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ABSTRACT

THE LONG-TERM EFFECTS OF DISTURBANCE ON 

NITROGEN CYCLING AND LOSS IN THE WHITE MOUNTAINS, NH

by

Christine L. Goodale 

University of New Hampshire, May, 1999 

Theories of nitrogen retention suggest that N cycling and loss should increase with 

ecosystem successional age and with chronic N deposition over time (N saturation).

These factors both affect northeastern U.S. forests, most of which receive elevated rates 

of N deposition and have experienced past disturbances by wind, logging, fire, or 

agriculture. This work examined the long-term (80-110 year) effects of land-use history 

on nitrogen cycling and loss in the White Mountains, New Hampshire. Historical land- 

use maps were used to identify a network of watersheds and plots containing burned, 

logged, or old-growth forests. Nitrate-N fluxes from old-growth watersheds exceeded 

those from historically disturbed watersheds, yet losses from all forested watersheds were 

low (^ 2.1 kg ha*1 yr'1). Land-use history did not affect DON losses, which comprised 

28-87% of total N fluxes, and increased with losses of dissolved organic carbon and with 

conifer forest cover. Old-growth stands had lower soil C:N ratios and twice the 

nitrification rates of historically disturbed stands. Nitrification increased as soil C:N ratio 

decreased, and stream nitrate concentrations increased with soil nitrification. Theories of 

N retention were further tested by remeasuring 28 streams sampled 23 years previously. 

Mean nitrate concentrations declined by 6 8 %; calcium, by 28%; magnesium, by 26%; and
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sulfate, by at least 22%. Nitrate concentrations declined in all streams, but old-growth 

watersheds had higher nitrate concentrations than successional watersheds in both years. 

Sulfate and base cation deposition have decreased since the 1970s but N deposition has 

not. Climate variability and its effects on biotic N retention may be responsible for the 

low nitrate losses observed in all streams, overriding expected increases due to chronic N 

deposition or forest aging. Century-old disturbances influenced spatial patterns of C:N 

ratio and nitrate production and loss, but climate may control temporal patterns of nitrate 

loss on the scale of months to  decades. If the current, low losses of N are due to a high 

capacity to absorb N, forest ecosystems may continue to take up N for decades to 

centuries before reaching late-stage N saturation; if due to interannual climate variability, 

large losses of nitrate may occur much sooner.
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CHAPTER 1

EFFECTS OF DISTURBANCE HISTORY ON ORGANIC AND INORGANIC 

NITROGEN LOSSES IN THE WHITE MOUNTAINS, NEW HAMPSHIRE

Abstract

Theories of nitrogen retention suggest that N losses should increase with 

increasing successional age, and with chronic N deposition over time; neither theory 

includes a  specific time frame, nor addresses the role o f losses of dissolved organic 

nitrogen (DON). This study examined the long-term (84-110 year) effects of land-use 

history in regulating the loss o f both nitrate and DON from historically logged, burned, 

and old-growth forests in the northeastern United States. Monthly stream samples were 

collected from a network of watersheds with known land-use histories. Differences in 

stream nitrate concentrations drove seasonal differences in total N concentrations and 

spatial differences in modeled N flux. Mean (± SD) NOj*-N loss from the old-growth 

watersheds (1.4 ±  0.6 kg ha' 1 y r'1) exceeded that from the historically logged and burned 

watersheds (0.3 ±  0.3 kg ha' 1 y r'1), demonstrating that the effects of disturbance can 

persist for 80-110 years. Successional status did not affect DON losses, which averaged 

0.7 (± 0.2) kg ha ' 1 y r'1, and comprised 28-87% of total N losses. DON losses increased 

with dissolved organic carbon losses and with cover by conifer or mixed hardwood and 

conifer forest. Despite decades o f chronic, elevated N deposition, nitrate concentrations 

and fluxes were low. Total N  retention appeared to decrease with time since disturbance, 

but even the old-growth stands retained at least 70% o f estimated N inputs. Losses of
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DON accounted for only 3-11% o f N deposition, but could be more important controls on 

N accrual in other systems. Understanding the cause for the high rates o f N retention 

observed in the present study is important: if due to a presently unsaturated capacity to 

absorb N, ecosystems may continue to take up N for decades to centuries before reaching 

late-stage N saturation; if due to interannual climate variability, large losses o f nitrate 

may occur much sooner.

Introduction

Streams draining temperate forests demonstrate a wide variety o f patterns and 

magnitudes of nitrogen loss. Two biogeochemical theories suggest that these patterns are 

governed by varying degrees o f biotic control o f the cycling and loss o f N over time. The 

first theory focuses on the role o f ecosystem successional status or time since the last 

major disturbance, while the second theory focuses on the role of human-induced 

alteration o f N cycles and cumulative atmospheric N deposition (N saturation).

More than two decades ago, Vitousek and Reiners (1975) proposed that biotic 

control over the loss of limiting nutrients changes over the course o f succession. After a 

pulse o f nutrient loss following disturbance (in many, but not all systems; Vitousek et al. 

1982), early and mid-successional systems were expected to retain virtually all limiting 

nutrients made available through deposition and internal nutrient cycling. Over 

successional time, net ecosystem production (Odum 1969) and net biotic demand for 

growth-limiting nutrients were expected to gradually decline to zero in old-growth 

systems (Vitousek and Reiners 1975, Gorham et al. 1979, Reiners 1981). W ith no net 

uptake, nutrient losses were expected to balance nutrient inputs. Streams draining old- 

growth forests have frequently (Vitousek and Reiners 1975, Leak and M artin 1975,

2
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Silsbee and Larson 1982, Hum  and Nodvin 1995), but not always (Hedin et al. 1995) 

been shown to have high nitrate concentrations relative to those draining successional 

forests.

Over the past decade, there has been increasing recognition of the human impact 

on the global N cycle (Vitousek et al. 1997). Human activities have more than doubled 

the pre-industrial rate of production of biologically active N compounds (Galloway et al. 

1995). The eastern United States currently receives 4-10 times the N deposition expected 

under unpolluted conditions (Galloway et al. 1984, 1995). Even higher rates o f N 

deposition have been reported in western Europe (Dise and Wright 1995) and at high 

elevations in the eastern U.S. (Lovett and Kinsman 1990, Miller et al. 1993). Aber et al. 

(1989) hypothesized that N saturation occurs incrementally as chronic, elevated rates of 

atmospheric N inputs gradually satisfy biotic demands, leading to increased rates of 

nitrification and nitrate leaching losses (i.e., decreased N retention). Four stages of N 

saturation were proposed for terrestrial systems, and Stoddard (1994) described four 

complementary stages for surface waters, marked by increasing concentrations of nitrate, 

first during the dormant season, and later during the growing season. Forests in the late 

stages of N saturation are expected to have essentially no biotic N retention, with N losses 

approximately balancing N inputs.

Nitrogen saturated forests have been reported in both the eastern and western 

United States (reviewed in Fenn et al. 1998) and in western Europe (e.g., Dise and W right 

1995, Gundersen et al. 1998a). Yet, forests receiving similar rates of N deposition can 

have markedly different rates of nitrate loss (e.g., Hombeck et al. 1997, Dise et al. 1998a, 

Lovett et al. in press), and there is growing recognition of the combined roles of

3
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ecosystem successional status and N deposition rates in regulating N retention and loss 

(van Miegroet et al. 1992, Stoddard 1994, Hedin et al. 1995, Aber and Driscoll 1997,

Fenn et al. 1998). Neither of the two hypothesis specifically quantifies the length of time 

required to satisfy biotic demand under natural or anthropogenically enhanced N 

deposition, nor do they consider losses o f N in dissolved organic forms (DON).

Ecosystem loss o f DON has often been overlooked, even though it can account for the 

majority of the hydrologic N losses from unpolluted, old-growth systems (Sollins et al. 

1980, Hedin et al. 1995) and aggrading systems in regions of elevated N deposition 

(Lajtha et al. 1995, Cuirie et al. 1996).

This study specifically addressed the long-term (84-110 year) role of land-use 

history in regulating the loss of both nitrate and DON from historically disturbed and old- 

growth forests in the northeastern United States. I hypothesized that losses o f total 

dissolved nitrogen (TDN) from old-growth forests would exceed losses from historically 

disturbed forests, and examined whether the mechanism of disturbance, logging or fire, 

impacted current N losses in streams. Both concentrations and estimated fluxes of nitrate 

and DON were compared across the different disturbance histories in order to assess: 1) 

whether losses o f DON varied seasonally or spatially, and whether chronic losses of DON 

could account for significant cumulative losses of N from forests; 2) whether historically 

disturbed forests had higher N retention than old-growth forests, and whether N retention 

approached zero in  the old-growth forests; and 3) whether forests exposed to chronic N 

deposition are showing signs of N saturation.

I sampled streams from a network of watersheds in the White Mountain National 

Forest, New Hampshire (WMNF), a region which has received elevated rates o f N

4
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deposition for more than three decades (Likens and Bormann 1995). The region has a 

relatively well-defined disturbance history, comprised largely of century-old logging and 

fire, with limited forest harvest continuing through the present

Methods

Site Description

The White Mountain National Forest (WMNF) consists of approximately 3000 

km2 of northern hardwood, spruce-fir, and subalpine forest in north-central New 

Hampshire (43.8 - 44.6 °N, 71.0 - 72.0 °W). Northern hardwood forests (Bormann and 

Likens 1979) cover most lower slopes, yielding to spruce-fir forest at approximately 750 

m. Subalpine balsam fir (Abies balsamea) increases in importance above 1200 m until 

tree line gives way to alpine tundra at approximately 1400 m (Leak and Graber 1974, 

Reiners and Lang 1979). Over forty peaks exceed 1200 m, but nearly 90% o f the land 

area falls below 750 m. Bedrock geology generally consists of highly-metamorphosed 

Devonian aluminum schists or Mesozoic granites (Hatch and Moench 1984). Throughout 

much of the northern hardwood zone, haplorthods developed on the stony tills deposited 

by glaciation 14,000 years ago. Precipitation is distributed evenly throughout the year 

(Federer et al. 1990), and increases with elevation (Dingman et al. 1981), from 

approximately 100 cm per year in the lowlands (300 m) to a long-term average o f 230 cm 

at the summit of Mt. Washington (1917 m) (National W eather Service data). Snowpacks 

accumulate in winter, and streamflows at the Hubbard Brook Experimental Forest in the 

southwestern White Mountains usually peak with April snowmelt (Federer et al. 1990). 

W et deposition o f inorganic N (NH^^-N + NCV-N) currently averages 6.2 - 9.0 kg ha*1 yr*

5
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1 at Hubbard Brook and nearby Cone Pond, with DON contributing an additional 1.4 - 2.4 

kg ha' 1 yr*1 (Hombeck et al. 1997, Campbell et al., submitted).

Forest Histnrv

Pollen records of post-glacial forest history indicate that northern hardwood 

communities were established in their present form by 7000 years before present, while 

red spruce (Picea ruberts) did not join balsam fir in the present spruce-fir forests until 

2000 years before present (Spear et al. 1994). Fires occurred rarely over the past 7000 

years (Spear et al. 1994), with return intervals estimated at 750 to 2500 years (Lorimer 

1977, Fahey and Reiners 1981). Wind is generally considered to be the primary 

mechanism of natural disturbance, with estimated return times of approximately 1150 

years for a major wind disturbance (Lorimer 1977, Bormann and Likens 1979).

Most of the White Mountain region was held in public ownership until 1867, 

when the state of New Hampshire sold large tracts of forest to timber and paper 

companies. Intense clearcutting and slash fires followed over the next several decades, 

peaking shortly after the tum-of-the-century (Chittenden 1904). These relatively 

synchronous, large-scale, human-induced disturbances differed greatly from the natural 

disturbance regime, and are unique in the forest history of the region. Public criticism of 

forest practices brought about the passage of the Weeks Act in 1911, which funded 

federal purchase of forest land. Prior to purchase (generally 1911-1939), foresters 

surveyed and mapped each forest tract to evaluate its worth. Many o f these maps and 

accompanying reports still exist (USDA Forest Service, Laconia, NH), providing a 

relatively complete record of the spatial extent o f logged, burned, second growth, and old- 

growth forest early this century.

6
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Forest type
g ]  Hardwood forest O  Stream sampling location 
1  Mixed forest 
|  Conifer forest 
f~~l Nonforest

White Mountain 
National Forest

Figure 1.1: Location o f stream sampling sites within the White 
Mountain National Forest, New Hampshire.

Table 1.1: Watershed location, disturbance type and date, and number o f streams 
sampled at each site. * streams sampled May - Sept. 1997; all others sampled Oct. 1996 - 
Sept. 1997._________________________________________________________________
Disturbance Year Site No. streams

Fire 1912-14 Rocky Branch Trail, Jackson 4
c. 1903 George's Gorge, Pinkham Notch 2
1903 *Mt. Bickford, Franconia 3
1886 Zealand Valley 4

Logging c. 1910 •ML Washington, Marshfield Station 2
c. 1885 Little Wildcat 2
c . 1885 Lost Pond Trail, Pinkham Notch 2

Old-growth Glen Boulder, Pinkham Notch 3
Gibbs Brook, Crawford Notch 4
Lafayette Brook Scenic Area 2
•Nancy Brook Research Natural Area 2

Partial landslide 1963 Slide Brook, Pinkham Notch 1

Subalpine/logged Peabody Tributary, Pinkham Notch 1

Tundra/logged, •Ml Washington: Clay, Monroe, & 3
tundra/subalpine c. 1910 Ammonoosuc Brooks

7
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The historical survey maps were used to locate 30 streams in eleven areas each 

containing two to four small watersheds with relatively homogeneous land use histories 

(Figure 1.1). Forests on four sets o f watersheds burned between 1886 and 1914; three 

sets of watersheds were logged heavily during this time period, and forests on four sets o f 

watersheds have no record o f logging or fire (Table 1.1). Five additional streams with 

watersheds containing non-forest (rock and tundra) or mixed land-use histories (partial 

landslide, mixed subalpine and logged, and mixed alpine and logged) were also sampled 

(Table 1.1). Historical records (Chittenden 1904, Belcher 1980, USDA Forest Service, 

Laconia, NH) and tree increment cores were used to estimate disturbance dates. Charcoal 

fragments were found in soils at all four of the historically burned sites. O f the old- 

growth sites, the Gibbs Brook (Foster and Reiners 1983) and Nancy Brook (Oosting and 

Billings 1951, Leak 1975) sites are previously documented old-growth stands, while the 

New Hampshire Natural Heritage Inventory identified old-growth northern hardwood 

stands in the Lafayette Brook Scenic Area (Sperduto and Engstrom 1993). The historical 

survey maps and stand compartment records (USDA Forest Service, Conway, NH) 

indicated that the Glen Boulder site contains old-aged mixed northern hardwoods with no 

record of major disturbance.

Sample Collection and Analysis

Streamwater samples were collected monthly from October 1996 to September 

1997, except at the Nancy Brook, ML Washington, and M t Bickford sites, which were 

sampled from May to September 1997 (Table 1.1). The Nancy Brook and Mt. 

Washington sites were difficult to access in winter, and the ML Bickford site was added 

late in the study. Samples were collected over a two-three day period in the middle of

8
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each month. Samples were not collected in December, 1996; for annual flux calculations, 

December concentrations were estim ated as the mean o f November 1996 and January 

1997 values. Similarly, missing chemistry for two streams added in January or February 

was approximated from other streams at the same site.

Samples were collected in 250 mL acid-washed (10% HC1) and well-rinsed high- 

density polyethylene (HDPE) bottles, which were rinsed with streamwater before 

collection. After collection, samples were refrigerated until processing the following day. 

An Orion9  combination electrode was used to measure the pH of 30 mL aliquots at room 

temperature. The remaining sample was vacuum filtered through ashed (1 hour at 425 

°Q  Whatman GF/F glass fiber filters into acid-washed, rinsed sidearm flasks, and frozen 

until chemical analysis in polyethylene (NO3'  and NH**) or HDPE (DOC and TDN) 30 

mL vials. After thawing to room temperature, NO3VN samples were filtered through 0.2 

(im nominal pore size Acrodisks (Gelman Sciences) and analyzed with a Waters ion 

chromatograph and a Dionex AS4A column with micromembrane chemical suppression. 

Ammonium was measured with flow injection analysis using the automated phenolate 

method on a Lachet QuikChem® AE. Dissolved organic carbon (DOC) and TDN were 

estimated through separate analyses utilizing high-temperature (680 °C) catalytic (Pt) 

oxidation with a Shimadzu TOC 5000. DOC samples were acidified with 50 pL of 10% 

HC1 and sparged prior to analysis. TDN was determined by oxidation and reaction with 

ozone to form NO2, which was detected chemiluminescently with an Antek 720C N 

detector (Antek Instruments, Houston, TX) (Merriam et al. 1996). DON was calculated 

by difference as:

9
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DON = TDN - (NOs'-N + N H /-N )

The NO3'  and DOC analyses were checked by repeated measures o f independent 

commercial standards, which were always measured within 5% and 10% o f their true 

values, respectively. TDN estimates were checked with NO3", N lV , glycine, and EDTA 

standards, which were usually measured within 10% of their true values. Duplicate 

measures o f the same samples had coefficients of variation of less than 2% for NO3'  and 

less than 8 % for DOC, TDN, and NH^.

Forest Cover Determination

Satellite-derived land cover information was obtained for the WMNF region from 

the New Hampshire Geographically Referenced Analysis and Information Transfer 

System (NH GRANTT, Durham, NH). NH GRANTT acquired Landsat TM data (pixel 

resolution o f 30 m) for 1986-1990. Land cover was determined with a supervised 

classification o f Landsat bands 3 ,4 , and 5, into ten cover types: wetlands, water, tundra, 

rock, agriculture, developed land, open/disturbed land, and hardwood, conifer, and mixed 

hardwood and conifer forest. Accuracy assessments indicated a state-wide average 

accuracy of 70% across all cover types (Rubin et al. 1993).

Watershed boundaries were delineated by hand on 7.5 minute (1:24,000) USGS 

topographic maps and digitized with Arc/Info version 7.1.1 (ESRI, Redlands, CA). Exact 

(SD < 5 m) sampling locations were identified with a Trimble Pro XR Global Positioning 

System (Sunnyvale, CA). These points were compared with digitized watershed 

boundaries to confirm that the correct starting positions had been identified on the USGS 

maps. The number of pixels o f each cover type within each watershed were calculated by 

overlaying the digitized watershed boundaries and the land cover data with ERDAS

10
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Imagine version 8.3 (Atlanta, GA). Although automated methods of watershed definition 

are available, I  was unable to use these procedures because several watersheds were too 

small to delineate accurately with available digital elevation models (DEMs).

Hvdrologic Fluxes

None of the sampled streams was gaged. 1996-7 streamflow was estimated at all 

of the sampled watersheds by using available climate data and a model of monthly carbon 

and water balances (PnET-II, Aber et al. 1995). The model utilizes monthly inputs of 

precipitation, temperature, and solar radiation to calculate evapotranspiration, snowpack 

development, and stream drainage, but does not consider fiowpaths, groundwater, or soil 

hydrologic properties other than a specified water holding capacity and a fast or 

macropore flow rate. The model has captured temporal patterns in monthly streamflow at 

the Hubbard Brook Experimental Forest (Aber et al. 1995) and spatial patterns in mean 

annual runoff across New England (Ollinger et al. 1998).

Table 1.2: Weather stations used to derive monthly precipitation estimates. Precip. is
1996-7 annual precipitation. * estimated; one or more month(s) missing data.
Station Start Date Latitude Longitude Elev. (m) Precip. (cm)
Benton 1940 44.03 -71.93 366 *99
Berlin 1931 44.48 -71.18 283 * 1 1 1

Bethlehem 1931 44.28 -71.68 421 *94
Glencliff 1931 43.98 -71.90 329 * 1 1 0

Jefferson 1940 44.37 -71.47 376 103
Lancaster 1931 44.48 -71.57 268 * 1 0 1

Monroe 1931 44.32 -72.00 207 * 1 0 0

Mt. Washington 1948 44.27 -71.30 1908 *315
North Conway 1974 44.05 -71.13 162 142
Pinkham Notch 1931 44.27 -71.25 613 *167
Plymouth 1931 43.78 -71.65 2 0 1 * 1 2 1

Tamworth 1974 43.87 -71.30 241 154
York Pond 1931 44.50 -71.33 458 *126
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Monthly precipitation data were obtained through 1997 from 13 U.S. cooperative 

or National Weather Service stations in the White Mountain region (Table 1.2). Monthly 

averaged maximum and minimum daily temperature data were obtained for the 

Bethlehem and M t Washington weather stations, and from four stations at the Hubbard 

Brook Experimental Forest (published through 1988 in Federer et al. 1990).

Monthly streamflow was estimated by running PnET-H for each 30 m pixel in 

each sampled watershed (a total o f over 30,000 pixels). Pixel land cover and elevation 

were obtained from GIS overlays o f the digitized watersheds and NH GRANTT land 

cover and DEM data layers. Precipitation and temperature were estimated at each pixel 

using its elevation and linear orographic factors derived for each monthly climate 

measurement from the available data. Precipitation generally increases and temperatures 

decrease with elevation in New England (Dingman 1981, Ollinger et al. 1995). In the 

present data set, elevation explained much of the spatial variation among monthly 

precipitation measurements (mean R2 = 0.67), and nearly all o f the spatial variation 

among monthly maximum and minimum temperature measurements (mean R2 = 0.98 and 

0.90, respectively). Pixels classified as conifer or hardwood were run with PnET-II 

parameter sets derived for spruce-fir or northern hardwood forests, respectively (Aber et 

al. 1995). Non-forest pixels (i.e., tundra, rock, or unvegetated open land) were assumed 

to have low precipitation interception (5%), low water holding capacity (2 cm), and no 

significant photosynthesis or transpirational demand. To verify PnET’s estimates o f 

streamflow, the model was run for several White Mountain streams with measured 

streamflow: the Ellis, Ammonoosuc, and East Branch o f the Pemigewasset Rivers, all 

gaged by the USGS, and Watersheds 6  and 7 at the Hubbard Brook Experimental Forest

12
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The test watersheds were not digitized as described above; streamflow was simulated for 

each watershed’s mean elevation and cover type.

Nitrogen Flux and Retention

Annual N fluxes (kg/ha) were estimated by multiplying measured stream N 

concentrations by estimated monthly streamflow, with monthly fluxes totaled for the 

water year. Net N retention was assessed across watersheds by comparing stream N flux 

(TDNont) with simple estimates of N inputs (TDNjn). Net N retention was calculated as:

N Retention (%) = (TDN^ - TDN0Ut) / TDNjn x  1 0 0

Atmospheric deposition in mountainous regions can vary with elevation, slope, 

aspect, and canopy type, and can be extraordinarily difficult to estimate accurately (e.g., 

Lovett et al. 1997). Rough estimates o f N inputs were calculated as the sum of a constant 

amount of dry deposition (1.8 kg/ha, derived from Ollinger et al. 1993), and wet 

deposition of constant concentration and varying precipitation amount (similar to Ollinger 

et al. 1993 and M iller et al. 1993). Precipitation amount was estimated with the 

elevation-based regressions, with an assumed N concentration of 0.60 mg/L. This value 

is the mean wet deposition TDN concentration measured at Hubbard Brook and Cone 

Pond during 1995-1997, consisting of 54% NQf-N, 28% NH4+-N, and 18% DON 

(Campbell et al., submitted). Solute concentrations in wet deposition might be expected 

to change with elevation, but a review by Lovett and Kinsman (1990) did not find any 

evidence to support consistent changes with elevation despite varying precipitation 

amount. Although dry deposition is likely to increase with elevation due to increased 

wind and other factors, it is difficult to consider these changes explicitly across multiple 

watersheds (Lovett and Kinsman 1990, Lovett et al. 1997). Mt. Washington and other
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mountain peaks receive substantial N inputs through cloud deposition (Lovett et al. 1982? 

Weathers et al. 1988, Lovett and Kinsman 1990, M iller et al. 1993), but this mechanism 

was not included because of limited data and the difficulty in assessing cloud exposure 

across the different watersheds.

Statistical Analyses

Differences in stream N concentration due to land-use history (historically burned, 

logged, or old-growth, Table 1.1) were determined by repeated measures analysis of 

variance, with a  nested design of streams within site and sites within land-use. This 

approach considers the effects of land-use history at each measurement period after 

considering variability o f streams within the same site, and the variability among sites 

with the same category of land-use history. Effects on stream N flux were assessed with 

similarly nested ANOVA. Scheffe’s tests were used for all post hoc pairwise 

comparisons. Sites with only growing-season collections (Nancy Brook, Mt.

Washington, and Mt. Bickford) were excluded from the ANOVAs, but were included in 

regression analyses o f mean growing season chemistry and land cover. The three 

watersheds containing large areas of tundra and two watersheds with missing land cover 

data were not included in the forest cover analyses.

Results

Streamflow

The 1996-7 water year was wetter than normal: precipitation measured at the 

weather stations in Table 1.2 exceeded long-term (1971-1990) averages by 11% (range 

6 % - 20%). October and December, 1996 and July 1997 were each at least 25% wetter 

than average, while November 1996 and September 1997 were both drier than average.
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Streamflow reflected the year’s increased precipitation, with flow at Hubbard Brook and

the USGS stations exceeding long-term averages by 10-20%.

Predicted and Observed Streamflow (10/96-9/97)
"14 0  -i---------------------------------------------------------------------------------------------------------------------------------------

HB W6 HB W7 Ammonoosuc E ls River E. Br. Pemi.
13 ha 76 ha 22757 ha 2832 ha 29875 ha

670 m 760 m 740 m 958m 803 m

Figure 1.2: Predicted and observed annual (Oct. 1996 - Sept. 1997) streamflow fo r  
Watersheds 6  and 7, Hubbard Brook Experimental Forest, and three streams gaged by 
the USGS: the Ammonoosuc River at Bethlehem, the Ellis River above Jackson, and the 
East Branch o f the Pemigewasset River at Lincoln. PnET-II was run fo r  the mean 
watershed elevation (indicated).

The elevation-based regressions predicted annual precipitation within 2 and 21 

mm of measured values at Hubbard Brook Watersheds 6  and 7, respectively. Modeled 

streamflow for the 1996-7 water year was within 4-10% of measured values at all five 

tested watersheds (Figure 1.2). The model generally reproduced monthly streamflow 

patterns at Hubbard Brook, although the elevation-based regressions underestimated 

December, 1996 precipitation at Hubbard Brook and PnET treated most o f it as snow, 

leading to underestimates of December streamflow. The model captured the timing and 

magnitude o f May snowmelt at the north-facing W atershed 7, but predicted a later
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snowmelt (April/May) than observed (April) at the south-facing Watershed 6  (Figure 

1.3). The model does not consider the effects o f aspect

Watershed 6
35

— • —  M easured streanrftow 

— □ —  PnET, estim ated clim ate, 6 7 0  m
1  25

15 ■

9  10 °—n .

