
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 1998

Differentiation and composition on the Hardy and
Bergman spaces
Neil Portnoy
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Portnoy, Neil, "Differentiation and composition on the Hardy and Bergman spaces" (1998). Doctoral Dissertations. 2033.
https://scholars.unh.edu/dissertation/2033

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/215520649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F2033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F2033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/2033?utm_source=scholars.unh.edu%2Fdissertation%2F2033&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter free, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor qu a lity  

illustrations and photographs, print bleedthrough, substandard margin  ̂
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g„ maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and 
continuing from left to right in equal sections with small overlaps. Farfi 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

A Beil & Howell information Company 
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 

313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D IFFER EN T IA T IO N  AND COM PO SITIO N  ON TH E 
H A RD Y  AND BERG M AN  SPACES

BY

Neil Portnoy

B.A., University of Southern M aine (1992)
M.S., University of New Ham pshire (1996)

DISSERTATION

Subm itted  to  th e  University of New Hampshire 
in p a rtia l fulfillment o f 

the  requirem ents for the degree of

D octor of Philosophy 

in

M athem atics 

M ay 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9831966

Copyright 1998 by Portnoy, Neil
All rights reserved.

UMI Microform 9831966 
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ALL RIGHTS RESERVED 

©1998 

Neil Portnoy-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This d issertation has been examined and approved.

 J a & L
/D irec to r, Eric A. Nordgren 

Professor o f M athem atics

A rthur H. Copeland 
Professor of M athem atics

X A ^Q ^A O -JaO- —___
K aren J . G raham '
Associate Professor of M athem atics

Donald W . H adw in
Professor p f  M athem atics

R ita  A. Hibschweiler
Associate Professor of M athem atics

D ate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dedication

To all of my family 
and all of my friends 

who have helped me fly.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgments

There are many people at the university that deserve acknowledgment for their efforts 

toward and support of my journey through graduate school, but three really stand out. My 

acknowledgments to these people are for fax more them their contributions to  my graduate 

program. I include my appreciation for their friendship, their interest in me as a person, and 

their wisdom about life. I will speak first about my thesis advisor, Professor Eric Nordgren. 

For some, Eric Nordgren would be the perfect hiking companion because of his physical 

height. From his vantage point he could clearly see the way, he could choose the easiest 

path, he could scale the large boulders and easily bound over other obstacles.

For me, however, Eric Nordgren has been the perfect hiking companion for a  completely 

different set of reasons. If he saw the way, he never described it, preserving for me the joy 

of discovery. If I encountered large boulders, he didn’t  take a giant step to  the top and 

pull me up; rather, he let me find the toeholds and finger holds, or even take a completely 

different path, all the while sharing with me the enjoyment of the climb, reveling in the 

beauty of the path, no matter which path I chose. For it has always been my choice, and 

I’m  extremely happy that Professor Nordgren was my first. We have enjoyed many side 

trails on the way to this summit; talking of art, music, plays, books, movies, families, New 

York City, and even of hiking. He is a  great friend, an excellent teacher, and, to use his 

own words, ”a truly decent human being.”

Professor R ita Hibschweiler has been like a second advisor to me. I feel extremely 

fortunate that we have been able to work closely together for the last three years. Not only 

has she always been ready to share mathematics, helping me solve difficult problems and 

pointing me in productive directions, but she has been a true friend, helping me through

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



some difficult parts of life. She has been supportive of my work, not only in mathematics, 

but also in  mathematics education. From her, I have learned about teaching, studying, and 

engaging in mathematics. Rita, like Eric, is a person with whom I’ve been able to talk 

about life in general. She is also a ”truly decent human being.”

The th ird  person who makes this list is Professor Karen Graham. She has given me the 

support to  turn  my interest in mathematics education into strong, well-developed training. 

She has always welcomed my ideas without bias, judging them on their merits and giving 

me suggestions for improvement, and direction for further study and exploration. From 

her I have learned about the discipline of mathematics education, and have developed a 

repertoire of methods of inquiry. She is another valuable friend with whom I’ve been able 

to share much more of life than graduate work. Karen is also a "truly decent human being.” 

Eric, R ita, and Karen are people with whom I’ve been able to share both the difficult 

and the joyful moments of my life over the last four years. I hope I shall have all three of 

them as my friends forever.

I must also thank Professors Don Hadwin and Arthur Copeland for serving on my dis

sertation committee and supporting me in various ways throughout my graduate studies. 

There Eire many other faculty members who have given me help along the way. I thank 

them w ithout naming them. Kamal Narang, the teacher with whom I studied as an under

graduate, also deserves to be pointed out. He is the one who reversed the course that my 

eighth-grade mathematics teacher set for me in 1963. Kamal rekindled my love of math

ematics. Additionally, I thank my friends among the mathematics graduate students, the 

students in my classes, and of course, Jan  Jankowski.

Finally, I would like to remember Jim  Leitzel who, in his short time a t the university, 

showed me th a t it is possible to combine my interests in mathematics and mathematics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



education, and th a t this combination is one with which I can thrive. J im ’s genuine love of 

mathematics and people inspired me to stay my course, even when skies were overcast.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Dedication...........................................................................................................................  iv

Acknowledgments............................................................................................................... v

A b s tra c t..............................................................................................................................  x

1 P R E L IM IN A R IE S  1

1.1 Subharmonic Functions ........................................................................................ 1

1.2 The Hardy Spaces f fp(D) ...................................................................................... 3

1.3 The Bergman Spaces AP( B ) ................................................................................... 6

2 T H E  PL A Y ER S 8

2.1 D ifferen tia tion .......................................................................................................  8

2.2 Composition Operators ........................................................................................ 9

2.3 Carleson M easu res.................................................................................................  11

2.3.1 Carleson Measures and the Hardy S pace .................................................  12

2.3.2 Carleson Measures and the Bergman S p a c e ............................................ 15

3 DC# O N  T H E  H A R D Y  SP A C E  18

4 DC# O N  T H E  B E R G M A N  SPA CE 24

4.1 Necessary Conditions..............................................................................................  24

4.2 A Sufficient C o n d itio n ........................................................................................... 27

4.3 An Exam ple.............................................................................................................  31

5 F U R T H E R  Q U ESTIO N S 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B ib liography

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A BSTRA CT

DIFFERENTIATIO N A N D  COM POSITION ON T H E  H A R D Y  AND

BER G M A N  SPACES

by

Neil Portnoy 
University of New Hampshire, May, 1998

Banach spaces of analytic functions are defined by norming a  collection of these functions 

defined on a  set X .  Among the most studied are the Hardy and Bergman spaces of analytic 

functions on the unit disc in the complex plane. This is likely due to the richness of these 

spaces.

