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ABSTRACT

THE STRUCTURAL OPTIMIZATION OF ATOMIC AND MOLECULAR 

MICROCLUSTERS USING A GENETIC ALGORITHM IN REAL-VALUED

SPACE-FIXED COORDINATES, 

by

John A. Niesse 

University of New Hampshire, May, 1998

This dissertation documents the development and application of the 

space-fixed modified genetic algorithm, SFMGA The SFMGA is shown to be 

both portable and fast for the structural optimization of Lennard-Jones, silicon, 

water, benzene, naphthalene, and anthracene microclusters.

We introduce the SFMGA and apply it to LJ atomic clusters. CPU times 

needed to obtain the global minimum are compared with similar methods. We 

then investigate a complicated potential representing silicon atoms. The results 

show that SFMGA is applicable to non-pairwise additive potentials.

We demonstrate the use of SFMGA for clusters where the monomers are 

molecules. Water clusters are optimized and the relative performance of the 

genetic operators, for both LJ and H 2 O clusters, is explored. Finally, we 

investigate benzene, naphthalene, and anthracene clusters. In these clusters the 

size and potential surface complexity can be varied independently.

ix
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INTRODUCTION

We have developed a successful structural optimization routine for atomic 

and molecular clusters, the Space-Fixed Modified Genetic Algorithm, or SFMGA. 

The SFMGA routine and several of its applications are presented in this 

dissertation. We begin by discussing optimization in general.

It is usually obvious how to plan a day's route to complete a given set of 

errands in the shortest amount of time. Less obvious, however, is how to route a 

city7s buses to minimize the miles driven by the buses, within the constraints of 

the schedule. Similarly, computer chip manufacturers want to place as many 

circuits as possible upon a given computer chip, but how to do so is not simple or 

obvious.

Optimization procedures or routines seek to find the "best" solution to a 

problem. The problem must be well defined and any candidate solutions must 

be able to be objectively ranked. The appropriate ranking for file city bus 

problem might be total distance traveled per day - the less miles the better - 

while comparing circuits per area would allow one to rank different chip layouts. 

There are surely several satisfactory bus routes, meaning the routes have similar
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"total distance traveled" values, and many chip designs w ith similar densities.

Any useful optimization routine must be able to find the best, or global, solution 

despite the presence of many similarly-ranked local solutions.

In chemistry, the closely-spaced solutions may be the minima in a 

potential energy surface. An optimization routine m ust discern between the 

tremendous number of minima which are present in most potential energy 

surfaces. Furthermore, there are high barriers to be overcome that exist between 

many of the minima. These features make the structural optimization of 

chemical systems extremely challenging. This work develops and implements a 

structural optimization routine for atomic and molecular clusters. The 

appropriate objective function is the cluster potential energy.

Clusters or microclusters are small gas phase aggregates of atoms or 

molecules bound by strong covalent forces or weaker van der Waals forces.

Their small size gives clusters a common characteristic: They all have high 

surface particle to total particle ratios. The ground state structure of an atomic or 

molecular microcluster is often the geometry which has the lowest potential 

energy. Even when this is not the case, for systems containing heavy atoms, the 

lowest-lying local potential energy minima will be im portant in determining the 

thermodynamics at low temperatures. The search for the global minimum in a 

function which possesses many local minima is common to many areas of science
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and technology. Well known examples in the chemical literature, besides the 

minimization of cluster potential energies, include conformational analysis of 

organic m olecules^ and native structures of proteins.^

There is a large variety of techniques available for obtaining global 

minima. Some which have been applied to cluster geometries are briefly 

reviewed here. One technique is the DC/ GOP approach, which uses the 

properties of convex functions in a strategy similar to that used in linear 

programming.^ A more physically-motivated approach^ is to use crystal lattice 

structures as a starting point, and then relax the finite cluster of interest.

Unfortunately, there is no guarantee that the bulk structure and cluster structure 

are closely related.

Various methods based on the diffusion equation have been proposed.^

The idea here is, roughly speaking, to begin with a broad distribution of points 

on a potential function, then run the diffusion equations backward in time until 

the global minimum is located. These methods can equivalently be viewed as a 

continuous removal of a smoothing function applied to the potential, with the 

goal of mapping the minimum of a broad featureless potential adiabatically onto 

the true global minimum as the smoothing is removed. Related methods include 

solving the Shrddinger equation in imaginary time together with a gradual 

reduction of the size of Planck's constant The (it —>°o, h 0) limit is a delta
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function in the deepest minimum. This method has been referred to as 

"quantum annealing",®-^  and is related to quantum (or diffusion) Monte 

Carlo. H  Some of these and other related methods have been reviewed in an 

elegant pedagogical article. ̂  They have all performed well on relatively small 

atomic dusters, but extension to larger or to molecular systems is not 

straightforward.

A rather different strategy for global minimization is to use stochastic 

methods. These methods are less likely than deterministic derivative-driven 

approaches to become trapped in local minima. However, there are no 

guarantees that they will converge to the global minimum in a finite number of 

steps. Among the techniques already used in this field are simulated 

a n n e a lin g ,J -w a lk in g ,^  and pivot m e t h o d s .T h e  last two methods are 

related to simulated annealing. In simulated annealing, the potential is sampled 

by a Metropolis Monte Carlo walker at a fixed temperature for a long enough 

time that it can equilibrate. The temperature is then lowered, and the system re

equilibrated. In the limit of zero temperature and infinite time, the system 

should have reached the global minimum. The practical difficulty is to find a 

cooling schedule that is sufficiently slow to ensure convergence in finite 

computer time.
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Another stochastic method which has been the subject of intense activity 

in recent years is that of genetic algorithms (GA). 1̂ *21 The genetic algorithm 

approach is based on concepts of Darwinian evolution. In this approach a 

population of candidate geometries (individuals) is maintained. Each individual 

(geometry) in the population is formed by "encoding" the physical coordinates of 

the problem into a numerical string — the "genotype" — which is then 

manipulated by "genetic operators". Each individual is assigned a fitness based 

on that individual's potential energy: The lower the potential energy, the fitter 

the individual. The average fitness of the population is changed by allowing the 

more fit individuals to exchange genetic materials with each other. This is 

usually done by selecting two parents based on their fitness, and allowing them 

to "mate". The offspring produced contain some genetic material from both 

parents. The offspring are then included in the gene pool. If, on average, the 

offspring are more fit than the parents, then the quality of the gene pool will 

increase. The goal is to achieve the fittest possible individual. It is hoped that 

this individual is the geometry of the global minimum energy. The (traditional)

GA approach for problems other than microcluster minimization has been

reviewed. 2 2

In so-called "traditional" GA (TGA) the coordinates of each individual are 

coded into binary (base-2) numbers. Genetic information is exchanged between 

individuals primarily through a one-point crossover (see Appendix A) between
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two individuals, with an occasional mutation of one bit into its complement. 

However, several GA approaches for locating global energy minima in atomic 

and molecular clusters have used real-valued coding of the coordinates. We use 

some form of space-fixed (base-1 0 ) coordinates for each of the monomers in the 

cluster. For instance, for three atoms, the physically meaningful variables are the 

three atom-atom distances; the simplest space-fixed (SF) coordinates are the nine 

Cartesian components of the three atoms. However, consider the ten-atom case, 

which has 30 SF coordinates as opposed to 45 internal coordinates. The size of 

the problem increases linearly w ith the number of particles in SF coordinates, 

whereas the number of internal coordinates grows quadratically.

Initially, the use of SF coordinates was rather controversial. One of the 

strongest theorems in the GA literature — the "schema theorem" or the "building 

block hypothesis"-*-9 — predicts rapid improvement of the fitness under 

favorable conditions. However, the theorem holds only if the positions of the 

coded bits, the schemata, are meaningfully related to the physical context of the 

problem. While this is the case for internal coordinates, it clearly does not hold 

for SF coordinates, where an infinite set of Cartesian coordinates can map onto a 

single Euclidean distance. However, we will see that this "counterintuitive" 

approach is able to cope with considerably larger systems than those which have 

used binary coding in "meaningful" coordinates.
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The disadvantages of internal coordinates are evident in an early paper by 

H artke^, where he obtained the global minimum for (Si) 4  (which has a 

complicated, non-pairwise additive potential) using TGA at the expense of a very 

restrictive choice of internal coordinates. He was able to extend this TGA 

treatment to larger dusters,^4 but only by using the (Si)n-i structure to "seed" the 

(Si)„. Our study of this silicon system, in  real-coded space-fixed coordinates, is 

presented in Chapter EL

Many of the GA studies which have been conducted to date have used 

Lennard-Jones dusters as a test case.^"^® A review of these provides further 

insights into the various approaches currently used in  the field. A landmark 

study was that of Z eiri,^ who introduced real coding of the coordinates to the 

field of duster minimization. Also innovative was his proposal of an array of 

genetic operations to transfer information between these genotypes. He used an 

array of crossovers, arithmetic and geometric averaging, and inversion on his 

real strings. While crossover and inversion have binary analogs, the averaging 

operators are a novelty not available for binary-encoded genotypes. Zeiri's 

calculations were actually on H 2 CLD/1. He found the GA to be at least as 

successful as simulated annealing in locating the global energy minimum for n

as large as twelve.
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We present here the development and application of a real-valued 

space-fixed modified genetic algorithm, SFMGA. Chapter I introduces the 

SFMGA and applies it to LJ atomic clusters. CPU times needed to obtain the 

global minimum are compared w ith similar methods. Chapter II applies SFMGA 

to a complicated potential representing silicon atoms. The results show that 

SFMGA is applicable to non-pairwise additive potentials. Chapter HI introduces 

the use of SFMGA for clusters where the monomers are molecules. Water 

clusters are optimized and the relative performance of the genetic operators, for 

both LJ and H 2 O clusters, is explored. In Chapter IV we investigate benzene, 

naphthalene, and anthracene clusters. In these clusters the size and potential 

surface complexity can be varied independently. Chapter V contains concluding 

remarks.
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CHAPTER I  

LENNARD-JONES ATOMIC CLUSTERS

There has been some discussion on the best choice of coding to use in 

Genetic Algorithm optimizations. Earlier GA-based approaches to cluster 

geometry optimization have used the "standard GA" to search the geometry 

space. In the standard GA, variables are coded as binary (base-2) bit strings, and 

the operations are carried out on these strings. According to Goldberg 19,32 ̂  

"alphabet" should be of as low a "cardinality" as possible. That is, the num ber of 

possible characters used to convey genetic information should be as small as 

possible; clearly the binary system fulfills this requirement best.