3/96 5/96 7 /9 6  9 /9 6  11/96 1 /97  3 /9 7  5 /97  7 /9 7  9 /97  11/97

Watershed 7
35

♦  M easured stream flow  
— □ —  PnET, estim ated cBm ate, 760  m

2

£
Co
2

10 •

O-

3/96 5 /96  7 /9 6  9 /9 6  11/96 1 /97  3 /9 7  5 /97  7 /9 7  9 /97  11/97

Figure 1.3: Predicted and observed monthly streamflow (cm) fo r  Watersheds 6  and 7, 
Hubbard Brook Experimental Forest. PnET-II was run with mean watershed elevation, 
and the same elevation-driven climate inputs used fo r  the other White Mountain 
watersheds.

The GIS analysis provided estimates of area, mean elevation, and forest cover for

the sampled watersheds while the elevation-based regressions provided estimates of

precipitation and hence wet N deposition by watershed (Table 1.3). Watersheds ranged in

size from 4 to 232 ha, with a  median size of 27 ha, and mean watershed elevation ranged

from 559 to 1499 m with a  median of 746 m. Differences among watersheds in estimated

precipitation or N deposition were entirely due to differences in mean elevation.
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Estimates o f annnal (wet + dry) N deposition ranged from 10.5 to 16.0 kg/ha, with a 

median value o f 1 1.3 kg/ha. Differences among watersheds in modeled annual 

streamflow depended primarily on differences in estimated precipitation, although PnET- 

II did project slight variations in annual streamflow due to differences in land cover 

(northern hardwood, spruce-fir, or non-forest). The model predicted substantial 

differences among watersheds in monthly streamflow patterns due to variability in the 

timing and magnitude o f snowmelt at different elevations: low-elevation watersheds 

were predicted to have melted out in April and May; higher watersheds in May, only; and 

the highest watersheds peaked in May but continued melting through June.

On average, the historically burned watersheds had less spruce-fir cover (9%) than 

the logged (27%) or old-growth (33%) watersheds. These differences in vegetation cover 

could be attributed to the differences in land-use history, or to slight differences in mean 

elevations. The historically burned watersheds were slightly lower in elevation (696 m) 

than the logged (778 m) or old-growth watersheds (804 m). All three land-use classes 

were represented by watersheds with a range of mean elevations (Table 1.3).
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Table 1.3: Watershed area, minimum and mean elevation, estimated mean precipitation, 
streamflow, and TDN deposition, and remotely sensed forest composition. Hard. = 
hardwood. Con. = conifer. Mix. — mixed hardwood/conifer, Non. = nonforest (rock, 
tundra, or wetland). Named streams are identified in parenthesis; unnamed streams, by 
letter. Precipitation estimates were derived from  elevation-based regressions; 
streamflow, from PnET-II; and N  deposition, as 0.60 mg/L TDN fo r  wet deposition plus

Site Stream Area
(ha)

Elev (m) 
min. mean

Precip.
(cm)

Flow
(cm)

NDep.
(kg/ha)

ation— 
Mix. Non.Hard. Con.

Historically burned
Rocky Branch a 16 509 637 106 95 10.8 100%
1912-1914 b 44 519 694 156 103 11.2 100%

c 65 533 878 175 128 12.3 99% < 1% 1%
d 17 540 708 158 105 11.2 100%

George’s Gorge a (George’s) 37 637 797 167 117 11.8 75% 15% 9% 1%
c. 1903 b 7 644 746 162 110 113 73% 20% 7%

•Ml Bickford b 9 572 576 145 87 103 70% 17% 13%
1903 c 27 570 618 149 93 10.7 72% 15% 13%

d 8 576 595 146 90 10.6 100%
Zealand Valley a 114 511 654 152 98 10.9 87% 9% 4% 1%
1886 b 4 522 574 144 88 10.4 76% 7% 17%

c 17 526 631 150 95 10.8 99% 1% < 1%
d (Hale) 225 531 878 176 127 12.3 54% 30% 15% 1%

Historically logged
•ML Washington b 22 888 949 182 136 12.7 13% 68% 10% 9%
c. 1910 c 4 873 890 176 127 12.3 5% 89% 6%
Little Wildcat a(L . Wild.) 175 533 872 174 125 12.2 38% 47% 14% < 1%

b 6 533 580 145 88 10.5 97% 2% 1%
Lost Pond a 12 615 659 153 99 10.9 63% 22% 15% 1%

b 26 614 715 158 107 11.3 17% 62% 21% 1%
Old-growth
Glen Boulder b 36 543 905 177 132 12.4 75% 13% 6% 6%

c 14 540 767 164 115 11.6 93% 1% 2% 6%
d 42 534 929 180 133 12.6 61% 31% 6% 2%

Gibbs Brook a (Gibbs) 218 640 966 183 135 12.8 7% 80% 11% 2%
b 10 670 678 155 102 11.1 34% 52% 14%
c (Elephant) 123 583 930 180 132 12.6 9% 73% 10% 7%
d 4 586 598 147 90 10.6 88% 2% 10%

Lafayette Brook a 9 587 604 147 92 10.6 n/a
b 7 588 611 148 93 10.7 n/a

•Nancy Brook a (Nancy) 215 733 995 186 140 13.0 9% 62% 23% 6%
b 58 724 856 180 133 12.6 6% 45% 43% 5%

Alpine o r mixed Iand-nses
Slide Brook 186 558 1005 187 142 13.0 58% 26% 7% 9%
Peabody Trib. 68 632 963 183 135 12.7 32% 56% 9% 2%
•Ml Washington a (Clay) 232 876 1212 208 166 14.2 12% 44% 15% 30%

d (Monroe) 105 983 1316 218 175 14.9 3% 63% 7% 28%
e (Ammon.) 108 1049 1499 237 201 16.0 1% 25% <1% 74%
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Nitrogen Concentrations

Differences in stream NCV-N concentrations drove seasonal differences in TDN
-j*>

concentrations, because NH*+-N concentrations were consistently low (6-12 (Xg/L, not 

shown) and DON concentrations showed no seasonal variation (Figure 1.4). Nitrate 

concentrations were strongly seasonal, peaking during the dormant season and dropping 

during the growing season. Streams draining old-growth stands had significantly higher 

NO3 -N concentrations than those draining historically disturbed stands, particularly 

during the dormant season (Figure 1.5). Nitrate concentrations did not differ significantly 

between historically logged and burned sites in any month (Figure 1.5). DON and NH4t’- 

N concentrations did not vary among the three land-use history classes in any month, so 

that the overall effects of land-use history on TDN concentration were controlled by 

differences in NOj'-N concentration. Across all streams with annual chemistry (n = 25), 

DON contributed 57% (range 27-81%) of annual average TDN concentrations. DON 

contributed 57% and 69% of annual average TDN concentrations in the burned and 

logged stands, respectively, and 42% in the old-growth. Monthly DOC concentrations 

and DOC:DON ratios did not differ significandy by land-use history in any month, nor 

did they show any distinct seasonal patterns.
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Figure 1.4: M onthly NO3  -N and DON concentrations o f historically burned (A, B), 
logged (C, D), old-growth (E, F), and alpine or mixed-history (G, H) sites. Plotted 
concentrations are the mean (SD) concentrations o f sites identified in Tables 1.1 and 1.2.
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Inconsistent with the overall trend of elevated NO3 -N concentrations in streams 

draining old-growth forests, three o f the four streams at the Gibbs Brook old-growth site 

had relatively low NO3-N concentrations (Figure L.4e). These three watersheds all had 

more than 50% conifer cover, while the fourth stream, which drained a small, northern 

hardwood-dominated catchment, had NCV-N concentrations closely resembling the other 

old-growth sites (Figure 1.4e). Conifer-dominated old-growth catchments did not always 

have low N03'-N concentrations, however. Growing-season NO3 -N concentrations from 

the Nancy Brook Research Natural Area, an old-growth red spruce (Picea rubens) site, 

exceeded those of the three conifer-dominated streams at Gibbs Brook, and approached 

the NO3 -N concentrations of the other old-growth sites (Figure 1.4e).

3 5 0
Old-growth
Burned
Logged

3 0 0

2 5 0

y  150eo
oz  100

5 0

0  -Ip------- I-c — i--------- 1----------1---------1------------------- -h-------- r P i p— i
1 0 /9 6  11/96  1 2 /9 6  1 /9 7  2 /9 7  3 /97  4 /9 7  5 /9 7  6 /9 7  7 /9 7  8 /9 7  9 /9 7

Figure 1.5: Nitrate concentrations in streams draining old-growth, historically logged, 
or burned watersheds. Error bars are the standard deviation o f NO 3  -N  concentration 
among different sites. Analysis includes only streams with annual N  measurements: 
burned, n = 3 sites (10 streams); logged, n = 2 sites (4 streams); old-growth, n = 3 sites 
(9 streams). * P < 0.05, *** P < 0.0001for significantly different concentrations within 
a month.
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The highest NCV-N concentrations observed during the growing-season generally 

occurred in the high-elevation watersheds that contained large areas o f alpine tundra: 

Monroe and Ammonoosuc Brooks on Mt. Washington (Figure 1.4g). The upper 30% of 

Clay Brook’s watershed is above treeline, but much of the spruce-fir and mixed forest on 

the lower part of the watershed was logged in approximately 1910. Clay Brook’s NCV-N 

concentrations fell intermediate to the relatively high concentrations of the high-alpine 

streams, and the near-zero values of nearby historically logged watersheds (Figure 1.4c).

Compared across all streams, mean growing-season DON and H* (estimated from 

pH) concentration increased with DOC concentration (Figure 1.6 a, b). Ammonoosuc 

Brook, a high-alpine stream on Mt. Washington, was an outlier in the relationship 

between DOC and H~\ with a much higher H+ concentration than predicted by DOC 

concentration alone (circled. Figure 1.6b). This stream also had the highest mean 

growing season NOa'-N concentration o f all streams measured. W ith the exception of 

this stream, DOC concentrations explained 70% of the variability o f mean H+ 

concentrations. Both DOC and pH both corresponded with forest type: DOC 

concentrations increased and pHs decreased as the fraction of conifer or mixed 

hardwood/conifer forest increased (Figure 1.6 c, d).
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Figure 1.6: Mean (May - Sept.) DON (A) and H* (B) concentration as a Junction o f 
DOC concentration, and mean DOC concentration (C) and stream pH  (D) as a function 
o f the fraction o f watershed covered by conifer or mixed hardwood/conifer forest. The 
circled point in (B) is Ammonoosuc Brook, a high-alpine stream on Mt. Washington. P < 
0.001 fo r  all regressions; n = 35 (A, B) or 30 (C, D) streams.
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Nitrogen Flaxes

Estimates o f stream  N flux were heavily influenced by the high-flow months o f 

April and May (e.g.. Figure 1.3), particularly when peak flows coincided with peak NO3 '- 

N concentrations in April (Figure 1.4). Differences among stream NCV-N concentrations 

overshadowed differences in the timing or magnitude o f streamflow, such that differences 

among streams in predicted N flux resembled differences in mean N concentration. The 

median NO3 -N loss from all o f the forested catchments (n = 25) was 0.5 kg ha' 1 yr*1. 

Annual NOf-N losses ranged from < 0.1 kg ha*1 yr*1 in the Rocky Branch watersheds 

burned during 1912-1914, to nearly 3.0 kg/ha lost during May-Sept. alone from 

Ammonoosuc Brook, a stream draining M l Washington alpine tundra (Figure 1.7). If 

this stream had maintained its peak May, 1997 N concentrations all winter, annual NO3 - 

N losses would have totaled approximately 4.0 kg/ha; annual TDN losses, 5.3 kg/ha. 

Across all forested catchments, the median DON loss was 0.7 kg ha*1 yr*1, with a range 

from 0.4 kg ha*1 y r 1 in the Zealand Valley to 1.5 kg ha*1 yr*1 in Elephant Head Brook in 

the Gibbs Brook Research Natural Area (Figure 1.7). DON comprised 54% (range 28% 

to 87%) of annual TDN losses. DON losses were generally proportional to DOC losses, 

with a median DOC loss o f 19.7 kg ha*1 yr*1. DOC losses ranged from 9-13 kg ha*1 yr*1 in 

Zealand Valley streams to 62 kg ha*1 yr*1 in Elephant Head Brook and 67 kg ha*1 yr' 1 in a 

tributary to the Peabody River.
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the standard deviations among sites. Analyses include only streams with annual N  
measurements (n = 23).

Losses of TDN from old-growth watersheds were approximately double those 

from the historically logged or burned watersheds (F  = 6.46, df = 2, 5, P  = 0.04), 

primarily due to differences in nitrate loss (Figure 1.8). There were significant 

differences among sites within the same land use (F  = 7.4, df = 5, 15, P  = 0.001), in that 

Gibbs Brook had lower TDN losses than the two other old-growth sites. Annual NO3 -N 

flux did not correlate with any watershed physical or chemical factors such as mean 

elevation (and streamflow), area, mean pH, or forest type, but increased marginally with 

decreasing DOCrDON ratio (Table 1.4). When only old-growth or mixed old-growth 

watersheds were considered, NCV-N losses increased more consistently with decreasing 

DOCrDON ratio (Figure 1.9). Several historically disturbed streams followed this
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pattern, but others had much lower nitrate fluxes than expected based on DOCrDON ratio 

alone.

Table 1.4: Correlation o f annual nitrate and DONfluxes with stream chemistry and 
watershed features. Significant correlations are indicated in bold (Bonferroni-corrected 
alpha = 0.05/11 — 0.0045). Analyses include only streams with annual N  
measurements.

Nitrate-N flux DON flux
(kg ha' 1 yr*1) (kg ha' 1 yr'1)

n R P R P
DON flux (kg ha' 1 y r l) 25 0.19 0.36
DOCrDON ratio 25 -0.48 0 .0 1 0.43 0.03
Mean pH 25 0.03 0 .8 8 -0.65 0.0004
Conifer cover (%) 23 -0 .1 1 0.61 0.67 0.0004
Streamflow (cm/yr) 25 -0 . 0 2 0.91 0.51 0.009
Area (ha) 25 -0 .1 1 0.60 0 . 1 0 0.64

a Old-growth watersheds 

o Historically disturbed watersheds
2.0  -

-0.048Xy = 4.46 e 
R2 = 0 .69

> .1 .5  --

at

31.0  - -

CO

0 .5  --

0.0
2515 20 30 35 4 0 45 555 0

DOC:DON ratio

Figure 1.9: Annual N O f-N  loss increased steeply with decreasing DOC'.DON ratio 
when considered across streams draining old-growth forest (black triangles). Nitrate 
losses from historically disturbed stands (open circles) were often less than expected 
based on DOC:DON ratio alone. Curve and equation pertain to old-growth streams, 
only.
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DON losses did not vary by land-use history (F  = 1.0, d f = 2, 5, P  =  0.43), but 

instead followed patterns o f DOC loss. Both DON and DOC fluxes increased with 

increasing cover by spruce-fir or mixed northern hardwood /  spruce-fir forest (Table 1.4, 

Figure 1.6).

Nitrogen Retention

Net N retention appeared to decrease with increased time since disturbance 

(Figure 1.10), but the old-growth forests still retained at least 70% of estimated N inputs. 

Considering all forms of N loss, historically disturbed sites retained an average o f 90% of 

added N while the old-growth sites retained 79% (Figure 1.10). Estimates of N retention 

would have been slightly higher (95% and 80% for disturbed and old-growth, 

respectively) if  DON inputs and outputs had been ignored.

100%

9 5 %

J 9 0 %
c  
0
©

“  8 5 %

c  ©
§  8 0 %

CL

7 5 %

7 0 %

Time Since Disturbance

Figure 1.10: Net N  retention (TDNu, - TDN0Ut) /  TDNu, x  100 and time since disturbance. 
Error bars are the standard deviations among streams within sites.
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Discnssion

Constraints on N F lax Estim ates

The reliability o f my flux estimates depends on two main assumptions: first, that 

modeled estimates of streamflow were reasonable, and second, that stream chemistry on a 

single day in the middle of a month approximated the chemistry of the whole month. The 

modeled streamflow estimates depended on how accurately the watersheds were defined, 

how well the linear elevation factors represented spatial patterns o f monthly precipitation, 

and how well the model predicted patterns of streamflow. Comparisons with Hubbard 

Brook suggested that the procedure performed well overall, but overestimated streamflow 

in October and late summer when NO3 -N concentrations were low, while 

underestimating flow in December and, in some watersheds, in April when N0 3 '-N 

concentrations were high (Figures 1.3,1.4). Consistent errors in modeled streamflow of 

the magnitude observed at Watershed 6  (Figure 1.3a) would lead to underestimates of 

stream N0 3 ~-N flux by an average of 0.12 kg ha' 1 yr' 1 or 18% (range: < - 0.01 to -0.46 kg 

ha' 1 yr'1) for the streams in this study. The streamflow errors observed at W atershed 7 

(Figure 1.3b) would underestimate N flux by an average of only 0.05 kg ha' 1 yr' 1 or 7% 

(range: + 0.05 to -0.22 kg ha' 1 yr'1). The larger potential errors occurred in streams with 

higher nitrate concentrations, while flux estimates changed little in streams with low 

nitrate concentrations.

The use of a single sample to represent a month’s worth of stream chemistry can 

also introduce errors in estimated annual element flux. Concentrations of both nitrate 

(Murdoch and Stoddard 1992, Creed and Band 1998) and DOC (McDowell and Likens 

1988, David et al. 1992) often increase at the start of high-flow events due to changes in
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hydrologic flowpaths and flushing of upper soil horizons; failure to sample high-flow 

periods may lead to underestimates o f nitrate and DON flux. Most sampling dates in this 

study occurred during base flow conditions, although sampling dates in April and May 

coincided with high, but not peak snowmelt flows observed at Hubbard Brook Watershed 

6 . Sampling dates during the growing season coincided with both event (June and July) 

and base flow (August and September) conditions without discernible effects on NO3 -N 

concentrations, although DOC and DON concentrations in some streams appeared to 

respond to the summer events (Figure 1.4). Swistock et al. (1997) report that monthly 

sampling of stream chemistry coupled with continuous streamflow measurements usually 

yielded estimates of annual nitrate flux within 10% (range -9.5% to + 41%) of estimates 

based on near-continuous chemical sampling, without any consistent bias. Eshleman et 

al. (1998) indicate that monthly chemistry and continuous streamflow measurements 

underestimate annual nitrate flux by an average of about 25% and 5%, respectively, for a 

highly responsive and less responsive stream in Virginia. Twenty-five percent 

underestimates of nitrate flux for the streams in this study amount to mean errors of 0.17 

kg ha' 1 yr*1 (range < -0.1 to -0.5 kg ha' 1 yr'1).

While there are uncertainties in the estimates of stream nitrate and DON flux 

(Figure 1.7), these estimates are similar to others reported for the northeastern U.S. 

Annual losses of DON from nine northern New England watersheds (including four at the 

Hubbard Brook Experimental Forest) during 1994-1997 ranged from 0.5 to 2.4 kg ha' 1 yr' 

\  while NOj'-N losses ranged from < 0.1 kg ha' 1 yr' 1 to 2.1 kg ha' 1 yr' 1 (Campbell et al., 

submitted). Streams in the Catskill Mountains, New York, have higher mean N0 3 *-N
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(~3.5 kg ha*1 yr*1) and sim ilar mean DON fluxes (-0.7 kg ha*1 yr*1) relative to those in this 

study (Lovett et aL, in press).

Patterns of Dissolved Organic Nitrogen Losses

DON production in the forest floor has been shown to peak in late summer and 

early fall at the Harvard Forest, Massachusetts (Currie et al. 1996, McDowell et al. 1998). 

However, stream DON concentrations in this study showed little seasonal variation 

(Figure 4), a result consistent with other observations of stream chemistry in northeastern 

North America (Creed and Band 1998, Lovett et al. in press, Campbell et al. submitted). 

Retention of dissolved organic matter in the mineral soil (McDowell and Wood 1984) 

likely dampens any seasonal signal of DON production.

Successional status did not affect losses of DON (Figure 1.8), which instead was 

related more strongly to DOC losses (Figure 1.6a) and factors controlling DOC 

production. At the Harvard Forest, forest floors in conifer stands produced more DOC 

and DON, often with higher DOCrDON ratios than did forest floors in adjacent hardwood 

stands (Currie et al. 1996). Simlarly, Lawrence et al. (1986) found higher DOC 

concentrations in streams draining high-elevation spruce-fir forests than in those draining 

mid- and low-elevation northern hardwood forests. These results are consistent with the 

observation that DOC concentrations increased with percent cover by conifer or mixed 

forest (Figure 1.6c). DOC flux has been shown to increase with soil C:N ratio 

(Aitkenhead and McDowell, in press). The observed effects o f forest type on DOC loss 

may have related to the higher C:N ratios in foliar and woody litter o f conifer forests 

relative to hardwoods (Hobbie et al. 1992, Arthur et al. 1993).

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N itrate Loss and C:N Ratio

While DON fluxes appear to be generally controlled by factors governing DOC 

flux, nitrate fluxes were more closely controlled by forest successional status, although 

both forms of N loss may relate to soil C:N ratio. Nitrification and nitrate leaching losses 

generally increase as soil C:N decreases (Harmsen and Van Schreven 1955, van Miegroet 

et al. 1992, Gunderson e t al. 1998b, Dise et al. 1998b, Chapter 2), and stream nitrate 

fluxes have been shown to correlate with decreasing C:N of dissolved organic matter 

(DOCrDON) in both Finland (Kortelainen et al. 1997) and New England (Campbell et al., 

submitted). While streams draining the old-growth stands in this study generally 

followed this relationship, several streams draining historically disturbed stands had 

much lower nitrate fluxes than predicted based on DOCrDON ratio alone (Figure 1.9).

The ratio of DOCrDON may not always be analogous to soil CrN, in that DOCrDON 

ratios are frequently much higher than soil CrN ratios, likely reflecting a source other than 

simple solubilization from bulk humus (Currie et al. 1996). DOCrDON values observed 

in this study (mean = 32, range 17-53,), generally exceeded CrN ratios reported for soil 

organic matter at nearby sites (15-30; Huntington et al. 1988, McNulty et al. 1991, 

Chapter 2).

Nitrogen Losses and Forest History

The overall pattern o f higher nitrate concentrations (Figure 1.5) and fluxes (Figure 

1 .8 ) in streams draining old-growth forests relative to successional forests is consistent 

with the hypothesis that old-aged systems should have lower net retention of N than 

aggrading successional systems (Vitousek and Reiners 1975). This study demonstrates 

that the effects o f disturbance can persist for 80-110 years, despite chronic N deposition.
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The two forms of disturbance, logging and fire, were expected to have had 

different effects on current N retention due to differences in disturbance intensity and N 

losses. Historical records did not provide sufficient detail to ascertain the relative 

intensity of logging or fire across sites, although the Zealand Valley fire received 

particular notoriety for its extent and severity (Chittenden 1904). Logged sites were 

presumed to have incurred N losses through bole removal and disturbance-induced nitrate 

leaching (e.g., Hombeck and Kropelin 1982), while burned sites were presumed to have 

incurred these losses as well as losses of soil N through partial combustion of soil organic 

matter (e.g., Johnson et al. 1998). Most of the White Mountain fires 80-110 years ago 

were slash fires after logging (Chittenden 1904), and slash fires tend to bum hotter and 

longer than other surface fires, resulting in large losses of organic matter and N (Raison 

1979). However, N retention did not appear to be affected by the form of historical 

disturbance, but by its date, with N losses increasing with time since disturbance (Figure 

1.10). These results indicate either that the logging and fire both removed similar 

amounts of N, or that the differences in past N removal mattered less in controlling 

current N losses than current forest age.

Nitrogen losses from the conifer-dominated watersheds at Gibbs Brook, Crawford 

Notch, were lower than expected for an old-growth site (Figures 1.4e, 1.7). The Gibbs 

Brook watersheds have not been logged, but they may have experienced significant 

internal disturbance: several authors have noted extensive mortality of red spruce at the 

site in recent decades (Foster and Reiners 1983, Lawrence et al. 1997). Spruce mortality 

may have added large quantities of coarse woody debris to the forest floor, and placed 

much of the watersheds’ living vegetation in an earlier successional state than presumed.
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Nitrogen Retention. Saturation , and Saccession

The strong seasonality o f nitrate concentrations (Figure 1.4) suggested that 

substantial biotic uptake occurred in all o f the forested watersheds during the growing 

season. Nitrate concentrations in the historically disturbed streams generally fit the 

model proposed by Stoddard (1994) for stage 0, the earliest stage of N saturation of 

surface waters. Stream NOj"-N concentrations peaked during the dormant season at less 

than 150 (Ig/L, and generally fell to less than 10 |ig/L during the growing season. The 

old-growth watersheds displayed the amplified seasonal cycle expected of stage 1, with 

peak steam NCV-N concentrations approaching those typical of wet deposition (-300 

pg/L). The slightly elevated NO3 -N concentrations evident during the growing season in 

the old-growth watersheds (~ 50 pg/L) could reflect reduced biotic uptake, leading toward 

the elevated nitrate concentrations in groundwater expected in stage 2. Similarly, 

streams draining the alpine tundra had elevated NOj'-N losses during the growing season; 

yet concentrations remained less than 200 pg/L, suggesting a late stage 1 or very early 

stage 2. The old-growth watersheds did not demonstrate the relatively high, aseasonal 

nitrate concentrations that Vitousek and Reiners (1975) suggested were indicative of 

reduced biotic uptake in old age. Yet, recent measurements of nitrate in the same old- 

growth streams measured by Vitousek and Reiners (Chapter 3) suggest seasonal patterns 

similar to the old-growth streams in this study.

While TDN losses from the old-growth forests generally exceeded those from the 

historically disturbed forests, the old-growth forests still retained at least 70% of N 

inputs, far from the hypothetical net N retention of zero. Stream N fluxes could have 

been underestimated, but methodological errors do not explain differences of this
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magnitude. Failure to include cloud N deposition probably led to large underestimates o f 

N inputs to some watersheds, implying that even higher rates of N retention likely 

occurred. Even the watershed dominated by alpine tundra retained at least 65% o f N 

inputs, as calculated from liberal estimates of N loss (see results), and conservative 

estimates of N inputs (no cloud deposition). This estimate is consistent with Baron and 

Campbell (1997) and Kaste et aL (1997), who report 50-70% retention o f N deposited on 

alpine tundra and rocky talus.

