University of New Hampshire

University of New Hampshire Scholars’ Repository

Doctoral Dissertations Student Scholarship

Spring 1998

Ground state of (16)O

Bogdan Mihaila
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Mihaila, Bogdan, "Ground state of (16)O" (1998). Doctoral Dissertations. 2026.
https://scholars.unh.edu/dissertation/2026

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more

information, please contact nicole hentz@unh.edu.


https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/2026?utm_source=scholars.unh.edu%2Fdissertation%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313:761-4700 800.521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Repro?ihced with permission of the copyright owner. Further reproduction prohibited without permission.



GROUND STATE OF %O

BY

Bogdan Mihaila

Diploma (M.Sc.), University of Bucharest (1989)

DISSERTATION

Submitted to the University of New Hampshire
in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
in

Physics

May 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9831959

Copyright 1998 by
Mihaila, Bogdan

All rights reserved.

UMI Microform 9831959
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ALL RIGHTS RESERVED
©1998

Bogdan Mihaila

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This dissertation has been examined and approved.

Director. Jochen H. Heisenberg
Professor of Physics

.Iohn/lFﬂ. Dawson
Prg(essor of Physics

| L(”'é’“ i\ 1) %:ﬁ” ;'L‘\ /

Robert H. Lambert
Professor of Physics

DWL C. W\Mll%

Dawn C. Meredith
Associate Professor of Physics

Olof E. Echt

Associate Professor of Physics

3/24193%

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dedication

To my dear parents

iv

Reproahced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgments

First and foremost, [ thank my advisor Professor Jochen Heisenberg. His enthusiasm and
creativity have been an inspiration. Without his knowledge and patience. without his
friendship and experience, this dissertation would not have been possible. Thank you for
believing this research was possible and putting up with my many questions and doubts.
[ look forward to a continuing relationship for many years to come.

[t was my great fortune to be able to work with Professor .John Dawson. For five years
now, he helped me discover and study the quantum field theory world. [t is hard for me to
recount how many times I knocked at his door and he graciously took the time to discuss
my problems. The projects [ worked on both with him and Dr. Fred Cooper, fueled my
interest and enthusiasm for theoretical work.

Special thanks go to Professors Robert Lambert and .John Mulhern who are responsible
for exciting my early interest in angular momentum theory. Professor Lambert is also
responsible for my understanding of Green’s functions and Fourier Transforms methods.

[ also gratefully acknowledge helpful conversations with VijavPandharipande and Robert
Wiringa, who also supplied the Fortran subroutines to calculate the radial shape of the VN
interaction. Special thanks also go to Steven Pieper for reviewing part of this material. His
suggestions might result shortly in an improvement of the results presented here.

Thanks are also due to all of the members of the UNH Nuclear Physics Group. The
work of a graduate student can get sometimes lonely and frustrating. Thank you all for
being there for me. You made my years at UNH a wonderful experience. My thanks are
also extended to the members of my thesis committee for reading and commenting on this

dissertation.

Reproduced with permissic;n of the copyright owner. Further reproduction prohibited without permission.




[ also have to express my thanks to many people who helped me understand and love
Physics back home in Romania. Amongst them. [ thank Mihail Penescu for guiding my
first steps and setting me straight, and Dr. Vasile Cuculeanu for taking me under his wing
and allowing me to be not only his collaborator, but also his friend.

Last but not least, my thanks and appreciation go to my family and friends. To Cristian
Cocheci whose friendship helped me stay sane for the last two years. To my parents. whose
unconditional love will always be with me. To my wife. [oana. and daughters. Iulia and

Cornelia, who put up with my long hours, day after day, for so many years.

vi

Reproduced wﬁh permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Dedication . . . . . .. . ... ..
Acknowledgments . . . . . . ... ... L. L L.
Listof Tables . . . . . . . . . . . . ..
Listof Figures . . . . . .. . . . ... . . e

ADbstract . . . . . . e e e e e e e e e e e e
1 Introduction.

2 Fundamentals.

2.1 Nuclear Many Body Problem. . . . . . .. ... ... ... ..........

2.1.1 Single-Particle Radial Wave Functions. . . . . . .. ... .. .. ...
2.2 Nucleon-Nucleon Potentials. . . . . . . . . ... ... ... .. ... .....
2.3 Three-Nucleon Interaction Model (Urbana). . . . .. ... ... .. .....
2.3.1 Two-Pion-Exchange Interaction. . . .. ... ... ... .. .....

2.3.2 Repulsive Three-Nucleon Interaction.. . . . . ... ... ... ....

2.4 Matrix Elements Calculation. . . . . . . . . . . .. ... ...

3 Coupled Cluster Method.
3.1 The Uncorrelated Ground State Wave Function. . . ... ... ... ....
3.2 The Correlated Ground State Wave Function. . . . . . .. ... ... ...
3.2.1 The Effective One-Body Hamiltonian. . . .. ... ... ... ....

3.3 The Internal Hamiltonian. . . . . . . . . . . . . . . . . i

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

10

16

16



34 Observables. . . . . . . . . ..
3.4.1 Ground State Binding Energy. . . . .. ... ... .. ... .. ...
3.4.2 Ground State One-Body Density. . . .. ... ... ... ... ....
3.4.3 Ground State Two-Body Density. . . . . ... ... .. .. ......

3.5 Three-Nucleon Interaction Contributions . . . . . . .. .. ... .. ... ..
3.5.1 Binding Ene.gy Corrections. . . . ... ... ... ... ... ... .

3.5.2 Mean Field Corrections. . . . . . . . . . . . . . o v e

Center-of-Mass Corrections.
4.1 The Form Factorof thedensity . . . . . . . ... ... ... .........
4.2 Harmonic Oscillator Shell-Model Calculation . ... ... ... .. .....

4.3 Realistic Nuclear Wave Function Using the exp(S) Method . . .. ... ..

Results and Conclusions.
5.1 Numerical Modelling . . . . ... ... . . . Lo
5.2 Densities. . . . . . . L . e e e e e e e e e e e

5.3 Conclusions. . . . . . . o v e e e e e e e e e e

Bibliography

Appendices

A Two-Body Matrix Elements Calculation in the JJ Coupling.

A.l1 Radial Part of the Two-Body Matrix Elements. . . . . .. ... .. .....
A.2 Central [nteraction. . . . . . &« o i i i i e e e e e e e e e e e e e e e

A.3 Spin-Spin Interaction. . . . . . . . . ... .. ... e

Reprodui:éd with permission of the copyright owner. Further reproduction prohibited without permission.

25

34

35

39

50

50

52

-

5

57

59



A4 Tensor Interaction. . . . . . . . . . . . .. e 65

A.5 Spin-Orbit Interaction. . . . . . . ... .. .. ... ... . ..., 65
A6 L2Interaction. . . . . . . . oo v vt i 69
A.T L% (0y-09) Interaction. . . . . ... ... ... T4
A.8 Quadrupole Spin-Orbit Interaction. . . . . . .. . ... . ... ........ 76
A.9 Center-of-Mass Relevant Operators. . .. ... .. ... ........... 30

B Two-Body Matrix Elements Calculation in a Harmonic Oscillator Single-

Particle Basis Using Moshinsky Transformation. 82
B.1 Transformation Brackets. . . .. ... .. ... ... ... L., 82
B.2 Central Interaction. . . .. ... ... ... . L. 84
B.3 Spin-Spin Interaction. . . . . . . ... .. ... L, 85
B.4 Tensor Interaction. . . . . . . .. ... .. L 36
B.5 Spin-Orbit Interaction. . . . . . . .. oL oL 87
B.6 [2Interaction. . . . - o v v v vt e e e e e 91
B.7T (20;-0pInteraction. . . . . . . . .. e e 92
B.8 Quadrupole Spin-Orbit Interaction. . . . . . . . . ... ... ... ...... 93
C Three-Body Matrix Elements Calculation. 94
C.1 Radial Part of the Three-Body Matrix Elements. . . . . . .. ... ... .. 95
C.2 Two-Pion-Exchange Interaction. . ... ... ... ... ........... 97
C.3 Repulsive Three-Nucleon Interaction. . . . . . ... ... ... ........ 101
D Isospin Matrix Elements Calculation. 102
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

4.1 Convergence of the mean square charge radius for the case of the *He and

160 nuclei. and the harmonic oscillator shell model. . . . . ... .. ... ..

5.2 Energy expectation, charge radii, and proton orbits occupation probabilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4-2

43

List of Figures

Convergence of the many-body expansion (4.1.12) of the charge form factor,
for the harmonic oscillator shell model case. . . . . . ... ... .......
SM1{po(r)] and SM1{p(r)] form factors compared with the internal form
factor calculated according to Eq. (4.2.3). . . . . ... ... ... ... ...
Two-body approximations of the translational invariant form factor com-

pared with the internal form factor calculated according to Eq. (-£.2.3).. . .

Comparison of the ezperimental with the calculated charge density. . . . . .
The p-p two-body density for three different locations (z) of the first proton
and the Argonne vi8 potential. . .. ... ... ... ... ... .. ...,
The p-n two-body density for three different proton locations (.r;) and the
Argonne vi8 potential. . . . .. .. ... ...
The p-p two-body density for three different locations (r) of the first proton
and the Argonne vl18 plus Urbana [X potential. .. ... ... .......
The p-n two-body density for three different proton locations (.r{) and the

Argonne v18 plus Urbana [X potential. . . .. ... ... .. ........

xXi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

A8

(M ]]
U

Ut
Ut



ABSTRACT
GROUND STATE OF !0
by

-

Bogdan Mihaila
University of New Hampshire. May, 1998
We use the coupled cluster expansion (exp(.S) method) to solve the many-body Schrédinger
equation in configuration space in a configuration space of 35 fiww . The Hamiltonian in-
cludes a nonrelativistic one-body kinetic energy. a realistic two-nucleon potential and a
phenomenological three-nucleon potential. Using this formalism we generate the complete
ground state correlations due the underlying interactions between nucleons. The resulting
ground state wave function is used to calculate the binding energy. the one- and two-body
densities for the ground state of 0. The problem of center-of-mass corrections in cal-
culating observables has been worked out by expanding the center-of-mass correction as
many-body operators. For convergence testing purposes. we apply our formalism to the
case of the harmonic oscillator shell model. where an exact solution exists. We also work

out the details of the calculation involving realistic nuclear wave functions.
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Chapter 1

Introduction.

Motivation. In the last thirty years electron scattering from nuclei has provided a wealth
of information mapping out nuclear ground state charge densities [Cv-30]. providing precise
transition charge and current densities for the excitation of single particle states {Sw-83] and
for collective states [Go-80]. The measurement of ground state magnetization densities and
the excitation of high m'ultipola.rity magnetic excitations. or the single particle knockout
reaction to discrete states all have in some way supported the mean-field approach as the
lowest order in the description of nuclear structure.

The confirmation of the mean-field approach. however, were more qualitative in nature
than quantitative. The form factors for the excitation of the high spin single particle states
in 298Pb [Li-79], were described extremely well in shape by the mean-field wave functions.
however, the predicted strength was too big by a factor of two. The knockout reactions
again were in good agreement with the shapes predicted by the mean-field wave functions
but the strength was off by again roughly a factor of two [Le-94].

The general conclusion was that the nuclear correlations are the ones that account for
the discrepancies and not the quark degrees of freedom of nucleons. They do not change the
shape of the wave functions but they modifv the strength due to deoccupation of orbits below
the Fermi surface and partial occupation of the orbits above the Fermi surface [Pa-84]. This
was confirmed by (e, e'p) experiments in which particles from orbits above the Fermi level

were knocked out [Le-94]. Thus, to do justice to the accuracy of the electromagnetic probe.
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we can no longer be satisfied with the mean-field approach, but have to take into account

the correlations largely due to the hard repulsive core of the nucleon-nucleon interaction.

Nuclear many-body problem. A major problem in nuclear physics is to understand
how nuclear structure comes about from the underlying interactions between nucleons. This
requires modeling nuclei as collections of strongly interacting nucleons. The starting point
is the solution of the many-body Schrédinger equation for a realistic nuclear Hamiltonians.

Solutions have been proven to be rather difficult to obtain! For the three-nucleon system,
this was done only in 1980’s via the Fadeev method. first in coordinate [Ch-85], and then
in momentum space [Wt-91]. Since then. a variety of methods have been used successfully
for studying light nuclear spectra: First. the Correlated Hyperspherical Harmonics (CHH)
method [Ki-93. Ki-94] was used to describe the bound states of the A=3 and 4=4 nuclei as
well as d+n and d +p scattering states at energies below the three-body breakup threshold.
Then came the first microscopic calculations that directly produce nuclear shell structure
from realistic interactions that fit V.V scattering data: in 1996. Pudliner ¢t al have reported
calculations of ground and low-excited states for nuclei with A < 6 [Pu-93]. and the next
vear results for nuclei with A4 < 7 [Pu-97], using the Green’s function Monte Carlo (GMC)
method.

However, all these methods are limited in the number of nucleons they can treat, be-
cause the dimensions of the necessary grids grow too large. So far. only the Variational
Monte Carlo method based calculations with realistic two- and three-nucleon interactions
(Argonne vl4 and Urbana-VII potentials). has enjoved success in solving the many-body

problem for medium nuclei. I[n this formalism, an optimal trial function is obtained by
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minimizing the energy through the four-body cluster level. The trial wave function is based
on products of pair- and triplet-correlation operators acting on a product of single-particle
determinants. The pair-correlations operators include central. spin. isospin, tensor, and
spin-orbit components, while the triplet-correlation operators include components induced
by three-nucleon potentials. Expectation values are evaluated with a cluster expansion for
the noncentral correlations. Terms in the expansion are evaluated exactly using the Monte

Carlo integration.

Present work. The goal of our effort is to build realistic models of nuclear structure
that explicitly account for realistic correlations. There are different wayvs to account for
correlations. As mentioned above. one way is to introduce correlation functions in the
many body wave function in real space. This has been quite successful for small nu-
clei [Wi-91, Pu-95, Pu-97] and has resulted in reasonable descriptions of 60 [Pi-92]. A
different approach is to add in configuration space to the uncorrelated ground state multi-
particle multi-hole configurations [Ku-78]. Both approaches can be related to each other.

Our aim is twofold: On one hand we want to verify in a more quantitative way the
claim that the quenching observed in the transverse electron scattering amplitude is indeed
due to correlations. On the other hand, we want to apply this description to single nucleon
knockout and double nucleon knockout reactions. In double nucleon knockout the scattering
amplitude vanishes without correlations and without two-body (meson exchange) currents.
Thus such experiments are a sensitive tool to investigate these two effects.

In a first stage we focus our attention on obtaining a realistic description for the ground

state of a double-magic nucleus. We are using the exp(S) coupled-cluster expansion to
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calculate the ground state of 0. [n our treatment we follow closely the formulation of the
Bochum group [Ku-78]. However, we solve the equations entirely in configuration space.
Furthermore, we truncate in different ways where the significance of terms becomes more
transparent

The coupled-cluster method was invented forty years ago by Coester and Kiimmel [Co-58.
Co-60]. It was not until nearly twenty years later [Ku-78] that the coupled-cluster method
was used to carry out the first detailed calculations of larger nuclei with realistic interac-
tions. The idea behind this formalism relies on our ability of expanding the model nuclear
wave function in the many-body Hilbert space in terms of two Abelian subalgebras of multi-
configurational creation and their Hermitian-adjoint destruction operators. The expansion
coefficients carry then the interpretation of nuclear correlations. The fact that we make no
artificial separation between “short range”™ and “long range” correlations is one particular
strength of this many-body method.

The derivation of the explicit equations is tedious. but requires only standard techniques.
The computation breaks down into two steps: In the first step the G-matrix interaction
is calculated inside the nucleus including all the corrections. This results in amplitudes
for the 2p2h correlations, which are implicitly corrected for the presence of 3p3h and pdh
correlations. In the second step the mean field is calculated from these correlations and the
single-particle Hamiltonian is solved to give mean-field eigenfunctions and single particle
energies. These two steps are iterated until a stable solution is obtained. Calculations are
carried out entirely in configuration space where a 35/iw space is used.

The Hamiltonian includes a nonrelativistic one-body kinetic energy. a two-nucleon po-

tential and a supplemental three-nucleon potential. We have chosen the Argonne v-18
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1]

potential as the most realistic nucleon-nucleon interaction available today. The Argonne
v18 model is one of a new class of V.V potentials that accurately fit both pp and nn
scattering data up to 350 MeV with a y?/datum near one. This necessarily involves the
introduction of charge-independence breaking in the strong force. However. the two-body
part of that interaction results in over binding and a too large saturation density in nu-
clear matter Therefore, the V.V potential is supplemented by a three-nucleon interaction
including a long-range two-pion exchange and a short-range phenomenological component.
The Urbana-IX NNV potential is adjusted to reproduce the binding energy of *H and give

reasonable saturation density in nuclear matter when used with Argonne ¢18.