However, as the number of variables in a problem becomes large, the cost 

associated with the low cardinality of the binary alphabet may become 

p r o h ib it iv e * ^ . For instance, suppose the problem depends on N  real variables. 

Roughly speaking, for a worst case scenario, an exhaustive search through these 

variables requires on the order of N 2 operations. On the other hand, if each of 

these reals is translated into a binary number (say eight bits), there are now (8 N )  

digits to deal with, and the exhaustive search is now through a space of ( 8 N ) 2.
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Unless the search is much more efficient in the binary space, the penalty for 

binary coding for large N may be significant

In considering structures such as dusters, there is another important 

consideration. That is, the choice m ust be made as to how best to represent the 

geometries. For instance, in an early paper, H artke^  used the "standard GA" to 

find the minimum geometry of S14. He used a coordinate system which was 

carefully chosen to be as separable as possible. (Here "separable" means, 

roughly, the ability of a coordinate to be approximately minimized independent 

of other coordinates.) In the language of GA, such coordinates describe isolated 

building blocks, which can be either well adapted or not well adapted, and are 

therefore relatively dearly related to the fitness. In fact, Hartke sta tes^  

"Straightforwardly taking the Cartesian or internal coordinates ... does not 

work", and suggests that the coordinates must represent "small building blocks".

This is in accord with the "prindple of meaningful building blocks" ^  central to 

GA theory.

However, as a multivariable problem increases in size, and the solution's 

dependence on the variables becomes increasingly complex, it becomes m uch 

more difficult to separate the variables. This, of course, is why normal modes 

are introduced into the discussion of vibrational motions of molecules; the 

normal modes are suitable combinations of interatomic distances which are
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separable for low-amplitude excursions from the global minimum.

Unfortunately for the problem a t hand, the calculation of such coordinates 

presupposes knowledge of the global minimum.

A further difficulty is that a separable representation especially chosen to 

be appropriate to any particular n-atom cluster is not easily generalized to other 

cluster sizes. Furthermore, even in the case of SU mentioned above^ the chosen 

coordinates spanned a restricted search space. It is clear from a later paper by 

the same author that selection of such candidate coordinate systems for larger 

clusters is problem atic^.

Zeiri, on the other hand, employs the real (base-10) Cartesian Space-Fixed 

(SF) coordinates for as many as fourteen atoms as the individuals in his 

nontraditional GA-based schem e^, in  this work, the structure of H 2 (LJ)„ 

clusters was obtained without using the local minimization approach proposed 

by Gregurick et al .30

We find that straightforwardly using SF coordinates is tempting. In an 

atomic cluster containing n atoms, for instance, there are ^(n  - 1) interatomic

distances needed to describe the geometry. By comparison, there are always 3n 

space-fixed coordinates. Thus, for n>7, fewer coordinates are needed to describe 

the cluster in SF coordinates than in internal coordinates. If such additional
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coordinates as dihedral angles are needed, the number of internal coordinates 

increases, whereas such coordinates can always be simply obtained from the SF 

data. For the sake of evaluating the performance of the algorithm, the number of 

coordinates required in the SF system is 0{n), whereas that required in the 

internal coordinates is 0(n?-).

Clearly, then, for larger systems, the search space is smaller (CXn2)) for SF 

coordinates than it is for internal coordinates (Oin*)). However, the question now 

becomes that of the efficiency of the search procedure in a space where 

individual points in that space (e.g. the z coordinate of the *th atom) are not 

directly related, to the potential energy function.

Z eiri^  finds his results are at worst competitive with those obtained using 

simulated annealing. Furthermore, use of the Cartesian coordinates provided 

portability between cluster sizes and required no restriction of the search space. 

However, the representation in SF coordinates is plainly contrary to the spirit of 

Goldberg's "building block hypothesis"; none of the coordinates stands alone as 

a meaningful building b l o c k ^ .  Furthermore, many of the variables are 

interchangeable by symmetry. Can this representation be used efficiently with a 

Genetic Algorithm approach? While Zeiri has enjoyed success with it, there is no 

direct timing comparison with other GA approaches available for the system he 

has chosen. The purpose of this chapter is to systematically explore the viability
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of using the SF coordinates, and to compare with benchmark calculations^ on 

(LJ),! clusters using more traditional coordinates.

In their paper, Gregurick, Alexander and H artk e^  proposed a global 

geometry optimization technique using a modified Genetic Algorithm approach 

for clusters. They refer to their technique as a deterministic/stochastic genetic 

algorithm (DS-GA). In this technique, the stochastic part is a traditional GA, 

with the manipulations being carried out on binary-coded internal coordinates 

(atom-atom distances). The deterministic aspect of their method is the inclusion 

of a coarse gradient descent calculation when assigning the relative fitness of 

each geometry. However, they did not use the resulting geometry of the 

gradient descent as an individual in the population. Tests of this technique show 

it is vastly more efficient than searches without this local m in im iz a t io n .  ̂ 0 They 

report geometries for clusters of up to n =29 LJ atoms, and find that their 

computer time scales as 0(n*3).

We investigate here the feasibility of using the SF (base-10 coded) 

coordinates in a GA-inspired optimization technique, which incorporates a local 

minimization of the candidate solutions with the subsequent use of these 

minimized geometries during breeding, not merely for assigning fitness.
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For the duster potential energy, we use a pairwise-additive Lennard-Jones 

potential:
n - l  n f ( \ XL f  ,\6 '\

o o
rn rn

V \ v >
V(r)=4eXS

/=1 j>i

Where ry is the distance between any two atoms. The values of e and a  u sed^

are 0.0123 eV and 3.36 A, respectively. Cluster energies are often reported in
- V

reduced energy units, V = —. A potential of this form has a dimer equilibrium
£

distance re = (2 ) 1 / 6  a.

Each individual, X/, in the population to be evolved consists of the real 

(base-10) SF Cartesian coordinates of each of the n  atoms in the duster: X = 

(xi,yi,...,Zn). We choose the number of individuals in the population to be 

typically 10 or 20. Initially, the coordinates are randomly chosen within a box of 

size L3  in the first octant. We take xi = L£, etc., where £ is a freshly-generated 

random number between 0 and 1. We have used L = i/6n a  , where n is the 

number of atoms, for this work. A conjugate gradient m inim ization^,

CNumerical Recipes contains a useful CG routine) is performed every generation 

on each individual to place each structure in the vicinity of the "nearest" 

minimum. The conjugate gradient procedure is halted if any ty 2 = (x,-x,-)2  + (y 

yj)1 + (zj-zj) 2  ^  L2- Our choice of L2  for the termination of a conjugate gradient 

minimization follows that of Gregurick et al.̂ ® We, as they, utilize this value to
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prevent dissociation of a cluster during the local minimization. However, we 

also use L, as described above, when we randomly generate the individuals of a 

zeroth generation. It is unclear how Gregurick, et al. ^  generate their zeroth 

generation.

Given an individual (that is, a geometry) X,-, we can calculate the potential 

energy of the cluster for that geometry, V,- =V(X/). Given the set {V/: z=l,N} we 

can assign the fitness, fa of the I th individual. We use the convention that the 

are normalized to unity. An intermediate quantity, Fu is evaluated by taking a 

function of V/.

P'i — (Y max ~ ^ i)f (Vmax ~ Vnin) £= 1 , N

This form of F/ is known as the "range" fitness function. The quantities, Vmax 

and Vmin are max{V(-} and min{V/} respectively. The values of are then found 

by normalization:

The next generation (the "children") is formed from the current 

generation (the "parents") as follows. First the best 20% (that is, those w ith the 

highest fitness) of the individuals in the current generation are passed intact to 

the next generation. (This is known as "elitism" ^ .)  The remainder of the 

population in the next generation is obtained by use of genetic operators on the 

current generation. These are: 1. inversion; 2. geometric mean; 3. arithmetic
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mean; 4. n-point crossover; 5 .2-point crossover. They are partially described 

elsewhere by Zeiri^9. We give the complete details in the Appendices. Of these 

operators, number 1  transforms one individual into a different individual; 

numbers 2 and 3 use two parents to "breed" one child; numbers 4 and 5 use two 

parents to produce two children. Consequently, if operators 4 or 5 are chosen to 

produce the last child, they actually produce two children: the last plus one 

extra. In this case, to ensure that we have N individuals in the population every 

generation, we choose to have 1  less individual carried over as elitist.

All operators are given the same weighting, wa = 0.2, for a  = 1 through 5. 

Following standard Monte Carlo practices 1®, a random number on [0,1] is 

generated, and used to determine the operator to be selected. The requisite 

parents (one or two depending on the operator) are then selected weighted by 

their fitness using fresh random numbers.

A typical run contains 10 or 20 individuals in a population. A run was 

terminated when either the (presum ed^®) global minimum was found or the 

potential energy of the bestfit structure did not change for 5 generations.

We also implemented a seeding procedure^. For an n-atom cluster, one 

atom is added to a globally minimized (/i-l) cluster. This is carried out in the 

following manner. The Cartesian coordinates of a minimized (w-1) cluster were
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previously saved in a data file after having its center of mass translated to the 

origin. As an (/i-l) duster is read into our algorithm the distance of each atom 

from the origin is calculated. This determines the distance from the origin, 

of the furthest atom. The /Ith atom is then randomly placed upon the sphere 

centered at the origin w ith radius = rnKZX + re. Furthermore, the seed (/i-l) 

structure is randomly rotated about its center of m ass by generating 3 random 

Euler angles. The random  Euler rotation generally prevents any of the seeded (n- 

1 ) coordinates in each individual from being identical, since the same (n-1 )

minimized structure is used each time. The n-atom duster then undergoes a

local minimization after which its center of mass is placed at (x, y, z) = , —).
2 2 2

This process is applied, w ith fresh random numbers, to each individual as the 

zeroth population is created. All coordinates were allowed to freely evolve 

during the initial local minimization and in any subsequent generations.

RESULTS AND DISCUSSION

The results for the minimization of (LJ)n dusters, /z=[4-29] without seeding 

and n=[5-55] with seeding, are shown in Figure 1. We plot CPU time as a 

function of duster size, n. Each result is the best successful run of at most 20 

independent runs. In all cases, the global minimum was found to ±.001 reduced 

energy units^, usually w ithin the first 5 runs. For the unseeded runs, we show
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the best results for populations of 10 and 20 individuals. There was no 

systematic difference in  convergence times for the two population sizes. We 

report the times for each population size in Table 1. Populations larger than 20 

were attempted, but did not improve the times and are not reported here. We 

find that for larger clusters, seeding results in  faster convergence.