An analytic self-map of the unit disc induces a  composition operator on these spaces in 

the natural way. Beginning with independent papers by E. Nordgren and J . V. Ryff in the 

1960’s, much work has been done to relate the properties of the composition operator to 

the characteristics of the inducing map. Every composition operator induced by an analytic 

self-map of the unit disc is bounded on the Hardy and Bergman spaces.

Differentiation is smother linear operation which is natural on spaces of analytic func

tions. Unlike the composition operator, the differentiation operator is poorly behaved on 

the Hardy and Bergman spaces; th a t is, it is not a bounded operator.

We define a linear operator, possibly unbounded, by applying composition followed by 

differentiation; th a t is, for /  in a Hardy or Bergman space and an analytic self-map of the 

disk, <f>,

Dc+(f) = (foty. 

x
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We have found a characterization for the boundedness of this operator on the Hardy space 

in terms of the inducing map. The operator is bounded exactly when the image of the 

self-map of the disc is contained in a  compact subset of the disc.

In contrast, we have found a self-map of the disc with supremum norm equal to one 

that induces a  bounded operator on the Bergman spaces. In this setting we have found con

ditions necessary for boundedness, and conditions sufficient to  imply boundedness. These 

conditions are closely related.

The techniques used involve Carleson-type measures on the unit disc. A very general 

question arising out of this work involves relating boundedness of the differentiation operator 

to characteristics of these measures.

xi
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Chapter 1

PRELIMINARIES

This chapter presents background information, including definitions and theorems, for the 

setting of this research. The proofs of most theorems have been omitted since the theorems 

are well known.

The setting for the work presented in this thesis is the Hardy and Bergman spaces of 

functions analytic on the unit disk. For p > 1, these are particular cases of functional Banach 

spaces. Functional Banach spaces are rich enough to separate the points of the underlying 

set, and the underlying set is rich enough to separate the functions of the Banach space. 

The following definition is from Cowen and MacCluer [CoM].

D efinition . A Banach space of complex valued functions on a set X  is called a functional 

Banach space on X  if the vector operations are the pointwise operations, f ( x )  =  f(y)  for 

each function in the space implies x =  y, f{x )  =  g{x) for each x in X  implies /  =  g, and 

for each x in X,  the linear functional /  i-)- f ( x )  is continuous.

A functional Banach space whose functions are analytic on the underlying set is called 

a Banach space of analytic functions.

1.1 S u b h a rm o n ic  F u n c tio n s

It is useful to approach the Hardy and Bergman spaces from the viewpoint of subharmonic 

functions.

1
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D efinition . A function u defined on an open set 5  in the plane is said to be subharmonic 

if it has the following four properties:

1. —oo < u{z) <  oo for all z  6 S,

2. u is upper semicontinuous on S,

3. whenever a  closed disc with center a and radius r  is contained in 5, then

u(a) <  -^- J  u(a + re'e)d6,

and

4. none of the above integrals is —oo.

It is a fact th a t the pth power (0 <  p < oo) of the modulus of an analytic function on 

the unit disc is subhannonic.

T H E O R E M  1. 1.1 (R u d in  17 .3). I f  R  is a region in  C and f  is analytic on R  and not 

identically zero, then log | / |  and \ f\p, (0 < p < oo), are subharmonic in R.

The norm of a function /  in the Hardy spaces is achieved via the integral means o f the 

modulus of the function restricted to a circle of radius r  < 1.

N o ta tio n  For any continuous function /  on D define f r on 3D by

/ . ( . " )  =  / ( r . " )

for 0 < r  < 1.
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N o ta tio n  Denote by a  normalized Lebesgue measure on dD th a t is,

<r(dD) =  1.

It is a fact th a t the integral mean of a subharmonic function is a  non-decreasing function 

of the radius.

T H E O R E M  1 .1.2 (R u d in  17.5). Suppose u  is a continuous subharmonic function inD , 

and

m[r) =  I Ur da  
J8TS

for  0 < r  <  1. I f  r i  < r 2) then m (ri) < m (r2).

1 .2  T h e  H a r d y  S p aces  H P(B)

The classical Hardy spaces (named for G.H. Hardy) have been studied extensively. These 

spaces consist of those functions, analytic on the  unit disk, tha t meet a certain restricted 

growth condition. Following are definitions and theorems that are related to this research.

N o ta tio n  Following the notation of Rudin [Rud], if /  is continuous on O and 0 < p  <  oo, 

denote the IP  norm of f r by

II A 11,= [ j j f r  I '* }
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For p =  oo denote

| |  f r  | | o o = S U P | / r ( e , f l ) | .
6

D efinition. For a function /  analytic in D and 0 < p  <  oo, define

II /  l l p =  s u p f l l  f r  l i p :  o <  r  <  1}.

The Hardy space H p is defined to be the class of analytic functions /  on D for which 

II /  IIp <  o o .

Some important properties are summarized in the following theorem.

T H E O R E M  1.2 .1. (Rudin 17.11) I f  Q < p < oo and f  € H p, then

• the nontangential lim its f m(et0) exist a.e. on 3D,

• r e  LP(dD),

• || r -  f r  I | p =  o, and

•  II r  llp=ll /  U p  •

N o ta tio n  /*  wiU denote both the non-tangential limit and the radial limit, since they 

are equivalent for /  e  H p. If <f> is an analytic self-map of the disk, then for those points 

<t>*(et6) which Eire in the disk, /*  o <f>* will be taken to mean /  o <f>*.

Note that H 2 is a Hilbert space with inner product <  / ,  g > =  f QO f*g~d<r. The repro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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during kernel for point evaluation at w in D for H 2 is given by

and its norm is || K w 0^ 3=  , x, .
Vi-|u»r

Functions in i f 2 also have a useful characterization in terms of their power series coef

ficients. This characterization is a consequence of Parseval’s identity.

T H E O R E M  1.2.2. (Rudin 17.12) Suppose f  is analytic on O and / ( z )  =  Y^=o  “n2"- 

Then f  € H 2 i f  and only ifYHn=a l ^ l 2 <  °°-

The following result of J . Ryff [Ryfj will be quite useful in the chapter about D C $ on 

the Hardy spaces.

T H E O R E M  1.2.3. (Ryff) I f  f  is in Hp where p  > 0 and tp is an analytic self-map o f the 

unit disk, then ( /  o <f>)“ = f*  o <f>' almost everywhere on <90.