Future plans. Once the calculation of the 'O ground state is completed we intend
to extend our formulation to address the calculation of discrete excited states as well as
neighboring odd-even nuclei. With the programs working for odd-even nuclei we can then
model the (e.e’N) reaction, where the final state has the asymptotic form of a distorted
wave times a discrete state of the (A-1) nucleus. However. this is not a solution to the
Hamiltonian close to the origin, and thus the wave function needs to be modified in the
region of the origin. Finally, we intend to apply this treatment to the two-nucleon knockout
reaction. There we have three topics needing to be solved: (a) the inclusion of continuum
states, for which we hope to gain experience by modelling the (e.e’N) reaction, (b) the
treatment of correlations between the two emerging nucleons, and (c) the description of the
{A-2) nucleus for the asymptotic form of the final state and its modification around the

origin.
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Chapter 2

Fundamentals.

2.1 Nuclear Many Body Problem.

For a spherically symmetric nuclear system, consisting of both protons and neutrons, the

total Hamiltonian is given as

H =Y Ti+) Vi+ > Vi=T+

i<y <<k

. (2.1.1)

In the second-quantization representation this becomes

L . -
H = Z al (a|T|8)ag + 5 Z aga}; (ad|Vay]|d5) a.as
al alB~s
1 . o~
+ = Y alalal(asy|Vay|d6C) acasas . (2.1.2)
a(3584¢

=L
= 3

where Greek letters label the single-particle states |a) = [nlsjm;:im.). with s

Ij =1+ %] and m, = +%(—%) - for a proton (neutron). The parity of these states is (-1)1

We are searching for the .V particle eigenfunctions and eigenvalue £ of H:

H|W) = E|W) . (2.1.3)

2.1.1 Single-Particle Radial Wave Functions.

r/b. by their expansion into harmonic

We introduce the functions R,; of the variable z

oscillator wave functions HOy(z), as

Ru(z) = Y A% HOu(z). (2.1.4)
k
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-~

and subject to the normalization condition
':o -
/ :1:2 dr Rn[(l') Rn/y(l‘) = O-,l 01 . (2.1.5)
0

Then, the single-particle radial functions R (r) are defined in terms of the the radial

functions R,(z) such that they satisfy the normalization condition

oS
/ f‘2 dr T\’,n[(r) an:(r) = Jn nl()-[p . (2.1.6)
0
Thus, we have
R = L Rl 2.1.7
al(r) = A ni(T) - (2.L.7)

Note that the tail of the single-particle radial functions R,;(r) goes like exp~ ¥ for large z

orr.

2.2 Nucleon-Nucleon Potentials.

Traditionally. nucleon-nucleon (NN) potentials are constructed by fitting np data for T =0
states and either np data for T = 1 (Argonne vy, Urbana vy, Bonn potentials) or pp data
(Reid. Nijmegen 78. Paris potentials). respectively.

Unfortunately. potential models which have been fit only to the np data often give a poor
description of the pp data, even after applying the necessary corrections for the Coulomb
interaction. By the same token, potentials fit to pp datain T = | states give only a mediocre
description of np data. Fundamentally this problem is due to charge-independence breaking
in the strong interaction. The Nijmegen NV potentials represent one possible way out.
However, these models are based on a partial wave analysis. Consequently. they differ in

each partial wave and thus introduce nonlocalities from one partial wave to the next that
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are difficult to treat in many-body calculations. Thus, the goal to construct a nonrelativistic
potential that can be used easily in many-body calculations and that accurately fits both
np data and pp data.

The Argonne vig potential {1] is an updated version of the nonrelativistic Argonne
potential that fits both np data and pp data, as well as low-energy nn data scattering
parameters and deuteron properties. The potential was fit directly to the Nijmegen V.V
scattering database, which contains 1787 pp and 2514 np data in the range 0-350 MeV, and
has an excellent x? per datum of 1.09 . [t was also fit to nn scattering length measured in
d(7w~,v)nn experiments and the deuteron binding energy.

The strong interaction part of the potential is projected into an operator format with
18 terms: A charge-independent part that has l4 operator components (as in the older

Argonne vy )

l. oi-0j. Sij. L-S. L% L[*0;-0;. (L-S)? (2.2.1)
TPt T (0’,'-0’]') (Ti-Tj). 5,']' (T,”Tj). L-S (T,'-T_,).

L(ri-73). L? (01-0) (ri-m3) (L-$)?(ri- 7)) (2.2.2)
And a charge-independence breaking part that has three charge-dependent operators
Tij. (0i-05) Tij. Sij Ty (2.2.3)

where T;; = 37;;7:; — 7; - 7; is the isotensor operator. defined analogous to the S;; operator:

and one charge-asymmetric operator
T=i + T2y - (2.2.4)

[n principle, there could be more charge-independence breaking terms. such as L - ST;; or
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Sij(T:i +7=j), but the scattering data are not sufficiently precise to identifv them at present.
The potential includes also a complete electromagnetic potential. containing Coulomb,

Darwin-Foldy, vacuum polarization. and magnetic moment terms with finite-size effects.

2.3 Three-Nucleon Interaction Model (Urbana).

The model of the three-nucleon interaction presented below follows closely the formalism
described in [Ca-83]. The three-body force is introduced as the sum of two components: a
two-pion-exchange (Var3y) interaction, given by the two-pion-exchange model (Var3y) of
the three-nucleon interaction; and a repulsive VESINR three-nucleon interaction. which was
argued ([La-81]) to be necessary in order to help saturate nuclear matter at reasonable

density.

2.3.1 Two-Pion-Exchange Interaction.

We shall address first the case of the two-pion-exchange model (15.3v) of the three-nucleon

interaction. The two-pion-exchange (V2-35) can be written in the form

Vorany = Z Aoy {71 -T2, T - T3}
cycl.
x {(S12T(r12) + 01 - 02Y (r12)). (S13T(r13) + oy - a3Y (r13))}
+Cor [11 -T2, 1 - T3] [(S12T(r12) + 01 - 02Y (r12)) . (S13T (r13) + o1 - 03Y (r13))]

+B(ri2,r13) {ry -2, 71 -1} {(Si2+ 01 -02)). (Siz+0,-03))} - (2.3.1)

Here 3 .. represents a cyclic sum over indices 1, 2 and 3; 7. o and S;, are the isospin,
spin and tensor operators, and {.} and [.] denote anticommutators and commutators.

The T'(r) and Y (r) are radial functions associated with the tensor and Yukawa parts of the
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10

one-pion-exchange interaction. The B(r;2. ri3) term comes from the #.V S-wave scattering.
Assuming the simple A (33 resonance) intermediate-state model. for the Argonne v

potential one gets

ff‘mr 2 2 .
Ay, = = ~ —0.0293 e
2z ( = 9E.. 0.0293 Ml
1
Coue = 1‘4217
B(riz,riz) = 0, (2.3.2)

where f and f* are the 7VV and #.VA coupling constants. and E,, is the mean energy

denominator.

2.3.2 Repulsive Three-Nucleon Interaction.

Following [Ca-83], we introduce the short range repulsive three-nucleon interaction (Viy g).

as

Vive = Uo Y T*(ri) T?(ria) . (2.3.3)

cyel.

where the strength Up is estimated to be 0.0048 MeV for the Urbana IX potential. This
term is meant to simulate the dispersive effects which are required when integrating out A
degrees of freedom. These contributions are repulsive. and are taken to be independent of

spin and isospin in the Urbana representation.

2.4 Matrix Elements Calculation.

Matrix elements of the ViV interaction can be specified either in particle-particle (pp) cou-
pling or in particle-hole (ph) coupling. Both of these matrix elements completely specify

the interaction, and either set can be calculated from the other set.
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We define ph-coupled matrix elements as

(L3 V(r) | (42)n)

= Z (=)B37™ (imy js —m3 | Ap)

™mm2mamy

(=)2772 (ymy j2 —ma | Ap) (12| V(r) | 34). (2.4.1)
Correspondingly, the pp-coupled matrix elements are defined as

(12} | V(r) | (34)2)

= Yo (imijama | Ap) (amgjamg | Ap) {12V (r)|34),  (24.2)

mimamamy

where the relative coordinate is given as F = — r}.
The matrix elements calculation is carried out using the ph-coupling: pp-coupled matrix

elements are then evaluated from their ph counterpart. using the relationship

o v Jz A ) -
(2L [ V()| B4)r) = D (=T a4+ 1) L (I3 | V() | (43)) .
L Ja J2 L
(2.1.3)
Conversely, we have
N . ; L Ju 3 A . .
(BNV(F) (42 = D (=)t Fl 2L+ 1) (2 1 V(r) | B4)L) -
A Jo J2 L
(2.4.4)

The foundation of the actual calculation is based on the following two lemmas.

Lemma 1 [Ho-61] For the particular case when the potential is factorized into parts de-

pending only on the F| or 7 coordinates, respectively.

vir) = (U™ avr®), (2-4.5)
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ph-coupled matriz elements of the N-N interaction are given by

(_..)j2+j4+l

S LT3 @IV ) by

(31 (0P e viR) |(42)y) =

(2.4.6)

PROOF. According to the definition of the scalar product of two tensor operators of

rank k. we have
(tPWev®E) = 3 () P, (24.7)
q

We can calculate the matrix elements of the U,fk)(l)V_(_l;) (2) operator in the m-representation.

using the Wigner-Eckart theorem

(21UPOVE @) [34) = (L UP@)3) 21 vE ) |1 (2.4.8)
= (—)R-ms (jlmljif)l:'+m1:’o | kq) (LI % 3)

_\J4—my (Jama jy —my | k -q) . (k) 11 . 5
(-) WoTeT VT 4) . (2.4.9)

Finally, using the orthonormality of the Clebsch-Gordon coefficients. together with the def-

inition of ph-coupled matrix elements, Eq. (2.4.1). we obtain the desired result, Eq. (2.4.6).

Lemma 2 [Da-95] Consider the case when the spatial part of the interaction has the form

V(r) C¥)(F), with k some positive integer or zero. Then. we can separalc the variables F

and iy as
V(r)C™®)(7)
e (2K 2%
= 3 ik BREERED (0ky0 | ko) Wiy
kl!k2
(ki) o (k2 e (k) :
[c D7) © R () (2.4.10)
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where
kykosk 2 [~ %
ulktke®)(p) py) = = / dp p* Vi(p) Ji, (pr1) Jra(pra) (2.4.11)
= Jo
and
Vi) = [ dr o V) julor) (24.12)
0

PROQF. Before detailing the actual proof. let us take a moment and introduce the
unnormalized spherical harmonics by their definition in terms of the normalized spherical

harmonics, as

47
2k +1

ck(r) = Yieg (F) . (2.4.13)

The unnormalized spherical harmonics satisfy the normalization condition

4w
2k + 1

/dQ C'cgf[)(F)C';::)(f) = 6k; ka 6’“ 7 - (-2.4.14)

We list here some of their properties. which mirror the properties of the normalized spherical

harmonics:

[y

. COGF) = 1.

[

o= r CR(F) .
3. [Cé"’(f)}* = (=)1 C%5).

(L CRFEY I = VTF L (I0KkO | 70). with k + [+ I’ even.

-

A(CHW(F) @ CP(H)) = Pr(cosw), where w is the angle between i and p.

U
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6. [C*(R) @ C¥(#)]Y = (k04,0 | k0) CR) (7). with ky + ks + k even.

T CVACENF) = ST (k10 ka0 | kO) (kiqu kaqs | kg) CFV (7). with ky + ko + &
kq '
even.

Going back now to our lemma. we first introduce the asymmetric Fourier transform of

the operator V(r)C*¥)(7)

8 () = / d*r V(r) C¥)(7) exp(—ip- 7) (2.4.15)

(27)3

and, conversely,
V(r)c*(7) = / d*p 5)(5) exp(ip-F) . (2.4.16)

Using the expansion of a plane wave in spherical waves

exp(ip-7) = 47 Y i jilpr) Yim(F) Yi () (2.4.17)
i

= 47 > i jilpr) (20 + 1) Bi(cosw) (2.1.18)
{

= 4r Y @+ 1) er) (CVE 2 cOR) (2.4.19)

!

and the orthonormality of the unnormalized spherical harmonics in carryving out the angular

part of the integral (2.4.15), ¥)(5) becomes
~ (k) (—)F (k) [ 2y 1
59 (5) = S-C™M () Fap) (2.4.20)
where
Vi(p) = / dr r2V(r) jr(pr). (2.4.21)
0

We use Eq. (2.4.20) to calculate the operator V' (r)C**)(7) from its Fourier Transform.
From Eq. (2.4.16), we have

N o A S (R (2 e f = 0 1 9
V(INC(r) = S [ d°p Vilp) CT2(B) exp(p- 7). (2.4.22)
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The angular part of the last integral can be carried out explicitly using the definition
F=Tr,— ], and applying Eq. (2.4.19) twice for exp(ip- 72) and exp(—ip - 1), respectively.

Then, we combine some of the above properties of the unnormalized spherical harmonics.

in order to evaluate the angular integral

)/ - oy oK) 7 _. (2k+1
/de C:(;fl)(P)CéfZ)(P)Cf,“(P) = (=) (4—7) (k10k20 | k30) (k1 q1 k2g2 | kags) .
(2.4.23)
To conclude our proof, we recover the definition of a spherical tensor of rank &:
), i)y - 1] 9 4
[c®) 2 clal(m)| " =37 (kv ke | ko) CIV(R) ) (24.24)

92
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Chapter 3

Coupled Cluster Method.

3.1 The Uncorrelated Ground State Wave Function.

We introduce the uncorrelated ground state, [0). as the “vacuum™ or reference state of
the many-body system. The vacuum must play [Bi-91] the basic role of a cyclic vector.
with respect to which we can define two Abelian (i.e. mutually commuting) subalgebras
of multiconfigurational creation operators {C!} and their Hermitian-adjoint destruction
operators {C,}. Thus, the prime requirement is that arbitrary kef and bra states within

the many-body Hilbert space may then be decomposed as the respective linear combinations:

Here. the set-index n labeis a general multiparticle cluster configuration. which in itself is
defined with respect to the vacuum. For a number-conserving Fermi system. the standard
choice for |0) is the single-particle shell-model (Slater determinant) state formed from an
antisymmetrized product of single-particle wave functions. The creation operators {C}}
then describe configurations formed with respect to this non-interacting. closed-shell state
by the formation of multiple pairs of single fermions in (particle) orbits unoccupied in |0)
and single vacancies in the corresponding (hole) orbits occupied in [0). In this sense, we shall
refer to the multiconfigurational creation and destruction operators. simply as ph creation
and destruction operators.

We assume such an orthonormal set of single particle wave functions exists. These wave

16
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functions are solutions to the single particle Hamiltonian given by the Schrddinger equation
in the mean field. Then, the uncorrelated ground state is constructed as the single Slater
determinant which includes all the occupied orbits. [n second quantisation language [Sh-74],

this translates into

ajl0) = 0: a,[0) = 0. (3.1.2)
3.2 The Correlated Ground State Wave Function.
The model nuclear wave function CD(()M) = |0) is written in terms of the vacuum state [0) as

10) = €S0y . (3.2.1)

Here, St is the cluster correlation operator, which is decomposed in terms of ph-creation op-

erators discussed in the previous section (C('; =1, CI = a{,lahl.Cg = a,t,a;2ah2ahl. cee)s
as:
= 1
st = Zl = S, Ch. (3.2.2)
n=

We shall use a variational approach in order to determine the coefficients S,.
A variation d]0) orthogonal to the correlated ground state can be constructed from any

operator Cl as
§10) = e=ScCte=S"|0) = ¢S Cl |0). (3.2.3)
We have

(@816 = (0] Ct oy = 0. (3.2.4)
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The variational principle requires that the Hamiltonian between the ground state and such

a variation vanishes. Thus, we have
(0lH§|0) = (0|]eHe SCL0) = 0. (3.2.5)

We are thus led respectively to an equation for the ground state energy eigenvalue E in
terms of the cluster correlation coefficients {S,}. and a set of formally exact. microscopic.
coupled nonlinear equations for these coefficients in which there appear no macroscopic
terms like the energy E. These latter equations are all of linked-cluster type. due to the

nested commutator expansion (Baker-Hausdorff identity):
L
eSHe S = H + [S.H] + 5 [S-[S-H] + - (3.2.6)

and the fact that all of the individual components of S commute with each other. so that
each element of S in Eq. (3.2.2) is linked directly to the Hamiltonian. [Furthermore, the
otherwise infinite series of Eq. (3.2.6) also always terminates in this case after a finite number
of terms, since each term in the second-quantized form of the Hamiltonian contains a finite
number of destruction operators. Each commutator removes one a' or a a from H. since
all a operators occurring in S commute with each other. We might say that ¢S H e~ S
represents the effective Hamiltonian as Eq. (3.2.5) represents the Hartree-Fock condition
for the uncorrelated ground state with this effective Hamiltonian.

