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ABSTRACT

SYNTHESIS OF VICINAL BISAMIDINES AND BISAMINALS
FOR THE PREPARATION OF TETRAAZAMACROCYCLES

AND

THE SYNTHESIS OF CROSS-BRIDGED CYCLAM DERIVATIVES AND
STUDIES ON THEIR COMPLEXATION OF SMALL CATIONS

by

David P. Reed
University of New Hampshire, December, 1998

A new methodology for the preparation of tetraazamacrocycles is presented. This
new methodology utilizes a regioselective reduction of vicinal bisaminals (33) and
bisamidines (16) precursors to afford ring expanded tetraamines. This chemistry has
provided a synthetic route for the preparation of benzocyclam (34), a compound whose

preparation is unreported in the literature.

M

~
I

AR

I

S oY
@%H L &

16 34

XViii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This methodology has aided in the preparation of cross-bridged cyclam derivatives (83,
92, 95). Cross-bridged cyclam derivatives are bicyclic tetraamines which adopt low
energy conformations appropriate for the complexation of small cations. Cross-bridged
cyclam derivatives have potential utility in clinical and nuclear medicine as well as
bioinorganic chemistry. The preparation of new derivatives of cross-bridged cyclam and

studies on their chemistry are presented.

) E“?j A5
- r-r"k: EtzNj\/ _

Cross-bridged cyclam derivatives are good complexers of Li*. In fact, cross-bridged
cyclam derivatives complex Li* selectively over Na*. Ligands which can selectively bind
Li* in the presence of Na* would have significant utility as Li* sensors which could
monitor small concentrations of Li* in the presence of abundant Na*. Experiments on the
relative selectivity for cross-bridged cyclam ligands for Li* and Na* as well as the relative

complexation ability between ligands is presented.
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CHAPTER 1

STUDIES OF VICINAL BISAMIDINES AND BISAMINALS
AND THEIR UTILITY AS PRECURSORS FOR
MACROCYCLIC TETRAAMINES

I. INTRODUCTION

Cyclic compounds having multiple amino moieties linked by methylene carbon
units of various length are classified as polyazacycloalkanes. Many polyazacycloalkanes
have been reported and are important in the fields of organic and organometallic chemistry.
As nitrogen analogues of crown ethers, polyazacycloalkanes are useful as ligands,
particularly for transition metal cations.!? The replacement of N for O does significantly
alter the properties of polyazacycloalkanes with respect to polyether analogues. The
decreased electronegativity of nitrogen with respect to oxygen in addition to the difference
in .the basicity give rise to many of the observed differences in the complexation of various
metal cations.> While both atoms are considered to be “hard” in saturated compounds,
polyaza analogues are often found to complex metal ions better than the respective
polyethers. Another advantage of polyazacycloalkanes over polyethers in the rational
design of ligands is the ability to functionalize nitrogen atoms of the parent cyclic
backbone.*® The attachment of pendant arms or the formation of bridged polydentate

derivatives allows for a variety of ligands to be prepared from one polyazacycloalkane.’
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The synthesis of a variety of derivatives of polyazacycloalkanes '*!2 has led to many
biomedical applications for these ligands.

Clinical applications13 for polyazacycloalkane derivatives have been developed as
well as applications in the fields of bioinorganic chemistry14 and nuclear medicine.!? Some
examples of these applications include (1) the use of transition metals such as Fe**, Gd**
and Mn?* with a ligand as contrast agents in MRI imaging,'S (2) attachment of antibodies
to the polyazacycloalkane structure for various studies,!” (3) anti-HIV activity has been
shown for some compounds having two polyazacycloalkanes linked together through
nitrogen atoms. 18.19 Research in these areas is still extremely active and new applications
for these compounds are published frequently.

This chapter will discuss a subset of polyazacycloalkanes which possesses four
secondary amino nitrogen atoms. Tetraazacycloalkanes have been well studied and
syntheses for their preparation are reported in the chemical literature.!%1220-2 These
synthetic methods rely heavily on protecting groups and some require high dilution
conditions to facilitate ring closure. These two aspects of a synthetic method are
undesirable in modern synthetic design strategy at a time when environmental
consequences of chemical reactions are seriously scrutinized. Commercial chemical
suppliers also offer some tetraazacycloalkanes but at significantly higher cost.

A new methodology for the preparation of tetraazacycloalkanes which is
inexpensive and environmentally favorable is highly desirable. This chapter introduces a

new synthetic methodology which avoids the use of protecting groups and high dilution
2
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conditions. This new synthetic strategy is highly “atom economic,” incorporating all of the
atoms built into the starting material into the product, reducing the waste stream of the
process.24 In the following background section the other methods available for the
preparation of tetraazacycloalkanes are reviewed to further establish the rationale for the

chemistry reported in this chapter.

II. BACKGROUND

Preparative Methods for Tetraazacycloalkanes

The first preparation of a tetraazacycloalkane was reported over 60 years ago when
Van Alphen described what he believed to be cyclam (1)
(148,1 1-tetra.azacyclotetradecax:xe).5 The reaction of ethylenediamine and 1,3-
dibromopropane afforded a linear tetraamine which was proposed to have cyclized to 1

Scheme 1.1
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upon treatment with another equivalent of dibromide (Scheme 1.1). Van Alphen described
a yellow oily product which contained no primary amino groups and only secondary amino
groups. Elemental analysis of the hydrochloride and nitrate salts of this crude product gave
satisfactory evidence for the preparation of cyclam.

Twenty four years later, in 1961, Stetter and Mayer corroborated Van Alphen’s
work by characterizing cyclam, which they had prepared by an independent method. This
method allowed for the preparation of a series of structurally similar macrocycles with
various ring sizes. This chemistry utilized nitrogen protecting groups and high dilution
techniques to facilitate ring closure. As shown in Scheme 1.2 for cyclam, reaction of an
a-halo ester with a deprotonated bistosylamide resulted in alkylation of the tosylamide
nitrogens. The esters were then converted to the acid chlorides and further elaborated to a
cyclic bisamide. Reduction of the amide moieties and detosylation provided cyclam. While

this approach was much better than Van Alphen’s early work and gave conclusive evidence

Scheme 1.2
o}
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of the preparation of cyclam, the use of protecting groups makes the procedure much
longer synthetically and, in conjunction with the high dilution conditions, generates a
significant waste stream.

Bosnich later published a modification of Van Alphen’s original synthesis. He
claimed that the Stetter and Mayer approach, which was synthetically more elegant, was not
practical.” But the yield of cyclam reported by Bosnich was very poor (~5%) making
other synthetic approaches desirable.

In 1974 Richman and Atkins published a general route for the preparation of
medium-ring and macrocyclic polyheteroatom compounds.zs'29 This approach utilized
nitrogen protecting groups and medium dilution conditions to perform the ring closure
(Scheme 1.3). Stetter and Roos had described the utility of tosyl protecting groups for

nitrogen atoms in the synthesis of macrocyclic tetraamines in 1954.3°

The use of tosyl
protecting groups for nitrogen, tosylate leaving groups instead of halides and DMF as the
solvent were found to be the optimal reaction conditions for the Richman-Atkins method.
Furthermore, this method afforded yields for tetraazacycloalkanes which were much
improved with respect to the previous approaches. The obvious advantage of this approach
is the convergent nature of the synthesis. Scheme 1.3 shows the synthesis of cyclen (2)
(1,4,7,10-tetraazacyclododecane) using this approach. Variation of A and B allows for the
preparation of a variety of macrocycles of different ring sizes with various numbers of

heteroatoms. Furthermore, tosylation of amines and alcohols is typically a simple

transformation affording solids which can be easily purified by recrystallization.
5
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Scheme 1.3
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Table 1.1 lists yields for the cyclization step of the Richman-Atkins method for some
tetraazacycloalkanes.?® This cyclization reaction, however, has also been shown to be
sensitive to small changes in the reaction conditions. A survey of different macrocycles
prepared by this general method showed drastic variation in yields. For example, reports
from Atkins et al.?? and Rasshofer and Vigtle®! have yields which varied up to 50% for
the same macrocycle. Careful drying techniques for the DMF must be employed because
water has been cited as the major contaminant in these reactions leading to decreased yields.
Other factors such as the purity of the starting materials, the reaction temperature and time
can cause significant yield variation. Modifications have been reported which have
improved the methodology. For example, the use of KICO3 or Cs,CO, as the base in situ
combines the deprotonation and cyclization steps. This modification shortens the
procedure by one step and was shown to afford improved yields.3>3* Lower reaction

temperatures and longer reaction times have also shown increased yields.>* Even with
6
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Table 1.1

Yields for the Cyclization Step for the Richman-Atkins Method
(Detosylation not included in reported yield)

1,4,7,10- 1,4,7,10- 1,4,8,11-
Tetraazacyclododecane Tetraazacyclotridecane Tetraazacyclotetradecane
(Cyclen) (Cyclam)
M
"EN NSI 'Ep H 'Eu(\b”
H.NJH HI\\‘__},?H H’b H
80% 77% 70%
1,4,7,11- 1,4,8,12- 1,4,8,12-
Tetraazacyclotetradecane Tetraazacyclopentadecane Tetraazacyclohexadecane
(Isocyclam)
™ K Ty
HN H [N ::> N .
C o0 ey Co
LW " ™
80% 58% 90%

the_se caveats, the Richman-Atkins approach has become the method of choice for the
preparation of many tetraazacycloalkanes.

Another approach was published in 1972 which is not as versatile Richman-Atkins
method. Barefield utilized a transition metal template in the preparation of cyclam starting
from a linear tetraamine and aqueous glyoxal.>>*® The transition metal, in this case Ni*,
is used to coordinate to the 4 four amino nitrogen atoms. This effectively preorganizes the
12-atom tetraamine chain so that the two primary amino groups are positioned to facilitate

ring closure. The glyoxal condensation gives an 0-diimine which can be mildly reduced
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with NaBH " Following demetallation, the tetraazacycloalkane is obtained (Scheme 1.4).
This methodology has also allowed for the preparation of
1,4,8,12-tetraazacyclopentadecane from 1,4,8,12-tetraazatridecane (45-48%)°’. While this
methodology did give better yields of cyclam (1) than other methods published at that time,
there are some significant drawbacks. This methodology does not work for the preparation
of cyclen (2). Furthermore, the use of perchlorate salts and the generation of cyanide
waste makes this route less attractive.

Scheme 1.4
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Comparison of all of the published methods for the preparation of
tetraazacycloalkanes leads to the conclusion that new chemistry for their preparation would
be highly desirable. The variability in the yields and the laborious procedures are
inconvenient but can be accommodated. However, the environmentally unfriendly
byproducts pose a greater concern, in their very nature and quantity, that cannot be

ignored.
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Regioselective Reduction of Aminals and Amidines

A possible alternative method based on the work of Yamamoto and Maruoka>® was
proposed independently by Gary R. Weisman and Roger W. Alder.¥ Yamamoto and
Maruoka showed that aminal or amidine moieties could be reduced in a regioselective
manner upon treatment with diisobutylaluminum hydride (DIBALH).

Yamamoto maintains that the regioselective reduction takes place directly through
C-N o bond cleavage by DIBALH. Alternatively, a mechanism involving iminium ion
intermediates can be proposed. These two ideas are shown in Scheme 1.5. An aminal 3
with the general structure shown is deprotonated upon introduction of DIBALH solution to

4. Yamamoto proposes, that in the presence of excess DIBALH, the tertiary amine is also

Scheme 1.5
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coordinated to an aluminum atom of DIBALH. If this is correct, the equilibrium shown
between 4 and S could also be facilitated. Imine § would then be reduced by DIBALH
resulting in species 6. Upon aqueous workup, 6 affords the desired ring opened product.
Direct C-N ¢ bond reductive cleavage of 4 would also lead to 6 as Yamamoto states in his
paper. While it is unknown which mechanism is operative, ring opening is “unidirectional”
and preferentially gives a single isomeric product. Amidine moieties also undergo this
chemistry to give the same product from the analogous ring s&stem. For example, amidine
7 would react with DIBALH to reduce the amidine moiety affording 4, which as
previously described, yields only one ring opened product. Furthermore, this reduction
proceeded in good to excellent yield in almost all cases reported by Yamamoto.

Alder and coworkers*?4!

and Alder, Weisman and coworkers*? have also utilized
this chemistry in the preparation of large cyclic diamines. Fused bicyclic ring systems
which contained aminal or amidine moieties in the ring fusion were prepared by known

methods or purchased commercially. Reduction with DIBALH resulted in regioselective

ring opening as predicted. Some examples of this chemistry are shown in Scheme 1.6.

Scheme 1.6
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( ( ( S
H H n
=0 m=1 . 2 DBU
::gi::ﬂ “n:‘;‘;‘:a ::.:4 DBN
n=1m=4
10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Application of this reductive ring expansion methodology to the synthesis of
macrocyclic tetraamines would require that the aminal or amidine moieties be incorporated
into the ring fusion of a tricyclic precursor. Scheme 1.7 illustrates this idea in
retrosynthetic form. The two carbon unit inserted in the cyclization step functions as an
endo-template.*> Unlike an exo or external template (Figure 1.1c), an endo template is not
removed following the ring closure reaction. This concept is illustrated in Figure 1.1.
There are two types of endo-templates which operate by forming smaller rings which are
later expanded. The first type of templating operates by insertion of a side chain into a
smaller ring (Figure 1.1a). This type will be discussed later in this chapter. The second
type of templating involves cleaving a bond of a bicyclic ring system to afford a larger
monocyclic ring (Figure 1.1b). The regioselective reduction with DIBALH of a vicinal
bisaminal such as 8 or bisamidine 9 should perform this operation twice resulting in the

expected doubly ring expanded target shown in Scheme 1.7. The endo-template becomes

Scheme 1.7
Target
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l l H’ \-—/ H ) ) ’
Tncycllc\fcmal Tricyclic Vicinal

Blsamlna Bisamidine
9
qaz /

S
10

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.1%3: Cyclization Using “Endo-Templating” and “Exo-Templating”

Q= Q
0D -0 -C
/3‘\_.@2.@

external template

incorporated into the macrocyclic structure by means of this potentially highly
regioselective ring expansion reaction. This idea avoids difficult macrocyclic ring closure
reactions by closing normal-sized rings and the macrocyclic tetraamine is formed in a
highly atom economic manner. Therefore, to investigate this chemistry, linear tetraamine

10 must be cyclized in some manner to give the respective vicinal bisaminal or bisamidine.

Preparative Methods for Bisaminals and Bisamidines

The formation of aminals is usually effected by the reaction of a diamine to an
aldehyde or a ketone.** The condensation of glyoxal with acyclic tetraamines of various
chain length has been reported in the literature to be a simple way to prepare tricyclic

 bisaminals.**

12
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The preparation of cyclic vicinal bisamidines suitable for reduction to
tetraazacycloalkanes has not been reported in the literature.*~° However, there have been
some reports on vicinal bisamidines of oxalic acid. In 1898 Forssell reported that the
reaction of ethylenediamine with dithiooxamide produced 2,2’-biimidazoline (11), a
bicyclic vicinal bisamidine.>! The synthesis of 11 is shown in Scheme 1.8. This result
was later confirmed by Lehr and Erlenmeyer in 1944.5% Wang and Bauman later modified
this procedure by introducing bromoethane to dithiooxamide prior to the addition of the
diamine.>® The S-alkylation of thicamides has been well documented to result in improved
reactivity of the thioamide carbon towards nucleophilic attack.> Under these modified
conditions, Wang and Bauman prepared 2,2’-biimidazoline in 77% yield.

Reggel et al. also reported the preparation of 11.° N-Lithioethylenediamine was
reported to catalyze the reaction of ethylenediamine to afford 11, hydrogen and ammonia in
a variety of aromatic hydrocarbons. N-Sodioethylenediamine was also reported to provide
11 in addition to other unidentified products. The identity of the aromatic hydrocarbon

Scheme 1.8

NH,
H 1 N N
o A\ \:]

HN  NH, oM

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



was reported to be significant and the best results were found when tetralin was used.
Similar results were reported when toluene, ethylbenzene, isopropylbenzene and stilbene
(cis and trans) were substituted for tetralin. There were few conclusions drawn by the
authors to explain these results. Wotiz et al. also report that 11 was among the many
products that were formed when ethylenediamine was treated with a strong base or alkali
metal in the absence of an aromatic hydrocarbon.’® Wotiz proposes that
N-lithioethylenediamine can undergo a P hydride elimination to form a metal hydride and
an imine. The metal hydride can then regenerate N-lithioethylenediamine. Through a
series of elimination and substitution reactions, 11 is formed in addition to NH, and H,.
This approach, however, is not an appropriate synthetic pathway to prepare tricyclic vicinal
bisamidines because of the many products which would be formed when a substrate other

than a symmetrical diamine was used.

Scheme 1.9
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Cyanogen and derivatives thereof have also been reported in the literature to react
with amines to afford bisamidines. Woodburn reported the synthesis of 11 from
ethylenediamine and cyanogen, as well as the synthesis of the analogous bisamidine
product from the reaction of 1,3-propanediamine and cyanogen.57'58 Weidinger and Kranz
prepared 2,2’ -biimidazoline (11) from ethylenediamine and ethane diimidic acid
dimethylester 12.%° The nitrile carbons of cyanogen undergo nucleophilic attack by sodium
methoxide in methanol to afford 12. (Scheme 1.10). Searches of the chemical literature
did not identify other methods for the preparation of cyclic vicinal bisamidines.

Scheme 1.10
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III. RESULTS AND DISCUSSION

Synthesis of 1.4.7.10-Tetraazacyclododecane (Cyclen)

The first target chosen for this study was cyclen (2). Unfortunately, the bisaminal
precursor required was unavailable. Jazwinski reported that condensation of glyoxal with
triethylenetetraamine results in the isomer containing more six membered rings 13 and
does not afford the desired isomer 14 (Scheme 1.11).4

Scheme 1.11

% SH ) % g"' M
N NH - NH NH; NH
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There has been some confusion conceming this reaction in the literature. Jazwinski
reports the major product to be cis-13. Sandnes et al. report in the patent literature that
cyclen was prepared, by a route different from the DIBALH route, via tricyclic precursor
14 which was prepared by reaction of triethylenetetraamine and glyoxal.%® The reaction of
triethylenetetraamine and glyoxal in CH3CN was run in our laboratories and evaluated by
3¢ NMR only. There are four possible bisaminal isomers which could be formed in this
reaction. They are shown in Scheme 1.12. The major product of the reaction was

conclusively assigned as isomer cis-13 having two nonequivalent methine carbons and

16
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Scheme 1.12
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three methylene carbons. Furthermore, these resonances are dynamically broadened as a
result of the enantiomerization of cis-13. The '3C chemical shifts corresponded to those
reported by Jazwinski for cis-13. There were many other resonances which were
consistent with the expected chemical shifts for the other isomers. Unfortunately, these
resonances could not be assigned to specific species.

As mentioned previously, tricyclic vicinal bisamidines suitable for this project have
not been reported in the literature. However, the reaction of ethylenediamine with
dithiooxamide or cyanogen derivatives did afford 2,2’-biimidazoline (11) preferentially
over 15 (Scheme 1.13). The reaction of dithiooxamide with triethylenetetraamine would in
theory force the insertion to proceed with the same regiochemistry as 11 to afford
bisamidine 16 (Scheme 1.14) which is the only logical bisamidine product. Dithiooxamide

Scheme 1.13
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Scheme 1.14

m
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was chosen as the acylating agent because it was commercially available and, furthermore,
for this chemistry to be a viable alternative to other methods for the preparation of cyclen,
the use of the very hazardous cyanogen must be avoided. Utilizing the conditions for the
preparation of 2,2’-biimidazoline (11) reported by Wang and Bauman, bisamidine 16 was
prepared (Scheme 1.14). Introduction of bromoethane to a slurry of dithiooxamide in
absolute EtOH prepared putative intermediate 17. Excess bromoethane was removed by
short path vacuum distillation to avoid alkylation of species other than dithiooxamide. The
orange solid was again suspended in EtOH and a solution of triethylenetetraamine in EtOH
was then added. The solution became homogeneous upon heating and afforded 16 as a
white solid following sublimation. The volatile byproducts generated in this reaction
(presumed EtSH and NH.,) were trapped by a gas scrubber charged with commercial
laundry bleach. It was later discovered that the bleach traps were not efficient and 30%
aqueous H,0, was found to work more effectively. This procedure was reported in the
Journal of Organic Chemistry 5!

Upon scale up of this procedure the isolation of punitive thioimidoester 17 was
18
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attempted. In theory, this salt could be prepared in large quantities and stored for further
conversion to 16 or other bisamidines. Surprisingly, all attempts to isolate 17 resulted in
the recovery of dithiooxamide starting material. We contacted Prof. J.E. Bauman who
confirmed that, although they stated in their publication53 on the preparation of 11 that
ethanethiol was generated, the identities of the volatile reaction byproducts were never
determined.5>%3 If thioimidoester 17 was not present in the reaction mixture, it is unlikely
that ethanethiol was evolved in this reaction. This hypothesis is supported by a report that
alkylation of dithiooxamide with alkyl halides is not a facile reaction.%

At this juncture, we began a series of experiments to establish what species were
synthetically relevant in this reaction. Dithiooxamide was treated with excess bromoethane
in EtOH as described for the preparation of 16. However, when the solvent was removed
by distillation, elemental analysis verified that the only species present in the residue was
dithiooxamide. Unfortunately this does not prove that 17 was not formed. The alkylation
of dithiooxamide by EtBr is a reversible reaction and EtBr is a highly volatile material.
These two conditions allow for the possibility that 17 is formed and, in the process of
removing the excess EtBr, the equilibrium of the reaction is driven back towards the
reagents by the removal of EtBr. Therefore, under the conditions utilized for the
preparation of 16, it is unlikely that 17 is active as the acylating agent.

Furthermore, the reaction of dithiooxamide and triethylenetetraamine in the absence
of EtBr afforded the bisamidine with no decrease in yield. Therefore, EtBr is not required

in the reaction to prepare 16. However, EtBr could, in theory, be serving as an activating

19
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reagent, increasing the rate of the reaction. While this is unlikely because the solvent and
excess EtBr are removed prior to the introduction of the tetraamine, a series of NMR
experiments were carried out to disprove this hypothesis.

Three controls were run so the identity of all species in solution of significant
concentration could be identified in either DMSO-d, or EtOD-d,. The chemical shifts for
dithiooxamide and EtBr are given in Table 1.2. The solubility of dithiooxamide in EtOH at
room temperature is so low that it is not detectable by NMR. Therefore, DMSO was used
in order to observe all species present in the reaction. However, the reaction solvent is
EtOH and it is also relevant to observe those species soluble in the reaction media. The
initial experiment was the reaction of dithiooxamide and EtBr in EtOH. This heterogeneous
mixture was concentrated by rotary evaporation and the residue was suspended in
DMSO-d,. All of the EtBr had been removed and only dithiooxamide was observed in the
NMR sample (Entry 1 of Table 1.2). This experiment, however, does not prove that 17
was not present prior to rotary evaporation. A second experiment was performed to
address this question. The same reaction was carried out using EtOD-d as the reaction
solvent. The supernatant was then removed by syringe and evaluated directly by NMR
(Entry 2 Table 1.2). An orange insoluble solid remained in the reaction flask. As can be
seen in Table 1.1 the only species soluble in EtOD-d; was EtBr. DMSO-d, was then added
to the reaction flask and the orange solid and any remaining supernatant were evaluated by
NMR as well (Entry 3 Table 1.2). The NMR spectrum for the ethyl groups of 17 would

be expected to be dramatically different than those of EtBr. The observed resonances in the
20
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Table 1.2: Reaction of Dithiooxamide and Bromoethane.
Reaction Conditions and NMR Data for the Reaction Products

Sample Reaction NMR Sppm dppm Oppm O ppm
S NH>
A HoN S control DMSO-dg 9.58 10.18
B ~_Br control  DMSO-dg 1.63 3.40
C ~Br control  EtOD-dg¢ 1.63 3.43
S NH2
— EtOH, 4 h,
1 HoN S 60°C DMSO-dg 9.59 10.15
+ remove
~Br solvent
S NH
2 EtOD-dg
HoN S 4 h, 60°C
2 + cupernatan  EOD-ds  1.63  3.40
.- Br
S NH2
Y~ EtOD-ds
HoN S 4 h, 60°C
3 + solids DMSO-d, 1.58 3.49 9.58 10.19
~.-Br
21
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experimental spectrum were consistent with the control spectra for dithiooxamide and EtBr.

Therefore, thioimidoester 17 is not present in any quantity detectable by NMR and is not

synthetically relevant in the preparation of 16 under the conditions employed.

One significant aspect of these observations is that the volatile reaction products

evolved must be ammonia and hydrogen sulfide, not ammonia and ethanethiol. While

hydrogen sulfide is convenient to trap (30% aqueous NaOH instead of H202) it is much

more hazardous than ethanethiol.

1.5 This information was published as a correction to our

original paper in the Journal of Organic Chemistry.66 The modified reaction has been

carried out on up to 10 g of dithiooxamide starting material and 16 was obtained in 78%

yield following sublimation (16 can also be recrystallized from toluene). The bisamidine

was found to be hydrolytically labile. This will be discussed later in this section.

The reduction of 16 with DIBALH afforded cyclen (2) which was the only product

observed in this reaction (Scheme 1.15). We originally used the NaF procedure for the

workup of this reaction.5'

The NaF procedure is a common method for the workup of

DIBALH reductions’®” and was also used by Yamamoto.?® The product can be isolated

Scheme 1.15
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using the NaF procedure, but a Soxhlet extraction of all solids generated in the reaction was
required, making this method more laborious. We later modified the reaction employing an
aqueous KOH workup for the DIBALH reduction. The aqueous KOH method avoids
heterogeneous mixtures allowing for a simple liquid-liquid extraction to isolate the crude
product. The reduction has been carried out utilizing the aqueous KOH method on up to 10
g of bisamidine with a yield of 89% (Scheme 1.15).

At the request of the editors of Organic Syntheses this new method for the
preparation of cyclen has been submitted for publication. The procedure was written to
include the modifications in the reduction workup and is currently undergoing the checking
process. The procedure as well as the discussion section, as submitted to Organic
Syntheses,%® can be found in the Appendix Section of this dissertation.

This two step preparation of cyclen has an overall yield of 69% from
tricthylenetetraamine. The starting materials are relatively inexpensive, commercially
available materials. The only significant drawback to this chemistry is the evolution of
hydrogen sulfide. However, on the modest scale of 10 g, the quantity of hydrogen sulfide
generated can be easily trapped with aqueous-base filled gas scrubbing bottles. The
simple, inexpensive method reported here to prepare cyclen is a viable alternative to other
chemical preparations previously discussed. This two-step approach is synthetically much
simpler than the Richman-Atkins method which was considered to be the method of choice
to prepare cyclen. A 52% yield was the best result found in the chemical literature for

preparation of the tetrahydrochloride salt of cyclen using the Richman-Atkins method.®®
23
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Scheme 1.16
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This result was for the cyclization and detosylation steps and does not include the

preparation of the two precursors.

Recently, a new route for the preparation of cyclen (2), cyclam (1) and 13[ane]N,

(19) has recently been developed by Hérve and coworkers.”® This new method also boasts

high atom economy using a diketone as an exo-template. As shown in Scheme 1.16, a

linear tetraamine is reacted with 2,3-butanedione to afford a tricyclic vicinal bisaminal. The

bisaminal can then be further cyclized to afford a tetracyclic bisaminal. The exo-template

(2,3-butanedione) is then removed in good yield by acidic hydrolysis. This three step
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sequence affords cyclen as the hydrochloride salt in an overall yield of approximately
50%.7° Cyclam (1) and 13[ane]N A (19) were also reported to be prepared in comparable
yield. This process, however, includes an extra step and yields are lower, but this
method does avoid H,S and DIBALH which are advantages over our approach. This route

is a viable alternative to our methodology.

Synthesis of 1.4.7.10-Tetraazacyclotridecane.

The required tetraamine (1,4,7,10-tetraazaundecane) for the preparation of
bisamidine 18 was commercially available as the tetrahydrochloride salt. Isolation of the
free amine followed by reaction with dithiooxamide under the same conditions as used for
the preparation of 16 afforded bisamidine 18. This reaction has been carried out on up to
a 4 gram scale in 58% yield. Reduction of bisamidine 18 with DIBALH cleanly gave
1,4,7,10-tetraazacyclotridecane (19) in 89% yield after sublimation. This sequence is
shown in Scheme 1.17. Hung has reported the synthesis of 19 using the Richman-Atkins-
Stetter approach.n The synthetic sequence included four steps from 1,4,7,10-

Scheme 1.17
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tetraazaundecane and had an overall yield reported to be 17-26%. Our new methodology
provided 1,4,7,10-tetraazacyclotridecane in two steps from 1.4,7,10-tetraazaundecane in

52% yield.

Synthesis of 1.4.8.11-Tetraazacyclotetradecane (Cyclam)

Jazwinski reported the condensation of glyoxal with 1,3-propanediamine.45 In this
case, the major product was reported to be 2,2’-bihexahydropyrimidine 20 whereby the
two-carbon unit was inserted such that the desired bisaminal with two 6-membered rings
was formed. Jazwinski further elaborated 20 to tricyclic bisaminal 21 and determined the
stereochemistry of the ring fusion to be trans.

Condensation of glyoxal with 1,3-propanediamine in our laboratory gave 2,2’-
bihexahydropyrimidine in a 37% yield under the conditions reported by Jazwinski. In our
hands, treatment of 2,2’-bihexahydropyrimidine (20), prepared by the literature method,
with glyoxal followed by reduction with NaBH, did not give a clean reaction product but a
mixture of two species (Scheme 1.18). The major product was identified as the trans
-perhydrotetraazaphenathrene (trans-21) reported by Jazwinski. The spectral

Scheme 1.18
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Scheme 1.19
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characteristics of the minor product were consistent with the cis isomer (cis-21). NMR
analysis estimated the composition of this mixture to be approximately 80:20 (trans:cis).
The trans isomer was purified by fractional recrystallization, however, the postulated cis
isomer was never isolated in sufficient purity to be fully characterized.

DIBALH reduction of the crude bisaminal mixture believed to be trans/cis
perhydrotetraazaphenanthrene afforded a mixture of #rans-21 and cyclam (1).
Surprisinély, the minor component postulated to be cis-21 had been completely consumed
and the frans-21 starting material was almost quantitatively recovered (Scheme 1.19).

Reaction of N,N’-bis-(2-aminopropyl)-ethylenediamine (22) with
dithiooxamide provided bisamidine 23 (Scheme 1.20). However there was another
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complication which had not occurred in the previously discussed bisamidine syntheses.
The major component of the reaction mixture 23, was contaminated with a second species.
This species was determined by NMR analysis to be 24. Hydrolysis of 23 by one
equivalent of H,O could give rise to 24.

This hypothesis was confirmed by a series of NMR experiments on the crude
reaction product. Scheme 1.21 shows the results of these experiments. Hydrolysis of the
crude reaction mixture with D,O in an NMR tube gave a single species in solution
consistent with 25. Rotary evaporation of the solvent with added absolute EtOH to
azeotropically remove the water resulted in partial dehydration of bisamide 25. NMR
analysis (CDC13) after rotary evaporation identified bisamide 25 as the major component
along with dehydrated species 24. This result suggested that the crude product from the
reaction of dithiooxamide and the tetraamine 22 might also be dehydrated to give only
bisamidine 23. Azeotropic distillation of the crude bisamidine mixture with toluene for 3
days gave 23 of sufficient purity (~90%) for attempted reduction. The yield of 23 was
approximately 25% following dehydration. Further discussion of the hydrolysis of
tricyclic bisamidines can be found later in this section.

Scheme 1.21
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Scheme 1.22
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Unfortunately, DIBALH reduction of bisamidine 23 resulted in zZrans-21 as the
only product. No starting material was observed nor was further reduction to cyclam.
Even under conditions using longer reaction times or large excesses of DIBALH only
trans-21 was observed. Reduction of 23 with LiAIH, similarly resulted in the formation
of trans-21 only (Scheme 1.22). From these results it is reasonable to propose that
bisamidine 23 is initially reduced such that the two hydrides have been delivered trans to
each other. This intermediate is common to the previously discussed failed reduction of
trans-21 and further reduction of this species to cyclam is apparently unfavorable.

However, the reduction of the crude trans/cis-21 gave cyclam and unreacted
trans-21. Therefore, it is reasonable that the trans stereochemistry of the ring junction is
the controlling factor in the susceptibility of this ring system towards reduction. We have
rationalized two qualitative arguments to explain the observed results. As shown in Scheme
1.23, the reduction process for each aminal moiety of the cis/trans-21 mixture can be
divided into three steps. The first step is deprotonation of the aminal to afford cis-26 and
trans-26. The second step, for an imine mediated mechanism, is the reversible process to

afford imines 27 and 27°. The final step is the DIBALH reduction of 27 and 27°. It is
29
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Scheme 1.23
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possible that frans-21 is robust towards reduction because of strain introduced into the
transition state of a rate determining step from frans-26 to 27. Alternatively, there is a
pre-equilibrium of trans-26 and 27 preceding a rate determining step. Strain introduced
into 27 may result in a large difference in energy between trans-26 and 27 making this
equilibrium largely favor trans-26 over 27. In either case, the pathway from cis-26 to
cyclam must not introduce strain in the transition state that leads to 27 or in imine 27°

relative to the frans isomer.

Synthesis of Benzocyclam

This methodology was extended to the preparation of benzocyclam. The
preparation of benzocyclam is unreported in the literature but there is a report on its
photoelectron (PE) spe-,ctrum.”2 The introduction of one unsaturation into the central ring

of this system will distort the conformation of the reactive intermediate 29, with respect to
30
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Scheme 1.24
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the saturated case (21), which might facilitate ring opening. Furthermore, as can be seen in
Scheme 1.24, if an equilibrium between 29 and 30 was established, species 30 should be
favored as a result of the electronic effect of the adjacent aromatic ring. Either or both of
these factors may be operative. In any event, both factors would facilitate the formation of
the ring opened product 30.

N,N’-bis(3-aminopropyl)-1,2-phenylenediamine (31) is the appropriate tetraamine
required for the preparation of a tricyclic bisamidine precursor for benzocyclam (Scheme
1.24). This tetraamine was unreported in the literature. However the preparation of a
possible precursor, N,N’-bis-(2-cyanoethyl)-1,2-phenylenediamine (32), had been
reported.” Reaction of 1,2-phenylenediamine with acrylonitrile in CH,CN under the
catalysis of cupric acetate (Cu(OAc)z) did afford 32 in 22% yield after recrystallization
(Scheme 1.25). Even though this yield is poor, the low cost of the reagents and the ability
to easily run this reaction on 50-100 gram scale allows for the preparation of multi-gram
quantities of 32.

Reduction of 32 with AICL/NaBH, " in THF afforded

N,N’-bis(3-aminopropyl)-1,2-phenylenediamine (31) in 61% yield following Kugelrohr
31
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Scheme 1.25
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distillation (Scheme 1.24). The reduction was also performed using BH3'THF in ~95%
yield on less than a one gram scale. Upon scale up (~5 gram scale), these yields fell
dramatically and typically a 50% yield was realized. The AICL/NaBH, method was
chosen because the BH,*THF method was more laborious and expensive while affording
comparable yields. 1,2-Phenylenediamines are susceptible to oxidation as free amines and,
as a result, 31 is extremely labile towards oxidation by atmospheric oxygen. This
oxidation can be avoided by treating 1,2-phenylenediamines with strong acids and storing
them as salts. In the workup of the AlC1,/NaBH, reduction all solutions were carefully
purged of oxygen and kept under N,,. A continuous extraction was employed in order to
isolate the product from the basic reaction medium and the operation was carried out under
a N, atmosphere. The crude product was a brown oil which was purified to a yellowed oil
which solidified in the receiver following Kugelrohr distillation.

Unfortunately, cyclization of 31 with dithiooxamide did not provide desired
bisamidine 28 (Scheme 1.26). However, the condensation of 31 with glyoxal in
EtOH/CI-13CN (1:1) did afford 33 as a mixture of diastereomers in 89% yield (Scheme

1.27). The diastereomeric ratio of this mixture was estimated to be 3:1 by 'H NMR
32
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Scheme 1.26
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integration. This mixture was robust towards oxidation and showed no signs of oxidative
degradation after three weeks of storage. The two diastereomers were never separated and
it was never determined conclusively which isomer was in greater abundance in the reaction

product.

Scheme 1.27
NH NH, EtOH/CH,CN STNH
$ o )

31 3

Reduction of 33 with DIBALH gave benzocyclam (34) (Scheme 1.28). An
ethanolic solution of the crude reaction product was treated with 12M HCI to prohibit
oxidation. Concentration of this solution by rotary evaporation gave a pink powder.

