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ABSTRACT

DYNAMIC ANALYSIS OF UNEVENLY SAMPLED DATA W ITH  

A PPLICATIONS TO STATISTICAL PROCESS CONTROL

by

Laura A . McSweeney 
University o f New Hampshire, May, 1999

Dynamic analysis involves describing how a process changes over time. Applications of 

this type o f analysis can be implemented in  industrial settings in  order to control manufac

turing processes and recognize when they have changed significantly. The prim ary focus of 

this work is to construct methods to detect the onset o f periodic behavior in  a process which 

is being monitored using a scheme where data is sampled unevenly.

Techniques that can be used to identify statistically significant periodic structure using 

the periodogram w ill be reviewed and developed. The statistical properties o f the peri

odogram for unevenly sampled data w ill be calculated. These statistics reveal that standard 

methods applied to randomly sampled data give incorrect results, especially fo r small sam

ple sizes. These standard tests are not designed specifically for data collected at random 

times. Monte Carlo methods are used to adjust the critica l values used fo r testing the sig

nificance o f spectral peaks. The effectiveness o f the tests for determining periodic behavior 

are compared using the standard critica l values and the adjusted values. The adapted test 

is then extended into a control chart which w ill signal when periodic behavior enters in to an 

irregularly sampled process.

The new methods are applied to an industrial example from a silicon wafer coating 

process. The data was collected irregularly and the underlying dynamics o f fcfa> process were

x ii
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investigated. Interesting periodic behavior was uncovered in  the analysis.

When data has complicated oscillatory behavior, methods o f nonlinear dynamic analysis 

can be used to  make predictions. A new toroidal reconstruction technique is developed for 

data that appears to be driven predominantly by two or three frequencies. Comparisons 

between the new method and a standard time delay reconstruction u tiliz ing  nnnlinp-ar dy

namic forecasting methods are made using simulated and real-w orld data collected from  a 

vibrating warehouse a ir duct.

x iii
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Chapter 1 

INTRODUCTION

Statistical process control can be used to m onitor many industria l processes. Common 

statistical process control techniques, like control charting, generally assume that the data, 

collected over time, is random and normally distributed. This may not be the case, since the 

data may have determ inistic components which need to be modeled and removed before the 

analysis o f the random error component can be done. The goal o f modeling the determ inistic 

part o f the data is to find a model which not only fits  the data, but also gives information 

regarding the underlying dynamics of the system. By learning how the process changes 

over time, factors which influence production m ight be identified. New inform ation can 

then be incorporated to improve the process. Also, by combining dynamical modeling w ith 

statistical process control it  should be possible to  predict and detect process changes. A 

variety o f methods are available to model the observations depending on what characteristics 

are present. Typically, statistical methods are used to remove any trends or correlation in 

the time series. However, data may have components which are periodic or chaotic in  nature 

and statistical techniques may not be able to model these phenomena.

Let {A fjIjL x  represent the evenly sampled tim e series where the value X j  is measured 

at time t j .  A  general assumption for time series modeling is that the data is weakly sta

tionary. Therefore, the mean and variance o f the data remains constant over time and the 

autocorrelation structure depends only on the lag. A  plot o f the data as a function o f Htw. 

may indicate that the process is nonstationary. For example, the p lo t may reveal trends or

1
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cyclic behavior in  the data. These effects would need to be removed before implementing 

standard stochastic models that require stationarity. Global trends in  the time series data 

are usually removed firs t in  order to make the mean constant. Methods such as simple linear 

or polynomial regression can be implemented to remove these trends. For example, if  the 

overall mean o f the data seems to increase linearly over time, as in  Figure 1-la, then the 

trend can be modeled by

X j — a  +  0 tj +  €j

where or and 0  are constants and ey is a random error term w ith zero mean. In  this case the 

overall mean as a function o f tim e is given by the quantity a  -I- 0t. The parameters or and 0  

can be estimated from  the data using the method o f least squares. The linear trend for the 

example is shown in  Figure 1-la . The residuals, ej, show how the data varies around the 

trend line. Figure 1-lc illustrates the residuals for the example. Notice that the residuals 

seems to fluctuate about zero indicating that the trend was removed. Clearly, i f  the trend 

appears to be nonlinear, a higher order polynomial can be f it  to the data to remove the 

global trend.

I f  the data appears to have cyclic behavior, an analysis in  the frequency Hnmain can 

be conducted. Common spectral techniques HIcr the discrete Fourier transform or the peri

odogram can be used to determine what discrete frequencies dominate the cyclic behavior. 

The oscillatory behavior can be modeled using least-squares to estimate a sfmianirlal model. 

These specific periodic influences can be removed by subtracting the original data from  the 

predicted values o f the sinusoidal model. The result, called the residuals, can then be exam

ined for randomness. Figure l-2 a  shows an example o f data that oscillates w ith a period o f 5

2
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samples. Least squares methods can be used on the observed data to estimate the constants 

(i, a. and /3 in  the sinusoidal model

X j  =  n  +  acos(2irtj/5) +  0sin (2 irt j /5 )  - f  t j .

The estimated cycle for th is example is shown in  Figure l-2b. The residuals remaining after 

subtracting the predictions from  the estimated model are shown in Figure l-2c. I t  appears 

that the mean has been stabilized by removing the cyclic behavior.

Once the time series appears to be stationary, statistical process control methods can be 

applied to the residuals if  they appear to be stochastically random and  norm ally distributed. 

I f  the residuals s till demonstrate autocorrelated behavior, statistical time series methods can 

be used to model the variab ility. For example, spectral techniques may not be able to remove 

short term autocorrelations and that would make the residuals look almost periodic.

The most common class o f time series models are the autoregressive integrated moving 

average (ARIM A) processes [8]. These models attem pt to predict the current status using 

the previously observed points. The different AR IM A models are identified by examining 

the autocorrelation and partia l autocorrelation structure o f the residuals. The simplest of 

these models is the autoregressive model o f order p, denoted AR(p), where the current data 

point is dependent on the previous p data points. In  particular,

p
X j — fx +  ̂  otiXj-i +  Zj 

i= l

where X j—% is the measurement collected at time £y_* and Z j is an observation from  a random

3
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process w ith  zero mean and fixed variance. A regression model can be used to estimated the 

coefficients - These autoregressive models are used when the autocorrelation f u n c tio n

o f {X j} jL l dies o ff at lag p and the partia l autocorrelation function decays exponentially.

The ARIM A class has been extended to model seasonal processes (SAfUMA)[14] and 

long term processes (ARFIM A)[38]. However, these models, by construction, require evenly 

sampled data. Therefore, these models do not extend naturally to unevenly sampled data.

It  may also be possible to model the data using methods designed for chaotic  data. W hile 

there is no universally accepted definition o f chaos, there are agreed upon features o f ch an tic  

data. Chaotic data comes from  a determ inistic system that exhibits long-term aperiodic 

behavior [70]. Often, data from  a chaotic system looks stochastically random due to the 

high degree o f complexity o f the system. These systems are aperiodic and have varying 

amplitude structures. However, since chaotic systems are determ inistic, they often have an 

attractor, or an underlying geometric structure, that can be reconstructed from the data. The 

nice geometrical properties o f the attractor make it  possible to m ak e  short-term predictions. 

Long-term predictions are unlikely since chaotic systems have sensitive dependence on in itia l 

conditions. Therefore, points that are close together at a particular instant w ill separate 

exponentially over time and the ir trajectories w ill no longer be correlated. The residual 

errors produced after making nonlinear dynamic forecasting to make short-term predictions 

can be examined fo r randomness. Therefore, it  is possible to follow  the suggestion o f Haykin 

and L i [34] who state that it  is possible to “construct a n o n lin e a r  predictive m o d e l for 

a determ inistic characterization” and then apply statistical tests “to the prediction error 

produced by the model” .

Unfortunately, most time series modeling and control charting techniques are developed

4
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specifically for evenly sampled data. Statistical methods like ARIMA models do not extend 

naturally to irregularly sampled data. Although it  may be possible to extend these ideas 

to unevenly sampled data, this work w ill focus m ain ly  on the detection o f sinusoids in  

unequally sampled data. Methods to identify statistically sign ifican t periodic behavior in  

unevenly sampled data using the classical periodogram w ill be considered. The concept o f 

the periodogram w ill be introduced in  Chapter 2. The next chapter w ill focus on reviewing 

and developing methods to  detect periodic behavior in  data. Various sampling schemes w ill 

be discussed. Chapter 4 w ill extend the statistical tests into control c h a rt s  to  m onitor and 

detect when periodic behavior enters a process. The analysis of an industria l data set w ill be 

presented in Chapter 5 using the new methods designed for randomly sampled data. Chapter 

6 w ill briefly describe techniques used to uncover the attractor o f nonlinear data as well as 

to introduce a new toroidal reconstruction techn iq u e . Comparisons o f two reconstruction 

methods w ill be made using nonlinear forecasting on another industrial data set o f a ir h an d le r 

vibrations. The fina l chapter w ill discuss future investigations and  extensions.

5
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Chapter 2

PERIODOGRAM  ANALYSIS

Many research areas are concerned w ith the detection o f periodic behavior in  data. Infor

mation regarding cyclic behavior may provide insight about the underlying dynamics o f the 

process being studied. For instance, astronomers may be interested in  the cyclic behavior 

of solar flares, sunspot activ ity and star intensities. Industries may be concerned about in

strument fa ilure or the production o f defective products and may wish to determine i f  these 

events are periodic in nature.

One common method used to detect cyclic (sinusoidal) behavior is the periodogram, 

introduced by Schuster [63]. The periodogram, which is quite easy to use, provides a method 

of searching for underlying periodic behavior. The standard definition o f the periodogram 

w ill be introduced in section 2.1. In  section 2.2, a geometric viewpoint o f the periodogram 

w ill be discussed to provide a background as to how the periodogram works. These ideas 

w ill be demonstrated w ith simple sinusoid waves and then generalized to more complicated 

data. The MATLAB codes developed to analyze the data are discussed in  the last section.

2.1 D efin ition

The analysis o f time series data using spectral methods begins w ith the M siim p tjn n  th a t  

the data can be modeled by a linear combination o f sine and cosine waves. For a given 

time series, the observations can be represented as X u  - • -»A j, . . . ,  X n  where the jth  

sample is taken at time t j  and N  is the total number o f samples. In  th is  section it  w ill

8
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be assumed that the data is evenly sampled. When data is sampled regularly, the times 

can be represented as t j  =  jA  where A  is the fixed sampling interval. The goal may be 

to determine if  the process from which the data was collected has an underlying sinusoidal 

model o f the form

X j  =  p +  acos(urfj) +  6sin(urfj) +  €j

for a particular, fixed (angular) frequency u/. Here ej  represents a random noise term. The 

parameters /x, a, b are unknown but for a fixed ia they can be estimated from  the data using 

least-squares estimations. I f  the parameters a and 6 are determined to be relatively large, 

one could conclude that there is a periodic cycle w ith frequency in  the model.

Most likely, however, the frequency u; is unknown. This creates a more general question 

o f whether the data exhibits any cyclic behavior. In  this situation, we would want to check 

for periodic behavior over a range o f cj values. However, the sampling rate, sampling scheme 

and the length o f the data restrict the periodic behavior that can be detected. Consider data 

collected regularly w ith  sampling interval A . In  order to detect a sine or cosine wave, at 

least two samples need to be taken per cycle. Therefore, the highest frequency from which 

alias-free information can be obtained is f c — 1 /(2A). This frequency is called the Nyquist 

frequency [14]. The lowest frequency that could possibly be determined is the frequency 

which oscillates once in  N  A  time units, the length o f the time series. Thus, the lowest 

frequency that can be detected is f 0 — 1 /(N A ).

I t  is im portant to note that if  data is unevenly sampled, it  is possible to detect frequencies 

higher than the Nyquist frequency w ithout aliasing effects [54]. The lowest independent 

frequency that should be considered in  unevenly sampled data is l/(tm a * — tmin)» the tim e

9
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span of the data. This frequency corresponds to the cycle that oscillates once through the 

course o f the data.

In evenly sampled data, a systematic check for periodic behavior can be done using 

(angular) frequencies of the form

=  2*  ( ^ j r )  =  I f  *  =  l,2 ,...,A f= |iV /2 J ,

where |x j is the greatest integer less than or equal to  x. These frequencies, which shall be 

refered to as Fourier basis frequencies, fa ll between the lowest frequency that can be detected 

and the Nyquist frequency. Additionally, these frequencies form an orthogonal basis when 

the times are evenly sampled. Thus, it  is possible to  represent the fin ite set o f observed 

data w ith a fin ite  discrete Fourier series representation. In  particular,

ao MX j =  i r  +  53 [«*cos(w*t,-) +  bk sm(u)ktj)]
Jt=i

where uk is the Arth basis element [26]. The coefficients, ao,ak and 6* for k =  1 ,2 ,..., M  

can be determined using least-squares estimation on the model

X j =  n +  ak cos (u>kt j)  +  bk s in  {uikt j)  +  ej.

Alternately, the same estimates can be derived using the orthogonality properties o f the basis 

elements which are [14]
N  N

53 cos (uktj)  =  53sin(a/fctj) =  0 
j= i j - i

10
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0 i i k j k l
ft ft

53 cos(u>kt j)  COS(ufitj) =  53 sin(a»jfcfj) sin(a;,£j) =  j v  i f  k =  I =  N /2
j= i J=l

AT/2 i i k  =  l ^ N / 2

and
ft

53 cos(wfc£j) sin(u/*£j) =  0.
7=1

These two approaches yield the estimates o f the amplitudes

“°  iv-

2 *
=  - f i '5 2 X3cos((ltk tj)  ft =  1,2, ...,A f

i= i

and

2 *
bk =  J jY ,  X3 sin(ukt j)  k =  1 ,2 ,..., M .

7=1

The ultim ate goal o f periodogram analysis o f the data is to determine which frequencies, if  

any, account for the va riab ility  in the data. The contribution of the ftth  frequency component 

to the model is given by

ak cos(u>kt) +  bk sin(u/*£) =  Rk cos(uk +  <f>k) 

where the amplitude and phase are, respectively,

* *  =  \/<£ +  62

11
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and

(d*).

The periodogram estimate fo r the fcth frequency component is defined to be

I M  =
N
2'-R k

= T « + «)

 ̂J f  53 X 3 c o s ^ f c i j )  j  + ^  53 X 3 « » ( « * * * )  j

5 3  X j  cos(a»jt<j)j +  ^ 5 3  X 3 sm.{u)k t j )  j

N
2

2_
N

The estimate fo r a particular utk measures the strength o f the sinusoidal signal w ith  frequency 

u3k- The periodogram estimate is proportional to the am plitude and, therefore, it  measures 

the relative size o f the amplitudes o f the corresponding sine and cosine waves. For this reason, 

the periodogram estimate is also referred to as the power or intensity. Obviously, i f  either 

a/- or hfc Is significantly large, the value f?* would be large and one could conclude that, there 

is a cycle corresponding to in  the observed data. T his definition is also equivalent to 

the sum o f squares associated w ith  the fcth component [8] which measures the contribution 

o f the fcth sinusoidal model to the to ta l variation in  the data. I f  the periodogram estimate 

for a particular a/* is significantly large, then there is a signal associated to w* in  the data. 

Statistical tests to determine the presence of a large estimate w ill be discussed ami developed 

in  the next chapter.

It  should be noted that there are various definitions fo r the periodogram estimate [4, 7,

12
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8, 14, 54, 80, 81]; however, the definitions are the same up to a scalar multiple. For the rest 

o f this paper, unless otherwise stated, the definition of the classical periodogram w ill be

P x M  =

N

N

Y , x >
3 = 1

(i)

The equivalent complex form, equation (1), can be obtained by expanding the complex 

exponential using Euler’s formula and regrouping the complex conjugate pairs.

The periodogram for a given data set is sim ply a function o f uj. Therefore, the power 

Px{u>) can be plotted against oj or against the corresponding period r  =  2tt/ uj. For example, 

consider data collected from the sinusoidal model w ith a period o f 4 time units where

X j = 2  +  3 cos(2irtj/4) +  t j

for j  =  1 ,2 ,..., 40 and the ej represent identically and independently distributed standard 

normal errors. The corresponding periodogram as a function o f the period is shown in  

Figure 2-1. This figure illustrates how the periodogram detects potential periodic behavior 

since the large peak in  the periodogram at period 4 indicates that the amplitude o f the 

or cosine associated w ith that period is relatively large. In  this contrived situation, the peak 

is easily distinguishable. Unfortunately, w ith  real world data, the peak values may not be 

as obvious. This issue w ill be addressed in  the next chapter.

One final comment about the periodogram is its relationship to the discrete Fourier 

transform which is commonly used for the spectral analysis o f discrete data. The discrete

13
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Figure 2-1 Example o f a periodogram

Fourier transform, for a particular time series and frequency u/, is defined to be

N
=  T .  [X j cos(oit j) +  iX j  sin(a>tT-)1 

7=1 
ff

=  y x j e - ^ .
7=1

The periodogram is sim ply proportional to the squared magnitude o f the discrete Fourier 

transform  as shown by the relation

14
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2.2 G eom etric Interpretation

Although the standard definition o f the periodogram looks notationally intensive, it  is 

straightforward to use. Given a set o f observations, the periodogram is easy to code, espe

cially using the complex form of the definition. Examples o f the code w ritten for MATLAB 

are provided in  Appendix B. W hile the periodogram is easy to use, it  may not be apparent 

why a large peak would appear i f  there is an associated cycle in  the data. Fortunately, this 

concept can be explained geometrically using the complex form  o f the periodogram found 

in  equation (1).

The equation for Px{u) that was ju s t derived has a nice geometric interpretation by 

considering the observations about the complex un it circle. Suppose we wish to determine if  

there is a period r  =  27t/u> in the observed data. Each observation can be converted to polar 

coordinates w ith  the radius equal to the observed measurement and the angle determined 

by the time. In  particular, time is essentially wrapped around the un it circle in such a 

way that one o rb it around the un it circle corresponds to the period o f interest, r . Thus 

an observation [ t j ,  X j )  can be viewed as the polar coordinate (r>, 6j) where r j  =  X j  and 

Qj =  catj =  2-irtj/T. An associated vector can be drawn from  the orig in  to this point in  the 

complex plane. The polar plot w ill refer to  the p lo t that results when a ll theses vectors are 

plotted. W ith th is viewpoint, the periodogram estimate for a fixed r  and, hence, u  value 

is equivalent to the squared magnitude o f the resultant sum o f these vectors scaled down 

by a factor N, the number o f data points. I f  the data conta in s  a periodic component o f 

frequency ui, the vectors plotted in  the complex plane w ill exh ib it a skewed orientation and 

the magnitude o f the resultant w ill be large, whereas when a frequency is absent in  the d^trai

15
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the vectors tend to cancel and produce a small resultant length. Consequently, when the 

data is collected from a random process, the periodogram estimate would be nearly zero. In 

contrast, when the data contains a signal o f period r  in  the data, the vector directions are 

not centered about the orig in  and a large periodogram estimate results.

Examples representing different sampling situations w ill be used to demonstrate how 

this method works. F irst, consider data collected evenly using a sampling rate A  =  .25 days 

from  a sine wave w ith an 8 day period as in  the model

X(t j )  =  10sin(27rfj/8)

where j  =  1 ,2 ,..., 1000 and t j  =  j A  =  .25j  days. Assuming the true model is unknown, 

let us check the data fo r a five and eight day cycle using the method described above for 

t  =  5 and r  =  8 days. Table 2.1 lists the measurements and the times o f the firs t five 

observations from this process. The angle transformations for r  =  5 and r  =  8 days are alan 

listed. To determine if  the data exhibits a 5 day cycle, the vectors corresponding to the polar 

coordinates (Xj ,  2 irtj/h) would be plotted for j  =  1 ,..., 1000. The periodogram estimate is 

equal to the squared magnitude o f the resultant o f these vectors, divided by 1000. Sim ilarly, 

the presence o f an 8 day cycle cam. be checked by firs t plotting the polar coordinates o f the 

form (X j,2 irtj/S ).

The periodogram estimate for r  =  5 is 3.4747 and the polar plot is shown in  Figure 2-2 

where the endpoint o f each vector is represented by the symbol ‘o’. The g rid  lines and 

numerical labels on the p lo t indicate the radius and angle scale. I t  is not surprising that the 

estimate is small since the vectors are symmetric about both axes resulting in  the canrellatfou

16
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Measurement (Radius) Time Theta (r  =  5) Theta (r  =  8)
1.9509 .25 tt/10 jt/16
3.8268 .5 jt/5 7t / 8

5.5557 .75 3tt/10 3tt/16
7.0711 1 2tt/5 7t / 4

8.3147 1.25 tt/2 5tt/16

Table 2.1 Polar Coordinate Transformation

aotao

iso

'Ooo
o180

o
.o

210 330

300M0
270

Figure 2-2 Polar plot for r  =  5

o f both components o f the vectors. One would conclude that since the periodogram estimate 

is small, the data does not exhibit period-5 behavior. However, the polar plot for period 8, 

in  Figure 2-3, has a periodogram estimate o f 25048, which is relatively large indicating that 

the data contains an 8 day cycle.