To implement the seeding method we started w ith a nucleus of rt=A and 

built the cluster in increments of one each time, as explained previously. If 

seeding is used, the upper limit of cluster size which can be minimized using this 

technique has yet to be found. The CPU times, for both seeded and unseeded 

runs, (on a DEC 2100-500) are given in Table 1 and shown in Figure 1 . It can be 

seen from the data presented that our implementation of the GA is able to find 

the minimum for a relatively large cluster "from scratch" (unseeded) in a 

reasonable time.

One of the purposes of this chapter is to compare the results using SF 

coordinates without binary coding with the results of Gregurick et al.30 Since 

our calculations were carried out on a faster machine than theirs, we have, for 

the purposes of comparison, multiplied our cpu times by a factor of 5.0 in all 

succeeding Figures. (We realize that comparison of CPU times is not 

straightforward. However, the operations involved in this work and the 

Gregurick et al. paper — potential evaluations, and their derivatives— seem to be
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reasonably similar to those in  the benchmark timing ro u tin es.^ ) The CPU times 

for duster minimization in which no seeding was employed are compared in 

Figure 2. The SF variant of the modified GA performs faster for all duster sizes 

reported. Furthermore, Gregurick et al. report no converged results for n  20.

In Figure 3, we compare the times needed to minimize a seeded cluster. 

The time reported is the CPU time to obtain the optimal energy for duster size n 

given a minimized duster of size (n-1). It can be seen that the binary-coded 

approach (DS-GA) is comparable to the present work at low duster size. 

However, as the duster size (and the size of the search space) increases, the SF 

application becomes increasingly preferable.

One way of comparing numerical algorithms is to compare how they 

scale with the size of the problem. In order to obtain this measure, one plots 

log(t) against log (n) and obtains the best straight line fit For the data in Figures 

2 and 3, these scalings are given in Table 2. In both cases — seeded and unseeded 

— the SF approach fares better. Only if we compare the data at very low n  values 

is the DS-GA performance comparable.

One interesting point to notice from Table 2 is that the seeding technique 

increases in effidency as the second solvation shell is dosed. The first solvent
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shell doses at n=13, the second at n=55. Presumably this is due to the low 

number of available second shell sites for the added atom.

Perhaps a more reasonable measure of the performance of the seeding 

technique is to measure the cumulative time needed to minimize a duster, (LJ)„. 

For our runs, we define this time as:

< r = < 4 + i *
i=5

where t[ is the time needed to minimize the zth duster starting from the (/-l) 

structure if i>4, or from scratch if no seeding was used, as in the case of n=4. 

Gregurick et al.̂ O report an overall scaling for their method. It appears that they 

used a similar definition of their cumulative time. We are able to reproduce their 

reported scaling law if we further define:

C =  <20 ■ * - ! > ,
/ =  21

for their data. Results of t0 1 0 1  as a function of n are given in Figure 4. The raw 

timings are given in Table 1.

d early  the SF version of the DS-GA presented here is at worst comparable 

to, and usually superior to the DS-GA of Gregurick et al.^0 This is a rather 

surprising result in light of Goldberg's discussions ̂  of the greater effidency of 

GA operations using binary-coded variables, and the "building block 

hypothesis".
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It is undear whether our enhanced effidency is due to the base-10 coding 

itself or to the more complex operations applicable to base-10 variables. In an 

attempt to compare our procedure with the more traditional GA approaches, we 

have carried out comparison calculations on several duster sizes. The most 

important operator in the "traditional" GA is the one-point crossover19,21 

have carried out runs using our base- 1 0  coding together with this single operator. 

We report here only the results for /i=19, which we find to be typical. Using an 

initial population of ten individuals and only the one-point crossover operator, 

the global minimum was located only twice in a batch of one hundred 

independent runs. This compares poorly to the usual location of the global 

minimum at least once in  ten runs, as we report here. When the population size 

was increased to one hundred individuals the probability of locating the global 

minimum increased to approximately 30%, but the CPU time of the best run also 

increased. It appears that the effidency of our technique is related both to the 

choice of the real Space-Fixed variables, and to the use of appropriate operators 

to search the variable space.

We mention here some of the caveats concerning the seeding technique.

For certain potential parameters, even such simple dusters as (LJ)n can undergo 

phase changes^. In such circumstances, genetic information obtained for 

dusters of phase a  may actually be detrimental for dusters of phase |J. In
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addition, there may be several families of morphology (particularly in bonded 

structures) in which there is little similarity between structures Xn and Xn+\, even 

for small n . We have observed this in silicon clusters^ and report our findings 

in Chapter II.

CONCLUSIONS

We have presented calculations of global potential energy minimizations 

for Lennard-Jones clusters using a modified Genetic Algorithm approach. We 

have used the philosophy of the DS-GA of Gregurick et al.̂ ®. However, we 

allowed each geometry created in the search to be immediately quenched to a 

local minimum instead of simply using the numerical result when assigning the 

structure's fitness. The technique presented here restricted the individuals in the 

populations to be the geometries of local minima. Thus, the search became a 

search through a finite (albeit large) number of individuals, rather than over an 

infinite set of possibilities. In further contrast to the approach of Gregurick et al., 

we used the atomic Space Fixed Cartesian coordinates directly as our genetic 

material. Since the Cartesians scale as only {0{n2)), while internal coordinates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

scale as (Cfyz4)), we realized an immediate reduction in the search space without 

introducing a (possibly^®) detrimental truncation of the space. This required the 

use of nontraditional genetic operators, which we adapted from the work of 

Zeiri.^

We find the SF Cartesian version of the DS-GA with real coding is 

comparable to the DS-GA using internal coordinates with binary coding at low n. 

However, at high n, the SF version is superior. It is capable of minimizing 

clusters up to n=29 without any seeding. Using seeding, minimized clusters of 

/z=55 were readily attainable. It was found that the CPU time required scaled as 

0{n3-3).
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Table 1. Times needed to minimize (LJ)„ by the SF modified GA

The times are CPU times on a DEC 2100-500. Given are times in seconds 

for unseeded (/z=[4-29]) and seeded approaches (/i=[5-55]). The data for the 

seeded method are the times needed to minimize a cluster of size n  starting with 

a minimized cluster of size (n-1). Results are the best of ten or, at most, twenty 

independent runs. Figures in parentheses are the number of generations 

required for convergence. A zero implies convergence upon conjugate gradient 

minimization of the zeroth generation.

n 1 0  per pop 2 0  per pop 1 0 / pop; seeded

4 0.049 (1) 0.103 (0) NA
5 0.052 (0) 0.157 (1) 0 . 1 0 2  (1 )
6 0.162 (4) 0.342 (3) 0.284 (2)
7 0.073 (1) 0.267 (1) 0.374 (2)
8 0 . 2 0 1  (2 ) 0.366 (2) 0.262 (1 )
9 0.219 (1) 0.494 (2) 0.375 (1)

1 0 0.478 (1) 0.541 (1) 0.390 (1)
1 1 1.158 (1) 1.176 (1) 0.488 (1)
1 2 1.982 (1) 0.980 (1) 0.589 (1)
13 1.899 (2) 3.274 (2) 0.743 (1)
14 1.453 (2) 3.874 (2) 0.765 (1)
15 1.864 (2) 6.763 (2 ) 1.076 (1)
16 2.736 (2) 7.180 (2) 1.189 (1)
17 11.511 (3) 8.196 (1) 1.355 (1)
18 12.673 (5) 17.518 (4) 3.220 (4)
19 3.387 (2) 15.356 (3) 1.745 (1)
2 0 11.445 (2) 15.276 (2) 1.968 (1)
2 1 17.323 (4) 64.211 (6 ) 2.190 (1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

2 2 33.170 (3) 42.924 (2) 2.469 (1)
23 16.151 (3) 46.166 (4) 2.919 (1)
24 36.998 (4) 83.541 (5) 3.453 (1)
25 68.748 (6 ) 56.805 (4) 4.327 (1)
26 171.275 (10) 325.439(16) 3.617 (1)
27 177368 (9) 151.053 (5) 5.587 (5)
28 116.783 (20) 457.961 (29) 5.869 (1)
29 118.968 (16) 275.080(15) 17.345 (1)
30 18.472 (5)
31 6.488 (5)
32 17.658 (5)
33 6.747 (1)
34 8.563 (1)
35 6.538 (1)
36 11.998 (5)
37 14.687 (1)
38 15.160 (1)
39 8.149 (3)
40 10.858 (2)
41 10.684 (4)
42 12.394 (3)
43 12.137 (2)
44 12.523 (1)
45 13.967 (1)
46 12.963 (1)
47 13.368 (1)
48 15.630 (1)
49 15.819 (1)
50 21.733 (1)
51 15.804 (1)
52 16.692 (1)
53 16.493 (1)
54 18.611 (1 )
55 18.320 (1)
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Table 2. Best fit parameters to data in Figures 2-4

It is assumed the data can be cast in the form , t «= nY. The value of y is 

obtained using an unweighted linear least squares f i t^  to log(t) vs log(n). The 

integers in brackets [nrnm,nmax] denote the range of cluster size over which the 

fit was taken. See text for explanation of the terms unseeded, seeded, and 

cumulative.

DS-GA This work

Unseeded 3.9 [4-20] 3.6 [4-20]

4.4 [4-29]

Seeded 7.5 [21-29] 4.9 [21-29]

3.3 [5-55] 

3.6 [17-41]

2.2 [42-55]

Cumulative 4.5 [4-29] 3.2 [4-29]

3.3 [4-55]
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CPU Time -vs- Q uster Size
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Figure 1. Plot of CPU time for global minimization of (LJ)„
duster as a function of duster size. Open drdes are unseeded 
calculations (see text); filled d rdes use the seeding technique 
described. Each time shown is the best successful result of ten 
independent runs. Note that the ordinate scale is logarithmic.
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CPU time -vs- Quster Size, unseeded
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Figtire 2. Plot of CPU time for unseeded dusters, using the DS- 
GA compared with present method. Open squares are the results of 
Gregurick et aL; filled d rdes are present method multiplied by a 
factor of 5.0 (see text). Note that the ordinate scale is logarithmic.
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Note that the ordinate scale is logarithmic
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Figure 4. Plot of cumulative CPU time (see text) for 
minimization of dusters using the results of Gregurick et. al. 
compared with present method. Symbols are as in figure 2. 
Note that the ordinate scale is logarithmic.
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CHAPTER II  

SILICON CLUSTERS

Our main goal here is to test our approach with a more complicated 

potential. Additionally we investigate the approach of obtaining larger 

structures via a growth technique. In the simplest version of this method 

considerable effort is expended in  finding the geometry of the smaller clusters. 