For the sake of the argument let us show that the system of equations (3.2.3) is equivalent
with the previous CCM equations in the literature [Ku-78. Bi-91]. \We start with the exact

ground state Schrédinger equation

HI|0) = E£10). (3.2.7)
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which we rewrite in the similarity-transformed form
e"S"H S [0) = E0). (3.2.8)

By taking the inner products of Eq. (3.2.8) with |0) and the complete set of states {C:rl [0); n #
0}, and recalling that the many-body Hamiltonian is a hermitian operator. H = HY, we get
what appears to be the Hermitian correspondent of Eq. (3.2.5). Since all quantities here

are real, we obtain the desired equivalence:

(0| Cre"S"HeS' |0) = (0] eSHe SCH0) = 0. (3.2.9)

3.2.1 The Effective One-Body Hamiltonian.

To simplify the accounting of number of ph-excitations we use indices for the two-body
Hamiltonian. Corrections due to the three-body part of the Hamiltonian will be discussed

in the last section of this chapter. Explicitly we define

Lo t
Ve = Ivmpzhlhza‘;la‘;zahzahl = Vg,
v = EV f oot lV t ot = vi
e = 5 p1o2h1p3@p, Ap, 3p3 @iy T 5 prhahihz8p 8y &h,80, = o1 *
Vv = V tal a, a
00 Prh2hip28p,3p, 8p, &k,
lp’ t,t ly t ot
+ n P1p2p3ps8p, Ap, ApAp; + 7 MihahshaBp, By, B0, Bk
TO = Tk[ k;az.l Ak, »
Hy = Ty+Up. (3.2.10)

Here Ty is the kinetic energy operator. The mean field Ug will be specified below. We will

assume that the orbits are eigenfunctions of this mean field Hamiltonian Hg with

[Ho, a;] = e,,a;, [Ho. ap] = —epay . (3.2.11)
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Note here that the mean-field Uy is not unique and special assumptions can be made in
order to optimize the calculation.
We use Eq. (3.2.5) with n = L, CI = a;a;., where we write a{,ah {0) = |Lplh) to obtain

the equation establishing S
0 = (OI{TO + Vor + [S1. To) + [St. Voo + [S2. Vio] + [S3. V]
1 1 1
+:2‘[Sl, [Sl-,VlO]} + [517 [S2tV20]] + 6[51. [Sl- [SI-V‘IU]J] }Ilplh) .

(3.2.12)

There are similar equations that determine S, S3. ... While these equations hold in any
basis, there is one basis of particular convenience. This is the mazimum overlap basis in
which S, vanishes. Equation (3.2.12) results in the solution S; = 0 if the terms that do not
contain S, vanish. The mean field basis is determined by the condition of the vanishing of

S; and in the mean field basis we must have
0 = (OI{(HQ — Ug) + Vo1 + [Sg Vlo] + [Sg, V-_;g] }§ l[)“l) . {3.2.13)

Using Eq. (3.2.11), we can show that the expectation value (0|Hg|lpl/) vanishes. Therefore,

Eq. (3.2.13) becomes
(Oonllplh) = (OI{VOI + [SQ,V[Q] + [S3.V20]}“[)Ul) . (3.214)

Thus those terms establish the elements in the one-body Hamiltonian matrix that con-

nect p and h orbits. The equations establishing the higher order correlations in the mean
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field basis are

0 = (Ol{Voz + [S2, Voo] + [S2.Ha] - [S2. Uq| + [S3. Vio] + [S4. Viag]

*% [Sz’ [S2, V2°]] }I'Z”?'h) * (3.2.15)
0 = (Ol{[sz,vm] + [SmVoo] + [S3,H0] - [SJ~U0] + [S.;.V[O] + [Ss,Vgo]
+%[52, [S2. Vo] ] + [Sa. [S2. Vol | }|3p3h). (3.2.16)

0 = (OI{[831V01] + [541 VOO] + [54’ Ho] + [S; Uo] -+ [Ss.Vm] + [SG, Vgo]

+

[52, (S2, Voo]} + [539 [SZ:VlO]] + [S‘h [S2. V-zo]]

fr= N} =

+5[Ss, [Ss, Vo] | + é[sg, s>, [sg,v.m]]] }l4p4h) : (3.2.17)

[\

At this point we will assume that the orbits are eigenfunctions to the single particle Hamil-

tonian Hg. This allows us to solve these equations as

(0[S2|2p2h) = —(Ol{Voz + [SQ,VOO] - [S2~,U0] + [33_V10] + [S»szo]
1 1
+§ [st [S2. Vzo]] }-H—OIQp’Zh) . (3.2.18)
(0[S3[3p3h) = -(Ol{[S2.V01] + [S3. Vo] = [S3. Ug] + [Si- Vo] + [Ss. V]
L 1 . .
+§ [Sze [52, Vlo]] + [831 [Sg. V;m]] }—I_I—OBI)I}/)) . (3.2.19)

A similar equation allows us to isolate Sy using Eq. (3.2.17).

We estimate that in our basis there are about 3 x 10® 2p2h configurations and about
8 x 10 3p3h configurations. While the number of 2p2h configurations is quite accessible, the
number of 3p3h configurations is prohibitively large, and we cannot store all these numbers.
Thus we have to implicitly correct for the presence of these correlations. We do this by

inserting the solutions for S, with n>3 back into the equations and thereby obtaining a
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perturbation expansion in 1/E,4. We write this equation out up to second order for the

Eq. (3.2.14) establishing the mean field

(0|Uo|lpth) = (0|Voul|lplh) + (0|[S2, Vo] |1plh)

~(1[[S2, Var]. Hiovzo] |1pLh) - §<0| [[sg, [S2- Vo] | Hiovgo] I1pLh)Y
+(0} “[52, Vo], ﬁl—ovoo] ; Hiovzo] [Lplh) . (3.2.20)

This equation establishes the matrix elements of the single particle Hamiltonian Hy between
particle and hole orbits. The matrix elements between hole and hole orbits or between
particle and particle orbits are not defined, and any definition may be chosen. As long as
Up is explicitly kept on the right hand side of Eq. (3.2.18) the explicit choice is merely a
question of how fast the resulting series will converge. However. a reasonable choice appears
to be that form that we obtain if we replace in the matrix elements obtained in (3.2.20) the
hole orbit with a particle orbit in order to get the matrix elements between particle and
particle orbits and we change the particle orbit into a hole orbit in order to get the matrix
elements between hole and hole orbits. Reference [He-98b] gives a detailed account of the
contributions included in our mean field as given by Eq. (3.2.20). Our choice for the other
matrix elements corresponds simply in turning the hole line into a particle line or vice versa.

The mean field orbits are the eigenvectors of this matrix. and the eigenvalues are the
single particle energies. This procedure now fully defines the mean field used here even

though it’s definition is not unique.

7Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23
3.3 The Internal Hamiltonian.

The Hamiltonian is given in the center of mass as

A 1 A

-2 Y -
Hint = Y 5, P T > V(E - 55) - Tear. (3.3.1)

i i<j
where Teyr = P2/2M is the kinetic energy operator of the center of mass (CM), and M
is the total mass. This represents the energy in the center of mass frame. The internal
Hamiltonian can be rewritten as

4 A - -
_ N v L o rm =, Pi-P; 2
Hine = (1 - ;{) ;_l o, Pt Z [" (fi — ;) — 7 ] . (3.32)

i<j=1

The p; - p;/M term will be treated as part of the two-body internal potential

Ve = ;) = V(& - ) - 2BL. (3.3.3)

Since everywhere in our equations. the Hamiltonian H and the potential V will be replaced

by their internal counterparts. we shall drop. from now on. the inf subscripts.

3.4 Observables.

Ground state expectation values can be evaluated by introducing the operator St as in the
normal coupled cluster method as presented in [Bi-91]. The normalized expectation value
a of any operator A can be worked out as

o _ {0 aA eS' |0y _ (0SS AeS S S o) .

—— — 3.4.1
(6]0) (0f0) B+
By inserting the unity operator in the {C:‘1 |0)} basis. we obtain
S .St
(0] e C, > |0) . (3.4.2)

a=(0eSAeS|0) + D (0]e° Ae™SClo) i)
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The expectation value on the right is by definition &,, the expectation value of C,. Thus

we can define the new operator
st =5 & cCl. : (3.4.3)
n=l1
With this, the expectation value for any operator can be expressed as
a = (0 AeS (1+351)0). (3.4.4)
Using the Baker-HausdorfT identity
1
eSAe S = A +[S.A] + 5i[S-[S. Al + -+ (3.4.5)
we obtain for the expectation value an arbitrary operator A

a = (0|AST|0) + (0| [S.A] STlo) + ---. (3.4.6)

The operators St can be obtained by solving Eq. (3.4.3) in an iterative fashion. Explicitly
we write ST in the same form as Eq. (3.2.2), with St defined by its decomposition in terms

of ph-creation operators:
- =1
St=3" — S. CL. (3.4.7)
n=1

Finally, in order to make connection with reference [Bi-91]. let us mention that the

previous procedure is equivalent to parametrizing the bra ground state wave function (0] as
- - — r .
(0] = (0] Se~S". (3.4.8)

The bra ground state wave function (0| is the counterpart to the ket correlated ground

state [0) given by Eq. (3.2.1).
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3.4.1 Ground State Binding Energy.

We first apply this procedure to the ground state binding energy. The expectation value of

the Hamiltonian can be written as
(E) = (0| S HeS (1+8) |0 (3.4.9)

Because of the Hartree-Fock condition expressed in Eq. (3.2.5) the terms involving ST vanish

and we get
(E) = (0)]eSH e S |0). (3.4.10)

Assuming that H is at most a two-body operator and taking into account that S; vanishes,

the last equation becomes
(E) = (0] H|0) + (0] S2 Vi [0). (3.4.11)

This expression needs to be modified if three-nucleon interactions are present. Also. this
expression does not give an upper limit of the ground state energy unless we are exactly at

the minimum. In terms of matrix elements the energy can be written as

1 . 1 .
(E) = Z Thy o, + 2 Z Viiha hihy + 1 Z Zpip2hihy Voipahihy (3-4.12)
hihy hyhy pip2hih2

3.4.2 Ground State One-Body Density.

By definition, the ground state one-body density is introduced as

A4
p(F) = D (0]8(F— %) | 0) (3.4.13)

k=1

Since we are dealing with a spherically symmetric nucleus. we shall integrate out the angular

degrees of freedom of the system. Then, we write the one-body density operator for a doubly
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magic nucleus, in second quantisation, as

pP(r) = ) pap(r) alas. (3.4.14)
agd
Here we use pog(r) = Ra(r) Rs(r) to denote the radial part of the expectation value

(af 8(F— ) [ B). Thus, we have
p(r) = ) dag Ral(r) Rs(r). (3.4.15)
al
where the one-body density matrix is obtained using Eq. (3.4.4). as

dog = (0] al ag [0)
= (0lakas [0) + (0| Sz, alas| 8} 10)
+ (0l alag ST {0) + (O] [Sa. alas] §110)
+ (01 [Sa. alas] 8110y + (0] [Sa. alas] S} o)

+ é O [S2. [, abas]] S110) + - (3.4.16)

The density matrix is a real symmetric matrix with positive definite eigenvalues. We
can make a basis transformation such that the density matrix becomes diagonal. This basis

represents the “natural” orbits. In this basis the density becomes

plr) = 37 vt [Re()” (3.4.17)

a

Here v2%* represents the occupation probability of these natural orbits. This is the only

basis in which occupation probabilities have a meaning.
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3.4.3 Ground State Two-Body Density.
We start with the ground state two-body density definition
p(FL ) = D (01 8(Fi = Fim) 6(72 — 72) 10) . (3-4.18)
mn
In the second quantization representation the two-body density operator can be written as

pP(F. ) = Z (aB|p(Fy, 72) | 76) al, al) a5 a,

alB~§
(3.4.19)
Using the completeness relationship of the spherical harmonics
8(0 — ') & (cos(8) — cos(8")) = Z Yo (F) Yim (7)) (3.4.20)
Im
we can evaluate the matrix element
(@B p(Fi. 7)1 78) = 3 Ra(r) Balrt) Yiim, (F1) Garmto | Yiom, | joma)
llm[
Y Ra(ra) Rs(ra) Yim, (72) (iamus |V, | jsms) -
lamgy
(3.4.21)

In order to be consistent with the phase convention of the two-body potential matrix ele-
ments, we couple the two-body density matrix elements using the ph angular momentum

coupling conventions. Using lemma 1. the angular momentum coupled density is
~ g P l = " - g 5L
(@A™ (P ) [(68)2) = pas(r) pSa(ra) gy V(P Yaulfa) - (3-4.22)
Here we have introduced the one-body multipole density p2 ;(r) which is

= (=)t Ry (r) Ra(r) (all Yaull )

() \[(2j°+ lir(zjﬁ D Gal/2js = 1/2 | A0) Ro(r) Ro(r)  (3.4.23)
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if £ + €3+ X is even, and zero otherwise.

For a spherically symmetric (spin=0) nucleus it is more relevant to calculate p(ry, ra, 8;2)
as due to the spherical symmetry the two-body density is dependent on the direction of 7
alone. Thus, we can perform an average over the directions of /. This translates into
carrying out the sum over the p component of the angular momentum \. We obtain the

result
Pags(r1.r2.012) = po(r1) p3s(ra) Pr(costys) (3.4.24)

Finally, in order to complete the ground state two-body density calculation. we apply
again Eq. (3.4.4) to evaluate the two-body density matrix. (0| al, ag as a. |0). With this,

we get the ground state two-body density as

p(ri.ra.0i2) = (0] p3? |G)
= (01p5%10) + (0]p37S510) + (01Sspi"10)
+ (0] [Sa2. p3”] SE10) + (0 p5"S]10)
+ 3 O1[Ss: S pYISHO) + -

(3.1.25)
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3.5 Three-Nucleon Interaction Contributions

[n this section we will review the corrections necessary to take into account the three-nucleon
interaction as part of the general nuclear interaction. As discussed before we consider the
three-nucleon interaction as the sum of two components: a long-range two-pion exchange
and a short-range phenomenological component.

Given the form (2.1.1) of the Hamiltonian, we write the operator 13y in second quan-

tization as

_ - t a9 =
Van = § : Vaibierazboca aixablallacza‘lza'lz - (3.5.1)
a1bycrazbacy

Here, the matrix elements are given as integrals involving the single particle states (including
spins)
V;zlblcl,agbgq = (éal ( 1)¢bl (2).@61 (3) l ‘/—31\" l On, ( 1)@62 (2)01:3 (‘)) - (3-5-2)
[n addition to being symmetric with respect to the interchange of the particles labelled 2
and 3
Varbrerazbacs = Vayerbriaseabs - (3.5.3)
the integrals (3.5.2) also satisfy the symmetry

(3.5.4)

va;b‘c;.azbzcz = Vepayby.coazbs -

The last property is a consequence of the cyclic sums involved in the definition of the inter-
action. which make the interaction invariant with respect to the labelling of the particles.
In previous applications the approximation has been made that such an interaction can

be represented by a density dependent two-body interaction. While such a substitution is
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the easiest modification, it has been stated that this is insufficient [Ca-S3]. However, the
rigorous inclusion of the three-nucleon interaction in configuration space using the coupled-
cluster method is seriously hampered by our present computing capabilities and the neces-
sary size of the configuration space. [deally, we would like to calculate all integrals of the
form (3.5.2) without any artificial restrictions. In practice though. we must limit ourselves

to calculating matrix elements of the form
V.Qa[b[.s azbg a'nd ‘/-0 tl[b[.agdbg . (3.5-5)

where « and 3 cannot both denote particle orbits for arbitrary a;by.a,.b,. We are then
faced with a compromise: Since matrix elements of the form (3.5.5) are all we need in order
to calculate exactly the first- and second-order (S2) contributions to the mean-field and
binding energy, the leading orders in our expansion are treated rigorously correct. Then we
make a reduction of the three-nucleon interaction to an effective two-body interaction, and
use this effective interaction when dealing with higher-order corrections (S,, n >3). This

is achieved by defining the effective two-body interaction as

1 -3.N.den t -
Vavaen = 7 Z AVRSEUEYE IR (3.5.6)

arbyazbs

3N ,den

where we define the matrix element V. by agbs O be equal to

<O l thi all alzab2abl l 0)

= Z{Vhalag,hb‘bz - Vhang.hbgh}

h

+ Z{ —Vhalaz'bxhbg - Vhazalvbzhbl + thznl-blhbz + ‘}1"['1.’-52’161} .
h

(3.5.7)

The definition (3.5.7) has been inspired by the form of second order (S,) contributions to
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the binding-energy and has the additional advantage of being fully anti-symmetric, so that
all procedures developed when dealing with the nucleon-nucleon interaction [Mi-98a], can
be naturally extended to handle the three-nucleon interaction. Note that the first two terms
in Eq. (3.5.7) are equivalent to the standard density-dependent reduction of the three-body

force.
We shall now detail the changes necessary to take into account the effects of the

three-nucleon interaction in the calculation of the binding-energy and mean field using

the coupled-cluster formalism.