Scheme 1.28
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Trituration of this powder with hot EtOH removed the color from the solid and afforded a

white powder following vacuum filtration. Liberation of the free amine by base extraction

afforded 34 in a 57% yield.
Attempted Synthesis of a Bisamidine Precursor for 1.4.7.11-Tetraazacyclopentadecane and

Alternative Precursor for 1.4.7,10-Tetraazacyclotridecane.

Reaction of N,N’-bis(2-aminoethyl)-1,3-propanediamine with dithiooxamide might
be expected to afford bisamidine 35, which would be another precursor to
1,4,7,10-tetraazacyclotridecane (19). This sequence is shown in Scheme 1.29.
Unfortunately, this reaction did not proceed cleanly. Spectra of the crude product did
support product formation but there were multiple unexplained resonances also present
which did not correspond with starting material or hydrolyzed bisamidine product. These
signals are most likely due to either product decomposition or alternate chemistry leading to
unwanted byproducts. Lengthening or shortening reaction time did not enhance the ratio of
product to the impurities and conditions to optimize the yield of the bisaminal formation

Scheme 1.29
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were not found. To further complicate matters, purification of the bisamidine product was
unsuccessful.

Similar difficulties were encountered in the reaction of
N.N’-bis(3-aminopropyl)-1,3-propanediamine with dithiooxamide. This reaction should
provide 36 which, following successful DIBALH reduction, would afford 37 (Scheme
1.30). There were NMR data which supported product formation but the identity of the
majority of material in the sample is unknown. Purification of this crude mixture was
unsuccessful and purified 36 was never obtained.

Scheme 1.30
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Investigation of Reagents for Bisamidine Formation Other Than Dithiooxamide.
Dithiooxamide, while effective for the preparation tricyclic bisamidines, was by far
the most expensive reagent in this new methodology. More significantly, the generation of
hydrogen sulfide also makes the scale up of these reactions less attractive because of
inefficient trapping of the gaseous byproducts would be dangerous. Therefore, finding an
alternative reagent for introduction of the two amidine carbons would be an improvement in

the methodology.
35
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Simple, readily available, reagents such as oxamide, diethyloxalate and oxalic acid
all failed to provide 16 when reacted with triethylenetetraamine under a variety of
conditions. As previously mentioned, another alternative is cyanogen or a derivative
thereof. The Pinner method for the formation of amidines from nitriles has been well
documented. 437576 In this method, a nitrile is converted to an imido ester, which is
converted to the amidine. A derivative of cyanogen such as ethane diimidic acid
dimethylester 12 (Scheme 1.10, pg 15) would be an ideal reagent since the byproducts
would be an alcohol and an amine, posing no difficulties. There are procedures for the safe
generation and use of cyanogen, but overall cyanogen presents a far greater problem than
hydrogen sulfide.”’-”? Therefore, another means of preparing 12 is desirable.

Kantlehner et al. have investigated the alkylation of an oxamide derivative with
trimeth.yloxonium tetrafluoroborate.®® They have reported that initial treatment of
N,N,N’,N’-tetramethyloxamide (38) with trimethyloxonium tetrafluoroborate affords 39
where one oxygen has undergone alkylation (Scheme 1.31). This species then reacted with
an equivalent of amine to give 40. Further reaction of 40 with trimethyloxonium
tetrafluoroborate was incomplete but did provide dication 41. Introduction of another
equivalent of amine however, afforded three products; the expected dication of
tetrakis-(dimethylamino)-ethylene 42, 40 and a quaternary ammonium salt. Therefore 41
would not be an appropriate candidate for a dithiooxamide synthon because introduction of
triethylenetetraamine would likely lead to a mixture of products.

However, we hypothesized that the dication of tetrakis-(dimethylamino)-ethylene
36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Scheme 1.31
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may be a suitable candidate. The appeal of this synthon is, during the acylation reaction,
dimethylamine would be the byproduct and the reaction could be driven by the generation
of gaseous byproducts. This idea is shown in Scheme 1.32 where dimethylamine is the
low molecular weight amine byproduct. Fortunately, dications such as 42 are readily
available from oxidation of the appropriate tetraaminoethylene.?! Treatment of an ether
solution of tetrakis-(dimethylamino)-ethylene (43) with bromine according to the literature
procedure®! afforded the desired oxidized product 44 in 93% yield (Scheme 1.33).

Scheme 1.32
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Scheme 1.33
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Treatment of 44 with triethylenetetraamine did not cleanly provide 16. The most promising
result was obtained from the neat reaction of 44 and triethylenetetraamine. While evidence
for the formation of 16 could be seen by NMR, the majority of the reaction product was
unidentified. It is possible that the competing polymerization reaction between 44 and
triethylenetetraamine was more facile than the cyclization reaction to afford 16 under the
conditions investigated. Furthermore, a dealkylation reaction could take place which would
transfer a methyl group to triethylenetetraamine complicating the formation of 16. Other
reaction conditions included the use of alcoholic solvents (ethanol, isopropanol and
n-butanol) but we were unable to find conditions that gave 16 as the major product. These
solvents could also react with 44 to give thioimidic esters causing further complications in
the reaction. At this juncture, it was determined that dithiooxamide was the best synthon

for this chemistry and further attempts to replace it were abandoned.

Attempted Preparation of Dibenzotetraaza Macrocycles

Thummel has reported the preparation of a number of tricyclic bibenzimidazoles and
38
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the conditions required to prepare these substrates from 2,2’-bibenzimidazole (45).82
Thummel et al. also reported that species 46 (see Scheme 1.34), where the central ring is a
six membered ring, could not be prepared under any éonditions they employed.
Furthermore, there are only two citations in the literature for this compound and both report
poor yields (~10%) for the desired product.¥>#

2,2’-Bibenzimidazole (45) was required for the preparation of 6,7-
dihydropyrazino[1,2-a:4,3-a’ Jbisbenzimidazole (46). The preparation of 2,2°-
bibenzimidazole has been reported by Fieselmann.®3 The reaction of 1,2-
phenylenediamine and oxamide afforded 45 in 68% yield in our hands. A method was
developed to cyclize this substrate to 46 by deprotonation of 45 with NaH in DMF
followed by the addition of 1,2-bis[(p-tolylsulfonyl)oxy]ethane. The procedure used was
similar to the method reported by Roechling.83 The mixture was heated at reflux for 7 days
and afforded 8% yield of 46 after recrystallization. Possible complications leading to the
low yield could arise from elimination reactions which take place on the alkylating agent.
Ring closure might also be slow as a result of the strain introduced in addition to the poor

Scheme 1.34
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Scheme 1.35
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trajectory the incoming nucleophile is forced to accommodate in this S, 2 reaction.
Nevertheless, 46 was obtained in sufficient quantity and purity for attempted reduction.

The regioselective DIBALH reduction of 46 was attempted using the conditions
which were found to be successful with other bisamidines. Unfortunately, the reaction did
not proceed cleanly and the identities of the reaction product(s) were never conclusively
determined (Scheme 1.35). Increased reaction times and increasing the number of
equivalents of reducing agent did not improve the results. The best hypothesis for the
outcome of this reaction supports incomplete reduction of 46. MS data gave a molecular
ion which was consistent with cleavage of only one amidine moiety of 46. Furthermore,
compound 47, which was also prepared from 2,2’ -bibenzimidazole, also failed to undergo
clean reduction by DIBALH. As a result, no dibenzotetraaza-macrocycles have been

prepared by this methodology.

Attempted Preparation of Bisamidines from 2.2°-Biimidazoline
There is a potential synthetic pathway to many different bisamidines starting from

2,2’-biimidazoline (11). For example, alkylation of 11 with a ditosylate or a dihalide
40
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Scheme 1.36

could lead to tricyclic vicinal bisamidines. The significance of establishing this
methodology would be that this route could allow for the preparation of C-functionalized
tetraazacycloalkanes. This idea is shown in Scheme 1.36. It would be much simpler to
prepare C-functionalized analogues from the parent bisamidine, 11, than to go back into
the synthetic method and develop a strategy to incorporate functional groups into the carbon
backbone of the linear tetraamine.

The initial target for this idea was to prepare bisamidine 16, the cyclen precursor.
This was an ideal choice because the amidine was already well characterized and the ring
closure forms a six membered ring. 2,2’-Biimidazoline was prepared in 56% yield by the
reaction of ethylenediamine and dithiooxamide. The product was purified by
recrystallization from CH,CN and was found to be insoluble in most common solvents.
1,2-Dibromoethane was introduced to a suspension of 11, KI and K2C03 in CH3CN and
the resulting mixture was heated at reflux for 20 hours (Scheme 1.37). Unfortunately, ring
closure was not facile and no evidence for the formation of 16 was found by NMR. The
ability of the 2,2’-biimidazoline to hydrogen bond intermolecularly might decrease the

nucleophilicity of the amidine moiety making the reaction less favorable than anticipated.
41
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Reaction of 2,2’-biimidazoline with hexamethyldisilizane (HMDS) 48 has been reported in
the literature to afford 49 in good yield.%¢ 49 was prepared by this method. As shown in
Scheme 1.37, the cyclization reaction between 49 and propyleneglycol ditosylate
unfortunately did not afford bisamidine 35 after refluxing in CH,CN for 1 day. While
these few attempts at preparing a tricyclic bisamidine from 2,2’-biimidazoline were not
successful, further attempts under different reaction conditions such as different solvents
(DMSO, DMF or DMPU) or using the sodium salt of 2,2’-biimidazoline need to be

explored.

Hydrolysis of Vicinal Bisamidines
As mentioned previously, tricyclic vicinal bisamidines react with water readily to

form bisamides. The hydrolyses of bisamidines 16, 18 and 23 have been investigated.
42
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Scheme 1.38
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There is the possibility that each amidine moiety can be fully hydrolyzed in either of two
ways leading to three possible products from a symmetrical bisamidine. This is shown in
Scheme 1.38 for bisamidine 16. However, for 16, only one of these isomers was
observed. In an NMR experiment, 16 was dissolved in D,O and only 50 was observed.
The '"H NMR spectrum is shown in Figure 1.1. The unsymmetrical isomer 52, which
would have eight 1*C resonances (two in the carbonyl region), can be eliminated based on
the relatively few resonances in the 'H and *C NMR spectra which dictate that the product
must have a high degree of symmetry. The 13C spectrum had only four resonances, which
is consistent with either 50 or 51. The assignment of the structure as 50 rather than 51 is
based primarily on the chemical shIift of the methylene hydrogens adjacent to the primary
amino group at 2.7 ppm. It would be expected that the 'H chemical shift for the singlet of
51 would be very close to the triplet at 2.7 ppm because they are both adjacent to the
secondary amino group. However, the singlet in the observed 'H spectrum is very close to
the downfield triplet for the methylene adjacent to the amide moiety. This is most consistent
with isomer 50. In all cases studied, the bisamidine moiety hydrolyzes regioselectively to

give a 6-membered cyclic tertiary bisamide with two primary amino chains. Bisamidines
43
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Figure 1.2: 'H NMR Spectra for 16 and 50.
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18 and 23 gave results analogous to 16 as shown in Scheme 1.39. Unfortunately,
attempts to isolate and characterize these bisamides gave mixtures of amides and
monoamide-monoamidines. Furthermore, 'H NMR data for the material isolated from

D20 for 53 was most consistent with a mixture of 53 and 54.
44
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Scheme 1.39
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As mentioned briefly in the discussion of the preparation of bisamidine 23, a

mixture of bisamidine 23 and monoamide-monoamidine 24 was dehydrated by azeotropic

distillation with toluene. This process is shown in Scheme 1.40. Azeotropic distillation of

50 with toluene with a Dean-Stark trap similarly afforded 16. While never investigated,

addition of catalytic acid or base should facilitate this process, which may prove to be a

useful synthetic tool in future experiments.

Scheme 1.40
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Transamidation (“Zip™) Reaction of Bisamide 51.

It would have been a fortuitous result to have obtained 55 over 25 in the hydrolysis
of 23 (Scheme 1.41). For those bisamidines which do not undergo DIBALH reduction
efficiently, an alternative synthetic route to the tetraazacycloalkane might have been to
reduce the cyclic secondary amides. For example, isolation of 55 could give cyclam (1)
upon reduction of the amide moieties as shown in Scheme 1.41. Macrocyclic bisamides
such as 55 would also be interesting ligands for metal complexation. One example has
been reported by Agra et al., who have described the preparation of 51 (Scheme 1.42)
from triethylenetetraamine and diethyloxalate.®” This compound was prepared to study
complexes with various transition metals. However, sufficient evidence for the
characterization of 51 was not presented in this paper. Recently, another group has
reported the synthesis of 51 and its subsequent reduction to cyclen (2) with BH3-TI-IF.88
Again 51 was prepared from the reaction of triethylenetetraamine and diethyloxalate. The
reaction of these two reagents was briefly investigated as a possible route to tricyclic
bisamidine 16 as mentioned previously. Furthermore, this reaction was also investigated

Scheme 1.41

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Scheme 1.42

(7 NH, " NHp

(X - Ao Eko
i oJLo e

k/ NH, /
50

using the conditions reported by Aqgra and no conclusive evidence for the formation of 51
was obtained.®® Bisamides of other ring sizes, such as 55, have not been reported.
Hesse has reported transamidation reactions coined as “Zip reactions” which
involve amide and amino moieties.’>? We believed this chemistry might be useful in the
conversion of 50 to 51 (Scheme 1.42). “Zip reactioﬁs” are also endo-templated reaction
(see Figure 1.1, pg 12).** This type of endo-templated reaction proceeds by the insertion
of a side chain into the ring, resulting in a ring expansion. A “Zip reaction” may often
takes place repeatedly in a cascade manner. This idea is illustrated in Figure 1.3. An

Figure 1.3: Endo-Templated “Zip Reaction”
47
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Scheme 1.43
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example of this chemistry is shown in Scheme 1.43. The “Zip reactions” proceed by the
nucleophilic attack of the amino nitrogen on the amide carbon, forming a tetrahedral
intermediate. This intermediate can then close down breaking the C-N bond to transamidate
the substrate. These reactions are often run under thermodynamic control and are driven
by the difference in acidity between amino and amide protons (approximately 20 orders of
magnitude in water). 56 can be ring-expanded to 59 following treatment with KAPA.%?
57 is the conjugate base of a secondary amine, which is a much less stable anion than the
deprotonated amide S8. Therefore the equilibrium between 57 and 58 is driven to 58 and
the ring expanded amide 59 is the major product.

A similar situation could be set up between 50 and 51 to ring expand the 6-
membered ring into the 12-membered ring. The proposed transamidation reaction is shown
in Scheme 1.44. Treatment of S0 in toluene with potassium rerz-butoxide at reflux did not

afford 51 as the major product. The presence of the base did not drive the equilibrium to
48
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Scheme 1.44
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the desired secondary amide but instead facilitated dehydration to give the parent bisamidine
(16) (Scheme 1.45). Dehydration was also the more favorable process when the solvent
was changed to isopropyl alcohol. Unfortunately, conditions were not found which favor
transamidation over dehydration for these compounds. Further work in this area is needed
which should include the use of stronger bases, such as KAPA, and other solvents.

Scheme 1.45
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Protonation of 2.3.5.6,8.9-Hexahydrodiimidazof1.2-a:2 .1’-c]pyrazine (16) in CD.CN.

Protonation of 16 with trifluoroacetic acid (TFA) in CD3CN was investigated in an
NMR experiment. Introduction of 0.5 equivalents of acid to the bisamidine shifted the
resonances for each methylene downfield as seen in Table 1.3. A broad singlet for the
acidic proton was found at 8.11 ppm. Addition of another 0.5 equivalents of TFA further
shifted this resonance to almost 9 ppm. Some sample degradation was observed at this
juncture likely due to hydrolysis. There are also significant upfield shifts observed in the
13C resonances. The most dramatic change is for the amidine carbon. The protonation of
the amidine moiety shifts this resonance almost 2 ppm upfield upon the addition of a full
equivalent of acid.

Table 1.3: NMR Data for the Protonation of 16 with TFA.

1H NMR 13C NMR
Oeq. TFA 05eq. TFA 1leq. TFA Oeq. TFA 05eq. TFA 1leq. TFA
3.20 3.31 3.50 156.5 155.1 153.6
3.27 3.39 3.63 54.63 52.76 51.95
3.70 3.77 3.89 52.74 52.30 50.98
— 8.11 8.93 46.29 45.33 44.58
Preparation and Further Studies of Derivatives of 2.3 -Hexahvdrodiimi 12-

a:2’.1’-clpyrazine (16).
16 can be used as a nucleophilic species to prepare amidinjum salts. As can be seen
in Scheme 1.46, alkylation of 16 with benzyl bromide in toluene at room temperature for 3
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Scheme 1.46
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days cleanly afforded amidinium salt 60 in 96%. Changing the reaction conditions such
that excess benzyl bromide in refluxing CH,CN was used did not afford the bisalkylated
salt 62. NMR spectra showed that 60 was the major product. The other resonances
observed in the NMR spectrum were complex and were most likely a result of a
complicated mixture. This mixture could result from the presence of adventitious water in
the reaction mixture which could give rise to many different hydrolysis products. There
was no conclusive NMR evidence for the formation of 61 and therefore these data suggest
that the second alkylation was not favorable. Benzylation of 60 to afford 61 would be
expected to be a slow reaction as a result of the steric bulk provided by presence of the first
benzyl group and the positive charge on the adjacent amidinium moiety.

DIBALH reduction of 60 for seven days gave a mixture of three products which
were not separated but identified by NMR. As shown in Scheme 1.47, the NMR evidence
was consistent with aminal 62 and two isomeric amines, 63 and 64 as the products of the
reduction of 61. Surprisingly, even after extended reaction times, 62 was the major
product of this reaction. The other two products, observed in a roughly 1:1 ratio, could

arise from cleavage of the aminal moiety by further reaction of 62 with DIBALH. It would
51
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have been fortuitous to have obtained only one of the 2 isomeric amine products (63 or 64)
but no control of the regiochemistry in the reduction of 62 was observed.

Similar results were obtained in the hydrolysis of 60, whereby the regiochemical
control over the hydrolysis at the amidinium carbon was lost. An NMR experiment was
performed by dissolving 60 in D20. The NMR data obtained were consistent with a
mixture of 65 and 66. The results of this experiment are shown in Scheme 1.48.

We hypothesized that the mixture of polyamine isomers observed in the DIBALH
reduction of amidinium salt 60 might possibly be biased by changing the group which is
introduced in the alkylation step. The reduction mechanism is illustrated in Scheme 1.49.

Scheme 1.48
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The isomeric products 63 and 64 result from the reduction of 62 to 67 and 62 to 68. We
hypothesized that the DIBALH reduction could be biased to favor either 67 or 68 by
changing the group added in the alkylation reaction of 16. Reaction of 16 with tosyl
chloride is expected to afford amidinium salt 69 (Scheme 1.49). The tosyl group should
bias the reduction of 69 to favor the 9-membered ring product (70) because of the stability
of the tosyl amide intermediate (71) over the secondary amide intermediate (72). Reaction
of tosyl chloride with 16 in toluene at room temperature gave a precipitate which was
insoluble in all common NMR solvents except DMSO-d - Unfortunately, this experiment
has inherent ambiguity in that the DMSO-d was contaminated with trace water. NMR

data were consistent with 73. Therefore, the hydrolysis of the desired product 69 to the
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mono-amide/mono-amidine 73 may be taking place in the reaction or in the NMR tube
from the water-contaminated solvent. This hypothesis is illustrated in Scheme 1.50. If the
hydrolysis is taking place in the NMR tube then the amidinium salt is the species with poor
solubility characteristics, which may be problematic. If the hydrolysis is taking place in the
reaction then little is known about the amidinium salt at this juncture. The one essential
piece of data that was obtained from this experiment is the fact that hydrolysis of 69 gave
only one product (73) and not a mixture of isomers. This shows great promise that the
DIBALH reduction will also proceed regioselectively to afford 74. If 69 cannot be
isolated it is likely that 73 would also undergo DIBALH reduction to afford 74.
Experiments were also performed aimed at preparing tetraacyclic bisamidinium
adducts of bisamidines. An example of this chemistry is shown in Scheme 1.51. Species
such as 75 would also be interesting as precursors for tetraazacycloalkanes. Dications

such as 75 are known compounds and their chemistry has been studied.”> Reduction of
54
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Scheme 1.51
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75 would be expected to give rise to interesting substrates for further chemistry. Reaction
of 16 with 1,2-bis[(p-tolylsulfonyl)oxy]ethane in CH,CN at reflux did show promising
results. Treatment of the crude reaction mixture with a saturated ethanolic solution of
NaBPh, precipitated a white solid. NMR analysis of this solid was consistent with

previously reported spectra for 75.2°

Diels-Alder Chemistry of Vicinal Bisamidines

The tricyclic vicinal bisamidine structure forces the diene portion of the molecule to
be held in a s-cis conformation. Therefore these bisamidines may be suitable dienes for
Diels-Alder chemistry. However, there are very few examples in the literature of a
N=C-C=N diene system.”* These novel bisamidines offer the opportunity to investigate
this rare diene system. The Diels-Alder adducts which would be formed would be
tetraaminoethylenes, highly electron rich species which are very labile.>® A Diels-Alder
reaction was attempted between 16 and N-phenlymaleimide (Scheme 1.52). It was
desirable that the dienophile chosen have symmetry in order to minimize the number of

regiochemical isomers which could be produced. N-Phenylmaleimide was chosen because
55
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the imide would be hydrolytically more robust than maleic anhydride while retaining good
reactivity as a dienophile.96 Furthermore, the phenyl group provides an extra NMR handle
10 aid in the elucidation of the identity of the reaction products. The reaction was run in
toluene for 7 days. The reaction mixture did change color to give a slightly orarige solid
following rotary evaporation. Unfortunately, no reaction was observed and starting
material was observed by NMR analysis. Other dienophiles or higher boiling solvents have

not been investigated.
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CHAPTER II

SYNTHESIS OF CROSS-BRIDGED CYCLAM DERIVATIVES

I. INTRODUCTION

The many applications which have been developed for polyazacycloalkanes have
been a direct result of the variety of structurally diverse polyazacycloalkane derivatives
which have been prepared. In fact, polyazacycloalkanes are a small subset of ligands
which are generally referred to as polyamine macrocycles. A polyamine macrocycle is
often designed to be selective for a given cation by a series of structural modifications of a
parent structure. These modifications have become essential tools in the rational design of
ligands for specialized applications.

A modification which often affects the metal complexing properties of a polyamine
macrocycle is restriction of the conformational flexibility of the molecule. One approach to
restrict the conformational flexibility of a c.yclic structure is to link or “bridge” parts of the
ring together. This bridging is often accomplished by the functionalization of adjacent or
nonadjacent nitrogen atoms of a polyamine macrocycle.

The first synthesis of a bridged derivative of cyclam (1) was reported by
Wainwright, who prepared 81a and 81b by the reaction of 1,2-dichloroethane with

cyclam.97 The two nitrogen atoms located adjacent to each other in the ring system were
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bridged in this reaction. This chemistry is shown in Scheme 2.1. Wainwright later
expanded the series of “structurally-reinforced” macrocycles and prepared the cyclen
derivatives 82a and 82b.”® 82a displayed different coordination chemistry than what was
reported for cyclen. For example, the Ni%* complex of 82a had square planar geometry
and the ligand was “frans” coordinated®® instead of “cis” coordination as typically observed
for Ni%* complexes of cyclen.?®-1%0

Alternatively, it is also possible to bridge a nonadjacent pair of nitrogen atoms of
cyclam (1). While synthetically more challenging, bridging of nonadjacent nitrogen atoms
of cyclam was accomplished by Weisman and Wong in 1990.'%! This “cross-bridged”
cyclam is a bicyclic tetraamine which can adopt low energy conformations having all four

nitrogen lone pairs convergent upon a cleft (Scheme 2.2). It was shown by Weisman and

Scheme 2.2
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Wong that 83 was strongly basic and formed strong complexes with Li*. The synthesis of
cross-bridged tetraamine ligands will be discussed in the following background section.

Another approach for the preparation of cross-bridged polyamine macrocycles was
reported by Micheloni and coworkers.!%? In this synthesis a selectively protected
tetraamine is required as shown in Scheme 2.3. The secondary amino nitrogens react with
the acid chloride moieties to install the cross-bridge. Upon reduction, a cross-bridged
cyclen (84) is obtained. This a;;proach is much less general than the method of Weisman
and Wong. Furthermore, preparing the starting material is a multi-step process and the
overall reaction sequence does not afford high yields- of cross-bridged products.

Scheme 2.3
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This chapter will discuss the synthesis of derivatives of cross-bridged cyclam.
Many cross-bridged tetraamines have already been preparetim3 These derivatives were
prepared using the general method reported by Weisman, Wong and coworkers for the
preparation of the parent diamino cross-bridged tetraamines.!** This general method and

some cross-bridged cyclam derivatives reported by Hill will be reviewed in the following

presentation of the preparation of new derivatives of cross-bridged cyclams.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



II. BACKGROUND
Synthesis of Cross-bridged Cyclam by Reductive Ring Expansion of Tetracyclic
Bisamipals.

Weisman and Wong reported the first cyclam derivative having nonadjacent
nitrogens bridged by an ethanediyl (CH2CHZ) unit.!®! The rational synthesis of
N,N’-dimethyl-1,4,8,1 1-tetraazabicyclo[6.6.2]hexadecane (83) from cyclam was

reported. This synthetic sequence is shown in Scheme 2.4.

Scheme 2.4
fan O S
. NaBH,
ENH H:j CHaCN [::I::j CH,CN E ) 95124, dEtr(t)H E \L:j
(U 14 d n 2r 4ar l\)
1 es 86 83

Earlier, the reaction of cyclam with aqueous glyoxal in CH,CN had been reported
by Weisman and coworkers to afford tetracyclic bisaminal (85) in 75% yield.'% The
stereochemistry of the ring fusion was found to be cis, allowing 85 to adopt a
diamond-lattice conformation. As shown in Scheme 2.5, 85 exists as an enantiomeric pair
of conformers which undergo an enantiomerization process interconverting 85 with 85°.
This process is slow on the !3C NMR time scale at room temperature. Dynamic NMR
experiments were carried out which resulted in broadening of the six '*C NMR resonances
(C2 symmetry) observed for 85 as the probe temperature was increased. At 100 °C the six

resonances had coalesced to four (time averaged C,  symmetry) and the activation barrier
60
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Scheme 2.5
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for this process was calculated to be AG* = 15.36 + 0.2 kcal/mol (at 57.5 + 3 °C).105
Regioselective methylation to afford 86 proceeds as a consequence of the
conformation of 85. Alkylation of one nitrogen shuts down the enantiomerization process

because all four nitrogens must be inverted to complete this process. 85 has a concave face

and a convex face which exposes only two nitrogen lone pairs for alkylation (Scheme 2.6).

BT
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The two lone pairs available for alkylation belong to nonadjacent nitrogen atoms.
Therefore, once the first methylation takes place and enantiomerization is not possible (87
and 87°), only one lone pair remains accessible for alkylation resulting in regioselective
methylation of 85. The bis-quaternary bisaminal dimethiodide (86) was obtained as a
white solid in 85% yield upon methylation of 85 in CH,CN.

Reduction of 86 with excess NaBH, afforded 83 in 90% yield. Evidence later
provided by Hines is consistent with this reaction proceeding through iminium ions which
are reduced by borohydride.®® This conclusion was drawn from the reduction of 86 with
NaBD,. This chemistry is shown in Scheme 2.7. The reduction of 86 with NaBD, could
afford a mixture of two trans diastereomers and two cis enantiomers (with respect to the
deuterons of the -CHDCHD- bridge). The results of the study showed that there was
approximately a 60/40 transicis ratio of products but, more significantly, one trans
diastereomer was formed almost exclusively over the other trans diastereomer. Therefore,
this reaction is highly stereoselective for one of the trans

Scheme 2.7
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diastereomers. Formation of this diastereomer was most consistent with delivery of
deuteride to an iminium ion from the least hindered approach of borodeuteride.
Cross-bridged cyclam 83 was found to be strongly basic. Weisman and
coworkers’s initial report on 83 calculated, by means of 3C NMR experiments, the pK |
of 83<H" in CD,CN to be 24.9.'%' The pK, of 83+H" in water was estimated to be
higher than 13.5 and the pK , for 83«2H* was estimated to be 10.8. In fact, 83 was
shown to be much more basic than the analogous monocyclic isomer
N,N’ N’ N’”’-tetramethyl-1,4,8,1 1-tetraazacyclotetradecane (tetramethylcyclam, 88) and
Alder’s proton sponge (1,8-bis(dimethylamino)naphthalene, 89).106.107 This is a crucial
factor in the utility of cross-bridged cyclam derivatives for applications, particularly in

aqueous media, which will be discussed in more detail later in this chapter.

1/\/ ~ (

[\N >N

The synthetic strategy to prepare 83 was utilized to develop a general route to other
cross-bridged tetraamine derivatives. Alkylation of bisaminal 85 with benzyl bromide was
optimized by Hill. 103 90 was prepared by Hill in 93% yield by the reaction of benzyl
bromide and 85 in CH,CN at room temperature for 14 days. The bis-quaternary bisaminal
dibromide 90 was then reduced to N,N’-dibenzyl-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane in 88% yield by reduction with excess NaBH,, in 95%

EtOH. Removal of the benzyl protecting groups was effected by hydrogenolysis to afford
63
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Scheme 2.8

1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (92) in 80% yield. This synthetic sequence, as
shown in Scheme 2.8, was published in 1996.!% In that publication the general method
for the preparation of cross-bridged tetraamines was presented in addition to preliminary
results on the metal complexation of these ligands with Cu®* and Ni?*.

Preparation of 92 has allowed for elaboration of the secondary amino nitrogens to
prepare cross-bridged cyclams bearing pendant groups or “arms.” In theory, these arms are
capable of influencing the complexation properties of the ligand. The chemistry required to
perform the amino chain extension reactions to afford these “armed” derivatives often has
been carried out on other polyaza macrocycles. Much of this chemistry has been reported
in reviews. 1% Some examples of functionalized cross-bridged cyclam derivatives have
been reported by Hill.'®® The following section will present the syntheses of some of the

compounds initially prepared by Hill as well as new cross-bridged cyclam derivatives.
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III. RESULTS AND DISCUSSION

Synthesis of Amide Armed Derivatives of Cross-Bridged Cyclam.

In many cases the methodology for attachment of a specific pendant arm to a cross-
bridged cyclam has been established for a polyaza macrocycle. Such was the case for the
attachment of the acetamido arm to 92. Tsukube has reported the reaction of N,N’-
diethylchloroacetamide with cyclam (1) to afford 93. 109.110 parker and coworkers also
prepared the analogous cyclen derivative 94 by the reaction of
N,N’-diethylbromoacetamide.'!! These two reactions are shown in Scheme 2.9.

Scheme 2.9
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This methodology was appiied to the preparation of 95. N,N’-
Diethylchloroacetamide was reacted with 92 in the presence of excess K2CO3 and catalytic
KI (Scheme 2.10). An acidic extraction was performed to remove excess N,N’-
diethylchloroacetamide prior to the basic extraction required to isolate the product. 95 was
obtained in 93% yield as a waxy solid. This ligand was envisioned to be a better ligand for
metal cations than the dimethyl derivative 83 as a result of the two additional ligating

groups which are now available. The complexation studies performed with this ligand will
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Scheme 2.10
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be presented in Chapter 3.

Reaction of 2-chloroacetamide with 92 in CH,CN in the presence of excess K,CO,
and catalytic KI analogously provided 96 (Scheme 2.10). The product was isolated as a
white waxy solid in 94% yield. Two NH amide protons were observed in the room
temperature 'H NMR spectrum (5.74, 7.15 ppm). This ligand should also form good
complexes with metal cations as a result of the six ligating groups available. Furthermore,
the acidity of the amide protons allow for the possibility of neutral complexes with divalent
cations to be formed following deprotonation of the amide moieties.

Conjugate addition of amines into an o, f-unsaturated carbonyl or nitrile substrate
has been well documented.!'? In fact, Hill has used this chemistry in the preparation of
97.10% As shown in Scheme 2.11, the reaction of 92 in neat acrylonitrile afforded
essentially a quantitative yield of

Scheme 2.11
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97. One would predict that the reaction would also follow analogously when acrylamide
was substituted as the Michael acceptor. Reaction of acrylamide with 92 in CH,CN at
room temperature afforded 98 in 91% yield as a waxy white solid (Scheme 2.12).
Although never attempted, it is reasonable to assume that the reaction of 92 with
N.N’-dimethylacetamide would also be successful in preparing 99, a tertiary amide analog

of 98.

Attempted Synthesis of Hexaaza-Cross-Bridged Cyclam Derivatives.

Attempts were made to reduce bisamide-armed cross-bridged cyclam 96 to bis(2-
aminoethyl)-cross-bridged cyclam 100. Reduction was attempted with BH,*THF and
NMR data was consistent with product formation along with a complicated mixture
(Scheme 2.13). Unfortunately, conditions were not found which provided 100 cleanly.
Following BH,*THF reduction of amides, a complex is formed between boron and the
amine product(s). The workup of these reactions requires an acidic hydrolysis of the B-N
bonds of the complex to liberate the free amine. It is likely that reduction was successful

but the difficulties in obtaining 100 arose from incomplete hydrolysis of the B-N bonds of
67
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Scheme 2.13
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complexes which boron formed with cross-bridged 100.

Hill attempted the reduction of the nitrile-armed derivative 97 by hydrogenation
over Raney Ni.!®® He discovered that an elimination reaction was competing with the
reduction process. This resulted in dealkylation of 97 to afford mono-armed pentaamine
101 in addition to hexaamine 102 (Scheme 2.14). However, there are other published

Scheme 2.14
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97
methods for the reduction of nitrile moiety primary amines which may not favor this
elimination reaction. One possibility which was investigated was reduction of 97 with
BH,*THF (Scheme 2.15). Unfortunately, these conditions did not provide 102. It is

Scheme 2.15
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Scheme 2.16

97

likely that these reaction conditions also afforded a boron-cross-bridge complex with robust
B-N bonds towards hydrolysis. Another method which should be investigated is of the
nitrile moieties using the conditions reported by Brown.” AICL,/NaBH, in THF were
found to be effective conditions for the reduction of 32 to 31 in the preparation of
benzocyclam (34) discussed in Chapter 1. This idea is shown in Scheme 2.16. Under
these conditions, robust boron-cross-bridged complexes are avoided. It remains to be
determined, however, if this chemistry will also facilitate elimination of the arm or provide
a clean method for reduction of the nitrile.

Another approach toward preparation of hexaaza cross-bridged cyclam was
attempted using tosylaziridine (103). Murase and coworkers'!? and Kida !4 have
reported the reaction of tosylaziridine with cyclam to afford 104 and the further
detosylation to the octaaza cyclam derivative 105 (Scheme 2.17). Tosylaziridine was

Scheme 2.17
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Scheme 2.18
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prepared in our laboratories by the method of Lehn.!!3 Treatment of ethanolamine with
tosyl chloride afforded the tosylaziridine precursor 106 which was converted to 103 upon
treatment with base in 79% yield (Scheme 2.18). Reaction of 103 with 92 in CH,CN
afforded a powder. '3C NMR analysis of the powder supported formation of 107
(Scheme 2.19). It was difficult to estimate the relative purity of 107. The resonances for
the cross-bridge carbons are all dynamically broadened but it is likely that at least 80% of
this sample is 107. Unfortunately, recrystallization methods were not found which gave
purified 107.

Scheme 2.19
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Attempts to late 85 with Bromobutane and 1-[(p-tolylsulfonyl)oxy]-2-methoxyethane.
It would be desirable to improve the synthetic methodology to prepare derivatives
of cross-bridged cyclam. More specifically, it would be convenient to derivatize early in

the synthetic sequence. This would reduce the number of synthetic steps and potentially
70
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increase the yield for desired products. The methodology employed incorporates
functionality into the cross-bridged ligand after the installation of the cross-bridge. As
shown in Scheme 2.20, it currently takes 4 steps to prepare 92 from commercially
available cyclam (1). 92 is the key precursor for the various functionalized cross-bridged
cyclam derivatives that have been prepared. We believed that if alkylation of 85 was a
facile reaction, and the appended functionality could survive the NaBH, reduction. the
number of steps in the synthetic method could be decreased for some of our synthetic
targets. 85 would then be the key precursor from which many cross-bridged cyclam
derivatives might be prepared.