Typically, one atom is then added and the new structure found by minimizing 

the potential of this "seed+atom" hybrid. The progression to larger clusters is 

effected by repetition of this procedure.

The growth sequence of such simple structures as Lennard-Jones atomic 

clusters is known 28,35,40 Each additional atom usually finds a site on the 

outside of the seed cluster at which its coordination number can be maximized. 

However, the growth sequence for clusters governed by more complicated 

potential energy functions is less clearly understood. In particular, there may be 

abrupt changes in morphology between clusters of size n and those of size (/2+1 ). 

These changes have been reported for the silicon cluster potential employed 

here^.
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Clearly, though, there are dangers in such approaches. A minimization 

technique should be able to explore the configuration space w ithout restriction, if 

at all feasible. Seeding may "tempt" the routine to prematurely converge to a 

minimum similar to the seed structure. Thus, if the geometry of the global 

minimum of a potential is not known in  advance, presumptions about the 

structure may lead to spurious results. Furthermore, searches which are guided 

by some symmetry restriction or in some coordinates which possess lower 

dimensionality than the true problem may not sample the full configuration 

space satisfactorily.

Each individual, X£*, in the population to be evolved consists of the SF 

Cartesian coordinates of each of the n atoms in the cluster: X = (x ^y i ...,zn). We 

choose the number of individuals, N, in the population (10 in this work). We 

have used L = ̂ J3nre , where r e is the dim er equilibrium distance, for this work. A 

conjugate gradient minimization is performed every generation on each 

individual to place each structure in the vicinity of the nearest minimum. The 

conjugate gradient procedure is halted if any interatom distance ^  1.2L. We 

utilize this value to prevent dissociation of a cluster during the local 

minimization. The procedure used was that described in Chapter I, excepting 

the differences noted here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

These operators are: 1. inversion; 2. geometric mean; 3. arithmetic mean; 4. 

n-point crossover. We provide examples in Appendix A. Of these operators, 

number 1 transforms one individual into a different individual; numbers 2 and 3 

use two parents to "breed" one child; number 4 uses two parents to produce two 

children. Consequently, if operator 4 is chosen to produce the last child, it 

produces two children: the last plus one extra. In this case, to ensure that we 

have N  individuals in the population every generation, we choose to have 1 less 

individual carried over as elitist The population size remains constant 

throughout the calculation.

All operators are given the same weighting, wa = 0.25, for a  = 1 through 4. 

A random number on [0,1] is generated and used to determine the operator to be 

selected. The requisite parents (one or two depending on the operator) are then 

selected based on their fitness using fresh random numbers.

In order to locate the global minimum, twenty independent runs were 

carried o u t A run was terminated when the potential energy of the bestfit 

structure did not change for 5 generations. In order to test the robustness and 

speed of the technique, we then carried out a further 100 runs. In these, the run 

was terminated either when the previously-obtained global minimum was 

reached, or when there was no improvement in the fittest individual for 5 

generations.
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All calculations were carried out on the Bolding-Andersen^ (BA) silicon 

potential. We note here that some energies reported here are not exactly those 

given in the BA paper. It appears that some of the parameters reported there 

were truncated in the paper, but not in the code. (Dr. B. C. Bolding, private 

communication). We have used the parameters as they appear in the BA paper.

RESULTS AND DISCUSSION

We show the minimum potential energy structures found using our 

method for (Si)n, /r=3-10, in  Figure 5. Also shown are the energies of these 

geometries. We find the same structure as do BA for /i=3,4,9,10. However, we 

obtain lower-lying minima (that is, more stable geometries) than do they for the 

cases n=5-8. It must, of course, be emphasized that these are not guaranteed to be 

the true global minima for this surface. However, they do appear to be the 

lowest yet reported. These results demonstrate that the technique is capable of 

finding geometries with low-lying potential energies, and is capable of finding 

minima not seen in other studies.

In Table 3 we give computational statistics for minimization runs on each 

of the species, (Si)n, n = 3-10. All runs were initiated using random space-fixed
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coordinates. It can be seen that the time required to locate the best minimum 

increases with cluster size. la  addition, the number of generations required to 

converge also increases. By contrast, the percentage of the independent runs in 

which the global minimum is found decreases with cluster size. It can be seen 

from Table 3(b) that on several occasions the global minimum was found in the 

conjugate gradient descent of an initial random cluster from the zeroth 

generation. However, we have carried out calculations for enough sets of initial 

conditions that the efficiency of the GA part of the minimization has been 

thoroughly tested.

This is, of course, to be expected. For (LJ)n clusters, it has been reported ^  

that the number of local minima scales as exp(n2). While the number of minima 

for the potential used here has not been determined, we m ust expect it to be 

extremely large, and to increase dramatically with cluster size.

In Table 4 we give comparable statistics on runs for (Si)n which were 

carried out using a seeding procedure. All runs were initiated with the 

minimized (/z-1) structure as a seed. The /1th atom was added as described above 

and elsewhere 25 By examining the column headed "%GM", it can be seen that 

the probability of finding the global minimum actually decreases on seeding for 

(Si)7 and (SiV In addition, the "center of gravity" of all minima found is higher 

for these two cases, as evidenced by the worsening of the mean value of the
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potential. It is encouraging, however, that the global minimum can still be 

located by SFMGA, even if the algorithm is forced to work harder.

We use a representative (Si) 7  run to attempt to explain this phenomenon. 

As can be seen from Figure 5, the predicted structures (using the BA p o te n tia l ̂ 1 ) 

of (Si) 6  and (Si) 7  are rather different. The (Si)6  structure could be described as a 

double-comer-capped rhombus, whereas the (SO7  structure is a double-edge- 

capped pentagon. In Figure 6 , we show the fittest candidate solution (lowest 

energy geometry) for the 12 generations of a seeded GA run of (Si)7 . The seed 

geometry is that of (Si)6  in Figure 5.

The bestfit structure of the zeroth generation has a geometry which 

resembles that of (Si) 6 , w ith the seventh atom capping one of the available 

comers of the rhombus. The pentagon present in the minimized Si7  structure is, 

in some sense "four-fifths" completed. By the end of generation 1, the best 

structure to date is a more open, "chain-like" one which also contains the 

beginnings of a pentagon. By the end of generation 2 the pentagonal ring has 

begun to emerge. However, by the end of generation 4, the best geometries 

found once again have rhombus character. Rhombus-containing structures 

persist through generation 11. During the twelfth generation the routine finally 

converges to the double-edge-capped pentagonal minimum.
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The move away from the pentagonal structure yields considerable insight 

into the way the GA functions. Candidates for the various operations are chosen 

in each generation by selection. While the pentagonal structure has the highest 

fitness, there are several individuals in the population which are almost as f it 

These generally contain the rhombus structure, which was imprinted on the 

population by the choice of the seed, causing the rhombus-containing structures 

to dominate the gene pool. It is several more generations before the better 

genetic material contained in the pentagonal structures asserts itself, and the 

(presumed) true minimum is found. For both (Si) 7  and (Si)g it seems that the 

seeding procedure actually inhibited the optimization.

CONCLUSIONS

We have used the Space-Fixed modified GA (SFMGA) approach to obtain 

global minima for the silicon clusters (Si)n using the B o ld in g -A n d e r s e n ^ l 

potential. One modification to the usual GA is the use of gradient-driven 

minimization of each geometry immediately after that geometry has been 

produced. Another feature of our method is the use of space-fixed atomic 

coordinates and the absence of binary coding in the GA.
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We have shown that the SFMGA approach used here is capable of finding 

global minima for this potential. In fact, we report here new claimed global 

minima for n=5-8. The method is shown to be numerically robust, and relatively 

fast (although we have no data for direct comparison). As expected, the problem 

becomes more resource-intensive as the cluster size increases.

We have demonstrated the portability and convenience of the space-fixed 

coordinates, which have the advantage of spanning the full configuration space. 

We have also shown that, under certain circumstances, using seeding structures 

to generate new clusters can be detrimental. The approach we advocate is 

unbiased by any information on the sought outcome.
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Table 3.

Table 3a.

Statistics for unseeded runs of (Si)n 

The column heading %GM is the percentage of independent runs 

(out of 1 0 0 ) which located the global minimum reported here. 

Vmin, V, Vmax denote the lowest, the mean, and the highest 

potentials in kcal/m ol of all the individuals in all runs. The mean 

cpu time, I (sec) and mean number of generations, T, averaged 

over all runs are also given in Table 3a. In Table 3b 

minimum/maximum times and numbers of generations for only 

those runs which reached the global minimum are given. We use T 

to denote generation number.

n %GM V - mm V vvmax t r

3 1 0 0 -186.1 -186.1 -186.1 0.24 0.04

4 98 -300.0 -300.0 -299.7 1 . 6 6 0.97

5 1 0 0 -382.7 -382.7 -3827 2.74 0.34

6 69 -466.0 -464.7 -453.4 22.94 4.94

7 78 -568.2 -565.9 -541.2 32.61 4.12

8 63 -676.9 -670.7 -633.4 54.21 4.99

9 28 -789.2 -770.9 -736.5 115.3 8.69

1 0 24 -901.3 -866.9 -814.5 157.6 10.16
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Table 3b.

n  tmin tmax rrn in  I"rnax

3 0.15 0.52 0 1

4 0.54 4.46 0 4

5 1.42 10.13 0 4

6 2.36 57.20 0 1 2

7 5.66 76.94 0 1 1

8 5.39 126.00 0 1 1

9 26.21 198.36 1 13

1 0 35.76 207.13 1 8
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Table 4. Statistics for seeded runs of (Si)rt 

AV = V seed - V noseed- See text for discussion. Other notation 

as in Table 3.

n %GM V AV

3 1 0 0 -186.1 0 . 0

4 1 0 0 -300.0 0 . 0

5 1 0 0 -382.7 0 . 0

6 1 0 0 -466.0 -13

7 64 -563.6 +23

8 95 -676.2 -5.5

9 5 -765.0 +5.9

1 0 92 -899.5 -32.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Structures for the (Si)„ cluster, n = 3-10

Si3 (-186.1) Si4 (-300.0) Si5* (-382.7)

Si6 (-466.0)

Si8* (-676.9) Si9 (-789.2) Si10 (-901.3)