The previous example demonstrates how the periodogram can detect periodic behavior, 

but unfortunately real world data is usually not so “clean.”  Data may have measurement 

error, m ultiple periodic components or be unevenly sampled. The geometric approach can 

be used to hypothesize and test what effect these factors have on the periodogram’s ab ility

17
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Figure 2-3 Polar plot fo r r  = 8

to  detect periodic behavior.

Consider data which is taken from  the model

X( t j )  =  10sm (27rtj/8) +ej

where the times are evenly sampled as in  the previous example and the t j  are random error 

terms w ith standard deviation equal to  3. Since the times have not changed, the angles 

fo r the noisy data sure the same as the pure sinusoid example. The only difference from  

the firs t example is that the lengths o f the vectors vary slightly from the lengths that occur 

w ith  “clean” data. The difference in  the length o f the jth  vector is governed by the error 

term , ey- Figures 2-4 and 2-5 show the polar plots for r  =  5 and r  =  8 days, respectively. 

Notice that even though the data points do not overlap, they s till fa ll along the same rays 

as in  Figure 2-2 and Figure 2-3. The periodogram estimates fo r r  =  5 was 40.9678 a n d

18
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Figure 2-4 Polar plot for r  =  5

the estimate for r  =  8 was 26036. W hile the periodogram estimates are much larger than 

in  the “clean” data, it  is apparent tha t the periodogram estimate associated w ith r  =  8 is 

significantly larger than the other estimate indicating th a t the data contains an eight day 

cycle.

The addition o f m ultiple periodic components to the underlying model does not affect the 

geometric interpretation. Although the vectors scatter in  the plane more, periodic behavior o f 

period r  is s till detected when the polar p lo t for r  indicates a pattern w ith  a sign ifican tly  large 

periodogram estimate. For example, consider data collected regularly from  the following 

model, which w ill be called Model 1:

X j  =  10sin(27rtj/8) +  8cos(2irtj-/ir) +  ej.

For r  =  5 ,7r and 8 days the periodogram estimates were 15.7937, 16276 and 24007. The
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Figure 2-5 Polar p lo t for r  =  8

data seems to exhibit a i t and 8 day cycle, since the estimates for those periods are relatively 

large compared to the value for r  =  5.

One question that arises is whether the periodogram w ill signal m ultiples o f the funda

mental period. For instance, if  there is a cycle w ith period it in  the data, w ill the periodogram 

incorrectly detect a 2it cycle? The polar plot w ith  r  =  2ir takes tw ice as as long to wrap 

tim e around the un it circle as it  does for r  =  it. Therefore, the pattern formed in  the i t cycle 

w ill occur on the top and bottom half plane.

Figure 2-6 shows the polar plot for t  =  2 i t  using the data collected from  Model 1. Since 

the vectors form a symmetric pattern along both axes, the overall periodogram estimate is 

12.052. Therefore, one would not conclude that there was a cycle o f period 2ir in  the d ata . 

For comparison the analysis is repeated using data that was talfwn from  the model

X j  =  10sin(2fftj-/8) +&cos(2ittj/ir) +  6sin.(2irtj/(2ir)) + ey .

20
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Here the data has both a ir and 2ir day cycle. In  this case, the periodogram estimate for 

r  =  2ic would be large (9141.5) since the polar plot has an asymmetric pattern, as shown in  

Figure 2-7.

These examples demonstrate that patterns in  the polar p lo t seem to occur when r  is a 

fundamental period or a m ultiple o f the fundamental period o f a cycle in  the data. However, 

a large periodogram estimate usually only arises in  the situation where r  is a fundamental 

period.

Since the periodogram definition is flexible enough to handle unevenly sampled times, 

the geometric method can be used to detect cyclic behavior in  unevenly sampled data. Such 

data often occurs in  observational studies when the time o f the samples can not always be 

regulated. For instance, measurements o f the intensity o f a particular star may be hindered 

by cloud cover. In  these situations, the angles o f the vectors ran take on any value in  [0 ,2k). 

To examine the effect of the sampling scheme on the periodogram, consider 1000 sam p les

21
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Figure 2-7 Polar p lo t for t  =  2ir

from Model 1 taken at random times. Here we le t t j  correspond to  the time in  days o f the 

jth  sample and the e7 are s till assumed to be random noise. Figure 2-8 shows the polar plot 

for r  =  5 days, a period not represented in  the data. Since the times are unevenly sampled, 

the vectors no longer fa ll along the 10 rays as they did in  the evenly sampled case. Figure 2-9 

shows the polar plot o f the 8 day cycle. Although the patterns in  the polar plots change 

dramatically from  the evenly sampled cases, periodic behavior is s till indicated by a pattern 

in  the plot and a significantly large periodogram estimate. Notice that the periodogram 

estimate for r  — 5 days (91.8197) is s till sm all relative to the periodogram estimate o f the 8 

day cycle (26128).

U ntil now the periodogram has only been evaluated at certain u  values. Since the 

underlying frequencies are often unknown, a more systematic check fo r cyclic behavior is 

desirable. Although the periodogram can be evaluated for any set o f u> values, the traditional 

periodogram for evenly sampled data is calculated for each o f the Fourier basis frequencies.

22
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Figure 2-8 Polar plot for r  =  5

However, for unevenly sampled data, a natural orthogonal frequency basis is no longer 

apparent [44, 54, 61]. In  this situation, the choice o f frequencies is somewhat arbitrary. The 

geometric interpretation o f the periodogram can help practitioners to refine their choice of 

a frequency basis.

For instance, consider 1000 observations collected randomly from  a noisy process w ith  

the underlying model

X j  =  5cos(27rtj/6) +  4sin(27rtj-/2.5) +  e,-.

The periodogram o f the data evaluated for periods chosen a rb itra rily  to range from  2 to  

21 days w ith  a step size o f 1 day, is shown in  Figure 2-10. Notice that the periodogram 

correctly identifies the 6 day cycle, but does not indicate the 2.5 day period. The geometric 

approach can be used in  conjunction w ith the standard application o f the periodogram to
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Figure 2-9 Polar p lo t fo r r  =  8

help researchers decide i f  they need to refine the ir frequency basis. The polar plots for 

each period tested are shown in  Figures 2-11 through 2-15. Notice that there are very 

distinct, non-random patterns for r  =  5,6,10,12,15 and 18, yet only one o f them has 

a large periodogram estimate, as shown in  Thble 2.2. That large periodogram estimate 

corresponds to the fundamental period of 6. Therefore, patterns at m ultiples o f that period 

are expected. However, the patterns at 5, 10 and 15 indicate that we may have missed 

im portant information. I f  the frequency basis was refined slightly, by using r  increments of 

.5 instead of 1, the period o f 2.5 would be detected.

This procedure can be quickly and easily incorporated into a movie. For the previous 

example, the movie would have frames corresponding to the plots in  Figures 2-11 through 

2-15. This visual environment makes it  easy to spot patterns and potential subharmonics 

that the standard use o f the periodogram may miss. Patterns in  the polar plots w ill usually 

appear at multiples o f periods where the periodogram estimate is large. Patterns at other
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Period (in  days) Periodogram Estimate
5 78.89
6 5532
10 18.01
12 116.63
15 5.49
18 2.10
20 7.80

Table 2.2 Patterns in  the Polar P lot and the Periodogram Estimates

locations indicate that other cyclic behavior may be present in  the data. The basis o f periods 

used to calculate the periodogram can then be refined to examine this.

2.3 T he M athem atics B ehind the M ATLAB Code

The three main MATLAB scripts used for the construction o f th is chapter were polarplot.m , 

periodogtam.m and makemovie.m. These programs can be found in  Appendices A , B and 

C. The polarplot.m  routine was used to generate the polar plots. The mathematics behind 

the program relies on the geometric interpretation, where for a predefined value o f r ,  the 

observations are converted into vectors and the squared magnitude o f the resultant o f a ll 

these vectors is calculated. This program requires the input o f the observation times and 

measurements as well as the period r  that we are investig a tin g . In  each program, the 

observed data is centered about zero by subtracting the mean. Then the data is converted 

into polar coordinates. The radius is sim ply the measured value and the an g le  is defined by 

the operation 2xt / r .  This transform ation can be done in  one line  due to MATLAB’s m atrix- 

vector syntax which eliminates unnecessary loops. The data can then be plotted using 

M ATLAB’s b u ilt-in  polar.m program. The second part o f the program calculates the length
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Figure 2-10 Periodogram for unevenly sampled data w ith a 6 and 2.5 day period
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Figure 2-11 Polar plots fo r r  =  2 ,..., 5
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Figure 2-12 Polar plots for r  =  6 ,..., 9
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Figure 2-14 Polar plots for r  =  1 4 ,..., 17
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of the resultant o f the vectors. This is done sim ply by converting the polar coordinates in to 

rectangular coordinates using the bu ilt-in  function pol2 rect.m  and calculating the magnitude 

of the resultant. The periodogram estimate is found by squaring and normalizing by the 

number o f data points.

The periodgram is also easy to code, very efficient to run and can be used for both 

evenly sampled and unevenly sampled data. The program periodogram.m takes advantage 

of M ATLAB’s m atrix manipulations and complex data types. This allows the simultaneous 

calculation o f the periodogram estimates for a large number o f periods, in  a matter o f seconds. 

The observation times and measurements are inputted along w ith the periods where cyclic 

behavior is to be tested. The observations are centered and the times are then converted 

into angles as before. However, m atrix m ultip lication allows us to convert the times in to 

angles for a ll o f the periods in  one step. M u ltip lying the angle m atrix by the measurements 

yields a colu m n  vector w ith the resultants corresponding to each period. The function abs.m 

calculates the length o f the resultant for each period. Finally, the periodogram estimate is 

calculated by squaring the magnitudes of the resultant and normalizing by the nu m b e r  o f 

samples.

To illustrate a ll the mathematics compressed into this eight-lined program, a simple 

example w ill be demonstrated. For the sake o f notation vectors w ill be represented w ith  

arrows and matrices w ill be denoted by bold capital letters. Let the observation vector 

x =  (x i,a ;2 ,X3,X4 ,a:5) and the tim e vector t =  ( t i, t%,tz,U,ts) be 1 x 5 row vectors. We 

assume that x has mean 0. Suppose we wish to examine the data for cyclic behavior o f 

periods r  =  r 1, r 2 and 73. Following the algebraic manipulations and notation outlined in
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the periodogram program, the periods are firs t transformed into angular frequencies.

W i 2tr / n

w  = 11*2 =
27r/r2

U>3 2 7 r/r3

By m ultip lying w and t  we create the m atrix containing the angles defined by the timpg, for 

each period. Notice that each row contains the angles corresponding to a specific period.

Wi t01*l W\t2 ••• tUX*5

w = W2 [*l *2 *3  <4 ^5] = W2h w$t2 • • • t«2*5

tW3 W3ti 103*2 ' • • ™3*5

Then the m atrix tW  is exponentiated. The m atrix E  contains a ll the complex angles that 

result when the times fo r each period are transformed.

eitin ti g iw i t i ... g iw its

gttoa t i e tW2t2 ... greets

e*t0 3 t i e«03*i . . . e«03t5

The resultants associated w ith each period are calculated by m ultip ly in g  m atrix E  H  the 

transpose o f the observation vector, x.

R = E x t
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e *w it i  g ito itj . . .  g itotis

eiW2ti eivntl . . . gtt02t5

gtt0 3 t i  gitU3t2 . . .  g iw j t s

X \

X 2 

XZ 

X 4 

Xh

x ie iwitl +  x2e‘u,lta +  . . .  +  x$eiWlts 

X ie""2*1 +  ar2ei,D2t2 +  . . .  +  ise*"**5 

x 1etW3tl +  i 2e” °3ta +  . . .  +  xseivJ3ts

Finally, the magnitude o f the each resultant is calculated, squared and then scaled down 

by the number o f samples. The p lo t o f the periodogram is constructed by plotting P  vs. t 

where

P = ]» !!
N

\x\etv3ltl +  x2e‘®lt* + . 

|iie iW2tl +  i 2eiw itl +  . 

|a:1ett,,3tl +  x ^ ”03*2 +  .

. +  xseiv>lts |2 /N  

,. +  x5eiw^ \ 2 /N  

.. +  x5eiw^ s\2 /N

and

T  =

n

T2

T3
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The output from  this program is used by the script makemovie. m to create a visual 

display o f the polar plots. In  this format, patterns in  the polar plot are very distinctive. 

Each frame o f the movie corresponds to a polar plot at a specific period. The output o f 

makemovie.m can then be viewed using the MATLAB program, movie.m. The individual 

frames from such a movie are shown in  Figures 2-11 through 2-15.
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Chapter 3

TESTING  FOR PERIODIC BEHAVIOR

The periodogram is a method commonly used to detect periodic behavior in  time series 

data. Cyclic behavior attributed to a certain frequency is determined to be present in  a 

data set i f  there is a significantly large periodogram estimate at the frequency. S tatistical 

analyses can be used to determine if  an estimate is significantly large or not.

The focus o f this chapter w ill be to review and to derive statistical tests which w ill deter

mine if  a peak is due to the presence o f a periodic signal. Since the statistical distributions 

w ill depend on the sampling scheme the chapter w ill be divided into three sections which 

address evenly sampled data, unevenly sampled data and randomly sampled data. The firs t 

two sections w ill disctiss methods previously developed for evenly and unevenly sampled 

data, in  addition to some new applications o f nonparametric and parametric tests. The final 

section w ill introduce new research in  which data collected at random times is analyzed for 

periodic behavior.

3.1 E ven ly  Sam pled D ata

It is commonly assumed that data can be collected using a fixed sampling rate. Preferences 

for this type o f data collection stem from  a variety o f reasons. I t  may be convenient and 

inexpensive to collect data regularly, especially w ith fast recording devices and computer 

equipment. In  addition there are some nice properties that result from  even sampling. For 

example, the discussion beginning on page 10 describes the existence o f a set o f orthogonal
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frequency basis elements for evenly sampled time series data. Therefore, it  is possible to 

represent the data as a linear combination o f sines and cosines o f these basis elements. Also, 

the orthogonality property is equivalent to the independence o f the sine and cosine terms. 

This property w ill be used to derive the statistical d istribution o f the periodogram in  the 

following section.

3.1 .1  D istribution  o f the Periodogram  Estim ate

Given an evenly sampled time series {X , } ^  that exhibits cyclic behavior, it  is often useful 

to determine how well the model

X j  =  fi + a cos (arty) +  bsia(utj) +  ey

describes the behavior o f the data for a particular tu value. This question can be answered 

by carrying out a hypothesis test which examines the valid ity o f the nu ll hypothesis

Hq : a =  b =  0

versus the alternative hypothesis

Ha : a ^  0 or 6 ^ 0 .

This test is also equivalent to periodogram analysis where one checks the significance o f the 

periodogram estimate Px(f*>) [14]. In  order to determine this the statistical d istribution o f 

the periodogram estimate needs to be calculated. I t  is commonly assumed that the errors
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are randomly and norm ally distributed w ith mean 0 and variance a2. The nu ll hypothesis 

states that no sinusoids are present in  the data. Under th is assumption and the assumption 

that the times are fixed constants, the X$ s are normally distributed w ith nw»An ft and 

variance a2. Likewise, the terms X j  cos(uit j)  and X j  sin(u/ty) in the periodogram definition 

are normally distributed since the cosine and sine expressions are treated as constants. The 

terms X j  cos(urfj) and Z)J=i X j  sin(urfj) are also normally distributed by the linear 

property o f normal variables. The squares o f these two sum terms w ill have a chi-square 

distribution and since the sine and cosine functions are orthogonal, these two squared terms 

are independent. These facts are used to determine th a t  the distribution o f 2Px (oj) / ct2 is 

chi-squared w ith 2 degrees o f freedom [26]. Let V  =  2Px(u>)/a2. Since V  has a chi-squared 

distribution w ith 2 degrees o f freedom, the probability density function is defined to be

fv(v) =  ie - " /2.

This distribution is equivalent to an exponen tia l distribution w ith mean p a ra m e te r  2.

Using a straightforward transformation it  can be shown that the normalized periodogram 

estimate, defined as Pf/(u>) =  Px(oj)/a2, is exponentially distributed w ith mean parameter 

1. To prove this fact, le t U =  P n (u>). Hence, U  =  V/2 and

fu (u)A u ~

35

Pr(u < U  < u  +  A  u)

Pr (u  <  y  <  u +  Au^ 

Pr(2u < V <  2{u +  Au)) 

2 (u +  A u)/y(2u ).
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Dividing through, by Au and taking the lim it as Au -*  0 gives

/t/(« ) =  fv(2u)^-2udu

=  2/v(2u)

One fina l transformation is needed to  determine the d istribution of the Hanairal peri

odogram. I f  Y =  Px(co), then Y  =  cr2U. The probability density function o f Y  can be found 

by the calculation

f Y{y)A y  «  P r(y <  Y < y +  A y)

=  P r(y < a217 < y  +  A y)

In the lim it,

=  ( * £ > ( * ) •

M *>  =

O’2

Consequently, the periodogram estimate P x(u) is exponentially distributed w ith nwan pa

rameter cr2.

These facts allow the observed periodogram estimate to be tested to determine if  it
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is significantly large. Therefore, under the nu ll hypothesis, the probability o f observing a 

particular estimate, z, is given by

P r[P *M  >  z\ =  e~zla*■

Given a predetermined significance level, the presence or absence of periodic behavior can be 

judged. I f  the probability calculation yields a significantly small value, then the probability 

o f having a peak as large as the observed estimate is small and the null hypothesis would 

be rejected. The data would then be considered to have cyclic behavior associated w ith the 

frequency c j

3.1.2 T esting M ultip le Frequencies

W hile the exponential distribution allows one to check for periodic behavior for a particular 

frequency c j , it  is often the case that the frequency is unknown. I t  is customary to check for 

periodic behavior at a range o f frequencies. For evenly sampled data, cyclic behavior is often 

examined at the Fourier basis frequencies, as mentioned on page 10. Since these form an 

orthogonal basis, the periodogram estimates at these frequencies are independent. Therefore, 

consider the normalized periodogram estimates, Pyv(u/) =  P x (cj)/<j 2 , evaluated at each o f 

the M  = [N /2 \ Fourier basis frequencies and le t z be the height o f the largest peak. The 

probability that the spectral peak for any given frequency is less than z is 1 — e~*. Since the 

periodgram estimates at these different frequencies are independent, the probability that a ll 

M  frequencies have a spectral peak less than z is [1 — e~z]M. Thus, the probability that 

at least one frequency has a corresponding peak greater than z is 1 — [1 -  e~*]M. This
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significance level provides a method to test whether a periodic signal is present in  the data. 

In  particular, if  one observes a maximum peak at cjq for which the probability of observing 

such a height is smaller than a previously chosen level o f significance, one can conclude tb** 

there is a significant period associated w ith uq in  the data.

Another test was developed by Fisher [21] which uses the statistic

T _  maxk {Px {u>k)} 
Ter P x M

or equivalently, the statistic

T _  max*

These test statistics measure the relative size o f the largest peak o f the periodogram. There

fore, i f  the maximum value o f the periodogram estimate greatly exceeds what is expected, 

the test statistic w ill be large. In  this case, the null hypothesis would be rejected and one 

could conclude that the data exhibits periodic behavior. Fisher derived a closed form dis

trib u tio n  for the test statistic T  based on the exponential d istribu tion  when the number o f 

samples, N, is odd. The probability for T  is given by the expression

k
P r[T > M 0 ] =  £ ( - l ) J" 1

i= i

( \ 
M

\  3 }

(1 ~39)

where g >  0, A: =  and M  is the number o f periodogram estimates calculated. Fuller [26, 

page 284] constructed a table lis ting  the upper percentage points o f Fisher’s statistic for 

various significance levels and sample sizes. By comparing the test statistic o f the observed 

data against  the upper confidence bound, the presence or absence o f periodic behavior in
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the observed data can be examined. This test will be refered to as Fisher’s test.