Why was N retention so high? Denitrification losses have been shown to be 

negligible in these and sim ilar forests (Bowden and Bormann 1986, Bowden et al. 1991), 

so unmeasured gaseous N losses are not likely to explain the large difference between 

estimated N inputs and outputs. Imperfect knowledge of forest history may have missed 

episodes of past disturbance (e.g., the 1938 hurricane). Yet, cumulative leaching losses 

of nitrate following forest disturbance rarely exceed 60 kg N/ha (Martin et al. 1986), a 

loss that should have been replaced in less than a decade’s worth of N deposition. Past 

disturbance could have placed the current old-growth forests into a slowly aggrading 

phase, rather than the transitional or degrading state expected to have no net N retention 

(cf. Bormann and Likens 1979, Peet 1992). Similarly, soils may still be accumulating N 

even if the vegetation is not, as exemplified by a 400-year-old Douglas-fir stand that 

accumulated N in soil organic matter and coarse woody debris even though it had stopped 

gaining biomass (Sollins et al. 1980).

Could chronic losses o f DON preclude or substantially delay successional forests 

from accruing sufficient N  in soils to lead to nitrification and nitrate loss? DON losses in 

the current study were quite low (mean = 0.7 kg ha' 1 y r 1), or approximately 3-11 % of
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estimated TDN inputs. Similarly, approximately 12% o f total N inputs to an old spruce- 

fir stand on W hiteface Mountain, New York, were lost below the rooting zone as DON 

(Friedland et al. 1991). Yet, DON losses can account for significant fractions of N inputs 

in some systems: DON losses in deep lysimeters (3-5 kg ha' 1 y r'1) accounted for 

approximately 30-60% of total N inputs to Harvard Forest and Cape Cod, Massachusetts 

forests (Lajtha et al. 1995, Currie et al. 1996). Half o f the 2.0 kg ha' 1 yr' 1 o f N deposited 

on an old Oregon forest was lost as DON in streamwater (Sollins et al. 1980), and stream  

losses of DON (2.3 - 4.6 kg ha' 1 yr'1) exceeded wet deposition of N to three Puerto Rican 

catchments (McDowell and Asbury 1994). Current losses o f DON appear particularly 

large when compared with pre-industrial rates of N input. Chronic N deposition can 

enhance DON losses (Currie et al. 1996, McDowell et al. 1998), yet mean DON 

concentrations reported from pristine regions (133-217 pg/L; Hedin et al. 1995) slightly 

exceed those in this study. DON losses could perhaps have nearly balanced pre-industrial 

N inputs in some systems, substantially delaying N accumulation in soils to levels 

sufficient to induce nitrification and nitrate loss.

Interannual clim ate variability may also partially explain the current high N 

retention across all watersheds. At Hubbard Brook, retention o f inorganic N within the 

same watershed varied erratically from less than 20% o f wet N inputs in the early 1970’s, 

to over 80% in the mid-1980s (Pardo et al. 1995), and 90% in the mid-1990s (Hombeck 

et al. 1997, Campbell et al., submitted). Synchronous decreases in stream nitrate 

concentrations were observed across the White Mountain region during the 1990’s 

(Driscoll et al. submitted, Martin et al., in prep., Chapter 3), yet no significant trends in N 

deposition have occurred over the past three decades (Likens and Bormann 1995, Driscoll
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et al., submitted). Using the PnET-CN model, Aber and Driscoll (1997) demonstrated 

that climate variability and its relative effects on N mineralization and plant uptake can 

explain much o f the observed interannual variation in N retention at Hubbard Brook. The 

high N retention observed across all watersheds in this study may be due to particular 

climate factors in 1996-7 that favored plant and microbial uptake of N over N losses. 

Knowing the cause o f the high rates of N retention is important: if  due to a presently 

unsaturated capacity to absorb N, ecosystems may continue to take up N for decades to 

centuries before reaching late-stage N saturation; if due to climate variability, periodic 

episodes of large nitrate losses may occur much sooner.
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CHAPTER E

LONG-TERM EFFECTS OF LOGGING AND FIRE ON NITROGEN CYCLING IN

NORTHERN HARDWOOD FORESTS

Abstract

Most northeastern U.S. forests have been disturbed by wind, logging, fire, or 

agriculture over the past several centuries. These disturbances may have long-term 

impacts on forest carbon and nitrogen cycling, affecting forest vulnerability to N 

saturation and their future capacity to store C. I evaluated the long-term (80-110 year) 

effects of historical logging and fire on soil C and N pools, N turnover, and NO3' leaching 

in northern hardwood forests in the W hite Mountain National Forest, NH. Historical 

land-use maps were used to identify five areas each containing previously logged, burned, 

and relatively undisturbed (old-aged) forests. Forest floor masses in old-aged stands were 

smaller and soil C:N ratios were narrower than in historically burned or logged sites. The 

amount of N mineralized over 28 day laboratory incubations did not vary by land-use 

history, but mean (± SE) nitrification rates at old-aged sites (25 ± 2.9 kg N/ha) doubled 

those at burned (11 ± 2.9) and logged (13 ± 2.1) sites. Across all plots, nitrification 

increased as soil C:N ratio decreased, and NO3'  concentrations in streamwater increased 

with soil nitrification. These results indicate that forest N cycling is affected by 

disturbances a century old. The increased nitrification at the old-growth northern
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hardwood sites may have resulted from excess N accumulation relative to C accumulation 

in forest soils, due in part to chronic N deposition.

Introduction

Over the past several centuries, most northeastern U.S. forests have experienced 

human-induced disturbances such as forest harvest, fire, or agriculture (e.g., Chittenden 

1904, Cronon 1983, Foster 1992, Foster et al. 1998). Successional forests in the eastern 

U.S. constitute a substantial sink in the global C budget (Birdsey et al. 1993, Dixon et al. 

1994, Turner et al. 1995, Fan et al. 1998), a sink likely augmented by fertilization from 

atmospheric carbon dioxide or deposited nitrogen (Schimel 1995, Townsend et al. 1996, 

Houghton et al. 1998). These successional forests also provide a large sink for 

atmospheric N deposition, and different disturbance histories may partially explain the 

variety of forest responses observed to similar rates of N deposition (Aber and Driscoll 

1997). Understanding the long-term impacts of historical disturbances on N cycling is 

important for predicting the potential amount of additional C and N that may be stored in 

northeastern forests.

Chronic N deposition may lead to N saturation, which is N availability in excess 

o f plant and microbial demand, accompanied by elevated nitrification and NO3* leaching 

(Aber et al. 1989, Stoddard 1994). Field measurements have demonstrated that N losses 

do not necessarily increase directly with N inputs (van M iegroet et al. 1992, Magill et al. 

1996,1997, Gundersen et al. 1998a, Dise et al. 1998a), and watersheds with similar N 

inputs can have vastly different N outputs (Pardo et al. 1995, Hombeck et al. 1997, Lovett 

et al., in press). These authors and others have inferred that past land-use history may 

partially regulate nitrate output. While the short-term impacts of disturbances on forest
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nutrient cycling have been well-studied (e.g., Likens et al. 1970, Raison 1979, Vitousek et 

al. 1979), long-term, impacts are often overlooked. Modeling efforts suggest that 

disturbances may influence C and N cycling for hundreds of years (Aber and Driscoll 

1997), but few studies have measured responses on this time scale, due in part to the 

difficulty of establishing land-use histories over such long periods. In this study, an 

unusually complete record o f forest disturbance provided the opportunity to examine the 

effects of century-old fires and logging on current foliar chemistry, soil C and N pools, 

rates o f N cycling, and nitrate losses in northern hardwood forests in the White 

Mountains, New Hampshire.

The W hite Mountain National Forest (WMNF) was established in 1911, largely in 

response to public outcries over widespread clearcutting and subsequent slash fires across 

the region during the preceding decades. These large-scale, relatively synchronous 

disturbances (Chittenden 1904) differed greatly from the natural disturbance regime, and 

are unique in the forest history of the region. Wind is the primary natural disturbance 

agent, and fires are rare in the northern hardwood zone (Lorimer 1977, Bormann and 

Likens 1979, Fahey and Reiners 1981, Spear et al. 1994). However, intense natural fires 

have occurred in limited areas in the past (e.g., Hombeck et al. 1997). Forest clearance 

for cultivation or pasture was generally restricted to lowland valleys and floodplains, 

comprising a minor portion of the region’s disturbance history.

The pulse o f harvesting in the late 19th and early 20th centuries presumably 

removed large amounts of C and N from White Mountain forests. Current practices of 

forest harvest bring about large losses o f N through both removal of biomass (Hombeck 

and Kropelin 1982, Tritton et al. 1987) and induction of nitrate leaching (Vitousek et al.
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1979, Martin and Pierce 1980, Hombeck and Kropelin 1982). Historical forest practices 

in the White Mountains varied widely, from selective cutting of large-diameter spruce to 

intensive clearcutting on steep slopes. Slash was left on-site, and fires frequently struck 

cutover lands and spread to uncut forest Period accounts often reported combustion of 

not only woody material, but soil organic matter (Chittenden 1904, and unpublished 

surveys, WMNF Headquarters, Laconia, NH). Nitrogen volatilization in fire corresponds 

directly with organic matter combustion (Raison 1979, Raison et al. 1985), but 

preferential combustion of fine litter rather than woody boles can lead to proportionately 

greater N than C losses (Johnson et al. 1998). System N losses from fire can be quite 

large, ranging from approximately 100 to 800 kg N/ha (Vose and Swank 1993, Johnson et 

al. 1998), and subsequent erosion can cause further losses of soil organic matter.

I hypothesized that past N removals through logging and fire created large N sinks 

relative to undisturbed forests. I expected that historically burned sites would be more 

severely impacted than logged sites, due to loss of soil N from the burned sites, and I 

predicted that N mineralization and nitrification, soil C and N pools, and nitrate leaching 

would increase from burned to logged to undisturbed sites.

Methods

Site Description

The WMNF covers 3000 km2 in north-central New Hampshire (43.8 - 44.6 °N,

71.0 - 72.0 °W; Figure 2.1). Over forty peaks exceed 1200 m. These mountains largely 

consist of highly-metamorphosed Devonian aluminum schists or Mesozoic granites 

(Hatch and Moench 1984). Soils in the northern hardwood zone are primarily 

haplorthods, developed on stony glacial tills (Pilgrim and Peterson 1979). The Hubbard
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Brook Experimental Forest, at 250 m elevation in the southwestern WMNF, receives an 

average of 1300 mm pretipitaffbn annually, and monthly mean temperatures range from - 

8.7 °C in January to 18.8 °C in July (Federer et aL 1990). Wet deposition of inorganic N 

(NH*+-N + NOf-N) averages 6.5 - 8.0 kg/ha at Hubbard Brook and nearby Cone Pond 

(Hombeck et al. 1997). Temperatures decrease and precipitation and N deposition 

increase with elevation (Lovett and Kinsman 1990, Ollinger et al. 1993, 1995).

Some patches of old-aged northern hardwood forest escaped major damage from 

the logging, fires, and hurricanes of the past several centuries (e.g., Leak 1974, 1975, 

Foster and Reiners 1983) and forests have returned to nearly all of the disturbed areas. 

However, tree species’ distributions and abundances have been substantially altered.

Early and mid-successional species such as paper (Betula papyifera) and yellow birch (B. 

alleghaniensis), aspen (Populus spp.), and red maple (Acer rubrum) now dominate sites 

that previously may have supported late-successional American beech (Fagus 

grandifolia) and sugar maple (A. saccharum), or on poorer sites, eastern hemlock (Tsuga 

canadensis) or red spruce (Picea rubens) (Leak 1991).

Site ffistnrips

Old-aged, historically logged, and historically burned areas were located within 

each o f five regions (Figure 2.1, Table 2.1). Historically burned and heavily cut stands 

were identified from published (Chittenden 1904, Belcher 1980) and unpublished records. 

At the time of purchase by the federal government — primarily 1911-1939 -  the newly 

formed U.S. Forest Service surveyed and mapped each prospective forest parcel. These 

unpublished survey documents (WMNF Headquarters, Laconia, NH) identify both the 

type (northern hardwood, spruce-fir, or subalpine) and condition (burned, lightly cut,
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heavily cut, second growth, or virgin forest) o f the forests at the time of purchase. Site 

disturbance histories were confirmed with inspection o f stand structure, composition, and 

soils. All historically burned sites contained soil charcoal fragments, usually located at 

the contact between the forest floor and the mineral soil. Charcoal was not found at any 

of the other sites. Chittenden (1904), Belcher (1980), or survey reports confirmed the 

bum dates for all fires but that at the George’s Gorge, Pinkham Notch site, which was 

approximated from tree increment cores. Information from the purchase surveys was 

used to constrain the dates of cutting in the logged stands.

Additional sources were used to identify the old-growth stands. As official or 

candidate Research Natural Areas, the Bowl (Leak 1974, Martin 1977,1979) and Gibbs 

Brook (Foster and Reiners 1983) are well-known old-growth sites with documented forest 

histories. The New Hampshire Natural Heritage Inventory identified potential old-growth 

northern hardwood stands in the Lafayette Brook Scenic Area (Sperduto and Engstrom 

1993) and in the Spruce Brook watershed of the W ild River valley (Engstrom and 

Sperduto 1994). The Glen Boulder site is a previously undocumented old-aged stand that 

was described as “virgin hardwoods and spruce” in its purchase survey in 1912, and 

compartment records indicate that no harvesting has occurred since then (USDA Forest 

Service, Conway, NH).
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Forest type
B  Hardwood forest 

|  Mixed forest 

|  Conifer forest 

n  Nonforest

Forest history plots
O  Historically burned 

Q  Historically cut 
A Old-aged

Carter Dome

Crawfo
Notch

Franconia 
Notch

Bartlett 
Experimental 

Forest

Sandwich R ange

Figure 2.1: Soil sampling locations by land-use history (symbols) and region (circles) in 
the White Mountain National Forest, New Hampshire.

Table 2.1: Location and sampling date (1996) o f soil collection sites. Dates o f fires and 
possible dates o f logging are indicated in parentheses. Asterisks indicate areas with 
streamwater collections.

Region Date Old-aged Burned (date) Logged (possible dates)
Sandwich Range 
Pinkham Notch 
Crawford Notch 
Franconia Notch 
Carter Dome

June 10-11 
June 17-18 
June 24-25 
July 1-2 
July 8-9

The Bowl 
♦Glen Boulder 
♦Gibbs Brook 
♦Lafayette Brook 
Spruce Brook

M t Chocorua (1915) M t Paugus (c. 1915) 
♦George’s Gorge (c. 1903) ♦Lost Pond (1896-1915) 
♦Zealand Valley (1886) MLTom(1880-1915)
♦M t Bickford (1903) Cascade Brook (c. 1895) 
Wild River (1903) Carter Dome Tr. (1896-1915)
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Patterns o f forest history could possibly have caused systematic biases in site 

selection. Red spruce was the dominant timber species at the last tum-of-the-century, and 

so historically logged sites currently occupied by successional hardwoods may have once 

supported spruce. Likewise, old-aged stands may have avoided cutting due to their lack 

o f merchantable spruce at the time. Inherent site qualities such as slope, aspect, and soil 

mineralogy, texture, drainage, and thickness which govern red spruce distribution (Leak

1991) may also influence today’s C and N pools and cycling rates. I tried to avoid 

confusing site history with other site factors by choosing logged sites that were marked as 

“cutover hardwood” on survey maps and using old-aged stands that were left uncut for 

reasons other than just species composition, such as watershed protection or inconvenient 

location within ownership boundaries. However, few old-growth stands exist, and it is 

difficult to be certain about the exact species composition of stands cut a century ago.

At each site, two 20 x 20 m plots were established on drained, mid-slope positions 

dominated by northern hardwoods. Recent canopy gaps were avoided. An altimeter was 

used to minimize elevation differences among plots within each region, and exact plot 

locations were later determined with a global positioning system. Plots ranged from 525 

to 850 m elevation, with a mean of 650 m.

Soil Measurements

Net N mineralization and nitrification, soil C, N, and organic matter content, and 

soil pH were measured at all 30 plots (5 regions x 3 land-use histories x  2 plots/site). Net 

N mineralization and nitrification were estimated with 28 day laboratory incubations 

intended to mimic the buried bag method (Eno 1960, Nadelhoffer et al. 1983). Cores 

were incubated at a constant room temperature (mean = 21 °C, range = 19-23 °C) rather
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than fluctuating field temperatures. This laboratory method differed from laboratory 

potential mineralizations (e.g., Stanford and Smith 1972, Groot and Houba 1995, Knoepp 

and Swank 1995) in that soils were not sieved nor were soil moisture levels adjusted prior 

to incubation.

Soils were collected in early summer (Table 2.1) from three randomly chosen 5 x 

5 m subplots within each 20 x 20 m p lo t After removing recent litter (Oi), three pairs of

5.5 cm diameter soil cores were collected at each subplot. Each core was divided into 

forest floor (Oe +  Oa) and mineral soil (0 to 10 cm) horizons, which were placed into 

separate polyethylene bags. Cores were refrigerated until return to the laboratory. One 

core from each pair was extracted within 24 hours of return, while the other was 

incubated in the dark for 28 days. Horizons were composited by subplot for all analyses 

by sieving through a 5.6 mm mesh sieve. Soils were weighed after sieving, and these 

weights were used to convert N turnover to units of area (kg/ha). This procedure assumes 

that soil components > 5.6 mm do not contribute significantly to extractable N 

concentrations. Soil moisture was determined as the weight loss of the composited soils 

dried at 105 °C for 48 hours. Ten grams of sieved, field-moist soil were extracted in 100 

mL o f 1 M  KC1 over 48 hours. Extracts were filtered through glass fiber filters (Gelman 

Sciences A/E) and frozen until later analysis. Extract NCV-N and NKU+-N concentration 

were analyzed colorimetrically with a Technicon TRAACS 800 Autoanalyzer using 

Technicon methods 782-86T (hydrazine reduction) and 780-86T (indophenol blue), 

respectively. N mineralization was calculated as: ([NCV-N] + [NH4+-N])incubated - ([N Q f 

-N] + [NHU+-N])imiiai. and nitrification was calculated as [NCV-Njincubaied - [NCb'-Nlimtiai-
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The laboratory incubation method was compared with annual measurements o f N 

mineralization and nitrification at 14 plots at the Bartlett Experimental Forest in the 

WMNF. Nitrogen turnover was measured from June 1996 to May 1997 using the 

traditional buried bag technique (Ollinger et al., submitted). Additional soil cores were 

collected from these plots on July 19 and 23,1996 for 28 day laboratory incubations and 

analyses as described above.

Composited soils from the initial cores were air dried and later analyzed for pH 

and carbon and nitrogen fractions. Soil pH was measured with an Orion glass pH 

electrode in a 1:10 g/g (forest floor) or 1:4 g/g (mineral soil) 0.01 M  CaCk slurry. Soil 

organic matter content was determined by Ioss-on-ignition at 500 °C for 5 hours. Carbon 

and nitrogen fractions were determined on dried, ground (Brinkman mechanized ceramic 

mortar and pestle) samples by combustion and gas chromatographic analysis using a 

Fisons NA 1500 Series 2 CHN analyzer.

Vegetation Measurements

On all 30 plots, diameter at breast height and species were recorded for all trees

9.5 cm dbh or greater. Foliage was collected from the mid- to upper canopy o f up to three 

individuals of each canopy species during August, 1997, using 12-gauge shotguns and 

No. 4 steel shot Foliage samples were air dried and ground with a Wiley mill to pass 

through a 1 mm mesh sieve. Nitrogen and lignin concentrations were determined with 

near-infrared reflectance spectroscopy (Wessman et al. 1988, McLellan et al. 1991, 

Bolster et al. 1996). On each plot, foliar chemistry was averaged by tree species, and then 

weighted by species’ proportional basal areas to obtain plot-averaged foliar chemistry.
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Stream Nitrate

Stream NCV-N concentrations were obtained for streams draining seven of the 

fifteen soil-collection sites (Table 2.1) as part o f a larger survey of stream chemistry 

(Chapter 1). Two to four small streams were sampled at each site, and each stream’s 

watershed fell wholly within the identified land-use history. Monthly streamwater grab 

samples were collected from Oct. 1996 until Sept. 1997 for all but the M l Bickford site, 

which was sampled from May - Sept. 1997. Its mean annual concentration was estimated 

from  its growing season mean and the ratio o f growing season : annual mean nitrate 

concentration in the other historically burned streams. Chapter 1 describes the sampling 

and analytical methods in detail.

Statistical Analyses

Laboratory estimates of N mineralization and nitrification at the Bartlett 

Experimental Forest were compared with annual in situ measurements using ordinary 

least-squares regression. The nitrification data were positively skewed and some values 

were slightly negative, so one kg/ha was added to all nitrification rates to allow log- 

transformation.

Nitrogen turnover, soil properties, and foliar chemistry were compared across the 

three land-use history categories (burned, logged, and old-aged) with analysis o f variance. 

The ANOVAs were blocked by region (five levels, Table 2.1) as a fixed factor, and a 

land-use history x region interaction term was included. Scheffe’s tests were used for 

post hoc comparisons among land-use histories. Relationships between plot-averaged 

soil properties were examined with correlation analyses, and stepwise multiple linear 

regressions were used to determine which among these properties best explained
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variability in net N mineralization and nitrification rates. Analysis o f covariance was 

used to evaluate the effects o f land-use history on nitrification rates while controlling for 

variation in sugar maple abundance.

Results

Methods Comparison

Estimates of net N  mineralization (Figure 2.2a) and log-transformed nitrification 

(Figure 2.2b) from the 28 day laboratory incubations correlated strongly with annual field 

measurements at the Bartlett Experimental Forest These results indicated that the 

laboratory incubations reliably captured field trends in N mineralization and nitrification. 

However, laboratory estimates of N turnover at the land-use history plots often exceeded 

values observed at any of the Bartlett plots, and so I cannot be certain that the strong 

correlations between field and laboratory trends persisted at the higher N  turnover rates.

N Mineralization Nitrification +1
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1.0 300 5 10 15 20 25 30 35 40 103
Four-wfc. Lab Incubation (kg N/ha) Four-wfc. Lab Incubations +1 (kg N/ha)

Y > 5.95 + 2.45X R2 = 0.82. p < 0.0001 Y = 0.21 + 1.073 X R* = 0.87 p < 0.0001

Figure 2.2: Methods comparison between 28 day laboratory and annual fie ld  
measurements o f a) N  mineralization and b) nitrification + 1. Note the log scale fo r  the 
nitrification data.
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N Mineralization and Nitrification (28 d)

50 "

40 ”

cb 30

O)

20  - -

10 - -

Burned Logged Old-aged
N Mineralization Nitrification 

Forest floor (Oe+Oa) □  m
Mineral soil (0-10 cm)

Figure 2.3: Net N  mineralization and nitrification (28 d  laboratory incubations) by land- 
use history. Bars are total mean (+ SE) values, and are divided into forest floor (upper 
portion) and mineral soil (lower portion). Different letters indicate significant 
differences by land-use history, n -  1 0  plots/land use.

Effects of Land-use History

Soil Processes. Nitrogen mineralization rates did not differ significantly by land- 

use history, whether considered on an area (kg/ha) or concentration (mg/kg) basis, by 

horizon, or for the total soil core (Figure 2.3, Table 2.2). However, nitrification rates did
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vary: nitrification rates at the old-aged sites consistently exceeded those at historically 

disturbed sites in both the forest floor and the mineral soil. Mean nitrification rates at the 

old-aged sites approximately doubled those at burned or logged sites (Figure 2.3). The 

fraction of total m ineralized N which was nitrified (the nitrification fraction) was greater 

at old-aged sites relative to historically disturbed sites in all five regions. The historically 

logged and burned stands did not differ significantly from each other in any measured soil 

property (Table 2.2).

Soil Pools. The forest floors of old-aged sites had less mass, soil organic matter, 

C, and slightly less N than historically logged or burned sites (Figure 2.4 a, b. Table 2.2). 

However, the strong but not statistically significant land-use history x  region interaction 

terms (P -  0.06 - 0.10) suggest that these mean differences were influenced by large 

differences occurring in a few regions (Table 2.2). In the mineral soil, land-use history 

did not affect soil organic matter, C or N content Although land-use history differences 

in soil C and N content were subtle, soil C:N ratios varied strongly and consistently by 

land-use history in all five regions. The C:N ratios in the old-growth stands were 

significantly narrower than those at the historically disturbed sites, in both the forest floor 

and the mineral soil (Figure 2.4c, Table 2.2). Neither forest floor nor mineral soil pH 

varied by land-use history (Table 2.2).
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Table 2.2. Mean (SE) net N mineralization, nitrification, and soil carbon, nitrogen, and C:N ratio by land use history (burned, logged, and 
old-aged). Different letters indicate significant differences among land use histories as determined by ANOVA blocked by region (five 
blocks), n = 10 for each land use type.