To date, the only alkylating agents which have been used do not have protons
located B to the carbon to be alkylated. This is significant because there is no possibility
for an elimination reaction competing with the S, 2 reaction. A study was devised to
determine if the elimination reaction which would be possible if there were protons  to the
halide would cause significant difficulties in the alkylation reaction. Bromobutane (108) or

Scheme 2.20
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Table 2.1: Reaction Conditions and Results for the Reaction of 85 with
Bromobutane (108) and [(p- Tolylsulfonyl)oxy]-2-methoxyethane (109)

m RX Bl\/\/ 108
(k) E”:tﬁ Roge
e

110

. Vi
R & Tem. @D e ep PO
1 108 4 ambient CH3CN (5) 8 — mono/sm
2 108 8 ambient CH;CN (2) 2 —— mono/sm
3 108 8 ambient CH;CN (2) 5 8 elimination
4 108 8 ambient DMF (2) 2 — mono/sm
S 108 8 50°C CH,;CN (2) 1 8 elimination
6 109 8 ambient CH,CN (2) 8 — elimination

mono: monoalkylated product s.m.: starting material

1-[(p-tolylsulfonyl)oxy]-2-methoxyethane (109) was introduced to 85 in CH3CN under
various conditions in the hope of preparing the bis-quaternary bisaminal 110. A summary
of the reaction conditions which were investigated is given in Table 2.1. In no case was
110 observed by NMR. The reaction either resulted in monoalkylation of 85, elimination
of 108 or 109, or no reaction. At this juncture it was concluded that it was generally
necessary to use alkylating agents which were unable to undergo an elimination reaction for

the preparation of bis-quaternary derivatives of bisaminal 8S.
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Atempted Monoalkylation of 1.4.8.11-Tetraazabicyclo{6.6.2Jhexadecane (112).

The methodology to prepare monofunctionalized derivatives of 92 was reported by
Hill. This approach involved monobenzylation of 85 to afford 111 as shown in Scheme
2.21. Methylation of 111 afforded 112, which upon reduction with the standard NaBH,
conditions, gave 113. Hydrogenolysis of 113 afforded the monomethylated cross-
bridged cyclam derivative 114. However, we required a method to prepare
monobenzylated derivative 115 for other applications. Furthermore, monobenzylated
derivative 115 would allow for functionalization of the two secondary amino nitrogens of
92 with different pendant arms. We predicted that benzylated 115 could be prepared by
simply controlling the stoichiometry of the reagents without an added base. Without the

Scheme 2.21
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base present, following the first alkylation, the product would likely be protonated. We
believed that this would drastically reduce the susceptibility of this species to undergo
further S 2 reaction and afford 115.

Benzyl bromide was reacted with 92 in a 1:1 stoichiometric ratio in CH,CN at
reflux for 16 hours. The NMR analysis of the reaction mixture following base extraction
was consistent with a mixture of three compounds. As shown in Scheme 2.22, the desired
product (115) was formed in addition to the dibenzylated 91 and unreacted 92. We then
altered the reaction conditions such that further benzylation of 115 would not be favored.
92 was reacted with benzyl bromide in a 1:1 ratio in toluene at room temperature. We
believed that these conditions might bring about the precipitation of 115<HBr. If this
were to occur, further benzylation would not be possible and 115 would be isolable
following basic extraction of the precipitate. After four days a white precipitate had formed
which was collected and evaluated by NMR following a basic extraction. Unfortunately,
NMR analysis identified 91 as the product of this reaction. To date, no conditions have
been found that result in the preparation and isolation of 115.

Scheme 2.22
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Alkylation of 1.4 8.11-Tetraazabicyclo[6.6.2]hexadecane (92) with 1-[(p-
tolylsulfonyl)oxy]-2-methoxyethane (109).

We believed that S 2 alkylation of 92 with simple alkyl haildes may not proceed

well. The strong basicity of cross-bridged cyclam might promote deprotonation of an alkyl

halide facilitating the elimination reaction competing with the S, 2 reaction. The alkylating

agent used in this study was 1-[(p-tolylsulfonyl)oxy]-2-methoxyethane (109). 109 was

chosen because the cross-bridged cyclam derivative which would be formed (116) had

been previously prepared by Hill by an independent method.!%® Reaction of 92 with 129

in CH,CN with K,CO, at 60 °C for 21 hours afforded 116 in 40% yield (Scheme 2.23).

This reaction was run on a small scale (25 mg) and the yield was not optimized. However,

this methodology can now be applied to other alkylating agents possessing f protons and

does have significant potential utility to afford a wide variety of new cross-bridged cyclam

derivatives.

Scheme 2.23

Reproduced with permission of the copyright owner.

e T

CH N, 60°C  Sg~N
21h .
40% 116

75

Further reproduction prohibited without permission.



Cross-Bridged Cyclam Derivatives with Decreased Basicity.

As mentioned previously, cross-bridged cyclam derivatives are strongly basic.

This unusually strong basicity is attributed to the design of the macrocyclic structure which
has all four nitrogen lone pairs convergent upon a cleft. This structural feature leads to
strong complexation of small metal cations and therefore also leads to good complexation
of protons. This unusual basicity can be attributed to three factors.

The first factor involves the relative energies of the conformations of the bicyclic
rings of cross-bridged tetraamines. Molecular mechanics calculations on 83 and 91
performed by Weisman suggest that the low energy conformations for these two species all
have convergent nitrogen lone pairs.l 16 Therefore, since convergent conformations are low
in energy, the majority of the populated conformations in solution are convergent.

These convergent conformations, however, do suffer from poor solvation because
the lone pairs are not accessible to the surrounding media. The introduction of a proton
source effectively solvates the tetraamine by protonating the lone pair located inside the
cavity. This idea can be explained in a qualitative manner by the structure shown in

Scheme 2.24
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Scheme 2.24. A proposed low energy conformation of 83 is shown. This proposed
conformation has the two 10-membered rings of 83 in a [2323] conformation.
Protonation of 83 with one equivalent of acid leads to 83<H*. The proton fits into the
cavity of 83 taking a position such that it is also hydrogen bonded to the three other
nitrogen lone pairs (trifurcated). However, an x-ray crystal structure obtained for the
dibenzyl analogue (91°H")'!® does not show the tetraamine in a [2323}/[2323]
conformation. The conformation of the tetraamine is [37]/[37] but all four nitrogen lone
pairs are still convergent towards the center of the cavity. Addition of another equivalent of
acid places another proton in the cavity of a cross-bridged cyclam. The proposed
conformation for 83«2H™ has two protons inside the cavity hydrogen bonded to two
nitrogen lone pairs (bifurcated) having the two 10-membered rings in a [2323}/[2323]
conformation. An x-ray crystal structure of 83«2H™ confirms that, in the solid state, the
conformation of the two 10-membered rings are [2323/2323].!%

Therefore, it is energetically unfavorable to remove the proton from the inside of
the cavity. The “proton-solvation” relieves the destabilizing interaction of the convergent
lone pairs which is the second factor leading to the unusually high basicity for cross-
bridged tetraamines. Furthermore, the proton on the inside of the cavity has very sttong
hydrogen bonds which must be disrupted in order to deprotonate the tetraamine. All three
of these factors combined are responsible for the unusually high pK_, for 83-H* and pK 2
for 83«2H"*.

Unfortunately, this strong basicity is problematic for applications utilizing cross-
77
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bridged cyclam derivatives as ligands carried out in protic media. Therefore, it would be
desirable to develop other derivatives which are less basic while retaining the complexation
properties of the previously studied cross-bridged analogues. A number of approaches
have been proposed to accomplish this goal.!'” Preliminary work on two of these
approaches has been initiated. These two approaches include: 1) attachment of aryl arms to
92; 2) benzo-annelation to NCH,CH,N units of 91. Both of these approaches are aimed
at decreasing the basicity of two of the amino nitrogen lone pairs by the presence of the

adjacent aromatic ring.

Preparation of Aryl Armed Cross-Bridged Cyclam Derivatives.

The use of nitrogen as a nucleophile in nucleophilic aromatic substitution (NAS)
reactions has been well studied.!'®-!!° Unfortunately, using a secondary amino nitrogen
does require a highly reactive electrophile to effect the NAS reaction. The best group for
activating an aromatic ring to accept a nucleophile in an NAS reaction is the nitro group.
Arming 92 with a nitroaryl group might also provide the new cross-bridged cyclam
derivative with an added benefit in addition to the decreased basicity. The derivative would
absorb light in the UV-Vis region of the spectrum. Additionally, the wavelength of light
which is absorbed would likely change upon complexation. Ligands which have these

120-122

properties are called chromogenic hosts and allow for monitoring of complexation.

2,4-Dinitrofluorobenzene (117) has been extensively used in the labeling of amino
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Scheme 2.25
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acids.'” Addition of 117 to a solution of 92 in CH,CN, with K,CO, as the base,
resulted in an immediate reaction (Scheme 2.25). The mixture was heated at reflux for
three days and afforded 36% of an orange powder. NMR analysis of this powder was
consistent with 118. The powder was recrystallized from toluene to afford purified 118.
The powder had poor solubility in many organic solvents at room temperature (Et,0,
EtOH, CH3CN, toluene) and was characterized by NMR, IR and low resolution MS.

119 was analogously prepared using p-bromonitrobenzene as the electrophilic
species. The reaction of 92 with p-bromonitrobenzene in CH,CN, with K,CO,, as the
base afforded the p-nitrophenyl armed cross-bridged cyclam derivative (119) (Scheme

Scheme 2.26
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2.26). The reaction was not as facile as in the preparation of 118, but after 7 days of
heating, 119 was obtained. The crude product was purified by recrystallization from
DMEF. 119 also displayed poor solubility characteristics and was insoluble in many

~ solvents (MeOH, EtOH, iprOH, CH3CN, toluene, benzene, EtzO). 119 has been
characterized by NMR, IR and low resolution MS.

At this juncture it was determined that other aryl derivatives that had better solubility
characteristics than the nitroaryl derivatives might be more useful. Unfortunately, the nitro
group is the best substituent to activate an aromatic ring towards an NAS reaction. Other
electron withdrawing groups which might lead to better solubility, such as CF; or F were
discussed as possible alternatives to NO, but were never investigated. Altematively, a Pd°-
catalyzed coupling approach reported by Buchwald'?*!? and Hartwig'? was
investigated.

The preparation of arylamines from an amine and a arylbromide under the catalysis
of Pd,(dba), (120) and BINAP (121) has been reported.'2*-12>'2% Buchwald has used
this methodology to arylate optically active amines without loss of optical purity.!?* We
believed that this chemistry would provide the tolyl derivative 122 using these conditions
with racemic BINAP. This chemistry is shown in Scheme 2.27. The reaction gave a
mixture of products. Conditions were not found which separated these components of the
reaction mixture. NMR analysis was consistent with the formation of 122 as a minor

product but the major product was monoarylated 123.
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Scheme 2.27
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One other approach which was briefly investigated was the use of the amide anion
of 92 as a nucleophile in an NAS reaction. Amide anions have been shown to be excellent
nucleophiles in NAS reactions and often react readily with unactivated nucleophiies.
Furthermore, the mechanism of these NAS reactions has been studied and is most
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Scheme 2.29
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consistent with the generation of a benzyne inte:vrme:diate.127 The proposed pathway for
arylamine formation from an alkali amide and an aryl halide is shown in Scheme 2.28. The
only caveat to this reaction is that the regiochemistry cannot be controlled. Therefore,
either unsubstituted or symmetrically substituted aryls must be used to reduce the number
of isomeric products which could be formed. The reaction of an N-lithio secondary amine
with bromobenzene in Et,O has been reported. The reaction of N-lithiodiethylamine with
bromobenzene in HNEt/Et,O afforded an 82% yield of N,N-diethylaniline and
N-lithiopyrrolidine with bromobenzene in pyrrolidine/Et, O afforded and 84% yield of
N-phenylpyrrolidine.128 These reaction are shown in Scheme 2.29.

The addition of bromobenzene to a THF solution of 92 which had been previously
treated with two equivalents of n-butyllithium gave an immediate color change from yellow
to red. The mixture was stirred under N, at room temperature for 12 hours (Scheme 2.30).
NMR analysis revealed that the reaction had produced a complex mixture. Attempts were

made to try and separate components of this mixture by TLC. Unfortunately, conditions to
82
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Scheme 2.30
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separate these compounds were not found. However, a reaction had taken place and it is

unknown if modifications of the reaction conditions might provide 124 after purification.

Preparation of Benzocyclam Derivatives.

Benzocyclam (34) has been prepared using the regioselective reduction as
described in Chapter 1. Bisaminal 125 was prepared in 89% yield by the condensation of
aqueous glyoxal with benzocyclam in CH,CN (Scheme 2.31).

As previously observed by Weisman et al. for 85,'% NMR spectra for 125
displayed dynamic broadening in the 'H and '*C spectra at ambient probe temperature.
The dynamic broadening is the result of the enantiomerization of cis-125, which is not

Scheme 2.31
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possible for the trans isomer. Using Dynamic NMR spectroscopy (DNMR) techniques, the
AG* for the enantiomerization process of 85 was reported by Weisman et al.'% A similar
approach was applied to investigate the dynamic broadening observed for 125. The results
of this study established conclusively the stereochemistry of the ring fusion and allowed for
comparison of the estimated AG* with that of 85.

A complete line shape analysis was performed on '3C{'H} spectra of 125 at
different probe temperatures. The enantiomerization process corresponds to a two-site
mutual exchange process for pairs of carbon resonances. In this process, two nuclei in the
same molecule (for this case) exchange environments. Because the process is an
enantiomerization, the rate for the forward and reverse reactions are equivalent and the
populations of the two species in exchange must also be equivalent.  Spectra were acquired
over a 100° temperature range (-75 - 25 °C). The ambient temperature spectrum (90.56
MHz) displayed dynamic broadening for some of the eight lines but those resonances were
clearly in fast-intermediate exchange on the NMR time-scale (shown in Figure 2.2). Upon
cooling the probe to -78 °C, the spectrum resolved into sixteen lines for these spectra of
cis-125 in slow-intermediate exchange. Table 2.1 lists the chemical shifts for cis-125 at
different temperatures. As determined from the slow-exchange limit spectrum, cis-125
has overall C, symmetry whereby all 13C nuclei are magnetically nonequivalent. At
ambient temperatures, the enantiomerization process results in time-averaged C, symmetry
for cis-125.

" The ambient temperature spectrum had only two broadened lines, one for a
84
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Figure 2.1: 13C NMR Spectrum of 125 at Ambient Probe Temperature.
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Table 2.2: 13C NMR Chemical Shifts for 125 at Various Probe

Temperatures
€3]
\ﬁ:E:i“ d
1)
N
K
Temp

T C, C, C. Cy4 C. Cs o C,
25 21.35 4823 49.68 5465t 73.65¢ 1135 119.5 136.3
15 21.32 48.23% %)} 54.55¢ 73.66f 113.5 119.5 1363t

1 21.29% 48.19% @ 54.52¢ 73.46f 1136 1195 (7

-11 21.26 48.17% %] 54.35% @ 113.6 119.6 @

-15  21.21F 48.19% 0] (%) )] 113.6 119.6 @

20.59% 44.19%f 52.28% 70.91¢

34 g1est 806F 5 o1r seest 7583 137 1196 O
43 20.57¢ 4796t 44.18% 52.32% 70.89f 113.6% 119.6 134.9%
21.86t 48.32% 5490% 56.57f 75.78% 113.9% . 137.6%
5o 20.56 4793 44.16 5226 70.89 114.0 119,64 134.9%
B 21.88 4836 5494 56.60 75.82 113.6 . 137.6%
73 20.56 47.89 44.10 5229 70.81 113.7 1197 1350
B 21.82 4834 5489 5653 75.74 114.1 119.8 1376

* Dynamic broadening observed for this resonance

@ Resonance broadened into the baseline and & could not be determined

methylene adjacent to nitrogen (C; ) and the methine (C ). However, decreasing the

temperature by only 10 ° made dramatic changes in the observed spectrum. One resonance

(C) had broadened into the baseline such that it could not be detected. C, and the ipso

carbon (C,) had also begun to broaden at 15 °C. At 1° C all but two aromatic resonances
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displayed broadening, including the resonance for C, which was used for the complete line
shape analysis. When the probe temperature was decreased to -15 °C, four resonances (C,,
C4 C. and C,) were all broadened into the baseline. The spectrum for 125 at -34 °C
showed that 125 was clearly in fast intermediate exchange because four resonances C,
C., Cy C) had each coalesced into separate lines. The spectrum for -43 °C showed all but
one resonance decoalesced into separate lines as the rate of enantiomerization of 125
neared the slow exchange limit. Very little change could be noticed in the -50 °C spectrum
but when the probe temperature was lowered to -73 °C, all resonances had coalesced into
two distinct lines. The -73 °C spectrum was used as the slow exchange limit.

The DNMR spectra were simulated using the gNMR129 program in order to obtain
data for the rate of enantiomerization at different probe temperatures. The resonance at 21
ppm in the ambient probe temperature spectrum was used for the simulations. This
resonance was chosen because it was isolated from the rest of the spectrum, having no
overlapping peaks. The NMR spectra and the corresponding simulation are shown in
Figure 2.2. Rate constants calculated from these simulations are presented in Table 2.3.

From these data, a free energy of activation can be calculated (AG?) for this process
can be calculated for a given temperature. The rearranged form of Eyring equation
(Equation 2.1b) describes the free energy of activation as a function of (In k/T) and (1/T).
Furthermore, as described in Equation 2.2, the free energy of activation is also related to
AH?* and AS*. These two equations can be used to derive Equation 2.3 which describes the

relationship between (In k/T), (1/T), AH¥ and AS¥ used for Eyring plots. An Eyring plot
87
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Figure 2.2: NMR Simulations for 125.
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Figure 2.2 (Continued)
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Table 2.3: Results of DNMR Simulations for 125.

'I;gp Rate ((Isztgz)mt &) In (/T) T AG#* (kcal/mol)
25 § — — —
15 7000 3.19 0.00347 11.78
1 2000 1.99 0.00365 11.86
-11 950 1.29 0.00381 11.71
-15 675 0.962 0.00387 11.70
-34 100 -.0872 0.00418 11.71
43 42 -1.70 0.00434 11.64
-50 12 -2.92 0.00448 11.83
73 $ —_— — _—

+ Slow exchange limit spectrum Slope: -581.864 * 488.451

Intercept: 23.3958 + 1.94814
Std. Deviation of fit: 0.173459

of (In k/T) versus (1/T) generates a line having a slope equal to -AH*/R. Using the data in
Table 2.2, AH* for the enantiomerization of cis-125 is 11.6 + 0.97 kcal/mol.
Furthermore, AS* can be calculated using the intercept of the Eyring plot. From the data in

Table 2.2 AS* was calculated to be -0.724 + 1.95 cal/mol K.

k= (%BI> e -(AGt/RT) Equation 2.1a
AG = RT[ In[X) + In( KkB) ] Equation 2.1b
- T, h
In Q‘%‘B-) = 23.75998(36) for k=1
90
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AG' = AH- TAS Equation 2.2

(L)= (—AHt ) 1, (ﬁB_) + ( AS:) Equation 2.3
T T h R

It is reasonable to assume that AG* will not vary greatly with temperature based on
the relatively low value of AS* calculated for the enantiomerization. However, an estimated
value for AG* can be obtained at any temperature by extrapolating data from the Eyring plot
and using Equation 2.1a. The AG* for the enantiomerization of 85 was estimated to be
15.36 + 0.2 kcal/mol at 57.5 + 3 °C.'%° The estimated AG* at 57.5 °C for cis-125 is 11.8
kcal/mol. The difference in free energy of enantiomerization is a result of the torsional
constraint introduced into one of the central six-membered rings of cis-125 with respect to
cis-85. In both cases, the enantiomerization requires that the ring systems undergo two
ring inversions and all four nitrogens must be inverted. The presence of the two sp?
carbons pry open the tetracyclic ring system of 125 with respect to 85 requiring less
energy to complete the ring inversions. A three dimensional model of 125 is compared

with the diamond-lattice conformation of 8S in Figure 2.4.
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Figure 2.4: Molecular Models of 125 and 85 (MM2).

Benzocyclam-glyoxal adduct Cyclam-glyoxal adduct
125 85

Reaction of Methyl Iodide and Benzyl Bromide with Cis-12S.

Reaction of cis-125 with excess methyl iodide in CH,CN at room temperature for
14 days afforded a white precipitate. 'H NMR analysis of this precipitate was consistent
with a mixture of mono and dimethylated cis-12S. This material was recrystallized from
CH,CN. The recrystallized material gave a '"H NMR spectrum consistent with the
dialkylation of cis-125 whereby the product has two different methyl groups.

There are nine different isomeric dimethylated products which could give rise to this
NMR spectrum. These isomers are shown in Scheme 2.32 (128a and 128d are excluded
from this argument because the two methyl groups are symmetrically equivalent). Based
on the MM2 calculated structure for cis-125 shown in Figure 2.4, 126a is the most likely
product of this reaction. The first methylation should take place on one of the more

nucleophilic nitrogens, not attached to the aromatic ring. Furthermore, this methylation
93
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Scheme 2.32
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should occur on the most accessible lone pair which is cis to the methine hydrogens. The
second methylation should take place on the nonadjacent nitrogen to minimize the repulsion
of the positive charges. Additionally, methylation should proceed on the same face of the
molecule as the first methylation because of sterics. For these reasons, 126a should be
formed preferentially over other isomers of 126 and any of the isomers of 127 and 128.
Further work to characterize this material is needed. Less than 10 mg of sample
were isolated in this reaction. Therefore, ’C NMR spectra having high enough signal to

noise were not obtained in order to observe all of the resonances. Ideally, the
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Scheme 2.33

126 129

regiochemistry of the methylation of cis-125 should be determined by an x-ray crystal
structure. Following the successful preparation of 126a, it is likely that NaBH, reduction
of 126 will provide dimethyl cross-bridged benzocyclam (129).

Reaction of benzyl bromide (1.5 equivalents) with cis-125 in toluene/CH3CN
afforded a precipitate after stirring at room temperature for 14 days (Scheme 3.34). NMR

Scheme 2.34
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analysis of the solid was consistent with 130. We believe that a monoalkylated derivative
of cis-125 could be reduced directly with DIBALH to give a cross-bridged benzocyclam
derivative (131). This chemistry is shown in Scheme 2.35. Reaction of DIBALH with

Scheme 2.35
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130 should cleave the C-N" bond to afford 132. Based on the chemistry reported by
Yamamoto and Maruoka®® on the regioselective reduction of aminals by DIBALH, we
believe that reduction of 132 will afford monobenzyl cross-bridged benzocyclam 131.
Preparation of 131 would provide a convenient synthetic pathway to functionalized
cross-bridged benzocyclam derivatives. Possible targets which could be derived from 131
are shown in Scheme 2.36. Clearly, further work is needed to fully explore this chemistry.

Scheme 2.36
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CHAPTER III

STUDIES ON THE COMPLEXATION OF SMALL CATIONS BY CROSS-
BRIDGED CYCLAM DERIVATIVES

I. INTRODUCTION

As introduced in the previous chapter, there is a vast literature concerning
complexation of cationic species by polyaza macrocyclic derivatives. The driving force
behind the research in this area is the potential applications which exist in many different
areas of science. Many applications involve the medical field in some manner, which has
intensified the research effort to investigate the metal complexation properties of polyaza
macrocyclic derivatives.

Significant interest has developed in ligands which complex transition metals
having open coordination sites. Such complexes allow for the study of reactions at metal
centers that have biological relevance. Other important applications for transition metal
complexes center around the complexation of radiopharmaceuticals. Furthermore, there is
also interest in main group cation complexes.

The rational design of cross-bridged cyclam derivatives prepared by Weisman,
Wong and coworkers'?! aimed to improve upon the complexation properties observed for
cyclam. Weisman and Wong believed that cross-bridged cyclam derivatives would adopt

low energy conformations which have all four nitrogen lone pairs convergent upon a cleft.
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The cross-bridging of nonadjacent nitrogen atoms resulted in a cavity which could
accommodate appropriately sized cations. It was believed that the cavity size was relatively
small and the best ligand-metal interaction would be found for small cations. In fact,
Weisman, Wong and coworkers reported that dimethyl cross-bridged cyclam 83 was a
good complexer of Li*.!%! The functionalization of cross-bridged cyclam by the attachment
of pendant arms with ligating groups further expanded the potential utility of these ligands.
Hill has reported a number of cross-bridged cyclam derivatives and investigated the
complexation of Li* and Na* for some of these ligands. %

A proposal to the National Institutes of Health (NIH), which was funded in 1997,
outlined the research effort on cross-bridged cyclams.'!” This chapter will address the

experimental work relevant to this proposal on the complexation of Li*, Na* and Cu?*.
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II. BACKGROUND

As reported in the original publication on 83,'%! dimethyl cross-bridged cyclam
formed complexes with LiClO, and NaBPh,. Furthermore these 1:1 complexes were each
found to be in slow exchange with excess free ligand on the NMR time scale. Hill has
reported, based on a 13C NMR competition experiment, that 83 is a better complexer of Li*
than Na*. In that ’C NMR experiment, a 1:1:1 mixture of 83, LiClO, and NaBPh, was
observed in CD,CN. A lower limit of 1.2-5.0 x 10 was placed on K_.'® That is to
say, 83 selectively complexes Li* in the presence of Na*. This work was later repeated by
Hines using LiClO , and NaClO, in order to insure that the counterion was not influencing

the experimental results. His results increased the lower limit of K. t02.11x 10*%
Y
Y
83

The Li*/Na* selectivity observed in these experiments is very unusual. The
development of a Li* sensor using cross-bridged cyclam derivatives has been proposed.Il7
There is a need for a method of detection for low concentrations of Li* in the presence of
abundant Na*. Li* has a number of potential applications particularly in the medical
field.!**13! Li* salts have been used in the treatment of some neurological and psychiatric
disorders such as manic depression.!*>!3? Li* has also been reported to show antiviral
activity against DNA type viruses.!3* Unfortunately, the use of Li* as a medicinal agent is

limited because of its toxicity and the dosage of Li* introduced must be carefully controlled.
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The therapeutic concentration of Li* in blood is 0.8-1.0 mM, however, side effects arise
when the Li* concentration reaches 2-2.5 mM.!** The presence of the abundant Na* ions
(~140 mM in blood)!3® poses significant problems in monitoring the Li* concentration
precisely. For these reasons, Li* ion selective electrodes (ISE’s) are among the most
investigated ISE’s.!36-138

Development of Li* ISE’s has been 1'eported,139'l"'0 but they are limited by the
inability to obtain very high (>10%) Li*/Na* selectivity.'*! Ionophores utilized in ISE’s are
often either diamides or crown ether derivatives.' Li* is considered a hard acid which has

142-144 14 a lesser extent, Li* also interacts

a strong interaction with hard oxygen atoms.
with nitrogen atoms of amines.'3! As shown by Hines® and Hill'%, dimethyl
cross-bridged cyclam (83) does form good complexes with Li* resulting in high Li*/Na*
selectivity (K +/\+>2.11 x 10* for 83)%° making cross-bridged cyclam derivatives good
candidates as Li* ISE’s. Further investigation of the Li*/Na* selectivity of other
cross-bridged cyclam derivatives will be discussed in this chapter.

There is, however, a significant problem which must be overcome in order to
investigate the utilization of cross-bridged cyclam derivatives as Li* sensors. The high
basicity of these compounds severely limits their utility because cross-bridged cyclam
derivatives are protonated in protic media. Therefore, new cross-bridged cyclam

derivatives!!’

which should have decreased basicity with respect to 83 have been
proposed. However, the structural modifications which lead to decreased basicity may also

affect the Li* complexation properties of these new ligands. A decrease in the relative
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complexation constants for new “less basic” cross-bridged cyclam derivatives would not
necessarily pose difficulties in the development of Li* ISE’s. These new ligands will still
be very promising if the Li*/Na* selectivity is maintained. Synthetic work on “less basic”
cross-bridged cyclam derivatives has been described in Chapter II.

In 1996, the first transition metal complexes with cross-bridged ligands were
reported.lm In this communication, the synthesis of bicyclo[5.5.2] (133, 134), [6.5.2]
(135, 136) and [6.6.2] (91, 92) ring systems were presented as well as preliminary
results on the complexation of Ni?* and Cu®* with these ligands. X-ray crystal structures
for complexes of Cu?* with 91 and 92 were reported. The complex with 91 had the Cu®*
in the ligand cavity coordinated to all four nitrogens in a distorted octahedral geometry.
The Cu?* bad an agostic interaction with one of the ortho-hydrogens of one benzyl arm.
The sixth coordination site was occupied by a CI". The two rings of the bicyclic ligand
were in a slightly distorted [2323}/[2323] conformation as predicted. Similarly, the Cu?*

complex of 92 also had all four nitrogens convergent on the metal

<7

='\_73:>
¥
{
7

Sy

- . -~
G Y

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



center. The coordination geometry of the copper center was a distorted trigonal bipyramid
where a chloride counterion occupied the fifth site. The ligand in this complex was also in
a slightly distorted [2323])/[2323] conformation. The study of other transition and main
group metal complexes of cross-bridged cyclam ligands derivatives has continued in our
group. Niu has prepared complexes of 91 with Zn?* and 92 with Zn?*, Ni** and

Co2+ 145

Another group has also recently published data in this area. Busch, Alcock and
coworkers have synthesized 133, 134, 135, 136, 83, 91 and 92 using our method and
report that they have prepared metal complexes of these ligands with Cr?*, Mn**, Mn>*,
Fe?*, Fe’*, Co?*, Ni?*, Cu*, Cu®* and Zn?**.1%% They further claim to have obtained
x-ray crystal structures for Mn%*, Mn3*, Fe2*, Fe3*, Co?*, Ni?*, Cu*, Cu?* and
an*"complexes with 133, 134, 83, 91 and 92. However only data for the [Mn(83)C12]
were given. While there are some inconsistencies in this report with respect to our
previously published and unpublished results, the conformation of the ligand and
coordination of the ligand to the metal center for the Mn®* complex reported by Busch and
Alcock was consistent with our Cu®* complexes.

It is not surprising that there is considerable interest in cross-bridged ligands
because of the unusual stability observed for the metal complexes. This property is ideal for
the development of many biological applications. There is, for example, considerable
interest in reactions of biological significance which occur at metal centers. Reactions of

this nature may possibly be modeled or mimicked by complexing the particular metal to a
102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cross-bridged ligand and utilizing the open coordination sites to perform chemical
reactions. There are many processes in bioinorganic chemistry and catalysis which could be
studied using cross-bridged ligands. Furthermore, metal cations such as In** as well as
Cu?* have utility as metal isotope agents (%2Cu, %*Cu, ’Cu, '''In). Suitable

radiopharmaceutical carriers '*>!7

must be ligands which have fast formation kinetics which
result in complexes that are stable towards metal dissociation. Preliminary work on
derivatives of cross-bridged cyclam complexed with Cu?* shows prormnise that they may be
candidates for radiopharmaceutical carriers. Studies on the complexation and the stability
of the resulting complexes of other transition metal cations has also been proposed to

investigate all of these potential applications. ! 17
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II. RESULTS AND DISCUSSION

General Method for the Calculation of K | and AAG’® l for NMR Competition
Experiments for Cross-Bridged Cyclam Ligands

The complexation of many metal cations by cross-bridged cyclam derivatives can be
monitored by NMR and, in most cases, slow exchange spectra for the free ligand and the
complex are observed. Hill'® and Hines® have reported the methodology used in direct
competition experiments to measure or estimate the relative complexing abilities of
cross-bridged cyclam ligands. This method has allowed for the comparison of the relative
ability to complex Li* and Na* between ligands as well as the Li*/Na* selectivity for a
given ligand. This method has been applied to the new cross-bridged cyclam derivatives
reported in Chapter II and a summary of the complexation abilities of all of the ligands
which have been studied has been compiled.

The relative Li* complexation ability for a given ligand must be reported
consistently. Therefore, one ligand was chosen to be the baseline for all of the competition
experiments. This ligand is dimethyl cross-bridged cyclam (83). The data can then be
compared to the monocyclic analog, tetramethylcyclam (88) by means of an experiment

Y
%

EN
%
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reported by Hines.®? Hines performed a direct competition experiment between 83 and 88
for LiClO, using 'H NMR as the method of detection. In that experiment, the competition
equilibrium constant (K ,) was determined to be (6.0120.52) x 10°. This K_; was used
to calculate the free energy of competition (AAG® ) which was reported as -5.10 +0.05
kcal/mol. From these data, 83 forms a much stronger compiex with Li* than does 88.
The values of K ;| and subsequently AAG®  were derived from information
obtained from 'H NMR integration. The case described above for the competition of 83
and 88 for LiClO, will be used as an example. An NMR sample was prepared in CD,CN
containing 83, 88 and LiClO,. The equilibrium expressions describing the species in
solution are shown as Equation 3.1 and 3.2. The NMR experiment was set up such that
83, 88 and LiClO, were present in a 1:1:1 molar ratio. Therefore, if essentially all of the
Li* is complexed by ligands at equilibrium, the total concentration of free ligands ([83] +
[88]) must be equal to the total concentration of ligands complexed with Li* ([83°Li*] +
[88Li*]). Furthermore, [83°Li*] must be equal to [88] and [88°Li*] must be equal to

[(83]. Having all of these conditions, Equation 3.2 can be simplified to Equation 3.3.

Kgs
88 + Li+ 880Li+
Kgs
83 + Li+ 830Li+
Krel )
83 + 88eLi” 88 + 83eLi' (Equation 3.1)
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_ Ky __[881(83Li"] o 32
%= e (831 [88°Li*] (Equation 3.2)

(887 _  [83eLi'P?
[83]° [88-Li*]?

Kei = (Equation 3.3)

AAG® ;= -RTIn K (Equation 3.4)

R =1.9872 cal/mol K
T=298.15K

Using IH NMR integrations for isolated resonances for 83 and 83<Li*, K o WaS

calculated. From Equation 3.4, AAG® | was calculated.

Complexation of 4,11-Bis-(N.N’-diethylacetamido)-1.4.8.11-
tetraazabicyclo[6.6.2]hexadecane (95) with Li* and Na*.

Parker and coworkers reported the preparation of a series of [ane]N, derivatives
and a cyclen derivative with amide arms.!!! The amide arms were designed to enhance the
Li*/Na" selectivity for these ligands over the parent structure.

The preparation of the analogous cross-bridged cyclam derivative (95) was
reported in Chapter [I. The complexation ability for Li* of 95 is expected to be much
stronger than that of 83 as a result of the two ligating amide arms. Before the competition
experiment could be carried out, control experiments were performed to determine which
resonances would provide the necessary information. The Li* and Na* complexes of 95

were prepared in CD,CN from LiClO , and NaClO, respectively. For each cation,
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approximately 0.5 equivalents of the perchlorate salt was added to an equivalent of 95 in
CD,CN. 13C NMR spectra were consistent with two distinct species whose spectra were
consistent with free 95 and the complexed 95. The complex exhibited twelve 13C
resonances (C, symmetry) and was in slow exchange with free 95 on the NMR time scale.
Addition of another 0.5 equivalents of perchlorate salt afforded the fully complexed 95 in
each respective control experiment. The chemical shifts for these complexes are given in
Table 3.1. The [Li(95)CIO 4] complex was isolated and an IR (KBr) spectrum was
obtained. There was a single carbonyl stretching frequency (1631 cm’™) observed at lower
energy than that of the free ligand (1644 cm™'). These data support both amide arms are

coordinated to Li* in the complex. Unfortunately, we were unable to obtain crystals of

high enough quality for x-ray crystallography.

e,

Competition: LiClO » and NaClO, for 4.11-Bis- *-diethylacetamnido)-1.4.8.11-
te bicvclo[6.6.2]hexadecane (95).

Method of Detection: *C{'H} NMR
Resonance Observed (95-Li*): 53.10 ppm
Resonance Observed (95°Na*): 51.33 ppm

Initial Concentration of 95: 6.14 x 102M

Signal to Noise: 302:1
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A competition was performed between LiClO , and NaClO A for 95 in CD3CN (for
sample preparation and data acquisition see Experimental Section). After inspection of the
separate control '"H NMR spectra of 95, 95¢Li*, and 95¢Na* in CD,CN, no isolated
resonances which could be accurately integrated were found. Therefore, an estimate of
K| ;*mna Was calculated based on the line heights of 13C NMR resonances. The '3C NMR
resonances for 95, 95¢Li*, and 95°Na* in CD,CN from the control experiments are
given in Table 3.1. In the competition experiment, a single set of 1>C resonances was
observed which was consistent with 95¢Li*. These resonances are also listed in Table
3.1. There was no detectable free 95 or 95°Na*. Therefore, the largest resonance of
95+Na” in the sample must be estimated to be less than or equal to the height of the noise
of spectrum. A lower limit can be calculated for K ., +, based on the signal to noise of
the spectrum. Based on Equation 3.5, the competition equilibrium constant (K .+ +) for
this competition was greater than or equal to 9.1 x 10%. The free energy of competition
(AAG® ) Was calculated to be more negative than or equal to -5.4 kcal/mol at 25 °C.

Therefore, 95 is a much better complexer of Li* than Na*.