3.1.3 E xtension s o f  Standard T ests

W hile Fisher’s test is very simple an d  powerful if  the true periodic component is a Fourier 

basis frequency, it  suffers when the true period corresponds to a frequency in  between two 

Fourier basis frequencies. Spurrier and Thombs [69] suggest a test which can hand le  this 

situation by using a refined basis o f frequencies and adapting Fisher’s test accordingly. The 

new model

X j =  fi +  Am cos(cjmtj)  +  Bmsin(u)mtj)  +  ej for j  =  1 ,..., N

has unknown parameters /i, Am, Bm and m w ith ujm =  2ir/m. Again , ej is assumed to be 

from a random normal distribution. Using a refined frequency basis, the authors consider 

the null hypothesis that Am =  Bm =  0 for a ll m G (1,2]. However, fo r ease o f computation, 

they approximate the values by only considering values of m  e {1 .01 ,1 .0 2 ,..., 1.99}. The 

test statistic is found by using the m ultiple regression model

X  =  Y [fi Am Bm]’

for a particular m  where

X  =  (X 1,X 2, . . . , X Ar)'
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is the vector o f observed values and Y  is the design m atrix w ith the j  th  row

[1 cos(u/mtj) sinfcjm fj)]

The test statistic is defined to  be

rp t _  ma3cm6[l.01,1.02,...,1.99)

TS.AXj -  x )2

where
N

i= i

is the mean of the observed values, (Y ^Y m )" is the generalized inverse and

5 (m |/i) =  X.'Ym(Y ’mY m)-Y 'mX  -  N X 2

represents the amount o f variance explained by ad d in g  the terms associated w ith  the fre

quency u}m to the nu ll model. Since the distribution o f the test statistic is difficu l t  to  define 

analytically, critica l values fo r this test statistic were generated using Monte Carlo sim

ulations. Notice that the denominator estimates the to ta l variance o f the observed data., 

Therefore i f  T ' exceeds the c ritica l value, then one o f the sinusoidal terms explains a large 

portion o f the variability in  the data. By construction, this test is capable o f detecting fre

quencies between the Fourier basis frequencies, which is an improvement over Fisher’s test; 

however, the test is not as powerful as Fisher’s test when the true frequency corresponds to 

a Fourier basis frequency.
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Ihtum  [73] makes an adjustment to the previous two tests by estim ating the variance 

using previously observed data. Since it  is usually assumed that the process is free o f 

periodic behavior p rio r to  testing, an estimate o f the underlying variance can be found using 

data collected earlier. In  otherwords, the denominator in  T  and T" can be replaced w ith 

the sample variance estimate from a previous section of data.. The estimate o f the variance 

used in  the denominator is assumed to be free o f any va riab ility  associated w ith cyclic 

behavior and therefore malms the test more reliable when determ ining i f  the maximum peak 

is significantly large. For example, let

4  -  0^7 E  (** -  x r ) 2
11 k=l

be the sample variance and

1 R 

k=l

be the mean o f the firs t R  observations. C learly, these calculations can be generalized for 

any previously collected block of R observations. The new statistics proposed by Tatum 

would be defined as

Tm =  for t= 1 ,...,M = L J V /2 j
S R

and

m  _  maxne[1.0i,i.o2,..-,1 .99 ] 5 (n |# x )
r n  ~  2

S R

where Tm is the m odified Fisher statistic and is adjusted from  the statistic introduced
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by Spurrier and Thombs. This simple modification has improved the power o f the tests as 

compared to Fisher’s test and the Spurrier and Thombs test. The adapted Fisher’s test has 

the exact distribution [20, 73]

/  \

where M  =  \N /2J and R is the number o f previously observed points used to estimate the 

variance. Although this m odified test shows improvement over Fisher’s test, it  s till is not 

very powerful at detecting frequencies between the Fourier basis frequencies. The adapted 

Tfn test indicates improvement over T ' in  that it  retains the ab ility  to detect non-Fourier 

frequencies and w ith increased power.

Another issue w ith testing a range of frequencies is the presence o f more than one periodic 

component. The presence o f additional periodic components hinders the detection ab ilities o f 

Fisher’s test. In  this situation, the periodogram w ill have more than one large estimate which 

results in  an inflated mean or sum o f the periodogram estimate. The over-estimation o f the 

denominator causes the estimate o f Fisher’s test statistic to  be too small. Therefore, Fisher’s 

test becomes less sensitive to the introduction o f periodic behavior. Simple modifications o f 

Fisher’s test have been proposed by Bslviken [7] to  alleviate some o f these problems. He 

considers Fisher’s statistic

_ maxt {Cv(u>t)}
P x M  '

This statistic can be interpreted as the ratio between the largest peak and the to ta l error 

variance, a2, under the null hypothesis o f no periodic behavior. The presence o f m ultip le pe-
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riodic cycles yields several large periodogram estimates which tend to inflate the estimate o f 

a2 affecting the sensitivity of the Fisher’s test. Belviken suggests replacing the denominator 

w ith a more “robust”  estimate. He discusses generalizing the denominator by defining

M
<̂2 =  5Z M M ^(fc))

k= 1

where 6* >  0 fo r k =  1 ,..., M  are predetermined weights and the Px(w(k)Ys are the ordered 

periodogram estimates w ith Px{w(i)) <  Pxif*>{2)) <  • • - < Px(.U(M))- A trimmed mean can 

be used to get a more accurate estimate o f the noise variance. In  this case, the weights can 

be defined as

bk =  <
1 for k <  M  — a 

0 for k >  M  — a

where a equals the number of peaks to  ignore in  the calculation o f the mean. Thus, the test 

statistic as a function of a is

_  maxfc {Px-(gJfc)}

The parameter a should not be chosen to be too low. For long tim e series, it  is suggested th a t 

the number o f estimates to trim  should be approximately three to four times the suspected 

number o f cycles present in the data. Notice that when a =  0, Ta is equal to F isher’s test 

statistic.

An alternate way to define the weights would be to winsorize the periodogram estimates 

in  the calculation o f the denominator. W ith this approach the a largest peaks are replaced 

by the value o f the moderately sized peak Px{u(M-a))i where a is subjectively rhnsan. Tn
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particular,
f

1 for k <  M  — a

bk =  < a +1  for k =  M  — a 

0 for k >  M  — a

This gives the test statistic

________ m axfc{Px(^fc)}Tw =

The distribution o f the statistics Ta and Tw have been derived in  closed form  [6] and 

tables of the critica l values for the Ta statistic have been published [7]. These statistica l tests 

were shown to improve the a b ility  to detect periodic behavior when more th an  one frequency 

is present in  the data as compared to Fisher’s test.

3.2 U nevenly Sam pled D ata

When analyzing evenly sampled data there are standard spectral methods to detect periodic 

behavior and statistical tests to determine how confident we are about the behavior. However, 

there may be situations where data is not collected regularly. The collection o f measurements 

may be hindered by factors in trinsic to the data collection process or by outside influences. 

Data may be almost evenly sampled except that some samples are missing. The data could 

also be collected in  clusters w ith a relatively large tim e span between the groups o f data. 

Alternately, data may be sampled randomly. For example, astronomical tim e series data 

often has periodic behavior, but data collection is often collected irregularly. The sampling is 

usually lim ited to nights and only under certain conditions. Cloud cover and unavailability
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o f equipment may prohibit evenly collected samples. In  industria l settings, m issing data 

could result when production lines are shut down for system maintenance, during power 

outages o r during holiday breaks.

One early method dealing w ith  this problem was to  ignore the unequally spaced data 

and use standard periodogram methods designed for evenly sampled data [78]. Interpolating 

the data to  make it  evenly sampled is another option [54, 77]. W hile in  certain cases 

these methods may suffice, it  may be more beneficial to analyze the observed data directly 

[9,16, 37, 44, 61, 76]. The subsequent sections in  this chapter w ill address methods designed 

to be applied to the unevenly sampled observations.

3.2.1 M issin g  D ata

Cipra [16] discusses two situations in  which data is collected w ith a fixed sampling rate, 

however some observations are missing. The firs t case covers regularly m issing data, or where 

missing data occurs periodically. Under the null hypothesis, the observed data is

assumed to  be from  a normal d istribution w ith zero mean and  variance a2. Although data 

is missing it  can be represented as evenly sampled if  we declare a new random variable

Yj =  g { tj)X j for j  =  1 ,2 ,..., N

where r

1 if  Ay is observed
g{tj) =  -

0 otherwise.
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Since the data is missing regularly, the function g(t) is periodic w ith period c. Let a denote 

the number of observations taken in  one cycle. Thus a equals the number o f tj's  w ith 

g(tj) ~  1 and j  € {1 ,2 ,..., c}. Under the null hypothesis that the data does not have any 

underlying cyclic behavior, the distribution o f Yj cos(u/fct7) and the corresponding sine term 

have a normal d istribution. Here the frequency basis is defined by

2icku)k =  -^~  for s =  1 ,... , r

where

To prevent aliasing, the frequency basis is restricted so that the largest frequency that can 

be observed is tt/ c . Using the same argument as the evenly sampled case, the distribution 

o f the periodogram is again exponential but w ith mean parameter acr2/c. Therefore, Cipra 

indicates that Fisher’s test can be used on the new series {Y j} jf=1 using critica l values found 

from  the distribution derived by Fisher.

The function o f g(t) can be redefined and applied to handle more general cases o f almost 

evenly sampled data. For instance, g(t) need not be periodic. The binary function would 

sim ply indicate whether an observation was collected at the particular time. However, g(t) 

must satisfy the condition that the number of m issing  observations in  a sample o f N  data 

points is on the order o f N *. For this case, the periodogram estimate, at any arbitrary 

frequency, approaches an exponential distribution as N  tends to in fin ity . For large N, 

Fisher’s test can be used to approximate the significance o f the largest periodogram estimate.

The other scenario considered by Cipra is when evenly sampled data is m issing  randomly.
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Here observations are missing according to a Bernoulli probability model, 

period, the probability o f taking a measurement is p 6 (0,1). The collected 

can be represented with the new random variable

Yj =  Z jX j

where

1 w ith probability p 

0 w ith probability 1 — p 

is a Bernoulli variable independent o f the observed measurement. The periodogram, as a 

function of {Y j}, converges in  d istribution to an exponential d istribu tion  w ith mean param

eter pa2. Again, for large N, C ipra suggests using Fisher’s test using the transformed data 

and approximating the critica l values w ith the ones already established.

3.2.2 Lomb Periodogram

Although methods for almost evenly sampled data have been addressed, people have been 

interested in  defining a generalized periodogram that can be defined for any sampling scheme 

and yet s till preserves the nice statistical distribution that exists fo r the evenly sampled case. 

Part o f the d ifficu lty  is the am biguity o f the orthogonality conditions o f the Fourier basis 

frequencies when the data is unevenly sampled.

In  developing the alternative form o f the periodogram for unevenly sampled data, Lomb [44] 

addressed the lack o f a natural orthonormal basis by selecting a set o f frequencies and then  

using least-squares fitting  o f sinusoids to the data to determine the power associated w ith
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each frequency, thus giving an estimate o f the periodogram. The resulting form o f the 

periodogram is

Px M  =  g

‘  AT

Y^XjCosiuxtj)
2 '  AT

X ^ s in M y )
J=l — + -

£ c o s 2(urf3)
j= l

52sin2(arf3)
i= i

where we have om itted the time shift that Lomb introduced to allow fo r tim e invariance, 

since it  w ill not enter the discussion here. The Lomb periodogram has been carefully studied 

by Scargle [61] and he was able to show a connection between the orig inal work o f Lomb and 

the derivation o f a generalized periodogram that would ostensibly preserve the statistical 

properties o f the periodogram o f evenly sampled data.

In  deriving the statistical properties o f the Lomb periodogram for random normal data, 

w ith mean zero and variance o2, Scargle starts w ith the definition o f a generalized 

periodogram,

Px M  =
A*_ 
2 N X j cos(urtj)^ +  ^  Xi  s in M j)^

and then considers the mean and variance of the quantity C(w) =  A x j  cos(urtj). To

do so, he treats the cosine terms for a fixed set o f t j  as constant coefficients and considers 

the sum as a sum o f independent normally distributed random variables to  derive the results 

that the mean E[C7(u;)] =  0. Therefore, the variance is given by

AT AT
a2 =  E [c 2M ] =  A2 [X jXk] cosuitj cos wtk

i= r 1 k = l
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N
=  A2(Tq ^2  COS2 W*J>

J= l

This result is dependent on the particular sampling times t j  and the particular frequency 

w. A sim ilar result holds for the term S(ut) =  B JZjLi XjSm(urtj). Horne and Baliunas [37] 

show that when the Lomb periodogram is normalized by dividing by the variance o f the 

observed data, the expected distribution of peaks is exponential w ith mean 1. This result, 

which is consistent w ith the evenly sampled case, now provides the basis for testing whether 

a peak is significant or not. I f  a periodogram estimate exceeds the critica l value determined 

by the exponential distribution, there is evidence to  support the presence o f a cycle.

3.2.3 C lassical P eriodogram

Another technique which can be used to detect periodic signals in  unevenly sampled tim g 

series is the classical periodogram. As mentioned in  Chapter 2, the definition o f the peri

odogram is flexible enough to handle unevenly sampled data, however, the frequency basis 

is no longer clearly defined. We also need to consider whether a periodogram estimate is 

significantly larger than zero, or equivalently i f  there is significant periodic structure in  the 

data. One way o f determining whether a peak is significant is to generate upper confidence 

bounds using parametric or nonparametric techniques.

Since the frequency basis that we choose may not be orthogonal due to the unevenly 

sampled times, the statistical tests developed previously may not be valid. An alternate 

method o f testing for significant periodic behavior assuming that the observations are random 

and Gaussian can be done using Monte Carlo methods [56]. For each sample tinw>, a random 

sample can be independently chosen from a Gaussian d istribu tion  w ith the sarm mmn anH
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variance. For each set o f N  samples from a random normal distribution, the periodogram 

can be evaluated and the highest peak can be obtained. Many simulations can be run to 

get a large sample o f periodogram estimates. Percentiles can be calculated to form upper 

confidence bounds. The largest peak o f the periodogram of the observed data can then be 

compared to the upper confidence bounds. I f  the peak o f the observed spectrum exceeds 

the confidence bound, then a significant cycle is associated with the frequency. This method 

can also provide upper percentage bounds for the Lomb periodogram.

When the underlying distribution o f the data is unknown, we suggest a nonparametric 

test based on permutation resampling to test whether the data is random or if  the time 

ordering o f the data is significant because o f the underlying dynamics o f the process [9, 

62, 74, 75]. This method generates a new time series from the observed data by randomly 

assigning each sample time to an observed measurement without replacement. Since the 

true distribution of the observed data may be unknown, this surrogate data can be used 

as another realization from  the process. By construction, this new realization has the same 

mean and variance as the observed data. Also by shuffling the data any tem poral correlation 

in  the data is destroyed and the effects o f any time bias in  the data are reduced. The term 

time bias refers to patterns in  the sampling scheme which may cause spurious peaks in  the 

periodogram. The next step would be to calculate the classical periodogram for this new 

data set for a particular frequency, c j . This resampling process would be repeated many 

times. A fter a sufficient number of triads, one can calculate the 95th percentile, or whatever 

level o f significance is desired. The number o f iterations should be large enough that the 

confidence bounds stabilize. I f  the periodogram estimate for frequency u> exceeds thp upper 

confidence bound, the data exhibits a significant signal w ith frequency ui.
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To demonstrate how these test work, the Lomb periodogram with confidence bounds 

found using the Monte Carlo method was compared to the permutation resampling scheme 

for the classical definition o f the periodogram. For each method, 1000 simulations were used 

to construct the upper confidence bounds. The firs t example comes from a simulated data 

set w ith samples collected from a uniform  distribution. The tim e values were generated to 

simulate 10 random hourly measurements taken every Tuesday and Thursday for a year. A t 

a 99.9% upper confidence bound, the Lomb periodogram in  Figure 3-la  incorrectly identifies 

this data set as periodic, w ith a period o f 7 days. This period is attributed to the tim e bias 

introduced by the sampling scheme, and not the behavior o f the underlying process. On 

the other hand, the permutation resampling technique did not find any significant cyclic 

behavior, as shown in  Figure 3 -lb  where the 99.9% confidence bound is denoted by ‘o’ and 

the periodogram estimates are denoted by V .

Another example uses times which are randomly chosen from  0 to 1000 days and the 

measurements were taken from the sinusoidal process

X  (t j )  =  .5 cos(2irtj75) + 6 j

for j  =  1 ,..., 1000 where ej are standard normal noise. This process is assumed to have a five 

day cycle. Since both periodogram methods indicated the 5 day cycle, its effect was modeled 

using least squares regression. Residuals were obtained by subtracting the predictions using 

the least squares model from the orig inal data. The analysis was repeated on the residuals 

to see if  any remaining periodic structure was identified. The p lo t in Figure 3-2a shows 

the Lomb periodogram using the residual series after extracting the 5 day cycle. A t a 95%
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a: Monts Carlo generated confidence bounds
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Figure 3-1 Testing fo r periodic behavior using different methods, example 1

level o f significance the Lomb periodogram identifies an additional and significant period of 

17 days which is not present in  the actual process. The permutation resampling method 

indicates no additional periodic behavior as shown in  Figure 3-2b. Thus in  both examples, 

the permutation resampling method correctly identified the underlying dynamics regardless 

o f the time bias introduced by the sampling procedure or the underlying d istrib u tio n  of 

the data. Consequently, in  some cases the permutation resampling method appears to be 

more robust to noise and anomalies in  the irregular sampling procedure than the Monte 

Carlo method. In  these two simulated examples, the normalized Lomb periodogram, w ith 

the confidence bounds determined using Monte Carlo methods, found cycles which were not
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a: Monte Cario generated confidence bounds
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Figure 3-2 Testing for periodic behavior using different methods, example 2

actually present in  the data while the resampling scheme detected only the true underlying 

dynamics.

Although the permutation resampling method can minim ize the effects o f tim e bias in  

certain situations, it  too can sometimes detect false peaks. For instance, consider measure

ments shown in  Figure 3-3a taken from  the process

X ( t j)  =  .5sin(2irtj/120)

w ith a 120 hour (or 5 day) cycle. The t j  represent the sampling times when measurements 

are taken at 10 random hours every Monday through Friday fo r one year. Both the Lomb
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Figure 3-3 Both tests incorrectly identify a 70 hour cycle

periodogram and classical periodogram incorrectly detect a significant cycle o f 70 hours, 

shown in  Figure 3-3b. Clearly, further work needs to be done to determine why this time 

bias occurs and how it  can be corrected. Since the goal is to find the hidden dynamics o f the 

process, one must proceed w ith caution and examine the results using a ll tools available.

3.3 R andom ly Sam pled D ata

In  some processes it  may not be feasible to collect data using a fixed sampling rate. When 

samples are collected at random intervals, the times should be considered to  be realizations 

o f a random variable. When we adopt this viewpoint, the distribution o f the periodogram
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must be recalculated since the cosine and sine terms can no longer be considered constant 

coefficients. The added va riab ility changes the distribution o f those terms so that they are 

no longer norm ally distributed and thus the distribution properties o f the periodogram are 

affected. Therefore, the misapplication o f extending the trad itiona l results to random data 

can result in  the detection o f spurious peaks.

For example, when the Lomb periodogram is applied to sm all samples of data collected 

at random times, the spectral peaks are typically not exponentially distributed. To sup

port this claim , simulations were conducted using Monte Carlo methods. For each tria l, a 

sample o f 50000 spectral estimates were generated for a particular frequency u  and random 

time sequence. Both these factors were changed in each tria l. The Kolmogorov-Smirnov 

goodness-of-fit test was also used to test the hypothesis that the distribution o f the spectral 

peaks was exponentially distributed w ith mean parameter <x2 =  4. Thus, the variance o f 

the peaks should be a4 — 16. Table 3.1 shows the estimates o f the mean and variance o f 

some periodogram power estimates, along w ith  the results o f the Kolmogorov-Smirnov test. 

Large p-values indicate that the two distributions are statistica lly identical and suggest that 

the periodogram estimate is exponentially distributed. Therefore, for IV =  5 and 10, the 

null hypothesis would be rejected and for N  =  25 and 50, the results are mixed. Since 

the exponential distribution for the periodogram estimates may not hold for sm all samples 

o f data we w ill focus on deriving statistics specifically for randomly sampled data fo r the 

classical periodogram.
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N T ria l Mean Estimate Variance Estimate p-value
5 1 3.957 18.661 0

2 3.973 16.898 0
3 3.996 17.342 0

10 1 3.999 19.826 0
2 4.012 16.872 0.0051
3 4.001 17.719 0

25 1 4.001 16.368 0.0745
2 3.990 16.827 .0005
3 4.007 16.465 0.1867
4 4.004 16.524 0.2209

50 1 4.031 16.203 0.0557
2 4.005 16.394 0.0817
3 4.023 16.454 0.5555

Table 3.1 Estimates o f Mean and Variance o f Lomb Estimates for Random Samples

3.3.1 S ta tistica l D istribution

One consequence o f the assumption that the cos ai t j terms can be treated as constant co

efficients is that the variance results must be interpreted in  the sense that the recorded 

measurements were taken as one realization o f data from  an ensemble o f possible data sets, 

but the ensemble must be taken at exactly the same times. Consequently, it  is not possible 

to take a long data set and break it  up in to  pieces to assemble an ensemble, as one might do 

when studying an ergo die process. If, instead, we consider the sampling times to be random 

variables, then the c o s o j t j  terms must be treated as random variables. Properties of the 

classical periodogram w ith this new interpretation w ill be considered in  this section.