Recall th a t for 1 < p < oo, Hp is a  Banach space. If 1 < p <  q <  oo, then H q C  H p. 

In fact H q is a closed subspace of H p under these conditions. Therefore, the following fact, 

due to Duren [Durl], about H 1, the Icirgest of the H p Bcinach spaces, is quite im portant.

T H E O R E M  1.2.4. (Duren 3.11) A function f  analytic m D  is continuous m D  and ab

solutely continuous on 5 0  i f  and only i f  f  € H 1. I f  f  6 H 1, then

^ / ( e ,fl) =  ie'elim r-n f'(re tS) a.e.
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1.3  T h e  B e rg m a n  S paces AP(3D)

Denote by A normalized Lebesgue area measure on the unit disk. That is,

dX =  dA/ir.

The Bergman space Ap (0 < p < oo) is the set of functions analytic on the unit disk for 

which

f  I / I™
J D

< oo.

The norm of such a function, || /  \\Ap, is the pth root of the above integral. The space A°° is 

taken to be the same space as H°° with the same norm (the supremum norm). For p  > 1, 

AP is a Banach space. As in the case of the Hardy spaces, we have the following inclusion: 

for 0 < p < q < oo, Aq C AP. It is also true that for any p  > 0, H p C AP.

The space A 2 is a Hilbert space with inner product

, g > =  f  f( z )g (z)d \ (z ) .  
J d

< f

The reproducing kernel for point evaluation at u; € O in A2 is given by

K w{z) =  - — — 
(i — to z y

and its norm is || K w \\A2 =

The Bergmain spaces AP for 1 <  p  < oo are closed subspaces of the Banach spaces of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Lebesgue measurable functions on B, 2^(0 , dX). The relationship between AP and 1^(0, dX) 

will be significant in finding sufficient conditions for boundedness of DC$ on the  Bergman 

spaces. The following theorem [Zhu] makes this relationship explicit.

T H E O R E M  1.3.1. (Zhu) Suppose n is a positive integer, p  > 1, and f  is analytic on B. 

Then f  is in AP i f  and only i f  (1 — |z |2)n/ ^  is in  £*(B, dA).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

THE PLAYERS

The operators of composition and differentiation are combined to obtain the operator DC$ 

that is the focus of this work. The idea to  combine these operators came while considering 

the operator ranges of composition operators. The question asked was “what characteris

tics of an analytic self map of the disk would induce a composition operator whose range 

would consist of functions ‘nice enough’ so th a t their derivatives would belong to the orig

inal space?” A technique used to investigate the properties of D C $ depends on Carleson 

measures. This chapter gives background information on these three major players; the 

differentiation operator, the composition operator, and Carleson measures.

2 .1  D if f e re n tia t io n

In the setting of spaces of analytic functions it is natural to investigate the linear operator 

of differentiation, D, given by

D f  = f

for functions f  in the space. Usually the differentiation operator is quite poorly behaved. 

It is not a  bounded operator on Hp or AP for any p  > 0. Following are examples th a t show 

how poorly behaved the differentiation operator can be.

E x am p le . Set f{z)  =  (1 — z)b for 0 <  b < 1/2. Then /  is bounded on D. That is, /  is in

8
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H°°. But f ' ( z )  =  6(1 — z)6_1, so f  is not in E?  for any p > and f  is not in Aq for 

any ? > 1=5-

E x am p le . [Dur2] Duren constructed a function /  whose power series coefficients were 

defined in term s of a  Rademacher function. The example /  is analytic in B and continuous 

on 9B, but its derivative f  has radial limit almost nowhere, and thus f  is not in H p for 

any p > 0. The given function /  is in the Zygmund class A* which consists of all continuous 

functions F(9) periodic with period 2ir, such that

|F(0 +  h) -  2F{6) + F { 6 - h ) \ <  Ah

for some constant A  and all h > 0. Thus A* contains the Lipschitz class Ai. Duren notes 

th a t if /  were required to belong to the Lipschitz class Ai, then the derivative f  would be 

bounded and thus have radial limit almost everywhere.

2 .2  C o m p o s i t io n  O p e ra to r s

The study of composition operators began with independent papers by E. A. Nordgren and 

J . V. Ryff in the 1960’s. Composition is a  natural mathematical operation and the operator 

is defined as follows.

D efin ition . If  X  is a space of real or complex valued functions on a set S  and if> maps S  

into itself, then the composition operator induced by 0  is defined by

C ^ /  =  / o ^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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for functions /  in the space X .

The composition operator is clearly linear. By an early result of Littlewood, composition 

operators leave the Hardy and Bergman spaces invariant.

T H E O R E M  2.2.1. (Littlewood’s subordination theorem) Suppose <f>: D —► D is analytic, 

0(0) =  0, and G  is subharmonic on D. Then for  0 < r  <  1,

[** G{<j>(reie))d8 < F *  G{reiB)d8.
Jo Jo

If 0 is a  self map of the disk, and 0(0) ^  0, then the change of variable

0(0) -  z
XJJ = z   v  ■ ■

1 — ^ (0)z

will give the result that H p is invariant under C$. Invariance of AP under C$ is a result of 

an additional integration with respect to  rdr.

This work is concerned with the operator DC# on the analytic Banach spaces H p and 

A? (p >  1)- Note tha t since the functionals for point-evaluation are continuous, norm 

convergence of functions in functional Banach spaces guarantees pointwise convergence.

The fact th a t C$ leaves the Hardy and Bergman spaces invariant, combined with the 

structure of analytic Banach spaces, results in a very well-behaved operator.

T H E O R E M  2.2.2. I f  0  is an analytic self map of the disk, then the composition operator 

induced by 0, C^, is bounded onHp and AP.

P ro o f . The proof is an application of the Closed Graph Theorem. Suppose th a t X  is H p 

or AP, tha t f n ->■ /  in X  and C^,fn ->• g in X .  Since norm convergence guarantees pointwise
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convergence, and since /„  —>■ / ,

(/n  ° <£)(*) ( /  o $ (z ) .

Also, since

for all z  in D, so C ^ f  =  y. This shows that Graph(C^) is closed and thus C# is bounded.

2 .3  C a r le s o n  M e a s u re s

Another way to see that composition operators are bounded on the Hardy and Bergman 

spaces is to note tha t the pull-back measure induced by the self-map of the disk, <f>, is a 

Carleson measure. Here are two definitions.

