

1.7 Code generation and compilation

After covering hardware synthesis steps in the previous section, this section presents an

overview of the code generation and compilation steps. The dissertation assumes that com­

pilation is handled by compilers optimized for the target architecture, and such compilers

are treated as a black box system. The only requirement for the compiler is that it should

generate executables (or object files, if linking is a separate step) that may be downloaded

to the off-the-shelf microprocessor and executed there. The investigations do not model

synthesis for application-specific processors. By delegating the task of compilation to an

external application, the portability of dissertation results is increased considerably. Note

that, even if the compiler is treated as a black box, certain optimizations may be performed

before submitting code to the compiler. In the case of the dissertation results, as shown

later, the efficiency of the generated software subsystems is approximated without actual

compilation.

Similarly to HLS problems, most existing software compilers are unable to handle relo­

cation from software to hardware in a flexible way. Pure software-based high-level synthesis

attempts to optimize software for a given environment. O ptimizing RISC compilers are the

most important representatives of this approach. Quite similar to RISC compilation, very

long instruction width (VLIW) computers, with their extreme dependence on the target

environment, present a very good example of software tied to a given architecture. For our

investigations, it is assumed that our system takes a high-level description in the form of

flow graphs programs and finishes at an intermediate level, by producing optimized assem­

bly source code as an output. An additional front-end step is assumed to generate data-flow

descriptions from higher-level descriptions, such as C or Java source code.

Partitioning of the compilation process to two passes (to register-transfer and then bi­

nary level) makes it possible to have complete control over the efficiency of the code, yet

perform the optimizations at a relatively high-level, leaving the mundane tasks of final

compilation and linking to the (system-dependent) assembler. A disadvantage of this so­

lution is that a processor model of the target environment is required at higher levels of

abstraction. Describing processor internals becomes more and more difficult as designers

merge solutions from different environments to increase performance. Practical examples

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 29

show that processor emulation for profiling purposes may become a serious complexity issue

with modern processors, since the software behavior may be tracked only with increasingly

complex finite state automata [BR95].

Target environments may be treated as pure transfer-cost systems for a quick model of

execution profiling. High-level features, such as multiprocessor interprocess communication

or shared memory handling become difficult to capture at this level (at least without the

necessary bottom-up libraries) so this dissertation investigation targets a minimalist execu­

tion environment. An example of target architecture is an FPGA-based or microprocessor

environment interfacing to local memory and peripherals in addition to the custom or semi­

custom hardware components. It is assumed that compilers perform effective optimizations

for the target architecture. RISC compilation of fixed DFGs is an NP-complete problem

where the optimal solution may be known beforehand, or at least an accurate estimation

may be given [OKD97]. Since there are available, well-known approximation algorithms for

both scheduling and allocation [Hoc97, p. I, p. 94], bounds may be set limiting the opti­

mal solution in polynomial time without actually finding it. Finding a solution sufficiently

close to the optimum makes it possible to exit initial iterations without useless rounds of

optimization.

Software compilation differs from pure hardware HLS in the placement of scheduling and

allocation. Software instruction scheduling and register allocation are usually performed in

the same phase, as opposed to hardware designs, where allocation generally happens after

scheduling. A possible reason is that inserting an additional register to compensate for

over-utilization is easier in hardware and may be performed without further iterations. In

software over-using the register set may be solved by code transformations (namely, using

spill code [ASU88, p. 542]) and requires feedback in the design process.

Merging instruction scheduling and register allocation provides immediate feedback for

problematic scheduling decisions and may reduce the cost of further iterations. The dis­

advantage of combined scheduling and allocation is the increased solution space of several

simultaneous NP-complete problems. A major advantage is the fact that the conflicts be­

tween scheduling and allocation are evaluated in single phase of optimization [NP98]. Prac­

tical implementations use separate, specialized algorithms for scheduling and allocation,

and select algorithms that may use status information from the other stage [NP95b].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 30

Another approach to integrate scheduling and allocation is presented in [NP98]. By

splitting scheduling in two and performing allocation between the two schedulers, the second

scheduler pass may compensate for the effect of any spill code introduced by the allocator.

Since the different design processes must be matched somewhat in the mixed hardware-

software solution space, a simplification must be made to make the extreme (i.e., purely

hardware or software) cases compatible. For this reason, the hardware section shall be based

on mixed scheduling-allocation algorithms (which are also present in HLS). A summary of

combined algorithms is presented in [PK89]. Combined scheduling-allocation methods in

HLS generally perform scheduling with initial monitoring of allocation so that the stages

are done in the usual order (scheduling first, allocation second) but the allocation process

is guaranteed to give the expected results and so no further iteration is necessary. This

approach is identical to the pure software solution.

1.8 System -level synthesis process and classification

Initially performed manually, the HSCD development cycle of today’s systems may not be

finished manually in feasible time. For the purposes of this dissertation, HSCD is used

solely as a term for structured, automated designs. The dissertation extends the theoretical

background and a sample implementation of a high-level synthesis environment, and this

extended design process is called Multiple-Context High-Level Synthesis.

HSCD methodologies are inherently more complicated than single-environment (i.e.,

purely hardware or software) designs. The problems include, but are not limited to, the

additional communication requirements on the boundary of hardware and software as well

as the more difficult testing in a mixed environment [BS98]. Even before testing, the

simulation environment of a hardware-software codesign environment must be adapted to

the special requirements of the multiple-context environment [LLSV98, Ros98].

Several of the design steps unique to HSCD are NP-complete. These computationally

hard optimization problems must be solved in addition to the NP-complete problems al­

ready present in high-performance software development or high-level logic synthesis. The

most important computationally expensive problems in HLS and software performance op-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 31

1 A = A + SCO];
2B = B + SCI];
3 for (i= l; i<=r; i++) {
4 A - C(A ** B) « B) + S[2*i] ;
5 B = ((B “ A) « A) + SC2*i+1];
6 >

Figure 1-4: Code of RC-5 main loop

timization are efficient register allocation and instruction scheduling). (For a brief summary

of useful approximation algorithms for scheduling and graph coloring problems, see Chap­

ter 1 and Chapter 5 of [Hoc97], and Chapter 23 of [CLR90]. An overview of popular

approximation algorithms is given in Chapter 2.)

The design of connected hardware and software subsystems requires at least two addi­

tional design steps before scheduling and allocation are performed. Clustering, the selec­

tion of elementary operations, creates groups of operations which are to be executed in the

same environment, regardless of the hardware-software boundaries. Partitioning, setting

the boundaries of hardware and software, follows clustering and attempts to generate an

efficient division of execution contexts.

Starting from a high-level description of the problem, the system must be formulated

as a flow-graph. There is a possibility of using several flow-graphs during the initial phases

of hardware-software codesign (control-flow (Figure 1-6), data-flow, or control-data-flow).

There are slightly different heuristics to be used based on which one is chosen as an input.

(Note that in most environments, assuming the necessary information about the target

environment is available, all of these three descriptions may be converted to the other two

representations.)

In most HLS systems the input flow-graphs are assumed to be immutable and they are

not changed except minor details, such as inserting buffers (delay). Even if practical sys­

tems exist where the flow-graph description may be modified by the synthesis process (such

as functional design processes [VG92]), the dissertation investigations do not attempt to

perform functional optimization. The task of generating a suitable flow-graph description

from am even higher level description is delegated to the system front end (Section 4.2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 32

B S[l] 2A S[0]

iFTNALlINTT

SELSEL SEL

*2XOR

«

XOR

MO«

STOP99

Figure 1-5: Generated data-flow graph of RC-5 main loop with source line numbers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN

STOP?

initialize A

update STOP

update A

initialize B

(loop exit)

update B

Figure 1-6: Coarse control-flow graph of RC-5 main loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN

STOP?

Figure 1-7: Control information of RC-5 main loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 35

SEL D * MUX

(shift)[> (XOR)XOR

V —
ALU [shift]MQ«

V
ALU [+/-]

Register
Control signals

(XOR) I Elementary logic blocks

Figure 1-8: Section of a register-transfer level description and the equivalent data-flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 36

p. 115). As an example algorithm of generating graphs for regular FIR filter structures,

see Appendix A, p. 154. An example code loop is presented in Figure 1-4 with the cor­

responding annotated data-flow graph in Figure 1-5 showing source lines (uHDn denotes a

memory access). Note that in the data-flow graph, loop control is maintained in a STOP

signal generated by a comparison operation.

Flow-graph system descriptions may follow the control flow inside the system (control-

flow graph, CFG) (Figure 1-6, Figure 1-7), or concentrate on the data-flow (data-flow graph,

DFG) (Figure 1-5). Control-flow-based system descriptions use control transfers to model

data propagation, showing the relations between the operating times execution units.

A combined version of the data-flow graphs called control-data flow graphs (CDFGs),

is frequently used in high-level synthesis. CDFGs describe the system with an improved

data-flow graph. CDFGs contain additional information over DFGs so that the necessary

control information may be extracted from the data description.

To stay compatible with the currently available PIPE knowledge base, this dissertation

uses a CDFG to describe the input problems, and generates the control structures once the

register-transfer level (RTL) description is available (such as in Figure 1-8).

Currently existing industrial design systems do not offer satisfactory support for mixed

hardware and software environments. The most widely used approaches fall into one of

the bottom-up or minimum solution approximation methods. While both approximations

are based on practical systems and have found useful applications, no successful integrated

environment has implemented a completely flexible design tool with manageable computa­

tional requirements. One of the goals of this dissertation is to present a solution capable of

considering a much wider set of possible solutions than restricted approaches. The different

approaches to hardware-software codesign may be summarized in a way similar to that

presented in Figure 1-9.

Using the notation of Figure 1-9, one may classify different system-level synthesis ap­

proaches based on their progress in the design triangle. Starting from a unique system

description at the top of the design space, the design process proceeds to the bottom of the

triangle as the level of abstraction decreases. The two extreme solutions axe software and

hardware, on two ends of the solution space. Note that at the level of data-flow graph no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 37

Problem size Level of abstraction

Hardware synthesisCompilation

Allocation

Scheduling

Data-flow graph

RTL description

Control extraction

Scheduling and
Allocation

High-level description

Optimized intermediate
description

Software (Mixed) Hardware

Performance

Development effort

Figure 1-9: Hardware and software development with codesign solution space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 38

decision has been made of implementation context, and therefore the data-flow graph as a

starting point of the design is considered to be a immutable. The design process then passes

through the system search space (the triangle in Figure 1-9) and terminates in a completely

specified solution (i.e., in a point on the base of the triangle). In such a specified solution,

there is no more designer freedom left, apart from the choices in implementation.

Entirely software solutions proceed through instruction scheduling and register alloca­

tion to a source code level, reaching the base of the triangle in Figure 1-9 while staying

on the extreme left of the triangle (i.e., maintaining an entirely software system). Software

synthesis therefore traverses trajectory “a” in Figure 1-10.

Similarly to software synthesis, hardware solutions from the same data-flow graph pro­

ceed through the stages of scheduling and allocation, arriving to a RTL description (entirely

in hardware). This solution is represented on the right of the solution space in Figure 1-9,

since none of the intermediate steps have software components, therefore the design process

passes through trajectory “b” in Figure 1-10.

Some of the currently existing hardware-software codesign design methodologies attempt

to reuse optimized structures during the design of multiple-context environment systems

[ABIC+98, AJ97]. Depending on the available design database, the number of possible

solutions is limited, which narrows down design search space to a number of discrete points.

Using low-level, optimized structures, the design process is practically evaluating the per­

formance of each possible implementation and selecting one with a reasonable cost, as il­

lustrated in Figure 1-lO.c. Further optimization is usually not necessary, since design reuse

already presents submodules (such as the case of hard IP (Intellectual Property) macros).

This approach is definitely very fast, since the steps of optimization are omitted, and no

NP-complete problems have to be solved.

A possible disadvantage of the reuse of already existing designs is the limited number

of solutions. Even if the selection process evaluates several possible solutions on the lowest

level (i.e., implementation), more efficient systems between existing solutions are not found.

As the cost functions of complex hardware-software codesign systems tend to be far from

smooth, local extremes may appear in unexpected points in the solution space (i.e., the base

of the triangle in Figure 1-9). Evaluating a set of discrete solutions samples the system cost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 39

function at the implementation level, and may lead to suboptimal results if the sampling is

inefficient.

Another possible approach to the design of hardware-software codesign systems is the

minimum solution solution. This approach, a variant of greedy approximation algorithms,

starts with an extreme partition and refines it through local extremes until it meets design

targets or it has exhausted improvement possibilities. The optimization terminates correctly

when the predefined performance criterion is met, otherwise, the greedy solution does not

converge.

Two possible solutions are especially popular initial configurations in state-of-the-art

hardware-software codesign research. Since a large number of multiple-context environment

systems are constrained primarily by implementation cost or execution time (while other

performance metrics are of secondary importance), following a greedy heuristic may produce

good results.

Starting from a purely software implementation, and transforming the critical path to

hardware, results in a system that fulfills timing constraints (if possible). Relocating the

DFG critical path to hardware (fully or partially) decreases system latency.

C ritical p a th is a set of vertices and edges in a DFG which form the execution path with

the highest total latency.

There may be multiple critical paths in the system, if more than one route has the

same (maximal) total latency.

Since the critical path may change because of moving vertices to hardware, the new

critical path (or paths) must be found after every iteration, finishing as soon as latency

constraints are met. Also, since relocating functionality between execution contexts intro­

duces context-switch vertices to the system DFG, additional iterative rounds are needed

to verify the system meets design constraints. Each round traverses a trajectory similar to

that depicted in Figure 1-11 (trajectory “b”), selecting the software solution in most steps,

with a limited number of subsystems where a hardware solution is desired.

Similarly to initially software solutions, starting from a pure hardware solution and

relocating vertices to a software context, hardware resource requirements may be reduced

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 40

to the cost limit set by external constraints. The problems of this approach are identical to

those of the hardware-based refinement algorithm.

A different classification of hardware-software codesign is possible if the system spec­

ification (the data-flow graph) is assumed to be flexible. Most lower-level optimization

approaches (including HLS and software optimization) treat the system specification at the

DFG level to be immutable. Should the design process explore different data-flow graphs

implementing the same functionality, a different solution space could be obtained, with

probably different results. This higher-level approach, manipulating problems at a very

high level of abstraction, is behind functional-level designs [VG95a, GVNG98, VNG95].

(As an example of different data-flow graphs derived from the same higher-level descrip­

tion, see Appendix A). The very high level steps of functional-level design explore different

data-flow graphs generated from the same functional description, which is demonstrated in

trajectories denoted with “a” in Figure 1-11.

Similarly to traditional hardware and software development, top-down design is popular

in hardware-software codesign. Unlike most of the previously described methods, bottom-

up solutions rely on available building blocks (reusable submodules) when making decisions,

but the building blocks are not tied to specific architectures and may be optimized to the

target system. Since the currently used submodules axe usually complex systems themselves,

the system is usually modeled at a coarse resolution, which reduces the size of search space

considerably. As the submodules are not optimized at an implementation level (such as

soft IP (Intellectual Property) blocks), the system may be still optimized after selecting an

initial solution. This process is illustrated in Figure 1-ll.c., where a higher-level solution is

selected first and then it’s optimized to match the requirements of the target architecture.

One of the problems of the coarse bottom-up solution is that it may quantize the solution

space very early, i.e., represent it as a small set of discrete solutions. As problem sizes are

increasing, a discrete solution space may be inappropriate for a truly effective solution,

which might be described by a finer resolution model only. Since the selection may exclude

the global optimum, the partitioning phase of HSCD should try to evaluate as much of the

solution space as possible. Another related problem is that hardware-related systems may

not have smooth cost functions. These problems are common with that of discretizing the

solution space at a lower-level solution (see above).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 41

i Problem size Level of abstraction

High-level description

Data-flow graph

Source code RTL description

Software (Mixed) Hardware

Figure 1-10: (a) Software development, (b) hardware synthesis, (c) synthesis of fixed-ratio
systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. BASIC STAGES OF HARDWARE-SOFTWARE CODESIGN 42

Level of abstraction

High-level description

Data-flow graph

Source code RTL description

Software (Mixed) Hardware

Figure 1-11: (a) Functional-level designs, (b) iterative refinement, (c) hardware synthesis
with bottom-up submodules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

State-of-the-A rt Techniques in

Hardware-Software C odesign

Since each major step of the hardware-software codesign development cycle presents at

least one NP-complete problem, effective hardware-software codesign methods must em­

ploy heuristic approximations or approximation algorithms to solve them. A summary of

currently accepted approximation algorithms is presented in this chapter, including the

heuristic background. The approximation algorithms are also classified based on the results

of researchers working on hardware-software codesign (in addition to the purely mathe­

matical coverage). Because of the unique requirements of the hardware-software codesign

design environment, some of the frequently used approximations are not directly applica­

ble to multiple-context environments. This chapter contains information about methods of

limited usefulness as well. Including heuristics that have been proven to be less efficient in

optimizing benchmarks is reasonable, since the same heuristics may be much more useful

in different types of applications.

Initial research in heuristic research tried to interface software systems with full-custom

or semi-custom microelectronics (standard cells or full-custom VLSI). The high cost and

development time of these VLSI systems made it difficult to use hardware-software codesign

as an efficient solution to practical problems. Initial attempts at codesign were also based

on design steps that reduced the available designer freedom too early, in the partitioning

stage. Attempting to partition without feedback from later stages often results in a very

inefficient solution [Knu95, “1.3.1. The traditional approach to codesign”, p. 7]. Also since

the synthesis steps following the initial partitioning steps are computationally expensive

heuristics for NP-complete problems, increasing the number of full iterations may increase

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 44

the total synthesis time to an unacceptable level.

Advances in Field-Programmable Gate-Arrays (FPGAs) have made it possible to use

reprogrammable hardware systems with external software support as reconfigurable building

blocks [Pag95]. In addition to FPGAs, the increasing number of embedded systems has

made it feasible to design heavily optimized, application-specific embedded systems using

hardware-software codesign methods [Pin96, VH98, ETT98]. Since embedded systems are

produced in large (and increasing) numbers, a small decrease of price or a slight increase

of the price/performance ratio vs. increased development time and cost is feasible in such

devices. Research of the Programming Research Group at the Computing Laboratory of

Oxford University, among others, even targets creating semi-custom processors. Semi­

custom microprocessors are compiled from a software-level description of a given program

and are optimized for the instruction set required to execute that program [Pag94]. Creating

a set of microprocessors optimized for a given task is a feasible and promising way of

combining hardware performance with software flexibility. This solution does not strictly

belong under “hardware-software codesign”, since the execution context does not change

during the execution of programs.

To accommodate the different environment of hardware-software systems, purely hard­

ware and software optimization techniques must be used to generate subsystems with the

required performance and cost properties. Before optimizing disjoint hardware and soft­

ware modules, the designer must partition the system, i.e., decide which submodule to

implement in hardware and which in software. An inefficient partition may result in an

increase in communication overhead that eliminates the potential advantages of a mixed

hardware-software solution.

Most hardware-software codesign systems are too large to handle with currently available

algorithms when modeled at the elementary operation level. For the purposes of elementary

operation models, each vertex in the data-flow graph is a basic, atomic operation, performed

either in hardware or software. State-of-the-art high-performance heuristics for data-flow

schedule optimizations have a time complexity of up to 0{n2) or C)(n3) with linear space

complexity. Using even a quadratic algorithm with a practical system would be too ex­

pensive since a typical telecommunications application, for example, may be translated to

thousands of basic blocks if every elementary operation is treated as a basic block.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 45

To reduce the number of basic blocks, most hardware-software codesign systems collapse

nearby elementary operations to blocks of higher complexity, thus reducing the size of the

problem. This process, clustering, is based on available heuristics for finding submodules

that may be optimized.

After the clustering process, there is a clear distinction between global and local opti­

mization, as the inside of basic blocks is left intact in the system-level (global) optimization

process. Basic blocks are later optimized independently of each other (i.e., locally). Most

optimization steps after clustering do not extend optimization to span multiple basic blocks.

For this reason, selecting the proper basic block boundaries is a critical decision at this step,

and the applied heuristic should definitely be matched to the target application or environ­

ment.

Selecting clusters sets the number of basic blocks partitioning must deal with. Since

partitioning has a nonlinearly increasing complexity, clustering must find a balance between

system granularity and design time. Also, since the clusters are used to predict the design

decisions before actual scheduling and allocation, the choice of clusters should make it pos­

sible to give a useful estimation of the outcome. As the optimization steps differ depending

on the selection of optimization algorithms, clustering cost functions must take this into

consideration.

Optimizing the distribution of software and hardware basic blocks is called the partition­

ing problem as it attempts to find an efficient partition of the basic block set. Selecting the

optimal partition requires a set of boundary conditions which is based on design criteria as

well as technology parameters. Partitioning is an NP-complete problem, where polynomial-

order heuristics are available for well-known architectures [OR94, Las93, Knu95j.

In addition to the problem of separating software subsystems from hardware modules,

the hardware-software codesign design process must model the effects of interconnections.

Since context switching may require additional resources, or have strict t iming requirements,

the impact of connection overhead is non-negligible. Defining a proper model for data

transmissions is essential to create an efficient optimizer for hardware-software codesign

systems as most partitioning algorithms require cost information for edges [Las93].

Since our system is implemented as a wrapper around an existing CAD environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 46

(see Figure 3-2), the interconnect model was chosen to complement the data model of the

PIPE CAD system. Since the PIPE environment uses a control-data-flow graph to model

data connections, our model treats data control as a timing constraint between functional

vertices. For practical problems, simplifying connections to timing is sufficient for acceptable

performance.

2.1 C lustering

Identifying the basic blocks in a hardware-software codesign system may be done using

several approaches. The following listing, based on [Knu95], enumerates some of the possible

clustering methods.

Trivial clustering, assuming every operation to be a basic block in itself is impractical in

most systems, but may be useful in smaller embedded HSCD devices.

Obviously, trivial clustering is equivalent to no clustering at all, and is considered a

clustering strategy only in theory.

Clustering to a certain level, assuming there is a critical submodule size which is the

practical limit for local optimization. The reasonable cluster size depends on the

technology of implementation and the local optimization algorithms.

Even-sized clusters w ith maximal size lim it, resulting in a cluster layout which may

be optimal for size-constrained target architectures.

Even-sized clusters w ith maximum element lim it, similar to the above, more useful

for target architectures that are constrained by I/O capability or similar implied

bottleneck.

All of the above clustering heuristics may be performed by using only the system data­

flow graph, without any knowledge of the high-level description it wats generated from.

Such problems may then be solved by any of the graph coloring heuristics, and are not

discussed in this dissertation. (Note that partitioning heuristics, described in more detaul in

Section 2.2, are generally useful for clustering since the problem formulation of clustering

is identical! to partitioning, as discussed in [AHK96].) Experiments performed with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 47

Kemighan-Lin algorithm and its extended version, the Kemighan-Lin-Fiduccia-Mattheyses

algorithm (see next section) show that these popular partitioning heuristics may be used

for clustering with satisfactory results [HB95a].

Some clustering heuristics are based on the algorithms of finding highly connected sub­

graphs of the system data-flow graph, a well-known NP-complete problem [Hoc97, Chap­

ter 6, p. 234]. These heuristics generally find distances between sets of vertices and attempt

to place vertices within very small distances in the same cluster. Several versions of this ba­

sic idea exist; a thorough description and comparison of such algorithms is given in [HB95a].

The primary disadvantage of these heuristics is that threshold numbers and distance expres­

sions generally depend on the target technology. Also, since most of the connectivity-related

algorithms must be extended to some of the auxiliary features (such as high-connectivity

signals, i.e., global controls and shared resources), automated clustering using connectivity-

related heuristics is not feasible. Since this high-level design process is intentionally sepa­

rated from the implementation details of the underlying hardware, connectivity-based clus­

tering heuristics did not provide satisfactory results during benchmarking without extensive

customization. For this reason, they are considered to be inefficient for the target system,

and are not recommended in a general-purpose MCHLS environment.

Even if connectivity-related clustering has produced inefficient implementations, clus­

tering may still be performed in a MCHLS environment with satisfactory results. The main

difference is that clustering is performed at an earlier stage of the top-down design process,

when information is still available about system architecture. Starting from this higher-level

description of the design enables more efficient clustering than lower-level (i.e., connectivity-

based) algorithms. The dissertation recommendation for clustering assumes the high-level

description is known, and clustering is performed before the complete elementary operation

graph is generated.

