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ABSTRACT  

G R O U N D  STA TE O F lsO

by

Bogdan M ihaila 
University of New Hampshire. May. 199S

VVe use the coupled cluster expansion (exp(S) method) to solve the m any-body Schrodinger 

equation in configuration space in a configuration space of 35 lUjj . The Hamiltonian in

cludes a nonrelativistic one-body kinetic energy, a realistic two-nucleon potential and a 

phenomenological three-nucleon potential. Using this formalism we generate the complete 

ground state correlations due the underlying interactions between nucleons. The resulting 

ground state wave function is used to calculate the binding energy, the one- and two-body 

densities for the ground s ta te  of l6 0 .  The problem of center-of-mass corrections in cal

culating observables has been worked out by expanding the center-of-m ass correction as 

many-body operators. For convergence testing purposes, we apply our formalism to the 

case of the harmonic oscillator shell model, where an exact solution exists. We also work 

out the details of the calculation involving realistic nuclear wave functions.
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Chapter 1

Introduction.

M o tiv a tio n . In the last th irty  years electron scattering from nuclei has provided a  wealth 

of information mapping out nuclear ground sta te  charge densities [C’v-80]. providing precise 

transition charge and current densities for the excitation of single particle states [Sw-83] and 

for collective states [Go-80]. The measurement of ground s ta te  magnetization densities and 

the excitation of high multipolarity magnetic excitations, or the single particle knockout 

reaction to discrete states all have in some way supported the mean-held approach as the 

lowest order in the description of nuclear structure.

The confirmation of the mean-held approach, however, were more qualitative in nature 

than quantitative. The form factors for the excitation of the high spin single particle states 

in 20SPb [Li-79], were described extremely well in shape by the mean-held wave functions, 

however, the predicted strength was too big by a  factor of two. The knockout reactions 

again were in good agreement with the shapes predicted by the mean-held wave functions 

but the strength was off by again roughly a factor of two [Le-94].

The general conclusion was tha t the nuclear correlations are the ones that account for 

the discrepancies and not the quark degrees of freedom of nucleons. They do not change the 

shape of the wave functions but they modify the strength due to  deoccupation of orbits below 

the Fermi surface and partial occupation of the orbits above the Fermi surface [Pa-84], This 

was conhrmed by (e, e'p) experiments in which particles from orbits above the Fermi level 

were knocked out [Le-94]. Thus, to do justice to the accuracy of the electromagnetic probe.

1
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2

we can no longer be satisfied with the mean-field approach, but have to take into account 

the correlations largely due to the hard repulsive core of the nucleon-nucleon interaction.

N u c lea r  m a n y -b o d y  p ro b le m . A m ajor problem in nuclear physics is to understand 

how nuclear structure comes about from the underlying interactions between nucleons. This 

requires modeling nuclei as collections of strongly interacting nucleons. The s ta rtin g  point 

is the solution of the many-body Schrodinger equation for a realistic nuclear Hamiltonians.

Solutions have been proven to be rather difficult to obtain! For the three-nucleon system , 

this was done only in 1980s via the Fadeev method, first in coordinate [C’h-85], and then 

in momentum space [Wt-91]. Since then, a variety of methods have been used successfully 

for studying light nuclear spectra: F irst, the Correlated Hyperspherical Harmonics (CHH) 

method [Ki-93, Ki-94] was used to describe the bound states of the .4=3 and .4=4 nuclei as 

well as d-{-n and d + p  scattering states a t energies below the three-body breakup threshold. 

Then came the first microscopic calculations th a t directly produce nuclear shell s tructu re  

from realistic interactions tha t fit N N  scattering data: in L996. Pudliner f t  nl have reported 

calculations of ground and low-excited states for nuclei with .4 < 6  [Pu-95], and the next 

year results for nuclei with .4 <  7 [Pu-97], using the Green's function Monte Carlo (GMC) 

method.

However, all these methods are limited in the number of nucleons they can trea t, be

cause the dimensions of the necessary grids grow too large. So far. only the Variational 

Monte Carlo method based calculations with realistic two- and three-nucleon interactions 

(Argonne ul4 and Urbana-VH potentials), has enjoyed success in solving the many-body 

problem for medium nuclei. In this formalism, an optimal trial function is obtained by
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minimizing the energy through the four-body cluster level. The trial wave function is based 

on products of pair- and triplet-correlation operators acting on a  product of single-particle 

determinants. The pair-correlations operators include central, spin, isospin, tensor, and 

spin-orbit components, while the triplet-correlation operators include components induced 

by three-nucleon potentials. Expectation values are evaluated with a cluster expansion for 

the noncentrai correlations. Terms in the expansion are evaluated exactly using the Monte 

Carlo integration.

P re s e n t w ork . The goal of our effort is to build realistic models of nuclear structure 

th a t explicitly account for realistic correlations. There are different ways to  account for 

correlations. As mentioned above, one way is to introduce correlation functions in the 

many body wave function in real space. This has been quite successful for small nu

clei [VVi-91, Pu-95, Pu-97] and has resulted in reasonable descriptions of l60  [Pi-92]. A 

different approach is to add in configuration space to the uncorrelated ground s ta te  multi- 

particle multi-hole configurations [Ku-78]. Both approaches can be related to each other.

Our aim is twofold: On one hand we want to verify in a more quantitative way the 

claim that the quenching observed in the transverse electron scattering am plitude is indeed 

due to correlations. On the other hand, we want to apply this description to single nucleon 

knockout and double nucleon knockout reactions. In double nucleon knockout the scattering 

amplitude vanishes without correlations and w ithout two-body (meson exchange) currents. 

Thus such experiments are a sensitive tool to  investigate these two effects.

In a first stage we focus our attention on obtaining a realistic description for the ground 

s ta te  of a double-magic nucleus. We are using the exp(S) coupled-cluster expansion to

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



calculate the ground s ta te  of l60 .  In our trea tm en t we follow closely the formulation of th e  

Bochum group [Ku-78]. However, we solve the equations entirely in configuration space. 

Furthermore, we truncate in different ways where the significance of term s becomes more 

transparent

Thecoupled-cluster method was invented forty years ago by C'oester and Kiimmel [Co-58. 

Co-60]. It was not until nearly twenty years la ter [Ku-78] th a t the coupled-cluster m ethod 

was used to carry out the first detailed calculations of larger nuclei with realistic interac

tions. The idea behind this formalism relies on our ability of expanding the model nuclear 

wave function in the many-body Hilbert space in term s of two Abelian subalgebras o f multi- 

configurational creation and their Herm itian-adjoint destruction operators. The expansion 

coefficients carry then the interpretation of nuclear correlations. The fact th a t we make no 

artificial separation between "short range” and “long range” correlations is one particular 

strength of this many-body method.

The derivation of the explicit equations is tedious, but requires only standard  techniques. 

The computation breaks down into two steps: fn the first step the G-rnatrix interaction 

is calculated inside the nucleus including all the corrections. This results in am plitudes 

for the 2p2h correlations, which are implicitly corrected for the presence of 'ipZh and ApAh 

correlations. In the second step the mean field is calculated from these correlations and the 

single-particle Hamiltonian is solved to give mean-field eigenfunctions and single particle 

energies. These two steps are iterated until a stable solution is obtained. Calculations are 

carried out entirely in configuration space where a  3bhu  space is used.

The Hamiltonian includes a nonrelativistic one-body kinetic energy, a two-nucleon po

tential and a supplemental three-nucleon potential. We have chosen the Argonne v-18
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potential as the most realistic nucleon-nucleon interaction available today. The Argonne 

u ! 8  model is one o f a  new class of N N  potentials th a t accurately fit both pp and nn 

scattering d a ta  up to  350 MeV with a \;2/datum  near one. This necessarily involves the 

introduction of charge-independence breaking in the strong force. However, the two-body 

part of th a t interaction results in over binding and a too large saturation density in nu

clear m atter Therefore, the N N  potential is supplemented by a three-nucleon interaction 

including a  long-range two-pion exchange and a short-range phenomenological component. 

The Urbana-IX N N N  potential is adjusted to reproduce the binding energy of 3H and give 

reasonable saturation density in nuclear m atter when used with Argonne 1T 8 .

F u tu re  p la n s . Once the calculation of the l60  ground s ta te  is completed we intend 

to extend our formulation to address the calculation of discrete excited states as well as 

neighboring odd-even nuclei. With the programs working for odd-even nuclei we can then 

model the (e.e'N) reaction, where the final state has the asym ptotic form of a distorted 

wave times a discrete s ta te  of the (A-l) nucleus. However, this is not a solution to the 

Hamiltonian close to the origin, and thus the wave function needs to be modified in the 

region of the origin. Finally, we intend to apply this treatm ent to the two-nucleon knockout 

reaction. There we have three topics needing to be solved: (a) the inclusion of continuum 

states, for which we hope to gain experience by modelling the (e.e'N) reaction, (b) the 

treatm ent of correlations between the two emerging nucleons, and (c) the description of the 

(A-2) nucleus for the asym ptotic form of the final state and its modification around the 

origin.
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Chapter 2

Fundamentals.

2.1 N u clea r  M an y  B o d y  P ro b lem .

For a spherically symmetric nuclear system, consisting of both protons and neutrons, the 

to tal Hamiltonian is given as

H  =  E r‘ +  E ^  + E = T  + V .  (2 .1 .1 )
1 *<j i<j<k

In the second-quantization representation this becomes

H  =  Y L  a o h ^ i /* )  a3 +  ^  E  a »a 3 I *'2-v i ^ ) a ' a ^
a (3 &3~/5

+  ^  E !  I KaA' | ^C ) *ca6as • (2 . 1 .2 )
o t0~<56<_

where Greek letters label the single-particle states |a) =  jn ls jm j i  ^ in r ). with s =  ^ ,

| j  = I ±  and m T =  + ^ (  — -  for a proton (neutron). The parity of these states is (—1);.

We are searching for the N  particle eigenfunctions and eigenvalue E  of Hi

H \V)  =  E\'V) . (2.1.3)

2 .1 .1  S in g le -P a rtic le  R ad ia l W ave Functions.

We introduce the functions R ni of the variable x =  r / 6 . by their expansion into harmonic 

oscillator wave functions 'HOki(x), as

Rnl(x) = Y ,  -< iK 0 k i (x ) '  (2.1.4)
fc

6
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and subject to the normalization condition

T O O

/  x 2 dx Rni{x) R n'i>(x) =  Snn'$ti' . (2.1.5)
Jo

Then, the single-particle radial functions TZni(r) are defined in terms of the the radial 

functions R ni{x) such th a t they satisfy the normalization condition

[  r 2 dr Tlnl{ r ) n n,v {r) =  Snn,Su , . (2 .1 .6 )
Jo

Thus, we have

T^ni{r) =  -  Rni(x) ■ (2-1.7)

2
Note that the tail of the single-particle radial functions 7Zn/(r) goes like exp-  T  for large x 

or r.

2.2 N u c leo n -N u c leo n  P o ten tia ls .

Traditionally, nucleon-nucleon (NN) potentials are constructed by fitt ing np d a ta  for T  =  0 

states and either np d a ta  for T  — 1 (Argonne Ui4, Urbana Bonn potentials) or pp data 

(Reid. Nijmegen 78. Paris potentials), respectively.

Unfortunately, potential models which have been fit only to the np d a ta  often give a poor

description of the pp data , even after applying the necessary corrections for the Coulomb

interaction. By the sam e token, potentials fit to pp da ta  in T  =  1 s ta tes give only a mediocre 

description of np da ta . Fundamentally this problem is due to charge-independence breaking 

in the strong interaction. The Nijmegen NN  potentials represent one possible way out. 

However, these models are based on a partial wave analysis. Consequently, they differ in 

each partial wave and thus introduce nonlocalities from one partial wave to the next that
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are difficult to trea t in many-body calculations. Thus, the goal to const ruct a nonrelativistic 

potential that can be used easily in many-body calculations and tha t accurately fits both 

np d a ta  and pp data.

The Argonne U[8 potential [l] is an updated version of the nonrelativistic Argonne 

potential that fits both np d a ta  and pp data , as well as low-energy nn  d a ta  scattering  

param eters and deuteron properties. The potential was fit directly to the Nijmegen NIV 

scattering database, which contains 1787 pp and 2514 np data  in the range 0-350 MeV, and 

has an excellent per datum  of 1.09 . It was also fit to nn scattering length measured in 

d(~~,~f)nn  experiments and the deuteron binding energy.

The strong interaction part of the  potential is projected into an operato r form at with 

18 terms: A charge-independent p a rt th a t has 14 operator components (as in the older 

Argonne u l4  )

1. (Ti-aj. S i j .  L - S .  L 2. L2 (Ti • <jj. (L - S ) 2 (2.2.1)

TV - Tj .  (o-i ■ CTj) ( TV • T j ) .  S i j  ( T t • T j ) .  L ■ S  ( T,

L 2 {Ti ■ T j ) ,  L 2  ( 0 7  • ( T j) (TV • Tj ) .  (L ■ S ) 2 ( T i  ■ Tj  ) (2.2.2)

And a charge-independence breaking part th a t has three charge-dependent operators

Tij. (a t • (Tj) T,j. S\j TtJ (2.2.3)

where Tij =  3r- ,r- j — r,- - Tj is the isotensor operator, defined analogous to the Sij operator: 

and one charge-asymmetric operator

T:i  +  rzj . (2.2.4)

In principle, there could be more charge-independence breaking terms, such as L ■ ST ij  or
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S i j [T~ i - \~T~ j ) ,  but the scattering  d a ta  are not sufficiently precise to identify them a t present.

The potential includes also a  complete electromagnetic potential, containing Coulomb, 

Darwin-Foldy, vacuum polarization, and magnetic moment terms with finite-size effects.

2.3 T h r ee -N u c leo n  In te r a c tio n  M od el (U rb an a).

The model of the three-nucleon interaction presented below follows closely the formalism 

described in [Ca-83]. T he three-body force is introduced as the sum of two components: a 

two-pion-exchange (V2 - 3 //) interaction, given by the two-pion-exchange model of

the three-nucleon interaction; and a  repulsive R three-nucleon interaction, which was 

argued ([La-81]) to be necessary in order to help saturate  nuclear m a tte r a t reasonable 

density.

2.3.1 T w o -P io n -E x ch a n g e  In teraction .

VVe shall address first the case of the two-pion-exchange model (l-2- 3.v) of the three-nucleon 

interaction. The two-pion-exchange ( l^ A " )  can be written in the form

V-ixzn =  ^  A2-  {7-1 - t2 . r x ■ 7 3 }
e y e / .

X {(S i2r ( r i 2) +  0-1 *o-2Vr(ri2)). (Si3r ( r l3) +  a x • <x3V'(r*13))}

+ C 2 r  [ f l  ’ 7 2  , Ti  ■ 7 3 ]  [ ( 5’t 2 T ( r i 2 ) - f  CTy • (T2 V ( r 1 2 ) )  . (5 ' f3 ' 7~ ( +  CTl • 0 3  Y  ( r t 3 ) ) ]

+ ^ ( r 12 i  r 13) ( r l  • r 2  1 - T 3 }  { ( 5 i 2 +  0 1  - 0 2 ) )  . ( S 1 3  +  <7 \ ■ 0 3 ) ) }  ■ ( 2 . 3 . 1 )

Here Ylcyci. represents a  cyclic sum over indices 1, 2 and 3: r .  a  and are the isospin, 

spin and tensor operators, and { . } and [. ] denote anticom m utators and com m utators. 

The T(r)  and V”(r) are radial functions associated with the tensor and Yukawa parts of the
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one-pion-exchange interaction. The B (r l2. n 3) term  comes from the rr.V S-wave scattering.

Assuming the simple A (33 resonance) interm ediate-state model, for the Argonne vis  

potential one gets

7  f ' m ^ 2
= ~ n s r j  i t  ~ ~ 0 M m

C 'lir  =  “  A .2tt

B {r i2, r l3) =  0 . (2.3.2)

where /  and f~  are the irN N  and rriVA coupling constants, and E,lv is the mean energy 

denominator.

2 .3 .2  R ep u lsive  T h ree-N u cleon  In tera ctio n .

Following [Ca-83], we introduce the short range repulsive three-nucleon interaction ( V j y R)-

as

^3NR — Bo ^  T 2 ( r l2) F 2 ( r 13) . (2.3.3)
c y c t.

where the strength Uq is estimated to be 0.004S MeV for the L'rbana IX potential. This 

term  is meant to simulate the dispersive effects which are required when integrating out A  

degrees of freedom. These contributions are repulsive, and are taken to be independent o f 

spin and isospin in the Urbana representation.

2 .4  M atrix  E lem en ts C alcu lation .

M atrix elements of the NN  interaction can be specified either in particle-particle (pp) cou

pling or in particle-hole (ph) coupling. Both of these m atrix elements completely specify 

the interaction, and either set can be calculated from the other set.
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We define ph-coupled m atrix elements as

((13)a | V(r)  | (42),\)

-  Z  <->
jz—mz Ui m i j 3 -  m 3 | Ap )

T T l 1 T T 1 2  7 7 1 3 7 7 1 4

( _ ) i 2 -m a m4 h  _  m2 | Apz) (L2 | V(r) | 34) . (2.4.1)

Correspondingly, the pp-coupled m atrix elem ents are defined as 

<(12)a | K(r) | (34).\)

=  0*1 m i  h  ™ 2  I AaO 0*3 h  m - i I A/it) <12 I l ' (r )  I 34) , (2.4.2)
m 1 771277137714

where the relative coordinate is given as r =  r -2 — r 1.

The m atrix elements calculation is carried ou t using the ph-coupling: pp-coupled m atrix 

elements are then evaluated from their ph counterpart, using the relationship

h  h  A
((12)£ | V(r)  | (34)l) =  J 2  (~ )J3+m+L (2A +  1)

Ji h  L
<( 13).\ | V(r )  | (42).\) .

(2.4.3)

Conversely, we have

<(13).\ I V(r)  | (4*2).\) =  J 2  (~ )J3+m+L (2L +  1)
7i 73 A 

7i 72 L
((L2)f. | V{r)  | (34)l> .

(*2.4.4)

The foundation of the actual calculation is based on the following two lemmas.

Lemma 1 [Ho-61] For the particular case when the potential is factorized into parts de

pending only on the or r 3 coordinates, respectively.

V(r)  =  (O '( t ) ( l ) 0  F (fe,(2)) , (*2.4.5)
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ph-coupled matrix elements o f  the N -N  interaction are given by

■j* + 1
<(13)a I (UW{  1) 0  V '^ (2 ))  | (4*2).\) =  1 (1 || || 3) <2 || V™ || 4) 4 a  •

(2.4.6)

PROOF. According to the definition of the scalar product o f two tensor operators of 

rank k. we have

(< 7 « ( 1 ) 0  V'W (2)) =  5 3 ( - ) ? r ^ ( l ) l l * , (2 ) . (2.4.7)
t

We can calculate the m atrix elements of the l '7(A)(l) v l ^ ( 2 ) operator in the m-representation. 

using the W igner-Eckart theorem

( 1 2  | U™{l ) V™{2)  | 34) =  ( 1  | C/J*>(1 ) | 3) (2  | ^ ( 2 )  | 4) (2 .4 .8 )

_ /_W3—m3 (il mI 23 ~ m3 I k Q) y-(A-) ||

n/ 2  k  +  1

i - y * - ”1* - 2 m- 7,1 k ~ q') <2 II r (fc) II 4) . (2.4.9)
v ' lk  +  1

Finally, using the orthonorm ality of the Clebsch-Gordon coefficients, together with the def

inition of ph-coupled m atrix elements, Eq. (2.4.1), we obtain the desired result. Eq. (2.4.6).

Lemma 2 [Da-95] Consider the case when the spatial part o f the interaction has the form 

V(r) C ^ { r ) ,  with k some positive integer or zero. Then, we can separate the variables f\ 

and P2 as

V{ r ) C{k]{r)

=  £  ( ? t ,  ( M M  , A0) r j )

*..*a

C ^ r , )  3  C (A’2)( 4 ) l (i) (2.4.10)
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where

uikikr'k){rl , r 2) = ~  f  dp p2 Vk{p) jki{pr i) jk->(pr-2 ) (2.4.11)
'• Jo

and

/*oo

Vk{p) =  /  dr  r2 V(r)  j k(pr) . (2.4.12)
Jo

PROOF. Before detailing the actual proof. let us take a moment and introduce the 

unnormalized spherical harmonics by their definition in terms of the normalized spherical 

harmonics, as

c ^')(/:) =  y I ^ T i Vk^ h  (2-4‘13)

The unnormalized spherical harmonics satisfy the normalization condition

4 ,  i, 4„ „  - (2.4.14)

We list here some of their properties, which m irror the properties of the normalized spherical 

harmonics:

1 . C (0 )(f) =  1 .

