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ABSTRACT

SYNTHESIS OF VICINAL BISAMIDINES AND BIS AMIN ALS 
FOR THE PREPARATION OF TETRAAZAMACROCYCLES

AND

THE SYNTHESIS OF CROSS-BRIDGED CYCLAM DERIVATIVES AND 
STUDIES ON THEIR COMPLEXATION OF SMALL CATIONS

A new methodology for the preparation of tetraazamacrocycles is presented. This 

new methodology utilizes a regioselective reduction of vicinal bisaminals (33) and 

bisamidines (16) precursors to afford ring expanded tetraamines. This chemistry has 

provided a synthetic route for the preparation of benzocyclam (34), a compound whose 

preparation is unreported in the literature.

by

David P. Reed 
University of New Hampshire, December, 1998

33 16 34
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This methodology has aided in the preparation of cross-bridged cyclam derivatives (83, 

92,95). Cross-bridged cyclam derivatives are bicyclic tetraamines which adopt low 

energy conformations appropriate for the complexation of small cations. Cross-bridged 

cyclam derivatives have potential utility in clinical and nuclear medicine as well as 

bioinorganic chemistry. The preparation of new derivatives of cross-bridged cyclam and 

studies on their chemistry are presented.

Cross-bridged cyclam derivatives are good complexers of Li+. In fact, cross-bridged 

cyclam derivatives complex Li+ selectively over Na+. Ligands which can selectively bind 

Li+ in the presence of Na+ would have significant utility as Li+ sensors which could 

monitor small concentrations of Li+ in the presence of abundant Na+. Experiments on the 

relative selectivity for cross-bridged cyclam ligands for Li+ and Na+ as well as the relative 

complexation ability between ligands is presented.

83 92 95

XIX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I

STUDIES OF VICINAL BISAMIDINES AND BISAMINALS 
AND THEIR UTILITY AS PRECURSORS FOR 

MACROCYCLIC TETRAAMINES

I. INTRODUCTION

Cyclic compounds having multiple amino moieties linked by methylene carbon 

units of various length are classified as polyazacycloalkanes. Many polyazacycloalkanes 

have been reported and are important in the fields of organic and organometallic chemistry. 

As nitrogen analogues of crown ethers, polyazacycloalkanes are useful as ligands, 

particularly for transition metal cations.1,2 The replacement of N for O does significantly 

alter the properties of polyazacycloalkanes with respect to polyether analogues. The 

decreased electronegativity of nitrogen with respect to oxygen in addition to the difference 

in the basicity give rise to many of the observed differences in the complexation of various 

metal cations.3 While both atoms are considered to be “hard” in saturated compounds, 

polyaza analogues are often found to complex metal ions better than the respective 

polyethers. Another advantage of polyazacycloalkanes over polyethers in the rational 

design of ligands is the ability to functionalize nitrogen atoms of the parent cyclic 

backbone.4*8 The attachment of pendant arms or the formation of bridged polydentate 

derivatives allows for a variety of ligands to be prepared from one polyazacycloalkane.9

1
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The synthesis of a variety of derivatives of polyazacycloalkanes 10"12 has led to many 

biomedical applications for these ligands.

Clinical applications13 for polyazacycloalkane derivatives have been developed as 

well as applications in the fields of bioinorganic chemistry14 and nuclear medicine.15 Some 

examples of these applications include (1) the use of transition metals such as Fe3+, Gd3* 

and Mn2+ with a ligand as contrast agents in MRI imaging,16 (2) attachment of antibodies 

to the polyazacycloalkane structure for various studies,17 (3) anti-HIV activity has been 

shown for some compounds having two polyazacycloalkanes linked together through 

nitrogen atoms.18,19 Research in these areas is still extremely active and new applications 

for these compounds are published frequently.

This chapter will discuss a subset of polyazacycloalkanes which possesses four 

secondary amino nitrogen atoms. Tetraazacycloalkanes have been well studied and 

syntheses for their preparation are reported in the chemical literature.10*12’20*23 These 

synthetic methods rely heavily on protecting groups and some require high dilution 

conditions to facilitate ring closure. These two aspects of a synthetic method are 

undesirable in modem synthetic design strategy at a time when environmental 

consequences of chemical reactions are seriously scrutinized. Commercial chemical 

suppliers also offer some tetraazacycloalkanes but at significantly higher cost.

A new methodology for the preparation of tetraazacycloalkanes which is

inexpensive and environmentally favorable is highly desirable. This chapter introduces a

new synthetic methodology which avoids the use of protecting groups and high dilution

2
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conditions. This new synthetic strategy is highly “atom economic,” incorporating all of the 

atoms built into the starting material into the product, reducing the waste stream of the

preparation of tetraazacycloalkanes are reviewed to further establish the rationale for the 

chemistry reported in this chapter.

H . BACKGROUND

Preparative Methods fo r  Tptraayacvcloalkanes

The first preparation of a tetraazacycloalkane was reported over 60 years ago when 

Van Alphen described what he believed to be cyclam (1)

(1,4,8,11-tetraazacyclotetradecane).25 The reaction of ethylenediamine and 1,3- 

dibromopropane afforded a linear tetraamine which was proposed to have cyclized to 1 

Schem e 1.1

process.24 In the following background section the other methods available for the

Br EBr Br

1

3
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upon treatment with another equivalent of dibromide (Scheme 1.1). Van Alphen described 

a yellow oily product which contained no primary amino groups and only secondary amino 

groups. Elemental analysis of the hydrochloride and nitrate salts of this crude product gave 

satisfactory evidence for the preparation of cyclam.

Twenty four years later, in 1961, Stetter and Mayer corroborated Van Alphen’s 

work by characterizing cyclam, which they had prepared by an independent method.26 This 

method allowed for the preparation of a series of structurally similar macrocycles with 

various ring sizes. This chemistry utilized nitrogen protecting groups and high dilution 

techniques to facilitate ring closure. As shown in Scheme 1.2 for cyclam, reaction of an 

a-halo ester with a deprotonated bistosylamide resulted in alkylahon of the tosylamide 

nitrogens. The esters were then converted to the acid chlorides and further elaborated to a 

cyclic bisamide. Reduction of the amide moieties and detosylation provided cyclam. While 

this approach was much better than Van Alphen’s early work and gave conclusive evidence 

Scheme 1.2

NH HNL
r ' l

Ts

NaOMe

MeOH 84% R=CH. 
82% R=H '

2Na-

THF
50%

LAH

75% 1

4
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of the preparation of cyclam, the use of protecting groups makes the procedure much 

longer synthetically and, in conjunction with the high dilution conditions, generates a 

significant waste stream.

Bosnich later published a modification of Van Alphen’s original synthesis. He 

claimed that the Stetter and Mayer approach, which was synthetically more elegant, was not 

practical.27 But the yield of cyclam reported by Bosnich was very poor (-5% ) making  

other synthetic approaches desirable.

In 1974 Richman and Atkins published a general route for the preparation of 

medium-ring and macrocyclic polyheteroatom compounds.28,29 This approach utilized 

nitrogen protecting groups and medium dilution conditions to perform the ring closure 

(Scheme 1.3). Stetter and Roos had described the utility of tosyl protecting groups for 

nitrogen atoms in the synthesis of macrocyclic tetraamines in 1954.30 The use of tosyl 

protecting groups for nitrogen, tosylate leaving groups instead of halides and DMF as the 

solvent were found to be the optimal reaction conditions for the Richman-Atkins method. 

Furthermore, this method afforded yields for tetraazacycloalkanes which were much 

improved with respect to the previous approaches. The obvious advantage of this approach 

is the convergent nature of the synthesis. Scheme 1.3 shows the synthesis of cyclen (2)

(1,4,7,10-tetraazacyclododecane) using this approach. Variation o f A and B allows for the 

preparation of a variety of macrocycles of different ring sizes with various numbers of 

heteroatoms. Furthermore, tosylation of amines and alcohols is typically a simple

transformation affording solids which can be easily purified by recrystallization.

5
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Scheme 1.3
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Ts» 1— v ✓Ts «  u  c oO Ts B O T s !<_ IJH j SO*

DMF
80%

^  *  

w ' U S .
90%

Table 1.1 lists yields for the cyclization step of the Richman-Atkins method for some

tetraazacycloalkanes.29 This cyclization reaction, however, has also been shown to be

sensitive to small changes in the reaction conditions. A survey of different macrocycles

prepared by this general method showed drastic variation in yields. For example, reports

from Atkins et al.29 and Rasshofer and Vogtle31 have yields which varied up to 50% for

the same macrocycle. Careful drying techniques for the DMF must be employed because

water has been cited as the major contaminant in these reactions leading to decreased yields.

Other factors such as the purity of the starting materials, the reaction temperature and time

can cause significant yield variation. Modifications have been reported which have

improved the methodology. For example, the use of KjCOj or Cs2COs as the base in situ

combines the deprotonation and cyclization steps. This modification shortens the

procedure by one step and was shown to afford improved yields.32'34 Lower reaction

temperatures and longer reaction times have also shown increased yields.33 Even with

6
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Table 1.1

Yields for the Cyclization Step for the Richman-Atkins Method 
(Detosylation not included in reported yield)

1,4,7,10-
Tetraazacyclododecane

(Cyclen)

1,4,7,10-
Tetraazacyclotridecane

1,4,8,11-
Tetraazacyclotetradecane

(Cyclam)

H - f J S .

80% 77% 70%

1,4,7,11-
Tetraazacyclotetradecane

(Isocyclam)
hi^ Y h

c P
H \—/ H

1,4,8,12-
Tetraazacyclopentadecane

CPH 'P jH

1,4,8,12-
Tetraazacyclohexadecane

h r^Y.Hcl D
H' k Y H

80% 58% 90%

these caveats, the Richman-Atkins approach has become the method of choice for the 

preparation of many tetraazacycloalkanes.

Another approach was published in 1972 which is not as versatile Richman-Atkins 

method. Barefield utilized a transition metal template in the preparation of cyclam starting 

from a linear tetraamine and aqueous glyoxal.35,36 The transition metal, in this case Ni2+, 

is used to coordinate to the 4 four amino nitrogen atoms. This effectively preorganizes the 

12-atom tetraamine chain so that the two primary amino groups are positioned to facilitate 

ring closure. The glyoxal condensation gives an cc-diimine which can be mildly reduced

7
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with NaBH4. Following demetallation, the tetraazacycloalkane is obtained (Scheme 1.4). 

This methodology has also allowed for the preparation o f

1,4,8,12-tetraazacyclopentadecane from 1,4,8,12-tetraazatridecane (45-48%)37. While this 

methodology did give better yields of cyclam (1) than other methods published at that time, 

there are some significant drawbacks. This methodology does not work for the preparation 

of cyclen (2). Furthermore, the use of perchlorate salts and the generation of cyanide 

waste makes this route less attractive.

Scheme 1.4

Comparison of all of the published methods for the preparation of 

tetraazacycloalkanes leads to the conclusion that new chemistry for their preparation would 

be highly desirable. The variability in the yields and the laborious procedures are 

inconvenient but can be accommodated. However, the environmentally unfriendly 

byproducts pose a greater concern, in their very nature and quantity, that cannot be 

ignored.

N NHz NKQOJj 6HjO

2) HCIO

2 CIO*

NaBH, 4 NaCN + Ni(CN)

2-CIO4 1
65%

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Regioselective Reduction of Aminals and Amidines

A possible alternative method based on the work of Yamamoto and Maruoka38 was 

proposed independently by Gary R. Weisman and Roger W. Alder.39 Yamamoto and 

Maruoka showed that aminal or amidine moieties could be reduced in a regioselective 

manner upon treatment with diisobutylaluminum hydride (DEBALH).

Yamamoto maintains that the regioselective reduction takes place directly through 

C-N <j bond cleavage by DEBALH. Alternatively, a mechanism involving iminium ion 

intermediates can be proposed. These two ideas are shown in Scheme 1.5. An aminal 3 

with the general structure shown is deprotonated upon introduction of DIB ALH solution to 

4. Yamamoto proposes, that in the presence of excess DIB ALH, the tertiary amine  is also 

Schem e 1.5

v a w iiJ l  »
R . ' V % K ( B u),

Alf/BufeHf  AIH(Bu i)z

A1(/Bu)2HReduction of Imine 
Intermediate by DIBALH

Ri" (^ Ai(/Bu)2 
R2

6

Rt and R2 can be aryl or alkyl

9
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coordinated to an aluminum atom of DIB ALH. If this is correct, the equilibrium shown 

between 4 and 5 could also be facilitated. Imine 5 would then be reduced by DIB ALH 

resulting in species 6. Upon aqueous workup, 6 affords the desired ring opened product 

Direct C-N a  bond reductive cleavage o f 4 would also lead to 6 as Yamamoto states in his 

paper. While it is unknown which mechanism is operative, ring opening is “unidirectional” 

and preferentially gives a single isomeric product Amidine moieties also undergo this 

chemistry to give the same product from the analogous ring system. For example, amidine 

7 would react with DIB ALH to reduce the amidine  moiety affording 4, which as 

previously described, yields only one ring opened product. Furthermore, this reduction 

proceeded in good to excellent yield in almost all cases reported by Yamamoto.

Alder and coworkers40,41 and Alder, Weisman and coworkers42 have also utilized 

this chemistry in the preparation o f large cyclic diamines. Fused bicyclic ring systems 

which contained aminal or amidine  moieties in the ring fusion were prepared by known 

methods or purchased commercially. Reduction with DIB ALH resulted in regioselective 

ring opening as predicted. Some examples of this chemistry are shown in Scheme 1.6. 

Schem e 1.6

DIBALH

H

DIBALH

n= 0, m= 1
n= m= 1

n= 0, m= 1 
n= m= 1 r»= 1. m=2 DBU 

n = 1. m=4 DBNn= 1, m= 2 
n= 1, m=4
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Application of this reductive ring expansion methodology to the synthesis of 

macrocyclic tetraamines would require that the aminal or amidine moieties be incorporated 

into the ring fusion of a tricyclic precursor. Scheme 1.7 illustrates this idea in 

retrosynthetic form. The two carbon unit inserted in the cyclization step functions as an 

endo-template.43 Unlike an exo or external template (Figure 1. lc), an endo template is not 

removed following the ring closure reaction. This concept is illustrated in Figure 1.1. 

There are two types of endo-templates which operate by forming smaller rings which are 

later expanded. The first type of templating operates by insertion of a side chain into a 

smaller ring (Figure 1.1a). This type will be discussed later in this chapter. The second 

type of templating involves cleaving a bond of a bicyclic ring system to afford a larger 

monocyclic ring (Figure 1.1b). The regioselective reduction with DIBALH of a vicinal 

bisaminal such as 8 or bisamidine 9 should perform this operation twice resulting in the 

expected doubly ring expanded target shown in Scheme 1.7. The endo-template becomes 

Schem e 1.7

Target

Tricyclic Vicinal 
BisamidineTricyclicVicinal

Bisaminal

10

11
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Figure l . l 43: C yclization Using “Endo-Templating” and “Exo-Templating”

incorporated into the macrocyclic structure by means of this potentially highly 

regioselective ring expansion reaction. This idea avoids difficult macrocyclic ring closure 

reactions by closing normal-sized rings and the macrocyclic tetraamine is formed in a 

highly atom economic manner. Therefore, to investigate this chemistry, linear tetraamine 

10 must be cyclized in some manner to give the respective vicinal bisaminal or bisamidine.

Preparative Methods for Bisaminals and Bisamidines

The formation of aminals is usually effected by the reaction of a diamine  to an 

aldehyde or a ketone.44 The condensation of glyoxal with acyclic tetraamines of various 

chain length has been reported in the literature to be a simple way to prepare tricyclic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

external template

bisaminals.45’48

12



The preparation of cyclic vicinal bisamidines suitable for reduction to

tetraazacycloalkanes has not been reported in the literature.49,50 However, there have been

some reports on vicinal bisamidines of oxalic acid. In 1898 Forssell reported that the 

reaction o f ethylenediamine with dithiooxamide produced 2,2’ -biimidazoline (11), a

this procedure by introducing bromoethane to dithiooxamide prior to the addition of the

reactivity of the thioamide carbon towards nucleophilic attack.54 Under these modified 

conditions, Wang and Bauman prepared 2,2’-biimidazoline in 77% yield.

Reggel et al. also reported the preparation of l l . 55 N-Lithioethylenediamine was 

reported to catalyze the reaction of ethylenediamine to afford 11, hydrogen and ammonia in 

a variety o f aromatic hydrocarbons. N-Sodioethylenediamine was also reported to provide 

11 in addition to other unidentified products. The identity of the aromatic hydrocarbon 

Schem e 1.8

bicyclic vicinal bisamidine.51 The synthesis of 11 is shown in Scheme 1.8. This result 

was later confirmed by Lehr and Erlenmeyer in 1944.52 Wang and B auman later modified

diamine.53 The S-alkylation of thioamides has been well documented to result in improved

/  v 
h 2n  n h 2

h

EtOH
H

11

13
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was reported to be significant and the best results were found when tetralin was used. 

Similar results were reported when toluene, ethylbenzene, isopropylbenzene and stilbene 

(cis and trans) were substimted for tetralin. There were few conclusions drawn by the 

authors to explain these results. Wotiz et al. also report that 11 was among the many 

products that were formed when ethylenediamine was treated with a strong base or alkali 

metal in the absence of an aromatic hydrocarbon.56 Wotiz proposes that 

N-lithioethylenediamine can undergo a $ hydride elimination to form a metal hydride and 

an imine. The metal hydride can then regenerate N-lithioethylenediamine. Through a 

series of elimination and substitution reactions, 11 is formed in addition to N I^ and H2- 

This approach, however, is not an appropriate synthetic pathway to prepare tricyclic vicinal 

bisamidines because of the many products which would be formed when a substrate other 

than a symmetrical diamine was used.

Scheme 1.9

reflux
r~ \ Li

H2N NH - 
Li* UH

H

H2N NH -
- n h 3 H

11

14
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Cyanogen and derivatives thereof have also been reported in the literature to react 

with amines to afford bisamidines. Woodbum reported the synthesis of 11 from 

ethylenediamine and cyanogen, as well as the synthesis of the analogous bisamidine 

product from the reaction of 1,3-propanediamine and cyanogen.57,58 W eidinger and Kranz 

prepared 2,2’-biimidazoline (11) from ethylenediamine and ethane diimidic acid 

dimethylester 12.59 The nitrile carbons of cyanogen undergo nucleophilic attack by sodium 

methoxide in methanol to afford 12. (Scheme 1.10). Searches of the chemical literature 

did not identify other methods for the preparation of cyclic vicinal bisamidines.

Schem e 1.10

NaOMe /°CH3 H2N NH2 r ^ l . N s
Cyanogen H3CO NH -MeOH Nv-yanogen 87% 3 80°C H

12 72% 11

15
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HI. RESULTS AND DISCUSSION

Synthesis o f 1.4-7.1fl-Tetraa?flr.vclododecane ('Cvclent

The first target chosen for this study was cyclen (2). Unfortunately, the bisaminal 

precursor required was unavailable. Jazwinski reported that condensation of glyoxal with 

triethylenetetraamine results in the isomer containing more six membered rings 13 and 

does not afford the desired isomer 14 (Scheme 1.11).45 

Schem e 1.11

There has been some confusion concerning this reaction in the literature. Jazwinski 

reports the major product to be cis-13. Sandnes et al. report in the patent literature that 

cyclen was prepared, by a route different from the DIBALH route, via tricyclic precursor

triethylenetetraamine and glyoxal in CH^CN was rim in our laboratories and evaluated by

reaction. They are shown in Scheme 1.12. The major product of the reaction was 

conclusively assigned as isomer cis-13 having two nonequivalent methine carbons and

Major Product 
Reported by Jazwinski 

c/s-13

Major Product 
Reported by Sandnes 

14

14 which was prepared by reaction of triethylenetetraamine and glyoxal.60 The reaction of

13C NMR only. There are four possible bisaminal isomers which could be formed in this

16
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Scheme 1.12

C
NH NH2

cis-13 (rans-13 «s-14 ftans-14

three methylene carbons. Furthermore, these resonances are dynamically broadened as a

consistent with the expected chemical shifts for the other isomers. Unfortunately, these 

resonances could not be assigned to specific species.

As mentioned previously, tricyclic vicinal bisamidines suitable for this project have 

not been reported in the literature. However, the reaction of ethylenediamine with 

dithiooxamide or cyanogen derivatives did afford 2,2’ -biimidazoline (11) preferentially 

over 15 (Scheme 1.13). The reaction of dithiooxamide with triethylenetetraamine would in 

theory force the insertion to proceed with the same regiochemistry as 11 to afford 

bisamidine 16 (Scheme 1.14) which is the only logical bisamidine product. Dithiooxamide 

Schem e 1.13

result of the enantiomerization of cis-13. The I3C chemical shifts corresponded to those 

reported by Jazwinski for czs-13.45 There were many other resonances which were

H H

H H
15

not observed
11

17
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Scheme 1.14
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16

was chosen as the acylating agent because it was commercially available and, furthermore, 

for this chemistry to be a viable alternative to other methods for the preparation of cyclen, 

the use of the very hazardous cyanogen must be avoided. Utilizing the conditions for the 

preparation of 2,2’-biimidazoline (11) reported by Wang and Bauman, bisamidine 16 was 

prepared (Scheme 1.14). Introduction of bromoethane to a slurry of dithiooxamide in 

absolute EtOH prepared putative intermediate 17. Excess bromoethane was removed by 

short path vacuum distillation to avoid alkylation of species other than dithiooxamide. The 

orange solid was again suspended in EtOH and a solution of triethylenetetraamine in EtOH 

was then added. The solution became homogeneous upon heating and afforded 16 as a 

white solid following sublimation. The volatile byproducts generated in this reaction 

(presumed EtSH and NHp were trapped by a gas scrubber charged with commercial 

laundry bleach. It was later discovered that the bleach traps were not efficient and 30% 

aqueous was found to work more effectively. This procedure was reported in the 

Journal of Organic Chemistry .6l

Upon scale up of this procedure the isolation of punitive thioimidoester 17 was

18
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attempted. In theory, this salt could be prepared in large quantities and stored for further 

conversion to 16 or other bisamidines. Surprisingly, all attempts to isolate 17 resulted in 

the recovery of dithiooxamide starting material. We contacted Prof. J.E. Bauman who 

confirmed that, although they stated in their publication53 on the preparation of 11 that 

ethanethiol was generated, the identities of the volatile reaction byproducts were never 

determined.62,63 If thioimidoester 17 was not present in the reaction mixture, it is unlikely 

that ethanethiol was evolved in this reaction. This hypothesis is supported by a report that 

alkylation of dithiooxamide with alkyl halides is not a facile reaction.64

At this juncture, we began a series of experiments to establish what species were 

synthetically relevant in this reaction. Dithiooxamide was treated with excess bromoethane 

in EtOH as described for the preparation of 16. However, when the solvent was removed 

by distillation, elemental analysis verified that the only species present in the residue was 

dithiooxamide. Unfortunately this does not prove that 17 was not formed. The alkylation 

of dithiooxamide by EtBr is a reversible reaction and EtBr is a highly volatile material. 

These two conditions allow for the possibility that 17 is formed and, in the process of 

removing the excess EtBr, the equilibrium of the reaction is driven back towards the 

reagents by the removal of EtBr. Therefore, under the conditions utilized for the 

preparation of 16, it is unlikely that 17 is active as the acylating agent.

Furthermore, the reaction of dithiooxamide and triethylenetetraamine in the absence

of EtBr afforded the bisamidine with no decrease in yield. Therefore, EtBr is not required

in the reaction to prepare 16. However, EtBr could, in theory, be serving as an activating

19
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reagent, increasing the rate of the reaction. While this is unlikely because the solvent and 

excess EtBr are removed prior to the introduction of the tetraamine, a series of NMR 

experiments were carried out to disprove this hypothesis.

Three controls were run so the identity of all species in solution of significant 

concentration could be identified in either DMSO-eL or EtOD-d,. The chemical shifts foro 0

dithiooxamide and EtBr are given in Table 1.2. The solubility of dithiooxamide in EtOH at

room temperature is so low that it is not detectable by NMR. Therefore, DMSO was used

in order to observe all species present in the reaction. However, the reaction solvent is

EtOH and it is also relevant to observe those species soluble in the reaction media. The

initial experiment was the reaction of dithiooxamide and EtBr in EtOH. This heterogeneous

mixture was concentrated by rotary evaporation and the residue was suspended in

DMSO-dj. All of the EtBr had been removed and only dithiooxamide was observed in the

NMR sample (Entry 1 of Table 1.2). This experiment, however, does not prove that 17

was not present prior to rotary evaporation. A second experiment was performed to

address this question. The same reaction was carried out using EtOD-dtf as the reaction

solvent. The supernatant was then removed by syringe and evaluated directly by NMR

(Entry 2 Table 1.2). An orange insoluble solid remained in the reaction flask. As can be

seen in Table 1.1 the only species soluble in EtOD-d^ was EtBr. DMSO-dg was then added

to the reaction flask and the orange solid and any remaining supernatant were evaluated by

NMR as well (Entry 3 Table 1.2). The NMR spectrum for the ethyl groups of 17 would

be expected to be dramatically different than those of EtBr. The observed resonances in the

20
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Table 1.2: Reaction of Dithiooxamide and Bromoethane. 
Reaction Conditions and NMR Data for the Reaction Products

Sample Reaction NMR 8 ppm 8 ppm 8 ppm 5 ppm

A

S v nh2
y - i

h2n s control DMSO-de 9.58 10.18

B ^ B r control DMSO-d$ 1.63 3.40

C \ ^ B r control EtOD-dg 1.63 3.43

1

s v nh2
y - i

h2n s  
+

\ ^ B r

EtOH, 4 h, 
60°C 

remove 
solvent

DMSO-dg 9.59 10.15

2

S v nh2
y - i

h2n s  
+

\ ^ B r

EtOD-dg 
4 h, 60°C 

supernatant EtOD-d^ 1.63 3.40

3

S v nh2
y - i

h2n s  
+

V— Br

EtOD-d*
4h,60°C

solids DMSO-dg 1.58 3.49 9.58 10.19
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experimental spectrum were consistent with the control spectra for dithiooxamide and EtBr. 

Therefore, thioimidoester 17 is not present in any quantity detectable by NMR and is not 

synthetically relevant in the preparation of 16 under the conditions employed.

One significant aspect of these observations is that the volatile reaction products 

evolved must be ammonia and hydrogen sulfide, not ammonia and ethanethiol. While 

hydrogen sulfide is convenient to trap (30% aqueous NaOH instead o f l^C ^) it is much 

more hazardous than ethanethiol.65 This information was published as a correction to our 

original paper in the Journal o f Organic Chemistry.66 The modified reaction has been 

carried out on up to 10 g of dithiooxamide starting material and 16 was obtained in 78% 

yield following sublimation (16 can also be recrystallized from toluene). The bisamidine 

was found to be hydrolytically labile. This will be discussed later in this section.

The reduction of 16 with DIBALH afforded cyclen (2) which was the only product 

observed in this reaction (Scheme 1.15). We originally used the NaF procedure for the 

workup of this reaction 61 The NaF procedure is a common method for the workup of 

DIBALH reductions67 and was also used by Yamamoto.38 The product can be isolated 

Schem e 1.15

I ^ 1) DIBALH, toluene
 16 h, reflux

2) NaF. HaO 
83%

1) DIBALH, toluene 
16 h, reflux

2) KOH, H20  

89%

16 2 16
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using the NaF procedure, but a Soxhlet extraction of all solids generated in the reaction was 

required, making this method more laborious. We later modified the reaction employing an 

aqueous KOH workup for the DIBALH reduction. The aqueous KOH method avoids 

heterogeneous mixtures allowing for a simple liquid-liquid extraction to isolate the crude 

product. The reduction has been carried out utilizing the aqueous KOH method on up to 10 

g of bisamidine with a yield of 89% (Scheme 1.15).

At the request of the editors o f Organic Syntheses this new method for the 

preparation of cyclen has been submitted for publication. The procedure was written to 

include the modifications in the reduction workup and is currently undergoing the checking 

process. The procedure as well as the discussion section, as submitted to Organic 

Syntheses,68 can be found in the Appendix Section of this dissertation.

This two step preparation o f cyclen has an overall yield of 69% from 

triethylenetetraamine. The starting materials are relatively inexpensive, commercially 

available materials. The only significant drawback to this chemistry is the evolution of 

hydrogen sulfide. However, on the modest scale of 10 g, the quantity of hydrogen sulfide 

generated can be easily trapped with aqueous-base filled gas scrubbing bottles. The 

simple, inexpensive method reported here to prepare cyclen is a viable alternative to other 

chemical preparations previously discussed. This two-step approach is synthetically much 

simpler than the Richman-Atkins method which was considered to be the method of choice 

to prepare cyclen. A 52% yield was the best result found in the chemical literature for

preparation of the tetrahydrochloride salt of cyclen using the Richman-Atkins method.69
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Scheme 1.16
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This result was for the cyclization and detosylation steps and does not include the

preparation of the two precursors.

Recently, a new route for the preparation of cyclen (2), cyclam (1) and 13[ane]N4

(19) has recently been developed by Herve and coworkers.70 This new method also boasts 
»

high atom economy using a diketone as an exo-template. As shown in Scheme 1.16, a

linear tetraamine is reacted with 2,3-butanedione to afford a tricyclic vicinal bisaminal. The

bisaminal can then be further cyclized to afford a tetracyclic bisaminal. The exo-template

(2,3-butanedione) is then removed in good yield by acidic hydrolysis. This three step
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sequence affords cyclen as the hydrochloride salt in an overall yield of approximately

yield. This process, however, includes an extra step and yields are lower, but this 

method does avoid HjS and DIBALH which are advantages over our approach. This route 

is a viable alternative to our methodology.

Synthesis of 1.4.7.10-Tfttraa?acvclotridecane.

The required tetraamine (1,4,7,10-tetraazaundecane) for the preparation of 

bisamidine 18 was commercially available as the tetrahydrochloride salt. Isolation of the 

free amine followed by reaction with dithiooxamide under the same conditions as used for 

the preparation of 16 afforded bisamidine 18. This reaction has been carried out on up to 

a 4 gram scale in 58% yield. Reduction of bisamidine 18 with DIBALH cleanly gave

1,4,7,10-tetraazacyclotridecane (19) in 89% yield after sublimation. This sequence is 

shown in Scheme 1.17. Hung has reported the synthesis of 19 using the Richman-Atkins- 

Stetter approach.71 The synthetic sequence included four steps from 1,4,7,10- 

Schem e 1.17

50%.70 Cyclam (1) and 13[ane]N4 (19) were also reported to be prepared in comparable

2.) NaOH. Hj,0 
89%

1.) DIBALH, Toluene 
reflux, 16 h

18 19
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tetraazaundecane and had an overall yield reported to be 17-26%. Our new methodology 

provided 1,4,7,10-tetraazacyclotridecane in two steps from 1,4,7,10-tetraazaundecane in 

52% yield.

Synthesis o f  1.4.8.11 -Tp.traa?acvcIotetradecane ('Cvclami

Jazwinski reported the condensation of glyoxal with 1,3-propanediamine.45 In this

case, the major product was reported to be 22 ' -bihexahydropyrimidine 20 whereby the 

two-carbon unit was inserted such that the desired bisaminal with two 6-membered rings 

was formed. Jazwinski further elaborated 20 to tricyclic bisaminal 21 and determined the 

stereochemistry of the ring fusion to be trems.

Condensation of glyoxal with 1,3-propanediamine in our laboratory gave 2,2’- 

bihexahydropyrimidine in a 37% yield under the conditions reported by Jazwinski. In our 

hands, treatment of 2,2’-bihexahydropyrimidine (20), prepared by the literature method, 

with glyoxal followed by reduction with NaBH4 did not give a clean reaction product but a 

mixture of two species (Scheme 1.18). The major product was identified as the trans 

-perhydrotetraazaphenathrene (trans-21) reported by Jazwinski. The spectral 

Schem e 1.18

2) NaBH,2) NaBH4 
HzO 
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Scheme 1.19
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characteristics of the minor product were consistent with the cis isomer (cis-21). NMR 

analysis estimated the composition of this mixture to be approximately 80:20 (trans:ds). 

The trans isomer was purified by fractional recrystallization, however, the postulated cis 

isomer was never isolated in sufficient purity to be fully characterized.

DIBALH reduction of the crude bisaminal mixture believed to be trans!cis 

perhydrotetraazaphenanthrene afforded a mixture of trans-21 and cyclam (1). 

Surprisingly, the minor component postulated to be cis-21 had been completely consumed 

and the trans-21 starting material was almost quantitatively recovered (Scheme 1.19).

dithiooxamide provided bisamidine 23 (Scheme 1.20). However there was another 

Schem e 1.20

Reaction of N,N’ -bis-(2-aminopropyl)-ethylenediamine (22) with

22 23 24
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complication which had not occurred in the previously discussed bisamidine syntheses. 

The major component of the reaction mixture 23, was contaminated with a second species 

This species was determined by NMR analysis to be 24. Hydrolysis of 23 by one 

equivalent of H^O could give rise to 24.

This hypothesis was confirmed by a series of NMR experiments on the crude 

reaction product Scheme 1.21 shows the results of these experiments. Hydrolysis of the 

crude reaction mixture with D20  in an NMR tube gave a single species in solution 

consistent with 25. Rotary evaporation of the solvent with added absolute EtOH to 

azeotropically remove the water resulted in partial dehydration of bisamide 25. NMR 

analysis (CDCLj) after rotary evaporation identified bisamide 25 as the major component 

along with dehydrated species 24. This result suggested that the crude product from the 

reaction of dithiooxamide and the tetraamine 22 might also be dehydrated to give only 

bisamidine 23. Azeotropic distillation of the crude bisamidine mixture with toluene for 3 

days gave 23 of sufficient purity (-90%) for attempted reduction. The yield of 23 was 

approximately 25% following dehydration. Further discussion of the hydrolysis of 

tricyclic bisamidines can be found later in this section.

Schem e 1.21
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Scheme 1.22

1) DIBALH, toluene 
4 d, reflux

2) NaF, HjO 2.) NaOH. HjO 
5 d

1) LiAIH4, THF

23 trans-21 23

Unfortunately, DIBALH reduction of bisamidine 23 resulted in trans-21 as the 

only product. No starting material was observed nor was further reduction to cyclam.

Even under conditions using longer reaction times o r large excesses of DIBALH only 

trans-21 was observed. Reduction of 23 with LiAlH4 similarly resulted in the formation 

o f trans-21 only (Scheme 1.22). From these results it is reasonable to propose that 

bisamidine 23 is initially reduced such that the two hydrides have been delivered trans to 

each other. This intermediate is common to the previously discussed failed reduction of 

trans-21 and further reduction of this species to cyclam  is apparently unfavorable.

However, the reduction of the crude translcis-21 gave cyclam and unreacted 

trans-21. Therefore, it is reasonable that the trans stereochemistry of the ring junction is 

the controlling factor in the susceptibility of this ring system towards reduction. We have 

rationalized two qualitative arguments to explain the observed results. As shown in Scheme 

1.23, the reduction process for each aminal moiety of the cisftrans-21 mixture can be 

divided into three steps. The first step is deprotonation of the aminal to afford cis-26 and 

trans-26. The second step, for an imine mediated mechanism, is the reversible process to 

afford imines 27 and 27’. The final step is the DIBALH reduction of 27 and 27’. It is
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Scheme 1.23
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possible that trans-21 is robust towards reduction because of strain introduced into the 

transition state of a rate determining  step from trans-26 to 27. Alternatively, there is a 

pre-equilibrium of trans-26 and 27 preceding a rate determining step. Strain introduced 

into 27 may result in a large difference in energy between trans-26 and 27 making this 

equilibrium largely favor trans-26 over 27. In either case, the pathway from cis-26 to 

cyclam must not introduce strain in the transition state that leads to 27* or in inline 27* 

relative to the trans isomer.

Synthesis o f  Benzocvclam

This methodology was extended to the preparation of benzocyclam. The 

preparation of benzocyclam is unreported in the literature but there is a report on its 

photoelectron (PE) spectrum.72 The introduction of one unsaturation into the central ring 

of this system will distort the conformation of the reactive intermediate 29, with respect to
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the saturated case (21), which might facilitate ring opening. Furthermore, as can be seen in 

Scheme 1.24, if an equilibrium between 29 and 30 was established, species 30 should be 

favored as a result of the electronic effect of the adjacent aromatic ring. Either or both of 

these factors may be operative. In any event, both factors would facilitate the formation of 

the ring opened product 30.

N,N’ -bis(3-aminopropyl)-1,2-phenylenediamine (31) is the appropriate tetraamine 

required for the preparation of a tricyclic bisamidine precursor for benzocyclam (Scheme 

1.24). This tetraamine was unreported in the literature. However the preparation of a 

possible precursor, N,N’-bis-(2-cyanoethyl)-1,2-phenylenediamine (32), had been 

reported.73 Reaction of 1,2-phenylenediamine with acrylonitrile in CH3CN under the 

catalysis of cupric acetate (Cu(OAc)2) did afford 32 in 22% yield after recrystallization 

(Scheme 1.25). Even though this yield is poor, the low cost of the reagents and the ability 

to easily run this reaction on 50-100 gram scale allows for the preparation of multi-gram 

quantities of 32.

Reduction of 32 with AlCl,/NaBH 74 in THF afforded3 4

N,N’ -bis(3-aminopropyl)-1,2-phenylenediamine (31) in 61% yield following Kugelrohr
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Scheme 1.25

f^CN  
• ^ . N H  AlClj/NaBHi

NH Cu(OAc)2 (cat) 
2 CH3CN

22%

NH ™ F
l^ .C N  61%

32 31

distillation (Scheme 1.24). The reduction was also performed using BH^THF in -95% 

yield on less than a one gram scale. Upon scale up (-5 gram scale), these yields fell 

dramatically and typically a 50% yield was realized. The AlCl3/NaBH4 method was 

chosen because the BHL'THF method was more laborious and expensive while affording 

comparable yields. 1,2-Phenylenediamines are susceptible to oxidation as free amines and, 

as a result, 31 is extremely labile towards oxidation by atmospheric oxygen. This 

oxidation can be avoided by treating 1,2-phenylenediamines with strong acids and storing 

them as salts. In the workup of the AlCl3/NaBH4 reduction all solutions were carefully 

purged of oxygen and kept under N2. A continuous extraction was employed in order to 

isolate the product from the basic reaction medium and the operation was carried out under 

a N , atmosphere. The crude product was a brown oil which was purified to a yellowed oil 

which solidified in the receiver following Kugelrohr distillation.

Unfortunately, cyclization of 31 with dithiooxamide did not provide desired 

bisamidine 28 (Scheme 1.26). However, the condensation of 31 with glyoxal in 

EtOH/CHjCN (1:1) did afford 33 as a mixture of diastereomers in 89% yield (Scheme 

1.27). The diastereomeric ratio o f this mixture was estimated to be 3:1 by lH NMR
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Scheme 1.26
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integration. This mixture was robust towards oxidation and showed no signs of oxidative 

degradation after three weeks of storage. The two diastereomers were never separated and 

it was never determined conclusively which isomer was in greater abundance in the reaction 

product.

Scheme 1.27

r ^ i  V / 1 ^
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89% —
31 33

Reduction of 33 with DIBALH gave benzocyclam (34) (Scheme 1.28). An 

ethanolic solution of the crude reaction product was treated with 12M HC1 to prohibit 

oxidation. Concentration o f this solution by rotary evaporation gave a pink powder. 

Scheme 1.28
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Trituration of this powder with hot EtOH removed the color from the solid and afforded a 

white powder following vacuum filtration. Liberation of the free amine by base extraction 

afforded 34 in a 57% yield.

Attempted Synthesis of a Bisamidine Precursor for 1.4.7.11 -Terraaracvclopentadecane and 

Alternative Precursor for 1.4.7 1Q-Tfttraa?arvclotridecane-

Reaction of N,N’ -bis(2-aminoethyl)-1,3-propanediamine with dithiooxamide might 

be expected to afford bisamidine 35, which would be another precursor to

1,4,7,10-tetraazacyclotridecane (19). This sequence is shown in Scheme 1.29. 

Unfortunately, this reaction did not proceed cleanly. Spectra of the crude product did 

support product formation but there were multiple unexplained resonances also present 

which did not correspond with starting material or hydrolyzed bisamidine product. These 

signals are most likely due to either product decomposition or alternate chemistry leading to 

unwanted byproducts. Lengthening or shortening reaction time did not enhance the ratio of 

product to the impurities and conditions to optimize the yield of the bisaminal formation 

Schem e 1.29
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were not found. To further complicate matters, purification of the bisamidine product was 

unsuccessful.

Similar difficulties were encountered in the reaction of 

N,N’ -bis(3-aminopropyl)-1,3-propanediamine with dithiooxamide. This reaction should 

provide 36 which, following successful DIBALH reduction, would afford 37 (Scheme 

1.30). There were NMR data which supported product formation but the identity of the 

majority of material in the sample is unknown. Purification of this crude mixture was 

unsuccessful and purified 36 was never obtained.

Schem e 1.30

Investigation of Reagents for Bisamidine Formation Other Than Dithiooxamide.

Dithiooxamide, while effective for the preparation tricyclic bisamidines, was by far 

the most expensive reagent in this new methodology. More significantly, the generation of 

hydrogen sulfide also makes the scale up of these reactions less attractive because of 

inefficient trapping of the gaseous byproducts would be dangerous. Therefore, finding an 

alternative reagent for introduction of the two amidine carbons would be an improvement in 

the methodology.

DIBALH

36 37
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Simple, readily available, reagents such as oxamide, diethyloxalate and oxalic acid 

all failed to provide 16 when reacted with triethylenetetraamine under a variety of 

conditions. As previously mentioned, another alternative is cyanogen or a derivative 

thereof. The Pinner method for the formation of amidines from nitriles has been well 

documented.49,75*76 In this method, a nitrile is converted to an imido ester, which is 

converted to the amidine. A derivative of cyanogen such as ethane diimidic acid 

dimethylester 12 {.Scheme 1.10, pg 15) would be an ideal reagent since the byproducts 

would be an alcohol and an amine, posing no difficulties. There are procedures for the safe 

generation and use of cyanogen, but overall cyanogen presents a far greater problem than 

hydrogen sulfide.77'79 Therefore, another means of preparing 12 is desirable.