Consider the observed times as realizations of a random variable T  which is

sampled in  such a way that the d istribu tion  o f angles W  =  uiT for a fixed u  is uniform ly 

distributed on (—ir, ir). Under this assumption a ll angles are equally like ly and the probabil

ity  density function (pd f) of W  is fw {w )  =  f° r  ~ ir < t a  < i r .  The method o f transforming
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random variables can be used to  find the pdf of Y  =  cos W. In  particular,

/y  (y)A y «  P r(y < Y  < y  +  Ay)

=  2 Pr(cos-1 (y +  Ay) <  W  <  cos- l (y))

=  2 /Wr(cos- l (y))[cos-1 (y) -  cos-1 (y +  Ay)].

D ividing through by A y and taking the lim it as Ay —► 0 gives

fv (y ) =  2/wr(cos“ l (y)) x [-c o s '^ y )]

=  for - ' < y < 1

and zero otherwise. This is a well-defined density function since /y(y)dy =  1 f Y 

is non-negative and piecewise continuous.

S im ilarly, the distribution o f

V  =  sin(a)T) =  sin(W ) =  cos ^

can be found using the method described above. Thus,

fv iv )  Aw «  Pr(w < V <  v 4- Aw)

=  2P r |cos-1 (w +  A v) — ^ < W <  cos-1 (w) —

=  2 /w^cos- l (u) -  0  X  |  jcos~l (v) -  -  Jcos_ l(u +  Av)
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=  2 {cos l (v) — cos l (u +  Aw

The pd f o f V is obtained by dividing both sides by Av and taking the lim it  as Av —t 0

fv {v) =  — 7= = = y for -  1 < t? <  1.
7TV 1 — W

Not surprisingly, sineJT  and cosafF  have the same distribution. W ithout loss o f gener

ality, the statistical properties of the periodogram w ill be determined by considering the 

distribution o f [X j  cos(u/t3 )]2 and extending the results to the sine term.

F irst, the cumulative distribution function (cdf) for the random variable

Z =  X  cos(wT) =  X Y

is derived assuming that the observed data, { X j } ^ = l , is sampled from a random normal 

noise process X  w ith  zero mean and standard deviation a. Additionally, it  is assumed that 

the times and measurements are independent. Now, finding the probability that Z < a  is 

equivalent to determ ining the probability that X  and Y  have a product less than  a where 

—1 < Y <  1 and — oo <  X  <  oo. For a fixed a  this would require integrating the jo in t 

density o f X and Y  over the region where X Y  < a. Geometrically th is would correspond to 

integrating over the region Dz  bounded by the hyperbola xy =  a, as shaded in  Figure 3-4. 

We w ill examine the cdf, Fz in  two cases. The cdf w ill be defined firs t for positive a  values.

Fz (a) =  P r (Z < a )

=  Pr ( x ,y e D z)
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=  Jd J fx ,v {x ,y )dxd y  

=  Jd J  f x ( x ) fY(y)dxdy

Dz- 

D z -

f ’  _ L _ ^ _______ .
Ky/l - y 5

_  _  ______
> /2 7 r t r  7 o  y/2n<T i r , / !  —

■  2 Jo J ’ao * J T = p dxdy
1 , f f  1-e2<t2 ax +  / —■==—e ^ Tdx

■  - f  [£ .

=  I  [ 1 + e r f ( ^ ; ) ]  * , / / -  y *dy'

where

erf(0) =  -^= f  e~t2dt 
v7r Jo

is the error function [2]. 

S im ilarly, for a < 0

Fz (a) =  P r(Z  < a)

=  P r(a :,yG l?z)

=  J d  J f x , Y ( x , y ) d x d y

=  JDzJ  fx (x ) fY(y)dxdy

rl f f  i  -x2 i

_  Jo ■/-«. V W  * ^ 1  - y idxdv

= i  “*  ( ^ )

= 7  [1_erf(v^)] W l- y * *
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Dz for alpha >0 Dz for alpha < 0

-1000

Figure 3-4 Integration region, D z, for a > 0 and a <  0

=  r [ — (1+erfl7fe)j ■Ky/l ~  y2dy

where erfc(0) =  1 — erf(<f>).

Thus, for a ll a, the cdf o f Z is defined to be

Fz(a) L  1 + e rf( v ^ y ) ]

Using the property that lim z_».±00 erf (z) =  ±1, the cdf is well defined since lim z_(.-00 Fz{z) =  

0 and lixnr_+00 Fz(z) =  1.

The density function o f Z, fz , can be found by taking the partia l derivative o f the cdf
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with respect to a  as follows

fz {a ) = l F^

-  - f ' lda Jo [
1 + e rf

( v 4 » ) ny/1 — y2
dy.

Since the integrand satisfies certain continuity requirements [58], the partia l derivative 

and integral can be switched to obtain

h ( a )  = Z '^ [1+erff e ) j
rl 2 1

n \ / l  — y2

_  r l 2 ^ 1  1

Jo y /**  ’  y/2ayny/T=y5 y

V2 r 1 .==£■ 1

dy

r A"ROy/v Jo y \ / l — y2 

The expected value o f Z  is defined as

E\Z\ =  f  a fz(a )da  =  0 
J—oo

since the integrand is an odd function. Another way to determine this fact is to use the 

assumption that X and Y  are independent and X  is normally distributed w ith zero mean 

It  follows that

E[Z) =  E[XY] =  E[X]E\Y] =  0. (1)
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The variance o f Z can be found using the formulation Var[Z] =  E[Z2] — E[Z]2 =  E [Z 2].

Now consider the random variable S =  Z2. We proceed to derive the density function 

and expected value of S which equals the variance o f Z. The pdf of S can be found by 

transform ing the random variable Z. In  particular,

fs(s)As  «  Pr(s < S < s +  As)

=  2 Pr(>/s < Z  <  y/s +  As)

=  2 fz(Vs)W  s +  As — v/s).

Finally, by dividing both sides by As and taking the lim it as As -»• 0, we have

fs(s) =  2 f z (y/s) x

-

^  f l 1 dV
R io

e2" 2̂ 2
ira -s /n  Jo y /s  y y / 1  — y 2

for nonnegative s. 

Hence,

E[S\ =  [° °  s fs(s)ds
Jo

U L  r . s * J L  _ A
= [ i r f f y / v  Jo y /s  y y / 1  — y 2

y/2
TCCTy/lC

ds 

ds.
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By substituting u =  £ and dy =  and making the appropriate changes we obtain

£?[5] =
y/2 f

 ■= /  /  V-s
TTffv'TT 7o / l

»! v M
00 - is i ^  du

:du

1X O y /%

y/2
%ay/%

ds

ds

du
y/u2 — 1

where Fubini’s Theorem [59] allowed us to change the order o f integration. Then setting 

t  =  y/s and substituting ds =  2tdt we have

E[S] =
>/2 r»  r r

Tray/% Ji [Jo
2y/2 [  f

h  [Jo

00 -« V .. 2 . 1  du e 2t2d i h -v .
J v'u2 -  1

00 - ‘V  2 ,e txt1 t dt du
% ( T y / % J l  [Jo J y/u2 -  1

_  2 \ / 2  y°° du
% (T y /%  Jl [  >/2u3 J y/u2 — 1

_  2a2 f°° du
TT Jl u3y/u2 — 1

■  (¥) (i)
(2)

Therefore, the random variable S — [X  cos(wT) ]2 has an expected value o f a2/ 2 where a2 is 

the variance o f the random normal noise process. The same result holds fo r [X  sin(ojT)]2. 

These facts w ill be used to  derive the expected value o f the periodogram. In  order to 

sim plify notation, le t G j =  X j  cos(o/Z}) and H j  =  XjSm(uTj) for j  =  1, . . .  ,1V where the 

X j  are independently and identically distributed normal random variables w ith zero mpan 

and variance a2 and the T j are independent random variables as described at the beginning
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o f this section. I t  is also assumed that the X t and Tj are independent for a ll i,  j  =  1 , . . .N  

and t 7̂  j .  The calculations use the properties that for a ll j ,  E[Gj\ =  E[Hj) =  0 and 

E[G]\ =  E[HJ] = <j2/2.

First, consider the summand in  the periodogram definition involving ju s t the 

terms. By expanding the square o f the sum and using the lin e a r  properties o f the expectation 

operator and the property tha t the expectation o f a product o f independent variables is the 

product o f the expectations we have

E

=  E
i= I i= l J=t+1

= E * [ g? ]+ E  E  W O iV B fG j]
t= l i= l j'= t+ l

^ a 2 n
=  > TT + 0

k  2
No2 

2 '
(3)

This result w ill also hold for the sine term.

Thus the expected value o f the classical periodogram for data sampled randomly is given

by

E[Px {u)] =  E
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The variance o f the periodogram can be found using sim ilar techniques. The vari

ance calculation requires the computation o f Var[C?y], Vax[Hf\, Var[2G iG j], Var[2H iH j], 

and Cov[Grj, H j]  for i , j  =  and i  ^  j .  Other covariance terms are involved in  the

analysis; however, a ll the terms not listed have covariance equal to zero and are not included 

to sim plify the equations. We first present the individual calculations o f the terms listed 

above and then proceed to calculate the variance o f the periodogram.

F irst, we calculate

Var[G2] =  BIG)} -  E[G)\2

=  £ [S 2] -  £ [S ]2 

9cr4 <r49<r4
8 4

7<r4
8 (5)

where S =  [X  cos(wT)]2 has been previously defined and has nnea.n equal to <t2/2. The
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calculation of the expected value o f S2 is sim ilar to the calculation o f £ [5 ]. Therefore,

E[S2] =  r s 2f s(s)ds 
Jo

=  r A  ^  r l c^ * 1 d*
Jo [vay/v Jo y/s yy/l — y2

ds

- ^ =  r  [  [ l e ^ fc s *  -  dy
■Kay/v Jo [J0 y\J  1 -  y2 ds.

By substituting u =  £ and dy =  and making the appropriate changes we obtain

E[S2] =
y/2 -  r

7T Jo Jl
e aw* s  a • u

TTO-Vw Jo | J l  "  "  u2 Ĵl J  £

y/2 f°°

du ds

■KOy/TC
3 du 

s*

v/2 roo r roo 3

e *<fa s*dsira-y/ir~.r\r.
y/u1 — 1. 

du

ds

y/u1 — 1

where again Fubini’s Theorem [59] allowed us to switch the order o f integration. Then setting 

t =  y/s and substituting ds =  2td t we have

oo r roo - t*»*
to* 2td£^  =  - ^ r \ r ei .

n a y / *  Ji [Jo

_ r [ r e^ (4 jt
1f<Ty/v Jl [Jo 

_  2 \ / 2  ŷ 30 J^So^v/tF] du
—  i c a y / i r J i  [  y / 2 u s  J  \/u 2 -  1

du
7 ^ i

du 
y/u2 — 1

_  6<y4 r°° du
7T Jx u?y/u2 — 1

-  P?)©
9cr4 

8 '
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Since Gj and H j  have the same d istribu tion , it  follows that Var[H j\ =  7a4/8 . 

Next we show that Var[2GtGj] =  Var[2H iH j\ =  o4.

Var [2GiGj] =  4Var [GiGj] 

=  4 ( s [ C 2G 2| -  E[G,G3]2)

=  4 (B [G ?]E [G J] -  (E [G i]£ (G j])2)

-  * [ ^ H
= («)

due to the independence and norm ality assumptions.

The last computation uses the fact that a random normal variable w ith  zero mean has a 

fourth moment equal to 3<r4 [51, page 117]. Another fact is tha t for Y  uniform ly distributed 

on (—7r, 7r) we have

■Z?[cos2(V ) sin2(y )] =  f  cos2(y) sin2(y )/y (y )d y

=  £  cos2(y) sin2(y) dy

_  1 r-sin(4y) y lT
2jt L 32 8 j_ ,

_ 1 [ it 7r
2tt [ 8 +  8 .

_ _  1 
8 '

Thus, since X j  is normally distributed w ith  zero mean anrf ojTj is u n ifo rm ly  distributed on

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(-*■ , 7T),

Cov[G j,H ]] =  E

=  E{G*H*) -  ^ £ [G f] -  +  j

=  E [x ;  cos2(« T ,) sin2(wT,)] -  2 ^  + £

4

=  E[X*]E[cos2(uTj) sm2(vTj)] -

(7)

Results (5)-(7) are used to calculate the theoretical variance o f the periodogram. In 

particular,

Var[Px(w )] =  Var n (5°') * Cl"!
N If N ff

E E ^ i + E E ^ i
t= l jzr l  i= l j= 1

=  ^  ( E  Var [G2] +  £  Var [ffJ ] +  £  2Cov [c 2, i f 2]
v = 1 i = 1 i = 1

-  i ^ Var

AT AT U N

+ E  E  Var (2 0 ,0 ;]+ 52 52 V ar[2 ff,
»=1 J=i+1 i= l j= t+ l

1 /  "  7<r4 "  <r4 "  "  ,
-  N2 2E y  +  E x  +  2 E  £  °-

V j= i  j= i  i = i j = i+ i

yyj

1
IV2

14A/~g4 M r4 2N (N  — l)o~4
8

=  ^ [ K + * K j  

-  (1+^ - (8)
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As mentioned previously, other covariance terms which arise in  the variance calculation 

were not expressed above. These terms include Cov [£??, G2], Cov [H f, H j], Cov [G?, 2G»Gj], 

Cov p H iH j^ H k H ^  Cov [G?, 2 ^2 1 ,], Cov [(%,2GjGk), Cov [2 1 ^ 2 ^ 2 ? * ], Cov 

Cov [G?,2HjHk], Cov Cov [2GiGit  2GfcGt], Cov [H f, 2GiGj], Cov [fl? ,fli2Z > ],

Cov [2G.G-,, 2 # ^ ] ,  Cov ^ jG ^ ^ jir f t ] ,  Cov [2GjGi ,221*27’f], Cov [2GjG,-,2GiG*] and fi

nally Cov [ if f ,  HjHk] for t, j ,  k, I =  1 ,. .. ,  2V unequal. Some examples o f the computation o f 

the theoretical covariance between these cross-terms are described below and take advantage 

of the independence assumptions. The techniques can be extended to show that a ll o f the 

other covariance terms are zero. For example, for t ^  j

Cov(G?,G?] =  , [ ( < # - £ )  ( o f - £ ) ]

=  E[G?G?J -  yE [C = ] -  y £ (G j] +  £

=  ( t ) + T

2

=  0 .

Another example uses the fact that for a random variable Y, uniform ly distributed on 

(” »1 *),

£?[cos(y) s in (y )] =  f  cos(y) sin(y) dy

=  ^y^cos(y)sin(y)dy 

_ J_ fstn2y1T
M  2 J - X
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Since uiTj is uniform ly distributed on the appropriate range this result can be used to 

calculate

Cm\2GiG i,2H iH j\ =  E[(2GiGj -  0)(2HiHj  -  0)]

=  EiAGiHiGjHj]

=  E  [4X f x ]  cos(uTi) sinfujTi)cos(uTj) s in (o ^ )]

=  4E[X?}E[Xf]E[cos(uTi) sin(wri )]£[cos(u;T.,) sin(uTj)] 

=  ^ (^ (O J C O )

=  0.

3.3.2 V erification o f R esu lts

In  this section the results o f various simulations which support the theoretical calculations 

derived in  the previous section w ill be presented. In  particular, the results o f equations 

(1) - (4) and (8) are examined to see if  these hold for different N ,cj and a  values. The 

methods take advantage o f the fact that ensembles that do not have fixed sampling times.

F irst equations (1) - (3) are examined using simulated data. For each sim ulation, 50000 

ensembles were created, each consisting of 1000 random times and measurements from a
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u) =  2tt/3, cr =  l T ria l 1 Trial 2 Theoretical
E[G] —3.8e-& 4.9e-5 0
V[G] .5000 .5000 .5

e ^ M ] 500.8 502.7312 500
E[H] -1 .6 c "4 l.le “ 4 0
V[H] .5001 .5000 .5

502.3 500.9249 500

Table 3.2 Simulation o f Intermediate Calculations I

random norm al d istribution. The follow ing terms were calculated

(t) E[G\ =  E [X  cos(u;T)]

(«f) V[G\ =  Var [X  cos(a/T)]

(Hi) E [C *(« )] =  ^ [ ( E jL x ^ c o s ^ T j ) ) 2]

as well as the sine counterparts which w ill be denoted as E[H ], V [H ] and ^ [^ (a ;)]. These 

simulations reveal statistical properties consistent w ith the analysis presented earlier. In  

particular, for a time series w ith N  observations from a noise process w ith standard deviation 

<7, the theoretical values should be

E[G] =  E[H] =  0

V[G\ =  V[B\ =  ^

E[C*M1 =

The firs t example shows the estimates from two typical simulations w ith parameters 

a  =  1 and u> — 2ir/3. The results are summarized w ith the expected theoretical values in  

Table 3.2. Likewise, Table 3.3 shows the outcomes of two additional simulations where the 

parameters were defined to be a  =  2 and oj =  2x/5.
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uf =  2ir/5,a =  2 T ria l 1 T ria l 2 Theoretical
E [G] 7.2e-S -5.9e- ** 0
V[G] 2.000 2.0010 2

1999.2 2002.5 2000
E[£f] -1.8e-4 -5.0e~5 0
V[ff] 2.001 2.0002 2

E[S®(«)1 2000.1 1990.3 2000

Table 3.3 Simulation o f Intermediate Calculations I I

0.485 049 0496 0 5  0506 051 0515 052

Figure 3-5 Histogram demonstrating that Var[G ]/cr= 1/2

These two examples indicate that our method is sound. However, we wanted to verify 

that the results were independent o f the frequency and the variance parameter. Thus, the 

estimates o f Var[G] fo r 50000 simulations were generated where each tria l had randomly 

chosen frequency and a  value. A histogram o f Var[G]/cr for a ll the tria ls  is shown in  

Figure 3-5. From our derivation, the quotient should be 1/2 and the histogram indicates 

that th is is plausible.

Next, the mean and variance o f the periodogram were examined. Simulations, summa-
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N a TVial Theoretical
Mean

Mean Theoretical
Variance

Variance " a 4

5 1 1 1 1.0001 1.2 1.1999 1
2 1.0002 1.2096

10 2.5 1 6.25 6.2470 42.96875 42.9849 39.0625
2 6.2665 42.9661

40 2 1 4 3.9911 16.4 16.3890 16
2 3.9971 16.3670

100 3 1 9 9.0026 81.81 81.9285 81
2 8.9917 81.7107

1000 1 1 1 1.0016 1.001 1.0060 1
2 1.0016 .9999

Table 3.4 Simulated Mean and Variance o f the Periodogram o f Randomly Sampled Data

rized in  Table 3.4, were conducted to verify the results o f equations (4) and (8). The mean 

and variance at the periodogram estimates were calculated for 500000 different tim e series 

of length N , for N  =  5,10,40,100 and 1000. Different u> values were used in  each tria l to 

ensure that the calculations were not frequency dependent. The mean and variance o f the 

simulations are listed along w ith the theoretical values according to our derivation. Notice 

that for sm all sample sizes, the variance o f the periodogram is larger th an  a4, the variance 

expected fo r am exponential d istribution w ith mean parameter a2.

3.3.3 D eterm ination of C ritical Values

The results developed show a different viewpoint on how to calculate statistical properties 

of the periodogram when the sampling times are chosen randomly. The results d iffe r slightly 

from the approaches taken previously [37,44,61] since the times are not treated as constants. 

Hence the variance of
N

Yu Xi  cos(orfj)
3-1
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is not a function o f the sampling times or the frequencies. However, the variance trad itiona lly 

derived for this expression, namely

ar
a2 E  cos(urfj), 

7 = 1

does approach our result as A t —► 0. By definition,

L

2K
cos 2(wt)dt =  ^ jm0 ̂  cos2 (art) A t =  ir.

However, for small A t,

A, 2tt
A i iB 7 7

where N  is the number o f samples collected. So,

7r «  E  cos2 (art) A t ss —  E  cos2 (art)
N

Thus, in  the lim it,

E co s2M ) =  ^

and therefore

Var E  X j cas(uxtj)
\J=l

No2
2

which agrees w ith  our findings.

The distribution o f the periodogram for evenly sampled data is an exponential d is tri

bution w ith mean a2. Therefore, the variance o f the periodogram is <r4. The results o f the
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N =  10 p-value =  0
N =  50 p-value =  .0282
N =  100 p-value =  .1565
N =  1000 p-value =  .3032

Table 3.5 Results o f Kolmogorov-Smirnov Test

distribution properties o f the periodogram for randomly sampled data presented here has 

the same mean; however, the variance differs slightly from the previous work by the factor 

o f [1 4- jf ] .  In  the simulations, especially for small sample sizes, the variance o f the peri

odogram is larger than  the- variance traditionally proposed. Obviously, as N  increases, the 

variance does approach a4. Also, the distribution o f the periodogram seems to approach 

an exponential distribution as the sample size increases, as shown in Figure 3-6. This fig

ure compares the distribution o f the classical periodogram to the exponential d istribution 

w ith mean a2 when N  =  10,100 and 1000 and a =  1 . As N  increases, the quantile plot 

function o f S-plus approaches the line y =  x indicating that the distribution approaches an 

exponential distribution. Thus, fo r small N  the d istribu tion  is exponential-like; however, it  

has a heavier ta il. This is not surprising since the variance o f the periodogram fo r small 

sample sizes is slightly larger than what is expected for a true exponential d istribution. In  

fact, Splus’ Kolmogorov-Smirnov goodness-of-fit test, summarized in Table 3.5 indicates 

that the distribution o f the classical periodogram w ith  N  =  10 is significantly different from  

an exponential distribution w ith mean 1 (p-value =  0). However for values o f N  >  100, the 

two distributions appear to be statistica lly equivalent.