D efin itio n . A Carleson set in the open disk D is a set of the form

5(6, h) = {z S D : \z — 6| < h},

where |6| =  1 and 0 < h < 2.

D e fin itio n . Suppose fi is a positive, finite Borel measure on D. Then fi is called a Carleson 

measure in case there is a constant K  so that

f x (S{b ,h ) )<K h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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for every Carleson set 5(6, h).

2 .3 .1  C a r le s o n  M e a su re s  a n d  th e  H a rd y  S p a c e

In 1962, in connection with his work on the corona problem, L. Carleson related charac

teristics of a measure p  on the disk to the continuity of the inclusion map from H p into 

U>{D,/i).

T H E O R E M  2 .3 .1 . (Carleson Measure Theorem) Suppose p. is a measure on D and 0 < 

p < oo. Then the inclusion map

I : H P ^ - L p(p ,p )

is bounded i f  and only i f  p is a Carleson measure.

A useful variation of the Carleson Measure Theorem is given in Cowen and MacCluer. 

The Carleson sets in this setting axe subsets of the closed disk;

S(C, <*) =  {*  e  D : | z - C |  < * } .

T H E O R E M  2 .3 .2 . Suppose p  is a finite, positive Borel measure on B  and 0 < p  < oo. 

The following are equivalent:

1. There is a constant K  so that p(S ( ( ,  6)) < K 8  for  |C| =  1 and 0 <  8 < 1.
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2. There is a constant C  so that

L \ n d n < c \ \ f \ %
J D

for all f  in Hp.

Carleson measures are useful in characterizing both boundedness and compactness of 

a composition operator. (A linear operator on a Banach space is compact if the image of 

the unit ball under the operator has compact closure.) The measure of interest is defined 

below.

D efin ition . For tin analytic self-map of the disk, <j>, define the pull-back measure / i o n D

by

p{E) =  <r( W r ' E )

for E  C B>, where or is normalized Lebesgue measure on 9D.

The following theorem from Cowen and MacCluer [CoM] gives characterizations for 

boundedness and compactness in terms of the pull-back measure defined above.

T H E O R E M  2.3.3. Suppose 0 < p < oo and <f> is an analytic self-map o f the disk.

1. Ctj, is bounded on H p i f  and only i f  there is a constant K  so that

Vi(S(C,6 ) ) < K 6

for all C in dD and 0 < 5 < 1.
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2. C<f, is compact on H p i f  and only if

r t s K .s ) )  ]0  
8

as S -> 0 uniformly in  £ in  3D.

The first condition is says th a t the size of the pull-back measure of the Carleson sets 

is “big O” of S. The second condition says th a t the size of the pull-back measure of the 

Carleson sets is “little  O” of S. These “big O” and “little O” conditions on related measures 

will be used in showing sufficient and necessary conditions for boundedness of DC# on both 

the Hardy and Bergman spaces.

Two facts will be central to the proof of the theorem. The first is the fact tha t the radial 

limit function of a composition is the composition of the radial limit  functions [Ryf]. The 

second is a simple measure-theoretic change of variables. Thus,

f  \(fo<t>y\pd<r= [  \ r o p \ pd * =  [ _ \r \pdp.
Jan Jan J d

There Eire analytic self maps of the disk <f> for which C$ is compact on the Hardy space, 

yet DC$ is unbounded. An easy example is the m ap <j> defined by

<f>(z) — 1 — y /l  — z.

By a direct calculation, the pull-back measure y  of Carleson sets 5 (1 ,6 ) is “little O” of S. 

Note that the function /  defined by f ( z ) =  (1 — z )1/4 belongs to H°°, but the image o f /  

under DC$ is not in H v for any p > 8/7.
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2.3.2 Carleson M easures and the Bergman Space

An analog of the last theorem is true for the Bergman spaces AP. It has been generalized 

by MacCluer and Shapiro [MSh] for weighted Bergman spaces as well. The analog depends 

on the following Carleson Measure Theorem for the Bergman spaces.

T H E O R E M  2.3 .4 . Suppose 0 < p < oo and p. is a finite positive Borel measure on B. 

Then

1. the inclusion map I : Ap c->- IP^D, p) is bounded i f  and only i f  there is a constant K  

so that

KS{C,S)) < K5 2

for all C in $B and 0 <  S < 2, and

2. the inclusion map I : AP «-*• LP(B, p) is compact i f  and only i f

p(g(C,*)) in
p  u

as S —)• 0 uniformly in C in 3B.

The first part of the above theorem was initially proved by Hastings. The second part 

has occurred in the work of Cima and Wogen, McDonald and Sundberg, and Voas. The 

following corollary gives the results about C$ in terms of the pull-back measure induced by 

(j>. Recall tha t A is normalized Lebesgue area measure on B.

C O R O L LA R Y  2.3.5. (MacCluer and Shapiro) Suppose 0 <  p < oo and <j> is an analytic
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self-map of the disk. Then

1 . C,;, is bounded on AP i f  and only i f  there is a constant K  so that

\<f>-l {S (C ,S ))< K 8 2

for all £ in 3D and 0 <  8  < 2, and

2. C$ is compact on AP i f  and only if

x r l (S (c ,s))
8 2

0

as 8  —► 0 uniformly in £ in 3D.

In order to characterize Borel measures p. on D for which AP is contained in Z^(D, p), 

Axler [Axl] presents a Carleson Measure Theorem that employs pseudo-hyperbolic disks 

instead of Carleson sets. For points w and z  in D, the pseudo-hyperbolic distance between 

w and z  is defined as

d(w,z) = | <f)w{z)\, 

where <j>w is the Mobius map given by

_L f \ w - z
<Pw{Z) = Z — .1 —  wz

Note that the pseudo-hyperbolic distance is actually a  metric on D.

For a point w in D and 0 <  r < 1, the pseudo-hyperbolic disk with radius r  and center
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w is defined by

D(w, r) =  {z G D : d(w , z) <  r}.

Two points about following theorem are notable. The first is that the quantity B  does 

not involve p. Therefore, if p. is a positive Borel measure on D, then AP is contained in 

^ ( D ,  p) for some p G [1, oo) if and only if AP is contained in IP(B, p) for every p G [1, oo).

The second point of note is th a t the quantity A  does not involve r. Thus, if p  is a positive 

Borel measure on B, then the supremum in the second quantity is finite for some r  G (0,1) 

if and only if it is finite for all r  G (0,1).