2 . rm =  r  C t \ r )  .

3. [ C f  >(f)]* =  (- )*  C ^ ( f )  .

4. (/' || C<fc)(r) || I) =  v/27TT (/0 fcO I Z'O), with k  +  / +  /' even.

5. (C W (r) =  Pfc(cos£*?), where u  is the angle between r and p.
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6 . [C’(fcl)(r) © C (fc2)( r ) ] (t) =  (ki 0  k2 0  | A;0) C (t)(r). with Ar, +  k2 +  k  even.

7. C^fl * ( r ) C ^ ( r )  =  (Art O k2 0 | ArO) (Aq q{ k2 q2 | kq)  C jfc,(r)- with A:[ +  Ar2 +  k
kq

even.

Going back now to our lemma, we first introduce the asymmetric Fourier transform  of 

the operator V{r)C^k\ r )

v(A)(p) =  J d 3r V{r) C {k](r) exp( - i p - r )  (2.4.15)

and. conversely.

V '( r )C ^ (r)  =  J d 3p l d k^(p) exp ( i p - r ) .  (2.4.16)

Using the expansion of a  plane wave in spherical waves

exp ( i p- r )  =  4 -  ^  i‘ ji(pr) V)m(r) V'/’ (p) (2.4.17)
l

=  47r il ji{pr) (21 + I) P/fcos^) (2.4.18)
l

=  4jt ^  (2 /+ 1 ) j,(p r) (C ‘/J(r) (2.4.19)
l

and the orthonorm ality of the unnormalized spherical harmonics in carrying out the angular 

part of the integral (2.4.15), v^k^(p) becomes

v(k)(p) =  ^ rC (*> (p )fifc(/i) . (2.4.20)
2 tt

where

J /*oc
' d r r2V(r) j k (pr) . (2.4.21)
o

We use Eq. (2.4.20) to  calculate the operator V'(r)C'*fc*(r) from its Fourier Transform. 

From Eq. (2.4.16). we have

F (r)C 'W (r) =  Ml J d 3p Vk(p) C<k>(p) exp (p . r )  . (2.4.22)
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The angular part of the last integral can be carried out explicitly using the definition 

r =  r 2 -  r \. and applying Eq. (2.4.19) twice for exp (ip • r 2) and exp ( — ip • Ft ), respectively. 

Then, we combine some of the above properties of the unnormalized spherical harmonics, 

in order to evaluate the angular integral

J  C<f‘)(p ]C ^)(p )C f> (p ) =  ( - ) - »  (fct 0 fc2 0 I fc3 0> <Ar, cn k2 q2 I k3 q3) .

(2.4.23)

To conclude our proof, we recover the definition of a spherical tensor of rank k: 

r i (k)
[ C ^ t t )  0  C(*>>(r2) =  Y1 <*i 9l ft I *9) C<f‘>(ri) G ^ r V )  - (2.4.24)

7192
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Chapter 3

Coupled Cluster M eth od .

3 .1  T he U n co rre la ted  G round S ta te  W ave F u n c tio n .

We introduce the uncorrelated ground state . |0). as the "vacuum" or reference s ta te  of 

the many-body system . The vacuum must play [Bi-91] the basic role of a cyclic vector, 

with respect to which we can define two Abelian (i.e. m utually commuting) subalgebras 

of muiticonfigurational creation operators {c£}  and their H ermitian-adjoint destruction 

operators {Cn}. Thus, the prime requirement is tha t a rb itra ry  ket and bra states within 

the many-body Hilbert space may then be decomposed as the respective linear combinations:

w  =  J2 c * i ° ) : <*i =  ] £  < ° i c " • (3- i . i )

Here, the set-index n labels a general multiparticle cluster configuration, which in itself is 

defined with respect to the vacuum. For a number-conserving Fermi system, the standard 

choice for |0) is the single-particle shell-model (Slater determ inant) s ta te  formed from an 

antisymmetrized product of single-particle wave functions. T he creation operators {C^} 

then describe configurations formed with respect to  this non-interacting, closed-shell sta te  

by the formation of multiple pairs of single fermions in (particle) orbits unoccupied in |0 ) 

and single vacancies in the corresponding (hole) orbits occupied in |0 ). In this sense, we shall 

refer to the muiticonfigurational creation and destruction operators, simply as ph creation 

and destruction operators.

We assume such an orthonormal set of single particle wave functions exists. These wave
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functions are solutions to the single particle Hamiltonian given by the Schrodinger equation 

in the mean field. Then, the uncorrelated ground s ta te  is constructed as the single Slater 

determ inant which includes all the occupied orbits. In second quantisation language [Sh-74], 

this translates into

a I |0) =  0 :  ap |0) =  0 .  (3.1.2)

3 .2  T h e  C o rre la ted  G round S ta te  W ave F u n ction .

The model nuclear wave function =  |0) is w ritten in terms of the vacuum sta te  |0) as

|0) =  es t |0>. (3.2.1)

Here, is the cluster correlation operator, which is decomposed in terms of p/i-creation op

erators discussed in the previous section (C£ =  i ,  C{ =  aj^a/^ .C .t =  a ^ a ^ a ^ a / q ,  . . . ) ,

as:

S f =  S n C t . (3.2.2)
' n:n= 1

We shall use a variational approach in order to determ ine the coefficients S n.

A variation d'|0) orthogonal to the correlated ground state  can be constructed from any

operator as

*|0> =  e~s C t e - 3’ |0) =  e " s Cj, |0 ) . (3.2.3)

We have

(0|*|6> =  < 0 |C i |0 )  =  0 . (3.2.4)
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The variational principle requires th a t the Hamiltonian between the ground state and such 

a variation vanishes. Thus, we have

(0| H  5 10) =  (0| es  H  e- s  C* |0) =  0 .  (3.2.5)

We are thus led respectively to  an equation for the ground sta te  energy eigenvalue E  in

terms of the cluster correlation coefficients {Sn}. and a set of formally exact, microscopic, 

coupled nonlinear equations for these coefficients in which there appear no macroscopic 

terms like the energy E.  These la tte r equations are all of linked-cluster type, due to the 

nested com m utator expansion (Baker-Hausdorff identity):

es  H  e- s  =  H  +  [S. H] +  i  [S. [S. H]] +  - - - . (3.2.6)

and the fact tha t all of the individual components of S commute with each other, so that

each element of S in Eq. (3.2.2) is linked directly to the Hamiltonian. Furthermore, the 

otherwise infinite series of Eq. (3.2.6) also always terminates in this case after a finite number 

of terms, since each term in the second-quantized form of the Hamiltonian contains a finite 

number of destruction operators. Each commutator removes one a t or a a  from H. since 

all a  operators occurring in S commute with each other. We might say th a t es H  e-S  

represents the effective Hamiltonian as Eq. (3.2.5) represents the Hartree-Fock condition 

for the uncorrelated ground s ta te  with this effective Hamiltonian.

For the sake of the argum ent let us show that the system of equations (3.2.5) is equivalent 

with the previous CCM equations in the literature [Ku-78. Bi-91]. We s ta rt with the exact 

ground s ta te  Schrodinger equation

H  |0) =  E  |0> . (3.2.7)
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which we rewrite in the similarity-transformed form

e - sr H e s ' |0 ) =  E  |0 ) . (3/2.8)

By taking the inner products of Eq. (3.2.8) with |0) and the complete set of s ta tes  {Cn |0); n ^

0}, and recalling tha t the many-body Hamiltonian is a hermitian operator. H  =  H*. we get 

w hat appears to be the Hermitian correspondent of Eq. (3.2.5). Since all quantities here 

are real, we obtain the desired equivalence:

(0| C n e - sf H  es ' |0) =  (0| es  H  e- s  C \  |0> — 0 . (3/2.9)

3 .2 .1  T h e E ffec tiv e  O n e -B o d y  H am ilton ian .

To simplify the accounting of number of ph-excitations we use indices for the two-body 

Hamiltonian. Corrections due to the three-body part of the Hamiltonian will be discussed 

in the last section of this chapter. Explicitly we define

V ‘20 ~£^' / p i P 2 h i h . 2 a p l a p 2 a h 2 a h i  ^ 0 2 '

V lO  2^,PlP2fllP3apiap2aP3a h-l 2 ^ Pl/l2/ll/l3aP ia/>2a/l’ a/it =  V 0l ■

V o o  ^  P \ h -2 h i  P 2  a p ! ^ P 2 I

"b ^’^PlP2P3P-ia piap2aP'>a P3 "I* ^  h i h 2 h 3 h 4 a h i a h 2 a h < a h -  •

T o  =  T fc ,  k 2 a f c 2 .

Ho =  To +  Uo . (3/2.10)

Here Tq is the kinetic energy operator. The mean field Uq will be specified below. We will

assume that the orbits are eigenfunctions of this mean field Hamiltonian H 0 with

[Ho, a j]  =  cpa£ , (H0. a fc] =  - f f ta f t .  (3/2.11)
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Note here th a t the mean-field Uo is not unique and special assum ptions can be made in 

order to optimize the calculation.

VVe use Eq. (3.2.5) with n = 1 . C [ =  a^a^, where we write a ja*  |0 ) =  | Ip l/i) to obtain 

the equation establishing Si

0 = (0||To + Voi + [SlrTo] + [Sl,Voo] + [S2.Vlo] + [S3.V,o]

+±[Si,[Sl?Vl0]] + [Si,[S2,V20]] [Sr. [St. V20]] j|lplA).

(3.2.12)

There are similar equations th a t determine S2, S3. ... While these equations hold in any 

basis, there is one basis of particular convenience. This is the ninrimum overlap basis in 

which S i vanishes. Equation (3.2.12) results in the solution S i =  0 if the term s that do not 

contain Si vanish. The mean field basis is determined by the condition of the vanishing of 

Si and in the mean field basis we must have

0 =  (0||(Ho-U o)+Voi4-[S2 .V ,0] +  [S3. V20] L/H//) . (3.2.13)

Using Eq. (3.2.11), we can show that the expectation value (0|Ho|lpt/2) vanishes. Therefore, 

Eq. (3.2.13) becomes

<0|Uo|lpl/i>  =  <0| j v o i  +  [S2 ,V io] +  [S3. V 20] 11 LpL/t) . (3.2.14)

Thus those term s establish the elements in the one-body Hamiltonian m atrix tha t con

nect p  and h orbits. The equations establishing the higher order correlations in the mean
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field basis are

0 =

0 =

0 =

(O||v02 4- [S2 ,V00] 4- [S2,Ho] — [S2,Uo] + [S3, Vxo] 4- [S.t.V2o]

+  2 [^2’ ^ 20] ||2p"2/i) , (3.2.15)

(0||[S2,VOi] 4- [S3, Vqo] 4- [S3 ,Ho] -  [S3 .U0] 4- [S.,. V I0] 4- [S5, V 20]

+  2  [^2* [^2,V i°] 4- ^ 3 , [S2, V 2o] | |3 p 3 / i ) . (3.2.16)

(0| ^  [S3, Vox] 4- [S4, Voo] 4- [S4, Ho] 4- [S4. Uo] 4- [S5. V [0] 4- [Se, V 2o] 

4- | [ s 2, [S2, Vqo]] +  [S3. [S2, V l0]] 4- [s.„ [S2, V 20]' 

+ | [ S 3, [S3, V 20]] 4- ^ [ s 2. [s2, [S2,V 20] |4p4/i) . (3.2.17)

At this point vve will assum e th a t the orbits are eigenfunctions to the single particle Hamil

tonian Hq. This allows us to  solve these equations as

(0|S2 |2p2/i) =

(0|S3 |3p3/i) =

- ( O | | v 02+  [S2,V 00] -  [S2,U 0] 4- [S3. V l0] 4- [S , .V 20]

+ i [ s 2, [S2, V 20]] } ^ |2 p 2 A ) . (3.2.18)

- < 0 |{ [ S 2.V ol] 4- [S3, Vqo] -  [S3 ,U 0] 4- [S4 . V l0] 4- [S5. V 20]

(3.2.19)
1

s 2. [S2, V l0] 4- S3, [ s 2. v 20] ^=H3p3/i)H q

A similar equation allows us to  isolate S4 using Eq. (3.2.17).

We estimate tha t in our basis there are about 5 x 10° 'Ip'lh configurations and about 

8 x 109 3p3h configurations. While the number of 2p2/i configurations is quite accessible, the 

number of 3p3h configurations is prohibitively large, and we cannot store all these numbers. 

Thus we have to  implicitly correct for the presence of these correlations. We do this by 

inserting the solutions for S n with n>3 back into the equations and thereby obtaining a
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perturbation expansion in 1 [ E vh- VVe write this equation out up to second order for the 

Eq. (3.2.14) establishing the mean field

<0|Uo|lp lh )  =  <0 |V o l|lp l / i )  +  <0 | [S2, V 10] | Ipl/i)

-(01 [[s2, V01]. ^-V20] llplA) -  <̂0| [s2. [S2. V,o] 

+<0|jj[S2,Vol],^Voo],g-Va

Ho V20
| lp l/i)

| lp l / i ) .  (3.2.20)

This equation establishes the m atrix  elements of the single particle Hamiltonian Ho between 

particle and hole orbits. The m atrix elements between hole and hole orbits or between 

particle and particle orbits are not defined, and any definition may be chosen. As long as 

U 0 is explicitly kept on the right hand side of Eq. (3.2.18) the explicit choice is merely a 

question of how fast the resulting series will converge. However, a reasonable choice appears 

to be that form th a t we obtain if we replace in the matrix elements obtained in (3.2.20) the 

hole orbit with a particle orbit in order to get the matrix elements between particle and 

particle orbits and we change the particle orbit into a hole orbit in order to get the m atrix 

elements between hole and hole orbits. Reference [He-9Sb] gives a detailed account of the 

contributions included in our mean field as given by Eq. (3.2.20). Our choice for the other 

m atrix elements corresponds simply in turning the hole line into a particle line or vice versa.

The mean field orbits are the eigenvectors of this matrix, and the eigenvalues are the 

single particle energies. This procedure now fully defines the mean field used here even 

though it’s definition is not unique.
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3 .3  T h e  I n t e r n a l  H a m i l to n i a n .

The Hamiltonian is given in the center of mass as

.4  ^ .4

Hint =  2m ^  “  T c*r • (-3-3-1)
« ‘< j

where Text  =  P 2 / 2 M  is the kinetic energy operator of the center of mass (CM), and M  

is the total mass. This represents the energy in the center of mass frame. The internal 

Hamiltonian can be rewritten as

Hint
\  A  J  ____

J=L : < j  =  L

.4  ,  .4
P« ’ P jF(r,- -  rj) -

\ [

The p t- -p j / M  term will be treated  as part of the two-body internal potential

(3.3.2)

Knt(ri -  r,-) =  V ( r i  -  V j )  -  P‘^  . (3.3.3)

Since everywhere in our equations, the Hamiltonian H and the potential V  will be replaced 

by their internal counterparts, we shall drop, from now on. the int subscripts.

3 .4  O b s e rv a b le s .

Ground s ta te  expectation values can be evaluated by introducing the operator S* as in the 

normal coupled cluster method as presented in [Bi-91]. The normalized expectation value 

a of any operator A can be worked out as

=  (0| es  A es> 10) =  (0| es  A e~s es es< |Q)
<0|0) <010> ' ’

By inserting the unity operator in the {Cn |0 )} basis, we obtain

a =  (0| es A e - s |0> +  £  <0| es  A e- s  C* |0) M i ?  l°> . (3.4.2)
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The expectation value on the right is by definition cn, the expectation value of C„. Thus 

we can define the new operator

X
S* =  £  cn Ct . (3.4.3)

n = l

With this, the expectation value for any operator can be expressed as

a =  (0| es A  e- s  ( l  +  S f) |0) . (3.4.4)

Using the Baker-Hausdorff identity

es A  e_ s  =  A  +  [S. A] +  i [ S .  [S. A]] +  - • - (3.4.5)

we obtain for the expectation value an arbitrary operator A

a =  (0 | A S f | 0) +  (0 | [S, A] S f | 0) +  - - - .  (3.4.6)

The operators can be obtained by solving Eq. (3.4.3) in an iterative fashion. Explicitly

we write in the same form as Eq. (3.2.2), with S* defined by its decomposition in terms

of pA-creation operators:

s '  =  f ;  4  S» C t . (3.4.7)^—* n !
a = l

Finally, in order to make connection with reference [Bi-91]. let us mention that the

previous procedure is equivalent to parametrizing the bra ground s ta te  wave function (0 | as

<0| =  <0| S e - s ' . (3.4.8)

The bra ground state  wave function (0| is the counterpart to the ket correlated ground 

sta te  |0) given by Eq. (3.2.1).
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3.4 .1  G round S ta te  B in d in g  E n ergy .

We first apply this procedure to the ground s ta te  binding energy. The expectation value of 

the Hamiltonian can be written as

(E)  =  <0| es  H  e~ s  ( l  +  S f)  |0) (3.4.9)

Because of the Hartree-Fock condition expressed in Eq. (3.2.5) the term s involving S* vanish

and we get

(E)  =  (0| es  H  e- S  |0 ) . (3.4.10)

Assuming that H  is a t  most a two-body operator and taking into account tha t S i vanishes,

the last equation becomes

(E)  =  (0| H  |0) +  (0| S2 V 20 |0 ) . (3.4.11)

This expression needs to be modified if three-nucleon interactions are present. Also, this

expression does not give an upper limit of the ground sta te  energy unless we are exactly at

the minimum. In term s of m atrix elements the energy can be written as

(E) ^  +  — 'y '  1 ~ ^  ' Epi p2 ,h\ hi  ̂P\!'2 -h-lh2 (3-4.12)
h\h? h\ fi2 P iP2^i^2

3 .4 .2  G round S ta te  O n e -B o d y  D e n sity .

By definition, the ground sta te  one-body density is introduced as

.4

p(f)  =  J 2  <0 | S(r — Fk ) | 0) (3.4.13)
fc=i

Since we are dealing with a  spherically sym m etric nucleus, we shall integrate out the angular 

degrees of freedom of the system. Then, we write the one-body density operator for a  doubly
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magic nucleus, in second quantisation, as

p°P(r) =  P*f3{r )  a* a ,3 . (3.4.14)
Or J

Here we use /30(a(r) =  R a (r) Rpir)  to denote the  radial part of the expectation value 

(a  | S(r — r') | (3). Thus, we have

Pir ) =  d ° 3  R a ^  R ‘3^ (3.4.15)
&Q

where the one-body density m atrix is obtained using Eq. (3.4.4). as

dQ0  =  (0| a£ slq |0)

= (0 | â â  |0) 4-  (0 | [s2, a£a,j s£ | 0)

+ (0 | a £ S {  | 0) 4- (0 | S2. a^as S{ | 0)

+  (0 I S3, a£a,jj I 0) 4- (0 | S3. a.^a.j S.f, | 0)

+ ^(0| [s2, [S2, a* a*]] S.; |0) 4- •••- (3.4.16)

The density matrix is a real symmetric m atrix  with positive definite eigenvalues. We 

can make a basis transformation such th a t the density m atrix becomes diagonal. T his basis 

represents the "natural” orbits. In this basis the density becomes

p(r) =  J 2  < at [ ^ “V ) ] 2 (3.4.17)

Here u"at represents the occupation probability o f these natural orbits. This is th e  only 

basis in which occupation probabilities have a meaning.
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3 .4 .3  G round S ta te  T w o -B o d y  D en sity .

VVe s ta r t with the ground state  two-body density definition

P ( f i , r 2) =  ^  (0 | S(Fi -  rm) S{r2 -  rn) | 0) . (3.4.18)
m n

In the second quantization representation the two-body density operator can be written as

P°v{r l, r2) =  (ad  | p(ru r2) | -fd) a£  a j  a ,5 a-.
a3~/S

(3.4.19)

Using the completeness relationship of the spherical harmonics

S{d>- 0 ') S (cos(0) -  cos{9')) =  ^  Yin(r )  Ylm (/'•') (3.4.20)
lm

we can evaluate the m atrix element

(ai3 | p (ru r2) | ~fd) = ^  Ra(i'i) R-,(ri) ( r t ) ( j , ,ma | V |
l \ m  1

^ 2  Ra{r2) Rs(r2) Yi2m2 (r2) ( j jm . j  | | j 5 m s) .

(3.4.21)

In order to  be consistent with the phase convention of the two-body potential m atrix ele

ments. we couple the two-body density m atrix elements using the ph angular momentum 

coupling conventions. Using lemma 1. the angular momentum coupled density is

((^ T h  I PXtt{F\, r2) | (Sf3)\) = Pa->(r i) Psa(r2 ) 2a + ~  V^ 2) . (3.4.22)

Here we have introduced the one-body multipole density P'^j(i') which is 

=  ( - ) J " + 1/ 2 R a(r) R 0 {r) (/* || I'v J |  .;>>

=  ( _ ) A + i  ^ t 2_J °  +  +  L). U o l / 2 h  _  1 / 2  | A 0 )  R A r ]  R i 3 { r )  ( 3 . 4 .*2 3 )
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if £a + I $ + \  is even, and zero otherwise.