Although the distribution o f randomly sampled data, as defined above, approaches an 

exponential distribution, it  is inappropriate to use the critica l values derived for Fisher’s test.
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The critica l values derived for Fisher’s test assume that the periodogram is exponentially 

distributed. Especially for smaller samples, this is not the case. The c ritica l values for 

Fisher’s test are greater than what occur in  Monte Carlo simulations on norm ally distributed 

data sampled at random times. To demonstrate this, several Monte Carlo tria ls  were carried 

out for N  — 11,21,31,51 and 101. Each tria l began w ith the creation o f a random time 

sequence which was fixed for the rest of the tria l. Then, data was selected from a normal 

distribution and the periodogram of the simulated data was calculated at each o f the Fourier 

basis frequencies. Fisher’s test statistic (page 38),

m t  (P x (m )}

i r t i f t W ’

was calculated and recorded. This simulation was repeated 300000 times, where for each
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No. o f Periodogram 
Estimates

N Fisher’s 
C ritical Value

Monte Carlo 
C ritica l Value

5 11 3.419 3.213
10 21 4.450 4.113
15 31 5.019 4.659
25 51 5.701 5.439
50 101 6.567 6.363

Table 3.6 Upper C ritica l Value (5% level o f significance)

iteration new data was generated. The 95th percentile o f the test statistics from the 300000 

simulations is recorded as the Monte Carlo critica l value and it  was consistently lower th an  

the c ritica l value derived fo r evenly sampled data. Table 3.6 summarizes the results o f a 

Monte Carlo tria l for 5 different sample sizes, each w ith a different random sampling scheme. 

For comparison, Fisher’s c ritica l value for evenly sampled data is also listed. Notice th a t  for 

a ll N , Fisher’s critical value is larger than the value produced by the Monte Carlo method. 

In  fact for N  =  10, the value 3.419 actually corresponds to approximately the 97th percentile 

in the Monte Carlo tria l and for N  =  101 the value 6.567 corresponds to approximately the 

96th percentile, instead o f the 95th percentile.

Although this difference may not seem significant, it  could be staggering for industria l 

companies which are m onitoring their process using small samples sizes. Since Fisher’s cutoff 

points are larger, periodic behavior may go undetected. This could be cost prohibitive for 

industries. Therefore, in  order to test the null hypothesis that no periodic signal is contained 

in a collection o f randomly sampled data we suggest fin d in g  critica l values through Monte 

Carlo simulations.
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3.3.4 T he Perform ance o f the S tatistica l T ests

In  this section we w ill explore how various tests perform when data is randomly sampled. 

A ll critica l values were found by Monte Carlo methods, using 30000 independent realizations 

for each sampling scheme and a 5% level o f significance. These studies examine the relative 

power o f Fisher’s test statistic to detect sinusoidal behavior under certain conditions using 

the Monte Carlo generated confidence bounds. The power o f a statistical test is estimated 

by the proportion o f tria ls that correctly reject the null hypothesis because the test statistic 

exceeds the c ritica l value.

First we examine how the power o f Fisher’s test is affected when the underlying sinusoidal 

model has a fixed period but the am plitude is varied. Consider a random sampling scheme 

o f N  =  51 times and observations generated from the model

X j — B cos(27rtj/5.1) +  t j  for j  =  1 ,2 ,... ,N

where the ej are independently and identically distributed standard n o rm al errors a n d  B  

ranges from 0 to 2.5 in  increments o f .25. For each amplitude, 10000 independent tests were 

conducted. The estimates of the power as a function o f am plitude for two different, random 

sampling schemes are shown in  Figure 3-7. The test w ith m odified critica l values seems to 

perform well at detecting cyclic behavior a t a Fourier frequency. In  addition, the power o f 

the test using Fisher’s critica l value is represented in  Figure 3-7 by the dashed line. Since 

the Fisher’s cuto ff point is larger, it  tends to  have less power than the test using the Monte 

Carlo generated bounds.

In the next study, the ab ility  o f Fisher’s test to detect non-Fourier frequencies was
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Figure 3-7 Estimated power o f Fisher’s test as a function o f am plitude

tested. For this tria l, the amplitude is fixed while the frequency is varied between three 

Fourier frequencies. The model used was

X j  =  1 . 5 c o s ( 2 7 r t j / )  4 -  ej

for j  =  1 ,2 ,... ,  N  where N  — 51 and are again assumed to  be random, standard

normal errors. The values o f /  were selected to run between the Fourier frequencies 10/51 

and 12/51 w ith a step size o f .1/51. Again, for each set o f random sampling times, Monte 

Carlo simulations were used to estimate the critica l values. Although Fisher’s test detected 

the signal for frequencies near the three Fourier basis frequencies, represented w ith  a A  in  

the plot, the test does not perform well at detecting frequencies midway between Fourier 

basis frequencies, as shown in  Figure 3-8.
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Figure 3-8 Estimated power o f Fisher’s test as a function o f frequency

The fina l batch o f simulations examine how the m odified tests fare when multiple periodic 

components sure present. The power o f the tests were calculated when two and three periodic 

components were present in the underlying model. The firs t model considered was

X j =  Bcos(27rty/5.1) Bcos(2irtj/3) -l-e,-,

for j  =  1,2 ,... ,  N  where N  =  51 and B  is varied from  0 to 2.5 w ith  a step size of .25. 

The {ej}!}Lx are defined as before. For this example the periods 3 and 5.1 correspond 

to two Fourier basis frequencies w ith  the same am plitude. The power o f Fish e s test, 

using the upper bound generated from  the Monte Carlo method, was calculated using 10000 

independent simulations. Two independent tria ls were conducted where data was collected 

at random from  the process above. The results o f these tria ls  are shown in Figure 3-9. For
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comparison, two estimates o f the power o f Fisher’s test applied to data that has only one 

periodic component are shown with a dotted line. Notice that the test loses power when 

an additional cycle is introduced to the data. The test performs even worse when a th ird  

periodic component is added. To illustrate this, an additional summand corresponding to the 

Fourier frequency 3/51 was included in  the model above. The resulting power is diminished 

greatly, as shown in  Figure 3-10.

0.7

as

o.«

ai

as

Figure 3-9 Estimated power o f Fisher’s test w ith two periodic components

Since Fisher’s test performs poorly when m ultiple periods are involved, a simple modi

fication proposed by Bolviken and discussed on page 43, can be made to improve the test. 

In  this case, the Fisher test statistic

maxfc{P(fa;fc)}
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Figure 3-10 Estimated power o f Fisher’s test w ith 3 periodic components

has an inflated denominator which malms the ratio smaller. This ratio results in  a test 

statistic that is less likely to  exceed the critica l value causing the test to become less accurate 

in  terms o f the significance level. The simple change o f ignoring large peaks in  the calculation 

o f the mean makes the test more robust. Following the method proposed by Bolviken and 

applying it  to the unevenly sampled data, the denominator is replaced by

where P (u j^ )  are the ordered peaks w ith  P(c*>(i)) <  P(ctf(2)) • - • <  P{u(M)) and the value o f 

a was chosen to be 3. This value fo r a was chosen to correspond to the three cycles known 

to be in  the data. C ritical values for the test are again formed using 30000 Monte Carlo 

simulations. The results, shown in  Figure 3-11, show a dramatic increase in  the power o f
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Figure 3-11 Estimated power o f Belviken’s test

the test, as compared to the power of the standard application o f Fisher’s test w ithout the 

trim m ing method, shown w ith  the dotted line.

Not surprisingly, these tests on irregularly sampled data perform sim ilarly to the tests 

applied for evenly sampled data. The main difference is the critica l values used are gener

ated from Monte Carlo simulations instead o f the bounds derived for evenly sampled data. 

W ithout this adjustment the standard critica l values would be too high and periodic behav

io r may go undetected. Therefore, the misapplication of using the inflated bounds to detect 

significantly large peak values results in  a loss o f power o f Fisher’s test. However, the use o f 

Monte Carlo methods to m odify the critica l bounds improves the signal detection capabilites 

o f Fisher’s test.
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Chapter 4

SPECTRAL CONTROL CHARTS AND OTHER  

MONITORING DEVICES

Statistical process control is used in  industrial settings to improve productivity and the 

quality o f goods. Industries use statistical techniques to m onitor their processes to make 

sure that they are running efficiently. Samples are collected over time and are analyzed to 

detect deviations from the desired process. Walter Shewhart [65] introduced the concept of 

a control chart to monitor an industria l process.

A t a given time, samples are collected from the process and an average measure is 

calculated and plotted on the control chart. The samples collected over tim e w ill undoubtedly 

have some natural variability or common cause variation. I f  the process is in control at a 

given time, meaning there is only common cause variation, the plotted measurement w ill fa ll 

w ith in  predetermined control lim its about the target value. However, when unusual sources 

o f va ria b ility  are present in  the process, the averages w ill p lo t outside the control lim its, 

thus indicating a possible change in  the process. The sources o f variation, called assignable 

causes, might be attributed to factors like defective materials or equipment. The process is 

then considered out of control because it  has changed significantly. When th is  happens it  is 

im portant to  determine whether deviations are produced by changes in  the process mmn, 

the process variance, a new random noise source or by the introduction o f a non-random 

component to the production process. This chapter w ill review the premise o f a control chart
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as well as address methods designed to detect the onset of periodic (sinusoidal) behavior in  

a system.

4.1  C ontrol C hart B asics

A control chart is a graphical method o f representing measurements o f some quality char

acteristic over time. The measurements that are being monitored are plotted as a function 

o f the sample number or as a function o f tim e. To assist in determ ining the behavior o f the 

process, the average value expected when the process is in control is represented by a hori

zontal line in  the m iddle o f the chart. I f  the process is in  control, the measurements collected 

w ill vary randomly about this line. Two other horizontal lines are typ ica lly used to indicate 

the upper and lower control lim its, denoted by UCL and LCL. Under normal conditions, 

most of the measurements w ill fa ll between these two bounds. In  this situation, the process 

is deemed in  control and no adjustments are made to the process. When an assignable cause 

is present the points tend to fa ll outside the control lim its since the va riab ility associated 

w ith  an assignable cause is typically much larger than the common cause variability. Also, 

distinct patterns w ith in  the control lim its im ply there is an assignable cause affecting the 

process since the variation in  the data no longer behaves randomly. Therefore, the process 

would be deemed out o f control and an investigation for the assignable cause would be 

carried out. The process could then be properly adjusted to bring it  back in  control.

Part of the appeal o f control charts is that they cam be used on-line. As data is collected 

the control chart can be updated w ith the inform ation provided by the newest sample. Given 

the current speed o f computers the calculations can be done almost instantaneously which 

makes it  ideal to use in  industrial settings. A n example o f a control chart is shown in
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Figure 4-1 Example o f a control chart

Figure 4-1. Notice that the process would be considered in  control based on these 20 points 

since none o f the points fa ll outside of the control lim its  and the points do not follow an 

obvious pattern.

I f  the characteristic which is being monitored is represented by the sample statistic X  

w ith mean fix and standard deviation ax then the parameters o f the control chart are defined 

by [46]

UCL =  fix +• K ox 

Average =  fix 

LCL =  fix — K a x 

where K  is determined by the desired level o f significance and the d istribution o f the variable 

X . For example, consider the process o f fillin g  cereal boxes where the marhiTM*s are calibrated 

to f ill each box w ith ft =  16 oz. o f cereal and the known standard deviation is a  — .4 oz.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To m onitor the process, n =  4 random samples are collected and weighed every hour. I f  X  

represents the mean of the samples taken every hour, then, by the central lim it theorem, X  

is normally distributed w ith mean /i*  =  16 oz. and w ith standard deviation ax =  crfy/n =  

A/\/A  =  .2. For a significance level o f a  =  .05 the UCL and LCL would be

UCL =  f t *  +  Za/2<7x =  16 +  1.96(.2) =  16.392

and

LCL =  -  Za/2<rx =  16 -  1.96(.2) =  15.608

where Za/2 is such that the Pr | Z  > ZQ/2] =  a /2  for a standard normal variable Z. The 

process is considered to be in control whenever the average o f the sample randomly fo lk  in  

the interval (15.608,16.392).

A control chart is in some ways equivalent to conducting a hypothesis test each time a 

sample is collected [46]. Generally speaking, control charts test the nu ll hypothesis that, the 

process is in  statistical control at a particular time. I f  an observation falls outside the control 

lim its then the nu ll hypothesis would be rejected and the process would be considered out o f 

statistical control. Mathematically, the test examines whether the true mean o f the process 

equals a value hq. I f  the test is rejected, it  is assumed that the true process mean is f i\  #  po 

and therefore the process has changed. For instance, in  the cereal box example, defining the 

control lim its would be the sam e as conducting the hypothesis test

Hq : =  16 versus Ha : Px #  16
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for a significance level o f a =  .05. This hypothesis test would be conducted each time a 

sample is gathered. Therefore, the null hypothesis would be rejected when the mean o f the 

observations taken at a particular time fa ll outside the confidence bounds.

There are many reasons why the null hypothesis could be rejected [4] and control charts 

have been designed to detect the different behaviors. The control chart described in  the 

cereal box example is called a Shewhart chart and it  is very good at detecting a large, 

sudden shift in  the process mean. The use o f different supplies or an incorrect setting could 

cause the process mean to jump. A change in  the underlying variability o f the process could 

also indicate out o f control behavior. Other assignable causes could be a trend or slow change 

in the mean resulting from  the wearing out o f machinery parts. This could be indicated by 

patterns in  the control chart. Another reason for patterns in  the control chart could be the 

introduction o f a nonrandom component entering into the process. The next section w ill 

discuss statistical process control methods designed to detect periodic behavior which can 

enter and significantly alter a process.

4.2 E venly Sam pled Data

Factors which are periodic such as a motor cycling on and off, fluctuations in  temperature, 

hum idity or pressure or the shift rotations o f employees could affect the output o f a manufac

turing process. Since these influences can result in  an out o f control process, it  is im portant 

to be able to detect when specific periodic factors are present in  a process. As discussed in 

Section 3.1.2, Fisher developed a statistical test to  detect significant periodic behavior for 

evenly sampled data based on the relative size o f the dominant peak o f the periodogram. 

Since then many approaches have been proposed to improve the signal detection capability
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o f Fisher’s test on evenly sampled data when non-Fourier frequencies or m ultiple frequencies 

are involved [7, 33, 68, 69, 73, 80, 81]. Using these modified tests, control charts fo r the 

detection o f periodic behavior were designed to supplement trad itiona l mean and variance 

control charts.

The firs t control chart developed for detecting periodic behavior was proposed by Beneke, 

Leemis, Schlegel and Foote [4]. This control chart is based on Fisher’s test statistic, defined 

on page 38, and monitors the ratio o f the largest value o f the periodogram to the average o f 

the periodogram estimates. The value o f the test statistic

T  maxt {.Px(«*)} 
xrZiL,PxM

is calculated and compared against the upper control lim it which is defined to be the c ritica l 

value o f Fisher’s test statistic fo r a predetermined significance level. The process would be 

considered out o f control due to the introduction o f periodic behavior whenever T  exceeds 

the c ritica l value. Figure 4-2 illustrates the basic idea o f the spectral control chart. In  this 

example the process being monitored goes out of control at the eighteenth sample.

The spectral control chart proposed by Beneke et al. requires N  evenly sampled data 

points which w ill be used to  calculate the periodogram. The sample size N  and sampling 

rate also determine the Fourier basis frequencies that w ill be tested. Choosing the sample 

size may depend on previous knowledge about the process and inform ation about what 

frequency structures are o f interest. Once the frequency basis has been chosen, the spectral 

control chart w ill use the most recent point in  addition to the previous N  — 1 samples. Let 

X i , X 2, - • • ,X f f  represent the firs t N  samples collected using a fixed sampling rate. Here
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Figure 4-2 Example o f a spectral control chart

the data value Xk  may denote a single observation taken at time f*  or the average of a batch 

o f measurements taken at £*. It is also assumed that the data values are sampled from a 

random normal process. The value which is plotted on the control chart is

T =  r S j Pp(? )}' for *  =  1,2,..., Af =  \N/2\jrEk=ipx M

where P *(u;k) is periodogram estimate for the frequency u * =  2irk/N  using the N  

most recent data points ATi,. . . ,  Xff .  The value T  would be plotted on the control chart 

and compared against the upper control lim it. When the next observation X s + i is taken, 

the statistic T  w ill be recalculated using the data points X 2, . . . ,  X n + i-  This procedure is 

repeated as more data is collected u n til an out o f control point is signaled. A point which 

is out o f control would indicate that the data has a periodic component and is not longer
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random. The frequency o f the cyclic behavior could be determined by locating the frequency 

associated w ith the largest periodogram estimate.

Since this control chart is based on Fisher’s test statistic it  shares the same p itfa lls  as 

Fisher’s test. W hile the control chart is effective a t determining when periodic behavior cor

responding to a Fourier basis frequency enters the process, it  performs poorly when m ultiple 

periodic cycles are present or if  the cycle corresponds to a frequency midway between two 

Fourier basis frequencies. Spurrier and Thombs [69] proposed a control chart which would 

signal out o f control behavior for a wider range o f frequencies. Their control chart is sim ilar 

to the previous control chart except that the test statistic T1, defined on page 40, is moni

tored. By construction, th is control chart is better a t detecting periodic behavior for a wider 

range o f frequencies. However, the capabilities o f the control chart deteriorate when m ultiple 

periodicities are present. Lastly, another control chart was proposed by Thtum [73] based 

on the modified statistical tests on page 41. These charts show significant improvement over 

their counterparts previously discussed.

4.3 R andom ly Sam pled D ata

A ll these methods, however, assume that the data is collected regularly in time. In  practice 

though it  may not be feasible to  collect evenly spaced samples. Beneke et al. [4, page 66] state 

“I f  the observations are at irregular time intervals ... the procedures of this article  cannot be 

used directly” in  reference to  the ir control chart based on Fisher’s test statistic. In  fact the 

previous chapter demonstates that direct application o f Fisher’s test on unevenly sampled 

data is incorrect since the distribution o f the periodogram for small N  is not exponential. 

Therefore, the critica l values used in  the spectral control chart o f evenly sampled data are
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not appropriate fo r randomly sampled data. Instead, the c ritica l values need to be adjusted 

and can be estimated by Monte Carlo simulations.

A control chart which monitors Fisher’s test statistic can be used to detect periodic 

behavior in  data that is sampled randomly. Its setup w ill be sim ilar to the control chart 

for evenly sampled data proposed by Beneke et al. except the value o f Fisher’s statistic is 

measured against the critical value found through Monte Carlo simulations. The process is 

considered to be free o f cyclic behavior whenever the statistic fa lls  below the critica l value.

To evaluate the effectiveness o f the control chart, the average run length (ARL) w ill be 

calculated. The ARL is the number o f observations expected before an out o f control point 

is signaled. Clearly, the ARL is a function o f the critica l value as well as the number o f 

samples N  used in  the calculation o f the statistic. The ARL is estimated using Monte Carlo 

simulations to determine how quickly periodic behavior is detected.

F irst the c ritica l value o f the periodogram estimate for standard normal data sampled 

at N  =  51 random times was computed numerically using Monte Carlo simulations. A 

significance level o f .0027 was chosen since it  corresponds to a 3er lim it  under the assumption 

of normality and th is value is typ ica lly used in  control charts. For this sample size, the 

critical value o f Fisher’s test statistic fo r the unevenly sampled data was found to be 7.2732 

using the Monte Carlo method. In  this sim ulation, 51 random sampling times were selected. 

For each sampling time, a data value was independently drawn from  a standard normal 

distribution. Fisher’s test statistic was calculated using the generated data and recorded. 

This procedure was repeated 300000 times and the critica l value o f 7.2732 corresponds to the 

99.73rd percentile o f the tria ls. This process was repeated for a different random sampling 

scheme and a sim ilar critica l value was found. The corresponding c ritica l value found directly
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from the distribution o f Fisher’s test statistic for 51 evenly sampled data points is 7.914. 

Since some practitioners may incorrectly apply Fisher’s test directly to unevenly collected 

data, the ARL between the control charts using these two critica l values w ill be compared.