Kantlehner et al. have investigated the alkylation of an oxamide derivative with 

trimethyloxonium tetrafluoroborate.80 They have reported that initial treatment of 

N,N,N’ ,N’ -tetramethyloxamide (38) with trimethyloxonium tetrafluoroborate affords 39 

where one oxygen has undergone alkylation (Scheme 1.31). This species then reacted with 

an equivalent of amine to give 40. Further reaction of 40 with trimethyloxonium 

tetrafluoroborate was incomplete but did provide dication 41. Introduction of another 

equivalent of amine however, afforded three products; the expected dication of 

tetrakis-(dimethylamino)-ethylene 42,40 and a quaternary ammonium salt. Therefore 41 

would not be an appropriate candidate for a dithiooxamide synthon because introduction of 

triethylenetetraamine would likely lead to a mixture of products.

However, we hypothesized that the dication of tetrakis-(ciimethylamino)-ethylene

36
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Scheme 1.31
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may be a suitable candidate. The appeal of this synthon is, during the acylation reaction, 

dimethylamine would be the byproduct and the reaction could be driven by the generation 

of gaseous byproducts. This idea is shown in Scheme 1.32 where dimethylamine is the 

low molecular weight amine byproduct. Fortunately, dications such as 42 are readily 

available from oxidation of the appropriate tetraaminoethylene.81 Treatment of an ether 

solution of tetrakis-(dimethylamino)-ethylene (43) with bromine according to the literature 

procedure81 afforded the desired oxidized product 44 in 93% yield (Scheme 1.33). 

Schem e 1.32

+ 4NH(CH3)2 + 2HX

4 2
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Scheme 1.33
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Treatment of 44 with triethylenetetraamine did not cleanly provide 16. The most promising 

result was obtained from the neat reaction of 44 and triethylenetetraamine. While evidence 

for the formation of 16 could be seen by NMR, the majority of the reaction product was 

unidentified. It is possible that the competing polymerization reaction between 44 and 

triethylenetetraamine was more facile than the cyclization reaction to afford 16 under the 

conditions investigated. Furthermore, a dealkylation reaction could take place which would 

transfer a methyl group to triethylenetetraamine complicating the formation of 16. Other 

reaction conditions included the use of alcoholic solvents (ethanol, isopropanol and 

n-butanol) but we were unable to find conditions that gave 16 as the major product. These 

solvents could also react with 44 to give thioimidic esters causing further complications in 

the reaction. At this juncture, it was determined that dithiooxamide was the best synthon 

for this chemistry and further attempts to replace it were abandoned.

Attempted Preparation of DibenTofftfraara Macrocvcles

Thummel has reported the preparation of a number of tricyclic bibenzimidazoles and
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the conditions required to prepare these substrates from 2,2’-bibenzimidazole (45).82

Thummel et al. also reported that species 46 (see Scheme 1.34), where the central ring is a 

six membered ring, could not be prepared under any conditions they employed. 

Furthermore, there are only two citations in the literature for this compound and both report 

poor yields (-10% ) for the desired product.83,84

2,2’-Bibenzimidazole (45) was required for the preparation of 6,7- 

dihydropyrazino[ 1,2-a:4,3-a’]bisbenzimidazole (46). The preparation of 2,2’- 

bibenzimidazole has been reported by Fieselmann.85 The reaction of 1,2- 

phenylenediamine and oxamide afforded 45 in 68% yield in our hands. A method was 

developed to cyclize this substrate to 46 by deprotonation of 45 with NaH in DMF 

followed by the addition of 1,2-bis[(p-tolylsulfonyl)oxy]ethane. The procedure used was 

similar to the method reported by Roechling.83 The mixture was heated at reflux for 7 days 

and afforded 8% yield of 46 after recrystallization. Possible complications leading to the 

low yield could arise from elimination reactions which take place on the alkylating agent. 

Ring closure might also be slow as a result of the strain introduced in addition to the poor 

Schem e 1.34
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Scheme 1.35

DIBALH

47 n = 1

trajectory the incoming nucleophile is forced to accommodate in this reaction. 

Nevertheless, 46 was obtained in sufficient quantity and purity for attempted reduction.

The regioselective DIBALH reduction of 46 was attempted using the conditions 

which were found to be successful with other bisamidines. Unfortunately, the reaction did 

not proceed cleanly and the identities of the reaction product(s) were never conclusively 

determined (Scheme 1.35). Increased reaction times and increasing the number of 

equivalents of reducing agent did not improve the results. The best hypothesis for the 

outcome of this reaction supports incomplete reduction of 46. MS data gave a molecular 

ion which was consistent with cleavage of only one amidine moiety of 46. Furthermore, 

compound 47, which was also prepared from 2,2’-bibenzimidazole, also failed to undergo 

clean reduction by DIBALH. As a result, no dibenzotetraaza-macrocycles have been 

prepared by this methodology.

Attempted Preparation of Bisamidines from 2.2>-Biimidazoline

There is a potential synthetic pathway to many different bisamidines starting from

2,2’ -biimidazoline (11). For example, alkylation o f 11 with a ditosylate or a dihalide

40
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Scheme 1.36

DIBALH

11

could lead to tricyclic vicinal bisamidines. The significance of establishing this 

methodology would be that this route could allow for the preparation of C-functionalized 

tetraazacycloalkanes. This idea is shown in Scheme 1.36. It would be much simpler to 

prepare C-functionalized analogues from the parent bisamidine, 11, than to go back into 

the synthetic method and develop a strategy to incorporate functional groups into the carbon 

backbone of the linear tetraamine.

The initial target for this idea was to prepare bisamidine 16, the cyclen precursor. 

This was an ideal choice because the amidine was already well characterized and the ring 

closure forms a six membered ring. 2,2’-Biimidazoline was prepared in 56% yield by the 

reaction of ethylenediamine and dithiooxamide. The product was purified by 

recrystallization from CHjCN and was found to be insoluble in most common solvents. 

1,2-Dibromoethane was introduced to a suspension of 11, KI and KjCOj in CK^CN and 

the resulting mixture was heated at reflux for 20 hours (Scheme 1.37). Unfortunately, ring 

closure was not facile and no evidence for the formation of 16 was found by NMR. The 

ability of the 2,2’ -biimidazoline to hydrogen bond intermolecularly might decrease the 

nucleophilicity of the amidine moiety making  the reaction less favorable than anticipated.
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Reaction of 2,2’ -biimidazoline with hexamethyldisilizane (HMDS) 48 has been reported in 

the literature to afford 49 in good yield.86 49 was prepared by this method. As shown in 

Scheme 1.37, the cyclization reaction between 49 and propyleneglycol ditosylate 

unfortunately did not afford bisamidine 35 after refluxing in CHjCN for 1 day. While 

these few attempts at preparing a tricyclic bisamidine from 2,2 ’ -biimidazoline were not 

successful, further attempts under different reaction conditions such as different solvents 

(DMSO, DMF or DMPU) or using the sodium salt of 2,2’-biimidazoline need to be 

explored.

Hvdrolvsis of Vicinal Bisamidines

As mentioned previously, tricyclic vicinal bisamidines react with water readily to

form bisamides. The hydrolyses of bisamidines 16,18 and 23 have been investigated.
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Scheme 1.38
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There is the possibility that each amidine moiety can be fully hydrolyzed in either of two

ways leading to three possible products from a symmetrical bisamidine. This is shown in

Scheme 1.38 for bisamidine 16. However, for 16, only one of these isomers was

observed. In an NMR experiment, 16 was dissolved in D20  and only 50 was observed.

The [H NMR spectrum is shown in Figure 1.1. The unsymmetrical isomer 52, which

would have eight I3C resonances (two in the carbonyl region), can be eliminated based on

the relatively few resonances in the and l3C NMR spectra which dictate that the product

must have a high degree of symmetry. The l3C spectrum had only four resonances, which

is consistent with either 50 or 51. The assignment of the structure as 50 rather than 51 is

based primarily on the chemical shift o f the methylene hydrogens adjacent to the primary

amino group at 2.7 ppm. It would be expected that the *H chemical shift for the singlet of

51 would be very close to the triplet at 2.7 ppm because they are both adjacent to the

secondary amino group. However, the singlet in the observed *H spectrum is very close to

the downfield triplet for the methylene adjacent to the amide moiety. This is most consistent

with isomer 50. In all cases studied, the bisamidine moiety hydrolyzes regioselectively to

give a 6-membered cyclic tertiary bisamide with two primary amino chains. Bisamidines
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Figure 1.2: 1H NMR Spectra for 16 and 50.
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18 and 23 gave results analogous to 16 as shown in Scheme 1.39. Unfortunately,

attempts to isolate and characterize these bisamides gave mixtures o f amides and

monoamide-monoamidines. Furthermore, *H NMR data for the material isolated from

D20  for 53 was most consistent with a mixture of 53 and 54.
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Scheme 1.39
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As mentioned briefly in the discussion of the preparation of bisamidine 23, a 

mixture of bisamidine 23 and monoamide-monoamidine 24 was dehydrated by azeotropic 

distillation with toluene. This process is shown in Scheme 1.40. Azeotropic distillation of 

50 with toluene with a Dean-Stark trap similarly afforded 16. While never investigated, 

addition of catalytic acid or base should facilitate this process, which may prove to be a 

useful synthetic tool in future experiments.

Schem e 1.40
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Transamidation (“Zip’*) Reaction of Bisamide 51,

It would have been a fortuitous result to have obtained 55 over 25 in the hydrolysis 

o f 23 (Scheme 1.41). For those bisamidines which do not undergo DIBALH reduction 

efficiently, an alternative synthetic route to the tetraazacycloalkane might have been to 

reduce the cyclic secondary amides. For example, isolation of 55 could give cyclam (1) 

upon reduction of the amide moieties as shown in Scheme 1.41. Macrocyclic bisamides 

such as 55 would also be interesting ligands for metal complexation. One example has 

been reported by Aqra et al., who have described the preparation of 51 (Scheme 1.42) 

from triethylenetetraamine and diethyloxalate.87 This compound was prepared to study 

complexes with various transition metals. However, sufficient evidence for the 

characterization of 51 was not presented in this paper. Recently, another group has 

reported the synthesis of 51 and its subsequent reduction to cyclen (2) with BH3-THF.88 

Again 51 was prepared from the reaction of triethylenetetraamine and diethyloxalate. The 

reaction of these two reagents was briefly investigated as a possible route to tricyclic 

bisamidine 16 as mentioned previously. Furthermore, this reaction was also investigated 

Schem e 1.41
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Scheme 1.42
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using the conditions reported by Aqra and no conclusive evidence for the formation of 51 

was obtained.89 Bisamides of other ring sizes, such as 55, have not been reported.

Hesse has reported transamidation reactions coined as “Zip reactions” which 

involve amide and amino moieties.90'92 We believed this chemistry might be useful in the 

conversion of 50 to 51 (Scheme 1.42). “Zip reactions” are also endo-templated reaction 

(see Figure 1.1, pg 12) ,43 This type of endo-templated reaction proceeds by the insertion 

of a side chain into the ring, resulting in a ring expansion. A “Zip reaction” may often 

takes place repeatedly in a cascade manner. This idea is illustrated in Figure 1.3. An 

Figure 1.3: E ndo-T em plated “ Z ip R eaction”
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Scheme 1.43
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example of this chemistry is shown in Scheme 1.43. The “Zip reactions” proceed by the 

nucleophilic attack of the amino nitrogen on the amide carbon, forming a tetrahedral 

intermediate. This intermediate can then close down breaking the C-N bond to transamidate 

the substrate. These reactions are often run under thermodynamic control and are driven 

by the difference in acidity between amino and amide protons (approximately 20 orders of 

magnitude in water). 56 can be ring-expanded to 59 following treatment with KAPA.92 

57 is the conjugate base of a secondary amine, which is a much less stable anion than the 

deprotonated amide 58. Therefore the equilibrium between 57 and 58 is driven to 58 and 

the ring expanded amide 59 is the major product.

A similar situation could be set up between 50 and 51 to ring expand the 6- 

membered ring into the 12-membered ring. The proposed transamidation reaction is shown 

in Scheme 1.44. Treatment of 50 in toluene with potassium ferr-butoxide at reflux did not 

afford 51 as the major product. The presence of the base did not drive the equilibrium to
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Scheme 1.44
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the desired secondary amide but instead facilitated dehydration to give the parent bisamidine 

(16) (Scheme 1.45). Dehydration was also the more favorable process when the solvent 

was changed to isopropyl alcohol. Unfortunately, conditions were not found which favor 

transamidation over dehydration for these compounds. Further work in this area is needed 

which should include the use of stronger bases, such as KAPA, and other solvents. 

Schem e 1.45
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Protonation of 2.3.5.6.8-9-HexahvdroHiirr>iHa?ori.2-a:2M ’-elpvraaine f161 in CD^CN.

Protonation of 16 with trifluoroacetic acid (TFA) in CD3CN was investigated in an 

NMR experiment Introduction o f 0.5 equivalents of acid to the bisamidine shifted the 

resonances for each methylene downfield as seen in Table 1.3. A broad singlet for the 

acidic proton was found at 8.11 ppm. Addition of another 0.5 equivalents of TFA further 

shifted this resonance to almost 9 ppm. Some sample degradation was observed at this 

juncture likely due to hydrolysis. There are also significant upfield shifts observed in the 

13C resonances. The most dramatic change is for the amidine carbon. The protonation of 

the amidine moiety shifts this resonance almost 2 ppm upfield upon the addition of a full 

equivalent of acid.

Table 1.3: NMR D ata fo r th e  Protonation of 16 with TFA.

_______________1H NMR____________________________ 13CNMR______________

0 eq. TFA 0.5 eq. TFA 1 eq. TFA 0 eq. TFA 0.5 eq. TFA 1 eq. TFA

3.20 3.31 3.50 156.5 155.1 153.6

3.27 3.39 3.63 54.63 52.76 51.95

3.70 3.77 3.89 52.74 52.30 50.98

8.11 8.93 46.29 45.33 44.58

Preparation and Further Studies o f Derivatives of 2.3.5.6.8-9-Hexahvdrrv̂ iiT̂ îHa7:o^l.2- 

a:2’-^-clpv^azine (161.

16 can be used as a nucleophilic species to prepare amidinium salts. As can be seen 

in Scheme 1.46, alkylation of 16 with benzyl bromide in toluene at room temperature for 3
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Scheme 1.46

l— V
( X

Toluene / CH3CN 
3 days, rt 

96%

16 60 61

days cleanly afforded amidinium salt 60 in 96%. Changing the reaction conditions such 

that excess benzyl bromide in refluxing CK^CN was used did not afford the bisalkylated 

salt 62. NMR spectra showed that 60 was the major product. The other resonances 

observed in the NMR spectrum were complex and were most likely a result of a 

complicated mixture. This mixture could result from the presence o f adventitious water in 

the reaction mixture which could give rise to many different hydrolysis products. There 

was no conclusive NMR evidence for the formation of 61 and therefore these data suggest 

that the second alkylation was not favorable. Benzylation of 60 to afford 61 would be 

expected to be a slow reaction as a result of the steric bulk provided by presence of the first 

benzyl group and the positive charge on the adjacent amidinium moiety.

DIBALH reduction of 60 for seven days gave a mixture o f three products which 

were not separated but identified by NMR. As shown in Scheme 1.47, the NMR evidence 

was consistent with aminal 62 and two isomeric amines, 63 and 64 as the products of the 

reduction of 61. Surprisingly, even after extended reaction times, 62 was the major 

product of this reaction. The other two products, observed in a roughly 1:1 ratio, could 

arise from cleavage of the aminal moiety by further reaction of 62 with DIBALH. It would
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Scheme 1.47

2) NaOH, HzO

1) DIBALH, Toluene 
4  d, reflux

60 62
major

product

63 64

have been fortuitous to have obtained only one of the 2 isomeric amine products (63 or 64) 

but no control of the regiochemistry in the reduction of 62 was observed.

Similar results were obtained in the hydrolysis of 60, whereby the regiochemical 

control over the hydrolysis at the amidinium carbon was lost. An NMR experiment was 

performed by dissolving 60 in D20 . The NMR data obtained were consistent with a 

mixture of 65 and 66. The results of this experiment are shown in Scheme 1.48.

We hypothesized that the mixture o f polyamine isomers observed in the DIBALH 

reduction of amidinium salt 60 might possibly be biased by changing the group which is 

introduced in the alkylation step. The reduction mechanism is illustrated in Scheme 1.49. 

Schem e 1.48

k^NHa k^NH2
60

65 66
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Scheme 1.49

AIR.
DIBALH+ R +• R

60 R = Bn 
69 R = T s

- R2AI Rj AI - V, 68  R = Bn
■C-+R 71 R =  T s

1) DIBALH
2) aq. work-up

64 R =  Bn 
70 R =  T s

I^HN.r 

NH NH

NH , N - r  6 3 R  =  Bn

^NH^IH

The isomeric products 63 and 64 result from the reduction of 62 to 67 and 62 to 68. We

hypothesized that the DIBALH reduction could be biased to favor either 67 or 68 by

changing the group added in the alkylation reaction of 16. Reaction of 16 with tosyl

chloride is expected to afford amidinium salt 69 (Scheme 1.49). The tosyl group should

bias the reduction of 69 to favor the 9-membered ring product (70) because of the stability

of the tosyl amide intermediate (71) over the secondary amide intermediate (72). Reaction

of tosyl chloride with 16 in toluene at room temperature gave a precipitate which was

insoluble in all common NMR solvents except DMSO-dg. Unfortunately, this experiment

has inherent ambiguity in that the DMSO-d^ was contaminated with trace water. NMR

data were consistent with 73. Therefore, the hydrolysis of the desired product 69 to the
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Scheme 1.50

I— V
TsCI trace HjO

j^^NHTs
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Toluene/CH3CN
3 d \__ / \__ I

16 69 73

DIBALH

H
74

mono-amide/mono-amidine 73 may be taking place in the reaction or in the NMR tube 

from the water-contaminated solvent This hypothesis is illustrated in Scheme 1.50. If the 

hydrolysis is taking place in the NMR tube then the amiriinium salt is the species with poor 

solubility characteristics, which may be problematic. If the hydrolysis is taking place in the 

reaction then little is known about the amidinium salt at this juncture. The one essential 

piece of data that was obtained from this experiment is the fact that hydrolysis of 69 gave 

only one product (73) and not a mixture of isomers. This shows great promise that the 

DIBALH reduction will also proceed regioselectively to afford 74. If 69 cannot be 

isolated it is likely that 73 would also undergo DIBALH reduction to afford 74.

Experiments were also performed aimed at preparing tetraacyclic bisamidinium 

adducts of bisamidines. An example of this chemistry is shown in Scheme 1.51. Species 

such as 75 would also be interesting as precursors for tetraazacycloalkanes. Dications 

such as 75 are known compounds and their chemistry has been studied.93 Reduction of
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Scheme 1.51

0 <>N TsO7 ÔTs ^  NaBPh4

L CH3CN Et0H
\ ,N reflux + \ / + \ I „ OBl.
'---- ' 3 d    2 'OTs 2 BPh«

16 75

75 would be expected to give rise to interesting substrates for further chemistry. Reaction 

of 16 with l,2-bis[(p-tolylsulfonyl)oxy]ethane in CH3CN at reflux did show promising 

results. Treatment of the crude reaction mixture with a saturated ethanolic solution of 

NaBPh4 precipitated a white solid. NMR analysis of this solid was consistent with 

previously reported spectra for 75.93

Diels-Alder Chemistry of Vicinal Bisamidines

The tricyclic vicinal bisamidine structure forces the diene portion of the molecule to

be held in a s-cis conformation. Therefore these bisamidines may be suitable dienes for

Diels-Alder chemistry. However, there are very few examples in the literature of a

N=C-C=N diene system.94 These novel bisamidines offer the opportunity to investigate

this rare diene system. The Diels-Alder adducts which would be formed would be

tetraaminoethylenes, highly electron rich species which are very labile.95 A Diels-Alder

reaction was attempted between 16 and N-phenlymaleimide (Scheme 1.52). It was

desirable that the dienophile chosen have symmetry in order to minimize the number of

regiochemical isomers which could be produced. N-Phenylmaleimide was chosen because
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Scheme 1.52

e g
\ I

16

the imide would be hydrolytically more robust than  maleic anhydride while retaining good 

reactivity as a dienophile.96 Furthermore, the phenyl group provides an extra NMR handle 

to aid in the elucidation of the identity of the reaction products. The reaction was run in 

toluene for 7 days. The reaction mixture did change color to give a slightly orange solid 

following rotary evaporation. Unfortunately, no reaction was observed and starting 

material was observed by NMR analysis. Other dienophiles or higher boiling solvents have 

not been investigated.

N-Ph

°  c X c / «Toluene isf' N''
reflux
7 d
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CHAPTER II

SYNTHESIS OF CROSS-BRIDGED CYCLAM DERIVATIVES

I. INTRODUCTION

The many applications which have been developed for polyazacycloalkanes have 

been a direct result of the variety of structurally diverse polyazacycloalkane derivatives 

which have been prepared. In fact, polyazacycloalkanes are a small subset of ligands 

which are generally referred to as polyamine macrocycles. A polyamine macrocycle is 

often designed to be selective for a given cation by a series of structural modifications of a 

parent structure. These modifications have become essential tools in the rational design of 

ligands for specialized applications.

A modification which often affects the metal complexing properties of a polyamine 

macrocycle is restriction of the conformational flexibility of the molecule. One approach to 

restrict the conformational flexibility of a cyclic structure is to link or “bridge” parts of the 

ring together. This bridging is often accomplished by the fimctionalization of adjacent or 

nonadjacent nitrogen atoms of a polyamine macrocycle.

The first synthesis of a bridged derivative of cyclam (1) was reported by 

Wainwright, who prepared 81a and 81b by the reaction of 1,2-dichloroethane with 

cyclam.97 The two nitrogen atoms located adjacent to each other in the ring system were
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Scheme 2.1

EtOH
(aq)

r ^ i

% 'n
1 n = 1
2 n = 0

i
extraction 81a n = 1 81b n = 1

82a n = 0 82b n = 0

bridged in this reaction. This chemistry is shown in Scheme 2.1. Wainwright later 

expanded the series of “structurally-reinforced” macrocycles and prepared the cyclen

for Ni2+ complexes of cyclen.99,100

Alternatively, it is also possible to bridge a nonadjacent pair of nitrogen atoms of 

cyclam (1). While synthetically more challenging, bridging of nonadjacent nitrogen atoms 

of cyclam was accomplished by Weisman and Wong in 1990.101 This “cross-bridged” 

cyclam is a bicyclic tetraamine which can adopt low energy conformations having all four 

nitrogen lone pairs convergent upon a cleft (Scheme 2.2). It was shown by Weisman and 

Schem e 2.2

derivatives 82a and 82b.98 82a displayed different coordination chemistry than what was 

reported for cyclen. For example, the Ni2+ complex of 82a had square planar geometry 

and the ligand was “trans” coordinated98 instead of “cis” coordination as typically observed

1
h3c
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Wong that 83 was strongly basic and formed strong complexes with Li+. The synthesis of 

cross-bridged tetraamine ligands will be discussed in the following background section.

Another approach for the preparation of cross-bridged polyamine macrocycles was 

reported by Micheloni and coworkers.102 In this synthesis a selectively protected 

tetraamine is required as shown in Scheme 2.3. The secondary amino nitrogens react with 

the acid chloride moieties to insta ll the cross-bridge. Upon reduction, a cross-bridged 

cyclen (84) is obtained. This approach is much less general than the method of Weisman 

and Wong. Furthermore, preparing the starting material is a multi-step process and the 

overall reaction sequence does not afford high yields of cross-bridged products.

Schem e 2.3

1—C 5HNT
'  \ I

u aci o
Et3N
C6Hg
29%

« > bh3thf

65%

84

This chapter will discuss the synthesis of derivatives of cross-bridged cyclam.

Many cross-bridged tetraamines have already been prepared.103 These derivatives were

prepared using the general method reported by Weisman, Wong and coworkers for the

preparation of the parent diamino cross-bridged tetraamines.104 This general method and

some cross-bridged cyclam derivatives reported by Hill will be reviewed in the following

presentation of the preparation o f new derivatives of cross-bridged cyclams.
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n .  BACKGROUND

Synthesis of Cross-bridged Cvclam hv Reductive Ring Expansion of Tetracyclic 

Bisaminals.

Weisman and Wong reported the first cyclam derivative having nonadjacent 

nitrogens bridged by an ethanediyl (Q ^CH ^) unit.101 The rational synthesis of 

N,N’-dimethyl-1,4,8,1 l-tetraazabicyclo[6.6.2]hexadecane (83) from cyclam was 

reported. This synthetic sequence is shown in Scheme 2.4.

Scheme 2.4

r ^ i  o p  r ^ i
r NHK* S  H  r 'l f ' S  M., f N X <  NaBH,

NH HN O J g .  k X J  CHjCN k f r j j V  95% BOH k  k J

80% ‘O '  85% 90 %
1 85 86 83

Earlier, the reaction of cyclam with aqueous glyoxal in CHjCN had been reported

by Weisman and coworkers to afford tetracyclic bisaminal (85) in 75% yield.105 The

stereochemistry of the ring fusion was found to be cis, allowing 85 to adopt a

diamond-lattice conformation. As shown in Scheme 2.5,85 exists as an enantiomeric pair

of conformers which undergo an enantiomerization process interconverting 85 with 85’.

This process is slow on the 13C NMR time scale at room temperature. Dynamic NMR

experiments were carried out which resulted in broadening of the six 13C NMR resonances

(C2 symmetry) observed for 85 as the probe temperature was increased. At 100 °C the six

resonances had coalesced to four (time averaged C2v symmetry) and the activation barrier
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Scheme 2.5

3

AG* = 15.36 *0.2 Kcal/mol 
at 57.5 *3 °C

3
85 85'

for this process was calculated to be AG* = 15.36 ± 0.2 kcal/mol (at 57.5 ± 3 °C).105

Regioselective methyladon to afford 86 proceeds as a consequence of the 

conformation of 85. Alkylation of one nitrogen shuts down the enandomerization process 

because all four nitrogens must be inverted to complete this process. 85 has a concave face 

and a convex face which exposes only two nitrogen lone pairs for alkylation (Scheme 2.6). 

Schem e 2.6

o 3
85 85'

RX RX

i +
R X- 
87*87
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The two lone pairs available for alkylation belong to nonadjacent nitrogen atoms. 

Therefore, once the first methyladon takes place and enantiomerizadon is not possible (87 

and 87’), only one lone pair remains accessible for alkyladon resulting in regioselective 

methyladon of 85. The bis-quatemary bisaminal dimethiodide (86) was obtained as a 

white solid in 85% yield upon methyladon of 85 in CH3CN.

Reduction of 86 with excess NaBH4 afforded 83 in 90% yield. Evidence later 

provided by Hines is consistent with this reaction proceeding through iminium ions which 

are reduced by borohydride.89 This conclusion was drawn from the reduction of 86 with 

NaBD4. This chemistry is shown in Scheme 2.7. The reduction o f 86 with NaBD4 could 

afford a mixture of two trcms diastereomers and two cis enantiomers (with respect to the 

deuterons of the -CHDCHD- bridge). The results of the study showed that there was 

approximately a 60/40 translcis ratio of products but, more significantly, one trans 

diastereomer was formed almost exclusively over the other trans diastereomer. Therefore, 

this reaction is highly stereoselective for one of the trans 

Scheme 2.7

I ^ J  2 r

1^1

86
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diastereomers. Formation of this diastereomer was most consistent with delivery of 

deuteride to an iminium ion from the least hindered approach of borodeuteride. 

Cross-bridged cyclam 83 was found to be strongly basic. Weisman and

of 83»H+ in CD3CN to be 24.9.101 The pATal o f 83*H+ in water was estimated to be 

higher than 13.5 and the p-K^ for 83*2H+ was estimated to be 10.8. In fact, 83 was 

shown to be much more basic than the analogous monocyclic isomer 

N,N’ JN”  JN”  ’ -tetramethyl-1,4,8,11 -tetraazacyclotetradecane (tetramethylcyclam, 88) and 

Alder’s proton sponge (l,8-bis(dimethylamino)naphthalene, 89).106,107 This is a crucial 

factor in the utility of cross-bridged cyclam derivatives for applications, particularly in 

aqueous media, which will be discussed in more detail later in this chapter.

The synthetic strategy to prepare 83 was utilized to develop a general route to other 

cross-bridged tetraamine derivatives. Alkylation of bisaminal 85 with benzyl bromide was 

optimized by Hill.103 90 was prepared by Hill in 93% yield by the reaction of benzyl 

bromide and 85 in CH3CN at room temperature for 14 days. The bis-quatemary bisaminal 

dibromide 90 was then reduced to N,N’ -dibenzyl-1,4,8,11-

tetraazabicyclo[6.6.2]hexadecane in 88% yield by reduction with excess NaBH4 in 95% 

EtOH. Removal of the benzyl protecting groups was effected by hydrogenolysis to afford

coworkers’s initial report on 83 calculated, by means of I3C NMR experiments, the pATal

88 89
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Scheme 2.8

95% EtOH 
14d it 
88%

NaBH«
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r ^ i
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HOAc 
24 h 
80%

91 92

1,4,8,11 -tetraazabicyclo[6.6.2]hexadecane (92) in 80% yield. This synthetic sequence, as

for the preparation of cross-bridged tetraamines was presented in addition to preliminary

Preparation of 92 has allowed for elaboration of the secondary amino nitrogens to 

prepare cross-bridged cyclams bearing pendant groups or “arms.” In theory, these arms are 

capable of influencing the complexation properties of the ligand. The chemistry required to 

perform the amino chain extension reactions to afford these “armed” derivatives often has 

been carried out on other polyaza macrocycles. Much of this chemistry has been reported 

in reviews.23,108 Some examples of fiinctionalized cross-bridged cyclam derivatives have 

been reported by Hill.103 The following section will present the syntheses o f some o f the 

compounds initially prepared by Hill as well as new cross-bridged cyclam derivatives.

shown in Scheme 2.8, was published in 1996.104 In that publication the general method

results on the metal complexation of these ligands with Cu2+ and Ni2+.
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H I. RESULTS AND DISCUSSION

Synthesis o f Amide Armed Derivatives o f Cross-Bridged Cvclam.

In many cases the methodology for attachment of a specific pendant arm to a cross­

bridged cyclam has been established for a polyaza macrocycle. Such was the case for the 

attachment of the acetamido arm to 92. Tsukube has reported the reaction o f N,N’- 

diethylchloroacetamide with cyclam (1) to afford 93. 109,110 Parker and coworkers also 

prepared the analogous cyclen derivative 94 by the reaction of 

N^N’-diethylbromoacetamide.111 These two reactions are shown in Scheme 2.9. 

Schem e 2.9

This methodology was applied to  the preparation of 95. N,N’- 

Diethylchloroacetamide was reacted with 92 in the presence of excess K^CO.̂  and catalytic 

KI (Scheme 2.10). An acidic extraction was performed to remove excess N,N’- 

diethylchloroacetamide prior to the basic extraction required to isolate the product 95 was 

obtained in 93% yield as a waxy solid. This ligand was envisioned to be a better ligand for 

metal cations than the dimethyl derivative 83 as a result of the two additional ligating 

groups which are now available. The complexation studies performed with this ligand will

n = 0 
n = 1

n = 1 93 
n = 0 94
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Scheme 2.10

X V  r O

V j  TSfc," S
—  60 °C, 20h
92

R = Et 95 93% 
R = H 96 94%

be presented in Chapter 3.

Reaction of 2-chloroacetamide with 92 in CI^CN in the presence of excess K^CC^ 

and catalytic KI analogously provided 96 (Scheme 2.10). The product was isolated as a 

white waxy solid in 94% yield. Two NH amide protons were observed in the room 

temperature *H NMR spectrum (5.74, 7.15 ppm). This ligand should also form good 

complexes with metal cations as a result of the six ligating groups available. Furthermore, 

the acidity of the amide protons allow for the possibility of neutral complexes with divalent 

cations to be formed following deprotonation of the amide moieties.

Conjugate addition of amines into an ot,P-unsaturated carbonyl or nitrile substrate 

has been well documented.112 In fact, Hill has used this chemistry in the preparation of 

97.103 As shown in Scheme 2.11, the reaction of 92 in neat acrylonitrile afforded 

essentially a quantitative yield of 

Schem e 2.11

1 N

r

92 97
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Schem e 2.12

92 u
R = H 98 91% 
R = Me 99

97. One would predict that the reaction would also follow analogously when acrylamide 

was substituted as the Michael acceptor. Reaction of acrylamide with 92 in CH3CN at 

room temperature afforded 98 in 91% yield as a waxy white solid (Scheme 2.12). 

Although never attempted, it is reasonable to assume that the reaction of 92 with 

N,N’ -dimethylacetamide would also be successful in preparing 99, a tertiary amide analog 

of 98.

Attempted Synthesis o f  Hexaara-Oross-Bridged Cvclam Derivatives.

Attempts were made to reduce bisamide-armed cross-bridged cyclam 96 to bis(2-

aminoethyl)-cross-bridged cyclam 100. Reduction was attempted with BH^THF and

NMR data was consistent with product formation along with a complicated mixture

(Scheme 2.13). Unfortunately, conditions were not found which provided 100 cleanly.

Following BH^THF reduction of amides, a complex is formed between boron and the

amine produces). The workup of these reactions requires an acidic hydrolysis of the B-N

bonds of the complex to liberate the free amine. It is likely that reduction was successful

but the difficulties in obtaining 100 arose from incomplete hydrolysis o f the B-N bonds of
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Schem e 2.13

96 100

complexes which boron formed with cross-bridged 100.

Hill attempted the reduction of the nitrile-anned derivative 97 by hydrogenation

reduction process. This resulted in dealkylation of 97 to afford mono-armed pentaamine

101 in addition to hexaamine 102 (Scheme 2.14). However, there are other published 

Schem e 2.14

methods for the reduction of nitrile moiety primary amines which may not favor this 

elimination reaction. One possibility which was investigated was reduction of 97 with 

BH3*THF (Scheme 2.15). Unfortunately, these conditions did not provide 102. It is 

Schem e 2.15

over Raney Ni.103 He discovered that an elimination reaction was competing with the

U
97 102
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Scheme 2.16

N AlClj/NaBH* r ^ i
nh2

THF

97 102

likely that these reaction conditions also afforded a boron-cross-bridge complex with robust 

B-N bonds towards hydrolysis. Another method which should be investigated is of the 

nitrile moieties using the conditions reported by Brown.74 AlCl3/NaBH4 in THF were 

found to be effective conditions for the reduction of 32 to 31 in the preparation of 

benzocyclam (34) discussed in Chapter 1. This idea is shown in Scheme 2.16. Under 

these conditions, robust boron-cross-bridged complexes are avoided. It remains to be 

determined, however, if this chemistry will also facilitate elimination of the arm or provide 

a clean method for reduction of the nitrile.

Another approach toward preparation of hexaaza cross-bridged cyclam was 

attempted using tosylaziridine (103). Murase and coworkers113 and Kida 114 have 

reported the reaction of tosylaziridine with cyclam to afford 104 and the further 

detosylation to the octaaza cyclam derivative 105 (Scheme 2.17). Tosylaziridine was 

Scheme 2.17

103

TsHN^^PN NHTs

NHTs

U y. .. . .2

1 104 105
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Schem e 2.18
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prepared in our laboratories by the method of Lehn.115 Treatment of ethanolamine with

tosyl chloride afforded the tosylaziridine precursor 106 which was converted to 103 upon 

treatment with base in 79% yield (Scheme 2.18). Reaction of 103 with 92 in CHjCN

(Scheme 2.19). It was difficult to estimate the relative purity of 107. The resonances for 

the cross-bridge carbons are all dynamically broadened but it is likely that at least 80% of 

this sample is 107. Unfortunately, recrystallization methods were not found which gave 

purified 107.

Schem e 2.19

Attempts to Alkvlate 85 with Bromobutane and 1 -ffp-tolvlsulfonvfloxvl-2-methoxvethane.

It would be desirable to improve the synthetic methodology to prepare derivatives 

of cross-bridged cyclam. More specifically, it would be convenient to derivatize early in 

the synthetic sequence. This would reduce the number of synthetic steps and potentially

afforded a powder. 13C NMR analysis of the powder supported formation of 107

92 107
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increase the yield for desired products. The methodology employed incorporates 

functionality into the cross-bridged ligand after the installation of the cross-bridge. As 

shown in Scheme 2.20, it currently takes 4 steps to prepare 92 from commercially 

available cyclam (1). 92 is the key precursor for the various fimctionaiized cross-bridged 

cyclam derivatives that have been prepared. We believed that if alkylation of 85 was a 

facile reaction, and the appended functionality could survive the NaBH4 reduction, the 

number of steps in the synthetic method could be decreased for some o f our synthetic 

targets. 85 would then be the key precursor from which many cross-bridged cyclam 

derivatives might be prepared.

To date, the only alkylating agents which have been used do not have protons 

located (3 to the carbon to be alkylated. This is significant because there is no possibility 

for an elimination reaction competing with the SN2 reaction. A study was devised to 

determine if the elimination reaction which would be possible if there were protons P to the 

halide would cause significant difficulties in the alkylation reaction. Bromobutane (108) or 

Schem e 2.20

£ > - < &  - s j g r — &  - £ $
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T able 2.1: R eaction C onditions and  Results fo r the Reaction of 85 w ith 
B rom obutane (108) and  [(^-ro/y/s«//on_y/)oxy]-2-m ethoxyethane (109)

C D

85 110

RX
eq
RX

Rxn.
Temp.

Solvent
(mL)

Time
(days)

KI
(eq)

Products

1 108 4 ambient CH3CN (5) 8 mono/sm

2 108 8 ambient CH3CN (2) 2 ------ mono/sm

3 108 8 ambient CH3CN (2) 5 8 elimination

4 108 8 ambient DMF (2) 2 — mono/sm

5 108 8 50 °C CH3CN (2) 1 8 elimination

6 109 8 ambient CH3CN (2) 8 ------ elimination

mono: monoalkylated product s.m.: starting material

f V l  R — E —

R - r t j  2X- T s0^ O '

l-[(p-tolylsulfonyl)oxy]-2-methoxyethane (109) was introduced to 85 in CH3CN under 

various conditions in the hope of preparing the bis-quatemary bisaminal 110. A summary 

of the reaction conditions which were investigated is given in Table 2.1. In no case was 

110 observed by NMR. The reaction either resulted in monoalkylation of 85, elimination 

of 108 or 109, or no reaction. At this juncture it was concluded that it was generally 

necessary to use alkylating agents which were unable to undergo an elimination reaction for 

the preparation of bis-quatemary derivatives of bisaminal 85.
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Attempted Monoalkvlation of 1.4.8.11-Tpiraa7ahicvclof6.6.21hexadecane (112V

The methodology to prepare monofunctionalized derivatives of 92 was reported by 

Hill. This approach involved monobenzylation of 85 to afford 111 as shown in Scheme 

2.21. Methylation of 111 afforded 112, which upon reduction with the standard NaBH4 

conditions, gave 113. Hydrogenolysis of 113 afforded the monomethylated cross­

bridged cyclam derivative 114. However, we required a method to prepare 

monobenzylated derivative 115 for other applications. Furthermore, monobenzylated 

derivative 115 would allow for functionalization of the two secondary amino nitrogens of 

92 with different pendant arms. We predicted that benzylated 115 could be prepared by 

simply controlling the stoichiometry of the reagents without an added base. Without the 

Scheme 2.21
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base present, following the first alkylation, the product would likely be protonated. We 

believed that this would drastically reduce the susceptibility o f this species to undergo 

further reaction and afford 115.

Benzyl bromide was reacted with 92 in a 1:1 stoichiometric ratio in CHjCN at 

reflux for 16 hours. The NMR analysis of the reaction mixture following base extraction 

was consistent with a mixture of three compounds. As shown in Scheme 2.22, the desired 

product (115) was formed in addition to the dibenzylated 91 and unreacted 92. We then 

altered the reaction conditions such that further benzylation o f 115 would not be favored. 

92 was reacted with benzyl bromide in a 1:1 ratio in toluene at room temperature. We 

believed that these conditions might bring about the precipitation of 115«HBr. If this 

were to occur, further benzylation would not be possible and 115 would be isolable 

following basic extraction o f the precipitate. After four days a white precipitate had formed 

which was collected and evaluated by NMR following a basic extraction. Unfortunately, 

NMR analysis identified 91 as the product of this reaction. To date, no conditions have 

been found that result in the preparation and isolation of 115.

Schem e 2.22

CH3CN, reflux 
16 h

92 115 91 92
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Alkylation of 1.4.8.11 -Tetraa?ahirvclor6.6-21hexadecane (92) with l-IYp- 

tolvlsulfonvDoxvl-2-methoxvethane (109).

We believed that alkylation of 92 with simple alkyl haildes may not proceed 

well. The strong basicity of cross-bridged cyclam might promote deprotonation of an alkyl 

halide facilitating the elimination reaction competing with the reaction. The alkylating 

agent used in this study was l-[(p-tolylsulfonyl)oxy]-2-methoxyethane (109). 109 was 

chosen because the cross-bridged cyclam derivative which would be formed (116) had 

been previously prepared by Hill by an independent method.103 Reaction o f 92 with 129 

in CH3CN with B^CC^ at 60 °C for 21 hours afforded 116 in 40% yield (Scheme 2.23). 

This reaction was run on a small scale (25 mg) and the yield was not optimized. However, 

this methodology can now be applied to other alkylating agents possessing {3 protons and 

does have significant potential utility to afford a wide variety of new cross-bridged cyclam 

derivatives.

Schem e 2.23

m

92

75

K2CO3
CH3CN, 60 °C or ^  | 1

21 h
40% 116
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Cross-Bridged Cvclam Derivatives with Decreased Basicity.

As mentioned previously, cross-bridged cyclam derivatives are strongly basic.

This unusually strong basicity is attributed to the design of the macrocyclic structure which 

has all four nitrogen lone pairs convergent upon a cleft This structural feature leads to 

strong complexation of small metal cations and therefore also leads to good complexation 

of protons. This unusual basicity can be attributed to three factors.