Landuse (L) Region (R) L x R Resid.
2 df 4 df 8df IS df

Burned Logged Old-Aged MS F P MS F P MS F P MS
Net N Mineralization (kg/ha) 42.7 ±4.3 42.8 ±2.9 45.7 ±2.1 30 0.5 0.63 199 3.1 0.05 136 2.1 0.10 64

Oe+Oa Forest floor 22.0 ±1.8 21.5 ±1.2 23.6 ±2.1 12 1.1 0.34 83 7.7 0.001 42 3.9 0.01 11
0-10 cm Mineral soil 20.7 ±3.5 21.4 ±2.5 22.2 ±2.4 5 0.1 0.90 115 2.2 0.12 94 1.8 0.15 52

Net Nitrification (kg/ha) 11.1 ±2.9 a 13.2 ±2.1 a 24.7 ±2.9 b 537 6.6 0.01 79 1.0 0.45 45 0.5 0.80 82
Oe+Oa Forest floor 1.8 ±0.6 a 2.5 ±0.5 a 7.4 ± 1.3 b 92 10.6 0.001 14 1.6 0.22 3 0.4 0.91 9
0-10 cm Mineral soil 9.3 ±2.7 10.8 ±1.8 17.4 ±2.1 185 3.7 0.05 63 1.3 0.33 43 0.9 0.57 50

Carbon (Mg/ha) 62 ±5.8 a 62 ±4.5 a 49 ±3.6 b 611 6.1 0.01 569 5.7 0.01 287 2.9 0.04 100
Oe+Oa Forest floor 29 ±4.8 a 25 ±3.2 a 16 ±2.2 b 462 6.8 0.01 290 4.3 0.02 157 2.3 0.08 68
0-10 cm Mineral soil 34 ±2.9 37 ±2.7 33 ±1.8 42 1.5 0.25 205 7.3 0.002 55 1.9 0.13 28

Nitrogen (Mg/ha) 2.95 ±0.2 3.05 ±0.2 2.77 ±0.2 0.21 1.5 0.26 1.41 10.1 <0.001 0.38 2.7 0.04 0.14
Oe+Oa Forest floor 1.26 ±0.2 a 1.21 ±0.2 a 0.82 ±0.1 b 0.58 5.8 0.01 0.58 5.8 0.005 0.24 2.4 0.06 0.10
0-10 cm Mineral soil 1.69 ±0.2 1.84 ±0.2 1.95 ±0.1 0.17 1.4 0.28 0.74 6.0 0.004 0.13 1.0 0.45 0.12

C:N Ratio (g/g) 21.0 ±1.1 a 20.5 ±0.7 a 17.5 ±0.5 b 35.9 10.8 0.001 18.9 5.7 0.01 6.2 1.9 0.14 3.3
Oe+Oa Forest floor 22.1 ±0.9 a 20.9 ±0.5 a 18.8 ±0.5 b 27.7 10.3 0.002 12.7 4.7 0.01 3.4 1.3 0.34 2.7
0-10 cm Mineral soil 20.5 ±1.2 a 20.4 ±0.8 a 17.0 ±0.5 b 39.4 11.1 0.001 23.7 6.7 0.003 8.0 2.3 0.08 3.5

pH (0.01 M CaCl2)
Oe+Oa Forest floor 3.5 ±0.1 3.4 ±0.1 3.5 ±0.1 0.07 0.9 0.42 0.12 1.6 0.23 0.02 0.2 0.98 0.07
0-10 cm Mineral soil 3.5 ±0.1 3.4 ±0.1 3.6 ±0.1 0.17 1.8 0.20 0.08 0.8 0.53 0.06 0.6 0.76 0.09

I
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Figure 2.4: Total a) carbon and b) nitrogen content (Mg/ha) and c) C:N ratio by land- 
use history. Bars are mean (+SE) values, and different letters indicate significant 
differences among land use histories, n — 1 0  plots/land use.
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Vegetation Stand baSal area averaged 30 m2 /ha and did not vary by land-use 

history (df = 2 ,15 , F  — 0.30, P  = 0.77), although the historically logged and burned plots 

had greater numbers (755 and 615 stems/ha, respectively) of small trees while the old- 

aged plots had fewer (400 stems/ha), large-diameter trees (df = 2,15, F  = 40, P  < 0.001). 

Species composition varied by land-use history in that eariy-successional paper birch and 

red maple occurred only on the historically disturbed sites (Figure 2.5). Late-successional 

sugar maple and American beech occurred on all three site types, but they contributed a 

much larger proportion o f stand basal area on the old-aged sites. Conifers contributed up 

to 30% of the basal area o f a few plots, but were m in o r components of m ost

Tree Species Composition

g  Y ellow  birch  

S u g a r  m ap le  

g  A m erican b e e c h  

i~ l P ap er birch  

H  R ed  m ap le  

I  O ther h ard w ood s 

C on ifers

Burned (29.1 ±  1.6) Logged (29.5 ± 1.9) Old-Aged (30.8 ± 2.2)

Figure 2.5: Average (+  SE) basal area (m?/ha) by tree species fo r different land use 
types, fo r all trees 9.5 cm dbh or greater. Average total (SE) basal area is indicated 
fo r  each land-use history.
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Foliar (Tiemistrv. Land-use history did not affect plot-averaged foliar %N, 

%lignin, or lignin :N ratio (Table 2.3), nor were there any differences in foliar chemistry 

by land use within individual species. Foliar %N averaged 2.3% for all three land-use 

histories. American beech, and yellow and paper birch averaged 2.5% N, while sugar and 

red maple averaged 2.1% N (Table 3). O f the hardwoods, sugar maple had the lowest 

lignin concentration (18.2% ), while beech had the highest (23.9%).

Table 2.3. Mean (SD) fo lia r chemistry by land-use history and tree species, n indicates

n Foliar N (%) Foliar Lignin (%) Foliar LigninrN
Land Use
Burned 1 0 233 ±0.15 2 0 .0  ± 13 8.61 ±035
Logged 10 2.28 ±0.14 21.1 ±1.3 9.30 ±0.73
Old-aged 10 231 ±0.26 21.0 ± 1.4 9.21 ±139

P = 0.91 0.09 0 .1 1

Tree Species
Yellow Birch 24 233 ±031 21.9 ± 13 8.7 ±0.9
Sugar Maple 17 2.08 ±0.27 183 ± 1.1 8.9 ± 13
Paper Birch 15 2.48 ±0.15 19.6 ± 1.0 7.9 ±0.6
Red Maple 11 2 .1 1  ± 0 .2 2 19.8 ± 1.2 9.5 ±0.7
Amer. Beech 12 2.48 ±0.18 23.9 ± 13 9.7 ±0.9
Red Spruce 8 1.14 ±0.11 26.0 ± 1 .0 22.9 ±2.6

Links Between Stream Nitrate and Soil Nitrification

Annual average stream NCV-N concentrations correlated remarkably well with 

estimates o f soil nitrification, even though plots covered very small portions o f stream 

watersheds (Figure 2.6). The old-growth sites with high nitrification rates had the highest 

stream N0 3 *-N concentrations, while the historically disturbed sites had much lower 

nitrification rates and stream  N O f-N  concentrations. Nitrification rates varied greatly 

within both the Gibbs Brook old-aged site and the Zealand Valley burned site, suggesting
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patchy nitrification in both areas. Within the Gibbs Brook site, the plot with the low 

nitrification rates typified the mixed hardwood-conifer forest of the three large 

watersheds yielding very low NCV-N concentrations, while the plot with high 

nitrification rates typified the sugar maple /  yellow birch composition of the small 

watershed yielding relatively high NCV-N concentrations (Figure 2.6).

2SO

Lafayette Brook

IOzg 150 -
Glen Boulder

I
(0o
09
f i  1 0 0  ■o><
a3cc

■■ —r Gibbs Brook

<  50 -
•ond

George's Gorge
Mt Bickft

5 10 15 20 250 3530
Four-week Nitrification (kg/ha)

Figure 2.6: Nitrate concentrations in streams and nitrification in soils. Nitrification 
data are the mean (±  range) o f two plots per site, and stream data are averages (±  SD) o f 
annual nitrate concentration in 2-4 streams per site. Dotted lines match the two Gibbs 
Brook plots with related streams. Regressing the means: Y  = 6.3 X  - 27.6, R2 = 0.73.

Controls on Soil Nitrification

Net nitrification rates (kg/ha) correlated negatively with tree density, forest floor 

organic matter, total soil C, and C:N ratio, and positively with net mineralization, mineral
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soil pH, and sugar maple basal area and sugar maple foliar % N (Table 2.4, Figure 2.7). 

Sugar maple was the only species whose abundance or foliar chemistry correlated with 

any measured soil property. Analysis of covariance was used to determine whether the 

high nitrification fractions at the old-aged plots were due to the increased abundance of 

sugar maple or to some other aspect of land-use history. Results were not conclusive, but 

suggested that both land-use history (d f= 2 ,24 , F  = 3.1, P = 0.06) and sugar maple basal 

area (df = 1,24, F  = 3.8, P -  0.06) affected the nitrification fraction, without a significant 

interaction (df =  2 ,24 , F  = 0.4, P  = 0.70).

Table 2.4. Correlation coefficients (R) fo r net nitrification and N  mineralization and 
measured soil and vegetation properties. n = 30 plots fo r  all but sugar maple foliar %N, 
fo r  which n — 17. * P < 0.05, ** P < 0.01, *** P < 0.001, with no adjustments fo r

Property Nitrification N Mineralization
Nitrification (kg/ha) 1
N Mineralization (kg/ha) 0.63 *** 1

PH 0.64 *** 0.32
Foliar % N 0.09 0.32
Foliar % lignin 0 .0 2 0 .2 0
Foliar lignin:N -0.04 -0 .1 1

Sugar maple foliar %N 0.56* 0.35
Sugar maple basal area (m2/ha) 0.52 ** 0 .2 2
Conifer basal area (m2/ha) 0.03 ' -0.15
Tree density (trees/ha) -0.64 *** -0.44*
Forest floor mass (Mg/ha) -0 .6 6  *** -0.46*
Total C (Mg/ha) -0.44* -0 .2 0
Total N (Mg/ha) -0.05 0.17
Total C:Total N -0.77 *** -0.62 ***
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Figure 2.7: Four-week nitrification rates (kg/ha) as a function o f with a) N  
mineralization, b) mineral soil pH, and c) sugar maple basal area. 0  = historically 
burned plots, □ =  logged plots, and A = old-aged plots.
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as a function o f soil C:N ratio decrease, o = historically burned plots,£2= logged plots, 
and A = old-aged plots.

Multiple regression analysis using stepwise elimination of the variables in Table 

2.4 retained only N mineralization, soil pH, and C:N ratio as predictors of nitrification. 

This model explained only slightly more variability in soil nitrification (adj. R2 = 0.64) 

than soil C:N ratio alone (R2 = 0.59). Soil N mineralization also correlated with soil C:N 

ratio, but the relationship was not as strong nor as steep as that between nitrification and 

soil C:N (Figure 2.8, R2 =  0.38). Although plot-averaged foliar %N did not directly 

correlate with any measured soil property, it did improve prediction of N mineralization 

in a multiple regression model including total soil C, total N, and foliar %N (Adj. R2 = 

0.49). Relationships between N mineralization and soil C:N were particularly strong
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when considered per unit organic matter; nitrification appears to increase exponentially 

below a C:N ratio o f 20 (Figure 2.8).

Discussion

Mean stand basal area, N mineralization, and soil organic matter, C, and N pools 

have recovered from the C and N losses incurred 80-110 years ago through logging and 

fire. I expected that recovery from fire would take longer than from clearcutdng, yet the 

historically logged and burned sites had nearly identical N cycling rates and soil C and N 

pools. Either historical fires were less intense than presumed, or both logged and burned 

sites have had sufficient time to recover. However, despite this apparent recovery, 

nitrification rates and nitrate leaching at the historically disturbed sites remain low 

relative to the old-aged sites. What factors explain the differences in nitrification and 

nitrate leaching between the historically disturbed and the old-growth sites?

Controls on Nitrification Rates

Nitrification rates have previously been shown to relate to tree species, soil pH, 

ammonium supply, foliar lignin:N, and soil C:N ratio (e.g., Vitousek et al. 1982, 

Robertson et al. 1982, Pastor et al. 1984, McNulty et al. 1991, van Miegroet et al. 1992, 

Finzi et al. 1998a, Gundersen et al. 1998a). The strong link between foliar chemistry 

(%N or lignin:N) and ecosystem N status observed elsewhere (McNulty et al. 1991, 

Gundersen et al. 1998, Ollinger et al., submitted) was not observed here. The lack of 

correlation could be due to the small range of plot foliar chemistries observed, to 

inappropriate weighting o f different species’ chemistries (by basal area rather than 

relative litter production), or to differences in canopy N content rather than foliar N 

concentration. O f the site factors that did correlate with soil nitrification (Table 2.4), only
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tree species composition and soil C:N ratio varied by land-use history and could possibly 

explain the systematically elevated nitrification rates at the old-aged sites.

Sugar Maple. Sugar maple is a  shade-tolerant, late-successional species, and 

nitrification rates under sugar maple frequently exceed those under other northern 

hardwood species (Pastor et al. 1984, Finzi et al. 1998a, Lovett and Reuth, in press). 

However, it is difficult to discern whether this effect is due to a  particular property of 

sugar maple itself or simply to an underlying gradient in soil pH, texture, or mineralogy 

(Pastor et al. 1984, van Breeman et al. 1997). Sugar maple foliage does not have 

particularly high N concentrations (Table 2.3), but its low lignin content leads to low 

litter lignin:N ratios (Melillo et al. 1982), and its reinforcement o f site calcium status 

through leaf litter (Finzi et al. 1998b) may cause a pH-induced increase in soil 

nitrification rates.

Were the high rates of nitrification observed at the old-aged sites caused by the 

increased abundance of sugar maple in later succession? Analysis of covariance 

suggested that old-aged sites continued to nitrify more than expected based on sugar 

maple basal area alone. The analysis indicated that the differences in sugar maple 

abundance could explain approximately 3 kg/ha of the observed 11-13 kg/ha N difference 

in nitrification rates between the disturbed and the old-aged plots. However, results from 

this analysis were tentative, and used plot-averaged nitrification data rather than data 

collected under individual trees. Species effects may have been more prominent if data 

were collected in this manner. The current data suggest that some additional property of 

the old-aged sites must account for most of the increase in nitrification rates at the old- 

aged sites.
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Soil C  N  R atio . Total C : total N ratio was the strongest predictor o f nitrification 

rates, regardless o f Iand-use bistory (Table 2.4). Both nitrification and N mineralization 

increased as soil C:N decreased, although nitrification increased more steeply, and 

possibly nonlinearly (Figure 2.8). Other researchers have found that nitrification relates 

more strongly to forest floor than to mineral soil C:N ratio (Emmett et al. 1998,

Gundersen et al. 1998b, Dise et al. 1998a, b). However, most of the nitrification 

observed in the present study and elsewhere in New England (Federer et al. 1983) 

occurred in the mineral soil (Figure 2.3) and nitrification rates correlated more strongly 

with total C : total N ratio than with C:N ratio of the forest floor alone.

The concept o f critical C:N thresholds for N mineralization and nitrification was 

recognized long ago (reviewed in Harmsen and van Schreven 1955), but has received 

renewed attention in the current discussion of N saturation. Emmett et al. (1998) 

suggested a critical forest floor C:N ratio of 24 for the onset of nitrate leaching from 

European conifer plantations, a value consistent with onset of nitrification observed by 

Ollinger et al. (submitted) for a range of species at the Bartlett Experimental Forest, and 

slightly higher than the total C : total N threshold of -  20 indicated here (Figure 2.8).

Soil C:N ratios integrate site history of both C and N accumulation, and critical 

C:N thresholds should be reached fastest in areas where soil N accumulates faster than 

soil C. Soil N accumulation derives from N in plant litter as well as N inputs from 

fixation or deposition, while soil C accumulation is controlled by the balance between 

decomposition and inputs o f fine and woody litter. Rates and quality of soil C and N 

inputs may change over succession as stands aggrade and change allocation patterns 

(Vitousek et al. 1988) or shift species composition (Van Cleve et al. 1991).
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In the present study, nitrification rates correlated with soil C:N ratio and carbon 

content, but were not affected by soil N  content alone (Table 2.4). The large differences 

in total C:N ratio appeared most related to differences in the C content of the forest floor. 

Forest floors in the old-aged stands contained less C than those of the historically 

disturbed stands, but this trend may have been driven by site-specific factors in a  few 

regions. The differences in forest floor C could be due to successionai patterns evolving 

over time, or to local site differences that were artifacts of our space-for-time (and 

disturbance history) substitutions. The observed trend differs from the predicted 

asymptotic rise in forest floor mass to 60-80 Mg/ha predicted by Covington (1981) and 

Federer (1984); yet current work (Yanai et al., in prep) suggests that changes in forest 

floor mass over time can be quite varied and site-specific. If real, the smaller forest floors 

at the old-aged sites could be caused by declining net primary production and organic 

matter inputs in the old-aged stands, or by a positive feedback between enhanced 

decomposition and lower C:N ratios in the old-aged stands. Reduced demand and 

competition for N by the old-aged forests may have allowed mineralized N to accumulate 

in the soil organic matter and decreased the soil C:N.

McNulty et al. (1991) and Gunderson et al. (1998a) also reported that forest floor 

mass decreased with C:N ratio. Forest floor organic matter and N content of the old-aged 

stands measured here were nearly identical to those of the Integrated Forest Study’s 

Turkey Lakes site, an old-aged northern hardwood site in Ontario (Johnson and Lindberg

1992). The soil organic matter and N content of the historically disturbed sites strongly 

resembled those measured at the Hubbard Brook Experimental Forest (Johnson 1995), a 

nearby site that experienced heavy logging approximately 80 years ago.
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Nitrification. Succession, and N Satnration

This study contributes to the long-running and often contradictory discussion of 

the role of succession in regulating N cycling and NO?' loss (e.g., Odum 1969, Rice and 

Pancholy 1972, Vitousek and Reiners 1975, Robertson and Vitousek 1981, Vitousek et al. 

1989, Hedin et al. 1995). Vitousek and Reiners (1975) proposed that retention of limiting 

nutrients should decrease over successional time, and they demonstrated that New 

Hampshire streams draining old-aged stands had higher NO3' losses than stands logged 

approximately 30 years previously. The theory asserts that old-aged forests, with 

presumably low rates of net ecosystem production, require few of the nutrients made 

available by atmospheric deposition or weathering. W ith decreased forest demand for N, 

nitrification and nitrate leaching should increase over successional tim e. This pattern of 

elevated nitrification rates or nitrate losses in old-aged stands relative to successional 

forests has been demonstrated elsewhere in the southeastern (Silsbee and Larson 1982, 

Sasser and Binkley 1989, Flum and Nodvin 1995) and the northeastern (Leak and Martin 

1975, Martin 1979, Robertson and Vitousek 1981, this study) U.S. However, old-aged 

forests on the west coast of North (Sollins et al. 1980) and South (Hedin et al. 1995) 

America often have quite low rates of nitrification or nitrate loss. Short-term differences 

in species’ allocation of C and N and long-term differences in N deposition may explain 

many of these differences among sites.

Successional sequences that lead from old-field grasses to forests, or from 

hardwoods to conifers frequently report decreasing nitrification rates and increasing soil 

C:N ratios in the first several decades of succession (Van Cleve et al. 1991, Thome and 

Hamburg 1985, Zak et al. 1990, Compton et al. 1998). These trends in soil C:N parallel
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the expected increase in litter C:N as woody plants replace grasses or conifers succeed 

hardwoods. Conifers tend to have low N concentrations in both fine and woody litter 

(Gosz 1981), and site or successional factors that increase conifer abundance can increase 

the C:N ratio of soil organic matter (Van Cleve et al. 1991). In this set of studies, the 

rate of soil C accumulation has outpaced the rate of N accumulation at least temporarily, 

and decreased nitrification rates corresponded with the increased soil C:N ratios.

Elevated rates of N deposition can enrich soil N, leading to narrov. sr soil C:N 

ratios over time (McNulty et al. 1991, van Miegroet et al. 1992, Tietema and Beier 1995). 

Areas that receive very little N deposition may require an extremely long time to receive 

enough N to narrow soil C:N ratios through accrual over succession; several hundred 

years may not suffice. Old-growth angiosperm (Nothofagus) forests in western Chile 

receive very little N deposition, have soil with relatively high C:N ratio (33), and lose 

extraordinarily small amounts o f nitrate in streams (Hedin et al. 1995, Perez et al. 1998). 

In contrast, the old-aged northern hardwood forests in this study and at Turkey Lakes 

receive elevated rates o f N deposition, have low C:N ratios (15-17.5), and leak nitrate 

(Foster et al. 1989, Johnson and Lindberg 1992, Mitchell et al. 1992). Conifer forests 

receiving chronic N deposition also exhibit elevated nitrification or nitrate loss (Vitousek 

and Reiners 1975, Sasser and Binkley 1989, Friedland et al. 1991, Emmett et al. 1998).

I conclude that disturbances 80 to 110 years ago have had long-term effects on N 

cycling by allowing these aggrading forests to continue to retain deposited N in both soils 

and aboveground vegetation. Tree basal area and soil organic matter pools have 

recovered in the historically disturbed stands, yet nitrate production and losses to 

streamwater remain low relative to old-aged stands. The elevated nitrification rates in the
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old-aged stands correspond with narrow soil C:N ratios, likely resulting from chronic N 

deposition combined with age-induced reductions in organic matter inputs or enhanced 

decomposition. The combination of old age and chronic N deposition makes eastern old 

growth forests particularly vulnerable to N saturation.
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CHAPTER m

CHANGES IN WHITE MOUNTAIN STREAM CHEMISTRY OVER TWO DECADES

Abstract

Twenty-eight streams on Mt. Moosilauke and M l Washington, NH, sampled 

throughout 1973-4 (Vitousek 1977) were located and sampled seasonally during 1996-7. 

The streams provided the opportunity to evaluate forest response to 23 years of forest 

aggradation and to chronic N and declining S042' and base cation deposition. On M l 

Moosilauke, estimated annual average NO3 ' concentrations declined by 6 8 % (22 (ieq/L); 

Ca2+, by 28% (18 peq/L); Mg2+, by 26% (10 jieq/L); and S 042‘, by at least 22% (20 

peq/L). Stream pH and calculated acid neutralizing capacity (ANQ increased, 

particularly at previously acidic spruce-fir watersheds. Every stream had lower NO3' 

concentrations in 1996-7 than in 1973-4, but spatial patterns among streams persisted: 

streams draining old-aged stands maintained higher NO3' concentrations than those 

draining successional stands. These changes in ion concentration are consistent with the 

long-term record at the Hubbard Brook Experimental Forest, NH over 1973-1994. 

Declines in surface water S 0 42' and base cation concentrations are consistent with 

decreasing S042' and base cation deposition since the 1970s, yet N deposition has 

changed little. Soil frost and insect outbreaks cannot fully explain the sharp NO3' decline. 

Climate variability and its effects on biotic N retention may be responsible for the 

synchronous decreases in NO3' concentrations across all streams, overriding expected 

increases due to chronic N deposition or forest aging. Forest successional status appears
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to influence spatial patterns o f NO3'  leaching, but it seems that climate controls temporal 

patterns on the scale o f months to decades.

Introduction

Long-term records of stream chemistry allow the study of ecosystem response to 

changing or chronic sulfate, nitrogen, and base cation deposition. Sulfur dioxide 

emissions from the northeastern and mid-western U.S. have declined considerably since 

the Clean Air Act of 1970, and precipitation SO42' concentrations have declined in 

response (Hedin et al. 1987, Dillon et al. 1988, Butler and Likens 1991, Stoddard et al. 

1998b). Precipitation pHs generally increased in response to the declines in SO42' (Butler 

and Likens 1991), although not as much as anticipated due to concurrent declines in base 

cation concentrations (Hedin et al. 1987, 1994). Nitrogen emissions received little 

attention during early research and legislation on acid deposition, and NO3' 

concentrations in northeastern U.S. precipitation have not changed significantly over the 

past three decades (Dillon et al. 1988, Butler and Likens 1991, Stoddard et al. 1998b, 

Driscoll et al. submitted).

Surface water SO-t2" concentrations have declined almost uniformly across the 

northeastern U.S. since the early 1980s (Stoddard et al. 1998a; b). Yet, surface water acid 

neutralizing capacities (ANC) and pHs have not rebounded as anticipated due to 

compensating declines in base cation concentrations (Driscoll et al. 1989, 1995, Stoddard 

and Kellogg 1993, Likens et al. 1996, Stoddard et al. 1998a, b) or increases in stream 

NO3' concentrations (Stoddard 1991, Murdoch and Stoddard 1992, 1993, Driscoll and 

Van Dreason 1993). Research on watershed acidification has thus shifted focus from the
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effects of SO42' deposition only, to the combined effects of attenuated SO42' deposition, 

decreased deposition of base cations, and chronic inputs of nitrogen.

Chronic nitrogen deposition may lead to N saturation, which is N availability in 

excess of plant and microbial demand, accompanied by elevated nitrification and NO3' 

leaching (Aber et al. 1989, Stoddard 1994). Nitrogen deposition has led to N saturated 

forests in the eastern and western U.S. (reviewed in Fenn et al. 1998) and in western 

Europe (Emmett et al. 1998). Both chronic N deposition and forest succession may 

decrease forest N retention. Vitousek and Reiners (1975) used stream data from M l 

Moosilauke, New Hampshire, to support the hypothesis that system retention o f limiting 

nutrients decreases with stand age. Streams draining old-aged stands on Mt. Moosilauke 

had much higher concentrations of NO3* than did streams draining young successional 

stands.

In 1996-7,1 located and sampled these and other streams on Ml Moosilauke and 

ML Washington, New Hampshire which were all sampled throughout 1973-4 (Vitousek 

1977). The 1973-4 data provide a baseline of forest and stream response during a period 

of heavy atmospheric deposition. They also provide an opportunity to evaluate whether 

patterns of N loss observed in 1973-4 persisted, and whether N losses had increased after 

23 years of forest maturation and chronic N deposition. Observations of stream chemistry 

over two isolated years cannot substitute for long-term data; yet, they can indicate relative 

changes across different systems, and comparison with the continuous long-term record at 

the nearby Hubbard Brook Experimental Forest (Driscoll et al. 1989, Likens and 

Bormann 1995) allows some general inferences of long-term change across the region.
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Methods

Study Sites

Mt. Washington, the highest peak in the northeastern U.S. (1917 m), rises from 

the north-central portion of the White Mountain National Forest, New Hampshire (44° 

167^, 71° 18W), while Ml Moosilauke (1464 m) lies on the southwestern edge of the 

White Mountain region (44° l'N, 71° 5(yW; Figure 3.1). The Hubbard Brook 

Experimental Forest is 12 km southeast of Ml Moosilauke’s summit. On both 

mountains, vegetation grades with elevation from northern hardwood (< 750 m) to 

spruce-fir (750-1200 m), subalpine balsam fir (1200-1400 m), and alpine tundra (> 1400) 

(Leak and Graber 1974, Reiners and Lang 1979). The composition, structure, and 

nutrient cycling properties of northern hardwood (e.g., Bormann and Likens 1979, Likens 

and Bormann 1995), spruce-fir (Foster and Reiners 1983, Huntington et al. 1990, 

Friedland et al. 1991) and subalpine balsam fir (Reiners and Lang 1979, Lang et al. 1981, 

Sprugel 1984) forests have been discussed elsewhere.

The bedrock of both mountains was previously classified as Littleton formation 

mica schist (Billings 1956). Mt. Washington retains this designation, but the geology of 

M l Moosilauke is now classified as quartz-feldspar-biotite metagraywacke (dark, 

metamorphosed sandstone and fine particles; Hatch and Moench 1984). Ammonoosuc 

Volcanics occur off Mt. Moosilauke’s western slope, containing large amounts of 

calcium-rich hornblende and plagioclase feldspar relative to the base-poor metamorphic 

formations (Bailey and Hombeck 1992). Glacial movement from northwest to southeast 

transported and deposited till such that locally-derived soils often resemble the bedrock
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mineralogy up to 32 km “upglacier” (Bailey and Hombeck 1992; Hombeck et al. 1997). 