For a spherically symmetric (spin=0) nucleus it is more relevant to calculate p(ri,  r 2, # i2) 

as due to the spherical sym m etry the two-body density is dependent on the direction of ri 

alone. Thus, we can perform an average over the directions o f r>. This translates into 

carrying out the sum over the p  component of the angular m om entum  A. VVe obtain the 

result

Pa0 -<s{r ^ r2 -en )  = Ps3 (r2) P\(co.s6 i2) (3.4.24)

Finally, in order to complete the ground sta te  two-body density calculation, we apply 

again Eq. (3.4.4) to evaluate the two-body density matrix. (0| a£ a* a j  eu. |0). With this, 

we get the ground sta te  two-body density as

p ( r i . r 2 J l2) =  (0 |p * p |6 >

=  (0 |p*p |0> +  (0 |/C S .t|0 >  +  ( 0 |S 2/).r!0>

+  ( 0 1 [So, P lp] s* 10) +  ( 0 1 10)

+  i ( 0 1  [So. [So. p'?}} 10> -j .

(3.4.25)
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3.5 T h ree -N u cleo n  In tera ctio n  C o n tr ib u tio n s

In this section we will review the corrections necessary to take into account the three-nucleon 

interaction as part of the general nuclear interaction. As discussed before we consider the  

three-nucleon interaction as the sum of two components: a long-range two-pion exchange 

and a short-range phenomenological com ponent.

Given the form (2.1.1) of the Hamiltonian, we write the operator l^ y  in second quan

tization as

Here, the m atrix elements are given as integrals involving the single particle sta tes (including 

spins)

The last property is a  consequence of the cyclic sums involved in the definition of the inter-

In previous applications the approxim ation has been made th a t such an interaction can

(3.5.1)

Kil6lci,a262C2 =  « ( 1 ) < 5 6i(2)<M 3) I t'3.V | U )06, (2)O,, (3)) . (3.5.2)

In addition to being symmetric with respect to the interchange of the particles labelled 2

and 3

(3.5.3)

the integrals (3.5.2) also satisfy the sym m etry

(3.5.4)

action, which make the interaction invariant with respect to the labelling of the particles.

be represented by a density dependent two-body interaction. While such a substitution is
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the easiest modification, it has been sta ted  th a t this is insufficient [C'a-83]. However, the 

rigorous inclusion of the three-nucleon interaction in configuration space using the coupled- 

cluster method is seriously hampered by our present computing capabilities and the neces

sary size of the configuration space. Ideally, we would like to  calculate all integrals of the 

form (3.5.2) without any artificial restrictions. In practice though, we must limit ourselves 

to calculating matrix elements of the form

where a  and (3 cannot both denote particle orbits for arbitrary a l 6 1 .n > .6 2 . We are then

binding energy, the leading orders in our expansion are treated rigorously correct. Then we 

make a reduction of the three-nucleon interaction to an effective two-body interaction, and 

use this effective interaction when dealing with higher-order corrections (Sn, n >3). This 

is achieved by defining the effective two-bodv interaction as

I'or a [ 6i ,,3 <1263 a n d  ai&t .02 .3 62 (3.5.5)

faced with a compromise: Since m atrix elem ents of the form (3.5.5) are all we need in order

to calculate exactly the first- and second-order (So) contributions to the mean-held and

(3.5.6)

where we define the matrix element to be equal to

h

(3.5.7)

The definition (3.5.7) has been inspired by the form of second order (So) contributions to
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the binding-energy and has the additional advantage of being fully anti-symmetric, so th a t 

all procedures developed when dealing with the nucleon-nucleon interaction [Mi-98a], can 

be naturally extended to handle the three-nucleon interaction. Note that the first two term s

three-nucleon interaction in the calculation of the binding-energy and mean field using 

the coupled-cluster formalism.

3 .5 .1  B in d in g  E n ergy  C orrection s.

We are only interested in the total binding energy when the wave function satisfies the 

Hartree-Fock conditions. Thus, it suffices to com pute

in Eq. (3.5.7) are equivalent to the standard  density-dependent reduction of the three-body

force.

We shall now detail the changes necessary to  take into account the effects of the

(E> =  (0 1T 10) +  < 0 |V |0>  +  ( 0 |S 2V |0>  +  (0 | S3V.3 .v | 0) . (3.5.8)

The first order corrections to the binding energy are due to the expectation value of the

three-nucleon interaction in the uncorrelated ground sta te . We have

<0 ( V3jv ( 0>

f/11/12/13./13/12/11 d” ^h\fi2hs .hoh^hi 1 h\ /12/13./12/11 /13 (3.5.9)

Using the symmetries (3.5.3, 3.5.4), the last equation becomes

( 0 |V 3 jV|0 )

(3.5.10)
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VVe notice that only the first two term s in Eq. (3.5.10) have the form (3.5.5). However, in 

this particular case, it is a  simple endeavor to calculate the missing third m atrix element. 

We find tha t the m agnitude of this term is small compared to the sum of the term s (3.5.5). 

Second order contributions are calculated exactly as

<0 |S2V|0> = (2ljl E s”. ■ (3.5.11)
Plh-lP2^2

At the present time, the third order corrections have not been evaluated. We intend to 

closely investigate their size, however, access to a supercomputer is necessary. We will 

report on our findings as soon as results will be available.

3.5 .2  M ean  F ie ld  C o rrectio n s .

In our approach to the coupled cluster formalism, the single particle orbits are eigenfunctions 

of an mean-field Hamiltonian, defined as the sum of a one-body kinetic energy term  and 

a one-body mean-field potential. The later is not unique, and in the maximum overlap 

hypothesis S t =  0 , the mean-field is defined as

(0 |U o|lp l / i )  =  <0|jv  +  [S2 ,V ] +  [S3 ,V ]||L p L A ). (3.5.12)

Correspondingly, the contributions due to the three-nucleon interaction can be w ritten as 

the sum of three terms

(0 | V 3iVaJaft | 0) -I- (0 | [S2, V 3,v] aja/, | 0) +- (0 | [S3. V 3.v] a£ah | 0) . (3.5.13)
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In leading order, the three-nucleon interaction correction of the mean-field is given as

( 0  I &-p&h | 0 )  ~  ^  h ihn  h;h\h2 p I h i  h h i .h i h i  P  d "  ^ hih2.hxhi,p.hi
hth2 1

^kih-2 h.,hi p  h-2 d“ ^h.2 h hi .h[h2 p I ’ hi /it h.h2 hi p ^  •

(3.5.14)

Again, using the symmetries (3.5.3, 3.5.4). Eq. (3.5.14) becomes 

< 0 |V 3iVa {a fc|0>

^   ̂ j X  ^ h i  h2 h ,hi h2 p ^ h i h  h2 . h ih 2 p d~ I 'h i  ho h.h2 p hi X   ̂ hi hi h.h2 hi p ( •
h ih 2 1 1 '  )

(3.5.15)

The second- and third-order contributions in Eq. (3.5.13) look very similar when one 

uses the proposed reduction of the three-body force. Eq. (3.5.7). for the account of the ZpZh 

correlations. Then, by making use of the full anti-sym m etry of So and 'V^x^en we can show 

th a t the required corrections can be w ritten as

^  1 I ( ^ /lP lP 2 .P * l/>2 2  \ 'hp iP 2 ,h i  p h i  j  Z p ip2.h l hi

_  ( v  _  .i v  \  (pJn  I * 2 .v I i>uh)
I V f l  h \ h . 2 . p  P l p 2  ^  * t l h i h . 2 * p i  p  p 2  ]

PiP2hihn

€ph. "f" €p\h\ I

(3.5.16)
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C enter-of-M ass Corrections.

For the proper description of a scattering  process one assumes a nuclear wave function tha t 

factorizes into a nuclear center-of-mass wave function, which is taken to be a plane wave, 

and an intrinsic wave function of coordinates relative to the center-of-mass. The difficulty 

lies in the ansatz of the wave function as a  Slater determ inant. Such a wave function 

generally does not factorize into a  center-of mass wave function and a wave function for the 

nucleus relative to its center-of-mass. Furthermore, for the cases where it factorizes, the 

center-of-mass wave function is not a plane wave. While this is negligible for heavy nuclei, 

it is a significant correction for nuclei like l6 0 .

The calculation usually gives the form factor of the one-body density labeled Fsd(q) 

whereas the experiment requires th e  form factor with respect to the center-of-mass, labeled 

Fint(q). In the special case of a single Slater determinant of harmonic oscillator single

particle wave functions, it has been shown tha t the wave function factorizes with a  center- 

of-mass wave function being a G aussian. This allows us to calculate the form factor in the 

form

Fsd(q) =  e ~ ^ 2/A Fint(q) (4.0.1)

where b is the harmonic oscillator length parameter. Because of this exact result it has been 

customary to  apply such a correction also in cases where the single particle wave functions 

are not harmonic oscillator wave functions and where the presence of correlations has been

34
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substituted by an effective interaction.

An alternate way [Mi-98b] to deal with this is to calculate directly the form factor in 

the center-of-mass system. This way the operator can be written as a series of one-body, 

two-body, .... to A-body terms. In this chapter we first compare such an expansion with 

the exact result, for the case where such a result is available. We then apply the same 

expansion to a realistic wave function of l6 0  and compare it to the corrections implied by 

equation (4.0.1).

4 .1  T he Form  F actor o f th e  d e n s ity

The charge form factor at momentum transfer q is given in Born approxim ation [Ta-59] by

Fint{q) =  (do I Y 2  h-(q2) e‘*r'k | do) • (4.1.1)
k

where ®q is the translationally invariant ground state, r ' t  the distance from the center- 

of-mass to the Arth "point" nucleon and fk (q2) the nucleon form factor, which takes into 

account the finite size of the nucleon k.

The center-of-mass correction has to  do with the fact that the origin of the shell-model is 

not the same as the center-of-mass of the nucleus. Since the many-body Hamiltonian is not 

translationally invariant, then the model ground state is not translationally invariant 

either, and thus can lead to incorrect description of observables, especially in small A nuclei.

W hat we need to establish is the relationship between the model quantities expressed in 

term s of the coordinates of the laboratory system (rt. k = 1 .. .A), and the intrinsic ones 

(r'k =  Ot — Rem, k =  1 . . .  A — 1 ). measured from the center-of-mass of the nucleus

1 A
Rem = 7 ^ q - .  (4.1.2)

k= i
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Formally, this may be viewed as a change of coordinates, from the coordinates of the 

laboratory system f t  to the coordinates of the center-of-mass system { Rrm. r 'k}. followed 

by the removal of the dependence upon Rem from the model wave function l-e- we

have to construct the intrinsic wave function [Lp-58]

4 M)(Pk) =  J G (R cm) ^QXn(Rem. r'k) dRcm (4.1.3)

independent of for an arbitrary function G(Rcm)-  Note here that, in this formalism, 

the well-known Gartenhaus-Schwartz transform ation [Ga-57. Gi-6 8 ] corresponds to taking 

G{Rcm) = &(R-cm)• It is clear now tha t the arbitrariness of the G{Rcm) function causes 

some troubles: Since there is no reason to choose a  particular G(Rcm)- it has been pointed 

out that the center-of-mass correction for a  given model wave function is not uniquely 

defined [Lp-58]. Nevertheless, the various recipes yield the same result in the limit of the 

exact wave function of a free nucleus [Fe-71].

The exact nuclear wave function consists o f two factors, one of which is a  plane wave 

in the center-of-mass coordinate, the o the r being the intrinsic wave function Oq of

the relative coordinates [Ub-7l] r'*.,

<50 ( r t • • - r 4) =  e‘̂ cm Oo('-'t . (4.1.4)

For an approximate model wave function however, all we can hope for is to be able

to obtain the decomposition

^ A/) =  °cm(Rcm) 0 {OM ){ r \  ' ' ■ ? A) • (4.1.5)

which is approximately correct to the extent th a t the motion of the intrinsic coordinates
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and the center-of-mass are not correlated. Only then, the factorization

Fsdiq) =  Fcm(q) Fint{(7) (4.1.6)

is possible. To th a t approximation, and assuming th a t the model provides indeed a good 

description of the internal structure of the nucleus (<J>0  =  [Ba-61]). equation (4.1.6) is

valid with [Fe-71]

Fintiq) =  < ^ 'W) I Y  A fo 2) I * loU)) (4.1.7)
k

and

Fcmiq) = (<&oU) | I <$‘/V/)) . (4.1.8)

The form factor (4.1.7) can now be calculated directly by carrying out an expansion in 

terms of many-body operators:

F i n t ( q ) = Y  J J  c - '^ m / .A  . (4.1.9)
k \  m^k  /

Each exponential in equation (4.1.9) can be expressed in term s of the one-body operator

which we define by

/O f ■ rm) =  -  1 - (4.1.10)

With this we write the form factor as

Fint(q) =  Y  M q 2) ] }  (I +  Fm/ A ) ) \  (4.1.11)
k  \ ta j i k  /

= Y  Afa2)
k

+ Y  M*2) E  (eiq~FklA- l)/A f-(q-rm/A))
k mjik

+ \ Y  /fc(92) Y  (cl̂ {A' l)/A f ’(q-rm/A) n q - r J A ) )  +  .
k m,n^k

(4.1.12)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



3 8

We intend to apply our formalism to the particular case of doubly magic nuclei (160 ) .  Thus, 

we can use the spherical sym m etry of the nucleus to simplify calculations, in the sense tha t 

the form factor Fint (q) should be spherically symmetric too. and we can in turn average the 

form factor over the directions of q. We introduce then

F i n t ] {q)  =  ^ z f  F i n t i q )  c m , . (4.1.13)

This allows us to write the different terms in equation (-1.1.12) using the second quantization 

formalism, as follows:

o n e -b o d y  te rm

£  fa (q2) (a \ j o ( q r i ( A -  l)/.4 )[d ) (4.1.14)

tw o -b o d y  te rm

£  (2 1 + 1)
L

£  f a (q2) (ai3 \ j L ( q r d A - l ) / A ) f L(qr2/A )  ( c [ L) I C f  >) | ~ s )  a ^ a ^

(4.1.15)

th re e -b o d y  te rm

£  i L ' - L ' ~ L* (•2L2 + 1 ) ( 2 L 3 + 1 ) ( L 3OL20 | L 10) £  f a (q ~)
L\Li Li

x ( ai3-(

ctŜ SOC,

J l x ( < n ( - 4  -  l ) / . 4 ) / £ , 2 (<7r2 / . 4 )  f L i i q r s / A )  (c[Lx) 0 (Li)
6 6  C

(4.1.16)
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where we have introduced f i (qr) = ji(qr) —Siq, and ji(qr) are the spherical Bessel functions 

of order /. Note th a t the conversion to second quantization allows for all restrictions in the 

sums (4.1.12) to be dropped.

4.2 H arm on ic  O scilla tor  S h e ll-M o d e l C alcu lation

We would like a test of convergence for the proposed manv-body expansion. VVe recall that 

Eq. (4.1.6) is always exact if is expressed in terms of harmonic oscillator wave functions, 

provided tha t the center-of-mass wave function Ocm is in one given harmonic oscillator state. 

Then, the extraction of the center-of-mass coordinate can be done analytically. Elliott and 

Skyrme [El-54] have shown long time ago, tha t if the shell-model sta tes are nonspurious. 

then the center-of-mass moves in its ground state and is described by the Is  harmonic 

oscillator wave function

( R-cm ) — ^ _3 ^6 ̂  _ eXP
R 'L (4.2.1)

2 i 2

where b is the harmonic oscillator length parameter. The center-of-mass form factor can 

also be evaluated explicitly

F ™ {q)  =  e -T 6V M .  (4 .2 .2 )

The correct translation-invariant form factor is thus given in terms of the shell-model form 

factor by

Fint{q) =  eT62*2/-4 Fsd(q).  (4.2.3)

i.e. Fac{ must be corrected by dividing through Fcm(r/). Note tha t, since the uniqueness of

the procedure of carrying out the center-of-mass corrections has been questioned, the use of
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the equation (4.2.3) has been suggested even in the case of a more general nuclear s truc tu re  

model [Ub-71].

We will exploit the analytical nature of these results by testing how fast does the many- 

body expansion (4.1.12) converge. The shell-model wave function <&o^ for th e  harmonic 

oscillator potential is an independent particle wave function, represented by a sim ple Slater 

determ inant of single-particle orbits. This s ta te  is what we shall call the uncorrelated 

ground s ta te  |0). By taking the expectation value in the model ground sta te  =  |0),

of the one-, two- and three-body operators in equations (4.L.14). (4.1.15) and (4.1.16). the 

following relevant expectation values are obtained:

<O|a£a0 |O> =  Sa 0  (4.2.4)

(° I a aa 3a*a 7 I °) =  $*->$35 ~ t>a5t>3~, (4.2.5)

(0 | a£a£a£aca fla j  | 0) =  SaS (d30d./(: -  53<d.tg) -  Sa0 {S:isS.,c -  d.3<:d\s)

+  (d.U'Kt/ -  <\iob-,s) ■ (4.2.6)

Using these results and following a straight forward but laborious calculation, the translation- 

invariant form factor for the harmonic oscillator shell-model can be computed com pletely up 

to the third-order in the many-body expansion (4.1.12). The various com ponents involved 

are presented here, by their corresponding term of origin in the many-body expansion.

O n e-b o d y  te rm . There is only one contribution to the one-body term of

HOI =  T  fn!j(q2) (27 +  1) r  n ° 2nl(r) M ^ r )  r 2 dr . (4.2.7)
nlj

where 'HOni(r) are the usual radial harmonic oscillator wave functions. Note th a t, in the 

previous equation, HOl is actually the Fourier transform of the one-body density folded
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with the appropriate nucleon form factor, i.e.

HOI =  f p [  P o \ r )  j 0 (±=Lqr) r2dr  +  f n f  p ^ ’{r) j 0 ( ^ L q r )  r 2 dr ,
Jo Jo

(4.2.8)

where />QP^(r) and Pon\ r ) a re the proton and neutron one-body densities, respectively, 

corresponding to the uncorrelated ground state |0).

T w o -b o d y  te rm . Two different components contribute to the two-body term  of F-*"\q):

1. one component corresponding to the direct contraction S^ S . js '-

H02dr =  Y  (2/i +  1) [  j Q(qri(A -  l ) / A ) r l d r l
nihjl 0

X  Y ,  (2J2 +  1) r  H O l 2 h (r2) fo(qr2 /A )  r h l r 2 : (4.2.9)
n-ihh 0

2. one component associated with the exchange contraction 8 ^ . 6 .^:

H 02ex =  Y  f niiu l .n2hj , ( r ) Y , ^ L + ^  IK ’(r,) II ( l 2 ± )h ) Y
. ''.2l2}2 L

X  f  'HOniil (r l )'HOn^i-,(ri) j L(qri(A -  l ) /A )  r fd r i  
Jo
J roo

' U O niil {r2 )UOn2u{r2) A (? r2/.4) rjdr-z . (4.2.10)
o

where the pair of indices of the nucleon form factor f { q z) indicate tha t the two orbits 

denoted as (n i l i j i ) and (n2 l2j 2) have the same isospin.