If the clustering process is integrated with data-flow graph generation, it is possible

to reuse the structure of the high-level description in the clusters. Practical systems may

simply stop system refinement at a sufficiently high level, and treat functional blocks as

clusters for partitioning. In the HSPIPE environment, such a solution is feasible since

the design process is definitely top-down. An example of this approach to clustering is

demonstrated on a practical example (GSM speech encoding) in Section 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 48

Even if the initial high-level description is not available (i.e., the problem is initially

formulated as a data-flow graph), the clustering process may try to match subsystems

with known structures. Having a large knowledge base of previous designs and reusable

modules, one may try to search the data-flow graph for known structures that are available

in a module library or software repository. Identifying submodules in an early stage may

decrease design time considerably as the available module database may be highly optimized.

The identification process, on the other hand, increases the time requirement of clustering

and requires an efficient associative-search algorithm. Recreating higher-level descriptions

of the problem from the data or control-fiow graph is a complex pattern-matching problem

and is not part of the dissertation investigations.

For the dissertation benchmarks, clustering was implemented inside the top-down design

process. It is assumed that there is no requirement in HSPIPE to implement a clustering

algorithm capable of matching low-level structures to existing primitives. Incorporating such

a system is definitely possible (since the design process is modular), but left as an exercise

to users wishing to extend the system to architectures not covered in this dissertation.

2.2 Partitioning

Searching for an efficient way of separating hardware and software sections is an NP-

complete task. The hardware-software partitioning process is an instance of the optimal-cut

problem [Hoc97, Chapter 5]. The optimal-cut problem, and its specialized variants, min­

imizes a cost function for a graph which has its vertices assigned to different partitions.

The cost function is based on the distribution of vertices and edges connecting vertices

in different partitions. The weight structure of the cost function depends on the actual

requirements of the target architecture.

The available heuristics are classified based on the results of researchers working on

hardware-software codesign. Because of the unique requirements of the hardware-software

codesign design environment, some of the frequently used partitioning, scheduling, and

allocation heuristics are not directly applicable to hardware-software codesign. As an ex­

ample, partitioning heuristics coming from supercomputing research often target uniform

execution times across different computations [LH94], since the longest calculation time is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 49

a lower bound for the execution time of the whole computation [KK97]. Minimizing the

longest calculation time puts additional constraints on the partitioning process, namely,

partition sizes must be represented in the system cost function. Since the extension of cost

functions makes the optimization process more difficult without improving the properties

of the design, heuristics optimizing these extended cost functions are of limited usefulness

for our target environment. In some cases, popular representations of parallel computations

may be inaccurate, since cost functions are applied to improper measures of communication

costs [HKed].

Similarly, in hardware-software codesign, partition costs are not directly related to sys­

tem (or system flow-graph) geometry, and geometry-based partitioning techniques [AL98]

[Las93, p. 15] are generally not applicable for hardware-software codesign purposes. As well-

known VLSI circuit partitioning algorithms also use geometry-related information, some of

these heuristics are also inefficient when used to partition hardware-software codesign sys­

tems [AJIK96].

The partitioning problem has been thoroughly studied in the literature and is covered

by both approximation algorithms and heuristics based on empirical results. Partitioning

problems have to be solved in some of the most important stages of hardware and software

design:

• Register allocation, both in software and hardware, is a process which partitions flow-

graphs trying to optimize register assignment. The allocation problem, present both

in compilation and high-level synthesis, minimizes the number of concurrently active

elementary operations. For software systems, efficient register allocation method min­

imizes the impact of temporary storage access (spill code). In hardware, allocation

attempts to minimize implementation costs by identifying possible resource sharing

among elementary operations.

• Multiprocessor applications must be properly distributed among the processors so

that load is balanced and distributed calculations are finished as soon as possible.

The solutions are generally portable between different partitioning problem instances,

with several of exceptions. Most of the exceptions are related to different cost metrics

for different formulations of the same problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 50

Since some of the available heuristics have been successfully applied to structures re­

sembling typical PIPE designs, changes to the PIPE CAD system attempt to reuse some

of this knowledge. As the hardware-software codesign research community has thoroughly

analyzed most of the well-known heuristics, most results indicate that the combination

of a single global pass and a sequence of local refinements results in feasible partitions

[PD96, Las93].

Global (or construction) partition ing algorithm s create an initial partition of the in­

put graph. In hardware-software codesign, nnlikp partitioning in parallel computation

applications, balancing the partitions is not necessary.

Local (or improvem ent) partitioning steps operate on an initial partitioning scheme,

and try to introduce small changes that improve quality. Changes in the cost function

are evaluated for small changes, and the one with the best effect on the cost function is

taken. Improvement steps are generally repeated as long as the quality of the partition

improves.

As the dissertation research treats the problem flow-graph as an immutable description,

the dissertation investigations exclude procedure cloning [Vah99, MW96] and related parti­

tioning techniques, which do modify the system graph. Cloning and replication techniques,

in general, reduce the cost of context switches by replicating functionality in both execution

contexts (as a tradeoff between implementation cost and communication cost). Should the

HSPIPE system be extended with optimizations above the system graph level (such as the

algorithmic extensions described in Section 7.2), implementation of such cloning/replication

algorithm would become possible.

2.2.1 C onstruction algorithm s

The most important global algorithms were developed in the field of parallel computation,

where excessive inter-vertex communication is to be avoided because of prohibitive cost (in­

creased data transfer times). This limitation (balancing) effectively disqualifies the majority

of the heuristics developed in the supercomputing literature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 51

Providing a random initial partition is sometimes used as a very quick way of gener­

ating initial conditions [Knu95, p. 77] [DD96b]. The disadvantage of this straightforward

approach, not surprisingly, is its random nature. Implementing such an “algorithm” is triv­

ial, but it is not recommended for MCHLS. (As discussed later in this section, information

about the design’s higher-level description may be reused during the generation of the ini­

tial partition. Since such partitions may be matched to the structure of the system, they

may provide better initial conditions than random initialization, with a small increase in

execution time.)

A family of popular construction algorithms, Greedy Graph Growing Partitioning [KK95]

has been demonstrated to provide good results with a high probability. The algorithm starts

from a trivial cluster containing one vertex in one partition and grows this partition through

local maxima. Vertices are moved between partitions one at a time, selecting the next one

that provides the highest change in the cost function, terminating if there is no further

improvement. Alternate versions of this greedy algorithm differ mainly in the cost function

of the selection step.

As the quality of this greedy algorithm depends on the choice of the initial vertex, re­

peated attempts are recommended with randomized perturbations of the initial partition

[AHK96]. Even if the Greedy Graph Growing heuristic has shown good results on practical

partitioning problems, there are better choices for partitioning heuristics for the disser­

tation hardware-software codesign approach. The two most important disadvantages are

the inherent randomness of the solution (necessitating further iterative rounds to improve

the chances of finding a suitable partition), and the fact that extending the algorithm to

non-binary partitioning (i.e., systems with more than two execution contexts) is not triv­

ial. Since the dissertation research targets portability to more them two execution contexts,

Greedy Graph Growing is not recommended for generating initial partitions.

Significant literature discusses the details of the numerous variants of multilevel parti­

tioning algorithms [AHK96, KK97, KK95]. Multilevel heuristics, popular especially in VLSI

circuit optimization, attempt to find an efficient partition by performing the following steps:

1. Subject the graph to coarsening, reducing vertex count based on clustering heuristics.

2. Perform graph coarsening recursively until vertex count is considered satisfactory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 52

3. Partition the coarse graph using an efficient, slow algorithm.

Since the recursive coarsening is assumed to supply a greatly reduced vertex count,

even computationally expensive heuristics are applicable to this initial partition. Be­

cause of the efficiency of the slower algorithms, initial conditions do not have a major

influence on the result of this partitioning step.

4. Perform uncoarsening on the course graph. The oncoarsening step breaks the clusters

created in the corresponding round of coarsening. After each uncoarsening step, a local

improvement algorithm is applied to possibly improve the quality of the coarse cluster

(by using neighborhood information gained during uncoarsening). The improvement

algorithm may be applied iteratively.

5. Perform the uncoarsening step until the granularity of the original graph is reached.

Practical systems have been demonstrated for partitioning graphs horn finite-element com­

putational problems (featuring sparse matrices, or equivalently, mainly local connections)

at the order of several tens of thousands of vertices and hundreds of thousands of edges

under minutes on workstation-class computers [AHK96]. In practical systems of similar

size, multilevel partitioning has been implemented as a very quick, sufficiently efficient ini­

tial partitioner. Note that the above results were obtained in a system with immediate

feedback, i.e., no evaluation/estimation step was required between steps of the partitioning

process. (In hardware-software codesign the evaluation step may dominate the runtime of

the feedback loop.)

For the purposes of this dissertation, multilevel partitioning algorithms are not recom­

mended, unless the problem size is very large. The primary reason to recommend against

using multilevel partitioning is the relatively large execution time of the scheduling and allo­

cation estimator steps. Since the execution time of the estimation iterations is dominated by

the time of scheduling and allocation, slower partitioning heuristics (such as the Kemighan-

Lin algorithm or one of its extensions) still provide reasonable runtime with much lower

implementation complexity. At problem sizes exceeding thousands of elementary operations,

a multilevel partitioning process is definitely worth investigating. Fortunately, because of

the modular structure of the MCHLS framework, replacing the partitioning process with

faster heuristics is possible without disrupting other modules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 53

For the purposes of this dissertation, especially for smaller graphs, initial partitions

provided by a straightforward, greedy algorithm were sufficient. Starting from one of the

extreme system configurations (i.e., purely software or hardware), the system is iteratively

refined until it meets performance metrics. (The VULCAN II design environment suc­

cessfully used a similar greedy algorithm at an elementary operation level. VULCAN II

starts from an initial, all-hardware configuration, and iteratively moves operation branches

to software to reduce cost [DMG92]. The complementary greedy heuristic, as shown in

[EH92], moves selected vertices from an initially software solution to hardware to meet tim­

ing constraints. This software-based solution is also implemented at an instruction level.)

The steps to get a good initial partition depend on the primary constraint of the system,

i.e., the dominant member of the cost function. In time-constrained systems, a solution with

more hardware is generally better; similarly, in a system with space or cost constraints, an

entirely software solution may be a better starting point. Because of the difference between

these conditions, the initial partition is generated using slightly different methods:

• In systems under dominant cost constraints,

1. Generate an initial, extreme system configuration: assign all operations to soft­

ware.

2. Terminate if system meets timing requirements, or comes sufficiently close. (This

is an application-dependent measure of system cost, and varies depending on the

target environment.)

3. Transform the critical path or critical paths to hardware. Find the new critical

path.

4. Repeat from 2.

• In systems under dominant time constraints,

1. Generate an initial, extreme system configuration: assign all operations to hard­

ware.

2. Terminate if system meets cost requirements.

3. Transform operations outside the critical path to software (in time cycles with

the highest hardware load).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 54

4. Repeat from 2.

In practical terms, the applied heuristic is an expanded version of the greedy graph

growing heuristic, where the choice of operation to be moved is better suited to the MCHLS

design process. Also, the system may be expanded to handle more than two execution

contexts, an advantage not present in the original form of greedy graph growing.

2.2.2 Im provem ent algorithm s

Local partitioning algorithms, working on refinements of already existing global partitions,

try to select small local changes that improve the performance of the partition. A number of

frequently efficient local algorithms are derivatives of the Kemighan-Lin algorithm [KL70].

Since the efficiency of the Kemighan-Lin algorithm has been demonstrated in different

configurations [Vah97a, BFS98, KL97, VNG97, HB95a], two versions of the algorithm are

chosen as a basic module of HSPIPE. The analysis of relevant other algorithms sum m arizes

potential alternate solutions at the end of this section.

In the time and space requirements, unless noted otherwise, n denotes the number of

vertices and m the number of direct data connections in the graph.

The Kemighan-Lin algorithm starts with a partition and swaps pairs of vertices in an

iterative way. The algorithm selects the vertex pairs based on a local cost function and tries

to optimize the overall change in the global cost function. With 0{n2) time complexity (and

a convenient, small constant factor), the Kemighan-Lin algorithm is reasonable to use in

small to medium graphs (up to several thousands of vertices), but becomes infeasible for

larger systems. An important extension to the Kemighan-Lin algorithm has been created

by Fiduccia and Mattheyses in 1982 [FM82]. This modified version, based on the idea of

[KL70], executes in 0{n) or O(mlogn) time (depending on system type, see below) and

considers moving individual vertices without attempting the swapping of vertex pairs.

The original version of the Kemighan-Lin algorithm [KL70] investigates vertex pairs of

the system CDFG and attempts swapping vertex pairs between execution contexts to de­

crease total system cost. System cost function is defined as a non-decreasing function of the

cut size of the partition, i.e., the number of edges connecting vertices in different execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 55

contexts. The cost change caused by moving a vertex across an execution context bound­

ary is described by a difference function in each partition. The Kemighan-Lin algorithm

selects vertices as candidates for swapping based on their difference function, attempting

to move vertices with maYimal differences across execution context boundaries. Vertices

that had been moved in a given improvement pass may not be moved any more in the same

pass (they are said to be locked) to keep the Kemighan-Lin algorithm from oscillating in a

pair of astable local minima Each pass of the Kemighan-Lin algorithm continues as long

as there are available unlocked vertices. After the pass is over, the total cost change is

evaluated, and the next pass is attempted only if the previous one improved system cost.

The Kemighan-Lin algorithm tends to present a non-increasing system cost improvement

as the number of passes increases, and sometimes it’s possible to terminate the algorithm

well before it would actually stop with a relatively small impact on performance [HB95a].

For a better estimation of system cost in hardware-software codesign, the Kernighan-Lin

algorithm must be extended with weights and performance attributes to properly model the

effect of hardware-software communications. In the dissertation research, an efficient, but

computationally cheap modeling method is used to transform execution context switches

to variable-length delays. Since execution context switches should not affect data values,

just representation, delay is a suitable model of the context switch. The actual length of

the delay is a function of bit width, source context and destination context. Such a cost

function may be constructed based on the timings of the hardware-software connections,

communication protocols, and the properties of processor interfaces.

An extension of the Kemighan-Lin algorithm, the Kemighan-Lin-Fiducda-Mattheyses

algorithm [FM82] moves individual vertices across execution boundaries instead of attempt­

ing vertex swaps. Graph vertices are scanned sequentially, evaluating system cost after

attempting to relocate each of the vertices to a different partition. The vertex and the par­

tition it is moved into will be the move which reduces system cost the most. The iteration

terminates if no move decreases the system cost any more.

The Kernighan-Lin-Fiduccia-Mattheyses algorithm in hardware-software codesign pro-

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN

ceeds along a discrete gradient of the system cost function

56

D = Dt + Dr + £ Wij(xi, Xj,riij)
(ei,ej)(ZW

where Dt is an indicator function for timing violations. Similarly, Dr is am indicator function

for resource constraint violations. The definition of these functions depends on the target

environment and primary design constraints (see Section 3.3).

Note that in balanced applications of the Kemighan-Lin-Fiduccia-Mattheyses algorithm

(i.e., where balanced partitions are desirable), an additional indicator term is present, pe­

nalizing large differences between execution context vertex counts. For reasons discussed

earlier, MCHLS makes no use of such requirement, and balance terms are not used. Note

that in the HSPIPE implementation, context switch information is merged into the graph,

therefore the last term of the cost function is implicitly evaluated in Dt and Dr, and no

longer needs to be calculated.

Potential cost improvement is evaluated for each vertex movement by evaluating the

cost function before and after the movement. The move which provides the decrease in

system cost is taken after each pass. The time complexity of the Kernighan-Lin-Fiduccia-

Mattheyses algorithm in its original form is O(n), but the extensions for non-uniform weights

(a feature the original form lacks) increases that to 0 (m logn). In the example implemen­

tation of HSPIPE, the higher runtime is used, with reasonable runtimes for small and

middle-sized problems.

Because of the greedy nature of the Kemighan-Lin-Fiduccia-Mattheyses algorithm, the

algorithm may converge to inefficient local extreme values, as it explores only a very small

subset of solution space. Several heuristics have attempted to improve the behavior of the

Kemighan-Lin-Fiduccia-Mattheyses algorithm. The primary concern is the lack of looka­

head, since the Kernighan-Lin-Fiduccia-Mattheyses algorithm in its basic form is capable

of converging to local minima of the cost function. Extending the Kernighan-Lin-Fiduccia-

Mattheyses algorithm with first-order look-ahead extensions, i.e., [Bal84], increases perfor­

mance at the cost of runtime. Higher-order look-ahead did not show the expected increase

in solution quality, while it increased runtime considerably, and is generally not used.

Various iterative improvement algorithms have been developed to overcome the short­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 57

comings of the Kemighan-Lin algorithm and inspired improvement methods. Significant re­

search has been conducted in VLSI circuit partitioning, where netlist optimization presents

similar problems to execution context distribution in hardware-software codesign.

Based on an idea similar to force-directed scheduling (see below in Section 2.3), proba­

bilistic partitioning approaches may be used to increase the performance of the Kemighan-

Lin-Fiduccia-Mattheyses algorithm [DD96a]. Under the probabilistic heuristic described in

[DD96a] (an 0{m logn) time heuristic), a movement probability is assigned to each vertex.

This probability denotes the likelihood of the vertex being moved in the current pass of

partitioning; it is practically a measure of potential cost improvement for the given vertex.

The probability function is initially uniform for all vertices, and later updated based on the

real cost improvement obtained by moving the vertex.

Since probability functions depend on the values of the real cost functions, the proba­

bility functions are implicit functions of the system configuration, and therefore each pass

of the probabilistic partitioning process is iterative. In production environments, where

resource utilization is the most important design criterion, implementing such an iterative

improvement algorithm may be desirable. During the testing of the HSPIPE implementa­

tion, the Kemighan-Lin-Fiduccia-Mattheyses algorithm was used because of the predictable

runtime.

Utilizing the ideas similar to that of multilevel partitioning, clustering-based iterative

improvement algorithms [DD96b] attempt to improve partitioning heuristics by running

cluster-partition-uncluster iterative loops. The partitioning heuristics are performed on

problems of significantly smaller size, potentially reducing execution time. Also, by calcu­

lating aggregated system cost functions, the movement of vertex groups may be evaluated

instead of individual nodes, reducing search space considerably.

While practical results show that clustering-based improvement algorithms may provide

better solutions than the Kemighan-Lin-Fiduccia-Mattheyses algorithm, such an advantage

is lost if the Kemighan-Lin-Fiduccia-Mattheyses algorithm is aware of an efficient clustering

of the initial graph. (Such is the case in MCHLS, where the snapshot of a higher level

of the top-down system description presents good initial clusters.) In such systems, the

computational overhead of a clustering-based improvement heuristic might be too high.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 58

Such is the case of HSPIPE, where for moderate problem sizes (including the benchmark

applications), computational overhead consumed most of the performance gains obtained

by implementing a more efficient solution. (In this respect, the straightforward Kernighan-

Lin-Fiduccia-Mattheyses algorithm has a definite advantage over more efficient algorithms.)

2.3 Scheduling

One of the computationally expensive problems of compiler optimization and high-level

synthesis is scheduling, the arrangement of elementary operations according to cost calcu­

lations. Scheduling attempts to generate a schedule (timetable) for a set of operations such

that the system performs prescribed calculations without violating time and resource usage

constraints. Time constraints in the HSPIPE design environment may mean both system

latency and restart time. (The two optimization goals are conveniently represented with

the same kind of constraint.)

System latency (L) is the time difference between sampling the first system input and

producing the final value of the last system output.

R esta rt tim e (R) is the time difference between subsequent data on the system inputs.

In non-pipelined systems, restart time is equal to system latency. In pipelined systems,

such as generated by HSPIPE, restart time is lower than system latency.

This section presents an overview of the scheduling problem in general, redirecting the

reader to references, where necessary. Since the HSPIPE system is modular, scheduling

(and allocation) may be replaced with a more efficient algorithm, if so desired. Because of

this modularity, the analysis in this section (and in Chapter 4, “Implementation”) presents

the scheduling heuristics considered in the example implementation of the HSPIPE environ­

ment. Since the choice of scheduling algorithm may depend on the target environment, users

of HSPIPE are free to extend HSPIPE scheduling during iterative rounds with algorithms

more efficient under design-specific circumstances.

In hardware systems, an execution schedule is a set of t iming values (v»). The t iming

values contain controller information for starting cycles of elementary operations. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 59

system controller is synthesized after the register-transfer level description of the system

is available. The controller generates a start pulse for the processor containing the given

elementary operation in its start time cycle v,-. Since hardware components are theoretically

capable of starting processing at any time, such control information is necessary to guarantee

stability of signals.

In software, scheduling prescribes a permutation of instructions of the original code

stream such that the system outputs are not changed by the permutation (instruction

scheduling). Since instruction fetch accesses memory in a monotonous way, increasing

fetch addresses if no branches occur (even in architectures with out-of-order execution), the

order of instructions in the compiled binary influences execution time. (Since generated

instructions are constructed from software sections of the elementary operation graph, the

words “operation” and “instruction” are used interchangeably in this section.)

The goal of software instruction scheduling is increasing (potential) instruction-level

parallelism. Because of the limited number of processing units in microprocessors (execution

units), any attempt to use a busy unit is stalled, blocked from execution until the requested

unit becomes available. Such a disruption in the input code execution is referred to as a

pipeline stall. Instructions must be ordered so that the effect of pipeline stalls is m in im a l

It must be noted that the dissertation assumes pipeline stalls as the only concern in

evaluating software performance. Other performance issues, such as improper branch pre­

diction (and the related pipeline flushes) are not covered. Unlike the mechanism of pipeline

stalls, branch prediction internals may change considerably between even close revisions of

the same microprocessors. Since a reasonable attempt to optimize code for efficient branch

prediction would be difficult without an exact description of the branch prediction mecha­

nism, it is infeasible to do in a way that is separated from hardware internals, and is not

attempted in this dissertation. As most popular branch prediction heuristics depend on the

distribution of branches taken and not taken, most of prediction problems may be addressed

at the source code level, without regard to scheduling. The effect of these optimizations

passes through instruction scheduling without changes, since they affect the execution flow

of the code in a data-driven way, which is easier to control by the programmer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 60

Some scheduling methods are theoretically capable of moving instructions to arbitrary

positions in the elementary operation graph. Such scheduling algorithms are referred to

as global scheduling. Heuristics to be used as global schedulers should have a very low

asymptotic time complexity to be effective, since global scheduling in an MCHLS deals

with the lowest-level description of the system (which, obviously, has the highest vertex

count).

Other scheduling heuristics are incapable of moving operations beyond the borders of

the basic block they are in.

Basic blocks are sections of the instruction stream which are fetched from memory in an

entirely sequential way.

Note that this definition, modifying the one in [ASU88], is valid even for out-of-order

execution RISC microprocessors.

Scheduling heuristics that limit the movement of instructions to their basic blocks are

called local schedulers. Because of the smaller number of operations to be considered with

local schedulers, slower heuristics may be feasible schedulers if the performance gain justifies

the slightly higher runtime.

2.3.1 List scheduling

More a collection of related heuristics than a single algorithm, list scheduling is a set of rela­

tively fast methods of instruction scheduling. List scheduling algorithms generally maintain

a list of instructions ready for execution and select the one to schedule next based on list

position. List scheduling may be performed both locally and globally, although local prob­

lems are generally smaller, and would provide better solutions without significant increases

in execution time by using better heuristics [NP95a]. For this reason, the dissertation

recommendations concentrate on global list scheduling.

List scheduling is usually executed in the following way:

1. Construct operation ASAP and ALAP times (movement limits) as shown in Sec­

tion 3.2. (Find the earliest and latest start cycles that do not violate constraints.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 61

2. Set the current time cycle to 0. (The algorithm fills up time cycles with instructions

starting from this cycle.)

3. Gather all operations that may be started in the current time cycle (i.e., all their

immediate predecessors have finished executing). These are the available operations.

4. Create a priority list of the available operations.

The priority function is usually a function of operation mobility (i.e., number of cycles

left before the operations ALAP cycle).

5. Assign as many operations from the top of the priority list to the current time cycle

as possible (i.e., prescribe them to be started in this cycle).