This glacial transport 14,000 years ago may have enriched soils on the western flank of 

Ml Moosilauke with calcium-rich minerals.

ML Washington

1917 m

ML Moosilauke

1464 m Hubbard Brook 
Experimental 
Forest v

W hite M ountain 
N ational Forest

Contour interval = 60  m

Figure 3.1: Study area and stream sampling locations on Mt. Moosilauke and Mt. 
Washington, White Mountain National Forest, New Hampshire.
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The climate is cool and temperate, and 1-2 m snowpacks generally accrue during 

winter. At Hubbard Brook, annual precipitation averages 1300 mm, distributed evenly 

throughout the year, and monthly mean temperatures range from -8.7 °C in January to 

18.8 °C in July (Federer et al. 1990). Streamflows generally peak with April snowmelt. 

Due to the cool, humid climate and stony, base-poor parent material, haplorthods 

developed across most of the region, grading to cryorthods and cryofolists at higher 

elevations (Huntington et al. 1990).

Forest history on both mountains is marked by wide-spread clearcutting near the 

turn of the century. On Mt. Washington, accessible spruce stands were cut heavily 

around 1910, while the subalpine forests on the steep upper slopes were left uncut 

(USDA Forest Service records, Laconia, NH). On the southwestern side of Mt. 

Moosilauke, forests on the lower slopes were cut heavily prior to 1901. Red spruce was 

cut selectively from the upper elevations, but minimally disturbed northern hardwoods 

and a small patch of uncut spruce remain (Brown 1958, Cogbill 1989, USDA Forest 

Service records Laconia, NH). On the eastern side of Moosilauke, heavy cutting between 

1896 and 1923 stripped timber from all but one ravine. This ravine was salvage-logged 

after the 1938 hurricane (1943-1947), but stands on the ravine’s upper rim were not cut 

(Brown 1958, Cogbill 1989). Vegetation on many of the cutover sites currently consists 

of a canopy of paper birch and other hardwoods with abundant spruce and fir in the 

subcanopy and understory.

Of the original 57 streams sampled in 1973-4 (Vitousek 1977), 16 drained 

primarily high-elevation alpine tundra or fir krummholz, and were not resampled. Of the 

remaining forested watersheds, eight could not be relocated, and five had been clearcut or
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thinned between 1974 and 1997 (USDA Forest Service records, Plymouth, NH). O f the 

remaining 28 streams, five drained the western slope of M t Washington, and the rest 

occurred on the southwestern (n = 11) and eastern (n = 12) slopes of Mt. Moosilauke 

(Figure 3.1). All streams were sampled along hiking trails at essentially the same 

locations as in 1973-4.

Sam nle Collection and Analysis

Vitousek (1977) describes in detail the sampling and analytical methods used in 

1973-4. Differences in sampling frequency and analytical methods are identified here 

(Table 3.1), and discussed later. From May 1973 - Oct. 1974, the M t Moosilauke 

streams were sampled every 2-4 weeks. Data from Oct. 1973 - Sept. 1974 are included 

here to coincide with the Oct. - Sept. water year used in 1996-7 and in other published 

data (Hombeck et al. 1997). During 1996-7, the Moosilauke streams were collected 

quarterly: in fall (Nov. 11 & 14, 1996), winter (Jan. 21 & 23, 1997), snowmelt (Apr. 8  & 

10, 1997), and during the growing season (July 21,1997). Some streams froze solid in 

winter and could not be collected. Three streams with too few collections were not 

included in annual analyses. The Mt. Washington streams are not easily accessed in 

winter, and were collected from June through Sept. in both years. Samples were collected 

every 2-3 weeks in 1973-4 and monthly in 1996-7.

A separate network of White Mountain streams was sampled monthly from Oct 

1996 to Sept 1997 with collection and analytical methods identical to those in this study 

(Chapter 1). Data from 26 of these streams were used to test the validity of the quarterly 

sampling scheme used on M t Moosilauke.
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Ail 1996-7 samples were collected in 250 mL high-density polyethylene bottles 

washed with 10% H Q  and rinsed repeatedly with deionized water. At collection, botdes 

were rinsed with streamwater three times and then fully filled and capped. Samples were 

refrigerated until processing the following day. Streamwater pH was measured at room 

temperature within 24 hours of collection with an Orion® combination electrode. No pH 

data are presented for Nov. 1996 due to malfunction of the pH meter. Samples were then 

suction filtered through ashed (1 hour at 425 °Q  Whatman GF/F glass fiber filters into 

sidearm flasks, and frozen in designated polyethylene scintillation vials until chemical 

analysis. After filtration through 0.2 pm pore size Acrodisks (Gelman Sciences), NCV, 

SO4 \  and Q* were measured with a Waters ion chromatograph and a Dionex AS4A 

column with micromembrane chemical suppression. Base cations (Ca2+, Mg2'1', Na+, and 

K*) were measured with direct current plasma emission spectroscopy (SpectraSpan HI, 

ARL Direct Current Plasma, Fisons Instruments Inc., Danvers, MA).

At each collection, 3-5 blank samples were carried through all collection, filtering, 

storage, and analytical procedures. Mean blank concentrations of 4.2 peq/L Cl", 1.5 

peq/L K \ and 9.3 peq/L Na+ indicated contamination of these ions from acid washing or 

filtering. However, mean blank Ca2+, Mg2+, NO3', and SO42' concentrations were all 

below analytical detection limits (<1 peq/L). Mean blank concentrations for each 

collection were subtracted from measured sample values.

Acid neutralizing capacity (ANC) was calculated from the chemistry available for 

both time periods as (peq/L):

ANC = ([Ca2+] + [Mg2+] + [Na+] + [K^]) - ([NO3I + [S042*] + [Cl*]) (1)
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ANC represents the ability of a surface water to absorb strong acids without 

increasing ET or Al3* mobility. ANC will only increase in response to declining acid 

deposition if  the concentration o f acid anions declines faster than the concentration of 

base cations.

Table 3.1: Analytical methods and limits o f detection (fieq/L). Vitousek (1977) reported 
analytical detection limits fo r  1973-4. In 1996-7, limits o f detection were calculated as 
(X + 3 SD) blanks.__________________________________________________________

1973-4
Method LOD

1996-7
Method LOD

Nitrate Nitrate reduction & 
ammonia-specific electrode

N/A Ion chromatography 0.4

Sulfate Turbidimetric method 30 Ion chromatography 2 .1

Chloride Silver-specific ion electrode 3 Ion chromatography 2.7
Ammonium Ammonia-specific electrode 1 Automated phenolate method 1 .0

Calcium Atomic Absorption 0.5 Direct current plasma 1.4
Magnesium Atomic Absorption 0 .2 Direct current plasma 0.3
Sodium Atomic Absorption 1 Direct current plasma 1.6

Potassium Atomic Absorption 0.5 Direct current plasma 2 .6

_PH Potentiometric electrode Potentiometric electrode

Quality Assurance

To ensure instrument and calibration accuracy, independent commercial standards 

were included during all 1996-7 analyses. Measurements of independent anion and 

cation standards were always within 5% and 10%, respectively, of their true values. 

Duplicate measures of samples had coefficients of variation (CVs) of less than 2% for 

NO3 '  and SO42', less than 8 % for Cl', generally less than 10% for Ca2+, Mg2+, and Na+, 

and less than 15% for K*. The higher CVs for fC* occurred because concentrations were 

so low (mean = 9 peq/L).
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Daily streamflow through 1997 and monthly stream chemistry through 1992 were 

obtained for Hubbard Brook Watershed 6  (HB W6 ) from the Hubbard Brook Ecosystem 

Study World Wide Web site (http://www.hbrook.sr.unh.edu/data/data.htm). Federer et al. 

(1990) have published the streamflow data through 1988, and the stream chemistry has 

been published through 1992 in Likens and Bormann (1995). Hombeck et al. (1997) 

have published HB W6  stream chemistry for 1992-3 and 1993-4.

The 1973-4 data were checked by comparison with stream chemistry at HB W 6 , 

and by calculating ion balances. The major concern about the reliability of the 1973-4 

data involved SO42*. Stream data for 1974 showed a large jump in early summer (5/29-

160

120 --

80  --

— a —  M oos, sulfate 
—-Q” -- M oos. Ion imbalance 
— • —  HB W6 sulfate

o  4 0  -- 
a. -a
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9 /23  1 0 /2 3  1 1 /2 2  1 2 /2 2  1/21 2/20 3 /2 2  4/21 5/21 6 /20 7 /20  8 /19  9 /1 8
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Figure 3.2: The mean 1973-4 sulfate concentrations and calculated ion imbalance vary 
erratically in five  eastern slope hardwood streams, Mt. Moosilauke, while Hubbard 
Brook W6  sulfate concentrations remain relatively constant.
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7/23) SO42' concentrations while HB W6  SO42'  remained nearly constant (Figure 3.2). 

Measured charges did not balance during this period: in some streams with measured pH 

> 5.5, measured anions exceeded measured cations substantially (mean = 25-33 peq/L) 

and unmeasured Al3* cannot account for the discrepancy. The turbidimetric method used 

for SO42' analysis in 1973-4 is relatively imprecise (Golterman 1969, Greenberg et al. 

1992) but the observed concentrations should be within its range. Still, it appeared that 

the SO42* results from these early summer collections were inaccurate, and they were 

excluded from calculations of mean annual or growing season SC>42‘ concentration and 

ANC. These removals lowered estimates of annual SO42’ concentration on M l 

Moosilauke by an average of 11 peq/L (range 6-21 peq/L) and estimates o f growing- 

season SO42'  concentration on M t Washington by an average of 19 peq/L (range 10-28 

peq/L). This approach led to conservative estimates of SO42' decline and ANC increase 

between 1973-4 and 1996-7.

Data Sum m ary

For the Mt. Moosilauke streams, annual (Oct. - Sept.) mean concentrations were 

calculated for all ions for both years. The annual means for 1973-4 summarize 18 

collections for all but S0 4 2‘, which included only 14 collections. For 1996-7, annual 

values were estimated as the average of the quarterly collections. For the Mt. Washington 

streams, growing season (Jun. - Sept.) means were calculated for both 1974 and 1997. 

Nitrate, the only ion that showed substantial seasonal variation, was compared across 

years both seasonally and annually, while the other ions were only compared annually.
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Results

Quarterly Sampling; 1996-7

The accuracy o f deriving annual means from quarterly (Nov., Jan., Apr., and July) 

samples was tested with monthly data from 26 additional White Mountain streams. 

Annual ion concentrations derived from averages of quarterly measurements did not 

differ from means derived from monthly collections (Figure 3.3a,b). For pH, only three 

months (Jan., Apr., and July) were compared because the Moosilauke streams were
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Figure 3.3a: Comparison o f annual average nitrate, sulfate, and 
chloride concentrations (peq/L) and pH  derived from quarterly and 
monthly sampling schedules fo r  26 White Mountain streams. Lines 
are 1 : 1  lines.
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missing these data for Nov. Paired-sample t-tests detected no significant differences 

between 4(3)-month and 12-month averages for any measured ion (P = 0.12 - 0.71), and 

mean absolute errors were less than 2.9 peq/L. These results support the use o f mean 

quarterly chemistry to estimate annual values for 1996-7 for the Mt. Moosilauke streams.
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Figure 3.3b: Comparison o f annual average calcium, magnesium, 
sodium, and potassium concentrations (peq/L) derived from  quarterly and 
monthly sampling schedules fo r 26 White Mountain streams. Lines are 
1 : 1  lines.

Between-Year Comparisons

1973-4 and 1996-7 annual ion concentrations for 20 Mt. Moosilauke streams were

compared with paired difference t-tests with Bonferroni corrections for multiple

comparisons (alpha = 0.05/8 = 0.006). The greatest change in stream chemistry between

1973-4 and 1996-7 was the large decrease in NO3'  concentration observed at all streams
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at all sampling periods. On ML Moosilauke, NO3' concentrations in 1996-7 averaged 22 

peq/L (6 8 %) lower than in 1973-4; Ca2+, 18 peq/L lower (26%); and Mg2+, 10 peq/L 

lower (24%) (Figure 3.4a). Corrected SO42' concentrations declined an average of 20 

peq/L (21%), mean ANC increased by 16 peq/L, and mean Na+ concentrations did not 

change.

100..

ML M oosilau k e S trea m s (n=20)

1973-4  
□  1996-7

•SO** ‘NOa

ML W ash in gton  S tr e a m s  (n=5)

100 ..

i l
Na* K* *H*•SO*2* *N0 3 - *01- *Caz* •Mg2*

Figure 3.4: Mean (+ SE) annual ion concentrations (peq/L) o f the same streams on a) 
Mt. Moosilauke and b) Mt. Washington in 1973-4 and 1996-7. Standard errors represent 
the variability among streams, and asterisks indicate significant differences between 
years.
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Mean pH increased significantly from 5.6 to 5.8. Declines in K* and Cl* concentrations 

averaging 2 and 3 peq/L were statistically significant but equivocal, since variability in 

sampling , analyses and annual averaging could easily have generated biases of this 

magnitude. Similar percent declines occurred in growing-season average ion 

concentrations in the Mt. Washington streams (Figure 3.4b), although all ion 

concentrations were generally lower on M l Washington. Orographic rainfall, steep, 

rocky, drainages, and limited evapotranspiration in high-elevation tundra likely 

contributed to the dilution of ML Washington streams.

Qualitative chemical trends among streams generally persisted across the years: 

streams with high concentrations of particular ions in 1973-4 also had the highest 

concentrations in 1996-7 (Figure 3.5). Between the two years, NO3*, Ca2+, and Mg2+ 

concentrations decreased consistently across all resampled streams Stream pH and ANC 

changed little in non-acidic streams, but generally increased in the streams that were most 

acidic in 1973-4. Changes in the chemistry of HB W 6  between 1973-4 and 1993-4 are 

displayed relative to the resampled M l Moosilauke and Mt. Washington streams (Figure 

3.5).
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Figure 3.5: Stream-by-stream comparisons o f annual 1996-7 ion concentration (peq/L) 
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decreases from 1973-4 values. The watersheds on Mt. Washington (+) generally face  
west and have spruce-fir vegetation, while spruce-fir (A) and hardwood (□) forests occur 
on both the west (open symbols) and east (closed symbols) side ofM t. Moosilauke. 
Changes at Hubbard Brook Watershed 6 between 1973-4 and 1993-4 are included fo r  
comparison (•). Note the different scales fo r  different ions.

Nitrogen. Every stream had lower NO3' concentrations at every sampling period 

in 1996-7 relative to 1973-4. Nitrate concentrations decreased across all M t Moosilauke 

streams, regardless of forest type or successional stage. However, spatial trends among 

successional stages persisted in 1996-7. During both sampling years, NO3* concentrations
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of streams draining old-aged stands with no known logging history exceeded those of 

successional stands logged in 1943-1947 (Figure 3.6).

80
* — 1973-4, old-aged forests 

« — 1973-4, successional forests 
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Figure 3.6: Stream nitrate concentrations in 1973-4 (— ) exceeded those in 1996-7 (—) 
fo r  both old-aged (solid symbols) and successional (open symbols) forests. Each point 
represents the mean (±SE ) o f four streams draining successional forests or seven 
streams draining old-aged forests.

Base Cations. In both years, concentrations of all base cations were higher on the 

western side of Mt. Moosilauke than on the eastern side, possibly resulting from 

differences in till chemistry across the mountain. However, the declines in Ca2+ and 

Mg2+ concentration between the two years did not vary by aspect, but declined more in 

streams draining hardwood stands than in those drain ing  spruce-fir. Cation
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concentrations were higher in hardwood streams than spruce-fir streams, so that 

proportional declines were consistent between vegetation types.

«
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Figure 3.7: In spruce-fir watersheds (n-15), decreases in Ca2+ concentration (peq/L) 
correlated with decreases in stream N O f (peq/L). Symbols as in Figure 3.5.

There was only one significant correlation between changes in individual or total 

base cations and changes in individual or total anions. Multiple regression analyses 

indicated that the decreases in Ca2+ concentration correlated with decreases in NO3" 

concentration (P = 0.05) but not with decreases in corrected S O 2' concentration (P = 

0.38). The calcium-nitrate relationship was statistically significant but poor (n = 25, P  = 

0.05, R2 = 0.15) when considered across all streams, but stronger when examined in 

spruce-fir catchments, only (Figure 3.7; n = 15, P = 0.01, R2 = 0.40).
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ANC and pH. Between 1973-4 and 1996-7, pH and ANC in high-pH streams 

changed little, while pH and ANC of streams that were acidic in 1973-4 generally 

increased (Figure 3.5). Mean ANC values were -25 peq/L in 1973-4 in ML Moosilauke 

spruce-fir stands, suggesting that hydrogen and aluminum were leached to maintain 

charge balance. In 1996-7, mean ANC increased to 5 peq/L, indicating a partial recovery 

of ANC in the spruce-fir stands.

While the calculated changes in ANC may be suspect due to potential problems 

with the 1973-4 SO**2' data, the changes in adjusted ANC were highly correlated with 

changes in pH in the Mt. Moosilauke stream s (Figure 3.8). Two Mt. Washington 

streams decreased in mean pH despite increasing ANC, which suggests possible errors in 

measurement or stream relocation.
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Figure 3.8: Among all Mt. Moosilauke streams (n—20), increases in stream pH  
correlated with increases in ANC (peq/L). Symbols as in Figure 3.5.
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On Mt. Moosilauke, multiple regression analysis indicated that changes in mean 

annual pH can be partially explained (n = 20, P < 0.001, Adj. R2 = 0.72) by changes in 

base cation (P < 0.001), SO42' (P = 0.001), and NO3' concentration (P  = 0.04). The 

regression coefficients indicated that pH declined by 0.07 pH units for every 10 peq/L 

decline in base cation concentration, and increased 0.07 and 0.08 pH units for every 10 

peq/L decline in N O f and corrected S0 4 2' concentration, respectively.

Discussion

Before attributing changes in stream chemistry to long-term changes in deposition 

or forest nutrient cycling, other potential causes must first be addressed. Analytical 

methods, streamflow, or sampling frequency may have caused differences between 1973- 

4 and 1996-7 stream chemistry for reasons unrelated to changes in deposition or forest 

succession.

Alternative Causes for Changes in Stream Chemistry

Analytical Methods. Some of the analytical methods used in 1996-7 have greater 

precision and lower detection limits than those used in 1973-4 (Table 3.1). Of all ions, 

S04"‘ displays the least consistent changes over time, possibly due to the poor precision 

of the turbidimetric analysis used in 1973-4. However, the correlation o f declining pH 

with declining SO42' concentrations suggest that the sulfate measurements may be 

imprecise, but qualitatively representative.

In 1973-4, NO3'  concentrations were measured by reduction to NH4+, conversion 

to NH3 with NaOH, and use of an ammonia electrode. Nitrate standards were included to 

confirm complete conversion of NO3'  to NH3, but the am m onia electrode can
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overestimate low NO3' concentrations by 3-6 peq/L (Greenberg et al. 1992). This bias 

can not explain the large decreases in NO3' concentration between 1973-4 and 1996-7.

Streamflow. Did 1996-7 samples have lower ion concentrations because they 

were diluted by greater streamflow than during 1973-4? Daily streamflow records at HB 

W6  indicate that flows on sampling dates in 1996-7 were similar to those in 1973-4. The 

Mt. Moosilauke watersheds are generally sm all, steep, catchments subject to the same 

general weather patterns as HB W6 . Median daily (1.4 mm) and total annual (1159 mm) 

streamflow in 1973-4 exceeded median (1.0 mm) and total (1046 mm) flows in 1996-7, 

and both years exceeded long-term (1963-1988) annual average flows (896 m m ; Federer 

et al. 1990). HB W6  streamflow was slightly greater on sampling dates in Jan. 1974 (1.8 

- 2.4 mm) than on those in Jan. 1997 (0.7 and 0.8 mm), while streamflow in July 1997 

(0.8 mm) exceeded July 1974 (0.1 - 0.4 mm). Nov. and April flows were variable in 

both years, but ranges overlapped. The streamflow differences between years are small 

and variable in sign, and do not introduce enough bias to have caused the consistent 

declines in SC>42\  NO3 ', Ca2+, and Mg2+ concentration.

Seasonal Biases. The observed differences in Mt. Moosilauke stream chemistry 

could be artifacts of the sampling scheme used to characterize 1973-4 and 1996-7 annual 

averages. Despite the strong correlation between quarterly and monthly averaged ion 

concentrations in other White Mountain streams (Figure 3.3), the quarterly sampling 

schedule may not have adequately characterized annual 1996-7 stream chemistry on Mt. 

Moosilauke. In 1973-4 , a greater proportion of the annual samples were collected during 

the growing season than during 1996-7 . Since NO3'concentrations are generally lowest 

during the growing season and highest during the dormant season, the bias introduced by
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the sampling schedule would underestimate 1973-4’s true mean NO3'  concentration and 

overestimate 1996-7’s. Despite this possible bias, NO3* concentrations decreased 

substantially at all streams.

Biogeocbentigal f-flnms

Comparison with Long-term Records. The observed changes in stream chemistry 

on Mt. Moosilauke and Mt. Washington across two decades are supported by the long­

term records at Hubbard Brook which shows sim ilar changes over a similar time period 

(Figure 3.5). The HB W6  record indicates that S O /', Ca2+, and Mg2+ concentrations have 

declined gradually and relatively consistently over the past three decades, while NO3' 

concentrations have declined erratically since their peak in 1969-1976 (Driscoll et al. 

submitted; Likens and Bormann 1995). The early 1990s have the lowest NO3' 

concentrations in the HB W 6  record (Driscoll et al., submitted).

Declining Sulfate Deposition. Over the past 1-2 decades, SO42' concentrations of 

surface waters have declined across the northeastern U.S. (Stoddard et al. 1998a, b), in 

Adirondack, New York lakes (Driscoll et al. 1995), Catskill, New York streams 

(Murdoch and Stoddard 1993), Vermont lakes (Stoddard and Kellogg 1993), 

Massachusetts streams (Mattson et al. 1997) and Maine lakes (Kahl et al. 1993). The 

declines in surface water SO42' concentration have been attributed to declining sulfur 

emissions resulting from the Clean Air Act of 1970 and its amendments in 1990.

D eclining Base Cation Concentrations. Declines in surface water base cation 

concentrations have been reported at most northeastern U.S. monitoring sites (Driscoll et 

al. 1989, 1995, Likens et al. 1995, 1998, Stoddard and Kellogg 1993, Stoddard et al. 

1998a). Two main mechanisms have been proposed to account for the observed declines
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(Driscoll et al. 1989). First, reduced acid loading requires that fewer positively-charged 

ions be leached to maintain charge balance (Galloway et al. 1983, Reuss & Johnson 

1985); second, deposition of base cations has declined over the eastern United States over 

the past two decades (Hedin et al. 1994). Either or both of these mechanisms may have 

caused the declines in Ca2+ and Mg2* concentration observed in the resampled streams.

Changing pH and ANG Stoddard (1998a) reported that across New England, the 

greatest increases in ANC have occurred in lakes that previously had the lowest ANCs. 

Similarly, on Mt. Moosilauke the most acidic streams had the largest increases in ANC 

and pH. The high elevation spruce-fir catchments generally have thin, poorly buffered 

soils, making them particularly sensitive to changes in acid inputs.

The long-term recovery of stream pH and ANC will depend on continued 

reductions in SO42' deposition, particularly in response to reductions in base cation 

deposition. While surface water SO42' concentrations may continue declining over the 

next several decades, NO3' concentrations cannot The NO3' concentrations 1996-7 were 

close to zero in many streams and hence are likely to increase at least sporadically in 

response to climate variation, continued N deposition, and aging forests (Aber and 

Driscoll 1997). In Cats kill, NY streams, NO3' concentrations have increased as SO42' 

concentrations have decreased, and so few changes in pH or ANC have occurred 

(Stoddard 1991, Murdoch and Stoddard 1992; 1993).

Declines in Stream Nitrate. Why has stream NO3' declined in the White 

Mountains? Several theories have been advanced to explain both the NO3'  peak in the 

1970s and the drop in the 1990s, including changes in N deposition, insect outbreaks, soil 

frost, and interannual climate fluctuations.
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Changes in wet deposition do not readily explain the sharp declines in stream 

N O f concentration. At Hubbard Brook, there are no significant long-term trends (1965- 

1992) in either the concentration or flux of inorganic N in wet deposition (Driscoll et al. 

submitted, Likens and Bormann 1995). hi the Adirondacks, small declines in wet 

deposition NH4* (-0.57 fieq L' 1 yr'1) and NO3' (-0.13 fieq L' 1 y r l) concentration have been 

detected over 1978 - 1993 (Driscoll et al. 1995), while no changes have been observed in 

the Catskills (Stoddard 1991) or across the northeast as a whole (Stoddard et al. 1998b).

Insect infestation and defoliation can raise stream NOjconcentrations by reducing 

plant demand and transferring plant N to the soil (Swank et al. 1981, Eshleman et al. 

1998). Eshleman et al. (1998) recently suggested that the high N O f concentrations 

observed at Hubbard Brook during the early 1970s may have been due to heavy insect 

defoliation reported in 1969-70 (Bormann and Likens 1979). However, the M l 

Moosilauke and Mt. Washington data indicate that 1973-4 NO3* concentrations were 

relatively high in all streams across the White Mountain region, in both spruce-fir and 

northern hardwood-dominated watersheds. It is unlikely that insect outbreaks occurred 

simultaneously in both vegetation types on both mountains.

Soil frost may trigger losses of NO3' to streams by disrupting the soil structure and 

by lysing nitrogen previously held by soil microbes. Mitchell et al. (1996) observed 

synchronous patterns of peak N G f losses in streams across the northeastern U.S. 

following unusually cold temperatures in the winter of 1989-90. Likens & Bormann 

(1995) noted that high NO3' losses at Hubbard Brook in early 1970 and 1974 coincided 

with widespread soil frost, and Fahey and Lang (1975) observed concrete frost across Mt. 

Moosilauke during the late fall and winter of 1973-4. While soil frost may partially
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explain the high NO3 '  concentrations observed in late 1973 and 1974, it does not explain 

the elevated NO3 * concentrations in the summer and fall of 1973 (Figure 3.6). Soil frost 

may be one of several climate-related factors contributing to interannual NO3  

fluctuations, but additional factors must also be involved.