Figure 5. Structures for the (Si)rt cluster, n = 3-10.
The (Si)n (n=3-8) are planar, or very nearly so. Also given are the 
energies in kcal/  mol. Those structures marked with an asterisk lie 
below the reported global minimum of Ref. 41.
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Most fit cluster as a function of generation number

r = 0  (-520.85) T = 1 (-536.90)

T= 2,3 (-542.05) T = 4,5,6 (-551.75)

r = 7,8,9,10,11 (-561.96) T = 12 (-568.17)

Figure 6 . Fittest structure as a function of generation 
number for a run  of seeded (6 +1 ) (Si) 7 . Energies in 
parenthesis are in kcal/ mol.
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CHAPTER m

THE GA OPERATORS FOR ATOMIC 

AND MOLECULAR CLUSTERS

It is dear from Chapters I and II that the GA approach using real-valued 

Cartesian variables and appropriate operators is more powerful than was 

antidpated by traditional GA workers. The method was able to outperform 

binary coded algorithms for LJ dusters both in terms of tuning and in the size of 

the search s p a c e D e a v e n ,  Ho and c o  w o r k e rs  have managed to minimize LJ 

dusters up to /i=100 using a sim ilar real-valued GA. They point out that this is 

the first time any single technique has been used to minimize this entire range of 

structures. Furthermore, their calculations detected previously-unreported 

minima in several cases. We reported similar findings in the calculation of 

silicon d u ste rs^  in  Chapter II.

dearly , the use of real-valued variables and nontraditional genetic 

operators provides portability of coordinates; there is no need to recast the 

problem for each new duster size. In addition, these coordinates in no way 

restrict the size of the search space. Furthermore, the method seems capable of 

minimizing problems of chemically-interesting size in reasonable CPU times.
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The chief purpose of this chapter is to extend our treatment of clusters to 

molecular clusters using the same approach. A further goal is to systematically 

explore the performance of some of the possible operators for real-valued 

representations in GA calculations.

We assume the molecules within the clusters to be treated are rigid. The 

most economical coordinates to describe the internal coordinates of a rigid body 

are the three Euler angles'^. The atomic coordinates of the molecule are 

conveniently first described in body-fixed (BF) coordinates. For instance, for the 

H2 O molecule chosen as an example here, one could choose the following: 

r0 = (0 ,0 ,0 )

rHa = (rOH •cos Y,r0H • siny, 0) 

rHb = (rOH • cos y-roH • sin Y» 0;

where we have made the particularly simple choice of taking the O atom as the 

origin, to h  is 0.9572 A, and y is 52.26 degrees. A set of Euler angles (0 ,<j>,y) is 

chosen random ly: 0 £ a £  2n, where oc=0,<j>,\|r. Then the molecule is rotated into 

the SF frame roHa/ roHb by applying a rotation m atrix^ R(0,<j>,\y) to the vectors 

roHa and roHb- Finally, the SF coordinates of each atom can be found by adding 

the displacement of the O atom from the SF origin, R<> Thus, xo = Ro/ *OHa = Ro 

+ roHa/ etc. The potential energy can then be obtained using these SF vectors.
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The initial Ro are randomly obtained by analogy w ith the SF coordinates for the 

atomic clusters. Thus, a (rigid) molecule is completely described by the six 

coordinates (Rox/Roy/RozA<MO-

The potential used for the H 2 O clusters was the HP3P potential of 

Jorgensen at a l .^  While this is acknowledged not to be a very accurate potential, 

it has been investigated in  some detail. In addition, its derivatives are relatively 

simple.

Each individual's initial (Rox/Roy/Roz) coordinates are randomly chosen 

within a box of size L3  centered at the origin. We take Ri = L(£-0.5), etc, where C, 

is a freshly-generated random number between 0 and 1. We have used 

L=^j3n rt , where re = 2.75A  is the dimer equilibrium OO distance. Each 

molecule's Euler angles, 0 , <|> and \|f, are initially generated randomly on the 

interval [0,27c]. A conjugate gradient minimization is performed every generation 

on each individual to place each structure in the vicinity of the nearest minimum.

The same precautions as in the atomic case are taken to avoid evaporation.

The variables for molecular clusters were manipulated in the following 

fashion. The strings of R and angular coordinates were separated. Thus, for the

ithindividual, % =(Roxi Rqz/i)/ 5/ = (0 i, Vn). Operations were carried out

on the X  and Y strings separately. For the X list, this was essentially identical to
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the atomic procedure. For the Y list, the angles 9, <j> and \jr are initially defined on 

the interval [0,271]. Since the trigonometric functions are valid for all values of the 

angles, we left the values produced in the CG alone (that is, they were not 

returned to the [0,2tc] interval). After the manipulations, the coordinates for 

molecule 1 were reassembled by assigning the first three variables of X  to be 

(Rox/Roy/Roz) molecule 1, the first three variables in Y to be (0,4>,\jf) of molecule 

1, and so on. See Appendix A for a detailed description of the genetic operators.

The participation of an individual in future breeding operations depends 

upon its fitness. Since the function to be optimized for dusters is the (Bom- 

Oppenheimer) potential energy, the fitness is a function of the potential. The 

operators used were: 1. inversion (In); 2. geometric mean (Ge); 3. arithmetic 

mean (Ar); 4. n-point crossover (Nx); 5 .2-point crossover (2x); 6 . 1-point 

crossover (lx). We give the complete details in the Appendix.

A typical run contains 10 or 20 individuals in a population. A run was 

terminated when either the (purported) global minimum was found or the 

potential energy of the fittest structure did not change for 5 generations.
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RESULTS AND DISCUSSION

Atomic Clusters

Results for a range of (LJ)n and (Si)„ dusters have been presented 

elsew here.25^ We focus here on the examples of (LJ)i3  and (LJ) 1 9 . We have 

chosen these as examples of a highly symmetric and a rather asymmetric duster 

respectively. For all runs, the CPU time is recorded, as well as the minimum 

potential energy reported, and the number of generations required to find that 

minimum. We have previously^, reported timing data. h i this chapter, we will 

focus on the frequency of location of the global minimum as the chief criterion of 

the GA's performance. Where appropriate, other data will be mentioned.

1. Performance of Operators

Z eiri^  proposed six Genetic Operators which are appropriate for real

valued genomes. We have tested five of these operators, together with the 1- 

point crossover, on the (LD1 3  and (LJ)i9  dusters, whose global minima are well 

k n o w n .^ We have tested each operator individually, and in combination with all 

other operators. In order to darify our findings, we antidpate some of the results. 

It was seen that the operators fell into three natural groupings, both in form and 

in performance. These were: (I) Inversion (one parent-one child); (II) Averaging 

(two parents-one child); (IH) Crossovers (two parents-two children).
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(L J)l3

In Table 5 we give the number of times the (LJ) 13 global minimum was 

reached out of 1 0 0  independent attempts for the operators used individually, and 

in pairs. The diagonal elements are the runs w ith individual operators. In the 

last column is given the average performance over all six combinations. All 

calculations reported use the range fitness as defined in Chapter I.

From the diagonal elements, it can be seen that both averaging operators 

perform very well as the only operator present. The crossover and inversion 

operators are significantly worse. In combination with any other operator from a 

different class, however, both crossover and inversion significantly improve 

their performance. On the other hand, the improvement when a crossover is 

paired with another crossover operator is marginal. Finally, the most robust 

operators are the averaging operators, performing well with almost any partner.

We now consider (LJ) 1 3  minimization w ith operators taken three at a time 

— one from each dass of operator. The performances are given in Table 6 . In all 

cases, the combination of three operators is extremely effident In addition, it 

outperforms the average performance of the same three operators taken two at a 

time.
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We have also carried out all other possible combinations of operators. 

Rather than enumerate them all, we give average performances over all 

combinations in which each operator participates. We also include the 

combination in which it performs worst, and that in which it performs best This 

is given in Table 7. For this particular cluster, it is clear that a judicious 

combination of operators can easily yield the global minimum on one hundred 

per cent of the attempts. In addition, we note that the mean CPU time (DEC 

2100/500) needed to find the global minimum varied from 1.91 to 6.43 sec per 

structure, and that most runs took fewer than twenty generations to converge 

(whether to the global minimum or not). In most cases, the shortest average 

times and fewest generations were for those cases where the global minimum 

was located with high frequency.

(LJ)l9

In Table 8  we give the same data for (LJ) 19 as was shown in Table 5. The 

most striking feature of this Table is the drop in the number of "hits" in 

comparison with Table 5. This is not surprising; the search space is roughly 50% 

larger, and the number of local minima has increased dramatically by a ratio of 

about exp(192 - 132). Clearly, the efficiency of the method does not scale with the 

increase in the number of local minima.
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As before, both averaging operators perform very well as the only 

operator present The crossover and inversion operators are significantly worse. 

In combination with any other operator, however, the crossover significantly 

improves its performance. The inversion improves its performance if combined 

with an averaging operator. Similarly, the crossovers do well with averaging 

operators, but not with each other or inversion. Finally, as before, the most 

robust operators are the averaging operators, performing well with almost any 

partner.

In Table 9 we consider combinations of three operators. As for the (LJ)i3  

case, the use of one operator from each of the three classes is always superior to 

the average performance of the same operators taken two at a time. However, 

there is no guarantee that the use of three operators will be better than the best 

binary combination. Unfortunately, of course, the best combination is generally 

not known in advance. From examination of Table 9, it appears that the 2 -point 

crossover tends to be less effective than either the 1 -point or the n-point

Table 10 is analogous to Table 7. The best combinations of operators 

clearly always include an averaging operator; the worst a crossover - most 

frequently the 2-point From what we have seen above, however, it is a good
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strategy to indude at least one crossover operation. It would appear that either 

the 1 -point or n-point is in  general to be preferred over the 2 -point

For the (LJ)i9  case, the mean CPU times range from 4 to 30 sec per 

structure, and typically 1 0  to 2 0  generations are required for convergence.

2. The Slice Operator

Deaven and Ho and co w o rk ers^ '^  have suggested another Genetic 

Operator. Roughly, this operation is carried out as follows. Each duster is cut by 

a plane which contains the centroid of the duster, yielding two subdusters. 

Subdusters arbitrarily considered to be "above" the plane are then added to 

subdusters "below" the plane, from different original dusters. The resulting 

dusters (after suitable adjustments to ensure the number of atoms is correct) are 

relaxed using a CG minimization. Suffidently fit offspring dusters are accepted 

into the population. Deaven, Ho and c o  w o r k e r s ^ , 45 vise all possible above- 

below combinations in their work. In order to compare their operator with those 

described above, we use a slightly different procedure here. As with the 

crossover operators described above, two candidate dusters are selected based 

on their fitness, and the offspring are the two above-below combinations of the 

subdusters. More details are given in Appendix A.
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The results using this operator alone are as follows. For the (LJ)i3  duster, 

the global minimum was located in 6 6  out of 1 0 0  independent attempts (mean 

CPU time 10.35 sec; mean number of generations 29). By comparison with Table 

7, we see that this is comparable to the better crossover operators for this duster 

size, but less effident than the averaging operators.