3.5.1 Binding Energy Corrections.

We are only interested in the total binding energy when the wave function satisfies the

Hartree-Fock conditions. Thus, it suffices to compute
(E) = (0|T|0) + (0] V][0) + (0]S2V|0) + (0|S3V;3x]0). (3.5.8)

The first order corrections to the binding energy are due to the expectation value of the

three-nucleon interaction in the uncorrelated ground state. We have

L . - .
(OIV3N|0) = '6' Z Vhl'lzhz'hxhzhz - "hlhzhs-hlfwhz + ‘,’lllzh3-h3hlh2
hy haohs
- v’h;h-_)hg,h:;hgh[ =+ V;llhzhs.hghghl - ""h]hgh_‘g./lgh[llg} . (-3.5.9)

Using the symmetries (3.5.3, 3.5.4), the last equation becomes

<0|V3N'0>
| | | -
= Z Evhlhzhs.hlhaha - 5‘/h1h2h3.h1h3h2 + 5"’1!’12’“-’“"1"2 d
hihahy

(3.5.10)
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We notice that only the first two terms in Eq. (3.5.10) have the form (3.3.5). However, in

this particular case, it is a simple endeavor to calculate the missing third matrix element.

We find that the magnitude of this term is small compared to the sum of the terms (3.5.5).
Second order contributions are calculated ezactly as

l g '-s.. n B -
OIS2VI0) = Tog D Spmvrats Vnsipu - (3:5.11)

Prhip2he

At the present time, the third order corrections have not been evaluated. We intend to
closely investigate their size, however. access to a supercomputer is necessary. We will

report on our findings as soon as results will be available.

3.5.2 Mean Field Corrections.

In our approach to the coupled cluster formalism. the single particle orbits are eigenfunctions
of an mean-field Hamiltonian, defined as the sum of a one-body kinetic energy term and
a one-body mean-field potential. The later is not unique. and in the maximum overlap

hypothesis S; = 0, the mean-field is defined as
(0|Uq|lplh) = (OI{V + [S2. V] + [S3,V]}|[1)lh). (3.5.12)

Correspondingly. the contributions due to the three-nucleon interaction can be written as

the sum of three terms

(0| Vavalan|0) + (0][S2. Vay]alas|0) + (0] [S3. Vax]alas|0). (3.5.13)
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In leading order, the three-nucleon interaction correction of the mean-field is given as

1 i . .
(0|V3‘Va;ahl0) = 2 Z {V’llhz hihihp — Vhohhyhohyp + Vhiha hiha pky
hyhy

-V-h[hzh,h[phg + v-hzhhl.hlh'_)p - “.’1[’12 h.hghlp} .

(3.5.14)

Again, using the symmetries (3.5.3, 3.5.4). Eq. (3.5.1-1) becomes

(Ol "3A{El£€lh I0>

L. . . L.
= ) 3 Vhihahhihep = Vhhhoihep + Vhiho hihophy = 5 Vhiho hihohip | -
hiha

(3.5.15)

The second- and third-order contributions in Eq. (3.5.13) look very similar when one

uses the proposed reduction of the three-body force. Eq. (3.5.7). for the account of the 3p3h

correlations. Then, by making use of the full anti-symmetry of Sy and V3 ten We can show
that the required corrections can be written as

Z { ("'hpxpz.Phlhz -2 "‘-’lmmvhlphz) ZPIP2~hlh‘.’

pip2hiha

(pify | Vax | hapa) } _

= Vhayha — 2 Vhah, ,>
( 12.pp1p2 12.py pp2 6ph+6pxh1 +‘m’12
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Chapter 4

Center-of-Mass Corrections.

For the proper description of a scattering process one assumes a nuclear wave function that
factorizes into a nuclear center-of-mass wave function. which is taken to be a plane wave,
and an intrinsic wave function of coordinates relative to the center-of-mass. The difficulty
lies in the ansatz of the wave function as a Slater determinant. Such a wave function
generally does not factorize into a center-of mass wave function and a wave function for the
nucleus relative to its center-of-mass. Furthermore. for the cases where it factorizes, the
center-of-mass wave function is not a plane wave. While this is negligible for heavy nuclei,
it is a significant correction for nuclei like '€0.

The calculation usually gives the form factor of the one-body density labeled F,4(q)
whereas the experiment requires the form factor with respect to the center-of-mass, labeled
Fine(q). In the special case of a single Slater determinant of harmonic oscillator single-
particle wave functions, it has been shown that the wave function factorizes with a center-
of-mass wave function being a Gaussian. This allows us to calculate the form factor in the

form
Fu(q) = e 3%C/4 F(q) (4.0.1)

where & is the harmonic oscillator length parameter. Because of this exact result it has been
customary to apply such a correction also in cases where the single particle wave functions

are not harmonic oscillator wave functions and where the presence of correlations has been
34
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substituted by an effective interaction.

An alternate way [Mi-98b] to deal with this is to calculate directly the form factor in
the center-of-mass system. This way the operator can be written as a series of one-body.
two-body, ..., to A-body terms. [n this chapter we first compare such an expansion with
the exact result, for the case where such a result is available. We then apply the same
expansion to a realistic wave function of '®0 and compare it to the corrections implied by

equation (4.0.1).

4.1 The Form Factor of the density

The charge form factor at momentum transfer ¢ is given in Born approximation [Ta-39] by

Fine(@) = (60l 3 fila®) €77 | p) . (4.1.1)
k
where ¢q is the translationally invariant ground state. r7k the distance from the center-
of-mass to the kth “point™ nucleon and fi(¢*) the nucleon form factor. which takes into
account the finite size of the nucleon A.

The center-of-mass correction has to do with the fact that the origin of the shell-model is
not the same as the center-of-mass of the nucleus. Since the many-body Hamiltonian is not
translationally invariant, then the model ground state ([)g‘”) is not translationally invariant
either, and thus can lead to incorrect description of abservables. especially in small A nuclei.

What we need to establish is the relationship between the model quantities expressed in
terms of the coordinates of the laboratory system (fi. & = 1....). and the intrinsic ones

(;’k =rr~Rem,k=1...4—1), measured from the center-of-mass of the nucleus

A

- 1
== A 4.1.2
. A k=1 b ( )
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Formally, this may be viewed as a change of coordinates, from the coordinates of the
laboratory system 7% to the coordinates of the center-of-mass system {B.m. r7k}, followed
by the removal of the dependence upon B., from the model wave function <I>E,M), ie. we

have to construct the intrinsic wave function [Lp-58]
8§00 = [ G(Fem) 85 (Bome 71) d (1.13)

independent of Run. for an arbitrary function G(R-m). Note here that. in this formalism.
the well-known Gartenhaus-Schwartz transformation [Ga-57. Gi-68] corresponds to taking

G(l;’:cm) = 6(§m). [t is clear now that the arbitrariness of the GG(R.,) function causes
some troubles: Since there is no reason to choose a particular G(Ron). it has been pointed
out that the center-of-mass correction for a given model wave function is not uniquely
defined [Lp-38]. Nevertheless, the various recipes vield the same result in the limit of the
exact wave function of a free nucleus [Fe-71].

The exact nuclear wave function ®q consists of two factors. one of which is a plane wave

in the center-of-mass coordinate, e‘’"fem  the other being the intrinsic wave function ¢g of

the relative coordinates [Ub-71] M,

®o(Fi -+ Fa) = ePRem go(ry - ryy) . (4.1.4)

For an approximate model wave function <I>§,M) however. all we can hope for is to be able

to obtain the decomposition
(M)

(p(()z\'[) - oc-m(écm) @0 (’71""".4)~ (4.1.5)

which is approximately correct to the extent that the motion of the intrinsic coordinates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37
and the center-of-mass are not correlated. Only then, the factorization

Fsd(q-) = ch(‘n Fint((n (4'1'6)

is possible. To that approximation, and assuming that the model provides indeed a good
description of the internal structure of the nucleus (®q = @(()M) [Ba-61}). equation (4.1.6) is

valid with [Fe-71]
Fotl@ = (@51 S fulq?) & e Rem) [ @) (4.1.7)
2
and
Fem(@) = (5" |e7Rem |5y (4.1.8)

The form factor (4.1.7) can now be calculated directly by carrying out an expansion in

terms of many-body operators:

Fine(9) =Z fk(q2) < el TR(A=1)/4 H e-zq‘-r‘m/_-\> ) (4.1.9)
k

m#Ek

Each exponential in equation (4.1.9) can be expressed in terms of the one-body operator

which we define by
f(§-Fm) = e~ TFm (4.1.10)
With this we write the form factor as

Futl@) = Y fuld®) <e“""‘k(-*-”/'* I1 (1+f'((/”-"“m/-'l))> (4.1.11)
k

m#Ek

Z fe(d?) (e“l"f‘k(-4—l>/.4>

k

+ 3 flg) Y (TR pr(g /)
k

m#k

+ -;: ; fi(q?) Z <Ci"-r"‘k(.4—l)/.4 fq-Fm/A) oG- r",,/A)> + .-

m,n#£k
(4.1.12)
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We intend to apply our formalism to the particular case of doubly magic nuclei (60). Thus,
we can use the spherical symmetry of the nucleus to simplify calculations. in the sense that
the form factor Fin;(q) should be spherically symmetric too. and we can in turn average the

form factor over the directions of §. We introduce then
av 1
Fi @) = 1= [ Pl a9, (4.1.13)

This allows us to write the different terms in equation (4.1.12) using the second quantization

formalism, as follows:

one-body term
Y fald®) (o lo(gri(A = 1)/A)[3) alas (4.1.14)
af

two-body term

> @L+1)
L

>° fala®) (a8 |jelar(A = 1/4) futara/4) (G 2 ) [ 55) alalasa,

ai3~v§

(4.1.15)

three-body term

Z iftv=Le=Ls (30, 4 1) (2L3 + 1) (L30 L0 | L,0) Z fala?)
LiLaLs ai3~80¢
) N = [adLa) - (L)L)
><<ax37 Jey(qri(A = 1)/A) fuy(qra/A) fry(ars/4) (ci“’:: ¢4 = 4] )lsevc)
af,a};af,a@ga‘;

(4.1.16)
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where we have introduced fi(gr) = ji(¢r) — di0, and ji(qr) are the spherical Bessel functions
of order /. Note that the conversion to second quantization allows for all restrictions in the

sums (4.1.12) to be dropped.

4.2 Harmonic Oscillator Shell-Model Calculation

We would like a test of convergence for the proposed many-body expansion. We recall that
Eq. (4.1.6) is always exact if @E,M) is expressed in terms of harmonic oscillator wave functions.
provided that the center-of-mass wave function ¢y, is in one given harmonic oscillator state.
Then, the extraction of the center-of-mass coordinate can be done analyvtically. Elliott and
Skyrme [El-54] have shown long time ago. that if the shell-model states are nonspurious.
then the center-of-mass moves in its ground state and is described by the 1s harmonic

oscillator wave function

= A3\ T AR? .
where b is the harmonic oscillator length parameter. The center-of-mass form factor can

also be evaluated explicitly
FHO(q) = e~ i¥a /A (4.2.2)

The correct translation-invariant form factor is thus given in terms of the shell-model form

factor by
Fint(q) = %714 Fu(q). (4.2.3)

i.e. Fyq must be corrected by dividing through F.,(¢). Note that. since the uniqueness of

the procedure of carrying out the center-of-mass corrections has been questioned, the use of
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the equation (4.2.3) has been suggested even in the case of a more general nuclear structure
model [Ub-71].

We will exploit the analytical nature of these results by testing how fast does the many-
body expansion (4.1.12) converge. The shell-model wave function @8‘” for the harmonic
oscillator potential is an independent particle wave function, represented by a simple Slater
determinant of single-particle orbits. This state is what we shall call the uncorrelated
ground state |0). By taking the expectation value in the model ground state <D(()M) = |0),
of the one-, two- and three-body operators in equations (4.1.14). (.1.15) and (4.1.16). the

following relevant expectation values are obtained:

(0lalag|0) = dag (4.2.4)
(0lalalasa, |0) = 8,855 — Basbsm (4.2.5)
(0|atalalacapas |0) = a5 (G590 — 03¢0-8) — dag (d350-c — 83¢045)

+ ac (03509 — 03g0.5) . (4.2.6)

Using these results and following a straight forward but laborious calculation. the translation-
invariant form factor for the harmonic oscillator shell-model can be computed completely up
to the third-order in the many-body expansion (4.1.12). The various components involved

are presented here, by their corresponding term of origin in the many-body expansion.

One-body term. There is only one contribution to the ore-body term of Fi(:,")(q)

HO1 = Z faj(@%) (27 + 1) / HOi,(r)jo(-"—:"—‘(/r‘) ridr. (4.2.7)
9

nlj

where HOp(r) are the usual radial harmonic oscillator wave functions. Note that, in the

previous equation, HO1 is actually the Fourier transform of the one-body density folded
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with the appropriate nucleon form factor. i.e.

o .,
HOL = f, [ 7 ofr) datagtar) e + fu [ pd7(r) iotastar) r2dr
0 0
(4.2.8)

where pép)(r) and pé")(r) are the proton and neutron one-body densities. respectively.

corresponding to the uncorrelated ground state |0).

Two-body term. Twodifferent components contribute to the two-body term of Fi(:tu)(q):

L. one component corresponding to the direct contraction d,-9d3s:

HO2e = 3 funi(d?) (271 +1) /0 HOZ 1, (r) dolari(A = 1)/4) ridry

nyli gt
< 3 @i+ 1) [ HOL,(ra) folara/) ridre (4.2.9)
nal2j; 0

2. one component associated with the exchange contraction d,-0;;:

HO2 = D futunenmsn(®) D QL+ 1) ((LniICHE | (l2d) )
L

nilyjy, ralaja

X /- Honlll (rl)HOnglz("l)J.L((["'l(-‘{ - 1)/4) "f dry
[¢]

x / HO 1, (r2)HO myty(ra) fr(qra/A) r drs (4.2.10)
4]

where the pair of indices of the nucleon form factor f(¢?) indicate that the two orbits

denoted as (n{1j;) and (n2l3j;) have the same isospin.