The first factor involves the relative energies of the conformations of the bicyclic 

rings of cross-bridged tetraamines. Molecular mechanics calculations on 83 and 91 

performed by Weisman suggest that the low energy conformations for these two species all 

have convergent nitrogen lone pairs.116 Therefore, since convergent conformations are low 

in energy, the majority of the populated conformations in solution are convergent

These convergent conformations, however, do suffer from poor solvation because 

the lone pairs are not accessible to the surrounding media. The introduction of a proton 

source effectively solvates the tetraamine by protonating the lone pair located inside the 

cavity. This idea can be explained in a qualitative manner by the structure shown in 

Schem e 2.24

83 83 H* 832H *
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Scheme 2.24. A proposed low energy conformation of 83 is shown. This proposed 

conformation has the two 10-membered rings of 83 in a [2323] conformation.

Protonation of 83 with one equivalent of acid leads to 83*H+. The proton fits into the 

cavity o f 83 taking a position such that it is also hydrogen bonded to the three other 

nitrogen lone pairs (trifurcated). However, an x-ray crystal structure obtained for the 

dibenzyl analogue (91*60116 does not show the tetraamine in a [2323]/[2323] 

conformation. The conformation of the tetraamine is [37]/[37] but all four nitrogen lone 

pairs are still convergent towards the center of the cavity. Addition of another equivalent of 

acid places another proton in the cavity of a cross-bridged cyclam. The proposed 

conformation for 83*2H+ has two protons inside the cavity hydrogen bonded to two 

nitrogen lone pairs (bifurcated) having the two 10-membered rings in a [2323]/[2323] 

conformation. An x-ray crystal structure of 83*2H+ confirms that, in the solid state, the 

conformation of the two 10-membered rings are [2323/2323].101

Therefore, it is energetically unfavorable to remove the proton from the inside of 

the cavity. The “proton-solvation” relieves the destabilizing interaction of the convergent 

lone pairs which is the second factor leading to the unusually high basicity for cross­

bridged tetraamines. Furthermore, the proton on the inside of the cavity has very strong 

hydrogen bonds which must be disrupted in order to deprotonate the tetraamine. All three 

of these factors combined are responsible for the unusually high p/sTaI for 83*6^ and pAT  ̂

for 83*2H+.

Unfortunately, this strong basicity is problematic for applications utilizing cross-
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bridged cyclam derivatives as ligands carried out in prodc media. Therefore, it would be 

desirable to develop other derivatives which are less basic while retaining the complexation 

properties of the previously studied cross-bridged analogues. A number of approaches 

have been proposed to accomplish this goal.117 Preliminary work on two of these 

approaches has been initiated. These two approaches include: 1) attachment of aryl arms to 

92; 2) benzo-annelation to NCI^CE^N units of 91. Both of these approaches are aimed 

at decreasing the basicity of two of the amino nitrogen lone pairs by the presence of the 

adjacent aromatic ring.

Preparation of Arvl Armed Cross-Bridged Cvclam Derivatives.

The use of nitrogen as a nucleophile in nucleophilic aromatic substitution (NAS) 

reactions has been well studied.118,119 Unfortunately, using a secondary amino nitrogen 

does require a highly reactive electrophile to effect the NAS reaction. The best group for 

activating an aromatic ring to accept a nucleophile in an NAS reaction is the nitro group. 

Arming 92 with a nitroaryl group might also provide the new cross-bridged cyclam 

derivative with an added benefit in addition to the decreased basicity. The derivative would 

absorb light in the UV-Vis region of the spectrum. Additionally, the wavelength of light 

which is absorbed would likely change upon complexation. Ligands which have these 

properties are called chromogenic hosts120*122 and allow for monitoring of complexation.

2,4-Dinitrofluorobenzene (117) has been extensively used in the labeling of amino
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Scheme 2.25

■F
no2

117

CH,CNi3<
reflux, 3d 

36%
92

118

acids.123 Addition of 117 to a solution of 92 in CE^CN, with K^CC^ as the base, 

resulted in an immediate reaction (Scheme 2.25). The mixture was heated at reflux for 

three days and afforded 36% of an orange powder. NMR analysis of this powder was 

consistent with 118. The powder was recrystallized from toluene to afford purified 118. 

The powder had poor solubility in many organic solvents at room temperature (E^O, 

EtOH, CHjCN, toluene) and was characterized by NMR, IR and low resolution MS.

119 was analogously prepared using p-bromonitrobenzene as the electrophilic 

species. The reaction of 92 with p-bromonitrobenzene in CH3CN, with l^C O j, as the 

base afforded the p-nitrophenyl armed cross-bridged cyclam derivative (119) (Scheme 

Schem e 2.26

no2

ch3cn
reflux, 7d

92
119
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2.26). The reaction was not as facile as in the preparation of 118, but after 7 days of 

heating, 119 was obtained. The crude product was purified by recrystallization from 

DMF. 119 also displayed poor solubility characteristics and was insoluble in many 

solvents (MeOH, EtOH, rprOH, CH3CN, toluene, benzene, E t,0 ). 119 has been 

characterized by NMR, IR and low resolution MS.

At this juncture it was determined that other aryl derivatives that had better solubility 

characteristics than the nitroaryl derivatives might be more useful. Unfortunately, the nitro 

group is the best substituent to activate an aromatic ring towards an NAS reaction. Other 

electron withdrawing groups which might lead to better solubility, such as CF3 or F were 

discussed as possible alternatives to NOz but were never investigated. Alternatively, a Pd°- 

catalyzed coupling approach reported by Buchwald124,125 and Hartwig126 was 

investigated.

The preparation of arylamines from an amine and a arylbromide under the catalysis 

of Pd2(dba)3 (120) and BINAP (121) has been reported.124,125,126 Buchwald has used 

this methodology to arylate optically active amines without loss of optical purity.124 We 

believed that this chemistry would provide the tolyl derivative 122 using these conditions 

with racemic BINAP. This chemistry is shown in Scheme 2.27. The reaction gave a 

mixture of products. Conditions were not found which separated these components of the 

reaction mixture. NMR analysis was consistent with the formation of 122 as a minor 

product but the major product was monoarylated 123.
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Schem e 2.27
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Pdj(dba)3
120 ’Phz

'Phj

BINAP
121

One other approach which was briefly investigated was the use of the amide anion 

of 92 as a nucleophile in an NAS reaction. Amide anions have been shown to be excellent 

nucleophiles in NAS reactions and often react readily with unactivated nucleophiles. 

Furthermore, the mechanism of these NAS reactions has been studied and is most 

Schem e 2.28

R^.-R

o
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Scheme 2.29

r
HNEta/EtjjO

82%

84%

consistent with the generation o f a benzyne intermediate.127 The proposed pathway for

arylamine formation from an alkali amide and an aryl halide is shown in Scheme 2.28. The 

only caveat to this reaction is that the regiochemistry cannot be controlled. Therefore, 

either unsubstituted or symmetrically substituted aryls must be used to reduce the number 

of isomeric products which could be formed. The reaction of an N-lithio secondary am ine 

with bromobenzene in E l,0  has been reported. The reaction of N-lithiodiethylamine with 

bromobenzene in H N E t^t^O  afforded an 82% yield of N^N-diethylaniline and 

N-lithiopyrrolidine with bromobenzene in pyrrolidine/EtjO afforded and 84% yield of 

N-phenylpyrrolidine.128 These reaction are shown in Scheme 2.29.

The addition of bromobenzene to a THF solution o f 92 which had been previously 

treated with two equivalents of n-butyllithium gave an immediate color change from yellow 

to red. The mixture was stirred under N2 at room temperature for 12 hours (Scheme 2.30). 

NMR analysis revealed that the reaction had produced a complex mixture. Attempts were 

made to try and separate components of this mixture by TLC. Unfortunately, conditions to
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Schem e 2.30

00 1)2eq. nBuU

THF
92 124

separate these compounds were not found. However, a reaction had taken place and it is 

unknown if modifications of the reaction conditions might provide 124 after purification.

Preparation of Benzocyclam Derivatives.

Benzocyclam (34) has been prepared using the regioselective reduction as 

described in Chapter 1. Bisaminal 125 was prepared in 89% yield by the condensation of 

aqueous glyoxal with benzocyclam in CHjCN (Scheme 2.31).

As previously observed by Weisman et al. for 85,105 NMR spectra for 125 

displayed dynamic broadening in the lH and l3C spectra at ambient probe temperature. 

The dynamic broadening is the result of the enantiomerization of cis-125, which is not 

Schem e 2.31

34 125
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possible for the trans isomer. Using Dynamic NMR spectroscopy (DNMR) techniques, the 

AG* for the enantiomerization process of 85 was reported by Weisman et al.105 A similar 

approach was applied to investigate the dynamic broadening observed for 125. The results 

of this study established conclusively the stereochemistry of the ring fusion and allowed for 

comparison of the estimated AG* with that of 85.

A complete line shape analysis was performed on 13C{ lH} spectra of 125 at 

different probe temperatures. The enantiomerization process corresponds to a two-site 

mutual exchange process for pairs of carbon resonances. In this process, two nuclei in the 

same molecule (for this case) exchange environments. Because the process is an 

enantiomerization, the rate for the forward and reverse reactions are equivalent and the 

populations of the two species in exchange must also be equivalent.' Spectra were acquired 

over a 100° temperature range (-75 - 25 °Q . The ambient temperature spectrum (90.56 

MHz) displayed dynamic broadening for some of the eight lines but those resonances were 

clearly in fast-intermediate exchange on the NMR time-scale (shown in Figure 2.2). Upon 

cooling the probe to -78 °C, the spectrum resolved into sixteen lines for these spectra of 

cfc-125 in slow-intermediate exchange. Table 2.1 lists the chemical shifts for cfr-125 at 

different temperatures. As determined from the slow-exchange limit spectrum, cis-125 

has overall Cj symmetry whereby all 13C nuclei are magnetically nonequivalent At 

ambient temperatures, the enantiomerization process results in time-averaged Cs symmetry 

for c/s-125.

The ambient temperature spectrum had only two broadened lines, one for a
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Figure 2.1: 13C NMR Spectrum of 125 at Ambient Probe Temperature.
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Table 2.2: 13C NMR Chemical Shifts for 125 at Various Probe
Temperatures

Temp

I f. g I U ^ TbT^d
\  \  . 1 h  r  /

d X
x : c a c b c c c d Ce Cf Cg c h

25 21.35 48.23 49.68 54.65? 73.65? 113.5 119.5 136.3

15 21.32 48.23? 0 54.55? 73.66? 113.5 119.5 136.3?

1 21.29? 48.19? 0 54.52? 73.46? 113.6 119.5 0

-11 21.26 48.17? 0 54.35? 0 113.6 119.6 0

-15 21.21? 48.19? 0 0 0 113.6 119.6 0

-34 20.59?
21.85? 48.06?

44.19?
54.91?

52.28?
56.68?

70.91?
75.83? 113.7? 119.6 0

-43 20.57? 47.96? 44.18? 52.32? 70.89? 113.6? 119.6 134.9?
21.86? 48.32? 54.90? 56.57? 75.78? 113.9? 137.6?

-50 20.56 47.93 44.16 52.26 70.89 114.0
119.6?

134.9?
21.88 48.36 54.94 56.60 75.82 113.6 137.6?

-73 20.56
21.82

47.89
48.34

44.10
54.89

52.29
56.53

70.81
75.74

113.7
114.1

119.7
119.8

135.0
137.6

t  Dynamic broadening observed for this resonance 
0  Resonance broadened into the baseline and 5 could not be determined

methylene adjacent to nitrogen (Cb c OT d) and the methine (C^. However, decreasing the 

temperature by only 10 ° made dramatic changes in the observed spectrum. One resonance 

(C J had broadened into the baseline such that it could not be detected. and the ipso 

carbon (C^ had also begun to broaden at 15 °C. At 1° C all but two aromatic resonances
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displayed broadening, including the resonance for Ca which was used for the complete line 

shape analysis. When the probe temperature was decreased to -15 °C, four resonances (C , 

Cd, and Ch) were all broadened into the baseline. The spectrum for 125 at -34 °C 

showed that 125 was clearly in fast intermediate exchange because four resonances (Ca,

C., Cd, C J had each coalesced into separate lines. The spectrum for -43 °C showed all but 

one resonance decoalesced into separate lines as the rate of enantiomerization of 125 

neared the slow exchange limit. Very little change could be noticed in the -50 °C spectrum 

but when the probe temperature was lowered to -73 °C, all resonances had coalesced into 

two distinct lines. The -73 °C spectrum was used as the slow exchange limit.

The DNMR spectra were simulated using the gNMR129 program in order to obtain 

data for the rate of enantiomerization at different probe temperatures. The resonance at 21 

ppm in the ambient probe temperature spectrum was used for the simulations. This 

resonance was chosen because it was isolated from the rest of the spectrum, having no 

overlapping peaks. The NMR spectra and the corresponding simulation are shown in 

Figure 2.2. Rate constants calculated from these simulations are presented in Table 2.3.

From these data, a free energy of activation can be calculated (AG*) for this process

can be calculated for a given temperature. The rearranged form of Eyring equation

(Equation 2.1b) describes the free energy of activation as a function of (In k/T) and (1/T).

Furthermore, as described in Equation 2.2, the free energy o f activation is also related to

AH* and AS*. These two equations can be used to derive Equation 2.3 which describes the

relationship between (In k/T), (1/T), AH* and AS* used for Eyring plots. An Eyring plot
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Figure 2.2: NMR Simulations for 125.

Temp: -72 °C, Rate = 0 Hz

I '

Temp: -44 °C, Rate = 42 Hz
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Figure 2.2 (Continued)

Temp: -15 °C, Rate = 675 Hz

l 1

Temp: -1 °C, Rate = 2000 Hz

Temp: -11 °C, Rate = 950 Hz Temp: +15 °C, Rate = 7000 Hz
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Table 2.3: Results o f DNMR Simulations for 125.

Temp
(°Q

Rate Constant (k) 
(sec*1) In (k/T) 1/T

AG* (kcal/mol)

25 § ------- -------

15 7000 3.19 0.00347 11.78

1 2000 1.99 0.00365 11.86

-11 950 1.29 0.00381 11.71

-15 675 0.962 0.00387 11.70

-34 100 -.0872 0.00418 11.71

-43 42 -1.70 0.00434 11.64

-50 12 -2.92 0.00448 11.83

-73 -i.I

§ Fast exchange limit spectrum For In fk/Ti vs Cl/Ti
t  Slow exchange limit spectrum Slope: -581.864 ± 488.451

Intercept: 23.3958 ± 1.94814 
Std. Deviation of fit: 0.173459

of (In k/T) versus ( i/T) generates a line having a slope equal to -AH*/R. Using the data in 

Table 2.2, AH* for the enantiomerization of cts-125 is 11.6 ± 0.97 kcal/mol. 

Furthermore, AS* can be calculated using the intercept of the Eyring plot. From the data in 

Table 2.2 AS* was calculated to be -0.724 ±  1.95 cal/mol K.

k = (Jl f I )  e -(AG*/RT) Equation 2.1a

AG*= RT[ ln ^  +ln("lT") ] Equation 2.1b

(n = 23.75998(36) fortc = 1
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AG*= AH*- TAS5 Equation 22

' " ( ? ) =  H r )  T  +  H i 6 - )  +  H r )  E q u a t i o n  2 3

It is reasonable to assume that AG* will not vary greatly with temperature based on 

the relatively low value of AS* calculated for the enantiomerization. However, an estimated 

value for AG* can be obtained at any temperature by extrapolating data from the Eyring plot 

and using Equation 2.1a. The AG* for the enantiomerization of 85 was estimated to be 

15.36 ± 0.2 kcal/mol at 57.5 ±  3 °C .105 The estimated AG* at 57.5 °C for cis-125 is 11.8 

kcal/mol. The difference in free energy of enantiomerization is a result of the torsional 

constraint introduced into one of the central six-membered rings of cis-125 with respect to 

czs-85. In both cases, the enantiomerization requires that the ring systems undergo two 

ring inversions and all four nitrogens must be inverted. The presence of the two sp2 

carbons pry open the tetracyclic ring system of 125 with respect to 85 requiring less 

energy to complete the ring inversions. A three dimensional model of 125 is compared 

with the diamond-lattice conformation of 85 in Figure 2.4.
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Figure 2.4: M olecular M odels o f 125 and 85 (MM2).

Cyclam-glyoxal adductBenzocyclam-glyoxal adduct
125 85

Reaction of Methvl Iodide and Benzvl Bromide with Cty-125.

Reaction of cis-125 with excess methyl iodide in CH3CN at room temperature for

14 days afforded a white precipitate. *H NMR analysis of this precipitate was consistent

with a mixture of mono and dimethylated cis-125. This material was recrystallized from

CH3CN. The recrystallized material gave a lH NMR spectrum consistent with the

dialkylation of cis-125 whereby the product has two different methyl groups.

There are nine different isomeric dimethylated products which could give rise to this

NMR spectrum. These isomers are shown in Scheme 2.32 (128a and 128d are excluded

from this argument because the two methyl groups are symmetrically equivalent). Based

on the MM2 calculated structure for cis-125 shown in Figure 2 .4 ,126a is the most likely

product of this reaction. The first methylation should take place on one of the more

nucleophilic nitrogens, not attached to the aromatic ring. Furthermore, this methylation
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Scheme 2.32
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should occur on the most accessible lone pair which is cis to the methine hydrogens. The

second methylation should take place on the nonadjacent nitrogen to m in im iz e  the repulsion

of the positive charges. Additionally, methylation should proceed on the same face of the

molecule as the first methylation because of sterics. For these reasons, 126a should be

formed preferentially over other isomers of 126 and any of the isomers of 127 and 128.

Further work to characterize this material is needed. Less than 10 mg of sample

were isolated in this reaction. Therefore, 13C NMR spectra having high enough signal to

noise were not obtained in order to observe all of the resonances. Ideally, the
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Scheme 2.33

95% EtOH

NaBH4

126 129

regiochemistry of the methylation of cis-125 should be determined by an x-ray crystal 

structure. Following the successful preparation of 126a, it is likely that NaBH4 reduction 

of 126 will provide dimethyl cross-bridged benzocyclam (129).

Reaction of benzyl bromide (1.5 equivalents) with cis-125 in toluene/CH3CN 

afforded a precipitate after stirring at room temperature for 14 days (Scheme 3.34). NMR 

Schem e 2.34

analysis of the solid was consistent with 130. We believe that a monoalkylated derivative 

of cis-125 could be reduced directly with DIBALH to give a cross-bridged benzocyclam 

derivative (131). This chemistry is shown in Scheme 2.35. Reaction of DIBALH with 

Schem e 2.35

125 130

DIBALH DIBALH

130 132 131
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130 should cleave the C-N* bond to afford 132. Based on the chemistry reported by

believe that reduction of 132 will afford monobenzyl cross-bridged benzocyclam 131. 

Preparation of 131 would provide a convenient synthetic pathway to fiinctionalized 

cross-bridged benzocyclam derivatives. Possible targets which could be derived from 131 

are shown in Scheme 2.36. Clearly, further work is needed to fully explore this chemistry. 

Schem e 2.36

Yamamoto and Maruoka38 on the regioselective reduction of aminals by DIBALH, we

131
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CHAPTER HI

STUDIES ON THE COMPLEXATION OF SMALL CATIONS BY CROSS­
BRIDGED CYCLAM DERIVATIVES

I. INTRODUCTION

As introduced in the previous chapter, there is a vast literature concerning 

complexation of cationic species by polyaza macrocyclic derivatives. The driving force 

behind the research in this area is the potential applications which exist in many different 

areas of science. Many applications involve the medical field in some manner, which has 

intensified the research effort to investigate the metal complexation properties of polyaza 

macrocyclic derivatives.

Significant interest has developed in ligands which complex transition metals 

having open coordination sites. Such complexes allow for the study of reactions at metal 

centers that have biological relevance. Other important applications for transition metal 

complexes center around the complexation of radiopharmaceuticals. Furthermore, there is 

also interest in main group cation complexes.

The rational design of cross-bridged cyclam derivatives prepared by Weisman, 

Wong and coworkers101 aimed to improve upon the complexation properties observed for 

cyclam. Weisman and Wong believed that cross-bridged cyclam derivatives would adopt

low energy conformations which have all four nitrogen lone pairs convergent upon a cleft.
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The cross-bridging of nonadjacent nitrogen atoms resulted in a cavity which could 

accommodate appropriately sized cations. It was believed that the cavity size was relatively 

small and the best ligand-metal interaction would be found for small cations. In fact, 

Weisman, Wong and coworkers reported that dimethyl cross-bridged cyclam 83 was a 

good complexer of Li+.101 The functionalization of cross-bridged cyclam by the attachment 

of pendant arms with ligating groups further expanded the potential utility of these ligands. 

Hill has reported a number of cross-bridged cyclam derivatives and investigated the 

complexation of Li+ and Na+ for some of these ligands.103

A proposal to the National Institutes of Health (NIH), which was funded in 1997, 

outlined the research effort on cross-bridged cyclams.117 This chapter will address the 

experimental work relevant to this proposal on the complexation of Li+, Na+ and Cu2+.
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n . BACKGROUND

As reported in the original publication on 83,101 dimethyl cross-bridged cyclam 

formed complexes with LiC104 and NaBPh4. Furthermore these 1:1 complexes were each 

found to be in slow exchange with excess free ligand on the NMR time scale. Hill has 

reported, based on a 13C NMR competition experiment, that 83 is a better complexer of Li+ 

than Na+. In that 13C NMR experiment, a 1:1:1 mixture of 83, LiC104 and NaBPh4 was 

observed in CD3CN. A lower limit of 1.2-5.0 x 102 was placed on Krel.103 That is to 

say, 83 selectively complexes Li+ in the presence of Na+. This work was later repeated by 

Hines using LiC104 and NaC104 in order to insure that the counterion was not influencing 

the experimental results. His results increased the lower limit of KreJ to 2.11 x  104.89

C O
k C

83

The Li7Na+ selectivity observed in these experiments is very unusual. The 

development of a Li+ sensor using cross-bridged cyclam derivatives has been proposed.117 

There is a need for a method of detection for low concentrations of Li+ in the presence of 

abundant Na+. Li+ has a number of potential applications particularly in the medical 

field.130,131 Li+ salts have been used in the treatment of some neurological and psychiatric 

disorders such as manic depression.132,133 Li+ has also been reported to show antiviral 

activity against DNA type viruses.134 Unfortunately, the use of Li+ as a medicinal agent is

limited because of its toxicity and the dosage of Li+ introduced must be carefully controlled.
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The therapeutic concentration of Li* in blood is 0.8-1.0 mM, however, side effects arise 

when the Li* concentration reaches 2-2.5 mM.135 The presence of the abundant Na+ ions 

(-140 mM in blood)136 poses significant problems in monitoring the Li* concentration 

precisely. For these reasons, Li* ion selective electrodes (ISE’s) are among the most 

investigated ISE’s.136*138

Development of Li* ISE’s has been reported,139140 but they are limited by the 

inability to obtain very high (MO4) Li+/Na* selectivity.141 Ionophores utilized in ISE’s are 

often either diamides or crown ether derivatives.136 Li+ is considered a hard acid which has 

a strong interaction with hard oxygen atoms.142' 144 To a lesser extent, Li+ also interacts 

with nitrogen atoms of amines.131 As shown by Hines89 and Hill103, dimethyl 

cross-bridged cyclam (83) does form good complexes with Li+ resulting in high Li+/Na+ 

selectivity (KLi+/Na+ > 2.11 x 104 for 83)89 making cross-bridged cyclam derivatives good 

candidates as Li* ISE’s. Further investigation of the Li7Na+ selectivity of other 

cross-bridged cyclam derivatives will be discussed in this chapter.

There is, however, a significant problem which must be overcome in order to

investigate the utilization of cross-bridged cyclam derivatives as Li* sensors. The high

basicity o f these compounds severely limits their utility because cross-bridged cyclam

derivatives are protonated in protic media. Therefore, new cross-bridged cyclam

derivatives117 which should have decreased basicity with respect to 83 have been

proposed. However, the structural modifications which lead to decreased basicity may also

affect the Li* complexation properties o f these new ligands. A decrease in the relative
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complexation constants for new “less basic” cross-bridged cyclam derivatives would not 

necessarily pose difficulties in the development o f Li+ ISE’s. These new ligands will still 

be very promising if the Li+/Na+ selectivity is maintained. Synthetic work on “less basic” 

cross-bridged cyclam derivatives has been described in Chapter n.

In 1996, the first transition metal complexes with cross-bridged ligands were 

reported.104 In this communication, the synthesis of bicyclo[5.5.2] (133,134), [6.5.2] 

(135,136) and [6.6.2] (91,92) ring systems were presented as well as preliminary 

results on the complexation of Ni2+ and Cu2+ with these ligands. X-ray crystal structures 

for complexes of Cu2+ with 91 and 92 were reported. The complex with 91 had the Cu2+ 

in the ligand cavity coordinated to all four nitrogens in a distorted octahedral geometry.

The Cu2+ had an agostic interaction with one of the orr/w-hydrogens of one benzyl arm. 

The sixth coordination site was occupied by a Cl*. The two rings of the bicyclic ligand 

were in a slightly distorted [2323]/[2323] conformation as predicted. Similarly, the Cu2+ 

complex of 92 also had all four nitrogens convergent on the metal

P tk ^ N

133 135 91

134 136 92
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center. The coordination geometry of the copper center was a distorted trigonal bipyramid 

where a chloride counterion occupied the fifth site. The ligand in this complex was also in 

a slightly distorted [2323]/[2323] conformation. The study of other transition and main 

group metal complexes of cross-bridged cyclam ligands derivatives has continued in our 

group. Niu has prepared complexes of 91 with Zn2+ and 92 with Zn2+, Ni2+ and 

Co2+.145

Another group has also recently published data in this area. Busch, Alcock and 

coworkers have synthesized 133 ,134 ,135 ,136 , 83, 91 and 92 using our method and 

report that they have prepared metal complexes of these ligands with Cr2+, Mn2+, Mn3+, 

Fe2+, Fe3+, Co2+, Ni2+, Cu+, Cu2+ and Zn2+.146 They further claim to have obtained 

x-ray crystal structures for Mn2+, Mn3+, Fe2+, Fe3+, Co2+, Ni2+, Cu+, Cu2+ and 

Zn2+complexes with 133,134, 83, 91 and 92. However only data for the [M n(83)Cl2] 

were given. While there are some inconsistencies in this report with respect to our 

previously published and unpublished results, the conformation of the ligand and 

coordination of the ligand to the metal center for the Mn2+ complex reported by Busch and 

Alcock was consistent with our Cu2+complexes.

It is not surprising that there is considerable interest in cross-bridged ligands

because of the unusual stability observed for the metal complexes. This property is ideal for

the development of many biological applications. There is, for example, considerable

interest in reactions of biological significance which occur at metal centers. Reactions of

this nature may possibly be modeled or mimicked by complexing the particular metal to a
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cross-bridged ligand and u tiliz in g  the open coordination sites to perform chemical 

reactions. There are many processes in bioinorganic chemistry and catalysis which could be 

studied using cross-bridged ligands. Furthermore, metal cations such as In3* as well as 

Cu2+have utility as metal isotope agents (62Cu, ̂ C u, 67Cu, m In). Suitable 

radiopharmaceutical carriers 13,17 must be ligands which have fast formation kinetics which 

result in complexes that are stable towards metal dissociation. Preliminary work on 

derivatives of cross-bridged cyclam complexed with Cu2+ shows promise that they may be 

candidates for radiopharmaceutical carriers. Studies on the complexation and the stability 

of the resulting complexes of other transition metal cations has also been proposed to 

investigate all of these potential applications.117
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n . RESULTS AND DISCUSSION

General Method for the Calculation of K and AAG0̂  for NMR Competition 

Experiments for Cross-Bridged Cvclam Ligands

The complexadon of many metal cations by cross-bridged cyclam derivatives can be 

monitored by NMR and, in most cases, slow exchange spectra for the free ligand and the 

complex are observed. Hill103 and Hines89 have reported the methodology used in direct 

competition experiments to measure or estimate the relative complexing abilities of 

cross-bridged cyclam ligands. This method has allowed for the comparison of the relative 

ability to complex Li+ and Na+ between ligands as well as the Li+/Na+ selectivity for a 

given ligand. This method has been applied to the new cross-bridged cyclam derivatives 

reported in Chapter II and a summary of the complexadon abilities of all of the ligands 

which have been studied has been compiled.

The relative Li+ complexadon ability for a given ligand must be reported 

consistently. Therefore, one ligand was chosen to be the baseline for all of the competition 

experiments. This ligand is dimethyl cross-bridged cyclam (83). The data can then be 

compared to the monocyclic analog, tetramethylcyclam (88) by means of an experiment

83 88
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reported by Hines.89 Hines performed a direct competition experiment between 83 and 88 

for LiC104 using lH NMR as the method of detection. In that experiment, the competition

equilibrium constant (Krel) was determined to be (6.0110.52) x 103. This KreI was used 

to calculate the free energy of competition (AAG°reI) which was reported as -5.10 ±  0.05 

kcal/mol. From these data, 83 forms a much stronger complex with Li+ than does 88. 

The values of Krel and subsequently AAG°reI were derived from information

and 88 for LiC104 will be used as an example. An NMR sample was prepared in CD3CN 

containing 83, 88 and LiC104. The equilibrium expressions describing the species in 

solution are shown as Equation 3.1 and 3.2. The NMR experiment was set up such that 

83,88 and LiC104 were present in a 1:1:1 molar ratio. Therefore, if essentially all of the 

Li+ is complexed by ligands at equilibrium, the total concentration of free ligands ([83] + 

[88]) must be equal to the total concentration of ligands complexed with Li+ ([SS^Li*] + 

[88*Li+]). Furthermore, [83«Li+] must be equal to [88] and [88«Li+] must be equal to 

[83]. Having all of these conditions, Equation 3.2 can be simplified to Equation 3.3.

obtained from *H NMR integration. The case described above for the competition of 83

88 + Li+ ^ 88*Li+

83 + Li+ 83-Li+

Krei
88 + 83*Li+ (Equation 3.1)83 + 88*Li+
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J 8 8 H 8 3 < n _  (Equation 3.2)
Kgg [83] [88*Li+]

[88]2 [83*Li+]
[83]2 [88»Li+]2 (Equation 3.3)

AAG°rel = -RTln (Equation 3.4)

R = 1.9872 cal/mol K 
T = 298.15 K

Using *11 NMR integrations for isolated resonances for 83 and 83*Li+, Krel was 

calculated. From Equation 3.4, AAG°rel was calculated.

Complexation of 4.1 l-Bis-(N.N’-diethvlacetamido VI.4.8.11- 

fp.tra a ?a hjcvclo f6.6.21hexadecane f95^ with Li'*' and Na+.

Parker and coworkers reported the preparation of a series of [ane]N3 derivatives 

and a cyclen derivative with amide arms.111 The amide arms were designed to enhance the 

Li+/Na+ selectivity for these ligands over the parent structure.

The preparation of the analogous cross-bridged cyclam derivative (95) was

reported in Chapter n. The complexation ability for Li+ of 95 is expected to be much

stronger than that of 83 as a result of the two ligating amide arms. Before the competition

experiment could be carried out, control experiments were performed to determine which

resonances would provide the necessary information. The Li+ and Na+ complexes of 95

were prepared in CD3CN from LiC104 and NaC104 respectively. For each cation,
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approximately 0.5 equivalents of the perchlorate salt was added to an equivalent of 95 in 

CD3CN. 13C NMR spectra were consistent with two distinct species whose spectra were 

consistent with free 95 and the complexed 95. The complex exhibited twelve I3C 

resonances (C2 symmetry) and was in slow exchange with free 95 on the NMR time scale. 

Addition of another 0.5 equivalents of perchlorate salt afforded the fully complexed 95 in 

each respective control experiment The chemical shifts for these complexes are given in 

Table 3.1. The [L i(95)C I04] complex was isolated and an IR (KBr) spectrum was 

obtained. There was a single carbonyl stretching frequency (1631 cm*1) observed at lower 

energy than that of the free ligand (1644 cm '1). These data support both amide arms are 

coordinated to Li+ in the complex. Unfortunately, we were unable to obtain crystals of 

high enough quality for x-ray crystallography.

NEts

95

Competition: LiClQ4 and NaClQ4 for 4.11 -Bis-fN-N’ -diethvlacetamido')-1.4.8.11 -

fptraa?flhicvclor6.6.21hexadecane (95).

Method of Detection: 13C{ ‘H} NMR

Resonance Observed (95*LI+): 53.10 ppm

Resonance Observed (95«Na+): 51.33 ppm

Initial Concentration of 95: 6.14 x  10*2 M

Signal to Noise: 302:1 
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A competition was performed between LiC104 and NaClC>4 for 95 in CD3CN (for 

sample preparation and data acquisition see Experimental Section). After inspection of the 

separate control !H NMR spectra of 95, 95«Li+, and 95«Na+ in CD3CN, no isolated 

resonances which could be accurately integrated were found. Therefore, an estimate of 

KyVNa"'was calculated based on the line heights of 13C NMR resonances. The I3C NMR 

resonances for 95, 95«Li+, and 95«Na+ in CD3CN from the control experiments are 

given in Table 3.1. In the competition experiment, a single set of 13C resonances was 

observed which was consistent with 95»L!+. These resonances are also listed in Table 

3.1. There was no detectable free 95 or 95»Na+. Therefore, the largest resonance of 

95»Na+ in the sample must be estimated to be less than or equal to the height o f the noise 

of spectrum. A lower limit can be calculated for KLi+/Na+, based on the signal to noise of 

the spectrum. Based on Equation 3.5, the competition equilibrium constant (KLi+/Na+) for 

this competition was greater than or equal to 9.1 x 104. The free energy of competition 

(AAG°rel) was calculated to be more negative than or equal to -5.4 kcal/mol at 25 °C. 

Therefore, 95 is a much better complexer of Li+ than Na+.

„  K u l = [95»Li*][Na*] = [95«Li+]2 = [302]2 > gxlQ4
" [95*Na+JLi+] [95*Na+]2 [ l]2

(Equation 3.5)

for

Li+ + 95*Na+  ---------- ^ Na+ + 95*Li+
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Table 3.1: 13C Chemical Shifts for Complexation Experiments on 95 with
LiClC> 4  and NaCUXt in CD3 CN.

95 95*Li+ 95*Na+ L i+/N a+ C om petition

13.40 13.57 13.23 13.54

14.69 14.69 14.67 14.68

28.73 26.15 25.69 26.15

40.24 41.73 41.72 41.73

41.89 42.47 42.77 42.44

52.66 53.10 50.91 53.10

55.03 53.10 51.33 53.10

57.71 59.18 58.09 59.18

57.76 59.75 59.30 59.75

58.15 61.08 59.89 61.08

59.44 62.36 60.26 62.35

170.83 172.23 172.08 172.22

Initial Concentration of 95 in the Competition: 6.14 x 10-2 M
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Competition: 4.11 -Bis-fN.N’ -diethvIacetamidoV 1.4.8.11- 

fetraa7rahjcvclor6.6.21hexadecane (9S) and 4.11-Dimethyl-1.4.8.11- 

tetraa7ahicvclof6.6.21hexadecane ("83̂  for Li*

95 83

Method of Detection: l3C{!H} NMR

Resonance Observed (95*Li+): 26.15 ppm

Resonance Observed (Free 95): 28.73 ppm

Initial Concentration of a Single Amine Component: 1.64 x  10*1 M

Signal to Noise: 64:1

A competition was performed between 83 and 95 for LiC104 in CD3CN (for

sample preparation and data acquisition see Experimental Section). Upon inspection of the

control !H NMR spectra o f 83, 95, 83*L1+, and 95*Li+ in CD3CN, no isolated

resonances which could be accurately integrated in the competition were found. Therefore,

an estimate of KreJ was calculated based on the line height of 13C resonances. The 13C

resonances for 83, 95, 83»Li+, and 95«Li+ in CD3CN are given in Table 3.2. In the

competition experiment, two sets of 13C resonances were observed which were consistent

with 95*Li+ and 83. These resonances are also listed in Table 3 .2 . There were minor

resonances (~5% by line height) observed in this spectrum but the chemical shifts were

consistent with 83*H \ Since there was no detectable 95 or 83»Li+ the largest resonance
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_ [95«Li+I83] = [95*U+]2 
^  [83-Li+][95] [83*Li+]2 [ I I

(Equation 3.6)

95 + 83*Li+ 83 + 95*Li+

of 95 or 83»Li+ in the sample was estimated to be less than or equal to the height of the

noise of the spectrum. A lower limit can therefore be calculated for Krel, based on the 

signal/noise of the spectrum. Using Equation 3.6, the competition equilibrium constant 

(Krel) for this competitions was greater than or equal to 4.1 x 103. The free energy of 

competition (AAG°rel) was calculated to be more negative than or equal to -4.9 kcal/mol at 

25 °C. Therefore, 95 is a much better complexer of Li+ than 83.

These data also show that the amide arms enhance the complexation strength of this 

ligand. Hill performed a competition between 83 and 116 and found that 116 was also a 

better complexer of Li+ than 83.103 However, the AAG°rel was -2.05 ± 0.14 kcal/mol. 

Therefore 95 is an even better complexer of Li+ than 116 as a result of the amide arms 

present on the ligand.

116
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Table 3.2: 13C Chemical Shifts for Competition Experiments on 95 and 83
for LiCl( > 4  in CD3 CN.

95 95*Li+ 83 83-L i+ 83»H+
95/83 Com petition 

95-L i+ 83 83-H+

13.40 13.57 13.54

14.69 14.69 ------- ------- 14.69 -------

28.73 26.15 28.69 24.59 24.99 26.13 28.62 25.01

40.24 41.73 ------- 41.70 -------

41.89 42.47 43.02 46.57 43.71 42.47 43.08 43.76

52.66 53.10 52.28 51.75 52.41 53.08 52.33 -------

55.03 53.10 56.81 52.20 52.97 53.08 56.73 -------

57.71 59.18 56.96 58.89 54.16 59.14 56.97 52.24

57.76 59.75 57.77 58.94 58.17 59.73 57.70 58.21

58.15 61.08 61.67 59.64 58.49 61.07 61.53 58.65

59.44 62.36 ------- 62.33 -------

170.83 172.23 ------- 172.21 -------

Initial Concentration of 95 and 83 in the Competition: 1.64 x 10-1 M 
Data for 83 and 83«Li+ originally recorded by M.E. Rogers
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Complexation of 4.1 l-Bis-(2-carboethoxvmethvlVl .4.8.11- 

rfttraa7.ahicvclor6.6.21hexadecane f!3T> with LiClO^ and NaClQ4 in CD^CN.

Hill prepared ester-armed cross-bridged cyclam derivative 137.103 As observed for 

95,137 was expected to exhibit enhanced Li+ complexation with respect to the dimethyl 

derivative 83. Before the competition experiment could be carried out, control experiments 

were performed to determine which resonances would provide the necessary information. 

The Li+ and Na+ complexes o f 137 were prepared in CD3CN from LiC104 and NaC104 

respectively. For each cation, approximately 0.5 equivalents of the perchlorate salt was 

added to an equivalent of 137 in CD3CN. In each case, 13C NMR spectra exhibited two 

distinct species whose shifts were consistent with free 137 and the complexed 137. Each 

complex exhibited ten l3C resonances (C0 symmetry) and was in slow exchange with free 

137 on the NMR time scale. Addition of another 0.5 equivalents of perchlorate salt 

afforded the fully complexed 137 in each respective control experiment

.OEt

EtO

137
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Competition: 4.11 -Bis-f 2-carboethoxvmethvV 1.4.8.1 l-tetraazabicvclor6.6.21hexadecane 

(13T> for L i a o , vs. NaCIQ
*+ " 4

Method of Detection: *HNMR 

Resonance Observed (Complex 137-Li*): 3.53 ppm (2H)

Resonance Observed (Complex (137*Na+): 3.49 ppm (2H)

Initial Concentration o f a Single Amine Component: 4.24 x  10'2 M 

The relative complexing ability of 137 for LiC104 over NaC104 was determined by 

means of an NMR competition experiment A 1:1:1 molar mixture of 137, LiC104 and 

NaC104 in CD3CN was prepared. Fortunately, there were resonances for each complex 

which were not overlapped with other portions of the *H NMR spectrum, which allowed 

for the direct comparison of the quantities of 137«Li+ and 137»Na+ by integration. From 

this NMR experiment it is clear that the predominant species is 137«Li+ but there is a 

detectable amount of 137»Na+. Multiple integrations of these two resonances were 

performed to provide the data in Table 3.3.

The competition equilibrium constant +) was calculated from Equation 3.7 

as (4.94 ±  0.536) x 101 at 95% confidence. The free energy of competition (AAG°rel) was 

calculated as -2.31 ± 0.107 kcal/mol. Therefore, as predicted, 137 is a much complexer of 

Li+ than Na+. Based on this AAG°rel, 137 is equally effective in complexing Li+ as the 

ether-armed derivative (116) reported by Hill.
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Table 3.3: Results of the C om petition E xperim ent o f U C IO 4 vs. NaClC>4 
for 137 in CD3C N

Integration 137»Li+
(5 3.53)

137*Na+
(5 3.49)

Ratio
137-

(L i+/N a+)
(% 137»Li+/% 137*Na+)

1 29474.31 3619.631 8.142905 89.1/10.9

2 30593.11 4340.257 7.048686 87.6/12.4

3
•

29401.75 3514.569 8.365677 89.3/10.7

4 31453.12 5043.202 6.236736 86.2/13.8

5 30090.83 4045.434 7.438220 88.1/11.9

6 31076.23 4780.051 6.501234 86.7/13.3

7 31179.79 4844.420 6.436228 86.6/13.4

8 30301.22 4265.685 7.103483 87.7/12.3

9 31031.99 4713.123 6.584167 86.8/13.2

10 31191.07 4863.574 6.413199 86.5/13.5

Average(x) 30579.34 4402.995 7.027054 87.5/12.5

Initial Concentration of 137 in the Competition: 4.24 x I O'2 M
Standard Deviation of Ratio 137*(Li+/Na+) (x): 0.74800

_  K L|.  [137*Li*][Naf] [137.L1+]2 T30579.3412 _
KNa. [137*Na+][Li+] [137-Na+]2~  [4402.995]2

(Equation 3.7)

for

Krel
Li+ + 137*Na+  -----------“  Na+ + 137*Li+
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.OEt

EtO
k k

137

Competition: 4.1 l-Bis-(2-carboethoxvmethvlV1.4.8.1 l-tetraa7-ahirvclor6.6.2-hexadecane 

(137) and4.11-Dimethyl-1.4.8.11-tetraa7ahirvcIor6.6.21hexadecane (83~) for LiClQ^.