For the (LJ)i9  case, the global minimum is found on only 7 out of 100 runs 

(mean CPU time 18.84 sec; mean number of generations 89). Again, this is 

comparable to inversion and the 2 -point crossover for this duster size, but 

inferior to the averaging operators.

3. Other Fitness Functions

In order to explore the possible effects of the choice of fitness parameter 

we have carried out calculations using an exponential fitness scheme. In this 

case, the intermediate value Ft is calculated as

Fi = exp[-aV, ] i - l , n

and t h e a r e  normalized as stated previously for the range fitness function.

We have judidously chosen the two values of aw e investigate here, a=2 and 

a=5, to illustrate the possible consequences of using an exponential scheme. We 

report results for a system of 13 LJ atoms. The minima in this system have 

potential values ranging from 0 to -0.545 eV.
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In Figure 7, we show the fitness functions over this energy interval for the 

two exponential schemes, and the range scheme, suitably normalized. It can be 

seen that the range preferentially selects lower values of the potential. The exp-2 

is rather less selective, while the exp-5 is strongly weighted towards low 

potential values.

We show results for (LJ)i3  using the individual operators and the three 

fitness schemes in Table 11. In each case, the best performance is underlined. It 

is clear that there is little to choose between the three schemes. However, exp-5, 

which weights the fittest structures in the population very heavily performs 

least well. Therefore, it does not appear to be productive in this case to be highly 

selective; it appears that maintaining a diverse population is advantageous.

Molecular Clusters

By analogy with our earlier work on atomic clusters^, we have explored 

the feasibility of locating the global minimum for (HzO),, using all the genetic 

operators. Statistics for the runs with /i=2-8 are given in Table 12. It can be seen 

that most of the smaller water clusters are trivial to minimize in the sense that 

almost any random initial geometry descends to the global minimum. For n=7 

and 8 , the task is more challenging. It can be seen that the computational effort
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required to locate the global minimum rises dramatically as the size of the cluster 

grows. It is possible that we would be able to locate the minimum if we allowed 

the population to evolve longer. However, this seemed needlessly wasteful of 

resources.

For this reason, we treat the clusters w ith n=9 through 13 in a slightly 

different manner. In these cases we start ten individual populations, and evolve 

each in the usual way until the convergence criteria are m et We then construct a 

new population from the fittest of each of the initial populations, and evolve this 

new population. In all cases, there was some improvement in the potential 

energy. The geometries of (H2 0 ),, for n=2 through 13 are shown in Figures 8  and 

9. We are in agreement with published geometries and energies'^ for n=8 . The 

larger clusters all show the "fused cube" seen in  stu d ies^  of water clusters with 

n=8,12,16 and 2 0 .
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Performance of operators

The particular interest in  our study of molecular clusters lies in the 

evaluation of the operators on the angular part of the problem in particular. This 

has received considerably less attention than the treatment of the center-of-mass 

coordinates. In order to isolate this performance, we carry out calculations on a 

(1*2 0 ) 8  cluster with the eight O atoms frozen at the geometry of the global 

minimum. The operators then act only on the Euler angles. Table 13 is similar 

to Tables 5 and 8 , and documents the success of the operators individually and in 

pairs.

For the Euler angles, the best operators, both individually and in 

combination are the 2-point crossover and inversion. The remaining operators 

performance is fair. It is unclear why these results are in such contrast to those 

for the Cartesian coordinates.

We have also carried out runs with all possible combinations of operators 

for this system. Our qualitative findings remain unaltered; we therefore refrain 

from showing this extra detail.
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CONCLUSIONS

We have shown that we can extend earlier w o r k ^ ^  using a modified 

Genetic Algorithm approach in  Space-Fixed real variables to rigid molecular 

clusters. This is done by using a Cartesian space-fixed reference vector to each 

molecule, and describing the internal coordinates of each molecule by the three 

Euler angles. The populations of Cartesian and angular coordinates are acted 

upon separately by the genetic operators. Using this method we were able to 

locate global minima for (H2 O)„, /i=2-13, using relatively little CPU time.

We have also tested the efficiency of the proposed genetic operators singly 

and in combination with other operators. For atomic clusters, averaging 

operators are clearly the most efficient if used individually, but may improve 

their performance in judicious combination. Since the correct combination is not 

known a priori for any given problem, we recommend the use of a mix of 

operators: one averaging, one crossover, and inversion.

For atomic clusters, we have compared these operators with a "slice" 

operator similar to that employed by Deaven, Ho, and cow orkers.^ '^  We find 

this operator to be comparable in efficiency to crossover operators, but less good 

than averaging operators. It is not dear whether there is an analogous operator
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for angular coordinates. We therefore have made no attem pt to implement this 

approach for molecular clusters.

We have also investigated the possibility of using different fitness 

functions for atomic clusters. It appears that trying to bias the selection towards 

the very fittest individuals is counterproductive; the Genetic Algorithm appears 

to work best when there is reasonable diversity in the population.
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Table 5. Number of times GM located for (LJ) 1 3

Number of times out of 100 runs global minimum located for (LJ)i3  with 

combinations of operators. Diagonal elements give performance of operator 

used alone; off-diagonal elements give the performance for two operators used 

together. "In" denotes inversion; "Ar" arithmetic mean; "Ge" geometric mean; 

"lx" 1-point crossover; "2x" 2-point crossover; "Nx" N-point crossover.

Operator Average

In 50 76

Ar 1 0 0 97 98

Ge 98 97 91 96

lx 82 97 95 26 67

2 x 67 99 94 70 63 77

Nx 61 1 0 0 1 0 0 33 6 6 57 70

In Ar Ge lx 2 x Nx
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Table 6 . Performance of operators for (LJ)i3

60

Operators are used three at a time. The first three columns indicate the operators 

used. The fourth column is the number of times the global minimum, is located 

in 1 0 0  runs. The fifth column gives the average performance of the three 

operators used in pairs, taken from the data in Table 5.

GM located Pair Average

In Ar lx 99 93

In Ar 2 x 1 0 0 89

In Ar Nx 99 87

In Ge lx 98 92

In Ge 2 x 99 8 6

In Ge Nx 99 8 6
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Table 7. Summary of operator's performance, (LJ)i3

61

All possible combinations with other operators for (LP1 3 . The second column 

indicates the worst combination in which the operator was used w ith (in 

parentheses) the number of times out of 1 0 0  in which the global minimum was 

located. The third column indicates the average number of times out of 100 the 

global minimum was located. The fourth column gives the best combination in 

which the operator participated.

Operator__________ Worst______ Average________ Best

In In (50) 91 In, 2x, Ar (100)

Ar lx, Nx, Ar (93) 98 Nx, A r (100)

Ge Ge(91) 97 2x, Nx, Ge (100)

lx lx  (26) 90 lx, 2x, Ar (100)

2 x In, 2x, Nx (60) 91 2x, Nx, Ge (100)

Nx lx, Nx (33) 90 Nx, Ar (100)
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Table 8 . Number of times GM located for (LJ) 19.

As for Table 5, except (LJ)i9 .

O perator___________________________________________________ Average

In 7 26

Ar 6 8 57 64

Ge 57 67 54 61

lx 13 55 62 0 24

2 x 4 55 49 13 5 2 2

Nx 4 81 74 1 5 0 28

In Ar Ge lx 2 x Nx
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Table 9. Performance of operators for (LJ)i3 .

As for Table 6 , except (LJ)i9 .

Operators GM located Pair Average

In Ar lx 75 45

In Ar 2 x 55 42

In Ar Nx 79 51

In Ge lx 77 44

In Ge 2 x 62 36

In Ge Nx 72 45
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Table 10. Summary of operator's performance, (LJ)i9

As for Table 7, except (LJ)i9 .

Operator_________Worst_______ Average_________Best

In In, 2x (4) 51 In, Nx, Ar (79)

Ar 2x, Ar, Ge (44) 61 Nx, Ar (81)

Ge 2x, Ar, Ge (44) 62 In, lx, Ge (77)

lx lx ( 0 ) 51 In, lx, Ge (77)

2 x In, 2x, Nx (3) 46 In, lx, 2x, Nx, Ge (70)

Nx Nx (0) 51 Nx, Ar (81)
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Table 11. Fitness function varied

65

Performance of individual operators for (LJ) i3  for three different fitness functions 

(see text). Data are number of times global minimum is located out of 100 runs.

range exp(a=2 ) exp(a=5)

In 50 56 52

Ar 97 1 0 0 92

Ge 91 97 90

lx 26 24 24

2 x 63 69 6 6

Nx 57 50 50

Average 64 6 6 62
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Table 12. Summary of performance for n=2-8

6 6

The second through fourth columns give the lowest local minimum potential 

(which is presumed to be the global minimum), the mean value of the potential 

in the population, and the highest local minimum found, respectively. The fifth 

column gives the maximum, the mean, and the minimum number of generations 

before the convergence criteria were m et The sixth column gives the number of 

times out of 100 the global minimum was located. The final column gives the 

mean CPU time for minimizing each structure.

— £ y _
n -Vmin -V -Vmax Umax, F , Fmin — t [sec]

2 6.543 6.543 6.543 0 , 0 .0 0 , 0 1 0 0 0.636

3 17.448 17.448 17.448 0 , 0 .0 0 , 0 1 0 0 2.679

4 29.306 29.306 29.306 0 , 0 .0 0 , 0 1 0 0 9.109

5 38.771 38.771 38.771 0 , 0 .0 0 , 0 1 0 0 20.495

6 47.811 47.811 47.811 2 , 0.05, 0 1 0 0 33.252

7 57.944 57.553 57.425 1 2 , 5.04, 0 2 2 166.510

8 70.681 68.885 67.431 2 0 , 8 .1 2 , 0 13 338.778
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Table 13. Number of times GM located for (H2 0 )s

As for Table 5, except for with O atoms fixed (see text).