To estimate the ARL for the spectral control chart, IV =  51 random sampling timps 

were selected. The sim ulation began w ith the generation of 51 independent samples from a 

standard normal d istribu tion . Fisher’s test was carried out on these N  points by calculating 

the periodogram estimate for each o f the Fourier basis frequencies. The Fisher test statistic 

was then compared against the upper critica l value. For each tria l, Fisher’s test was carried 

out using both the standard, evenly sampled critica l value, 7.914, and the Monte Carlo 

determined critica l value, 7.2732. I f  the chart d id not signal, then an observation at a 

random time value was generated from a sinusoid model

Xj  =  Acos(27rtj/5.1) +  €j

where each £j is selected independently from a standard normal d istribution and A  represents 

the amplitude. The value A  w ill be changed fo r different tria ls. Since a new observation was 

collected, the test statistic was computed using data values corresponding to j  =  2 ,3 ,..., 52 

and the current state o f the process is determined. Another sample is selected at random 

whenever the process is found to be in  control. The run length is equal to the number o f 

times the test statistic is calculated before the process is determined to  be out o f control. 

The sim ulation was carried out 1000 times and the ARL is defined to be the average o f these 

run lengths.

A summary o f the ARL estimates from two such simulations for each amplitude A  =
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Method C ritica l Value Trial A  =  0 A=  1 A  =  2 A — 4
Standard Fisher’s Test 7.914 1 3496.0 80.1 33.6 24.3

2 3761.6 87.6 33.5 24.3
M odified Fisher’s Test 7.2732 1 1338.8 62.9 30.2 21.8

2 1387.1 60.3 30.4 22.2

Table 4.1 Average Run Lengths for Randomly Sampled Data

T ria l A  =  0 A =  1 A =  2 A =  4
1 1704.9 52.1790 29.9270 21.9500
2 1655.1 50.7640 29.6840 21.8700

Table 4.2 Average Run Lengths for Evenly Sampled Data

0,1,2 and 4 is found in  Table 4.1. Not surprisingly the standard approach has higher 

average run lengths which is a factor of the inflated c ritica l value. The modified method 

detects periodic behavior much more quickly than the standard method when the amplitudes 

are smaller. For comparison, the ARLs for evenly sampled data are listed in  Table 4.2. The 

ARLs for the modified test are very sim ilar to those obtained for evenly sampled data. 

Therefore, even though the exact statistical properties o f Fisher’s test are lost when data 

is collected irregularly, using c ritica l values based on Monte Carlo simulations allow the 

construction o f a control chart which performs about the same as the evenly sampled control 

chart based on exact d istribution theory.

4.4 O ther M onitoring D ev ices

The control chart methods described above help to determine whether or not periodic be

havior has entered a process which is assumed to be random. However, this situation may 

not be applicable when the process being studied is assumed to have periodic behavior. In
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this case, there are several questions which may be of interest. F irst, it  may be useful to 

determine i f  periodic behavior in  a system persists or is a temporary effect that cycles in 

and out o f the process. The evolutionary spectrum, discussed in  the following section, is a 

tool which can be used to  m onitor cyclic behavior. Although the evolutionary spectrum is 

designed to be used on evenly sampled data, we have extended its use to unevenly sampled 

data.

Another piece o f inform ation that m ight be useful is an estimate o f the underlying noise 

variance. Since the process is assumed to be periodic in  nature, the sample variance w ill be 

inflated due to the oscillations o f the data. By creating ensembles from the observed data 

in  a moving window o f data, the periodogram can be used to estimate the va riab ility  o f the 

random error process. Prelim inary results using evenly sampled data w ill be presented in  

Section 4.4.2.

4.4 .1  E volutionary Spectrum

The evolutionary spectrum is used to m onitor the periodogram as it  evolves over time The 

periodogram is calculated w ith in  a time window which is then moved through the data. 

E ither overlapping or nonoverlapping windows can be used. Contour and surface plots 

suggest how the periodogram estimates vary over time. Statistical inform ation can be used 

to allow only statistica lly significant behavior to be represented on the plots. In  other words, 

pnly periodogram estimates that exceed a particular critical value would be plotted.

For example, consider the data collected regularly from a sine model w ith a tim e-v ary in g  

amplitude Aj

X j  =  A j  sin(2 irtj/5.1) +  e,
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where ty  =  1 ,2 ,..., 1000 and {e y }^ ! are standard normal errors. We w ill demonstrate how 

the evolutionary spectrum works using examples involving two different am plitude functions. 

In  the firs t example the am plitude function w ill be almost constant. The am plitude o f the 

sine term w ill d rift slightly from  a mean value o f 2, as shown in  Figure 4-3a. In  the second 

example the amplitude function w ill be treated as periodic since the am plitude o f the sine 

term w ill be determined by the function

A j =  cos2(27rty/500),

shown in  Figure 4-3b.

In  both examples the evolutionary spectrum was calculated using nonoverlapping win

dows o f 51 samples. Only values which exceed the critica l value determined by a 5% level 

o f significance are represented on the plot. A surface plot showing how the spectrum o f the 

firs t example evolves over time is shown in Figure 4-4a. Recall that the am plitude o f the sine 

wave w ith period 5.1 is held almost constant. A  contour plot generated from  the surface 

plo t, shown in  Figure 4-4b, indicates that there is persistent periodic behavior corresponding 

to the cycle o f 5.1 time units. This behavior is represented by contours which are drawn 

close together located at the period 5.1. The contours and the peaks in  the surface plots 

remain for the duration of the tim e series indicating the cyclic behavior in  the process does 

not change significantly.

Compare these results to the second example in  which the sine model

X j  =  A j  s in ( 2 7 r t y /5 .1 )  4 -  ey 
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has a periodic am plitude

A j — cos2(2 irtj/500).

Clearly, the process determined by the sine wave has an intrinsic cycle o f 5.1 days, but the 

amplitude o f that cycle varies over time. The periodogram plot o f the data, Figure 4-5, 

correctly identifies that there is a 5.1 day cycle, however, this gives no information about 

the amplitude. Figure 4-6a shows the evolutionary spectrum o f the periodogram values 

which exceed the 95th percentile using a moving window of 51 data points. A corresponding 

contour plot is shown in  Figure 4-6b. Notice tha t the dark values in  the contour plot indicate 

a large value o f the periodogram. It  is clear from  both the contour and surface plots that 

the data has a 5.1 day cycle, but that cycle comes in  and out o f the process.

A  fin a l example demonstrates how the evolutionary spectrum can detect both o f these 

behaviors simultaneously. Consider data collected regularly from the process

X j  =  4sin(27rij/5.1) +  A j  sin(2irty/3) +  t j

where f

3 for j  =  601,602,...800
A j = {

0 otherwise

and are norm ally distributed w ith  zero mean and standard deviation equal to  2.

The evolutionary spectrum, in Figure 4-6, clearly shows that the data has a constant period 

5 cycle, but the period 3 cycle is a temporary effect which affects only points 600-800, 

approximately.

W hile typ ica lly used on evenly sampled data, as illustrated, we have adapted the concept
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for unevenly sampled data. The only additional constraint is the number o f observed data in  

each window needs to be sufficiently large in  order to get good estimates o f the periodogram. 

Otherwise, one can skip that particular window since reliable estimates can not be found or 

a larger window size can be chosen. The evolutionary spectrum program, which r a n  h an d le  

evenly or unevenly sampled data, can be found in  Appendix D.

The evolutionary spectrum is another tool which am be used to supplement the peri

odogram. W hile the periodogram can detect periodic behavior, it  does not provide infor

mation about the nature o f the cyclic behavior. The evolutionary spectrum provides some 

knowledge about whether cyclic behavior is ch an g in g  temporally or if  the amplitudes are 

relatively constant. This additional information can give practitioners in sig h t in to  the un

derlying dynamics in  the process o f interest.
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Figure 4-3 Time-varying amplitude
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Figure 4-4 Evolutionary spectrum o f data w ith time-varying amplitude 

4.4.2 E stim ating the Variance o f the N oise Process

Another useful by-product of the periodogram is that it  can be used to generate variance 

estimates for the underlying random process, even if  the process is periodic. When the data 

has sinusoidal behavior it  follows the model

x i  =  A* +  Ak cos&ktj) +  5Z Bfc sin(u;fc*j) +  e, 
k  k

where each ey is assumed to be an independent sample from a normal d istribution w ith 

mean 0 and variance a2. Since the variab ility about the sinusoids are reflected by the error

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4-5 Periodogram of data with time-varying amplitude

term, it  is usually im portant to estimate a2. The usual sample variance estimate

A j= l

w ith X  equal to the mean o f the observed data, cannot be used to estimate o2 since the es

timate includes the va ria b ility  associated w ith the oscillations o f the sinusoids. The estimate 

a2 overestimates the noise variance.

As seen w ith the evolutionary spectrum, the process may also have sinusoids which in flu 

ence the process for b rie f periods o f time and then disappear. Simply filte ring  the Hnmin*Tit 

frequencies out o f the data may not appropriately model the time varying amplitudes that 

are present in  the process. The residuals may not accurately represent the true errors.

An alternate method o f generating variance estimates for the underlying random pro-
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Figure 4-6 Evolutionary spectrum of data w ith cyclic amplitude

cess is w ith the periodogram. As shown in  Chapter 2, the periodogram is exponentially 

distributed w ith mean parameter a2 under the null hypothesis that the data is collected 

regularly from a normal process w ith variance a2. Each periodogram estimate has am ex

pected value o f a2. Therefore, the variance parameter can be estimated by averaging the 

periodogram estimates across frequencies. A better estimate cam be found by ta k in g  a 

long spam o f data windowed into am ensemble and evaluating the periodogram es t im a te s  for 

each ensemble. This way the variance estimate cam be found by averaging the periodogram 

estimates across ensembles and frequencies.

Unfortunately, the data may be cyclic in  nature and the periodogram est im a te s  corre-
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Figure 4-7 Evolutionary spectrum of data w ith persistent and temporary cyclic behavior

sponding to the frequencies present in  the data w ill be large. These large values w ill therefore 

inflate the variance estimates if  this procedure is used. To remove the influences o f these 

large estimates, the null d istribution o f the periodogram estimates can be used to  determine 

which values o f the spectral power are significantly large. These values can then be ignored 

in the calculation of the average o f the estimates across ensembles and frequencies. In  par

ticular, for a random variable X  which is exponentially distributed w ith mean parameter 

a2, the probabilities of exceeding values larger than multiples o f the mean are

P rp f >  3a2] =  0.0498 

P r[*  > 4 a2] =  0.0183.
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So, periodogram estimates which exceed Co2 for C  =  3,4 or some suitable number in  

between, are assumed to be the effect o f periodic behavior. These significantly large values 

w ill be ignored in  the averaging process w ithin the window. This t r im m ing  method should 

eliminate large estimates which are attributed to a periodic signal when ca lc u la tin g  an 

estimate o f the underlying noise variance.

For example, consider again the model

X j =  4sin(27rtj/5.1) +  A j sin(27rij/3) +  €j

where

{ 3 for j  =  601,602,...800 

0 otherwise

and e_7 has zero mean and variance equal to 4. The estimated variance from the observed 

data is 12.7571. Clearly, this is not a good estimate o f the underlying noise variance, which 

is 4. An estimate of the underlying noise variance at a given time can be found using the 

most recent collection of 255 data points. Five ensembles o f length 51 were created from  

this data window, which can clearly be updated as new data is collected. The periodogram 

is calculated in  each o f the five ensembles and only those spectral estimates that are below 

the value Co2 are averaged to estimate the noise variance at the current sampling time.

Figure 4-8 compares the variance estimates using three different techniques. For com

parison, the true noise variance is represented by the horizontal line at 4. One estimate 

was generated using the sample variance o f the data in  the window. Another estimate was 

the average o f a ll the periodogram estimates in  the five ensembles. These two estimates,
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the upper two plots in  Figure 4-8, are sim ilar and tend to estimate the to ta l variance o f the 

data and not the underlying noise variance. Since the data is periodic, it  is not surprising 

these two estimates are not very good. The fina l estimate was the average o f only those 

periodogram estimates that fe ll below the cutoff po int 4o2 =  16 and this gives a better 

estimate o f the underlying noise variance. In  fact, a ll o f the estimates are w ith in  .8571 o f 

the true variance.

Now since a2 is what we are trying to estimate, an estimate o f the cutoff value Co2 can 

come from  historical data or the variance estimate o f the data. For example in  the previous 

example the cutoff value was chosen to be four times the true variance. However, if  that 

were unknown or could not be estimated from previously collected data, the cutoff value 

3a2 =  3(12.7571) =  38.2713 could have been used. Figure 4-9 shows the results using this 

bound. The estimates using the trimmed method are s till better than the estimates from  the 

other two methods.

Caution must be used since a bad in itia l estimate o f the variance can s till lead to an 

overestimation o f the noise variance. In  this case, the cutoff value is too high and the influence 

of the periodicities s till enter the calculation. The choice o f C  is therefore im portant. I f  the 

in itia l estimate of a2 is severely overestimated a lower value o f C can be used to reduce the 

cutoff level and dim inish the effect o f periodicities. In  the previous example, the value o f C 

was reduced to 3 to account fo r some o f the in fla tion o f the in itia l estimate o f the variance.

Another issue is the choice o f a window size and number o f ensembles to create. I f  

the window size is too large, the variance estimation w ill be made using data that may be 

uncorrelated w ith the present data point. The number o f ensembles to  use is also somewhat 

arbitrary. Since the averaging process tends to converge when more data is available, a large
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Figure 4-8 M onitoring the underlying noise variance w ith  known in itia l variance

number o f subwindows would be preferable, but this needs to be balanced w ith the w idth o f 

the overall window.

These prelim inary results indicate that this method o f estim ating the variance ha_<» some 

promising characteristics. The method should extend to unevenly sampled data, however, 

the distribution o f the periodogram is no longer exponential. An appropriate upper bound 

can be obtained from  the Monte Carlo simulations. In  addition, window and ensembles 

need to be defined so that there are enough data points in  each subwindow to construct the 

periodogram. These problems lay the foundation for future research.
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Figure 4-9 M onitoring the underlying noise variance using in itial variance estimate
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Chapter 5

ANALYSIS OF SILICON W AFER COATING

PROCESS

5.1 M ethods

Statistical process control techniques, like control charting, require randomly and norm ally 

d istributed data. Frequently though, observed data is not random and normally distributed 

and is assumed to be the sum o f determ inistic and random error processes. In  order to 

utilize  statistical process control, these two components must be identified and separated. 

Modeling techniques are used to account for the determinism while control charts can be 

used to m onitor the variation o f the random process. Many procedures have been developed 

for modeling regularly sampled data. Popular time series models include the autoregres

sive (AR ), moving average (M A) and autoregressive integrated moving average (AJUMA) 

processes. These models assume a fixed sampling rate and determine a model using the 

correlation structure o f the time series. In  addition, spectral methods can be used to model 

periodic behavior in  data. Typical applications o f periodogram analysis usually assu m e 

even sampling. However, data collected by industries sometimes cannot be sampled regu

la rly  due to constraints in  the production and data collection schemes. In  these cases, it  is 

not appropriate to use these common time series models.

In  addition to unevenly sampled measurements, m ultivariate measurements rar> be col

lected. These observations could be simultaneous measurements taken from different, pos-
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sibly related processes. Alternatively, the term  multivariate could refer to the individual 

dimensions o f multidimensional data collected from  a single process. Although each dimen

sion o f a m ultivariate time series contributes inform ation reg ard in g  the underlying dynamics 

of the process, it  may be hard to find a parsimonious, multivariate model. Section 5.1.1 w ill 

review how principa l component analysis can be used to collapse m ultivariate tim e  series 

data into a lower dimension while s till re ta in in g  the interesting dynamics o f the system. The 

dynamics in  the lower dimensional tim e series can then be analyzed w ith  spectral methods 

developed specifically for unevenly spaced data. These methods, introduced in  previous 

chapters, identify significant periodic behavior in  the data. The significant periodic signals 

that represent the determ inistic part o f the process can then be removed from  the time se

ries so that the remaining variability can be examined. Additionally, reasons for the cyclic 

behavior can be investigated. Section 5.1.2 reviews how to extract the periodic signal for 

the data using least-squares. Once the cyclic behavior has been removed, the remaining 

structure can be analyzed for norm ality and randomness. I f  the residuals, or errors, are 

normally d istributed and random, statistical control methods can be implemented on thg 

residuals. These methods are applied to an industria l data set in  Section 5.2.

5.1.1 P rin cip a l C om ponent A nalysis

M ultivariate tim e series, although typically easy to collect, may be hard to analyze. One 

reason is that there may be too many time series relative to the number o f observations. 

This situation yields an underdetermined system which makes it  d ifficu lt to  fit a model 

to the data. Also, the individual series are typ ica lly correlated which can lead to an ill-  

conditioned model. In  this case, any model found could be unstable. Lastly, it  may be
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bard to  interpret and generalize results o f analyses done to individual series. Principal 

component analysis (PCA) [22, 55, 64] seeks to remedy these problems by finding linear 

combinations o f the m ultivariate time series which capture the structure in  the system and 

reduce dimensionality. Geometrically, PCA rotates the observations to a new coordinate 

system. The transformed coordinates have dimensions which are orthogonal and hence are 

uncorrelated. For example, in  a situation w ith m ultivariate time series o f dimension 2, the 

m ultivariate plot o f the data may fa ll in  an ellipse. I f  so, PCA would transform  the x- and 

y-axes to  coincide w ith the m ajor and m inor  axes o f the ellipse, thereby removing the linear 

correlation from  the data.

Consider the p-dimensional multivariate time series where Yj =  [Yyi Yj2 . . .  Y ^ ] '

represents the yth univariate tim e series for j  =  1 ,... ,p . I t  is assumed that each timo series 

has zero mean. Also, since PCA is not scale invariant, the individual tim o series should 

be standardized if  the scales o f the time series differ. Thus, let X j =  (Yj — Yj)/syj be the 

standardized series where Yj and sy} are the sample mean and sample standard deviation 

o f Yj, again for j  =  1,2,... ,p . Define the p x IV design m atrix
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X n  X\2 - 1̂3 ••• XlN

% 2 l  X 2 2  X 23  ’ * ’ % 2N

Xp\ Xp2 Xp$ X pN

where X ji corresponds to the tth  sample o f the jth  tim e series. Notice that the tth  column 

contains the tth  sample for a ll o f the p tim e  series.

Consider m ultip lying X  by an orthonormal rotation m atrix A . This transformation 

results in  new coordinates defined by the relation Z =  A X . The prim ary goal o f PCA is to 

find a rotation m atrix A  which w ill yield row vectors which axe uncorrelated. Geometrically, 

this can be viewed as finding the m atrix A  which rotates the axes o f the cluster o f points o f 

the observed data to align w ith the principal axes. Hence, the m atrix Z is required to have 

a sample covariance m atrix

Co 0 0  • • 0 0

0 4 a 0  • • 0 0

0 0 0 • •• 0 s i
P

where s \k is the sample variance o f Z'k, the fcth row of Z. But, since Z =  A X , it  follows that 

Sz =  ASA ' where S is the sample covariance m atrix o f the design m atrix X . Therefore, the 

spectral decomposition theorem [22] can be invoked to determine the form o f A . The m atrix 

A  must contain the (normalized) eigenvectors o f S. In  addition, the resulting diagonal
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entries o f m atrix Sz are the associated eigenvalues o f S. Thus,

and s \k — A*; where Vt and A* are the Arth eigenvector and eigenvalue o f S.

The p principal components are defined to be Z* =  V*X for k =  1 ,. . . ,  p. The components 

represent the transformed variables in  the new coordinate system. The variance o f Z * can 

be estimated by A*. Also, V ar(Z i) >  Var(Z2) >  . . .  >  Var(Zp) since the eigenvalues are 

ordered from  largest to smallest. Using this property, it  is possible to define the proportion 

of the to ta l variance that the principal components explain. In  particular, the proportion of 

variance explained by the firs t k  principal components is equal to

nuv

It is this feature which assists in  determ ining i f  dimension reduction is possible. For instance, 

if  the correlation between the time series is high, the firs t few principal components w ill 

probably explain most o f the variability. The reason for this is that the firs t few eigenvalues 

would be large. The remaining eigenvalues would be relatively small and the associated 

principal component may not contribute much inform ation. Consider the geometric example 

where the data vectors lie  in  a flattened ellipsoid. Most o f the inform ation in  th<» data, occurs 

a plane. In  this situation, only the firs t two principal components would be needed to  capture
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the structure o f the data. The dimension could then be reduced from three dimensions to 

two.

Several crite ria  for selecting the dimension in  a principal component analysis are outlined 

by Rencher [55]. Ideally, one hopes that the dimension w ill be reduced by ignoring some o f 

the principa l components. A general guideline is to choose the principal components which 

together account for at least 80% o f the total variation. Another procedure specifies that 

principal components should be ignored if  the associated eigenvalue is less than the average 

of the eigenvalues. An additional method is a graphical approach. A cutoff point between 

“large” and “small” eigenvalues can usually be found by p lotting A* versus t. Only the 

principal components associated w ith  “large” eigenvalues would be retained. I t  is im portant 

to note that the principal components which are not used in  further analysis may carry 

im portant inform ation. One must weigh the benefits o f dimension reduction versus the 

potential loss o f information. However, in  most cases the firs t few principal components 

contain most o f the inform ation in  the original data and ran be used in  further analyses 

instead o f the original data. Thus, information from correlated series can be combined in to  

a lower dimensional time series.