O kO
k k

83

Method of Detection: NMR

Resonance Observed (137»Li+): 3.53 ppm (2H)

Resonance Observed (83»Li+): 3.39 ppm (2H)

Initial Concentration of a Single Amine Component: 4.94 x 10' 2 M 

Surprisingly, analysis of the *11 NMR spectrum 30 minutes after the preparation of 

this competition sample was consistent with 83«Li+ as the major component. In fact, the 

ratio of 83«Li+:137*Li+ was approximately 86:14 based on NMR integrations of the 

two complexes. These results were in contradiction to the expected results based on the 

other competitions which had been carried out The same sample was reevaluated three 

hours later. The ratio of the two complexes had shifted during this time and was much 

closer to 50:50.

Therefore, thermodynamic equilibrium had not been reached. This result could be 

rationalized if the experiment had been biased during sample preparation. If the LiC104 had 

been added to 83 forming 83*Li+, the 83»Li+ complex must then decomplex Li+ by some 

mechanism to allow 137 to complex with Li+. Unfortunately, the order of addition was 

not recorded in the experimental details.
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The *H NMR spectrum was monitored over time to determine when equilibrium 

had been reached. The ratio of 83#Li+:137«Li+ after 18 hours had shifted to favor 

137*Li+. There was, however, another process taking place during the equilibration. A 

resonance whose chemical shift was consistent EtOH was detected at 1.11 ppm. This 

resonance was not observed in the previous spectra for this sample. EtOH was generated 

by the hydrolysis of the ester arm of 137*Li+. It is hypothesized that the Li+ complexed 

with the carbonyl of 137 catalyzed the hydrolysis of the ester to a carboxylate by the water 

present in the sample. In fact, the resonance for water in this sample was also reduced as a 

function of time, which is consistent with hydrolysis. lH NMR spectra after 2 days and 6 

days did not show significant further conversion of 83*LI+ to 137«Li+ but hydrolysis of 

the ester had progressed such that the water resonance could not be detected in the 6 day 

spectrum. Representative spectra from this experiment are shown in Figure 3.1.
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Figure 3.1: 1H NMR Data fpr the Competition o f 137 vs 83 for LiCIO„.

0.5 Hours

137

X V  n e t -v
NC r  >

5 w  °  -  w

1 3 7  UOQ« 8 3
COjCN

137*Li*

 I I U I uI a^  V  I  rtl | |« u aT 5 y - ^ " , |rru. ^
(ppm)

83-Li4

3 Hours h 2o

4.D
i U l l

35 Li35 15
(ppm)

2-0 13

18 Hours

U i i iwfln
4-0 35

1^_ , j l i l  ilL  j
*5 «* ' ' 1 - ' •---'“ P*10 25 25 15

(PPra)

1

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.1 (Continued)

2 Days

h2o

137 137*Li+ i EtOH
83»LI+

- j i i .  w >»uJ L l
40 33 10 23

(ppm)
10 13

6 Days

J k . a . .  U . !A J
40 3J 15 10 13

(ppm)

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Complexation of 1.4.8.1 !-Tefraa7:ahinvclor6.6.21hexadecane (92) with H*. LiClO^ and 

NaClQ^ in CD^CN

being inside the cavity of the ligand, hydrogen bonded to the lone pairs of the tertiary 

nitrogen atoms. The chemical shift for these protons is found downfield at approximately 

3.5 ppm in various NMR solvents (CDC13,103 CfiD6,103 CD3CN). The fact that this 

resonance for the NH protons is not significantly shifted in different solvents supports the 

hypothesis that the protons are located on the inside of the cavity. Therefore, in order for 

92  to complex a cation, the two secondary amino  nitrogens must be inverted to remove the 

two protons from the cavity. It is possible that the presence of the two amino protons 

already inside the cavity may result in 92 being less basic than other fully substituted 

cross-bridged cyclam derivatives. The protonation of 92 would be expected to occur on 

one of the secondary amino lone pairs exposed to solvent and not a lone pair inside the

cavity. Therefore, the pK of this species should be closer to that of a typical secondary21

amine.

To support this argument, an NMR experiment was performed whereby 92 was 

treated with trifluoroacetic acid (TFA) in CD3CN. We expected that there might be an 

exchange process that interconverted the “inside” protons with the “outside” proton. This

92

The *H NMR data for 92 is consistent with the two secondary amino hydrogens
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exchange process must involve inversion of the secondary amino nitrogens and either

intermolecular or intramolecular proton transfers. If this interconversion was slow on the

NMR time-scale two separate proton resonances would be observed in a 2:1 ratio.

However, this process is not slow and a single proton resonance was observed in the lH

NMR. Addition of an equivalent of TFA afforded 92«H+ which had a single NH

resonance at 7.44 ppm in CD3CN. Addition o f a second equivalent of TFA afforded

92«2H+. The *H NMR spectrum of 92*2H+ had two distinct NH resonances (9.27,

10.19 ppm), one more broad than the other (10.19 ppm). This species should have both

“outside” lone pairs protonated and has no exposed lone pairs available to intermolecularly

shuffle protons. Therefore, the rate of exchange of protons is slower in this case and two

distinct resonances were observed. It is likely that the broader resonance observed further

downfield corresponds to the “outside” protons which are in slighdy faster exchange than

the “inside” protons. The JH NMR spectrum is also consistent with diamond lattice

conformations for the two 14-membered rings. The two upfield multiplets are nicely

resolved into a doublet of pentets (dp, 1.61 ppm) for the pseudo-equatorial protons and a

quartet of triplets (qt, 2.18 ppm) for the pseudo-axial protons of the methylenes (3 to

nitrogen atoms in the 14-membered rings. These data further support the hypothesis that

there are two protons with bifurcated hydrogen bonds inside the cavity. An aliquot of this

NMR sample was removed and diluted (10:1) with CD3CN. The *H NMR of this sample

was unchanged with respect to the more concentrated sample. We hoped that addition of

D20  to the NMR sample would provide further insight concerning 92»2H*. If  a small
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amount of D20  was available to exchange with the protons it is reasonable that the 

“outside” protons must exchange first. Therefore, that resonance should decrease in area 

faster than the resonance for the “inside” protons. Unfortunately, by the time the 3 pL of 

D0O had been added and the NMR spectrum acquired, both types of protons had 

exchanged.

In all cases presented to this point, cross-bridged ligands have complexed Li+ and 

Na+ so effectively that free ligand has never been observed for 1:1 molar mixtures of 

ligand:metal. However, 92 was not as effective as a result of the two “inside” protons 

which are hydrogen bonded to the nitrogen lone pairs in the cavity. A 1:1 molar mixture of 

92 and LiC104 in CD3CN was prepared and the NMR data was consistent with 92»Li+ 

and free 92. Two sets of 13C NMR resonances were observed for this sample, each 

having six lines, confirming that 92»Li+ and 92 were in slow exchange on the NMR time 

scale. Addition of another 0.3 equivalents of LiC104 gave a 13C NMR spectrum consistent 

with fully complexed 92«Li+ which had only one set of six resonances.

The same experiment between 92 and NaC104 did not have similar results. The 

NMR spectrum of the 1:1 molar mixture of 92 and NaC104 was consistent with 92. 

However, the I3C NMR chemical shifts observed for this mixture varied slightly from the 

shifts of authentic 92. Furthermore, these resonances were slighdy broadened. Therefore, 

the exchange of Na+ between free and Na+-compIexed 92 is fast on the 13C NMR time 

scale. The mixture, however, must be predominantly composed of 92 because the

chemical shifts for the mixture are only slightly different that those observed for free 92.
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Competition: 1.4.8.11 -Tetraa7ahicvclor6.6.2]hexadecane (92~> and 4.11-Dimethvl- 

1.4.8.11 -Tetraa7ahicvclor6.6.21hexadecane (831 for LiClO^.

Method of Detection: I3C{ lH} NMR 

Resonance Observed (83-Li*): 24.24 ppm (NCH2CH2CH2N)

Resonance Observed (92*Li+): 24.33 ppm (NCH2CH2CH2N)

Resonance Observed (83): 28.70 ppm (N CI^CI^C E^N )

Resonance Observed (92): 25.24 ppm (NCF^CT^Cf^N)

Initial Concentration of a Single Amine Component: 5.96 x 10'2 M 

A competition was performed between 83 and 92 in CD3CN (for sample 

preparation and data acquisition see Experimental Section). Upon inspection of the lH 

NMR spectra of 83, 92, 83«Li+, and 92»Li+ in CD3CN, no isolated resonances which 

could be accurately integrated were found. Therefore, an estimate of was calculated 

based on the I3C NMR spectrum. The 13C NMR resonances for 83, 9 2 ,83»Li+, and 

92*Li+ in CD3CN are given in Table 3.4. The most abundant species in the competition 

experiment were 92 and 83«Li+ but some resonances for 83 and 92HLi+ were also 

found. Provided the T j’s and NOE’s for the free ligands (83 and 92) and the T j’s and 

NOE’s for the Li+ complexes (83»Li+, and 92»Li+) for respective carbons are not 

significantly different, can be calculated. The integration for each respective carbon

92 83
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can be used in Equation 3.8 to calculate Kre,. These data are presented in Table 3.5. 

was calculated to be (1.73 ± 0.085) x 102 (at 95% confidence) which corresponds to a 

AAG°rel of -3.05 ± 0.028 kcal/mol. Therefore, 83 is a better complexer of Li+ than 92 as 

predicted.

T able 3.4: 13C Chem ical Shifts fo r C om petition E xperim ents 
on 92 and  83 fo r U C IO 4 in CD3C N .

92 92*Li+ 83 83-L i+
C om petition  

m a jo r m in o r 
92 83*Li+ 83 92-Li+

25.27 24.32 28.69 24.59 25.24 24.61 28.70 24.32

47.41 43.52 43.02 46.57 47.40 46.59 43.54

51.31 48.36 52.28 51.75 51.25 51.76 48.37

52.70 52.37 56.81 52.20 52.71 52.21

56.67 59.75 56.96 58.89 56.61 58.91 ------- -------

59.99 60.76 57.77 58.94 59.99 58.93 -------

61.67 59.64 59.67 61.65 -------

Initial Concentrations of 92 and 83 in the Competition: S.96 x 10-2 m  
Data for 83 and 83»Li+ originally recorded by M.E. Rogers

(Equation 3.8)

for

Krel
83 +  92-L i+ » 92 +  83*Li+
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Table 3 i :  Results for the Competition Experiment of 92 and 83 for
U C IO 4  in CD3 CN.

Integration
Free 83
(8 28.70)

Free 92
(8 25.24)

83-U +
(8 24.61)

92*Li+
(8 24.32) Krel

1 42123.39 1435870 1905061 449795.9 144.3727

2 31765.84 1417843 1890356 471506.8 178.9466

3 31489.31 1405029 1892123 485371.3 173.9392

4 31697.71 1414211 1891157 474824.8 177.6972

5 31605.83 1406864 1892889 484819.4 173.7921

6 31900.07 1423293 1890181 464675.9 181.4913

7 31418.51 1396332 1893907 497773.8 169.0946

8 31922.18 1427414 1887262 443874.4 190.1207

9 31489.31 1405029 1892123 485371.3 173.9392

10 31342.34 1395460 1894512 498339.3 169.2615

Average (x) 32675.45 1412735 1892957 475635.3 173.2655

Initial Concentrations of 92 and 83 in the Competition: 5.96 x 10-2 M
Standard Deviation for K ^: 11.89343
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Competition: 1.4.8.11 -Tetraa7abicvclor6.6.21hexadecane (92) and Tetramethvlcvclam 

(88> for LiClQ4.

Resonance Observed (88'L i*): 24.24 ppm (NCH2CH2CH2N)

Resonance Observed (92»Li+): 24.33 ppm (NCH2CH2CH0N)

Resonance Observed (88): 28.70 ppm (NCH2CH2CH2N)

Resonance Observed (92): 25.24 ppm (NCE^d^CH^N)

Initial Concentration of a Single Amine Component: 8.51 x 10‘2 M 

The same competition experiment was performed between tetramethylcyclam (88) 

and 92 in CD3CN (for sample preparation and data acquisition see Experimental Section). 

An estimate of Krel was calculated base on the 13C spectrum. The 13C resonances for 88, 

92, 88*Li+, and 92«Li+ in CD3CN are given in Table 3.6. The same assumption 

concerning the T }’s and NOE’s can be made in this case as was made for the competition 

between 83 and 92 for Li+. The data for the integrations is presented in Table 3.7. The 

integration for each respective carbon was used in Equation 3.9 to calculate Krel- was 

calculated to be 1.88 ± 0.047 which corresponds to a AAG°rel of -0.374 ± 0.015 kcal/mol.

As mentioned earlier in this section, Hines performed the competition of 83 and 88 

for U Q 0 4.89 From that experiment, Krd was calculated to be -(6.01±0.52) x  103 in favor

88 92

Method of Detection: 13C{ JH} NMR
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Table 3.6: 13C Chemical Shifts for the Competition Experim ent for 92 and
8 8  with LiC104  in CD3 C N .

92 92*Li+ 88 88*Li+ 92
C om petition  

92*Li+ 88 88*Li+

25.27 24.32 25.80 23.34 25.29 23.44 25.78 23.32

47.41 43.52 43.48 42.64 47.35 43.53§ 43.53§ 42.73

51.31 48.36 ------- 43.19f 51.34 48.37 ------- 43.53§

52.70 52.37 55.13 55.91 52.52 52.37 55.16 56.02

56.67 59.75 55.75 57.68 56.24 59.78 55.74 57.78§

59.99 60.76 60.46f 59.78§ 60.79§ ------- 60.78§

Initial Concentrations of 92 and 88 in the Competition: 8.S1 x 10-2 M 
Data for 88 and 88*Li+ recorded by M.S. Hines 
t  Resonance was broad 
§ Resonances were overlapping

„  . [88*Li*I92] 1)la+n» , -
“ [92*Li+][88] ” 188 - 0 047

(Equation 3.9)

for

Kre,
92*Li+ + 88 88*Li+ + 92
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Table 3.7: Results o f the Com petition Experiment on 8 8  vs. 92 for LiC1 0 4

in CD3 C N .

Integration
F ree  88
(8 25.78)

F re e  92
(8 25.29)

92-Li+
(8 24.32)

88»Li+
(8 23.42) K re,

1 3.351253 4.325718 2.348412 3.342709 1.837280

2 3.305257 4.337708 2.376626 3.340714 1.844733

3 3.254040 4.378045 2.398162 3.386639 1.899974

4 3.406156 4.240905 2.316787 3.220567 1.730774

5 3.227081 4.392984 2.408133 3.403123 1.923742

6 3.271995 4.36079 2.387566 3.363103 1.877316

7 3.221981 4.40442 2.415858 3.422006 1.936311

8 3.189891 4.422523 2.427265 3.447087 1.968926

9 3.249717 4.377082 2.397738 3.381875 1.899743

10 3.271995 4.360790 2.387566 3.363103 1.877316

Average (x) 3.274934 4.360100 2.386411 3.367093 1.879611

Initial Concentrations of 92 and 88 in the Competition: 8 i l x  10-2 m  
Standard Deviation for Krei: 0.0659386
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of 83*Li+ over 88*Li+. However, as reported in this chapter, 88 and 92 complex 

LiClO^ approximately equally having a KreI of 1.88 ±  0.047 in favor of 88 complexation. 

Therefore, one would predict that the Krel for the competition of 83 and 92 for LiC104 

should have a Krel on the order of 103. The Krel for that experiment was calculated to be 

(1.73 ±  0.085) x 102. These data are not internally consistent. As far as the competitions 

between (88 and 92) and (83 and 92) for LiC104, these experiments allowed for the 

observation of both free ligands and both complexes. Therefore, the solution for Krel is 

generated by knowing the relative concentrations of all four species. This makes these data 

more reliable than Hines’ (83 and 88) competition experiment for LiC104 which was 

monitored by lH NMR resonances for 83 and 83»Li+. Experimental errors in weighing 

of samples dramatically alter the value of for that type of experiment. However, 

integration of !H NMR spectra is far more accurate than 13C NMR spectra because of the 

influence of T j’s and NOE differences in 13C NMR spectra. These differences could lead 

to error in the data for the competitions between (88 and 92) and (83 and 92) for LiC104. 

Clearly, some experiments must be repeated in order to confirm all of these results.

v  _  [8 8 « L il9 2 ]  v  _  [83*Li+][88]
88/92 [92#Li+I8 8 ]  83/88 [88-Li+][83]

K  _  E»8*fc£j[92] [83»LnE8Sj _ [83«Li+][92] 4
83/92 [92*Li+]f8&3 [88»Li+I 83] [92*Li+][83]

(Equation 3.10)
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Complexation of 1-Methvl-l .4.8.1 l-tetraay.ahicvclor6.6.2]hexadecane C114  ̂with LiClQ4 

and NaClQ4 in CDjCN.

We believed that 114 may have complexing abilities for Li+ and Na+ which were 

superior to 92 even though 114 has a hydrogen bonded proton inside the cavity. We also 

believe that 114 should be less basic than 83 and other fully substituted cross-bridged 

cyclam derivatives. If this hypothesis is correct, and the complexation properties of 114 

were relatively similar to those of 83,114 would be a very interesting lead for preparing 

“less basic” Li+ selective cross-bridged ligands. The 1:1 LiC104 complex of 114 was 

prepared in CD3CN. The 114«Li+ complex had thirteen distinct 13C resonances which are 

listed in Table 3.8. The NMR sample containing a 1:1 molar mixture of NaC104 and 114 

had only twelve resonances and also displayed dynamic broadening for six of these 

resonances. These chemical shifts are listed in Table 3.8 This broadening is a result of 

exchange of Na+ between 114*Na+ and free 114.

114
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Competition: LiClO^ and NaClO^ for 1-Methyl-1.4.8.11 -tetraazahi r vclof 6.6-2)he.x arierane 

(114) in CDjCN.

Method of Detection: 13C{!H} NMR 

Resonance Observed (114-Li*): 23.82 pm (N O ^ O ^ C ^ N )

Resonance Observed ((l:l)1 1 4 :N aC I0 4): 25.45 ppm (NCH2CH2CH2N)

Initial Concentration o f a Single Amine Component: 1.34 x 10' 1 M 

A competition was performed between Li+ and Na+ for 114 in a 1:1:1 molar ratio in 

CD3CN (for sample preparation and data acquisition see Experimental Section). After 

inspection of the ]H NMR spectra o f 11 4 ,114*Li+, and (l:l)114 :N aC 104 in CD3CN, 

no isolated resonances which could be accurately integrated were found. Therefore, an 

estimate of was calculated based on the line height of 13C NMR resonances. The

13C NMR resonances for 1 1 4 ,114«Li+, and (l:l)114 :N aC 104 in CD3CN are given in 

Table 3.8. A set of 13C resonances was observed which was consistent with 114»Li+. 

There was also a minor component which was consistent with (l:l)114:N aC 104. These 

resonances are also listed in Table 3.8. An estimate can be calculated for 1^+ ^+ , based 

on the height of the signals for respective carbons for the two complexes. The ratio of the 

peak heights was 94:6 in favor o f 114»Li+. The competition equilibrium constant 

(KLi+/Na+) calculated from Equation 3.11 for this competition was estimated as 2.5 x 102

114
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based on these data. The free energy of competition (AAG*rel) was estimated to be -3.26 

kcal/mol at 25 °C. 114 is a better complexer of Li+ than Na+. However, it is reasonable to 

consider this experimental result questionable. The NMR of the competition sample 

clearly shows water present in a relatively large quantity. Therefore, the water must have 

been introduced from 114 or one or both of the perchlorate salts resulting in error in the 

stoichiometry of the competition. This competition should be repeated with anhydrous 

reagents to confirm the observed Krel.

X *  = [1 1 4 -L iW ]  = [ 1 1 4 ^  J g t f .  = 2 45x1()2 
Kjfa* [114»Na+ILi ] [114*Na+]2 [6]2

(Equation 3.11) 

for

Li+ + 114-Na+ »------ —  Na+ + 114*Li+
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Table 3.8: 13C Chemical Shifts for Complexation Experiments on 114 with
L iC 104 and NaC104 in CD3C N .

114 114*Li+ (1:1)
114:NaC104

Li+/N a+ Competition
major minor

26.52 23.84 25.42 23.82 25.45

28.32 24.68 25.90 24.67 -------

41.93 43.40 43.85 (b) 43.40 43.97

49.82 45.59 44.91 45.58

49.93 47.95 49.62 (b) 47.95 48.91

50.37 51.81 51.10 51.81

20.59 52.16 52.04 (b) 52.18

55.00 52.54 53.07 (b) 52.55 53.18

57.10 58.86. 57.99 (b) 58.86 57.77

57.10 59.19 58.33 (b) 59.18 58.12

58.01 59.19 59.13 59.18 -------

59.82 59.63 59.37 59.61

62.40 61.52 ------- 61.50 -------

Initial Concentration of 114 in the Competition: 1.34 x 1(H M
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Competition: 1-Methvl-l.4.8.11 -tffraa7ahjcvclor6.6.21hexadecane (114) and 4.11- 

Dimethvl-1.4.8.1 l-Tetraa2abicvcIor6.6.21hexadecane (83) for LiClC>4 in CD^CN.

A competition between 114 and 83 for LiC104 was carried out. However, too 

much LiC104 was added in this experiment which negates the possibility to calculate K ^. 

Since the quantity of 114 on hand was relatively low, further experiments were not 

possible. The experiment conducted does qualitatively show that 83»Li+ was the 

dominant complex in solution. There was 114*LJ+ present in the competition sample, but 

no free 83 was detected which verified excess LiC104 was present after all of the 83 had 

been complexed. However, 83 is a much better Li+ complexer than 114.

Competition: 4.1 l-Bis-^-carboethoxvmethvlVlAS.I 1-tetraa7ahicvc1or6.6.2-hexadecane 

(137) and 4.1 l-Bis-fN-N’-diethvlacetamidoM .4.8.11 -tetraarahicvclor6.6.21hexadecane 

(95) for LiClQ4.

83 114

95 137
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Method of Detection: *H NMR 

Resonances Observed (137-LF*") and (137): 4.02-4.28 ppm (CH2CHy  8H) 

Resonance Observed (95): 3.88 ppm (td, 2H)

Initial Concentration of a Single Amine Component: 4.11 x 10*2 M 

In this experiment, the 137»Li+ complex was preformed in CD3CN and 95 was 

then added to this solution. This mixture was observed by lH NMR over 36 hours. The 

!H NMR data showed that there was a slow approach to equilibrium favoring 95*Li+. 

However, for data points closer to tM it was clear that the complexation of LiC104 was 

competing with complexation of I f o r  H20 . The water was introduced from the ligands. 

Water present in the sample complicated this experiment and, as a result, the relative 

complexation constant for these two ligands could not be calculated. This experiment must 

be repeated using anhydrous ligands.

Determination of Thermodynamic Mixtures Over Kinetic Mixtures in Competition 

Experiments.

A necessary condition for competition experiments is that the complexation must

reach thermodynamic equilibrium. We had assumed, based on work by Hill and Hines,

that the rates of complexation an decomplexation of the Li+ cation by cross-bridged ligands

were relatively fast on the laboratory time scale. That is to say, kinetic mixtures of

complexes and free ligands were not observed and thermodynamic equilibrium had been

reached by the time the NMR sample had been prepared, the NMR experiment setup and
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the spectrum acquired. Ideally, to verify this condition, two separate experiments must be 

carried ou t For a ligand-ligand-metal competition, a 1:1 complex with one ligand (Ligand 

A) and the metal is preformed and one equivalent of the second ligand (Ligand B) is added. 

The NMR experiment is performed and the Krel is calculated. In a second experiment, a 1:1 

complex is preformed with the other ligand (Ligand B) and the metal and one equivalent of 

the complementary ligand (Ligand A) is added. The for this experiment should be the 

same if both samples have reached thermodynamic equilibrium. Unfortunately, we could 

not perform the analysis in this manner due low quantity of ligands. Therefore, we have 

indirectly proven that the competitions reported in this chapter had come to thermodynamic 

equilibrium.

The competition of 92 and 88 for Li+ resulted in a AAG°rel of -0.347 kcal/mol. If 

this is a thermodynamic result, 92 and 88 complex Li+ approximately equally. The 

introduction of one equivalent of 95, a much stronger Li+ complexer, should result in all of 

95 complexed with Li+ to afford 95*Li+ and free 92 and free 88. In fact, this was exactly 

what was observed experimentally within 20 minutes after the addition of 95 to the mixture 

of 92, 88, 92«Li+ and 88*Li+. The same experiment was conducted using the 

competition experiment between 92 and 83. Within 20 minutes after the addition of 95 to 

the mixture of 92, 83, 92*Li+ and 83*Li+, no free 95 was detected. These two 

experiments prove that there is rapid equilibration between Li+-complexed cross-bridged 

ligands and thermodynamic equilibrium is quickly achieved in these cases.

Further experiments were conducted on the competition of 95 and 83 for LiC104-
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As stated previously, the experimental result of this competition did not provide any 

evidence for presence of 83*Li+ in that sample. However, it was possible that in the 

sample preparation, 95*Li+ was formed before the addition of 83. If that was the case, 

the observed I3C NMR spectrum for this competition may be of a kinetic mixture of 83,

95 and LiC104. To prove that this was not a kinetic mixture, another equivalent of LiC104 

was added to the competition NMR sample to afford a mixture of 83«Li+ and 95«Li+. It 

was confirmed, by I3C NMR, that these were the only two species present in this sample. 

Another equivalent of free 95 was then added. Since the only source of Li+ available for 

free 95 to complex is from 83*Li+, the relative complexing abilities of 95 and 83 for Li+ 

can be directly observed. l3C NMR analysis o f the resulting mixture was consistent with 

83 and 95*Li+, verifying that 95 is a better complexer o f Li+ than 83 as previously 

observed. Furthermore, this spectrum was run within twenty minutes after the addition of 

the second equivalent of 95. Therefore, thermodynamic equilibrium was established 

quickly on the laboratory time scale in the competition of 95 and 83 for LiC104.

Complexation of Cross-Bridged Cvclam Derivatives with Cu2*.

Weisman, Wong and co workers reported the preliminary results of complexation of

cross-bridged cyclam derivatives with Cu2+.104 Included in this publication was the Cu2+

complex of 138 was prepared by Wong and its x-ray crystal structure. The

[Cu(96)(C104)2] complex has been prepared and gave satisfactory elemental analysis.

Unfortunately, crystals of sufficient quality of the Cu2+ complex of the new amide armed
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• 6 y *
' j

95 138
l ^ J  2Na*

cross-bridged cyclam (96) were not obtained in order to get an x-ray crystal structure. 

However, data was obtained for the visible spectrum of these blue crystals. The A.mgr for 

Cu(96)(C104)2 was 630 run and the e was 24. Additional the IR stretching frequency of 

the amide carbonyl was shifted to 1665 cm' 1 from 1685 cm' 1 for the free ligand.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hap ter IV 

EXPERIM ENTAL SECTION

I. General Methods

Melting points (mp) were recorded on a Thomas Hoover capillary melting point apparatus 

and are uncorrected.

Infrared spectra (IR) were run on a Nicolet MX-1 FT-ER spectrometer and absorptions are 

reported in wavenumbers (cm*1).

*H NMR spectra ( lH NMR) were acquired on a Broker AM360 FT-NMR spectrometer 

operating at 360.134 MHz. Chemical shift (5) values are reported in parts per million 

(ppm) relative to Me4Si (TMS) unless otherwise noted. Coupling constants (J values) are 

reported in Hertz (Hz).

13C NMR spectra (13C NMR) were acquired on a Broker AM360 FT-NMR spectrometer 

operating at 90.556 MHz. Chemical shift (8) values are reported in parts per million (ppm) 

relative to Me4Si (TMS) unless otherwise noted. In those cases, chemical shifts are either 

referenced to a secondary reference or a known resonance for the deuterated solvent 

Low resolution mass spectra (MS) were performed by the University of New Hampshire 

Instrumentation Center on a Hitachi-Perkin-Elmer RMU-60 mass spectrometer. The 

methods of ionization (El or Cl) are given in the individual experiments.

Elemental analyses were performed by the University of New Hampshire  Instrumentation
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Center on a Perkin-Elmer 240B elemental analyzer.

Ultraviolet-visible spectra (UV-Vis) were acquired on a Varian Cary 5 spectrophotometer 

and absorptions are reported in nanometers (nM).

II. Solvents

Absolute ethanol (EtOH) was obtained for routine use from AAEPR Alcohol and Chemical 

Co. This product was also distilled from Mg and stored over 3A molecular sieves for 

special applications.

Acetone (reagent grade) was obtained from Fisher Chemical Co. and was used without 

further purification.

Acetonitrile (CHjCN) was obtained from EM Science and distilled from CaH, prior to use. 

Benzene (CfiH6) was obtained from J.T. Baker and distilled prior to use.

Chloroform (CHCL )̂ was obtained from EM Science and distilled from CaH^ prior to use. 

Diethvlether (Et^O) was obtained from Fisher Chemical Co. and was distilled from 

benzophenone-ketyl prior to use.

Dimethvlformamide (DMF) was obtained from J.T. Baker and distilled under reduced 

pressure (water aspirator) from C af^ prior to use.

Deuterated NMR solvents were obtained from Cambridge Isotope Laboratories and stored 

over 3 A molecular sieves.

Ethanol (95% EtOH) was obtained from AAEPR Alcohol and Chemical Co.
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Glacial acetic acid (HOAc) was obtained from Fisher Chemical Co.

Hexanes were obtained from Pharmco Chemical Co. and were fractionally distilled prior to 

use and stored over 3A molecular sieves.

Methanol (MeOH) was obtained from Fisher Chemical Co. It was distilled and stored over 

3 A molecular sieves.

Methylene chloride (CF^Cip was obtained from J.T. Baker and distilled from CaK^ prior 

to use.

Tetrahvdrofuran (THF) was obtained from Fisher Chemical Co. and was distilled from 

benzophenone-ketyl prior to use.

Toluene (PhCH^ was obtained from EM Science and was distilled from Na° prior to use 

and stored over 3A molecular sieves.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m . Reagents

Acrvlamide was obtained from Aldrich chemical Co.

Acrvlonitrile was obtained from Aldrich Chemical Co.

Aluminum chloride was obtained from Aldrich Chemical Co.

N-f2-AminnethvlY N’-n-aminopropvlVl -2-diaminoethane tetrahvdrochloride was 

obtained from Aldrich Chemical Co.

Benzyl bromide (PhCHyBr) was obtained from Aldrich Chemical Co. 

Borane-tetrahvdrofuran complex (BH3»THF) was obtained from Aldrich Chemical Co. as a 

1M solution in THF.

Bromine was obtained from Aldrich Chemical Co.

Bromoethane was obtained from Aldrich Chemical Co.

Bromohutane was obtained from Aldrich Chemical Co.

p-Bromo-nitrobenzene was obtained from J.T. Baker.

p-Bromotoluene was obtained from Aldrich Chemical Co.

2-Chloroacetamide was obtained from Aldrich Chemical Co.

2-Chloro-N.N’ -diethvlacetamide was obtained from Aldrich Chemical Co.

N.N’-Bis-(2-aminoethylV- 1,3-propanediamine was obtained from Aldrich Chemical Co.

N.N’-Bis-n-aminopropvlVethvlenediamine was obtained from Aldrich Chemical Co.

N.N’-Bis-f3-aminopropvlV 1,3-propanediamine was obtained from Aldrich Chemical Co.

Racemic-2.2*-BisfdiphenylphosphinoM.r-binaphthv1 f+BTNAP  ̂was obtained from
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Strem Chemical Co.

Celite (Diatomaceous Earth Powder) was obtained from VWR Scientific Co.

Cupric acetate hexahvdrate was obtained from J.T. Baker.

Cupric chloride hexahvdrate was obtained from Aldrich Chemical Co.

Cupric perchlorate hexahvdrate was obtained from Aldrich Chemical Co.

1.2-Dibromoethane was obtained from Aldrich Chemical Co. 

q .a ’ -Dibromo-o-xvlene was obtained from Aldrich Chemical Co.

Diethvloxalate was obtained from Aldrich Chemical Co.

Diisobutvlaluminumhvdride (DIBALH) was obtained as a 1.5 M solution in toluene from 

Aldrich Chemical Co.

Dimethvlene bisfp-toluenesulfonate') was prepared by C.A. West.

1.8-Dimethvl-l .4.8.1 l-tetraa?ahipyHor6.6.21tetradecane was graciously provided by M.

S. Hines.

2.4-Dinitrofluorobenzene was obtained from Aldrich Chemical Co.

Dithiooxamide was obtained from Fluka Chemical Co.

Ethanolamine was obtained from Aldrich Chemical Co.

Ethvlbromoacetate was obtained from Aldrich Chemical Co.

Ethvlenediamine was obtained from Aldrich Chemical Co. and was distilled from KOH 

prior to use.

Glvoxal (40 wt % aq. solution) was obtained from Aldrich Chemical Co.

1.3.4.6.7.8-Hexahvdro-2H-pvrimidor 1.2’-a1pvra7.ine was obtained from Aldrich Chemical
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Co.

HexamethvlriisiliTanp- was obtained from Aldrich Chemical Co.

Hydrochloric acid (12 M HC1) was obtained from Fisher Chemical Co. and was used 

without further purification.

Hydrogen (prepurified grade) was obtained from Northeast Air Gas.

Hydroxylamine hydrochloride was obtained from Aldrich Chemical Co.

Lithium aluminum hvdride (LiAlH4) was obtained from Aldrich Chemical Co.

Lithium perchlorate (LiC104) was obtained from J.T. Baker.

Methvl iodide (Mel) was obtained from Aldrich Chemical Co.

Molybdenum hexacarbonvl was graciously supplied by E. H. Wong.

Oxalic acid was obtained from Aldrich Chemical Co.

Oxamide was obtained from Aldrich Chemical Co.

10% Palladium on carbon (10% Pd/C) was obtained from Aldrich Chemical Co.

1.2-PhenvIenediamine was obtained from Aldrich Chemical Co.

N-Phenylmaleimide was obtained from Aldrich Chemical Co.

Potassium re/t-butoxide was obtained from J.T. Baker.

Potassium carbonate (I^C O p was obtained from Fisher Chemical Co.

Potassium hydroxide (KOH) was obtained from Fisher Chemical Co.

Potassium iodide (KI) was obtained from Fisher Chemical Co.

1.3-Propanediamine was obtained from Aldrich Chemical Co. and was distilled from KOH 

prior to use.
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Sodium borohvdride (NaBH4) was obtained from Aldrich Chemical Co.

Sodium hydride (NaH) was obtained as a 57% mineral oil dispersion from Aldrich 

Chemical Co.

Sodium perchlorate (NaC104) was obtained from Aldrich Chemical Co.

Sodium sulfate (N a^O ^  anhydrous) was obtained Fisher Chemical Co.

Sodium tetraphenvlborate (NaBPh4) was obtained from J.T. Baker.

Tetrakis-fdimftthylaminol-ethvlene was obtained from Aldrich Chemical Co. 

p-Toluenesulfonic acid was purchased from Aldrich Chemical Co. 

p-Toluenesulfonvl chloride was purchased from Aldrich Chemical Co.

1.4.8.11-TetraazacvcIotetradecane (cyclam) was obtained from Strem Chemical Co. 

Triethvlenetetraamine was purchased from Fluka Chemical Co. as either the pure tetraamine 

or a 70% wt% crude mixture (GC analysis) and used without further purification. 

Alternatively, the pure tetraamine could be generated from triethvlenetetraaminft hydrate 

which was obtained from Aldrich Chemical Co. The tetraamine was obtained following 

azeotropic distillation of the monohydrate with toluene for 3 days. Removal of the toluene 

by rotary evaporation afforded the anhydrous tetraamine.

Trifluoroacetic acid (CF3COOH) was obtained from Aldrich Chemical Co. and was 

distilled from trifluoroacetic anhydride prior to use.

Trimethvlene bisfp-toluenesulfonatel was prepared by S.W. North. 

Trisfdibenzvlideneacetone)-dipalladium(O) (Pd2(dba)3) was obtained from Aldrich 

Chemical Co.
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IV. Syntheses

Note: All routine solvent evaporations were carried out on a standard rotary 

evaporator using aspirator pressure unless otherwise noted. All reactions were carried out 

under a N2 atmosphere unless otherwise noted.

Reaction of T riethylenetetraam ine and  Glyoxal. Triethylenetetraamine (1.10 g, 

7.51 mmol) was dissolved in CH3CN (25 mL) in a 100 mL round bottomed flask.

Glyoxal (1.09 g; 40 wt % aq. solution, 7.5 mmol) was added in one portion. This mixture 

was stirred at reflux under N2 for 17 h. The reaction mixture was concentrated by rotary 

evaporation. The residue was taken up in CHCLj (50 mL), dried over N a,S04 and the 

filtrate was concentrated to afford a brown oil. I3C NMR analysis of this oil is consistent 

with a mixture of isomeric bisaminals. The major component was identified as cis-13 

having chemical shifts consistent with results published by Jazwinski.46: 13C NMR 

(CDC13, 90.56 MHz, ref central line of CDC13 set at 77.23) 8 41.79 br, 50.06 br (2 C’s), 

65.44,76.57. The remaining resonances were not assigned but could be a mixture of the 

other three possible bisaminal isomers (trans-13, cis-14, trans-14): 5 38.25, 43.45, 

44.47, 47.97, 49.43, 50.74, 52.15, 52.77, 60.59, 70.70, 75.86, 79.28, 87.04.

2 ,3 ,5 ,6 ,8 ,9 -H ex ah y drod iim idazo [l,2 * a:2 ’, l ’-c]pyrazine (16). A 500 mL

three-necked round-bottom flask equipped with a reflux condenser with a nitrogen inlet

tube, pressure-equalized addition funnel, fritted gas dispersion tube (initially closed) and a
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magnetic stirrer was charged with dithiooxamide (10.00 g, 83.19 mmol) and absolute 

ethanol (50 mL). The nitrogen manifold exit line was routed through two fritted gas 

washing bottles charged with 30% aqueous NaOH in order to trap I^S  evolved. A solution 

of triethylenetetraamine (12.16 g, 83.15 mmol) in absolute ethanol (50 mL) was introduced 

to the reaction flask in one portion via the addition funnel. The mixture was then heated for 

4 hours at reflux under nitrogen with the evolution of H,S and NHj. The reaction mixture 

was then cooled to room temperature and residual R,S and NHj were purged from the 

solution by entrainment with nitrogen, which was bubbled through the mixture from the 

fritted gas dispersion tube for 3 hours. The solvent was then removed by short path 

vacuum distillation (water aspirator) and the residue taken up in CHC13 (150 mL).

Insoluble material was removed by gravity filtration through a glass wool plug inserted in a 

short stem funnel. The solvent was then removed by rotary evaporation under reduced 

pressure to give 14.18 g of crude product This solid was taken up in 50 mL of boiling 

toluene and filtered through another glass wool plug. The flask was rinsed with a second 

aliquot of boiling toluene which was poured through the funnel. The combined filtrates 

were concentrated by rotary evaporation to afford 13.66 g of yellow solid. Sublimation of 

this material (0.03 Torr, 110° Q  afforded 10.58 g (77.5%) of product which was of 

sufficient purity for conversion to cyclen. If desired, it can be further purified by 

sublimation (100°C, 0.01 Torr): white solid; mp 150-151°C; NMR (CDCl^ 360.15 

MHz, TMS) 5 3.25 (s, 4H), 3.34 (apparent t (XX’ of AA’XX’), 4H, J = 9.6 Hz),
3p p 3 T

3.86 (apparent t (AA’ of AA’XX’), 4H, J =9.6 Hz); 13C NMR (CDCL, 90.56 MHz,
appS T  j
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ref central line ofCDC^ set at 77.23) 5 45.40, 52.17, 54.16, 155.50; IR (KBr) 1629 cm*1 

(C=N); MS (El) 164.15 M+; Anal. Calcd for CgH I2N4: C, 58.52; H, 7.37; N, 34.12. 

Found: C, 58.38; H, 7.55; N, 34.22.

A ttem pted Alkyiation o f D ithfooxam ide w ith B rom oethane. Experiments were

performed in order to verify that bromoe thane does not alkylate dithiooxamide under the

reaction conditions employed in the preparation of 17. Results of NMR experiments were

compared to NMR spectra of authentic samples of dithiooxamide and bromoe thane run in

EtOD-d, and DMSO-d^
6  0

1.) Dithiooxamide (1.00 g, 8.32 mmol) was suspended in EtOH (10 mL). Bromoe thane 

(10 mL, mmol) was added to this slurry by syringe. This heterogeneous mixture was 

heated at 60 °C under N2 for 7 h. The reaction mixture was then concentrated by short path 

vacuum distillation (water aspirator). Under a N2 atmosphere, a small sample was 

removed from the reaction flask and residual solvent was removed under vacuum. NMR 

spectra were consistent with dithiooxamide and no alkyiation was observed. Elemental 

analysis of this sample also verified dithiooxamide as the only product. Anal. Calcd for 

C2H4N2S2: C, 19.99; H, 3.35; N, 23.31; Found: C, 19.70; H, 3.21; N, 22.97.

2.) Dithiooxamide (1.00 g, 8.32 mmol) was placed in an Ace pressure tube. Bromoe thane

(1.3 mL, 17.4 mmol) was added by syringe followed by enough EtOH (~18 mL) to leave

only approximately 1 cm of head space in the pressure tube. This mixture was heated at 70

°C for 1.5 h. At this time all of the solid had dissolved except for the small area of the
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pressure tube which was not submerged in the oil bath. Upon cooling to room temperature 

an orange solid precipitated from the solution. The pressure tube was opened (cautiously) 

in a dry bag which had been flushed with N ,. There was no noticeable gas evolution when 

the pressure tube was opened. A portion of the supernatant was removed by syringe and 

placed in a Schlenk flask equipped with a short path distillation head. The solvent was 

removed by vacuum distillation (water aspirator). NMR analysis of the pot residue from 

the distillation was consistent with dithiooxamide and no alkyiation was observed: [H 

NMR (DM SO-d^ 360.15 MHz, TMS) 5 9.59 (br s, 2H), 10.15 (br s, 2H).