T h re e -b o d y  te rm . The three-body term contains six contributions to F-'^K ou t of which 

two are identical due to the fact th a t, in equation (4.1.16). the radial and angular parts of 

the operator dependent upon the coordinates of the 2nd nucleon are the same as the radial
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and angular parts of the operator dependent upon the coordinates of the 3rd nucleon. The 

different com ponents of the three-body term  (4.1.16) are listed below:

1. term 3.1 {8 as8 3 g8 ^ ) :

H 03i =  E  f ru h h iq 2) (2j'i - f l )  f  W - O l ^ r i )  j o i q r ^ A  -  l) /.4 ) r \ d r v 
nildi Jo

E  (2 J2+ 1) f "  n O l 2 h (r2) MqroJA) r j d r 2 

n-2h h  ^

E  (2i3 +  l) [  fo(qrz/A) r$drz : (4.2.11)
don3hj3

2. term 3.2 {8as8 3 <:8^g):

H °3 2 = -  E  fnihhiq2) (Vi + 1)
niliji

E ( - 1 ) L(2 L +  L) ' K 0 1nxî  (r*i) jo(qri(A — l)/.4) rj dry
L  J 0

E \ \C (L) || { l^k)h)  J U O nxlx{r)'HOmjAr) f i i ^ q r )  r2 dr
n 2 ̂ 2J2 * n3̂ 3J3 °

(4.2.12)

3. term 3.3 (8 ag8 3 s8 .^): is equal to term 3.6 {8 a(i8 3 g8 -is):

H 033 =  H 036 =

E f n r h h . m l ^ q 2 ) E ('2 L +  l ) ( « ' i V J i  IK', ( t ) ll ( l 2 k ) h ) ) 2
r2j2 L

Jr  c c

'HOniil (ri) 'HOn2 i2 {ri) j i { q r l (A -  1 )/.-l) /*f r/rt
o

J roo
1 n O nill (r2 )UOn2h (r,) f L(qr2 /A )  r i dr2 
o

E (2J3 + 1) [  H O i 3h (r3) f 0 (qr3 /A )  r* dr3  : (4.2.13)
do

mb Ji»»vd2j2
r-OO

hjz
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4. term 3-4 (Sae^0 c^~,s) is equal to term 3.5 {5a^5gs5^g): 

H 034 =  H 035 =
j i +j i J2  + J 3

~  fni l ij i ,n3l3j3{Q ) (21 .2+ 1) ^  (2Z-3 +  1)
n i h i l ,  H3/3J3 Tl2hh  £-2=|ji — J21 £-3=|j2—J3i

E L+L o+L-^ /  ~  -  —

( - 1 ) -----2 n /2 L  +  1 ( L 20 L 3Q I LO)
Lz L L2

j l  J2 J3

({likh'i II C'(£,) II [  'KOnih{r]) 'HOnzi2 {rl) j ^ q r ^ A  -  Y ) / A ) r \ d r l
Jo

( { h k ) h  II C'(£,2) || ( /i^ ) ii)  [  WOn2/J (r2)?10ni/l ( r2) /h-,(<7r 2/-4) r.> d r2
Jo

((^3j)i3 II C ^ )  II { h k ) j 2 ) [  W.On3 l3 {r3 )'H-Omu(r3) f Lz (qr3/ A ) d r3 :
Jo

(4.2.14)

In Fig. 4-1 we illustrate the convergence of the many-body expansion (4.1.12). for the 

case of the 4He and l60  nuclei, respectively. The solid line represents the exact form factor

—  exact solution
 HOi

 H01+H02
 HOI+HO2+H03

lc-1 lc-1

Ic-2

Ic-3

. lc-4 Ic-t

Ic-5 lc-5

 exact solution
 HOI

 H01+HO2
 H01+H02+H03

lc-7 le-7

Ic-K

0 3 4 5 0 4 5

(a) 4 He (b) IeO

Figure 4-1 Convergence of the many-body expansion (4.1.12) of the charge form factor, for 
the harmonic oscillator shell model case.

in the center-of-mass system, as given by the formula (4.2.3). The agreement is excellent
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for a momentum transfer q < 3 fm-1 , and remains reasonable good for q up to 4 fm_ l . It 

is expected tha t the size of the contributions due to correlations (as presented in the next 

section), is more im portant than the error m ade by ignoring higher order terms in the many- 

body expansion (4.1.12). Also, it is worthwhile mentioning tha t a correction expected to 

become increasingly im portant for high values o f the momentum transfer, is the contribution 

due to the meson-exchange charge density [Sc-90]. However, the inclusion of this correction 

is beyond the purpose of the present discussion. We conclude that truncating the calculation 

at the third-order gives us a  good approxim ation of the center-of-rnass correction for the 

independent-particle model wave function case.

Note tha t leaving out the three-body term  in the case of the **He nucleus, would result 

in an unacceptable description of the form factor distribution -  false minima are located 

at a momentum transfer q as low as 3.6 fm-1 - , whereas in the case of the l60  nucleus, 

the charge form factor changes very little by including the three-body term. This is an 

indication th a t expression (4.2.3) can be viewed effectively, as a l/.-l power expansion of the 

charge form factor. Therefore, as we consider the applicability of the expansion (4.2.3) for 

higher values of .4, it appears tha t we can safely drop higher-order terms in the many-body 

expansion and still hope for a good description charge form factor..

To conclude our study of the convergence of the many-body expansion (4.1.12), let us 

investigate the influence the given order of approxim ation has on the inferred mean square 

charge (rms) radius. It is well known tha t in the limit of low q the form factor can be 

approximated as

Fint(q) =  1 -  jj:f/2 (r2) (4.2.15)
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Table 4.1 Convergence of the  mean square charge radius for the case of the 4He and l60  
nuclei, and the harmonic oscillator shell model.

O rder of approximation 4 He t60

HOI 1.285979 2.250000
HOI +  H 02 1.484927 2.371708
HOI +  H 02 +  H03 1.484922 2.349467

exact value 1.484924 2.349468

and thus is a measure of the rms radius. Table (4.1) shows the convergence of the mean 

square charge radius for the case of the 4He and l60  nuclei. These results show that the 

rms radius is little affected by any corrections beyond the two-body term of the expan

sion (4.1.12). By including the three-bodv term in Eq. (4.1.12). the rms radius remains 

virtually the same in the 4He case, and changes by less than 1 % in the IhO case.

4.3 R ea list ic  N u c lea r  W ave Function  U sin g  th e  exp(.S’) M eth o d

VVe shall apply now our formalism to the case of a more complicated model wave function 

and the particular case of the l60  nucleus. As advertised, the nuclear wave function 

=  |0), has been obtained using the coupled cluster m ethod (or the exp(S) method) 

together with a realistic interaction [He-98aj.

The formulas obtained in the previous section are not enough anymore. By replacing 

the radial harmonic oscillator wave functions. H O ni by the radial part of new the single

particle wave functions, 1Zni , we obtain the expectation value of the operator Fint in the 

uncorrelated ground sta te  |0). In this sense, the terms 5 M l. S M 2 and 5M 3 replace now
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the H O  1 , H 0 2  and H0% contributions derived before. They represent only part of the 

new picture, since no explicit correction due to  the npnh correlations are included.

The correct translation-invariant form factor is given by the expectation value of the 

operator F{nt in the correlated ground s ta te  |0). As we have previously worked out the one- 

body and two-body densities for the ground sta te , we can apply these results to evaluate 

the first two terms in this expansion.

Using the definition of the one-body density

p ( r )  =  £  (6 I H r -  r m ) | 0) . (4.3.1)
m

together with the identity

( 0 |e‘̂ ( - - t- i) / , t  |o> _ (q| J  d r e ‘̂ A- l )/A S ( r - r k) | 0) . (4.3.2)

we can write the first term of Eq. (4.1.12) as 

M  =  £  fm(q2) ( O l e ^ ^ - W ' M O )
m

=  fpUl2) J  d r e ‘̂ A- l) /Aplp)( r ) F f n( r )  j  d r  e‘̂ A~l>/A p ^  (r) .

(4.3.3)

Here, p^( r )  and p^{r)  are the proton and neutron ground state one-body densities, which 

include corrections due to 2p2h, Zp3h. and 4p4h correlations.

Similarly, we can write the second term  as double integral over the ground s ta te  two- 

bodv density, using

P i n ,  2̂) =  £  (0 | £(r*i -  rm) S ( r 2 -  r„) | 0) . (4 .3.4 )
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Then, the second term  of Eq. (4.1.12) becomes

A 2 = Y ,  frniq2) ( O l e ^ ^ - W n q - r»/A) | 0)
mn

=  / P(<72) J  d r  J  d P  eW -^-U M  f i q ^ / A )  [ p ^ ) ( r .  ? )  +  P(p-n)(r, r')]

+  fn(q2) J  dr J  dP  e* '^-4- 1)/-4 / ' ( q - r ' / A )  [ p ( n ’p ) ( r .  r') +  p ( n ’n , ( r ,  r*)] .

(4.3.5)

With these evaluations we include all the terms that were included in evaluating the one- 

and two-bodv densities.

 SMl|p„(r>1

 SMl[p(r)l

 Eq. (4.131

lc-1

Ic-2

le-3 

Ic*4 

F2 lc-5 

lc-6

Ie-7

Ic-K

!c+0

 SMItp„{r)|

 SMl[p(r)l

 Eq.(4.13)
lc-2

lc-3

F2

Ic-X

le-IO   L
0.0 0.5 1.0 1.5 1 0  1 5  VO 3.5 40

q [fm1]

(a) A rgonne v LS

0.(1 0.5 Id 15 10 15 VO 3.5 4.0
q [tm M

(b) Argonne r i s  plus L rb a n a  IX

Figure 4-2 5M l[po(r)] and S A /l[p (r)] form factors compared with the internal form factor 
calculated according to Eq. (4.2.3).

Figures 4-2 and 4-3 show the various effects of the correlations on the internal charge 

form factor. We also com pare the various approximations of the form factor with the 

internal form factor suggested by Eq. (4.2.3). which in both cases is plotted as a dotted 

line.

In the calculation of the translational invariant charge form factor correlations enter 

at two places. First, the  calculation of the one-body operator (AI) includes effects of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 8

all the correlations, because this term is simply the Fourier transform of the one-body 

density. In Fig. 4-‘2, the solid and dashed lines represent the Fourier transform of the 

one-body density corresponding to the uncorrelated ( |0 )) and correlated (|0 )) ground sta te , 

respectively. These form factors are denoted SMl[pa{r)] and S.MT[/9 (r)]. Here, the main 

effect of the correlations is the shifting of the diffraction minimum by 5 % to the right. The 

new minimum is also predicted by Eq. (4.2.3), which also has a higher tail com pared to 

SM l[po(r )] and SM l[/>(r)].

Eq. (4.13)lc-3

•f.*
le-7

0.0 0.5 1.0 15 3.0 3.51.5 10 

q[fm  J
4.0 110 10 1.5 15 3.(1 4 0

(a) Argonne u l8  (b) A rgonne u 18 plus U rbana IX

Figure 4-3 Two-body approxim ations of the translational invariant form factor compared 
with the internal form factor calculated according to Eq. (4.2.3).

Secondly, as any expectation value taken in the correlated ground state , the center-of 

mass corrections are modified due to the correlations. In Fig. 4-3. the solid and dashed lines 

represent the two-body approxim ations of the translational invariant form factor. Going 

beyond the leading order (S M 2 )  in evaluating the two-body term (.42). leaves the first 

diffraction minimum virtually unchanged. However, the high q behaviour of the form factor. 

(q > 2.5 fm-1 ), is dramatically affected. We can see that the .4[ +  ,4o approximation of the 

internal charge form factor exhibits a  second diffraction minimum, which has been observed
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experimentally by Sick and McCarthy [Si-70], and its presence makes our theory credible. 

Physically speaking, the hole in the two-body density affects the center of mass motion and 

thus the center of mass correction to be applied.
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Chapter 5

R esults and C onclusions.

5.1 N u m erica l M o d e llin g

We have chosen the Argonne 0 I 8  potential [Wi-95] as the underlying .Y.Y interaction. This 

potential gives an excellent fit to the nucleon-nucleon scattering  d a ta  and the deuteron 

properties with a \ 2 per datum  of 1.09 and thus must be considered to be one of the most 

realistic interactions available today. For historical reasons, results for the Argonne v8  and 

ul4 potentials are also reported. However, the two-body p a rt of th a t interaction results 

in over binding and a too large saturation density in nuclear m atter. For tha t motive 

an empirical three-body interaction is added. In Table 5.1 list the values of the strength 

param eters of the two-pion exchange (.4.2r)  and the short-range phenomenological (UQ) parts 

of the three-nucleon interaction, for some of the potentials o f the L'rbana series.

The calculation in configuration space relies on our ability to calculate two-body m atrix

Table 5.1 Strength param eters of the various three-nucleon interactions of the L’rbana series.

Potential ■4-2* to

Li r ban a-V - 0.0333 0.0030
Urbana-VII - 0.0333 0.0038
Urbana-VIII - 0.0280 0.0050
L'rbana-IX - 0.0293 0.0048

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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elements for the basic interaction with high speed and high precision. We have developed 

a fast code to compute two-body m atrix elements of the N-N interaction. The codes are 

written in FORTRAN and run on UNIX workstations. They allow us to compute ca. 106 

matrix elements/minute on a  HP-9000/735 workstation and do not depend on the shape 

of the wave functions. This code has been checked against a calculation using harmonic 

oscillator wave functions and Moshinsky transform ations. The results agreed to a t least 

1 0 - 6  in accuracy.

We are using the coupled cluster (exp(S)) m ethod to calculate the ground state of 160 .  

We have solved the main Eq. (3.2.20) tha t determines the 2 p2 /2-amplitudes and thus essen

tially the ground state (7-matrix for l60  in a space of 35 hu  with a  harmonic oscillator length 

parameter b=0.8 fm, excluding those orbits with i  > 9. Corrections for '-ip'.ih correlations 

were included in a reduced space of 30hu  and i  <  6 .

The computation breaks into two steps: In the first step the G-m atrix interaction 

is calculated inside the nucleus including all the corrections as specified by the coupled 

equations. This results in amplitudes for the 2p2/i-correIations. These amplitudes are 

implicitly corrected for the presence of 3p3/i-correlations and 4p4/?-correlations. In the 

second step the mean field is calculated from these correlations and the single-particle 

Hamiltonian is solved to give mean-held eigenfunctions and single particle energies. These 

two steps are iterated until a stable solution is obtained. The resulting binding energies for 

the considered Argonne and UTbana potentials are shown in Table 5.2.
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Table 5.2 Energy expectation, charge radii, and proton orbits occupation probabilities.

Potential E
[MeV/nucleon]

rms
[fm]

1^5/2
[56]

- s l/ 2

m

u8 - 6.44 *2.843 *2.08 4.26
t?14 - 5.66 *2.839 1.86 4.98
ul8 - 4.79 *2.840 1.77 3.83

ul4 plus Urbana-V - 7.00 (+  0.27) *2.83*2 2.40 7.33
ui8  plus Urbana-lX - 5.90 (+  0.27) *2.805 *2.65 6.57

expt. - 8.0 2.73 2.17 LAS
±  0.025 ±  0.12 ±  0.36

5.2 D en sit ie s .

Fig. 5-1 shows the calculated charge density after folding the proton point density with the 

charge density of the proton and folding the neutron point density with the charge density of 

the neutron. Also ploted is the experimental charge density from Reference [Si-70]. As this

—  expL
—  — Argonne v 14 &  Urbana-V

- Argonne vIX & Llrbana-tX

■ — CXpL
—  — Argonne vIR

   Argonne vI4
 Argonne v#

O .O X

0.02 0.02

( M X ) 53 5 3 440 O
r [fml r  [fm|

(a) iV;V interaction. (b) .V.V and .V.Y.Y interaction.

Figure 5-1 Comparison of the experimental with the calculated charge density.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 3

expansion is accurate up to term s of order qA, it encompasses the result of the rms-radius. 

The resulting charge radii, shown in Table 5.2. are reasonably close to the experimental 

one.

In the calculation of the natural orbits we also generate the occupation probabilities for 

the orbits above the Fermi level. For the Argonne uS. u l4  and lTS potentials the occu

pation probabilities of the 1^5 / 2  and the 2 s ^ 2  proton orbits are summarized in Table 5.2. 

The occupation probabilities appear to be consistent with the experiment [Li-79], which 

establishes only the lower limit of these values.

The two-body density represents the probability of finding one nucleon a t r \ and one 

nucleon a t F2. We can divide this by the probability of finding the first nucleon a t Ft . The 

remaining density represents the probability of finding a  second nucleon a t F2 if the first 

nucleon is a t Fj. If both nucleons are protons, this density is normalised to a total integral 

of (Z-I). Figs. 5-2 and 5-3 show these densities for the Argonne cLS potential, as a function 

of F2 for various positions of Ft. We have made no a ttem p t to correct these for the residual 

CM motion of the nucleus. The densities show the effects o f the short range repulsion: they 

exhibit a  deep hole where the first nucleon is located. The fact tha t the bottom of this hole 

is not exactly a t zero is the result of the approxim ations associated with our truncation 

scheme. The two-body densities also show th a t for large distances the long-range aspect 

of the ground s ta te  nuclear correlations, usually thought to be related with the surface 

deformation modes, has a significant contribution: when the first nucleon is located closer 

to the nuclear surface, we observe an enhancement of the density at the symmetrically- 

opposite position. The picture of a two-bodv density obtained as the revolution of the 

spherically symmetric one-body density, with a Gaussian-like distribution centered a t the
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(a) x r =  0 .0 /m  (b) x i  =  1 .0 /m  (c) x i =  2 .0 /m

Figure 5-2 The p-p two-body density for three different locations (x[) of the first proton 
and the Argonne u!8 potential.

(a) xi = 0.0/m (b) xt =  l.O/m (c) xt = 2.0/m

Figure 5-3 The p-n two-body density for three different proton locations (x t ) and the 
Argonne u!8 potential.

location of the first nucleon scooped out of it. is definitely insufficient. For comparison, 

Figs. 5-4 and 5-5 show the p-p and p-n two-body densities for the Argonne e l8 plus llrbana 

IX potential.

5.3 C on clusion s.

The aim of this effort was to obtain a reasonable description of the ground sta te  of 160  

that explicitly accounts for realistic correlations. We have chosen to describe correlations in 

configuration space and used the coupled cluster (exp(S))  method to calculate the ground
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(a) x j  =  0.0f m  (b) n  =  1 .0 /m  (c) X! =  2 .0 /m

Figure 5-4 The p-p two-body density for three different locations (xi) of the first proton 
and the Argonne u!8 plus Urbana IX potential.

(a) x i =  0 .0 /m  (b) x i =  l.O /m  (c) x t =  2 .0 /m

Figure 5-5 The p-n two-body density for three different proton locations (x t ) and the 
Argonne u!8 plus Urbana IX potential.

state of l60 .

We have shown tha t it is possible to choose large enough configuration spaces for the 

complete and self-consistent calculation of the ground state correlations inside a finite nu

cleus. This calculation makes no artificial separation between "short range” and “long 

range” correlations. In fact, the two-body density shows that the correlation function in 

the surface region of the nucleus has strong contributions from the surface deformation 

modes. It is largely these modes th a t cause the strong deoccupation of orbits close to  the 

Fermi surface.
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As any approximation the results presented here are subject to possible im provem ent 

in the  future. The influence of the size of the configuration space on the actual binding 

energies and form factors has not been completely explored due to the actual com putational 

limitations. Even though great care has been taken to include all the im portant term s in 

our calculation, there is always a  chance th a t a term felt to be small may prove itself to 

be o f importance in a later calculation. With this in mind, the general techniques and 

conclusions presented here are believed a t this time to remain unchanged. Investigations 

designed to limit the nature of these uncertainties are currently under way.

Calculations were carried out on a  HP-9000/735 workstation a t the Research C om puting 

Center, and a  dual-processor '200 MHz Pentium Pro PC a t the Nuclear Physics G roup of 

the University of New Hampshire.
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A ppendix  A 

Two-Body M atrix E lem ents Calculation in  the JJ  
Coupling.

As we have already shown in C hapter 2, it is most convenient to evaluate two-body m atrix 
elements using the ph angular momentum coupling. According to our lemma 2, ph m atrix 
elements factorize than in two parts, which only depend on the coordinates o f the first or 
second particle, respectively. It is apparent then, tha t the appropriate angular momentum 
coupling for each single particle wave function |a ) is that when the individual orbital angular 
momentum lQ and spin sa are coupled to  a total angular momentum j uy. T his is w hat we 
call the (I s j ) coupling scheme.

In this chapter, we present the basics of the two-body matrix elements calculation. We 
first show how the radial part of the m atrix  element calculation is carried out, which is 
independent of what the actual angular part of the interaction is. The specifics related to 
the angular and /or spin part of the interaction are discussed in the next sections for the 
seven different operators corresponding to  the Argonne ulS potential. As a  preview, we 
take now the opportunity to review the fundamental theorems of the angular momentum 
calculus as presented in Ref. [Ed-65].

T h e o re m  1 When the tensor operators T ^ 1  ̂ and are built up from the same set of
coordinates, the reduced matrix element o f  the tensor product . A ^  =  [T ^ 1* 
is given by:

(-/ r  ii jf<K> n -i j > =  (-)*+>+> ' k  y .  { k ) kl  ' j , }

<7 ' /  II || 7" j")  (7" j "  || T (*2> || 7  j )  - (A.0.1)

T h e o re m  2 When the tensor operators T ^ '1̂  and i ' ^ 2  ̂ are supposed to work on parts I 
and 2  respectively of a system, the reduced matrix element of the tensor product A’^  =  
[ T ^ )  0  r<*a)](*’) is given by:

( r i h  fci i
(“/  / 1 / 2  J '  II -*'(A) II 7 k h  J)  =  K J J '  {  j '2  h  k2 I

[ J  J '  K  j

E  &  HT(fcl) ll y "  jO W  J ' *  Hi : { k 2 )  II I * )  ■

1 "
(A.0.2)

Here we use the notation j  =  y/2j  +  1.
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The following special cases prove themselves to  be of a special interest.