Kpie _ [95-Li'JNa*] _ [95-Li'P* _ _[302]
Kgar  [95°Na*JLi"]  [95¢Na*}? [1]2
(Equation 3.5)

K, = > 9x10*

for

-+ + Kee + -+
Li" + 95eNa™ = Na™ + 95¢Li
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Table 3.1: 13C Chemical Shifts for Complexation Experiments on 95 with
LiClO4 and NaClO4 in CD3CN.

95 95¢Li* 95¢Na”* Li*/Na* Competition
13.40 13.57 13.23 13.54
14.69 14.69 14.67 14.68
28.73 26.15 25.69 26.15
40.24 41.73 41.72 41.73
41.89 42.47 42.77 42.44
52.66 53.10 50.91 53.10
55.03 53.10 51.33 53.10
57.71 59.18 58.09 59.18
57.76 59.75 59.30 59.75
58.15 61.08 59.89 61.08
59.44 62.36 60.26 62.35
170.83 172.23 172.08 172.22

L ]}
Initial Concentration of 95 in the Competition: 6.14 x 10-2 M
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mpetition: 4.11-Bis- ’-diethvlacetamido)-1.4.8.11-

tetraazabicvclo[6.6.2]hexadecane (95) and 4.11-Dimethvl-1.4.8.11-

tetraazabicvyclo[6.6.2]hexadecane (83) for Li*

(Y ne,
BIABLENNG

Y
Y
Method of Detection: '3C{ 'H} NMR
Resonance Observed (95+Li*): 26.15 ppm
Resonance Observed (Free 95): 28.73 ppm
Initial Concentration of a Single Amine Component: 1.64 x 10" M
Signal to Noise: 64:1
A competition was performed between 83 and 95 for LiClO, in CD,CN (for

sample preparation and data acquisition see Experimental Section). Upon inspection of the
control '"H NMR spectra of 83, 95, 83<Li*, and 95Li* in CD,CN, no isolated
resonances which could be accurately integrated in the competition were found. Therefore,
an estimate of K, was calculated based on the line height of 13C resonances. The !*C
resonances for 83, 95, 83<Li*, and 95-Li* in CD,CN are given in Table 3.2. In the
competition experiment, two sets of '3C resonances were observed which were consistent
with 95¢Li* and 83. These resonances are also listed in Table 3.2. There were minor
resonances (~5% by line height) observed in this spectrum but the chemical shifts were

consistent with 83*H*. Since there was no detectable 95 or 83+Li* the largest resonance
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[95°Li"NI83]  [95-Li*1* _ [63]

= - = = > 4x10°
'TOB3-Li'N95]  [83-Li*?  [1P
(Equation 3.6)
for
Krel
95 + 83+Li" = = 83 + 95-Li*

of 95 or 83<Li* in the sample was estimated to be less than or equal to the height of the
noise of the spectrum. A lower limit can therefore be calculated for K, based on the
signal/noise of the spectrum. Using Equation 3.6, the competition equilibrium constant
(K for this competitions was greater than or equal to 4.1 x 10°. The free energy of
competition (AAG® ) was calculated to be more negative than or equal to -4.9 kcal/mo] at
25 °C. Therefore, 95 is a much better complexer of Li* than 83.

These data also show that the amide arms enhance the complexation strength of this
ligand. Hill performed a competition between 83 and 116 and found that 116 was also a
better complexer of Li* than 83.'® However, the AAG® , was -2.05 + 0.14 kcal/mol.
Therefore 95 is an even better complexer of Li* than 116 as a result of the amide arms

present on the ligand.

Cle~os
oy

116
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Table 3.2: 13C Chemical Shifts for Competition Experiments on 95 and 83
for LiClO4 in CD;CN.

] . 95/83 Co tition
° b4 *H*
95  95eLij* 83 83<Li* 83°H 95.Li+ 83 83-H*

13.40 13.57 — 13.54

14.69 14.69 — 14.69

28.73 26.15 28.69 24.59 24.99 26.13  28.62 25.01

40.24 41.73 ———— 41.70

41.89 42.47 43.02 46.57 43.71 4247 43.08 43.76
52.66 53.10 52.28 51.75 52.41 53.08 5233 @ ——
55.03 53.10 56.81 52.20 52.97 53.08 56.73 ———
57.71 59.18 56.96 58.89 54.16 59.14  56.97 52.24
57.76 59.75 57.717 58.94 58.17 59.73  57.70 58.21
58.15 61.08 61.67 59.64 58.49 61.07 61.53 58.65

59.44 62.36 —— 62.33

170.83 172.23 — 172.21

Initial Concentration of 95 and 83 in the Competition: 1.64 x 10-1 M
Data for 83 and 83<Li+ originally recorded by M.E. Rogers
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Complexation of 4.11-Bis-(2-carboethoxymethyl)-1.4.8.11-
tetraazabicyclo[6.6.2]hexadecane (137) with LiClO' and NaClO' in CD3&

Hill prepared ester-armed cross-bridged cyclam derivative 137.1% As observed for

95, 137 was expected to exhibit enhanced Li* complexation with respect to the dimethyl
derivative 83. Before the competition experiment could be carried out, control experiments
were performed to determine which resonances would provide the necessary information.
The Li* and Na* complexes of 137 were prepared in CD,CN from LiClO, and NaClO,
respectively. For each cation, approximately 0.5 equivalents of the perchlorate salt was
added to an equivalent of 137 in CD,CN. In each case, '’C NMR spectra exhibited two
distinct species whose shifts were consistent with free 137 and the complexed 137. Each
complex exhibited ten 13C resonances (C, symmetry) and was in slow exchange with free
137 on the NMR time scale. Addition of another 0.5 equivalents of perchlorate salt

afforded the fully complexed 137 in each respective control experiment.

()~ oet
Bab,
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(137) for LiClOI VS. NaClO'

Method of Detection: 'H NMR

Resonance Observed (Complex 137+Li*): 3.53 ppm (2H)
Resonance Observed (Complex (137¢Na*): 3.49 ppm (2H)
Initial Concentration of a Single Amine Component: 4.24 x 102 M

The relative complexing ability of 137 for LiClO, over NaClO, was determined by
means of an 'H NMR competition experiment. A 1:1:1 molar mixture of 137, LiClO , and
NaClO, in CD,CN was prepared. Fortunately, there were resonances for each complex
which were not overlapped with other portions of the 'H NMR spectrum, which allowed
for the direct comparison of the quantities of 137+Li* and 137sNa* by integration. From
this NMR experiment it is clear that the predominant species is 137<Li* but there is a
detectable amount of 137<Na*. Multiple integrations of these two resonances were
performed to provide the data in Table 3.3.

The competition equilibrium constant (KU+/Na+) was calculated from Equation 3.7
as (4.94 + 0.536) x 10! at 95% confidence. The free energy of competition (AAG® o)) Was
calculated as -2.31 £ 0.107 kcal/mol. Therefore, as predicted, 137 is a much complexer of
Li* than Na*. Based on this AAG® , 137 is equally effective in complexing Li* as the

ether-armed derivative (116) reported by Hill.
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Table 3.3: Results of the Competition Experiment of LiClO4 vs. NaClO4

for 137 in CD3CN

Integration 15/ Li*  137-Na* 11231;0 (%137-Li*/%137-Na*)
(335) (8349 oo

1 2047431 3619.631  8.142905 89.1/10.9
2 30503.11 4340257  7.048686 87.6/12.4
3 2940175 3514569  8.365677 89.3/10.7
4 31453.12 5043202  6.236736 86.2/13.8
5 30090.83 4045434  7.438220 88.1/11.9
6 3107623 4780.051  6.501234 86.7/13.3
7 3117979 4844420  6.436228 86.6/13.4
8 3030122 4265.685  7.103483 87.7/12.3
9 31031.99 4713.123  6.584167 86.8/13.2
10 31191.07 4863.574  6.413199 86.5/13.5

Average(x) 3057934 4402.995  7.027054 87.5/12.5

Initial Concentration of 137 in the Competition: 4.24 x 102 M
Standard Deviation of Ratio 137+(Li+/Na+) (x): 0.74800

_ K+ _ [137-Li*][Na*] _ [137-Li*)® _ [30579.34]

K = Ky, L137°Na'l[Li'] [137°Na']*~ [4402.995) 494154
(Equation 3.7)
for
Krel

= Na* + 137-Li*

Li* + 137¢Na* =
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(137) and 4.11-Dimethyl-1.4.8.11-tetraazabicyclo[6.6.2]hexadecane (83) for LiClO -

) om M
(UL e
EtO K/’ - v
137 83
Method of Detection: 'H NMR
Resonance Observed (137-Li*): 3.53 ppm (2H)
Resonance Observed (83-Li*): 3.39 ppm (2H)
Initial Concentration of a Single Amine Component: 4.94 x 102 M

Surprisingly, analysis of the ~lH NMR spectrum 30 minutes after the preparation of
this competition sample was consistent with 83«Li* as the major component. In fact, the
ratio of 83°Li*:137-Li* was approximately 86:14 based on '"H NMR integrations of the
two complexes. These results were in contradiction to the expected results based on the
other competitions which had been carried out. The same sample was reevaluated three
hours later. The ratio of the two complexes had shifted during this time and was much
closer to 50:50.

Therefore, thermodynamic equilibrium had not been reached. This result could be
rationalized if the experiment had been biased during sample preparation. If the LiClO, had
been added to 83 forming 83<Li*, the 83-Li* complex must then decomplex Li* by some
mechanism to allow 137 to complex with Li*. Unfortunately, the order of addition was

not recorded in the experimental details.
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The 'H NMR spectrum was monitored over time to determine when equilibrium
had been reached. The ratio of 83<Li*:137<Li* after 18 hours had shifted to favor
137<Li*. There was, however, another process taking place during the equilibration. A
resonance whose chemical shift was consistent EtOH was detected at 1.11 ppm. This
resonance was not observed in the previous spectra for this sample. EtOH was generated
by the hydrolysis of the ester arm of 137<Li*. It is hypothesized that the Li* complexed
with the carbonyl of 137 catalyzed the hydrolysis of the ester to a carboxylate by the water
present in the sample. In fact, the resonance for water in this sample was also reduced as a
function of time, which is consistent with hydrolysis. 'H NMR spectra after 2 days and 6
days did not show significant further conversion of 83¢Li* to 137+Li* but hydrolysis of
the ester had progressed such that the water resonance could not be detected in the 6 day

spectrum. Representative spectra from this experiment are shown in Figure 3.1.
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Figure 3.1: 'H NMR Data for the Competltlon of 137 vs 83 for LiClO,.

0.5 Hours E ]0 - Eu,rj

137 137 ucIo, 33
COCN

|
ik

40

3 Hours

“ 33 30 25 R 15
(pprm)
18 Hours
0 35 3 25 20 15
. (pom)
118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.1 (Continued)
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Complexation of 1.4.8.11-Tetraazabicyclo[6.6.2]hexadecane (92) with H", LiClO! and

NaClO ! in CD.CN.

oF
L
N

The 'H NMR data for 92 is consistent with the two secondary amino hydrogens
being inside the cavity of the ligand, hydrogen bonded to the lone pairs of the tertiary
nitrogen atoms. The chemical shift for these protons is found downfield at approximately
3.5 ppm in various NMR solvents (CDC13,103 C6D6,’°3 CD3CN). The fact that this
resonance for the NH protons is not significantly shifted in different solvents supports the
hypothesis that the protons are located on the inside of the cavity. Therefore, in order for
92 to complex a cation, the two secondary amino nitrogens must be inverted to remove the
two protons from the cavity. It is possible that the presence of the two amino protons
already inside the cavity may result in 92 being less basic than other fully substituted
cross-bridged cyclam derivatives. The protonation of 92 would be expected to occur on
one of the secondary amino lone pairs exposed to solvent and not a lone pair inside the
cavity. Therefore, the pK_ of this species should be closer to that of a typical secondary
amine.

To support this argument, an NMR experiment was performed whereby 92 was
treated with trifluoroacetic acid (TFA) in CD3CN . We expected that there might be an

exchange process that interconverted the “inside” protons with the “outside” proton. This
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exchange process must involve inversion of the secondary amino nitrogens and either
intermolecular or intramolecular proton transfers. If this interconversion was slow on the
NMR time-scale two separate proton resonances would be observed in a 2:1 ratio.
However, this process is not slow and a single proton resonance was observed in the 'H
NMR. Addition of an equivalent of TFA afforded 92H" which had a single NH
resonance at 7.44 ppm in CD,CN. Addition of a second equivalent of TFA afforded
92.2H*. The 'H NMR spectrum of 92°2H* had two distinct NH resonances (9.27,
10.19 ppm), one more broad than the other (10.19 ppm). This species should have both
“outside” lone pairs protonated and has no exposed lone pairs available to intermolecularly
shuffle protons. Therefore, the rate of exchange of protons is slower in this case and two
distinct resonances were observed. It is likely that the broader resonance observed further
downfield corresponds to the “outside™ protons which are in slightly faster exchange than
the “inside” protons. The 'H NMR spectrum is also consistent with diamond lattice
conformations for the two 14-membered rings. The two upfield multiplets are nicely
resolved into a doublet of pentets (dp, 1.61 ppm) for the pseudo-equatorial protons and a
quartet of triplets (qt, 2.18 ppm) for the pseudo-axial protons of the methylenes f to
nitrogen atoms in the 14-membered rings. These data further support the hypothesis that
there are two protons with bifurcated hydrogen bonds inside the cavity. An aliquot of this
NMR sample was removed and diluted (10:1) with CD,CN. The 'H NMR of this sample
was unchanged with respect to the more concentrated sample. We hoped that addition of

D, 0 to the NMR sample would provide further insight concerning 92¢2H"*. If a small
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amount of D,O was available to exchange with the protons it is reasonable that the
“outside” protons must exchange first. Therefore, that resonance should decrease in area
faster than the resonance for the “inside” protons. Unfortunately, by the time the 3 pL of
D,0 had been added and the 'H NMR spectrum acquired, both types of protons had
exchanged.

In all cases presented to this poiﬂn cross-bridged ligands have complexed Li* and
Na" so effectively that free ligand has never been observed for 1:1 molar mixtures of
ligand:metal. However, 92 was not as effective as a result of the two “inside” protons
which are hydrogen bonded to the nitrogen lone pairs in the cavity. A 1:1 molar mixture of
92 and LiCIO, in CD,CN was prepared and the NMR data was consistent with 92eLi*
and free 92. Two sets of '*C NMR resonances were observed for this sample, each
having six lines, confirming that 92¢Li* and 92 were in slow exchange on the NMR time
scale. Addition of another 0.3 equivalents of LiClO, gave a >C NMR spectrum consistent
with fully complexed 92+Li* which had only one set of six resonances.

The same experiment between 92 and NaClO, did not have similar results. The 'H
NMR spectrum of the 1:1 molar mixture of 92 and NaClO , Was consistent with 92.
However, the 3C NMR chemical shifts observed for this mixture varied slightly from the
shifts of authentic 92. Furthermore, these resonances were slightly broadened. Therefore,
the exchange of Na* between free and Na*-complexed 92 is fast on the '3C NMR time
scale. The mixture, however, must be predominantly composed of 92 because the

chemical shifts for the mixture are only slightly different that those observed for free 92.
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Competition: 1.4 8.11-Tetraazabicyclof{6.6.2]hexadecane (92) and 4.11-Dimethyl-
1.4,8.11-Tetraazabicyclo[6.6.2]hexadecane (83) for LiCIO o

ar Y
QUGS
L £

Method of Detection: 1*C{'H} NMR
Resonance Observed (83<Li*): 24.24 ppm (NCH,CH,CH,N)
Resonance Observed (92+Li*): 24.33 ppm (NCH,CH,,CH,N)
Resonance Observed (83): 28.70 ppm (NCHZCHZCH2N)
Resonance Observed (92): 25.24 ppm (NCH2CHzCH2N)
Initial Concentration of a Single Amine Component: 5.96 x 102 M
A competition was performed between 83 and 92 in CD,CN (for sample
preparation and data acquisition see Experimental Section). Upon inspection of the 'H
NMR spectra of 83, 92, 83+Li*, and 92-Li* in CD,CN, no isolated resonances which
could be accurately integrated were found. Therefore, an estimate of K , was calculated
based on the !3C NMR spectrum. The '*C NMR resonances for 83, 92, 83+Li*, and
92+Li* in CD,CN are given in Table 3.4. The most abundant species in the competition
experiment were 92 and 83<Li* but some resonances for 83 and 92-Li* were also
found. Provided the T,’s and NOE’s for the free ligands (83 and 92) and the T,’s and
NOE'’s for the Li* complexes (83Li*, and 92+Li*) for respective carbons are not

significantly different, K ey €0 be calculated. The integration for each respective carbon
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can be used in Equation 3.8 tocalculate K . These data are presented in Table 3.5. K_,
was calculated to be (1.73 + 0.085) x 10? (at 95% confidence) which corresponds to a
AAG®  of -3.05 £0.028 kcal/mol. Therefore, 83 is a better complexer of Li* than 92 as

predicted.

Table 3.4: 13C Chemical Shifts for Competition Experiments
on 92 and 83 for LiClO4 in CD3CN.

Competition
92 92-Li* 83 83-Li* major minor

92 83<Li+ 83 92-Li*

25.27 24.32 28.69 24.59 25.24  24.61 28.70 24.32

4741 43.52 43.02 46.57 4740 46.59 — 43.54
51.31 48.36 52.28 51.75 51.25  51.76 — 48.37
52.70 52.37 56.81 52.20 52.71 52.21

56.67 59.75 56.96 58.89 56.61 58091
59.99 60.76 57.77 58.94 59.99 5893
61.67 59.64 — 59.67 61.65 —_—

Initial Concentrations of 92 and 83 in the Competition: 5.96 x 10-2 M
Data for 83 and 83-Li* originally recorded by M.E. Rogers

_ [83-Li"][92]

= ronrres] - L7 0.085)x10?
(Equation 3.8)
for
8 4 opLit ——S = 0 4 g3
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Table 3.5: Results for the Competition Experiment of 92 and 83 for

LiClO4 in CD3CN.

Integration (F8 r;tsz 78(?) (I; r; 2942 83-Li+ 92<Li+* K,
. 24) (624.61) (824.32) e

1 42123.39 1435870 1905061  449795.9 144.3727

2 31765.84 1417843 1890356  471506.8 178.9466

3 31489.31 1405029 1892123  485371.3 173.9392

4 31697.71 1414211 1891157  474824.8 177.6972

5 31605.83 1406864 1892889  484819.4 173.7921

6 31900.07 1423293 1890181  464675.9 181.4913

7 31418.51 1396332 1893907 497773.8 169.0946

8 31922.18 1427414 1887262 443874.4 190.1207

9 31489.31 1405029 1892123  485371.3 173.9392

10 31342.34 1395460 1894512  498339.3 169.2615

Average (x) 32675.45 1412735 1892957  475635.3 173.2655

Initial Concentrations of 92 and 83 in the Competition: 5.96 x 10-2 M
Standard Deviation for Kj: 11.89343
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Competition: 1.4.8.11-Tetraazabicyclo[6.6.2}hexadecane (92) and Tetramethylcyclam
(88) for LiCIO »

<) r
9%; U

Method of Detection: *C{'H} NMR
Resonance Observed (88¢Li"): 24.24 ppm (NCH,CH,CH,_N)
Resonance Observed (92¢Li*): 24.33 ppm (NCH,CH,CH,N)
Resonance Observed (88): 28.70 ppm (NCH,,CH,CH,N)
Resonance Observed (92): 25.24 ppm (NCHZCHZCHzN)
Initial Concentration of a Single Amine Component: 8.51 x 102 M
The same competition experiment was performed between tetramethylcyclam (88)
and 92 in CD,CN (for sample preparation and data acquisition see Experimental Section).
An estimate of K | was calculated base on the B¢ spectrum. The 13C resonances for 88,
92, 88¢Li", and 92-Li* in CD,CN are given in Table 3.6. The same assumption
concerning the T,’s and NOE’s can be made in this case as was made for the competition
between 83 and 92 for Li*. The data for the integrations is presented in Table 3.7. The
integration for each respective carbon was used in Equation 3.9 to calculate K . K, was
calculated to be 1.88 + 0.047 which corresponds to a AAG®  of -0.374 £ 0.015 kcal/mol.
As mentioned earlier in this section, Hines performed the competition of 83 and 88

for LiCIO 4.89 From that experiment, K, was calculated to be -(6.01+0.52) x 10° in favor
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Table 3.6: 13C Chemical Shifts for the Competition Experiment for 92 and
88 with LiClO4 in CD3CN.

Competition
o i+ of it
92 9xLi" 8% 8BL® 92Li* 88  SSeLi*

2527 2432 2580 23.34 2529 23.44 25.78 23.32
4741 4352 4348 4264 4735 43.538 43.53% 4273
5131 4836 —— 43.197 51.34 48.37 ——  43.53%
52.70 5237  55.13 5591 5252 52.37 55.16  56.02
56.67 59.75 55,75 57.68  56.24 59.78 55.74  57.78%

5999 60.76 —— 60.46° 59.78%  60.79% ——  60.78%

Initial Concentrations of 92 and 88 in the Competition: 8.51 x 10-2 M
Data for 88 and 88<Li+ recorded by M.S. Hines

+ Resonance was broad

§ Resonances were overlapping

_ [88-Li*[92] _
= “oariae] - 3810047
(Equation 3.9)
for
Krel
92¢Li* + 88 88eLi* + 92
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Table 3.7: Results of the Competition Experiment on 88 vs. 92 for LiClO,4

in CDsCN.
Itegraion [Tee 88 Free 92 92¢Li+ 88-Li+ K
(525.78) (52529) (52432)  (523.42) rel

1 3351253  4.325718  2.348412  3.342709  1.837280
2 3305257 4.337708  2.376626  3.340714  1.844733
3 3254040 4.378045 2398162  3.386639  1.899974
4 3406156  4.240905 2316787  3.220567  1.730774
5 3227081 4392984 2408133 3403123  1.923742
6 3271995  4.36079 2387566  3.363103  1.877316
7 3221981  4.40442 2415858  3.422006  1.936311
8 3.189891  4.422523 2427265  3.447087  1.968926
9 3249717 4377082 2397738 3381875  1.899743
10 3271995 4.360790 2387566  3.363103  1.877316

Average ()  3.274934 4360100 2386411  3.367093  1.879611

Inidal Concentrations of 92 and 88 in the Competition: 8.51 x 10-2M
Standard Deviation for Kq[: 0.0659386

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of 83«Li* over 88-Li*. However, as reported in this chapter, 88 and 92 complex
LiClO, approximately equally having a K, of 1.88 £ 0.047 in favor of 88 complexation.
Therefore, one would predict that the K, for the competition of 83 and 92 for LiCIO,
should have a K, on the order of 10°. The K, for that experiment was calculated to be
(1.73 £0.085) x 10*>. These data are not internally consistent. As far as the competitions
between (88 and 92) and (83 and 92) for LiClO » these experiments allowed for the
observation of both free ligands and both complexes. Therefore, the solution for K , is
generated by knowing the relative concentrations of all four species. This makes these data
more reliable than Hines’ (83 and 88) competition experiment for LiClO, which was
monitored by '"H NMR resonances for 83 and 83Li*. Experimental errors in weighing
of samples dramatically alter the value of K , for that type of experiment. However,
integration of '"H NMR spectra is far more accurate than Bc NMR spectra because of the
influence of T,’s and NOE differences in BcNMR spectra. These differences could lead
to error in the data for the competitions between (88 and 92) and (83 and 92) for LiClO v

Clearly, some experiments must be repeated in order to confirm all of these results.

_ [88eLi*[92] k.. [83°Li*1[88]
[92+Li*[88] 8388 I88eLi*][83]

Koo < 188ET[92]  [83-Li*Jf88] _ [83+Li*][92]
8392 7102.Li"1[88] = [88ELi83]  [92°Li*1[83]

(Equation 3.10)

Kgsro2

= 1.13x10%
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Complexation of 1-Methyl-1.4.8.11-tetraazabicyclo[6.6.2]hexadecane (114) with LiClO,

and NaClO  in CD_,}&

o
aw
5
14
We believed that 114 may have complexing abilities for Li* and Na* which were
superior to 92 even though 114 has a hydrogen bonded proton inside the cavity. We also
believe that 114 should be less basic than 83 and other fully substituted cross-bridged
cyclam derivatives. If this hypothesis is correct, and the complexation properties of 114
were relatively similar to those of 83, 114 would be a very interesting lead for preparing
“less basic” Li* selective cross-bridged ligands. The 1:1 LiClO , complex of 114 was
prepared in CD,CN. The 114+Li* complex had thirteen distinct '>C resonances which are
listed in Table 3.8. The NMR sample containing a 1:1 molar mixture of NaClO, and 114
had only twelve resonances and also displayed dynamic broadening for six of these
resonances. These chemical shifts are listed in Table 3.8 This broadening is a result of

exchange of Na* between 114eNa* and free 114.
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Competition: LiCIO ; and NaClO » for 1-Methyl-1.4.8.11-tetraazabicyclo[6.6.2]hexadecane

(114) in CD.CN.
() n

ae

N
114
Method of Detection: *C{'H} NMR
Resonance Observed (114<Li*): 23.82 pm (NCH,CH,CH,N)
Resonance Observed ((1:1)114:NaClO ): 25.45 ppm (NCH,CH,CH,N)
Initial Concentration of a Single Amine Component: 1.34 x 10'M

A competition was performed between Li* and Na* for 114 in a 1:1:1 molar ratio in
CD,CN (for sample preparation and data acquisition see Experimental Section). After
inspection of the 'H NMR spectra of 114, 114+Li*, and (1:1)114:NaClO 4 in CD.CN,
no isolated resonances which could be accurately integrated were found. Therefore, an
estimate of K, .., + was calculated based on the line height of Bc NMR‘resonances. The
'>C NMR resonances for 114, 114<Li*, and (1:1)114:NaClO, in CD,CN are given in
Table 3.8. A set of !°C resonances was observed which was consistent with 114eLi*.
There was also a minor component which was consistent with (1:1)114:NaClO,. These
resonances are also listed in Table 3.8. An estimate can be calculated for K, .+ +, based
on the height of the signals for respective carbons for the two complexes. The ratio of the
peak heights was 94:6 in favor of 114<Li*. The competition equilibrium constant

-+~ +) calculated from Equation 3.11 for this competition was estimated as 2.5 x 10
i"/Na pe
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based on these data. The free energy of competition (AAG°ml) was estimated to be -3.26
kcal/mol at 25 °C. 114is a benér complexer of Li* than Na*. However, it is reasonable to
consider this experimental result questionable. The 'H NMR of the competition sample
clearly shows water present in a relatively large quantity. Therefore, the water must have
been introduced from 114 or one or both of the perchlorate salts resulting in error in the
stoichiometry of the competition. This competition should be repeated with anhydrous

reagents to confirm the observed K .

Kpe _ [114-Li'JNa*] _ [114eLi*]*_ _[94)?
Kyar  [114eNa*[Li*]  [114eNa*P  [61?
(Equation 3.11)

Kie = = 2.45x10°

for

Li* + 114eNa* = Na* + 114eLi*
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Table 3.8: 13C Chemical Shifts for Complexation Experiments on 114 with
LiClO4 and NaClO4 in CD3CN.

114 114-Li* 1145;:;1():104 Li)ﬁ; Comn[:gitrion
26.52 23.84 25.42 23.82 25.45
28.32 24.68 25.90 2467
41.93 43.40 43.85 (b) 4340 4397
49.82 45.59 44.91 4558
49.93 47.95 49.62 (b) 47.95 48.91
50.37 51.81 51.10 51.81 —
20.59 52.16 52.04 (b) 52.18 —
55.00 52.54 53.07 (b) 52.55 53.18
57.10 58.86. 57.99 (b) 58.86 57.77
57.10 59.19 58.33 (b) 59.18 58.12
58.01 59.19 59.13 59.18
59.82 59.63 59.37 59.61 —
62.40 61.52 — 61.50  —

Initial Concentration of 114 in the Competition: 1.34 x 10-! M
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Competition: 1-Methyl-1.4.8.11-tetraazabicyclo[6.6.2Thexadecane (114) and 4.11-
Dimethyl-1.4.8.11-Tetraazabicyclo[6.6.2]hexadecane (83) for LiClO A0 CD3&

83 114

A competition between 114 and 83 for LiClO, was carried out. However, too
much LiClO, was added in this experiment which negates the possibility to calculate K .
Since the quantity of 114 on hand was relatively low, further experiments were not
possible. The experiment conducted does qualitatively show that 83<Li* was the
dominant complex in solution. There was 114*Li* present in the competition sample, but
no free 83 was detected which verified excess LiClO, was present after all of the 83 had

been complexed. However, 83 is a much better Li* complexer than 114.

137) and 4.11-Bis-(N.N’-diethvlacetamido)-1.4.8.1 1-tetraazabicvclof6.6.2]hexadecane

9%) for LiClO .

M NE, () OEt
1ASL QWL
S P vﬁY

137
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Method of Detection: 'H NMR
Resonances Observed (137-Li") and (137): 4.02-4.28 ppm (CH2CH3, 8H)
Resonance Observed (95): 3.88 ppm (td, 2H)
Initial Concentration of a Single Amine Component: 4.11 x 102 M
In this experiment, the 137<Li* complex was preformed in CD,CN and 95 was

then added to this solution. This mixture was observed by 'H NMR over 36 hours. The
'H NMR data showed that there was a slow approach to equilibrium favoring 95¢Li*.
However, for data points closer to t_ it was clear that the complexation of LiClO, was
competing with complexation of H"or H,O. The water was introduced from the ligands.
Water present in the sample complicated this experiment and, as a result, the relative
complexation constant for these two ligands could not be calculated. This experiment must

be repeated using anhydrous ligands.

Determination of Thermodynamic Mixtures Over Kinetic Mixtures in Competition

Experiments.

A necessary condition for competition experiments is that the complexation must
reach thermodynamic equilibrium. We had assumed, based on work by Hill and Hines,
that the rates of complexation an decomplexation of the Li* cation by cros;—bridged ligands
were relatively fast on the laboratory time scale. That is to say, kinetic mixtures of
complexes and free ligands were not observed and thermodynamic equilibrium had been

reached by the time the NMR sample had been prepared, the NMR experiment setup and
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the spectrum acquired. Ideally, to verify this condition, two separate experiments must be
carried out. For a ligand-ligand-metal competition, a 1:1 complex with one ligand (Ligand
A) and the metal is preformed and one equivalent of the second ligand (Ligand B) is added.
The NMR experiment is performed and the K  is calculated. In a second experiment, a 1:1
complex is preformed with the other ligand (Ligand B) and the metal and one equivalent of
the complementary ligand (Ligand A) is added. The K, for this experiment should be the
same if both samples have reached thermodynamic equilibrium. Unfortunately, we could
not perform the analysis in this manner due low quantity of ligands. Therefore, we have
indirectly proven that the competitions reported in this chapter had come to thermodynamic
equilibrium.

The competition of 92 and 88 for Li* resulted in a AAG®  of -0.347 kcal/mol. If
this is a thermodynamic result, 92 and 88 complex Li* approximately equally. The
introduction of one equivalent of 95, a much stronger Li* complexer, should result in all of
95 complexed with Li* to afford 95-Li* and free 92 and free 88. In fact, this was exactly
what was observed experimentally within 20 minutes after the addition of 95 to the mixture
of 92, 88, 92¢Li* and 88¢Li*. The same experiment was conducted using the
competition experiment between 92 and 83. Within 20 minutes after the addition of 95 to
the mixture of 92, 83, 92¢Li* and 83¢Li*, no free 95 was detected. These two
experiments prove that there is rapid equilibration between Li*-complexed cross-bridged
ligands and thermodynamic equilibrium is quickly achieved in these cases.

Further experiments were conducted on the competition of 95 and 83 for LiClO,.
136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As stated previously, the experimental resulit of this competition did not provide any
evidence for presence of 83+Li* in that sample. However, it was possible that in the
sample preparation, 95°Li* was formed before the addition of 83. If that was the case,
the observed '3C NMR spectrum for this competition may be of a kinetic mixture of 83,
95 and LiClO,. To prove that this was not a kinetic mixture, another equivalent of LiClO,
was added to the competition NMR sample to afford a mixture of 83+Li* and 95°Li*. It
was confirmed, by 13C NMR, that these were the only two species present in this sample.
Another equivalent of free 95 was then added. Since the only source of Li* available for
free 95 to complex is from 83<Li*, the relative complexing abilities of 95 and 83 for Li*
can be directly observed. 13C NMR analysis of the resulting mixture was consistent with
83 and 95-Li*, verifying that 95 is a better complexer of Li* than 83 as previously
observed. Furthermore, this spectrum was run within twenty minutes after the addition of
the second equivalent of 95. Therefore, thermodynamic equilibrium was established

quickly on the laboratory time scale in the competition of 95 and 83 for LiClO,,.

Complexation of Cross-Bridged Cyclam Derivatives with Cu?*.

Weisman, Wong and coworkers reported the preliminary results of complexation of
cross-bridged cyclam derivatives with Cu?*.!% Included in this publication was the Cu®*
complex of 138 was prepared by Wong and its x-ray crystal structure. The
[Cu(96)(C10,),] complex has been prepared and gave satisfactory elemental analysis.

Unfortunately, crystals of sufficient quality of the Cu?* complex of the new amide armed
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cross-bridged cyclam (96) were not obtained in order to get an x-ray crystal structure.
However, data was obtained for the visible spectrum of these blue crystals. The lmx for
Cu(96)(ClO ), was 630 nm and the € was 24. Additional the IR stretching frequency of

the amide carbonyl was shifted to 1665 cm™ from 1685 cm™! for the free ligand.
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Chapter IV

EXPERIMENTAL SECTION

I. General Methods

Melting points (mp) were recorded on a Thomas Hoover capillary melting point apparatus
and are uncorrected.

Infrared spectra (IR) were run on a Nicolet MX-1 FT-IR spectrometer and absorptions are
reported in wavenumbers (cm™').

'H NMR spectra (‘H NMR) were acquired on a Bruker AM360 FT-NMR spectrometer
operating at 360.134 MHz. Chemical shift (8) values are reported in parts per million
(ppm) relative to Me,,Si (TMS) unless otherwise noted. Coupling constants (J values) are
reported in Hertz (Hz).

13C NMR spectra (**C NMR) were acquired on a Bruker AM360 FT-NMR spectrometer
operating at 90.556 MHz. Chemical shift (8) values are reported in parts per million (ppm)
relative to Me 4Si (TMS) unless otherwise noted. In those cases, chemical shifts are either
referenced to a secondary reference or a known resonance for the deuterated solvent.

Low resolution mass spectra (MS) were performed by the University of New Hampshire
Instrumentation Center on a Hitachi-Perkin-Elmer RMU-60 mass spectrometer. The
methods of ionization (EI or CI) are given in the individual experiments.

Elemental analyses were performed by the University of New Hampshire Instrumentation
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Center on a Perkin-Elmer 240B elemental analyzer.

Ultraviolet-visible spectra (UV-Vis) were acquired on a Varian Cary 5 spectrophotometer

and absorptions are reported in nanometers (nM).

. Solvents

Absolute ethanol (EtOH) was obtained for routine use from AAEPR Alcohol and Chemical
Co. This product was also distilled from Mg and stored over 3A molecular sieves for
special applications.

Acetone (reagent grade) was obtained from Fisher Chemical Co. and was used without

further purification.

Acetonitrile (CI-13CN) was obtained from EM Science and distilled from Ca[-I2 prior to use.
Benzene (C6H5) was obtained from J.T. Baker and distilled prior to use.

Chloroform (CHC13) was obtained from EM Science and distilled from CaH2 prior to use.
Diethylether (Et,0) was-obtained from Fisher Chemical Co. and was distilled from
benzophenone-ketyl prior to use.

Dimethylformamide (DMF) was obtained from J.T. Baker and distilled under reduced
pressure (water aspirator) from CaH, prior to use.

Deuterated NMR solvents were obtained from Cambridge Isotope Laboratories and stored
over 3A molecular sieves.

Ethanol (95% EtOH) was obtained from AAEPR Alcohol and Chemical Co.
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Glacial acetic acid (HOAc) was obtained from Fisher Chemical Co.

Hexanes were obtained from Pharmco Chemical Co. and were fractionally distilled prior to

use and stored over 3A molecular sieves.

Methanol (MeOH) was obtained from Fisher Chemical Co. It was distilled and stored over
3A molecular sieves.

Methylene chloride (CH2C12) was obtained from J.T. Baker and distilled from CaH, prior
to use.

Tetrahydrofuran (THF) was obtained from Fisher Chemical Co. and was distilled from
benzophenone-ketyl prior to use.