Three-body term. The three-body term contains six contributions to F{*, out of which
two are identical due to the fact that, in equation (4.1.16). the radial and angular parts of

the operator dependent upon the coordinates of the 2nd nucleon are the same as the radial
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and angular parts of the operator dependent upon the coordinates of the 3rd nucleon. The

different components of the three-body term (4.1.16) are listed below:

1. term 3.1 (JQJJ@g&Y():

HO3;, = Z frani (@) (251 + 1) / HOZ  (r1) Jolgri(A — 1)/A) ridr,
niliny
Z (2j2+ 1) / H0n212 (ra) fo(qro/-l) ry (lr;
nal2Jj2
Z (2j3+1) / 7-[0,13,3(1'3) folgra/A) r3dry: (4.2.11)
nal3jz

2. term 3.2 (04503¢0+6):

HO32 = Z fnltl.]l 2.]1 + 1)

nily gy

Z (2L+l / 'HOnlll(rl)Jo qri(A—=1)/A): rl:l
L

2
Z <((122)J2“C(L)”(l3o )J3) / HO 1, (FYHO ny1o () frL(4 qr) r? (lr) :

nalzj2.n3l3j3

(4.2.12)

3. term 3.3 (0a9350-¢): is equal to term 3.6 (84¢8340-5):

HO33 = HO?»S =

- 2
== > futiemnn@® Y QLY (WP (128)52))
L

nihi, nelage

/ T HO w1y (F)HO gt (1) jr(qri(A = 1)/-4) i dry
0
/ HO 1, (r2) HO gty (r2) frlqra/A) v drs

0

> @it 1) [ HOL () olara/) rddra (4.2.13)

nalzjz
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1. term 3.4 (8a0dp¢dys) is equal to term 3.5 (84¢0350-6):

HO3, = HO3s =
i+ 243
,
== Z fnllljlvn313j3(q-) Z Z (2L5 + 1) Z (2L3 + 1)
nifsdt nalsjs nalajz La=|j1~ja La=ljz—jal

L4lotLy L L,
3 (=) T VL 1(L20 Ly0| L0)
£ v J2 U3

(LA CEN (1ad)ja) /0 HO 1, (r1)HO gy (r1) jr(qri(A — 1)/4) r dry
((122)72 1| CED ] (112) ) [o HOny1, (r2) HOn,1,(r2) frp (qra/A) rd drs
((134)73 || CED || (L24) ) / HO a1, (r3) HOny1y (r3) fr,(qra/A) ridrs:

0

(4.2.14)

[n Fig. 4-1 we illustrate the convergence of the many-body expansion (+.1.12), for the

case of the *He and '®O nuclei. respectively. The solid line represents the eract form factor

les) = le+} .
te-t te-1 exact solution
: — - HOt
te:2 le-) =
: —— - HOL+HO2
o fed — W S HOL+HO2+HO3
2 et = s let =
- Pt s
les p . 1¢S5 wre
le6 — —— exactsalution \ - Q s
e? — u Q le? =
= — - HOI+HO2 i
e & HOL+HOL+HO3 i teX g
tey E— l e =
le-10 = - le-l0 - - - \\
[4] 1 2 3 4 5 0 | N l 3 R
- }
il q ("]
(a) 4He (b) XGO

Figure 4-1 Convergence of the many-body expansion (-.1.12) of the charge form factor, for
the harmonic oscillator shell model case.

in the center-of-mass system, as given by the formula (4.2.3). The agreement is excellent
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for a momentum transfer ¢ < 3 fm~!, and remains reasonable good for ¢ up to 4 fm~!. It
is expected that the size of the contributions due to correlations (as presented in the next
section), is more important than the error made by ignoring higher order terms in the many-
body expansion (4.1.12). Also, it is worthwhile mentioning that a correction expected to
become increasingly important for high values of the momentum transfer. is the contribution
due to the meson-exchange charge density [Sc-90]. However, the inclusion of this correction
is beyond the purpose of the present discussion. We conclude that truncating the calculation
at the third-order gives us a good approximation of the center-of-inass correction for the
independent-particle model wave function case.

Note that leaving out the three-body term in the case of the *He nucleus, would result
in an unacceptable description of the form factor distribution - fulse minima are located
at a momentum transfer q as low as 3.6 fm~! -, whereas in the case of the %0 nucleus,
the charge form factor changes very little by including the three-body term. This is an
indication that expression (4.2.3) can be viewed effectively. as a 1/ power expansion of the
charge form factor. Therefore. as we consider the applicability of the expansion (4.2.3) for
higher values of 4, it appears that we can safely drop higher-order terms in the many-body
expansion and still hope for a good description charge form factor..

To conclude our study of the convergence of the many-body expansion (4.1.12), let us
investigate the influence the given order of approximation has on the inferred mean square
charge (rms) radius. [t is well known that in the limit of low ¢ the form factor can be

approximated as

L 9
Fint(g) = 1 = =¢*(r%) (4.2.15)
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Table 4.1 Convergence of the mean square charge radius for the case of the *He and ¢0
nuclei, and the harmonic oscillator shell model.

Order of approximation *He 160

HO1 1.285979 2.250000
HO1 + HO2 L.484927 2.371708
HOL + HO2 + HO3 1484922 2.3-19467
exact value 1484924  2.349468

and thus is a measure of the rms radius. Table (.1.1) shows the convergence of the mean
square charge radius for the case of the *He and '°0O nuclei. These results show that the
rms radius is little affected by any corrections beyond the two-body term of the expan-
sion (4.1.12). By including the three-body term in Eq. (4.1.12). the rms radius remains

virtually the same in the *He case. and changes by less than 1 % in the !Q case.
y g 3

4.3 Realistic Nuclear Wave Function Using the exp(S) Method

We shall apply now our formalism to the case of a more complicated model wave function
(I)(()M) and the particular case of the %0 nucleus. As advertised. the nuclear wave function
(Dé'w) = |0), has been obtained using the coupled cluster method (or the exp(S) method)
together with a realistic interaction [He-98a].

The formulas obtained in the previous section are not enough anymore. By replacing
the radial harmonic oscillator wave functions., #O,; by the radial part of new the single-
particle wave functions, Ry;, we obtain the expectation value of the operator Fj,; in the

uncorrelated ground state [0). In this sense, the terms SM 1. SA[2 and S M3 replace now
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the HO1, HO?2 and HO3 contributions derived before. They represent only part of the
new picture, since no explicit correction due to the npnh correlations are included.

The correct translation-invariant form factor is given by the expectation value of the
operator Fi, in the correlated ground state [0). As we have previously worked out the one-
body and two-body densities for the ground state, we can apply these results to evaluate
the first two terms in this expansion.

Using the definition of the one-body density
p(M) = Y (018(F~Fn)[0). (43.1)
together with the identity
(0] T=A-D/A15) = (0] / di e TTA=D/A §(7 7 10) . (4.3.2)
we can write the first term of Eq. (4.1.12) as

AL = ) fmlg?) (0] FmAZNIA )
— fp((lz) / df;-eiri'-r’(.-l—l)/.-l p(p)(r-,) + fn(qz) / dF e TriA=1/A p(n)(r:).

(1.3.3)

Here, p{®)(7) and p(™}(7) are the proton and neutron ground state one-body densities, which

include corrections due to 2p2h, 3p3h. and ip4h correlations.

Similarly, we can write the second term as double integral over the ground state two-

body density. using

p(FL ) = Y (0]8(F — 7n) 8(Fa = ) | 0) . (4.3.4)

mn
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Then, the second term of Eq. (4.1.12) becomes

A = Y fulg®) B|EFADA (G 7 4) |G)
= 5@ [ ar [ a7 ST g ) [0 ) 4 o) )]
+let) [ dF [ a7 T Gy [ 4 o )
(4.3.5)

With these evaluations we include all the terms that were included in evaluating the one-

and two-body densities.

lesl) T le+)
ety — sMtip,n] lel g —— sMilp, el
le2 4 ) le2 o — = sMllpw)]
s, N e By (423 €3 4 SRR B4 423
led ; le—d ;
Foles 4 Fotes -
le-6 :: te-6 5
le-7 - le-7 -
le-¥ ~ le-% ﬂ ,
le-y , le-y , !
le-l) — L + b - le-lh <= — ——— e 4~
[1X)] 0.s 1.0 LS5 20 25 30 s 4.0 0.0 0.5 1o .5 20 25 kX)) 3.5 4.0
q (fm™} q [fm™]
(a) Argonne vl18 {b) Argonne vi8 plus Urbana IX

Figure 4-2 SM1[po(r)] and SM1[p(r)] form factors compared with the internal form factor
calculated according to Eq. (4.2.3).

Figures 4-2 and 4-3 show the various effects of the correlations on the internal charge
form factor. We also compare the various approximations of the form factor with the
internal form factor suggested by Eq. (+.2.3). which in both cases is plotted as a dotted
line.

In the calculation of the translational invariant charge form factor correlations enter

at two places. First, the calculation of the one-body operator (Al) includes effects of
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all the correlations, because this term is simply the Fourier transform of the one-body
density. In Fig. 4-2, the solid and dashed lines represent the Fourier transform of the
one-body density corresponding to the uncorrelated (|0)) and correlated (]0)) ground state,
respectively. These form factors are denoted SM1[po(r)] and SM 1[p(r)]. Here, the main
effect of the correlations is the shifting of the diffraction minimum by 5 % to the right. The
new minimum is also predicted by Eq. (4.2.3), which also has a higher tail compared to

SM1[po(r)] and SM1{p(r)].

letd) <« lest)
le-t — Al+SM2 te-l  + — Al+SM2
le2 ; — = Al+A2 le.a ; —_—— Al+A2
Ty (423 - (4.2
P A Eg. (4.23) e Eq. (4.2.3)
ic- 1 led i
F les -: F les g
le6 le-6 ﬂ
le-7 i le-7 ;
lef 3 ek 3
: -~ : :
le = \\ [/ le = |{
le-10 = oo - : le-i) ——— ——— e
00 05 1.0 s 20 25 300 35 10 00 03 Lo L5 1S 3.0 35 40
-1
qffm ] q {fm™}
(a) Argonne v18 (b) Argonne v1R plus Urbana [X

Figure 4-3 Two-body approximations of the translational invariant form factor compared
with the internal form factor calculated according to Eq. (4.2.3).

Secondly, as any expectation value taken in the correlated ground state. the center-of
mass corrections are modified due to the correlations. [n Fig. 4-3. the solid and dashed lines
represent the two-body approximations of the translational invariant form factor. Going
beyond the leading order (SM2) in evaluating the two-body term (.-2). leaves the first
diffraction minimum virtually unchanged. However, the high ¢ behaviour of the form factor,
(g > 2.5 fm™!), is dramatically affected. We can see that the 4, + -, approximation of the

internal charge form factor exhibits a second diffraction minimum. which has been observed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

experimentally by Sick and McCarthy [Si-70], and its presence makes our theory credible.
Physically speaking, the hole in the two-body density affects the center of mass motion and

thus the center of mass correction to be applied.
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Chapter 5

Results and Conclusions.

5.1 Numerical Modelling

We have chosen the Argonne v18 potential [Wi-95] as the underlying V'V interaction. This
potential gives an excellent fit to the nucleon-nucleon scattering data and the deuteron
properties with a y? per datum of 1.09 and thus must be considered to be one of the most
realistic interactions available today. For historical reasons, results for the Argonne v8 and
vl4 potentials are also reported. However, the two-body part of that interaction results
in over binding and a too large saturation density in nuclear matter. For that motive
an empirical three-body interaction is added. In Table 5.1 list the values of the strength
parameters of the two-pion exchange (4,.) and the short-range phenomenological () parts
of the three-nucleon interaction. for some of the potentials of the Urbana series.

The calculation in configuration space relies on our ability to calculate two-body matrix

Table 5.1 Strength parameters of the various three-nucleon interactions of the Urbana series.

Potential Aoy Lo

Urbana-V - 0.0333 0.0030
Urbana-VII - 0.0333 0.0038
Urbana-VIII - 0.0280 0.0050
Urbana-IX - 0.0293 0.0048

50
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elements for the basic interaction with high speed and high precision. We have developed
a fast code to compute two-body matrix elements of the N-N interaction. The codes are
written in FORTRAN and run on UNIX workstations. They allow us to compute ca. 10°
matrix elements/minute on a HP-9000/735 workstation and do not depend on the shape
of the wave functions. This code has been checked against a calculation using harmonic
oscillator wave functions and Moshinsky transformations. The results agreed to at least
107 in accuracy.

We are using the coupled cluster (exp($)) method to calculate the ground state of 0.
We have solved the main Eq. (3.2.20) that determines the 2p2h-amplitudes and thus essen-
tially the ground state G-matrix for 80 in a space of 35 fiw with a harmonic oscillator length
parameter b=0.8 fm, excluding those orbits with ¢ > 9. Corrections for 3p3h correlations
were included in a reduced space of 30fiw and ¢ < 6.

The computation breaks into two steps: [n the first step the G-matrix interaction
is calculated inside the nucleus including all the corrections as specified by the coupled
equations. This results in amplitudes for the 2p2h-correlations. These amplitudes are
implicitly corrected for the presence of 3p3h-correlations and -Ip-lh-correlations. [n the
second step the mean field is calculated from these correlations and the single-particle
Hamiltonian is solved to give mean-field eigenfunctions and single particle energies. These
two steps are iterated until a stable solution is obtained. The resulting binding energies for

the considered Argonne and Urbana potentials are shown in Table 5.2.
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Table 5.2 Energy expectation, charge radii, and proton orbits occupation probabilities.

Potential E rms Lds5/, 28 /9

[MeV /nucleon] [fm] (%] (%]

v8 - 644 2.843 2.08 4.26
vld - 5.66 2.839 1.86 1.98
vl8 -4.79 2.840 L.77 3.83
vld plus Urbana-V - 7.00 (+ 0.27)  2.832 2.40 7.33
vl18 plus Urbana-IX -5.90 (+ 0.27)  2.805 2.65 6.57

expt. -8.0 2.73 217 1.78
+0.025 +£0.12 +0.36

5.2 Densities.

Fig. 5-1 shows the calculated charge density after folding the proton point density with the
charge density of the proton and folding the neutron point density with the charge density of

the neutron. Also ploted is the ezperimental charge density from Reference [Si-70]. As this

008 - ] — expt. 008 expt
""" — = Arponne vI8 — — Argunne vI4 & Urbana-V
— - Argonne vid - Argonne v18 & Urbana-IX
006 AN Arpunne v8 Q06
p-J p.,
[fm™} {fm]
0.4 0
0m 082
nm 0.00
0 1 2 3 4 b] i) t 2 3 4
r {fm] r [fm]
(a) NN interaction. (b) V.V and VV.V interaction.

Figure 5-1 Comparison of the ezperimental with the calculated charge density.
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expansion is accurate up to terms of order ¢, it encompasses the result of the rms-radius.
The resulting charge radii. shown in Table 5.2, are reasonably close to the experimental
one.

In the calculation of the natural orbits we also generate the occupation probabilities for
the orbits above the Fermi level. For the Argonne ¢8. v14 and vl8 potentials the occu-
pation probabilities of the 1d5/, and the 2s,/, proton orbits are summarized in Table 5.2.
The occupation probabilities appear to be consistent with the experiment [Li-79], which
establishes only the lower limit of these values.

The two-body density represents the probability of finding one nucleon at 7} and one
nucleon at /5. We can divide this by the probability of finding the first nucleon at 7;. The
remaining density represents the probability of finding a second nucleon at 7 if the first
nucleon is at 7. If both nucleons are protons. this density is normalised to a total integral
of (Z-1). Figs. 5-2 and 5-3 show these densities for the Argonne v18 potential. as a function
of 7 for various positions of 7. We have made no attempt to correct these for the residual
CM motion of the nucleus. The densities show the effects of the short range repulsion: they
exhibit a deep hole where the first nucleon is located. The fact that the bottom of this hole
is not exactly at zero is the result of the approximations associated with our truncation
scheme. The two-body densities also show that for large distances the long-range aspect
of the ground state nuclear correlations. usually thought to be related with the surface
deformation modes, has a significant contribution: when the first nucleon is located closer
to the nuclear surface, we observe an enhancement of the density at the symmetrically-
opposite position. The picture of a two-body density obtained as the revolution of the

spherically symmetric one-body density, with a Gaussian-like distribution centered at the
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Figure 5-2 The p-p two-body density for three different locations (r;} of the first proton
and the Argonne v18 potential.
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Figure 5-3 The p-n two-body density for three different proton locations (zy) and the
Argonne v18 potential.

location of the first nucleon scooped out of it. is definitely insufficient. For comparison,

Figs. 5-4 and 5-5 show the p-p and p-n two-body densities for the Argonne v18 plus Urbana

[X potential.

5.3 Conclusions.

The aim of this effort was to obtain a reasonable description of the ground state of 60
that explicitly accounts for realistic correlations. We have chosen to describe correlations in

configuration space and used the coupled cluster (exp(S)) method to calculate the ground
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Figure 53-5 The p-n two-body density for three different proton locations (z,) and the

Argonne v18 plus Urbana [X potential

state of 160.

We have shown that it is possible

to choose large enough configuration spaces for the

complete and self-consistent calculation of the ground state correlations inside a finite nu-

cleus. This calculation makes no artificial separation between “short range” and “long

range” correlations. In fact, the two-body density shows that the correlation function in

the surface region of the nucleus has

strong contributions from the surface deformation

modes. It is largely these modes that cause the strong deoccupation of orbits close to the

Fermi surface.
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As any approximation the results presented here are subject to possible improvement
in the future. The influence of the size of the configuration space on the actual binding
energies and form factors has not been completely explored due to the actual computational
limitations. Even though great care has been taken to include all the important terms in
our calculation, there is always a chance that a term felt to be small may prove itself to
be of importance in a later calculation. With this in mind. the general techniques and
conclusions presented here are believed at this time to remain unchanged. Investigations
designed to limit the nature of these uncertainties are currently under way.

Calculations were carried out on a HP-9000/735 workstation at the Research Computing
Center, and a dual-processor 200 MHz Pentium Pro PC at the Nuclear Physics Group of

the University of New Hampshire.
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Appendix A

Two-Body Matrix Elements Calculation in the JJ
Coupling.

As we have already shown in Chapter 2, it is most convenient to evaluate two-body matrix
elements using the ph angular momentum coupling. According to our lemma 2, ph matrix
elements factorize than in two parts, which only depend on the coordinates of the first or
second particle, respectively. It is apparent then, that the appropriate angular momentum
coupling for each single particle wave function |a) is that when the individual orbital angular
momentum [, and spin s, are coupled to a total angular momentum j,. This is what we
call the (Isj) coupling scheme.