5.1.2 E xtraction  o f P erio d ic  Signals

Chapter 3 explored ways to statistica lly test for periodic signals in unevenly sampled data. 

Once we detect signals in  the t im e  series which are statistica lly significant, we w ill want to  

remove the periodic structure. The removal of the discrete periodic components o f the t im e  

series is necessary to reveal the stochastic or random behavior o f the process. Specifically, i f  

Pi,P2, • --iPk 3X6 the periods which are significant, the method o f least squares can be used
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on
fc k

X j = ^ 2 A tc o s ( 2 tttj/p i)  +  y : B js i n ( 2 7 r f j / p i )  -+- t j  for j  =  1 ,. . . ,N
i= l

to find the amplitude estimates Ai and Bi for t =  1 ,2 ,... ,fc. Once the amplitudes have been

estimated, the residual time series can be formed and analyzed. In  particular, the residuals 

or errors,

o f photoresist coating on silicon wafers is monitored. The two processes are sim ilar, except 

that different thicknesses o f coating are applied. These two data sets w ill be called Resist 

A and Resist B. The data, consisting o f the w idth of photoresist coating, was collected 

simultaneously from  both processes over one year. The time lags between measurements 

range from one minute to 32 hours, so clearly the time series is not evenly sampled. Also, 

there were several batch measurements where m ultiple measurements were recorded at the 

same time. These m ultiple measurements were averaged to get one measurement per sample 

time. Plots o f the two processes are shown in  Figures 5-la and b. The large span o f 

missing data (approximately t=2.2 x 107 to 2.5 x  107 seconds) corresponds to corrupted 

data collected from Oct. 3, 1997 to Oct. 20, 1997. The other stretch o f m issing  values
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Bi sin(2irtj/pi) for j  =  1 ,..., N

can be evaluated for norm ality and randomness. I f  the residuals satisfy these conditions, a

control chart can be created to monitor the process.

5.2  Industrial A pplication

The techniques described above were used to analyze two processes in  which the thickness



starts at approximately 3.1 x 107, the Christmas-New Year holiday break. Despite these 

gaps, the raw data shows periodic behavior. This cyclic behavior needs to  be removed 

before one can implement statistical process control. I t  also appears tha t the Resist B 

process was adjusted around t=1.5 x 107 seconds (June 27, 1997). In order to account for 

this adjustment, the data after June 26, 1997 was shifted up by the mean. Overall, the 

Resist A and Resist B time series appear to have sim ilar behavior, which is not surprising 

considering the two processes are almost identical. For this reason, m ultivariate techniques 

w ill be used instead o f doing two separate univariate analyses. The tim e series values were 

paired to create two-dimensional vectors. Then singular value decomposition was applied 

to separate the principal components. The firs t principal component, shown in  Figure 5~lc, 

explains 85.6% of the tota l variance and seems to capture the periodic behavior exhibited in 

both time series. Therefore, instead o f working w ith the two original time series individually, 

the analysis w ill concentrate on the firs t principal component only.

Since the data was unevenly sampled and exhibited strong periodic behavior, the nor

malized Lomb periodogram was used to find dominant frequencies o f the firs t principal 

component. The spectral estimate, shown in  Figure 5-2, indicates that there is a strong 

period of 1.198 x 107 seconds (approximately 139 days). This verifies that the data seems 

to be dominated by a slowly oscillating cycle. Figures 5-4a and b show the signal and the 

residuals after removing this periodic component.

Table 5.1 shows additional significant periods indicated by the normalized Lomb pe

riodogram and the percent variance each contributed. The extracted signal using a ll the 

periods listed in  Table 1 does seem to follow the data, as shown in  Figure 5~4c. However, 

the residuals, in  Figure 5-5, may have additional periodic structure remaining. Since the
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Period (Approx. Days) % Variance Explained
139 17.76
8 6.17
52 3.40
75 2.53
25 1.27
20 1.22
3 1.11
26 .71
12 .75

Table 5.1 Significant Periods Found Using Lomb Periodogram

residuals do not appear random, it  is not appropriate to implement a Shewhart control chart 

on the residuals.

Analyzing the same data using the classical periodogram w ith  5000 permutation resam

ples reveals sim ilar results, as shown in  Figure 5-3. Significant periods are indicated where 

the periodogram estimates, represented w ith exceed the 99.9% upper confidence bound 

denoted by ‘o’. The periods which were statistically significant are listed in  Table 5.2. The 

period o f 139 days, found by the periodogram, was used to account for the slow oscillation 

present in  the data. Both the Lomb periodogram and the classical periodogram were in  

agreement on a ll o f the most sig n ifican t periods, w ith the only disagreement occurring in  

the last two periods detected. The agreement between the two techniques indicates that the 

dominant structures are consistent.

5.2.1 A d d ition a l A nalysis o f th e C oating P rocess

The evolutionary spectrum can be used to analyze the behavior o f the dominant frequencies 

found in  periodogram analysis. The evolutionary spectrum o f the firs t principal component,
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Period (Approx. Days) % Variance Explained
139 17.76
8 6.17

52 3.40
75 2.53
25 1.27
20 1.22
3 1.11
7 .92

Table 5.2 Significant Periods Found Using Classical Periodogram.

shown in Figures 5-6 and 5-7, confirm  that the 8 day cycle is indeed the strongest cycle w ith  

period less th an  14 days. In  addition, the influence o f the cycle is not constantly present 

throughout the span o f the data. Another interesting fact that is not apparent when looking 

at the periodogram o f the entire data set is the presence o f many short lived periodic cycles, 

especially around days 50 to  140. These cycles are active for only a relatively short length 

o f time and therefore do not appear significant in  the periodograms shown in  Figures 5-2 

and 5-3. For example, the 4, 5, and 11 day cycles are not determined to  be significant in  

the periodogram, however, they appear to be signficant in  the evolutionary spectrum for a 

b rie f period o f time. Later, at approximately day 300, there appears to be a six day cycle. 

This information is defin ite ly useful, since the manufacturing process can be affected by the 

presence of these cyclic behaviors.

Further analysis o f th is process cam be conducted using the residuals that remain after 

extracting the periodic behavior listed in  Table 5.1. As mentioned previously, the residuals 

do not appear to be random. Since the data is not evenly sampled, common methods for 

testing the randomness o f the data, like the p a rtia l and autocorrelation functions, can not 

be used. The spectral control chart designed for unevenly sampled data and developed in
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Section 4.3, can be used to analyze the residuals. The control chart confirms that periodic 

behavior is s till present in the data. Since no prior inform ation was provided about the 

process, the variance estimate o f .024 was obtained using the firs t 76 data points from the 

firs t principal component. Monte Carlo methods using simulations o f unevenly sampled, 

random normal data w ith the same variance parameter, .024, were conducted to establish, 

a critica l value o f 11.2. This critica l value provides the upper control lim it o f the control 

chart at a .0027 level o f significance level. The spectral control chart in  Figure 5-8, shows 

that Fisher’s test statistic exceeds the critica l value many times. These out o f control points 

seem to indicate the temporary cyclic behavior illustrated by the evolutionary spectrum.

5.3 D iscu ssion  o f Industrial E xam ple

In general, irregular sampling lim its our choices for statistical tim e series models. For 

example, the unevenly sampled data prevents us from using popular statistical models like 

the autoregressive integrated moving average (ARIM A) processes. However, we have shown 

that a variety o f periodogram methods can be applied to unevenly sampled data to identify 

the true underlying periodic structure o f a process.

Although periodic behavior was found for this process which seems to  describe the pro

cess, we can not account for a ll o f the determinism in the data. This is not too surprising 

since we have only one year’s worth o f data for a system that contains a 139 day cycle. How

ever, interesting dynamical information was provided through the analysis. The information 

regarding the dom inant periods associated w ith the coating process can be used to identify 

factors which influence the process. For instance the strong 8 day cycle could be related to 

the employees’ schedule o f working 4 days on/4 days off. The 3 day cycle could be caused
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by fluctuations in  temperature, hum idity or barometric pressure. The low frequency oscil

lation which dominates the process could be attributed to a factor which varies seasonally 

or semi-annually, like temperature or hum idity or a change in  suppliers. In  addition, several 

short term periodic influences are also indicated in  the analysis. Investigations into the 4, 

5 and 11 day cycles which appear around day 50 and 100 could be conducted. As more 

data is collected, better estimates o f the longer periods can be found. Consequently, a better 

model could be f it  to the data. In  particular, new inform ation may explain for the structure 

remaining in  the residuals.
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a: The 139 day cycle
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Figure 5-4 Model o f periodic behavior
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Figure 5-5 Residuals o f firs t principal component after extracting periodic

Figure 5-6 Surface plot from the evolutionary spectrum o f the firs t principal component

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tim e (Days)

Figure 5-7 Contour plot from  the evolutionary spectrum of the firs t principal component

Figure 5-8 Spectral control chart o f the residuals o f the firs t principal component

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

NONLINEAR DYNAM ICS

The methods developed in  the previous chapters are ideal for data that exhibit periodic 

or quasiperiodic behavior. The periodogram for these types of data sets have well defined 

spectral peaks at the dominant frequencies and the ir subbarmonics. These frequencies can 

be used to model the process and can be used to obtain the residuals. On the other hand, 

data that is chaotic in nature tend to have spectra that have broadband behavior. The 

techniques developed for periodic data, therefore, w ill not be very helpful in  predicting or 

modeling chaotic data since a continous interval o f frequencies can not be extracted.

Stochastic models are sometimes used to model nonlinear behavior, although these tech

niques can have some disadvantages [35]. For example, the statistical model may not con

tribute any inform ation regarding the underlying dynamics or physical properties. Also, 

since chaotic systems are complex, stochastic models w ill typically require a large number 

o f parameters to model the behavior. Thus, the modeling procedure tends to curve fit the 

data rather than model the dynamical behavior.

To remedy these problems, nonlinear dynamic (NLD) analysis techniques have been 

developed to extract the chaotic components, and can be used for short-term fnrpragting. 

These methods have been applied to model and predict such phenomena as weather patterns, 

quasar emissions [9], sea clutter [34, 35], stock returns [62], sunspot activity [13, 74], measle 

populations [13, 71], flu id  turbulence [13] and the detection o f teleseismic activity [67]. In  

addition, there has been a surge o f activ ity  in  the fie ld o f using synchronization o f rhanfcir
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systems for secure communications [12, 17, 42, 52, 79].

A successful application of NLD analysis hinges upon uncovering a hidden geometry 

o f the underlying determ inistic system. The hidden structure, called an attractor, can be 

found w ith a technique that reconstructs the dynamical system that produced the observed 

data. Section 6.1 w ill discuss common methods o f reconstructing the hidden attractor. In  

addition, a new toroidal reconstruction technique w ill be discussed. Predictions can be made 

relative to the attractor. The NLD forecasting method w ill be introduced in  Section 6.2. 

Comparisons between standard reconstruction techniques and the toroidal technique w ill be

examined using simulated data as well as data collected from a warehouse airduct.

6.1 R econstructing Underlying D ynam ics

Chaotic systems axe considered determ inistic because there are a set o f equations, usually 

nonlinear differential equations, which capture the behavior o f the data. For example, the 

Rossler attractor [57] is generated using the system of equations

x  =  —y — z 

y =  x  +  ay 

z — b +  z(x — c)

where a, 6 and c are control parameters. This simple system o f equations only has one 

nonlinear term, but this term gives rise to  various behaviors depending on the values o f 

the control parameters. Thble 6.1 lists the type o f behaviors which result when parameters 

a and b are fixed and c is varied. Figure 6-1 shows the phase plo t oF the chaotic regime
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c =  2 lim it cycle
c =  3 period-2 cycle
c =  4 period-4 cycle

c >  4.5 chaos

Table 6.1 Behavior o f Rossler System w ith  a =  6 =  .2

which was numerically generated from the differential equations. It  illustrates the general 

shape and flow along the attractor. The stretching and folding demonstrated when the 

system reinjects itse lf keeps the attractor in  a bounded region and is typical o f an attractor. 

Clearly, predictions are possible using the geometry o f the attractor.

Figure 6-1 Rossler system
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6.1.1 Standard R econstruction Techniques

Unfortunately, in  most situations the system o f equations which governs the motion is not 

known. In  addition, the observed data is often one-dimensional while the true attractor is 

multidimensional. The question of how to reconstruct the attractor from  a single t im e  series 

o f measurements arises. For example, the trace o f the x-coordinate o f the Rossler system, 

shown in  Figure 6-2, has nonlinear oscillations which look almost periodic. However, the 

frequencies and amplitudes are not fixed and th is feature is apparent in  the associated 

periodogram, shown in  Figure 6-3. There is a strong periodic component shown by the 

large peak value and smaller peaks at multiples o f the d o m in an t  frequency. This associated 

period can be considered to be related to the average period of the system. In addition to 

this strong cycle, there is a broadband behavior which impedes spectral prediction methods. 

Sim ilar nonlinear behavior may appear in  real world data o f oscillations which are induced, 

for example, by a motor attached to an apparatus. The motor provides a driving force which 

would prevent the amplitudes o f the oscillations from  damping.

Since the geometry o f the attractor provides a framework to make predictions, it  would 

be beneficial to reconstruct the attractor from  the observed data. A theorem by Takens [72] 

states that it  is generically possible to reconstruct the attractor using the one-dimensional 

time trace. Other dimensions can be generated from  the observed data using tim e  delayed 

series or derivative estimations. Takens showed that the reconstructions based on these 

coordinates w ill be a diffeomorphism, or smooth deformation, o f the u n d e r ly in g  attractor.

Typically, the attractor is estimated using what is called a tim e delay reconstruction in  d 

dimensions w ith a suitably chosen time delay r . The embedding dimension can be ca lc u la te d
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Figure 6-2 Rossler system: x-coordinate

using a variety of methods [1, 5, 9, 11, 15, 34, 39, 41, 48, 49]. Some methods include the 

box dimension, pointwise dimension [47], information dimension [28, 36], correlation dimen

sion [30, 31] and the Liapunov dimension [24, 40]. S im ilarly, there are a variety o f techniques 

used to calculate the time delay [1, 9, 10, 48]. The firs t zero crossing of the autocorrelation 

function [3, 45, 47] and the firs t minimum of the mutual inform ation function [1, 23] are com

monly used to determine an appropriate time delay. A lthough the values o f the delay may 

vary slightly between different methods, there are usually several acceptable values or range 

o f acceptable values. The uncovered attractor should have consistent behavior regardless o f 

the methods used to calculate the time delay.

Given an embedding dimension d and time delay t ,  the observed data values, so, s i, 52 , . . .
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Figure 6-3 Periodogram of Rossler system 

are used to reconstruct the higher dimensional vectors

*0 =  (S o ,  S o + t ,  S0+ 2t ,  • - - ,  50+ ( d — 1 )7 -)

*1 = (Sl,«l+r,«l+2r,--.,Sl+((|_l>r)

x n  ~  (5n, Sn-pr, S t i+ 2 t i  —  , sn+(d—l)-r)-

Thus, Sq — > Si — >■ ... — ► xn form the time evolving tra jectory that carves out the 

attractor. Suppressed in  the subscript notation is the imp lic it  tim e ordering o f the Hata 

This procedure can be used to convert the one-dimensional, nonlinear oscillations o f the
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Rossler system into the chaotic attractor in  Figure 6-4. For this example, a tima delay o f 80 

was used so each vector has the form (x {t),x{t +  80), x(t +  160)). The reconstruction shows 

the same general behavior as the phase plot shown in  Figure 6-1, although the reconstruction 

is slightly deformed; it  is more peaked and the folded region is warped. However, the regular 

structure of the reconstructed attractor makes prediction possible.

*<»♦«)

Although the time delay reconstruction is w idely used, other reconstruction techniques 

have been proposed [1, 27, 48]. These extensions o f Takens’ method involve the use of 

derivatives, integrals, linear filte rs or Fourier interpolants.

6.1.2 Toroidal R econstruction  Technique

W hile these reconstruction techniques are useful on simulated data, using them on real 

world data often yields attractors which look like steel wool pads. Although fairly  accurate
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predictions can sometimes be made w ith  a poor reconstruction, the reconstruction does not 

reveal much about the underlying dynamics. One reason for a poor reconstruction appears 

to be that components o f the underlying dynamics occur on different scales and standard 

reconstruction techniques do not compensate for this. A fixed tim e delay value im plies that 

the data may have a fixed scale o r fixed periodic behavior. Often, though, frequencies and 

amplitudes are modulated. These frequency structures often appear when analyzing data 

from systems that are affected by vibrations or are motor driven. In  these situations, the 

time delay reconstructions have trajectories which cross.

For example, consider the samples illustrated in  Figure 6-5 that are drawn from  a 

quasiperiodic process w ith the phase po rtra it shown in  Figure 6-6. The observations follow 

the equation

X j  =  [106 +  2cos(27rtj75)]cos(27rty/7r).

The time delay reconstruction, shown in  Figure 6-7, unfortunately does not reveal the under

lying toroidal structure. Instead it  appears that the attractor is one-dimensional. Since the 

process is dominated by the large oscillation, the time delay reconstruction is not capable o f 

separating the trajectories.

To improve upon previous work, a new toroidal reconstruction technique is being devel

oped which w ill be driven by the dom inant frequencies in  the data. The dominant frequen

cies, which could have amplitudes o f different scales, are used to create a toroidal framework 

fo r the attractor. The actual dynamics can then be studied relative to  this framework. The 

toroidal structure, in  some cases, w ill separate the trajectories to prevent crossings and 

reveal the underlying dynamical flow . The toroidal reconstruction o f the previous exam-
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pie shows how trajectories are separated and the underlying geometry o f the attractor is 

uncovered, as illustrated in  Figure 6-8.

100

50

>50

-100

to  20 30 40 50 SO 
Time

TO SO 90 100

Figure 6-5 Observed Data

A t any given time, the position on a torus can be defined by the coordinates (x (i), y(t), z(t)) 

w ith the values

x(t) =  |^  +  acos(27r/2t)]cos(2ir/1t)

y(£) =  \0 +  ocos(2 ir/2 t)]sin(27r/it)

z{t) =  acsm[2ir f2t).

The torus can be defined using the parameters or, 0, f i  and fa where 0  and a  represent the 

sm all and large radii o f the torus and f \  and f 2 represent the wrapping frequencies associated
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Figure 6-6 True Underlying A ttractor

w ith those two rad ii. When these parameters are defined it  is possible to represent any 

point in  tim e in  terms of these four parameters. An example o f a torus w ith parameters 

a  = 9,/3 =  31,/ i  =  1/(67t) and /2  =  1/2 is shown in  Figure 6-9.

Unfortunately, in  most applications, only one-dimensional data is collected and informa

tion regarding the values of the four parameters is unknown. In  order to construct a torus 

from the observed data, estimates o f the parameters need to be found. Let us assume that 

the observed data corresponds to  the x-projection o f the torus. Let the observed data be 

represented by {(£n, ̂ n)| n =  1 ,2 ,..., N }. Using the assumption and trigonometric identi

ties the discretized expression fo r the x-coordinate o f a torus at time tn can be w ritten  as 

follows

xn =  [/3 +  acos(27r/2*n)]cos(27r/i<n)
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Figure 6-7 Time delay reconstruction o f toroidal data

=  0  cos(27r/1tn) +  a  cos(27r/2£n) cos(2irfitn)

=  0 c o s ( 2 i r f i t n )  +  ^  c o s ( 2 t t ( / 2  -  f i ) t n )  +  ^  c o s ( 2 t t ( / 2  +  f i ) t n )

=  0  cos(27r/it„) +- |  cos (2 irfLtn) +  ^  COS(27T/y£n)

where /*, =  / 2 — / i  and fu  =  f 2 +  f i -  Since the cosine is an even function it  is possible that 

I I  -  f i  -  h -  In  a ll cases, fu  >  / l -

The estimate o f the frequencies f i , f c  and f u  can be obtained directly from the peri- 

odogram. Since 0  is assumed to be the larger radius, f \  w ill correspond to the frequency 

w ith the dominant peak in  the periodogram. The spectral peaks associated w ith f u  f c

should have the same power, since the amplitudes o f those cosine terms are equal. Depend

ing on the relationship between f \  and / 2, the behavior and location o f fu  anH changes.
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Figure 6-8 Toroidal reconstruction o f toroidal data

Figure 6-10 shows the three distinct behaviors o f the spectra o f to ri. When f i  >  / 2, the 

frequency f i  w ill be located halfway between fu  and f t ,  as shown in  Figure 6-lOa. The esti

mate o f / 2 can be obtained using the relationship / 2 =  f u —f \  =  / i —Jl - K  h  >  f i  then both 

fu  and f i  can be greater than / i ,  as in  Figure 6-10b. In  this case, / 2 =  fu  +  / i  =  / i  — /£,. 

Or, fL  can be less than f \  and h =  fu  — h  =  fi> +  f i • Notice, for a ll cases / 2 =  fu  — f \ .  