Toluene (PhCH,) was obtained from EM Science and was distilled from Na® prior to use

and stored over 3A molecular sieves.
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III. Reagents

Acrylamide was obtained from Aldrich chemical Co.

Acrylonitrile was obtained from Aldrich Chemical Co.

Aluminum chloride was obtained from Aldrich Chemical Co.

N-(2-Aminoethyl). N’-(3-aminopropyl)-1.2-diaminoethane tetrahydrochloride was

obtained from Aldrich Chemical Co.

Benzyl bromide (PhCHzBr) was obtained from Aldrich Chemical Co.

Borane-tetrahydrofuran complex (BH,*THF) was obtained from Aldrich Chemical Co. as a

IM solution in THF.

Bromine was obtained from Aldrich Chemical Co.

Bromoethane was obtained from Aldrich Chemical Co.

Bromobutane was obtained from Aldrich Chemical Co.

p-Bromo-nitrobenzene was obtained from J.T. Baker.

p-Bromotoluene was obtained from Aldrich Chemical Co.

2-Chloroacetamide was obtained from Aldrich Chemical Co.

2-Chloro-N.N"-diethylacetamide was obtained from Aldrich Chemical Co.
>-Bis-(2-aminoethyl)-1.3-propanediamine was obtained from Aldrich Chemical Co.

-Bis-(3-ami D-ethylenediamine was obtained from Aldrich Chemical Co.

N,N’-Bis-(3-aminopropyl)-1.3-propanediamine was obtained from Aldrich Chemical Co.

Racemic-2.2’-Bis(diphenylphosphino)-1.1’-binaphthyl (+BINAP) was obtained from
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Strem Chemical Co.

Celite (Diatomaceous Earth Powder) was obtained &6m VWR Scientific Co.

Cupric acetate hexahydrate was obtained from J.T. Baker.

Cupric chloride hexahydrate was obtained from Aldrich Chemical Co.

Cupric perchlorate hexahydrate was obtained from Aldrich Chemical Co.
1.2-Dibromoethane was obtained from Aldrich Chemical Co.

.o’ -Dibromo-o-xylene was obtained from Aldrich Chemical Co.

Diethyloxalate was obtained from Aldrich Chemical Co.

Diisobutylaluminumhydride (DIBALH) was obtained as a 1.5 M solution in toluene from

Aldrich Chemical Co.

Dimethylene bis(p-toluenesulfonate) was prepared by C.A. West.
1.8-Dimethyl-1.4.8.] 1 -tetraazabicyclo[6.6.2]tetradecane was graciously provided by M.

S. Hines.

2.4-Dinitrofluorobenzene was obtained from Aldrich Chemical Co.

Dithiooxamide was obtained from Fluka Chemical Co.

Ethanolamine was obtained from Aldrich Chemical Co.

Ethylbromoacetate was obtained from Aldrich Chemical Co.

Ethylenediamine was obtained from Aldrich Chemical Co. and was distilled from KOH
prior to use.

Glyoxal (40 wt % aq. solution) was obtained from Aldrich Chemical Co.

1,3.4.6.7.8-Hexahydro-2H-pyrimido[1.2’-a]pyrazine was obtained from Aldrich Chemical
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Co.

Hexamethyldisilizane was obtained from Aldrich Chemical Co.

Hydrochloric acid (12 M HCI) was obtained from Fisher Chemical Co. and was used
without further purification.

Hydrogen (prepurified grade) was obtained from Northeast Air Gas.

Hydroxylamine hydrochloride was obtained from Aldrich Chemical Co.

Lithium aluminum hydride (LiAIH ) Was obtained from Aldrich Chemical Co.
Lithium perchlorate (LiCl1O ) Was.obtained from J.T. Baker.

Methyl iodide (MeI) was obtained from Aldrich Chemical Co.

Molybdenum hexacarbonyl was graciously supplied by E. H. Wong.

Oxalic acid was obtained from Aldrich Chemical Co.

Oxamide was obtained from Aldrich Chemical Co.

10% Palladium on carbon (10% Pd/C) was obtained from Aldrich Chemical Co.
1.2-Phenylenediamine was obtained from Aldrich Chemical Co.

N-Phenylmaleimide was obtained from Aldrich Chemical Co.

Potassium tert-butoxide was obtained from J.T. Baker.

Potassium carbonate (K2C03) was obtained from Fisher Chemical Co.

Potassium hydroxide (KOH) was obtained from Fisher Chemical Co.

Potassium iodide (KI) was obtained from Fisher Chemical Co.

1.3-Propanediamine was obtained from Aldrich Chemical Co. and was distilled from KOH

prior to use.
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Sodium borohydride (NaBH ) Was obtained from Aldrich Chemical Co.

Sodium hydride (NaH) was obtained as a 57% mineral oil dispersion from Aldrich
Chemical Co.

Sodium perchlorate (NaClO ) was obtained from Aldrich Chemical Co.

Sodium sulfate (Na,SO,, anhydrous) was obtained Fisher Chemical Co.

Sodium tetraphenylborate (NaBPh4) was obtained from J.T. Baker.
Tetrakis-(dimethylamino)-ethylene was obtained from Aldrich Chemical Co.
p-Toluenesulfonic acid was purchased from Aldrich Chemical Co.

p-Toluenesulfonyl chloride was purchased from Aldrich Chemical Co.
1.4.8.11-Tetraazacyclotetradecane (cyclam) was obtained from Strem Chemical Co.
Trethylenetetraamine was purchased from Fluka Chemical Co. as either the pure tetraamine
or a 70% wt% crude mixture (GC analysis) and used without further purification.
Alternatively, the pure tetraamine could be generated from triethylenetetraamine hydrate
which was obtained from Aldrich Chemical Co. The tetraamine was obtained following
azeotropic distillation of the monohydrate with toluene for 3 days. Removal of the toluene
by rotary evaporation afforded the anhydrous tetraamine.

Trifluoroacetic acid (CF3COOH) was obtained from Aldrich Chemical Co. and was
distilled from trifluoroacetic anhydride prior to use.

Trimethylene bis(p-toluenesulfonate) was prepared by S.W. North.
Tris(dibenzylideneacetone)-dipalladium(Q) (Pd,(dba),) was obtained from Aldrich

Chemical Co.
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IV. Syntheses
Note: All routine solvent evaporations were carried out on a standard rotary
evaporator using aspirator pressure unless otherwise noted. All reactions were carried out

under a N, atmosphere unless otherwise noted.

Reaction of Triethylenetetraamine and Glyoxal. Triethylenetetraamine (1.10 g,
7.51 mmol) was dissolved in CH3CN (25 mL) in a 100 mL round bottomed flask.
Glyoxal (1.09 g; 40 wt % aq. solution, 7.5 mmol) was added in one portion. This mixture
was stirred at reflux under N2 for 17 h. The reaction mixture was concentrated by rotary
evaporation. The residue was taken up in CHCL, (50 mL), dried over Na,SO, and the
filtrate was concentrated to afford a brown oil. '>*C NMR analysis of this oil is consistent
with a mixture of isomeric bisaminals. The major component was identified as cis-13
having chemical shifts consistent with results published by Jazwinski.*: 1*C NMR
(CDCl,, 90.56 MHz, ref central line of CDCl, set at 77.23) 6 41.79 br, 50.06 br (2 C’s),
65.44, 76.57. The remaining resonances were not assigned but could be a mixture of the
other three possible bisaminal isomers (trans-13, cis-14, trans-14): § 38.25, 43.45,

44.47, 4197, 49.43, 50.74, 52.15, 52.77, 60.59, 70.70, 75.86, 79.28, 87.04.

2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2°,1’-c]pyrazine (16). A 500 mL
three-necked round-bottom flask equipped with a reflux condenser with a nitrogen inlet

tube, pressure-equalized addition funnel, fritted gas dispersion tube (initially closed) and a
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magnetic stirrer was charged with dithiooxamide (10.00 g, 83.19 mmol) and absolute
ethanol (50 mL). The nitrogen manifold exit line was routed through two fritted gas
washing bottles charged with 30% aqueous NaOH in order to trap H,S evolved. A solution
of triethylenetetraamine (12.16 g, 83.15 mmol) in absolute ethanol (50 mL) was introduced
to the reaction flask in one portion via the addition funnel. The mixture was then heated for
4 hours at reflux under nitrogen with the evolution of H,S and NI-I3 The reaction mixture
was then cooled to room temperature and residual H_S and NH, were purged from the
solution by entrainment with nitrogen, which was bubbled through the mixture from the
fritted gas dispersion tube for 3 hours. The solvent was then removed by short path
vacuum distillation (water aspirator) and the residue taken up in CHCL, (150 mL).
Insoluble material was removed by gravity filtration through a glass wool plug inserted in a
short stem funnel. The solvent was then removed by rotary evaporation under reduced
pressure to give 14.18 g of crude product. This solid was taken up in 50 mL of boiling
toluene and filtered through another glass wool plug. The flask was rinsed with a second
aliquot of boiling toluene which was poured through the funnel. The combined filtrates
were concentrated by rotary evaporation to afford 13.66 g of yellow solid. Sublimation of
this material (0.03 Torr, 110° C) afforded 10.58 g (77.5%) of product which was of
sufficient purity for conversion to cyclen. If desired, it can be further purified by
sublimation (100°C, 0.01 Torr): white solid; mp 150-151°C; 'H NMR (CDC13, 360.15
MHz, TMS) 3 3.25 (s, 4H), 3.34 (apparent t (XX’ of AA’XX"), 4H, J appar™ 9.6 Hz),

3.86 (apparent t (AA” of AA’XX), 4H, J, . =9.6 Hz); '*C NMR (CDCl,, 90.56 MHz,
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ref central line of CDCI3 set at 77.23) & 45.40, 52.17, 54.16, 155.50; IR (KBr) 1629 cm’!
(C=N); MS (EI) 164.15 M*; Anal. Calcd for CH ,N,: C, 58.52; H, 7.37; N, 34.12.

Found: C, 58.38; H, 7.55; N, 34.22.

Attempted Alkylation of Dithiooxamide with Bromoethane. Experiments were
performed in order to verify that bromoethane does not alkylate dithiooxamide under the
reaction conditions employed in the preparation of 17. Results of NMR experiments were
compared to NMR spectra of authentic samples of dithiooxamide and bromoethane run in
EtOD-d; and DMSO-d_

1.) Dithiooxamide (1.00 g, 8.32 mmol) was suspended in EtOH (10 mL). Bromoethane
(10 mL, mmol) was added to this slurry by syringe. This heterogeneous mixture was
heated at 60 °C under N, for 7 h. The reaction mixture was then concentrated by short path
vacuum distillation (water aspirator). Under aN 5 atmosphere, a small sample was
removed from the reaction flask and residual solvent was removed under vacuum. NMR
spectra were consistent with dithiooxamide and no alkylation was observed. Elemental
analysis of this sample also verified dithiooxamide as the only product. Anal. Calcd for
C,H/N.S,: C, 19.99; H, 3.35; N, 23.31; Found: C, 19.70; H, 3.21; N, 22.97.

2.) Dithiooxamide (1.00 g, 8.32 mmol) was placed in an Ace pressure tube. Bromoethane
(1.3 mL, 17.4 mmol) was added by syringe followed by enough EtOH (~18 mL) to leave

only approximately 1 cm of head space in the pressure tube. This mixture was heated at 70

°Cfor 1.5 h. At this time all of the solid had dissolved except for the small area of the
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pressure tube which was not submerged in the oil bath. Upon cooling to room temperature
an orange solid precipitated from the solution. The pressure tube was opened (cautiously)
in a dry bag which had been flushed with N,. There was no noticeable gas evolution when
the pressure tube was opened. A portion of the supernatant was removed by syringe and
placed in a Schlenk flask equipped with a short path distillation head. The solvent was
removed by vacuum distillation (water aspirator). NMR analysis of the pot residue from
the distillation was consistent with dithiooxamide and no alkylation was observed: 'H
NMR (DMSO-d, 360.15 MHz, TMS) & 9.59 (br s, 2H), 10.15 (br s, 2H).

3.) Dithiooxamide (0.0564 g, 0.4691 mmol) was suspended in EtOD-d s ( 1.0 mL).
Bromoethane (350 uL, 4.68 mmol) was added by syringe. This mixture was heated at 60
°C for 3.5 h under N,,. The supernatant was removed by syringe and transferred to an
NMR tube under N,. The 'H NMR data was consistent with bromoethane as the only
species in solution: 'H NMR (EtOD-d,, 360.15 MHz, TMS) & 1.63 (t, 3H, CH,CH,Br),
3.40 (q, 2H, CH,CH,Br). The solid remaining in the reaction flask was dissolved in
DMSO-d,; and also transferred to an NMR tube by syringe under N,. 'H NMR data was
consistent with dithiooxamide and bromoethane. No evidence for alkylation of
dithiooxamide by bromoethane was found: 'H NMR (DMSO-d, 360.15 MHz, TMS) S
1.58 (t, 3H, CH ,CHBr), 3.49 (q, 2H, CH,CH,Br)), 9.58 (br s, 2H, NH), 10.19 (br s,

2H, NH).

1,4,7,10-Tetraazacyclododecane (Cyclen) (2). A 1 L three-necked
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round-bottomed flask equipped with a reflux condenser with a nitrogen inlet tube,
pressure-equalized addition funnel and magnetic stirrer was charged with
2,3,5,6,8,9-hexahydrodiimidazo(1,2-a:2°,1’-c]pyrazine (16) (10.58 g, 64.43 mmol). The
system was flushed with N, prior to the introduction of a 1.5 M solution of DIBALH in
toluene (250 mL, 375 mmol) to the addition funnel by cannulation. The reaction flask was
cooled in an ice/H,,O bath and the DIBALH solution was introduced to the reaction flask
dropwise over 5 minutes. The reaction mixture was then heated at reflux under nitrogen for
16 b. The reaction flask was again cooled in an ice/H, O bath prior to the addition of toluene
(200 mL). The reaction was quenched by the cautious drop-wise addition of a 3 M NaOH
solution (20 mL). When gas evolution had ceased, 355 mL of 3 M NaOH was added in
one portion and the two phase mixture was transferred to a separatory funnel. After the
layers were separated, ice chips were added to the aqueous layer and it was extracted with
CHCl, (6x150 mL) which had been cooled in an ice/H, O bath. The combined organic
extracts were dried over Na,SO, and the solvent removed by rotary evaporation to afford
10.22 g of white crystalline solid. Sublimation (0.4 Torr, 90 °C) of this white solid
afforded 9.77 g (88.6 %) of cyclen: mp 103-107 °C (lit mp'*’); 'H NMR (C,D,, 360.15
MHz, TMS) § 1.60 (s, 4H), 2.45 (s, L6H). '3C NMR (C_D,, 90.56 MHz, ref central

66

line of CgDg set at 128.39) 6 46.99.

2,3,4,5,5a,6,7,8-Octahydro-1,3a,5,9-tetraazabenzindene (18). A 250 mL

three-necked round-bottom flask equipped with a reflux condenser with a nitrogen inlet
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tube, fritted gas dispersion tube (initially closed) and a magnetic stirrer was charged with
(2.05 g, 16.8 mmol) of dithiooxamide and 20 mL of absolute ethanol. The nitrogen
manifold exit line was routed through two fritted gas washing bottles charged with 30%
aqueous NaOH in order to trap H,S evolved. 1,4,7,11-Tetraazaundecane (2.74 g, 17.1
mmol) was introduced to the reaction flask in one portion followed by EtOH (5 mL), which
was used to rinse the vessel containing the tetraamine. The mixture was then heated for 4
hours at reflux under nitrogen with the evolution of H,S and NH,. The reaction mixture
was then cooled to room temperature and residual H,S and NH, were purged from the
solution by entrainment with nitrogen, which was bubbled through the mixture from the
fritted gas dispersion tube for 2 h. The solvent was then removed by short path vacuum
distillation (water aspirator) and the residue was taken up in CHCI, (100 mL). Insoluble
material was removed by gravity filtration through a glass wool plug inserted in a short-
stem glass funnel. The solvent was then removed by rotary evaporation under reduced
pressure. The residue was taken up in 50 mL of boiling toluene and filtered through
another glass wool plug. The flask was rinsed with a second aliquot of boiling toluene
which was poured through the funnel. The combined filtrates were concentrated by rotary
evaporation to afford 2.33 g of crude product. Sublimation of this material (0.2 Torr, 100
°C) afforded 1.74 g (58.2%) of product: mp: 117.5-119 °C; 'H NMR (CDCl;, 360.15
MHz, TMS) & 1.89 (p, 2H, J = 5.8 Hz, CH,CH,CH,), 3.16-3.39 (m, 2H), 3.22 (t, 2H,
XX’ of AA’XX’, J = 5.8 Hz), 3.29-3.35 (m, 2H), 3.33 (1, 2H, XX’ of AA’XX", J=9.4

Hz), 3.55 (t, 2H, J = 5.7 Hz, CH,CH,CH,N=C), 3.78 (t, 2H, J/ = 9.4 Hz, AA’ of
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AA’XX’, CH,CH,N=C); 13*C NMR (CDCl;, 90.56 MHz, ref. central line of CDCI, set at
77.23) 8 21.35 (CHZCHZCHz), 44.78, 45.15, 47.37, 48.42, 53.27, 53.53, 145.59,
158.66; IR (KBr) 1629, 1604 cm’'; MS (EI) m/z 178.3 M*; Anal. Calcd for CgH,,N,: C,

60.65; H, 7.92; N, 31.43. Found: C, 60.25; H, 8.09. N, 31.80.

1,4,7,11-Tetraazacyclotridecane (19). A 50 mL three-necked round-bottomed
flask equipped with a reflux condenser with a nitrogen inlet tube and magnetic stirrer was
charged with 2,3,4,5,5a,6,7,8-octahydro-1,3a,5,9-tetraazabenzindene (18) (1.05 g, 5.89
mmol). The reaction flask was cooled in an ice/H,O bath and the system was flushed with
N, prior to the introduction of a 1.5 M solution of DIBALH in toluene (24 mL., 36 mmol)
by syringe. The reaction mixture was then heated at reflux under nitrogen for 16 h. The
reaction flask was again cooled in an ice/H,O bath prior to the addition of 20 mL of
toluene. The reaction was quenched by the cautious dropwise addition of a 3 M NaOH
solution (36 mL). After the layers were separated, ice chips were added to the aqueous
layer and it was extracted (6x25 mL) with CHCl, which had been cooled in an ice/H,0
bath. The combined organic extracts were dried over Na,SO, and the was solvent removed
by rotary evaporation to afford 1.12 g of crude product. Sublimation (0.05 Torr, 80 °C) of
this material afforded 0.979 g (89.3%) of crystalline product: mp: 39-40 °C (lit:"! 40-41
°C) 'H NMR (CDCl;, 360.15 MHz, TMS) & 1.68 (p, 2H, CH,CH,CH,), 2.13 (br s, 4H,
NH), 2.66-2.77 (m, 16H); '3C NMR (CDCl,, 90.53 MHz, ref. central line of CDCl, set

at 77.23) & 29.25, 47.71, 47.93, 49.18, 50.16. NMR spectra were consistent with
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reported spectra.’?

2,2’-Bihexahydropyrimidine (20). This compound was prepared by the method of
Jazwinski.* 1,3-Propanediamine (4.13 g, 55.8 mmol) was placed in a round-bottomed
flask followed by aqueous glyoxal (1.32 g; 40 wt % aq. solution, 23.6 mmol). This
mixture was heated at 70 °C under N, for 3 h. The reaction mixture was then concentrated,
dissolved in CHCl, and dried over Na,SO,. Concentration of the filtrate afforded a yellow
solid which was recrystallized from CH,CN to afford 1.45 g (37%) of product.
Sublimation of the product is possible with loss of some material to decomposition: mp:
121-126 °C (lit.43: 129-130 °C); 'H NMR (CDCl,, 360.15 MHz, TMS) & 1.43-1.60 (m,
4H, CH,CH,CH,), 1.65 (br s, 4H, NH), 2.78 (ddd, 4H, J = 15.6, 13.4, 3.4 Hz,
NCH, HCH2), 3.15 (ddd, 4H, J = 134, 4.3, 4.1 Hz, NCHchCHz), 3.38 (s, 2H,
NCHN); 13C NMR (90.56 MHz, CDCl,, ref central line of CDCl, set at 77.23) § 27.76,

45.73, 74.40. Spectra were consistent with reported data.*5

Trans-4a,4b-perhydro-4,5,8a,10a-tetraazaphenanthrene (21). This compound
was prepared by the method of Jazwinski.*’ 2,2’-Bihexahydropyrimidine (20) (1.75 g,
10.3 mmol) was suspended in H20 (75 mL) in a 250 mL round-bottomed flask. Aqueous
glyoxal (1.5 mL, 40 wt % aq. solution, 11 mmol) was added in one portion and the
resulting mixture was stirred under N2 for 24 hours. NaBH, (1.2 g, 32 mmol) was then

added in small portions and this slurry was stirred at room temperature for 3 days. NaOH
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pellets were added to increase the pH to 14 and this solution was continuously extracted
with toluene for 3 days. The organic layer was dried over Na,SO, and concentrated to
afford 1.88 g (93%) of product. '*C NMR analysis of this material was consistent with a
mixture of cis and trans isomers of 21. The ratio of trans to cis was 80:20 based on the
height of respective ’C NMR lines: '*C NMR (CDCL,, 90.56 MHz, ref central line of
CDCl, set at 77.23) & 26.6, 44.9, 52.6, 54.7, 79.3 (trans); & 27.1, 44.8, 52.8, 54.0,
59.2, 74.5 (cis); MS (EI) m/z 196.2 M*. Fractional recrystallization of this material from
hexane afforded the pure trans isomer: mp: 102.5-104 °C (lit*’: 102.5-104 °C); 'H NMR
(CDCl,, 360.15 MHz, TMS) & 1.51-1.58 (dm, 2H, J = 13.1 Hz, NCI{2CIIH¢;ICH2N),
1.78 (qt, 2H, J = 12.8, 4.6 Hz, NCH,CHH  CH,N), 1.85 (br s, 2H), 2.20 (1d, 2H, J =
11.9, 3.1 Hz), 2.35-2.48 (m, 2H, XX’ of AA’XX’, NCH,CH,N), 2.61 (td, 2H, J =
12.8, 3.1 Hz). 2.58 (s, 2H, NCHN), 2.60-2.68 (m, 2H, AA’ of AA’XX",
NCH,CH,N), 2.91-2.96 (dm, 2H, J = 9.1 Hz), 3.09-3.14 (dm, 2H, J = 12.8 Hz); '*C
NMR (CDCL,, 90.56 MHz, ref central line of CDCI, set at 77.23) § 26.6, 44.9, 52.6,

54.7,79.3. Spectra were consistent with reported data.’

Reduction of trans/cis-4a,4b-perhydro-4,5,8a,10a-tetraazaphenanthrene
(21). A 100 mL three-necked round-bottomed flask equipped with a reflux condenser and
a N, inlet tube was charged with trans/cis-4a,4b-perhydro-4,5,8a,10a-tetraazaphenanthrene
(21) (0.2387 g, 1.216 mmol). DIBALH (1.5 M in toluene, 12 mL, 18 mmol) was added

via syringe under N,. This mixture was heated at reflux for 4 d. The reaction mixture was
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then cooled to room temperature and diluted with toluene (25 mL). NaF (12 g, 280 mmol)
and H20 (1.5 mL, 83 mmol) were then added in small portions. The solids were isolated
by vacuum filtration and washed with CHCL, (3x10 mL). The filtrates were combined,
dried over Na,SO, and concentrated by rotary evaporation to afford 0.1961 g of a
crystalline product. NMR analysis of this solid showed that the major component in the
reaction product mixture was trans 4a,4b-perhydro-4,5,8a,10a-tetraazaphenanthrene
(trans-21). The cis isomer (cis-21) was not observed: 'H NMR (CDC13, 360.15 MHz,
TMS) & 1.51-1.56 (dm, 2H, J = 13.1 Hz, NCHZCHHeqCHZN), 1.77 (qt, 2H, J = 12.8,
4.6 Hz, NCH,CHH CH,N), 2.19 (id, 2H, J = 11.9, 3.1 Hz), 2.37-2.48 (m, 2H, XX’
of AA’XX’, NCH,CH,N), 2.61 (1d, 2H, J = 12.8, 3.1 Hz). 2.57 (s, 2H, NCHN), 2.60-
2.68 (m, 2H, AA’ of AA’XX’, NCH,CH,N), 2.90-2.96 (dm, 2H, J = 9.1), 3.09-3.14
(dm, 2H, J = 12.8); 13C NMR (CDCl,, 90.56 MHz, ref central line of CDCL, set at 77.23)
3 26.61, 45.00, 52.62, 54.78, 79.32. (There was also an impurity (~5% based on Bc
line heights) observed in this spectrum) This material corresponded to 82% of the starting
material. The reaction solids were placed in a Soxhlet extraction cup and were extracted
with toluene for 5 h. The toluene extracts were dried over Na,SO, and concentrated by
rotary evaporation to afford 0.0568 g (23%) of a sticky solid. The 'H NMR spectrum of
this solid was consistent with that of an authentic sample of cyclam: 'H NMR (CDC13,
360.15 MHz, T™MS) 3 1.65 (p, 4H, J = 5.1 Hz, NCH,CH,CH,N), 2.23 (br s, 4H, NH),

2.60 (s, 8H, NCH,CH N), 2.67 (t, 8H, J = 5.2 Hz, NCH,CH,CH,N).
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2,3,4,6,7,9,10,11-Octahydropyrazino[1,2-a:4,3-a’]dipyrimidine (23). A
100 mL three-necked round-bottomed flask equipped with a reflux condenser with N, inlet
tube and a fritted gas dispersion tube (initially closed) was charged with dithiooxamide
(0.2821 g, 2.347 mmol) suspended in EtOH (5 mL). Bromoethane (2 mL) wﬁs added and
the slurry was heated at 62 °C for 3 h. The solvent was then removed by short path
vacuum distillation (aspirator pressure). EtOH (10 mL) was added and the solvent was
again concentrated by distillation. The residue was suspended in EtOH (4 mL) prior to the
addition of a solution of bis-(3-aminopropyl)-1,2-ethylenediamine (0.4115 g, 2.361 mmol)
in EtOH (2 mL) by syringe. The nitrogen manifold exit line was routed through two fritted
gas washing bottles charged with 10% aqueous H,O, in order to trap the gases evolved.
The reaction mixture was heated at 80 °C for 2 h. The reaction mixture was then cooled to
room temperature and EtOH (20 mL) was then added. Residual gaseous byproducts were
purged from the solution by entrainment with nitrogen, which was bubbled through the
mixture from the fritted gas dispersion tube for 15 hours. The reaction mixture was
concentrated by rotary evaporation to afford 0.5966 g of crude product. A portion of this
material was placed in a round-bottomed flask with toluene (S mL) and heated. When the
mixture began to boil the heat was removed. The solvent was removed by pipette while hot
and concentrated by rotary evaporation to afford an oil. NMR and MS analysis determined
the oil to be a mixture of 23 and 24. '"H NMR (CDCl,, 360.15 MHz, TMS) for 23: §
1.85 (p, 4H, CH,CH,CH,,, J = 5.8 Hz), 3.21-3.50 (m, 4H, NCH,CH,CH_N=), 3.27 (s,

4H, CHZCHZ)’ 3.57 (m, 4H, NCH,CH,CH ,N=); for 24: o 1.8 (brs, 2H, NH,), 1.72
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(m, 2H, NCH,CH,CH,N=, J = 6.7 Hz), 1.85 (p, 2H, NCH,CH,CH,NH,), 2.72 (¢,
2H, CH,NH,, J = 6.6 Hz), 3.21-3.28 (m, 2H), 3.47-3.60 (m, 8H). 3C NMR (CDCl,,
90.56 MHz, ref. central line of CDCl, at & 77.23) for 23: § 21.32 (NCH,CH,CH,N=),
44.61, 47.56, 48.00, 147.76; for 24: § 21.23 (NCH,CH,CH,N=), 30.79
(NCH,CH,CH,NH,), 39.05, 45.06, 45.10, 45.16, 46.92, 47.44, 147.80, 152.72. MS
(ED) for 23: m/z 192.3 M*; for 24: m/z 211.3 M+1. The remainder of the crude mixture of
23 and 24 was treated similarly with boiling toluene. The toluene extracts were
azeotropically distilled for 3 days using a Dean-Stark trap. Concentration of the solvent
afforded 23 as an impure oil: 'H NMR (CDCl,, 360.15 MHz, TMS) & 1.85 (p, 4H, J =
6.1 Hz, NCH,CH,CH,N=), 3.21 (t, 4H, J = 6.1 Hz, NCH,CH,CH,N=), 3.22 (s, 4H,
NCH,CH,N), 3.54 (t, 4H, J = 5.8 Hz, NCH,CH,CH,N=); 3¢ NMR (CDCl,, 90.56
MHz, ref. central line of CDCl, at § 77.23) § 21.50, 44.96, 47.64, 48.04, 148.02. This
sample was estimated to be approximately 90% pure by 'H NMR integration. This

material corresponded to an overall yield of 25%.

1,4-Bis-(3-aminopropyl)-2,3-piperazinedione (25). The crude mixture of 23
and 24 was dissolved in D,0. NMR analysis was consistent with
1,4-bis-(3-aminopropyl)-2,3-piperazinedione (25). 'H NMR (D20, 360.15 MHz, 2° ref
CH CN set at 2.05) & 1.74 (p, 4H), 2.62 (t, 4H), 3.49 (1), 3.65 (s, 4H); 3¢ NMR (D,0,
90.56 MHz, 2° ref CH,CN set at 1.7) 8 29.85, 38.65, 44.83, 46.04, 159.20. This NMR

sample was concentrated by rotary evaporation. EtOH (2 mL) was added and concentrated
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by rotary evaporation to ensure the removal of residual D,O. NMR of this sample in
CDCl3 was consistent with 1,4-bis-(3-aminopropyl)-2,3-piperazinedione (25) and 24. IH
NMR (CDCl,, 360.15 MHz, TMS) & 1.43 (br s, 6H, NH), 1.70-1.78 (m,
CH,CH,CH_NH, of 24 (2H) and CH,CH,CH, of 25 (4H)), 1.87 (p, 2H, J = 6.7 Hz,
NCH,CH,CH,N=C of 24), 2.71 (t, 2H, J = 6.7 Hz, CH,CH,CH NH, of 24), 2.72 (t,
4H, J = 6.7 Hz, CH,CH,CH,NH, of 25) 3.22-3.28 (m, 4H for 24), 3.47-3.50 (m, 2H
for 24), 3.51-3.60 (m, 4H for 24), 3.54 (s, 4H, NCH,CH N of 25), 3.58 (t, 4H, J =
6.7 Hz, NCH,CH,CH,NH, for 25); *C NMR (CDCL,, 90.56 MHz, ref central line of
CDCl, set at 77.23) § for 24: 21.21 (CH,CH,CH,N=), 30.73, 38.93, 45.02, 45.08,
45.14, 4691, 47.43 (the amide and amidine resonances were not observed due to low

signal to noise); for 25: 30.73, 38.99. 44.67, 45.02, 157.69.

DIBALH Reduction of 2,34,6,7,9,10,11-Octahydropyrazino
[1,2-a:4,3-a’]dipyrimidine (23). A 100 mL three-necked round bottomed-flask
equipped with a reflux condenser and a N, inlet tube was charged with
2,3,4,6,7,9,10,11-octahydropyrazinof1,2-a:4,3-a’Jdipyrimidine (23) (0.152 g, 0.791
mmol). The reaction flask was cooled in an ice/H,O bath prior to the introduction of
DIBALH (1.5 M in tol, 5.0 mL, 7.5 mmol) by syringe. This mixture was heated at reflux
for4 d. An aliquot (~1 mL) was removed. NaF (0.26 g, 6.9 mmol) and H20 (0.2 mL,
11.1 mmol) were added to this aliquot in small.portions to quench the reaction. This

mixture was concentrated by rotary evaporation, suspended in H,O (8 mL), adjusted to pH
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14 by the addition of KOH (pellets) and extracted with CHCl, (5520 mL). The extracts
were dried over Na,SO, and concentrated to afford 46.6 mg of a crystalline product.
NMR analysis of this material was consistent with trans-4a,4b-perhydro-4.5,8a,10a-

tetraazaphenanthrene (&rans-21) (see previous characterization).