Operator__________________________________________________ Average

In 61 65

Ar 59 46 58

Ge 69 54 44 58

lx 63 60 52 34 54

2 x 70 67 64 75 73 70

Nx 6 6 60 62 42 70 44 57

m Ar Ge lx 2 x Nx
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Fitness -vs- potential
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Figure 7. Fitness as a function of energy for three different fitness 
functions (see text). The minimum energy is that of (LJ) 1 3 .
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Geometry of (H2 0)/, structures, n = 2-8

(H2o)2
-6.54

(HzO)5 
-38.77

(H20)7
-57.94

A U
(H2o)3
-17.45

(H 20)4
-29.31

(H20 ) 6
-47.81

(H20 ) 8
-70.68

Figure 8 . Geometry of lowest potential energy structure found
for (H2 0)n, n = 2-8. Energies in kcal/ mol.
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Geometry of (H20),, structures, n = 9-13

(H20)9 
-81.67

(H2O)10
-92.48

(H20 )h 
-102.35

(H20 )i2
-114.05

(H 20 ) i3
-125.04

Figure 9. As for figure 8, except n=9-13.
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CHAPTER IV  

BENZENE, NAPHTHALENE, AND ANTHRACENE

Model potentials are available for these aromatic h y d r o c a r b o n s , ^ - ^  

some have already been used in cluster geometry minimizations.^®"^® In 

particular, the series benzene-naphthalene-anthracene provides an increase in the 

number of local minima to be searched without increasing the dimensionality of 

the coordinate space to be searched.

The Dulles-Bartell Benzene Dimer

Dulles and Bartell^^ recently proposed a new potential energy function 

for benzene clusters. In their paper, the authors give the geometry and potential 

energy of a proposed global minimum for the benzene dimer. We have applied 

The SFMGA method to the benzene dimer problem using the Dulles-Bartell 

potential.
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The runs were carried out as follows. There were ten individuals in the 

population. Six genetic operators were used with equal weighting: inversion; 

arithmetic and geometric averaging; one-, two- and N-point crossovers. An 

elitist strategy was adopted, with the best two parents carrying over intact into 

the next generation. Several independent runs were carried out.

We report here a lower dimer potential energy (-10.630 kj mol-1) than that 

reported by Dulles and Bartell (-10.582 k j mol-1). The geometry of the dimer is 

given in Figure 10. The coordinates of the atomic sites are given in Table 14. 

(There is a typographical error in the Appendix of Ref. 51) The C-C intersite 

distance should be 1.401 A.) Roughly 80% succeeded in  finding the GM we 

propose here. The average number of generations needed to find the GM in 

these runs was 180.

The ability of the SFMGA to find unsuspected global minima has been 

pointed out for silicon clusters 3® The SFMGA is a powerful minimization tool 

which explores the potential surface in a highly nonlocal manner. The advantage 

of this is that the technique is undeterred by high energy saddle points between 

local minima, which may cause difficulties for searches based on molecular 

dynamics or Monte Carlo approaches.
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Larger Hydrocarbon d u ste rs

To model the intermolecular potentials between aromatic hydrocarbons 

and to be able to compare w ith existing calculations, we chose the (exp-6 -1 ) 

potentials of Williams and S ta rr^  for benzene, and of Williams and Xiao for 

naphthalene and anthracene. Li this potential, each nonbonded atom-atom 

potential is given by:

v (ri j )  =  f y j  e x r t - Q j O j i - A i / i j 6 + c < & ? jn f l

where i and j  represent atoms on different molecules. The first term models short 

range repulsion, the second dispersion, the last Coulombic interaction between 

the partial charges on the atoms.

The constant c has the value 1389.963 kj mol-1  A e-2. The total potential is 

given by the sum over all molecules. The parameters are given in Table 15. Note 

that the notation in Ref. 50 is rather nonstandard. We have relabelled the atoms 

according to more usual organic chemistry nom enclature.^
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RESULTS AND DISCUSSION

In Figures 11 and 12, we show the minimum potential energy geometries 

we have obtained for naphthalene (Naph) and anthracene (Anth) dusters. We 

have not shown benzene dusters, since these have been shown and discussed in 

some detail elsewhere.^ We note, however, that some of our minima are 

slightly lower in energy than those reported before, bu t there are no new 

qualitative structural differences.

There are a few interesting points to note in the (Naph)„ and (Anth)„. 

First, the dimer (Anth) 2  has D2 d symmetry, whereas (Naph) 2  is "almost" D2 d- 

(Naph) 3  is like (Ben) 3  in that it has the centers of masses of the molecules in a 

ring, giving three times the dimer interaction. By contrast, (Anth) 3  is D 2h, with 

the molecules stacked; the spedes are too sterically hindered to form a ring. The 

outer molecules have their faces aligned parallel to each other, the nearest 

neighbors antiparallel. The geometry yields only two dimer interactions, and 

this is reflected in the binding energies of Table 16. Both tetramers appear to be 

ring shaped with opposing molecules presenting their faces parallel to each 

other. It appears that the parallel alignment is favorable at fairly large distances, 

but the perpendicular is preferred a t shorter distances.
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It is traditional to report the progress of a GA calculation by plotting the 

objective function (here, the potential energy) as a function of generation 

number. However, this is deceptive when a gradient descent is also used; the CG 

in this case takes many steps per generation. The situation is further complicated 

by the fact that (in the CG case, a t least) the gradient descent routine makes 

several "monitoring" function calls on each step to determine how to proceed. 

The evaluation of the potential energy function (and its derivatives) is typically 

by far the most expensive part of any cluster minimization code. Thus, we 

propose that a fairer measure of the rate of convergence of a real-coded GA with 

gradient descent is a plot of best potential versus function calls, rather than 

generation number. This will also facilitate comparison with other minimization 

techniques.

In Figure 13, we plot the SFMGA average best V/Vmm  against function 

calls for (Ben)n, n=6-9. The performance for the smaller clusters has not been 

shown, since it occupies such a narrow strip of the early part of the p lo t We 

report on the right hand side of the Figure the number of times in ten 

independent runs in which the global minimum was located.
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In Figure 14, we show the average best SFMGA potential divided by the 

appropriate global minimum energy for hexamers of benzene, naphthalene and 

anthracene, versus function calls.

All the results reported so far have used the exp-6-1 potential of Williams 

and coworkers.49,50 ^ye tested to see whether any of our findings were potential 

dependent by also using our method on an alternative potential for benzene 

clusters due to Dulles and Bartell.^l The global minima found are given in Table 

15. We have previously reported a global minimum for the dimer. ̂

In Figure 15, we compare the <V/ Vmin> for (Ben)6  using the exp-6 - 1  and 

the Dulles-Bartell potentials. It can be seen that the method fares much less well 

on the latter potential. It appears that the potential landscape is considerable 

more "rugged" in this case. A recent paper has discussed the various line 

minimization techniques available for cluster problems. The authors recommend 

the BFGS for atomic clusters. We therefore incorporated a BFGS descen t^  into 

our SFMGA. The results are also shown in Figure 15. dearly, for the Dulles- 

Bartell potential, the BFGS performs better than does the CG. However, the 

reverse is true for the exp-6-1 potential. It is therefore important that several 

linesearch routines be tested for any given problem.
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CONCLUSIONS

The SFMGA's performance demonstrates the portability of the algorithm. 

The sensitivity of the SFMGA's performance to the potential function of the local 

optimization technique is evidenced by the differing results of the PR-CG and 

BFGS local minimization routines.
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Table 14. Cartesian coordinates for DB benzene dimer

Cartesian Coordinates for each Atomic Site in SFMGA Calculated Global 

Minimum of (C6 H^ ) 2  Potential Energy. Benzene potential of Dulles and Bartell.

Atom x[A ] y [A] z [A ]

C 1 1.401000 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0

C 2 0.700500 1.213302 0 . 0 0 0 0 0 0

C 3 -0.700500 1.213302 0 . 0 0 0 0 0 0

C 4 -1.401000 0.000000 0 . 0 0 0 0 0 0

C 5 -0.700500 -1213302 0 . 0 0 0 0 0 0

C 6 0.700500 -1213302 0 . 0 0 0 0 0 0

H 7 2.432000 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0

H 8 1.216000 2.106174 0 . 0 0 0 0 0 0

H 9 -1.216000 2.106174 0 . 0 0 0 0 0 0

H 10 -2.432000 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0

H 11 -1.216000 -2.106174 0 . 0 0 0 0 0 0

H 12 1.216000 -2.106174 0 . 0 0 0 0 0 0

C 13 -0.206939 -0.119304 5.988163
c 14 0.986856 0.570408 6.237062
c 15 1.770428 1.023041 5.167511
c 16 1.360205 0.785962 3.849061
c 17 0.166409 0.096249 3.600162
c 18 -0.617162 -0356384 4.669713
H 19 -0.783572 -0.452398 6.775249
H 20 1.288741 0.744875 7.207314
H 21 2.648945 1.530602 5.350677
H 22 1.936837 1.119056 3.061975
H 23 -0.135475 -0.078218 2.629910
H 24 -1.495680 -0.863945 4.486547
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Figure 10. DB benzene dimer geometry

Benzene (Dulles and Bartell potential^) dimer geometry for potential 

energy global minimum proposed here. Two different views are shown.
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Table 15. exp-6-1 Potential Parameters for Aromatic Hydrocarbons

80

All molecules:

H-H H-C

A (kj mol-1  A6) 136 573

B (kj mol-1) 11677 65485

C(A-i) 3.74 3.67

Charges, q (e):

Benzene [Ref 49]

C -0.153 H

Naphthalene [Ref 50]

Ci position C -0.3592 H

C2  position C -0.1402 H

bridge C C 0.2772

Anthracene [Ref 50]

Ci position C -0.3108 H

C2  position C -0.1653 H

C9  position C -0.6022 H

bridge C C 0.2833

C-C

2414

367250

3.60

H 0.153

0.1895

0.1715

0.2658
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Table 16. Aromatic hydrocarbon potential energies

Potential energy at claimed global minimum for aromatic hydrocarbon clusters 

of benzene, naphthalene, and anthracene. Top, using the exp-6 - 1  potentials of 

Williams and co w o rk ers^^ ; bottom, using the potential of Dulles and 

BartelL^l Binding energies are in kj mol-1.