6. Delay any non-assigned available operations to the next time cycle.

7. Delay operations affected by assignments to the current cycle, if necessary. (This

applies to successors of currently assigned operations.)

8. Delay operations affected by delaying non-assigned available operations. (This affects

the successors of such operations.)

9. Advance current time cycle to next one.

10. Repeat from (3) if there are still unassigned operations.

In the target system of MCHLS, the original idea of list scheduling [Gra66] must be

extended with instruction dependencies and multiple execution unit types. Different exten­

sions of list scheduling exist for slightly different problem instances and different conditions.

The dissertation investigations had support for non-uniform execution times, dependencies

between operations, as a design goal. Exhaustive description and analysis of approximation

algorithms related to list scheduling is presented in [Hoc97, Chapter 1, p. 1].

It is worth remembering that the original list scheduling heuristic, as described in

[Gra66], is an 1-approximation algorithm, i.e., it generates a solution having a latency

of at most twice that of the optimal. While this performance may not be impressive, such

a very fast algorithm may produce an estimation on the optimal solution. Such an estima­

tion, combined with information extracted from other graph-related details [OKD97], may

be useful for limiting the number of iterative rounds of the estimation process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 62

Since the example MCHLS design process implementation uses list scheduling in the

iterative step of partitioning and evaluation, runtime of scheduling heuristics was a very

important algorithm parameter. As the iterative step of the MCHLS design cycle wishes

to approximate solution efficiency without providing an actual solution, the performance of

the scheduling heuristic is of secondary importance. By selecting a list scheduling heuristic

which is an approximation algorithm at the same time, the results of the scheduling step

may be used to give an accurate bound on the properties of the optimal solution.

Since iteration time is more important than algorithm performance in the iterative

stage, very efficient but complex approximation algorithms have been excluded from the

dissertation investigations. Similarly, algorithms where resource usage would be prohibitive

are not considered for an MCHLS development process. Such algorithms include, but are

not limited to, algorithms where solutions sure formulated as solutions of linear program­

ming problems [Hoc97, “Unrelated parallel machines”, 1.7.3, p. 41], or heuristics where

efficiency requires execution times to be uniform [Hoc97, “The general job shop: Unit-time

operations”].

2.3.2 Balanced scheduling

An extension of well-known list scheduling methods, balanced scheduling [Ker93] provides

the ability to efficiently distribute blocking instructions in the instruction stream. Block­

ing instructions are instructions that may temporarily suspend instruction processing by

attempting to utilize a busy processing unit of the microprocessor. Such blocking instruc­

tions include instructions causing pipeline stalls and memory loads. (RISC architectures,

in general, have to slow down considerably for memory loads.)

It must be noted that balanced scheduling is useful mainly in software environments.

Even if cache effects may be observable in hardware systems, such as communication inter­

faces with their own caching schemes (such as the Corollary C-Bus-II) or subsystems with

non-deterministic latencies (such as serial interfaces with internal compression), balanced

scheduling may be still ineffective for hardware. The reason hardware scheduling may be

performed without such extensions is that modeling non-determinism at this hardware level

would require extremely complex extensions to list scheduling. Exhaustive m o d e lin g of such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 63

timing would quickly overtake the time complexity of the list scheduler. (As a matter of

fact, the model would be practically impossible to port between different environments.)

A very important characteristic of the balanced scheduling algorithm is that it provides

the capability to model variable execution time during scheduling. (Most scheduling heuris­

tics treat execution time as a constant, which must be set before scheduling is started.) The

idea of variable execution times may be safely extracted in optimizing software execution.

Combining balanced scheduling with other well-known software performance-enhancing

steps, such as loop unrolling and trace scheduling may increase the performance, if the

target system is known in detail [LE95]. Such extensions have not been implemented with

the demonstration implementation of HSPIPE.

2.3.3 Force-directed scheduling

A popular, 0 (n 3) scheduling algorithm, force-directed scheduling [PK89] is a possible heuris­

tic for scheduling in a MCHLS environment. Given the cubic time complexity, care must

be taken to apply the algorithm to smaller subgraphs to limit execution time. In practical

design systems implementing force-directed scheduling, applying the algorithm within basic

blocks, without interaction between basic blocks, produces good results in such local opti­

mization. The total runtime is considerably reduced by applying force-directed scheduling

locally. (As the runtime function is nonlinear, a third-order polynomial, total runtime de­

creases considerably if individual problem sizes are smaller). The force-directed scheduling

algorithm usually produces very good results, with a number of exceptions noted in [AJV].

The basic steps of force-directed scheduling are the following:

• Construct operation ASAP and ALAP times (movement limits).

• Label every elementary operation as unassigned (i.e., subject to scheduling).

• Calculate expected system load for each time cycle.

To calculate the expected load, a probabilistic approach is taken to estimate the

number of execution units needed in each time cycle. For each elementary operation,

a uniform probability of starting is assumed to each time cycle in its time frame. By

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 64

calculating the sum of probabilities for each time cycle and for each execution unit

type, an expected resource utilization is obtained. (Obviously, assigned operations

have their resource usage described with the probability of 1 in the time cycle they

are assigned to.)

Note that this generation step is slightly different for variable-length execution, but

the necessary details are not replicated here. The example in Chapter 4 and the

original source [PK89] dismiss variable-length execution.

• Select an unassigned elementary operation.

• For each time cycle the selected elementary operation may be started, perform the

following:

1. Fix the operation to the currently investigated time cycle.

2. Update time frames of operations that axe affected by fixing the starting time of

the current one.

3. Calculate expected system load functions based on the modified time frames.

4. Calculate the cost change function. This function is defined as a function of type

F = — £ C • AC, i.e., similar to a spring force function, where C is resource

utilization. (The similarity with spring force equation is the reason for the name

“force-directed scheduling.”)

• Start the current operation in the time cycle where the cost change function was

maximal. (This process attempts to make system resource requirements uniform as a

function of time.)

• Repeat from system load calculation if there are still unassigned operations.

After implementing the modules of experimental MCHLS design environment, force-

directed scheduling has been successfully applied to benchmark problems. The increase

in execution time, especially when compared with faster list scheduling algorithms, is not

justified unless the accuracy of the approximation is extremely important or the calculations

may be parallelized [PB96].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN

2.4 A llocation

65

Allocation maps elementary operations to execution units. It is am instance of the graph

coloring problem. An allocator colors the data-flow graph in such a way that no operations

of the same color are executing in the same time cycle. In this case, each color corresponds

to a unique execution unit. Operations with the given color are executed in the same

processor. (“Execution unit” and “processor” are used interchangeably in this section.)

2.4.1 Topological cover

A collection of application-specific heuristics, topological cover attempts to decompose the

data-flow graph into identical execution units without solving the graph coloring problem.

Because the operations mapped to each unit are usually different, some of the execution

units may be underutilized. In the example in Figure 2-1, the execution unit contains a

shift register, a multiplier and an adder. They are fully utilized only in the second time

cycle.

The resulting system is very similar to systolic architectures [Kun82]. Unlike systolic

systems, interconnects with topological covers axe usually not regular. As a disadvantage,

topological cover is tied to the target technology. There is no known heuristic for topological

cover, except manual intervention. For this reason, it is not a feasible solution to most

automated designs, unless a large database of designs is available. With a sufficiently large

database and efficient pattern matching, topological cover may be partly automated (with

a very high runtime).

2.4.2 Concurrency

A traditional approach to allocation, concurrency-based algorithms attempt to solve the

graph coloring problem [Ata98, p. 28-10], [Hoc97]. Since this problem is NP-complete,

heuristic approximations are available. The graph coloring problem is equivalent to the

selection of maximum compatibility classes in sequential digital designs. The heuristics

applicable to compatibility class selection are applicable to allocation.

In practical systems, concurrency-based allocation is extremely popular, if the scheduler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 66

Figure 2-1: Topological cover

is capable of generating a schedule under resource constraints. Integrating the allocator

with such a scheduler, the number of colors is influenced by both allocation and scheduling

[NP98], providing instantaneous feedback.

2.4.3 Software allocation

Slightly different from hardware-based allocation, register allocation may not increase the

number of execution units. In practical systems, spill code is used to implement the nec­

essary number of processors. Because of the performance penalty of spill code, register

overload is heavily penalized, especially in RISC systems.

Several variants of list scheduling offer extensions to handle strict resource limits. The

solution to such problems is to reorganize the data-flow to a given concurrency by delaying

some of the operations. A typical implementation of this greedy algorithm proceeds with a

list scheduler under resource constraints. The allocator then simply scans the time cycles

in increasing order, and assigns execution units sequentially. Since the schedule complies

with resource constraints, there may be no conflict in allocation. Under these conditions,

the allocator has to select the best execution unit to implement each operation.

As a disadvantage of resource-constrained schedulers, latency of the design is out of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 67

designer control. In practical systems, scheduling is performed under a resource constraint,

and the constraint is relaxed until the latency becomes satisfactory. In software systems,

spill code may be inserted after this step, if the number of required execution units exceeds

that of the available ones.

2.5 Relevant research in system -level synthesis

The literature survey analyzed a number of publications from the field of system-level

synthesis. Since the results of system-level synthesis-related research and development topics

(clustering, partitioning, scheduling, allocation, integration) come from several different

fields, some of the most interesting results may not be directly applied to generic multiple-

context environment systems. This section, contains a brief summary of research directions

from the field of hardware-software codesign.

Researchers at the University of California at Riverside, notably Dr. Frank Vahid, at­

tempt to solve the partitioning problem at a sufficiently high level of abstraction [VG92].

To achieve the necessary abstraction level, problem descriptions are not treated as collec­

tions of structures, and system descriptions are functional, without explicitly specifying the

underlying structure. (VHDL as a modeling language permits designs to be specified at

both structural and behavioral levels.) High-level partitioning is performed at the function­

ality level [GVNG98], and the corresponding partitioning problem is described as functional

level or “Specification Partitioning” [VG92]. Even if problems may be easily solved using

functional partitioning, the necessary detail level may not be obtained since partitioning

does not explore a large number of possible solutions.

The limited flexibility in moving functionality between different blocks, functionally

partitioned systems tend to be more difficult to optimize. Even if the number of available

transistors is increasing exponentially with time, the inefficiency in some functionally par­

titioned designs makes them too expensive for mass-production of microelectronics systems

(as of today). Note that the number of available transistors has been increasing much

faster than designer productivity, and there is no indication of a change in this tendency

[Wir98, VG99].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 68

As a very important advantage of the functional partitioning approach, it makes it pos­

sible to partition software components among several processors, an advantage not present

in most other practically used hardware-software codesign methods. In addition to the

requirements of multiprocessor software implementations, functional partitioning enables

design reuse. Extending already existing systems is also easier, since the existing modules

need to be described in high-level languages (i.e., behavioral VHDL, Java or C), without

regard for the underlying structure [Dew97]. Specification partitioning has the ability to

change system descriptions, which would be impossible under traditional CDFG-based de­

sign processes. Since specification changes introduce an additional layer of complexity to

the design steps, this dissertation research does not contain extensions to handle speci­

fication partitioning and higher-level CDFG manipulation. As a future development, an

additional layer capable of functional partitioning may be inserted to the system, between

the high-level description and the CDFG generation phase (see Section 7.2, p. 131).

An additional advantage of a higher-level description of system functionality is the abil­

ity to perform incremental performance approximations in the design flow. Since most

partitioning steps relocate only a limited set of operations between different execution con­

texts, usually a small fraction of system usage maps has to be recomputed between iter­

ations. Dr. Frank Vahid and Dr. Daniel D. Gajski have extended structural partitioning

techniques with incremental evaluation, reporting impressive performance improvements in

systems where changes between iterations are most likely to be gradual [VG95b]. Incre­

mental evaluation techniques, which are very effective in most practical hard ware-software

codesign systems, may require more knowledge of the input system CDFGs than a generic

hardware-software environment.

In the well-known Ptolemy design environment, developed at the University of Cali­

fornia at Berkeley, systems are designed at the functional level, not unlike the research

group of Dr. FVank Vahid. The target environment of Ptolemy is mainly DSP-related,

and therefore offers unique possibilities of expanding functionality in hardware. Utilizing

DSP features also presents unique challenges unknown in general-purpose microprocessors

[ML97, BML98, BML97] and requires extensive experience in practical DSP applications.

Since DSP-capable microprocessors tend to change significantly between device generations,

system synthesis details must be constantly updated in the design environment, or design­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 69

ers are unable to exploit the full capabilities of the CAD tools. The designers of Ptolemy

have chosen an approach where users are capable of integrating incremental changes to the

Ptolemy design environment. Since users may interface their custom components to exist­

ing Ptolemy modules, the design environment may be extended locally, until features are

merged back to the original code base.

Important results have been presented by the Eidgendssische Technische Hochschule

(ETH) Zurich in Zurich, Kanton Zurich, Switzerland. ETH researchers, among other ac­

tivities, have extended the occam programming language with constructs that may easily

be synthesized into silicon. Efficiency of the synthesized structure is not the most impor­

tant design goal, observing the increasing gap between available and utilized transistors in

state-of-the-art systems [Wir98, VG99].

Since ETH researchers have significant experience in compiler design and optimizations,

ETH results concentrate on the actual synthesis process itself, and some of the results may

not be easily extended to multiple-context environments. The hardware-oriented research

of the occam programming language at ETH has been successfully utilized in practical

•projects several times. As the primary field of experience of ETH researchers is in the

field of software systems, the optimization capabilities of currently existing ETH system-

level synthesis tools are limited to results of compiler theory. As the current version of the

ETH synthesis environment is primarily ASIC-oriented, an additional level of complexity

is present in the layout generation phase. Extensive ETH research covers synthesis of

smaller embedded systems [Tei97]. In [ZEK+98], a communication model similar to that of

this dissertation is presented, with additional coverage of non-deterministic specifications.

(The added complexity of such non-deterministic descriptions is outside the dissertation
investigations.)

Building on the previous experience with compiler design and reconfigurable hardware

systems, Dr. Ian Page hum the Programming Research Group of the Oxford University

Computing Laboratory, Oxford, Great Britain, concentrates on programmable hardware

modules only. Typical projects of the Laboratory are focused on generating custom proces­

sors from high-level software descriptions. The Laboratory uses descriptions written in the

occam and Handel programming languages and generates FPGA descriptions (connection

lists and bitfiles). Practical systems have been demonstrated in moderate-bandwidth signal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 70

processing applications.

The Oxford University Computing Laboratory does not try to handle the hardware-

soft ware codesign design process as a traditional development cycle. Since their synthesis

process generates a custom “microprocessor” in reprogrammable hardware units, an already

existing microprocessor framework is required to avoid extremely long synthesis cycles. This

approach may increase the ratio of wasted silicon to a very high level, especially in smaller

designs. Even if the number of available gates in reprogrammable systems increases in

an exponential fashion over time [Wir98, VG99], straightforward code generation without

optimization steps may be infeasible.

Because the Oxford University Computing Laboratory researchers do not wish to make

a clean distinction between hardware and software as target systems, the laboratory has

a slightly different approach to system descriptions than generally accepted. Instead of

relying on VHDL descriptions for hardware and C code for software subsystems (or combi­

nation thereof), the laboratory strictly enforces the policy of using a common description

language to cover problems [Pag95]. The programming language Handel, a derivative of

occam, is a deliberately Spartan subset of functionality (the only exception being type con­

version, which has extensive support to reduce hardware waste). By providing less comfort

for designers, the Handel environment reduces the burden on optimization, and decreases

compiler complexity considerably. Creating a higher level of abstraction and additional

optimization steps in the Handel compiler is a future development plan of the laboratory.

Dr. Ahmed Jerraya from the TIMA laboratory (Techniques de Tlnformatique et de

la Microelectronique pour VArchitecture d ’ordinateurs, Techniques of Computer Sciences

and Microelectronics for Computer Architecture) from the Grenoble National Technical In­

stitute (Institut National Polytechnique de Grenoble, INPG) relies on an extensive set of

industrial applications rather than academic background as a research tool [AJ97]. Previ­

ous TIMA/INPG projects have been successfully completed in telecommunications, control

systems and digital signal processing. As a consequence of previous research, TEMA re­

search treats the reusability of system-level synthesis designs as one of the most important

parameters.

Because previous TIMA research is widely available and reusable, most practical TIMA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 71

projects attempt to partition the system based on complex submodules. The design process

does not involve optimization across submodule boundaries, and the partitioning problem

does not deal with higher-granularity clusters. Because of this reason, the basic TIMA

development process does not scale easily to other, previously unexplored projects. These

problems are expected to be solved as TIMA moves on to closer academic collaboration

with other universities.

Since the TIMA designs generally explore a limited subset of solutions, design times may

be much shorter than other hardware-software codesign design processes. By investigating

a strictly limited choice of system partitions and implementing the one with the smallest

cost function value, a tradeoff is being made between system performance limits and devel­

opment time. This tradeoff, which appears relatively early in the design cycle, may have

a serious impact on system capabilities, since it reduces the designer’s degrees of freedom

considerably. The selection of potential system partitions is therefore crucial to such a

design process. In the case of the TIMA laboratory, there is an extraordinary amount of

currently existing development knowledge, and the repeated successful reuse of such knowl­

edge has proven to be successful in industrial TIMA projects. Since the hardware-software

codesign knowledge base of BME (Technical University of Budapest, Hungary) is limited

compared to the TIMA laboratory, implementing a design process primarily on reuse of

existing standard designs is not feasible today.

Two research groups at the University of Washington have investigated the partitioning

problem in soft-programmable FPGA structures. Expecting the advances in FPGA tech­

nologies, extensive benchmarking and algorithm development has been targeted in the early

nineties, while FPGA implementations became capable of building the required complex

structures only recently. The inherent problems of unpredictable propagation times inside

FPGA packages change the focus of the partitioning process somewhat. In addition to mul­

tiple restrictions on system topologies and limitations on the number of signal propagation

levels, highly nonlinear (exponential) t iming penalties have to be introduced to graph cuts

[HB95b]. The high penalty values axe caused by the exponential increase in delays (load

capacitances) when signals are leaving and entering FPGA packages. In addition to the dif­

ferences between internal and external propagation delays, delays inside packages depend on

compilation circumstances and may be difficult to predict in most practical systems. Even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. STATE-OF-THE-ART TECHNIQUES IN CODESIGN 72

if recent advances in FPGA routing technologies decrease the standard deviation of internal

propagation delay distributions, FPGA timings should not be modeled as fixed values.

The University of Washington research results include detailed analysis of partitioning

algorithms adapted to supercomputing [HB95a] and hardware systems with multiple FPGAs

[HB95b].

Several universities and industrial researchers are active in the field of graph partitioning

itself, since this problem is one of the most frequently encountered problems in several areas

of computer science and electrical engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

M ultiple-C ontext H igh-Level

Synthesis

This chapter introduces the process model and the heuristics that were found useful in

SLS-oriented extensions of the HLS problem. Assuming familiarity with the steps of HLS,

compilation, clustering, and partitioning, the chapter presents the necessary changes be­

tween a single-environment and a multiple-context HLS process. Differences are analyzed

to approximate changes in computational complexity and to verify that existing heuristics

are able to process the different structures.

The chapter provides a system of mathematical notations. It also presents a formal de­

scription of the control-data-flow graphs in a way which is compatible with existing schedul­

ing (and allocation) notations and yet accommodates descriptions of multiple-context envi­

ronment systems.

The MCHLS extensions over single-context designs are not limited to environments

with two execution contexts (binary partitions), and the results may be extended to handle

systems with more than two execution contexts.

Since the Multiple-Context High-Level Synthesis (MCHLS) design process is assumed

to be a transparent extension of High-Level Synthesis (HLS), the inputs and outputs of

the MCHLS design are the same as the traditional HLS process. The only observable

difference is in the output, since MCHLS terminates with a register-transfer level description

of hardware subsystems and a data-flow graph for software modules; the latter is obviously

not present in HLS results (Figure 3-1).

The high-level description input of both HLS and MCHLS is assumed to be a flow-graph,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 74

which in turn is usually generated from a description at an even higher level of abstraction.

Most of the time HLS problems are given as an algorithm, or a sample implementation in

a sufficiently high-level programming language. The usual choice for describing data-flow

graphs is to generate them from standard programming languages, typically C, C++, or,

increasingly, Java [YMS+98].

The popularity of the Java language comes from the wide range of systems capable

of executing Java, ranging from miniature embedded systems to large computing clusters.

The Java programming language is conveniently standardized [LY96] and portable across

hardware platforms to provide a good algorithm description language. Another advantage

of object-oriented language descriptions is information hiding. Object-oriented languages

offer enforcement of hiding implementation-dependent and hardware-specific details behind

object (class) interfaces. Practical hardware-software codesign implementations exist with

C ++ and Java descriptions of communication protocols, where the actual protocol repre­

sentations remain invisible to the designer beyond class methods (expanded only at compile

time from libraries) [VT97, ET98].

As an initial step of HLS in a HSCD problem, the separation of hardware and software

components is attempted in an iterative way. As with most computationally expensive

problems, typical systems are designed as a tradeoff between performance and optimization

time. Since most applications are definitely targeting primarily high performance or small

system cost, it is feasible to start a system-level synthesis design from one of the possible

extremes (i.e., pine software or pure hardware), and move smaller subsections between

execution contexts at a time.

Hardware-software partitioning is presented as essentially equivalent to a graph coloring

problem with a cost function based on edges connecting vertices of different colors. The tra­

ditional hardwar e-software codesign problem is binary (coloring the graph with two colors)

with a hardware and a software context (color).

More complicated systems, like multiprocessor systems or multiple-board hardware, re­

quire a similar, more complicated algorithm. In these extended systems, the graph coloring

problem is not binary, as the number of execution contexts is more than two. This disser­

tation concentrates on binary partitioning, with extensions for multiple execution contexts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS

(Graph generation)

Algorithm

(Clustering)

Partitioning

Flow-graph

Context mapping

Software
r flow-graphs

generation

Interface
generation

Source
code

Source code
.withhw
interfaces

Hardware
flow-graphs

Flow-graph
with context
information

Flow-graphs
without context
information

Scheduling

Allocation

Interface
generation

Register-transfer
description
without hw/sw
interface
code/modules

Register-transfer
description

Figure 3-1: Changes of attributes and representation in multiple-context HLS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 76

as an optional feature. As shown later, results of the dissertation use only heuristics that

are capable of working on more than two execution contexts. By selecting the algorithms in

such a way, we preserve the freedom of applying the dissertation results to systems beyond

traditional (binary) hardware-software codesign.

Since it is desirable to reuse as much of the existing results as possible, a modular

framework is beneficial to the SLS process. Extensive research has been conducted for ef­

ficient heuristics for clustering, partitioning, scheduling, and allocation. By implementing

clustering, partitioning, scheduling, and allocation in separate modules, the freedom of se­

lecting different heuristics or approximation algorithm for a given task is possible. Since

scheduling and allocation stages of SLS may be realized in an integrated way, a feasible solu­

tion is to implement the clustering and partitioning stages as wrappers around the existing

scheduling and allocation libraries (Figure 3-2). The clustering and partition stages sim­

ply supply input to an “external” component for scheduling and allocation. By separating

different models, the task of debugging and simulation also becomes easier, since different

representations of the problem become available at the boundaries between different steps

of the design process. (Generating observable results during the design process may be

conveniently reused during simulations and testing [Ros98].)

Since the most popular scheduling and allocation packages are usually incapable of deal­

ing with the complications of multiple-context environment systems, the design framework

transforms multiple-context environment data-flow graphs to single-context environment

descriptions. It is the responsibility of the partitioning algorithm to hide the hardware-

software boundary details from the scheduling and allocation stages. Since the MCHLS

process describes the CDFG with context-switch information as well, data reduction is re­

quired after the partitioning stage. A step is inserted after partitioning to annotate the

data-flow graph with context switch vertices. A suitable name for this step is context map­

ping, since it transforms abstract extended elementary operations (“FFT in software”) to

fixed numbers based on the available technology and libraries (“FFT in U cycles on ni

samples”) (Figure 3-1).

C ontext m apping is the step in multiple-context high-level synthesis that expands a

multiple-context data-flow graph by generating context-specific attributes to elemen­

tary operations. Context mapping also inserts context-switch vertices to model the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS

HSCD scheduler

DFG

SW lib
HW lib

Cluster

Allocator

Partition

Estimator

Verifier

Scheduler

Libraries

HLS

HSCD filter

Filter

MCCDFG

Figure 3-2: Partitioning as a filter for HLS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 78

communications on data transfers across execution context boundaries.