Using the PnET-CN model, Aber and Driscoll (1997) demonstrated that variation 

in monthly temperature and precipitation can explain much of the interannual variability 

in NCV leaching at Hubbard Brook. Both plant uptake and N mineralization respond to 

temperature and moisture conditions, so that subtle differences in the rate or timing of 

biotic responses may lead to either NO3 " leaching or N retention. Model runs suggested 

that severe drought at Hubbard Brook in the 1960s may have led to elevated NO3 '  

leaching in the 1970s and depleted N stores in the 1980s. However, the model failed to 

predict the extraordinarily low NO3 ' losses at HB W6  in the early 1990s. Because N is so 

biologically active, streamwater N losses may be highly sensitive to small changes in 

biological processes that are not explicitly modeled. Increasing atmospheric CO2  

concentrations could be increasing plant uptake of N, but no regional increases in growth 

have been reported. The nearly uniform declines in NCV concentrations across all 

resampled streams suggest a regional controller such as atmospheric chemistry or climate.

Forest Succession and Nitrogen Saturation. The decline in NO3 " concentration 

over 23 years appears to contradict current conceptions of both N saturation and 

successional changes in N retention (Driscoll et al. submitted). Despite chronic N 

deposition and two decades worth of forest maturation, NO3 ' leaching has decreased at all 

sites. Not only have NO3 ' concentrations declined, but seasonal patterns appear to have 

shifted as well (Figure 3.6). In 1973-4, NO3 '  concentrations in streams draining old-aged
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stands displayed little seasonal variation, yet in 1996-7 the same streams appear to have 

dormant-season maxima and growing-season minima. These changes in seasonal patterns 

correspond with a shift in N saturation status from the high, aseasonal NO3 ' leaching of 

late stage 2  to a late stage 1 pattern of seasonal trends and slightly elevated base flow 

(Stoddard 1994).

Interannual climate variation may mask both progressive N saturation and 

successions! declines in N retention. Climate-induced variability in annual NO3 ' leaching 

can prevent the detection of chronic N deposition for several decades (Aber and Driscoll 

1997). Similarly, the large year-to-year difference in forest N uptake due to clim ate 

variation likely exceed any small declines in forest uptake due to two decades worth of 

aging. However, within a particular year, successional status can account for substantial 

differences in NO3 ' leaching among watersheds (Figure 3.6; Leak and Martin 1975, 

Vitousek and Reiners 1975, Pardo et al. 1995, Aber and Driscoll 1997, Chapter 1). The 

old-aged stands on M l Moosilauke continue to have higher NO3 ' losses than recovering 

successional stands. Similarly, NO3 ' leaching from the Bowl, a nearby old-growth 

hardwood watershed, exceeded that from the successional forests of Hubbard Brook both 

in the early 1970s (Martin 1979) and in the early 1990s, although NO3 ' fluxes were lower 

at both sites in the 1990s (Aber and Driscoll 1997, Driscoll et al. submitted, Martin et al. 

in prep.).

It appears that some combination of climate factors has led to the current decline 

in NO3' leaching across much of New England, overriding any signal of chronic N 

deposition on forests that have matured over the past few decades. However, even 

current models of climate and NO3* leaching cannot frilly account for the low NO3' losses
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in the 1990s. Since 1974, at least 10.7 keq/ha N have fallen on the southwestern White 

Mountains in wet deposition alone. If  interannual climate variation does indeed explain 

the observed declines in NO3' leaching since 1973-4, then future climate variation or 

climate change could cause NO3' losses to match or exceed those observed in the 1970s.
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APPENDIX 1 

STREAM LOCATIONS

Appendix 1.1. Land-nsg History Streams: Forest History and Location 

Site 1: George’s Gorge- Pinkhflm  Nnteh

History. The upper portions of these watersheds were owned by the Conway 

Lumber Company, while the Umbagog Realty company owned the lower slopes adjacent 

to the present-day R t 16. A 1911 map of the Conway Lumber Co. tract by F. A. Gardner 

included a small burned patch on the ridge due north of the AMC Pinkham Notch camp. 

In a 1914 report on the lands o f the Conway Lumber Co., D. W. Martin did not mention 

the small bum, but he did include it in his 1915 map and 1916 report on the Umbagog 

tract. The 280 acre burned area, currently crossed by the Crew Cut and George’s Gorge 

hiking trails, was reported to support regrowth of small cherry and birch. Tree cores from 

four different trees on the site indicate that they reached breast height in 1907 (paper 

birch), 1908 (bigtooth aspen), 1910 (yellow birch), and 1936 (paper birch), respectively. 

Allowing 3-4 years to reach breast height, the fire likely occurred around 1903, a year 

when many fires occurred across the region (Chittenden 1904).

Stream 1A. George’s Gorge, sampled from the George’s Gorge hiking trail, -10  

m above its junction with the Crew Cut trail.

Stream IB. The next stream crossed by the Crew Cut trail beyond George’s 

Gorge, northeast o f stream 1 A. Occasionally dry.

Stream 1C. Peabody River tributary. The lower portion o f this watershed was 

likely logged and may have burned, but the upper portion, draining subalpine fir and
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possibly the alpine region near Nelson Crag, likely did no t This stream was included as 

mixed land-use history subalpine/logged. This is the first stream crossed on the Crew 

Cut Trail after leaving the Old Jackson Road, not to be confused with a stream that flows 

through this junction.

Site 2: Little Wildcat

History. Chittenden (1904, p. 38) reported that the forests of the Carter Range had 

been heavily lumbered by the time of his survey. The 8540 acres on the western slopes of 

the Carter Range were owned by the American Realty Company, a subsidiary of 

International Paper. In a 1916 survey, D. W. Martin reported simply that “practically all 

of this tract has been logged over for the softwoods during the last twenty years so that at 

present, there is only about 645 acres of virgin timber left.” Later, he stated that “these 

lands originally supported an excellent stand of spruce and fir but have been logged 

almost continuously for the last 30 years, so that at present time, all merchantable timber 

left is to be found high up on the mountain and in very rough and inaccessible places.” 

Specifically focusing on the region near the current W ildcat Ski Area, Martin reported 

that the stands had been “stripped. No merchantable timber o f any kind remains. The 

small area between Thompson Brook and the southern part of the tract has also been 

cleared of all merchantable timber, except a fringe along the edge of the ridge.”

Stream 2A. Little Wildcat Brook, where it is crossed by Rt. 16, just south of the 

first turnoff north of W ildcat Ski Area. Sampled ~ 10 m upstream to avoid road salt 

influence.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Stream 2B Small stream approximately 150 m north o f Little Wildcat, on the 

east side of Rl 16 between the first and second pullouts north of Wildcat Ski Area. 

Sampled ~5 m upstream to avoid road salt influence.

Site 3: Lost Pond. Pinkham  Notch

History. Chittenden (1904) reported that “the slopes draining into the Glen F.llis 

River, from the village of Jackson to Wildcat Mountain, have been stripped of all 

coniferous growth (p. 38).” Most o f these watersheds fell in the Umbagog Realty 

holdings in Pinkham’s Grant, while the upper portions may have been owned by 

American Realty. Both holdings were heavily logged, marked as “cutover” in the 1915 

map by D. W. Martin, who reported in 1916 that these cutover lands contained no 

merchantable timber.

Stream 3A. Small tributary to the Ellis River. Crossed by the first small, 2-3 log 

bridge on the Lost Pond Trail after leaving Rt. 16. Opposite a large pool in the Ellis 

River.

Stream 3B. Small tributary to the Ellis River. Crossed by the second small 2-3 

log bridge on the Lost Pond Trail after leaving R t 16, approximately 150 m south of 

stream 3 A.

Site 4: Glen Boulder

History. This stand comprised the southern-most portion of a tract owned by the 

Umbagog Realty company, on the far side of Pinkham Notch from the rest of the tract. In 

his 1916 report, D. W. Martin indicated that “in the past this tract, with the exception of 

435 acres of virgin timber, has been logged for all softwoods.” He later tallied 165 acres 

of virgin hardwoods and spruce, and 270 acres of virgin spruce. His 1916 map of
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Pinkham’s Grant indicated that most of the tract south o f Glen Boulder and the Glen Ellis 

falls was either virgin spruce of virgin hardwoods and spruce:

The virgin timberland is divided into virgin spruce and virgin hardwoods and 
spruce. The greater part o f it, however, is on very steep ground adjacent to Glen 
Ellis Falls. The hardwood and spruce supports a scattering o f good spruce 
among some large old growth hardwoods... logging would be expensive. The 
ground is steep and fa r  from market

Stand compartment records indicate that small patches of salvage cut occurred 

immediately adjacent to Rt. 16 in 1959 after a blowdown. On-site inspection suggests 

that an old path or road ran through the lowest portion o f the tract, parallel to the present 

Rt. 16. Road-building materials may have been excavated from a large pit south of 

stream 4A and north of stream 4B.

Stream 4A. Slide Brook, crossed by Rt. 16 with a large bridge labeled “E -l.”

This watershed does not appear to support old-growth vegetation, and the land’s 

geomorphology suggests that it may have channeled the course of past landslides (hence 

the name). A more recent slide may have occurred on the upper watershed in 1969 (D. 

Bryant, personal communication). This stream was not included in analyses as old- 

growth, but as possible landslide /  mixed land-use history.

Stream 4B. The left (southern-most) of two streams joining at the forest edge at 

the top of the Rt. 16 embankment. Sampled -  10 m in from the forest edge.

Stream  4C. Similar to stream 4B. Sampled -  10 m in from the forest edge. 

Stream  4D. The first stream north o f the road marker distinguishing Pinkham’s 

Grant from Jackson Township. This watershed has more spruce and hemlock than
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streams 4B and 4C. Sampled -20 m from the forest edge at the top of the R t 16

embankment

Site 5: Rocky Branch

History. The upper portion of these watersheds were owned by the Conway

Lumber Company, while the lower slopes were owned by E. Libby and Sons. The 1911

map of the Conway Lumber Company lands by F. A. Gardner does not indicate any

burned areas in the region of the watersheds. D. W. M artin, in his 1914 report on the

lands owned by the Conway Lumber Company indicated that heavy cutting had occurred

in the Rocky Branch River drainage over the previous eight years and that:

...the ground is a t present covered with the recent slash, and is easily 
inflammable, so that the fire risk in this valley is very great. The burned territory 
in the Rocky Branch is the result o f two fires, one in 1912, and the other 3,200 
acres in 1913 and 1914.

The tract owned by E. Libby and Sons was mapped by E. A. Morrison and party in 1934.

They mapped the northern portion of the tract as “unmerchantable bum” with vegetation

in a 0-20 year age class.

Stream 5A. First streambed crossed by the Rocky Branch Trail, approximately

3/4 mile from the trailhead on Rt. 16. Dry in late summer / early fall.

Stream SB. Second stream encountered on the Rocky Branch Trail,

approximately 100-200 m north of stream 5 A.

Stream 5C. A large stream crossed by the Avalanche Brook Ski Trail, which joins

the Rocky Branch Trail -2 0  m below stream 5C.

Stream 5D. A small stream crossed by the Avalanche Brook Ski Trail, less than

20 m north of stream  5C.
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Site 6: Gibbs Brook. Crawford Notch

History. The Gibbs Brook watershed supplied drinking water to the former 

Crawford House, one o f the White Mountain Grand Hotels. The site was never clearcut, 

and is currently a  Scenic Area and candidate Research Natural Area. The 1901-2 Report 

of the New Hampshire Forestry Commission indicates that “this area is further protected 

by the wise action o f the hotel proprietors. The owners o f the Crawford House hold large 

tracts, bought to control forest cutting (p. 24)”.

These forests may have a high internal disturbance regime due to northwest 

exposure and reported red spruce decline (Foster and Reiners 1983, Lawrence et al.

1997). Foster and Reiners (1983) described the structure o f spruce-fir forests but noted 

extensive spruce mortality. Personal observation indicated that large dead spruce boles 

were common, and hobblebush was noticeably thick. Foster and Reiners (1983) did not 

report evidence o f old fires at the site, yet I observed frequent occurrences of charcoal on 

the lower portion o f the watershed o f Elephant Head Brook, along the Webster-Jackson 

Trail. Charcoal occurred below the forest floor or beneath exposed roots of large, old 

spruce and hemlock. No charcoal was found on the three other watersheds.

Stream 6A. Gibbs Brook. Sampled at the bridge marking the junction of the 

Crawford Path and a spur trail to a WMNF parking area on the Mt. Clinton Road.

Stream 6B. A tributary to Gibbs Brook. The stream is diverted below the 

Crawford Path in a metal culvert, the first such structure encountered along the trail 

upstream from the bridge. Sampled - 5 m  above the culvert

Stream  6C. Elephant Head Brook. Sampled at a  sm all bridge -15 m upstream of 

the brook’s junction with the southern end of Saco Lake.
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Stream 6D A tiny tributary to Saco Lake, entering on the lake’s east edge, just 

north of a lookout rock. Drains a  small cove of large yellow birch and sugar maple. 

Sampled -  30 m upstream of the lake.

Site 7: Mt. Washington

History. Forests on these watersheds were owned by the Conway Lumber 

Company. The 1911 survey map by F. A. Gardner indicated that the forests covering the 

small watersheds of streams 7B and 7C were cutover (heavily logged). The survey 

indicates that the lower portion o f the Clay Brook watershed was also cutover prior to 

1911. Both stand compartment records and tree rings indicate that the remaining forests 

were impacted by the 1938 hurricane. The survey map indicated that the subalpine 

forests above the sampling points on the Monroe (7D) and Ammonoosuc (7E) Brooks 

were not logged. Compartment records do not indicate cutting in any of these watersheds 

since acquisition, although some of the fir stands below the sampling point on Clay 

Brook were authorized for harvest in 1967.

Stream 7A. Clay Brook. Sampled along the Jewell Trail, - 5 m  downstream of 

the bridge crossing the brook. Included as mixed alpine/subalpine/logged land-use 

history.

Stream 7B. The only significant stream encountered along the Jewell Trail before 

reaching Clay Brook. Classified as logged land-use history.

Stream 7C. A tiny stream crossing the Ammonoosuc Trail shortly below a 

junction with a spur trail that connects to a WMNF parking area. Classified as logged 

land-use history.
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Stream 7D. Monroe Brook. The largest stream crossed by the Ammonoosuc

Trail before reaching Gem Pool. Classified as subalpine/alpine land-use history.

Stream 7E. Ammonoosuc Brook, sampled at Gem Pool, the large pool crossed by

the Ammonoosuc hiking trail before it begins to ascend steeply to Lakes of the Clouds.

Classified as alpine/subalpine land-use history.

Site 8: Zealand Valiev

History. Chittenden (1904) and the 1901-2 Report o f the New Hampshire

Forestry Commission indicate that this fire occurred in 1888, a claim that Belcher (1980)

convincingly disputes and dates to 1886 based on several period accounts. In particular,

Belcher cites a report by Frank H. Burt in Among the Clouds, recounting an 1887 trip

through the Zealand Valley:

The lower part o f the valley is rather dreary. The spruce has been cut, and the 
great fire  o f1886 destroyed all that the woodsman had left. On the hillsides in 
many places, even the soil had yielded to the intense heat and nothing was left but 
the bare rock.

The 15,045 acre tract had been owned by J.E. Henry & Sons, and was surveyed in

1915 by D.W. Martin. Martin reported that:

The greater portion o f this tract, about seventy percent, was burned subsequent to 
the logging operations about twenty years ago. This area has sprung up to a 
growth o f popple and birch, and the more favorable places it has attained 
merchantable size at the present time. This area has been designated as 
merchantable second growth... On the upper slopes the timber on large areas o f  
this burned land has not reached merchantable size, and in many places the fire  
was so severe that practically all tree growth was destroyed, and there is a very 
straggling reproduction at present.

Compartment records indicated that forests on all four sampled watersheds were 

slated to have been thinned between 1984 and 1988 (the “H ot Shot Sale”), although none 

o f these stands were included in a 1988 summary of thinning activities. A 1996 survey
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indicated that most o f the stands marked for thinning in 1984 were in need o f thinning in 

1996.

Stream 8A. All four streams were sampled along the Zealand Valley Rd. Stream 

8A is 1.1 mi. from R t 302, in a distinct drainage encountered south of the Sugarloaf 

Campground and beyond the end of paved road.

Stream 8B. Streams 8B, 8C, and 8D are within 200 m of each other. Stream 8B 

is a very small stream that sluggishly drains a damp forested stand 1.8 mi. from Rl 302.

Stream 8C. Sampled the right (north-) most stream of two converging before 

entering a culvert beneath the Zealand Rd; approximately 1.85 mi. from R t 302.

Stream 8D. Hale Brook. A large, broad streambed encountered at 1.9 mi. from 

RL 302.

Site 9: ML Bickford

History. Chittenden’s 1904 map o f forest condition in northern New Hampshire 

indicates that much of the northern slope o f Mt. Lafayette and M t Garfield burned in the 

1903 fires, but he did not discuss the condition of these particular forests. A 1913 survey 

by D. W. Martin and others confirmed that this area had burned. Stand compartment 

records do not indicate that any harvesting activities have occurred on the western half of 

the Skookumchuck Brook watershed since acquisition by the federal government. 

Thinning and patch cuts have occurred on the eastern half of the watershed over the past 

two decades.

Stream 9A. Streams 9A, 9B, and 9C all drain under the bike path in culverts, and 

were all sampled ~ 10 m upstream of the bike path. Stream 9A is the furthest from the 

Governor Galen circle (see site 10), the last small stream encountered before reaching
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Skookumchuck Brook. Charcoal was found in nearby soils, and an old logging road 

follows the eastern side of the stream.

Stream 9B. This stream was diverted under the bike path in a culvert This 

stream was encountered shortly before reaching stream 9 A.

Stream 9C. This stream drains into the first culvert /  tunnel encountered along the 

bike path on the eastern side o f the large bridge over Lafayette Brook. Not to be confused 

with a small wet area draining into what appears to be a cement block at the start of the 

bike path.

Stream 9D. A small, temporary stream that enters Lafayette Brook shortly before 

the brook is crossed by the large bridge and the bike path. The stream is encountered 

immediately after entering the woods on an old access path on the east side of Lafayette 

Brook.

Site 10: Lafayette Brook

History. The 116 acre tract on the north slope of Mt. Lafayette was formerly

owned by Publisher’s Paper Co. Surveys in 1915-1917 indicated that:

The tract consists principally o f subalpine and barren with a small patch o f virgin 
spruce on the north side. This timber is rather scrubby and intermixed with short 
paper birch. No part o f this tract has ever been cut. The topography is very steep 
and rough.

A summary by the New Hampshire Natural Heritage Inventory (Sperduto and 

Engstrom 1993) indicated that the site contained old-aged northern hardwoods on the 

lower slopes, grading to spruce and yellow birch with elevation. They noted frequent 

snags in various stages o f decay, and trees in a range of size classes. Some spruce
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reached 75 cm dbh. Compartment records indicated that no cutting had occurred on the 

watershed since federal acquisition.

Stream 1QA The first deep culvert encountered after turning into the access road 

for the Governor Galen Memorial, exit 3 off R l 93 through Franconia Notch State Park. 

Descend the embankment just before the “Highway Ends 1000 ft.” sign. Sampled -15  m 

upstream of access road.

Stream 10B. The second drainage encountered on the access road. Sampled -  5 

m upstream of road. Stream dried in late summer.

Stream IOC, Drains in a large culvert encountered just before reaching the 

parking circle. Sampled -30  m. upstream of road in an effort to find flow. Stream 

flowed only during spring, and was not included in any analyses.

Site 12: Nancv Brook

History. The stands now comprising the Nancy Brook Research Natural Area 

were once owned by Daniel Saunders & Company, a logging company commended by 

both Chittenden (1904) and Belcher (1980) for its policy of selective cutting. In a 1933-4 

survey of the Livermore tract, A. Morrison and company noted extensive areas o f virgin 

spruce in the upper Nancy Brook and Halfway Brook drainages. However, they 

classified the stands directly surrounding Nancy Pond as 40-80 or 80-120 year-old spruce. 

Compartment records indicated that the 1938 hurricane extensively damaged portions o f 

the old-growth stands, and the area below Nancy Cascade was salvage logged between 

1939 and 1943.
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Stream 12A. Nancy Brook- Sampled at the base of Nancy Cascade, 2.6 miles 

from R t 302 on the Nancy Brook Trail. This brook drains Nancy Pond as well as a small 

pond high on the col between M t Nancy and M t Bemis.

Stream 12B. A tributary to Nancy Brook, entering shortly below (south of) Nancy 

Cascades. Sampled upstream o f this junction, at the upper portion o f the bowl formed by 

streams 12A & B and the steep slope to the west This stream drains the slopes of Duck 

Pond Mountain, and appears free from influence by Nancy Pond or any other ponds.
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Stream
Elev.

MSL(m) Latitude Longitude
NH State Plane (m) 1983 datum 

Northing Easting SD (m)

01A 637.4 44.26422 -71.25137 196082.9 333160.1 0.91
01B 643.7 44.26494 -71.25014 196163.1 333258.2 1.01

01C 632.1 44.26301 -71.25312 195947.7 333020.7 0.43

02A 533.3 44.27412 -71.23171 1971903 334724.2 0 .6 8
02B 533.0 44.27534 -71.23133 197326.8 334753.9 1.24

03A 615.4 44.25383 -71.25172 194928.1 333138.0 0.94
03B 614.2 44.25232 -71.25137 194760.1 333166.6 1.15

04A 557.7 44.23850 -71.25667 193223.1 332751.3 0.46
04B 542.7 44.23591 -71.25766 192934.3 332673.4 1.17
04C 539.6 44.23497 -71.25766 192830.0 332674.2 3.50
04D 534.1 44.23389 -71.25782 192709.6 332662.0 0.58

05A 508.5 44.20623 -704808 189640.3 333455.2 0.79
05B 519.0 44.20655 -71.24901 189675.0 333381.1 1.75
05C 532.8 44.20700 -71.25055 189725.2 333257.9 1 .0 0

05D 540.1 44.20725 -71.25092 189752.7 333228.3 0.52

06A 640.4 44.22101 -71.40653 191230.0 320786.3 0.78
06B 669.8 44.22077 -71.40429 191203.8 320965.3 0.42
06C 583.5 44.21634 -71.40853 190710.7 320628.1 1.35
06D 586.4 44.21838 -71.40825 190937.2 320650.1 0.94

07A 875.6 44.27490 -71.34669 197235.5 325544.3 1.08
07B 887.6 44.27337 -71.34715 197065.5 325508.0 1.55
07C 872.9 44.26924 -71.34506 196607.0 325676.9 0.37
07D 982.6 44.26671 -71.33327 196329.3 326619.3 0.55
07E 1048.9 44.26755 -71.32687 196424.3 327130.5 0.28

08A 511.1 44.24923 -71.50226 194346.7 313130.7 0.87
08B 522.3 44.24255 -71.49357 193605.4 313826.4 1.17
08C 526.0 44.24236 -71.49295 193584.2 313875.9 0.96
08D 530.7 44.24197 -71.49179 193541.0 313968.7 0.74

09A 557.9 44.18905 -71.67926 187645.8 298992.8 0.89
09B 572.4 44.18797 -71.68014 187526.6 298923.0 3.87
09C 570.2 44.18605 -71.68173 187313.2 298795.3 0.92
09D 575.9 44.18374 -71.68394 187056.0 298618.8 0.89

10A 586.8 44.18123 -71.68915 186778.0 298202.6 1.58
10B 588.0 44.18211 -71.68757 186875.3 298328.6 0.71
IOC 582.6 44.18257 -71.68549 186926.3 298495.3 1.53

12A 733.3 44.11524 -71.38605 179483.0 322462.5 0.77
12B 723.8 44.11530 -71.38482 179490.4 322560.9 0.51
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A nnenrihr 1.2. S tream  lo c a tio n s  - R esam pled  from  VltOUSek (1975)

Italicized text is the stream description directly from Vitousek (1975), Appendix 

A, which included elevations from an altimeter. Standard text provides additional or 

updated information from 1996-8. * indicates streams sampled in 1996-7. GPS locations 

and elevations (9/98) follow.

* Stream 1. 1024 m. The highest elevation stream crossing the G lencliff Trail. A 

small temporary stream in the spruce-fir zone with no indication o f logging in the 

watershed. Stream has log waterbars on either side of it, perpendicular to the trail, and 

four logs as mudbridges parallel with the trail directly below. Vegetation near streams 1,

2 & 3 is dominated by large dead spruce boles & skinny spruce-fir regeneration. Included 

in Vitousek and Reiners (1975) and Figure 3.6.

* Stream 2. 1024 m. Another small, temporary stream near # /, to which it is 

similar in all respects. Stream occurs at the start o f a flat section of trail, just above #3. 

Streambed is rocky, and is the largest above stream #5. Included in Vitousek and Reiners 

(1975) and Figure 3.6.

* Stream 3. 1018 m. A larger stream crossing Glencliff Trail where the trail goes 

through a well-developed spruce-fir stand. No logging. One of several small, temporary, 

seeps in a flat section of trail, just above #4. Included in Vitousek and Reiners (1975) 

and Figure 3.6.

* Stream 4 .1006 m. A small temporary stream in the spruce-fir zone. No 

logging. A two-log bridge crosses the streambed, next to a large rock with inch-long 

crystals. Gaps in the paper birch - fir forest allow slight views of the valley. This stream
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is above a glade of -50-80 yr. old fir. Included in Vitousek and Reiners (1975) and 

Figure 3.6.

* Stream 5. 930 m. One o f several permanent streams crossing the trail a t this 

point. This is the largest stream in the spruce-fir zone on Glencliff Trail. No logging.

The highest (and largest) o f the many small streams in this short fiat section o f trail; a red 

spruce tree with a large bulbous deformity grows adjacent to the stream. An illegal 

campsite and fire ring occur just above. Included in Vitousek and Reiners (1975) and 

Figure 3.6.

* Stream 6. 899 m. A small stream appearing on the surface ju s t above G lencliff 

Trail. Sampled below the trail. The lowest o f the many small streams in the short flat 

section of trail that ends with #5. Included in Vitousek and Reiners (1975) and Figure 3.6.

* Stream 7. 808 m. A  small stream crossing Glencliff Trail immediately below 

the clearing fo r precipitation collection. The fo rest is dominated by small sugar maples 

in the area o f collection. Some large sugar maples, indicating it was never clearcut. No 

evidence o f any logging. The higher of two permanent seep-streams crossing the trail just 

above stream #8 . Many huge yellow birch and sugar maple nearby. No evidence of an 

old clearing for collecting precipitation. Included in Vitousek and Reiners (1975) and 

Figure 3.6.

* Stream 8. 762 m. A larger stream crossing Glencliff Trail at the only bridge on 

the trail. Near #7 in a similar plant community. Still the only real bridge on the trail. 

Permanent stream.
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* Stream 9. 725 m. A small stream to the southeast o f Glencliff Trail, very near 

the trail. Hardwoods—spruce-fir transition forest. Logging history unknown, but no 

clearcutting. Stream parallels, but never crosses the trail - possibly a tributary to #13.