3.) Dithiooxamide (0.0564 g, 0.4691 mmol) was suspended in EtOD-d6 (1.0 mL). 

Bromoe thane (350 jiL, 4.68 mmol) was added by syringe. This mixture was heated at 60 

°C for 3.5 h under Nr  The supernatant was removed by syringe and transferred to an 

NMR tube under N0. The *H NMR data was consistent with bromoe thane as the only 

species in solution: !H NMR (EtOD-d^, 360.15 MHz, TMS) 5 1.63 (t, 3H, C#jCH 2Br), 

3.40 (q, 2H, CtL^CH^r). The solid remaining in the reaction flask was dissolved in 

DMSO-d^ and also transferred to an NMR tube by syringe under Nr  *H NMR data was 

consistent with dithiooxamide and bromoe thane. No evidence for alkyiation of 

dithiooxamide by bromoethane was found: JH NMR (DMSO-d^ 360.15 MHz, TMS) 8

1.58 (t, 3H, CH3CH2Bt), 3.49 (q, 2H, CK^CH^t)), 9.58 (br s, 2H, N tf), 10.19 (br s, 

2H, NH).

1,4,7,10-T etraazacyclododecane (Cyclen) (2). A I L  three-necked
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round-bottomed flask equipped with a reflux condenser with a nitrogen inlet tube, 

pressure-equalized addition funnel and magnetic stirrer was charged with

2,3,5,6,8,9-hexahydrodiimidazo[ 1,2-a:2’, l ’-c]pyrazine (16) (10.58 g, 64.43 mmol). The 

system was flushed with N , prior to the introduction of a 1.5 M solution of DIBALH in 

toluene (250 mL, 375 mmol) to the addition funnel by cannulation. The reaction flask was 

cooled in an ice/I^O bath and the DIBALH solution was introduced to the reaction flask 

dropwise over 5 minutes. The reaction mixture was then heated at reflux under nitrogen for 

16 h. The reaction flask was again cooled in an ice/11,0 bath prior to the addition of toluene 

(200 mL). The reaction was quenched by the cautious drop-wise addition of a 3 M NaOH 

solution (20 mL). When gas evolution had ceased, 355 mL of 3 M NaOH was added in 

one portion and the two phase mixture was transferred to a separatory funnel. After the 

layers were separated, ice chips were added to the aqueous layer and it was extracted with 

CHC13 (6x150 mL) which had been cooled in an ice/I^O bath. The combined organic 

extracts were dried over Na^C)^ and the solvent removed by rotary evaporation to afford 

10.22 g of white crystalline solid. Sublimation (0.4 Torr, 90 °Q  of this white solid 

afforded 9.77 g (88.6 %) of cyclen: mp 103-107 °C (lit mp147); lH NMR (CfiD6, 360.15 

MHz, TMS) 8 1.60 (s, 4H), 2.45 (s, 16H). 13C NMR (C6D6, 90.56 MHz, ref central 

line of C6D6 set at 128.39) 5 46.99.

2 ,3 ,4 ,5 ,5 a ,6 ,7 ,8 -O ctahy d ro -l,3a ,5 ,9 -te traazab enzind en e (18). A 250 mL

three-necked round-bottom flask equipped with a reflux condenser with a nitrogen inlet
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tube, fritted gas dispersion tube (initially closed) and a magnetic stiirer was charged with

(2.05 g, 16.8 mmol) of dithiooxamide and 20 mL of absolute ethanol. The nitrogen

manifold exit line was routed through two fritted gas washing bottles charged with 30%

aqueous NaOH in order to trap HjS evolved. 1,4,7,11-Tetraazaundecane (2.74 g, 17.1

mmol) was introduced to the reaction flask in one portion followed by EtOH (5 mL), which

was used to rinse the vessel containing the tetraamine. The mixture was then heated for 4

hours at reflux under nitrogen with the evolution of R>S and NH3. The reaction mixture

was then cooled to room temperature and residual H2S and NH3 were purged from the

solution by entrainment with nitrogen, which was bubbled through the mixture from the

fritted gas dispersion tube for 2 h. The solvent was then removed by short path vacuum

distillation (water aspirator) and the residue was taken up in CHC13 (100 mL). Insoluble

material was removed by gravity filtration through a glass wool plug inserted in a short-

stern glass funnel. The solvent was then removed by rotary evaporation under reduced

pressure. The residue was taken up in 50 mL of boiling toluene and filtered through

another glass wool plug. The flask was rinsed with a second aliquot of boiling toluene

which was poured through the funnel. The combined filtrates were concentrated by rotary

evaporation to afford 2.33 g of crude product Sublimation of this material (0.2 Torr, 100

°Q  afforded 1.74 g (58.2%) of product: mp: 117.5-119 °C; lH NMR (CDC13, 360.15

MHz, TMS) 8 1.89 (p, 2H, J  = 5.8 Hz, CH2C ff2CH2), 3.16-3.39 (m, 2H), 3.22 (t, 2H,

XX’ of AA’XX’, J  = 5.8 Hz), 3.29-3.35 (m, 2H), 3.33 (t, 2H, XX’ of AA’XX’, /  = 9.4

Hz), 3.55 (t, 2H, /  = 5.7 Hz, CH2CH2C # 2N=C), 3.78 (t, 2H, J  = 9.4 Hz, AA’ of
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AA’XX’, CH2C /f2N =Q ; i3C NMR (CDC13, 90.56 MHz, ref. central line o f CDC13 set at 

77.23) 5 21.35 (CH2CH2CH2), 44.78, 45.15, 47.37, 48.42, 53.27, 53.53, 145.59, 

158.66; IR (KBr) 1629, 1604 cm-1; MS (El) m/z 178.3 M+; Anal. Calcd for CgH^N*: C, 

60.65; H, 7.92; N, 31.43. Found: C, 60.25; H , 8.09. N, 31.80.

1,4,7,11 -T etraazacyclotridecane (19). A 50 mL three-necked round-bottomed

flask equipped with a reflux condenser with a nitrogen inlet tube and magnetic stirrer was

charged with 2,3,4,5,5a,6,7,8-octahydro-l,3a,5,9-tetraazabenzindene (18) (1.05 g, 5.89

mmol). The reaction flask was cooled in an ice/f^O  bath and the system was flushed with

N2 prior to the introduction of a 1.5 M solution o f DIBALH in toluene (24 mL, 36 mmol)

by syringe. The reaction mixture was then heated at reflux under nitrogen for 16 h. The

reaction flask was again cooled in an ice/ILjO bath prior to the addition of 20 mL of

toluene. The reaction was quenched by the cautious dropwise addition of a 3 M NaOH

solution (36 mL). After the layers were separated, ice chips were added to the aqueous

layer and it was extracted (6x25 mL) with CHC13 which had been cooled in an ice/f^O

bath. The combined organic extracts were dried over N a^C ^ and the was solvent removed

by rotary evaporation to afford 1.12 g of crude product. Sublimation (0.05 Torr, 80 °Q  of

this material afforded 0.979 g (89.3%) of crystalline product: mp: 39-40 °C (lit:7140-41

°C) [H NMR (CDC13, 360.15 MHz, TMS) 8 1.68 (p, 2H, CH2C #2CH2), 2.13 (br s, 4H,

NH), 2.66-2.77 (m, 16H); 13C NMR (CDC13, 90.53 MHz, ref. central line ofCD Cl3 set

at 77.23) 5 29.25, 47.71,47.93, 49.18, 50.16. NM R spectra were consistent with
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reported spectra.70

2,2’-Bihexahydropyrim idine (20). This compound was prepared by the method of 

Jazwinski.45 1,3-Propanediamine (4.13 g, 55.8 mmol) was placed in a round-bottomed 

flask followed by aqueous glyoxal (1.32 g; 40 wt % aq. solution, 23.6 mmol). This 

mixture was heated at 70 °C under N2 for 3 h. The reaction mixture was then concentrated, 

dissolved in CHC13 and dried over Na2S04. Concentration of the filtrate afforded a yellow 

solid which was recrystallized from CH3CN to afford 1.45 g (37%) of product. 

Sublimation of the product is possible with loss of some material to decomposition: mp: 

121-126 °C (lit.45: 129-130 °C); lH NMR (CDC13, 360.15 MHz, TMS) S 1.43-1.60 (m, 

4H, CH2CH2CH2), 1.65 (br s, 4H, NH), 2.78 (ddd, 4H, J  = 15.6, 13.4, 3.4 Hz, 

NCHaxHCH2), 3.15 (ddd, 4H, J  = 13.4, 4.3, 4.1 Hz, NCHHeqCH2), 3.38 (s, 2H, 

NCHN); I3C NMR (90.56 MHz, CDC13, ref central line of CDC13 set at 77.23) 5 27.76, 

45.73, 74.40. Spectra were consistent with reported data.45

7>ara.s-4a,4b-perhydro-4,5,8a,10a-tetraazaphenanthrene (21). This compound

was prepared by the method of Jazwinski.45 2,2’-Bihexahydropyrimidine (20) (1.75 g,

10.3 mmol) was suspended in I^ O  (75 mL) in a 250 mL round-bottomed flask. Aqueous

glyoxal (1.5 mL, 40 wt % aq. solution, 11 mmol) was added in one portion and the

resulting mixture was stirred under N2 for 24 hours. NaBH4 (1.2 g, 32 mmol) was then

added in small portions and this slurry was stirred at room temperature for 3 days. NaOH
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pellets were added to increase the pH to 14 and this solution was continuously extracted 

with toluene for 3 days. The organic layer was dried over Na,SC>4 and concentrated to 

afford 1.88 g (93%) of product I3C NMR analysis of this material was consistent with a 

mixture of cis and trans isomers of 21. The ratio of trans to cis was 80:20 based on the 

height of respective I3C NMR lines: I3C NMR (CDCLj, 90.56 MHz, ref central line of 

CDCI3 set at 77.23) 8 26.6, 44.9, 52.6, 54.7, 79.3 (trans); 5 27.1, 44.8, 52.8, 54.0,

59.2,74.5 (cis); MS (El) m/z 196.2 M*. Fractional recrystallization of this material from 

hexane afforded the pure trans isomen mp: 102.5-104 °C (lit45: 102.5-104 °C); lH NMR 

(CDCI3, 360.15 MHz, TMS) 8 1.51-1.58 (dm, 2H, J = 13.1 Hz, N C H ^H H ^O E^N ),

I.78 (qt, 2H, J = 12.8, 4.6 Hz, N C ^C H fl^C H jN ), 1.85 (br s, 2H), 2.20 (td, 2H, J  =

II.9 , 3.1 Hz), 2.35-2.48 (m, 2H, XX’ of AA’XX’, NCH2CH2N), 2.61 (td, 2H, J  =

12.8, 3.1 Hz). 2.58 (s, 2H, NC/JN), 2.60-2.68 (m, 2H, AA’ of AA’XX’,

NCH2CH2N), 2.91-2.96 (dm, 2H, J = 9.1 Hz), 3.09-3.14 (dm, 2H, J  = 12.8 Hz); 13C 

NMR (CDCI3, 90.56 MHz, ref central line of CDCI3 set at 77.23) 8 26.6,44.9, 52.6, 

54.7, 79.3. Spectra were consistent with reported data 45

Reduction of trans/cis-4a ,4 b -p erh y d ro -4 ,5 ,8 a ,1 0 a-te traazap h en an th ren e

(21). A 100 mL three-necked round-bottomed flask equipped with a reflux condenser and

a N2 inlet tube was charged with rr*mj/cis-4a,4b-perhydro-4,5,8a, 1 Oa-tetraazaphenanthrene

(21) (0.2387 g, 1.216 mmol). DIBALH (1.5 M in toluene, 12 mL, 18 mmol) was added

via syringe under N2. This mixture was heated at reflux for 4 d. The reaction mixture was
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then cooled to room temperature and diluted with toluene (25 mL). NaF (12 g, 280 mmol) 

and H ,0  (1.5 mL, 83 mmol) were then added in small portions. The solids were isolated 

by vacuum filtration and washed with CHC13 (3x10 mL). The filtrates were combined, 

dried over N a^C^ and concentrated by rotary evaporation to afford 0.1961 g of a 

crystalline product. NMR analysis of this solid showed that the major component in the 

reaction product mixture was trans 4a,4b-perhydro-4,5,8a,10a-tetraazaphenanthrene 

(trans-21). The cis isomer (cis-21) was not observed: *H NMR (CDC13, 360.15 MHz, 

TMS) 8 1.51-1.56 (dm, 2H, J  = 13.1 Hz, NCH2CHtf^CH2N), 1.77 (qt, 2H, 7 =  12.8,

4.6 Hz, NCH2CHHrarCH2N), 2.19 (td, 2H, / =  11.9, 3.1 Hz), 2.37-2.48 (m, 2H, XX’ 

of AA’XX’, N C E^C ^N ), 2.61 (td, 2H, J  = 12.8, 3.1 Hz). 2.57 (s, 2H, NCtfN), 2.60- 

2.68 (m, 2H, AA’ of AA’XX’, NCH,CH2N), 2.90-2.96 (dm, 2H, /  = 9.1), 3.09-3.14 

(dm, 2H, J  = 12.8); 13C NMR (CDC13, 90.56 MHz, ref central line of CDC1-, set at 77.23) 

8 26.61,45.00, 52.62, 54.78, 79.32. (There was also an impurity (-5%  based on 13C 

line heights) observed in this spectrum) This material corresponded to 82% of the starting 

material. The reaction solids were placed in a Soxhlet extraction cup and were extracted 

with toluene for 5 h. The toluene extracts were dried over N a^C ^ and concentrated by 

rotary evaporation to afford 0.0568 g (23%) of a sticky solid. The *H NMR spectrum of 

this solid was consistent with that o f an authentic sample of cyclam: lH NMR (CDC^,

360.15 MHz, TMS) 8 1.65 (p, 4H, /  = 5.1 Hz, NCH2CH2CH2N), 2.23 (br s, 4H, NH), 

2.60 (s, 8H, NCH2CHJ$), 2.67 (t, 8H, J  = 5.2 Hz, NCH2CK2CH2N).
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2 ,3 ,4 ,6 ,7 ,9 ,1 0 ,ll-O ctah y d ro p y raz in o [l,2 -a :4 ,3 -a ’]d ip y rim id in e  (23). A

100 mL three-necked round-bottomed flask equipped with a reflux condenser with N, inlet

tube and a flitted gas dispersion tube (initially closed) was charged with dithiooxamide

(0.2821 g, 2.347 mmol) suspended in EtOH (5 mL). Bromoethane (2 mL) was added and

the slurry was heated at 62 °C for 3 h. The solvent was then removed by short path

vacuum distillation (aspirator pressure). EtOH (10 mL) was added and the solvent was

again concentrated by distillation. The residue was suspended in EtOH (4 mL) prior to the

addition of a solution of bis-(3-aminopropyl)-l,2-ethylenediamine (0.4115 g, 2.361 mmol)

in EtOH (2 mL) by syringe. The nitrogen manifold exit line was routed through two fritted

gas washing bottles charged with 10% aqueous HjO, in order to trap the gases evolved.

The reaction mixture was heated at 80 °C for 2 h. The reaction mixture was then cooled to

room temperature and EtOH (20 mL) was then added. Residual gaseous byproducts were

purged from the solution by entrainment with nitrogen, which was bubbled through the

mixture from the fritted gas dispersion tube for 15 hours. The reaction mixture was

concentrated by rotary evaporation to afford 0.5966 g of crude product. A portion of this

material was placed in a round-bottomed flask with toluene (5 mL) and heated. When the

mixture began to boil the heat was removed. The solvent was removed by pipette while hot

and concentrated by rotary evaporation to afford an oil. NMR and MS analysis determined

the oil to  be a mixture of 23 and 24. *H NMR (CDC13, 360.15 MHz, TMS) for 23: 8

1.85 (p, 4H, Q H fH 2CYlv  J  = 5.8 Hz), 3.21-3.50 (m, 4H, N C #2CH2CH2N=), 3.27 (s,

4H, CH2CH2), 3.57 (m, 4H, NCH2CH2CH2N=); for 24: 8 1.8 (br s, 2H, NH J, 1.72
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(m, 2H, NCH2CH2CH2N=, J = 6.7 Hz), 1.85 (p, 2H, NCH2C # 2CH2NH2), 2.72 (t,

2H, CH2NH2, J  = 6.6 Hz), 3.21-3.28 (m, 2H), 3.47-3.60 (m, 8H). I3C NMR (CDC13,

90.56 MHz, ref. central line of CDC13 at 8 77.23) for 23: 5 21.32 (NCH2CH2CH2N=), 

44.61, 47.56, 48.00, 147.76; for 24: 5 21.23 ( N O ^ C H ^ H ^ ) ,  30.79 

(NCH2CH2CH2NH2), 39.05, 45.06, 45.10, 45.16, 46.92, 47.44, 147.80, 152.72. MS 

(El) for 23: m/z 192.3 M+; for 24: m/z 211.3 M+l. The remainder of the crude mixture of 

23 and 24 was treated similarly with boiling toluene. The toluene extracts were 

azeotropically distilled for 3 days using a Dean-Stark trap. Concentration of the solvent 

afforded 23 as an impure oil: *H NMR (CDC13, 360.15 MHz, TMS) 8 1.85 (p, 4H, J =

6.1 Hz, NCH2C tf2CH2N=), 3.21 (t, 4H, J = 6.1 Hz, NCtf2CH2CH2N=), 3.22 (s, 4H, 

NCH2CH2N), 3.54 (t, 4H, /  = 5.8 Hz, NCH2CH2C # 2N=); I3C NMR (CDC13, 90.56 

MHz, ref. central line of CDC13 at 8 77.23) 8 21.50,44.96, 47.64, 48.04, 148.02. This 

sample was estimated to be approximately 90% pure by !H NMR integration. This 

material corresponded to an overall yield of 25%.

1.4-B is-(3-am inopropyl)-2,3-piperazinedione (25). The crude mixture of 23 

and 24 was dissolved in D20 . NMR analysis was consistent with

1.4-bis-(3-aminopropyl)-2,3-piperazinedione (25). *H NMR (D20 ,  360.15 MHz, 2° ref 

C H f .N set at 2.05) 8 1.74 (p, 4H), 2.62 (t, 4H), 3.49 (t), 3.65 (s, 4H); 13C NMR (D,0,

90.56 MHz, 2° ref CH3CN set at 1.7) 8 29.85, 38.65, 44.83, 46.04, 159.20. This NMR

sample was concentrated by rotary evaporation. EtOH (2 mL) was added and concentrated
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by rotary evaporation to ensure the removal of residual D20 . NMR of this sample in 

CDC13 was consistent with l,4-bis-(3-aminopropyl)-2,3-piperazinedione (25) and 24. 

NMR (CDC13, 360.15 MHz, TMS) 8 1.43 (br s, 6H, NH), 1.70-1.78 (m, 

CH2CH2CH2NH2 of 24 (2H) and CH2Ctf2CH2 of 25 (4H)), 1.87 (p, 2H, J  = 6.7 Hz, 

NCH2Ctf2CH2N=C of 24), 2.71 (t, 2H, /  = 6.7 Hz, CH2CH2C # 2NH2 of 24), 2.72 (t, 

4H, J  = 6.7 Hz, CH2CH2Ctf2NH2 of 25) 3.22-3.28 (m, 4H for 24), 3.47-3.50 (m, 2H 

for 24), 3.51-3.60 (m, 4H for 24), 3.54 (s, 4H, NCH2CH2N  of 25), 3.58 (t, 4H, J  =

6.7 Hz, NCH2CH2CH2NH2 for 25); 13C NMR (CDCI3, 90.56 MHz, ref central line of 

CDC13 set at 77.23) 5 for 24: 21.21 (CH2CH2CH2N=), 30.73, 38.93, 45.02, 45.08,

45.14,46.91,47.43 (the amide and amidine resonances were not observed due to low 

signal to noise); for 25: 30.73, 38.99. 44.67, 45.02, 157.69.

DIBALH R eduction of 2,3,4,6,7,9,10,11-O ctahydropyrazino 

[l,2-a:4,3-a’]dipyrimidine (23). A 100 mL three-necked round bottomed-flask 

equipped with a reflux condenser and a N2 inlet tube was charged with

2.3.4.6.7.9.10.1 l-octahydropyrazinotl^-a^^-a’ldipyrimidine (23) (0.152 g, 0.791 

mmol). The reaction flask was cooled in an ice/I^O bath prior to the introduction of 

DIBALH (1.5 M in tol, 5.0 mL, 7.5 mmol) by syringe. This mixture was heated at reflux 

for 4 d. An aliquot (~1 mL) was removed. NaF (0.26 g, 6.9 mmol) and I^ O  (0.2 mL,

11.1 mmol) were added to this aliquot in small portions to quench the reaction. This

mixture was concentrated by rotary evaporation, suspended in H20  (8 mL), adjusted to pH
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14 by the addition of KOH (pellets) and extracted with CHCLj (5x20 mL). The extracts 

were dried over Na2S 0 4 and concentrated to afford 46.6 mg of a crystalline product.

NMR analysis of this material was consistent with rra/ty-4a,4b-perhydro-4r5,8a, 10a- 

tetraazaphenanthrene (trans-21) (see previous characterization).

R eduction o f 2 ,3 ,4 ,6 ,7 ,9 ,1 0 ,ll-O c ta h y d ro p y ra z in o [l,2 -a :4 ,3 -  

a ’]dipyrimidine (23) with L ithium  Aluminum H ydride (LiAlH4). Dry THF

(10 mL) was placed in a dried three-necked round-bottomed flask equipped with a reflux

condenser with a N, inlet tube and an addition funnel. The flask was cooled in an ice/f^O

bath. LiAlH4 (0.26 g, 6.85 mmol) was added under N2 to the THF. A solution of

2,3,4,6,7,9,10,1 l-octahydropyrazino[l,2-a:4,3-a’]dipyrimidine (23) (0.131 g, 0.680

mmol) in THF (10 mL) was the added via the addition funnel. The addition funnel was

rinsed with additional THF (5 mL). The reaction mixture was heated at reflux under Nr

After 5 hours, an aliquot (2.5 mL) was removed. H00  (0.025 mL), 15% aq. KOH (0.025

mL) and f^O  (0.075 mL) were added successively while cooling the aliquot in an ice/H^O

bath. The mixture was then filtered and the solids were washed with THF (5 mL). The

filtrate was dried over Na2S04 and concentrated by rotary evaporation. *H NMR analysis

of the residue was consistent with fr<ms-4a,4b-perhydro-4,5,8a,10a-tetraazaphenanthrene.

The remainder of the reaction mixture was worked up in the same manner after 5 d at

reflux. NMR analysis was again consistent with fra/zs-4a,4b-perhydro-4,5,8a,10a-

tetraazaphenanthrene (trans-21) as the only product of the reaction.
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N,N’-B is-(2-cyanoethyl)-l,2-phenylenediam ine (32). The preparation of this 

compound was modeled on the procedure for the reaction of aryl amines and acrylonitrile 

reported by Heininger.73 A 2-L three-necked round-bottomed flask equipped with a reflux 

condenser and a thermometer was charged with 1,2-phenylenediamine (100.00 g, 0.924 

mol) and acrylonitrile (122 mL, 1.85 mol) suspended in CHjCN (700 mL). Cupric acetate 

hexahydrate (4.87 g, 4.87 wt % based on the diamine) was added as a catalyst, and the 

resulting mixture was heated at reflux for 2 d. The reaction mixture was then concentrated 

by rotary evaporation affording a black sludge. 95% EtOH (250 mL) was added and the 

suspension was warmed until dissolution was complete. Water (250 mL) was then added 

and the mixture was again warmed until dissolution was complete. Slow cooling of this 

solution afforded 63.1 g of a black solid. Recrystallization of this material from 50% (v:v) 

aqueous EtOH afforded 44.1 g (22%) of purified product: mp: 113-114.5 °C (lit. 115-118 

°C73, 118.5-119 °C149); [H NMR (CDC13, 360.15 MHz, TMS) 8 2.66 (t, 4H, 

NHCH2CH2CN, J  = 6.5 Hz), 3.47 (app q, 4H, NHCff2CH2CN, Japp= 6.5 Hz), 3.72 (br 

t, 2H, NH), 6.70-6.74 (m, 2H, BB’ of AA’BB’), 6.85-6.89 (m, 2H, AA’ of AA’BB’); 

13C NMR (CDCI3, 90.56 MHz, ref. central line of CDCI3 set at 77.23) 5 18.60,40.66, 

114.15, 118.62, 121.15, 136.40; IR (KBr) 3355 (NH), 2252 (CN) cm '1; MS (El) m/z

214.1 M+.

N ,N ’-B is-(3-am inopropyl)-l,2-phenylenediam ine (31). N,N’-Bis-
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(2-cyanoethy 1)-1,2-pheny lenediamine (32) (5.00 g, 23 mmol) was dissolved in THF (130 

mL) in a dry 500 mL three-necked round-bottomed flask equipped with a reflux condenser 

with a N2 inlet tube and a pressure equalized addition funnel. NaBH4 (5.53 g, 146 mmol) 

was added and the mixture was cooled in an ice/H^O bath. A solution of A1C13 (4.8 g, 

36.0 mmol) in THF (30 mL) was delivered to the addition funnel and added dropwise into 

the reaction flask. The resulting mixture was heated at reflux under N2 for 20 h. The 

reaction mixture was again cooled in an ice/E^O bath and aq. HC1 (12 M, 75 mL) was 

added dropwise with vigorous stirring. The reaction mixture was then concentrated by 

rotary evaporation and dissolved in I^O  (200 mL). This solution was adjusted to pH 14 

with KOH (pellets) and continuously extracted for 36 h under N2 with toluene. The 

toluene extracts were dried over N a^O ^ and concentrated to afford 3.36 g of a brown oil. 

Kugelrohr distillation (0.02 Torr/ 150 °C) of this oil afforded 3.10 g (61%) of a yellow oil 

which solidified in the receiver. *H NMR (CDCLj, 360.15 MHz, TMS) 5 1.49 (br s, 6H, 

N /fs), 1.76 (p, 4H, CH2Ctf2CH2, J  = 6.7 Hz), 2.82 (t, 4H, CH2NH2, J  = 6.7 Hz), 

3.12 (t, 4H, NHCtf2, J  = 6.7 Hz), 6.58-6.62 (m, 2H, BB’ of AA’BB’), 6.69-6.73 (m, 

2H, AA’ of AA’BB’); 13C NMR (CDC13, 90.56 MHz, ref. central line of CDC13 set at 

77.23) 5 33.24, 40.80, 42.81, 111.45, 119.15, 137.59. ER (neat) 3357, 3037, 2936, 

2869,1663,1598 cm '1; MS (El) m/z 222.2 M*. (Elemental analysis verified that there 

was a trace amount of water in the product). 31 is labile towards oxidation and should 

either be used immediately or stored as a hydrochloride salt.
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C < s/* ra /z s -l,2 ,3 ,4 ,9 ,1 0 ,ll,1 2 ,1 2 a ,1 2 b -d ec a h y d ro p y ra z in o [l,2 -  

a :4 ,3 -a’]-6,7-benzodipyrim idine (33). N,N’-Bis-(3-aminopropyl)-

1,2-phenylenediamine (31) (3.03 g, 13.6 mmol) was dissolved in absolute EtOH (40 mL). 

Aqueous glyoxal (40 wt % aq. solution, 2.0 mL, 16.5 mmol) was taken up in CH^CN (40 

mL) and added in one portion to the amine solution. The resulting solution was heated at 

reflux for 3 h under Nr  The reaction mixture was then concentrated and the residue was 

taken up in CHC13 (100 mL), dried over Na2S04 and concentrated to afford a foam. This 

foam was taken up in CHC13 (15 mL) and diluted with Et^O (100 mL). A precipitate 

formed which was removed by vacuum filtration. The filtrate was concentrated to afford 

2.97 g (89%) of an oil which solidified. The ratio of the two isomers was 71:21 by *H 

NMR integration. NMR (CDC13, 360.15 MHz, TMS) 8 1.40 (dm, CRJZBHeqCRy J  

= 12.8 Hz), 1.52 (dm, CI^CHHeqCH2,J =  13.1 Hz), 1.66-1.89 (m, C02CHHaxCH2 

and NH of both isomers), 2.83-3.21 (m), 3.90 (s, NCHN), 3.95-4.03 (m), 4.03 (s, 

NGHN), 6.67-6.91 (m, aromatics); 13C NMR (CDC13, 90.56 MHz, ref central line of 

CDCI3 set at 77.23) 5 m ajor 25.64, 44.34, 47.55, 70.19, 113.16, 119.62, 135.28; 8 

m inor 23.93, 45.34, 47.55, 74.09, 113.75, 119.80, 134.72; MS (El) m/z 244.2 M+.

This mixture was refluxed with p-toluenesulfonic acid (leq) in EtOH for 3 d. This solution 

was then concentrated, taken up in water and adjusted to pH 14 with solid KOH (pellets). 

Extraction with CHCLj afforded a crude oil after drying and concentration of the extracts.

[H NMR spectra of the oil showed that the minor isomer had become the major isomer. It

is not known if this is an equilibrium mixture of the isomers.
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5 ,6 y 7 ,8 ,9 ,1 0 ,ll ,1 2 ,1 3 ,1 4 ,1 5 ,1 6 -D o d e c a h y d ro -5 ,9 ,1 2 ,1 6 -te tra a z a -  

benzocyclotetradecane, “Benzocyclam” (34). A 250 mL three-necked round- 

bottomed flask equipped with a reflux condenser with a N2 inlet tube and a pressure 

equalizing addition funnel was charged with Cis!trans­

i t , 4,9,10,1 l , 12,12a,12b-decahydropyrazino [l,2-a:4,3-a’]-6,7-benzo-dipyrimidine 

(33) (2.97 g, 12.0 mmol). The reaction flask was cooled in an ice/HjO bath prior to the 

dropwise addition of DIBALH (1.5 M solution in toluene, 64 mL, 96 mmol) via the 

addition funnel. This mixture was heated at reflux for 4 days. The reaction mixture was 

then cooled in an ice /^ O  bath and toluene (65 mL) was added. The reaction was quenched 

by the cautious dropwise addition of 3 M KOH (65 mL). The mixture was concentrated by 

rotary evaporation, the residue was dissolved in I^O  (50 mL), adjusted to pH 14 with 

KOH (pellets), and then extracted with CHC13 (5x50 mL) while N2 was bubbled through 

the solution to minimize oxidation of the product. The CHC13 extracts were dried over 

Na2S0 4 and concentrated. The residue was immediately dissolved in 95% EtOH (100 mL) 

and HC1 (12 M, 50 mL) was added dropwise. The solution was removed by rotary 

evaporation. Trituration of the resulting solid with absolute EtOH (100 mL) followed by 

vacuum filtration afforded a brown solid. *H NMR (D20 , 360.15 MHz, secondary ref. 

CH3CH set at 2.05) 5 2.12 (p, 4H, /  = 6.4 Hz, 3.34 (t, 4H, J  = 6.7 Hz),

3.49 (s, 4H, C I^C H ^, 3.55 (t, 4H, J=  6.4 Hz), 7.23 (s, 4H, AiH)\ 13C NMR (D20 ,

90.56 MHz, 2° ref CH3CN set at 1.70) 5 22.83, 42.22,44.28, 46.01, 119.9, 126.0,
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133.4. This brown solid was dissolved in water (25 mL) and the solution was adjusted to 

pH 14 by the addition of KOH (pellets). N2 was bubbled through the solution to mininnVf*. 

oxidation of the product. This solution was then extracted with toluene (5x50 mL) and the 

toluene extracts were dried over N*l,S04 and concentrated by rotary evaporation to afford 

1.70 g (57%) of a gray solid: mp: 129-130 °C; lH NMR (CDC13 360.15 MHz, TMS) 8 

1.82-1.88 (m, 4H, CH2CH2CH2), 1.68 (br s, NH), 2.72 (s, 4H), 2.88-2.91 (m, 4H), 

3.26-3.29 (m, 4H), 5.59 (br s, 2H, ArNtf), 6.54-6.58 (m, 2H, BB’ of AA’BB’), 

6.70-6.75 (m, 2H, AA’ of AA’BB’); I3C NMR (CDC^, 90.56 MHz, ref central line of 

CDCI3 set at 77.23) 5 27.35, 46.04, 49.79, 51.02, 109.74, 118.18, 137.80; IR (neat) 

3325, 3289, 3248, 2931, 2875, 2832, 1657, 1595, 1546, 1454 cm*1; MS (El) m/z 248.3 

(M+); Anal. Calcd for C 14H 24N4: C, 67.70, H, 9.74, N, 22.56; Found: C, 67.65, H, 

9.81, N, 22.51.

Tetrakis-(dim ethylam ino)-ethylene dibromide (44). This compound was

prepared by the method of Bock et al.81 A three necked flask equipped with an addition

funnel and reflux condenser was charged with Et^O (100 mL) which was degassed by

bubbling N2 into the liquid through a glass frit. Tetrakis-(dimethylamino)-ethylene (43)

(3.62 g, 18.1 mmol) was added and no luminescence was observed. The reaction flask

was cooled in an ice/HjO bath and a solution of Br2 (3.02 g, 19.0 mmol) in degassed E^O

(100 mL) was introduced dropwise via the addition funnel producing an immediate

reaction. The addition of the bromine solution continued over one hour. The reaction
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mixture was slowly warmed to room temperature and left stirring under N2 for 12 hours. 

The reaction mixture was concentrated by rotary evaporation and residual solvent was 

removed under vacuum. 6.08 g (93%) of a white-yellow solid was obtained: NMR

(D20 , 360.15 MHz, 2° refC /^C N  set at 2.05) 8 3.30 (s, 12H), 3.58 (s, 12H); 13C NMR 

(D20 , 90.56 MHz, 2° ref CH3CN set at 1.7) 5 43.15,44.08, 156.68. Spectra were 

consistent with reported results.81

Attempts to Prepare 2.3.5.6.8.9-Hexahvdrodiimidazori.2-a:2’.r-c1pvrazine (16^ Using 

Other Reagents.

From  Tetrakis-(dimethyIamino)-ethylene dibrom ide (44). Triethylenetetraamine

(0.186 g, 1.27 mmol) was placed in a 5 mL round-bottomed flask with

tetrakis-(dimethylamino)-ethylene dibromide (44) (0.46 g, 1.3 mmol). This mixture was

heated to 150°C under N2 and a small strip of wet litmus paper, which had been place

inside the N2 exit manifold, indicated that a basic gaseous species was being evolved. The

heat was continued for one hour. Toluene (5 mL) was added and heated to reflux. The

heat was removed and the toluene was removed while still warm by pipette. Concentration

of these toluene extracts by rotary evaporation afforded an oil. *H NMR analysis of this oil

confirmed the formation of 2,3,5,6,8,9-hexahydrodiimidazo[l,2-a:2’,r-c]pyrazine (16).

While not pure, the bisamidine was the major component in this NMR sample. However,

there was a substantial amount of solid left in the reaction flask which was not soluble in

toluene. Other solvents were investigated (ethanol, isopropanol, n-butanol) in addition to
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adding the corresponding sodium salt o f the alcohol solvent to consume the HBr generated. 

Unfortunately, the experimental details given above were the most successful conditions 

found.

From  Oxalic Acid. Triethylenetetraamine (crude, 6.06 g, -29 mmol) was dissolved in 

ethyleneglycol (7 mL). Oxalic acid (2.66 g, 29 mmol) was added and the mixture was 

heated to reflux under N2 for 7 hours. The ethylene glycol mixture was extracted with 

CHC13 (3 x 10 mL). The CHCLj extracts were dried over N a^C ^ and concentrated by 

rotary evaporation. *H NMR analysis provided no evidence for the formation of

2,3,5,6,8,9-hexahydrodiimidazo[ 1,2-a:2’, 1 ’ -c]pyrazine (16). Another attempt was 

performed as a neat reaction. No evidence for the formation of (16) was observed.

From  Diethyloxalate. Triethylenetetraamine (crude, 3.95 g, -18 mmol) was placed in a 

50 mL round-bottomed flask equipped with a short path distillation head. Upon the 

addition of diethyloxalate (2.71 g, 19 mmol) the flask became very hot and a precipitate 

formed. The mixture was heated until a distillate was collected (74°Q . The distillate was 

determined to be EtOH by NMR. NMR of the reaction mixture in CDC13 showed many 

new peaks in the 3.0-3.6 region of the NMR spectrum. Evidence for the formation of 

(16) ( lH NMR: 8 3.85 (t), l3C NMR 5 155.7 (N-C=N) was observed but this product 

was clearly a complicated mixture.

2,2’-BibenzimidazoIe (45). This compound was prepared by the method of

Fieselmann.85 A three-necked 250 mL round-bottomed flask equipped with a reflux
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condenser and a N2 inlet tube was charged with 1,2-phenylenediamine (45.0 g, 0.40 

mmol), oxamide (17.6 g, 0.02 mmol) and ethylene glycol (40 mL). This mixture was 

heated to reflux under N2 for 2 d. The reaction mixture was poured into boiling water (800 

mL) which induced precipitation of a solid. The solid was isolated by gravity filtration of 

the mixture while hot and then vacuum filtration removed residual solvent. 31.58 (68%) of 

solid was isolated. The product was insoluble in most NMR solvents (CgD6, CD3CN, 

D20 , Acetone-dj): decomposition point: 392-394 °C (lit85: 395-400 °Q .

6,7-D ihydropyrazino[l,2-a:4 ,3-a’]bisbenzimidazole (46). This procedure is

similar to that reported by Roechling et al.83 A mineral oil dispersion of NaH (0.75 g, 60

wt %, 18 mmol) was washed with E^O (3x10 mL) and the residual solvent was removed

with a stream of N2 under mild heating. The NaH was suspended in dry DMF (5 mL) prior

to the addition of 2, 2’-bibenzimidazole (45) (1.89 g, 8.07 mmol) under N2. The mixture

immediately turned green. l,2-Bis[(p-tolylsulfonyl)oxy]ethane (2.97 g, 8.01 mmol) was

added 0.5 h later and the reaction mixture was heated to reflux. After 4 days the heat was

evaporated and the solvent was removed making sure that all residual DMF was removed.

The solids were taken up in boiling EtOH (100 mL) and a hot filtration was performed. The

filtrate was concentrated and the residue was taken up in CHC13 and dried over N a^O ^

The solvent was then evaporated and the residue was recrystallized from EtOH to afford

181.1 mg (8.3%) of fine crystals. The crystals were ground up and heated for 3 days under

vacuum at 100°C. Even under these conditions, !H NMR showed there was still H20
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present in the sample. The solid was found to have poor solubility in common organic 

solvents at room temperature: dec. point: 392-397 °C (lit83 > 360 °Q ; *H NMR (CDCLj,

360.15 MHz, TMS) 5 4.67 (s, 4H), 7.44-7.26 (m, 6H), 7.93-7.91 (d, 2H, J  = 7.2 Hz); 

l3C NMR (CDC^, 90.56 MHz, ref central line of CDC13 set at 77.23) 5 40.84, 109.44, 

121.66, 123.70, 124.56, 134.29, 141.73, 144.39; IR (KBr) 3051, 2973, 2931, 1616, 

1468, 1448, 1413, 1377, 1342 cm '1.

A ttem pted Rednction of 6 ,7-d ihydropyrazino[l,2 -a:4 ,3 -a’]bisbenzim idazole

(46) with DIBALH. DIBALH (1.5 M in Toluene., 2.0 mL, 3.0 mmol) was introduced

dropwise via syringe under N2 to an ic e /^ O  cooled three necked flask equipped with a

reflux condenser with a N2 inlet tube containing 6,7-dihydropyrazino[ 1,2-a:4,3-a’ ]

bisbenzimidazole (46) (0.025 g, 0.096 mmol). The solution immediately turned

red/brown. Toluene (2 mL) was added and the resulting mixture was heated at 100 °C for

20 h. The heat was then removed and the reaction was quenched by the alternate addition of

NaF (0.30 g, 7.0 mmol) and f^O  (0.2 mL, 11 mmol) in small portions. Toluene (20 mL)

was added and the mixture was filtered. The solids were washed with CHC13 (2x10 mL)

and the combined filtrates were dried over Na,SC>4. The filtrates were then concentrated to

afford 32.6 mg of crude product (over 100% of theoretical). *H NMR showed that

reduction was not clean but formation of the desired product could not be ruled out. MS

(El) analysis showed a molecular ion of m/z 266 which corresponds a molecular formula of

C16HjgN4. The molecular ion for dibenzocyclen (C16H2QN4) was not observed. This
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reaction was repeated and the reaction time was increased to 4 days. There was no 

apparent change in the products of the reaction as evaluated by lH NMR.

7 ,8-D ihydro*6-H -bisbenzim idazo[l,2~a:2’, l ’-c ][ l,4 ]d iaz ep in e  (47).

2,2’ -Bibenzimidazole (45) (1.00 g, 4.30 mmol) was suspended in CKLjCN (30 mL) in a 

100 mL round-bottomed flask. l,3-Bis[(p-tolylsulfonyl)oxy]propane (1.65 g, 4.29 mmol) 

was added and the mixture was stirred vigorously while a 20% solution of KOH (5 mL) 

was added by pipette. This mixture was left stirring at room temperature for 24 hours. 

Precipitation of the product was induced by the addition of water (100 mL) to the reaction 

mixture. The solids were isolated by vacuum filtration and washed with CHC13 (3x20 

mL). The CHC13 washings were dried over Na^SC^ and concentrated. The residue was 

washed with toluene (30 mL) which removed excess l,3-bis[(p-tolylsulfonyl)oxy]propane. 