T H E O R E M  2.3.6. (Axler) Suppose 0 < r  < 1. There are constants c(r) and C{r), de

pendent only upon r, such that for all p, 1 < p <  oo, and all positive Borel measures p  on 

B, the following two quantities are equivalent; that is  c(r)A < B  < C (r)A .

A =  sup{Jjj | f \* d p /f 0  \f\Pd\ : f e  AP, f ?  0};

B=  sup{p(D(w, r)) /\(D (w ,r))  : w  G B}.

A technique similar to the above will be employed when considering conditions sufficient 

for DC$ to be bounded on the Bergman space.
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Chapter 3

DCj ON THE HARDY SPACE

If is an analytic self map of O, then <f> induces a possibly unbounded linear operator D C 4  

on the Hardy spaces H p, defined by

D C t f  =  { f o  <(>)' =

for functions /  in H p. This chapter gives a characterization of the boundedness of DC 4, on 

the Hardy spaces in terms of the supremum norm of the inducing map <j>.

The necessary and sufficient conditions for boundedness will be given in terms of a 

Carleson-type condition on a measure on B related to the inducing map <f>. This technique 

has been used previously. In the course of proving Theorem 2.3 of her paper Composition 

Operators on S p, MacCluer [Mac] shows that if | |^ ||00 =  1, then a certain measure related 

to <f) does not obey a vanishing Carleson condition. In the case of DC 4  on the Hardy spaces, 

the vanishing condition is necessary in order that DC 4, : H p —► H l be bounded. Therefore, 

the condition tha t ||0||oo <  1 is necessary for boundedness.

If /(z ) =  z, then f  E H p, 1 <  p < 00. Since DC4 ( f )  =  <f>, it follows tha t the condition 

4>' 6 H 1 is necessary for DC 4  : H p —► H 1 to be bounded. If <f/ E H 1, then it is known th a t 

0  extends continuously to B  pDurl], so <f> can be taken to be defined on the closed disc.

18
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Recall that the Carleson sets can be defined, by

S(£,S)  =  { z e B : \ z - C \ < 5 }

for |£| =  1 and 0 <  S < 1. Now, suppose that <f) is in H l , and define a finite positive 

measure \i on Borel sets E  C 3D by

p{E) =  f  \f\d a ,
JE

where a  is normalized Lebesgue measure on 3D.

Notation: We shall say for two quantities A  and B  tha t A m  B  if there are positive 

constants c and C  such th a t cA <  B  < C B.

The following lemma is pivotal to the characterization of DC$ on the Hardy spaces.

L E M M A  3.0 .7 . Suppose <j> : D —> D is analytic, <f>' £ H 1, and 1 <  p < oo. Then for 

DC$: H p —>• H 1 to be bounded it is necessary that

fi(<rl S ( ( , 8 )) = o(5)

as 6  -*■ 0 uniformly in  £.

Proof. We prove the contrapositive of the implication. Suppose that 3)) ^  o(S).

Then there is a  decreasing sequence Sn —► 0, a sequence Cn in 3D, and a /? > 0 such th a t
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We construct a sequence {^n} in H p such th a t ||5„ ||p -> 0 and \\DC^gn \\x is bounded 

away from zero. The functions gn are closely related to the reproducing kernel functions 

for points in the disk related to the sequences {<Jn} and {Cn}-

First consider the case 1 <  p < oo. Set a n =  (1 -  Sn)Cn- Define f n by f n(z) =

(1 — a^z)~2/p. Thus,

for |o^| close to 1. Hence, | | / n ||P ~  Sn~lfp.

Now set gn =  / n / | | / n | | p -  Since | | / n||p —>• oo, ||flrn ||p -> 0. Needed next is an estimate 

for \f'n\. There is a natural number N  such that for n  > N, 5n <  1/2. For such N  and for 

z  S (Cm <fn)i

\f'n(z )\ =  ^i^ri ii -  ^ r [(2/p)+i]

>  C<5n"K2/p)+1l

Since <j> 6 H l , Ryff’s result [Ryf] implies tha t {g'n o <f>y{elB) =  (^)*(<£(e,fl)) a.e.. Using 

the standard transformation formula we get

IIDCWnlk =  [  \g 'M e i0 ))\\4>'(ei6 )\d<r
Jan

=  [  l5n(0(e‘fl))l<fc Jan

=  / j 0 n l < W 1)
Jn

> \ w  [  i
JS«n,6 n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

The above estimate on f'n and the assumption on fi(<f> 1 S((n, 8 n)) gives

W D C ^IU  >  c p ,

concluding the argument.

For the case p =  oo, define f n by f n (z) =  1_ i - z . Thus we have |i/n ||oo =  <5̂ 1, and we 

define gn =  / n/ ||/n ||L -  The calculations are similar to  those above.

Next is the result from MacCluer’s proof of Theorem 2.3 [Mac].

L E M M A  3.0 .8 . Suppose that <f> is a non-constant analytic self-map o f the disk, <j> E H l 

and that ||0||oo =  1- Then m(0- 1*S(C> )̂) 7̂  °(£) 0 3  & ~► 0 uniformly in £.

Proof. Assume the hypothesis and recall tha t 0 extends continuously to O. Without loss 

of generality suppose that 0(1) =  1. Define As =  0 -1 5 ( l ,  J) (1 <9D. Then As is a collection 

of intervals of 5D which map under 0 to curves in 5 (1 , 8 ). It is known tha t since <j> E H 1, 

0 is absolutely continuous on 3D [Durl]. Thus the arc length of the image of As under 0  

is given by the integral JA |0 '| da. Since 0 is continuous on 3 0  and 1 E As with 0(1) =  1, 

the arc length of the image of As under 0 must be at least 28. Therefore,

[  \cf>'\d*£o(8 ) , 8 - + 0
Ja,

proving the lemma.

The previous two results yield the next theorem.

T H E O R E M  3.0 .9 . Suppose 0 : D —)• D is analytic, <f>' E H l , and 1 < p  < 0 0 .  Then the 

operator DC$:HP —► H 1 is bounded i f  and only i f  ||0||oo < 1.
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P ro o f . F irst suppose ^(B) C rB where r  <  1, /  E Hp, and <f>' E H 1. Then there exists an 

M  < oo such th a t \f'(<f>(z))\ < M  for all z  E B. Thus we have

Thus, DC<f,(Hp) C  H 1. An application of the Closed Graph Theorem, s i m i l a r  to  tha t used 

in Theorem 2.2.2, shows that D C# H p —>■ H 1 is bounded.