* Stream 10. 716 m. A small spring-seep crossing Glencliff Trial. Large stand o f 

hardwoods and spruce near the seep. Logging history unknown, but no clearcutting.

Seep occurs just above (northwest of) the trail, and a water bar guides it across. Can 

almost see #9 from here.

Stream 11. 677 m. A small permanent stream in northern hardwoods well to the 

north o f G lencliff Trail in the northern hardwoods lysimeter site. Some large yellow  

birch and sugar maple, but a few  stumps from  logging also present Bethlehem gneiss 

bedrock. O ff trail; couldn’t locate.

Stream 12. 677 m. A small temporary stream near #11 and similar to it in every 

way. O ff trail; couldn’t locate.

* Stream 13. 503 m. A small stream crossing Glencliff Trail immediately above a 

pasture. Successional birch, pin cherry, aspen and fir  in the watershed. Clearcut or 

pastured at some time. Bethlehem gneiss and possibly Ammonoosuc volcanic bedrock. 

Permanent stream occurs at the junction of the Glencliff & Hurricane Mtn. Trails, and is 

the water supply for the nearby Great Bear Cabin (DOC).

* Stream 14. 753 m. Gorge Brook where it crosses Snapper Trail. A  large 

stream draining the east side ofM t. Moosilauke. The Snapper Trail was rerouted in 1996 

to intersect higher on the Gorge Brook Trail. The old crossing is not far below the new, 

and still has a log bridge which can be spotted with some difficulty while ascending the 

Gorge Brook Trail.
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* Stream 15. 799 m. A small stream next to Gorge Brook Trail immediately 

above the lowest bridge where Gorge Brook Trail Crosses Gorge Brook. Successional 

hardwoods vegetation. The Snapper Trail was rerouted in 1996, and now follows #15 

down to Gorge Brook. Sampled at the intersection of the new Snapper & Gorge Brook 

Trails, on the west side of a new bridge over Gorge Brook.

* Stream 16. 991 m. A small stream crossing Gorge Brook Trail in a spruce-fir 

stand below the steep section. Within successional forest, but near its upper boundary. 

The lower of two small streams crossing the trail with water bars; below “Last Water,” 

but still on the northeast side of Gorge Brook.

* Stream 17. 1006 m. Gorge Brook where Gorge Brook Trail begins to climb 

steeply away from the trail. Below the landslide terminus fo r  landslides from  South Peak. 

Sampled at “Last Water,” where the trail turns sharply right and away from Gorge Brook. 

There is a rock nearby with a memorial plaque.

Stream 18. 1305 m. A small stream high on Gorge Brook Trial. In the high 

elevation fir  forest zone. The Gorge Brook Trail was rerouted in 1991. Multiple 

blowdowns and washouts meant that the old trail could not be followed with confidence.

Stream 19. 1414 m. The highest spring-seep on Beaver Brook Trail. Rarely 

flowing. High elevation f ir  forest. This portion of the Beaver Brook trail was also 

relocated at some point between 1974 and 1996. Not sampled.

Stream 20. 1378 m. A larger spring-seep in the high-elevation f ir  zone on Beaver 

Brook Trail.

Stream 21. 1295 m. A larger permanently flowing stream east o f the boggy area 

in the saddle between North Peak and Blue. High elevation fir.
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Stream 22. 1143 m. A small permanent stream on the steep portion o f 

Asquamchumauke Trail Spruce-fir and high elevation fir  forest. Never logged. The 

Asquamchumauke Trail was closed many years ago, but is still included on USGS maps. 

The lower portion of the trail is loosely maintained for DOC use, but the upper section 

could not be followed. Included in Vitousek and Reiners (1975).

Stream 23. 1079 m. A  small stream near the base o f  Jobildunc Ravine on 

Asquamchumauke Trail May be downstream o f #22. Spruce-fir, never logged  Included 

in Vitousek and Reiners (1975).

Stream 24. 1049 m. The Baker River at the fourth crossing o f the 

Asquamchumauke Trail Drains all o f Upper Jobildunc Ravine including several beaver 

ponds.

* Stream 25. 994 m. A small spring seep on Asquamchumauke Trail. 

Successional spruce-fir-birch, logged in 1945-1946. Stumps evident. This small seep 

emerges and then disappears a few feet above the trail, immediately upslope from #26; 

however, this relocation may not be correct, and the true #25 could be one of several 

seeps above stream #26. Included in Vitousek and Reiners (1975). For streams 25-29: 

canopy dominated by tall skinny paper birch, with 2-5 m fir & spruce in the understory.

* Stream 26. 957 m. A small stream crossing underneath trail near #25. Same 

plant community. Permanent stream with good flow. Old bridge timbers have collapsed. 

Included in Vitousek and Reiners (1975) and Figure 3.6.

* Stream 27. 933 m. Larger stream crossing Asquamchumauke Trail near #25 

and 26. Similar plant community. First permanent, medium-sized stream encountered 

when ascending the trail. Included in Vitousek and Reiners (1975) and Figure 3.6.
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* Stream 28. 899 m. A small, temporary stream crossing Asquamchumauke Trail 

near Ridge Trial junction. Crossed by a rotting bridge. Successional fir-birch, logged in 

1945-6. Stumps evident. Second of two small, ephemeral streams crossing the trail 

above the intersection with the Ridge trail. A few old logs suggest an old rotting bridge. 

Included in Vitousek and Reiners (1975) and Figure 3.6.

* Stream 29. 893 m. A small stream draining into the junction o f  

Asquamchumauke Trail and Ridge Trail. Very near 028. Temporary stream that marks 

the junction. Included in Vitousek and Reiners (1975) and Figure 3.6.

* Stream 30. 869 m. Baker River ju st below Ridge Trail-Asquamchumauke Trail 

junction. Large watershed including upper Jobildunc Ravine and successional forests on 

the Mt. Blue ridge. Sampled where crossed by the Ridge Trail. New bridge built in 1998.

* Stream 31. 768 m. A small stream crossing Ridge Trail ju st below Camp 2. 

Successional spruce-fir and hardwoods. Stream #31 has log water bars, and is not far 

above the junction with the Merrill Ski Trail. Nothing remains o f Camp 2 but an old 

field.

* Stream 32. 735 m. A large stream crossing Ridge Trail above its junction with 

Gorge Brook Trail. Drains most o f East Moosilauke, including areas logged in 1957-8. 

Believe that this is Hatch Brook, crossed by a two-log bridge with railing.

* Stream 33. 735 m. Baker River ju st above its junction with #32. Near Ravine

Lodge.

* Stream 34. 753. A small stream draining into the Ravine Lodge parking lot. 

Temporary stream draining the old ski area. Enters bus turnaround. Usually dry.
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* Stream 35. 658 m. A small stream crossing Ravine Lodge Road about a 

quarter mile from  Rt. 118. Where fo u r small streams join a t a culvert. The secondfrom  

left was sampled Successional northern hardwoods. Kinsman monzonite bedrock.

Stand thinned ->1980 (DOC Road Sale). Also known as stream 1 IF.

* Stream 36. 634 m. Small stream crossing Ravine Lodge Road where it jo ins Rt. 

118. Similar to §35. Stand thinned -1980 (DOC Road Sale). Stream #36 crosses 

Ravine Lodge Rd. -10 m up from R l 118. Sampled above the north side of the road. 

Also known as stream 1 IE.

* Stream 37. 640 m. A small stream crossing under Rt. 118 and entering the 

DOC clearcut. Close to and similar to §35 and 36. Stand thinned -1980 (DOC Road 

Sale). The DOC clearcut has regrown. Sampled right branch of stream crossing Rt. 118 

by a WMNF sign, -  0.2 mi. from Ravine Lodge Rd. Also known as stream 1 ID.

* Stream 38. 878 m. The firs t small stream crossing Jewell Trail, Mt. 

Washington. Spruce-fir vegetation with unknown logging history. Stream is east of the 

junction with the Jewell Link (a cutoff to the USFS parking area). Also known as stream 

7B.

* Stream 39. 872 m. Clay Brook where it crosses Jewell Trail. A  large stream 

draining an extensive area on the west side o f the Presidential Range. Sampled below 

bridge crossing Clay Brook. Also known as stream 7A.

Stream 40. 1673 m. A small stream crossing the Alpine Garden Trail near its 

junction with the Huntington Ravine Trail. Alpine tundra, with some drainage from  the 

Auto Road
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Stream 41. 1661 m. Small spring-seep near the Ml Washington cone in Alpine 

Gardens. Similar to #40. Above the trail.

Stream 4 2 .1658 m. A  spring-seep in Alpine Gardens. Also above the tra il 

Similar to #40.

Stream 43. 1667 m. A large spring a t the base o f the Mt. Washington cone above 

#43. Similar to the other Alpine Garden streams.

Stream 44. 1631 m. A small temporary stream crossing the Alpine Garden Trail 

near several other streams. Similar to other Alpine Garden streams.

Stream 4 5 .1631 m. The largest stream in the Alpine Garden, crossing the Alpine 

Garden Trail close to #44.

Stream 46. 1582 m. A small stream below Alpine Garden Trail near its junction 

with the Tuckerman ’s Ravine Trail Considerable mountain alder near the collection 

site. Includes some summit drainage.

Stream 47. 1631 m. A small stream below an alpine bog below Camel Trail. 

Does not drain the bog. No summit or road influences in the drainage basin. 

Considerable upright krummholz.

Stream 4 8 .1631 m. Small stream crossing Camel trail. Drains a somewhat 

boggy area o f tundra. No human disturbance in the watershed

Stream 49. 1548 m. The inlet seep to the larger Lake o f the Clouds.

Stream 50. 1554 m. A small stream draining into a cotton-grass bog offM t. 

Monroe.
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Stream 51. 1295 m. A large stream crossing Ammonoosuc Ravine Trail on the 

headwall o f Ammonoosuc Ravine. Drains much o f the Clay-Monroe col but not Lakes o f 

the Clouds. Spruce-fir, high elevation fir, and tundra in the watershed.

* Stream 52. 1073 m. The Ammonoosuc River where Ammonoosuc Ravine Trail 

reaches the valley bottom. Sampled at the outflow of Gem Pool, where the trail crosses 

the Ammonoosuc River and then ascends steeply. Vitousek may have sampled a different 

branch, just uphill from Gem Pool, and not crossed by the trail. Also known as stream 

7E.

* Stream 53. 1012 m. A large stream draining Monroe and Eisenhower. An 

avalanche followed the stream course in the late 1960s, so while most o f the watershed is 

in spruce-fir and fir, small pin cherries are common along the stream. Believe that this is 

Monroe Brook, which drains Monroe but not Eisenhower. Appeared recently avalanched 

in 1996. This is the largest stream crossed below Gem Pool. Also known as stream 7D.

* Stream 54. 884 m. A small stream crossing Ammonoosuc Ravine Trail near 

Marshfield Station. The lowest stream on the Ammonoosuc Ravine Trail. Spruce-fir, 

successional status unknown. Small stream crossing Ammonoosuc Ravine Trail just 

below the junction with the Ammonoosuc Link (a cutoff to the USFS parking area).

Likely logged -1910. Also known as stream 7C.

* Stream 55. 460 m. A small spring-seep surfacing near Rt. 118 immediately 

above a turnoff onto a dirt road Kinsman monzonite bedrock and successional northern 

hardwoods vegetation. Dirt logging road still exists; it’s on the right, the only road 

encountered off Rt. 118 on descent from Ravine Lodge Rd toward Rt. 112. Stands on the 

watershed of stream 55 were selectively harvested in 1997-8. Also known as stream 11 A.
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* Stream 56. 503 m. A somewhat larger stream crossing under Rt. 118 in a 

culvert Fairly deep stream valley. Similar to #55. No record of cutting on the main 

watershed since the tum-of-the-century, but small stands on the edge or top may have 

been cut -1980. Indications of an old logging road enter off R t 118 to the right o f the 

stream when facing upstream. Also known as stream 1 IB.

Stream 57. 600 m. A small stream crossing under Rl. 118. Similar to #55. 

Forests above #57 selectively harvested -1984. No 1973-4 stream chemistry survive.
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T ^leA l^G P SJoc!^ons^^rem njaT ^^i^ovr^s^jresm n£^dhom V itousek{l^5)^

Stream
Elev. 

MSL (m) Latitude Longitude
NH State Plane (m) 1983 datum 

Northing Easting SD (m )
1 1034.9 44.00656 -71.84939 167386.3 285346.5 0.36
2 1029.7 44.00635 -71.84950 167362.4 285337.9 1.38
3 1024.9 44.00582 -71.84977 167303.3 285315.7 0.46
4 1019.2 44.00561 -71.84999 167280.3 285298.3 1.51
5 929.8 44.00315 -71.85383 167008.3 284989.8 1.83
6 909.7 44.00266 -71.85505 166954.0 284891.6 1.13
7 815.0 44.00031 -71.85911 166693.0 284565.3 3.40
8 779.7 43.99968 -71.86095 166624.0 284417.9 1.98
9 730.8 43.99935 -71.86332 166587.1 284227.7 2.35

10 719.0 43.99962 -71.86372 166617.7 284195.8 3.22
13 513.7 43.99775 -71.87540 166411.6 283258.3 1.57
14 770.2 43.99540 -71.81972 166141.6 287724.0 0.64
15 819.7 43.99800 -71.82130 166430.6 287597.1 1.39
16 974.2 44.00893 -71.82795 167645.6 287066.2 3.36
17 979.2 44.00981 -71.82889 167743.7 286991.2 0.40
25 978.5 44.01432 -71.80688 168241.2 288757.4 1.19
26 978.4 44.01405 -71.80647 168210.9 288789.6 1 .6 6

27 957.0 44.01288 -71.80516 168080.8 288894.8 0.59
28 932.4 44.01084 -71.80399 167854.3 288988.5 0.87
29 921.0 44.01005 -71.80390 167767.2 288994.9 1.14
30 896.5 44.01111 -71.80577 167885.1 288845.2 0 . 8 8

31 788.3 43.99894 -71.80786 166533.1 288675.3 1.07
32 749.4 43.99663 -71.81298 166276.8 288264.3 3.42
33 750.9 43.99650 -71.81288 166262.7 288272.7 1.53
34 760.5 43.99348 -71.81502 165927.6 288100.4 0.24
35 662.7 43.97883 -71.81887 164300.1 287788.8 2.73
36 648.0 43.97771 -71.81586 164175.1 288030.1 0.84
37 662.1 43.97913 -71.81213 164332.0 288329.6 1.14
38 887.6 44.27337 -71.34715 197065.5 325508.0 1.55
39 875.6 44.27490 -71.34669 197235.5 325544.3 1.07
52 1048.9 44.26755 -71.32687 196424.3 327130.5 0.28
53 982.6 44.26671 -71.33327 196329.3 326619.3 0.55
54 872.9 44.26924 -71.34506 196607.0 325676.9 0.37
55 426.3 43.99494 -71.75124 166082.0 293216.7 16.85
56 478.0 43.99233 -71.75766 165793.2 292701.2 0.83
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APPENDIX 2

STREAM SAMPLING DATES, CHEMISTRY, AND MODELED FLOW. 

Chapters I and 3 describe methods of chemical analyses and streamflow 

modeling. Appendix 1.1 describes stream location and site descriptions.

Table A2.1: Stream sampling dates 

Table A2.2: Nitrate (pg/L)

Table A2.3: Dissolved organic nitrogen (|ig/L)

Table A2.4: Ammonium (pg/L)

Table A2.5: Dissolved organic carbon Qig/L)

Table A2.6: Sulfate (peq/L)

Table A2.7: Calcium (jieq/L)

Table A2.8: Magnesium (peq/L)

Table A2.9: Sodium (peq/L)

Table A2.10: Potassium (peq/L)

Table A2.1 1 : pH

Table A2.12: Modeled streamflow (cm/mo)
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Oct.
1996

Nov.
1996

Jan.
1997

Feb.
1997

Mar.
1997

Apr.
1997

May
1997

Jun.
1997

Jul.
1997

Aug.
1997

Sep.
1997

1A 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
IB 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 dry dry
1C 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24

2A 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
2B 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24

3A 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
3B 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24

4A 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
4B 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
4C 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
4D 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
5A dry 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 dry dry
5B 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
5C 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
5D 10/16 11/21 1/14 2 /1 1 3/11 4/17 5/13 6/17 7/15 8/25 9/24
6 A 1/14 2/13 3/11 4/17 5/15 6/19 7/17 8/25 9/26
6 B 10/16 11/21 1/14 2/13 3/11 4/17 5/15 6/19 7/17 8/25 9/26
6C 10/16 11/21 1/14 2/13 3/11 4/17 5/15 6/19 7/17 8/25 9/26
6 D 2/13 3/11 4/17 5/15 6/19 7/17 8/25 9/26
7A 10/16 11/21 5/15 6/19 7/17 8/26 9/26
7B 10/16 11/21 5/15 6/19 7/17 8/26 9/26
1C 10/16 11/21 5/15 6/19 7/17 8/26 9/26
I'D 10/16 5/15 6/19 7/17 8/26 9/26
7E 10/16 5/15 6/19 7/17 8/26 9/26
8 A 10/16 11/21 2 /1 1 3/13 4/15 5/15 6/19 7/17 8/25 9/26
8 B 10/16 11/21 2 /1 1 3/13 4/15 5/15 6/19 7/17 8/25 9/26
8C 10/16 11/21 2 /1 1 3/13 4/15 5/15 6/19 7/17 8/25 9/26
8 D 10/16 11/21 2 /1 1 3/13 4/15 5/15 6/19 7/17 8/25 9/26
9B 5/15 6/19 7/17 dry dry
9C 5/15 6/19 7/17 8/25 9/26
9D 5/15 6/19 7/17 dry dry
10A 10/18 11/21 1/16 2/13 3/13 4/15 5/15 6/19 7/17 8/25 9/26
10B 10/18 11/21 1/16 2/13 3/13 4/15 5/15 6/19 7/17 dry dry
IOC dry dry dry dry 3/13 4/15 5/15 6/19 7/17 dry dry
12A 5/13 6/17 7/15 8/26 9/24
12B 5/13 6/17 7/15 8/26 9/24
If blank, stream could not be accessed or was added late in the study.
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10/9611/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sept.

1A 0 4 60 6 6 80 83 6 6 15 10 7 2 36 2 0
IB 3 19 25 28 25 31 15 3 4 dry dry 17 7
1C 0 8 54 52 6 8 78 62 4 1 1 1 30 14
2A 0 12 29 39 37 40 32 10 2 13 8 2 0 13
2B 3 8 26 25 31 36 18 4 2 4 0 14 6

3A 5 24 59 * 73 96 72 21 7 3 2 36 2 1
3B 0 8 30 * 43 50 36 3 3 2 1 18 9
4A 4 55 87 90 104 115 78 29 13 12 1 0 55 29
4B 142 96 174 213 254 257 186 101 127 79 136 160 126
4C 71 99 188 198 248 333 168 69 98 25 6 6 142 85
4D 25 64 152 166 190 191 103 58 41 18 2 2 94 48

5A dry 0 6 3 8 5 3 I 0 dry dry 3 2
5B 0 0 9 11 5 9 0 4 4 13 5 5 5
5C 0 4 7 12 6 10 0 4 4 16 6 6 6
5D 0 2 11 24 11 11 0 7 6 2 2 18 10 11

6 A 6 8 78 92 94 87 17 13 4 1 50 24
6B 2 17 69 75 92 1 0 0 6 6 18 3 4 3 41 19
6C 3 18 51 71 67 8 8 34 3 7 8 6 32 12
6D 230 293 327 185 110 60 61 59 165 95

7A 72 111 89 77 88 83 78 83
7B 4 5 9 4 9 9 6 7
7C 7 4 8 2 2 3 2 4
7D 179 207 126 160 178 183 171
7E 2 1 1 278 209 131 1 2 2 178 184
8A 107 140 151 119 49 49 29 30 84 55
8B 5 32 93 116 132 91 41 23 2 2 9 56 37
8C 17 39 8 6 103 124 8 8 36 30 34 18 58 41
8D 121 50 1 0 2 103 108 84 48 38 54 79 79 61
9B 26 2 0 dry dry 9
9C 15 2 2 7 3 6
9D 5 0 1 dry dry 2

10A 188 117 223 228 291 314 195 195 104 286 228 215 2 0 2
10B 71 100 232 257 324 325 247 187 84 dry dry 203 173
IOC dry dry dry dry 312 373 244 95 46 dry dry
12A 154 61 49 32 46 69
12B 1 0 2 65 64 32 37 60

If blank, stream could not be accessed or was added late in the study. 
* snow contamination

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table A2.3: Land-use history stream chemistry. Dissolved organic nitrogen (flg/L).

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sept.
IA 62 133 55 90 81 89 58 6 6 6 6 45 33 71 54
IB 128 96 56 103 59 91 39 40 39 dry dry 72 39
1C 114 74 85 99 101 79 79 103 138 93 82 95 99
2A 59 85 52 35 75 38 44 40 77 40 39 53 48
2B 57 94 37 40 43 52 75 53 8 6 47 59 58 64
3A 87 142 105 * 83 6 8 8 8 8 6 148 96 113 1 0 2 106
3B 129 106 8 8 * 73 8 6 80 59 135 6 8 61 89 81
4A 37 52 54 55 47 65 89 43 75 25 2 2 51 51
4B 93 79 74 69 75 56 115 77 54 6 8 42 73 71
4C 60 76 45 69 83 53 77 71 51 44 97 6 6 6 8
4D 57 64 46 71 74 25 84 51 62 51 85 61 6 6

5A dry 89 48 35 40 52 6 6 70 59 dry dry 57 65
5B 39 52 34 36 27 42 53 34 42 32 62 41 45
5C 62 46 65 34 27 32 55 64 49 26 32 45 45
5D 74 58 54 41 26 47 6 6 35 34 38 35 46 42
6 A 52 71 46 53 82 80 55 52 47 60 63
6 B 71 1 0 2 67 81 81 58 101 80 69 51 71 76 74
6C 110 108 71 83 80 78 119 126 104 85 94 96 105
6D 75 8 8 72 103 6 6 1 0 0 13 48 70 6 6

7A 23 31 62 70 13 38 12 39
7B 67 89 96 102 89 103 69 92
7C 39 90 96 75 52 6 6 40 6 6
7D 82 71 31 4 27 21 31
7E 92 61 78 33 37 31 48
8A 62 6 6 45 6 6 114 60 38 61 64 6 8
8 B 0 46 44 40 32 46 36 27 9 17 30 27
8 C 19 60 39 42 39 62 38 82 8 8 40 40
8D 38 37 35 40 2 0 44 50 25 0 16 31 27
9B 69 59 46 dry dry 58
9C 83 76 90 47 58 71
9D 78 93 107 dry dry 93

10A 141 106 104 119 117 77 81 193 95 32 60 1 0 2 92
10B 117 105 119 129 78 77 6 8 94 81 dry dry 96 81
IOC dry dry dry dry 37 40 57 101 53 dry dry
12A 182 102 111 137 100 126
12B 138 8 6 72 107 72 95

If blank, stream could not be accessed or was added late in the study.
* snow contamination
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Table A2A: Lcmd-use history stream chemistry. Ammonium-N (Hg/L). Some 10/96 and 
selected other samples may have been contaminated during filtering (c).

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sept.

1A 7 11 13 7 14 9 8 7 9 9 5 9 8
IB c 9 12 11 12 11 8 9 11 dry dry 10 9
1C 8 9 9 5 14 8 9 10 16 17 17 12 14
2A 5 11 11 5 13 11 4 9 9 15 9 10 9
2B 11 1 2 14 7 9 11 9 10 8 15 13 11 11

3A 9 7 13 * 12 13 8 12 11 24 24 14 16
3B 9 5 14 * 9 1 2 10 10 6 13 10 10 10

4A 4 8 c 5 6 1 0 5 9 8 12 10 8 9
4B 9 6 c 6 14 14 3 12 9 9 2 0 10 11
4C 11 7 c 5 9 1 0 7 10 16 18 19 11 14
4D 10 9 12 4 13 9 6 6 12 7 2 2 10 11

5A dry 5 10 4 15 5 5 9 2 dry dry 7 5
SB 12 5 9 6 13 10 6 8 11 15 17 10 11
5C 9 1 2 10 9 8 4 6 9 8 15 14 9 10
5D 16 3 8 7 7 4 10 9 10 19 11 9 12

6A 7 7 13 6 2 3 3 16 2 6 5
6B 12 7 6 7 10 8 2 10 4 3 9 7 6
6C 12 17 c 4 11 6 13 9 8 6 8 9 9
6D 6 14 7 2 3 8 5 11 7 6

7A c 7 2 0 2 2 6 2
7B c 7 2 2 5 0 12 4
7C 6 9 3 5 3 0 8 4
7D 5 3 2 3 0 7 3
7E 7 1 12 0 1 18 6

8A 5 4 5 1 3 8 10 7 5 6
8B c 7 9 9 4 3 2 7 9 12 7 7
8C 8 1 2 5 4 6 7 4 5 8 7 6 6
8D 9 6 8 3 0 1 2 12 0 10 5 5
9B 6 2 4 dry dry 4
9C 12 4 10 7 19 10
9D 11 4 2 0 dry dry 12

10A 7 9 17 8 3 9 5 9 17 8 17 10 11
10B 11 1 0 12 3 3 6 6 5 8 dry dry 7 7
IOC dry dry dry dry 12 3 9 21 12 dry dry
12A 23 15 14 4 13 14
12B 13 17 11 1 16 12

If blank, stream could not be accessed o r was added late in the study. 
* snow contamination
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Table A2.5: Land-use history stream chemistry. Dissolved organic carbon (mg/L).

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97
Average 

9/97 Annual May-Sept.