The remaining solid was recrystallized from CE^CN to afford 0.110 g (9%) of tan needles: 

mp: 320-322 °C; lH NMR (CDC13, 360.15 MHz, TMS) 5 2.60-2.66 (m, 2H), 4.45-4.48 

(m, 4H), 7.26-7.32 (m, 6H), 7.86-7.90 (m, 2H); 13C NMR (90.56 MHz, CDC13, ref 

central line of CDC13 set at 77.23) 5 26.83, 45.13, 109.62, 121.20, 123.41, 124.05, 

135.95, 143.41, 143.60; IR (KBr) 1313, 1376, 2932, 3050 cm '1. Elemental analysis 

showed that there was trace water (less than a hydrate) associated with 47.

A ttem pted DIBALH Reduction of 7,8-Dihydro-6-H-

bisbenzim idazo[l,2-a:2’, l ’-c][l,4]diazepine (47). A 10 mL two-necked round-
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bottomed flask equipped with a reflux condenser and a N2 inlet tube was charged with

7,8-dihydro-6-H-bisbenzimidazo[ 1,2-a:2\ 1’ -c][ 1,4]diazepine (47) (12.1 mg, 0.044 

mmol). The reaction flask was cooled in an ice/H^O bath prior to the addition of DIBALH 

(1.5 M in toluene, 2 mL, 3 mmol) via syringe. The reaction was heated at reflux for 2 d. 

The reaction mixture was cooled in an ice/H^O bath and toluene (5 mL) was added. The 

reaction was then quenched by the dropwise addition of 20% aq. KOH (2 mL). The 

mixture was transferred to a separatory funnel, the layers were separated, and the aqueous 

layer was extracted with CHCLj (4x20 mL). The combined organic extracts were dried 

over NajSC^ and concentrated by rotary evaporation to afford a white residue. *H NMR 

analysis (CDCip of this residue was carried out. The product was clearly a mixture but the 

ring expanded product was indicated: !H NMR (CDC13, 360.15 MHz, TMS) 8 1.13-1.30 

(m, NCH2C tf2CH2N), 2.74 (s, NCH2CH2N), 4.20 (t, NCH2CH2C # 2N), 6.49-6.79 (m, 

ABCD for ArH). This hypothesis was not tested using other spectroscopic techniques. It 

is unknown if the reaction was incomplete or if the other observed resonances were a result 

of oxidation of the product.

2,2’-Biim idazoline (bis(A2-2-imidazolinyI) (11). 11 was prepared by a

modification of the method of Forssell.51 A 100 mL three necked round-bottom flask

equipped with a reflux condenser with a nitrogen inlet tube, pressure-equalized addition

funnel, fritted gas dispersion tube (initially closed) and a magnetic stirrer was charged with

dithiooxamide (2.60 g, 21.6 mmol) and absolute ethanol (10 mL). The nitrogen manifold
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exit line was routed through two fritted gas washing bottles charged with 20% aqueous 

NaOH in order to trap I^S evolved. A solution of ethylenediamine (2.60 g, 43.3 mmol) in 

absolute ethanol (10 mL) was introduced to the reaction flask in one portion via the addition 

funnel. The mixture was then heated for 6 hours at reflux under nitrogen with the evolution 

of FL,S and NHr  The reaction mixture was then cooled to room temperature and residual 

fL,S and NH3 were purged from the solution by entrainment with nitrogen, which was 

bubbled through the mixture from the fritted gas dispersion tube for 18 hours. The reaction 

mixture was filtered isolating 1.68 g (56%) of a tan solid. The product can be further 

purified by recrystallization from CI^CN: decomposition point: 259°C (lit148); 13C NMR 

(DMSO-rfg, 90.56 MHz, ref central line ofDM SO-^ set at 39.5) 5 40.20, 146.36; IR 

(KBr) 1615 cm '1; MS (El) m/z 138.1 M+; Anal. Calcd for C6H 1QN4: C, 52.16; H, 7.29;

N, 40.55; Found: C, 51.89; H, 7.38; N, 40.35.

A ttem p ted  Synthesis of 2 ,3 ,5 ,6 ,8 ,9-H exahydrodiim idazo[l,2-

a :2 ’, l ’-c]pyrazine (16) From  2,2’-Biimidazoline (11) and  1,2-

Dibromoethane. A 10 mL round bottomed flask was charged with 2,2’-biimidazoline

(40.9 mg, 0.296 mmol), potassium iodide (6.1 mg, 0.037 mmol) and potassium carbonate

(400 mg, 2.90 mmol) and CH3CN (2 mL). A solution of 1,2-dibromoethane (0.0601 g,

0.319 mmol) in CH3CN (2 mL) was added in one portion and the resulting suspension

was heated at reflux for 20 h. The mixture was diluted with CH^CN (5 mL), filtered

through a glass wool plug and the filtrate was concentrated. NMR analysis was consistent
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with NMR data for the starting materials and no evidence for the formation of 16 was

found.

l , l ’-Bis-(trimethyIsilyl)-2,2’-bimidazoIine (49). 49 was prepared by the 

literature method.85 2,2’-Biimidazoline (11) (1.00 g, 7.24 mmol) was placed in a 100 mL 

three-necked round-bottomed flask equipped with a reflux condenser with N2 inlet tube. 

The apparatus was flushed with N2 prior to the delivery of hexamethyldisilizane (48) 

(HMDS, 6.1 mL, 29 mmol) via syringe. f^SC^ (cone, 10 |iL) was added and the 

resulting mixture was heated at reflux for 19 hours. A short path distillation head was 

exchanged for the condenser and the excess HMDS was removed by vacuum distillation 

(0.5 Torr). The residue was further pumped down under vacuum for 3 days to remove 

volatile byproducts. The mass of crude product was over 100% of theoretical but NMR 

analysis supported product formation. *H NMR (CDC13, 360.15 MHz, TMS) 8 0.22 (s),

3.43 (t, XX’ of AA’XX’), 3.76 (t, AA’ of AA’XX’) ; I3C NMR (CDC13, 90.56 MHz, ref 

central line of CDC13 set at 77.23) 5 0.152,48.02, 55.04, 159.60.

Attempted Synthesis o f 36 from l , l ’-Bis-(trimethyIsiIyl)-2,2’-bimidazoline 

(49) and l,3-Bis[(p-tolylsulfonyl)oxy]propane. A 50 mL three-necked round- 

bottomed flask equipped with a reflux condenser, a N2 inlet tube and a pressure-equalized 

addition funnel was charged with l,3-bis[(p-tolylsulfonyl)oxy]propane (0.26 g, 0.67
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mmol). A solution of l,r-bis-(trimethyIsilyI)-2,2’-bimidazoline (49) (0.19 g, 0.67 

mmol) in CH3CN (15 mL) was added via the addition funnel and the resulting reaction 

mixture was heated for 4 d at reflux under Nr  The reaction mixture was then concentrated 

by rotary evaporation. The residue was suspended in CDC13 but most of the material did 

not dissolve. IH NMR analysis of the material which was soluble in CDC13 was not 

consistent with the formation of 36. The major component of this solution was identified 

as l,3-bis[(p-tolylsulfonyl)oxy]propane. It is likely that the reaction was not facile and the 

insoluble material was 2,2’-biimidazoline (11) which is insoluble in CDCI3.

2,2’-Biimidazoline was generated by the hydrolysis of 1,1’-bis-(trimethylsilyl)-2,2’ - 

bimidazoline.

l,4 -B is-(2 -am inoethy l)-2 ,3 -p iperaz!nedfone (50). 2,3,5,6,8,9-

hexahydrodiimidazo[ 1,2-a:2’, 1 ’ -c]pyrazine (16) was dissolved in 1 ^ 0  and left for 14 h. 

The solution was concentrated by rotary evaporation and the residue was taken up in 

CHClj and dried over N a^O ^  Concentration of the filtrate after the removal of the drying 

agent afforded a white waxy solid: mp: 111-112 °C; *H NMR (CDC13, 360.15 MHz, 

TMS) 5 1.27 (br s, 4H, NH2), 2.95 (t, 4H, J  = 6.3 Hz, C I^C tf/JH .,), 3.54 (t, 4H, J =

6.3 Hz, CH2CH2NH2), 3.64 (s, 4H, NCH2CH^T); 13C NMR (CDC13, 90.56 MHz, ref 

central line of CDC13 set at 77.23) S 39.92,45.60, 50.76,158.02; IR (KBr) 3387.7 (NH 

asym.), 3317 (NH sym.), 1667 cm '1; MS (CL isobutane) m/z 183.2 (M-18+1).
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l-A m inoethyl-4-am inopropyi-2,3-piperazm edione (53). In an NMR

experiment, 2,3,4,5,5a,6,7,8-octahydro-l,3a,5,9-tetraazabenzindene (18) was taken up in

D20 . After 24 h, NMR spectra were acquired: lH NMR (D20 , 360.15 MHz, secondary

ref CH3CN set at 2.05) 8 1.73 (p, 2H, J  = 7.1 Hz, O ^ C ^ C H ^ ,  2.61 (t, 2H, J = 7.0

Hz, CH2CH2Ctf2NH2), 2.83 (t, 2H, J  = 6.4 Hz, Cf^CT^NH.,), 3.49 (t, 2H, /  = 6.4

Hz, Ci72CH2CH2NH2 or Ctf2CH2NH2), 3.50 (t, 2H, J  = 6.4 Hz, C tf2CH2CH2NH2 or

CH2CH2NH2), 3.62-3.73 (m, AA’XX’, 4H, N C H fH ^)-, 13C NMR (90.56 MHz,

D20 , secondary ref CH3CN set at 1.7) 5 29.83, 38.64,44.80, 45.28, 46.02, 50.67,

159.17, 159.61. Attempts to isolate and fully characterize this compound were carried out

2,3,4,5,5a,6,7,8-Octahydro-l,3a,5,9-tetraazabenzindene (18) was taken up in H20 . After

24 h the water was removed by a stream of N2 which was blown over the solution. The

residue was taken up in CHC13 and dried over Na2S04. Concentration of this solution by

rotary evaporation afforded an oil. NMR analysis supports a mixture o f two compounds

which were not separated. One of the species was l-aminoethyl-4-aminopropyl-

2,3-piperazinedione (53). The other, 54, must arise from dehydration of 53 which

occurred in the rotary evaporation process. The aminopropyl chain condensed with the

tertiary amide and formed a six-membered ring to give a species having one amidine and

one amide moiety. !H NMR shoed that the ratio of 53:54 was 68:32: *H NMR (CDCLj,

360.15 MHz, TMS) 8 1.53 (br s, NH) 1.73 (p, 2H, J  = 6.7 Hz, N C K ^C f^C ^N H ^ 53)

1.87 (p, 2H, J  = 5.9 Hz, NCH2CH2CH2N, 54) 2.73 (t, 2H, J = 6.7 Hz,

NCH2CH2C tf2NH2) 2.91 (t, 2H, J = 6.7 Hz, NCH2C/72NH2, 54) 2.96 (t, 2H, J = 6.7
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Hz, NCH2CH2NH2, 53) 3.23-3.31 (m, 4H, NCH2CH2CH2N= and 

0=CNCH2CH2CNC=N, 54) 3.52-3.66 (m, 8H 53 and 6H 54); I3C NMR (CDC13,

90.56 MHz, ref central line CDC13 set at 77.23) 5 20.93, 30.49, 38.82, 39.71 (2 C’s), 

44.45, 44.73, 44.86, 45.34, 45.79, 46.67, 47.16, 50.53, 50.99, 147.6, 157.6, 157.8, 

159.0.

P ro to n a tio n  of 2 ,3 ,5 ,6 ,8 ,9-H exahydrodiim idazo[l,2-a:2’, l ’-c]pyrazine 

(16) w ith Trifluoroacetic Acid (TFA) in CD3CN.

2,3,5,6,8,9-Hexahydrodiimidazo[l,2-a:2M’-c]pyrazine (16) (0.0269 g, 0.164 mmol)

was taken up in CD3CN and NMR spectra were acquired: *H NMR (CDjCN, 360.15

MHz, ref central line of C D ^ C N  set at 1.94) 5 3.20 (s, 4H), 3.28 (t, 4H), 3.70 (t, 4H);

l3C NMR (CD3CN, 90.56 MHz, ref central line of CD3CN set at 1.39) 5 46.29, 52.74,

54.63, 156.48. TFA (6.3 (XL, 0.08 mmol, 0.5 eq) was added via syringe and spectra were

acquired: *H NMR (CD3CN, 360.15 MHz, ref central line of C D ^ C N  set at 1.94) 8 3.33

(s, 4H), 3.48 (t, 4H), 3.82 (t, 4H), 8.13 (br s, H); 13C NMR (CD3CN, 90.56 MHz, ref

central line of CD3CN set at 1.39) 8 45.32, 52.30, 52.76, 155.08. TFA (6.3 pL, 0.08

mmol, 1.0 eq total) was added via syringe and spectra were acquired: !H NMR (CD3CN,

360.15 MHz, ref central line of CD^ffCN set at 1.94) 8 3.45 (s, 4H), 3.65 (t, 4H), 3.92

(t, 4H), 8.93 (br s, 1H); 13C NMR (CD3CN, 90.56 MHz, ref central line of CD3CN set at

1.39) 8 44.58, 50.98, 51.95, 153.62. TFA (12.6 pL, 0.16 mmol, 2.0 eq total) was added

via syringe and spectra were acquired: lH NMR (CD3CN, 360.15 MHz, ref central line of
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C D ^ C N  set at 1.94) 5 3.41 (s), 3.59 (t), 3.88 (t), 9.02 (br s). Significant hydrolysis of 

the substrate had taken place making  integration of this spectrum difficult.

2 -B en zy I-2 ,3 ,5 ,6 ,8 ,9 -h ex ah y d ro d iim id azo [l,2 -a :2 ’, l ’-c ]p y raz in iu m

bromide (60). 2,3,5,6,8,9-Hexahydrodiimidazo[ 1,2 -a:2 \ 1 ’ -c]pyrazine (16) (1.00 g,

6.09 mmol) was suspended in toluene (20 mL). CH3CN was then added dropwise to this

suspension with stirring until dissolution was complete. Benzyl bromide (0.75 mL, 6.3

mmol) was then added in one portion and the resulting mixture was stirred in the dark at

room temperature under N2- After 3 days the reaction mixture was filtered to afford a

yellow crystalline solid. This solid was washed (3x10 mL) with toluene which removed

some of the yellow color. Removal of residual solvent under vacuum afforded 1.97 g

(96%) of product: mp: 205°C with decomposition; NMR (CDC13, 360.15 MHz, TMS)

5 3.47 (t, 2H, J = 10.1 Hz), 3.58 (t, 2H, J  = 6.0 Hz), 3.93-4.13 (m, 4H), 4.38 (t, 2H, J

= 12.5 Hz), 5.41 (s, 2H, N C ^P h ), 7.31-7.45 (m, 5H, Ar-H); 13C NMR (CDC13, 90.56

MHz, ref. central line of CDC13 set at 77.23) 8 43.75, 44.91, 49.16, 49.63, 50.97, 52.47,

55.39, 128.87, 129.04, 129.37, 133.44, 151.25, 151.35; IR (KBr) 2971, 2855, 1655,

1621, 1573, 1305 cm*1; MS (El) m/z 255.3 M+.
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R edac tion  of 2 -B enzyI-2 ,3 ,5 ,6 ,8 ,9-hexahydrodiim idazo[l,2-

a:2’, l ’-c]pyrazinium brom ide (60). A 50 mL three necked round bottomed flask

equipped with a reflux condenser with a N2 inlet tube was charged with

2-benzy 1-2,3,5,6,8,9-hexahydrodiimidazo[ 1,2-a:2 \  1’-c]pyrazinium bromide (60) (0.15 g,

0.45 mmol). DIBALH (1.5 M in toluene, 3.0 mL, 4.5 mmol) was added via syringe and

this mixture was heated to reflux. After 3 d the reaction mixture was cooled in an ice/HjO

bath and toluene (10 mL) was added. The reaction was quenched by the dropwise addition

of 3M KOH (10 mL). The mixture was transferred to a separatory funnel, the layers were

separated and the aqueous layer was extracted with CHC13 (6x20 mL). The combined

extracts were dried over N a^C ^ and concentrated by rotary evaporation to afford 0.119 g 

1of an oil. C NMR analysis was consistent with a mixture of three species in the sample 

which were not separated. The major component is consistent with 

l-benzyl-l,4,7,10-tetraazabicyclo[7.3.0]dodecane (62): 13C NMR (CDC13, 90.56 MHz, 

ref central line of CDC13 set at 77.23) 5 (aliphatic carbons only) 43.6,45.7,48.7, 52.0, 

52.5, 54.0, 55.4, 57.4, 75.8. The other two components (isomers 63 and 64) could be 

formed from further reduction by DIBALH of 1-benzyl-1,4,7,10-tetraazabicyclo 

[7.3.0]dodecane (62). These compounds result from the cleavage of different C-N bonds 

of the aminal moiety of 62. Isomer 63 was in greater abundance over isomer 64 which 

allowed for the assignment of the aliphatic chemical shifts: isomer 63 (1-
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(aminoethyI-N-benzyl)-l,4,7-triazacyclononane) 13C NMR (CDC13, 90.56 MHz, ref 

central line of CDC13 set at 77.23) 8 44.9,46.2,47.0, 51.1, 53.1, 59.1; isomer 64 

(l-benzyl-l,4,7,10-tetraazacyclododecane): I3C NMR (CDC13, 90.56 MHz, ref central line 

of CDC13 set at 77.23) 8 46.5,46.7, 47.6, 52.0, 57.2. The aromatic chemical shifts for 

62, 63 and 64 could not be assigned: 125.23, 126.62, 126.84, 126.99, 128.03, 128.12, 

128.29, 128.31(d), 137.72, 138.82, 140.33.

This reaction was repeated under the same conditions for 12 d. The results were the same 

except that more of isomers 63 and 64 were formed with respect to 62. The ratio of 63 to 

64 was still the same (estimated by I3C line height) whereby more of 63 was formed over 

64.

H ydrolysis of 2 -B enzy l-2 ,3 ,5 ,6 ,8 ,9-hexahydrodiim idazo[l,2 -

a:2% l’-c]pyrazinium  brom ide (60). 2-Benzyl-2,3,5,6,8,9-

hexahydrodiimidazo[l,2-a:2\r-c]pyrazinium bromide (60) was taken up in D ,0  and

NMR spectra were acquired to determine the regioselectivity of hydrolysis. The resultant

NMR spectra were consistent with a mixture of two isomers which result from the loss of

regiochemical control of the hydrolysis of the amidinium moiety of (60), affording a

mixture of 65 and 66. The ratio of 65:66 was approximately 50:50. The initial NMR

experiment was carried out 14 h after the sample had been prepared: NMR (D20,

360.15 MHz, secondary ref CH^CN set at 2.05) 8 2.88 (dt, 4H, NCH2CH2NH2 both

isomers, Jobs= 6.4 Hz), 2.97 (t, 2H, /  = 6.1 Hz), 3.07 (t, 2H, /  = 6.7 Hz), 3.17 (t, 2H, J
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= 6.1 Hz), 3.58-3.74 (m, 12H), 3.91 (s, 2H, NCtf2Ph), 4.66 (s, 2H, NCH2Ph), 

7.35-7.45 (m, 10H, ArH); I3C NMR (D20 ,  90.56 MHz, secondary ref CH3CN set at 1.7) 

6 38.32, 39.38, 44.54, 45.06, 45.17(2C’s), 45.26, 45.88, 46.29, 46.84, 47.09, 47.46, 

51.57, 52.63, 128.80, 128.98, 129.71 (2C’s), 129.84 (2C’s), 136.04, 137.21, 159.31, 

159.52,159.73,160.12. NMR spectra which were acquired 48 h after the sample had 

been prepared were identical.

A ttem pted Reaction o f p-Toluenesuifony(chloride w ith

2 .3 .5 .6 .8 .9 -H ex ah y d ro d iim id azo [l,2 -a :2 ’,l*>c]pyrazine (16).

2.3.5.6.8.9-Hexahydrodiimidazo[ 1,2-a:2’, 1 ’-c]pyrazine (16) (0.255 g, 1.56 mmol) was

suspended in toluene (10 mL) in a 50 mL round-bottomed flask. CK^CN was added

dropwise until dissolution of the solid was complete. p-Toluenesulfonylchloride (0.29 g,

1.5 mmol) was then added and the reaction mixture was stirred for 6 d at room temperature

under Nr  A precipitate had formed and was isolated by vacuum filtration. The solid was

washed with toluene (25 mL) and was oily in appearance. Unfortunately, the only NMR

solvent in which this solid was soluble was DMSO-d_ The DMSO-d, was contaminated
0  0

with water. NMR and MS analysis of this solid was consistent with two species present in

the sample. The minor component was 2,3,5,6,8,9-hexahydrodiimidazo[l,2-a:2’, r -

c]pyrazine (16) starting material. The major component (73) was derived from the

hydrolysis of the desired tosylated product (69): *H NMR (DMSO-Jj, 360.15 MHz,

TMS) 6 2.39 (s, 3H, CHJ, 2.95 (dt, 2H, J  = 6.6, 5.8 Hz, CH2C # 2NHTs), 3.4 (br s,
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NH) 3.47-3.35 (m, 2H) 3.35 (s, N C N C ^C ^ N C N  of 16), 3.59-3.75 (m, 2H and t,

2H, J  = 9.5 Hz, NCH2CH2N=C of 16), 3.90 (t, 2H, J  = 9.8 Hz, NCH2CiL,N=C of 16), 

3.97-4.06 (m, 2H), 7.41 (XX’ of AA’XX’, 2H), 7.69 (AA’ of AA’XX’, 2H), 7.91 (t,

1H, J  = 6.2, NflTs); 13C NMR (DMSO-J^ 90.56 MHz, ref central line o fD M SO -^ set 

at 39.5) 8 20.97, 41.28, 43.06, 43.78, 45.24, 46.50, 49.14, 50.72, 50.87, 126.54, 

129.69, 137.36, 142.81, 151.55, 152.00, 155.57; MS (El) m/z 164 M* (16), 336 M* 

(73).

R eac tio n  of 2 ,3 ,5 ,6 ,8 ,9-H exahydrodiim idazo[l,2 -a:2’yl*-c]pyrazine (16) 

w ith  1,2-B is[(p>tolylsulfonyl)oxy]ethane.

2,3,5,6,8,9-Hexahydrodiimidazo[l,2-a:2\r-c]pyrazine (0.10 g, 0.60 mmol) was

dissolved in CH^CN (10 mL) in a 50 mL round bottomed flask. 1,2-

Bis [(p-tolylsulfonyl)oxy]ethane (0.22 g, 0.60 mmol) was added in one portion and the

mixture was heated at reflux under N2 for 2 d. The reaction mixture was then concentrated

by rotary evaporation to afford an oil. lH NMR analysis (CDC13) of this material showed

the two starting materials, many resonances in the 3-4.4 ppm region and three broad

singlets (4.2,4.1,3.9 ppm). Interpretation of these signals was difficult, therefore

purification was attempted. A small sample of the oil was taken up in EtOH and added

dropwise to a saturated solution of NaBPh4 in EtOH. A precipitate formed which was

isolated by vacuum filtration. NMR analysis (DMSO-Jj) was consistent with some

purification but the sample was still a mixture. However, 13C shifts for 75 which were
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consistent with authentic samples of 75*2T92 observed by I3C NMR (DMSO-c^): I3C 

NMR (DMSO-d^, 90.56 MHz, ref central line of DMSO-d^ set at 39.5) 5 43.18,50.91, 

148.24.

A ttem pted  Diels-Alder R eaction of 2,3,5,6,8,9-Hexahydrodiim idazo 

[l,2 -a :2% l’-c]pyrazine (16) an d  N -Phenylm aleim ide.

23,5,6,8,9-Hexahydrodiimidazo[l,2-a:2’,r-c]pyrazine (16) (0.10 g, 0.61 mmol) was

dissolved in warm toluene (10 mL). The temperature was maintained above 40°C in order

to keep the bisamidine in solution. A solution of N-phenyl maleimide (0.11 g, 0.63 mmol)

in toluene (10 mL) was added via an addition funnel over 2 minutes. The heat was

increased until everything went into solution (50 °Q  and the reaction mixture was stirred

for 0.5 h. An aliquot (2 mL) was removed and 0 2 was bubbled through the solution. No

fluorescence was observed. The solvent was removed by rotary evaporation to afford an

orange solid. The solid was not completely soluble in CgD6. NMR analysis showed that

only bisamidine staring material had dissolved in C6Dg. The material that did not dissolve

in CfiDfi was soluble in CDCly  NMR analysis of this sample also showed some

bisamidine starting material and other minor unknown specie(s) whose NMR spectra were

inconsistent with a Diels-Alder adduct of N-phenylmaleimide and the bisamidine.

The temperature of the original reaction mixture was increased to 70 °C for 1 h. Another

aliquot was removed and concentrated by rotary evaporation. The solid residue was taken

up in CDCl^. NMR data again showed that there was bisamidine starting material in
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addition to other resonances which were unidentified. The temperature o f the original 

solution was increased to 105 °C for 4 h. Another aliquot was removed and concentrated by 

rotary evaporation. NMR analysis of the residue in CDC^ did not support product 

formation and showed bisamidine starting material.

The reaction was repeated on the same scale and concentration. The reaction was 

left stirring at rt for 36 h before the first aliquot was removed. ^  NMR analysis showed 

the two reactants, a broad resonance at 2.6 ppm and broadening in the aromatic region.

c is -1 5 -l,4 ,8 ,1 2 -T e tra a z a te tra c y c lo [6 .6 .2 .0 4’16.0n ’ls ]hexadecane  (85). 85

was prepared based on the method of Weisman et al.105 Aqueous glyoxal (5.34 g, 40 wt % 

aq. solution; 36.1 mmol) was added to a stirred heterogeneous mixture of

1,4,8,11-tetraazacyclotetradecane (7.22 g, 36.04 mmol) in 525 mL of CKjCN. The 

reaction mixture was stirred for 3 hours at 55 °C and then concentrated by rotary 

evaporation. The residue was suspended in CHC13, dried over Na2S0 4 and the filtrate was 

concentrated. Sublimation of the residue (80 °C, 0.015 Torr) afforded 6.19 g (77%) of 

85. NMR spectra were consistent with reported spectra.105

(IR S , 8RS, 15RS, 16R S )-l,8 -D ibenzy l-4 ,ll-d iaza-l,8 -

d iazo n ia te tracy c lo -[6.6 .2.04,16.0 11,15]hexadecane d ib rom ide m onohydrate

(90). 90 was prepared by the published method.103,104 Benzyl bromide (88.75 g, 518.9

mmol) was added in one portion to a stirred solution of cis-15-1,4,8,12-tetraazatetracyclo-
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[6.6.2.04,16.011,15]hexadecane (85) (7.93 g, 35.69 mmol) in 150 mL of CH3CN under 

N2. The reaction mixture was stirred for 14 days and afforded 18.19 g (90%) of pure 

white product. NMR spectra were consistent with reported spectra.103

4-ll-D ibenzy I-l,4 ,8 ,ll-te traazab icycIo [6 .6 .2 ]hexadecane  (91). 91 was

prepared by the published method.103,104 NaBH4 (63.0 g, 1.66 mol) was added in small 

portions to a stirred solution of (IRS, 8RS, 15RS, 16RS)-l,8-Dibenzyl-4,ll-diaza-l,8- 

diazoniatetracyclo-[6.6.2.04,16.01I,15]hexadecane dibromide monohydrate (90) (18.89 g,

33.5 mmol) in 95% EtOH (900 mL). The reaction mixture was stirred at room temperature 

for 18 days. Excess NaBH4 was decomposed by the dropwise addition of 3M HC1 (700 

mL). The reaction mixture was concentrated by rotary evaporation and the residue was 

dissolved in l^O  (400 mL). This aqueous solution was adjusted to pH 14 by the addition 

of KOH (pellets) and extracted with toluene (6x250 mL). The toluene extracts were dried 

over N a^C ^ and concentrated by rotary evaporation to afford 9.29 g (68%) of white solid 

91. NMR spectra were consistent with reported spectra.103

l,4 ,8 ,ll-T etraazabicyclo[6 .6 .2]hexadecane (92). 92 was prepared by the

literature method.103,104 Glacial acetic acid (100 mL) and 10% Pd/C (0.84 g) were added

to a hydrogenation flask which was connected to a glass atmospheric hydrogenation

apparatus150 designed for the exclusion of Or  After flushing the system with N2, the

catalyst was equilibrated for 1 hour under H2- To this slurry was added
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4,1 1-dibenzyl-1,4,8,1 l-tetraazabicyclo[6.6.2]hexadecane (91) (4.68 g, 11.51 mmol) in 

glacial acetic acid (10 mL). The reaction mixture was stirred for 24 hours under at 

room temperature and, after workup, afforded 2.6 g (98%) of 92 as an oil, which 

subsequently solidified. NMR spectra were consistent with reported spectra.103

4 ,l l-B is - (N ,N ’-d ie th y lacetam id o)-l,4 ,8 ,ll~ te traazab icyclo [6 .6 .2 ]-

hexadecane m onohydrate (95). l,4,8,ll-Tetraazabicyclo[6.6.2]hexadecane (92)

(183.9 mg, 0.812 mmol) was dissolved in CH3CN (2 mL). K ,C 03 (0.45 g, 3.3 mmol),

KI (0.55,3.3 mmol), and 2-chloro-N,N-diethyIacetamide (483.0 mg, 3.23 mmol) in

Cf^CN (2 mL) were added successively and the resulting mixture was stirred at 60°C for

24 hours. The reaction mixture was then concentrated by rotary evaporation and the residue

was dissolved in 3M HC1 (20 mL). This solution was extracted with toluene (6x25 mL).

The aqueous layer was cooled in an ice/R ,0 bath, adjusted to pH 14 with KOH (pellets)

and extracted with toluene (6x25 mL). The toluene extracts were dried over Na^C^ and

the filtrate was concentrated to give 342.1 mg (93%) of waxy solid 95. mp: 81.5-82.5°C;

NMR (CD3CN, 360.15 MHz, ref central line of C D ^ C N  set at 1.94) 5 1.03 (t, 6H,

NCH2C/f3, 7 =  7.1 Hz), 1.12 (t, 6H, NCtLzCHr  J = 7.1 Hz), 1.41 (dm, 4H,

NCH2Ctf2CH2N), 2.20 (br s, H20 ), 2.25-2.60 (m, 4H), 2.34 (XX’ of AA’XX’, 2H)

2.71 (td, 4H, J  = 10.5, 3.6 Hz), 2.93 (B of AB, 2H), 3.08-3.42 (m, 4H), 3.12 (AA’ of

AA’XX’, 2H) 3.34 (A of AB, 2H), 3.47-3.57 (m, 2H, NCff2CH3), 3.87 (ddd, 2H, J  =

15.4, 12.0, 4.3 Hz); l3C NMR (CD3CN, 90.56 MHz, ref CT>3CN set at 1.39) 8 13.38,
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14.67, 28.74, 40.24, 41.90, 52.67, 55.06, 57.72, 57.78, 58.15, 59.44, 170.83; IR 

(KBr) 2966, 2917, 2819, 1645, 1469, 1434, 1124, 794, 618 cm '1; MS (El) m/z 452.6 

(M+); Anal. Calcd for C ^ H ^ N g O ^ O :  C, 61.24; H, 10.71; N, 17.85; Found: C,

61.53; H, 10.59; N, 17.56.

l,8 -B isac e ta m id o -l,4 ,8 ,ll- te traa za b ic y c lo [6 .6 .2 ]h ex a d ec a n e  (96).

1,4,8,11-Tetraazabicyclo [6.6.2]hexadecane (92) (0.2425 g, 1.071 mmol) was dissolved

in CH3CN (25 mL) in a 50 mL round bottomed flask. Potassium carbonate (0.60 g, 4.3

mmol), potassium iodide (0.71,4.3 mmol) and a-chloroacetamide (0.4233 g, 4.53 mmol)

were added, and the resulting mixture was heated at 60°C under N2 for 23 hours. The

reaction mixture was then concentrated and dissolved in water (15 mL). The pH was

increased to 14 by the addition of solid KOH (pellets) while the mixture was cooled in an

ice/I^O bath. This solution was extracted with CHC^ (6x25 mL) and the organic layer

was dried over Na,S04, concentrated by rotary evaporation and taken up in absolute EtOH

(25 mL). The EtOH was removed by rotary evaporation affording 0.3501 g (96%) of a

waxy solid. The EtOH is necessary to remove CHC13 which forms a solvate with the

product Mp 164-165°C dec.; *H NMR (CD3CN, 360.15 MHz, ref CD^ffCN set at 1.94)

8 1.39-1.64 (m, 4H, CH ^C /^C H ^, 2.33-2.58 (m, 12H), 2.66-2.75 (m, 4H), 2.79 and

3.07 (d, 4H, /  =16.14 Hz, A of AB, N C#2CONH2), 2.97-3.08 (AA’ of AAXX\ 2H,

NCH2CH2N bridge), 3.99 (ddd, 2H, J  = 12.61, 8.96, 5.17 Hz), 5.76 (br s, 2H, amide
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NH), 6.78 (br s, 2H, amide N/f); I3C NMR (CD3CN, 90.56 MHz, ref CD3CN set at 

1.39) 5 28.29, 54.05, 54.22, 56.93, 57.98, 59.02, 61.01, 175.1; IR (KBr) 3444, 3325, 

3248,3184, 1685,1651 cm*1; MS (El) m/z 340.3 (M*); Elemental analysis was 

inconsistent with a stoichiometric hydrate (but was most consistent with the product as 

96*0.5H2O). Anal. Calcd for C 16 H^NgO.,-0.5 H20: C, 54.99, H, 9.52, N, 24.05; 

Found: C, 54.90; H, 9.18; N, 23.64.

4.11-Bis(2-cyanoethyl)-l,4,8?U ~tetraazabicyclo[6.6.2]hexadecane (97).

97 was prepared by the method of Hill.103 1,4,8,1 l-Tetraazabicyclo[6.6.2]hexadecane 

(92) (199.9 mg, 0.8830 mmol) and freshly distilled acrylonitrile (2 mL) were stirred at 

ambient temperature under N2 for 38 hours. The flask was shielded from light during the 

reaction. The reaction mixture was then concentrated and the residue was taken up in 

toluene (15 mL). The toluene solution was dried over Na2S04 and the filtrate was 

concentrated by rotary evaporation to afford 0.28 g (96%) of 97 as an oil. NMR spectra 

were consistent with reported spectra.103.

4 .1 1 -B is-(2 -ca rb am o y Ie th y l)-l,4 ,8 ,ll-te traazab icy c lo [6 .6 .2 ] hexadecane 

(98). l,4,8,ll-Tetraazabicyclo[6.6.2]hexadecane (92) (0.171 g, 0.753 mmol) was 

dissolved in Cl^CN in a 25 mL round-bottomed flask. Acrylamide (0.108 g, 1.52 mmol) 

was added and the resulting mixture was stirred under N2 at room temperature for 21 days.
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The reaction mixture was then concentrated by rotary evaporation and the residue was 

dissolved in water (10 mL). The pH of this solution was adjusted to 14 with solid KOH 

(pellets) while cooling the flask in an ice/F^O bath. This aqueous solution was extracted 

with CHC13 (4x15 mL). Subsequent drying of the CHC13 extracts over N a^C ^ and 

concentration of the filtrate afforded an oil. Trituration of this oil with E^O gave 0.252 g 

(91%) of 98 as a white waxy solid: mp: 120-122°C; NMR (CDC13, 360.15 MHz, 

TMS) 5 1.42-1.47 (m, 2H), 1.57-1.70 (m, 2H), 1.68 (s, I^O ), 2.26-3.0 (m, 18H), 4.10 

(dt, 2H, J  = 13.4, 6.9 Hz), 5.50 (br s, 2H), 7.67 (br s, 2H); I3C NMR (CDC13, 90.56 

MHz, ref central line of CDC13 set at 77.23) 5 26.61, 33.70, 52.33 (2C’s), 53.46, 53.67, 

54.66, 55.48, 58.78, 175.41; IR (KBr) 3356, 3184, 1669 cm*1 (C=0); MS (El) m/z 368.5 

(M*). Elemental analysis was inconsistent with a stoichiometric hydrate (but was 

consistent with the product).

A ttem pted  R eduction o f  4,1 l-B is(2-acetam ido)-1,4,8,11-

tetraazabicyclo[6.6.2]hexadecane with BH3»THF. 4,1 l-Bis(2-acetamido)-

1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (96) (54.1 mg, 0.1589 mmol) was suspended

in THF (8 mL). This mixture was cooled in an ice/K,0 bath prior to the addition of a

solution of BH3»THF (1 M in THF, 2.2 mL, 2.2 mmol) via syringe. This mixture was

stirred at 0 °C for 30 minutes and then heated at reflux for 3 hours. The excess borane was

decomposed by the dropwise addition of (1.5 mL). The reaction mixture was

concentrated by rotary evaporation, the residue was taken up in H Q  (6M)/CH3OH (1:2,25
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mL) and this solution was heated at reflux for 4  hours. The mixture was then concentrated 

to approximately 3 mL and diluted with water (10 mL). This solution was adjusted to pH 

14 with solid KOH (pellets) and extracted with CHCI3 (6x25 mL). The extracts were dried 

over Na2S 04 and concentrated to provide 86.1 mg of an oil. The NMR indicated that 

reduction had taken place but the product was a complicated mixture. The crude product 

was dissolved in 6M HC1 (20 mL) and the resulting solution was refluxed for 1 hour and 

then extracted with E^O (4x50 mL) and toluene (2x50 mL). These extracts were each 

dried over N a^C^ and the solvent was concentrated. NMR analyses of these materials did 

not correspond to the desired product. These two samples totaled 53.6 mg of material.

The aqueous layer from these extractions was adjusted to pH 14 and extracted with E^O 

(6x40 mL). These extracts were dried over Na2S 04 and concentrated to afford 26.2 mg 

(50%) of material. The [H NMR of this material had a triplet of doublets at -3.5 ppm and 

what appeared to be the AX of the AA’XX’ expected for the cross-bridge of the product 

However, this material was a mixture and conditions for further purification were not 

found.

A ttem pted  reduction  o f 4 ,ll-B is(2 -cy an o e th y I)-l,4 ,8 ,ll-  

tetraazabicyclo[6.6.2]hexadecane (97) with BH^THF. A solution of 

BH3*THF in THF (1.0 M in THF, 1.5 mL, 1.5 mmol) was added via syringe to a solution 

of 4,1 l-bis(2-cyanoethyl)-l,4,8,1 l-tetraazabicyclo[6.6.2]hexadecane (97) (0.0556 g,

0.1574 mmol) in THF (1 mL) under N2. This mixture was heated at reflux for 3 hours.
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The reaction mixture was cooled in an ice/K^O bath prior to the dropwise addition of 6M 

HC1 (7.5 mL). When all of the HC1 solution had been added, solid KOH (pellets) were 

added until the pH had reached 14. This solution was then extracted (6x25 mL) with 

CHC13 and the extracts were dried over Na2S04 and concentrated. NMR analysis of the 

residue supported incomplete hydrolysis of a boron complex. The residue was dissolved 

in 3M HC1 (30 mL) and this mixture was heated at reflux for 2 hours. The pH of this 

solution was again adjusted to pH 14 with solid KOH (pellets) and extracted with CHCLj to 

afford 18.8 mg of an oil. The oil was a complicated mixture as determined by NMR 

analysis.

2-(Tosylamino)ethyl p-toluenesulfonate (106). 106 was prepared by the method 

of Lehn.115 A ~5 °C solution of ethanolamine (50 g, 0.816 mol) and pyridine (140 mL) in 

CHjC^ (160 mL) was added dropwise to a solution of p-toluenesulfonylchloride (370 g, 

1.94 mol) in CH2CL, (400 mL) which was cooled in an CH3CN/(dry ice) (—40 °C) bath. 

The reaction mixture was stored at -6 °C for 6 days and was then transferred to a separatory 

funnel. The reaction mixture was washed with H ,0  (2x100 mL), 10% HC1 (2x250 mL), 

1 ^ 0  (2x500 mL) and dried over Na2S04 and concentrated. The crude product was 

recrystallized from CC14 to afford 90.1 g (30%) of crystalline product. NMR spectra were 

consistent with reported spectra.115

N-Tosylaziridine (103). 103 was prepared by the method of Lehn.115
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2-(Tosylamino)ethyl p-toluenesulfonate (10.00 g, 26.75 mmol) was suspended in toluene 

(100 mL). 3M KOH (40 mL) was added dropwise over 1 hour to this heterogeneous 

mixture and the resulting mixture was stirred for an additional 2 hours. The layers were 

then separated and the organic layer was dried over Na^O ^ and concentrated. The residue 

solidified to afford 4.01 g (79%) of 103 as a crystalline white solid. NMR spectra were 

consistent with reported spectra. 115

4 .1 1 -B is(2 -( to sy Iam in o )e th y l)- l,4 ,8 ,ll- te tra az ab icy c lo [6 .6 .2 ]h e x a d ec an e  

(107). N-Tosylaziridine (103) (0.25 g, mmol) and

1.4.8.11-tetraazabicyclo[6.6.2]hexadecane (92) (0.14 g, 0.60 mmol) were dissolved in 

CH3CN (25 mL). This mixture was heated at reflux for 3 days under Nr  The reaction 

mixture was concentrated by rotary evaporation to afford a yellow oil. This oil was 

triturated with E^O (15 mL) and afforded a foam upon removal of the E^O by rotary 

evaporation. 13C NMR and MS analysis were consistent with product formation but 

conditions for further purification through recrystallization were not found. The *H NMR 

spectrum (CDC13) was dramatically broadened and was very complicated. l3C NMR 

(CDCLj, 360.15 MHz, ref CDC13 set at 77.23) 8 21.49 (ArCH3), 25.33 (br, 

NCH2CH2CH2N), 40.87, 50.16 (2C’s), 53.30 (br), 53.64, 54.08, 55.46 (br), 126.99, 

129.56, 138.22, 142.47; MS (El) m/z 620.3 (M*).