Conversely, suppose <j): B -»■ B is analytic and <f>' E S l and ||^||oo =  1- By the first two 

lemmas in this chapter, DC$ is not a bounded operator from H p to H l . Therefore, if DC$ 

is bounded, then | |  <f> | | o o <  1 -

Now we give the main result.

T H E O R E M  3.0.10. I f  1 < p, q < oo and $  E H p, then DC#: H q —> H p is bounded i f  

and only t / | | 0 | | o o  < 1.

Proof. Suppose tha t D C # H q —>• Hp is bounded. An application of the Closed Graph 

Theorem shows tha t the inclusion map I  : H p ‘- t  H 1 is bounded. Thus the hypothesis 

implies th a t DC$ is bounded from H q into H 1. Theorem 3.0.9 shows th a t ||^||oo <  1.

Conversely, suppose tha t ||0||oo < 1. Then an argument similar to th a t in Theorem 3.0.9  

gives the result th a t DC 4, bounded from H q into H p.

There axe two corollaries that follow from this main theorem.

C O R O L L A R Y  3.0.11. I f  1 < p, q < 00 and <j>' E H p, then D C #  H q —> H p is compact i f  

and only i f  || 0  ||oo< 1.

<  M  I l l ' l l : .
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Proof. If DC# is compact, then it is bounded and the previous theorem shows that || <f) ||oo 

must be less than  one.

Now, suppose tha t || <f> ||oo= r  < 1. A linear operator T  is compact if and only if T  

takes a  weakly convergent sequence to a strongly convergent sequence [Nor2]. Suppose 

tha t f n —t  0 weakly. Then f n converges to zero pointwise. Therefore f'n converges to  zero 

pointwise on B, and thus f'n —»■ 0 uniformly on compact subsets of B. Since 0(B) C  rB  and 

<f) 6 H p, we get

II D C * U  11?= f  l(/„ ° *)(«")!' -+ 0
Jan

as n  —)■ oo. Thus the image of f n under DC$ is a strongly convergent sequence, and hence 

DC#: H q —)■ H p is a compact operator. □

C O R O L L A R Y  3.0.12. Suppose that (f> e H 1. Then D C f. H 2  -> H 2  is trace class i f  and

only i f  ||0||oo < 1.

P ro o f . If DC,f, is trace class, then it is bounded, and hence, | | 0 | |o o  < 1- Conversely, suppose 

tha t | | 0 | |o o  =  r  <  1. Set s =  Then s < 1 and

D C ^ D C i p C n

the product of two Hilbert-Schmidt (compact) operators. Therefore DC# is a trace class 

operator on H 2.

The issue of boundedness of D C$ is much more subtle in the Bergman spaces, as is seen 

in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

DC+ ON THE BERGMAN SPACE

As in the case of the Hardy spaces, if 0 is an analytic self map of the disk, then (f> induces 

a possibly unbounded linear operator DC$ on the Bergman spaces AP by

for functions /  in AP. The previous chapter showed tha t D C 4, : H p —>■ H q (1 < p ,q  < 00) is 

bounded if and only if ||<£||oo <  1- That is, DC# is bounded if and only if the closure of the 

image of B  under <f> is properly contained in B.

The situation in the Bergman spaces AP is quite different. In this chapter, necessary 

conditions and sufficient conditions for DC,$ to be bounded on AP will be presented. In 

addition, we will construct a  self map of B  such that ||0||oo =  I and the induced operator 

DC$ : AP —»■ A1 is bounded.

4 .1  N e c e s s a ry  C o n d itio n s

Once again, if f{z) =  z, then /  6 Ap, 1 <  p < 00. Thus a necessary condition for DC$ : 

AP —► Aq to be bounded is that <j> £ Aq. Another necessary condition is stated in terms of 

a Carleson-type measure on B; for E  C B and 1 < q < 00, define

#*.(*) =  /JE

24
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(Recall that A is normalized Lebesgue area measure on O.)

Instead of the traditional Carleson sets, pseudo-hyperbolic disks, D (w ,r) , Eire used in 

this setting.

T H E O R E M  4.1.1. I f  DC$ : Ap —¥ A q is bounded fo r  1 < p, q < oo, then the quantity

?, r)) =  o ((l -  M )6) 

as |w| —>■ 1 for all b < 2 -F ? and any fixed positive r  <  1.

P ro o f . We prove the contrapositive of the asserted implication. Suppose, therefore, tha t 

there is a  positive r  < 1, a  sequence wn in D where |u;n | —* 1, and a /3 > 0 such that

pq<t>-x(D(wn,r))  > /3(1 -  \wn\)b

for some 6 < 2 +  q.

Define f n =  . Note tha t

ll/» lli. =  f  \fn\qdXJ D

= f  rr~ — T̂dXJ D  |1 -  Wnz\A 
1

( 1 - k P ) 2 '

For an estimate on the modulus of the derivative of f n on D(wn, r), note th a t w^D(w, r) 

is a  disk with the image of the w on a diameter on the real axis. Thus, the m in im u m  of \f'n \ 

on D{u;, r) occurs at the point of D(w, r) closest to  the origin. This point is j |™n| •
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Calculating the value of the derivative a t this point gives the estimate

: * 6  D{wn ,r )}  > _  |tt^ a)1+4/ , >

where K  depends only on r.

Now define gn =  for a  =  (2 +  q — 6)/2. Since b < 2 +  q, a is positive. I t follows
llAwlxf

th a t gn -> 0 in th e  Aq norm. However

\\DCtgn\\\q =  f  \g'n{<i>(z))\q \<f>'(z)\qd \
J  D

> a  -  k i ) 2+2° f  ijiwi"d^-1
J D(wn ,r)

> 1*73(1 -  |«/n|2) - 2- <I+2a+6.

But 2a =  2 +  q — b, so ||DC^yn||^ ? >  K/3 which is strictly greater them 0. This gives the 

result.□

The use of pseudo-hyperbolic disks in lieu of Carleson sets results in simpler proofs of 

the theorems about DC# on the Bergman spaces. However, the theorems can be stated 

and proved using the Carleson sets. The previous theorem, in combination with results by 

MacCluer and Shapiro [MSh], yields the following corollaries.

C O R O L L A R Y  4 .1 .2 . I f  DC# : Ap A q is bounded, then <f> has no finite angular deriva

tive at any point o f  dO.