In  these situations, the periodogram has three d istinct peaks.

However, whenever / 2 =  2 /i, a degenerate torus occurs and only two spectral peaks 

appear since in  this case,

x n  =  0cos(2*7it») +  ^co s(±2 ir(/2 -  f \ ) t n )  +  ^co s(2 ir(/2 +■ f i ) t n )

=  0 C O s ( 2 i r f i t n )  +  |  C O s ( ± 2 t t ( 2 /x  -  / i ) * * , )  +  1 C O s ( 2 i r ( 2 / !  +  / O t n )

=  0  cos(27r/x. tf i) +  |  cos(±27r(-/i)tn ) +  j  cos(2ir(2fi)tn)
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Figure 6-9 Example o f a torus 

+ I )  cos(27r/it„) +  1cos(27r(3A)tn)-

Therefore, the peaks of the periodogram w ill identify A  and 3 /i, as demonstrated in  

Figure 6-10c.

When the frequencies have been determined, the estimates o f the amplitudes 0 a/2

can be obtained using the extraction method described in  section 5.1.2 w ith the frequencies 

A , fu  and f t -  The other dimension of the torus can then be generated using the estimated 

parameters and the observed data. The procedure w ill wab* use o f the property the 

xn and yn terms only differ by a trigonometric function involving A - The term cos(27r/i*n)
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can be estimated from the observed data using the fact

cos(27r/i£n) sj cos(27r/i£n) =
P + a  cos(2vf2tn)

where a  and /? are the estimates o f the amplitudes and f 2 is the frequency from  the peri- 

odogram. This approximation is well-defined since it  is assumed that (3 >  a. Integration 

can be used to estimate sin(27r/1tn). In  particular, fo r any time t„, for n =  0 ,1 ,..., IV w ith 

t0 = 0

[  cos(2irfit)dt = — sin(27r/it)
Jto 27T/1

to

1 [ s i n ( 2 i r / i t n )  -  s in ( 2 7 r / i t o ) ]
2t t / i

1
2t t / i

sin(2 jr f itn ).

So,

s in (2 ir/itn) «  2 irfi /  cos(27r/it)dt. 
J to

where the integral o f cos(27r/ifn) can be calculated numerically using the trapezoidal method. 

Hence,

t in  =  \p  +  acos(27r/2t„ ) ] sin(2vr/1£Tl)

and

Zn =  a s i n ( 2 7 r / 2 t n ) .
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Since numerical errors sure compounded during the integration estimation, a trend often 

appears in  sin(27r/ifn). A filte r using the running mean can be used to remove the trend 

p rio r to  estim ating y„.

Although this method supposes that the structure o f the data evolves about a torus, 

the reconstruction technique can be applied to data for which this condition is not true. 

I f  the peaks in  the periodogram reveal a pattern like the examples in  Figure &-10 and the 

associated frequencies can be selected to satisfy the relationships between fa, fa, fu  and fa , 

then the toroidal method cam be applied. For example, consider the one-dimensional trace 

from  the Rossler system. The periodogram reveals a dominant frequency and subharmonics 

are also present. By considering the degenerate torus w ith fa =  2 /i and applying the method 

outlined above, the underlying attractor can be reconstructed. For this particular sample, 

fa =  0.17099145042748, d =  .32 and 0  =  5.55. Figure 6-11 shows the x-y projection o f the 

toroidal reconstruction which exhibits an attractor which is ju s t a smooth deformation of 

the o rig ina l attractor.

6.2  M ethod  o f P rediction

Once a reconstruction from the data is obtained, predictions can be made relative to  the 

attractor. Due to the sensitive dependence on in itia l conditions, long term predictions are 

usually not feasible. Thus, a global model is not realistic. However, the consistent flow 

directions in  a local region can be exploited for short term predictions [1, 13,19, 53, 60, 71].

The standard local modeling technique w ill be used to malm a one-step prediction o f a 

point x$. A  set o f p neighbors, {x i} , located around the point are selected, usually based 

on euclidean distance. It is im portant to note that neighbors which are spatially close on the
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attractor may be tem porally distant. I t  is desirable to estimate a local predictor function F  

such that F(S i) =  Xj+ i for each o f the p neighbors o f 2$. Here £ i+ i represents the data value 

collected immediately after Xj. A set o f regressors, or basis elements {<fc(x)}, are chosen 

for the expansion o f F(x) =  (/o (x ),/i(x ),- -. ,/< /_ i(x)). Since the dynamics are not usually 

as complex in  a localized region o f the attractor, it is usually sufficient to let the expansion 

basis be the set o f polynomials up to the second degree. For example, Figure 6-12 illustrates 

that the local behavior around the point 2$ appears to be quadratic. The function space can 

be represented by
n

=  Y1 ajk9k(xi) for j  =  0 ,..., d -  1 
k=0

for a ll the p neighbors {x»}. The number of summands, n, is determined by the order o f 

the expansion basis. The coefficients ay* can be estimated using least squares to satisfy the 

condition that F (2 i) — Xt+i for each o f the neighbors. In  doing this, the d components o f 

the predictor function are completely determined and can be used to predict

=  •••) f i —1(®^))*

Interestingly, the method of time delay reconstruction a n d  local forecasting is related 

to autoregressive tim e series modeling. In  that application, the autoregressive model o f 

order p corresponds to a time delay reconstruction w ith the reconstruction vector x t- =  

(x i,X i-i,...,X t_ p + i). In  order to find the estimates of the linear model, a neighborhood 

consisting o f a ll points is used. Therefore, a global model is found by using least squares to
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find the coefficients of

xi+ i =  F (£ i) =  ao +  a\Xi +  02X j_i +  . . .  -F OpX^p+i for a il t.

So, the NLD predictors can be considered localized autoregressive models. For obvious 

reasons, the standard, global autoregressive models have not been successful at modeling 

the complex behavior o f chaotic data.

W hile the basic forecasting method using local properties seems powerful, the models are 

susceptible to errors caused by self-intersections o f the attractor. Time delay reconstructions, 

especially on real-world, noisy data, often intersect. For instance, in the Rossler reconstruc

tion, there is the potential to choose neighbors which have very distinct tra jectory flows. 

This could occur when the point that is being predicted falls near the reinjection part o f the 

attractor. Improvements to the basic local forecasting method have been proposed [66, 67]. 

Choosing neighbors that are close in  a euclidean sense and that have sim ilar slopes usually 

prevents incorrect neighbors being selected. I t  should be noted that t.hi» method w ill not 

work when tangential intersections occur.

Another problem w ith the local forecasting technique is that the results can be affected 

by noise. The application o f noise reduction has been crucial to m a lre  the local prediction 

methods more robust [18, 25, 29, 32, 43, 50]. Another modification to the general noise 

reduction schemes, based on singular value decompostion is the use of a change o f coordi

nates [66, 67]. A fter the selection o f the neighbors, a new coordinate axis is created to a lign 

w ith  the local flow directions. The set o f neighbors are transformed via a rotation m atrix V  

found using singular value decomposition on the local flow m atrix where the ijth  entry o f the
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local flow m atrix is defined to be the jth  component o f (xt+ i — X{). The forecasting method 

is carried out using the transformed coordinates of the neighbors to predict where y# 

represents the transformed value o f This predicted value can then be transformed back 

into the orig ina l coordinates via the equation

=  y<H-1 v r  +  x#.

The singular value decomposition can also be used to detect the principal flow direction 

o f the attractor in  the local coordinate system. Small s in g u la r  values indicate a sm all contri

bution to the overall flow direction and might be attributed to extraneous noise or a hidden 

signal. Singular values which fa il below a predetermined cutoff value are zeroed out and the 

the space o f the embedding is collapsed to a lower dimensional subspace. The reduction o f 

the embedding dimension helps to  make the prediction algorithm  more stable and forces the 

predictions to  be more consistent w ith  the flow of the u n d e r ly in g  attractor.

The one-step prediction method used in  the next section w ill include the enhancem ents to 

the local modeling algorithm. The forecasting techniques w ill be used to compare the recon

structions mentioned in the previous section. These methods w ill be applied to vibrational 

data collected by an accelerometer placed on large warehouse a ir handler un it.

6.3 A ir H andler A nalysis

The data to be considered in  this section may represent an example o f real-world chaos. The 

observations were taken from a vibrating a ir handler un it located in  a large, open spaced 

warehouse. The un it, responsible fo r the temperature regulation o f the warehouse room, is
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attached to large metal ducts. The measuring device was an accelerometer placed directly 

on the metal housing and it quantified the vertical movement, or vibration, o f the handler. 

A DAT recorder collected 48000 samples per second and these measurements are shown in  

Figure 6-13.

The periodogram o f the data reveals some interesting properties, as demonstrated in  

Figure 6-14. The firs t characteristic illustrated is that the data seems to be dominated 

by certain frequencies and their harmonics; however, there is also broadband structure 

in  the spectrum. The dominant frequencies may be related to the drives o f the motors 

or the properties o f the a ir handler materials. The data also appears to have oscillations 

occuring on two scales w ith periods o f approximately 200 and 2500 samples, but the power 

o f the larger cycle is irregular. For example, the firs t plo t o f Figure 6-15 demonstates 

a region where high frequency dominates the system and the low frequency contribution 

has disappeared. Contrast this to the second p lo t where both behaviors are present. The 

evolutionary spectrum o f the data also confirms this behavior, as shown in  Figure 6-16. 

Notice that the 200 period cycle is consistent throughout the data, while there are many 

regions where the period of 2500 samples has little  or no power. These aperiodic and 

nonstationary properties indicate that this data set may be an example of an real world 

chaotic process.

Another interesting property o f the power spectrum is the presence o f a toroidal frequency 

structure. This makes the data set a great candidate on which to evaluate the new toroidal 

reconstruction method. An in itia l investigation focused on a bandpassed filtered version of 

the data set, shown in  Figure 6-17. The power spectrum illustrated in  Figure 6-18 shows 

what frequencies remained in this analysis. Because the high frequency structures were
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removed, the data had little  noise in  it. However, there is some amplitude modulation o f the 

central frequency. A three-dimensional time delay reconstruction o f the a ir handler data, 

shown in  Figure 6-19, was formed using a delay o f 18. Even though the reconstruction is in  

three dimensions, the attractor looks two-dimensional.

The dominant frequencies shown in  the periodogram correspond to the frequencies f i  =  

.005, fu  =  .0054 and f t  =  -0046. W ith these estimates suggested by the data, f i  =  .0005. 

Following the methods outlined in  section 6.1.2, a torus based on the 200 and 2500 sample 

cycle was formed. The reconstruction, in  Figure 6-20, shows how the data wraps around 

the torus frame. Interestingly, it  appears that the fit about torus is much tighter near the 

bottom than the top. This structure may provide some inform ation about when amplitude 

and frequency modulations occur. It appears that the amplitude has a periodic behavior. 

This behavior is not obvious in  the time delay reconstruction.

Both reconstructions were scaled down to range approximately between ±2.5. One-step 

predictions were made on the reconstructions using nonlinear dynamic forecasting methods. 

One method of evaluating and comparing the competing methods is to see how the residual 

variance compares to the variance of the original system. The filte red data, after scaling, 

had a standard deviation of approximately .6. The residuals o f the time delay reconstruction 

are shown in  Figure 6-21 along w ith  the power spectrum o f the residuals. The residuals 

have a standard deviation o f 3.4342e-04. However, the power spectrum o f the residuals s till 

appear to  have the toroidal frequency structure remaining. Contrast this to the residuals 

and power spectrum from the toroidal reconstruction method, shown in  Figure 6-22. The 

standard deviation is reduced by 5 orders o f magnitude to 6.1994e-06. In  addition, the 

power spectrum seems to have noise-like behavior. These features indicate that the toroidal
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reconstruction method seems to model the underlying dynamics o f the filtered data much 

better than the tim e delay reconstruction.

Next, the orig inal a ir handler data set was considered. Again, the two reconstruction 

methods were used to model the data. The time delay reconstruction was based on a delay 

parameter o f 16 while the toroidal reconstruction was based on the same frequency structure 

as the filtered data. The original data bad a standard deviation o f .656. The standard 

deviation o f the residuals from the time delay and toroidal reconstructions were .011 and 

.0076, respectively. There was no overwhelming evidence to support that the toroidal method 

did better than the time delay reconstruction.

The new toroidal reconstruction method modeled the bandpassed a ir handler data much 

better than the standard time delay reconstruction. The toroidal method reveals some o f the 

hidden structure, like the amplitude modulation, that may have gone unnoticed using the 

other method. The residuals of the time delay reconstruction s till appear to  have the same 

structure as the original data indicating that the residuals have a lo t o f structure remaining. 

Meanwhile, the toroidal reconstruction seems to have modeled that determinism.

The influence o f other harmonic structures outside o f the bandpassed region clearly 

affects the toroidal reconstruction of the orig inal data. These other oscillations result in  

a reconstruction where the torus no longer has a hole. Therefore tangential intersections 

may be present and these types o f intersections hinder the ab ility to  make good predictions. 

One possible way to minimize the influences o f other harmonic structures is to generalize 

the toroidal reconstruction method into h igher dimensions. By incorporating these other 

dominant frequencies into the reconstruction the tangential intersections should separate.
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Figure 6-11 Toroidal reconstruction of the Rossler system
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Chapter 7

FUTURE DIRECTIONS

The ultim ate goal o f this work is to model the underlying determinism in  a process using 

a combination of spectral, nonlinear and statistical methods. By learning how the process 

changes over time, factors which influence production m ight be identified. New inform ation 

about the process can then be incorporated to improve the process. Also, by combining dy

namical modeling w ith statistical process control it  should be possible to predict and detect 

process changes. Chatterjee and Yilmaz comment [15, page 50] that knowledge o f chaotic 

systems can “ ... enrich the arsenal o f modeling tools available to statisticians, generate new 

developments in their refinement and, ultimately, facilita te  a better understanding o f the 

processes being studied.”

Continued work in this direction could include relaxing the assumption that the data 

is norm ally distributed. Oftentimes this assumption may not be reasonable. The develop

ment o f methods to detect periodic behavior in  non-normal data would be useful fo r these 

situations. There is also potential to extend the ideas o f detecting periodic behavior, not 

only over tim e, but over space. Such problems are faced by researchers collecting data from  

satellites and the data is typica lly unevenly sampled. Again, the use of standard approaches 

may not appropriately apply to unevenly sampled tem poral-spatial data.

Other extensions to statistical methods that may benefit from  the exploitation o f the 

underlying determinism require the study of the system to be carried out for a sufficient 

length o f tim e so that the fr ill range o f dynamical behavior is captured. In  that-, situation
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it  is possible to consider the applicability o f nonlinear dynamic forecasting in  conjunction 

w ith Kalman filte rin g  or state space modeling. Another possible direction which would 

combine the two areas is to extend transfer models to allow for nonlinear dynamic analysis 

to replace the predictor as the pre-whitener. Also, since various reconstruction techniques 

are available, there is a need to explore how to compare, in  a statistical sense, competing 

reconstruction methods.

Lastly, improvements o f the toroidal reconstruction are currently being considered. In

stead o f having a single toroidal model w ith  fixed amplitudes and frequencies, methods are 

being developed to allow these parameters to change according to the amplitude and fre

quency m odulation o f the data. Therefore, this toroidal framework w ill be allowed to  evolve 

according to the underlying dynamics o f the data. It may also be possible to generalize the 

toroidal reconstruction technique into higher dimensions to create a framework fo r aperi

odic data that is dominated by m ultiple oscillations. This may improve the results o f the 

a ir handler analysis, since are there are m ultiple toroidal features shown in  the a ir handler 

frequency spectrum.
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Appendix A  

Polarplot.m  Program

function r  =  polarplot(t, period, x)
%W ritten by L. McSweeney, Univ. o f New Hampshire, 3/98
%This function w ill take tim e and observation vectors (t and x, respectively)
%and plots the polar plot fo r the specific period.
%function r  =  polarplot(t, period, x)

%Calculating the resultant vector and its length by converting from  
%polar to rectangular coordinates and finding the squared length o f the 
%resultants.

N =  length(t); 
x =  x  - mean(x); 
theta =  2*p i*t/pe riod ; 
po!ar(theta, x, 'o ')

%centers the data
%converts the times into an angle
%plots the polar coordinates

[x l, x2] =  pol2cart(theta, x ); 
r =  (sum (xl)* 2 +  sum (x2)" 2 )/N ;
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Appendix B 

Periodogram.m Program

function[power] =  periodogram(r, t, p)
% W ritten by K . Short and L. McSweeney, Univ. o f New Hampshire, 3/98 
%r is the measurement vector, r  =  (x l, x2, ..., xn) as a row vector 
%t is the time vector: t =  ( tl, t2, ..., tn ) as a row vector 
%p is the period vector where you want to check for significant cycles 
%p =  (p i, p2, ...pm )' (a column vector)
%This program w ill calculate the power at each period in  the p vector 
%function[power] =  periodogram(r, t, p);

N =  length(r); 
r =  r  - mean(r); 
w =  2*p i./p ;
W =  w *t;
E =  exp(i*W );
R =  E *r';
power =  abs(R).' /N ;

%centers the data to have zero mean
^converts the periods to (an g u la r) frequencies
%gets a m atrix o f a ll angular frequencies for each time
% m atrix o f complex angles
% vector o f the resultant lengths
%vector o f power (for each period)
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Appendix C

Polar m ovie, m Program

function polannovie =  makemovie(E, resultant, r, period, axisrange)
% W ritten by L. McSweeney, Univ. o f New Hampshire, 3/98 
%E and resultant are outputs o f periodogram.m 
%r is the measurement vector
% period is the period vector where you want to check for s ig n ifican t cycles 
%defined as an input to polplot.m
%axisrange defines the size o f the square window for the frame 
% function polannovie =  makemovie(E, resultant, r, period, axisrange)

m =  mean(r); 
n =  length(period);
M =  moviein(n);

%Creates the frames for the movie where the ith  frame has the polar plot 
%for the ith  period

for i =  1 : n
p lo t((r - m ).*E (i, :), 'o ');
axis([ -axisrange axisrange -axisrange axisrange]); 
text( -axisrange +  1, axisrange - 1, num 2str(period(i))); 
text( -axisrange +  1, axisrange - 2, num 2str(resultant(i)));
M (: , i) =  getframe; 
end
polannovie =  M;
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Appendix D

Evspecun.m  program

function[nosamp] =  evspcun(x, t, prds, window, CB);
% W ritten by L. McSweeney, Univ. o f New Hampshire, 3/98
%Adapted from  a program w ritten by L . D. Meeker, Univ. o f New Hampshire
%Plots the evolutionary spectrum where
%x is the measurement vector: x =  (x l, x2, ..., xn) as a row vector 
%t is the tim e vector: t =  ( t l, t2, ..., tn ) as a row vector 
%p is the period vector where you want to check for significant cycles 
%p =  (p i, p2, ...pm ) ' (a column vector)
% window is the length (in  time units) o f the moving window.
%The periodogram is calculated in  each one o f these windows 
%CB is the critica l value for detecting significant periodic behavior 
%Only estimates larger than CB w ill be plotted. I f  no bound is wanted, use CB =  0 
%nosamp is the number of data points in  each window, especially im portant 
%for unevenly sampled data
%[ts, ES, nosamp, sig] =  evspcun(x, t, prds, window, CB);

minpd =  m in(prds); 
maxpd =  max(prds);

N =  length(x);
M =  length(prds);
K  =  floor((m ax(t) - m in(t))/w indow); %the number o f periodograms to be calculated
ts =  zeros(K, 1); % in itia lizing time vector
ES =  zeros (M , K ); % in itia liz in g  the periodogram m atrix
nosamp =  zeros(K, 1); % in itia lizing the number o f samples vector

for i =  1 : K
% calculating the m idpoint o f each window 
if  i =  =  1

ts(i) =  m in(t) •+■ window/2;
else

ts(i) =  ts(i - 1) 4- window;
end

%This portion checks to see how many samples are in  the ith  window
%Use for unevenly sampled data
id  =  find ((t < =  i*window) &  ( t > =  (i - l)*w indow ));
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nosamp(i) =  length(id);

% Calculates and records the M  periodogram estimates for the ith  window 
if  nosamp(i) > 0

y = po lp lo t(x(id )', t( id )/, prds');
ES(1 : M, i) =  y; 

else ES(1 : M, i) =  =  0; 
end

end

id  =  find(ES <  CB);
ES(id) =  0; %zeros a ll periodogram estimates which are below CB

colormap(hsv) 
pcolor(ts, prds, ES) 
subplot(2, 1, 1)
contour(ts, prds, ES, 20); %contour plot o f the evolutionary spectrum 
grid  on 
xlabel('tim e') 
yIabel('period')
set(gca, 'x l im [m in ( t )  m ax(t)], 'y lim ', [m inpd maxpd]); 
subplot(2, 1, 2)
mesh(ts, prds, ES); %surface plot o f the evolutionary spectrum
xlabel('tim e')
y!abel('period')
zlabel(,Power')
g rid  on
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