The input of the data reduction is the multiple-context CDFG (MCCDFG), and the

output is an expanded form of the CDFG. The output is a CDFG which may be separated

to execution contexts. The CDFG sections belonging to different execution contexts then

may be processed directly by the scheduling and allocation stage and the code generator

(Figure 3-1). Note that the compilation steps of software include instruction scheduling and

allocation, but are treated as part of the compilation process, and not discussed in detail.

The scheduling and allocation phase of both software generation and hardware synthesis

returns an intermediate representation. The output of software generation is source code for

a state-machine description realizing the functions of the data-flow graph passed to it. This

raw source code lacks further optimization, and relies on the efficiency of the target compiler

environment for performance improvements. For specific systems, the code generator may

be extended by knowledge of the underlying compiler to generate more efficient structures;

in the current dissertation investigations no such step is taken to ma.inta.in the portability

of a high-level approach.

The output format of hardware synthesis is usually register-transfer level information.

Since most HLS design environments feature elaborate, stand-alone RTL synthesizers, RTL

synthesis may be treated as a black box system, and no special consideration is made

to optimize the RTL description. By relying on the services of this system-specific, non­

portable level, the dissertation research remains generic enough to be useful in different

environments.

3.1 Transfer model o f m ultiple-context environm ents

In order to accommodate a mixed hardware-software context environment (multiple-context

environment, MCE), one must be able to represent execution context in addition to the

elementary operations of the DFG. Two trivial possibilities are:

1. attach an execution attribute to each vertex

2. label edges with context switch information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 79

In the latter case the destination and source contexts are encoded as an attribute of

the edge (i.e., the data transfer) and context information is not represented in vertices (i.e.,

the elementary operations). A combination of the two methods is chosen, as representation

changes from edge attributes to vertex attributes after the partitioning phase.

In the beginning, by storing the execution environment as a vertex attribute, one in­

creases the information content of the system DFG without increasing the number of ver­

tices. As partitioning assigns elementary operation vertices to execution contexts, changing

a vertex attribute is easier since topological DFG properties (such as the number of vertices

or edge information) do not change with each step.

After partitioning, context switches should be merged into the DFG so that schedul­

ing and allocation do not have to deal with properties of the DFG data transfers. (Most

popular scheduling algorithms are unable to deal with connection information if it is repre­

sented in DFG edges instead of vertices.) After such a transformation, the DFG describes

the context switch as a property of a fictitious elementary operation. A suitable method

of transforming context switches to vertices is to insert a “transfer” vertex to the system.

Transfer vertices encode the context switch information of each context-switch edge in a

vertex without changing data in any way. These transfers are practically delays correspond­

ing to the cost of crossing context boundaries, and should be treated as delays in every other

respect. (Additional side effects, such as byte-order reordering or synchronization on con­

text boundaries, are assumed to occur inside the vertex, without affecting the data itself.

If there is a requirement for non-trivial data transformations, they are better represented

as a functional vertex in addition to the context switch.)

Since context-switch vertexs are inserted only where a data transfer crosses the boundary

between two execution contexts, the increase of vertex numbers is moderate. (Especially

since a good partition minimizes the cost of cuts, which is related to the number of edges

crossing partition boundaries.)

Even if each additional vertex increases later optimization times, changing the repre­

sentation model of context switches improves efficiency for a number of reasons:

1. All information is stored in vertices after graph generation. Data transfers (the edges

of the DFG) do not contain any additional information other than direct dependencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 80

Since the final structure representation relies on a single kind of data, implementation

becomes easier. The only data structure a scheduler has to deal with is a set of vertices,

with connections serving no other purpose than describing direct data dependencies.

This is the native operation model of most scheduling and allocation heuristics.

2. As no new information is obtained on the data transfer after relocating “edge infor­

mation” to “vertex information”, the properties of the transfer vertices need not be

changed after partitioning.

Since vertex properties are fixed before scheduling and allocation steps, the CDFG

may be optimized with algorithms that are able to handle constant execution times

only. Most of the heuristic, polynomial complexity algorithms offer good scheduling

and allocation properties only if vertex execution times are fixed for each elementary

operation before scheduling.

The properties that are available at the time of transformation include bit width

(n), start (s) and destination (d) execution context. Based on this information, the

execution time and complexity requirement of the data transfer may be expressed as

t(n, s , d) and c(n, s, d),

respectively. The t(-) and c(-) functions are based on heuristic results or optimization

targets as well as hardware architecture and interfaces. Both t(-) and c(-) functions

are expected to be available at the start of the HLS process, and are supplied as

technology libraries to the MCHLS environment.

The time and cost functions are usually highly non-linear in nature as functions of bit

width or execution environments. Intel microprocessors, where 8-bit transfers may take

the same amount of as 32-bit transfers are good examples of such non-linear behavior.

Misaligned, heavily penalized RISC memory accesses are also typical in this sense. As

an example, a PowerPC 403GC (a RISC microprocessor optimized for and widely used in

embedded applications) suffers a slowdown of up to several hundred times with misaligned

data since hardware hides the misaligned access by throwing an expensive exception on

every misaligned memory access.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 81

By using transfer time as the single significant attribute of context switches, the amount

of information is reduced to a feasible level. As implementation details of the transfer

implementation are not required until the stage of interface generation, disregarding all non­

time-related attribute of context switches does not discard important information. [JRV+98]

The interface synthesis at the end of the synthesis process generates the software and

hardware for implementing the transmission protocol (Figure 3-4).

3.2 M ultiple-context data-flow graphs

The DFG of purely hardware-oriented HLS offers a simple, yet effective way of modeling

elementary operations in the algorithm. In order to accommodate the different optimiza­

tion criteria of the HSCD environment, changes must be made to the elementary operation

model of HLS, since the MCE of HSCD requires additional flexibility to handle HSCD-

specific features of HLS. Additional features may be difficult to handle in later steps of

the design process, since already existing scheduling and allocation functions are usually

unable to use this information. This section describes the necessary changes to accommo­

date the requirements of a multiple-context environment. The section also describes data

models in the multiple-context environment design process, and the reasons why changing

representation is beneficial.

To keep HSCD problems at a manageable size, initial performance estimation and opti­

mization has to stop at a relatively high level of abstraction so that the number of blocks

to optimize (problem size) stays low. This is possible if problem decomposition does not

expand the complete problem hierarchy in the beginning, or if clustering reduces system

vertex count considerably. By using a top-down approach, high-level decisions affect opti­

mization efficiency at lower levels. At a high level of abstraction, “elementary” operations

are no longer truly elementary by HLS definitions, since they are not executing exactly one

elementary operation in the data path. This contradicts with a basic assumption of high-

level synthesis since elements of the initial data-flow graph are supposedly truly elementary

in a traditional HLS process. (One of the reasons for the assumption is that optimizations

are not always effective when performed in a top-down way. Expanding the DFG to truly

elementary operations opens up new possibilities in optimization.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 82

Elem entary operations are functional operations that may be realized directly with one

register-transfer level primitive. (Definition replicated from p. 19)

Composite operations are functional operations that are realized by internal decompo­

sition to multiple elementary operations.

In most practical hardware-software codesign systems, DFG vertices are not truly el­

ementary operations during partitioning; unlike traditional HLS approaches, the vertices

in the multiple-context environment DFG are usually composite. Dealing with composite

operations is definitely an advantage in partitioning, but may hinder efficient scheduling

and allocation. To increase the performance of scheduling and allocation, the internals of

the vertices should be expanded before scheduling.

As an example of elementary and extended elementary operations, consider a popu­

lar DSP application, GSM speech processing. GSM cellular phones feature a sophisticated

model of speech compression with finite state machines providing correction to the recon­

structed data stream. A complete block diagram of the prediction unit (GSM Regular Pulse

Excitation - Long Term Prediction (RPE/LTP) encoder) consists of 19 functional blocks

[Pin96, p. 22], which is useful for partitioning purposes (Figure 3-8, p. 99). None of these

blocks are primitive in the HLS sense, since they feature decoders, quantizers, and basic

filters. (In fact, several of the blocks are used as standalone benchmarks for HLS. Two

examples axe the inverse filter (eg) and the weighting filter (ei3).)

Optimizing a high-level representation (with few vertices) is definitely useful as an in­

put to the partitioning process, since individual blocks tend to show very high locality of

data. Partitioning functional blocks with extremely high data locality should definitely

not attempt to put context boundaries inside such blocks. The example system, as veri­

fied by experimentation, is an example where the initial representation has been clustered

effectively. Note that in this system, for the passes of scheduling and allocation, the func­

tional blocks should be expanded to true elementary operations. (This approach is taken

in [Pin96], where functionality is described as a occam source code, and partitioning* occurs

at a higher level, roughly corresponding to the first level of functions in the source code.

Clustering at a function level is efficient since local storage is hidden inside clusters, and

local variable manipulations do not have to pass through context-switches.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 83

In the dissertation, for the ease of discussion, composite operations will be called “ex­

tended elementary operations” (EEOGs), regardless of their actual implementation. Simi­

larly, the CDFG of composite operations is referred to as the extended elementary operation

graph to differentiate between truly elementary and composite operations. Both elementary

and extended elementary operations are denoted with e, in the corresponding graph.

After partitioning, extended elementary operations should be expanded to their full in­

ternal structure, and scheduling and allocation should use this “full” (i.e., truly “elementary

operation”) representation. The elementary operation graph takes its final form just after

technology mapping, where extended elementary operations get replaced by their internals,

to enable global scheduling and allocation on the whole design.

The step following scheduling and allocation, register-transfer level (RTL) synthesis

is expected to deal with actually generating the necessary primitives even for composite

operations.

The operation model in traditional HLS assigns the following properties to elementary

operation ê :

S tart tim e, u,, the time operation e, receives all its input data and may start processing it.

By time cycle u, all inputs are assumed to be available and stable. T iming information

is generally expressed in dimensionless units, time cycles, making designs scalable with

technology [PK89]. Time cycles are numbered from 0, as usual.

Successor set, Si, a set of elementary operations that use the output value of e, directly

(immediate or direct successors).

Direct successor: An elementary operation ej is a direct successor of e* if and only

if at least one of the data inputs of ej is the output of e,.

The following notation is used to denote direct successor relationships:

e,- -> ej

“Immediate successor” is used interchangeably with “direct successor” in this disser­

tation. The inverse relationship is direct predecessor or immediate predecessor:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 84

Direct predecessor: An elementary operation e* is a direct predecessor of ej if and

only if e(j) is a direct successor of ej. “Immediate predecessor” is used inter­

changeably with “direct predecessor” in this dissertation.

Using the above notation, the definition of the successor set is

Si = {ej : ej ̂ej}

The successor set is empty if and only if the elementary operation supplies a system

output (assuming there are no loops in the system). Similarly, a predecessor set is

defined:

Predecessor set, Pi, a set of elementary operations that are direct predecessors of ej:

Pi = {e7 : ej ->• ej}

Execution tim e, U, the total time required for the elementary operation to produce its

output.

Even if a considerable set of scheduling and allocation heuristics exists for constant-

execution time systems, allowing different execution times for elementary operations

increases the usefulness of a hardware-software codesign design environment. Practi­

cally all models of real hardware-software codesign systems require different execution

times for efficient designs. Also, heuristics manipulating only uniform execution time

elementary operations are usually based on integer linear programming (ILP). ELP-

based scheduling and allocation algorithms tend to be impractical for real systems be­

cause of the prohibitive cost of actually implementing the solutions [HLYC91, KL97].

Elementary operations may start processing their inputs when all of their immediate

predecessors have produced their output. In other words,

mini;, = max Uj -I- UeiiaePj

The following additional conditions are applicable to t iming calculations (Figure 3-3):

• ej requires all its input data to hold a stable value during the whole duration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE- CONTEXT HIGH-LEVEL SYNTHESIS 85

A B

CTRL

A _ X _
B H X

Figure 3-3: Elementary operation, t iming diagram

time U-

• e, may change its output during the whole duration time

• &i holds its actual output stable until its next start.

Execution time is assigned after partitioning, and may depend on data (operation)

size as well as operation type {ji).

O peration type, j i , identifies the resource requirement of elementary operations. Oper­

ations of the same type may be executed in the same kind of processor [PK89].

Note that the choice of operation types depends on the environment. In some systems,

for example, multiplication and addition are performed in general-purpose ALUs, thus

ji — jk for an addition and a multiplication. In most practical systems, multiplica­

tion and addition are separated to reduce cost; in these systems the operation types

obviously differ for addition and multiplication vertices.

The operation type attribute is used during scheduling and allocation, and is a prop­

erty of the initial problem graph (i.e., it is fixed at the time of graph generation, and

does not change later).

It must be noted that the definition of operation type has to be extended in MCHLS.

Making an operation type attribute depend on the execution context as well makes

allocation easier later, as shown below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE)- CONTEX T HIGH-LEVEL SYNTHESIS 86

A SA P execution tim e, s,, denotes the first possible time cycle elementary operation

may be started. Similarly,

ALAP execution tim e, U, denotes the last possible time cycle elementary operation e,

may be started.

ASAP and ALAP are the starting time cycles for the trivial greedy scheduling strate­

gies, As Soon As Possible and As Late As Possible. ASAP attempts to start execution of

elementary operations as soon all their predecessors become available. ALAP delays start­

ing an operation as late as possible, triggering the elementary operation at the last time

cycle when system latency is not increased.

In addition to the properties of elementary operations in HLS, the following attributes

have to be represented in the multiple-context data-flow graph:

Execution context, z*, denotes the environment in which e, is executed. This attribute

is assigned during partitioning, and may not change later. After context mapping,

the execution context attribute is not referenced directly, since all operations will

be defined in terms of t iming and resource usage, which is sufficient for practical

scheduling and allocation steps. (In other words, in the MCHLS design process, the

significant information about “software FFT” is limited to its execution time and

operation type.)

O peration complexity, n,, is the significant data size of the input data of e,. This at­

tribute is important since it may influence implementation costs, operation timing (see

below) and also since it affects requirements for data transfers. A typical measure of

n, is the bit width of input values, but other measures of complexity are possible.

Depending on the operation type, inputs of different sizes may be present in each

elementary operation. In this case, operation complexity is chosen to be size of the

representative input. As an example, the data width of a multiplexer (or decoder)

is a better representation of multiplexer (or decoder) complexity than the number of

control bits.

O peration category, &i, is similar to operation type ji, but it is an initial property of the

elementary operation. An example operation category could be “Fast Fourier Trans­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 87

form (FFT)” without reference to implementation. Initial operation type depends

only on the elementary operation itself and has no connection to the execution con­

text of the given vertex. The operation category is used only during partitioning and

context mapping, where operation category and execution context are combined to

generate the operation type of the elementary operation. To represent the differences

between software and hardware implementations, one must reconsider the properties

of operation type as well:

O peration type, j,, in multiple-context environments includes execution context as well.

As an example, a software Fast Fourier Transform (FFT) as an extended elementary

operation is definitely different from a hardware implementation for modeling pur­

poses, and the operation types of e* (a “software FFT” vertex) and ej (a “hardware

FFT” vertex) are different, even if both are FFT implementations (i.e., fc, = kj).

Operation type in multiple-context environments may be determined after the par­

titioning step, and is done in the context mapping step. For each operation of the

data-flow graph, the context mapping assigns the operation type as a function of

vertex execution context and operation category:

ji =ji{ki,Xi)

For accurate calculations, the operation type may include operation complexity as

well. This is the case, for example, if the underlying hardware modules may be

generated as different models based on complexity. A practical example could be

multiplication under primary time constraints (as well as secondary limits on silicon

area). Implementing a parallel multiplier in such an environment is feasible only up

to a complexity limit, since the silicon area of a straightforward parallel multiplier

grows as a quadratic function of complexity. Since the primary constraint is time,

implementing parallel multiplication is a good choice since time is not increased if

complexity increases. Once the complexity requires too much silicon, multiplication

must be performed using less silicon area, which requires different implementations

(such as serial multiplication). It is definitely an advantage if multiplications under a

given size are represented as different operations from those over the size limit. Even

if the benchmark applications did not exploit this possibility, HSPIPE is capable of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 88

P ro p erty N ota tion Assigned during
Start time Vi scheduling
Predecessor set Pi graph generation
Successor set Si graph generation
Execution time ti graph generation
Operation type ji graph generation
ASAP execution time Si scheduling
ALAP execution time U scheduling

Table 3.1: Elementary operation attributes in HLS

dealing with this kind of variable operation types. (Users must supply the necessary

parameters with the descriptions of elementary operation types in order to utilize
this.)

The idea of different operation types for different operation complexities may be ex­

tended to consider different implementations based on the available time frames of

operations . Since the necessary heuristics of these extensions depend on implemen­

tation details, they are not included in the dissertation investigations.

The operation type attribute is used in the scheduling and allocation steps. Assigning

different operation types to elementary operations of the same category and different

execution contexts speeds up allocation. Since two elementary operations of the same

category, when mapped to different contexts, do not compete directly for the same

resources, the allocation process should not set up concurrency relations between

them. Using the operation type as an allocation attribute (i.e., if jk = j i , e* may

compete with e/ for system resources), the number of constraints in the system is

decreased. Thus, even if k$ = fcis (both and eis use “quantizer” resources), the

allocator heuristic need not set up a constraint on the concurrency of es and eis, as

x 5 # ^ 1 5 - In other words, even if the execution time of es and eis overlaps, there is

no resource violation problem since es (mapped to software) ties up a CPU resource,

while eis occupies a piece of ASIC circuitry in the same time cycles (in hardware).

Using the above notations, the following equalities may be set up as timing constraints
in the system:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 89

Property N otation A ssigned during
Start time Vi scheduling
Predecessor set Pi graph generation
Successor set Si graph generation
Execution time U context mapping
Operation type 3 i context mapping
ASAP execution time S i scheduling
ALAP execution time li scheduling
Execution context X i partitioning
Operation complexity Tli graph generation
Operation category k t graph generation

Table 3.2: Elementary operation attributes in MCHLS

1. Every elementary operation must start execution not sooner than its ASAP time cycle,

and not later than its ALAP cycle:

S i < V i < l i

2. No elementary operation may be triggered before every one of its predecessors has

finished executing:

Sj = minvj = max + U (3.1)

3. ASAP times of elementary operations may be found by calculating the maximum

of the sum of ASAP cycles and execution times of their direct predecessors. The

resulting equation is the special case of (3.1):

S j =
m ax S i + t i if P j 0

ei-.ei€Pj (3.2)
0 i f P j = 0

Note that direct input operations have no predecessors, and their ASAP cycle is cycle 0

by definition. ASAP time cycles for other elementary operations may be found in an

inductive way based on (3.2).

4. A similar equation holds for ALAP time cycles. In this case, the ALAP time of every

elementary operation must enable the direct successor vertices to finish execution be-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 90

fore their ALAP times. The ALAP times of elementary operations producing system

outputs is fixed so that the last system output is stable by time cycle L q, where L q is

a preset constant.

h = {
min Si+ ti if 5 ,-^ i

e^eiCS, * 3 r

L — t(j) if Sj = I

Elementary operations supplying system output values are assumed to have an ALAP

value set by system requirements if there is a latency constraint (L). In systems with­

out latency limits, all resource requirements may be fulfilled, since inserting sufficient

delay would resolve all resource conflicts. Such a solution, is not practical in most

systems.

3.3 M ultiple-context HLS design process

The multiple-context data-flow graph described in the previous sections is a suitable ex­

tension to traditional high-level synthesis system designs. Assuming familiarity with the

heuristics described in in Chapter 2 and the basic steps of high-level synthesis, this section

describes the extended multiple-context design process, multiple-context high-level synthesis

(MCHLS).

As discussed in Chapter 1, the dissertation research targets synthesis from data-flow

graph descriptions, namely, a CDFG description of the problem. The design process termi­

nates with a scheduled, allocated data-flow graph for hardware execution context (s), with

additional control information extracted from the CDFG (to generate the controller logic).

Software synthesis terminates at raw source code level, where a straightforward code gener­

ator maps the functionality of the software subsystems to unoptimized, raw source code. In

the initial version of the dissertation results, no attempt has been taken to optimize source

code in any way, as the task of improving performance is left to the compiler. It must be

noted that the optimization process (namely, scheduling/allocation) attempts to consider

software performance during performance estimations. In the initial model, a straightfor­

ward, CISC implementation is assumed without the dynamics of RISC CPUs. Extending

the system to handle optimization in RISC architectures requires changes in one module

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 91

library only (“Technology library” in Figure 4-1), without affecting the design framework

in any other way.

The design phase of MCHLS should be different for final production runs and the itera­

tive partitioning process. Since efficient scheduling and allocation tends to last longer than

fast solutions (such as list scheduling), the time requirement of high-performance heuris­

tics may be prohibitive, especially if the partitioning process evaluates a large number of

partitions. On the other hand, saving time during the final synthesis phase may increase

system cost considerably because of lower performance of extremely fast heuristics. To

maintain a balance of design time and performance, the design process is assumed to differ

for iterations and production runs.

A feasible way of reducing the runtime of the partitioning iterations is to apply an

efficient algorithm to extrapolate fast, inefficient scheduling and allocation results to results

obtained by slower, better heuristics. Implementing such a set of heuristics, one is able to

reduce the execution time of the partitioning iterations by using fast, inefficient heuristics

followed by a fast correction step (Figure 3-4.). Since the iteration rounds do not have

to actually produce efficient solutions, just give estimations on their distance from the

optimum, such an approach is definitely useful for MCHLS. (Instruction scheduling and

allocation are NP-complete problems where good guesses may be given to the quality of

results even if the optimum solution is unknown.) In fact, the same idea is present in linear

cryptoanalysis, where highly nonlinear (cryptographic) functions are approximated with

linear approximations and small, faster nonlinear corrections [Sch95]. (The goal of applying

such corrections is very different from MCHLS.)

3.3.1 Itera tiv e steps

The MCHLS design cycle is assumed to consider a large number of possible partitions to

select one that may be used to synthesize an efficient implementation. Unfortunately, there

are at least two additional NP-complete steps after partitioning and before register-transfer

level synthesis. Since both of these steps (scheduling and allocation) must be finished

before the efficiency of the partition may be evaluated, the scheduling and allocation meth­

ods should terminate fast. On the other hand, not surprisingly, the efficiency of scheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS

Cluster
■

Partition
i

Context switch generation

Q Code gen.
I Code generation |

HLS approx.

Profiler List scheduler
Bottleneck det. Correction

Evaluate

Software gen. HLS
Generate code Schedule

Compile Allocate

Interface generation & integration
~ r ~ ~ --------------

Verification

Figure 3-4: Evaluation and iteration steps in switched-context high-level synthesis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 93

HLS
approximation

High-Level
Synthesis

CDFG

List scheduler

Correction

Scheduler

Scheduling plan

Finding optimal
allocation

Efficiency
correction

Allocation

Processor
allocation map

Performance analysis
 I I

Figure 3-5: Approximation, scheduling and allocation of hardware modules

algorithms tends to decrease with decreasing time complexity [Hoc97, “Approximation algo­

rithms for scheduling”, p. 1]. The relationship between runtime and efficiency of allocation

algorithms is very similar.

To reduce the runtime of the MCHLS design process, the number of iterations where

slow, efficient heuristics are applied must be minimized. To achieve this, two additional steps

are introduced to the design process after context mapping: a very quick profiling phase

for software sections and a fast, inefficient list scheduler with the related allocation steps

(Figure 3-4). These steps are assumed to produce a guess on the output of optimization

that would be produced by a better (slower) heuristic on the same subsystem. Once the

results of these fast approximations are satisfactory, the design process may continue to the

final code generation and HLS. (Additional rounds of verification are needed after these

steps, to make sure that the result extrapolated from the fast approximation was correct.)

Approximations of software runtime and performance may be found in a way that is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 94

similar to the approximation of HLS efficiency. (This is not surprising, since the steps of

compiler optimizations use some of the same features, namely instruction scheduling and

register allocation.) Instead of software scheduling and allocation, a better approach could

be a quick implementation of code generation from an elementary operation graph and then

a profiling pass. Assuming the ASAP and ALAP time cycles of the elementary operations

are known, a probabilistic description of the system resource usage may be found. (A similar

approach is described in [PK89], where parallelism is described as a set of distribution

functions, with resource usage bounded below by the maximum of these functions. Even

if the above, force-directed scheduling algorithm was developed for hardware systems, the

same may be applied to software as well.) By matching the theoretical parallelism to the

results of profiling, one might be able to construct approximations of the results of more

detailed, slower software optimization algorithms (Figure 3-6).