C o ro lla ry  1 Scalar product o f  two commuting tensor operators.

{?' j ' d ' o  J ' M '  I I 7 h h  J M )  =  S j j .  6 X[Xr, (~ )Jl+r*+J

{ 'I J 'jl }  E  ( y  j ' l  IIT(k) II y"  J'O <y" f *  IIu W  II h )  ■ (a.o .3)

C o ro lla ry  2 The reduced matrix element o f  a tensor operator T^k  ̂ working only on part 1 
of  a system, in the coupled scheme (7 j \ j 2 J M ) ,  is

(7 ' j \ h  J '  II T ™  || 7  JU2 J )

=  ( - ) J' I+J2+J+t j j '  { y )  y  Jl  } ( l  f  1 II r<A-> II 7  J i) - (A.0.4)

Corollary 3 Similarly, the reduced matrix element o f  a tensor operator working only
on part 2 o f  a system, is

<7' J1/2 J '  II U {k) II 7 J\J2 J )

=  •/•/' { J j  Jlk  } (7 ' / >  II C:(fc) II 7 h )  - (A.0.5)

Let us consider now. a couple of examples, which will allow us to introduce notations
we will frequently be using in the next sections. Below, the operator Ok depends only on 
the angular momentum components, in a (I s j ) scheme.

< ( 'i l) i ,  II 0 (fc) II H ) n )  =  F i l ^ T j ^ k )  ( l t || || /,)  . (A.0.6)

with

F ( l i h ' J i i x k )  = (~ )h+K2+k j j 2 |  j 2 I  } • (A.0.7)

II [ o ( i , l Q ^ ] 1M l l ( ^ ) J2> =  G V J t - J z i x k t k t )  (11 || || l2) , (A.0.8)

with

/i l2 l'i |
G { l d i ; l 2j 2 ' ,kik2) = \ / 6  j \ j 2 k 2 ^ 2 2  ' (A.0.9)

ji 7 2  h2 J
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A .l  R a d ia l P a rt o f  th e  T w o -B o d y  M atrix  E lem en ts .

The radial part of the two-body m atrix  elements is defined as

2  r°°
=  -  /  P2dpva«(p)

T Jo
/*OG

J ' r \  d r v f t n i ( l ( r t ) ( o l l )Tlnzh ( r L) )  j k x{Pr  i )

/*oo
J' r \ d r 2 Unzh{r2) ( o {2)TZnilA (r2) j jk 2 {pr2) •

DOf K
n l h  n 2 ^ 2  ;« 3 ^ 3

(A .1.1)

where

(A .1.2)

(A-1.3)

/•oc
V a  K ( p )  =  r 2 dr ra V(r)  j K(pr) .

Jo

Treating separately the integral

’' \ d r l 7Lni ix{rl ) ( o {l)l l n :ii:i{rl )') j hl(pm) . 

we shall first change variable from r t to i i  =  £ ri

/*CO
J  x \ d x i  R niix{xy) j kx{qX l) . (A.1.4)

and then one more time, from x i  to  x\  =  \ f 2 xy. to obtain

J o  x ' l ^ x '1 A-i W  i ) • ( A .  1 .5 )

with p ri =  qxi  =  q ' x \ .  In o rder to carry out the integral explicitly, we use the expansion 

R n i h ( ^ X'l)  ^ n 3/3( ^ x /l) =  Y 2  '" O i n3h KOnki • (A.1.6)
n

and obtain

« ( ,  J *  *'■ d<  (*'■) A , ( ? '* ',)  ■ (A.1.7)

Therefore, the integral (A .1.3) becomes

J r r 2 dri  TZru^iri) ( o {l)U n2i3 (r l )') j k t {pri)

1 V  A nkl(^/i?)3 Z—f ‘ nlb n3J3 ( A . 1 .8 )
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where the coefficients .4nfc,1 „ , are calculated asn i l i  n 3 i3

=  r  ( ° {l)Rn > h ( ^ ) )  0 .  (A.1.9)J 0

Similarly, we have:

2 dr 2 TZn2h ( r2 ) ( o i2)1Zn^ ( r 2)^ jk2 (pr2)

(y/2)Z ^  \\Ĵ  ROmk2 (? )

fJo

(A .I.10)

where the coefficients j are given as

K h n t U  = j "  X' l d x 2 Rn2 l2 { ^ x ' 2) [ 0 ^ R nAlA{ ^ x ' 2)) U O mkl{x'2) .  (A.1.11)

Using Equations (A .1.8) and (A .1.10), the radial part of the two-bodv m atrix elements 
becomes

n o  k
•Mb n2l2-.n3l3 n4/4

= 3  r £  • < ! ,« < , H O „t l ( , ')  Y .  - C w .  w o „ t, ( , ' )
,/0 n m

— * qnki 4mfc2
(o/O&P * ' nl̂ I n3*3 Z—f ‘ ^2^2^^* n m

f  ?'* «>**(#?') WOni, (?') n d mk^q ' )  . (A .1.12)
Jo

Here we have q' — - ^ p  .

A .2 C entral In tera ctio n .

The simplest possible interaction is the so-called central interaction, where the unity oper
ator comes multiplied by a function which depends only on the magnitude of the relative 
distance r between the two particles.

VC = Vc(r )Cw (r) =  ]T (2 fc  +  l) / ' “ ’( n .r o )  ( c ^ ( r \ )  I C (t,(r2)) . (A.2.1)
k

The following procedure will be used over and over again in the remainder of this 
chapter: we use lemma 1 and convert V e (r)C ^ (r) into an expression where r\ and r2 

appear separately in different operators. Then we use lemma 2 to calculate the ph. matrix 
element of the corresponding interaction.
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N o te . All m atrix elements presented in th is chapter must be multiplied by the constant 
factor (—)-?2+J‘,+1/(2A-F I). This factor appears in the expression of the ph m atrix elements 
as shown in lemma 2 and has been intentionally left out.

In the case of the central interaction this procedure leads to

(rai n3 ; { k ^ ) h { h ^ ) ] 3 : A/i | Vc  | n 4 n 2  ; {U^) jAl2 j ) j 2 : A/t) 

=  ^ ( 2 A : + l ) Û 00)( r l , r 2) 4 A

I ^ V i )  | (kk_)j3) « h k ) h  I C*(t)(r2) | (14)M) . (A.2.2)

which results into

(n in 3 ? ] 3 : \ ^ \ V C \ n4 n2  : {Uk) jAl2 j )-J2 : A//)
=  (2A + 1) U(AA:0°)(rlTr2)

F V i h U w ,  A) (I, II C (A> II /3) F(l 2j 2 :l4j 4: A) (I, || C (A» || l4) . (A.2.3)

A .3 Sp in -S p in  In teraction .

By definition, the spin-spin interaction is introduced as

Vs = Vs(r) a i  - a 2 .

where

CT\ ' (J2 =  — v/3 [ĉ t 0  O-2](0)

Then, we get

<T\ ■ a 2 -y /Z
( 0 )

C {k](r2) T rr2

and obtain

(n i n 3 ; i ( ^ 3 ^ ) j 3 : A/i | Vs  \ n 4 n 2 ; {l4 \ ) j A { k \ Y n  '■ A//)

=  ( - ) A + l  ( ” ) *  ( ‘2fc +  L ) « (fc* ; 0 0 ) (»*i .  r > )
k

G { h j v A z h ' , k \ )  ( h  || C (fc) || l3) G i h h - J J ^ k X )  (l2 || C (fc> || l4) , 

with |A — 1| <  k < A +  1 .

(A.3.1)

(A.3.2)

(A.3.3)

(A.3.4)
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A .4  T ensor In teraction .

The tensor interaction is introduced as:

VT = Vt(r) 5 l2 . (A.4.1)

where

S l2 =  3(<ri ■ r)(a2 ■ r) -  cti ■ a2 =  \/6  ( C {2 ](r) 0  [ax Z <t-.>](2) )

=  x/30 C (2)(r) 3  [cti Z- <t2](2) ] ( * . (A.4.2)

Similar to the previous interactions, we use lemma 1, in order to decouple the r \  and f 2

degrees of freedom. Then we use lemma *2 to  calculate the ph m atrix element of the tensor 
interaction. VVe obtain

(«i»*3 : ; A/z | Vt  | n 4 n 2 ; ; \ f l)

=  n/6 53 (2*ri. +  1) G i h j ^ h h i k i X )  ( l x || || /3)

£  iki+k, „(i-it2:20)( r i_r2) (2 k 2 +  1) ( k x 0 k2 0 I 2 0) |  k'2{ 2  j
G { l 2j 2: l4j 4: k 2 X) (l2 || || l4) .

A .5 S p in -O rb it In teraction .

The spin-orbit interaction is given by:

k’l s  =  l ' u ( r )  L - S  .

(A.4.3)

(A.5.1)

where

1 (-«) _

^ =  =  2  ^  ~  Pi) =  —̂ ~ r x (V(2) ~  V(i)) •

S  =  ^ ( d l + d l ) . (A.5.2)

are the orbital angular momentum operator in relative motion and the total spin operator. 
Using:

•  r m — r  ,

• [xQyfm  =  (* X y)m ,

we can write

Vu(r)L = ^  U/s(r) f x  (p“2 -  pi)

{ W 2) r V;s(r) [ c (I)(f) 0  {p2 -  p x

V 2 r V ls(r)  [ C < l > ( f ) 0 ( v ( 2 ) - V ( i

( i )

( A . 5 .3 )

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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Then, for * =  1 we obtain:

rV,,(r) C u l (r) =  V  <*, 0 k ,  0 | [ 0>
3 v'2

( i )
(A.5.4)

Recoupling the C^fcl̂ (ri) and operators with the appropriate gradient operator,
we get:

Vls(r)L =  ih ~kl~ l (2*i +  1) ('2*2 +  I) (*i 0 *2 0 | 1 0)

(U
-  C<*‘>(rO© [ c ‘fc>(f2) € V ( 2 )] (Ar)]

+  ( - ) t+fc2+l I"[C(fc,)(ri) © V ( i ) ]{k) 3  C (fci>(r2
( i ) '

(A.5.5)

From the triangle conditions characterizing the angular momentum argum ents of the 6j  
symbol, we get the conditions: |* t — *2| <  1 <  *i +  *2, |*2 — l| < * <  * 2  +  1 and 
l*i — 1| < * < *i +  1- We conclude th a t * equals either *i or *2. Therefore, Eq. (A.5.5) 
can be rewritten as:

k\ k2

-  I t ^ ^ - l l ) ( n , r 2)

Vls(r)L =  -j= E  ^ 1+"2+1(2*i +  1)(2*2 +  1)(*2 0 L 0 | *! 0) |  ^  j
C (fcl)( r i ) o [ c < ^ ( r 2)© v (2)

C (fc,)(ri) O V ( i )]{kl) 3  C (fc2,(r2) 

C (fc2)( r i ) G [ c (fc‘)(f2) 3 V ( 2 ) 1(tt)1

+  u<fcli'2’u > ( n ,r 2) 

+  u(fc2fcl’u ) ( r i , r 2)

n (D

T (l)

(fci)
C (fc2)( r i ) © V ( l )  3 C (fcl,(r2)

( I )

(A.5.6)

with *i +  *2 +  1 even.
Taking the inner products of Eq. (A.5.6) with S  and using the identities

Alk) G B W (I) J  (2)
( I )

*(U =  ( " ) A 21+1
. ( * )
l (D.4;,; © a i

(/)
(A.5.7)

( .4(1) O B (2)
( i )

0 o - 2 =  - ( - ) k . l  3 ( A W
2 k + 1 I (1) 5 S  :: (a -5-8)

the operators in Eq. (A.5.6) result into the following four contributions to th e  p/i-coupled 
m atrix  element (m n 3 ; ( I ij) j ,  ( h j ) j 3 ; I V l s  I n4 n2 : (/4\ ) ^  { h k ) ] 2 : V )

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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^  C ^ J ( r O ®  [ c ^ ( f 2)Q  V(2)](Ari>] (1) 0  s j  

=  L i ~ V / ^ T r  { ( [ C ( * , ) ^ 0  ®  H ( i l )  *  [ ^ t o )  : : :  V , 2 , ] ( M )

-  ^ C ( f c | , ( r O  0  ^ [ c ( A a , ( p 2 )  0  V ( 2 )

(*.> !<*•> 
. 02

( A . 5 . 9 )

B.

4 t.\2 V 2 A -f-1 

{ G i l J u k J s ;  AA) </r || C (A) || /3) F(l2j 2 :LJ4: A) C G 2 (Xk2 . k 2 X) 

-  F ( lu \ ; h h :  A) (/! || C (A) || /3) G(l2j 2 :l4j 4: \ \ )  C G 2 ( \ k 2. k2\ ) }

( A . 5 . 1 0 )

0  S

<->*■ £2 [ /̂2/ir2 4" 1

1

C'(fcl,(ri)0V( i)
( f c i ) ' (*-'2 )

• ■J G  L C { k 2 ] ( r 2 )

\/'2 k  i +  1
( * t )

C (fc2)(r3) •: a2 “ )}
( A . 5 . 1 1 )

( - )
2 V 2A +  1 

[Sk2\  G i l d i - J s j ^ k i X )  C G i ( k ^ k i k i )  F(l2j 2 :l.J4: X) (/, || C (A) || /4)

-  F( l i j i ;  l3j 3; X) CGi[Xk2, AA) G(l2j 2 :LJ4: k 2 X) {/, || || /4>j

( A . 5 . 1 2 )

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .
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D.

C ^ J ( r l ) 0 [ c (fcl)( r2)Q V (2 )' 0  S

f(*i) ] (*2)"
I: (To

(A.5.13)

► t ) l
2 V 2A +  1

{<^! a  G (l i j \ : l3j 3: k 2 X) (li II C,(fe2) || l3) F(l2jo: A) C'6'2(£2A. AA)

-  Sk2\  F[lij l ; l3j 3: A) (/L || C'(A) || f3) G{l2j 2: /4j.t: A:, A) CG’2(Afci. fe i^ ) j

(A.5.14)

C (ta,( r i)© V (i) ]  ® ^ > > ( f 2)

( - ) * 1 /  3

( i )

0  S

2 V 2Arj -f- 1 C'(fc2)(ri) 0  V(i)
( * i )

0  (Tl
( An)

£ C (k,)(r2)

C (fcl,( r i ) S V ( l)  <M f c (fcl)(»■■*) : o-o

(A.5.15)

( - ) A / 3
<$/c 1 A

2 V 2A +  1

[ G { l i j i : l 3j 3 :XX) C G l (k2 X. k2X) F(l2j 2 :l.J4: A) (l2 || C (A) || /_,)

— F(l[j i; l3j 3; X) C G \{ k 2 X.k2X) G(l2j 2 :14J4 : XX) (l2 || C,(A* || /4) |  (A.5.16)

where

C G iik ' i fa . l ih )  =  (reire2 : ly || u(fcl<:2 ' ll)( r1, r2) C (,|)(r[) \ / ( i |

C G 2 {kik2 J i l 2) = (n in 2 : / 2 || u(fc*fc2 , l l , (ri. r2) C,(/l)(r2) 0  V(>)

( / > )

(G)

n3 n 4 : I3 ) »

(A.5.17) 

n3n4 ; I4 ) .

(A.5.18)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .
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A .6 L 2 In tera ctio n .

The L2 interaction is given by:

VL 2 = Vi2(r) I 2 (A-6.1)

where

L 2 = L - L  =  { - ) y / Z [ L ® L \ w

(*V2)2=  ( - \ / 3 )  — -—  [[r®  (p2 — P i) ](l) ® [ r  :l: (p2 -  />i) ](l) ](0) .

Since by definition, the spherical components of a vector are

we can show that

a± =  T -^= (ar  ±  ia y) : aQ — a- .

(A.6.2)

(A.6.3)

(A.6.4)

and

[ (r2 -  n ) m, (p2 -  P l ) n ]  =  rm(p2 - P i ) n  -  ( P 2 - Pl)nrm
=  [ ( » * 2 ) m . ( / > 2 ) n ]  +  [  ( r l ) m : ( / > l ) n ]  = ( - ) " *  2 *  ^ n _ „

(A.6.5)

Based on this result, we can change the coupling scheme and combine the two r  s together 
into a single tensor operator dependent on the relative coordinate unit vector:

[[r  3  (p2 -  P i)](l) 3  [r  3  (p2 -  Pi)](1>] ^

=  ^  (1 L rii | lQ i) ( l  m 2 I n2 | 1 Q 2)
m,nim2n2<3iC32

( l Q i  1 Q i  I j  m)rmi{p2 -  Pi)mir m2(/jo -  p , ) n2

y___________f i i n
=  3  r 2 y / ( 2 k  +  L) ( 2 k '  +  1) < L 1 1 ( 1 0  1 0 | k O )

K  K  J

i j )

+  6 / r  (-J"-'' |  [ |  j  |  [ C'(l)(r) 3 (p2 — pi)
U)

(A.6.6)

Note 1. Neither k or k' may be equal to one. because of the cross product a X a =  0. 
Therefore, the admissible values for k and k' are 0 and 2.

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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Note 2. In the particular case of the L 2 interaction, the rank j  is equal to  zero, and 
by the symmetry properties of the W igner 9 — j  symbol we have:

1 1 1
1 1 1
K k'  0

f i l l
1 1 L
K K 0

(A.6.7)

Thus, the tensor product form of the L2 in teraction is

v/3
L 2 =  -0- [ [ r©  (p2 ~ P i ) ] (l) © [r ©  ( p 2 - P i ) ] (l)

=  i ^ r 2 £  \  [ lK \  (1 0 1 0  | k0)
*=0,2 1 ^

C {K](r) 0  [{p2 -  pi) 0  (p2 -  p i)](K) 

( 0 )

(0 )

(0 )

-  iV3 r C’(l)(r) © (pi -  Pl)

or, equivalently,

L 2 =  l r 2 J 2  v /2 ^ T I  { |  } * } (10 10 | kO)

C {K](f) 0  [ (V(2) -  V (i)) 0  (V(2) -  V (i))](*

-  VSr [C(l,( r ) 0  (V(2 ) ~  V f i ) ) ] ^ ’ •

VVe expand the unnormalized spherical harmonics C '^*(r) and C'(1*(r) lemma 1

v a i r ) L ' =  L S T K r r i i « n < i o i o | « o >

Y  ih - kl~K (‘2ki  -|- l)(2Ar2 +  1) (*i 0 k2 0 | kO) u[klki‘K2)(r l , r 2)

(A.6.8)

(A.6.9)

ki k2

[ c (fc|)( f i ) ® C (fca)(r2)] K © [ (V (2)-V ( i ) )  0 ( V ( > ) - V ( i ) ) ] (,t

-  4 =  Y .  ik2~kl~ l (2A?i +  l)(2fc2 +  1) (kiOkoO | 10) u{klkl’n >(rl . r ,)  
v 3

(0 )

C(fcl)(ri) 0 C f e ) (f2)
( i )

D V(2)
( 0 )

C(fcl,(r0  ® C i k l ] { r 2)
( i )

1 ( 0 )

0  V(i) (A.6.10)

We shall find now what the contributions of the  operators in Eq. (A.6.10) to the  m atrix  
element ( n ^  ; ( / i jM f e j J j ,  ? I I n*n2 ? (U k ' l jA h & h  : Ap) are.

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .
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We shall encounter similar operators to  those shown in Eq. (A.6.L7) a little later in this 
chapter, when we will be dealing with the quadrupole spin-orbit interaction, with the only 
difference being th a t the overall rank of the  tensor product will be equal to 2. Therefore, it 
is useful to derive here results valid for an arb itrary  even rank j .

First, we notice the m atrix elements of the  operators in the second sum are very sim ilar 
to those discussed in the previous section. We have:

C (fcl,( r 1) 0 C (*a ,(r2)
( i ) -l(i)

'3 V(2)

=  H JV 3 ] T  V 2k + 1  |  k' [  k2. I  }  0  [C^)(r>) : V(2
tn  <i)(*)

(A.6.11)

C (*l , ( r 1) 0 C (*a,(r2)
(i) 1 (0 )

3  V(i)

=  (-)*■ ^  y .  <->* { k\  k \  ‘ }
U)

C (fcl)(ri) '0 V(i)J 0 C ^ ) ( r 2)

(A.6.12)

For the L 2 interactions, we are of course interested only in the case of j  =  0. We get:

D.

C (tl>(r1) 3 C ( y (f2) ] (1 |0 V (2 

C<k' H r t ) Q  [ c ^ ( f 2)S V (2 |

1 ( 0 )

(A.6.13)

E.