[n this chapter, we present the basics of the two-body matrix elements calculation. We
first show how the radial part of the matrix element calculation is carried out, which is
independent of what the actual angular part of the interaction is. The specifics related to
the angular and/or spin part of the interaction are discussed in the next sections for the
seven different operators corresponding to the Argonne v1S potential. As a preview, we
take now the opportunity to review the fundamental theorems of the angular momentum
calculus as presented in Ref. [Ed-65].

Theorem 1 When the tensor operators T*1) and U2 are built up from the same set of

coordinates, the reduced matriz element of the tensor product X&) = [T”"l) D) T(kZ)]([\)
is given by:

. N ) ST ki hy K
O T R G el D SR R ol
,.llljll

G FNTEI N G NTR )y Gy . (A0l

Theorem 2 When the tensor operators T and U*2) are supposed to work on parts 1
and 2 respectively of a system, the reduced matriz element of the tensor product XK) =

[T(k‘) 2 T(kz)](K) is given by:

) o v ok
PG T NXP Ny e Ty = KT S ' j2 ke
J J K

oG FNTE A" ) 7 O 4" )

.’II

(A.0.2)

Here we use the notation j = \/2j + L.

60
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The following special cases prove themselves to be of a special interest.
Corollary 1 Scalar product of two commuting tensor operators.
(7 J'4d's M| (T® SUW) [y jija JM) = b0 Sapap (=)H2H

J j'a i } - k ) ) Sk )
. . E v THE) ||+ LN UE s . (A.0.3
{ k1 Jo - (¥ il 1" Juo) (" J'2 |l (<" j2) ( )

Corollary 2 The reduced matriz element of a tensor operator T'*) working only on part 1
of a system, in the coupled scheme (v jij, JM), is

& J'd2 TN TE N 7 juje )

= (=)1titI+k i S A A TR A0
= ) U0 B R SN Al RN DR CR R

Corollary 3 Similarly, the reduced matriz element of a tensor operator U'¥) working only
on part 2 of a system, is

& ad 2 NPy juja T

SRR T SN iy JN . Ak . _
= (-)ytaEtSEk g { T2 I G0 s ). (A05)
J ]2 k
Let us consider now. a couple of examples, which will allow us to introduce notations
we will frequently be using in the next sections. Below. the operator O* depends only on
the angular momentum components. in a (/sj) scheme.

[ ]
(WD 1 OF (LY ),) = Fllyuslajark) (o |} OF 1y . (A.0.6)
with
.. otk % S L j, % -
F(lu bajai k) = (=)vFe¥r jig, { ! JI‘ 2 } . (A.0.7)
J2 2
[ ]
. (k2) X . .
()i I [0 @ 0] [ (ad)i) = Gllui:lajns kuka) (1 [ %) | 1) L (A.0.8)
with
o I Iy ky
G(lijr; lajas kikz) = V6 jijaks 5 3 13 (A.0.9)
jl j2 k" J
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A.1 Radial Part of the Two-Body Matrix Elements.

The radial part of the two-body matrix elements is defined as

K — 2 = 2d
nyly nalasnazlangly — ; o p-ap Uoﬂ(p)

[ rtan Runr) (09 R (1)) sy (or)

0
/ ra (11‘2 anlz(m (O( (l‘))) jkz(prg),
0
(A.1.1)
where
o0
vaslp) = [ rdr V) jialer). (A12)
0
Treating separately the integral
G
/ rdre Rty (r) (O Rty (r1)) ik, (pr4) - (A.L.3)
0
we shall first change variable from r; to z; = %rl
= e (1) ;
Tidzy Ry, (71) (0 Rﬂsls(xl)) Jk (qz1) (A.1.4)
0
and then one more time, from z, to z| = V2z(, to obtain
. f ¥ 22dz! Rayry(452') (O Bty (&2"1)) s (0 1) - (A.15)
(V2)3 Jo v
with pry = qz; = ¢'2’y . In order to carry out the integral explicitly. we use the expansion
Rnlll(vl;zll) Rn313(71517,l) = Z l:fllx n3l3 HO"’\'I(I,[) . ("\’16)
n
and obtain
_}—Z‘Pkl 0onz(l:t:'”HO (2"1) iy (4" 2"1) (A.1.7)
(\/5)3 . Anily nals A 1 4Ty nky (T1) Ji (g 1) - ALl

Therefore, the integral (A.1.3) becomes

20
/ ridry R, (r1) (O(I)anlg("l)) Ji (pry)
0

= \/_)3 >ooA L [\/_Hon,H ] (A.1.8)
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where the coefficients 4"L, naly 2T€ calculated as

0
Ankl = ‘/0 z'fda:'l Rfulx(?lz'z,l) (O(I)Rnsls(vl;l"l)) HO"kl(‘r,l)' (.‘»\.1.9)

nyly n3l3

Similarly, we have:

(o o}
/ ra dry R, (r2) (O(Z)Rmu(rz)) Jia (pr2)
4]

1 m
= \/’)3 n2§3u414 [\/7 HOmi, (q J . (A.1.10)

where the coefficients 4"‘ Jlangl, 2T€ given as

oS
Aty = /0 2’5 dzhy Ry, (252'2) (omRm(?‘;x'z)) HOmiy (2'3) . (A.1.11)
Using Equations (A.1.8) and (A.1.10), the radial part of the two-bodv matrix elements
becomes

(s 34
nxll n212 :n3l3 71414

1 ~ m o}
= 5 | Pdpvac(p) DA o HOwk (q) Z Ak HO iy ()
_ 1 nk ymk
- (\/ib):’ Z Anllll nzls Z Anzémlq
/ ¢ dq va (L") HO i, (¢') HO iy (¢) - (A.1.12)
0

Here we have ¢’ \/-p

A.2 Central Interaction.

The simplest possible interaction is the so-called central interaction. where the unity oper-
ator comes multiplied by a function which depends only on the magnitude of the relative
distance r between the two particles.

Ve = Vi(r)CO(#) Z (2k + 1) «*50) (p ry) (C'(k)(r'l)vi C'(k)(r’g)) . (A2.1)

The following procedure will be used over and over again in the remainder of this
chapter: we use lemma 1 and convert V.(r)C©)(7) into an expression where 7; and 7
appear separately in different operators. Then we use lemma 2 to calculate the ph matrix
element of the corresponding interaction.
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Note. All matrix elements presented in this chapter must be multiplied by the constant
factor (—)#2+74+1 /(92X 4 1). This factor appears in the expression of the ph matrix elements
as shown in lemma 2 and has been intentionally left out.

In the case of the central interaction this procedure leads to

(mna; (113)5(33)5, 5 A | Ve | nana s (Lid)j,(l23)s, + Aw)

= Z (2k + 1) uFF00) (p) ) iy
%

((i5)i |CRA) | (13h)a) (U23)in 1 CB(r2) | (L)) - (A.2.2)
which results into

(ning; (L3)5,(B33)35 1 A | Ve | nana ; (Lag)), (2d);, + An)
= (224 1) w0 ry)
F(lijiilajz A) (| €N L) Flajailajus M) (bl C™N LY. (A2.3)
A.3 Spin-Spin Interaction.

By definition, the spin-spin interaction is introduced as

Vs = Vs(l') oy-02. (.‘\.3.1)
where
o1-02 = —V3 [0, 2 0a]? (A.3.2)

Then, we get

0)
g0 = ‘\/5

=¥ % ( [c(k)(,:l)@al]m 3 [cm(,:z) n._,}”')) . (A.3.3)
{

( (0)
C'(k)(ﬂ) 3 C'(k)(r'g)] 2 [0.1 S 02](0) ]

——

and obtain

(ninas (i5)5, (3%)5 s An | Vs | nung s (Lig)j,(123);, © An)

= (MY (F @k + 1) O ()
k
Gl l3das kA) (L [ CRV | I3) Glladaibaja k) (| CRV LY, (A3.4)

with [A-1|<k<A41.
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A.4 Tensor Interaction.

The tensor interaction is introduced as:
Vr = Vi(r) Siz. (A1)
where
Si2 = 3(01-F)(o2-F)—oy-02 = V6 ( CA(F) = [0y = 0)® )

= V30 [C'm(r") 2oy = 03](2)](0). (A.4.2)

Similar to the previous interactions, we use lemma 1, in order to decouple the 7, and 7
degrees of freedom. Then we use lemma 2 to calculate the ph matrix element of the tensor
interaction. We obtain

(nina s (lig)i (Ia3)z, + Ak | VT | nana s (L3),(l23)3, 5 Ane)
= V6 Z (2k1 + 1) GUlujis laja: ki A) (L || €59 || 4g)

ky
ky+ky | (kyk2320) . . ky k2 2
Zz ulktb2:20) (1) po) (kg + 1) (k0 k20 | 20) Y
ka
Glajai lajaskad) (2 || C¥2) [ Ly) (A.4.3)

A.5 Spin-Orbit Interaction.

The spin-orbit interaction is given by:

Vis = Vis(r) L- S (A.5.1)
where

- 1 _ - - (_i) - - -

L = =3 Fx (p2 ~p1) = X (V) — V) -

- 1 -

S = 5(0’"1 +02). (A.5.2)
are the orbital angular momentum operator in relative motion and the total spin operator.
Using:

e r, = rC',(nl)(f'),

-1 .
o zay) = -\7.—5($X37)me

we can write
. = .. - - -
V()L = 5 Vidlr) Fx (7 - 1)
. R . — (1)
= (VD) r V() (€U 5 (pa - )]

= VErv0) [CO0 2@ -va ] - (A.53)
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Then, for £k = 1 we obtain:

V() €O = 3 kot BRELGREL 46010

Ky ka V2
(1)
ulktk2 1) (py py) [C'(k‘)(f‘l) D C'“‘Z)(’:z)} . (A.5.4)

Recoupling the C*)(#) and C'*2)(#,) operators with the appropriate gradient operator,
we get:

Vis()L = ) * ™M=l 2k + 1) (k2 + 1) (k0420 | 10)

ky k2
Z { ky LQ ]: }u(""k2'1l)(r[,r'g)
(k)7 (1)
{ [C(Ll)(rl)c_) [C(L )(y)) V(z)} )]

. (1)
+ (=)t [[C“"(n) Vo) L :::c""z’u-._,)] } (A.5.5)

From the triangle conditions characterizing the angular momentum arguments of the 6;
symbol, we get the conditions: |k} — k2] < 1 < by + k2, |ky — 1] < k& < ky+ 1 and
[kiy — 1] £ k < k; + 1. We conclude that k equals either ky or k2. Therefore, Eq. (A.5.5)
can be rewritten as:

- 1 Iy k& 1
Vi)l = — vtk tloof L 1) (2ks + 1)(k5010 | £, 0 { poh2 }
1s(r) \/22_12 ( Y(2k2 + 1){(k> | k1 0) Lk

(1)
{ plkikadl) oy [C““)(rl)() [C(kz)(r, = Vi) “"]

o congey]
]
J

)

«

(k1)

+ utk2ki, ll) (ri.ra) |C ct 2)(,. '(M)(;.,‘,)

(")

(M) (0
(")

'—_'l

. (k1) “’
+ ukFetl e py) [ C(Lz)("l V(l)] Uz () } (A.5.6)

with ky + £k, 4+ 1 even. .
Taking the inner products of Eq. (A.5.6) with S and using the identities

(k) ) _ k|3 (k) . 0w .=
([4([) 2 B(Z)] o U(”) - (_) 21'{"]. ([4(1) - 0'] . B(2) (“‘\.D.t)

(k) w1 (K k) - [p) - 10 )
(14 0 531" = o) = =ty (4 = [t = ") s

the operators in Eq. (A.5.6) result into the following four contributions to the ph-coupled
matrix element (n;nj; (II%)J-l(l;»,z)J3 ;A | Vs | ngng: (L;%)J;‘(lg%);z DAL
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A.
Clk) (7 (k2) (7 (]
(e [c®ieve | s
_ (=)k 3 L (k1) U (ky)
= 2 Vg1 <[C(m(”) s 2 [C®)R) 2 ) l)
o S (k1) (k1)
- (C(Ll)(rl) O, [[C(LZ)(M) 0 V(z)] . cer )}
(A.5.9)
=) /3
= 3 2041 O
{ G 1oas AN) (11 I €OV || ) Fllajo Luji: X) CGa(Mky. ko)
= F(liji;laja: ) (| € || 1) Gllajas Lufis AA) CGa(Mea. ko)) |
(A.5.10)
B.

) s (k1) y (1
([[C’(Ll)(rl)ﬁ)v“)] ' C@C'(“l)(,‘-z)] = S)

. V3 1 . 1 (k2)
= ()" 5 {-—@m([[c“"(ﬂ)e v Ul} : C"“?’(fz))

1 (k) g (k1) Wl - (k1)
T k1 ([C(m(“) '3v“’] i [C(Lz)("'-’) - 02] 1)}
(A.5.11)

(=)* 3
2 20+ 1

{5k2,\ G(hjiilajas kid) CG (kA kiky) Flajailyjaz A) (Lo ) CH ) L)

=

= Giux F(lujiilajai A) CGu(Mex, AN) Gllajoi bafaz kad) (L2 1| C2) [ 1y) }
(A.5.12)
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C.
(k2) (2 (ke) (2 (k]
)2 [cm o va] | 5 s
_ (_)kz ]. (k) ” (kl) - k . . (k[)
- S8 { g (e 0 0] ™ s e < 9, )
1 ) (k1) “2)
- | k) o (k) - -
\/:ZF{-_I(C (F1) [[C l(" R 2] )}
(A.5.1
_\k
N (=)™ 3
2 2\ +1
{813 Gl tajas kaX) (11 ¥ || s} Flajo: Lajaz ) CGalhod AN)
= Siux F(lujns Lajas A) (o | CY | L) Glajas Lyja: ki) C'G:(/\kuklkl)}
(A.5.14)
D.
o (k1) _ (1)
<[[C“2’(rl)®vm] = C'(“‘)(Fz)] o 5)
_ (=9)k 3 ) (7)o U R
T T2 VakfI [c* ] s i)
(k1) k
- ([C(L)(rt) V(l)] l 2 [C'(k‘)(r Ea (!))}
(AD
(__).\ 3
¥ 2 Vairl Bk
{G'(lle;lsjs; AX) CGi(kaA. kad) Flyjazlyjaz A) (Lo ] C L)
= F(lijiil3j3: ) CGrkaA kad) Glajailyja: AN (s || COY ] 14)} (A.5.16)
where

s
CGikiks Lilz) = (mings iy [ ul®%2 () 1y [C“‘)(rl) V(l)]( ! | nany: l3),

(A.5.17)
o e I
CGakika, lily) = (ning: b || ulkk2t(p ry) [C’(ll)(f‘g) o V(z)]( ) | nang; Ly) .

(A.5.18)
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A.6 L[? Interaction.
The L? interaction is given by:

Viz = Vio(r) L2 (A.6.1)
where

L*=[-L = (-)V3[LaL]®

i3
= (-v3) ! 1 L rs e - 0 IV S [r 2 (g2 = p0y [V
(A.6.2)
Since by definition, the spherical components of a vector are
ayr = :{:71_5(% *iay): ag=a-. (A.6.3)
we can show that
[rmsPa] = (=)™ibn_m (A.6.4)
and
[(r?.—'rl)ms(P2_Pl)n] = rm(p2—pl)n - (p2_pl)n"m
= [(r2)m° (P2)n] + [(rl)mv (pl)n] = (-)m 20 Jn—m -
(A.6.3)

Based on this result. we can change the coupling scheme and combine the two Fs together
into a single tensor operator dependent on the relative coordinate unit vector:

[[r 3 (p2 = NI 2 [r 2 (p2 ~ p)]V )4
= ST Umiln [ 1Q)(Imalng | 1Qy)

mynymzn@1Q2

(1Q1 1Qa [ jmYyrm (P2 = P1)m, "ma(P2 = Pi)na
I 1 1
=37 ) VEs+DF+) {1 L Ly (1010|~0)
33 K & J

7 W ¥3}
[CNE) 2 (2= 1) 2 (2 = P01 |
; J)
+6ir (=)™ { i ; j} [C"”(f) 2 (pg—-[}l)]( . (A.6.6)

m

e Note I. Neither k or k¥’ may be equal to one, because of the cross product @ x @ = 0.
Therefore, the admissible values for & and &’ are 0 and 2.
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e Note 2. In the particular case of the L? interaction, the rank j is equal to zero. and
by the symmetry properties of the Wigner 9 — j symbol we have:

I 11 1
1 L 1Y = du, Ly (A.6.7)
k & 0 kK & 0

Thus, the tensor product form of the L? interaction is

L? ﬁ [[r@) (Pz—Pi)]m@[r'D(Pz—Pl)]m}(m

. }:\/W{ 1}{}(1010@-0}

1 1
x=0,2

le
T

4710
(€)@ [(p2 = p1) ® (2 = 0} ]
-iV3r [C“’(f) D (p2 -pl)](o) . (A.6.8)

or, equivalently,

L? =

va-‘a

r? Z V26 ¥ 1 {i } i}(lOIOIKO)

=0,2
i 100
[C'(")(") 2V = V) 2 (Ve = 7u)] )]
- (1) 2\ (0)
3r [C@F) 8 (Ve - va)] - (4.6.9)

We expand the unnormalized spherical harmonics C*)(7#) and C'!)(#) lemma 1

I 1
Via(r)L? = Z { }(lOlO[ch)
s \/2n+ L
D iR (k) 4 1) (k2 + 1) (k10 k20 | £0) wlrK2m D (ry 1y)
k[k;

g . g N (I‘) x (0)
[[C(kl)(rl) D CU‘Z)(P:))] O (T - V) 2 (Ve - Yy )]( )]

- 7 Y iR 2k 4 1) (2k2 + 1) (k10 k20 ] 10) ul¥52 10 (rp ry)
ky k2
1

k . () ©
[[C( D) @ C 2)(f‘2)] 2 V(z)}

(1) (0)
- [[c.'“‘l)(f[)@;c(ke)(fz)] ;av(,,] } (A.6.10)

We shall find now what the contributions of the operators in Eq. (A.6.10) to the matrix
element (n 735 (113);,(l33)3, : Ak | Viz | nana s (lad)j,(l21);, + An) are.
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We shall encounter similar operators to those shown in Eq. (A.6.17) a little later in this
chapter, when we will be dealing with the quadrupole spin-orbit interaction. with the only
difference being that the overall rank of the tensor product will be equal to 2. Therefore, it
is useful to derive here results valid for an arbitrary even rank j.