Assuming the code generation phase is fast, most of the speed advantage of the fast

performance approximation comes from the difference between scheduling and profiling.

Even if scheduling may reuse some of the information from previous steps, a simple profiling

pass is definitely faster than running a higher-order polynomial scheduling algorithm. (An

example of information passed to the scheduler from previous passes may be the structure

of the CDFG. In fact, this is done in the final implementation by embedding structured

comments in the generated source code. The performance gain is significant, since most of

the complexity of the applied list scheduling heuristic is in building the dependency matrix,

an 0(n2) step in a straightforward implementation.)

In the target environment of HSPIPE, a more effective approach was found. Since the

current target microprocessors are legacy, embedded CISC devices, the complexity of the

compilation process was much lower than a contemporary, RISC core would have required.

(In fact, generated code and compiled binaries for the Intel 80C51 and similar micropro­

cessors tends to be very regular and predictable.) Because in this case code generation and

compilation are both easy to describe, a more efficient way of estimation code efficiency

was found. Most of the reduction in time came from the fact that software and hardware

runtime estimations could be partially merged.

The software and hardware estimations are merged by relying on a user-supplied tech­

nology library describing software execution in terms of hardware. This library should

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS

Q Code gen. Software gen.

C]DF<Gr

Code generation

Raw approx. code

Profiler

Execution profile

Analysis

Bottleneck det.

Code generation

Raw production code

Scheduler

Production code

Analysis

Bottleneck det.

Performance evaluation

Compilation

Figure 3-6: Approximation and production code generation of software modules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 96

provide timing information, and resource usage of instructions, using metrics of the hard­

ware environment (i.e., expressing execution times in the same time cycles, etc.). Describing

software execution in such a way, software execution context (s) may be merged with hard­

ware approximations, since software and hardware components may be simulated in the

same scheduler and allocator. Assuming the interface generator measures time in the same

units, the whole hardware-software system may be described in the same time scale.

As well as scheduling a mixed hardware-software system, allocating resources to ele­

mentary operation may be done in a similar, integrated way after context mapping. The

primary problem of allocation is the separation of operations that may not conflict because

of their different contexts. Such could be an example where software and hardware FFTs

would be present in the system EEOG.

Note that in the current implementation, there is no support for RISC architectures.

Should the target environment include RISC or higher-performance CISC architectures

(which tend to rely on more RISC features as time passes) in the future, the current software

estimation should be upgraded.

As an example, a stripped-down version of a practical system is used. The block dia­

gram in Figure 3-8 is a section of a GSM speech coder circuitry [Pin96, p. 22]. This part of

the GSM DSP application is often used as an example of practical hardware-software code­

sign systems because different versions of the GSM cellular phone standard are extremely

popular. Because of the enormous size of the GSM market, telecommnnications-related

applications tend to be thoroughly analyzed for cost optimization, and the industry sees

immediate applications of hardware-software codesign.

The example used in this chapter is only a section of the GSM coder since the whole

system would be too large for effective demonstration in the text. (Certain submodules of

limited functionality, such as adders and shifters, have been removed from the original block

diagram to increase readability.) Containing 17 blocks (extended elementary operations),

it may be transformed easily to an extended elementary operation graph. (An additional

box of limited functionality is required to make the extended elementary operation graph

complete; this is eis in Figure 3-9.)

The primary purpose of the example is a typical DSP application; it is a fixed-point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS

Cluster
i

Partition
Context switch generation

Technology
Jib

i i
. Software Hardware

List scheduler
Correction

Evaluate

Software gen.
Generate code

Compile

Verification

Interface generation & integration

HLS
Schedule
Allocate

Figure 3-7: Evaluation and iteration steps without explicit software profiling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 98

Linear Predictive Coder (LPC) where 160 13-bit resolution sound samples are compressed

to 260-bit encoded blocks. The algorithm calculates an estimated time signal based on

previous sound samples, and passes on the difference between the estimated time sequence

and actual samples.

The blocks in Figure 3-8 are treated as extended elementary operations at the parti­

tioning phase. (Numbers of blocks correspond to extended elementary operation numbers

in the extended elementary operation graph, Figure 3-11)

The steps taken during iterative rounds may be executed in the following way:

1 . Construct original DFG from problem description, source code, or prescribed data­

flow graph. This initial DFG shall finalize only the following properties:

• Initial operation type for vertices, ki, without any context information (i.e.,

“FFT”), with no note on execution context or complexity. (Table 3.3, p. 101)

• Operation complexity, ti*. This attribute is important only to operations where

execution time or cost depends on the size of the incoming data.

• Direct data dependencies, i.e., the set of (e* ,e_,) : —► e_, pairs. The properties

of the data dependencies include the two vertices, and the bit width of the data

transfer (equal to the operation complexity of the destination operation, rij).

The original attributes of the GSM example are given in Table 3.3. The following

direct dependencies are present: ei -*• e2 , e.\ —► eg, e2 -> e$, e3 —► e4 , e4 —> e$,

e5 —> e&, es ej, e7 —*■ es, es -*• eg, eg -+ eio, eg —► ei3 , eio —»• eu , exx —► ex2 ,

ei2 —> eis, ei3 —¥ ex4 , ei4 —> ei$, ei6 -* en, eu eis» ei8 ~̂ exo- The listing excludes

system inputs and outputs. (The dependencies of elementary operations and system

ports are used only in calculating ASAP and ALAP times.)

2. Partition the graph into execution contexts. This step divides the DFG into hard­

ware and software parts. Partitioning generates the extended elementary operation

execution contexts (zj).

The techniques described in Section 2.2.2 are useful for the partitioning step. During

benchmarking, modified versions of the Kernighan-Lin algorithm have been used (in­

cluding the most popular enhanced variant, the Kemighan-Lin-Fiduccia-Mattheyses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

O

LTP parameterAuto-correlation

RPE grid position

Reflection coeff. APCM quantizer

Quantizer/decoder

Segmentation Inverse filter Weighting filter RPE grid selector

Log Area Ratios LAR decoder Inverse APCMLTP prm. decoder

Schur-recursion Interpolation Quantizer/decoder

Figure 3-8: Block diagram of GSM example

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS

9

Figure 3-9: Extended elementary operation graph of GSM example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 101

i ki ki (symbolic) Nam e in G SM block diagram
1 1 segm Segmentation
2 2 filter Auto-correlation
3 3 schur Schur-recursion
4 4 par am LAR calculation
5 5 quant Quantizer/coder
6 6 decoder LAR decoder
7 7 interp Interpolation
8 8 coeff Reflection coefficients
9 2 filter Inverse filter

1 0 4 param LTP parameter
1 1 5 quant Quantizer/coder
1 2 6 decoder LTP parameter decoder
13 2 filter Weighting filter
14 9 grid RPE grid selection
15 5 quant APCM quantizer
16 5 quant Inverse quantizer
17 9 grid RPE grid positioning
18 1 0 adder Adder

Table 3.3: Extended elementary operation attributes of GSM example

algorithm), but the modularity of the partitioning step makes it easy to upgrade to

other algorithms.

3. Insert context-switch vertices to the system by replacing edges crossing execution con­

text boundaries. The context-switch vertices are unary operations splitting context-

switch vertices in two (Figure 3-12). Timing values of context-switch vertices depends

on destination and source contexts, bit width, and communication protocol. This

information is supplied by the used in context mapping technology files.

Because of the timings of the context switch vertices, timing relations (ASAP and

ALAP times, time dependencies) must be calculated after this step.

4. Expand the internals of extended elementary operations. Generate the necessary

elementary operation graphs and merge them by replacing each with their subsystems’

graphs.

As an example, an internal section of the weighting filter is presented in Figure 3-10.

The filter itself is a FIR filter with tabulated coefficients. It takes 40 samples of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 102

System input/output

| Tabulated constant

Figure 3-10: Section of FIR weighting filter

sound (ao . . . 0 3 9) and outputs the same amount of samples (6 0 • - • 6 3 9)- (Even if the

results would have 50 total samples theoretically, the filter output is truncated by

discarding the first and last five samples.) The structure in Figure 3-10 has to be

replicated for each filtered value. Each structure implements the equation

10

bk = £ H i -aJk+5-i = 0 ...3 9
t=0

where the H values are tabulated constants. (The structure in Figure 3-10 has been

generated by the algorithm described in Appendix A; the generation target was a

maximum multiplier concurrency of six units.)

5. Assign final operation types to elementary operations. Since execution contexts are

fixed by partitioning, the final execution type (“FFT in hardware”) may be assigned

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 103

to elementary operations:

j i = j i { k i , X i)

The sample system, with the partition shown in Figure 3-11, has the final operation

types shown in Table 3.4, p. 105.

In some systems, whore processors are specialized for different data sizes, the final

operation type may depend on operation complexity as well:

j i — j i (k i i x i i n i)

In the current HSPIPE implementation, such a step is not taken. This serves the pur­

pose of maintaining portability, since taking operation complexity into consideration

would definitely increase the dependence on the underlying RTL synthesis tools.

Note that in the GSM example, the same functionality in different contexts has a

different operation type. Even if functionally identical (or very similar) operations,

es and eis have to be treated differently because of their different execution contexts

(xs / X1 5). For this reason, they axe mapped to different final execution types (i.e.,

js 7 ̂jis). (The same applies to ei4 and en-)

6 . Assign execution times to elementary operations. Execution times generally depend

on operation complexity and type:

= f ■t (. j i » H i)

7. Insert transfer vertices to the system, where applicable. The new vertices behave

as transfer elementary operations, and do not count as functional operations. The

new vertices’ only practical attribute is their execution time, which is a function of

the context switch source and destination, and the operation complexity of the data

destination:

tk = tk(xi ixj i nj)

An important part of system descriptions is the set of context-switch timing functions,

which assign the time required to transfer the given number of bits through the con­

text boundary. These functions may be given as explicit functions, timing diagrams,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 104

Figure 3-11: Extended elementary operation graph of partitioned GSM example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS

i ki Xi ji
symbolic # symbolic # symbolic

1 1 segm 1 hardware 1 hardware segmentation
2 2 filter 1 hardware 2 hardware filter
3 3 schur 2 software 3 software Schur
4 4 param 2 software 4 software parameter
5 5 quant 2 software 5 software quantizer
6 6 decoder 2 software 6 software decoder
7 7 interp 2 software 7 software interpolation
8 8 coeff 1 hardware 8 hardware coefficients
9 2 filter 1 hardware 2 hardware filter

1 0 4 param 2 software 4 software parameter
1 1 5 quant 2 software 5 software quantizer
1 2 6 decoder 2 software 6 software decoder
13 2 filter 1 hardware 2 hardware filter
14 9 grid 1 hardware 9 hardware grid
15 5 quant 1 hardware 1 0 hardware quantizer
16 5 quant 1 hardware 1 0 hardware quantizer
17 9 grid 2 software 1 1 software grid
18 1 0 adder 2 software 1 2 software adder

Table 3.4: Extended elementary operation attributes of partitioned GSM example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 106

or protocol descriptions. The context mapping step, when inserting context switch

vertices, inserts an appropriate amount of delay to the system. The additional delay

should cover the time requirement of the data transfer.

If context-switch circuitry is also subject to optimization, context-switch vertices may

be assigned their own operation type, and it should be included in the system cost

function. (The GSM example is presented with a single type of context switch vertex.)

8 . Start scheduling and allocation.

Scheduling and allocation depend on the following attributes of elementary operations:

execution time U and operation type ji. Scheduling generates the ASAP and ALAP

values (s^ and assigns starting times to operations (v{). Allocation maps the

elementary operations to processors. The output of the scheduling and allocation

step is an execution plan of the design, prescribing an estimated schedule of data and

control transfers.

3.3 .2 P roduction step

During production runs of MCHLS, after deciding a final partition, heuristics with the

highest expected performance (or approximation algorithms with the best approximation

ratio) are feasible to use. Since production runs assume a reasonable partition has been

found, scheduling and allocation should proceed without further iterations. Because of the

low number of executions (exactly one) and the possible cost increase because of inefficiency,

scheduling and allocation algorithms should have the highest performance. (Note that choice

of the algorithms may depend on application type. The modular nature of the MCHLS

design process enables selective replacement of scheduling algorithm, allocation heuristics

or both.)

The production step of MCHLS generates the final software and hardware data-flow

graphs. The output is passed on directly to the code generator and the RTL synthesizer.

1 . Start with the initial DFG shall containing the following properties for each extended

elementary operation:

• Initial operation type, ki, without any context information (i.e., “FFT”, with no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 107

note on execution context or complexity.

• Operation complexity, n,.

• Direct data dependencies, i.e., the set of (e^ey) : e* —*■ ej pairs. The properties

of the data dependencies include the two vertices, and the bit width of the data

transfer (usually equal to the operation complexity of the destination operation,

nj).

2. Use the partition found by the last iteration of the previous stage. This is assumed to

generate an efficient graph partition, as estimated by the fast (inaccurate) scheduling

and allocation attempts.

3. Assign final operation types to elementary operations. Since execution contexts are

fixed by partitioning, the final execution type (“FFT in hardware”) may be assigned

to elementary operations:

j i = j i (k i , X i)

In some systems, where processors are specialized for different data sizes, the final

operation type may depend on operation complexity as well:

j i = j i { k x , X i , T l i)

4. Assign execution times to elementary operations. Execution times depend on opera­

tion complexity and type:

£» = t i { j i -i Th)

5. Insert transfer vertices to the system, where applicable. The new vertices behave

as transfer elementary operations, and do not count as functional operations. The

new vertices’ only practical attribute is their execution time, which is a function of

the context switch source and destination, and the operation complexity of the data

destination:

tfc = Xj, rij)

Reaching this point, software and hardware me effectively separated in the CDFG.

The last step changes the topology of the elementary operation graph. (Administering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 108

i ki ki (symbolic) Nam e in GSM block diagram
1 1 segm Segmentation
2 2 filter Auto-correlation
3 3 schur Schur-recursion
4 4 param LAR calculation
5 5 quant Quantizer/coder
6 6 decoder LAR decoder
7 7 interp Interpolation
8 8 coeff Reflection coefficients
9 2 filter Inverse filter

1 0 4 param LTP parameter
1 1 5 quant Quantizer/coder
1 2 6 decoder LTP parameter decoder
13 2 filter Weighting filter
14 9 grid RPE grid selection
15 5 quant APCM quantizer
16 5 quant Inverse quantizer
17 9 grid RPE grid positioning
18 1 0 adder Adder
19 5 cswitch Context switch
2 0 5 cswitch Context switch
2 1 9 cswitch Context switch
2 2 1 0 cswitch Context switch

Table 3.5: Extended elementary operation attributes of partitioned GSM example after
context mapping

the changes is straightforward, since only unary operations are inserted.)

6 . Start scheduling and allocation.

Scheduling and allocation depend on the following attributes of elementary operations:

execution time U and operation type ji. Scheduling generates the ASAP and ALAP

values (s^ lj), and assigns starting times to operations («<). Allocation maps the

elementary operations to processors. The output of the scheduling and allocation

step is an execution plan of the design, prescribing an estimated schedule of data and

control transfers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MULTIPLE-CONTEXT HIGH-LEVEL SYNTHESIS 109

Figure 3-12: Transfer vertices in partitioned GSM example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Im plem ent at ion

This chapter is dedicated to implementation of the hardware-software codesign environment

in the PIPE framework (HSPIPE). The chapter contains a description of PIPE internals

to document the design process inside PIPE and to contrast the original PIPE design

process with hardware-so ft ware codesign extensions (HSPIPE). The chapter describes the

front end, the data transfers and internal representation, and the output formats of the

HSPIPE system. The example representation requires user intervention for efficient us­

age, and therefore is not ready for industrial usage. (Most shortcomings are addressed, in

Chapter 7.)

Since the goal of the example implementation is a technology demonstration rather

than optimal behavior, the HSPIPE environment is a set of connected programs driven by

scripts. The language of choice in the example implementation is Perl [WCS96]. As well as

a very efficient high-level prototyping language, Perl programs (interpreted scripts) may be

executed on a wide range of operating systems. Since HSPIPE components are available

with full source code, students may study them in detail, and implement changes with very

little effort. (The relative flexibility of the language also has great potential for enforcing

intellectual property protection, since Perl source code is usually difficult to understand.

Restriction of information was not a design goal in HSPIPE. The source code of HSPIPE

modules is actually easy to understand by Perl standards.)

As illustrated in Figure 4-2, the functionality of the multiple-context environment de­

sign environment has been implemented as a module before actual PIPE execution. The

multiple-context environment extensions generate an efficient partition of the input CDFG,

construct a “single-context” description of it, and pass it to PIPE. As described in Chapter 3,

multiple execution contexts are separated by assigning different operation types (j'j ^ j t)

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. IMPLEMENTATION 111

to elementary operations of the same operation category (k* = k[) if they are executed in

different execution contexts (xt- 5& xi). Such a transformation effectively separates execution

contexts for purposes of scheduling and allocation, and single-context CAD tools (such as

PIPE) may be used for scheduling and allocating such designs.

The system description of HSPIPE is taken as an input CDFG. (As discussed earlier,

the CDFG is assumed to be fixed and immutable.) An initial partition is generated by

the in i t (l) module. In the example implementation, i n i t (l) iteratively transforms the

critical paths of a purely software implementation to hardware, stopping if latency gets close

to system constraints. The output of i n i t (l) is a multiple-context CDFG (MCCDFG).

The partitioning process is implemented in a separate module, which in turn uses ex­

ternal components to evaluate the quality of the partition. The partitioning module, klfm,

is executing iteratively until system performance is considered to be satisfactory. (In the

example implementation, klfm actually uses the Kernighan-Lin-Fiduccia-Mattheyses algo­

rithm.) Partitions are evaluated by a chain of external modules:

1. Context mapping (cmap). This module expands extended elementary operations to

elementary operations, and generates ji for elementary operations. Context-switch

vertices are also generated in this step, modeling the time required to pass data

between execution contexts.

The context mapping step uses an external technology library to map operation cate­

gories and execution contexts to final operation types. No interface code is generated

at this point, but the size of the interface is approximated. The external technol­

ogy library contains a description of elementary operation timings for every possible

execution context, as well as timing functions for context switches.

2. Scheduling and allocation (sched). In the example implementation, the scheduling

step uses a special list scheduler with built-in allocation. The output of the scheduling

step is a scheduled CDFG (SCDFG), where elementary operations are fixed to their

start times (ut).

The scheduler is a resource-constrained list scheduler, with the corresponding alloca­

tor. Since the schedule may not violate resource constraints, the allocator is easy to

implement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. IMPLEMENTATION 112

3. Performance evaluation (scheval). The schedule generated by the list scheduler is

checked for timing violations. (The list scheduler guarantees that there are no resource

violations.)

In the example HSPIPE implementation, this step returns the ratio of achieved la­

tency over optimal latency.

If the performance of the current partition is assumed to be satisfactory, the partition

is fixed, otherwise the partition module (klfm) enters another iteration.

Once the partition is fixed, the original MCCDFG is passed through context-mapping

(cmap) and interface generation (ifconfig). The latter inserts the necessary code (in

software) and control logic (in hardware) to interface to other execution contexts. Even

if the context mapping step has been performed for the same partition earlier, saving the

generated context information would be overkill. (Especially since the context mapping

step is a very fast operation. It is practically static text replacement and functionality of

the C “#include” mechanism.)

After the final context mapping step, the HSPIPE CDFG is passed through a filter

(cdf g2 pipe) to produce a PIPE input file. This step is necessary since PIPE uses attributes

which are not used during the partitioning phase. The output file may be passed directly

to PIPE for processing.

The implemented system is incapable of designing at a functional level, and designers

must transform abstract problem descriptions to system control-data-flow graphs. The

current implementation starts synthesis from the generated control-data-flow graph and

finishes at a register-transfer level (Figure 4-1). The HSPIPE design environment may

theoretically be extended to partition designs at a higher level, before the control-data-

flow graph is generated (similar to [VNG95], where system descriptions are analyzed and

simulated in VHDL before synthesis starts). Changing the level of system partitioning

may be done as an additional step (translating a very high level algorithmic description

to control-data-flow graph) as shown in Figure 7-1. Since such an extension would require

extensive analysis of a very large problem set to select heuristics, it may not be performed

as of May 11, 1999. After accumulating the necessary experience (several man-years worth

of optimization and evaluation with the HSPIPE environment), the input step may be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. IMPLEMENTATION

CDFG

MCCDFG

CDFG

FCDFG

FCDFG
+IF

FCDFG
+IF

SourceRTLD

(Clustering)
Partitioning

Technology .lib

Code generator

Context mapping

Compiler

Control synthesis

Interface
generator

RTL Synthesis

Scheduling
Allocation

Layout FPGA bitfiles Binaries

Figure 4-1: HSPIPE design process without functional partitioning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. IMPLEMENTATION 114

CDFG

Initial partition
in i t (l)

MCCDFG

Partitioning
k l f m

MCCDFG
Interface gen.
ifconfig

MCCDFG
Contex mapping

cxn&p

multiple-context
HLS extensions

partitioning
iterations

MCCDFG
Contex mapping

cxnap

Schedule/Allocate
sched

SCDFG
Performance eval.

scheval

Technology .lib

CDFG

Tuning extraction
scdfg2f

tabutarffl

Report generator
f2html

CDFG

cdfg2pipe
PIPE CDFG

PIPE report

Figure 4-2: Components and data representation in the HSPIPE framework

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. IMPLEMENTATION 115

introduced to the design flow. For this reason, functional partitioning requires further

investigations at BME (Technical University of Budapest, Hungary). (Note that the design

environment of the University of California at Riverside is fundamentally different from the

one at BME (Technical University of Budapest, Hungary), and therefore the heuristics used

by UCR researchers are not applicable to our target environment.)

4.1 User interface

The user interface of HSPIPE, similarly to PIPE , is Spartan (see Appendix B). Relying

on user-supplied text files, and text-based technology libraries, the HSPIPE environment

transforms these text descriptions to text input for a RTL synthesizer.

Extending the PIPE environment (and, similarly, HSPIPE) with a convenient graphical

user interface (GUI) is definitely possible as a future development (Section 7.1). Certain

sections of the HSPIPE extensions have been successfully expanded with GUIs (imple­

mented in Tcl/Tk over the Perl scripts). Since the most important function of the current,

example HSPIPE implementation is to provide a framework for algorithm experiments,

implementing a GUI for the components is not am urgent task.

Since the current HSPIPE implementation is practicadly am experimented setup, storing

internal information in text files has aidditionad advantages over more integrated or graphicad

implementations. Having intermediate results in humam-readable format reduces debugging

amd verification time considerably. Being able to edit input information by amy tool (such

as vi, which was used extensively as a development amd testing tool) was extremely useful

during implementation (in situations such ats debugging and fault injection).

The results of the performamce evaluation have been processed in am intermediate format,

which in turn was translated into HTML.

4.2 Front end

During the amalysis of standaurd benchmarking problems, some of the input CDFG have been

generated by auxiliary programs. As an example, the FIR filter structures were generated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. IMPLEMENTATION 116

by the genf i r script, which provides CDFGs for FIR filters of arbitrary sizes. (Covering

FIR filters actually covers a large number of topologically similar applications [Kun82].) In

practical systems, inputs CDFGs may be generated from high-level language descriptions,

schematic capture tools, or even functional descriptions. (An example system is presented

in Appendix A.)

A possible future development task is interfacing functional partitioning to the HSPIPE

environment. By treating the system CDFG as a design parameter, and encapsulating the

HSPIPE environment in an additional round of iteration, designers could experiment with

different realizations of the same high-level description.

4.3 Code generator

As an experimental extension, a basic code generator has been appended to the PIPE

environment. Such a straightforward code generation process has been shown to be effective

[ET98], assuming that compilation is efficient. (The HSPIPE environment relies on the

efficiency of the underlying compiler, since it generates source code only.)

Context-switch vertices are assumed to be self-contained units provided by the user. On

the software side, they are responsible for generating the code to interface to hardware on

context-switch interfaces. The software component of the context-switch functionality is a

set of I/O operations performing a handshake synchronization with the hardware execution

context.