A ttem pted Alkylatfon o f c is -1 5 -l,4 ,8 ,1 2 -te traaza te tracy c lo -
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[6 .6 .2 .0 4’16.011,15]hexadecane w ith B rom obutane and  l-[(p - 

toIylsulfonyl)oxy]-2-methoxyethane (109). Approximately 0.2 g of 

ciJ-15-l,4,8,12-tetraazatetracyclo[6.6.2.04’I6.0n '15]hexadecane were used in each of the 

six trials. The amine was dissolved in the appropriate solvent prior to the addition of the 

alkylating agent. Bromobutane was the alkylating agent in all cases except trial #6 where 

1 - [(p-tolylsulfonyl)oxy]-2-methoxyethane (109) was used. Workup involved the removal 

o f the solvent via rotary evaporation. The extent of alkylation or elimination was evaluated 

by l3C NMR in CDCLj. Trial #3 was also evaluated in DzO because not all of the reaction 

products were soluble in CDC13. 13C NMR analyses of the reaction product mixtures were 

consistent with either monoalkylation of 85, or elimination of the alkylating agent and 

protonation of 85.

(IR S , 15RS, 1 6 S R )-l-B en zy I-4 ,8 ,ll-triaza-l-azo n ia te tracy cIo - 

[6.6.04,16.011,15]hexadecane brom ide hydrate (111). 131 was prepared by the

method of Hill.103 Benzyl bromide (2.0 mL, 16.9 mmol) was added in one portion to a 

stirred solution of cis-15-1,4,8,12-tetraazatetracyclo [6.6.2.04,16.011,15]hexadecane (85) 

(2.50 g, 11.3 mmol) in toluene (25 mL). The reaction mixture was stirred under N2 at 

room temperature for 14 days. The white precipitate was collected by vacuum filtration to 

afford 2.58 g (58%) of 111. NMR spectra were consistent with repotted spectra.103

(IR S , 8RS, 15RS, 16R S )-l-B enzy I-8 -m ethy l-4 ,ll-d iaza-l,8 -
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d iaz o n ia te trac y c lo [6.6.04,16.011,15]hexadecane dihalide (112). 112 was

prepared by the method of Hill.103 Mel (2.5 mL, 40 mmol) was added to a stirred solution 

of (IRS, 15RS, 16SR)-1 -benzyl-4,8,11 -triaza- 1 -azoniatetracyclo[6.6.04,16.011 •15] 

hexadecane bromide hydrate (111) (2.58 g, 6.67 mmol) in CI^CN (75 mL) in a 250 mL 

round-bottomed flask. The flask was wrapped in foil to shield the reaction mixture from 

light and was tightly sealed with a teflon stopcock. After 21 days, a white precipitate was 

collected by vacuum filtration to afford 3.35 g of product. NMR spectra were consistent 

with reported spectra.103

4 -B en zy l-ll-m eth y I-l,4 ,8 ,ll-te traazab icy cIo [6 .6 .2 ]h ex ad ecan e  (113). 113

was prepared by the method of Hill.103 NaBH4 (13.4 g, 0.354 mol) was added in small 

portions to a stirred solution of (IRS, 8RS, 15RS, 16RS)-l-benzyl-8-methyl-4,l 1-diaza-

l,8-diazoniatetracyclo[6.6.04,16.011,15]hexadecane dihalide (112) (3.35 g) in 95% EtOH 

(200 mL). The reaction mixture was stirred under N2 at room temperature for 7 days. The 

reaction mixture was cooled in an ice/H20  bath and excess NaBH4 was decomposed by the 

addition of 3M HC1 (60 mL). The solvent was removed by rotary evaporation. The 

residue was dissolved in I^ O  (150 mL), adjusted to pH 14 with KOH (pellets) and 

extracted with toluene (6x30 mL). The extracts were dried over Na2S0 4 and concentrated 

to afford 1.78 g of 113 as an oil (81% two step yield from 111). NMR spectra were 

consistent with reported spectra.103
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l-M ethy!-l,4 ,8 ,ll-te traazab icyclo [6 .6 .2 ]hexadecane (114). 114 w as

prepared by the method of Hill.103 Glacial acetic acid (50 mL) and 10% Pd/C (0.25 g) 

were added to a hydrogenation flask which was connected to a glass atmospheric 

hydrogenation apparatus150 designed for the exclusion of O,. That catalyst was 

equilibrated for 1 hour under To this slurry was added 4-benzyl-l 1-methyl-1,4,8,11- 

tetraazabicyclo[6.6.2]hexadecane (113) (2.20 g, 6.28 mmol) in glacial acetic acid (20 mL). 

The reaction mixture was stirred for 24 hours under H2 at room temperature. The reaction 

mixture was filtered through celite and the filtrate was concentrated by rotary evaporation. 

The residue was dissolved in H^O (40 mL), the pH was adjusted to 14 with KOH (pellets), 

and this solution was extracted (6x50 mL) with toluene. The extracts were dried over 

Na2S0 4 and concentrated to afford 1.13 g (75%) of 114 as an oil. NMR spectra were 

consistent with reported spectra.103

A ttem p ts to P repare  l-B enzyI-l,4 ,8 ,ll-te traazab icycIo[6 .6 .2 ]hexadecane

(115). Method A: Benzyl bromide (43 (iL, 0.3615 mmol) was added to a solution of

1,4,8,ll-tetraazabicyclo[6.6.2]hexadecane (92) (0.0822 g, 0.3631 mmol) in CE^CN (2

mL). This mixture was heated at reflux under N2 for 16 hours. The reaction mixture was

concentrated by rotary evaporation and dissolved in K^O (10 mL). KOH (pellets) were

added to increase the pH to 14 and this aqueous solution was extracted (5x10 mL) with

CHClj. The extracts were dried over Na2S 0 4 and concentrated to afford an oil. 13C NMR

analysis of this oil was consistent with a mixture of starting material (92), monobenzylated
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product (115), and dibenzylated product (91). I3C NMR (CDCLj, 90.56 MHz, ref central 

line of CDC^ set at 77.23) for 92: 5 24.00, 46.16, 50.43, 51.50, 55.70, 59.10; for 91: 5 

28.12, 52.18, 54.84, 56.64, 57.23, 57.74, 60.12 (not including phenyl ring); for 115: 5 

25.97, 27.43, 48.94, 49.10, 49.17, 49.54, 54.31, 54.37, 57.04, 57.95, 58.99, 59.26, 

59.74 (not including phenyl ring). Method B: Benzyl bromide (12 |jL, 0.09 mmol) was 

added to a solution of 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (92) (0.0214 g, 0.0945 

mmol) in toluene (1 mL). This mixture was stirred under N2 at room temperature for 4 

days. A precipitate had formed and was isolated after removal of the supernatant by 

pipette. The solid was dissolved in H20  (10 mL) and this solution was adjusted to pH 14 

with KOH (pellets) and extracted (5x10 mL) with CHC13- The extracts were dried over 

Na2S0 4 and concentrated to afford a white solid. 13C NMR analysis of this white solid 

was consistent with 91 and not 115.

4 ,ll-B is - (2 ,4 -d in itro p h e n y I)- l ,4 ,8 ,l l- te tra a z a b ic y c lo [6 .6 .2 ]h e x a d e c a n e

(118). 1,4,8,ll-Tetraazabicyclo[6.6.2]hexadecane (92) (0.0833 g, 0.390 mmol) was

dissolved in CH3CN in a 25 mL round-bottomed flask. Potassium carbonate (1.14 g,

mmol) and 2,4-dinitrofluorobenzene (100 jjlL, 0.08 mmol) were added and the solution

immediately turned yellow. The mixture was heated at reflux for 3 days under Nr  The

reaction mixture was concentrated by rotary evaporation and the residue was dissolved in

water (20 mL). The pH was adjusted to 14 by the addition of solid KOH pellets and the

solution was extracted with CHC13 (4x50 mL). The CHC^ extracts were dried over
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N ^SC ^ and concentrated to afford 0.0781 g (36%) of 92 as a crude orange powder. The 

crude product was further purified by iecrystallization from toluene mp (dec): 245°C; lH 

NMR (CDCl^ 360.15 MHz, TMS) 8 1.55-1.70 (m, 2H), 1.85-2.00 (m, 2H), 2.45-2.64 

(m, 6H), 2.64-2.84 (m, 4H), 3.08-3.17 (m, 2H), 3.20-3.42 (m, 4H), 3.60 (dt, 2H, 7  =

13.8, 7.0 Hz), 4.91-4.99 (m, 2H), 7.04 (d, 2H, 7 = 9 .5  Hz, meta to N 0 2’s), 8.20 (dd, 

2H, 7 = 9.5, 2.7 Hz, ortho and para to NO,’s), 8.62 (d, 2H, 7 = 2.7 Hz, ortho to N 0 2’s); 

13C NMR (CDCLj, 90.56 MHz, ref central line of CDC13 set at 77.23) 8 28.04,47.76, 

51.48, 52.06, 56.10, 57.82, 117.68, 124.07, 127.80, 137.09, 137.66, 148.66; IR (KBr) 

3431, 2814, 1607, 1525, 1319 cm '1; MS (El) m/z 558.22 M+.

4 ,ll-B is -(p -n itro p h e n y l)- l,4 ,8 ,ll- te tra a z a b ic y c lo [6 .6 .2 ]h e x a d e c a n e  (119).

p-Bromonitrobenzene (11.0 g, 54 mmol) and IC,C03 (2.5 g, 18 mmol) were added to a

solution of 1,4,8,1 l-tetraazabicyclo[6.6.2]hexadecane (112) (0.61 g, 2.69 mmol) in

CHjCN (50 mL). This mixture was heated at reflux under N0 for 7 days. The reaction

mixture was concentrated to afford a solid. This solid was placed in a Soxhlet cup and

extracted with E^O for 4 hours to remove excess p-bromonitrobenzene. The remaining

contents of the Soxhlet cup were then extracted for 3 hours with CH^Cl^ The CiL̂ CL̂

extracts were dried over Na^C^ and concentrated to afford -700 mg (-55%) of a yellow

powder. NMR analysis of this powder was consistent with 119 with some impurities.

Recrystallization with DMF was found to be the best method for purification of this

material. Unfortunately, the recovery of the DMF recrystallization was only 34%, which
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corresponds to an overall yield of 19% for this reaction. Decomposition point :>230 °C;

‘H NMR (CDC^, 360.15 MHz, TMS) 5 1.81-2.01 (m, 4H, NCH2C # 2CH2N), 2.48- 

2.59 (m, 2H), 2.58 (s, 4H), 2.60-2.71 (m, 2H), 2.82-2.93 (m, 4H), 3.37-3.45 (m, 2H), 

3.69-3.73 (dm, 2H, /=  15.5 Hz), 4.02-4.10 (m, 2H), 6.57 (m, XX’ of AA’XX’, 4H, J  

=9.5 Hz), 8.10 (m, AA’ of AA’XX’, 4H, J  = 9.5 Hz); I3C NMR(CDC13, 90.56 MHz, ref 

central line of CDC^set at 77.23) 28.65, 50.59, 53.43, 54.91, 57.57, 58.38, 111.86,

126.18, 137.47, 153.94; IR (KBr) 3417, 2937, 2807, 1600, 1305, 1113 cm '1; MS (El) 

m/z 468.25 M+

A ttem pted preparation  of 4 ,ll-B is - (p - to Iy l) - l ,4 ,8 ,l l-

tetraazabicyclo[6.6.2]hexadecane (122). This procedure was modeled on the

method for the arylation of amines reported by Buchwald and coworkers.125 Pd2(dba)3

(5.1 mg, 0.0056 mmol), ±-BINAP (6.1 mg, 0.0092 mmol), KOrBu (99.2 mg, 0.8840

mmol), p-bromotoluene (81 mL, 0.66 mmol) and l,4,8,ll-tetraazabicyclo[6.6.2]

hexadecane (92) (51.9 mg, 0.2293 mmol) were suspended in toluene (5 mL) under N2 in a

dried 100 mL Schlenk flask equipped with a reflux condenser and N2 inlet tube. The

reaction mixture was heated at 100 °C for 14 days. An aliquot (-1 mL) was removed and

filtered through a Celite pad. The filtrate was extracted (5x20 mL) with 3M HC1. The

aqueous extracts were concentrated, taken up in (10 mL), adjusted to pH 14 with

KOH (pellets) and extracted with toluene (5x20 mL). The combined toluene extracts were

dried over Na2S04 and concentrated to afford an oil. 13C NMR analysis showed that the
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oil consisted of a complex mixture. The spectra of the major component of the mixture was 

consistent with monoarylated product 123. Separation of the components of this mixture 

by TLC was attempted, however, conditions were not found which resulted in purification 

of this mixture.

A ttem pted  p rep a ra tio n  of 4-11-diphenyl-1,4,8,11-

tetraazabicyclo[6.6.2]hexadecane (124). n-Butyllithium (0.7 mL of 2.25 M in

hexane, 1.6 mmol) was added dropwise by syringe to a solution of

1,4,8,1 l-tetraazabicyclo[6.6.2]hexadecane (92) (0.1628 g, 0.7129 mmol) in hexane (5

mL) in a 25 mL Schlenk flask equipped with a reflux condenser and N2 inlet tube. The

reaction slowly became turbid and a white powder precipitated. The solvent was

evaporated under N0 by application of a heat gun to the reaction flask. The white powder

was dissolved in THF (5 mL) and bromobenzene (0.7 mL, 6.65 mmol) was added in one

portion by syringe. The reaction mixture immediately turned red. The reaction mixture

was stirred at room temperature for 24 hours under Nr  1^0  (2 mL) was added dropwise

by syringe and the reaction mixture turned from red to light yellow as soon as the initial

drop of reached the reaction mixture. The reaction mixture was concentrated by rotary

evaporation and the residue was suspended in H20 . Dissolution was complete upon the

addition of 3M HC1 (5 mL). The pH of this solution was adjusted to 14 by the addition of

KOH (pellets) and the solution was then extracted (4x25 mL) with benzene. The extracts

were dried over Na^O^^ and concentrated to afford a yellow oil. NMR analysis showed
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that this oil was a complex mixture, but there was no evidence for the presence of starting 

material (92).

c z s -l,2 ,3 ,3 a ,4 ,5 ,5 a ,6 ,7 ,8 ,8 a ,1 2 b ,1 2 c ,1 2 d -T e tra d e c a h y d ro -  

3a,5a,8a,12a-tetraazabenzo[e]pyrene (125). Benzocyclam (34) (1.37 g, 5.07 

mmol) was dissolved in CH3CN (100 mL) in a 250 mL round-bottomed flask. Aqueous 

glyoxal (0.087 g, 40 wt % aq. solution, 6.0 mmol) was added in one portion. The reaction 

mixture was heated at reflux for 3 hours under Nr  The reaction mixture was then 

concentrated by rotary evaporation and taken up in CHCLj (50 mL). This solution was 

dried over Na2S04 and concentrated to afford a brown viscous oil. Sublimation (0.01 

Torr/ 150 °C) provided 1.22 g (89%) of 125 as a white crystalline solid: mp:131-132°C; 

lH NMR (Acetone-dg, 360.15 MHz, ref central line of C/fD2COCD3 set at 2.05, 25°C) 5

1.28-1.37 (dm, 2H, J = 13.4 Hz), 2.02-2.15 (m, 2H), 2.24 (td, 2H, J  = 8.9, 3.4 Hz), 

2.62 (br app t, 2H, /  = 11.4 Hz), 2.77-2.93 (m, 4H), 3.05 (br s, 2H), 3.77 (s, 2H),

4.02-4.08 (dm, 2H, / =  13.1 Hz), 6.56-6.61 (m, 2H, XX’ of AA’XX’), 6.70-6.75 (m, 

2H, AA’ of AA’XX’); 13C NMR (Acetone-d^, 90.56 MHz, ref central line o f Acetone-d^ 

set at 29.92, 25°C) 6 21.35, 48.23, 49.68 (very broad), 54.65 (br), 73.65 (br), 113.49, 

119.47, 136.28; IR (KBr) 3061, 2937, 2862, 2807, 2766, 1587, 1488, 1285 cm '1; MS 

(El) mfz 270.2 (M+); Anal. Calcd for C ^ H ^ :  C, 71.08; H, 8.20; N, 20.72; Found: C, 

70.76; H, 8.06; N, 20.42.
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Reaction of c is - l,2 ,3 ,3 a ,4 ,5 ,5 a ,6 ,7 ,8 ,8 a ,1 2 b ,1 2 c ,1 2 d -T e tra d e c a h y d ro - 

3a,5a,8a,12a-tetraazabenzo[e]pyrene with M ethyl Iodide. 125 (0.15 g, 0.555 

mmol) was taken up in CH3CN (10 mL) in a 50 mL round-bottomed flask. Mel (0.70 mL,

11.5 mmol) was added by syringe. The flask was capped with a teflon stopcock, sealed 

with parafilm and the reaction mixture was stirred for 16 d at room temperature in the dark. 

A white precipitate had formed after 16 d. The solvent was removed by pipette to leave 

approximately 25-50 mg of solid. *H NMR (D20) of this material was consistent with a 

dimethylated product but there were impurities present Recrystallization from CHjCN 

afforded purified material. *H NMR data supports the formation of 126a. The I3C NMR 

did not have high enough signal to noise in order to support or disprove this hypothesis:

!H NMR (D20 , 360.15 MHz, secondary ref CH3CN set at 2.05) 5 1.89-1.98 (dm, 1H, J 

15.8 Hz, NCH2Ctfe?HCH2N), 2.14-2.23 (dm, 1H, J  = 15.7 Hz, NCH,CHtfe?CH2N), 

2.41-2.65 (m, 2H, N C I^ C /^ a x C ^ N ), 2.94 (td, 1H, J  = 12.2, 3.6 Hz), 3.32 (s, 3H,

CH3), 3.44-3.49 (m, 1H), 3.64 (s, 3H, CHJ,  3.64-3.73 (m, 1H), 3.78-4.06 (m, 5H), 

4.16-4.25 (tm, 1H), 4.26-4.32 (dm, 1H), 4.39-4.45 (dm, 1H), 4.74-5.02 (m, 2H), 5.22 

(s (br), 1H, NCfTN), 5.85 (d (br), 1H, NCHN, / =  2.1 Hz), 6.82-7.23 (m, 4H, ABCD).

Reaction of c if-l,2 ,3 ,3a ,4 ,5 ,5a»6 ,7 ,8 ,8a ,12b ,12c,12d -T etrad ecah yd ro-

3a,5a,8a,12a-tetraazabenzo[e]pyrene with Benzyl Brom ide. 125 (0.1080 g,

0.4009 mmol) was dissolved in toluene (10 mL) in a 50 mL round-bottomed flask. Benzyl

bromide (71 pL, 0.60 mmol) was added via syringe. The reaction mixture was stirred at rt
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under N2 in the dark for 14 d. The reaction mixture was then concentrated by rotary 

evaporation to give 0.1307 g (74%) of crude 129 as a tan powder. NMR analysis o f this 

powder was consistent with 129: lH NMR (CDC13, 360.15 MHz, TMS) 8 1.40-1.44 

(dm, 1H, NCH2CHtfe(CH2N, J  = 12.5 Hz), 1.92-2.23 (m, 3H), 2.86-2.95 (m, 2H), 

3.13-3.50 (m, 5H), 3.69-3.80 (m, 2H), 4.03-4.06 (m, 1H), 4.24 (td, 2H, J = 12.2, 3.3 

Hz), 4.62 (td, 2H, J  = 13.1, 4.0 Hz), 5.25 (s (br), 1H, NCHN), 5.59 (s (br), 1H, 

NCHN), 5.68 (B of AB, 1H, J  = 12.5 Hz), 5.99 (A of AB, 1H, J  = 12.5 Hz), 6.71-6.91 

(m, 4H), 7.24-7.46 (m, 3H), 7.73 (d, 2H, /  = 7.0 Hz); I3C NMR (CDC13, 90.56 MHz, 

ref to central line of CDC13 set at 77.23) 5 20.35, 20.58, 46.82,47.16, 47.65, 47.81, 

53.96, 58.39, 60.06, 67.86, 114.56, 115.41, 120.26, 121.80, 126.94, 129.24, 130.57, 

133.45, 133.66, 133.96.

Complex o f 4 ,ll-B is* (N ,N ’> d ie thy lacetam ido)> l,4 ,8 ,ll-

tetraazabicyclo[6.6.2]hexadecane (95) w ith L iC 104. 4,11-B is-

(N,N’-diethylacetamido)-l,4,8,l l-tetraazabicyclo[6.6.2]hexadecane (95) (46.2 mg,

0.1067 mmol) was dissolved in CD3CN (-1 mL). LiC104 (11.6 mg, 0.1090 mmol) was

added and NMR spectra were acquired. lH NMR (CD3CN, 360.15 MHz, central line of

C D ^C N  set at 1.94) 8 1.01 (t, 6H, C&2CHy  J  = 7.1 Hz), 1.51 (t, 6H, CR^CH^ J  =

7.1 Hz), 1.41 (dp, 2H, N C ^ C H H ^ C ^ N , J=  16.4, 3.1 Hz), 1.97-2.25 (m, 8H), 2.32

(s (br), HzO), 2.56-2.86 (m, 14H), 3.12-3.44 (m, 16H); I3C NMR (CD3CN, 90.56

MHz, central line of CD2HCN set at 1.39) 8 13.54, 14.69, 26.15, 41.73, 42.44, 53.10,
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59.18, 59.75, 61.08, 62.36, 172.2, 174.6, IR (KBr) 1631 cm' 1 (C=0).

C om plex o f 4 ,ll-B is -(N ,N ,-d ie th y la c e ta m id o )-l,4 ,8 ,ll-  

te traazabicyclo[6.6.2]hexadecane (95) w ith  NaC104. 4,11-Bis- 

(N,N’-diethylacetamido)-1,4,8,11 -tetraazabicyclo[6.6.2]hexadecane (95) (26.4 mg, 

0.0591 mmol) was dissolved in CD3CN (-0 .7  mL). NaC104 (20.3 mg, 0.168 mmol) 

was added and NMR spectra were acquired. 1H NMR (CD3CN, 360.15 MHz, central line 

of CD^HCN set at 1.94) 5; 1.07 (t, 6H, CH2CH3,J  = 7.1 Hz), 1.13 (t, 6H, CH2CH3,J  =

7.1 Hz), 1.45 (dm, 2HJ=  16.9 Hz), 1.99-2.07 (m, 2H), 2.08-2.23 (qm, 2H, 16.1 Hz), 

2.23-2.35 (m, 2H), 2.33 (s, H ,0 ), 2.38 (dm, 2 H , /  = 12.4 Hz), 2.48 (dm, 2H, J  = 12.9 

Hz), 2.64-2.82 (m, 3H), 2.86-2.97 (m, 2H), 3.09 (td, 2H, 7 = 14.9, 2.8 Hz), 3.12 (d, 

2H, NCHtfaCO, 7 = 15.9 Hz, B of AB), 3.22-3.43 (m, 8H), 3.42 (d, 2H, NCHACO, 7 

= 15.9 Hz, A of AB)I3C NMR (CD3CN, 90.56 MHz, central line of C D ^C N  set at 1.39) 

8 13.29, 14.67, 25.69, 41.72, 42.76, 50.91, 51.33, 58.09, 59.31, 59.89, 60.26, 172.08.

4 ,l l-B is - (2 -c a rb o e th o x y m e th y l) - l ,4 ,8 ,l l- te tra a z a b ic y c lo [6 .6 .2 ] -  

hexadecane (137) complex with L iC 104. 4 ,li-B is-(2-

carboethoxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (137) (14.5 mg, 0.0364

mmol) and LiC104 (3.9 mg, 0.0364 mmol) were dissolved in CD3CN (~1 mL) and NMR

spectra were acquired. !H NMR (CD3CN, 360.15 MHz, central line of C D ^ C N  set at

1.94) 8 1.21 (t, 6H, CH2CH3,7 = 7 . 1  Hz), 1.44 (dp, NCH2CHH^CH2N, 7 = 16.6, 3.3
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Hz), 2.02-2.33 (m, 6H), 2.49-2.69 (m, 10H), 2.80-2.98 (m, 6H), 3.11-3.33 (m 2H), 

3.23 (d, NCHHBCO, 2H, J  = 18.0 Hz, B of AB), 3.52 (d, NCHffACO, 2H, J  = 18.0 Hz, 

A of AB), 4.15 (q, 4H, C f^C R ,, J  = 7.1 Hz); I3C NMR (CD3CN, 90.56 MHz, central 

line of C D ^C N  set at 1.39) 5 14.47, 25.53, 52.89, 52.99, 59.23, 59.35, 60.39, 62.25,

63.05, 176.58.

4 ,ll-B is -(2 -c a rb o e th o x y m e th y l)- l,4 ,8 ,ll- te tra a z a b ic y c lo [6 .6 .2 ]-  

hexadecane (137) complex w ith NaC104. 4,ll-B is-(2-

carboethoxymethyl)-l,4,8,l l-tetraazabicyclo[6.6.2]hexadecane (137) (18.9 mg, 0.0484 

mmol) and NaC104 (5.8 mg, 0.0484 mmol) were dissolved in CD3CN (-1 mL) and NMR 

spectra were acquired. *H NMR (CD3CN, 360.15 MHz, central line of C D ^C N  set at

1.94) 8 1.27 (t, 6H, CH^CHy J=  7.1 Hz), 1.49 (dm, 7 =  17.1 Hz, NCHjCHff CH2N),

2.03-2.23 (m, 6H), 2.18 (s, I^O ), 2.33-2.42 (m, 2H), 2.47-2.56 (m, 4H), 2.67-2.91 

(m, 8H), 3.12 (td, 2H, J  = 16.9, 2.8 Hz), 3.15 (d, NCHtfgCO, 2H, /  = 17.1 Hz, B of 

AB), 3.40 (d, NCHHa CO, 2H, J  = 17.1 Hz, A of AB), 4.14-4.29 (m, 4H, CH2CH3) ; 

13C NMR (CD3CN, 90.56 MHz, central line of C D ^C N  set at 1.39) 5 14.53, 25.72,

51.05, 51.23, 58.28, 59.43, 59.53, 61.31, 62.50, 174.35.

P ro to n a tio n  of l,4 ,8 ,ll-te traazab icycIo[6 .6 .2 ]hexadecane (92) with TFA.

1,4,8,1 l-tetraazabicyclo[6.6.2]hexadecane (92) (28.4 mg, 0.125 mmol) was taken up in

CDjCN (-1 mL). TFA (9.6 pL, 0.125 mmol) was added via syringe and NMR spectra
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were acquired. lH NMR (CD3CN, 360.15 MHz, ref central line of C D ^ C N  set at 1.94) 

5 1.48-1.57 (m, 2H, NCH2CJ?HCH2N), 1.79-1.83 (m, 2H, NCH2CHtfCH2N), 

2.55-2.69 (m, 4H), 2.69-3.04 (m, 12H), 3.22 (m, 2H), 7.44 (br s, 3H) I3C (CD3CN, 

90.56 MHz, ref central line o f CD3CN set at 1.39) 5 24.59, 45.26,48.00, 53.04, 53.91, 

57.80.

An equivalent of TFA (9.6 pL, 0.125 mmol) was added and NMR spectra were acquired. 

There were now two NH resonances which correspond to “inside” and “outside” protons 

which are in slow exchange. *H NMR (CD3CN, 360.15 MHz, ref central line of 

C D ^ C N  set at 1.94) 5 1.61 (dp, 2H, CHjCHff CHjN, 7 = 10.2, 3.3 Hz), 2.18 (qt, 

2H, a ^ C H tf ^ C H ^ ,  J  = 12.5, 4.4 Hz), 2.38-2.55 (m, 4H), 2.78-2.93 (m, 4H),

3.08-3.52 (m, 10H), 3.52 (m, 2H), 9.27 (br s, 2H), 10.19 (br s, 2H)

100 pL of this sample were removed by syringe. This aliquot was diluted with CD3CN (1 

mL) and NMR spectra were acquired. The spectra did not change as a function of 

concentration.

D20  (3 (iL) was added via syringe. NMR spectra were immediately acquired but the 

exchange process had already completed. Therefore, upon addition of a species which can 

facilitate exchange, “inside” and “outside” protons are rapidly interconverted.

1.4.8.11-Tetraazabicyclo[6.6.2]hexadecane (92) complex with LiC104.

1.4.8.11-Tetraazabicyclo[6.6.2]hexadecane (92) (23.3 mg, 0.103 mmol) and LiC104

(10.8 mg, 0.102 mmol) were dissolved in CD3CN (-1 mL) and NMR spectra were
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1 ̂acquired. The C spectrum showed two separate sets of resonances which were 

consistent with free 92 and 92*Li‘\  Additional LiC104 (4.3 mg, total LiC104 15.1 mg, 

0.142 mmol, 1.38 eq.) was added and spectra were acquired. A single set of 13C 

resonances were observed for this sample that were consistent with 92*Li+. lH NMR 

(CD3CN, 360.15 MHz, central line of CD^f/CN set at 1.94) 5 1.34 (dm, 2H, 

NCH2CHtfe9CH2N, J  = 16.1 Hz), 1.86 (br s, 2H, NH), 1.97-2.11 (m, 2H, 

NCH2CHffaxCH2N), 2.20-2.30 (m, 2H), 2.39-2.96 (m, 18H); I3C NMR (90.56 MHz, 

CD3CN, central line of CD2HCN set at 1.39) 5 24.31, 43.52,48.35, 52.38, 59.75, 

60.76.

A ttem pted  Com plexation of l,4 ,8 ,ll-T etraazab icyclo [6 .6 .2 ]hexadecane 

(92) with NaC104. 1,4,8,ll-Tetraazabicyclo[6.62]hexadecane (92) (20.1 mg, 0.0888 

mmol) and NaC104 (10.9 mg, 0.0889 mmol) were dissolved in CD3CN (-1 mL). The *H 

spectrum was consistent with free 92. However, the chemical shifts for the 13C 

resonances were slightly different than the chemical shifts for free 92. Furthermore, the 

lines were slightly broadened. These data suggest that there is rapid exchange of Na+ but 

92 is the more abundant species in solution. 13C NMR (CD3CN, 90.56 MHz, ref central 

line of CD3CN set at 1.39) 8 25.34, 46.72, 51.21, 56.55, 59.65.

l-M ethyI-l,4 ,8 ,ll-te traazab icycIo [6 .6 .2 ]hexadecane  (114) com plex with

L iC I04. l-Methyl-l,4,8,ll-tetraazabicyclo[6.6.2]hexadecane (114) (41.2 mg, 0.1714
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mmol) and LiC104 (18.4 mg, 1.95 mmol) were dissolved in CD3CN (870 pL) and NMR 

spectra were acquired. This sample had a 13C NMR spectrum having thirteen resonances 

consistent with 114*Li+. *H NMR (CD3CN, 360.15 MHz, ref central line of C D ^C N  

set at 1.94) 5 1.34 (dm, 1H, NCI^CHtfeqCH^N, J  = 16.4 Hz), 1.49 (dp, 1H, 

NCH2CHfTe<?CH2N, J  = 16.4, 3.02 Hz), 1.78 (br dd, 1H, J = 13.9, 3.9 Hz), 1.9 (br s, 

1H, NH), 2.01-2.40 (m, 8H), 2.52-3.16 (m, 16H); I3C NMR (CD3CN, 90.56 MHz, ref 

to CD3CN set at 1.39) 8 23.84, 24.68, 43.40, 45.59, 47.95, 51.81, 52.16, 52.54, 58.86, 

59.19,59.63,61.52. This sample contained water which was observed in the !H NMR 

spectrum at 2.94 ppm.

l-M ethy I-l,4 ,8 ,ll-te traazab icyc lo [6 .6 .2 ]hexadecane  (114) com plex w ith 

NaC104. 1-Methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (114) (51.5 mg, 0.2142 

mmol) and NaC104 (26.1 mg, 0.2132 mmol) were dissolved in CD3CN (1390 jiL) and 

NMR spectra were acquired. This sample had a 13C NMR spectrum having twelve 

resonances, six of which were dynamically broadened. The dynamic broadening results 

from the exchange of Na+ between free and complexed 114 at a rate which is intermediate 

on the NMR time scale. lH NMR (CD3CN, 360.15 MHz, ref central line of CD^f/CN set 

at 1.94) 8 3.41 (m, 2H), 1.92-2.04 (m, 2H), 2.16-2.28 (m, 4H), 2.36-2.79 (m, 6H),

2.93 (m, 4H); 13C NMR (CD3CN, 90.56 MHz, ref to CD3CN set at 1.39) 8 25.42,

25.90, 43.87 (br), 44.91, 49.62 (br), 51.10, 52.04 (br), 53.07 (br), 57.99, 58.33 (br), 

59.14, 59.37.
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General Method for Competition Experiments 

Sample Preparation

All samples were dispensed into 1-dram vials in a N, dry bag. CD3CN was added 

to one of the vials and transferred repeatedly between all three vials to ensure that mixing 

was complete. The resulting CD3CN solution was transferred to a Wilmad #528-PP 5 mm 

NMR tube. The volume of the sample was estimated by visual comparison to a known 

volume of acetone placed into an identical NMR tube by syringe (Hamilton 500 pJL). The 

sample was capped and parfilmed and spectra were acquired.

NMR Data Acquisition

NMR FIDs were Fourier transformed ten separate times, phase and baseline 

corrected, and referenced to the central line of the CD^HCN resonance at 1.94 ppm. The 

same integral file was used for each transformed spectrum. A mean (x) Krel was calculated 

and a 95%

confidence interval was determined using Equations 4.1 and 4.2. The free energy of 

competition (AAG°2gg K) was then calculated.

K ^ )  was made based on the height or integrated area of the observed resonances.

tS

Equation 4.1 Equation 4.2

For 13C NMR spectra, an estimation for competitive equilibrium constants (Krel or
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Alternatively, in the cases where resonances could be integrated, FEDs were Fourier 

transformed ten separate times, phase and baseline corrected, and referenced to the central 

line of the CD3CN resonance at 1.94 ppm. An average competitive equilibrium constant 

(K^ or (x) was then calculated using the integration data from the ten FID’s and

a 95% confidence interval was determined using Equations 4.1 and 4.2. The free energy 

of competition (AAG°29g K) was then calculated.

Competition of Li'1' and Na* for 95. Method of detection: 13C{ *11} NMR. Krel was 

estimated by peak height (95«Li+:53.10 ppm; 95*Na+: 51.33 ppm). 95 (21.4 mg,

0.0479 mmol), LiC104 (5.2 mg, 0.0480 mmol), NaC104 (5.6 mg, 0.0457 mmol), CD3CN 

(0.78 mL). Signal to noise: 302:1 (53.10 ppm). Chemical shifts are given in Table 3.1.

Competition of 95 and 83 for Li*. Method of detection: 13C{ *H} NMR. KreI was 

estimated by peak height (95*Li+: 26.15 ppm; 83»L1+: 28.73 ppm). 95 (85.9 mg, 0.1898 

mmol), 83 (48.3 mg, 0.1899 mmol), LiC104 (20.4 mg, 0.1899 mmol), CD3CN (1.63 

mL). Signal to noise: 63:1 (26.15 ppm). Chemical shifts are given in Table 3.2.

Competition of Li* and Na+ for 137. Method of detection: *H NMR. 137 (13.2 mg, 

0.0331 mmol), LiC104 (3.5 mg, 0.0332 mmol), NaC104 (4.1 mg, 0.0331 mmol), CD3CN 

(0.79 mL). The observed resonances were: for 137«Li+: 5 3.53 (d, 2H, A of AB); for 

137*Na+: 8 3.39 (d, 2H, A of AB).
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Competition of 137 and 83 for Li+. Method of detection: *H NMR. 137 (19.3 mg, 

0.0484 mmol), 83 (12.3 mg, 0.0484 mmol), LiC104 (5.0 mg, 0.0484 mmol), CD3CN 

(0.98 mL). The observed resonances were: for 137*LfK. 5 3.53 (d, 2H, A of AB); for 

83-LI+: 5 1.75 (dd, 2H, NCH,CHtfCH2N)

Competition of 92 and 83 for Li*. Method of detection: I3C NMR. Krel was estimated by 

integration (83»Li+: 24.24 ppm (NCH,CH2CH2N); 92#Li+: 24.33 ppm 

(NCH2CH2CH2N); 83: 28.70 ppm (N C f^C f^C I^N ); 92: 25.24 ppm 

(NCH2CH2CH2N)). 92 (11.5 mg, 0.0507 mmol), 83 (12.9 mg, 0.0507 mmol), LiC104 

(5.5 mg, 0.0507 mmol), CD3CN (0.85 mL). Chemical shifts are given in Table 3.4. 95 

(22.0 mg, 0.0486 mmol) was later added to the sample of 92 and 88. All free 95 was 

complexed with Li+. Free 88, 88«Li+ and free 92 were also observed.

Competition of 92 and 88 for Li'1'. Method of detection: l3C NMR. KreJ was estimated by 

integration (88*Li+: 24.24 ppm (NCH2CH2CH0N); 92»Li+: 24.33 ppm 

(NCH2CH2CH2N); 88: 28.70 ppm (N C I^C I^C I^N ); 92: 25.24 ppm 

(NCH2CH2CH2N)). 92 (22.7 mg, 0.100 mmol), 88 (25.6 mg, 0.100 mmol), LiC104 

(10.6 mg, 0.100 mmol), CD3CN (1.18 mL).

A second sample of 92 and 88 was prepared. 92 (9.5 mg, 0.0420 mmol), 88 (10.8 mg,

0.420 mmol), LiC104 (4.5 mg, 0.420 mmol), CD3CN (1.18 mL). Chemical shifts are
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given in Table 3.6. 95 (19.0 mg, 0.0421 mmol) was later added to the sample of 92 and 

88. All free 95 was complexed with Li+ (95*Li+: 26.15 ppm) and only free 92 and free 

88 was observed.

Competition of Li* and Na* for 114. Method of detection: 13C NMR. K rel was estim ated 

by peak height (114*Li+: 23.82 pm (NCH2CH2CH2N); 114«Na+: 25.45 ppm 

(NCH2CH2CH2N)). 114 (26.0 mg, 0.1081 mmol), LiC104 (11.5 mg, 0.1081 mmol), 

NaC104 (13.2 mg, 0.1078 mmol), CD3CN (0.81 mL). Chemical shifts are given in Table 

3.7.

Competition of 114 and 83 for Li'1'. Method of detection: 13C NMR. Krel was estimated 

by peak height (114*Li+: 23.82 pm (NCH2CH2CH2N); 83-Li+: 24.24 ppm 

(NCH2CH2CH2N)). 114 (31.7 mg, 0.1543 mmol), 83 (40.3 mg, 0.1584 mmol), 

LiClC>4(17.2 mg, 0.1617 mmol), CD3CN (0.96 mL). Too much LiC104 was added. 

83«Li+ was the most abundant species in solution but 114«Li+ was also present. 

However, no free 83 was detected verifying that a 1:1:1 molar ratio had not been prepared.

Competition of 137 and 95 for Li'1'. Method of detection: lH NMR. 137 (14.6 mg,

0.0366 mmol), 95 (16.5 mg, 0.0366 mmol), LiC104(3.9 mg, 0.0367 mmol), CD3CN

(0.89 mL). The LiC104 was added to 137 in CD3CN. 95 was then added. The observed

resonances were: for 137-Li+: 8 4.15 (q, 4H, O C H ^H ^; for 137: 8 4.07 (q, 4H,
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OCE^CH^; for 95«Li+: 5 3.88 (td, 2H). Water contaminated this competition sample.

l,8 -B !sace tam id o > l,4 ,8 ,ll-te traazab icy c lo [6 .6 .2 ]h ex ad ecan e  Complex w ith 

Cu(C104)2. 1,8-Bisacetamido-1,4,8,1 l-tetraazabicyclo[6.6.2]hexadecane (39.9 mg,

0.1172 mmol) was dissolved in EtOH (5 mL) in a 25 mL round-bottomed flask.

Cu(C104)2 (46.2 mg, 0.1249 mmol) was added to this solution and the resulting mixture 

was heated at reflux for 4 hours under Nr  Upon cooling to room temperature, two 

different materials precipitated. One was light blue in color and fluffy, the other was 

granular and dark blue in color. These two materials could be attributed to a complex (dark 

precipitate) and a polymer (light blue precipitate). EtOH (5 mL) was added and the heating 

was continued for 2.5 hours. The reaction mixture was cooled to room temperature and the 

supernatant was removed by pipette and filtered through a glass wool plug in a pipette.

The filtrate was placed in a closed chamber designed to allow slow diffusion of E^O into 

the solution. After 24 hours, a granular solid had precipitated. This solid was dissolved in 

95% EtOH (10 mL). Approximately 3 mL of this solution was diluted with 95% EtOH (9 

mL) and this solution was put in the E^O diffusion chamber. After 5 days, crystals had 

formed. These crystals were not suitable for x-ray crystallography. IR (KBr) 1665 cm-1 

(C=0); UV-Vis (MeOH, 2.2 x 10'3 M H  = 630.01 nm, e = 24 M '1 cm '1; Anal. Calcd. For 

Ci6H32N6CuC12° io : c 31-88; H, 5.35; N, 13.94; Found; C, 13.65; H, 5.19; N, 13.71. 

Other crystallization attempts with EtOH, 95% EtOH and CHjCN with E^O diffusion

techniques were unsuccessful in affording x-ray quality crystals.
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V. Variable Temperature NMR Experiments 

Data Acquisition

All DNMR experiments were run on the same sample. Cis-125 (29.1 mg) was dissolved 

in Acetone-dj (940 jiL). The NMR tube was capped and sealed with parafilm. I3CNM R 

spectra were acquired using broad-band decoupling with the following spectrometer 

settings: Spectrum Reference (SR): '3854.17; Sweep Width (SW): 175 ppm (185-10 ppm); 

Total Data Points (TD): 32; Decoupler Power (PD): 10H. These settings resulted in a Hz/pt 

ratio of 0.477. The SR was determined by referencing the central line of acetone-d^ at 

29.29 ppm for the probe temperature spectrum. This provided consistency in referencing 

the DNMR spectra. The temperature was measured by a chemical shift thermometer. The 

thermometer was a 1:1 mixture of acetone-^ and CC14 as reported by Led and Petersen.151 

The temperature was calculated by solving Equation 4.1 where AS is the difference tin  

Hertz) between the chemical shift of the carbonyl carbon of acetone-^ and CC14.