First, we notice the matrix elements of the operators in the second sum are very similar
to those discussed in the previous section. We have:

. . (1) (N
“C( D) @ C 2)(':2)] D V(z)]
. . (k)74
= (-)V3 ) Vk+1 { "; "12. /i } [C(kﬂ(f[):a [C‘ke)(f-._,; = v(g)J ]
k
(A.6.11)

k k (1) ©
[[C‘ (i) 9 CHI()| @ vm]

ks &/ ko k1 (ki) fay = ) ka) ©)
= (VB Y () VERFTS i [C (F) 2 T| 3 CR(7y)
k

(A.6.12)

For the L? interactions, we are of course interested only in the case of j = 0. We get:

D.
ki) k) a1 () @
“C( (ry) otk ("2)] o V(z)]
. U (k1)](0)
- [C'(Ll)(,:l) ) [C(kz)(r-g_) o V(Q)J ] (A.6.13)
(")kl . . (k1) . . o
= 5!.-1.\ ﬁ E(ljuilzga: A) (L FCHY (| Us) F(lajailijaz A) CGa(Aka, ko)
(A.6.14)
E.
oy U (1) (0)
[[C'“"m) 2] "’m]
(k2) . (0)
= [[C““’(m Bvw] @ C'“ﬂ(r'-z)] (A.6.15)
—Yka \
= iy BT F(liji; l3fa; A) CGr{kiA kA Flajailaja: ) (|| C™ | L)
2

(A.6.16)
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Secondly, in the first sum, we multiply through the operator expressions to obtain

L R i ( (0)
[[C“‘)(n) 2CE ()] " 8 (Vi - V) B (Ve - )] ’]

o)) s RG] 5 1%
[ [C("l)(rl) @C-(kz)(rg)] 3 [Vi2) 2 Vi)' )]

(x)

1)
-2 “C(""(ﬁ) bo) C"’“’(Fz)] R RvATES V(Z)]M]

) 1o 109 o 1@
+ [[C“*’(nmc“ﬂ(rz)] :z»[vmevm]"] . (A7)

We have now to change the coupling scheme and separate the operators depending on the
coordinates of the first particle, from the operators depending on the coordinates of the
second one. Similarly, for an arbitrary even rank j, we have

(ki) (2 (ka) 2y o = 1Y
[C (F)@C (Pz)] 2 [V 2 V) ]

= Y (S)frRdd e+ )2k + 1) { 'Z.‘
k

o
LW

)

k)gay o (k) oy o - (] () 1)
CYV () O [CY(R) & [V(g) o) V(Z)] J

(A.6.18)
) . (%) (o’ ()
[[C“l)(h)@ ol z)(f.z)] 2V 2 ve) ]
kl 1\'2 N
= Y Vs+ 1)K+ 1)(2k+ 1) (2K + 1) 1 1 &
Kkt Lok
(k) 7 ® 5 [otka t ]V
“C Y(F) D V(\)] o [C i) = \7'(.3,] ]
(A.6.19)
(k1) (7 (k2) (21 A Y
[ct(i) 2 C®(7)| ™ o [ @ v
= 3 (e @y { R
L- ok
(k1) (= (=% _ (ka) g - )
“C D) @ [y 2 vl ] zC ‘("2)]
(A.6.20)

For the particular case when j is equal to zero. these reduce to:
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A.
] A " N (x) x (0)
[[C“"(rl) ® C“”(rz)] 2 [V 2 V)’ )]
- ku) g (k2 (2 x)] ) 79
= [c( () © |04 () @ [y © 1] ] ] (4.6-21)
(=)k - \
= O\ NS F(liji; bajas A) (L | C™N | B) Flagaslaja: A) CGGa(Mkak, karX)
(A.6.22)
B.
ok oy 3 " (K) " (0)
[[e®60 2 ce]) ™ 5 (915 70 |
_ z (=)s+h+l BT )2k + 1) { ki k2 &
- I 1 &
o (k) o) e o (k) 110
“C( x)(,.l) 2 Vm] S [C“‘-)(l"z) o V(?.)} ] (A.6.23)
= (=)t g1
kl /i.'_)_ K . - . .
L 1 A F(lijiilaiai A) Flajailyjy; A) CGCG(kikak. ki Aka)
(A.6.24)
C.
N ey (R) < (0}
[[C’(Ll)(rl) ‘3C(L2)(f'2)] ) [v“) 2 V(n]( )]
_ (k) fa ) o - x)] (k2) : “
= [[C‘ RGIECY So7RE-1 700 R C'“‘”(f'-z)] (A.6.25)
. (—)k2 ..
= Ok, 0 NooEa F(lij1:13j3; A) CGG (ki Ak, kisA) F(lajailyjiz Ny (I || €™ ] L)
(A.6.26)
Here we have the notations
CGG (kikar, kIN)
~ . o o (\)
= (ning; I || ulkrk2:2%)(p  py) [C(L)(Tl) o[y V(l)]“) | nang s I3)
(A.6.27)
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CGGa(kikar. kIN)
= (ming; lp || u¥522¥) (py 1y) [C'(k)(Fz) [V @ V('z)](”}('\’ | nang: Ly)
(A.6.28)
and
CGCG(kikar, llzA Ag)
= (b w2 () [ () 3 )] ) s
(nala || utk22%) (ry) [C(-\n)( 2) D V(z)]('\z) | naly) .
(A.6.29)
A.7 L[? (o,-0;) Interaction.
The L2?00 interaction is given by:
Vias = Vias(r) L (01-02) = (=V3) Viaalr) L2 [on 2@ . (ATD)

Since the L?00 interaction differs from the L2 interaction only through the spin-space part.
(o1 - 02), we can derive everything starting with Eq. (A.6.10) and adding the corresponding
spin-spin interaction

- 2 3 l L1
Vo) L (o) = 5 32 o]
~=0,2

D iR TRmE (kg 4 1) (2k2 4+ 1) (k1 0 k20 | £0) wlirk2s2) ()
ky ko

i}uom;xm

. BRIC) 1@
[[C“l’(m)@C“'z’(rz)] 9 [(V@ = vu) 2 (Ve - v )] ’] (01 - 02)

1 en—hey ~1 kpka.tl)
—_ 2ROk 4 1)(2ky + 1) (k0 ko0 ] LO) wlFrkt () oy
\/§k§.k2 (2k1 + 1)(2k2 + 1) (k1 0 k20| L 0) (ry.ra)

) @
{ [[C("‘)(f‘l) o C'(kz)(f'g)] ) V(z)} (o) - 03)

- [[c“‘”mmc“z’(fg)] r-:vm] (0102 p -
(A.7.2)

Accordingly, from Eqs (A.6.21.A.6.23,A.6.25.A.6.13.A.6.15) we obtain the five contributions
to the ph matrix element (nynj; (h%)jl (13%);3 1A | Vies | nany: (l_,%)J_,(lzé);z T Ap)
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W

A.
[C("" ) ootk o =]
(Ff) @ ("2)] 2 (V)9 V(2] (o1 - 02)
(_)k+l
o I (k) (k)
([C(Ll)(rl)(gal] ,:;[[C(k‘z)(rﬁ'@[V(g) "Ia‘v(g)](")} ' - 0’2] > (.‘\73)
(_).\-H i )
= NI G(lyjr: bajai ki A) (I || CED | 13) Gllaja: Ljas kiX) CGGa(kykar, karky)
(A.74)
B.
[C'(kn P L TR N ]
W () 2 CUE)| T By © vl | (oo
- (k2 /oo Ik J R ke s t
(-) \/2~+1;( ) { Lol k}Z(")
S (k) <’) ! (k) 0]
([[C(“)(m)@ V(l)} > 0'[} o [[C'“‘z’(f‘z)f? V(z)] - 02} ) (A.7.5)
= (=) VarF 1
[ kL ko w N .
> (=) { ; f 2 } Gl lajz: kA) G2 Lija: kA) CGOGkkak. kikkaok)
k
(A.7.6)
C.
[c.(k,) 1ot (i) 5 ]
(F) 2 C¥)(&)| " 2vm e vul™ | (o1-02)
(=)
- ZK: V2k, + 1
(ht) 4] k2) (k) : (k)
([[c““m)@ vy 2 vl = al} sfcwi ta| ) ()
(_).\+l .
= T G(lijr: lajai ko) CGGy(kikak, kirks) G(lajazlijs: k) (o || €52 || 14)
(A.7.8)
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D.
ki) g k) gz (M ©
[[C( D(#) @ Ct 2)("2)] 2 V(z)] (o1 02)
(k) (k)] (F)
(k1) & T (k2) 2y = o,
= T 2 - ([C ELIE [[C (72 7 T ]
(A.7.9)
(_),\+l ) ) . ) .
= Gllunkisiki) (i | CE | I3y Glaja:lujs: kiA) CGalkika, kaky)
1
(A.7.10)
E.

1) (0)
3V(1)] (o1 - 02)

- s (k)
= %\/_2){__—1 (=) ([[C("l)(m o) vm} “ s 0’1] : [C“'Z’(F-_))ca 2](“>
k

[[C‘"*’(m D CH)(5y)]

(A.T.11)
(_).\+l ) ) ) &
= —Qk—+—1G(lm;I3J3;k2/\) CG(kika, kika) Glajo:LyjszkaX) (L || €52 ) 1)
2

(A.T.12)

A.8 Quadrupole Spin-Orbit Interaction.

The quadrupole spin-orbit interaction. Vi s,. is given as the radial factor. Vi55(r). multiply-
ing the operator

(L-$)2 = (L-S)(L-S) = (—V3)? [[L SIS [L 2 S]“”](m
I 10
= 32\/21+1f1+1{1 1 0}[[L v - [5-5](1)] (©)
i i

= Z V2j+1 [LUL](” [S@ 5]‘”](0’. (A.8.1)

A close inspection of the last expression shows that some of the pieces of the quadrupole spin-
orbit interaction may be incorporated into the calculation of the other previous interactions
involving the relative orbital angular momentum operator, L.
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e Case j =0.

(Eonolses®]” = 21252 = 112 B4a-m).  (A82)
where we have used
S = (@+a) = 5 Brar-on. (4.83)
Therefore, we can introduce the effective radial amplitudes of the L? and L? (o} - 05)
interactions:
fiz = Vo + 3 Via.
Vo = Viass + ¢ Vi (A.8.4)
e Case j=1.

V3 [iLauasasi®]|” = ﬁ% (%) ((£<L)-(5x3))

L/ .= = [~ - )
= ;2-((1[,)-(:5)) = --L[-5. (A83)

where we have used the Q.M. definition of the angular momentum:
[Jid;] =iy o JxJ = il. (A.8.6)
Similarly, we introduce the effective radial amplitude for the spin-orbital interaction,

as:
- i 1. _
Vis = ",Is - '2' "'ls’_’ . (-A"S")
o (Case j =2.

(0) (0)

V3 [[L oLPa([sa 5](2’] = 2 [(Lz L) <o - ] |

SN N
(-1} (1}

[ (L L]® 2oy @ o) ](0) '
(A.8.8)

We can see that the only new component of the interaction that we have not addressed
vet is the one corresponding to j = 2. However. for now we shall keep the discussion on a

general level. The following steps come natural

. 1 ()
(Lol = -5 [[roe-p) V2 (rs (- p)]V]

N |

I 1 1
= > Y VaRFIVIFFI{ L L L 3 (1010] ~0)
re’=0,2 K R' _]
() ¢ 2 (x") U)
[C (A O (V)= V) T (T - 7)) ]

-3r (=) { . ,1 } (¢ 2 (va - van]” - (A.8.9)
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Again, we use lemma 1 in order to expand the unnormalized spherical harmonics C'(%)(#)
and C(7)

I 1 1
, .3 1
Via( (Lo Ll = 52 3 ,/2’;;*1 { L1 1} (1010 0)
kK K j

rr'=0,2

Z iF2R1=s () 4 1) (2ka + 1) (k1 0 k20 | 5 0Y w5229 (1) )
ki ky

|(k bt - W k: ol (’c) - -~ 4 (J)
“C () @ Cf 2)(rZ)] 2V - vy 2 (Ve — Vo) )](K)]

; I 11
e {n

D iR TRl 9k 4 1) (2kp + 1) (k10 k20 | 10) wFrk2 10 )
kikz
) . ) (l) (J)
[[C’(k‘)(rl) b5/ C“‘z)(rz)] 2(V@) ~ V) )] - (A.8.10)

Based on F;Jqs (A.6.18.A.6.19.4.6.20, A.6.11,A.6.12). with j = 2. we couple C*)(#,) with
V) and CW(#,) with V(2)-dependent operators. respectively. Similarly to the previous
L-dependerllt interactions, we get the various contributions to the ph coupled matrix element
(nina s (Ig); (I33)5 : A | Visa | nana t (lad)j, ()5, « An)

A.
(0)

k) e RN 1073 .
“C“"("l) D [C”‘"’)(rz) 2 [ve 2 V('z)]( )]( )} = oy m]“)}
—_ (_\K+L = k[ k2
= (V5 Z{ { 11 1 }

R i g D : U]
<[C(kl)(r‘)’3”‘] = “C“?)("z) 2 [V @ Vel )}(“ | 02} )

(A8.11)
= (_)k+l \/%
ki k2 . ) o
1 1 A Gl lagas ki) (L[| CPY Y Glage: Lajas kA) CGGakikar, kak'k)
(A.8.12)
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) (k) ] (k') (2) (0)
,:[[C(kl)(rl) 9 V(l)] D [C(Lz)(i‘-z) D V(2)] J Doy = (72](2) }
(k4 k kK 2

(=) V5 ZI: { 11 }

' ) (%) O )

—

(k) “
02}

(A.8.13)
= (_)k'-i-l \/g
kK 2 . . I Y
U E 2 Glluisfajss BA) Gllajai lujes K0) CGCG(kiks. kakkok!)

(A.8.14)

—

(k) (2 (=) (¥ k @ o]
[[C’ V(M) 2 [Vay® va) ] ot 2)(':2)] sl n'._,]("))J
— (_\k2#1 = k k2 2

SRR

o

o <7 (F)
<[[C(Lll(rl) D [V(l) D) V(l)]( )] o 01] > [C'(kz)(’-’;’) b 0’2] (1)>

(A.8.15)

= (_)kz-l—l \/5
k k2 2 ' - . ] i / 4 : ; k
11 [ GlutilsjsikX) CGGi(kikar. kin'k) Gllajaz Lijaz kad) (L || C2) 1)

(A.S.16)

o ] (k)7(2) R
|:|:C'(Ll)(l‘[) b [C'(Lz)(fg) oy V(g)} ] o [0’[ = G"_)](') ]
— (k1 2 ki k2
- {1

P 0] . (k) 0
([C“‘)(n)ﬁcn] @ [[C'(Lz)(f‘z)CBV(z)] i-ﬂz] )

(A.8.17)
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= (=)' V5
k k 2 - - i) r 4 - La ’
{ ; 1 A } G(lijrilajas kid) (|| CFD || 1) Glaja: Lija: kXY CGakyka, kak)
(A.8.18)

(k) (2 CIPRNN R
[C ! (rl)®V(l)} DCY(Fy) D (o1 2 03]
. ko ky 2
— (__\k2+1 £ 2
= RNV Y { ok 2 }
. (k)
([[C'(kl)(rl) ] V([)] oD 0’[]

(0 3 [C’“"z)(f'z) 3 02}(”)

(A.8.19)

= ()t V5
L 2 .
{ } G l3j3i kA) CGikika. kik) G(loja: Ljs: kaX) (L2 || C2) || 1)
(A.8.20)

A.9 Center-of-Mass Relevant Operators.