C O R O L L A R Y  4 .1 .3 . I f  DC+ : Ap -)• A q is bounded, then \<t>*{eiB)\ <  la.e.[0].
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4.2 A  Sufficient Condition

The measure can also be used to yield a  sufficient condition which isvery close to

the necessary condition. This will be accomplished by comparing the measure to a finite 

rotation-invariant measure, up, defined for p > 1 and Borel sets E  C B by

* ( * )  = / ’ ( ! -  \A2 )pd \.
J E

The last theorem in Chapter One, due to Kehe Zhu [Zhu], now can be stated  as follows: 

Suppose n  is a positive integer, n  > 1, 1 < p < oo, and f  is analytic on D. Then f  is in  

AP i f  and only i f  f ^  is in IP(D, dvp).

The pseudo-hyperbolic disk D (w ,r)  is a Euclidean disk with center ce and radius re 

given by

_  to(l — r2) _  r ( l  — |u;|2)
e 1 —r 2|u;|2' 1 — r 2|u/|2

For two positive quantities A  and B  (possibly infinite) we will say A m  B  if there are positive 

constants c and C  such tha t cA < B  < CA.

L E M M A  4.2 .1 . For a fixed positive r <  1 and 1 < p < oo,

i'p(D(u;,r)) «  (1 -  H 2)2+p.

P ro o f . Note tha t the function (1 — |z |2)p has its m a xim um  and m in im u m  on D[w, r ) a t 

the extremes of the diameter through to. Thus an estimate of vp(D(w, r)) can be obtained
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by evaluating the function (1 — \z\2)p a t the Euclidean center of D(w, r) and multiplying by 

the area of D(w, r); tha t is

tj■ ( T i f t i) -■ fl I r  ) (2\d lwl )\2
vp \ D { w , r)) «  (1 -  11  _  r 2 | t i j | 2 1 r < l _ r a { l - p )  ■

For fixed r  <  1, we see tha t vp(D(w , r)) «  (1 — |u;|2)2+p. □

Also needed is a change of variable formula.

L E M M A  4.2.2. (Axler) For each Lebesgue-integrable function h,

f  h (z)d \(z)  =  (1 -  M 2)2 f  (ho  ^k»)(t)|1 ~  wy\~*dX.
J D(w,r) J D(0 ,r)

The next lemma gives an estimate on point-evaluation of an analytic function in terms 

of the integral of the function with respect to the measure vp.

L E M M A  4.2.3. Suppose 0 < r < t < 1 and f  is analytic on D. Then there is a constant 

K  such that

for all w  in  D and for all z  in the pseudo-hyperbolic disk D(w, r). The constant K  is 

dependent on p , r, and t.

P ro o f . Let z  E D (w ,r) and define E  to  be the Euclidean disk with center <f>w(z) and 

radius t  — r. Note tha t E  C .0(0, t). To see this, take x E E. Then \4>w{z) — x\ < t  — r. But 

\<j>w{z)\ <  r, thus |®| < t, and so x E D{0, t).
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Since fo<f>w is analytic, \ f  o tf>w\p is subharmonic. Noting that <f>w is its own inverse, for 

any s < t  — r, we have

\ f ( z ) \ p  =  l ( / o K K K i z W  < r , ( / o  K ) { K { z )  +  sei8 )\pd0 / 2tc.
Jo

Integrating both sides of the above inequality from 0 to t —r with respect to (1 — s2)psds 

we get

1 ~ (1^ t+~1))!!)P+1 l/(*)lp < f a  \ f °A»Mlp(i -  h \ 2Y i m ,

where j  =  <f>w(z). Since E  C .0(0, £), we have the inequality

i / w r  ^  ! m i )  u ° -  h r iv « ( T ) .

Application of the change of variable in the preceding lemma and the estimate on 

vp(D(w, t )), and noting tha t |1 — w j\ < 16 gives

\f(z)\p < -------------- 32(p+  1)(1 -  \w\2)2+p_________  r \f\Pfiv
-  (1 -  (1 -  (t -  r)* )-+ i)(l -  |W|2 )2 up(D (w ,t)) JD{wJt) 1/1 ^
“  Up(£>(«;, £)) f D{Wit) W  dVp

where the constant K  depends on p, r, and t. □

Another piece of information is needed to prove the theorem which will give the sufficient 

condition for boundedness of DC,/,. The lemma, due to Axler [Axl], says tha t for a fixed 

positive r  < 1, the unit disk cam be covered by pseudo-hyperbolic disks of radius r  in a way
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in which they do not intersect too often, even if the pseudo-hyperbolic radius is increased.

L E M M A  4.2 .4 . (Axler) Suppose that 0 <  r  < 1. Then there is a sequence {twn} in  O and 

a positive integer M  such that

OO

(J D(wn, r) =  D
71=  1

and each z  6 B  is in at most M  o f the pseudo-hyperbolic disks D(wn,I^ -) .

The sufficient condition for boundedness of DC4, will be a consequence of the next 

theorem.

T H E O R E M  4 .2 .5 . Suppose that p, 1  < p  < 00, and 0 <  r  < 1. I f  the quantity

f  iip(f> 1 {D{w,r)) 1
SUP \ J  : h > 6 D

I i'pC-DK r)) J

is finite, then so is the quantity

P ro o f . Let M  be the positive natural number and {u/n} be the sequence in D> guaranteed 

by the previous lemma. Suppose th a t /  6 1^(0, dvp), f  ^  0. Then

[  i/pdfcp* -1 < f ;  f  1 f i ^ - 1
J D n=l ^(ffl"ir)

OO
< J^ su p {|/(z)|P  :z G D{wn,r)}pLp<t>~l {D{wn,r))

n=l

< g V  /Zp<ft-1(.D(uJn,r)) f  IflPdu
^ vp(P(w n, (r +  l) /2)) JD{tu„,(r+l)/2)
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where the last inequality comes from Lemma 4.2.3 estimating point-evaluation with respect

to  the integral of /  with respect to the measure vp. Here t =  (r -f- l ) /2 .  Since D (w n ,r)  C  

D(wn, (r +  l) /2),  the above becomes

is finite, then DC,$ is a bounded operator on AP.

P ro o f . This follows immediately from the previous theorem and the estimate on the size 

of vp(D (w ,r)).

4.3 An Example

Now we construct a self-map of the disk that induces a bounded operator DC# : AP —Y A 1 

(1 <  p < oo). This self-map of the disk is conformal with 0*(1) =  1.

T H E O R E M  4.3.1. There is an analytic self-map o f the unit disc, <j>, with ||0||oo =  1, that

f  < k ' Z
Jb “ f C(«'r.,(r+l)/2)

<  K B M

Thus, the quantity A  is bounded by the constant K M  times the quantity B.