T(°C) = 5529.1 - 50.73A5 (E quation 4 3 )

The temperature was recorded before (TA) and after (TB) the acquisition of each spectrum 

after allowing the temperature of the chemical shift thermometer to equilibrate for 

approximately 15 minutes. The two recorded temperatures are listed before the observed 

chemical shifts for each experiment.

Ta(°Q  = -73.15 (AS = 110.4327 Hz); TB(°C) = -71.19 (AS = 110.3940 Hz): 8 20.56, 

21.82, 44.10, 47.89, 48.34, 52.28, 54.89, 56.53, 70.81, 75.74, 113.7, 114.1, 119.7,

119.8, 135.0, 137.6.
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Ta (°Q  = '50.00 (A8 = 109.9765 Hz); TB(°Q  = '49.63 (AS = 109.9691 Hz): 8 20.58, 

21.87, 44.16, 47.94, 48.36, 52.36, 54.94, 56.58, 70.89, 75.82, 113.6, 114.0, 119.7(b),

134.9, 137.6.

Ta(°C) = '44.05 (AS = 109.8592 Hz); TB(°C) = '42.6 (AS = 109.8299 Hz): 8 20.57, 

21.86, 44.18, 47.96, 48.32, 52.38, 54.90, 56.58, 70.89, 75.78, 113.6, 113.9, 119.6,

134.9, 137.6.

Ta(°C) = not obtained; TB(°Q  = '34.03 (AS = 109.6615 Hz): 8 20.59,21.85, 44.19,

48.06, 52.28, 54.92, 56.68, 70.91, 75.83, 113.7, 119.6, 135.0, 137.6.

Ta (°Q  = '15.1 (AS = 109.2879 Hz); TB(°C) = '15.1 (AS = 109.2879 Hz): 8 21.20,48.19, 

57(b), 113.6, 119.6.

Ta(°C) = '10.6 (AS = 109.2000 Hz); TB(°C) = '10.6 (AS = 109.2000 Hz): 5 21.26(b), 

48.18(b), 54.35(b), 113.6, 119.6.

Ta(°C) = +0.9 (AS = 108.9729 Hz); TB(°C) = +0.5 (AS = 108.9802 Hz): 8 21.29,48.19, 

54.52(b). 73.46(b), 113.6, 119.5, 136.3(b).

Ta(°C) = +15.0 (AS = 108.6945 Hz); TB(°C) = +15.7 (AS = 108.6798 Hz): 8 21.32,

48.23, 54.55(b), 73.66(b), 113.5, 119.5, 136.3.

t a (°c ) = +25.43 (AS = 108.4894): S 21.35, 48.23, 49.68(b), 54.65, 73.65, 113.5,

119.5, 136.3.

NMR Simulations and Data Manipulation

The DNMR spectra were used in a full line shape analysis o f this dynamic process. The
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region between 19-23 ppm was used to perform the analysis. Simulated NMR spectra 

were calculated using the gNMR program.130 The chemical shift difference between the 

nuclei in the absence of exchange was estimated using the -72 °C spectrum. The rate of 

exchange between the nuclei was assumed to be at or below the slow exchange limit at this 

temperature. The natural line width (Av[/2) was estimated to be 2.7 Hz for the calculation. 

This value was obtained from the average line widths at half height of the Acetone-d^ peaks 

at various temperatures. The simulated spectra were manually fitted to each experimental 

spectrum. This operation was performed using the chemical shift difference of the two 

nuclei (A8) in the absence of exchange and varying the rate constant until the calculated 

spectrum visually matched the experimental spectrum. In some cases it was also necessary

Plot o f In (k/T) vs (1/T)
4

e

-4 __
0.003 0.005( 1 / T )

■ Eyring Plot 1
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to adjust AS. The data used in these simulations and the rates which were calculated are 

given in Table 4.1.

Using the data for the rate obtained from the calculated spectra, an Eyring plot [In (k/T)

versus (1/T)] was generated which allowed for the calculation of AH* and AS*.
Table 4.1

Avg. Temp
CO ta t b 8a 8b AS

Rate (k) 
sec-1

-72.2 -73.2 -71.2 21.81 20.55 114.1 0

-49.8 -50.0 -49.6 21.86 20.58 115.9 12

-43.4 -44.1 -42.6 21.89 20.58 115.9 42

-34.0 -34.0 21.91 20.61 119.5 100

-15.1 -15.1 -15.1 21.91 20.65 114.1 675

-10.6 -10.6 -10.6 21.91 20.65 114.1 950

0.70 0.90 0.50 21.91 20.65 114.1 2000

15.4 15.0 15.7 21.91 20.65 114.1 7000

25.4 25.4 21.96 20.70 114.1 §
Natural line width (AV1/2): 2.7 Hz
§ Fast exchange limit spectrum
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S ubm ission  to  O rgan ic  S yn theses

c
1,4 ,7 ,10-TETRAAZACYCLODODECANE

S NH2
/— v y - i  i— a

NH NH2 h2n s

NH NH2 EtOH
(77%)

B.

1) 6 DIBALH, PhCH3 R \ H
reflux 16 h 2TN N '

2) NaOH, H20

(88%) H  ̂ f H

Submitted by David P. Reed and Gary R. Weisman.i 

Checked b y _________________________________.

1. Procedure

Caution: Hydrogen sulfide (HgS) is generated in Part A of this procedure. The 

reaction and associated operations must be earned out with provision for H^S 

trapping in an efficient hood.

A. 2f3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2’,1 ’-c]pyrazine (1). A 500-
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mL, three-necked, round-bottomed flask is equipped with a  125 mL pressure- 
equalizing addition funnel, a  Teflon-coated magnetic stirring bar, a fritted gas 
dispersion tube (initially closed) connected to a nitrogen manifold , and a reflux 
condenser fitted with a  nitrogen inlet tube connected to the nitrogen manifold. 

The nitrogen manifold exit line is routed through two fritted gas-washing bottles 
charged with 30% aqueous sodium hydroxide (NaOH) in order to scrub H2S

evolved in the reaction (Note 1). The reaction flask is charged with 10.00 g 
(83.20 mmol) of dithiooxamide (Note 2) and 50 mL of absolute ethanol. A 
solution of 12.16 g (83.15 mmol) of triethylenetetramine (Note 3) in 50 mL of 
absolute ethanol is introduced to the reaction flask in one portion via the 
addition funnel. The magnetically-stirred reaction mixture is heated to reflux for 
4 hours under nitrogen with evolution of H2S and NH3 (Note 4). The mixture is

then cooled to room temperature and residual H2S and NH3 are purged from 

the reaction mixture for 3 hours by entrainment with nitrogen, which is bubbled 

through the submerged fritted gas dispersion tube. The reflux condenser is then 
replaced with a  short-path distillation head, solvent is removed by vacuum 
distillation (water aspirator), and the residue is taken up in 150 mL of chloroform 
(CHCI3). Insoluble material is removed by gravity filtration through a  glass wool

plug inserted in a short-stem glass funnel. CHCI3 is then removed by rotary 

evaporation to give 14.18 g of crude product. This solid is taken up in 50 mL of 
boiling toluene, insoluble impurities are removed by filtration through a glass 
wool plug, and the flask and funnel are rinsed with a second 50 mL aliquot of 
boiling toluene (Note 5). The combined filtrates are concentrated to afford 13.66 
g of light yellow crystalline product. Sublimation of this material (0.03 mm,
110°C) affords 10.58 g (77%) of pure (>99%) white product (Note 6,7).

B. 1,4,7,10-Tetraazacyclododecane (2). A 1-L, three-necked, round- 
bottomed flask charged with 10.58 g (64.43 mmol) of 2,3,5,6,8,9- 
hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine is equipped with a  reflux condenser
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fitted with nitrogen inlet tube, 500 mL pressure-equalizing addition funnel, and 
Teflon-coated magnetic stirring bar. The system is flushed with N2 prior to

cannulation of 250 mL (375 mmol) of 1.5 M diisobutylaluminum hydride 
(DIBALH) in toluene (Note 8) to the addition funnel. The reaction flask is cooled 
in an ice/H20  bath and the DIBALH solution is added to the reaction flask with 

stirring over 5 minutes. The reaction mixture is then heated at reflux under 
nitrogen for 16 h (Note 9). The reaction flask is again cooled in an ice/H20  bath 

prior to the addition of 200 mL of toluene. Excess DIBALH is quenched by the 
cautious dropwise addition of 20 mL of 3 M aqueous NaOH solution. When gas 
evolution has ceased, 350 mL of 3 M aqueous NaOH is added in one portion 
and the two-phase mixture is transferred to a separatory funnel (Note 10,11). 
The phases are separated, chipped ice is added to the aqueous phase, and it is 
further extracted with ice-cold CHCI3 (6 x 150 mL). The combined organic 

extracts are dried over Na2S 0 4, filtered, and the solvents are removed by rotary

evaporation to afford 10.22 g of white crystalline solid. Sublimation (0.4 mm, 
90°C) affords 9.77 g (88%) of product 2 (>98% purity by NMR; Note 12).

2. Notes

1. The nitrogen manifold (Tygon tubing is suitable) is connected as 
follows, in this order (a) nitrogen source, (b) T-connector to fritted gas 
dispersion tube with shutoff valve or clamp, (c) shutoff valve or clamp (enables 
nitrogen to be routed through fritted gas dispersion tube when closed and 
dispersion tube is opened), (d) T-connector to nitrogen inlet tube on reflux 
condenser, (e) safety flask, (f) gas washing bottle #1, (g) gas washing bottle #2, 
and (h) mineral oil exit bubbler (See Figure 1).

2. Dithiooxamide was purchased from Fluka Chemical Corp.
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3. Triethylenetetramine was purchased from Aldrich Chemical Co. as a 
hydrate. Anhydrous triethylenetetramine must be used in this procedure. The 
anhydrous tetraamine was obtained by azeotropic distillation of a toluene 
solution of the commercial hydrate. Analysis by 1H NMR verified the removal of 

water, and no further purification was necessary.

4. Dithiooxamide dissolved to give a homogeneous orange solution 
soon after the initiation of heating.

5. The hot filtration must be carried out quickly to avoid crystallization of 
product. This step can be omitted, but a second sublimation may then be 
necessary to obtain product of sufficient purity for reduction to cyclen.

6. 1 has the following physical and spectroscopic properties: mp 149- 
151°C (lit2 mp 150-151 °C); 1H NMR (CDCI3, 360 MHz) 8 3.26 (s, 4H), 3.35 

(apparent t (XX* of AA’XX’), 4H, Jappar= 9 6Hz), 3.86 (apparent t (AA’ of AA’XX’), 

4H, Jappar= 9.6Hz); 13C NMR (CDCI3, 90.56 MHz) 8 45.3, 52.1, 53.9, 155.4; IR 

(KBr) 1629 cm*1 (C=N); MS (El) 164.15 (M)+; Anal. Calcd for C8H12N4: C, 58.52; 

H, 7.37; N, 34.12. Found: C, 58.38; H, 7.55; N, 34.22.

7. Bisamidine 1 is hydrolyzed in water (in minutes to hours depending 
upon purity). While it is not necessary to handle 1 in a dry atmosphere, it is 
prudent to store it in a  desiccator.

8. DIBALH in toluene (1.5 M) was purchased from Aldrich Chemical Co.

9. A small scale (0.4 g of 1) reaction with 5 equivalents of DIBALH at 
reflux for 8 h afforded product in 94% crude yield. However, these conditions 

gave incomplete reduction and resulted in only a  60% yield of product when the
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reaction was scaled up to 10 g of 1. Therefore, the number of equivalents of 
DIBALH was increased to 6 and the reaction was run for 16 h.

10. A small amount of solid remains undissolved, but this tends to be 
distributed in the aqueous phase, making filtration at this stage unnecessary.

11. Originally,2 a NaF/H20  workup was used. Soxhlet extraction of the

solids generated in the work-up was required to obtain good yields of crude 2. 
The present aqueous KOH work-up simplifies the procedure and gives 
comparable or better yields of crude 2.

12. 2 has the following physical and spectroscopic properties: mp 107- 

109°C (see reference 2 for a discussion of the literature mp of 2); 1H NMR 

(CDCI3, 360 MHz) 5 2.69 (s, 16H), 2.16 (br. s, 4H). 13C NMR (CDCI3, 90.56 MHz) 

8 46.11.

Waste Disposal Information

All toxic materials were disposed of in accordance with “Prudent 
Practices in the Laboratory”; National Academy Press; Washington, DC, 1996.

3. Discussion

The title compound, 2,3 (“cyclen”) and its derivatives are important 

ligands,4 some of which have biomedical applications5 (for example, as ligand 
components of MRI contrast agents). Cyclen is commercially available, but quite 
expensive.6
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This procedure is a  modification of the method originally reported by 
Weisman and Reed.2 In the first reaction of the two-step sequence (Step 

A), a  two-carbon, permanent, covalently-bound template7 is introduced by way 
of dithiooxamide to convert triethylenetetramine to tricyclic bisamidine 1. Step A 

is analogous to the synthesis of 2,2’-bi-2-imidazoline reported by Forssell in 

1891.8 Step B is a  double reductive ring expansion, which converts the two 
amidine (template) carbons of bisamidine 1 to a  -CH2CH2- unit of 2. The

reaction is conceptually based upon Yamamoto and Maruoka’s highly 
regioselective DIBALH reduction of bicyclic amidines to ring-expanded cyclic 

diamines.9

The advantages of this procedure are: (a) it is short and efficient (68% 

overall yield), (b) it is atom-economic10, (c) starting materials are readily 
available, (d) purifications are simple, and (e) it permits preparation of moderate 
quantities of product with modest effort. The disadvantages are the production 

of hydrogen sulfide (toxic) in Step A and the required use of DIBALH, an active 
hydride reducing agent. However, the former can be efficiently trapped and the 
latter can be handled safely at the reported scale.

There are alternative methods for preparation of cyclen. Since the mid- 
1970’s, the standard method for preparation of cyclen has been one based 
upon the general Stetter-Richman-Atkins synthesis of macrocyclic 
polyamines,11 a  medium-dilution cyclization approach that utilizes tosyl 
protection of nitrogen. The cyclen synthesis developed by Richman and 

Atkins11a-b (5 steps) and related modifications2-12 (4 steps), while very reliable, 

are still labor-intensive sequences that suffer from atom economy and solvent 
requirement problems. These problems are largely overcome by the shorter 
approach documented herein. Two additional syntheses of 2 have recently 
appeared in the patent literature.13-14 Both syntheses (each 3 steps) rely upon
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carbon templating for preorganization, subsequent cyclization, and final 
template removal. These procedures may prove superior for large scale 
production of 2, since they do not utilize active hydride reducing agents. 
However, the procedure reported here is very satisfactory for the laboratory- 

scale preparation of 2.

1 . Department of Chemistry, University of New Hampshire, Durham, NH 
03824

2 . (a) Weisman, G. R.= Reed, D. P. J. Org. Chem. 1996, 61, 5186; (b) 
Correction: J. Org. Chem. 1997, 62, (14), in press.

3 . Stetter, H.; Mayer, K.-H. Chem. Ber. 1961, 94, 1410.

4 . (a) Bradshaw, J.S.; Krakowiak, K.E.; Izatt, R.M. “Aza-Crown Macrocycles”
The Chemistry of Heterocyclic Compounds; Taylor, E. C., Series

Ed.,Wiley: New York, 1993; Vol. 51. (b) Dietrich, B.; Viout, P.; Lehn, J.-M. 
“Macrocyclic Chemistry”; VCH: Weinheim, 1993.

5 . (a) Parker, D. In “Crown Compounds”; Cooper, S. R., E d .; VCH: New 
York, 1992; (b) Jurisson, S.; Beming, D.; Jia, W.; and Ma, D. Chem Rev. 
1993,93, 1137-1156.

6 . Major specialty chemical suppliers’ cyclen (2) prices: $214-290 (U.S.) 
per gram (1997).

7 . Hoss, R.; Vogtle, F. Angew. Chem. Int. Ed. Engl., 1994, 33, 375.

8 . Forssell, G. Chem. Ber. 1891, 24, 1846.
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1 0 . Trost, B. M. Science, 1991, 254, 1471.

1 1 . (a) Richman, J.E.; Atkins, T.J., J. Am. Chem. Soc. 1974, 96, 2268; (b) 

Atkins, T.J.; Richman, J.E.; Oettle, W.F., Org. Syn. 1978, 58, 86; (c) 
Stetter, H.; Roos, E.-E. Chem. Ber. 1954, 566.

1 2 . (a) Vriesema, B.K.; Buter, J.; Kellogg, R.M., J. Org. Chem. 1984, 4 9 ,110; 

(b) Chavez, F.; Sherry, A.D., J. Org. Chem. 1989, 54, 2990.

13 . Athey, P., S.; Kiefer, G., E.; Dow Chem. Co: U.S. Pat. 5,587,451, 24 Dec 
1996; Chem. Abstr. 1997, 126: 144300r.

14. Sandnes, R. W.; Vasilevskis, J.; Undheim, K.; Gacek, M.; Nycomed 
Imaging A/s Norway: PCT Int. Appl. WO 96 28,432,19 Sept 1996; Chem. 
Abstr. 1996, 125:301031 c.

- Insert Figure 1 here - 

A ppend ix

Chem ical A bstrac ts N om enclature (Collective Index Number);
(R egistry  Number)

1,4,7,10-Tetraazacyclododecane; (294-90-6)
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2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2\ 1 ’-c]pyrazine; (180588-23-2) 

Dithiooxamide: Ethanedithioamide (12); (79-40-3)

Triethylenetetramine: 1,2-Ethanediamine, N,N’-bis(2-aminoethyl)- (12); (112- 
24-3)

Diisobutylaluminum hydride: Aluminum, hydrodiisobutyl- (8); Aluminum, 
hydrobis(2-methylpropyl)- (9); (1191-15-7)
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SSÊTZ— . zozrtz-^
06BTSZ—s_
soersz—

6BZH*—  
CKSTt---

98>nt—  
LZLTif---

s x r i s —  
9S£r35-?= 
ogtsrs-'
sssrss—
9SWSS-S
*9Z0‘9S-y
0£K*9S-'/ -
9lB i£S-'
9SZZ'6S-----
998Z09—

“Oi

CO
CO

-J o

"LT)

"CO

352

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ran-,
wirt- 
&zri-
2KTI-ran- 
e u n -  -  
tosn- _ 
ISBTI- = 
osoti- =

rcrn-
Hrt‘1- 
B6 r t l -
6 Bs*'l- 
999* 1-<

205Zi-= 
>19 L'l-Q
>m\~T
556£‘i —' 
iliOt---

C630Z-

2S5TZ—

S9SIX—

oq

-* O

oo

I

cS.a.

! L

353

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



iSHTR—  im ti—

\ - z  ■z.—'  -1 o

520*T»----

^ S * —  

*9*67*—

590S" I r —— 
5*9179- f 1 
I **579-'

B£9Sr85——
Bseres-f
IB29BS-7 
£9in9—

354

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



s n n -  
*rcri-

068t'l-

SW9*l-

9725' •- - 

0K3‘2- 

1*91*2-

5922'Z-

i9= rz-

r r S L 'Z  • 

0*88*2- 

3285*2-

<o

CO

I O.

I OO

s

355

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*StKSZ-s_ 
6663‘SZ-----

KiffCr-
>SOfftt-

>919‘6»-

8£60'IS-
98C0T5-
90Z0T5-

K65-£5—  
KZTBS-/: 
£9Cl'6S—7  
ra9rre-/

O O  I  *Z z —' u

356

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—

KlfflS
06Z:iTS
USTO

SSSffflS—  
BBil'BS-C 
0£Q9'6S-'

IS6V19—

357

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o
t S

t^ST  ' E E  E X E  *ST □SS * TI 1899 S98£ *£
33NV11I W^8v«J.X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WA
VE

NU
MB

ER
 

<C
M-

1>



10

S t /

Ci

<0OJ
S ou  a

N

TO
O .

aa>

359

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Compound Index

Compound Page

149
H' \___ / H

H. / V H

C  D

/  V 
H l i ^ N

11 T 170
N ^N H
V J

r ~ \

16 f I 146

1 ^ 1

18 f  T  150

. iIi h h Jl

19 C JIf I U lk l* ^NH HN
\___I

152

360

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0

21

HlC^NH

HljT'NjlH

< ? N H

153

153

23
N

N
156

25

r ^

c Yk N ^ O
k ^ .

n h 2

n h 2

157

31 160

361

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

4 4

CN

CC
k ^ C N

(H3C)2N ‘ n (CH3)2

?N. N

160

O X

n

a NH HIVL

J
rsiiHHijr

1 6 3

(H3c )2i\  N(CH3)2 1 6 4

2  B r"

4 6  f X W  1 6 7
'N

4 7  r V V ^ X ^ ]  1 6 9
'N

362

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r ~ \
TM SN ^N

49 T 172
N NTMS
\ _ 7

(̂ / N H 2

(Y
! ^ nh2

60 1— v

. i Br-

N N

176

(^^NHTs

73 f Y  179

C 0 ‘
2 *BPh4

9 s o  r %  nC y n b =

363

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

,  r " i  “ i T

N N ' ^  'N H 2

98 L I J 186
’ ■ *’ ,N  N

,nO n^ NHTs

C X ITsH N fir 190

° 2 * k ^ ^ N ° 2

c Y )N N
194

io2fir 'n o 2

r t n°2
c nx iv  195

O 2fi ^

364

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

126a

130

o f ) 198

21*

199

Br*

199

365

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

(1) Bianchi, A.; M icheloni, M.; Paoletti, P. Coord. Chem. Rev. 1991,110,
17.

(2) Bucsh, D. H. Rec. Chem. Progress 1964,25, 107.

(3) Hancock, R. D.; Martell, A. E. Chem. Rev. 1989, 89, 1875.

(4) Kaden, T. A. In Host Guest Complex Chemistry HI; Vogtle, F., Weber,
E., Eds.; Springer-Verlag: Berlin, 1984; Vol. 121, p 157.

(5) Kaden, T. A. Pure Appl. Chem. 1993, 65, 1477.

(6) Kimura, E. Pure Appl. Chem. 1989, 61, 823.

(7) DeBlas, A.; De Santis, G.; Fabrizzi, G.; Licchelli, L.; Pallavicini, P. Pure
Appl. Chem. 1993, 35, 455.

(8) Bernhardt, P. V.; Lawrence, G. A. Coord. Chem. Rev. 1990,104, 297.

(9) Wainwright, K. P. Coord. Chem. Rev. 1997,166, 35.

(10) Gokel, G. W.; Dishong, D. M.; Schultz, R. A.; Gatto, V. J. Synthesis 
1982, 997.

(11) Krakowiak, K. E.; Bradshaw, J. S.; Zamecka-Krakowiak, D. J. Chem. 
Rev. 1989, 89, 929.

(12) Parker, D. Macrocyclic Synthesis. A Practical Approach; Oxford University 
Press: Oxford, 1996.

(13) Parker, D. In Crown Compounds; Cooper, S. R., Ed.; VCH: New York, 
1992.

(14) Lippard, S. J.; Berg, J. M. Principles o f Bioinorganic Chemisty; University 
Science Books: Mill Valley, CA, 1994.

(15) Jurisson, S.; Beming, D.; Jia, W.; Ma, D. Chem. Rev. 1993, 93, 1137.

(16) Lauffer, R. B. Chem. Rev. 1987, 87, 901.

(17) Parker, D. Chem. Soc. Rev. 1990,19, 111.

(18) Bridger, G. J.; Skerlj, R. T.; Thorton, D.; Padmanabhan, S.; Martellucci,
S. A.; Henson, G. W.; Abrams, M. J.; Yamamoto, N.; Vreese, K. D. J. 
Med. Chem. 1995, 38, 366.

366

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(19) Bridger, G. J.; Skerlj, R. T.; Padmanabhan, S.; Thorton, D. J. Org. Chem. 
1996,61, 1519.

(20) Bradshaw, J. S.; Krakowiak, K. E.; Izatt, R. M. In The Chemistry of 
Heterocyclic Compounds', Taylor, E. C., Ed.; Wiley: New York, 1993;
Vol. 51.

(21) Ito, T.; Kato, M.; Yamashita, M.; Ito, H. J. Coord. Chem. 1986,15, 29.

(22) Kaden, T. In Crown Compounds', Cooper, S. R., Ed.; VCH: New York, 
1992, p 135.

(23) Kaden, T. Adv. Supramol. Chem. 1993,3, 135.

(24) Trost, B. M. Science 1991 ,254, 1471.

(25) Alphen, J. V. Reel. Trav. Chim. Pays-Bas 1937,56, 343.

(26) Stetter, H.; Mayer, K.-H. Chem. Ber. 1961, 94, 1410.

(27) Bosnich, B.; Poon, C. K.; Tobe, M. L. Inorg. Chem. 1965, 4, 1102.

(28) Richman, J. E.; Atkins, T. J. J. Am. Chem. Soc. 1974, 96, 2268.

(29) Atkins, T. J.; Richman, J. E.; Oettle, W. F. Org. Synth. 1978, 58, 86.

(30) Stetter, H.; Roos, E.-E. Chem. Ber. 1954, 566.

(31) Rasshofer, W.; Vogtle, F. Liebigs. Ann. Chem. 1978, 552.

(32) Vriesema, B. K.; Butler, J.; Kellogg, R. M. J. Org. Chem. 1984,49,
110.

(33) Chavez, F.; Sherry, A. D. J. Org. Chem. 1989, 54, 2990.

(34) Ostrowicki, A.; Keopp, E.; Vogtle, F. Top. Curr. Chem. 1992 ,161, 37.

(35) Barefield, K. Inorg. Chem. 1972,11, 2273.

(36) Barefield, E. K.; Wagner, F.; Herlinger, A. W.; Dahl, A. R. Inorg. Synth. 
1976 ,16, 220.

(37) Barefield, K.; Feeman, G.; English, D. R. Inorg. Synth. 1980, 20, 108.

(38) Yamamoto, H.; Maruoka, K. J. J. Am. Chem. Soc. 1 981 ,103, 4186.

(39) Alder, R. W., Personal Communication to G. R. Weisman.

(40) Alder, R. W.; Eastment, P.; Moss, R. E.; Sessions, R. B.; Stringfellow,
M. A. Tetrahedron Lett. 1982,23, 4181.

367

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(41) Alder, R. W.; Sessions, R. B. Tetrahedron Lett. 1982,23, 1121.

(42) Alder, R. W.; Heilbronner, E.; Honegger, E.; McEwen, A. B.; Moss, R. 
E.; Olefirowicz, E.; Petillo, P. A.; Sessions, R. B.; Weisman, G. R.; 
White, J. M.; Yang, Z.-Z. J. Am. Chem. Soc. 1993,115, 6580.

(43) Dietrich, B.; Viout, P.; Lehn, J.-M. Macrocyclic Chemistry, VCH: 
Weinheim, 1993.

(44) Duhamel, L. In Supplement F: The Chemistry o f Amino, Nitroso and Nitro 
Compounds and thier Derivatives; Patai, S., Ed.; John Wiley and Sons: 
New York, 1982; Vol. 2, p Chapter 20.

(45) Jazwinski, J.; Kolinski, R. A. Bull. Pol. Acad. Sci. 1988,36, 215.

(46) Jazwinski, J.; Kolinski, R. A. Tetrahedron Lett. 1981, 22, 1711.

(47) Muller, R.; Philpsbom, W .; Schleifer, L.; Aped, P.; Fuchs, B. Tetrahedron 
1991,47, 1013.

(48) Fuchs, B.; Ellencweig, A. Reel. Trav. Chim. Pays-Bas 1979, 98, 326.

(49) Gautier, J.-A.; Miocque, M.; Famoux, C. C. In The Chemistry of 
Amidines and Imidates; Patai, S., Ed.; John Wiley and Sons: New York, 
1975; Vol. 1, p 283.

(50) Kantlehner, W. In Iminium Salts in Organic Chemistry, [Adv. Org.
Chem.:Methods and Results, E. C. Taylor (Series Ed.)]', Boehme, H., 
Viehe, H. G., Eds.; John W iley and Sons: New York, 1979; Vol. 9 part 2, 
p 279.

(51) Forssell, G. Chem. Ber. 1891, 24, 1846.

(52) Lehr, H.; Erlenmeyer, H. Helv. Chim. Acta 1944,27, 489.

(53) Wang, J. C.; Bauman, J. E. J. Inorg. Chem. 1965,4, 1613.

(54) Hurd, R. N.; Delamater, G. Chem. Rev. 1961, 61, 45.

(55) Reggel, L.; Henry, J. P.; Wender, I. J. Org. Chem. 1961, 26, 1837.

(56) Wotiz, J. H.; Kleopfer, R. D.; Barelski, P. M.; Hinckley, C. C.; Koster,
D. F. J. Org. Chem. 1 9 7 2 ,37, 1758.

(57) Woodbum, H. M.; O’Gee, R. C. J. Org. Chem. 1952,17, 1235.

(58) Woodbum, H. M.; Fisher, J. R. J. Org. Chem. 1957,22, 895.

(59) Weidinger, H.; Kranz, J. Chem. Ber. 1964, 97, 1599.

(60) Sandnes, R. W.; Vasilevskis, J.; Undheim, K.; Gacek, M.; Nycomed

368

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Imaging A/s Norway: PCT Int. Appl. WO 96 28,432, 19 Sept 1996; Chem. 
Abstr. 1996,125: 301031c

(61) Weisman, G. R.; Reed, D. P. J. Org. Chem. 1996, 61, 5186-5187.

(62) Wang, J. C. Ph.D. Dissertation, University of Missouri, Columbia, 
Missouri, 1964.

(63) Bauman, J. E., Personal Communication to G. R. Weisman, Nov. 1996.

(64) Chabrier, P.; Renard, S. H. Compt. Rend. 1950,230, 1673.

(65) The Immediately Dangerous to Life'and Health Value (IDHL) for H2S is 
300 ppm as given in Hazardous Chemicals Data Book, Weiss, G. Ed.; 
Noyes Data Corp.: Park Ridge, New Jersey; 2nd ed. TTie IDLH value is 
the maximum level one could escape within 30 min. without serious 
irreversible health effects.

(66) Correction: Weisman, G. R.; Reed, D. P. J. Org. Chem. 1997, 62, 4548.

(67) Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis; John W iely and 
Sons: New York, 1967; Vol. 1.

(68) Reed, D. P.; Weisman, G. R. Org. Synth, currently under checking 
procedure.

(69) Swinkles, D. W.; van Duynhoven, J. P. M.; Hilbers, C. W.; Tesser, G. I. 
Reel. Trav. Chim. Pays-Bas 1991,110, 124.

(70) Herve, G.; Bernard, H.; LeBris, N.; Yaouanc, J.-J.; Handel, H.; Toupet, 
L. Tetrahedron Lett. 1998, 39, 6861.

(71) Hung, Y. Inorg. Synth. 1980, 20, 105.

(72) Baker, D. A.; Armen, H. G.; Funaro, S. J. Chem. Soc., Dalton Trans. 
1983, 2519.

(73) Heininger, A. J. Org. Chem. 1957,22, 1213.

(74) Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1986, 78, 2582.

(75) Pinner, A.; Klein, F. Chem. Ber. 1887,10, 1889.

(76) Pinner, A. In Die Imidoather und ihre Derivate; Oppenhiem: Berlin, 1892.

(77) Janz, G. J. Inorg. Synth. 1957, 5, 43.

(78) Webster, O. W.; Hartter, D. R.; Begland, R. W.; Sheppard, W. A.; 
Caimcross, A. J. Org. Chem. 1972,37, 4133.

(79) Begland, R. W.; Hartter, D. R. J. Org. Chem. 1972, 37, 4130.

369

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(80) Kantlehner, W.; Dinkeldein, U.; Bredereck, H. Leibigs Ann. Chem. 1979, 
1346.

(81) Bock, H.; Ruppert, K.; Merzweiler, K.; Fenske, D.; Goesmann, H. 
Angew. Chem., Int. Ed. Eng. 1989, 28, 1684.

(82) Shi, Z.; Thummel, R. P. J. Org. Chem. 1995,60, 5935.

(83) Roechling, H. Z. Naturforsch., B: Chem. Sci. 1970,25, 931.

(84) Shionogi and Co. Ltd. JP 7031941, 1970; CA 74: 11205b.

(85) Fieselmann, B. J.; Hendrickson, D. N.; Stucky, G. D. Inorg. Chem.
1 9 7 8 ,17, 2078.

(86) Duranti, E.; Balsamini, C. Synthesis 1974, 815.

(87) Aqra, F. M. A. M.; Shah, S. A.; Jamhour, R. M. A. Q. Synth. React. 
Inorg. Met. -Org. Chem. 1994,24, 1599.

(88) Wei, J. F.; Zhuo, R. X.; Yan, G. P.; Du, P. Chemical Journal of Chinese 
Universities 1997 ,18, 658.

(89) Hines, M. S. Thesis, University of New Hampshire, 1997.

(90) Guggisberg, A.; Kramer, U.; Heidelberger, C.; Charubala, R.; Stephanou,
E.; Hesse, M.; Schmid, H. Helv. Chim. Acta 1978,61, 1050.

(91) Hesse, M. Transamidation Reactions', In Ring Enlargement in Organic 
Chemistry, VCH: New York, 1991, pg 97.

(92) Kramer, U.; Guggisberg, A.; Hesse, M.; Schmid, H. Angew. Chem., Int. 
Ed. Eng. 1978, 17, 200.

(93) Gould, J. W. M. S. Thesis, University o f New Hampshire, 1983.

(94) For Reviews on 1,4-diaza-1,3-butadiene systems see: (a) Lora-Tamayo,
M.; Soto, J. L. In 1,4-Cycloaddition Reactions, The Diels-Alder Reaction 
in Heterocyclic Synthesis; Hamer, J., Ed.; Academic Press: New York, 
1967; Vol. 8, p 183. (b) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder 
Methodology in Organic Synthesis; Academic Press: New York, 1987; p 
274.

(95) Wiberg, N. Angew. Chem., Int. Ed. Eng. 1968, 7, 766.

(96) Sauer, J.; W iest, H.; Mielert, A. Chem. Ber. 1964,97, 3183.

(97) Wainwright, K. P. Inorg. Chem. 1980,19, 1396.

(98) Ramasubba, A.; Wainwright, K. P. J. Chem. Soc., Cemm. Commun.
1982, 277.

370

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99) Busch, D. H. Acc. Chem. Res. 1978,11, 392.

100) Smierciak, R.; Passariello, J.; Blinn, E. L. Inorg. Chem. 1977,16, 2646.

101) Weisman, G. R.; Rogers, M. E.; Wong, E. H.; Jasinski, J. P.; Paight, E. 
S. J. Am. Chem. Soc. 1 990 ,112, 8604.

102) Bencini, A.; Bianchi, A.; Bazzicalupi, C.; Ciampolini, M.; Fusi, V.; 
Micheloni, M.; Nardi, N.; Paoli, P.; Valtancoli, B. Supramolecular Chem. 
1 9 9 4 ,3.

103) Hill, D. C. Ph.D. Dissertation, University of New Hampshire, 1995.

104) Weisman, G. R.; Wong, E. H.; Hill, D. C.; Rogers, M. E.; Reed, D. P.; 
Calabrese, J. C. J. Chem. Soc., Chem. Commun. 1996, 947-948.

105) Weisman, G. R.; Ho, S. C.-H.; Johnson, V. B. Tetrahedron Lett. 1980, 
335.

106) Alder, R. W.; Bowman, P. S.; Steele, W. R. S.; W interman, D. R. J. 
Chem. Soc., Chem. Commun. 1968, 723.

107) Koppel, I.; Koppel, J.; Pihl, V. Org. React. (Tartu) 1987, 24, 387.

108) Bradshaw, J. E.; Krakowiak, K. E.; Izatt, R. M. Tetrahedron 1992,48, 
4475.

109) Tsukube, H.; Adachi, H.; Morosawa, S. J. Org. Chem. 1991, 56, 7102.

110) Tsukube, H.; Adachi, H.; Morosawa, S. J. Chem. Soc., Perkin Trans. 1 
1989, 1537.

111) Kataky, R.; Matthes, K. E.; Nicholson, P. E.; Parker, D.; Buschmann, H. 
J. J. Chem. Soc., Perkin Trans. 2 1990, 1425.

112) Rappoport, Z. Acc. Chem. Res. 1981,14, 7.

113) Murase, I.; Mikuria, M.; Sonoda, H.; Kida, S. J. Chem. Soc., Chem. 
Commun. 1984, 692.

114) Murase, I.; Mikuria, M.; Sonoda, H.; Fukuda, Y.; Kida, S. J. Chem. Soc., 
Dalton Trans. 1986, 953.

115) Dietrich, B.; Hosseini, M. W.; Lehn, J.-M.; Sessions, R. B. Helv. Chim. 
Acta. 1985,68, 289.

116) Weisman, G. R., Personal Communication, 1998.

117) Wong, E. H.; Weisman, G. R. Proposal to The National Institutes of 
Health 1996.

371

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(118) Miller, J. Aromatic Nucteophilic Substitution; Elsevier Publishing Co: 
Amsterdam, 1968.

(119) March, J. Advanced Organic Chemisty', 4th ed.; John Wiley and Sons: New 
York, 1992.

(120) Sutherland, I. O. In Crown Compounds: Towards Future Applications', 
Cooper, S. R., Ed.: VCH: New York, 1992, p 246.

(121) Lohr, H. G.; Vogtle, F. Acc. Chem. Res. 1985,18, 65.

(122) Takagi, M.; Ueno, K. Top. Curr. Chem. 1984,121, 39.

(123) Sanger, F. Biochem. J. 1949,45, 563.

(124) Wagaw, S.; Rennels, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 
119, 8451.

(125) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996,
118, 7215.

(126) Louie, J.; Hartwig, J. F.; Fry, A. J. J. Am. Chem. Soc. 1997 ,119,
11695.

(127) Heaney, H. Chem. Rev. 1962, 62, 81.

(128) Huisgen, R.; Sauer, J. Chem. Ber. 1958, 93, 1453.

(129) Budzelaar, P. H. M. gNMR: Program for Spectral Simulation. Cherwell 
Scientific Publishing Limited, Oxford; v 3.6.

(130) Lithium-Current Applications in Science, Medicine and Technology; Bach, 
R. O., Ed.; Wiley-Interscience: New York, 1985.

(131) Olsher, U.; Izatt, R. M.; Bradshaw, J. S.; Dailey, N. K. Chem. Rev.
1991,91, 137.

(132) Schou, M. In Lithium and the Cell: Pharmacology and Biochemistry; Birch, 
N. J., Ed.; Academic Press: London, 1991.

(133) Lithium: Inorganic Phamacology and Psychiatric Use; IRL Press: Oxford, 
1988.

(134) Bach, R. O. Med. Hypotheses 1987, 23, 157.

(135) Zeevi, A.; Margalit, R. J. Membr. Biol. 1991,121, 133.

(136) Buhlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593.

(137) Gadzekpo, V. P. Y.; Hungerford, J. M.; Kadry, A. M.; Ibrahim, Y. A.; 
Xie, R. Y.; Christian, G. D. Anal. Chem. 1986,58, 1948.

372

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(138) Bartsch, R. A.; Ramesh, V.; Bach, R. O.; Shono, T.; Kimura, K. In 
Lithium Chemistry, A Theoretical and Experimental Overview; Sapse, A.- 
M., Schleyer, P. v. R., Eds.; Wiley: New York, 1995, p 393.

(139) Faulkner, S.; Katacky, R.; Parker, D.; Teasdale, A. /. Chem. Soc., Perkin
Trans. 2 1995, 1761.

(140) Watanabe, K.; Nakagawa, E.; Yamada, H.; Hisamoto, H.; Suzuki, K.
Anal. Chem. 1993, 665, 2704.

(141) Metzger, E.; Ammann, D.; Asper, R.; Simon, W. Anal. Chem. 1986,58, 
132.

(142) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.

(143) Pearson, R. G. J. Chem. Educ. 1968,45, 581.

(144) Marcus, Y. Israel J. Chem. 1972,10, 659.

(145) Wong, E. H., Personal Communication, 1998.

(146) Hubin, T. J.; McCormick, J. M.; Collinson, S. R.; Alcock, N. W.; Busch,
D. H. J. Chem. Soc., Chem. Commun. 1998, 1675.

(147) Taken from Reference 61: There has been a great deal of confusion about 
the mp of 2 in the literature. Stetter and Mayer25 originally reported mp 35° 
C. Bu0en et aL reported mp 119-120°C.151 Aldrich and Fluka list melting 
point ranges of 110-113° C (97%) and 105-110° C (>97%) repectively in 
their catalogs. Confusing matters further, Zhang and Busch152 subsequendy 
reported mp 36-38° C. Our mp range for 2 (calibrated thermometer) is lower 
than that reported in reference 26, but is consistent with the mp range of 
sublimed material (no detectable impurities by high S/N NMR) we have 
prepared by the Richman-Atkins method (mp 105-109° Q . !H NMR 
relative integrations of the material reported were consistent with anhydrous 
2 .

(148) There are various reported melting points for 11 in the literature: Reference 
51:289-291 °C; Reference 55: -300 °C; Reference 56:305-310 °C; 
Reference 57:289-291 °C; Reference 59:297-299 °C.

(149) Branholtz, J. T.; Mann, F. G. J. Chem. Soc. 1953, 1817.

(150) Caywood, G. A. B. S. Thesis, Unicersity of New Hampshire, 1980.

(151) Bu0en, S.; Dale, J.; Krane, J. Acta Chem. Scand. 1984, B38, 773.

(152) Zhang, R.; Busch, D. H. Inorg. Chem. 1993,32, 4920.

373

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V fc . ST.

IMAGE EVALUATION 
TEST TARGET (Q A -3 )

'  f

/ /

/
V -

[A. 
%

<?

1.0 E

l.l

1.25

( 2 8

JJ2
(as
|.0

| «

12.2

1*4 llll 1.6

150mm

IIW 4 G E . In c
1653 E ast Main Street 
R ochester. NY 14609 USA 
Phone: 716/482-4)300 
F ax  716/288-5989

0 1993. Applied image. Inc.. All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 1998

	Synthesis of vicinal bisamidines and bisaminals for the preparation of tetraazamacrocycles and the synthesis of cross-bridged cyclam derivatives and studies on their complexation of small cations
	David Philip Reed
	Recommended Citation


	tmp.1525704849.pdf.I9ylf