Reduction of 2,3,4,6,7,9,10,11-Octahydropyrazineo[1,2-a:4,3-
a’ldipyrimidine (23) with Lithium Aluminum Hydride (LiAIH 4). Dry THF
(10 mL) was placed in a dried three-necked round-bottomed flask equipped with a reflux
condenser with a N, inlet tube and an addition funnel. The flask was cooled in an ice/H,0
bath. LiAlH, (0.26 g, 6.85 mmol) was added under N, to the THF. A solution of
2,3,4,6,7,9,10,11-octahydropyrazinof1,2-a:4,3-a’ Jdipyrimidine (23) (0.131 g, 0.680
mmol) in THF (10 mL) was the added via the addition funnel. The addition funnel was
rinsed with additional THF (5 mL). The reaction mixture was heated at reflux under N2'
After 5 hours, an aliquot (2.5 mL) was removed. H,O (0.025 mL), 15% aq. KOH (0.025
mL) and H,0O (0.075 mL) were added successively while cooling the aliquot in an ice/HL,O
bath. The mixture was then filtered and the solids were washed with THF (5 mL). The
filtrate was dried over Na,SO, and concentrated by rotary evaporation. 'H NMR analysis
of the residue was consistent with frans-4a,4b-perhydro-4,5,8a,10a-tetraazaphenanthrene.
The remainder of the reaction mixture was worked up in the same manner after 5d at
reflux. NMR analysis was again consistent with trans-4a,4b-perhydro-4,5,8a,10a-

tetraazaphenanthrene (zrans-21) as the only product of the reaction.
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N,N’-Bis-(2-cyanoethyl)-1,2-phenylenediamine (32). The preparation of this
compound was modeled on the procedure for the reaction of aryl amines and acrylonitrile
reported by Heininger.” A 2-L three-necked round-bottomed flask equipped with a reflux
condenser and a thermometer was charged with 1,2-phenylenediamine (100.00 g, 0.924
mol) and acrylonitrile (122 mL, 1.85 mol) suspended in CH3CN (700 mL). Cupric acetate
hexahydrate (4.87 g, 4.87 wt % based on the diamine) was added as a catalyst, and the
resulting mixture was heated at reflux for 2 d. The reaction mixture was then concentrated
by rotary evaporation affording a black sludge. 95% EtOH (250 mL) was added and the
suspension was warmed until dissolution was complete. Water (250 mL) was then added
and the mixture was again warmed until dissolution was complete. Slow cooling of this
solution afforded 63.1 g of a black solid. Recrystallization of this material from 50% (v:v)
aqueous EtOH afforded 44.1 g (22%) of purified product: mp: 113-114.5 °C (lit. 115-118
°C™, 118.5-119 °C'*); 'H NMR (CDCl,, 360.15 MHz, TMS) § 2.66 (t, 4H,
NHCH,CH,CN, J = 6.5 Hz), 3.47 (app q, 4H, NHCH,CH,CN, Japp = 6.5 Hz), 3.72 (br
t, 2H, NH), 6.70-6.74 (m, 2H, BB’ of AA’BB’), 6.85-6.89 (m, 2H, AA’ of AA’BB’);
'*C NMR (CDCl,, 90.56 MHz, ref. central line of CDCI, set at 77.23) & 18.60, 40.66,
114.15, 118.62, 121.15, 136.40; IR (KBr) 3355 (NH), 2252 (CN) cm’}; MS (EI) m/z

214.1 M*.

N,N’-Bis-(3-aminopropyl)-1,2-phenylenediamine (31). N,N’-Bis-
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(2-cyanoethyl)-1,2-phenylenediamine (32) (5.00 g, 23 mmol) was dissolved in THF (130
mL) in a dry 500 mL three-necked round-bottomed flask equipped with a reflux condenser
with a N, inlet tube and a pressure equalized addition funnel. NaBH, (5.53 g, 146 mmol)
was added and the mixture was cooled in an ice/I-120 bath. A solution of AlCl3 48¢g,
36.0 mmol) in THF (30 mL) was delivered to the addition funnel and added dropwise into
the reaction flask. The resulting mixture was heated at reflux under N, for 20 h. The
reaction mixture was again cooled in an ice/HZO bath and aq. HCI (12 M, 75 mL) was
added dropwise with vigorous stirring. The reaction mixture was then concentrated by
rotary evaporation and dissolved in H,O (200 mL). This solution was adjusted to pH 14
with KOH (pellets) and continuously extracted for 36 h under N, with toluene. The
toluene extracts were dried over NaZSO , and concentrated to afford 3.36 g of a brown oil.
Kugelrohr distillation (0.02 Torr/ 150 °C) of this oil afforded 3.10 g (61%) of a yellow oil
which solidified in the receiver. 'H NMR (CDCl,, 360.15 MHz, TMS) o 1.49 (brs, 6H,
NH’s), 1.76 (p, 4H, CH,CH,CH,, J = 6.7 Hz), 2.82 (t, 4H, CH,NH,, J = 6.7 Hz),
3.12 (t, 4H, NHCH,, J = 6.7 Hz), 6.58-6.62 (m, 2H, BB’ of AA’BB’), 6.69-6.73 (m,
2H, AA’ of AA’BB’); °C NMR (CDCl,, 90.56 MHz, ref. central line of CDCI, set at
77.23) & 33.24, 40.80, 42.81, 111.45, 119.15, 137.59. IR (neat) 3357, 3037, 2936,
2869, 1663, 1598 cm™'; MS (EI) m/z 222.2 M*. (Elemental analysis verified that there
was a trace amount of water in the product). 31 is labile towards oxidation and should

either be used immediately or stored as a hydrochloride salit.
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Cis/trans-1,2,3,4,9,10,11,12,12a,12b-decahydropyrazino(1,2-
a:4,3-a’]-6,7-benzodipyrimidine (33). N,N’-Bis-(3-aminopropyl)-
1,2-phenylenediamine (31) (3.03 g, 13.6 mmol) was dissolved in absolute EtOH (40 mL).
Aqueous glyoxal (40 wt % aq. solution, 2.0 mL, 16.5 mmol) was taken up in CH,CN (40
mL) and added in one portion to the amine solution. The resulting solution was heated at
reflux for 3 h under N, The reaction mixture was then concentrated and the residue was
taken up in CHCL, (100 mL), dried over Na,SO, and concentrated to afford a foam. This
foam was taken up in CHCL, (15 mL) and diluted with Et,O (100 mL). A precipitate
formed which was removed by vacuum filtration. The filtrate was concentrated to afford
2.97 g (89%) of an oil which solidified. The ratio of the two isomers was 71:21 by g
NMR integration. 'H NMR (CDCl,, 360.15 MHz, TMS) 3 1.40 (dm, CH,CHHeqCH,, J
= 12.8 Hz), 1.52 (dm, CH,CHHeqCH,, J = 13.1 Hz), 1.66-1.89 (m, CH,CHHaxCH,
and NH of both isomers), 2.83-3.21 (m), 3.90 (s, NCHN), 3.95-4.03 (m), 4.03 (s,
NCHN), 6.67-6.91 (m, aromatics); '3C NMR (CDC13, 90.56 MHz, ref central line of
CDCl, set at 77.23)  major: 25.64, 44.34, 47.55, 70.19, 113.16, 119.62, 135.28; §
minor: 23.93, 45.34, 47.55, 74.09, 113.75, 119.80, 134.72; MS (EI) m/z 2442 M".
This mixture was refluxed with p-toluenesulfonic acid (1eq) in EtOH for 3 d. This solution
was then concentrated, taken up in water and adjusted to pH 14 with solid KOH (pellets).
Extraction with CHCl3 afforded a crude oil after drying and concentration of the extracts.
'H NMR spectra of the oil showed that the minor isomer had become the major isomer. It

is not known if this is an equilibrium mixture of the isomers.
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5,6,7,8,9,10,11,12,13,14,15,16-Dodecahydro-5,9,12,16-tetraaza-
benzocyclotetradecane, “Benzocyclam” (34). A 250 mL three-necked round-
bottomed flask equipped with a reflux condenser with a N, inlet tube and a pressure
equalizing addition funnel was charged with Cis/trans-
1,2,3,4,9,10,11,12,12a,12b-decahydropyrazino [1,2-a:4,3-a’]-6,7-benzo-dipyrimidine
(33) (2.97 g, 12.0 mmol). The reaction flask was cooled in an ice/H,O bath prior to the
dropwise addition of DIBALH (1.5 M solution in toluene, 64 mL, 96 mmol) via the
addition funnel. This mixture was heated at reflux for 4 days. The reaction mixture was
then cooled in an ice/H,O bath and toluene (65 mL) was added. The reaction was quenched
by the cautious dropwise addition of 3 M KOH (65 mL). The mixture was concentrated by
rotary evaporation, the residue was dissolved in H,O (50 mL), adjusted to pH 14 with
KOH (pellets), and then extracted with CHCI, (550 mL) while N, was bubbled through
the solution to minimize oxidation of the product. The CHCI, extracts were dried over
Na,SO, and concentrated. The residue was immediately dissolved in 95% EtOH (100 mL)
and HCl (12 M, 50 mL) was added dropwise. The solution was removed by rotary
evaporation. Trituration of the resulting solid with absolute EtOH (100 mL) followed by
vacuum filtration afforded a brown solid. 'H NMR (D20, 360.15 MHz, secondary ref.
CH,CN set at 2.05) § 2.12 (p, 4H, J = 6.4 Hz, CH,CH,CH,), 3.34 (t, 4H, J = 6.7 Hz),
3.49 (s, 4H, CH,CH,), 3.55 (t, 4H, J = 6.4 Hz), 7.23 (s, 4H, ArH); 1°C NMR (D,0,

90.56 MHz, 2° ref CH,CN set at 1.70) 8 22.83, 42.22, 44.28, 46.01, 119.9, 126.0,
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133.4. This brown solid was dissolved in water (25 mL) and the solution was adjusted to
pH 14 by the addition of KOH (pellets). N, was bubbled through the solution to minimize
oxidation of the product. This solution was then extracted with toluene (550 mL) and the
toluene extracts were dried over Na,SO, and concentrated by rotary evaporation to afford
1.70 g (57%) of a gray solid: mp: 129-130 °C; 'H NMR (CDCl, 360.15 MHz, TMS) 4
1.82-1.88 (m, 4H, CH,CH,CH,), 1.68 (br s, NH), 2.72 (s, 4H), 2.88-2.91 (m, 4H),
3.26-3.29 (m, 4H), 5.59 (br s, 2H, AINH), 6.54-6.58 (m, 2H, BB’ of AA’BB’),
6.70-6.75 (m, 2H, AA’ of AA’BB’); 3¢ NMR (CDC13, 90.56 MHz, ref central line of
CDCI, set at 77.23) & 27.35, 46.04, 49.79, 51.02, 109.74, 118.18, 137.80; IR (neat)
3325, 3289, 3248, 2931, 2875, 2832, 1657, 1595, 1546, 1454 cm™'; MS (EI) m/z 248.3
(M™); Anal. Caled for C ,H,,N,: C, 67.70, H, 9.74, N, 22.56; Found: C, 67.65, H,

1477247 '4°

9.81, N, 22.51.

Tetrakis-(dimethylamino)-ethylene dibromide (44). This compound was
prepared by the method of Bock et al.3! A three necked flask equipped with an addition
funnel and reflux condenser was charged with Et,0 (100 mL) which was degassed by
bubbling N, into the liquid through a glass frit. Tetrakis-(dimethylamino)-ethylene (43)
(3.62 g, 18.1 mmol) was added and no luminescence was observed. The reaction flask
was cooled in an ice/HZO bath and a solution of Br2 (3.02 g, 19.0 mmol) in degassed Et,0
(100 mL) was introduced dropwise via the addition funnel producing an immediate

reaction. The addition of the bromine solution continued over one hour. The reaction
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mixture was slowly warmed to room temperature and left stirring under N, for 12 hours.
The reaction mixture was concentrated by rotary evaporation and residual solvent was
removed under vacuum. 6.08 g (93%) of a white-yellow solid was obtained: 'H NMR
(D,0, 360.15 MHz, 2° ref CH ,CN set at 2.05)  3.30 (s, 12H), 3.58 (s, 12H); 3¢ NMR
(D,0, 90.56 MHz, 2° ref CH,CN set at 1.7) 3 43.15, 44.08, 156.68. Spectra were

consistent with reported resuits.?!

Attempts to Prepare 2.3.5.6.8.9-Hexahydrodiimidazo[1,2-a:2",1’-clpyrazine (16) Usin
Other Reagents.

From Tetrakis-(dimethylamino)-ethylene dibromide (44). Triethylenetetraamine
(0.186 g, 1.27 mmol) was placed in a 5 mL round-bottomed flask with
tetrakis-(dimethylamino)-ethylene dibromide (44) (0.46 g, 1.3 mmol). This mixture was
heated to 150°C under N, and a small strip of wet litmus paper, which had been place
inside the N, exit manifold, indicated that a basic gaseous species was being evolved. The
heat was continued for one hour. Toluene (5 mL) was added and heated to reflux. The
heat was removed and the toluene was removed while still warm by pipette. Concentration
of these toluene extracts by rotary evaporation afforded an oil. 'H NMR analysis of this oil
confirmed the formation of 2,3,5,6,8,9-hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine (16).
While not pure, the bisamidine was the major component in this NMR sample. However,
there was a substantial amount of solid left in the reaction flask which was not soluble in

toluene. Other solvents were investigated (ethanol, isopropanol, n-butanol) in addition to
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adding the corresponding sodium salt of the alcohol solvent to consume the HBr generated.
Unfortunately, the experimental details given above were the most successful conditions
found.

From Oxalic Acid. Triethylenetetraamine (crude, 6.06 g, ~29 mmol) was dissolved in
ethyleneglycol (7 mL). Oxalic acid (2.66 g, 29 mmol) was added and the mixture was
heated to reflux under N, for 7 hours. The ethylene glycol mixture was extracted with
CHCI3 (3x 10mL). The CHCl3 extracts were dried over Nazso A and concentrated by
rotary evaporation. 'H NMR analysis provided no evidence for the formation of
2,3,5,6,8,9-hexahydrodiimidazo[1,2-a:2’,1"-c]Jpyrazine (16). Another attempt was
performed as a neat reaction. No evidence for the formation of (16) was observed.

From Diethyloxalate. Triethylenetetraamine (crude, 3.95 g, ~18 mmol) was placed in a
50 mL round-bottomed flask equipped with a short path distillation head. Upon the
addition of diethyloxalate (2.71 g, 19 mmol) the flask became very hot and a precipitate
formed. The mixture was heated until a distillate was collected (74°C). The distillate was
determined to be EtOH by '"H NMR. NMR of the reaction mixture in CDCL, showed many
new peaks in the 3.0-3.6 region of the 'H NMR spectrum. Evidence for the formation of
(16) (\H NMR: § 3.85 (t), 12°C NMR & 155.7 (N-C=N) was observed but this product

was clearly a complicated mixture.

2,2’-Bibenzimidazole (45). This compound was prepared by the method of

Fieselmann.®® A three-necked 250 mL round-bottomed flask equipped with a reflux
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condenser and a N, inlet tube was charged with 1,2-phenylenediamine (45.0 g, 0.40
mmol), oxamide (17.6 g, 0.02 mmol) and ethylene glycol (40 mL). This mixture was
heated to reflux under N, for 2 d. The reaction mixture was poured into boiling water (800
mL) which induced precipitation of a solid. The solid was isolated by gravity filtration of
the mixture while hot and then vacuum filtration removed residual solvent. 31.58 (68%) of
solid was isolated. The product was insoluble in most NMR solvents (C.D,, CD,CN,

DZO, Acetone-d BB decomposition point: 392-394 °C (1it33: 395-400 °C).

6,7-Dihydropyrazino{1,2-a:4,3-a’]bisbenzimidazole (46). This procedure is
similar to that reported by Roechling et al.® A mineral oil dispersion of NaH (0.75 g, 60
wt %, 18 mmol) was washed with EtzO (3x10 mL) and the residual solvent was removed
with a stream of N, under mild heating. The NaH was suspended in dry DMF (5 mL) prior
to the addition of 2, 2’-bibenzimidazole (45) (1.89 g, 8.07 mmol) under Nz. The mixture
immediately turned green. 1,2-Bis[(p-tolylsulfonyl)oxy]ethane (2.97 g, 8.01 mmol) was
added 0.5 h later and the reaction mixture was heated to reflux. After 4 days the heat was
evaporated and the solvent was removed making sure that all residual DMF was removed.
The solids were taken up in boiling EtOH (100 mL) and a hot filtration was performed. The
filtrate was concentrated and the residue was taken up in CHCL, and dried over Na,SO,.
The solvent was then evaporated and the residue was recrystallized from EtOH to afford
181.1 mg (8.3%) of fine crystals. The crystals were ground up and heated for 3 days under

vacuum at 100°C. Even under these conditions, !H NMR showed there was still H20
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present in the sample. The solid was found to have poor solubility in common organic
solvents at room temperature: dec. point: 392-397 °C (lit®3 > 360 °C); 'H NMR (CDCL,
360.15 MHz, TMS) & 4.67 (s, 4H), 7.44-7.26 (m, 6H), 7.93-7.91 (d, 2H, J = 7.2 Hz);
3C NMR (CDC13, 90.56 MHz, ref central line of CDCl3 set at 77.23) 4 40.84, 109.44,
121.66, 123.70, 124.56, 134.29, 141.73, 144.39; IR (KBr) 3051, 2973, 2931, 1616,

1468, 1448, 1413, 1377, 1342 cm’!.

Attempted Reduction of 6,7-dihydropyrazino[l,2-a:4,3-a’]bisbenzimidazole
(46) with DIBALH. DIBALH (1.5 M in Toluene., 2.0 mL, 3.0 mmol) was introduced
dropwise via syringe under N, to an ice/H,O cooled three necked flask equipped with a
reflux condenser with a N, inlet tube containing 6,7-dihydropyrazino[1,2-a:4,3-a’]
bisbenzimidazole (46) (0.025 g, 0.096 mmol). The solution immediately turned

red/brown. Toluene (2 mL) was added and the resulting mixture was heated at 100 °C for
20 h. The heat was then removed and the reaction was quenched by the alternate addition of
NaF (0.30 g, 7.0 mmol) and HzO (0.2 mL, 11 mmol) in small portions. Toluene (20 mL)
was added and the mixture was filtered. The solids were washed with CHCI3 (2x10 mL)
and the combined filtrates were dried over Na,SO,. The filtrates were then concentrated to
afford 32.6 mg of crude product (over 100% of theoretical). 'H NMR showed that
reduction was not clean but formation of the desired product could not be ruled out. MS
(EI) analysis showed a molecular ion of m/z 266 which corresponds a molecular formula of

C,¢H N, The molecular ion for dibenzocyclen (C, ¢H,oN,) was not observed. This
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reaction was repeated and the reaction time was increased to 4 days. There was no

apparent change in the products of the reaction as evaluated by 'H NMR.

7,8-Dihydro-6-H-bisbenzimidazo[1,2-a:2°,1’-c][1,4]diazepine (47).
2,2’-Bibenzimidazole (45) (1.00 g, 4.30 mmol) was suspended in CH3CN (30mL)ina
100 mL round-bottomed flask. 1,3-Bis[(p-tolylsulfonyl)oxy]propane (1.65 g, 4.29 mmol)
was added and the mixture was stirred vigorously while a 20% solution of KOH (5 mL)
was added by pipette. This mixture was left stirring at room temperature for 24 hours.
Precipitation of the product was induced by the addition of water (100 mL) to the reaction
mixture. The solids were isolated by vacuum filtration and washed with CHCI, (3x20
mL). The CHC, washings were dried over Na,SO, and concentrated. The residue was
washed with toluene (30 mL) which removed excess 1,3-bis[(p-tolylsuifonyl)oxy]propane.
The remaining solid was recrystallized from CH,CN to afford 0.110 g (9%) of tan needles:
mp: 320-322 °C; 'H NMR (CDCl,, 360.15 MHz, TMS) 6 2.60-2.66 (m, 2H), 4.45-4.48
(m, 4H), 7.26-7.32 (m, 6H), 7.86-7.90 (m, 2H); 1*C NMR (90.56 MHz, CDCl,, ref
central line of CDCI, set at 77.23) & 26.83, 45.13, 109.62, 121.20, 123.41, 124.05,
135.95, 143.41, 143.60; IR (KBr) 1313, 1376, 2932, 3050 cm™'. Elemental analysis

showed that there was trace water (less than a hydrate) associated with 47.

Attempted DIBALH Reduction of 7,8-Dihydro-6-H-

bisbenzimidazo[1,2-a:2’,1’-c][1,4]diazepine (47). A 10 mL two-necked round-
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bottomed flask equipped with a reflux condenser and a N, inlet tube was charged with
7,8-dihydro-6-H-bisbenzimidazo[1,2-a:2’,1"-c][1,4]diazepine (47) (12.1 mg, 0.044
mmol). The reaction flask was cooled in an ice/H,O bath prior to the addition of DIBALH
(1.5 M in toluene, 2 mL, 3 mmol) via syringe. The reaction was heated at reflux for 2 d.
The reaction mixture was cooled in an ice/H20 bath and toluene (5 mL) was added. The
reaction was then quenched by the dropwise addition of 20% aq. KOH (2 mL). The
mixture was transferred to a separatory funnel, the layers were separated, and the aqueous
layer was extracted with CHCL, (4x20 mL). The combined organic extracts were dried
over Na,SO ; and concentrated by rotary evaporation to afford a white residue. 'H NMR
analysis (CDCL,) of this residue was carried out. The product was clearly a mixture but the
ring expanded product was indicated: 'H NMR (CDCL,, 360.15 MHz, TMS) § 1.13-1.30
(m, NCH,CH,CH,N), 2.74 (s, NCH,CH,N), 4.20 (t, NCH,CH,CH,N), 6.49-6.79 (m,
ABCD for ArH). This hypothesis was not tested using other spectroscopic techniques. It
is unknown if the reaction was incomplete or if the other observed resonances were a result

of oxidation of the product.

2,2’-Biimidazoline (bis(A2-2-imidazolinyl) (11). 11 was prepared by a
modification of the method of Forssell.’! A 100 mL three necked round-bottom flask
equipped with a reflux condenser with a nitrogen inlet tube, pressure-equalized addition
funnel, fritted gas dispersion tube (initially closed) and a magnetic stirrer was charged with

dithiooxamide (2.60 g, 21.6 mmol) and absolute ethanol (10 mL). The nitrogen manifold
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exit line was routed through two fritted gas washing bottles charged with 20% aqueous
NaOH in order to trap st evolved. A solution of ethylenediamine (2.60 g, 43.3 mmol) in
absolute ethanol (10 mL) was introduced to the reaction flask in one portion via the addition
funnel. The mixture was then heated for 6 hours at reflux under nitrogen with the evolution
of H,S and NH,. The reaction mixture was then cooled to room temperature and residual
H,S and NH, were purged from the solution by entrainment with nitrogen, which was
bubbled through the mixture from the fritted gas dispersion tube for 18 hours. The reaction
mixture was filtered isolating 1.68 g (56%) of a tan solid. The product can be further
purified by recrystallization from CH,CN: decomposition point: 259°C dit'*®); Bc NMR
(DMSO-d6, 90.56 MHz, ref central line of DMSO—d6 set at 39.5) & 40.20, 146.36; IR
(KBr) 1615 cm™'; MS (E) m/z 138.1 M™; Anal. Calcd for C6H10N4: C,52.16; H, 7.29;

N, 40.55; Found: C, 51.89; H, 7.38; N, 40.35.

Attempted Synthesis of 2,3,5,6,8,9-Hexahydrodiimidazo[1,2-
a:2’,1’-c]pyrazine (16) From 2,2’-Biimidazoline (11) and 1,2-
Dibromoethane. A 10 mL round bottomed flask was charged with 2,2’-biimidazoline
(40.9 mg, 0.296 mmol), potassium iodide (6.1 mg, 0.037 mmol) and potassium carbonate
(400 mg, 2.90 mmol) and CI-13CN (2 mL). A solution of 1,2-dibromoethane (0.0601 g,
0.319 mmol) in CH3CN (2 mL) was added in one portion and the resulting suspension
was heated at reflux for 20 h. The mixture was diluted with CH,CN (5 mL), filtered

through a glass wool plug and the filtrate was concentrated. NMR analysis was consistent
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with NMR data for the starting materials and no evidence for the formation of 16 was

found.

1,1’ -Bis-(trimethylsilyl)-2,2’-bimidazoline (49). 49 was prepared by the
literature method.®3 2,2’-Biimidazoline (11) (1.00 g, 7.24 mmol) was placed in a 100 mL
three-necked round-bottomed flask equipped with a reflux condenser with N, inlet tube.
The apparatus was flushed with N, prior to the delivery of hexamethyldisilizane (48)
(HMDS, 6.1 mL, 29 mmol) via syringe. HZSO , (conc, 10 ul) was added and the
resulting mixture was heated at reflux for 19 hours. A short path distillation head was
exchanged for the condenser and the excess HMDS. was removed by vacuum distillation
(0.5 Torr). The residue was further pumped down under vacuum for 3 days to remove
volatile byproducts. The mass of crude product was over 100% of theoretical but NMR
analysis supported product formation. 'H NMR (CDCl,, 360.15 MHz, TMS) 3 0.22 (s),
3.43 (1, XX' of AA'XX"), 3.76 (1, AA’ of AA’XX") ; 1*C NMR (CDCl,, 90.56 MHz, ref

central line of CDC13 set at 77.23) 8 0.152, 48.02, 55.04, 159.60.

Attempted Synthesis of 36 from 1,1’-Bis-(trimethylsilyl)-2,2’-bimidazoline
(49) and 1,3-Bis[(p-tolylsulfonyl)oxy]propane. A 50 mL three-necked round-
bottomed flask equipped with a reflux condenser, a N, inlet tube and a pressure-equalized

addition funnel was charged with 1,3-bis[(p-tolylsulfonyl)oxy]propane (0.26 g, 0.67
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mmol). A solution of 1,1’-bis-(trimethylsilyl)-2,2’-bimidazoline (49) (0.19 g, 0.67
mmol) in CHSCN (15 mL) was added via the addition funnel and the resulting reaction
mixture was heated for 4 d at reflux under N,. The reaction mixture was then concentrated
by rotary evaporation. The residue was suspended in CDCI3 but most of the material did
not dissolve. 'H NMR analysis of the material which was soluble in CDCl, was not
consistent with the formation of 36. The major component of this solution was identified
as 1,3-bis[(p-tolylsulfonyl)oxy]propane. It is likely that the reaction was not facile and the
insoluble material was 2,2’°-biimidazoline (11) which is insoluble in CDCL,.
2,2’-Biimidazoline was generated by the hydrolysis of 1,1’-bis-(trimethylsilyl)-2,2’-

bimidazoline.

1,4-Bis-(2-aminoethyl)-2,3-piperazinedione (50). 2,3,5,6,8,9-
hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine (16) was dissolved in H,O and left for 14 h.
The solution was concentrated by rotary evaporation and the residue was taken up in
CHCIL, and dried over Na,SO,. Concentration of the filtrate after the removal of the drying
agent afforded a white waxy solid: mp: 111-112 °C; 'H NMR (CDCl,, 360.15 MHz,
TMS) & 1.27 (br s, 4H, NH.), 2.95 (t, 4H, J = 6.3 Hz, CH,CH,NH,), 3.54 (1, 4H, J =
6.3 Hz, CH,CH,NH,), 3.64 (s, 4H, NCH,CH_N); ’C NMR (CDCl,, 90.56 MHz, ref
central line of CDCI, set at 77.23) § 39.92, 45.60, 50.76, 158.02; IR (KBr) 3387.7 (NH

asym.), 3317 (NH sym.), 1667 em’; MS (CL isobutane) m/z 183.2 (M-18+1).
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1-Aminoethyl-4-aminopropyl-2,3-piperazinedione (53). In an NMR
experiment, 2,3,4,5,5a,6,7,8-octahydro-1,3a,5,9-tetraazabenzindene (18) was taken up in
D,O. After 24 h, NMR spectra were acquired: 'H NMR (D,0, 360.15 MHz, secondary
ref CH,CN set at 2.05) § 1.73 (p, 2H, J = 7.1 Hz, CH,CH,CH,), 2.61 (1, 2H,J=7.0
Hz, CH,CH,CHNH,), 2.83 (t, 2H, J = 6.4 Hz, CH,CH,NH,), 3.49 (t,2H,J =64
Hz, CH,CH,CH,NH, or CH ZCHzNH'Z), 3.50 (t, 2H, J = 6.4 Hz, CH,CH,CH,NH,, or
CH,CH,NH,), 3.62-3.73 (m, AA’XX’, 4H, NCH,CH N); B3C NMR (90.56 MHz,
D,0, secondary ref CH,CN set at 1.7) § 29.83, 38.64, 44.80, 45.28, 46.02, 50.67,
159.17, 159.61. Attempts to isolate and fully characterize this compound were carried out.
2,3,4,5,5a,6,7,8-Octahydro-1,3a,5,9-tetraazabenzindene (18) was taken up in HZO. After
24 h the water was removed by a stream of N, which was blown over the solution. The
residue was taken up in CHCI, and dried over Na,SO,. Concentration of this solution by
rotary evaporation afforded an oil. NMR analysis supports a mixture of two compounds
which were not separated. One of the species was 1-aminoethyl-4-aminopropyl-
2,3-piperazinedione (53). The other, 54, must arise from dehydration of 53 which
occurred in the rotary evaporation process. The aminopropyl chain condensed with the
tertiary amide and formed a six-membered ring to give a species having one amidine and
one amide moiety. 'H NMR shoed that the ratio of 53:54 was 68:32: 'H NMR (CDCL,,
360.15 MHz, TMS) & 1.53 (br s, NH) 1.73 (p, 2H, J = 6.7 Hz, NCH,CH,CH,NH,, 53)
1.87 (p, 2H, J = 5.9 Hz, NCH,CH,CH,)N, 54) 2.73 (t, 2H, J = 6.7 Hz,

NCH,CH,CH,NH,) 2.91 (t, 2H, J = 6.7 Hz, NCH,CH,NH,), 54) 2.96 (t, 2H, J = 6.7
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Hz, NCH,CH,NH,, 53) 3.23-3.31 (m, 4H, NCH,CH,CH,N= and
O=CNCH,CH,CNC=N, 54) 3.52-3.66 (m, 8H 53 and 6H 54); '*C NMR (CDCL,
90.56 MHz, ref central line CDCL, set at 77.23) § 20.93, 30.49, 38.82, 39.71 (2 C’s),
44.45, 44.73, 44.86, 45.34, 45.79, 46.67, 47.16, 50.53, 50.99, 147.6, 157.6, 15728,

159.0.

Protonation of 2,3,5,6,8,9-Hexahydrodiimidazo(1,2-a:2’,1’-c]pyrazine
(16) with Trifluoroacetic Acid (TFA) in CD,CN.
2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine (16) (0.0269 g, 0.164 mmol)
was taken up in CD,CN and NMR spectra were acquired: 'H NMR (CD,CN, 360.15
MHz, ref central line of CDZHCN set at 1.94) 3 3.20 (s, 4H), 3.28 (t, 4H), 3.70 (t, 4H);
*C NMR (CD,CN, 90.56 MHz, ref central line of CD,CN set at 1.39) § 46.29, 52.74,
54.63, 156.48. TFA (6.3 pL, 0.08 mmol, 0.5 eq) was added via syringe and spectra were
acquired: 'H NMR (CD5CN, 360.15 MHz, ref central line of CD,HCN set at 1.94) 63.33
(s, 4H), 3.48 (1, 4H), 3.82 (t, 4H), 8.13 (br s, H); *C NMR (CD,CN, 90.56 MHz, ref
central line of CD,CN set at 1.39) § 45.32, 52.30, 52.76, 155.08. TFA (6.3 puL, 0.08
mmol, 1.0 eq total) was added via syringe and spectra were acquired: '"H NMR (CD,CN,
360.15 MHz, ref central line of CD,HCN set at 1.94)  3.45 (s, 4H), 3.65 (t, 4H), 3.92
(t, 4H), 8.93 (br s, 1H); °C NMR (CD,CN, 90.56 MHz, ref central line of CD,CN set at
1.39) & 44.58, 50.98, 51.95, 153.62. TFA (12.6 uL, 0.16 mmol, 2.0 eq total) was added

via syringe and spectra were acquired: 'H NMR (CD,CN, 360.15 MHz, ref central line of
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CDZHCN set at 1.94) d 3.41 (s), 3.59 (t), 3.88 (t), 9.02 (br s). Significant hydrolysis of

the substrate had taken place making integration of this spectrum difficult.

2-Benzyl-2,3,5,6,8,9-hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazinium
bromide (60). 2,3,5,6,8,9-Hexahydrodiimidazof1,2-a:2’,1’-c]pyrazine (16) (1.00 g,
6.09 mmol) was suspended in toluene (20 mL). CH3CN was then added dropwise to this
suspension with stirring until dissolution was complete. Benzyl bromide (0.75 mL, 6.3
mmol) was then added in one portion and the resulting mixture was stirred in the dark at
room temperature under N 5 After 3 days the reaction mixture was filtered to afford a
yellow crystalline solid. This solid was washed (3x10 mL) with toluene which removed
some of the yellow color. Removal of residual solvent under vacuum afforded 1.97 g
(96%) of product: mp: 205°C with decomposition; 'HNMR (CDC13, 360.15 MHz, TMS)
0 3.47 (t, 2H, J = 10.1 Hz), 3.58 (t, 2H, J = 6.0 Hz), 3.93-4.13 (m, 4H), 4.38 (¢, 2H, J
= 12.5 Hz), 541 (s, 2H, NCH Ph), 7.31-7.45 (m, 5H, Ar-H); *c NMR (CDC13, 90.56
MHz, ref. central line of CDCl3 set at 77.23) § 43.75, 44.91, 49.16, 49.63, 50.97, 52.47,
55.39, 128.87, 129.04, 129.37, 133.44, 151.25, 151.35; IR (KBr) 2971, 2855, 1655,

1621, 1573, 1305 cm™'; MS (EI) m/z 255.3 M.
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Reduction of 2-Benzyl-2,3,5,6,8,9-hexahydrodiimidazo[1,2-
a:2’,1’-c]pyrazinium bromide (60). A 50 mL three necked round bottomed flask
equipped with a reflux condenser with a N, inlet tube was charged with
2-benzyl-2,3,5,6,8,9-hexahydrodiimidazo(1,2-a:2’,1’-c]pyrazinium bromide (60) (0.15 g,
0.45 mmol). DIBALH (1.5 M in toluene, 3.0 mL, 4.5 mmol) was added via syringe and
this mixture was heated to reflux. After 3 d the reaction mixture was cooled in an ice/H,O
bath and toluene (10 mL) was added. The reaction was quenched by the dropwise addition
of 3M KOH (10 mL). The mixture was transferred to a separatory funnel, the layers were
separated and the aqueous layer was extracted with CHCL, (6x20 mL). The combined
extracts were dried over Na,SO, and concentrated by rotary evaporation to afford 0.119 g
of an oil. '>*C NMR analysis was consistent with a mixture of three species in the sample
which were not separated. The major component is consistent with
1-benzyl-1,4,7,10-tetraazabicyclo[7.3.0]dodecane (62): '*C NMR (CDCL,, 90.56 MHz,
ref central line of CDCI, set at 77.23) 3 (aliphatic carbons only) 43.6, 45.7, 48.7, 52.0,
52.5, 54.0, 55.4, 57.4, 75.8. The other two components (isomers 63 and 64) could be
formed from further reduction by DIBALH of 1-benzyl-1,4,7,10-tetraazabicyclo
[7.3.0]dodecane (62). These compounds result from the cleavage of different C-N bonds
of the aminal moiety of 62. Isomer 63 was in greater abundance over isomer 64 which

allowed for the assignment of the aliphatic chemical shifts: isomer 63 (1-
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(aminoethyl-N-benzyl)-1,4,7-triazacyclononane) *C NMR (CDCl,, 90.56 MHz, ref
central line of CDC13 set at 77.23) § 44.9, 46.2, 47.0, 51.1, 53.1, 59.1; isomer 64
(1-benzyl-1,4,7,10-tetraazacyclododecane): '>C NMR (CDCl,, 90.56 MHz, ref central line
of CDC13 set at 77.23) 6 46.5, 46.7, 47.6, 52.0, 57.2. The aromatic chemical shifts for
62, 63 and 64 could not be assigned: 125.23, 126.62, 126.84, 126.99, 128.03, 128.12,
128.29, 128.31(d), 137.72, 138.82, 140.33.

This reaction was repeated under the same conditions for 12 d. The results were the same
except that more of isomers 63 and 64 were formed with respect to 62. The ratio of 63 to
64 was still the same (estimated by 3C line height) whereby more of 63 was formed over

64.

Hydrolysis of 2-Benzyl-2,3,5,6,8,9-hexahydrodiimidazo(1,2-
a:2’,1’-c]pyrazinium bromide (60). 2-Benzyl-2,3,5,6,8,9-
hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazinium bromide (60) was taken up in D,O and
NMR spectra were acquired to determine the regioselectivity of hydrolysis. The resultant
NMR spectra were consistent with a mixture of two isomers which result from the loss of
regiochemical control of the hydrolysis of the amidinium moiety of (60), affording a
mixture of 65 and 66. The ratio of 65:66 was approximately 50:50. The initial NMR
experiment was carried out 14 h after the sample had been prepared: '"H NMR 0,0,
360.15 MHz, secondary ref CH,CN set at 2.05) 5 2.88 (dt, 4H, NCH,CH,NH, both

isomers, J , = 6.4 Hz), 2.97 (t, 2H, J = 6.1 Hz), 3.07 (t, 2H, J = 6.7 Hz), 3.17 (1, 2H, J
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= 6.1 Hz), 3.58-3.74 (m, 12H), 3.91 (s, 2H, NCH,Ph), 4.66 (s, 2H, NCH,Ph),
7.35-7.45 (m, 10H, ArH); ’C NMR (D, 0, 90.56 MHz, secondary ref CHL,CN set at 1.7)
8 38.32, 39.38, 44.54, 45.06, 45.17(2C’s), 45.26, 45.88, 46.29, 46.84, 47.09, 47.46,
51.57, 52.63, 128.80, 128.98, 129.71 (2C’s), 129.84 (2C’s), 136.04, 137.21, 159.31,
159.52, 159.73, 160.12. NMR spectra which were acquired 48 h after the sample had

been prepared were identical.

Attempted Reaction of p-Toluenesulfonylchloride with
2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2°,1’-c]pyrazine (16).
2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine (16) (0.255 g, 1.56 mmol) was
suspended in toluene (10 mL) in a SO mL round-bottomed flask. CH3CN was added
dropwise until dissolution of the solid was complete. p-Toluenesulfonylchloride (0.29 g,
1.5 mmol) was then added and the reaction mixture was stirred for 6 d at room temperature
under N,,. A precipitate had formed and was isolated by vacuum filtration. The solid was
washed with toluene (25 mlL) and was oily in appearance. Unfortunately, the only NMR
solvent in which this solid was soluble was DMSO-d - The DMSO-d, was contaminated
with water. NMR and MS analysis of this solid was consistent with two species present in
the sample. The minor component was 2,3,5,6,8,9-hexahydrodiimidazo(1,2-a:2°,1’-
clpyrazine (16) starting material. The major component (73) was derived from the
hydrolysis of the desired tosylated product (69): 'H NMR (DMSO-d,, 360.15 MHz,

TMS) & 2.39 (s, 3H, CH ) 2.95 (dt, 2H, J = 6.6, 5.8 Hz, CH,CH,NHTs), 3.4 (br s,
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NH) 3.47-3.35 (m, 2H) 3.35 (s, NCNCH,CH,NCN of 16), 3.59-3.75 (m, 2H and t,
2H, J = 9.5 Hz, NCH,CH,N=C of 16), 3.90 (t, 2H, J = 9.8 Hz, NCH,CH,N=C of 16),
3.97-4.06 (m, 2H), 7.41 (XX’ of AA’XX", 2H), 7.69 (AA’ of AA’XX", 2H), 7.91 (t,
1H, J = 6.2, NHTs); 1°C NMR (DMSO-d,, 90.56 MHz, ref central line of DMSO-d set
at 39.5) § 20.97, 41.28, 43.06, 43.78, 45.24, 46.50, 49.14, 50.72, 50.87, 126.54,
129.69, 137.36, 142.81, 151.55, 152.00, 155.57; MS (ED) m/z 164 M* (16), 336 M*

(73).

Reaction of 2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine (16)
with 1,2-Bis[(p-tolylsulfonyl)oxy]ethane.
2,3,5,6.8,9-Hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine (0.10 g, 0.60 mmol) was
dissolved in CH,CN (10 mL) in 2 50 mL round bottomed flask. 1,2-
Bis[(p-tolylsulfonyl)oxy]ethane (0.22 g, 0.60 mmol) was added in one portion and the
mixture was heated at reflux under N, for 2 d. The reaction mixture was then concentrated
by rotary evaporation to afford an oil. 'H NMR analysis (CDC13) of this material showed
the two starting materials, many resonances in the 3-4.4 ppm region and three broad
singlets (4.2, 4.1, 3.9 ppm). Interpretation of these signals was difficult, therefore
purification was attempted. A small sample of the oil was taken up in EtOH and added
dropwise to a saturated solution of NaBPh, in EtOH. A precipitate formed which was
isolated by vacuum filtration. NMR analysis (DMSO-d ) Was consistent with some

purification but the sample was still a mixture. However, '*C shifts for 75 which were
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consistent with authentic samples of 75+2I'%2 observed by !*C NMR (DMSO-d)): B¢
NMR (DMSO-d, 90.56 MHz, ref central line of DMSO-d; set at 39.5) 6 43.18, 50.91,

148.24.