Skl A - 4 = =  F ( l J u h j 3 :  A) (/, II C (fc‘> II h )  F(l2j < U U  A) C G 2{Xk2, k 2\ )
V £ * 1  +  1

C (fcl)( r l ) © C (fc2,(r2)
id )

3  V(i)
( o )

C'{kl)(r0  -0 V (i) 3 C (t2>(fo
(h) (0 )

(A.6.14)

(A.6.15)

6h  A F V J t - J z h ;  A) C G i(k iX .  k {X) F(l2j 2: l.J.r. A) </, || C (A) || /,)
V2k2 +  1

( A . 6 . 1 6 )

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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Secondly, in the first sum, we multiply through the operator expressions to  obtain

C ' ^ n )  ©  C ( f c2 l ( r 2 ) j  ©  [ ( V { 2 ) -  V ( i ) )  ©  ( V ( > )  -  V ( i )  ) ] ( < t l

[ V ( 2 )  S  V ( 2 ) ] ( , i )  ( 0 >  

C(*l,(ri) ©  C ( fc2) ( r 2 ) ] ( 'C ,  ©  [  V ( l ) ©  V ( 2 ) ] (

l  ( 0 )

-  2 

+

1 ( 0 )

(A.6.17)

We have now to change the  coupling scheme and separate the operators depending on the 
coordinates of the first particle, from the operators depending on the coordinates of the 
second one. Similarly, for an arb itrary  even rank j .  we have

C<*l >(rO © C<**>(r2)] © [ V(2 ) © V ^ , ] ^

=  (~ ) kl+k2+K'+J \ / (2k 4- l)(2Ar +  1) |  ^  k '2. I  }

C (fc,,(fl) © fC(fcj)(p2) © [ V(2) © V(2)]

C ^ ) ( r i ) © C ^ ) ( r 2) © [ V(i) © V(>)]
(*) l ( * ' )

U)

f  kl k2 K
=  v  \ / (2k +  1)(2k' +  1)(2A* +  l)(2fc/ -f 1) I Kf

kk' I k k' J  .

C (fca,(r2) 3  V(2)
Ik')’ (J)

C ^ r j Q C ^ f o ) ]  © [ V d lS V d ) ] '" '1 

=  S  ( - ) k*+K'~K+k / ( 2 k + 1 ) ( 2 k +  L) |  k* kl. * |

( * )
C {kl)(r i) © [ V(i) © V(t)] © C ( h ) (r,

For the particular case when j  is equal to zero, these reduce to:

i ( j )

(A.6.1S)

(A.6.19)

( A . 6 . 2 0 )

R e p r o d u c e d  with p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



7 3

C(fcl)(rt) © C,(fc2)(r2)] ( ’ © [ V(2) O V(2)](K) 

C(fcl)(rt) © [ c (A'2,(r2) © [ V(2) 0  V(2)]

(0)

(*) (fci) (0 )

(A.6 .21)

( ~ ) k l

B.

5klX JikZ+i  < / l  II C ( A )  II 13> f (^J2;/.J-i: A) C G G 2{ \ k 2K ,k 2K\)

(A.6.22)

[C^>(r0 ©C^^r,)]^ © [ v (i, 3  V(2)]('<

=  £  ( - ) i +fc2+1 v/ (2k + 1 ) ( 2 ^ + L )  |  ^  ^  £ |

C(*l , (rt) © V(i)j(i) 0  [ c (**>(r2) © V (2)](M * ' (A.6.23)

( - ) fc2+1 v ^ T T I

*1 *1 a }  F ll2 h : l>U4-A) C G C G (k lk 2K. k l \ k 2\ )

(A.6.24)

(*)
C<*‘» ( r i )0 C ^ ) ( r 2) 3 [V ( i )0 V,i)]lK

( 0 )

C(fcl)(r i )0  [ V(i) 3  V(i)](K)] ( 2̂> 0 C(fcj)(r2
(«)

(A .6.25)

( ~ ) fc24 2a - •7-1. F U d i i h h i X )  C G G l (k l \ K. k lK\) F(l2j 2: l J A: A) (/2 || C'(A) || /4)\ / ‘2k2 +  1

Here we have the notations 

C G G i ( k i k 2K, k l \ )

=  <nin2 ; /t || u(fclA'2’2,t)(rl , r2) [ c ^ n )  © [V(i )0  V(i)](/)

(A.6.26)

(A)
n3n4 • ^3)

(A.6 .27)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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C G G 2(k ik2K.kl  A)

=  < n m 2 ; /2 | |u (*,*2'2,s,( r l , r 2) [ c w (r2) O [ V(2) © V (2>](0
(A)

1130,4 : I4 )

(A.6.28)

and

CGC,G'(Ar1fc2K ,/l/2Al A2)

= [c<'‘l(r,)S7(I|

(n2/2 || u{k2'2K)(r2) [ c (A,)(r2) ® V (2 )

( k )

II 1*3 /3 )
(As )

(A.6.29)

A .7 L2 ( 0 4  • o-2) In teraction .

The L2a a  interaction is given by:

^ £ , 2 5  =  V i 2 s ( r )  L2 (<71 • cr2) =  ( - y / s )  Vi2s(r) L2 [aj r r 2 ] ( 0 ) (A.7.1)

Since the L2crcr interaction differs from the L2 interaction only through the spin-space part. 
(at ■ cro), we can derive everything starting  with Eq. (A.6.10) and adding the corresponding 
spin-spin interaction

I W D i ’ f r r . - * )  =  |  E 2 7 K T T {  I « I

Y  i*2 - *1 - " (:2ki  +  l)(2A-2 4- 1) (Ai 0 fc2 0 | tcO) u (fc‘i'2-'t2)( r 1.

[ 1 ()()
C (fcl,( r ! )  O  C (i'2) ( r 2)j 0  [ ( V ( 2) ~  V ( i j )  -3 (V(2) -  V ( i )  )] *'

-  4 =  Y  ik2~kl~ l {2ki + 1 )(2fc2 +  1) (ki 0 &20 | 10) u{klhAl)(ri. r 
^  fci fc2

f  Tr (i) 1
|  [ C ^ r O Q C ^ f o ) ]  0 V ( 2 ) j  (<ri-*2)

(0 )
(0-1 .<t2)

( 0 )

(A.7.2)

Accordingly, from Eqs (A.6.21,A.6.23,A.6.25,A.6.13,A.6.15) we obtain the five contributions 
to the ph m atrix element (0 ^ 0 3  ; (^i§)j, (̂ 3 ^)j3 : A/r | VL2S | n4 n2 : ( U ^ j A ^ h  ■ A/i)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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A .

[c<fc‘> ( rO ® C ^ ( r 2 ) ]  * 0 [V (2 )® V (2 )]('t) 

Z—i . P.

1 (0)
(o- l  • <X2 )

v 2 k i  +  l

:i)(ri) ®ff[
( * )

C ^ ) ( r 2)0 [V (2 )0 V (2 )] (K)
(t,)

(To

( * ) '

(A.7.3)

( - )
y/2kx 4- 1

rG2(ArjAr2K. &2kAti) 

(A.7.4)

B .

{<7i -fTj)C(fc,)(r1) O C lfc2)(r2)] * 0 [V(i) 0  V(2)](k)

=  <->“  Y ,  <->* { k [ *[ I } £  <->'
k 1 J /

(* ) 1(0
'C/O-L [ c (fcl)(r2) S V(2)

(k)
: <T->

(0N
(A.7.5)

=► ( - ) ^ +A y / ^ r r r

(~ )A |  |  ^ |  G (l i j i : l3j 3: kX) G'(/2_/2:3̂j3- k \ )  G(I2J2 • 7(_/*4’• kA) d CtC Cr(k\k2 H. k \ k k 3k)

(A.7.6)

C .

[ c ^ f r O O C ^ f a ) ]  “ 0  [ V(i) © V(i)](k) 

=
£—• , / 9 k

(0 )

{ai -ct2)

( ~ ) fc+1 
y/2ko H“ 1

( h )
(k)

C (h2Hr,) (To
(k)

(A.7.1

- y —  G (lu \ - J3j3 ;k2A) C6'G 'l (A;l t 2K.fclK02) G’(/2j 2: M )  </2 II C (te) || G)
\/4fc2 +  1

(A.7.8)
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D.

[ c ^ ) ( r i ) © C ^ ) ( r 2) ] ( l ) @ (o-i - o-a)

=  ; ® = n  S  ( - )*  J  :: V , 2

(fci) ( fc) '

(A.7.9)

(—r + 1
G i k h i k h i k tA) </t || C'{kl) || h)  G V ^ - . l J - i - . k A )  C G . i k ^ k . M )

V ZtCi “T 1

(A.7.10)

C ’( f c l > ( r i ) 0 C ( * 2 ) ( r 2 )
( i )

3  V(i)
(0 )

( c t i  - a - , )

( - )
\ f 2 k 2 +

_ v \ + i

( * 2 » - |« 0
0  <Tl C (i'2 , (r2) © a 2

(fc)

(A.7.11)

( - ) G{Iiji', 1^ 3 ', ko\) CGi(k\ko,  k^ko) G(lojo: k>X) {l-> || C’̂ 2* || 14 )

(A.7.12)
\/'2 ko +  1

A .8 Q u ad ru p o le  Sp in-O rbit In teraction .

The quadrupole spin-orbit interaction. 1 'ls2. is given as the radial factor. I )s2 (r). multiply
ing the operator

(L - S )2 =  ( E - 5 )  ( L - 5 )  =  ( - v ^ )2 f [ T 0  5 ](o) 3 [ T 0  ,S-](0)

=  3 Y ,  V'2j + 1 V v  + 1
jj'

= v /^ J + T  [£ 0  0  [s  0  s p

( 0 )

' 1 1 0 '
L 1 0 > ' [L 3  i ] ,jl :: [5  3  S]<>'>

. J f  0  .
( 0 )

( 0 )

(A.8.1)

A close inspection of the last expression shows tha t some of the pieces of the quadrupole spin- 
orbit interaction may be incorporated into the calculation of the other previous interactions 
involving the relative orbital angular momentum operator. L.

R e p r o d u c e d  with p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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•  Case j  =  0.

[ [L 0  L f 0) 0  [S 0  5 ](0) ]'(°) =  i  L 2 S 2 =  i  L 2 (3 +  <n ■ a , )  . (A.8.2)

where we have used

S~ — — (o'l+<7’2) 2 — 2  ( 3 + 0 ’l ‘ 0’2) • (A.8.3)

Therefore, we can introduce the effective radial amplitudes of the L 2  and L 2 (crt • <r2) 
interactions:

i'h — V12 +  -  \’ls2 ■

Vl2ss =  ^I2ss +  -  i' ̂ 2  •
6

(A.S.4)

•  Case j  =  1 .

v/3 [ [L 0 L]( l ) 0 [S 0 S](l)
(0 )

=  f )

=  i  ( ( i r ) - ( i S ) )  = -  [- L - S .  (A.S.5)

where we have used the Q.M. definition of the angular momentum:

[J i . J j ] =  i J k or J  x J  =  i f .  (A.8 .6 )

Similarly, vve introduce the effective radial amplitude for the spin-orbital interaction, 
as:

^ l s  — h s  2  Ws2  ■ (A.8.7)

•  Case j  = 2.

[ f 9 i ] (2 , 0 [S 0 S] ( 2 )
( 0 )

[ L ® L  l(2 ) ::[a , rr-,]( 2 ) ( 0 )

[L 0  L]W 0 - [. r2]
( 2 )

( 0 )

(A.S.S)

We can see tha t the only new component of the interaction tha t wc have not addressed 
yet is the one corresponding to j  =  2. However, for now we shall keep the discussion on a 
general level. The following steps come natural

[ L ® L ] U) = -  |  [ [ r ©  (p2 - P i ) ] (1)0  [ r 0  (p2 - p i ) ] (l
0 )

3
► < 1 0  1 0  | kO)

 r  l i i i
-  r- y/ 2 k  +  lx /2 /c' +  1 < I L 1

ic/c'=0,2  ̂ K Kf j

C {K)(r) 0  [ ( V (2 ) ~ V(i)) 3  (V (2 ) -  V(i )  ) ] (K,)

- 3  r ( - y  |  } J j  } [C<l>(r)0 ( v (2) - V (
O)

U)

( A . 8 . 9 )
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Again, we use lemma 1 in order to expand the unnormalized spherical harmonics C ^ ( r )  
and C^l ^(r)

Vls2 {r)[L®L}U) =  I  r2 ^  / I r + T  |  1 1 1 |  <1 0 l 0 l«°>

(2fci +  1)(2A.2 +  L) ( f c l0  fc2 0  I

* 3  [(V(2) ~  V(i)) 0  (V(2) -  V d ) ) ] 1*1'5

^ 2  (2 ki  +  l){2 k 2 +  1 ) { k i 0 k 2 0  | 1 0) tt(fc|Aa*, l , ( r , . r 2)

C (fcl)(r!) 0  C (A:2)(r2)](1) 0  (V(2) ~  V ( i ) )

1 O')

(A.S.10)

Based on Eqs (A.6.18.A.6.19.A.6.20, A.6 .1 1 .A.6 .1 2 ). with j  =  2 . we couple C ^ ( r i )  with 
V(i)-, and C ^ ( r 2) with V (2 )"dePendent operators, respectively. Similarly to the previous 
7-dependent interactions, we get the various contributions to  the  ph coupled matrix element 
<ni«3 ; : V  I VLS2 I «4 n2 : {U^) jA l2y)j2 : V )

C(kl)(ri) 0  [C’{h)A2) 0 [V(2) 3 V(2)](K,)

=  ( - ) * «  s s  E  { *j \  ) }

( 0 )

■: [<r, : rr2](2 )

, ( 1 ( r i ) Q <7[
(0

C (fca,(r2) 0  [V(2) 3  V ( 2 )] ( « ' ) (To
(0 N

(A.8.11)

=» ( - ) fc+l \/5

{  ^1 1 A }  (Ii || C (fc‘> || /3) G(l2j 2 : l 4j 4 :kX) C G G 2 {kyk2 K, k 2 n'k)

(A.8.12)
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c '^ . l s v u ip a  [ĉ >(r2)0vmJ‘"l a h  ::<r2f >
t'H (2 )IC*') 1 (0 )

= v s  i :  { t  w }

(fc')
Go

(A.8.13)

=> ( - ) fc' + 1  y/5 
f  k  k '  2  1
|  1 A J G(l2j 2: LJ^: k'X) C G C G (k [k 2 k . k i k k 2 k')

(A.S.14)

C'{kl){ri) 0 [V(i) 0 V(i)](,t,)](M SC’̂ 'fro)1

= ( - ) - '  V5 E  { t 1  ' }

[o-1 • (Tj 1( 2 )

(0 )

C ^ { r i ) Q  [V(i) 0  V(i)] (* ') (*)
•'■■J

( I )

C'{k2](r>) : cr2
( 0

(A.8.15)

( - ) * 2+I y /E

k k 2 2
1 1 A I 3̂j3; C G G i { k i k 2 K.kiKrk) G{l-2jo:l.lj.\: k 2\ )  (lo || C'^’2* || /4)

(A.8.16)

D.

C < fc‘ > ( r O 0  [ c f * 2 ) ( p 2 ) 0 V ( 2 ) ] ( f c )  

^  £  {  * .  *  *  }

( 2 )

\-j [<Tl 0  G o] ( 2 )

( 0 )

V
‘<v cr i

(0
C [k2 ]{r2) 0  V (2 )

ik) 1 (0 '
<T>

( A . S . 1 7 )
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E .

G ( / iJ i : /3J3 ; AriA) (/t || C (fe,) || /3> G(l2j 2: l j<: k \ )  C G 2 {kyk2 . k 2 k)

(A.8.18)

(*)
0V(i)j 3 C(y (f2)

( - ) ‘s+1 ^  E  { 1 kl * , }

1 ( 2 ) ( 0 )

3  [cri 3  <y2 ]( 2 )

(*)
3  O’!

(0

[C (i‘2 , ( r2) ?  ff2
(0

(A.S.19)

=> ( - ) fc2+l v'S 

{ 1 k l A } G V M lV 3 ; k \ )  C G i(kyk2. kyk) G ( I J 2: l.J-: k 2 X) ( /, || C«*> || l4)

(A.8.20)

A .9 C en ter-o f-M ass R e lev a n t O perators.

From the center-of-mass corrections we have two additional operators th a t must be included 
in the two-bodv matrix elements of the interaction. These are:

1 _ - n2 - -
 7  P i  ■ P 2 —  r  M - V im.4 m.4

and

m.4 r i • r2

(A.9.1)

(A.9.2)

The ph m atrix elements contribute only for a  multipolarity A =  I. According to our 
lemma ‘2 . we obtain

-  ^  <W| P. • f t  134) =  ^  (I IIVII2 ) ^  <4IIV II :)> (A.9..3)

and

A j O S i n - i i l r t )  =  II H |2 > ^ < 4  I, F ||» ) .  (A.9.4)
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where the reduced m atrix elements are calculated as

^ £ - u i i v i i 2 > =

t/|lj2-l|10)<fl,(r)| j i .  + i(/J_/1)(3«s_(I + i)il |ft2(r)> (A.9.5)
and

^ ■ ( 1 | I H | 2 >  =  —2 ji +  *)(2 j2 ± H  ( j \ ± j 2 -  1 |  10)</?t(r) 1 r |  g 2 (r))  (A.9.6)
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A ppendix B

T w o-B ody M atrix E lem ents C alculation in a 
Harm onic Oscillator S ingle-Particle Basis U sing  

M oshinsky Transform ation.

One key element of our nuclear structure calculation has to do with the reliability of the two- 
body m atrix  elements calculation for the basic interaction. We have chosen the Argonne ulS 
potential [Wi-95] as the most realistic nucleon-nucleon potential to date. The computation 
of the two-body m atrix elements relies on the formalism presented in Appendix A. An 
independent check of those formulas is available when the radial part of the single-particle 
wave functions is described by the radial part of the harmonic oscillator wave functions. 
In this particular case the Moshinsky transform ations allow the decoupling of the relative 
motion degree of freedom and we are not required to separate  the rj r 2 such as in lemma 1 .

B .l  T ran sform ation  B rackets.

Consider a two-particle system in a harmonic oscillator potential. We shall characterize the 
two particles by their coordinates and quantum numbers. For the purpose of our discussion, 
we introduce two system of coordinates:

• laboratory frame, where the two particles are described by their coordinates with 
respect to the center of the potential well. r \  and r 2. and corresponding radial, n i and 
n2, and orbital quantum  numbers, /i and lo

rn center-of-mass frame, where the system is characterized by the relative coordinate r
and the coordinate R  of the center of mass of the two particles, defined as

r = -U  ( r t -  r 2 ) R =  ~^= (r t + r2) : (B.1.1)

the radial and orbital quantum numbers n . l  will correspond to the relative motion, 
and N, L to th a t of the center of mass.

The eigenkets in the two coordinate systems may be w ritten  as follows:

•  laboratory frame

|«ira2 ( /i/2) Afi) =  E  (/ i r?i i /2 m 2 | A f.i) | n2 /2 nj2) : (B.1.2)
771 j 7712

• center-of-mass frame

\n N  (IL ) A ft) = Y ^ ( l m L  M  I A^) \n lm ) l-VL.t/) • (B.1.3)
m.\t

82
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The transform ation brackets (Moshinsky brackets) are then the coefficients which arise on 
developing the eigenket (B.L.2) in a series of eigenkets (B.L.3):

[tz1 (lil2) Xp) = ^ 2  ( n l  N  L X \ n i l i n 2 l2 X) \nN (IL) Xf i) . (B.1.4)
n l N L

It may be shown th a t this transform ation is independent of the magnetic quan tum  number 
fi. The transform ation bracket vanishes for all combinations of its param eters which do not 
satisfy the total angular momentum

A =  /[ -\-12 =  I S I  - (B.1.5)

and energy

E  =  (2«i +  /t +  3 /2) -F (2^2 +  2̂ "b 3/2)
=  (2n + I + 3 /2) +  (2;V-f L +  3/2) (B.1.6)

conservation laws. Therefore, the transform ation bracket vanishes for all com binations of 
its param eters which do not satisfy the energy condition (B.1.6). and any sum m ations over 
A will be restricted to

Ki -  h\  ^  A <  li +  l2 .