Depending on the hardware environment, the context-switch extended elementary oper­

ations either wait asynchronously for hardware signals (in a hardware-driven environment),

or trigger hardware events (in a software-dominated environment). Most practical systems

feature a combination of both.

The software sections of the GSM voice coding example have the extended elemen­

tary operations shown on Figure 4-3. Assuming the extended elementary operations are

available as functions, the highest level of software functionality may be described as a

straightforward replacement of functions. Note that the generated code is inefficient, since

the straightforward code generation introduces false data dependencies by using a very small

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. IMPLEMENTATION 117

set of temporary variables.

vhile (1) {
tmpl = cswitch_19();
tmp2 = schur_3(tmpl);
tmpl = param_4(tmp2);
tmp2 = quant_5(tmpl);

/ * System output */
sys_store(QUANT_5, tmp2);

tmpl = decoder_6(tmp2);
tmp2 = interp_7(tmpl);
csswitch_20(tmp2);

>

After expanding the extended elementary operations to elementary operations, the in­

ternals of the extended elementary operations are described as truly elementary operations.

For software purposes, the generated interface code features extremely low level I/O oper­

ations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. IMPLEMENTATION

Context-switch nodes

21 22

Figure 4-3: Software sections of the GSM example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

A nalysis

The results of tests and performance analysis axe presented briefly in this chapter. The

chapter contains well-known benchmarks from the high-level synthesis community. The

example problems were synthesized as multiple-context environment applications. A digital

FIR filter application is used to demonstrate the results on classical benchmarks. The

performance of the HSPIPE algorithm has been evaluated on a cryptographic application,

RC-5 encryption.

The chapter contains no code or extended data-flow graph for verbosity constraints. The

results of the chapter illustrate that a combination of the selected heuristics may achieve

efficient results in reasonable runtime. During testing, a personal workstation obtained the

requested results under an hour in each case, even in systems with a vertex count of up to

4096.

An important observation is that the partitioning process converges in practically all

initial partitions obtained by refinement of extreme (purely software or hardware) config­

urations. Since the Keraighan-Lin-Fiduccia-Mattheyses algorithm terminates even in local

minima, there are no convergence problems. The partitioning phase therefore may be run

with perturbations of the initial partition. The solution with the lowest cost is then imple­

mented.

5.1 Filters

A classical benchmark category of hardware synthesis is digital filters, both finite and infinite

impulse response. Neglecting the effect of feedback edges, the topology of both filter types

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANALYSIS 120

is very similar (a FIR is shown in Figure 3-10). Indeed, describing the topology of FIR

filters covers a large subset of practical HLS target systems [Kun82].

The test runs of the HSPIPE implementation contained FIR filter CDFGs between 64

and 2048 inputs. A complete 2048-point FIR system, with the necessary support func­

tionality, contains over 4000 vertices. Such a system is certainly large enough for testing

heuristics. Exploiting the regularity of FIR applications, the FIR filter flow-graphs were

generated in different sizes. A custom module was developed for this purpose (genf ir).

A problem with the extremely regular (generated) filter structures (and similar topolo­

gies) is high symmetry. Because of the regular structure, the partitioning process initially

considers identical changes to all possible improvements. Since the results of identical

changes is practically uniform on all paths, the partition improvement algorithm had a

large set of “best” moves to select from, and tie-breaking was necessary. The efficiency of

the initial steps is therefore determined by the performance of the tie-breaking heuristic.

(Most of the heuristics used by list scheduling are not applicable, since FIR data-flow graph

paths are identical from multiplier vertices to the sums, and offer no difference in mobility.)

Once the graph has been removed from its completely regular status, the improvement stage

of partitioning proceeds without problems.

Note that regularity is a problem in synthesized graphs during generation of the initial

partition as well. Similarly to reasons discussed before, there is a multitude of critical

paths in the system, and tie-breaking might be necessary in selecting the path to be folded,

especially during the first steps of generation.

The Kernighan-Lin-Fiduccia-Mattheyses algorithm under the boundary conditions used

during testing converges typically to states where large subsections (practically individual

FIR filters) are mapped to the same context, as shown in Figure 5-1. Note that similar

results are obtained practically independent of the initial partition. Exploring the con­

vergence process, obviously such a set of context switches maximizes possible parallelism

inside the FIR submodules, and delays context switches as late as possible under the re­

source constraints. Since FIR structures have a strictly decreasing “horizontal cut size”

(i.e., the number of concurrently active data transfers), delaying context switches as late as

possible minimizes the number of transfer nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANALYSIS 121

.Context!

Context 1,

Figure 5-1: Typical final partitions of FIR filters

The results of hard war e-soft ware codesign are demonstrated on the cost-latency func­

tions of a 512-point FIR filter. Since cost comparison between software and hardware

systems is difficult, a straightforward method is chosen. Hardware cost is approximated by

the silicon cost, which is proportional to the size of the required silicon. Software cost is pro­

portional to the number of simultaneously executing elementary operations, and operation

costs are identical for all instruction types.

The first model (Figure 5-2) shows the Pareto-points for ideal hardware and software

systems. In these ideal systems, an infinitely large number of units may operate in parallel.

(This is definitely false for practical software systems, and non-ideal software is shown later.)

In addition to the extreme implementations, Figure 5-2 contains the cost function for the

first multiple-context solution found by MCHLS. Obviously, the cost of a multiple-context

implementation is always lower than that of a purely hardware system under the same time

constraints, and may not be lower than the software solution.

For large latencies (over L = 2000), the solutions obtained by MCHLS are closer to

software than hardware solutions. In these cases, most of the data-flow graph is mapped

into software, and the number of context switches is small. (In some instances, context

switches were completely eliminated.)

As the latency constraints are decreased (under L = 1500), more and more of the data­

flow graph is mapped into hardware and the cost function of the multiple-context solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. ANALYSIS 122

Tim^Cost tradeoff
900 t---------- 1---

pure software
pure hardware

800

700

800

500
8o

400

300

200

100

700050001000 4000 60000 2000 3000
Latency

Figure 5-2: Hardware and software implementation costs assuming infinite software paral­
lelism

gets closer to the purely hardware implementation. Because non-critical sections of the

system are mapped to software, the system cost stays under the hardware system cost,

demonstrating the usefulness of a multiple-context design.

In practical systems, software may not be parallelized beyond a certain limit. Since

multiprocessor designs present problems beyond the scope of this dissertation, software

parallelism is better modeled if it does not extend beyond the maximum achievable inside

a single processor. As an example, consider a PowerPC microprocessor where two adders

and two multiplies may be done in parallel. Assuming a maximum latency of L = 6150 and

a corresponding software cost of 1 0 (no parallelism, at most one multiplier and one adder

is utilized simultaneously), the theoretical minimum achievable by software solutions may

not be less than L = 3075 = 6150/2. In fact, because of the structure, the actual minimum

is L = 3150. No software solution may achieve L < 3150 (Figure 5-4).

Since the parallelism of software is limited, the cost difference between hardware and

multiple-context systems is lower under these conditions (compare Figure 5-5 to Figure 5-

3). The maximum cost savings was 40 units (absolute) (Figure 5-5), which is equivalent

to a relative maximum of 42 %. The average cost difference between the hardware and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANALYSIS 123

TimeiCoet tradeoff
300

pure software
pure hardware

multlpla content

250

200

100

50

1000 1500 2500 35002000 3000 4000 4500
Latency

Figure 5-3: Transition between mainly hardware and mainly software solution

multiple-context solution was approximately 2 0 %.

5.2 RC-5 encryption

The RC-5 encryption algorithm is a typical application which may be implemented in a

mixed hardware-software environment [Sch95, Sta98]. The algorithm is highly customizable,

changing the number of iterations and similar parameters, yet the internals (the main loop

core instructions) are based on a number of primitive operations. The basic operations are

practically exclusive OR (XOR), rotation, and addition. An RC-5 encryption process is

characterized by the following parameters:

Num ber of rounds, r,

W ord size, w, measured in bits. The algorithm encrypts two words during each iteration.

Key width, 6 , measured in bytes.

Key value, K, a b-byte value used as an initial value for setting up a look-up-table before
actual encryption

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANALYSIS 124

TimalCoet tradeoff
900

800

700

600

500
8o

400

300

200

100

0 1000 2000 3000 6000 700050004000
Latency

Figure 5-4: Hardware and software implementation costs assuming finite software paral­
lelism

Tune/Cost tradeoff
300

pure software -----
pure hardw are----

multiple-context

250

200

8 150

100

1000 1500 2000 2500 3500 4000 45003000
Latency

Figure 5-5: Transition between non-ideal software and hardware solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. ANALYSIS 125

Using the above notations, the algorithm may be described with the following pseudo­

code:

A = A + S [0] ;

B = B + S[l] ;

for (i=l; i<=r; i++) -C
A = ((A * B) « B) + S[2*i];

B = CCB ‘ A) « A) + S[2*i+1];

>

where the XOR operation is “ and « is a circular rotation instead of the usual C “shift”.

The S look-up-table is initialized as a function of the desired cryptographic parameters.

The RC-5 algorithm was developed to maximize the time required for a brute-force

cryptographic attack. Timing and dependence analysis of the algorithm reveals that there

is no chance for overlapping in the DFG, and so no pipelined execution is possible. Also the

algorithm may be extended for very large memory sizes, which means software implemen­

tations may run out of reasonable cache ranges with the correct combination of parameters

[GW96]. (Scalability of the algorithm was a primary design goal.) Since the algorithm effi­

ciency is measured as the time required to check all possible keys by brute force, a feasible

measure of any RC-5 implementation is the latency of the main loop (Figure 5-6).

The following limitations slow down both hardware and software solutions:

1. Two memory accesses are necessary in every iteration.

This is a performance bottleneck in both hardware and software, since memory ac­

cess times are significantly higher than cycle times of state-of-the-art off-the-shelf

processors or custom hardware. Because of frequent memory accesses, parallelization

requires local memory for all processors.

2. Even if data operations are performed on two target registers (A and B), the main loop

may not be operated in an overlapping (pipelined) fashion, since data dependencies

are strictly linear (Figure 5-7). This limitation applies to both hardware and software

implementations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANALYSIS

A S[0] B S[l]

IFINALlI 1NIT

SELSEL S E L

XOR

MO«

iXORJ

MO«

STOP9

Figure 5-6: Main loop of the RC-5 encryption algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANALYSIS 127

3. Two data-dependent rotations must be implemented serially since the number of ro­

tations is too high for a faster, combinatorial implementation.

Test runs of the partitioning process also demonstrated that mixed hardware-software

implementations of the RC-5 algorithm are slower than both pure software and pure hard­

ware solutions. Because of the direct data dependencies in the algorithm main loop, context

switches inside the system increase the overall length of the critical path, restricting the im­

plementation to single-context systems. There must be an even number of context switches

on the highlighted data path in Figure 5-7. Figure 5-8 shows the latency of the loop for

every valid combination of context switches on the loop. (The software timing model used

an Intel 8051-class microprocessor. The loop becomes slower if a RISC CPU is used.) There

leftmost configuration in Figure 5-8 (L = 46) represents pure software, the rightmost point

(L = 36) is pure hardware. Even if some of the multiple-context implementations approach

the performance of the purely software solution, only two get close (at L = 48). Obviously,

hardware-software codesign is an inefficient tool to speed up brute-force decryption of RC-5.

As a related result, an ongoing distributed brute-force key search effort launched by

Distributed.net Technologies, Inc.1 has covered 7.913 % of the keyspace in 559 days. This

number is remarkable since this practically infinitely parallelizable problem is investigated

by distributed.net by using the idle cycles of 45541 computers simultaneously. (Data accu­

rate as of 5 May, 1999.)

5.3 Convergence

Since the HSPIPE environment extends scheduling/allocation and partitioning heuristics

in a modular way, the convergence of multiple-context development is determined entirely

by the convergence of the underlying algorithms. In the sample implementation, the greedy

Kemighan-Lin-Fiduccia-Mattheyses algorithm always terminates, but it may converge to a

local minimum. Since the runtime of the Kemighan-Lin-Fiduccia-Mattheyses algorithm is

predictable, multiple designs may be evaluated in polynomial time. By selecting the result

with the best performance, even local minima may be avoided.

lh.ttp: //wro . distributed. net

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANALYSIS

SEL SEL

XOR

«

XOR

«

Figure 5-7: Main loop of RC5

Loop latency/system context

70

65

1 55

40

0 20 40 60
Solution nunber

10080 120

Figure 5-8: Latency of RC5 main loop as a function of configuration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANALYSIS

5.4 Performance

129

The efficiency of the MCHLS process depends entirely on the performance of the production

scheduling step.

In the FIR benchmark, the list scheduler in the iterations has produced results with

an implementation cost of at most 20 % over the optimal solution under the same time

constraints. (FIR filters are among the HLS benchmarks for which the optimal solution is

known.) By repeating the partitioning iterations with small changes to the initial partition,

the best values got within 10 % of the optimal solution.

Note that these performance values belong to the scheduling heuristics (in this case, a

resource-constrained list scheduler). By changing the algorithms, different results may be

obtained for the same benchmarks. The contribution of the MCHLS framework is simply

preserving the quality of the schedules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Sum m ary

The dissertation presents a model of a multiple-context environment as an extension of

generally accepted system descriptions used in high-level synthesis. The multiple-context

enhancements are upwardly compatible with the notations of high-level synthesis literature.

The multiple-context extensions hide the details of context information from the underlying

scheduler and allocator heuristics. Since multiple-context flow-graphs are transformed to a

description without contexts, existing software or hardware design heuristics may be used

in MCHLS.

The dissertation demonstrates that the above transformation preserves the necessary

information to properly simulate and optimize multiple-context designs in existing single­

context tools, while retaining properties unique to multiple-context environments.

The convergence of the MCHLS process is determined by the convergence of the par­

titioning heuristic. The designer has complete control over the design process, and may

implement any partitioning heuristic. Similarly, the performance of the MCHLS design is

set by the efficiency of the scheduler. As heuristics are standalone blocks in the MCHLS

framework, any algorithm may be upgraded without influencing the properties of the other.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Future D evelopm ent

7.1 Integration with Visual PIPE

Since the HSPIPE environment is not intended for immediate industrial application, the

lack of a graphical user interface is currently not a serious limitation. Should the HSPIPE

CAD environment be extended, a GUI over the underlying text-based CAD tool would be

a useful extension. Since creation of such a GUI is a completely unrelated project, it has

been delegated to future developments. (Relying entirely on text files had the advantage

of reduced debugging and verification time, as well as the capability to use self-modifying

tools during development.)

In a traditional UNIX style, the GUI of HSPIPE may be simply a graphical shell

providing the necessary configuration files and command-line switches to the underlying

HSPIPE modules. Under UNIX, a wide selection of such GUI scripting is available, and

creating a thin shell over the existing modules would not be difficult (assuming the interfaces

do not change).

7.2 Algorithmic improvements

The dissertation investigations assumed a complete, fixed system description specified as a

CDFG. One way to extend the capabilities of the HSPIPE environment is to provide greater

flexibility by implementing functional partitioning before the currently existing HSPIPE

steps.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FUTURE DEVELOPMENT 132

(Algorithm)

Simulation, verification

(VHDL) Functional manipulation

Structural manipulation

MCCDFG

CDFG

FCDFG

FCDFG
+IF

FCDFG
+IF

RTLD Source

Translation

Functional
partitioning

Context mapping

RTL Synthesis

Scheduling
Allocation

Interface
generator

Control synthesis

Technology .lib

Compiler

Code generator

Layout FPGA bitfiles Binaries

Figure 7-1: HSPIPE design process with functional partitioning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FUTURE DEVELOPMENT 133

7.3 Extending cost matrices to non-binary partitioning

Since the heuristics used in partitioning and clustering are not limited to binary parti­

tioning, the MCHLS design environment described in Chapter 3 may be used to generate

non-binary multiple-context environment systems. Possible systems with more than two ex­

ecution contexts may be multiprocessor systems (multiple software contexts), systems with

dedicated hardware coprocessors (multiple hardware) or systems with remote connectivity,

such as serial links (multiple hardware or software).

In non-binary systems, the transfer cost matrix (i.e., data transfer times, t(s,d,n)) is

N — by — N, where N is the number of execution contexts.

7.4 Customized implementations of elementary operations

Using an underlying module library (both hardware and software), it is possible to im­

plement the same functionality in several ways. Selecting a different implementation for

different elementary operations depending on complexity is a generally accepted method

in system-level synthesis (Section 3.2, p. 88). Instantiating a different version of the same

module for different complexities is a popular optimization technique in embedded systems,

where minimizing resource consumption is of extraordinary importance.

A similar technique may be applied in a slightly different way for operations of the

same size. Under certain circumstances, operations with the same complexity could be

implemented in different realizations, if important timing characteristics are not changed

by changing realizations. Since the traditional trade-off is between space (cost) and time,

some operations may be replaced by slower, cheaper implementations, if such a change does

not alter the global performance measures of the system.

As an example, multiplication of a given size may be implemented with a parallel mul­

tiplier or a serial one, which have extremely different characteristics. A straightforward

parallel multiplier operating on n bit operands requires 0 (n 2) silicon area and practically

0(1) time, while a serial multiplier multiplies in 0(n) time and occupies 0(n) area in sili­

con. If scheduling prescribes a suitable start time for a multiplier, a parallel implementation

may be replaced by a serial one, decreasing silicon requirements considerably.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FUTURE DEVELOPMENT 134

An example system is presented in Figure 7-2. Two multiplications are scheduled as

shown, while the original ASAP and ALAP times are the time frames illustrated. The

multipliers are implemented in parallel, with an execution time of t = 2 cycles. Since their

execution times overlap (in cycle to), allocation may not assign the two multiply operations

to the same multiplier, amd at least two multiplier units are needed in any implementation.

There might still be a possibility of reducing silicon requirements. Let’s assume that

direct successors do not start immediately after the start time of ê . For example, if adl of

e,’s direct successors axe started in their ALAP cycles, the output of e* may does not get

read in the time cycles shaded black, since its direct successors start processing no sooner

than cycle /, + 2. In this case, the parallel multiplier assigned to e* may be replaced with a

serial one (the alternate timing is shown in the rightmost column). A parallel multiplier of

given complexity c* executes in £, = 2 cycles, while a serial implementation requires 8 cycles

to finish. The serial multiplier, started in the same time cycle, still finishes in time under the

given time constraints. The difference between parallel and serial implementations is the

amount of time between stabilizing the output and actual usage (shown with time cycles

shaded with black). The serial implementation is obviously still fast enough, but offers

potential savings in silicon.

Changing the final implementation method for elementary operations may not occur

before final starting times are set, but must be known before hardware is actually synthe­

sized. These restrictions imply that technology assessment must occur after the allocation

phase, and the final decision on implementation must be passed on to the RTL synthe­

sizer. Since different implementations are required for elementary operations, technology

changes after allocation are not possible without an extensive module library. As the PIPE

module database does not currently contain the necessary different implementation meth­

ods for elementary operations, the HSPIPE system does not currently handle technology
assessment.

It must be noted that implementing a technology assessment step after allocation may

increase the length of the design process considerably. Since changing implementation

timings may influence the restart period of the system, every technology assessment step

must be immediately verified to detect violations of restart time constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FUTURE DEVELOPMENT 135

e | e i S|

*

s,

*

Si

*

Si

'l

----- -

------ —

h l i

Figure 7-2: Tradeoffs between different implementations of elementary operations

Since software systems are constrained by the capabilities of the underlying hardware,

similar tradeoffs are generally not available to low-level software modules.

7.5 Transfer cost functions for reconfigurable systems

Reconfigurable hardware, as an emerging technology in microelectronics systems, offers

hardware speeds at the flexibility of software.

Most reconfigurable systems are currently implemented as on-the-fly reloadable soft-

programmable gate-arTays. Such systems store their programs in a non-volatile (NV) mem­

ory much larger than their actual program RAM, and reload RAM contents from different

sections of NV memory if required. Once loaded, the program executes at a speed much

closer to hardware than that of software. Typical clock speeds of reloadable field pro­

grammable gate-arrays (FPGAs) are in the ramge of severad hundred MHz (as of early

1999). Such speeds, coupled with the available gate number of severad hundred thousand

logic gates in eaich paickage and the number of I/O lines (severad hundred per package)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FUTURE DEVELOPMENT 136

offer a computing power matching that of the majority of current microprocessors. Unlike

microprocessors, FPGAs execute instructions encoded in hardware, offering practically no

overhead on “instruction decoding” and execution.

Reprogrammable hardware relies on program loads from external storage, not unlike

“overlay” executables executing on traditional microprocessors. Every time an operation

requires data from NV storage, the system must halt execution as it transfers code from NV

memory to FPGA main memory. Since unexpected program reloads introduce unexpected

delays in algorithms, execution times may not be treated as uniform in the model of a

reconfigurable system. Introducing an approximation of load times increases the usefulness

of our model to include reconfigurable systems.

To represent the program loads, one must use an additional different cost function for

modeling hardware reconfiguration. Any vertex executing an operation which might require

reloading has to be tagged with a “reload” vertex. The function of a reload vertex is to

model the additional delay before executing the given elementary operation. The reload

vertex has no functionality if the currently loaded code context (ra where s stands for for

source context) and the required context (r d for d e s t in a t io n c o n te x t) are identical. A non­

functional reload vertex may be approximated with a zero execution time vertex (or simply

omitted) if the controller is advanced enough or the compiler detects the unneeded load

during optimization. In this case, the reload vertex is simply removed from the DFG. In

systems where every potential load requires checking, the non-functional reloads require a
small, typically fixed amount of time.

In practical terms, the code reload vertices may be modeled as delays, similarly to

non-reconfigurable MCHLS. (These delays are not to be placed in the system as buffers,

obviously, since the reload m ec h a n is m generates them.)

, for Tj = rd
t (n , r s , Td) =

f { n , T d), for Ts ^ rd
V

Lacking hands-on experience with practical reconfigurable systems, c re a t in g the neces­

sary libraries for code reload models is not possible as of May 11, 1999. For this reason,

research on reload timing has been delegated to future development. (Once the reload func-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FUTURE DEVELOPMENT 137

tions are available, implementing support for on-line reconfigurable hardware in HSPIPE

is trivial.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

G lossary

ALAP: As Soon As Possible. Scheduling term for the latest time cycle when an elementary

operation may start processing its input data. Delaying the start of data processing

after the ALAP time of an operation violates maximum system latency constraints.

Approxim ation Algorithm: polynomial-time solutions minimization or maximization

problems that have a guaranteed upper bound (lower bound for maximization prob­

lems) on the ratio between the worst case solution cost and the optimum solution

cost.

ASAP: As Soon As Possible. Scheduling term for the earliest time cycle when an elemen­

tary operation may start processing its input data. Processing may not start before

the ASAP cycle since data on operation inputs may not be stable before that time.

ASIC: Application-Specific Integrated Circuit. Custom integrated circuits designed to

solve specific problems. ASICs are generally more efficient than commercial, general-

purpose designs at the expense of extended development time and higher cost.

bitfile: binary file containing CLB configuration for soft-programmable FPGAs, down­

loaded to the FPGA upon power-up.

BME: Budapesti Muszaki Egyetem. Official Hungarian name of the Technical University

of Budapest, Hungary.

CAD: Computer-Aided Design.

CDFG: Control-Data-Flow Graph. A graph representation of data propagation inside a

system. Vertices are data operations, edges are data connections. The system contains

additional information so that control structures may be generated from the data-flow.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. GLOSSARY 139

CFG: Control-Flow Graph. A graph representation of control information inside a system.

CISC: Complex Instruction Set Computer. Microprocessor structure, where instructions

are executed through internal decoding (microcode). The performance penalty of in­

struction decoding slows down instruction execution. CISC microprocessors typically

contain a large number of addressing modes, low internal parallelism, and a small

number of internal registers. See also: RISC.

CLB: Configurable Logic Block. Individually programmable, basic functional units of

Xilinx FPGAs, capable of implementing small amounts of memory (implemented as

several small look-up tables), combinatorial logic, small multiplexer blocks, or combi­

nations thereof.

DAG: Directed Acyclic Graph. A directed graph without cycles, representing data trans­

fers and operations in HLS. Usually used as a synonym of DFG in system-level syn­

thesis context.

DFG: Data-Flow Graph. A graph representation of data propagation inside a system.

Graph vertices are data operations, edges represent data transfers.