1A 3.2 2.5 1 .8 1 .6 2 .0 2 .2 2 .8 1.9 3.8 2 .2 1.9 2.4 2 3
IB 2 .8 1 .6 1.3 1 .6 1.3 13 1.9 13 2.3 dry dry 1.7 1.9
1C 5.6 4.0 3.2 2.9 3.0 3.2 4.9 4.7 9.8 6 .0 42 4.7 5.9
2A 4.4 2 .1 1.7 1 .6 1.7 1.9 2.3 2 .0 3.0 2 .1 1.6 2 .2 2 .2
2B 12. 1.9 1.3 1.1 13 2.1 2 .1 1.9 3.0 2 .1 1 .6 1.9 2 .2

3A 32 2 .6 2.3 * 2.4 2.7 2.9 2.7 4.8 3.4 2 .6 3.0 3.3
3B 3.3 2.5 2.3 * 2.3 2.9 3.1 2.4 5.1 2.9 1.9 2.9 3.1
4A 3.7 1.1 0.9 0.7 1.0 1.4 2 .1 1.5 3.7 13 1.2 1.7 2 .0
4B 22 1.5 1.3 1.3 12 13 1.7 1 .6 2 .6 23 1.9 1.8 2 .1
4C 1.9 1.3 1.1 1 .2 1.0 1.5 1.4 1.4 2.3 2 .1 2 .0 1 .6 1.9
4D 1.6 1.3 1 .2 1 .2 1.1 1.4 13 1.3 2 .1 1.7 1.7 13 1.7
5A dry 1.3 1 .2 1 .2 12 1.6 13 1.7 1.8 dry dry 1.4 1.7
5B 3.2 12 1.1 1.1 1.0 1.4 1.2 1.3 1.8 1.4 1.2 1.4 1.4
5C 4.9 1.3 1.1 1 .2 1.1 13 1.5 1 .6 2.5 1.6 1.4 1.8 1.7
5D 4.3 1 .2 1 .0 1 .2 1.3 1.4 1.1 1.4 2 .0 1.8 1.4 1 .6 13.
6A 2 .1 1.9 2 .0 2.5 2 .8 4.2 3.6 3.2 2 .6 2 .8 3.3
6B 2 .8 2.7 2 .2 1.9 2 .2 2.4 2 .8 3.2 3.2 2.7 2.3 2 .6 2 .8
6C 4.7 3.6 3.1 2 .6 2.9 3.4 4.8 6.7 6 .1 5.0 3.8 4.2 5.3
6D 1.1 1.2 1.4 1.5 1.7 1.6 1 .0 1.1 1.3 1.4
7A 1.2 0 .8 1.4 2 .0 1 .2 1 .0 0.9 1.3
7B 2 .8 2.4 3.0 4.8 3.5 2.7 2.5 3.3
7C 2 .2 2 .1 3.0 3.4 2.7 2 .1 1.5 2 .6
7D l.l 0.9 1.1 0.9 0 .8 0.7 0.9
7E 1.1 1.2 2 .0 1.3 1.1 0.9 1.3
8A 1 .2 1.1 1.3 1.3 3.7 2 .0 1.8 1.7 1.8 2 .1
8B 1.3 1 .0 0 .8 0 .8 1.0 0.9 1.5 1.3 l.l l.l l.l 1 .2
8C 1.5 1 .2 0.5 0 .8 1.0 0.9 1 .8 1.4 1.2 1.0 1.1 1.3
8D 1.1 1 .0 0.4 0 .8 0.9 1.1 1 .6 1.3 1 .2 1.1 1.0 1 .2

9B 1.3 2 .1 1.7 dry dry 1.7
9C 1.7 3.0 2.3 2 .1 1.8 2 .2
9D 2 .8 5.1 3.6 dry dry 3.8

10A 3.5 3.2 2 .1 2 .2 2 .2 2.7 3.3 7.3 4.1 2 .6 1.8 3.2 3.8
10B 2.5 2.3 1.7 1.7 1.6 1.9 1.9 3.2 2.4 dry dry 2 .1 2.5
IOC 0 .8 1.2 1 .2 1.5 1.3 dry dry
12A 6.5 4.8 5.8 6.4 4.7 5.7
12B 6 .1 4.7 4.9 6.4 4.1 5.2

If blank, stream could not be accessed or was added late in the study.
* snow contamination
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Table A2.6: Land-use history stream chemistry. Sulfate (fieq/L). Oct. 1996 samples and 
4A, 4B, 4C, and 6C Jan. 1997 (x) should be remeasured.____________________________— 9 *

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sent.

1A 90 76 80 82 75 74 6 6 8 6 77 87 83 80 80
IB 80 90 71 70 70 69 6 8 84 76 dry dry 75 76
1C 88 77 78 87 72 70 58 70 58 6 8 73 73 65
2A 70 67 63 81 63 69 59 61 6 6 67 63 6 6 63
2B 85 94 78 79 96 62 61 74 6 6 6 8 78 77 69
3A 91 74 69 * 64 65 53 73 6 6 62 62 6 8 63
3B 81 75 73 # 8 6 83 60 82 70 76 74 76 72
4A 83 50 X 56 55 62 59 46 62 47 44 56 52
4B 127 97 X 10 0 8 8 75 83 107 96 90 115 98 98
4C 132 100 X 94 101 93 87 106 1 0 0 1 0 0 101 101 99
4D 116 87 84 8 6 80 82 73 93 84 96 1 0 0 89 89
5A 71 82 65 89 63 69 75 74 dry dry 73 73
5B 107 76 91 76 80 6 6 63 82 80 90 91 82 81
5C 83 72 64 67 58 63 50 60 61 6 8 67 65 61
5D 124 82 72 79 70 60 61 76 73 84 99 80 78
6A 82 90 80 8 6 76 62 77 62 75 77 71
6B 118 107 1 0 2 94 105 96 80 93 1 0 2 107 10 0 100 96
6C 101 96 X 95 87 96 6 8 56 77 83 83 85 73
6D 94 81 82 89 99 105 103 91 93 97
7A 48 43 46 40 47 45 42 44
7B 83 6 6 55 57 69 69 65 63
7C 81 67 48 58 69 69 67 62
7D 62 43 40 47 44 42 43
7E 62 37 29 37 37 34 35
8A 74 72 70 6 6 63 78 47 72 6 8 65
8B 72 70 67 68 65 61 65 72 72 65 6 8 67
8C 71 79 73 6 6 64 58 62 71 71 65 6 8 6 6
8D 77 72 64 79 69 61 58 72 67 60 6 8 63
9B 81 78 80 dry dry 79
9C 72 77 80 83 77 78
9D 77 89 91 dry dry 8 6

10A 160 133 125 1 2 2 112 104 108 128 133 139 128 127 127
10B 135 116 108 104 108 98 127 11 2 119 dry dry 114 120
IOC 92 92 89 97 104 dry dry
12A 59 61 61 56 61 60
12B 52 65 74 69 70 6 6

If blank, stream could not be accessed or was added late in the study. 
* snow contamination
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Table A2.7: Land-use history stream chemistry. Calcium (fieq/L).

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sept
1A 45 41 51 52 49 43 38 48 51 48 38 46 45
IB 40 51 38 38 35 33 31 40 38 dry dry 38 37
1C 42 41 43 44 41 36 27 31 34 37 29 37 32
2A 41 34 36 39 39 33 32 32 39 36 27 35 33
2B 54 49 53 54 54 42 43 46 51 52 42 49 47
3A 44 50 42 * 39 36 33 41 39 35 37 40 37
3B 49 48 47 * 43 37 30 45 43 46 52 44 43
4A 35 31 31 33 40 45 39 2 0 47 33 28 35 33
4B 124 93 93 111 95 75 72 101 93 117 112 99 99
4C 105 90 95 97 97 77 71 96 97 113 92 94 94
4D 6 8 75 73 72 71 57 55 72 67 73 65 6 8 6 6

5A dry 54 43 43 48 41 37 51 54 dry dry 46 47
5B 81 45 55 64 55 43 40 66 59 63 67 58 59
5C 63 41 40 45 43 38 33 45 45 48 47 44 44
5D 73 48 42 51 46 36 38 51 48 60 59 50 51
6 A 49 49 50 45 37 36 42 43 38 43 39
6 B 69 65 64 65 64 57 53 62 6 6 60 59 62 60
6C 62 53 56 59 54 51 41 42 48 49 45 51 45
6 D 64 63 57 61 68 6 6 64 61 63 64
7A 31 26 29 31 32 34 29 31
7B 33 39 30 40 39 38 35 37
7C 39 31 27 36 35 36 36 34
7D 45 43 37 43 44 26 39
7E 25 26 18 19 13 12 17
8A 74 75 69 61 78 83 6 6 74 72 72
8 B 77 82 75 77 78 75 81 8 6 67 77 77 77
8C 8 8 79 80 77 70 65 85 85 6 6 79 77 76
8D 87 74 73 73 74 58 65 71 71 79 72 69
9B 45 45 53 dry dry 48
9C 37 30 44 31 53 39
9D 40 48 49 dry dry 46

10A 106 92 93 91 80 71 6 6 87 80 64 84 83 76
10B 78 79 77 77 75 70 6 6 79 75 dry dry 75 73
10C 59 57 62 79 6 8

12A 40 43 48 44 52 45
12B 37 41 50 51 52 46

I f  blank, stream could not be accessed or was added late in the study. 
* Snow contamination
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Table A2.8: Land-use history stream chemistry. Magnesium (jleq/L).

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sept.
1A 36 30 33 36 32 28 23 30 29 32 29 31 28
IB 35 35 26 27 24 23 21 26 24 dry dry 27 24
1C 34 26 28 33 29 25 19 2 0 21 25 2 2 26 2 2

2A 34 24 24 26 25 2 2 21 19 23 24 21 24 2 2
2B 25 21 2 1 21 21 17 17 19 19 21 19 20 19
3A 28 28 24 * 24 23 19 2 2 21 2 0 2 2 23 21
3B 38 32 32 * 29 26 2 2 27 26 29 38 30 29
4A 25 18 17 19 2 2 21 19 12 21 18 17 19 17
4B 52 35 34 41 36 28 25 35 30 42 47 37 36
4C 46 36 36 40 40 32 30 38 35 42 42 38 37
4D 27 27 25 28 27 2 2 2 0 24 23 24 25 25 23
5A dry 29 23 24 30 23 2 0 26 29 dry dry 25 25
5B 50 30 29 34 30 24 2 2 34 29 37 40 33 32
5C 42 25 23 27 26 24 2 0 26 24 26 29 27 25
5D 46 26 24 29 26 21 21 26 23 31 34 28 27
6A 23 23 23 23 17 16 18 18 2 0 20 18
6B 33 30 30 30 30 28 23 26 26 26 27 28 25
6C 31 25 25 29 27 24 17 17 19 2 2 23 24 2 0
6D 26 24 21 23 2 2 2 2 2 2 23 23 23
7A 29 2 2 2 2 2 2 2 2 24 23 23
7B 18 19 13 16 15 16 17 16
7C 18 16 14 15 15 16 17 16
7D 25 2 2 18 2 0 2 2 14 19
7E 17 16 10 12 9 8 11

8A 18 16 16 12 18 19 19 2 2 17 18
8B 2 0 2 0 17 17 17 16 17 18 15 17 17 16
8C 25 18 19 17 16 12 18 2 0 17 2 0 18 17
8D 25 21 2 0 21 21 16 17 19 19 2 2 2 0 19
9B 13 13 14 dry dry 13
9C 9 7 10 9 12 9
9D 12 13 12 dry dry 12

10A 31 28 28 30 27 23 2 2 30 23 2 0 27 26 24
10B 2 0 23 23 24 23 22 2 0 2 2 19 dry dry 22 2 0
IOC 17 16 16 15 16 dry dry
12A 9 8 9 9 12 9
12B 14 13 16 15 19 15

I f  blank, stream could not be accessed or was added late in the study. 
* Snow contamination
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Table A2.9: Land-use history stream chemistry. Sodium (fleq/L). Some 10/96 and
selected other samples may have been contaminated during filtering.

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sept
1A 28 23 27 24 24 23 17 21 2 1 2 2 17 2 2 2 0
IB 31 26 21 26 28 25 24 23 18 dry dry 25 21
1C 25 2 2 2 2 26 30 23 21 16 19 28 18 23 20

2A 29 23 2 2 26 29 25 23 21 26 30 2 0 25 24
2B 41 46 43 39 47 26 30 34 34 36 34 37 34
3A 29 29 26 * 31 26 21 26 21 27 24 26 24
3B 29 29 32 * 31 25 19 21 2 2 24 2 2 25 21

4A 29 26 23 25 28 2 2 23 24 19 2 2 2 2 24 22
4B 39 33 26 41 34 32 25 34 27 44 45 35 35
4C 41 30 33 38 37 34 32 40 37 41 46 37 39
4D 37 33 32 41 36 25 23 30 27 32 40 32 30
5A dry 33 35 35 35 30 30 39 33 dry dry 34 34
5B 46 26 39 46 39 32 32 44 39 41 44 39 40
5C 39 39 29 41 39 31 27 31 27 27 41 34 31
5D 45 2 0 26 34 33 23 35 33 27 40 41 33 35
6A 53 36 32 33 23 23 24 2 2 29 31 24
6B 41 53 37 38 36 35 26 35 34 37 39 37 34
6C 36 27 40 53 34 31 24 26 27 31 31 33 28
6 D 39 38 32 35 41 44 46 45 40 42
7A 26 12 17 13 2 0 21 25 19
7B 55 33 2 2 30 35 38 43 34
7C 36 26 26 28 33 32 41 32
7D 24 17 15 23 10 19 17
7E 26 12 12 15 4 8 10

8A 45 44 36 38 48 55 50 55 46 49
8B 66 55 44 44 43 42 45 51 38 51 48 45
8C 69 45 45 44 39 40 46 49 33 45 45 42
8D 51 54 35 38 42 30 35 37 28 43 39 35
9B 39 41 41 dry dry 40
9C 33 38 35 26 44 35
9D 35 38 43 dry dry 39

10A 67 53 51 51 59 49 44 45 50 31 55 51 45
10B 62 51 44 44 55 44 40 44 44 dry dry 47 42
IOC 48 40 37 32 39 dry dry
12A 40 38 42 48 45 42
12B 38 37 65 41 53 47

If blank, stream could not be accessed or was added late in the study. 
* snow contam ination
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Table A2.10: Land-use history stream chemistry. Potassium (fieq/L). Some 10/96 and

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sept.

1A 7.0 4.6 3.4 4.1 3.8 33 23 3.3 4.8 1.1 0.7 33 23
IB 3.6 4.1 1 .2 33 2.7 2 .6 1.9 1.6 1 .8 dry dry 2 .6 1 .8
1C 3.8 25 3.8 5.0 6 .0 4.4 53 43 4.6 3.7 1.9 4.1 4.0

2A 10.6 4.3 4.7 4.4 4.8 4.6 1.6 5.6 4.2 3.4 2.9 4.6 3.5
2B 4.2 2 .1 8 .2 73 8 .6 3.5 1.0 3.3 13 1 .6 3.6 4.1 2 .2

3A 2.0 7.1 3.7 * 3.9 3.5 3.4 3.5 2 .2 3.9 13 3.6 2.9
3B 3.4 2 .0 6 .2 * 3.9 3.8 0.9 3.0 4.4 2 .0 2 .6 3.2 2 .6

4A 14.2 35 3.1 4.0 4.8 4.8 33 4.2 3.3 1.6 1 .2 4.4 2.7
4B 10.2 5.9 43 6 .8 6 .8 6.4 4.7 7.9 7.2 8 .6 6 .6 6.9 7.0
4C 4.2 8.4 3.7 4.5 5.3 5.0 33 6 .0 6.7 23 3.7 4.8 4.4
4D 1.3 6.3 4.2 53 6.4 3.7 3.8 33 5.2 2.5 2.4 4.1 3.5

5A dry 2.7 4.0 2.3 3.5 2 .0 3.4 3.8 2 .8 dry dry 3.1 3.3
5B 1.9 2 .8 4.7 7.0 5.0 3.0 43 8.4 3.8 4.1 4.9 43 5.1
5C 17.3 12.3 5.2 7.1 5.8 3.7 4.7 4.6 3.1 3.2 3.4 6.4 3.8
5D 16.5 8.4 5.3 5.8 4.8 3.0 43 4.7 23 3.6 4.0 5.7 3.8
6 A 9.9 5.0 5.8 7.1 4.4 5.4 3.4 23 4.2 5.3 4.0
6B 2.4 9.4 6 .0 3.6 5.1 3.8 4.0 3.4 2 .1 1.1 2.7 4.0 2.7
6C c 3.2 6.4 11.5 4.7 3.4 3.0 4.5 3.1 3.6 2 .8 4.6 3.4
6 D 5.3 6.3 7.4 1 2 .0 5.5 4.1 2.4 2.9 5.7 5.4

7A 8.0 5.2 7.2 8 .6 5.7 7.5 6.3 7.1
7B c 5.7 3.4 3.8 6.3 3.8 5.1 4.5
7C c 3.9 4.6 2.9 2 .2 1.7 5.8 3.5
7D c 6.7 5.9 6.3 5.9 9.4 6.9
7E 5.0 5.4 4.6 2.9 0.7 7.9 4.3
8A 8 .2 8.5 9.1 9.0 8.4 6 .6 5.6 5.5 7.6 7.0
8B 10.7 15.1 7.4 8 .2 8 .0 8 .6 8 .1 8.5 6.3 9.1 9.0 8 .1
8C 10.4 9.0 8 .2 9.0 7.9 12.5 9.0 8 .6 4.2 8 .1 8.7 8.5
8D 6.4 15.7 6.3 6.9 6.4 4.5 5.4 4.9 4.5 6.7 6 .8 5.2
9B 3.0 1.7 0 .8 dry dry 1 .8
9C 1.7 5.6 13 0.3 2.9 2.4
9D 2.1 2.9 2 .1 dry dry 2.4

10A 5.5 6 .2 6 .8 5.2 8.4 5.8 4.9 6.3 4.2 3.3 5.3 5.6 4.8
10B 8.0 6.9 4.7 3.6 7.9 5.6 5.0 3.8 1.8 dry dry 5.3 3.5
IOC dry dry dry dry 6 .8 5.3 5.2 2.3 2.5 dry dry
12A 11.1 8 .1 83 14.7 1 0 .6 10.5
12B 9.4 8.4 10.7 8 .1 1 1 .2 9.6

If blank, stream could not be accessed or was added late in the study. 
* snow contamination
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Table A 2 .ll: Land-use history stream chemistry. Stream pH.

10/96 11/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97
Average 

Annual May-Sept.

1A 5.4 53 5.4 5.6 5.6 53 53 5.6 5.7 53 6 .0 53 5.6
IB 5.4 5.0 53 5.0 5.1 5.2 5.2 5.4 53 dry dry 5.2 5.2
1C 4.6 4.6 4.8 4.8 4.8 4.9 4.7 4.7 43 4.6 4.8 4.7 4.7
2A 5.6 53 53 5.7 5.6 53 5.4 5.7 53 53 6 .0 5.5 53
2B 5.7 53 5.7 5.6 5.6 5.6 5.6 6 .0 53 5.4 5.7 5.6 5.6
3A 4.8 4.7 4.9 ♦ 5.0 4.9 5.0 5.0 4.9 4.8 5.2 4.9 5.0
3B 5.2 4.9 53 * 5.2 5.0 5.0 53 4.8 5.4 5.6 5.2 53
4A 5.7 5.6 5.9 6 .0 5.9 5.6 5.8 5.7 5.3 5.6 6 .2 5.8 5.7
4B 6 .2 6 .1 6 .1 63 6 .2 5.9 6.4 6 .1 5.9 5.7 63 6 .1 6 .1
4C 5.8 5.8 6  3 63 63 6 .0 63 63 5.8 5.7 6 .2 6 .1 6 .1
4D 6.7 5.6 5.9 5.8 5.8 5.9 6 .0 6 .1 5.8 5.7 6 .0 5.9 5.9
5A dry 5.7 5.6 53 5.9 5.9 5.8 5.9 5.9 dry dry 5.8 5.9
SB 6.5 6 .0 6 .1 6.3 63 6.1 6.3 6.3 63 5.9 6.4 6 .2 63
5C 6.4 5.6 6 .2 6 .2 6 .0 6.1 63 6.3 5.8 6.1 6.4 6 .1 6 .1
5D 6 .2 5.6 5.9 6 .0 6 .1 5.8 5.8 6 .1 5.8 6 .0 6.3 6 .0 6 .0

6A 5.1 5.4 5.4 5.2 5.0 4.8 5.1 5.1 5.7 5.2 5.2
6B 5.8 5.2 5.4 5.5 53 5.4 5.5 5.4 5.4 5.4 5.8 5.5 5.5
6C 5.4 4.6 5.0 5.1 5.1 5.0 4.9 4.7 4.8 53 5.2 5.0 5.0
6D 53 5.4 5.2 5.3 5.4 5.3 53 5.9 5.4 5.5
7A 5.9 5.7 6.1 6 .1 5.6 6.3 6.3 6 .1
7B 5.4 4.8 5.0 5.0 5.1 5.8 5.8 5.4
7C 5.3 4.8 5.0 5.0 5.1 5.4 5.7 5.3
7D 5.9 6 .2 5.8 5.8 5.8 6.4 6 .0
7E 5.1 4.8 4.7 4.7 5.0 5.4 4.9
8A dry 6 .1 6 .1 6.1 6 .0 6 .2 5.7 5.9 5.9 6 .0 5.9
8B 5.9 5.8 6 .1 6 .1 6.1 6 .0 6 .0 5.8 5.9 5.9 5.9 5.9
8C 6 .0 5.8 6 .2 6 .1 6.1 6 .1 6 .2 5.8 6 .0 6 .2 6 .0 6 .1
8D 5.9 5.8 5.9 6 .1 6 .2 6 .2 6 .2 5.9 5.8 5.9 6 .0 6 .0

9B 5.5 5.6 5.3 dry dry 5.5
9C 5.1 5.0 4.9 5.3 5.8 5.2
9D 4.9 4.8 4.8 dry dry 4.8

10A 5.2 5.2 5.0 5.1 5.0 5.0 4.9 4.8 4.9 5.2 5.5 5.1 5.0
10B 5.5 4.8 5.1 5.2 5.0 5.1 5.1 5.1 5.0 dry dry 5.1 5.0
IOC dry dry dry dry 4.9 4.9 5.0 4.9 4.8 dry dry
12A 4.8 5.0 5.1 5.2 5.6 5.1
12B 4.8 4.9 5.0 5.1 5.5 5.0
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Table A2.I2: Land-use history streams. Modeled streamflow (cm/month).
10/96 11/96 12/96 1/97 2/97 3/97 4/97 5/97 6/97 7/97 8/97 9/97 Total

1A 14.2 8 .1 7.2 43 43 43 14.6 35.0 4.1 9.4 6 .2 4.9 1173
IB 13.6 8.4 7.6 43 43 43 15.9 31.9 1.4 7.9 5.7 4.3 1 1 0 .2
1C 14 2 6.9 5.9 43 43 43 1 2 .6 34.0 19.9 13.6 7.9 6.4 135.1
2A 14.0 7.6 63 43 43 43 13.7 33.2 1 2 .0 113 7.1 5.6 124.7
2B 11.2 8.9 8.7 4.5 43 4.7 2 1 .2 15.4 1 .0 23 33 2 .6 88.3
3A 12.6 8.7 8 .2 43 43 43 18.7 223 1.1 5.4 5.2 33 99.1
3B 133 8.4 7.7 43 4.5 4.5 16.4 263 1.9 8.7 6.3 4.2 106.9
4A 143 6.7 6 .0 43 43 43 1 2 .6 32.0 26.2 153 8.4 7.0 142.3
4B 143 73 6.4 4.5 43 43 14.1 32.1 18.4 12 .0 7.4 6 .1 131.5
4C 14.0 83 7.4 43 4.5 43 16.0 31.8 5.1 8 .6 6.1 4.7 115.4
4D 143 7.2 6 .2 4.5 43 4.5 13.5 32.9 18.9 123 7.5 6 .2 132.5
5A 12.0 8 .8 8.4 43 4.5 43 19.8 213 0.9 3.2 4.3 3.1 95.2
5B 13.0 8 .6 8 .0 4.5 43 4.5 17.9 27.3 1.0 5.4 4.9 3.7 103.2
5C 14.6 7.7 63 4.5 43 43 13.8 35.5 13.0 10.9 6.7 5.7 128.1
5D 13.2 8.5 7.9 43 4.5 43 17.4 283 13 5.8 5.0 3.8 105.1
6 A 14.0 6.9 5.9 4.5 4.5 4.5 12 .1 33.7 19.7 14.3 8 .2 63 134.9
6 B 12.9 8 .6 8 .0 4.5 4.5 4.5 17.7 23.3 1.3 7.2 5.8 3.8 102 .1
6 C 13.9 7.1 6 .1 4.5 4.5 4.5 12.9 31.9 18.3 13.7 8 .2 6.3 131.8
6 D 11.5 8 .8 8 .6 4.5 4.5 4.5 20.7 17.0 0.9 2.4 4.1 2.7 90.2
7A 14.8 5.5 4.9 4.5 4.5 4.5 9.9 29.9 41.6 26.4 10.7 9.1 166.4
7B 14.2 7.2 5.9 43 4.5 4.5 12 .1 35.8 17.6 14.5 8.5 6 .6 136.0
7C 13.8 7.6 6.4 4.5 4.5 4.5 1 2 .2 36.4 1 0 .0 13.4 8 .0 5.9 127.1
7D 14.8 4.9 4.6 4.5 4.5 4.5 8 .8 27.8 50.0 29.9 11.4 9.9 175.4
7E 15.3 4.6 4.5 4.5 4.5 4.5 6 .6 23.8 55.6 51.1 14.1 12.1 2 0 1 .2

8A 12.4 8.7 8 .2 4.5 43 4.5 19.0 22.7 1.1 4.6 4.7 3.4 98.2
8 B 11.3 8.9 8.7 4.5 4.5 4.6 2 1 .1 14.4 0.9 2.5 3.8 2.5 87.7
8C 11.9 8 .8 8.4 4.5 4.5 4.5 19.9 20.7 1.0 3.2 4.2 3.1 94.6
8D 14.1 7.5 6.4 4.5 43 4.5 13.9 32.6 14.9 11 .6 7.1 5.7 127.4
9B 11.0 8.9 8.7 4.5 4.5 4.6 21.3 15.1 0.9 1.7 3.3 2.5 87.1
9C 11.9 8 .8 8.4 4.5 4.5 4.6 19.9 18.5 1 .0 3.8 4.3 3.0 93.2
9D 11.6 8 .8 8 .6 4.5 4.5 4.6 20.5 16.1 0.9 3.4 4.0 2 .8 90.4

10A 11.8 8 .8 83 4.5 4.5 4.5 20.3 17.1 0.9 33 4.4 2.9 91.6
10B 12.0 8 .8 8.5 4.5 4.5 4.5 2 0 .0 17.5 0.9 4.1 4.7 3.0 92.9
IOC 11.3 8.9 8.7 4.5 4.5 4.5« 2 1 .0 16.3 0.9 1.9 3.8 2 .6 8 8 .8

12A 14.3 6 .8 53 4.5 4.5 4.5 1 1 .8 34.9 22.4 15.1 8.7 6.9 139.9
12B 14.1 7.3 6 .1 4.5 4.5 4.5 12.3 35.7 15.3 13.9 8 .2 6.3 132.6
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