Attempted Diels-Alder Reaction of 2,3,5,6,8,9-Hexahydrodiimidazo
[1,2-a:2°,1’-c]pyrazine (16) and N-Phenylmaleimide.
2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2",1’-c]pyrazine (16) (0.10 g, 0.61 mmol) was
dissolved in warm toluene (10 mL). The temperature was maintained above 40°C in order
to keep the bisamidine in solution. A solution of N-phenyl maleimide (0.11 g, 0.63 mmol)
in toluene (10 mL) was added via an addition funnel over 2 minutes. The heat was
increased until everything went into solution (50 °C) and the reaction mixture was stirred
for 0.5 h. An aliquot (2 mL) was removed and O, was bubbled through the solution. No
fluorescence was observed. The solvent was removed by rotary evaporation to afford an
orange solid. The solid was not completely soluble in C.D.. NMR analysis showed that
only bisamidine staring material had dissolved in C,D,. The material that did not dissolve
in C.D, was soluble in CDCl,. NMR analysis of this sample also showed some
bisamidine starting material and other minor unknown specie(s) whose NMR spectra were
inconsistent with a Diels-Alder adduct of N-phenylmaleimide and the bisamidine.

The temperature of the original reaction mixture was increased to 70 °C for 1 h. Another
aliquot was removed and concentrated by rotary evaporation. The solid residue was taken

up in (ZDCl3 NMR data again showed that there was bisamidine starting material in
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addition to other resonances which were unidentified. The temperature of the original
solution was increased to 105 °C for 4 h. Another aliquot was removed and concentrated by
rotary evaporation. NMR analysis of the residue in CDCL, did not support product
formation and showed bisamidine starting material.

The reaction was repeated on the same scale and concentration. The reaction was
left stirring at rt for 36 h before the first aliquot was removed. 'H NMR analysis showed

the two reactants, a broad resonance at 2.6 ppm and broadening in the aromatic region.

cis-15-1,4,8,12-Tetraazatetracyclo[6.6.2.0%1%.011:15]hexadecane (85). 85
was prepared based on the method of Weisman et al.!% Aqueous glyoxal (5.34 g, 40 wt %
aq. solution; 36.1 mmol) was added to a stirred heterogeneous mixture of
1.4.8,11-tetraazacyclotetradecane (7.22 g, 36.04 mmol) in 525 mL of CH,CN. The
reaction mixture was stirred for 3 hours at 55 °C and then concentrated by rotary
evaporation. The residue was suspended in CHCl,, dried over Na,SO, and the filtrate was
concentrated. Sublimation of the residue (80 °C, 0.015 Torr) afforded 6.19 g (77%) of

85. NMR spectra were consistent with reported spectra.'%’

(1IRS, 8RS, 15RS, 16RS)-1,8-Dibenzyl-4,11-diaza-1,8-
diazoniatetracyclo-[6.6.2.04'1‘.011’15]hexadecane dibromide monohydrate
(90). 90 was prepared by the published method.'%*"'% Benzyl bromide (88.75 g, 518.9

mmol) was added in one portion to a stirred solution of cis-15-1,4,8,12-tetraazatetracyclo-
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[6.6.2.0%!6.0'!""]hexadecane (85) (7.93 g, 35.69 mmol) in 150 mL of CH,CN under
N,,. The reaction mixture was stirred for 14 days and afforded 18.19 g (90%) of pure

white product. NMR spectra were consistent with reported spect1'a_1°3

4-11-Dibenzyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (91). 91 was
prepared by the published method.'®-!% NaBH, (63.0 g, 1.66 mol) was added in small
portions to a stirred solution of (1RS, 8RS, 15RS, 16RS)-1,8-Dibenzyl-4,11-diaza-1,8-
diazoniatetracyclo-[6.6.2.0*16.0! !1>Jhexadecane dibromide monohydrate (90) (18.89 g,
33.5 mmol) in 95% EtOH (900 mL). The reaction mixture was stirred at room temperature
for 18 days. Excess NaBH 4, Was decomposed by the dropwise addition of 3M HCI (700
mL). The reaction mixture was concentrated by rotary evaporation and the residue was
dissolved in H,0 (400 mL). This aqueous solution was adjusted to pH 14 by the addition
of KOH (pellets) and extracted with toluene (6250 mL). The toluene extracts were dried
over Na,SO, and concentrated by rotary evaporation to afford 9.29 g (68%) of white solid

91. NMR spectra were consistent with reported spectra.m3

1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane (92). 92 was prepared by the
literature method. '%3-1%* Glacial acetic acid (100 mL) and 10% Pd/C (0.84 g) were added
to a hydrogenation flask which was connected to a glass atmospheric hydrogenation
apparatuslso designed for the exclusion of O,. After flushing the system with N, the

catalyst was equilibrated for 1 hour under H,. To this slurry was added
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4,11-dibenzyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (91) (4.68 g, 11.51 mmol) in
glacial acetic acid (10 mL). The reaction mixture was stirred for 24 hours under H2 at
room temperature and, after workup, afforded 2.6 g (98%) of 92 as an oil, which

subsequently solidified. NMR spectra were consistent with reported spectra.'%3

4,11-Bis-(N,N’-diethylacetamido)-1,4,8,11-tetraazabicyclo[6.6.2]-
hexadecane monohydrate (95). 1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane (92)
(183.9 mg, 0.812 mmol) was dissolved in CH,CN (2 mL). K,CO, (0.45 g, 3.3 mmol),
KI (0.55, 3.3 mmol), and 2-chloro-N,N-diethylacetamide (483.0 mg, 3.23 mmol) in
CH3CN (2 mL) were added successively and the resulting mixture was stirred at 60°C for
24 hours. The reaction mixture was then concentrated by rotary evaporation and the residue
was dissolved in 3M HCI (20 mL). This solution was extracted with toluene (6x25 mL).
The aqueous layer was cooled in an ice/H,O bath, adjusted to pH 14 with KOH (pellets)
and extracted with toluene (6x25 mL). The toluene extracts were dried over N a250 , and
the filtrate was concentrated to give 342.1 mg (93%) of waxy solid 95. mp: 81.5-82.5°C;
'H NMR (CD,CN, 360.15 MHz, ref central line of CD,HCN set at 1.94) § 1.03 (t, 6H,
NCH,CH,, J=1.1 Hz), 1.12 (t, 6H, NCH,CH,, J = 7.1 Hz), 1.41 (dm, 4H,
NCH,CH,CH,N), 2.20 (br s, H,0), 2.25-2.60 (m, 4H), 2.34 (XX’ of AA’XX", 2H)
2.71 (d, 4H, J = 10.5, 3.6 Hz), 2.93 (B of AB, 2H), 3.08-3.42 (m, 4H), 3.12 (AA’ of
AA’XX’, 2H) 3.34 (A of AB, 2H), 3.47-3.57 (m, 2H, NCH,CH,), 3.87 (ddd, 2H, J =

15.4, 12.0, 4.3 Hz); >°C NMR (CD,CN, 90.56 MHz, ref CD,CN set at 1.39) § 13.38,
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14.67, 28.74, 40.24, 41.90, 52.67, 55.06, 57.72, 57.78, 58.15, 59.44, 170.83; IR
(KBr) 2966, 2917, 2819, 1645, 1469, 1434, 1124, 794, 618 cm™'; MS (EI) m/z 452.6

(M™); Anal. Calcd for C2 4H 48N 602°H20: C,61.24; R, 10.71; N, 17.85; Found: C,

61.53; H, 10.59; N, 17.56.

1,8-Bisacetamido-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (96).
1,4,8,11-Tetraazabicyclo [6.6.2]hexadecane (92) (0.2425 g, 1.071 mmol) was dissolved
in CH3CN (25 mL) in a 50 mL round bottomed flask. Potassium carbonate (0.60 g, 4.3
mmol), potassium iodide (0.71, 4.3 mmol) and a-chloroacetamide (0.4233 g, 4.53 mmol)
were added, and the resulting mixture was heated at 60°C under N, for 23 hours. The
reaction mixture was then concentrated and dissolved in water (15 mL). The pH was
increased to 14 by the addition of solid KOH (pellets) while the mixture was cooled in an
ice/HzO bath. This solution was extracted with CHCI3 (6x25 mL) and the organic layer
was dried over Na,SO,, concentrated by rotary evaporation and taken up in absolute EtOH
(25 mL). The EtOH was removed by rotary evaporation affording 0.3501 g (96%) of a
waxy solid. The EtOH is necessary to remove CHCL, which forms a solvate with the
product. Mp 164-165°C dec.; '"H NMR (CD,CN, 360.15 MHz, ref CD,HCN set at 1.94)
8 1.39-1.64 (m, 4H, CH,CH,CH,), 2.33-2.58 (m, 12H), 2.66-2.75 (m, 4H), 2.79 and
3.07 (d, 4H, J =16.14 Hz, A of AB, NCH,CONH,), 2.97-3.08 (AA’ of AAXX', 2H,

NCH,CH,N bridge), 3.99 (ddd, 2H, J = 12.61, 8.96, 5.17 Hz), 5.76 (br s, 2H, amide
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NH), 6.78 (br s, 2H, amide NH); 3C NMR (CD3CN, 90.56 MHz, ref CD3CN set at
1.39) & 28.29, 54.05, 54.22, 56.93, 57.98, 59.02, 61.01, 175.1; IR (KBr) 3444, 3325,
3248, 3184, 1685, 1651 cm™!; MS (EI) m/z 340.3 (M*); Elemental analysis was
inconsistent with a stoichiometric hydrate (but was most consistent with the product as

96¢0.5H,0). Anal. Calcd for C,¢ H3,N O

,N(0,°0.5 H,0: C, 54.99, H, 9.52, N, 24.05;

Found: C, 54.90; H, 9.18; N, 23.64.

4,11-Bis(2-cyanoethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (97).
97 was prepared by the method of Hill.!% 1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane
(92) (199.9 mg, 0.8830 mmol) and freshly distilled acrylonitrile (2 mL) were stirred at
ambient temperature under N, for 38 hours. The flask was shielded from light during the
reaction. The reaction mixture was then concentrated and the residue was taken up in
toluene (15 mL). The toluene solution was dried over Na,SO, and the filtrate was
concentrated by rotary evaporation to afford 0.28 g (96%) of 97 as an oil. NMR spectra

were consistent with reported spectra.lo"’ .

4,11-Bis-(2-carbamoylethyl)-1,4,8,11-tetraazabicyclo[6.6.2] hexadecane
(98). 1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane (92) (0.171 g, 0.753 mmol) was
dissolved in CH3CN in a 25 mL round-bottomed flask. Acrylamide (0.108 g, 1.52 mmol)

was added and the resulting mixture was stirred under N, at room temperature for 21 days.
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The reaction mixture was then concentrated by rotary evaporation and the residue was
dissolved in water (10 mL). The pH of this solution was adjusted to 14 with solid KOH
(pellets) while cooling the flask in an ice/H20 bath. This aqueous solution was extracted
with CHCI3 (4x15 mL). Subsequent drying of the CHCl3 extracts over NaZSO , and
concentration of the filtrate afforded an oil. Trituration of this oil with Et,O gave 0.252 g
(91%) of 98 as a white waxy solid: mp: 120-122°C; '"H NMR (CDCl,, 360.15 MHz,
TMS) 6 1.42-1.47 (m, 2H), 1.57-1.70 (m, 2H), 1.68 (s, H,0), 2.26-3.0 (m, 18H), 4.10
(dt, 2H, J = 134, 6.9 Hz), 5.50 (br s, 2H), 7.67 (br s, 2H); °C NMR (CDCl,, 90.56
MHz, ref central line of CDCI, set at 77.23) § 26.61, 33.70, 52.33 (2C’s), 53.46, 53.67,
54.66, 55.48, 58.78, 175.41; IR (KBr) 3356, 3184, 1669 cm™! (C=0); MS (EI) m/z 368.5
(M"). Elemental analysis was inconsistent with a stoichiometric hydrate (but was

consistent with the product).

Attempted Reduction of 4,11-Bis(2-acetamido)-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane with BH;THF. 4,11-Bis(2-acetamido)-
1,4,8,11-tetraazabicyclo[6.6.2}hexadecane (96) (54.1 mg, 0.1589 mmol) was suspended
in THF (8 mL). This mixture was cooled in an ice/H,O bath prior to the addition of a
solution of BH3-'I'HP (1 M in THF, 2.2 mL, 2.2 mmol) via syringe. This mixture was
stirred at O °C for 30 minutes and then heated at reflux for 3 hours. The excess borane was
decomposed by the dropwise addition of H,O (1.5 mL). The reaction mixture was

concentrated by rotary evaporation, the residue was taken up in HCI (6M)/CH,OH (1:2, 25
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mL) and this solution was heated at reflux for 4 hours. The mixture was then concentrated
to approximately 3 mL and diluted with water (10 mL). This solution was adjusted to pH
14 with solid KOH (pellets) and extracted with CHCL3 (6x25 mL). The extracts were dried
over Na,SO, and concentrated to provide 86.1 mg of an oil. The 'H NMR indicated that
reduction had taken place but the product was a complicated mixture. The crude product
was dissolved in 6M HCI (20 mL) and the resulting solution was refluxed for 1 hour and
then extracted with EtZO (4x50 mL) and toluene (2x50 mL). These extracts were each
dried over Na,SO, and the solvent was concentrated. NMR analyses of these materials did
not correspond to the desired product. These two samples totaled 53.6 mg of material.
The aqueous layer from these extractions was adjusted to pH 14 and extracted with Et,0
(6x40 mL). These extracts were dried over Na,SO, and concentrated to afford 26.2 mg
(50%) of material. The 'H NMR of this material had a triplet of doublets at ~3.5 ppm and
what appeared to be the AX of the AA’XX’ expected for the cross-bridge of the product.
However, this material was a mixture and conditions for further purification were not

found.

Attempted reduction of 4,11-Bis(2-cyanoethyl)-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane (97) with BH3-THF. A solution of
BH,*THF in THF (1.0 M in THF, 1.5 mL, 1.5 mmol) was added via syringe to a solution
of 4,11-bis(2-cyanoethyl)-1,4,8,1 1-tetraazabicyclof6.6.2Jhexadecane (97) (0.0556 g,

0.1574 mmol) in THF (1 mL) under N,. This mixture was heated at reflux for 3 hours.
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The reaction mixture was cooled in an ice/H,O bath prior to the dropwise addition of 6M
HCI (7.5 mL). When all of the HCl solution had I:;een added, solid KOH (pellets) wefe
added until the pH had reached 14. This solution was then extracted (6>x25 mL) with
CI-ICI3 and the extracts were dried over NaZSO , and concentrated. NMR analysis of the
residue supported incomplete hydrolysis of a boron complex. The residue was dissolved
in 3M HCI (30 mL) and this mixture was heated at reflux for 2 hours. The pH of this
solution was again adjusted to pH 14 with solid KOH (pellets) and extracted with CHCL, to
afford 18.8 mg of an oil. The oil was a complicated mixture as determined by NMR

analysis.

2-(Tosylamino)ethyl p-toluenesulfonate (106). 106 was prepared by the method
of Lehn.!'> A ~5 °C solution of ethanolamine (50 g, 0.816 mol) and pyridine (140 mL) in
CH,CL, (160 mL) was added dropwise to a solution of p-toluenesulfonylchloride (370 g,
1.94 mol) in CH2C12 (400 mL) which was cooled in an CH3CN/(dry ice) (~-40 °C) bath.
The reaction mixture was stored at -6 °C for 6 days and was then transferred to a separatory
funnel. The reaction mixture was washed with H,0 (2x100 mL), 10% HCl (2x250 mL),
H,0O (2x500 mL) and dried over Na,SO, and concentrated. The crude product was
recrystallized from CCl, to afford 90.1 g (30%) of crystalline product. NMR spectra were

consistent with reported spectra. 15

N-Tosylaziridine (103). 103 was prepared by the method of Lehn.!!’
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2-(Tosylamino)ethyl p-toluenesulfonate (10.00 g, 26.75 mmol) was suspended in toluene
(100 mL). 3M KOH (40 mL) was added dropwise over 1 hour to this heterogeneous
mixture and the resulting mixture was stirred for an additional 2 hours. The layers were
then separated and the organic layer was dried over Na,SO, and concentrated. The residue
solidified to afford 4.01 g (79%) of 103 as a crystalline white solid. NMR spectra were

consistent with reported spectra.!!

4,11-Bis(2-(tosylamino)ethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane
(107). N-Tosylaziridine (103) (0.25 g, mmol) and
1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (92) (0.14 g, 0.60 mmol) were dissolved in
CH,CN (25 mL). This mixture was heated at reflux for 3 days under N,. The reaction
mixture was concentrated by rotary evaporation to afford a yellow oil. This oil was
triturated with EtzO (15 mL) and afforded a foam upon removal of the EtZO by rotary
evaporation. '*C NMR and MS analysis were consistent with product formation but
conditions for further purification through recrystallization were not found. The 'H NMR
spectrum (CDCl,) was dramatically broadened and was very complicated. BCNMR
(CDCl;, 360.15 MHz, ref CDCL, set at 77.23) § 21.49 (ArCH,), 25.33 (br,
NCH,CH,CH,N), 40.87, 50.16 (2C’s), 53.30 (br), 53.64, 54.08, 55.46 (br), 126.99,

129.56, 138.22, 142.47; MS (EI) m/z 620.3 (M™).

Attempted Alkylation of cis-15-1,4,8,12-tetraazatetracyclo-
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[6.6.2.04’16.0u’lslhexadecane with Bromobutane and 1-[(p-
tolylsulfonyl)oxy]-2-methoxyethane (109). Approximately 0.2 g of
cis-15-1,4,8,12-tetraazatetracyclo[6.6.2.0“'“".0l I15Thexadecane were used in each of the
six trials. The amine was dissolved in the appropriate solvent prior to the addition of the
alkylating agent. Bromobutane was the alkylating agent in all cases except trial #6 where
1-[(p-tolylsulfonyl)oxy]-2-methoxyethane (109) was used. Workup involved the removal
of the solvent via rotary evaporation. The extent of alkylation or elimination was evaluated
by °C NMR in CDCL,. Trial #3 was also evaluated in D,0 because not all of the reaction
products were soluble in CDCl,. 13C NMR analyses of the reaction product mixtures were
consistent with either monoalkylation of 85, or elimination of the alkylating agent and

protonation of 85.

(1IRS, 1S5RS, 16SR)-1-Benzyl-4,8,11-triaza-1-azoniatetracyclo-
[6.6.04'1‘.01l'ls]hexadecane' bromide hydrate (111). 131 was prepared by the
method of Hill.!%® Benzyl bromide (2.0 mL, 16.9 mmol) was added in one portion to a
stirred solution of cis-15-1,4,8,12-tetraazatetracyclo [6.6.2.0*16.0!!!15Jhexadecane (85)
(2.50 g, 11.3 mmol) in toluene (25 mL). The reaction mixture was stirred under N2 at
room temperature for 14 days. The white precipitate was collected by vacuum filtration to

afford 2.58 g (58%) of 111. NMR spectra were consistent with reported spectra.1°3

(1RS, 8RS, 1S5RS, 16RS)-1-Benzyl-8-methyl-4,11-diaza-1,8-
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diazoniatetracyclo[6.6.0%15.011"15]hexadecane dihalide (112). 112 was
prepared by the method of Hill.!%> Mel (2.5 mL, 40 mmol) was added to a stirred solution
of (IRS, 15RS, 16SR)-1-benzyl-4,8,11-triaza-1-azoniatetracyclo[6.6.0%16.0!1-15]
hexadecane bromide hydrate (111) (2.58 g, 6.67 mmol) in CH3CN (75 mL) in a 250 mL
round-bottomed flask. The flask was wrapped in foil to shield the reaction mixture from
light and was tightly sealed with a teflon stopcock. After 21 days, a white precipitate was
collected by vacuum filtration to afford 3.35 g of product. NMR spectra were consistent

with reported spectra.!%?

4-Benzyl-11-methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (113). 113
was prepared by the method of Hill.'” NaBH, (13.4 g, 0.354 mol) was added in small
portions to a stirred solution of (1RS, 8RS, 15RS, 16RS)-1-benzyl-8-methyl-4,11-diaza-
1,8-diazoniatetracyclo[6.6.0*'6.0! !'1*Jhexadecane dihalide (112) (3.35 g) in 95% EtOH
(200 mL). The reaction mixture was stirred under N, at room temperature for 7 days. The
reaction mixture was cooled in an ice/H,O bath and excess NaBH, was decomposed by the
addition of 3M HCI (60 mL). The solvent was removed by rotary evaporation. The
residue was dissolved in H20 (150 mL), adjusted to pH 14 with KOH (pellets) and
extracted with toluene (6x30 mL). The extracts were dried over Na,SO , and concentrated

to afford 1.78 g of 113 as an oil (81% two step yield from 111). NMR spectra were

consistent with reported spectra.l°3
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1-Methyl-1,4,8,11-tetraazabicyclof{6.6.2]hexadecane (114). 114 was
prepared by the method of Hill.'®® Glacial acetic acid (50 mL) and 10% Pd/C (0.25 g)
were added to a hydrogenation flask which was connected to a glass atmospheric
hydrogenation apparatus150 designed for the exclusion of O,. That catalyst was
equilibrated for 1 hour under H,. To this slurry was added 4-benzyl-11-methyl-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane (113) (2.20 g, 6.28 mmol) in glacial acetic acid (20 mL).
The reaction mixture was stirred for 24 hours under H, at room temperature. The reaction
mixture was filtered through celite and the filtrate was concentrated by rotary evaporation.
The residue was dissolved in H,O (40 mL), the pH was adjusted to 14 with KOH (pellets),
and this solution was extracted (6x50 mL) with toluene. The extracts were dried over
Na,SO, and concentrated to afford 1.13 g (75%) of 114 as an oil. NMR spectra were

consistent with reported spectra.'®>

'Attempts to Prepare 1-Benzyi-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane
(115). Method A: Benzyl bromide (43 pL, 0.3615 mmol) was added to a solution of
1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (92) (0.0822 g, 0.3631 mmol) in CH,CN (2
mL). This mixture was heated at reflux under N2 for 16 hours. The reaction mixture was
concentrated by rotary evaporation and dissolved in H20 (10 mL). KOH (pellets) were
added to increase the pH to 14 and this aqueous solution was extracted (5x10 mL) with
CHCL,. The extracts were dried over Na,SO, and concentrated to afford an oil. Bc NMR

analysis of this oil was consistent with a mixture of starting material (92), monobenzylated
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product (115), and dibenzylated product (91). *C NMR (CDCL,, 90.56 MHz, ref central
line of CDCI, set at 77.23) for 92: & 24.00, 46.16, 50.43, 51.50, 55.70, 59.10; for 91:
28.12, 52.18, 54.84, 56.64, 57.23, 57.74, 60.12 (not including phenyl ring); for 115: §
25.97, 27.43, 48.94, 49.10, 49.17, 49.54, 54.31, 54.37, 57.04, 57.95, 58.99, 59.26,
59.74 (not including phenyl ring). Method B: Benzyl bromide (12 puL, 0.09 mmol) was
added to a solution of 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (92) (0.0214 g, 0.0945
mmol) in toluene (1 mL). This mixture was stirred under N2 at room temperature for 4
days. A precipitate had formed and was isolated after removal of the supernatant by
pipette. The solid was dissolved in H,O (10 mL) and this solution was adjusted to pH 14
with KOH (pellets) and extracted (5x10 mL) with CHCI3 The extracts were dried over
Na,SO, and concentrated to afford a white solid. Bc NMR analysis of this white solid

was consistent with 91 and not 115.

4,11-Bis-(2,4-dinitrophenyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane
(118). 1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane (92) (0.0833 g, 0.390 mmol) was
dissolved in CH3CN in a 25 mL round-bottomed flask. Potassium carbonate (1.14 g,
mmol) and 2,4-dinitrofluorobenzene (100 uL, 0.08 mmol) were added and the solution
immediately turned yellow. The mixture was heated at reflux for 3 days under N,. The
reaction mixture was concentrated by rotary evaporation and the residue was dissolved in
water (20 mL). The pH was adjusted to 14 by the addition of solid KOH pellets and the

solution was extracted with CHCI3 (4x50 mL). The CHCI3 extracts were dried over
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Na,SO, and concentrated to afford 0.0781 g (36%) of 92 as a crude orange powder. The
crude product was further purified by recrystallization from toluene mp (dec): 245°C; 'H
NMR (CDCl,, 360.15 MHz, TMS) 6 1.55-1.70 (m, 2H), 1.85-2.00 (m, 2H), 2.45-2.64
(m, 6H), 2.64-2.84 (m, 4H), 3.08-3.17 (m, 2H), 3.20-3.42 (m, 4H), 3.60 (dt, 2H, J =
13.8, 7.0 Hz), 4.91-4.99 (m, 2H), 7.04 (d, 2H, J = 9.5 Hz, meta to NO,’s), 8.20 (dd,
2H, J =9.5, 2.7 Hz, ortho and para to NO,’s), 8.62 (d, 2H, J = 2.7 Hz, ortho to NO,’s);
13¢ NMR (CDC13, 90.56 MHz, ref central line of CDCl3 set at 77.23) & 28.04, 47.76,
51.48, 52.06, 56.10, 57.82, 117.68, 124.07, 127.80, 137.09, 137.66, 148.66; IR (KBr)

3431, 2814, 1607, 1525, 1319 cm™; MS (EI) m/z 558.22 M™*.

4,11-Bis-(p-nitrophenyl)-1,4,8,11-tetraazabicyclo[6.6.2]1hexadecane (119).
p-Bromonitrobenzene (11.0 g, 54 mmol) and K2C03 (2.5 g, 18 mmol) were added to a
solution of 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (112) (0.61 g, 2.69 mmol) in
CH3CN (50 mL). This mixture was heated at reflux under N2 for 7 days. The reaction
mixture was concentrated to afford a solid. This solid was placed in a Soxhlet cup and
extracted with Et, O for 4 bours to remove excess p-bromonitrobenzene. The remaining
contents of the Soxhlet cup were then extracted for 3 hours with CH,Cl,. The CH,CL,
extracts were dried over Na,SO, and concentrated to afford ~700 mg (~55%) of a yellow
powder. NMR analysis of this powder was consistent with 119 with some impurities.
Recrystallization with DMF was found to be the best method for purification of this

material. Unfortunately, the recovery of the DMF recrystallization was only 34%, which
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corresponds to an overall yield of 19% for this reaction. Decomposition point :>230 °C;

'H NMR (CDCl,, 360.15 MHz, TMS) 5 1.81-2.01 (m, 4H, NCH,CH,CH,N), 2.48-
2.59 (m, 2H), 2.58 (s, 4H), 2.60-2.71 (m, 2H), 2.82-2.93 (m, 4H), 3.37-3.45 (m, 2H),
3.69-3.73 (dm, 2H, J= 15.5 Hz), 4.02-4.10 (m, 2H), 6.57 (m, XX’ of AA’XX’, 4H, J
=9.5 Hz), 8.10 (m, AA’ of AA’XX’, 4H, J = 9.5 Hz); 1°C NMR(CDCl,, 90.56 MHz, ref
central line of CDCI, set at 77.23) 28.65, 50.59, 53.43, 54.91, 57.57, 58.38, 111.86,
126.18, 137.47, 153.94; IR (KBr) 3417, 2937, 2807, 1600, 1305, 1113 cm™'; MS (EI)

m/z 468.25 M™*.

Attempted preparation of 4,11-Bis-(p-tolyl)-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane (122). This procedure was modeled on the
method for the arylation of amines reported by Buchwald and coworkers.!% sz(dba)3
(5.1 mg, 0.0056 mmol), +-BINAP (6.1 mg, 0.0092 mmol), KOzBu (99.2 mg, 0.8840
mmol), p-bromotoluene (81 mL, 0.66 mmol) and 1,4,8,11-tetraazabicyclo[6.6.2]
hexadecane (92) (51.9 mg, 0.2293 mmol) were suspended in toluene (5 mL) under N2 ina
dried 100 mL Schlenk flask equipped with a reflux condenser and N, inlet tube. The
reaction mixture was heated at 100 °C for 14 days. An aliquot (~1 mL) was removed and
filtered through a Celite pad. The filtrate was extracted (5x20 mL) with 3M HCl. The
aqueous extracts were concentrated, taken up in H,O (10 mL), adjusted to pH 14 with
KOH (pellets) and extracted with toluene (5x20 mL). The combined toluene extracts were

dried over Na_SO, and concentrated to afford an oil. Bc NMR analysis showed that the
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oil consisted of a complex mixture. The spectra of the major component of the mixture was
consistent with monoarylated product 123. Separation of the components of this mixture
by TLC was attempted, however, conditions were not found which resulted in purification

of this mixture.

Attempted preparation of 4-11-diphenyl-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane (124). n-Butyllithium (0.7 mL of 2.25 M in
hexane, 1.6 mmol) was added dropwise by syringe to a solution of
1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (92) (0.1628 g, 0.7129 mmol) in hexane (5
mL) in a 25 mL Schlenk flask equipped with a reflux condenser and N, inlet tube. The
reaction slowly became turbid and a white powder precipitated. The solvent was
evaporated under N, by application of a heat gun to the reaction flask. The white powder
was dissolved in THF (5 mL) and bromobenzene (0.7 mL, 6.65 mmol) was added in one
portion by syringe. The reaction mixture immediately tuned red. The reaction mixture
was stirred at room temperature for 24 hours under Nz~ H20 (2 mL) was added dropwise
by syringe and the reaction mixture turned from red to light yellow as soon as the initial
drop of H,, O reached the reaction mixture. The reaction mixture was concentrated by rotary
evaporation and the residue was suspended in H,O. Dissolution was complete upon the
addition of 3M HCI (5 mL). The pH of this solution was adjusted to 14 by the addition of
KOH (pellets) and the solution was then extracted (4x25 mL) with benzene. The extracts

were dried over Na,SO, and concentrated to afford a yellow oil. NMR analysis showed
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that this oil was a complex mixture, but there was no evidence for the presence of starting

material (92).

cis-1,2,3,3a,4,5,5a,6,7,8,8a,12b,12c,12d-Tetradecahydro-
3a,5a,8a,12a-tetraazabenzo[e]pyrene (125). Benzocyclam (34) (1.37 g, 5.07
mmol) was dissolved in CH,CN (100 mL) in a 250 mL round-bottomed flask. Aqueous
glyoxal (0.087 g, 40 wt % aq. solution, 6.0 mmol) was added in one portion. The reaction
mixture was heated at reflux for 3 hours under N,. The reaction mixture was then
concentrated by rotary evaporation and taken up in CHCI3 (50 mL). This solution was
dried over NaZSO , and concentrated to afford a brown viscous oil. Sublimation (0.01
Torr/ 150 °C) provided 1.22 g (89%) of 125 as a white crystalline solid: mp:131-132°C;
'H NMR (Acetone-d,, 360.15 MHz, ref central line of CHD,COCD, set at 2.05, 25°C) §
1.28-1.37 (dm, 2H, J = 13.4 Hz), 2.02-2.15 (m, 2H), 2.24 (td, 2H, J = 8.9, 3.4 Hz),
2.62 (br app t, 2H, J = 11.4 Hz), 2.77-2.93 (m, 4H), 3.05 (br s, 2H), 3.77 (s, 2H),
4.02-4.08 (dm, 2H, J = 13.1 Hz), 6.56-6.61 (m, 2H, XX’ of AA’XX"), 6.70-6.75 (m,
2H, AA’ of AA’XX"); Bc NMR (Acetone—d6, 90.56 MHz, ref central line of Acetone-d >
set at 29.92, 25°C) § 21.35, 48.23, 49.68 (very broad), 54.65 (br), 73.65 (br), 113.49,
119.47, 136.28; IR (KBr) 3061, 2937, 2862, 2807, 2766, 1587, 1488, 1285 cm™!; MS
(ET) m/z 270.2 (M™); Anal. Calcd for C. H,_N,: C, 71.08; H, 8.20; N, 20.72; Found: C,

167722 '4°

70.76; H, 8.06; N, 20.42.
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Reaction of cis-1,2,3,3a,4,5,5a,6,7,8,8a,12b,12¢,12d-Tetradecahydro-
3a,5a,8a,12a-tetraazabenzo[e]pyrene with Methyl Iodide. 125 (0.15 g, 0.555
mmol) was taken up in CH3CN (10 mL) in 2 50 mL round-bottomed flask. Mel (0.70 mL,
11.5 mmol) was added by syringe. The flask was capped with a teflon stopcock, sealed
with parafilm and the reaction mixture was stirred for 16 d at room temperature in the dark.
A white precipitate had formed after 16 d. The solvent was removed by pipette to leave
approximately 25-50 mg of solid. '"H NMR (D,0) of this material was consistent with a
dimethylated product but there were impurities present. Recrystallization from CH,CN
afforded purified material. 'H NMR data supports the formation of 126a. The 3C NMR
did not have high enough signal to noise in order to support or disprove this hypothesis:
'H NMR (D20, 360.15 MHz, secondary ref CH3CN set at 2.05) 6 1.89-1.98 (dm, 1H, J
15.8 Hz, NCH,CHegHCH,N), 2.14-2.23 (dm, 1H, J = 15.7 Hz, NCH,CHHeqCH,N),
2.41-2.65 (m, 2H, NCH,CH,axCH,N), 2.94 (ud, 1H, J = 12.2, 3.6 Hz), 3.32 (s, 3H,
CH,), 3.44-3.49 (m, 1H), 3.64 (s, 3H, CH,), 3.64-3.73 (m, 1H), 3.78-4.06 (m, 5H),
4.16-4.25 (tm, 1H), 4.26-4.32 (dm, 1H), 4.39-4.45 (dm, 1H), 4.74-5.02 (m, 2H), 5.22

(s (br), IH, NCHN), 5.85 (d (br), 1H, NCHN, J = 2.1 Hz), 6.82-7.23 (m, 4H, ABCD).

Reaction of cis-1,2,3,3a,4,5,5a,6,7,8,8a,12b,12¢c,12d-Tetradecahydro-
3a,5a,8a,12a-tetraazabenzo[e]pyrene with Benzyl Bromide. 125 (0.1080 g,
0.4009 mmol) was dissolved in toluene (10 mL) in a 50 mL round-bottomed flask. Benzyl

bromide (71 puL, 0.60 mmol) was added via syringe. The reaction mixture was stirred at rt
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under N2 in the dark for 14 d. The reaction mixture was then concentrated by rotary
evaporation to give 0.1307 g (74%) of crude 129 as a tan powder. NMR analysis of this
powder was consistent with 129: 'H NMR (CDCL,, 360.15 MHz, TMS) & 1.40-1.44
(dm, 1H, NCHzCHHeqCHzN, J = 12.5 Hz), 1.92-2.23 (m, 3H), 2.86-2.95 (m, 2H),
3.13-3.50 (m, 5H), 3.69-3.80 (m, 2H), 4.034.06 (m, 1H), 4.24 (td, 2H, J = 12.2, 3.3
Hz), 4.62 (1d, 2H, J = 13.1, 4.0 Hz), 5.25 (s (br), 1H, NCHN), 5.59 (s (br), 1H,
NCHN), 5.68 (B of AB, 1H, J = 12.5 Hz), 599 (A of AB, 1H, J = 12.5 Hz), 6.71-6.91
(m, 4H), 7.24-7.46 (m, 3H), 7.73 (d, 2H, J = 7.0 Hz); 1*C NMR (CDCl,, 90.56 MHz,
ref to central line of CDCI3 set at 77.23) & 20.35, 20.58, 46.82, 47.16, 47.65, 47.81,
53.96, 58.39, 60.06, 67.86, 114.56, 11541, 120.26, 121.80, 126.94, 129.24, 130.57,

133.45, 133.66, 133.96.