Now the main theorem for sufficiency.

T H E O R E M  4.2.6. I f  the quantity
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induces a bounded operator DC$ : AP —>• A1 for 1 < p < oo.

P ro o f. T h e  self-m ap o f  D.

First we define ip, a  self-map of B ,  as the composition of a Mobius map 77 from D to  the 

upper half-plane, followed by the conformed map arcsinz from the upper half-plane onto 

the semi-infinite strip

H  =  {z =  x  +  iy  : y  > 0, -7 t/2  <  x < w/2}, 

and finally into B  with 77- 1 . Explicitly,

a rc s in ( i£ f) -  i
*{*) = -----arcsm (i|±f j + 1

To construct an appropriate cp we now fix any s such that 0 < s < 1 and define

<0(z) =  sip(z) -1- (1 -  s).

Note th a t 0*(1) =  1, and for C 6 5D, £ ^  1, |0*(C)| <  1- Also, to simplify calculations, 

some of the required estimates will be obtained by considering the map ip rather than <p.

T h e  a re a  o f >̂-15(l,<5) is on  th e  o rd e r o f  e~lfS'

Note that the image ip(B) is symmetric with respect to the real axis. Also, since the 

Mobius maps T] and 77- 1  interchange the point 1 and the point at infinity, taking lines and 

circles to lines and circles, the image ip(B) near the point 1 consists of two circular arcs, 

symmetric with respect to the reed axis, whose tangents approach the real axis as the arcs
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approach the point 1. Thus it is sufficient to consider the measure of pseudo-hyperbolic 

disks with real centers approaching the point 1.

Fix a positive r < 1 and approximate the set r) for real w  — 1 with w > s.

Recall tha t for w near 5 0  rind fixed r, the Euclidean radius of D(w, r) is on the order of 

the distance from w  to <90. Let S =  1 — \w\2. Thus there exists a constant c such that for 

all w, s <  w < 1, the pseudo-hyperbolic disk D (w, r )  is contained in a Caxleson set,

D {w,r) C 5(1, cS).

Now,

ij(D (w,r)) C 77(5(1, cJ))

=  { z e H  <c5}z  -f-1

=  {z e  ff : i  < |z -  (-01}.

So for small S we have the approximation

rj(D{w, r ) ) c { z 6 f f : ^ <  \z\}.

Denote this last set by G.

Now, sin(77D(u;, r)) C sinG. To find sin(G) we note that

2i sin z  =  e‘(x+*v) _  e-i(*+»y) =  e««e-y _  e-«*ey.
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Since we are concerned with the case when S is small, we have the approximation

Thus we have

sin(G) R5 {z  =  x  +  iy  : y > 0, \ e 2 fcS <  \z\}.
St

Now consider t/; 1 D(w, r) . This set is contained in 77 1(sin(G)), which is in a neighbor

hood of the point 1 consisting of all points z  in B> such tha t

r 2/rf < '•

Thus |1 — z\ < 4e_2M . Therefore there is a positive constant B  such th a t

Area(^-1G(tw, r)) < Be-4^ .

C laim : ^ w,r  ̂—>■ 0 as -)• 0 for a ll 6,1 < 6 < 00.

Note tha t the inclusion map I : AP —*■ A 1 is bounded. Coupled with Theorem 4.2.6, the 

claim shows both that fii(O) is finite and that ni<f>~l D(w, r ) < CSb for some constant C. 

This will prove that DC# : AP -»• A 1 is bounded.

First note that

1̂ ' (z) | = 4s

I1 " - 2!2 \ A  +  ( l^ f )2 I* +  a r c s i n ( t |
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But arcsinu =  — tIog[*u +  V l — u2], so for z near 1 there is a positive k so tha t

l * ' M I  =
4s

| l - z |  | ^ T 2 ^ |  | l - l o g [ - i ± f  +  y i  +  (f±f)2]|2’

using the principal branches of both the square root and the logarithm. 

An application of I’Hospital’s rule shows that

1 +  z 1 + Z,

so we get

K
|1 ~  z |(— In |1 — z |)2 ’

for some constant K.

Putting t =  |1 — z| and integrating over the bigger set 5(1, c5), we have

'1D(w, r) < [  |^'(z)|dA4>-iS(l,cS) 
i r /2  r e ~ 3f e i  K/ i r / Z  / •

/
• i r /2  ./0i r /2  </0 t ( - l n t ) 2

~2dt

tdtdO/ir

= K  j *  ( - In f )  

- LS2
-  e2fcS

for some constant L, proving the claim and the theorem as well.
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C O RO LLA R Y  4.3 .2 . DC# : AP —► Aq is bounded fo r q < p  and for  1 <  q < 

P ro o f . Note that for the specified q we have

1 1

which is integrable. In fact,

Since 2 — q > 0, this shows that the sufficient condition on pq<f> 1 is met
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Chapter 5

FURTHER QUESTIONS

This work has raised many questions, some about to the operator DC# and others beyond 

it. First, those about the operator.

•  In the setting of the Bergman space, necessary conditions and sufficient conditions 

have been obtained for boundedness of DC#. These conditions are closely related. 

However, the question remains, can the boundedness o f DC# on the Bergman space 

be characterized completely?

•  The question of compactness of DC# on the Hardy spaces is answered along with the 

question of boundedness. Will there be a similar correlation on the Bergman space, 

or as in the case of boundedness, will there be interesting differences? The question 

remains, when is DC# a compact operator on the Bergman spaces?

• W hat is the spectrum of the operator on the Hardy and Bergman Spaces? On H 2  

DC# is a trace class operator. Thus the spectrum is ju s t the point spectrum union 

{0}. W hat are the eigenvalues of DC# on H 21

•  Can estimates be made for the norm of DC# on both the Hardy and Bergman spaces?

There are two question th a t are raised by this study th a t Eire not about the operator 

DC#. The first was posed by Professor Hadwin.

•  If the operators of differentiation and composition Eire applied in the opposite order,

37
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we get a new operator. T hat is, for a  function in H p or Ap and an analytic self-map 

of the disk <f>, define

C$D( f )  =  f  o<f>.

When is C^D  bounded and compact on the Hardy and Bergman spaces?

Another question, posed by Professor Nordgren, is perhaps the “largest” question emerg

ing from this study.

•  Can a “Carleson measure theorem” be crafted for the differentiation operator? T hat 

is, if X  is H p or Ap and y  is a measure on the disk, can boundedness of

D : X ^ L p(B,y)

be determined completely by conditions on the measure y l
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