EEOG: Extended Elementary Operation Graph. A DFG describing system functionality

as a set of non-elementary operations. EEOG operations may be decomposed to more

than one primitives of the underlying RTL library.

EEPROM : Electrically Erasable Programmable Read-Only Memory. Read-only memory

that may be reprogrammed on-line (without removing from the circuit) by applying

a sufficiently high programming voltage to it (much higher than regular operational

voltages). See also EPROM.

EOG: Elementary Operation Graph. A DFG describing system functionality as a set of

elementary operations. Unlike an EEOG, EOG vertices are implemented as a single

primitive of the underlying RTL library.

EPROM : Erasable Programmable Read-Only Memory. Read-only memory devices that

may be reprogrammed off-line with radiation of sufficient energy levels (typically ul­

traviolet illumination). See also EEPROM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. GLOSSARY 140

FPGA : Field-Programmable Gate-Array. A class of microelectronics devices containing

user-programmable logic blocks. FPGAs run their programmable submodules at hard­

ware speeds, while retaining the flexibility of software for programming. The two

main groups of FPGAs are permanently programmable and RAM-based (soft or re­

programmable) FPGAs.

GA: Gate-Array. Semi-custom hardware systems where general-purpose transistor arrays

are customized by generating custom metallization layers and connections over them.

HDL: Hardware Description Language. High-level programming languages and descrip­

tions used as sources to generate hardware systems.

HLS: High-Level Synthesis. Automated processes converting high-level problem descrip­

tions to low or medium-level hardware descriptions.

HSCD: Hardware-Software Co-Design.

HSPEPE: Hardwar e-Software (extensions to) PIPE. An extended design process, incorpo­

rating hardware-software codesign development to the hardware-oriented PIPE CAD

environment.

IP: Intellectual Property (block). Generic term for standalone off-the-shelf submodules

in synthesizable software/high-level descriptions (soft IP), technology-independent

netlists (firm IP) or technology-specific layouts (hard IP). IP blocks may be inte­

grated to custom designs through standardized interfaces. IP blocks typically imple­

ment standalone functions in a reusable, modular way.

Kernighan-Lin: an incremental, 0 {n 2) graph partitioning algorithm. Attempts to im­

prove system metrics by investigating the effect of local changes (vertex attribute

swaps) on the system cost function.

Kernighan-Lin-Fiduccia-M attheyses: an incremental, 0(n) or 0{n log n) graph parti­

tioning algorithm [FM82], extending the original work of Kemighan and Lin [KL70].

Attempts to improve system metrics by moving individual DFG vertices from one

execution context to another, and observing the effect of changes in the system cost
function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. GLOSSARY 141

KL: See Kemighan-Lin.

KLFM: See Kemighan-Lin-Fiduccia-Mattheyses.

Loop unrolling: A compiler optimization technique for loop constructs. Improves com­

piled code properties by replicating the instructions in a loop, reducing loop overhead,

and increasing potential instruction-level parallelism.

MCE: Multiple-Context Environment. Target systems where functional units are mapped

to several disjoint, architecturally or fundamentally different execution contexts neces­

sitating additional lower-level modules for communication between them. Examples

are hardware-software codesign (software, hardware) or multiprocessors (software,

software).

MCHLS: Multiple-Context High-Level Synthesis. Application of High-Level Synthesis

techniques to generate systems where the target technology includes hardware and

software components.

M CCDFG: Multiple-Context Control-Data-Flow Graph. A graph representation of data

in multiple-context environments. MCCDFGs represent problems where solutions are

generated in different executions contexts. Example execution content groups are

hardware and software, multiple hardware (processor-coprocessor), multiple software

(multiple CPUs, MEMD or SIMD) environments, or combinations thereof.

MIMD: Multiple Instruction, Multiple Data. Parallel, multiprocessor systems where pro­

cessors are processing different instruction and data streams. See also SIMD.

N P Complexity: (NP) a complexity class of languages (problems) where a polynomial­

time algorithm may verify the correctness of a solution.

N P-Com plete: a complexity class of languages (problems) which have NP complexity

and may be transformed to another problem of NP complexity using a polynomial

algorithm. NP-Complete problems are the hardest problems in the NP complexity
class.

N P-H ard: a complexity class of languages (problems) which may be transformed to an­

other problem of NP complexity using a polynomial algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. GLOSSARY 142

PIPE : A High-Level Synthesis CAD tool developed at BME (Technical University of Bu­

dapest, Hungary). The tool is capable of synthesizing pipelined hardware systems

(hence the name).

Polynomial-Time: a complexity class of languages (problems) where a solution of a prob­

lem of size n may be found in 0(nk) time, where A: is a constant. See also: NP-Hard,

NP-Complete.

Recursion: a class of functions (or procedures in programming) where results are produced

by the function using a value returned by repeated calls of the same function (for

subproblems of smaller sizes). See also: Recursion.

RISC: Reduced Instruction Set Computer. Collective name for microprocessors and micro­

controllers where the number of available instructions is very small. RISC instructions

are executed without internal decoding (microcode) and are faster than the microcode

of CISC processors. Most RISC devices heavily penalize external memory accesses,

feature a high degree of potential parallelism inside the processor, and have a high

number of internal registers. Efficient RISC code attempts to minimize the number

of external memory accesses. See also: CISC.

RTL: Register Transfer Level. An intermediate-level description of hardware systems.

RTL descriptions capture system properties as a set of registers, basic arithmetic

units (ALUs), control flow (transfer sequences and conditional execution), intercon­

nect network, elementary binary functions, and system hierarchy.

SIMD: Single Instruction, Multiple Data. Parallel, multiprocessor systems where multiple

processors are processing data streams, while executing the same instructions.

SLS: System-Level Synthesis. The procedure of generating complete systems as an inte­

grated design process, as opposed to non-integrated, lower-level procedures. Used as

a synonym of Hardwar e-Software Co-Design in this dissertation.

SOG: Sea of Gates. A variant for Gate-Array (GA) semi-custom hardware technology,

featuring two-dimensional arrays of pre-fabricated transistors with custom intercon­

nects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. GLOSSARY 143

Spill code: auxiliary code sections in software, inserted after the register requirements of

a given code section become available. Spill code may be necessary in software that

requires more CPU registers than the available amount. Spill code is inserted after

register allocation to save and restore CPU register contents and free registers for

temporary storage.

Verilog: once proprietary, currently standardized (open) HDL. Similar to VHDL function­

ality, offers better properties at hardware integration and performs worse in high-level

and mixed-level system descriptions. See also: VHDL.

VHDL: VHSIC (Very High Speed Integrated Circuit) HDL. A standardized HDL with

different levels of abstraction, usable both for simulations and for direct hardware

synthesis. See also: Verilog.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[ABIC+9

[AHK96]

[AJ97]

[AJV]

[AL98]

[ASU88]

[Ata98]

[AV98]

[Bal84]

Mohamed Abid. T. Ben Ismail, A. Changuel, C.A. Calderram, M. Romdhani,

G.F. Marchioro. J.M. Daveau, and Ahmed A. Jerraya. A hardware-software

co-design methodology for design of embedded systems. Integrated Computer-

Aided Engineering, pages 69-83, March 1998.

Charles J. Albert. Lars W. Hagen, and Andrew B. Kahng. A hybrid multi­

level/genetic approach for circuit partitioning. In Proc. of the ACM SIGDA

Physical Design Workshop, pages 100-105, April 1996.

Mohamed Abid and Ahmed Jerraya. Towards hardware-software co-design: A

case study of robot arm controller. Journal of Microelectronics System Integra­

tion, 5:167-182, 1997.

Peter Arato, Istvan Jankovits, and Tamas Visegrady. High-Level Synthesis

(draft).

Cleve Ashcraft and Joseph W. H. Liu. Applications of Dulmage-Mendelsohn

decomposition and network flow to graph bisection improvement. SIAM Journal

on Matrix Analysis and Applications, pages 325-354, 1998.

Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers, Principles, and Tools.

Addison-Wesley. Reading, MA, second edition, 1988.

Mikhail J. Atallah, editor. Algorithms and Theory of Computation Handbook.

CRC Press, 1998.

Peter Arato and Tamas Visegrady. Effective graph generation from VHDL

structures. Microelectronics Journal, 29, March 1998.

Krishnamurthy Balakrishnan. An improved min-cut algorithm for partitioning

VLSI networks. IEEE Transactions on Computers, pages 438-446, May 1984.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 145

[BFS98] Alessandro Balboni. William Fomaciari, and Donatella Sciuto. Partitioning of

hardware-software embedded systems: A metrics-based approach. Integrated

Computer-Aided Engineering. March 1998.

[BML97] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee. Optimized

software synthesis for synchronous dataflow. In Proc. of ASAP 97, March 1997.

[BML98] Shuvra S. Bhattacharyya. Praveen K. Murthy. and Edward A. Lee. Synthesis of

embedded software from synchronous dataflow specifications. Journal of VLSI
Signal Processing, 1998.

[BR95] Vasanth Bala and Norman Rubin. Efficient instruction scheduling using finite

state automata. In Proc. of the 28th Annual International Symposium on Mi­

cro Architecture, November 1995.

[BR96] Vaughn Betz and Jonathan Rose. Directional bias and non-uniformity in FPGA

global routing architectures. In Proc. of the 1996 IEEE/ACM international

conference on Computer-Aided Design, pages 652-659. 1996.

[Bro95] Frederick P. Brooks. The mythical man-month. Addison-Wesley, Reading, MA,

anniversary edition. October 1995.

[BS98] Giaocomo Buoanno and Mariagiovanna Sami. Co-testing: Granting testability

in a codesign environment. Integrated Computer-Aided Engineering, March

1998.

[CLR90] Thomas Cormen. Charles Leierson, and Ronald Rivest. Introduction to Algo­

rithms. MIT Press, Cambridge, MA, 1990.

[Cor96] IBM Corporation. PPC403GC Embedded Controller User’s Manual. IBM Cor­
poration, second edition, July 1996. •

[DD96a] Shantanu Dutt and Wenyong Deng. A probability-based approach to VLSI

circuit partitioning. In Proc. of the Design Automation Conference, 1996.

[DD96b] Shantanu Dutt and Wenyong Deng. VLSI circuit partitioning by cluster-removal

using iterative improvement techniques. In Proc. of the IEEE/ACM Interna­
tional Conference on CAD Systems, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 146

[Dew97] Allen Dewey. Analysis and Design of Digital Systems with VHDL. PWS Pub­

lishing, Boston, MA, 1997.

[DK91] Nikil D. Dutt and James R. Kipps. Bridging high-level synthesis to RTL tech­

nology libraries. In Proc. of the 28th Design Automation Conference, pages

526-529, 1991.

[DMG92] Giovanni De Micheli and Rajesh Gupta. System-level synthesis using re­

programmable components. In Proc. of the European Conference on Design

Automation Conference, 1992.

[EH92] Ralf Ernst and J. Henkel. Hard ware/soft ware codesign of embedded controllers

based on hardware extraction. In Handouts of the 1st International Workshop

on Hardware/Software Codesign, 1992.

[Ele98] Electronic Frontier Foundation. Cracking DES - Secrets of Encryption Re­

search, Wiretap Politics & Chip Design. O'Reilly 8c Associates. Cambridge.

MA, July 1998.

[ET98] Michael Eisenring and Jurgen Teich. Domain-specific interface generation from

dataflow specifications. In Proc. of Codes/CASHE’98, the 6th Int. Workshop

on Hardware/Software Codesign, pages 43-47, March 1998.

[ETT98] Michael Eisenring, Jurgen Teich, and Lothar Thiele. Rapid prototyping of

dataflow programs on hardware/software architectures. In Proc. of the Hawaii

Int. Conf. on Syst. Sci., pages 187-196, January 1998.

[FM82] Charles M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for im­

proving network partitions. In Proc. of the ACM/IEEE Design Automation

Conference, 1982.

[Fuh91] Thomas E. Fuhrman. Industrial extensions to university high level synthesis

tools: Making it work in the real world. In Proc. of the 28th Design Automation

Conference, pages 520-525, 1991.

[Gaj88] Daniel Gajski, editor. Silicon Compilation. Addison-Wesley, Reading, MA,

1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 147

[GDZ98] Daniel D. Gajski, Raimer Doemer, and Jianwen Zhu. IP-centric methodology

and design with the SpecC language. In NATO ASI System-Level Synthesis,
August 1998.

[GJ79] Michael R. Gaxey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[Gra66] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System

Technical Journal. 1966.

[Gup93] Rajesh Kumar Gupta. Co-Synthesis of Hardware and Software for Digital Em­

bedded Systems. PhD thesis, Stanford University. December 1993.

[GVNG98] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Spec-

Syn: An environment supporting the specify-explore-refine paradigm for hard­

ware/software system design. Transactions on VLSI Systems, 6:84-100, 1998.

[GW96] Ian Goldberg and David Wagner. Architectural considerations for cryptoana-

lytic hardware. Technical report. Department of Computer Science, University

of California at Berkeley, 1996.

[HB95a] Scott Hauck and Gateano Borriello. An evaluation of bipartitioning techniques.

In Proc. of the Chapel Hill Conference on Advanced Research in VLSI. 1995.

[HB95b] Scott Hauck and Gateano Borriello. Logic partition ordering for multi-FPGA

systems. In Proc. of the International Symposium on Field-Programmable Gate

Arrays, 1995.

[HBE94] Scott Hauck, Gateano Borriello, and Carl Ebeling. Mesh routing topologies for

FPGA arrays. In Proc. of the 1994 IEEE/ACM international conference on

Computer-Aided Design, 1994.

[Hea93] Thomas Heath. Automating the compilation of software into hardware. Mas­

ter’s thesis, University of Oxford, September 1993.

[HKed] Bruce Hendrickson and Tamara G. Kolda. Graph partition models for parallel

computing. Parallel Computing, (submitted).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 148

[HLYC91] C.-T. Hwang, J.-H. Lee, and Hsu Y.-C. A formal approach to the scheduling

problem in high-level synthesis. IEEE Transations on Computer Aided Design,
April 1991.

[Hoc97] Dorit S. Hochbaum. editor. Approximation Algorithms for NP-Hard Problems.

PWS Publishing, Boston. MA, 1997.

[HX98] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing : Technology, Archi­

tecture, Programming. McGraw-Hill, January 1998.

[IEE88] IEEE. IEEE Standard VHDL Reference Manual. IEEE, 1988.

[Jha95] Pradi Kumar Jha. High-Level Mapping for RT Components. PhD thesis. Uni­

versity of California. Irvine, 1995.

[JRV+98] Ahmed A. Jerraya. M. Romdhani, C. Valderrama, Ph. Le Marrec, F. Hessel,

G. Marchioro, and J. Daveau. Models and languages for system-level specifica­

tion and design. In NATO ASI on System-Level Synthesis, Proc., 1998.

[Kal95] Asawaree Kalavade. System Level Codesign of Mixed Hardware-Software Sys­

tems. PhD thesis. University of California, Berkeley, September 1995.

[Ker93] Daniel R. Kerns. Balanced scheduling: instruction scheduling when memory

latency is uncertain. Conference on Programming Language Design and Imple­

mentation. July 1993.

[KK95] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme

for partitioning irregular graphs. Technical report, Department of Computer

Science, University of Minnesota, 1995.

[KK97] George Karypis and Vipin Kumar. Analysis of multilevel graph partitioning.

Technical report. Department of Computer Science, University of Minnesota,

1997.

[KL70] Brian W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

electrical circuits. Bell System Technical Journal, 49:291-307, February 1970.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 149

[KL97]

[Knu95}

[Knu99]

[Kun82]

[Las93]

[LE95]

[LH94]

[LLSV98]

[LSVS98]

[LY96]

[ML97]

Asawaree Kalavade and Edward A. Lee. The extended partitioning prob­

lem: Hardware/software mapping, scheduling, and implementation-bin selec­

tion. Journal of Design Automation for Embedded Systems, 2:125-163, 1997.

Peter Voigt Knudsen. Fine-grain partitioning in codesign. Master's thesis.

Technical University of Denmark, Lyngby, 1995.

Donald E. Knuth. MMIX. Research project of the update to "The Art of

Computer Programming”. February 1999.

H. T. Kung. Why systolic architectures? IEEE Computer, 15:37-46, January

1982.

Gregor von Laszewski. A collection of graph partitioning algorithms. Technical

report, Northeast Parallel Architectures Center, Syracuse University, May 1993.

Jack L. Lo and Susan J. Eggers. Improving balanced scheduling with com­

piler optimizations that increase instruction-level parallelism. In Conference on

Programming Language Design and Implementation, June 1995.

Robert Leland and Bruce Hendrickson. An empirical study of static load bal­

ancing algorithms. In Proc. of SHPCC '9f. 1994.

Jie Liu, Marcello Lajolo. and Alberto Sangiovanni-Vincentelli. Software timing

analysis using hw/sw cosimulation and instruction set simulator. Proc. of the

Sixth International Workshop on Hardware/Software Codesign, pages 65-70,

March 1998.

Luciano Lavagno. Sangiovanni-Vincentelli, and Ellen M. Sentovich. Models of

computation for system design. In NATO ASI System-Level Synthesis, August

1998.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison-Wesley. Reading, MA, September 1996.

Praveen K. Murphy and Edward A. Lee. Optimizing synchronization in mul­

tiprocessor dsp systems. IEEE Transactions on Signal Processing, 45, June
1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 150

[MW96] Wai-Kei Mak and D. F. Wong. Minimum replication min-cut partitioning. In

Proc. of the 1996 IEEE/ACM International Conference on Computer-Aided

Design, 1996.

[NP95a] Cindy Norris and Lori L. Pollock. An experimental study of several cooperative

register allocation and instruction scheduling strategies. In MICRO-2, pages

28-33, November 1995.

[NP95b] Cindy Norris and Lori L. Pollock. A scheduler-sensitive global register allocator.

In Proc. of Supercomputing r93. November 1995.

[NP98] Cindy Norris and Lori L. Pollock. Experiences with cooperating register allo­

cation and instruction scheduling. International Journal on Parallel Program­

ming, 26:241-284. September 1998.

[OKD97] Seong Young Ohm, Fadi J. Kurdahi. and Nikil D. Dutt. A unified lower bound

estimation technique for high-level synthesis. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, April 1997.

[OR94] Chao-Wei Ou and Sanjay Ranka. Parallel incremental graph partitioning. In

Proc. of Supercomputing ’94, August 1994.

[Pag94] Ian Page. Automatic design and implementation of microprocessors. In Proc.

of WoTUG (World occam and Transputer User Group) 94, 1994.

[Pag95] Ian Page. Constructing hardware-software systems from a single description.

Technical report. Oxford Hardware Compilation Research Group, July 1995.

[PB96] Pradeep Prabhakaran and Prithviraj Banerjee. Parallel algorithms for force

directed scheduling of flattened and hierarchical signal flow graphs. In Proc. of

the 1996 International Conference on Computer Design, 1996.

[PD96] Robert Preis and Ralf Diekmann. The PARTY Partitioning Library User Guide.

Universitat Padernborn, Germany, September 1996.

[Pin96] Randall D. Pinkett. Hardware/software co-design and digital signal processing.

Master’s thesis, University of Oxford, May 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 151

[PK89] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioural

synthesis of ASICs. IEEE Transations on Computer Aided Design, 1989.

[Qui94] Michael J. Quinn. Parallel Computing, Theory and Practice. McGraw-Hill.

New York, 1994.

[Ros98] Wolfgang Rosenstiel. Rapid prototyping, emulation and hardware-software co­

debugging. In NATO AS I on System-Level Synthesis, Proc., 1998.

[Sch95] Bruce Schneier. Applied Cyprography. John Wiley Sc Sons, Arlington. TX.

second, revised edition, December 1995.

[Sta98] William Stallings. Cryptography and Network Security. Prentice Hall. Upper

Saddle River. NJ. second edition. July 1998.

[SW95] Richard Sites and Richard Witek. Alpha AXP Architecture. Reference Manual.

Digital Press. Newton. MA, second edition, 1995.

[Tei97] Jurgen Teich. Digitale Hardware/Software-Systeme. Springer, 1997.

[TV97] Linus Tauro and Frank Vahid. Message-based hardware/software communi­

cation in HDL/C environments. In Proc. of the Asia-Pacific Conference on

Hardware Description Languages, August 1997.

[Vah97a] Frank Vahid. Modifying min-cut for hardware and software functional partition­

ing. In Proc. of the International Workshop on Hardware/Software Codesign.

pages 43-48, March 1997.

[Vah97b] Frank Vahid. Port calling: A transformation for reducing I/O during multi­

package functional partitioning. In International Symposium on System Syn­

thesis, September 1997.

[Vah99] Frank Vahid. Procedure cloning: A transformation for improved system-level

functional partitioning. ACM Transactions on Design Automation of Electronic

Systems, 1999.

[VG92] Frank Vahid and Daniel D. Gajski. Specification partitioning for system design.

In Proc. of the 29th Design Automation Conference, September 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 152

[VG95a] Frank Vahid and Daniel D. Gajski. Closeness metrics for system-level functional

partitioning. In Proc. of the European Design Automation Conference, pages

328—333. September 1995.

[VG95b] Frank Vahid and Daniel D. Gajski. Incremental hardware estimation during

hardware/software functional partitioning. IEEE Transactions on VLSI Sys­

tems, September 1995.

[VG98] Frank Vahid and Tony Givargis. Incorporating cores into system-level specifi­

cation. In International Symposium on System Synthesis, December 1998.

[VG99] Frank Vahid and Tony Givargis. The case for a Configure-and-Execute

paradigm. In Proc. of the International Workshop on Hardware/Software Code­

sign, 1999.

[VH98] John Villasenor and Brad Hutchings. The flexibility of configurable computing.

IEEE Signal Processing Magazine, 15. September 1998.

[VNG95] Frank Vahid. Sanjiv Narayan, and Daniel D. Gajski. SpecCharts: A VHDL

front end for embedded systems. IEEE Transactions on CAD. 14:694-706.

1995.

[VNG97] Frank Vahid. Sanjiv Narayan. and Daniel D. Gajski. Extending the

Kernighan/Lin heuristic for hardware and software functional partitioning.

Kluwer Journal on Design Automation of Embedded Systems, 2:237-261, March

1997.

[VT97J Frank Vahid and Linus Tauro. An object-oriented communication library for

hardware-software codesign. In International Workshop on Hardware/Software

Codesign, pages 81-87, March 1997.

[WCS96] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.

O’Reilly, second edition, September 1996.

[WE93] Neil E. Weste and Kamran Eshraghian. Principles of CMOS VLSI design.

Addison-Wesley. Reading, MA, second, revised edition, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 153

[Wir98] Niklaus Wirth. Hardware compilation: T r a n s la t in g programs into circuits.

IEEE Computer. June 1998.

[YMS+98] James Shin Young. Josh MacDonald, Michael Shilman. Abdallah Tabbara. Paul

Hilfinger, and A. Richard Newton. The JavaTime approach to mixed hardware-

software system design. In NATO ASI System-Level Synthesis. August 1998.

[YW94] H. Yang and D. F. VVong. Efficient network flow based min-cut balanced

partitioning. In Proc. of the 1994 IEEE/ACM international conference on

Computer-Aided Design, pages 50-55, November 1994.

[ZEK+98] D. Ziegenbein, Ralf Ernst, Richter K., Jurgen Teich, and Lothar Thiele. Com­

bining multiple models of computation for scheduling and allocation. In Proc.

of the 6th International Workshop on Hardware/Software Codesign, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Effective Graph G eneration from

VH DL D escriptions

This chapter originally appeared as [AV98]. It is reproduced here partially to

complement some of the dissertation discussions on generating useful elementary

operation graphs from higher-level descriptions.

Key words

Scheduling, data path description, data dependency graph, high-level synthesis.

Abstract

The transformation between a problem description and a data dependency graph is a step

which results in a significant reduction of freedom during high-level synthesis. This paper

presents an evaluation of different graph generation methods and makes a suggestion on the

methods to be employed in the solution of such a problem.