Complex of 4,11-Bis-(N,N’-diethylacetamido)-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane (95) with LiClO 4 4.11-Bis-
(N,N’-diethylacetamido)-1,4,8,1 1 -tetraazabicyclo[6.6.2]hexadecane (95) (46.2 mg,
0.1067 mmol) was dissolved in CD3CN (-1 mL). LiClO 4 (11.6 mg, 0.1090 mmol) was
added and NMR spectra were acquired. 'H NMR (CD,CN, 360.15 MHz, central line of
‘CDZHCN set at 1.94) 3 1.01 (t, 6H, CH2CH3, J=7.1Hz), 1.51 (t, 6H, CH,CH,, J =
7.1 Hz), 1.41 (dp, 2H, NCH,CHH, qCHzN, J =164, 3.1 Hz), 1.97-2.25 (m, 8H), 2.32
(s (br), H,0), 2.56-2.86 (m, 14H), 3.12-3.44 (m, 16H); 3¢ NMR (CD,CN, 90.56

MHz, central line of CD,HCN set at 1.39) & 13.54, 14.69, 26.15, 41.73, 42.44, 53.10,
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59.18, 59.75, 61.08, 62.36, 172.2, 174.6, IR (KBr) 1631 cm™ (C=0).

Complex of 4,11-Bis-(N,N’-diethylacetamido)-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane (95) with NaClO ¢ 4 11-Bis-
(N,N’-diethylacetamido)-1,4,8,1 1 -tetraazabicyclo[6.6.2]hexadecane (95) (26.4 mg,
0.0591 mmol) was dissolved in CD3CN (~0.7 mL). NaClO A (20.3 mg, 0.168 mmol)
was added and NMR spectra were acquired. 'H NMR (CD,CN, 360.15 MHz, central line
of CD,HCN set at 1.94) &; 1.07 (1, 6H, CH,CH;, J=7.1 Hz), 1.13 (t, 6H, CH,CH_, J =
7.1 Hz), 1.45 (dm, 2H,J = 16.9 Hz), 1.99-2.07 (m, 2H), 2.08-2.23 (qm, 2H, 16.1 Hz),
2.23-2.35 (m, 2H), 2.33 (s, H,0), 2.38 (dm, 2H, J = 124 Hz), 2.48 (dm, 2H, J = 12.9
Hz), 2.64-2.82 (m, 3H), 2.86-2.97 (m, 2H), 3.09 (id, 2H, J = 14.9, 2.8 Hz), 3.12 (d,
2H, NCHHCO, J = 15.9 Hz, B of AB), 3.22-3.43 (m, 8H), 3.42 (d, 2H, NCH,CO, J
= 15.9 Hz, A of AB)"’C NMR (CD;CN, 90.56 MHz, central line of CD,HCN set at 1.39)

d 13.29, 14.67, 25.69, 41.72, 42.76, 50.91, 51.33, 58.09, 59.31, 59.89, 60.26, 172.08.

4,11-Bis-(2-carboethoxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]-
hexadecane (137) complex with LiClO . 4,11-Bis-(2-
carboethoxymethyl)-1,4,8,1 1-tetraazabicyclo[6.6.2]hexadecane (137) (14.5 mg, 0.0364
mmol) and LiClIO , 3.9 mg, 0.0364 mmol) were dissolved in CD3CN (~1 mL) and NMR
spectra were acquired. 'H NMR (CD,CN, 360.15 MHz, central line of CD,HCN set at

1.94) § 1.21 (t, 6H, CH,CH,, J = 7.1 Hz), 1.44 (dp, NCH,CHH, CH,N, J = 16.6, 3.3
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Hz), 2.02-2.33 (m, 6H), 2.49-2.69 (m, 10H), 2.80-2.98 (m, 6H), 3.11-3.33 (m 2H),
3.23 (d, NCHH,CO, 2H, J = 18.0 Hz, B of AB), 3.52 (d, NCHH, CO, 2H, J = 18.0 Hz,
A of AB), 4.15 (q, 4H, CH,CH,, J = 7.1 Hz) ; '*C NMR (CD,CN, 90.56 MHz, central
line of CD,HCN set at 1.39) § 14.47, 25.53, 52.89, 52.99, 59.23, 59.35, 60.39, 62.25,

63.05, 176.58.

4,11-Bis-(2-carbeethoxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]-
hexadecane (137) complex with NaClO,. 4,11-Bis-(2-
carboethoxymethyl)-1,4.8,11-tetraazabicyclo[6.6.2]hexadecane (137) (18.9 mg, 0.0484
mmol) and NaClO 4 (5.8 mg, 0.0484 mmol) were dissolved in CD3CN (~1 mL) and NMR
spectra were acquired. 'H NMR (CD,CN, 360.15 MHz, central line of CD,HCN set at
1.94) 6 1.27 (¢, 6H, CH,CH,, J = 7.1 Hz), 1.49 (dm, J = 17.1 Hz, NCHZCHHeqCHzN),
2.03-2.23 (m, 6H), 2.18 (s, H,0), 2.33-2.42 (m, 2H), 2.47-2.56 (m, 4H), 2.67-2.91
(m, 8H), 3.12 (ud, 2H, J = 16.9, 2.8 Hz), 3.15 (d, NCHH,CO, 2H, J = 17.1 Hz, B of
AB), 3.40 (d, NCHH,CO, 2H, J = 17.1 Hz, A of AB), 4.14-4.29 (m, 4H, CH,CH,) ;
'3C NMR (CD,CN, 90.56 MHz, central line of CD,HCN set at 1.39) 3 14.53, 25.72,

51.05, 51.23, 58.28, 59.43, 59.53, 61.31, 62.50, 174.35.

Protonation of 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (92) with TFA.
1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (92) (28.4 mg, 0.125 mmol) was taken up in

CD,CN (~1 mL). TFA (9.6 uL, 0.125 mmol) was added via syringe and NMR spectra
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were acquired. 'H NMR (CD,CN, 360.15 MHz, ref central line of CD,HCN set at 1.94)
5 1.48-1.57 (m, 2H, NCH,CHHCH,N), 1.79-1.83 (m, 2H, NCH,CHHCH,N),
2.55-2.69 (m, 4H), 2.69-3.04 (m, 12H), 3.22 (m, 2H), 7.4 (br s, 3H) 13C (CD,CN,
90.56 MHz, ref central line of CD,CN set at 1.39) 8 24.59, 45.26, 48.00, 53.04, 53.91,
57.80.

An equivalent of TFA (9.6 pL, 0.125 mmol) was added and NMR spectra were acquired.
There were now two NH resonances which correspond to “inside” and “outside” protons
which are in slow exchange. 'H NMR (CD,CN, 360.15 MHz, ref central line of
CD,HCN set at 1.94) 6 1.61 (dp, 2H, CH2CHHeqCH2N, J=10.2,3.3 Hz), 2.18 (qt,
2H, CH,CHH_CH,N, J = 12.5, 4.4 Hz), 2.38-2.55 (m, 4H), 2.78-2.93 (m, 4H),
3.08-3.52 (m, 10H), 3.52 (m, 2H), 9.27 (br s, 2H), 10.19 (br s, 2H)

100 uL of this sample were removed by syringe. This aliquot was diluted with CD3CN (1
mL) and NMR spectra were acquired. The spectra did not change as a function of
concentration.

D,0 (3 uL) was added via syringe. NMR spectra were immediately acquired but the
exchange process had already completed. Therefore, upon addition of a species which can

facilitate exchange, “inside” and “outside” protons are rapidly interconverted.

1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane (92) complex with LiClO &
1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane (92) (23.3 mg, 0.103 mmol) and LiCIO,

(10.8 mg, 0.102 mmol) were dissolved in CD,CN (~1 mL) and NMR spectra were
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acquired. The Bc spectrum showed two separate sets of resonances which were
consistent with free 92 and 92°Li*. Additional LiCIO 4 (4.3 mg, total LiClO A 15.1 mg,
0.142 mmol, 1.38 eq.) was added and spectra were acquired. A single set of Bc
resonances were observed for this sample that were consistent with 92eLi*. 'H NMR
(CD3CN, 360.15 MHz, central line of CD,HCN set at 1.94) 0 1.34 (dm, 2H,
NCHZCHHeqCHzN, J =16.1 Hz), 1.86 (br s, 2H, NH), 1.97-2.11 (m, 2H,
NCH,CHH_ CH,N), 2.20-2.30 (m, 2H), 2.39-2.96 (m, 18H); '*C NMR (90.56 MHz,
CD,CN, central line of CD,HCN set at 1.39) § 24.31, 43.52, 48.35, 52.38, 59.75,

60.76.

Attempted Complexation of 1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane
(92) with NaClO,. 1,4,8,11-Tetraazabicyclo[6.62]hexadecane (92) (20.1 mg, 0.0888
mmol) and NaClO s (10.9 mg, 0.0889 mmol) were dissolved in CD3CN (-1 mL). The Iy
spectrum was consistent with free 92. However, the chemical shifts for the '>C
resonances were slightly different than the chemical shifts for free 92. Furthermore, the
lines were slightly broadened. These data suggest that there is rapid exchange of Na* but
92 is the more abundant species in solution. 3¢ NMR (CD3CN , 90.56 MHz, ref central

line of CD,CN set at 1.39) § 25.34, 46.72, 51.21, 56.55, 59.65.

1-Methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (114) complex with

LiClO 4 1-Methyl-1.4.8,11-tetraazabicyclo[6.6.2]hexadecane (114) (41.2 mg, 0.1714
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mmol) and LiClO A (18.4 mg, 1.95 mmol) were dissolved in CD3CN (870 uL) and NMR
spectra were acquired. This sample had a 3¢ NMR spectrum having thirteen resonances
consistent with 114¢Li*. '"H NMR (CD,CN, 360.15 MHz, ref central line of CD,HCN
set at 1.94) & 1.34 (dm, 1H, NCH,CHHeqCH,N, J = 16.4 Hz), 1.49 (dp, 1H,
NCH,CHH’eqCH,N, J = 16.4, 3.02 Hz), 1.78 (br dd, 1H, J = 13.9, 3.9 Hz), 1.9 (br s,
1H, NH), 2.01-2.40 (m, 8H), 2.52-3.16 (m, 16H); '°C NMR (CD,CN, 90.56 MHz, ref
to CD,CN set at 1.39)  23.84, 24.68, 43.40, 45.59, 47.95, 51.81, 52.16, 52.54, 58.86,
59.19, 59.63, 61.52. This sample contained water which was observed in the 'H NMR

spectrum at 2.94 ppm.

1-Methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (114) complex with
NaClO 4 1-Methyl-1,4.8,11-tetraazabicyclo[6.6.2]hexadecane (114) (51.5 mg, 0.2142
mmol) and NaClO , (26.1 mg, 0.2132 mmol) were dissolved in CD3CN (1390 uL) and
NMR spectra were acquired. This sample had a 13C NMR spectrum having twelve
resonances, six of which were dynamically broadened. The dynamic broadening results
from the exchange of Na* between free and complexed 114 at a rate which is intermediate
on the NMR time scale. 'H NMR (CD,CN, 360.15 MHz, ref central line of CD,HCN set
at 1.94) 8 3.41 (m, 2H), 1.92-2.04 (m, 2H), 2.16-2.28 (m, 4H), 2.36-2.79 (m, 6H),
2.93 (m, 4H); '*C NMR (CD,CN, 90.56 MHz, ref to CD,CN set at 1.39) § 25.42,
25.90, 43.87 (br), 44.91, 49.62 (br), 51.10, 52.04 (br), 53.07 (br), 57.99, 58.33 (br),

59.14, 59.37.
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General Method for Competition Experiments

Sample aration

All samples were dispensed into 1-dram vials in a N, dry bag. CD,CN was added
to one of the vials and transferred repeatedly between all three vials to ensure that mixing
was complete. The resulting CD,CN solution was transferred to a Wilmad #528-PP 5 mm
NMR tbe. The volume of the sample was estimated by visual comparison to a known
volume of acetone placed into an identical NMR tube by syringe (Hamilton 500 uL). The
sample was capped and parfilmed and spectra were acquired.
NMR Data Acquisition

'H NMR FIDs were Fourier transformed ten separate times, phase and baseline
corrected, and referenced to the central line of the CD_,,HCN resonance at 1.94 ppm. The

same integral file was used for each transformed spectrum. A mean (%) K | was calculated

and 2 95%
S= ¥ —— W=xXz
z”i N-1 JN
Equation 4.1 Equation 4.2

confidence interval was determined using Equations 4.1 and 4.2. The free energy of

competition (AAG® ) was then calculated.

298 K

For '3C NMR spectra, an estimation for competitive equilibrium constants or

rel

KUJN3+) was made based on the height or integrated area of the observed resonances.
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Alternatively, in the cases where resonances could be integrated, FIDs were Fourier
transformed ten separate times, phase and baseline corrected, and referenced to the central
line of the CD,CN resonance at 1.94 ppm. An average competitive equilibrium constant
(K or K| ;+/),+) (X) was then calculated using the integration data from the ten FID’s and
a95% confidence interval was determined using Equations 4.1 and 4.2. The free energy

of competition (AAG’ 298 k) Was then calculated.

Competition of Li* and Na* for 95. Method of detection: *C{!H} NMR. K was

estimated by peak height (95°Li*:53.10 ppm; 95°Na*: 51.33 ppm). 95 (21.4 mg,
0.0479 mmol), LiCIO 4 (5-2 mg, 0.0480 mmol), NaClO 4 (5.6 mg, 0.0457 mmol), CD3CN

(0.78 mL). Signal to noise: 302:1 (53.10 ppm). Chemical shifts are given in Table 3.1.

Competition of 95 and 83 for Li*. Method of detection: *C{'H} NMR. K_ was
estimated by peak height (95°Li*: 26.15 ppm; 83<Li*: 28.73 ppm). 95 (85.9 mg, 0.1898
mmol), 83 (48.3 mg, 0.1899 mmol), LiClIO 4 (20.4 mg, 0.1899 mmol), CD,CN (1.63

mL). Signal to noise: 63:1 (26.15 ppm). Chemical shifts are given in Table 3.2.

Competition of Li* and Na* for 137. Method of detection: 'H NMR. 137 (13.2 mg,

0.0331 mmol), LiClO A (3.5 mg, 0.0332 mmol), NaClO A (4.1 mg, 0.0331 mmol), CD3CN
(0.79 mL). The observed resonances were: for 137<Li*: 8 3.53 (d, 2H, A of AB); for

137+Na*: § 3.39 (d, 2H, A of AB).
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Competition of 137 and 83 for Li*. Method of detection: 'H NMR. 137 (19.3 mg,
0.0484 mmol), 83 (12.3 mg, 0.0484 mmol), LiClO, (5.0 mg, 0.0484 mmol), CD,CN
(0.98 mL). The observed resonances were: for 137-Li*: § 3.53 (d, 2H, A of AB); for

83<Li+: 8 1.75 (dd, 2H, NCH,CHHCH,N)

Competition of 92 and 83 for Li*. Method of detection: '’C NMR. K_, was estimated by
integration (83-Li*: 24.24 ppm (NCH,CH,CH,N); 92-Li*: 24.33 ppm
(NCH,CH,CH,N); 83: 28.70 ppm (NCH,CH,CH,N); 92: 25.24 ppm
(NCH,CH,CH,N)). 92 (11.5 mg, 0.0507 mmol), 83 (12.9 mg, 0.0507 mmol), LiClO,
(5.5 mg, 0.0507 mmol), CD3CN (0.85 mL). Chemical shifts are given in Table 3.4. 95
(22.0 mg, 0.0486 mmol) was later added to the sample of 92 and 88. All free 95 was

compiexed with Li*. Free 88, 88Li* and free 92 were also observed.

Competition of 92 and 88 for Li*. Method of detection: 3C NMR. K ., was estimated by
integration (88¢Li*: 24.24 ppm (NCH,CH,CH,N); 92°Li*: 24.33 ppm
(NCH,CH,CH,N); 88: 28.70 ppm (NCH,CH,CH,N); 92: 25.24 ppm
(NCH2CH2CH2N)). 92 (22.7 mg, 0.100 mmol), 88 (25.6 mg, 0.100 mmol), LiCIO 4
(10.6 mg, 0.100 mmol), CD,CN (1.18 mL).

A second sample of 92 and 88 was prepared. 92 (9.5 mg, 0.0420 mmol), 88 (10.8 mg,

0.420 mmol), LiCIO 4 (4.5 mg, 0.420 mmol), CD3CN (1.18 mL). Chemical shifts are
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given in Table 3.6. 95 (19.0 mg, 0.0421 mmol) was later added to the sample of 92 and
88. All free 95 was complexed with Li* (95¢Li*: 26.15 ppm) and only free 92 and free

88 was observed.

Competition of Li* and Na* for 114. Method of detection: BC NMR. Krel was estimated
by peak height (114-Li*: 23.82 pm (NCH,CH,CH,N); 114+Na*: 25.45 ppm
(NCH,CH,CH,N)). 114 (26.0 mg, 0.1081 mmol), LiClO, (11.5 mg, 0.1081 mmol),
NaClO . (13.2 mg, 0.1078 mmol), CD3CN (0.81 mL). Chemical shifts are given in Table

3.7.

Competition of 114 and 83 for Li*. Method of detection: '*C NMR. K_, was estimated
by peak height (114-Li": 23.82 pm (NCH,CH,CH,N); 83Li*: 24.24 ppm
(NCH,CH,CH,N)). 114 (31.7 mg, 0.1543 mmol), 83 (40.3 mg, 0.1584 mmol),
LiClO, (17.2 mg, 0.1617 mmol), CD3CN (0.96 mL). Too much LiClO4 was added.
83<Li* was the most abundant species in solution but 114¢Li* was also present.

However, no free 83 was detected verifying that a 1:1:1 molar ratio had not been prepared.

Competition of 137 and 95 for Li*. Method of detection: 'H NMR. 137 (14.6 mg,
0.0366 mmol), 95 (16.5 mg, 0.0366 mmol), LiClO 4 (3.9 mg, 0.0367 mmol), CD3CN
(0.89 mL). The LiClO , Was added to 137 in CD3CN . 95 was then added. The observed

resonances were: for 137-Li*: § 4.15 (q, 4H, OCH,CH,); for 137: 0 4.07 (q, 4H,
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OCHZCH3); for 95¢Li+: & 3.88 (1d, 2H). Water contaminated this competition sample.

1,8-Bisacetamido-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane Complex with
Cu(CIlO D 1,8-Bisacetamido-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (39.9 mg,
0.1172 mmol) was dissolved in EtOH (5 mL) in a 25 mL round-bottomed flask.

Cu(ClO

4)2 (46.2 mg, 0.1249 mmol) was added to this solution and the resulting mixture

was heated at reflux for 4 hours under N,. Upon cooling to room temperature, two
different materials precipitated. One was light blue in color and fluffy, the other was
granular and dark blue in color. These two materials could be attributed to a complex (dark
precipitate) and a polymer (light blue precipitate). EtOH (S mL) was added and the heating
was continued for 2.5 hours. The reaction mixture was cooled to room temperature and the
supernatant was removed by pipette and filtered through a glass wool plug in a pipette.

The filtrate was placed in a closed chamber designed to allow slow diffusion of Et,O into
the solution. After 24 hours, a granular solid had precipitated. This solid was dissolved in
95% EtOH (10 mL). Approximately 3 mL of this solution was diluted with 95% EtOH (9
mL) and this solution was put in the Et,O diffusion chamber. After 5 days, crystals bad
formed. These crystals were not suitable for x-ray crystallography. IR (KBr) 1665 cm-1
(C=0); UV-Vis (MeOH, 2.2 x 10~ M) A = 630.01 nm, € =24 M"! cm’!; Anal. Calcd. For
C 6H3,NCuClL0,: C,31.88; H, 5.35; N, 13.94; Found: C, 13.65; H, 5.19; N, 13.71.

Other crystallization attempts with EtOH, 95% EtOH and CH,CN with Et,0 diffusion

techniques were unsuccessful in affording x-ray quality crystals.
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V. Variable Temperature NMR Experiments
Data Acquisition
All DNMR experiments were run on the same sample. Cis-125 (29.1 mg) was dissolved
in Acetone-d, (940 uL). The NMR tube was capped and sealed with parafilm. *C NMR
spectra were acquired using broad-band decoupling with the following spectrometer
settings: Spectrum Reference (SR): "3854.17; Sweep Width (SW): 175 ppm (185-10 ppm);
Total Data Points (TD): 32; Decoupler Power (PD): 10H. These settings resulted in a Hz/pt
ratio of 0.477. The SR was determined by referencing the central line of acetone-d s at
29.29 ppm for the probe temperature spectrum. This provided consistency in referencing
the DNMR spectra. The temperature was measured by a chemical shift thermometer. The
thermometer was a 1:1 mixture of acetone-d and CCl, as reported by Led and Petersen.!!
The temperature was calculated by solving Equation 4.1 where AJ is the difference (in
Hertz) between the chemical shift of the carbonyl carbon of acetone-d, and CCl,.

T(°C) = 5529.1 - 50.73A%8 (Equation 4.3)
The temperature was recorded before (T a) and after (T ) the acquisition of each spectrum
after allowing the temperature of the chemical shift thermometer to equilibrate for
approximately 15 minutes. The two recorded temperatures are listed before the observed
chemical shifts for each experiment.
T,(°C) = 73.15 (A8 = 110.4327 Hz); T(°C) = 71.19 (Ad = 110.3940 Hz): 5 20.56,
21.82, 44.10, 47.89, 48.34, 52.28, 54.89, 56.53, 70.81, 75.74, 113.7, 114.1, 119.7,

119.8, 135.0, 137.6.
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T,(°C) =750.00 (Ad = 109.9765 Hz); T;(°C) = 49.63 (AS = 109.9691 Hz): & 20.58,
21.87, 44.16, 47.94, 48.36, 52.36, 54.94, 56.58, 70.89, 75.82, 113.6, 114.0, 119.7(b),
134.9, 137.6.

T ,(°C) = "44.05 (Ad = 109.8592 Hz); T(°C) = 42.6 (A = 109.8299 Hz): 6 20.57,
21.86, 44.18, 47.96, 48.32, 52.38, 54.90, 56.58, 70.89, 75.78, 113.6, 113.9, 119.6,
134.9, 137.6.

T ,(°C) = not obtained; T(°C) = "34.03 (A = 109.6615 Hz): § 20.59, 21.85, 44.19,
48.06, 52.28, 54.92, 56.68, 70.91, 75.83, 113.7, 119.6, 135.0, 137.6.

T,CO)="15.1 (Ad = 109.2879 Hz); Tg(°C) ="15.1 (AS = 109.2879 Hz): 4 21.20, 48.19,
57(b), 113.6, 119.6.

T,(°C)="10.6 (Ad = 109.2000 Hz); Tg(°C)="10.6 (Ad = 109.2000 Hz): 3 21.26(b),
48.18(b), 54.35(b), 113.6, 119.6.

T,CO= *0.9 (A8 = 108.9729 Hz); Tg(°C) = 0.5 (AS = 108.9802 Hz): § 21.29, 48.19,
54.52(b). 73.46(b), 113.6, 119.5, 136.3(b).

T,CO= *15.0 (Ad = 108.6945 Hz); Tg(°C) = *15.7 (A3 = 108.6798 Hz): § 21.32,
48.23, 54.55(b), 73.66(b), 113.5, 119.5, 136.3.

T,CO= *25.43 (AS = 108.4894): & 21.35, 48.23, 49.68(b), 54.65, 73.65, 113.5,

119.5, 136.3.

NMR Simulations and Data Manijpulation
The DNMR spectra were used in a full line shape analysis of this dynamic process. The
212
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region between 19-23 ppm was used to perform the analysis. Simulated NMR spectra
were calculated using the gNMR program.'*® The chemical shift difference between the
nuclei in the absence of exchange was estimated using the -72 °C spectrum. The rate of
exchange between the nuclei was assumed to be at or below the slow exchange limit at this
temperature. The natural line width (Avl ,2) was estimated to be 2.7 Hz for the calculation.
This value was obtained from the average line widths at half height of the Acetone-d, peaks
at various temperatures. The simulated spectra were manually fitted to each experimental
spectrum. This operation was performed using the chemical shift difference of the two
nuclei (Ad) in the absence of exchange and varying the rate constant until the calculated

spectrum visually matched the experimental spectrum. In some cases it was also necessary

Plot of In (k/T) vs (1/T)

In (k/T)

4
0.003 (1/T) 0.005

‘e Eyring Plot 1
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to adjust AS. The data used in these simulations and the rates which were calculated are
given in Table 4.1.
Using the data for the rate obtained from the calculated spectra, an Eyring plot [In (k/T)

versus (1/T)] was generated which allowed for the calculation of AH* and AS¥.

Table 4.1
Avg(.o(':I')emp Ta Tg 5, Og Ad R::.Z-(lk)
-72.2 -73.2 -71.2 21.81 20.55 114.1 0
-49.8 -50.0 -49.6 21.86 20.58 1159 12
-43.4 -44.1 -42.6 21.89 20.58 1159 42
-34.0 — -34.0 2191 20.61 119.5 100
-15.1 -15.1 -15.1 2191 20.65 114.1 675
-10.6 -10.6 -10.6 21.91 20.65 114.1 950
0.70 0.90 0.50 2191 20.65 114.1 2000
154 15.0 15.7 2191 20.65 114.1 7000
254 254 — 21.96 20.70 114.1 §

Natural line width (Av,): 2.7 Hz
§ Fast exchange limit spectrum
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Submission_to Organic_Svntheses

1,4,7,10-TETRAAZACYCLODODECANE
S NH,

NH NH, H,N S N2N
~ - (L
NH NH, EtOH NTSN
|- (77%) /
1
\ 1) 6 DIBALH, PhCH, Ho M\ H
NN reflux 16 h N N
= (L - ]
_J/ (88%) H"\_/ H
2

Submitted by David P. Reed and Gary R. Weisman.1
Checked by

1. Procedure

Caution: Hydrogen sulfide (H>S) is generated in Part A of this procedure. The

reaction and associated operations must be carried out with provision for H,S

trapping in an efficient hood.

A. 2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2’,1-c]pyrazine (1). A 500-
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mL, three-necked, round-bottomed flask is equipped with a 125 mL pressure-
equalizing addition funnel, a Teflon-coated magnetic stirring bar, a fritted gas
dispersion tube (initially closed) connected to a nitrogen manifold , and a reflux
condenser fitted with a nitrogen inlet tube connected to the nitrogen manifold.
The nitrogen manifold exit line is routed through two fritted gas-washing bottles
charged with 30% aqueous sodium hydroxide (NaOH) in order to scrub H,S

evolved in the reaction (Note 1). The reaction flask is charged with 10.00 g
(83.20 mmol) of dithiooxamide (Note 2) and 50 mL of absolute ethanol. A
solution of 12.16 g (83.15 mmol) of triethylenetetramine (Note 3) in 50 mL of
absolute ethanol is introduced to the reaction flask in one portion via the
addition funnel. The magnetically-stirred reaction mixture is heated to reflux for
4 hours under nitrogen with evolution of H,S and NH; (Note 4). The mixture is

then cooled to room temperature and residual H,S and NH; are purged from

the reaction mixture for 3 hours by entrainment with nitrogen, which is bubbled
through the submerged fritted gas dispersion tube. The reflux condenser is then
replaced with a short-path distillation head, solvent is removed by vacuum
distillation (water aspirator), and the residue is taken up in 150 mL of chioroform
(CHCIy). Insoluble material is removed by gravity filtration through a glass wool

plug inserted in a short-stem glass funnel. CHCI; is then removed by rotary

evaporation to give 14.18 g of crude product. This solid is taken up in 50 mL of
boiling toluene, insoluble impurities are removed by filtration through a glass
wool plug, and the flask and funnel are rinsed with a second 50 mL aliquot of
boiling toluene (Note 5). The combined filtrates are concentrated to afford 13.66
g of light yellow crystalline product. Sublimation of this material (0.03 mm,
110°C) affords 10.58 g (77%) of pure (>99%) white product (Note 6,7).

B. 1,4,7,10-Tetraazacyclododecane (2). A 1-L, three-necked, round-
bottomed flask charged with 10.58 g (64.43 mmol) of 2,3,5,6,8,9-
hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine is equipped with a reflux condenser
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fitted with nitrogen inlet tube, 500 mL pressure-equalizing addition funnel, and
Teflon-coated magnetic stirring bar. The system is flushed with N, prior to
cannulation of 250 mL (375 mmol) of 1.5 M diisobutylaluminum hydride
(DIBALH) in toluene (Note 8) to the addition funnel. The reaction flask is cooled
in an ice/H,0 bath and the DIBALH solution is added to the reaction flask with

stirring over 5 minutes. The reaction mixture is then heated at reflux under
nitrogen for 16 h (Note 9). The reaction flask is again cooled in an ice/H,O bath

prior to the addition of 200 mL of toluene. Excess DIBALH is quenched by the

cautious dropwise addition of 20 mL of 3 M aqueous NaOH solution. When gas
evolution has ceased, 350 mL of 3 M aqueous NaOH is added in one portion

and the two-phase mixture is transferred to a separatory funnel (Note 10,11).
The phases are separated, chipped ice is added to the aqueous phase, and it is
further extracted with ice-cold CHCI; (6 x 150 mL). The combined organic

extracts are dried over Na,SQ,, filtered, and the solvents are removed by rotary

evaporation to afford 10.22 g of white crystalline solid. Sublimation (0.4 mm,
90°C) affords 9.77 g (88%) of product 2 (>98% purity by NMR; Note 12).

2. Notes

1. The nitrogen manifold (Tygon tubing is suitable) is connected as
follows, in this order: (a) nitrogen source, (b) T-connector to fritted gas
dispersion tube with shutoff valve or clamp, (c) shutoff valve or clamp (enables
nitrogen to be routed through fritted gas dispersion tube when closed and
dispersion tube is opened), (d) T-connector to nitrogen inlet tube on reflux
condenser, (e) safety flask, (f) gas washing bottle #1, (g) gas washing bottle #2,
and (h) mineral oil exit bubbler (See Figure 1).

2. Dithiooxamide was purchased from Fluka Chemical Corp.
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3. Triethylenetetramine was purchased from Aldrich Chemical Co. as a
hydrate. Anhydrous triethylenetetramine must be used in this procedure. The
anhydrous tetraamine was obtained by azeotropic distillation of a toluene
solution of the commercial hydrate. Analysis by TH NMR verified the remcval of

water, and no further purification was necessary.

4. Dithiooxamide dissolved to give a homogeneous orange solution

soon after the initiation of heating.

5. The hot filtration must be carried out quickly to avoid crystallization of
product. This step can be omitted, but a second sublimation may then be
necessary to obtain product of sufficient purity for reduction to cyclen.

6. 1 has the following physical and spectroscopic properties: mp 149-
151°C (Iit? mp 150-151°C); TH NMR (CDCl,, 360 MHz) & 3.26 (s, 4H), 3.35
(apparent t (XX’ of AA’XX"), 4H, J 50q= 9.6Hz), 3.86 (apparent t (AA’ of AAXX),
4H, J 00 = 9.6Hz2); 13C NMR (CDCl,, 90.56 MHz) 5 45.3, 52.1, 53.9, 155.4; IR
(KBr) 1629 cm™! (C=N); MS (El) 164.15 (M)*; Anal. Calcd for CgH,,N,: C, 58.52;

H, 7.37; N, 34.12. Found: C, 58.38; H, 7.55; N, 34.22.

7. Bisamidine 1 is hydrolyzed in water (in minutes to hours depending
upon purity). While it is not necessary to handle 1 in a dry atmosphere, it is
prudent to store it in a desiccator.

8. DIBALH in toluene (1.5 M) was purchased from Aldrich Chemical Co.

9. A small scale (0.4 g of 1) reaction with 5 equivalents of DIBALH at

reflux for 8 h afforded product in 94% crude yield. However, these conditions
gave incomplete reduction and resulted in only a 60% yield of product when the
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reaction was scaled up to 10 g of 1. Therefore, the number of equivalents of
DIBALH was increased to 6 and the reaction was run for 16 h.

10. A small amount of solid remains undissolved, but this tends to be

distributed in the aqueous phase, making filtration at this stage unnecessary.

11. Originally,? a NaF/H,O workup was used. Soxhlet extraction of the

solids generated in the work-up was required to obtain good yields of crude 2.
The present aqueous KOH work-up simplifies the procedure and gives

comparable or better yields of crude 2.

12. 2 has the following physical and spectroscopic properties: mp 107-
109°C (see reference 2 for a discussion of the literature mp of 2); TH NMR
(CDCl,, 360 MH2) 5 2.69 (s, 16H), 2.16 (br. s, 4H). 13C NMR (CDCl;, 90.56 MHz)

546.11.
Waste Disposal Information

All toxic materials were disposed of in accordance with “Prudent
Practices in the Laboratory”; National Academy Press; Washington, DC, 1996.

3. Discussion
The title compound, 2,3 (“cyclen”) and its derivatives are important
ligands,4 some of which have biomedical applications® (for example, as ligand

components of MRI contrast agents). Cyclen is commercially available, but quite

expensive.®
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This procedure is a modification of the method originally reported by
Weisman and Reed.2 In the first reaction of the two-step sequence (Step
A), a two-carbon, permanent, covalently-bound template? is introduced by way
of dithiooxamide to convert triethylenetetramine to tricyclic bisamidine 1. Step A
is analogous to the synthesis of 2,2’-bi-2-imidazoline reported by Forssell in
1891.8 Step B is a double reductive ring expansion, which converts the two
amidine (template) carbons of bisamidine 1 to a -CH,CH,- unit of 2. The
reaction is conceptually based upon Yamamoto and Maruoka'’s highly
regioselective DIBALH reduction of bicyclic amidines to ring-expanded cyclic

diamines.®

The advantages of this procedure are: (a) it is short and efficient (68%
overall yield), (b) it is atom-economic19, (c) starting materials are readily
available, (d) purifications are simple, and (e) it permits preparation of moderate
quantities of product with modest effort. The disadvantages are the production
of hydrogen sulfide (toxic) in Step A and the required use of DIBALH, an active
hydride reducing agent. However, the former can be efficiently trapped and the

latter can be handled safely at the reported scale.

There are altemative methods for preparation of cyclen. Since the mid-
1970’s, the standard method for preparation of cyclen has been one based
upon the general Stetter-Richman-Atkins synthesis of macrocyclic
polyamines,! a medium-dilution cyclization approach that utilizes tosyl
protection of nitrogen. The cyclen synthesis developed by Richman and
Atkinst1a.b (5 steps) and related modifications2.12 (4 steps), while very reliable,
are still labor-intensive sequences that suffer from atom economy and soivent
requirement problems. These problems are largely overcome by the shorter
approach documented herein. Two additional syntheses of 2 have recently
appeared in the patent literature.13.14 Both syntheses (each 3 steps) rely upon
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carbon templating for preorganization, subsequent cyclization, and final
template removal. These procedures may prove superior for large scale
production of 2, since they do not utilize active hydride reducing agents.
However, the procedure reported here is very satisfactory for the laboratory-

scale preparation of 2.

1. Department of Chemistry, University of New Hampshire, Durham, NH
03824

2. (a) Weisman, G. R.: Reed, D. P. J. Org. Chem. 1996, 61, 5186; (b)
Correction: J. Org. Chem. 1997, 62, (14), in press.

3. Stetter, H.; Mayer, K.-H. Chem. Ber. 1961, 94, 1410.

4. (a) Bradshaw, J.S.; Krakowiak, K.E.; l1zatt, R.M. “Aza-Crown Macrocycles”;
The Chemistry of Heterocyclic Compounds; Taylor, E. C., Series
Ed.,Wiley: New York, 1993; Vol. 51. (b) Dietrich, B.; Viout, P.; Lehn, J.-M.
“Macrocyclic Chemistry”; VCH: Weinheim, 1993.

5. (a) Parker, D. In “Crown Compounds”; Cooper, S. R., Ed. ; VCH: New
York, 1992; (b) Jurisson, S.; Beming, D.; Jia, W.; and Ma, D. Chem Rev.

1993, 93, 1137-1156.

6. Major specialty chemical suppliers’ cyclen (2) prices: $214-290 (U.S.)
per gram (1997).

7. Hoss, R.; Végtle, F. Angew. Chem. Int. Ed. Engl., 1994, 33, 375.

8. Fo&ssell, G. Chem. Ber. 1891, 24, 1846.
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Trost, B. M. Science , 1991, 254, 1471.
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(b) Chavez, F.; Sherry, A.D., J. Org. Chem. 1988, 54, 2990.
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1996; Chem. Abstr. 1997, 126: 144300r.
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- Insert Figure 1 here -

Appendix

Chemical Abstracts Nomenclature (Collective index Number);

(Registry Number)

1,4,7,10-Tetraazacyclododecane; (294-90-6)
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2,3,5,6,8,9-Hexahydrodiimidazo[1,2-a:2’,1’-c]pyrazine; (180588-23-2)
Dithiooxamide: Ethanedithioamide (12); (79-40-3)

Triethylenetetramine: 1,2-Ethanediamine, N,N’-bis(2-aminoethyl)- (12); (112-
24-3)

Diisobutylaluminum hydride: Aluminum, hydrodiisobutyl- (8); Aluminum,
hydrobis(2-methyipropyl)- (9); (1191-15-7)
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Spectral Appendix
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