\l — L\ < X < I + L . (B.1.7)

We shall next show how to calculate two-body matrix element in a harmonic oscillator 
single-particle basis using the Moshinsky brackets. First, we change the angular mom entum 
coupling scheme, going from the  J J  coupling scheme to the LS coupling scheme:

(n i n2 ( /1 I ) j i (/2 I ) .2: J ' M '  | V {r u r2) \ n3 n4 (l3 k_)j3 (U£),«= •/.!/>

^  ,_________________________  f /. h Ji
=  J 2  >/(2Ji +  1)(2/2 +  l)(2A' +  L)(25' +  I) I  / ,  I  j ,

A.VSS' [ A' S'  ./'

f 3̂ 7 J3
l-l 7 j -1

A S  J
V  (2/3 +  I)(2j4 +  1 )(2 A +  1)(2S 4- 1 )

( n i« 2  V i h ) X  ( i  1 )5 ';  J 'M ' \ V  | n3m  (l3 lA)A ( i  i).V: J  M )  . (B.l.S)

Secondly, we use the Moshinsky brackets and switch from the laboratory frame to the center- 
of-mass frame:

(« i» 2  (M 2 )A' ( i  ± )S ': J 'M ' | V ( r u r2) | n3 n4 (l3 l4)X ( i i ) 5 : J M )

J 2  ( n i l i  n 2 l2 X' | n ' l ' N ' L ' X ' )  (n3 l3 n4 l4 X | n  I X  L X)
nlNL-.n'l'N'L'
(n ' N ' {I'L')A' ( |  i ) 5 ' ; J 'M ' | V(r)  \ n <V (IL)X ( i  i ) 5 : J M)  . (B.L.9)
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Therefore, we obtain

(m n 2 (h k )h m ) h : J ' M '  I V ( f i ,r 2) | n3 rz4 [ h \ ) ]3 { U \ ) J M )  =  ^ ( 2 j \  +  1)(2j2 +  1 ) 

^  V ^2A +T )(2A '+T ) (m  /i re2 12 A' I n' /' N '  L' X) ( n 3 13  n4 I4 A \ n l N L  A)
nlNL \;n'l'N'L' .V

,___________________  1 ;___________________  f  ' l  k J l
y/(2j3 + l ) ( 2 j 4  + l) £  v/(2S +  l ) ( 2 S ' + l )   ̂ / 2 i  h  

5,5'= 0  [ A' S ' ./'

(n'iV' (/'L ')A ' (^ j ) S ' : J 'M ' | V( f )  | n N  (IL)X ( ^ ) S : J M )  . (B.1.10)

Given a particular potential V (r), all we have to do is to calculate the m atrix element 

(n'AT' ( / '£ ')A' ( i  i ) S ' ; J 'M ' | V'(r) | n N  (IL)A ( |  i ) S : JM ) . (B.1.11)

VVe shall redo now the calculation of the m atrix elements discussed in Appendix A.

B .2  C entral In tera ctio n .

For the case of the central interaction, the potential depends only on the magnitude of the 
vector r, and not on its angular degrees of freedom. We apply the W igner-Eckart theorem 
for the case of a zero-rank tensor ([Ed-65], Eq. 5.4.1a)

(n 'N '  (/'£ ') A, ( ± i ) 5,; J 'M j ,  | Vc(r) | n N  (IL) , ( i  i ) 5 : J M j )

= 5 j J 'dj jM j ' (n'iY'  (f'L ')v ( i  i ) s ,: J M j  || Vc(r) || n N  (/ £ ) A(± ±)5 ; J M j )  .

(B.2.1)

The resulting reduced m atrix element is evaluated using ([Ed-65]. Eq. 7 . 1 .7 ). We have 

(n 'N 1 (Z'L')A,(± i ) s#; J M j  || V'c(r) || n N  (ZL)A( i  i ) 5 : J M j )

= SSS' (-)v+5̂ +° (2J + 1) |  X’f [  SQ } (rc'.V' (Z'Z/).v || Vc(r) || niV (IL)X) .

(B.2.2)

We use ([Ed-65], Eq. 7.1.7) one more time for the reduced matrix element 

<n'iV' (Z'L')A, || V’c(r) || niV (ZL)A> =

{_ f + L + a+o V'(2A +  1)(2A'4-1) |  J  A' ^ |  (« ' /' || Vc(r) || n />. (B.2.3)

The Wigner 6 j  symbols in Eqs. (B.2.2,B.2.3) are readily calculated as

r a ' ./ s  \  _  r y  a o i  ( - ) . 'w + s
1 ./ A 0 /  1 J  J  S  / - 4“  ^ + 1 1 ( 2 . / +  [) • ( 1

f V A' L 1 f  V I 0 1 - . (_) '+\+£
{ a / o }  =  { a A' 4 = i “,d u '7 W T T ) ( 5 7 T T T '  (B 2 "5)
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Moreover, from the Wigner-Eckart theorem we have:

V 1 1 + I
= 5 IV U M { n ' l : nl) . (B.2.6)

Thus, plugging Eqs. (B.2.4), (B.2.5) and (B.2.6) into Eqs. (B.2 .2 ) and (B.2.3), Eq. (B.2.1)
becomes

(n 'N '  ( / ' L ' M I  £ ) Sm J ’M j . | Kc(r) | n N  (IL )A( i  I ) 5 ; J.U,)
=  $JJ‘ &SS’ &NN' $LL' $11' fi\Y 1ZM[Vc(r)](n' l: nl) . (B.2.7)

where

H M [ V (r ) ] (n ' l : nl) =  (n' I' || V(r)  || n I)

=  f  t r t ^ r m D R M .  (B.2.S)
J o

An alternative calculation of the central interaction m atrix element, can be obtained by 
converting the m atrix element to m representation and use the orthonormality properties 
of the angular momentum and spin eigenfunctions

(n 'N '  ( l 'L ' )y (^  i ) s ,: J 'M j .  | Vc(r) \ n N  (IL)A(± i ) 5 ; J M j )

<A' S> m s'  I J ' MJ’) (A P s  m s  I j  M j )
n’Tnst ifivn c

(n 'N '  X'fj.' S 'mg'  | V'.(r) | n N  X f i S m .>•) 

<A' /  S'  m s > | J'  Mj.)  (A fi S  m s  \ J  M j )
li'm 5/ l̂ iTTl C

fiss'fimsms, (n 'N ’ (I'L')\fi  I \ c(r) I n.X (l'L')X/j.)
=  5jj> 8 l l , S[i> 8 \  V Sss' TZM[Vc[r)\{n'I : nl) . (B.2.9)

Here, in the last step, we have also used the unitary property of the Clebsch-Gordan coef
ficients.

B .3  S p in -S p in  In teraction .

We shall carry out the spin-spin interaction matrix element calculation using the m repre
sentation approach outlined in the previous section

(n’N '  (/'Z /)v (± A)s ,: J 'M j .  | V.(r) a , - a 2 \ n N  (IL)S(% k_)s : J M j )

5 Z  (/' m v L' M '  | A V )(A V  S '  m s > | •/' Mj>) 

(l mi L M  | A n )(A /1 S  m s  \ J  M j )
miXfm sn

(n 'N '  l'mi> L 'M' S 'msi  | l^a(r) <J\ • a 2 \ n N  n N  Init L M  S m s ) .
(B.3.1)
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VVe have the m atrix element

(n 'N '  1'm.ii L ' M '  S 'm s>  | t+ (r) 04 -0-2 I n N  n N  Im i  L M  S m s )

=  &NN' ^LL’^ M ( n ' l  \ Vs(r) \ Til) ( ( j^ ) s ' I ’ 0 2  I ( H ) s )  • (B.3.2)

The spin dependent factor in the last equation is given by

5 ( 5 + 1 ) -  | Sss' ■ (B.3.3)( ( H ) s ' I ffi ‘ * 2  I (H )s>  =  2

where we used the fact that s,- =  <̂77. We put these results together and obtain 

{n 'N '  ( / '5 ') a '( H ) s ';  J 'M J' I V^ r ) I n N  (lL)x ( k J ) s : J M j )

=  S .v x 'S L L 'S x rM 'S u 'S s s ’S .w 'S j j ’S M jM j '  2 5 ( 5 + 1 )  — |  7v.W[l ' , ( r ) ] ( n 7  : nl) .

(B.3.4)

B .4  T en sor In teraction .

We shall s ta r t the calculation of the tensor interaction matrix element, by using ([Ed-65], 
Eq. 7.1.6)

(n 'N ' ( l 'L ' ) y ( ^ ) s ,: J 'M j .  \ Vt (r) S l2  I n N  (IL)X( ^ ) S : J M j )

t  t  / * \ + s '+ J  f  1  5 '  A' 1 [2
= djj>b\rjMj,(-Y  |  2  a  5  J V 3

J 2  (n 'N '  (l 'L ')y  || Vt { r )  C<2>(r) || n "N "  (IL).s)

where

n"iV "

(n".V" (H )s»  ||[o-i S  o-2](2) || n X  (hk )s) .

5m =  \{<ri ■ r) (<x2 • r) -  \ai-cr-irz .3

(B.4.1)

3

We evaluate the reduced matrix elements in Eq. (B.4.1): 

1 . ([Ed-65], Eq. 7.1.5) -  for S (S') =  0,1

< (H )s ' ll[* i0 ^ ] (2 )| | ( H ) * >

|  (C’(2 )(f) ■>. [a 1 3  0 2](2)) . (B.4.2)

=  x /5 (2 5 + l) (2 5 ' +  l)
5 2 1

S '  5  2

=  ^si<Jss' 1 (B.4.3)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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where

< 5 l l* i l l 5>  =  2 <i || s,- |I =  v/6 . (B.4.4)

and

1 A 12 2
1  1  1 2 2 1

 ̂ S '  S  2 ,

‘2 . ([Ed-65], Eq. 7.1.7)

(n'iV' (Z'L')a' || Vt{ r )C W (r )  || n N  (IL )A) =  < W £ z / ( - ) ' ' +L+A+2

a/(2A -(- 1)(2A' +  1) |  ^ ^  2  }  ^ II l'f(r) C (2)(r) || n / )  ;

(B.4.6)

3.

<«' / '  || K,(r) C'(2) (r )  || n / )  =  ( / ' || C<2>(r) || I) n M [ V t{r)](n'l': nl) .

= \J{21 + 1) (/020 | I'O) 7J.W[r,(r)](i*7'; nl) .
(B.4.7)

Thus, vve get:

(n 'N 1 {I'L')A, ( i  i ) 5(; J 'M j .  | Vt(r) S l2  | n N  (IL)S( ^ ) S : J M j )

=  tjJ'hfjMj.Sn n ’Sl u Sss’Ss i (~) l'+L+J+l y/(2X+ l)(2A' +  L)

- y f  V ^ T T I ( / 0  2 0 | / ' 0 )  { \  I  * ] [ ' (  X't L2  ]  7 t .M [r ,( r ) j ( „ r  : n l ) .

(B.4.8)

B .5 S p in -O rb it In tera ctio n .

Similarly to the tensor interaction case, we use ([Ed-65], Eq. 7 . 1 .6 )

{n 'N 1 (l 'L')xl( ^ ) s ,: J ' M j . \ Vla(r) f - S  \ n N  (ZL)A( I  i ) 5 : J M j )

_  x x ( \A+5'+-/  /  J  S '  A' )
-  Sj j .Sm j h A - )  \  1 A S /

5 3  <n'N' (i'i').v II W,(r) 1 1| n"N" (IL)M„"N"  (H )s , ||5 ;i ,,.V ( U ) s >.
n ” N "

(B.5.1)

The resulting m atrix elements are:

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .
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I. ([Ed-65], Eq. 5.4.3) -  for 5  =  0,1

( ( j j ) s '  I!*? || ( ^ ) s )  =  < W V s (S  +  1)(25 +  L)

=  y/ 6  SsiSss'  • (B.5.2)

2 . ([Ed-65], Eq. 7.1.7)

(n 'N '  ( l 'L ')y  || V]3( r ) f | |  n N  (IL)X) 

=  W ^ ' ( - ) ,,+/:+A+V ( 2 A +  l)(2A' +  1) |  l'x  A' L{ } < « ' / ' || V}a( r ) / I n / ) :

(B.5.3)

3. ([Ed-65], Eq. 5.4.3)

(n' I' || Vi3 (r) T || n /) =  Su.y / l ( l + L ) ( 2 l+  1) 1ZM[Vu (r)]{n'l: nl) . (B.5.4)

Collecting terms, we find

(n 'N '  ( l 'L ' ) y (^  i ) 5#; J 'M j .  | Vls(r) f - S \  n N  ( I L ) J l  i ) 5 : J M j)

=  f i j j '  S.W j M j , f > N N ' $ L L ’i>ll'f>SS' $ S l  (  — ) l + L + J  \ / { 2 X  +  L ) ( 2 A '  +  I )

7 6  7 / ( / + l ) ( 2 / + l )  { '( a  S  } { A A/ ^ } ^ [ W a(r)](n7:  nl) .

(B.5.5)

It is interesting going about re-deriving the spin-orbit matrix element by converting the 
matrix element to m representation. As a first step, we use the fact that  the m atrix element 
is rotationally invariant, i.e. M j  independent

(n 'N '  ( l ' L ' ) y ( \ \ ) s ,: J M j  | Vls{ r ) l - S \ n N { l L ) x { \ \ ) s . J M j )  

=  2 j V t  ^  <ra' iY' (l'L' ) v ( k  5 )5 -  J M J I l ^( r )  f - S  | n N  (IL )A( I  i ) s : J M j )
XIJ

=  2 J l+ l ^  ^  mi' L> M ' I L1' S ' m s ’ I J
XIj rrifi XI'm si 11' 

Y  ( Imi  L M  | Xfi)(X/ . iS m s  \ J  Xf j )  
mi Mmsn

(n 'N '  I'mi. L 'M '  S 'm s ’ | Vis(r) I ■ S  \ n N  Imi L . \ f  S m s ) • (B.5.6)

The spin-orbit m atrix element in the m representation can be greatly simplified as

(n 'N '  I’mit L 'M 1 S'ms^  | C/s(r ) I ’ S  | n N  Imi L M  S m s )
=  SNNi&LLi&MM^n1 l'm[i S 'm s .  | Vts(r) I • S  | n Imi S m s )  • (B.5.7)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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For the remainder m atrix element, we couple the relative angular momentum / and the total 
spin S to a to tal angular momentum K

(n' I'mit S 'm s '  | Vi3 {r) I - 5  | n Imi S m s )

=  J 2  V  mi' S ' m s ' I K ' K'> (l m ‘ 5  m s  I K  K) i n' K ' k' I W, ( r ) F- S  I n {IS) /vac)
Kk;K’k'

=  (I' m[i S '  msi  | K  k ) { 1  mi S  m s  | K  k)(ti '  {I'S') /Vac | Vjs (r) / • S  | n {IS) K k )  .

Kk

(B.5.8)

The matrix element (n1 {I’S ' )  A V  | V}3 {r) I - S  \ n {IS) K k )  is diagonal in the K -space and 
Ac-independent

( n' { I ' S ' )  / W  | Vu {r) F - S \ n  {IS) K k )

=  &KAT' Kit' 2  [A-iK +  U -  W +  1) -  S { S  + L)] HM[Vis{r)\(n ' l : nl) . (B.5.9) 

Then, we have

' n ' N '  ( / ' i ' ) . v ( i  i ) s ,; J M j  \ V , , ( r )  t -  S  | n N  ( l t ) A(§ i ) , . :  . / . I f , )

=  SNN.SW  E E  E {n' {I'S') K  I V{r) [■ S  | aa (75) K)

my L M  \ X' /j.'){1 mi L M  | A p) ^T^(X' /a' S '  ms> i •/ Mj ) ( X fi S  m s  | J  Mj )
M  M j

S '  msi | K  k)(1 mi S  m s  | K  k)
K

= S.VA-’dLL' 0  y +  j E E  E {n' {I'S') K  | Vu {r) T- S  \ n (IS) K)
K  m i m s f j .

{ ~ ) l ' ~ m i ' ] f ^ T T {y^ l >  ~ m r  1 ~ mi I LM>\ f
£ ( _ ) S ' - ™ s , - s - , - j ( 2 J + 1 )  j  A' S ' . / |

a m  a-

(A' /.i' X — /j. | <7 m a)(S  m s  S '  — msi i & m„) 

^ (. | j - , . „ - j - , - S (2 s . +  1 | | f  s '  /C j

a ' m a , L J

(/' m^ I — m | a'  m'a){S m s  S '  — nisi I n> m'n)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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=  6NN'5LL' - j — l- J2 ^2  J2 (n > K  i v'*(r)I-s  i n (/5) K )

\/(2A / -H )(2 A +  L)
( ’ 2L + 1

( A '/  A -  /x | a" m"){l -  m, / ' m,, | <r" < )

^ ( _ ) 5 ' - m £ , - 5 - W ( 2 J  +  1 ) |  *  S '  • /  1

<rm<y  ̂ '
(A' / /A —/.i | a m tT) (S  m s  S '  -  m s > | v  m„)  

^ ( _ ) S ' - ~ s. - s - » . , - k ( 2 A :+ 1 ) |  ^  S ' K j

o'm-al )

(I' me I — mi \ cr' m'a){S m s  S '  — ms> j a 'm 'a) .
(B.5.10)

All sums involving the Clebsch-Gordon coefficients can be reduced by token of the orthog
onality relationships, which yields

(n’N 1 (l'L')y a j ) s ,: J M j  \ V t , ( r ) l . S  \ n N ( l L ) x ( ^ ) s : J  Mj )

= 6 N S '6 l u  J 2 ( - ) ~ J~K~L (2 K + 1)>/(2A '+ 1)(2A+ 1 )
K

(n'  (I 'S') K  | V(r)  T- S  | n (IS) K)

{ s  w } { s s ; * }  {  *; ‘ }

=  W u -  5 ^ ( - r - /" A' - t (2A '+  O v ^ A M - 1)(2A+ I)
AT

( - ) l+l'(n' (I'S') K  | Vls(r) f - S  \ n (IS) K)

(B.5.11)

Using the identity ([Sh-74], p 929: 2 .9 L)

( 2 < 7 + I ) { S  5 '  ; } { S  5 '  , } {  , ,  » }

-  { ;  * Ls } { ;  £  ‘ } (B.0 . 1 2 ,

R e p r o d u c e d  w ith  p e r m is s io n  of  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e r m is s io n .
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we evaluate the <7 sum of Wigner 6 j  symbols, and obtain

(n 'N '  (l 'Lf)A, ( i  i ) s , ; J M j  | Vls(r) f - S  \ n N  ( IL )X(±  i ) s ; J M j )

=  SNN.SLL, y/(2X' + 1)(2A +  1) (_)A'+A+5'+5

£ ( 2 t f + l ) { j  * s } { j  % ^ \ ( n ' ( l ' S ' ) K \ \ j s ( r ) f - S \ n ( l S ) K ) .
AT ^

(B.5.13)

The only missing link now is th a t the m atrix element ( n ' {I'S') K ' k '  \ \ j a(r) l - S  | n (IS) K k )  
shown in Eq. (B.5.9) has a  Su>Sss' built-in condition in addition to the fact th a t the m atrix  
is diagonal in A'-space. This fact, together with Eq. (B.5.9), gives

(n 'N '  (I'L')A, ( i  ±)5„- J M j  | Vls(r) f - S  \ n N  (lL)x (k_ £ )s : J M j )

=  $JJ’S.MjMj,$.\TN'$LL'$lt'$SS' (—)'v+A \ / ( 2 A '  +  1) (2A -f- 1) TZM[Vis (r)](n'l  ; nl)

E ^ t w + i ) - / ( / + i ) - s (s + i , ] { ;  ^ } {  ;  i  Ls ) .
h J

(B.5.14)

B . 6  I2 I n t e r a c t i o n .

The m atrix element of the I2 interaction can be easily calculated when the m atrix element 
is written in the m representation

(n 'N ' I 'm i , L 'M '  S ' m s > | Vt2 (r) I2 | n-V Inn L M  S m s )

— $NN' $LL' $MM' $11' dmtm,, $SS'$msms, 1(1+1) 1ZM( n'l : nl) . (B.6.1)

As we already have done many times before, we use the transform ation

(n 'N '  (l 'L')x,(k_ £)s ,; J 'M j .  | Vl2 (r) I2 | n N  (/£).V( I  I ) s : J M j )  

(l' m r L' M '  | A' ft') (A' ft1 S '  m s . \ J '  M j . ) 

Y ,  (l mi L M  | A /t)(A j.L S  m s  | J  XLj)

(n 'N '  l 'm r L 'M '  S ' m s > | Vt2 (r) 12 | n N  l m t L M  S m s ) , (B.6 .2 )

substitute Eq. (B.6.1) and apply the orthogonality of the Clebsch-Gordon coefficients in
order to reduce the sums over the magnetic moments. We have

(n 'N '  (l'L')y (% I ) 5,: J ' M j . \ V,2 (r) I2 \ n N  (l L)x (k_ k j s : J M j )
=  $NN' $LL' $w $SS' 1(1 +  1) 1ZM[Vi2 (r](n'I ; nl)

J 2  (A' V - ' S m s  | J '  M j . ) ( X  ft S  m s  \ J  M j )  ( l m ‘ L M  I A' I1') (l m ‘ L M \ X  n )
msitfi' miM

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e r m is s io n .
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=  6 /V/V' $LL' &il' $SS' I {I +  1 ) 1Z M ( n ' l : nl)

S\\> 5 3  ( ^ u S m s  | •/' M j ' ) { A f i S m s \  J  M j )
" > S W

Finally, we get

(n 'N '  ( l 'L ')x(L  i ) 5,: J 'M j .  \ Vl2 (r) 12 \ n N  (IL)X(± I ) 5 : J M j )
— bj j> S M j M j i  S \ y  S^N'  &LL' &ll' ^ss '  1(1+1) R . . \A(n l : n l)  . (B.6.3)

B .7  I2 <Ti ■ cr2 In teraction .