High-level synthesis takes its input written in an artificial la n g u a g e , i.e. VHDL or one of

several similar languages [IEE88]. These descriptions take the form of functions which must

be transformed to a hardware realization using the steps of initial allocation, s c h e d u l in g and

allocation.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL

A .l D ata dependency graph

155

Problems that are given as functions may be transformed to data dependency graphs which

feature operations as vertices in the graph and direct data transfers as edges. The structure

(or layout) of this graph affects the efficiency of scheduling since it sets the time interval

in which an operation may be moved (also known as operation time frame). The length of

the time frame of an operation is equal to the (operation) mobility, with a higher mobility

belonging to an operation which may usually be scheduled yielding better results.

Note that layout is used as a description of graph structure and not in the sense which

is encountered in high-level synthesis.

It is usually better to postpone the limitations to the stage of scheduling. Otherwise the

scheduling step may not influence the overall efficiency of the system since the scheduler

gets the graph in a fixed state (without mobility) or in such a condition that the decreased

mobility of operations results in an infeasible result.

The elementary operations in the graph may be described as

• every operation has one or two data inputs (not counting control signals).

We investigate binary operations since a unary operation may be neglected from

the data dependency graph without changing the topology of the system, if it is

replaced with a suitable, topologically equivalent single-input, single-output vertex.

This single-input, single-output vertex may be modeled as a timing constraint between

the vertices connecting its predecessors with its successors.

Note that binary is now used in the mathematical sense, i.e. an operation having two

operands.

• every operation has exactly one data output.

This single output may be connected to more than one of the operations, but it must

be a single value.

Since scheduling algorithms affect the graph by inserting buffers as additional vertices

between pairs of edges , original operations are usually referred to as functional elements.

Synchronization buffers (i.e. buffers that guarantee that data arrives to different inputs of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 156

operations in a suitable time point) are not considered to be functional elements. These

buffers are to be placed into the graph when the relative position of the elementary opera­

tions is fixed and so are not important at the stage of graph generation.

Buffers are inserted the graph to increase the data propagation time of a given edge

(and to provide storage between slow operations) and are generally referred to as delay. As

mentioned before, delay differs from functional elements as it is a unary operation.

The properties of the graph are described using two numeric values:

dep th refers to the number of levels a graph has, i.e. the maximum number of sequentially

executed functional elements. A graph with a greater depth requires more time to

calculate its output values (i.e. has a higher latency).

w idth describes the maximum number of simultaneously executing operations in a graph.

It is useful to use width both as a time function and as a parameter of the whole graph.

As a time function, the width belonging to cycle t (W(j, t)) is equal to the number

of type j functional elements executing in that cycle. As a parameter, W{j) refers

to the m a x im u m of W (j , t) for every cycle during the data propagation in the graph.

To build a system with a width of W(j), one must build a sufficient number of type

j processors so that there are always enough processors to start all the operations

scheduled to a given cycle. Therefore the number of processors (M{ j)) and graph

width must be so related that

max W(j, t) = W(j) < M(j)

for every processor type.

For our investigations we take a simple function that evaluates the sum

S = a + b + c + d + e + f + g + h

This function is special since its operations are commutative and the operations work

on data which are identical in nature (i.e. are composed the same way). This function

is not a very special case since most types of the filters have the same structure except

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 157

for the composition of the operation inputs [2]. The only significant difference is that this

simplified model does not contain multiple operation types, while a filter usually contains

graph vertices which are not elementary in nature: a FIR filter, for example, resembles the

previous structure in such a way that (assuming a 8th order filter)

■Sit = w k * X k + W l c - 1 * X k - l -HVk- 2 * X k - 2

+ W k - 3 * * k - 3 +U>fc-4 * X k - A + W k - 5 * Xjfc-5

+ w k - 6 * X k - 6 + W k - 7 * X k - 7

Should a structure be introduced to the system which performs the following operation:

f (w,k) = xjt * wk

, the graph system graph would be equivalent to the following:

S k = f (W k , X k) + f (W k - l , X k - l) + f { w k - 2 , X k - 2)

+ f (W k - 3 j X k - 3) Jr f { w k - A , X k - A) + f { w k - S , X k - 5)

+ /(u>fc_6 ,X fc_6) + / (W k - 7, X k - 7)

This form of the problem is suitable for graph generation since it contains the required

types of operations. The / functions must be realized in hardware (see Figure A-9.).

The number of functional elements in the graph is denoted by N — 1, which means

that this problem type requires N operands. An elementary operation requires T cycles to

produce its output after its inputs are stable.

A . 1.1 B inary stru ctu res

One of the possible extreme structures of the graphs belonging to this function is the binary

structure, composed in a way that data propagates in a binary tree. (Figure A-l.) Another

possible name of this structure is the triangular layout. Since two is the maximum of

data inputs for an operation, the binary structure is the global o p t im u m if depth is to be

optimized (i.e., it is impossible to find a structure with a lower latency than the binary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 158

layout if the number of commutative operations is the same). Since a binary tree has

 ̂= riog 2n]

levels, the latency of the graph may not be lower than V - T.

The width of a binary layout is equal to 2V. The number of required processors is

decreasing as data enters deeper levels of the graph since two operations supply the inputs

of every operation in the graph. This results in an increasing number of unused processors

as time increases.

Figure A-2. presents the utilization in a binary structure which has four levels and so a

width of 8. The system is built with the same number of processors. Time is measured in

the steps of T, so the utilization chart has one column for every processor and every new

row means that another T time cycles have passed. We assume that no buffers axe inserted

between elementary operations.

The first row means the time between time cycles 0 and T — 1. During this period the

first 8 elementary operations process their input data. After time cycle T data enters the

operations which axe directly connected to outputs of the previously utilized operations.

Since every output is connected to one input and every operation has 2 inputs, the number

of utilized operations is decreased to 4 in cycle T. After cycle 2 • T the 4 operations

finalize their outputs and the next level of operations begins executing. It is clear that this

utilization is an exponentially decreasing function of time and so its width is determined

by the number of operations on the entry level.

If the binary structure is described in mathematical notation using brackets, the graph

presented in Figure A-l. is equivalent to the following organization:

A .1.2 Linear stru ctu res

Another extreme structure type is the linear structure, composed in a way that functional

elements form a linear branch. (Figure A-3-) Since no pair of operations executes simulta-

S = ({a + 6) + (c + d)) + ((e + /) + (g + h))
-»X.

■ V X .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL

Level 3

Level 2

Level 1

Figure A-l: Binary structure (Triangular layout)

C = 3 I d te

Figure A-2: Utilization of a binary structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 160

i Level 4

SPlSLevel 3

Level 2

Level 1

Figure A-3: Linear structure (Rectangular layout)

neously, this organization offers more chance for allocation than a binary layout.

The width of a linear structure is uniform 1. Since this structure requires less processors

than a binary layout, it is generally cheaper. The disadvantage of the linear graph is the

increased latency: since N operations must execute in a linear way, the result may not

appear before N ■ T cycles after the system input appears. This approach does not deal

with buffers inserted to the system, which increases this time.

Should buffers be inserted to the graph, the most probable way is to insert one buffer

between adjacent functional elements. This step may be a result of obtaining the desired

restart time, when functional elements have a high transfer score and must be separated

using buffers. This increases the linear latency (LL) to

LL = N - T + {N — 1)

The latency of a binary structure under similar conditions is extended to

LB = T • riog2IV] + (flog2 N] — 1)

as the decreased depth reduces the number of connections between functional elements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 161

Level 2

Level 1

scheduled binary
W(l)=l

Synchronisation buffers (j=2) W(2)=2

Figure A-4: Transition between binary and linear layout

Level 3

Level 2

Level 1

linear
W(l)=l
W(2)=2

A linear graph structure is the equivalent to the following bracket pairs:

S = (((Ma + b) +c) +d) +e) + f) +g) + h)

A . 1.3 Transitions b etw een binary and linear stru ctu res

Should a binary structure be scheduled using an algorithm capable of deeding with a hard­

ware constraint, the resulting structure is an extended version of the binary triangle (an

intermediate structure). As an extreme value, a maximum of one may be prescribed for

graph width, which is equivalent to the requirement of the linear structure. The result of

this scheduling is equivalent to the linear layout if we consider the width of the graph and

the number of utilized buffers. (See Figure A-4.)

Since the binary structure may be extended to an equivalent of the linear structure,

it is a useful starting point for feasibility calculations. Considering the m a x im a l hardware

requirements of a binary layout, a balance must be maintained between latency and graph
width.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 162

Level 5

Level 4

Level 3

Level 2

Level 1

Delay
Figure A-5: Binary structure produced under a width limit

A. 1.4 F ixed-w idth binary structures

A useful method to improve the properties of the binary layout is to order the operations

in a binary tree with an additional condition for the maximum of the simultaneously used

processors. This structure may be produced by an algorithm similar to list scheduling

[PK89] (with a hardware constraint).

The example given in Figure A-5. started off as a binary layout and was treated with

an algorithm similar to list scheduling. Since a width maximum of 3 was prescribed for

the system, some of the operations (marked with a star) were moved in the graph (buffers

were inserted after them) so that the number of simultaneously utilized processors was kept

below 4. This step required the operations to be separated from their successors, which is

indicated with the delay elements. Since the binary structure is symmetrical by nature, the

operations to be moved could be selected in any way; the operations marked with a star

were chosen because they exceeded the hardware limit (as it was checked from left to right).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 163

Three methods are available for the generation of this structure. The first method

generates the binary tree starting from the root (the last element), delaying any operations

which would violate the hardware limit. Another possible method is to generate a full

binary tree and move the operations starting from the operations which are nearest to the

system inputs (leaves of the tree).

The third possible algorithm to generate a fixed width binary structure is to proceed

with the generation of the binary tree up to the point where the width is equal to the width

limit. Linear structures may be appended to these points so that the width is not increased
further.

This algorithm may be implemented as a special type of list scheduling. Some of the

list-based scheduling methods cure known to be able to schedule a graph in such a way that

it stays under hardware limits.

A .2 Generation of intermediate structures using list schedul­

ing

List scheduling methods deal with a graph in such a way that a priority function is defined

for operations. Time domain is scanned in increasing order, with suitable operations being

started in the current operation, the rest is delayed. Priority function is based on the time

frame of the operation, with the highest priorities being awarded to operations with the

lowest mobilities. In a special form of list scheduling, an additional constraint may be

prescribed. This constraint is the external hardware limit. Priority functions are adjusted

to penalize a scheduling plan which would violate hardware constraints.

To generate a graph, the list scheduler has to be ran from the root to the leaves, i.e. in

a way which is similar to an upside down time scale (or adapt a list scheduler which prefers

the ALAP schedule over the ASAP placement). The functional elements are to be placed

on every possible edge in the first stage (during the generation of the binary section) and

directly following previously placed functional elements (during the generation of the linear

branches). This list scheduling method is easily implemented with the introduction of a

suitable cost function (which prefers a direct connection between functional elements to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 164

functional element following a synchronization delay).

A.3 Properties of the intermediate structure

A fixed-width binary structure fulfilling the width constraint may be generated in the fol­

lowing way:

• Generate the necessary

number of binary levels. These levels are completely filled with operations except for

the last one (the one with the highest number of operations) which may be incomplete

(i.e. with some operations missing). The condition to achieve this is:

2a - 2 < w < 2a_1

where A is the number of binary levels and W is the desired graph width. The

conditions imply that the binary tree is deep enough so that it has a suitable number

of operations at its last level and it is not deeper than needed (i.e. the number of

operations on the second lowest level is less than W). On Figure A-6., a partial binary

graph is generated for W = 3 (which implies A = 3).

• The last binary level consists of W operations. The remaining

2A~l - W

vertices are not filled with functional elements; these connections are used as direct

system inputs. This organization offers a total of

2 * W + 2A~l - W

data inputs since the W vertices have two inputs each, while the rest of the connections

is single (see Figure A-7.a.). Should linear branches be appended to the suitable

vertices, ono of the data inputs would be occupied. Since the number of suitable

vertices is W, this means that the number of data inputs of such an extended binary

structure is 2A~l as the previous value is decreased by is W .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 165

Linear branches
are bnflt on top nodes

Figure A-6: Generating a fixed-width binary structure

• Linear branches are appended to the operations of the last level of the binary structure,

where one input of these operations is connected to the output of the linear branch,

the other is a system input. A linear structure with B levels calculates the result of B

operations, and so it takes B+l system inputs. The depth of the linear branches must

be chosen so that the minimum and maximum values do not differ with more than

one (since this results in the lowest latency). To find B, one must solve the following

inequality (after finding A based on W):

W * (B + 1) + 2A~l > N

(the first term counts the number of linear system inputs, the second the data inputs

of the last level of the binary structure. See Figure A-7.)

This B is the maximum of the linear depth values. It is also possible to add linear

branches with a lower number of operations (B-l). The number of these branches is

found as W * (B + 1) + 2A~l — N since this decrease guarantees that the structure
offers a total of N data inputs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 166

A .3.1 Capacity calculation for th e structure

The generated graph with a width of W which may be used to perform identical com­

mutative operations for N inputs, N — 1 identical functional elements are needed. The

intermediate structure should be generated in such a way that

• the number of binary levels is A , where

2a~2 < W < 2A~ l

• level A of the binary section is not necessarily filled with functional elements (where

level 1 denotes the root level). Only W functional elements are put on level A. (The

last level is filled if W is an integer power of 2.) This structure stays under the width

limit since the width of the levels (which is strictly monotonously increasing) stays

under W + 1 (reaching W at its maximum).

• linear branches are built on the functional elements of level A. Since the number of

branches is equal to IV, width constraints are not violated. The linear layout does not

increase the width further. The total number of arguments an intermediate structure

may take is the following: A possible algorithm to generate a fixed width binary

structure is to proceed with the generation of the binary tree up to the point where

the width is equal to the width limit. Linear structures may be appended to these

points so that the width is not increased further.

Figure A-7 is a graph where W = 3, A = 3 (implied) and B = 3 (exactly). The system

resembles a FIR filter with N = 16.

A.4 Restrictions

This method is useful only in systems where the operations are commutative. This is the

case with most of the filters, which are often encountered as high-level synthesis targets,

both in benchmarks and in realization. The operations may be non-elementary, for example

a FIR filter features two operations (a product and a sum) in each of the vertices. It is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 167

a.
Arguments of
a biliary tree

Linear brandies
process B+l arguments

each

Data input
Internal connection

Each linear branch
occupies one data

input of a binary node

Figure A-7: Data connections of a structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. EFFECTIVE GRAPH GENERATION FROM VHDL 168

b.
fim rtunw l A m a h

(2ad section)

x(k) x(k-7) Way(^«£tiM)

Figure A-8: A possible graph for digital convolution

Figure A-9: Functional elements in a FIR filter

therefore feasible to schedule the internals after finding a suitable layout. As an example, the

digital convolution (8th order version) may be altered so that it has the necessary delay at
its inputs, see Figure A-8. The second part of the graph is then suitable for generation with

this method, since its graph is then simila r to the FIR algorithm in structure. (Figure A-8.b.

shows the functional elements of a graph of a 16th order FIR filter.)

The functional elements are the same as in the FIR filter, since they consist of multiply-

add pairs. In this case, an optimizable layout was generated after applying intuition. There

are no known graph-generation algorithms which may be used in a general case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

T he D esign Tool P IP E

This chapter originally appeared as a Chapter of [AJV]. It is reproduced here

partially to complement some of the dissertation investigations, especially about

implementation details. It is also useful to understand the capabilities of the

original PIPE environment (before multiple-context environment extensions).

PIPE was developed at the Department of Process Control (currently Department of
Control Engineering and Information Technology), Technical University of Budapest, as an
educational software tool for designing pipeline data flow devices.

PIPE uses an elementary operations graph (EOG) where the vertices of the graph denote
elementary operations and the edges their data-connections.

Given a predefined restarting period PIPE—if necessary—inserts buffers to meet this
period. Synchronization buffers are also inserted.

PIPE generates different variations of the graph by moving the synchronization buffers.
For every variation allocation is performed: elementary operations, which are not working
concurrently may be combined into one unit. PIPE tries to find these units.

The software itself is written in C++ and rims under several variations of the UNIX
operating system.

B .l Usage

The general format of the invocation of the PIPE program is:

pipe [-s] [-v] [-b] [-Xd] [-p graph] re s ta r t [input_fH e]

The name of the program is pipe. This should be in a directory which is accessible by the
users (it is in their search path). Some run time parameters may be changed by optional
command line switches following the program name. Their order is not important. Table B.l
summarizes them.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. THE DESIGN TOOL PIPE 170

Switch Explanation
-s The scheduling is not tight. Care should be taken when using

this switch as it may increase the number of variation by several
magnitudes.

-v Verbose mode. During the processing additional information is
displayed. This includes the number of variations, number, place
and types of buffers inserted and the current best graph.

-b Buffers are normally excluded from allocation. This switch
forces buffers to be allocated. This may lead to exponentially
increased processing times.

-Xd Activate d debug option. Only valid if pipe is compiled with
debugging enabled. More than one debug option may be given,
to list currently available options use -X-.

-p graph Dump the input graph to a file named graph after inserting
buffers. Useful for debugging.

Table B.l: PIPE command-line switches

The only compulsory command line parameter is the restart time which should follow
the switches if any. This should be given as an integer greater than 2.

The last parameter is the name of the input file. If none is given, PIPE reads its
standard input. The format of the input is described in detail in Section B.2.

B.2 Input

PIPE uses a simple hardware description language as input. This declares functional ele­
ments and gives the interconnection between them.

The following BNF (Backus-Naur Form) description illustrates PIPE'S input language:

graph = graphid iodesc fedesc graphdesc outcn
graphid = GRAPH : name
iodesc = ioitem 1 iodesc ioitem;
ioitem = INPUT namelist 1 OUTPUT namelist;
namelist = NAME | namelist , name;
fedesc = feitem 1 fedesc feitem;
feitem = PROCESSOR NAME INPUT: NUMBER DELAY: NUMBER
PROCESSOR NAME DELAY: NUMBER INPUT: NUMBER1
PROCESSOR NAME NUMBER NUMBER;
signal = name FEname (signallist);
signallist = siglistelem 1 siglist , sigelem;
siglelem = INPUTname I SIGNALname;
outcn = OUTname SIGNALname;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. THE DESIGN TOOL PIPE 171

Keywords and Identifiers

Inputs, outputs, processors (graph vertices) and interconnections (graph edges) are identi­
fied by identifiers of the maximum length of 32 characters (this is a compile time option,
and may be changed).

They may contain alphanumerical (a-z, 0-9) characters and underscore, the first char­
acter can not be numeral. Identification is not case sensitive (also a compile time option).
Forward declarations are not allowed.

The following keywords are reserved, and may not be used as an identifier: graph,
input, output, processor, delay, out. Words are separated by blanks or tabs.

G raph declaration

The graph’s name is declared by the graph keyword followed by a colon and the name of
the graph. The following line declares a graph named my .graph:

graph: my.graph

I /O declarations

Inputs are outputs are declared by the input and output keywords, with the I/O identifiers
separated by commas. This example declares in.a, in_b as an input and out_x as an output:

input: in.a, in_b
output: out.x

Processor declarations

The processor keyword is used to declare processing elements. Two properties have to be
given here: the number of inputs and the delay (time from valid input to valid output).
The following three lines are all valid declarations of a processor named sum with 4 inputs
and a delay of 10:

processor sum 10 4
processor sum delay: 10 input: 4
processor sum input: 4 delay: 10

Processor instantiations

Processors are instantiated in a form similar to a function call: the arguments are the
inputs, the value of the function is the output. Inputs may be named, i.e., using the output
of a previously instantiated processor, or unnamed, when the input is an other processor.
In this example a processor (divide) takes ml and m2 as an input and its output is named
as result:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. THE DESIGN TOOL PIPE 172

re su lt divide(m l, m2)

Of course, the processor divide has to be defined in a processor statement, and must have
exactly two inputs.

In a similar fashion, divide takes ml as one input and the output of decrement as the
other input:

re su lt divide(m l, decrement(m2))

O utput connections

The outputs declared with the output keyword have to be connected to processor outputs.
This line connects result to out_x:

out_x re su lt

B.3 Output

PIPE'S output contains the result of allocation: which functional elements are combined
into one.

The result is a table showing which elementary operations have been allocated into one
processor. The following listing is a sample output from a FIR filter example.

Processors number 10 and 13 contain two operations (aa2, aa7 and aa5, aa6), all the
other processors contain only one. Note that allocation does not attempt to deal with
operations that will not fit into one processor: in this case multipliers are not allocated,
because their delay is more than half restart period. Their number is still given in the
results listing.

---------- Results of the allocation--------

Proc 1 => (al,adder2)
Proc 2 => (a2,adder2)
Proc 3 => (a3,adder2)
Proc 4 => (a4,adder2)
Proc 5 => (a5,adder2)
Proc 6 => (a6,adder2)
Proc 7 => (a7,adder2)
Proc 8 => (a8,adder2)
Proc 9 => (aal,adder2)
Proc 10 => (aa2,adder2) (aa7,adder2)
Proc 11 => (aa3,adder2)
Proc 12 => (aa4,adder2)
Proc 13 => (aa5,adder2) (aa6,adder2)
Proc 14 => (aa7,adder2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. THE DESIGN TOOL PIPE 173

Processor: adder2 — 14
Processor: mult — 8

Number of buffers: 56

B.4 Example

The FIR filter (see the graph below) is a simple device containing adders and multipliers.

The following listing describes the FIR filter for pipe.

Graph: FIR_FILTER

Input: ini, in2, in3, in4, in5, in6, in7, in8
Output: out

Processor adder1 delay: 2 input: 1
Processor adder2 delay: 2 input: 2
Processor mult delay: 5 input: 1

ml mult (adderl (ini))
m2 mult (adderl (in2))
m3 mult (adderl (in3))
m4 mult (adderl (in4))
m5 mult (adderl (in5))
m6 mult (adderl (in6))
m7 mult (adderl (in7))
m8 mult (adderl (in8))

aal adder2 (ml, m2)
aa2 adder2 (aal, m3)
aa3 adder2 (aa2, m4)
aa4 adder2 (aa3, m5)
aa5 adder2 (aa4, m6)
aa6 adder2 (aa5, m7)
aa7 adder2 (aa6, m8)

out aa7

B.5 Installation

PIPE is distributed in C ++ source. To compile, you will need the followings:

• A UNIX or UNIX like operating system (PIPE was compiled under MS-DOS, but
is not guaranteed to work because the awkward memory management scheme of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. THE DESIGN TOOL PIPE 174

system. It would probably mean little trouble to compile it under OS/2 or Windows
NT). PIPE is verified to work under SunOS 4.1, HP-UX 8, HP-UX 9 and NetBSD-1.0.

• A C++ compiler. During development the Free Software Foundation's g++ compiler
(versions 2.5.4 and 2.7.0) was used. (This compiler is available on the Internet from
p rep . a i . m it. edu via anonymous ftp.).

• Yacc or equivalent compiler-compiler. The precompiled grammar is provided in the
file gram. cc. If you do not make changes in the grammar file, it is possible to install
PIPE without yacc.

First unpack the compressed tar archive using the following command:

zcat p ip e .ta r .Z | ta r xvf -

This should create a directory named pipe. Go to this directory. There is a configuration
script, run it:

. /configure

If necessary, edit the file conf .h, it contains some values that you might wish to change.

Start compilation:

make

After a while an executable named pipe should appear. Move this file where other users
can access it.

PIPE was written by having portability a goal. Due to some incompatibility between
the different UNIX systems, you may have to change the source. These changes should not
be difficult.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hardware-Software Codesign in a High-Level Synthesis
Environment

A uthor/D esigner Tamas VISEGRADY
Supervisor Peter ARATO, Andrzej RUCINSKI
Identification Code DISS-DAL-HSCD-MAIN
P ro jec t Name Hardware-Software Codesign (Dissertation)
D ate C reated May 11, 1999
Revision # 1.1
Electronic Storage http://www.ece.unh.eda/Imks/tlv/mainO.htinl
Physical Storage (identical)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ece.unh.eda/Imks/tlv/mainO.htinl

s?

IMAGE EVALUATION
TEST TARGET (Q A -3)

A

✓

4

v <

6>

150mm

A P P L I E D ^ IIVUGE . In c
• = = 1653 East Main Street

- = ~- Rochester. NY 14609 USA
Phone: 716/482-0300

-= = ~-^= Fax: 716/288-5989

0 1993. Appied Image, Inc.. Al Rights Rasaned

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 1999

	Hardware-software codesign in a high-level synthesis environment
	Tamas L. Visegrady
	Recommended Citation

	tmp.1525704849.pdf.e1rGX