Williams et al exp-6 - 1  potential 

n (Ben)„ (Naph)„ (Anth)„

2

3

4

5

6

7

8

9

10 

11 

12 

13

10.976

32.098

55.629

79.106

106.479

134.092

161.660

191.519

221.522

252.187

286.288

324.723

25.648

58.483

94.919

133.368

172.182

44.505

90.008

147.549

206.225

266.818
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Table 16. (continued)

Dulles-Bartell Potential

2 10.630

3 29.444

4 55.373

5 79.003

6 109.017
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Geometries for naphthalene dusters

83

n -  2 n = 3

Figure 1 1 . Minimum energy geometries for naphthalene

dusters, (Naph)^ using the Williams et al. exp-6-1 potential.
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Geometries for anthracene dusters

Figure 12. As for Figure 1 1 , except anthracene dusters, (Anth),,.
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Figure 13. The average best SFMGA potential for (Ben)„ divided by the potential of the 
appropriate global minimum versus calls to the potential routine. Note the ordinate scale runs 
from large to small values. Also note the scale in comparison with Fig. 14. The histograms on the 
right show the number of times in the ten independent runs that the global minimum was reached 
after 3xl05  potential calls.

88



86

The average best SFMGA potential for hydrocarbons

0.96

(Anth)0.97
A

\^(Naph)

0.99-
(Ben)

1.00
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Calls to potential /106

Figure 14. Average best SFMGA potential divided by the 
appropriate global minimum energy for hexamers versus 
function calls.
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The average best SFMGA potential for (Ben) 6
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Figure 15. Average best potential divided by Vqm versus 
function calls for (Ben) 6  for the Williams et al. exp-6 - 1  potential 
and the Dulles-Bartell potential for two different line search 
minimization methods. PR-CG denotes Polak-Ribifere conjugate 
gradient; BFGS denotes Broyden-Fletcher-Goldfarb-Shanno 
variable metric.
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CHAPTER V 

CONCLUDING REMARKS

A modified, version of the genetic algorithm approach, based on 

concepts of Darwinian evolution, has been successfully applied to the structural 

optimization of various cluster types.

Initially, the choice of space-fixed coordinates was rather controversial. 

However, this "counterintuitive" approach has been able to cope with 

considerably larger systems than those which have used binary coding. 

Furthermore, the most successful applications of the GA to clusters to date have 

also used derivative information to relax "nascent" offspring to a local minimum 

on the surface.

In particular, w e ^  have considered the (LJ)„ system, using real coding on 

the SF Cartesian coordinates. Versions of Zeiri's genetic operators^ were 

employed. Offspring were then relaxed using a conjugate gradient descent, and 

the relaxed geometry was used as the genotype for the next generation.
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With this approach, dusters as large as (LJ)ss were minimized, without the need 

for seeding. In a follow-up work we investigated the efficacy of each of the 

genotypic operators, and found that the averaging operators were the primary 

workhorses for atomic dusters.

We^* have also used a "slice" operator similar to that of Deaven et al.^8/45 

The nature of the slice operator will necessarily bias the offspring dusters 

towards spherically symmetrical shapes. An operator which biases the solution 

in this way, or o th ers,^  is known as phenotypic, while operators which 

minimize any bias, are known as genotypic. The phenotypic slice operator as 

implemented in Chapter 3 performed no better than the genotypic operators, 

indeed, it fared less well than the best One could also view seeding — using a 

minimized n- 1  duster as a starting point for the n  duster -  as phenotypic 

information. It has been shown that in some c a s e s  this can actually be 

detrimental to the effidency of the method if the transition from the n- 1  to n 

duster is marked by a change in  morphology. Further, it is the impression of the 

author that tailoring an effective phenotypic operator requires some knowledge 

of the expected result. While this information appears to be useful for 

previously-explored system s,^ it could bias the search away from the true 

minimum for unknown problems.
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Since it is to be hoped that the GA can be developed into a  general minimization 

tool, it seems wise to avoid guiding the solution towards intuitive solutions 

when the true minimum may well be nonintutive. In our opinion, genotypic 

operations present a 'least-biased" approach to genetic algorithm searches.

The evidence appears overwhelming^  that the most successful 

minimization calculations to date using GA are those in which the genotype is 

encoded using real numbers, and, further, potential derivative in f o r m a t io n ^  is  

incorporated.
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Appendix A

We give here the details needed to fully understand the genetic algorithm 

operators used herein. We denote the geometry of the n-atom duster as Xt =

(xi/...,xn) , where Xk = (xk,y k,Zk) is the displacement of the k *  atom. (See Chapter 

3 for a description of the appropriate coordinate strings for molecular dusters. 

The behavior of any individual operator upon a string of values is, of course, 

independent of the coordinate representation.) While the distinction between x, 

y, and z coordinates is important for evaluating the potential, the operators act 

simply on a string of reals. To emphasize this we relabel the string of reals as % 

= (ci,...,C3n). We use Ck to denote c^(i) if there is no ambiguity. We summarize 

below the action of each of the operators. In all the expressions below k runs 

from 1 to 3n. In the notation [ck(i), Ck(/)] = [ckW, Ck(0] simultaneous substitution 

is implied, w ith the updated generation on the left hand side, the current 

generation on the right hand side of the assignment. We also indude an example 

of each operator's behavior.
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Inversion: = cq+r_k r ^ k ^ q  r,q flat on [l,3n]

A single parent [cci,.-.,a|c-i/ak/aic+i,...,a3n]/ is required for inversion. For 

instance if r = k - 2  and q = k+ 1  the resulting child is

[CTl/—/Ctk+lrttk/(Xic-i/.../0C3n].

1 -point crossover: [c^i), ck(/)] = [ck(/), ck(i)]

s < k  ̂  3n s flat on [l,3n]

Two parents, [a1,...,ak.i/a k,a k+i /...,a3n] and [pi,...,0k-i,Pk/Pk+i/-/p3n]/ 

produce two children. For example, [fo,...,pk-i/<Xk/Ctk.+i,."/<X3n] and 

[ai,...,ak-i,pk,pk+i,...,P3n] may result, if the crossover occurs after the 

position labeled "k-1 " in the parent strings above.

2 zpoint_crossover: [ckO), ck(/)] = [Ss+k(£), Ss+k+3n({/)] s flat on [l,3n]

S(if) = (ci(/),...,C3n(i^,ci(^,...,C3tt/))and it is understood that s+k+3n is 

modulo 6 n. The two parents, [ai,...,ak_i,ak,ak+i/.-vOC3n] and 

[Pi/-/Pk-i/Pk/Pk+i/-,p3nL may yield two children, 

[ttk-l/Ctk/0Ck+l/—/a 3n,Pl,—,Pk-2 land [Pk-l/Pk/Pk+ls’*-/p3n/&l/**’3k.-2lr 

for example.
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NrgmnLcrossover: [<*(/), ck(/)] = [ck(/), ck(i)] if £ > 0.5

[ck(4 CkfiO] = [ck(4 ck(/)] if 0.5

Two parents, [ai,...,ak.i/a k,a k+i,...,aai] and [P i,... ,P k -i,P k ,P k +i , » , p 3n ] , 

produce two children. For example, [pi,...,ak-i,Pk,Pk+i/-va3h] and 

[ai,...,pk-i,ak/a k+i,...,P3n] mayresult, depending on the 3n "fresh" random 

numbers, C,.

Arithmetic mean: C k (i) = 0.5( ck(i)+ck(/))

Two parents, [ a i , . . . , ( X n ]  and [Pi,...,P3n]/ produce one child, 

[0.5(ai+pi),...,0.5(a3n+p3n)].

Geometric mean: ck(i) = ( abs ( ck(i)-ck(/'))) V2

Two parents, [ a i , . . .^ ]  and [Pi,...,p3n], yield one child, 

[{abs(ai.pi)}i/2,...,{abs(a3n.p3n)}1/2].
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Slice Operation: Two parents, [ai,...,0 -̂1 ,a^akt-i,...,(*3 ^ 1  and

[pi,...,Pk-i/Pk,Pk+i/—/PanL produce two children. For example, 

[pi/—(ttk-i/Pk/Pk+i/—/®3n] and [0 C|,...,Pit_i,(Xk,cX(t+i/—vP3n] nnay 

result, depending on the randomly chosen plane.

The slice operation is carried out as follows. Two parents are chosen as 

usual, based upon their fitness values. A plane containing the Space Fixed origin 

is generated by randomly choosing the two spherical polar angles, 0  and <{>. The 

cosine of the angle 0  is chosen flat on - 1  to 1 , while <j> is chosen flat on 0  to 2 tl  

These two angles determine the orientation, from the origin, of a vector of length 

1. This randomly oriented vector is a normal vector to the plane containing the 

origin.

Each cluster's center of mass is temporarily translated to the origin and it 

is determined whether an atom is "above" or "below" the plane by the sign of 

the dot product of the vector, from the atom to the origin, w ith the plane's 

normal vector at the origin. We combine one parent's "top half" with the other 

parent's "bottom half', and vise-versa. We also assure that each resulting cluster 

contains the correct number of atoms and add atoms from the opposite "side" of 

the plane, if necessary. The two resulting child clusters are relaxed using a CG 

minimization.
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Appendix B

Duplication:

There are several ways in which the above operators can allow duplication 

of individuals within a population. To be duplicates here means two structures 

have not only the same potential energy (degenerate), bu t have the same 

coordinates as well. The population may become overly weighted with 

duplicates of the lowest energy structure because it is chosen most often to be a 

parent (has the highest fitness). A second reason why duplication is undesirable, 

particularly within populations as small as those used here, is that duplicate 

parents can exchange information resulting in a child cluster containing two 

atoms with identical coordinates. We avoid most duplications by preventing 

certain choices while executing a breeding scheme. The choices we explicitly 

disallow are:

Inversion: k * 3 n

1 -point crossoven

2 -point crossover 

N-point crossover 

Arithmetic mean: 

Geometric mean:

k * 3n and i ^ j  

k * 3n and i * j

i * j  and we ensure that at least one switch occurs.

i * j

i * j
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However, duplication may still occur through more complicated, but rare, 

manipulations spanning more than one generation. We have scanned some runs 

for structures with the same energy within any one generation. We determined 

if they are duplicates, and not merely degenerate, by simply subtracting 

corresponding coordinates. A result of zero for each of the 3n pairs indicates 

duplication. We find, after the above restrictions are implemented, that fewer 

than 0.1% of generations (10 individuals in  population, n  = 13) contained 

duplicates. As mentioned previously, duplication may result in a child cluster 

which contains two or more atoms with identical coordinates, causing divide by 

zero errors upon calculation of the clusters potential. We prevent these errors by 

artificially setting any r,f- < 8 . 0  A2 to 8 . 0  A 2 (for LJ clusters) during the calculation 

of the potential, w ithout actually altering the coordinates themselves. Similar 

appropriate precautions are taken with the molecular dusters. This avoids a 

divide-by-zero error, but ensures that the offending structure, unless it is 

significantly improved during the local minimization, receives an extremely low 

fitness and is subsequently eliminated from the population.
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