The derivation of the m atrix element for the I2  <jx • a2 interaction follows closely the cal
culation of the m atrix element corresponding to the I2 interaction. Again, we go to the 
m representation where the calculation of the m atrix element is particularly simple, even
though a little more involved tha t the one in the previous section: we have now a  spin-space
part in addition to the angular part

(n 'N '  X/j.' S'ms> | Vi2s(r ) I2 - 0 2  I n N  A/i S m s )

=  £.\.v < w  $SS’ V cm s, 2^5(5  +  1) — ^  (n 'N '  A/i | Vi2s (r) I2 | n N  A/i)

— ^AA' ^SS' 2^5(5  -(- 1 ) ~

5 3  <*' L' M '  | A i i ) ( lm t L M  | A/t> (n 'N '  l 'mv L 'M '  | \ )l s (r) I2 | n N  l m t LM)

=  £.\.v <W &SS' tm sms, 2^S(S +  I) -  |  8[[' 8mimt, 1(1 +  1) 'JZM[V!2s( r ) ] ( n ' l : n l)

5  ] (!•' m i' L' M '  | A /i)(/ mi L M  | A /i) S y y  &ll ' ^ \ i M'

=  £\A' &ss' $msms, &LL' &il> 2^5 (5  +  1) — -  /(/ +  1) 7v.\/l[l /2s (r)](ra// : nl) .

(B.7.1)

Then, we have

(n 'N '  (l 'L')y ( \ l ) s ,; J ' M j . | Vi2s(r) I2 <r, • <r2 | n N  (IL)X(% A)s : J M j )

5 3  (A V  S '  m Sr | J '  M j . ) (  A fi S  m s  | J  M j )  
m.sn;m sm' 

(n 'N 1 1'mp L 'M '  S ' m s 1 | Vi2s(r) 12 (j\ ■ a 2 | n N  Imi L M  S m s )

=  dA.v ̂ SS' &NN' <̂ L£.' 8 n> 2^5(5  +  L) -  -  1(1+ 1) 1ZM[\}2s(r)](n' l : nl)

5 3  (A/i S  m s  | J '  Mj , ) (X /i S  m s  \ J  Mj )
m cfj.

=  8 j j i 6 xf jMj i 8 \\> Sss' <5;ViV &ll' 6 u> 2^5(5  +  1 ) — -  1(1 +  1) TZM{\^ (rO K 71̂  : nl) .

(B.7.2)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .



93

B .8  Q uadrupole S p in -O rb it In teraction .

The second procedure used to derive the spin-orbit m atrix element. Eq (B.5.14) allows us 
to  write down immediately the m atrix element of the quadrupole spin-orbit interaction

(n 'N '  (/'Z/)A,(± i ) s>; J M j  | VU2 (r) ( f - 5 ) 2 | n N  (lL )x (k_ ±)s : J M j )

=  Sn n >Sl u Sw Sss> ( - ) A'+A \ J (‘2A '+  1)(2A 4- 1) lZM[VU2 (r)](n'[ : nl)

(B.8.1)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .



A ppendix  C 

Three-Body M atrix E lem ents Calculation.

We shall consider the case of tensor products of spherical tensors of the form

(
V-(fc) _A) y y:(*l) © z:(t2) (*)

(C-0.1)

Then, we calculate expectation values of the operator (C.0 .1 ). between 3-body states where 
the angular momentum of the first particle is coupled by particle-hole coupling to the to tal 
angular momentum of the second and third particles. This can be shown to be equal to

( k ) '

< ( i iJg) \ I ( X[ k]

=  SkA

v 2(kl) © z f - ]

J23J 54

I (  0*57*4) 75., ( J

A

O'l II -V(A) II je) 0*2 || V'(fcl) II h )  0 3  || Z<*2> II j , )1 1 II7-.) • (C-0.2)
The corresponding three-body matrix element in the m-representation ran be obtained as:

i i i  h j 2 h j z  I ( A I © Z (t2) ( * )
I 6̂j 6 5̂7-5 O il }

:• f J'l 7*5 k i

= E ^  E (-)J6+JM < 7*3 A  fc-2
j23 J54 t  723 754 A

Oi II A'<A> Hie) O2 II y {kl] IIis) 0*3 II ^ (fc2) II J..) 

E (-)~m6-m23 0*2O22 7*3 023 | 7*230223) 0*5025 7*-l024 I 7n-10254)
m23 ^54

E  Ot 02 L 76  ~  026 | A/i) 0*54 0254 7*23 -  0223 I A/i)
A*

=  0*1 II A'<*> II is) 0*2 II V'(fc*» II 7*5 ) 0*3 II z<*2 > II A)

1 i 2 is  ^ 1^   ̂  ̂_ye+J54 223754 ^

J23 254
7 3  2*4 ^ 2

_ 2 2 3  7 5 4  ^

E (-)_m6_m23 0*20227*3023 | 7*230223) 0*5025 7*402 I | 7*540254)
™23 ™54

E O’l 021 is  -  026 I &k) 0*540254 7*23 ~  02 93 | foi)
/C

(C.0.3)

In any actual calculation we shall only encounter three-body m atrix elements in the m- 
representation, summed over all the magnetic quantum numbers (o?[. in2, 2223, m4, 0 2 5 , 
o26).
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Note. The following reduced m atrix element is particularly im portan t ([Ed-65], Eq. 7.1.5):

</7 J] || /)< i || o- f| i)
r Ufa)  f  V 1

< n ) / l  P » © a  | (1 1 )j )  = j j ' k l  k k 1

I /  j  k 2

I' I k x
2 2 1 } ( / ' | |C ,<Afl) || /) ,  (C.0.4)

f  J k 2

where we have

( / ' | | C ( A : ) | | / )  =  /  < / 0  i f cO |  / ' 0 > (C.0.5)

with I + I' +  k = even.  N ote tha t, if k 2 =  0 and 1 = 1' .  then ki =  I . and the reduced 
matrix element (C.0.4) vanishes.

C .l  R ad ia l P art o f  th e  T b ree -B o d y  M a tr ix  E le m e n ts .

Based on the experience gained in dealing with the two-body m atrix  elements, we shall now 
address the calculation of the  radial part of the three-body m atrix  elements:

R
r o c

=  / r \ d r v H niix{ri) TZn6 l6 (r i)
Jo

r o o

/  r\ dr2 TZn-1i2 {r2 ) R-nrj^r-i) « ( r 1. r 2) 
Jo

rOO
/  r$dr3 1Zn3 i3 (r3) 7Zn4 iA(r3) ct/q.  r3) 

Jo
(C.L.l)

where we have

u(r l . r 2) = u(klk2 :k)(ru r2) =  -  [  p2 dp d{k) (p) j k l (pri) jtc2 (pr2)
~ Jo

y ( f l , r 3) =  ^ ‘^ ( n . r n )  =  -  [  ( f  dq # l) (q) j Hi(qrz ) . (C.L.2)
~ Jo

with

d(k)(p) = [  r2dr A( r )  j\.(pr)
Jo

b{l)(q) = [  r2 dr  B(r) ji (qr)  .
Jo

Similarly to Eqs. (A .1 .8 ) and (A .1.10), we have 

j T  r 2 dr2 K n2h (r2 ) 1Zn5l5 (r2) j h (pr2) = _ L _  ^  . 4 ^  ^

(C.1.3)

(v^ ) 3 ^

Jq rU r 3 n n3 l3 (rz ) n n4 i4 (r3) j K2 (qr3) = £  A Z?3 n,U j n o mK2 {q')

( C . 1 . 4 )

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .
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where we have p' =  -j=p and q' = -j=q , and the expansion coefficients are defined as

Jr o o

X 2 dx 2 Rn2l2 {-J5x '2 ) Rn^ls{ ^ x ' 2 )  R O nk2 i*'2 )
0

A Zhn<l< = r  X* dX* tfn,/3( ^ ' 3) Rn^ui-fcx'z) U O  m«2 (x'z) . (C.L5)J 0

with x'  =  . Therefore, the radial piece :n6/s „ s /5 becomes

^  ^  '^n2hn-sls '^n3lln4 l4 Xl d x l flnil , (xi !  fi!n6{6 (xi)

f  p2 dp d{k){p) UOnk2 {p') A , (p rt ) [  q2 dq 6 (/)(r/)
^ 0  J  0

V-OmK2 (q') j Kl{qri) .

(C .1 .6 )

The integral

f  p2 dp dlk)(p) U O nk2  [p) jkt (pri)
Jo

can be calculated by changing variable from p to  p' — p

( t )  r  p,'d?' ".(',v 1)
and expanding out part of the integrand in a harmonic oscillator basis 

dw ( ^ p ' ) n O nk2 (p') = ] T  Btk'nk2 WDskl{p' ).
5

where the new expansions coefficients. Bkklnf.2, are

B ?:nh = p 2dp u o nk2 (p') w b skx( / / ) .

Then, the integral (C.1.7) is readily calculated

[  p2 dp d(k) (p) n O nk2  (p)  j kl (p r i)
Jo

=  B^ h  JQ P'" dP"H Oskl{p) jkAp'j- ' i  

= (t ) ^  [\/f

(C.1.7)

(C .1 .8 )

(C. 1.9)

(C.1.10)

( C . 1 . 1 1 )
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In a similar manner, we also obtain

J™ q2 dq Ul\ q ) % O mK7 {q' ) j Kl{qn )  =  f ^ )  £  B f ^ ^ n o tKl( x \ )

with

=  f  (C.1.13)
Jo

The substitution of the p and q integrals in Eq. (C.1.6). using Eqs. (C.I.1L) and (C.1.12), 
plus one more change of variable ( i i  ->• -J- x \ ) ,  lead to the final form of the radial part of 
the three-body matrix element

R kik2 ,K\K2 ;kl

(C.1.14)

L — f _____ ^ \  ' An ^2 \  im*2
n- l h n z h  itiqIq n 5 / 5 n+U  I f K  * 2 /  /  -> * /  -  n.\lz n+lA

'  ^  '  n  m

E D s k \  \  '  - y k i K i  : s t
k,nk2 /  I, ttlk.2 n-ih nrJ*\

s t

where we have introduced the notation
TO O

= /  Adx'i RnriAfr'i) Rn6i6(^x\) noakl(x\) notKl(x\) (c.i . io)
Jo

C.2 T w o-P ion -E xch an ge  In tera ctio n .

^2773  ̂such as presented in Equation (2.3.1) is not a convenient form to be implemented in a 
many-body calculation. W hat we actually need is an operator form, where tensor operators 
are coupled as in Eq. (C.0.1)

-'-i
(A:)

(C.2.1)

R e p r o d u c e d  with p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



9 8

Therefore, in order to transform V27r3 iv given in Eq. (2.3.1) and obtain the required operator 
format, we shall make use of the following identities ([C’a-83])

° 2  '  ° 3  —  j  ‘ ‘

( 0 2  • f i2) ( 0 3  • r 12) =  ^ { ( 5 1 2  +  CTl -o-2) . O’! -<t3}

(c r2 - r l 3 ) (cr3  • r l 3 ) =  -  {<xi - <r2 . ( 5 i 3 +  <T[ • <x3 ) }

1

(C.2.2)

(C.2.3)

(C.2.4)

(o-2 • r n )  (o-3 • r 13) ( r12 • r l3) =  —  {(S 12 +  0 4  • 0 2 ) • ( £ 1 3  +  ^ 1  - 0 3 )} (C.2.5)
l o

O '! * (7o X  O 3 —  [<XI • (To . (T i  - < J 3 ] 

1
(o-2 • r l2) (cr3 -o'! x f 12) =  —  [(5i2 +  oq • <r2) . oq • ct3]

(0-2 • n 3) ((Ti • cr3 x r 13) =  ~  [o’i - 0 2  . (S i3 -(- or! * rr3)]

1

(C.2.6)

(C.2.7)

(C.2.8)

(cr2 • r I2) (cr3 - r l3) (o’! • f 12 x r I3) =  [(5 l2 +  oq ■ a2) . (5 i3 -f- <Tt • cr3) ] . (C.2.9)
Lo i

The inclusion of the two-pion-exchange interaction V2r3,\% reduces then to the com putation 
of three-body m atrix elements of the operators

1. <r2 • <t3

= i'2 k + l ) u(fcfc-°>(n, r 2) Y  ( - ) 1 (21 +  1) n(i,:0> (ri.r3) Y  <*0/0| A0>

(C.2.10)c f  > 0 C 9 0  (Jo
( 0 3  )

c,(/)

2. (a2 • r 12) (0-3 ’ ^12)

=  J 2  <10 10 I J°> S  /**+*«-■» ('2k1 +  1) (2A-a +  L) ( h 0 M  | JO) ulk^ ( r i , r 2)
fcl ̂ 2

Aq Ar2 7
2  ( - ) J23J23 Y  ( - ) * 23^ 3  5 2  (2 fc+  L) c (tA':0)(--,.r3) |  ^
J23  t '23 fc

5 2 ( - ) A(A:0A:10 |A 0 )  {  *  X )
I  *-23 J2 3  1 J

[c<‘ » ;

'-23

c f>  0 c  2 0  02
( t '2 3  )

0  0-3 ( C . 2 . L 1 )
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3 .  {cr2 • r i 3 ) ( a 3  - r l 3 )

=  Y  (10  10 I j0> Y  ik2+ kl~J (:2ki +  1) (2k2 +  1) (A,0 fc20 | JO) ( n .  r 3 )
k I fc->

5Z 2̂3 JZ J23 5Z (2fc+ l) “(U:0,(r l- To) |  k '2 . j 1
*2 3 ,23 fc I  1 1 J-23 J

Y  (AO M l AO) {
A *•

k k i  A
J2 3  A*23 1

c{A) 0 W*) ^u ,  '<y (T2
( fc23  )

0 S-<(k2 )
c 3 y - (T3

( , 2 3  )1(A)''
(C .2 .1 ‘2)

4. (o-2 - r 12) (<T3 • r 13) (^12 • ^13)

= Y  (10 10 | AO) Y  (1 010 | yo)
k  J

Y  ik2~ kl~ k { 2 k t +  1) (2A2 +  1) (A,0 fc20 | AO) u<fcl^ * ) ( r i , r2)
k\ *2

Y  (2ki + 1) (2#C2 +  1) (M  k 20 I JO) f ('“ '£2y)( n ,  r3)
*1*2

1 ^ } 1 : -  { 1  j i )

E < M « . 0 | A O > { £  *  * j  

( c ?  >« , •̂(*2)
C  3 -  0-3 (C .2 .13)

•5. (7i • <72 X 03

=  - v / 6 1  5 Z  (2A' +  L) “ (*fc0,(r l>r2) (2 / +  L) /-;,)

(A) r (k) -  n- c  2 -.-j ai
(̂ *23 )

_ .  r k / y
Y  j'2 3 1 L 1 1

I A->3 to CO >

c 3 :• <73 (C .2 .14)
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6. (<r2 • r V2) (cr3 • o’! x r 12)

= ^ ( i o i o | y o )  5 3  *'Aa"*, _ i (2fcL +  i)(2fc2 + i ) < M M | y o >
fcifc2

u(*i*»y')(Pl?r2) J ^ ( 2 f c  +  l) ^ ^ ’(n .ra )  ( - ) / / (^0^-0 |/0)
k I

p - ’ - M * *? k i  } £ * £ < - > *
*23 J23 A

f c f  0  (7!
(A)

( • ) C ? 2> 0  cr2

J2Z  

( k z z )

k x k I
I I 1

. k>3 723 ^

r . ( t )C 3 1, u 3
(j23 ) (A)N

(C.2.15)

' • (er2 - r l3) (crt • cr3 x r 13)

=  -  n/6 /  5 3  ( 1 0 1 0 1 J ° )  2 3  ik2~ k l ~J ('2A;i +  L) ('2fc2 +  1) < M  M  I J'O)
J fclfc2

y(*i*ja)(Pl!r3) (2A-+1) u(*fc0>(ri?r 2)
fc /

E  E  ( - > * A »  { * 1  1  ^ } E h ‘ (  * *1 n
2̂3 J23 A ( Ar23 _/23 A J

r (/) -A «.i 'O1 <71
(A) fi(k)'-•> CJ 0 2

( k 2Z ) r (k2)c 3 v <r3
( J 2 3 ) (A)>

(C.2.16)

S. (o-2 - r l2) (<j3 • r 13) (o’! • r l2 x r 13)

=  - > / 6 i  5 3  ( 1 0 L 0 | & 0 )  <10 10 I -/°>
k J

5 3  i h ~ kl~ k (2Ar! +  1) (-2*2  +  1) < M  fc20 | /to) u(fc‘^ :*> (n . r2)
fci fc2

5 3  iK2~Kl~j  (2k , +  1) (2k2 +  1) (k[0 k20 1JO) i’(K,K-:-/ , ( r 1, r 3)
KlK2

£ ) ( - ) ' / ( M M I/O) (-)*»£« ( *! *: . M

e <->“ ; ■ * > { ki -  , j3 } £ < - > ' { ; ■ ; K! |
J23 A  ̂ A. 23 723 ' '

C f  © <T l
(A)

c f 2) 0  ct2
( ‘̂23  )

^-3  1 <T:$
(J2 3  ) 1(A)'

( C . 2 . 1 7 )
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C.3 R ep u ls iv e  T h ree -N u cleo n  In teraction .

Similarly to the tvvo-pion-exchange interaction V^t^y treatm ent above, we need to trans
form the short-range interaction part of the three-nucleon potential. \ and obtain the 
required operator form (C.0.1) of the interaction, as

VJn r  =  £ ( - ) *  (2k +  1) u ^ ( r u  r 2) £ ( - ) '  (2/ +  I) r l//:0)( r I? r3)
k I

J ] ( - ) A ( k 0 10 | AO) ( c ’!A) 0  [c f>  3  . (C.3.1)
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A ppendix D  

Isospin M atrix Elem ents C alculation.

The isospin dependence of the matrix elements is worked out in m-  representation. We 
introduce the isospin operator in terms of the usual Pauli m atrices

TV =
(  1 o )  r » =  (  ; o' )  r= =  (  o - i  )  • <D01)

We introduce the proton/neutron creation/destruction operators in term s of the Cartesian 
components of the isospin operator

■ *
T +  —  +  l T y '  

T _  —  2  (T V  l l y )

(D.0.2)

(D.0.3)

such th a t

r+\p) =  0 
r_  |n) =  0

T+ \ n) = Ip)
r _  | p )  =  | n )

Reciprocally, we have

TV — T+ +  ~—

Ty =  4 (r+  -  r_)

(D.0.4)

(D.0.5)

With these definitions, the expectation values of the various operators in m .  representation, 
are computed in terms of the matrices

( r ' I r+ | r)

( t '  | t _  | r )

L i f  | r )  =  | n )  a n d  | r 7)  =  | p )

0 otherwise
1  i f  | r )  =  | p )  a n d  | r ' )  =  | n )

0 otherwise

1 if |r )  =  |r ')  =  |p)

- L  i f  | r )  =  | r ' )  =  | n )

0 otherwise

(D.0.6)

(D.0.7)

(D.0.8)

The following two-operators are relevant for the calculation of two- and three-body matrix 
elements:
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•  t~i - r 2: appears in the calculation of both two- and three-body m atrix elements. In 
term s of the proton/neutron creation/destruction operators. r±. this operator can be 
expressed as

r i ' r 2 — 2 ( r i+ r 2_ +  r l_ r2+) -f rtoToo (D.0.9)

•  r i • iT 2 x t 3 )- appears in the calculation of three-body m atrix elements. We first 
introduce the spherical tensor components of the isospin operator:

r f 11 =  ~ ^ = ( -x  +  iry) (D.0.10)

riV  =  + ^ (r* ~  iTu) (D.0.11)

f Q l )  =  Tz (D.0.12)

Note the relationship: = ipy/2r±. In terms of their spherical tensor com ponents,
we have

n  • t o  x 7 3 )

=  - i  V2  { -rJV tro  © TalL1! -  0  tvj]'1’ +  I: t-3]^1)} (D.0.13)

=  - t V 2 ^  ^ m r27ili r3 { - ( l m r2 lm T3| 1 -  O r j1,1

- (1  m r2 lm T3| l l ) r [L \  +  (lm .-2 l m - 3 | I 0 ) r j ^ |  (D.0.14)
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