From the center-of-mass corrections we have two additional operators that must be included
in the two-body matrix elements of the interaction. These are:

I _ . R = =
Tma b= Vi-Vo (A.9.1)
and
L =5 (A.9.2)
— " o hente
mA 2
The ph matrix elements contribute only for a multipolarity A = [. According to our
lemma 2, we obtain
L 13 i LR e s 1.9.3
_— {1215 - Dl = — y 4 X A
T (2UA - RI3) = S T LTI T AT (A9
and
L (12|77 8) = — NNEEY (A.9.4)
mA Lzl = m4 f
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where the reduced matrix elements are calculated as

D g2 = YRA+DRLR+D)

73 3
x Gis o= L0y 1 4L+ Ly~ 1) 30— £, 4 1) . 5
5 3 o T3l 1)(3¢, —1+U; | R2(r)) (A.9.5)
and
(=)k - 271 + 1) (27
EL iz = YEEIRD G Ly Ly e e ra))  (196)
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Appendix B

Two-Body Matrix Elements Calculation in a
Harmonic Oscillator Single-Particle Basis Using
Moshinsky Transformation.

One key element of our nuclear structure calculation has to do with the reliability of the two-
body matrix elements calculation for the basic interaction. We have chosen the Argonne v18
potential [Wi-95] as the most realistic nucleon-nucleon potential to date. The computation
of the two-body matrix elements relies on the formalism presented in Appendix A. An
independent check of those formulas is available when the radial part of the single-particle
wave functions is described by the radial part of the harmonic oscillator wave functions.
[n this particular case the Moshinsky transformations allow the decoupling of the relative
motion degree of freedom and we are not required to separate the 7 /> such asin lemma 1.

B.1 Transformation Brackets.

Consider a two-particle system in a harmonic oscillator potential. We shall characterize the
two particles by their coordinates and quantum numbers. For the purpose of our discussion.
we introduce two system of coordinates: '

e laboratory frame, where the two particles are described by their coordinates with
respect to the center of the potential well. 7} and 7. and corresponding radial. n; and
ny, and orbital quantum numbers, /; and /5.

e center-of-mass frame, where the system is characterized by the relative coordinate
and the coordinate R of the center of mass of the two particles. defined as

1 - L
Fo= % (FL = ) R = Vi (Fi+ ) : (B.1.1)

the radial and orbital quantum numbers n,! will correspond to the relative motion.
and N, L to that of the center of mass.

The eigenkets in the two coordinate systems may be written as follows:

e laboratory frame

[ning (I1l2) Ap) = Z (lhhmy lama | Ap) [ngdimy) {nalams) e (B.1.2)

myma
e center-of-mass frame

|nN (IL)Ap) = > (m LM | Ap)|nlm) |[NLM). (B.1.3)
mM
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The transformation brackets (Moshinsky brackets) are then the coefficients which arise on
developing the eigenket (B.1.2) in a series of eigenkets (B.1.3):

Ining (L) Ap) = D (INLA|nilnaly ) [nN (IL) Ap). (B.1.4)
niNL

[t may be shown that this transformation is independent of the magnetic quantum number
p. The transformation bracket vanishes for all combinations of its parameters which do not
satisfy the total angular momentum

X=1li+lp = [+I. (B.1.5)
and energy

E = 2n+0L4+3/2) + 2na+1,+3/2)
(2n+1+3/2) + (2N +L+3/2) (B.L.6)

conservation laws. Therefore, the transformation bracket vanishes for all combinations of
its parameters which do not satisfy the energy condition (B.1.6). and any summations over
A will be restricted to

h=lhl <AL L+ 1.
U—L|<A<I+L. (B.L.7)

We shall next show how to calculate two-body matrix element in a harmonic oscillator
single-particle basis using the Moshinsky brackets. First. we change the angular momentum
coupling scheme, going from the JJ coupling scheme to the LS coupling scheme:

(fllno (l[z) (122) .],;L[, l "'-(I—"l,l-'.g) l nangy (13%) (l;{;)

13

AYS

J1
A L, J1

= > Ve +DRR+ DN+ RS+ L 1 4
/\I S', ll

ANSS!

J

% J3
V(273 + 1D (2 + DA+ 1)(2S + 1) { oo }

:

)S: M) . (B.LS)

(nina (L)X (5 3)S": J'M | V| nany (I314)A (33

Secondly, we use the Moshinsky brackets and switch from the laboratory frame to the center-
of-mass frame:
(n[ng (1112) (% %)SI ]’/‘/[, I [/(l’l I") ' nang lgl.;)/\(é:l," 5 J \[)

= Y (nilingb N[ R UN'L'XY (n3lyngly M| 0l N LAY
nlNLn'!N'L!

(W' N' ('L (A 1)S'; M| V(F) | aN (IL)A (A 1)S: 0. (B.1.9)
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Therefore, we obtain
(niny (13); (U23) 5 J'M" | V(71, 72) | nany (13-2‘-)1.3(14%)1.4; JMY = /(21 +1)(2/2+ 1)

> VEI+DEN + 1) (nilynglg X | 2/ N'L' MY(nglz nyly A | nI N LX)
nlNLNqn'UN'L N

P Is % J3
Vi + )27 + 1) Z VES+1)RS+1){ L L g oL
AT AS T

(' N"(I'L"Y\'( %g)s s JMU V(R | aN (IL)A (535S TA0 . (B.1.10)

Given a particular potential V' (7), all we have to do is to calculate the matrix element
(n'N' (I’L'))\'(% %)S'; JM V(R | aN (IL)A (%%)S: JAM) . (B.1.11)

We shall redo now the calculation of the matrix elements discussed in Appendix A.

B.2 Central Interaction.

For the case of the central interaction, the potential depends only on the magnitude of the
vector 7, and not on its angular degrees of freedom. We apply the Wigner-Eckart theorem
for the case of a zero-rank tensor ([Ed-65]. Eq. 5.4.1a)

(' N" (L") (& $) g3 /My | Vilr) | nN (IL)y(3 1) g3 JAL)
8y
= “—';’J!’iwzv' (L) (5 L) s TMy (| Va(r) || n WALy Ty
(B.2.1)

The resulting reduced matrix element is evaluated using ([Ed-65]. Eq. 7.1.7). We have

(N (LY (s $) g0t M | Valr) || n (L) (% b) gt M)
S ! K I -
= dss (<)VFSHIR (27 4 1) { s }<n'.~ (LY | Valr) I RN (L)) -

(B.2.2)
We use ([Ed-63], Eq. 7.1.7) one more time for the reduced matrix element
(!N (L) o 1| Va(r) ] N (IL)) = Snabrp

(—)FERH RN TN + 1) {IA A; f)}wl’ I ver) finl). (B23)

The Wigner 65 symbols in Egs. (B.2.2,B.2.3) are readily calculated as
XN oJ S } { MA 0 } . (=) MHIES

= = O\ v/ . B.2.4

{ J A0 J J S W VX+ D)7+ 1) ( )

I N L } { ll [ 0 } o (_)l+.\+L _

= dird\\v . B.2.3

{ ALo AN L N oA s Dl 1) (B:23)
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Moreover, from the Wigner-Eckart theorem we have:

(" I"]| Ve(r) [ n 1)

S VoI = (@' Umi | V(r)|nim)
= &p RM(n'l: nl). (B.2.6)
Thus, plugging Egs. (B.2.4). (B.2.5) and (B.2.6) into Eqgs. (B.2.2) and (B.2.3), Eq. (B.2.1)
becomes
(n' N ( IL)\'(zzy J' My | Ve(r) | aN (IL), %,_%) : M)
= 8y Oaym,, Ossr G dpp e S RM[VL(r)(n'l: nl) . (B.2.7)
where

RMV (Pl nl) = @' E| V()] nl)
/' dr r2 Ron(r)V (r) Rulr) . (B.2.8)

0

An alternative calculation of the central interaction matrix element. can be obtained by
converting the matrix element to m representation and use the orthonormality properties
of the angular momentum and spin eigenfunctions

(n'N" (L) (5§ gi I My | Ver) | aN (IL)y (3 1) 51 T M)
= > (NyS'ms|J Mp)y (ApSms|J M)

wmgriums

(W'N" Ny S'ms | Vo(r) | nN A Sms)
> WNW S ms | Mp) (ApSms | J M)

w'meripms

il

Sx\ Bt Bs50memg (BN (L) | Valr) | 0N (L) Age)
= 0y OnyM e ONNt Oppr Oy Oynr 8sst RM[Ve(r)](n'i: nl) . (B.2.9)

Here, in the last step, we have also used the unitary property of the Clebsch-Gordan coef-
ficients.

B.3 Spin-Spin Interaction.

We shall carry out the spin-spin interaction matrix element calculation using the m repre-
sentation approach outlined in the previous section
(N (L) (5 3) g3 J' My | Va(r) oy -0z | N (IL) (3 1) 52 JMY)
= S Wme LM N YN ' S mge | T M)
m'll"[’msll-l’

S o Um LM ApyAuSms|J M)

miMmgsu
(n'N'"U'mp L'M' S'mg | Vs(r) oy - 02 | RN nN Imy LM Sms) .
(B.3.1)
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We have the matrix element

(W’'N'"Ump L'M' S'mg | V4(r) oy - o3 | nN nN Imy LM Sms)

= ONNOLLOMMOWOmym, ('L VL(r) | nl) ((33)s |01 -2 ] (33)s) .

The spin dependent factor in the last equation is given by

((’21‘%)5' [o1-02 | (%%)5> = 2 [5(5‘*' 1) - é] s -

<

where we used the fact that §; = %&,—. We put these results together and obtain

(' N (L) o (5 D) g M | Vilr) o1 - 02 | RN (L), (5 4) g3 S M)

86

(B.3.2)

(B.3.3)

. . R 3 .
= ONNOLL oMM OISO\ ST drr, nr, 2 [5(5 +1) - ;] RMUS(r)](nL: nl) .

B.4 Tensor Interaction.

(B.3.4)

We shall start the calculation of the tensor interaction matrix element. by using ([Ed-65].

Eq. 7.1.6)
(RN (UL")\(5 5) s T My | Ve(r) Sia | N (IL) (5 3) 52 T M)
o . J S X 2
— A J
= dyrdm, (=) T { 5 A S } ‘/;
ST N (L) v 1 Va(r) CE) | N L) )
n"‘,V"
(" N" (53)s Wlow = )P [ oV (35)s)
where
L 1
Si2 = ,_—2(0’1"‘) (g2 -1) — 391702

= \/g (C'(z)(r") Zfor o 0"_)](2)) i

We evaluate the reduced matrix elements in Eq. (B.4.1):
1. ([Ed-65], Eq. 7.1.5) - for S (S") =

((33)s' lllor @ 2] A (34)s)
1

V5(2S + 1)(25' + 1)

Lot
N =)=

= T\/_5sx5ss'
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where
Glhealld) = 2G1slh = v6. (B.4.4)
and

(B.4.5)

N
—
N
I
-~
@'
“
o,
7,9
(’J

——
CQNI"'NI'"

2. ([Ed-65], Eq. 7.1.7)
(0N (L) || Vilr) COGF) | aN (L)) = dydppo( =) +Er+2
varnevEn{ | % b 15t €O
(B.4.6)

(@' UV COF [ nly = )| COE) 1) RMVUA)(RT - al).

\/2l+1(1020[l’ Yy RM[V(m)](rl'; nl).

(B.1.7)

Thus, we get:

(n'.fV’ (l'L')’\,(% %) J My | Vi(r) S1a | niV ( (IL)y (%:&-L JM )
)l+L+J+l\/ 2N+ )()/\I+ 1)

= 8558, 0NNOLL 8551851 (—

7\/§ VvV (2I[+1) (1020 '0) { g i /}9’ }{ 5 }R-W[‘}(r)](n'l': nl) .

(B.4.8)

B.5 Spin-Orbit Interaction.
Similarly to the tensor interaction case, we use ([Ed-65]. Eq. 7.1.6)
(WN"('LY (5 5) s T My | Vis(r) I-S|nN UANCEIPEATR
: J SN
= 5JJ'5M,,1\I‘,:(")'\+S+J{ 1 A S }
DN WL ) || Vis(r) Tl n”N" (L))" N" (L) 5 1S 1 0V (3)s) .

nll‘z\fll

(B.5.1)

The resulting matrix elements are:
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l. ([Ed-65], Eq. 5.4.3) —for S =0, 1

(GHs IS (5h)s) = bs9V/SS+DRS+ 1)

= V651055 : (B.5.2)
2. ([Ed-65], Eq. 7.1.7)
(W' N' (L") || Vis(r) Tl N (IL),)
= a,vlwam—)"*“"“ﬂ'zx+1)(2A'+1){i' '\; LL}W’ REGHEDE
(B.5.3)
3. ([Ed-65], Eq. 5.4.3)
(' U || Vis(r) T nl) = 8w /I + 1) 2L+ 1) RM[Vig(r)](n'l: nl) . (B.5.4)

Collecting terms, we find
(N (L) (kD) gs My | Vig(r) T-§ | RN (IL) (& Ly 2 S M)
= Ssr0an, ONNOLLOwdss s (=) T /A F 12N + 1)
, J S N[l XN L
V6 VIL+ D2+ 1) { s }{ N }R.\/{[hs(:)](nl.nl).
(B.5.5)

[t is interesting going about re-deriving the spin-orbit matrix element by converting the
matrix element to m representation. As a first step, we use the fact that the matrix element
is rotationally invariant, i.e. M independent

(n'N' (1'1;)\,(29 st TMp | Vig(r) [- S| oV (IL) (L L) 2 J0LY)

S
= 21+1 S (N (LY (3 D) g TMy | Vis(r) T-S | V(L3 ) gt TM)
M,
= ZJHZ S Ump LM | N YN ' S mse | J M)
My muM'mgiy!
Z (Imy LM | ApY(AuSms | J M)
miMmgsp
(W'N'U'mp L'M' S'ms: | Vig(r) - S | aN Imy LM Smg).  (B.5.6)

The spin-orbit matrix element in the m representation can be greatly simplified as

(!N U'mp L'M' S'msi | Vig(r) - S | nN Imy LM Sms)
= JzVN'C;LL'éMM’<n' U'mp S'mg | Vis(r) I. 5[ nilm; Smg). (B.5.7)
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For the remainder matrix element, we couple the relative angular momentum ['and the total

spin S to a ictal angular momentum K

(' I'mp 8'mgr | Vig(r) - S | nlmy Sms)
Y ('myS'ms | K'&Y(Imi Sms | Ks)n' (I'S") K'&" | Vig(r) - § | n (IS) Kx)
r)l-S|n(S)KK).

Rr;:RK'w’!
Y ('meS'ms | Ks)({Imi Sms | K s)(n' (I'S") Kx | Vi
Kx

(B.5.8)

S| n (IS} Kk) is diagonal in the K-space and

The matrix element (n’ (I'S") K's" | Vis(r) [
k-independent

(n' (I'S"Y K's | Vis(r) - § | n (IS) KK)
» % [K(K+1)—1(I+1) -

S(S + 1)] RM[Vi,(r)](n'l: nl). (B.5.9)

= Ogkv 0
Then, we have
(n' N’ (z'L’),\,(ég) JM; | Vig(r)[- S| nN (L), (55) : JMy)
[-5|n(S)K)

YN Y W USHYK V(e

= dnNndrr
NN LL 2J i 1 =
mlm<‘#mllm~;u

Z(l' mp LM | XN pY{mi LM | Au) Z(,\' S me | MM ApuSms | J M)
M,

M
Y {WmpS' ms | Ke)(IlmSms | K )

K

Sin(S)K)

Yo S Y (SR | Vi) I

= ()VVI() l;
N'OLL )] C1
K mimspmpmeziy!

r 2A’+l -
VT G = me | LMY (=)
M

Aos .
— s’ "mcl—s—’}}—J
> (=) (21+1){5 \ o}
(M X —p|omg){SmsS' —mgi | am,)

(,\;L[ my | L M)

51 . s K
S'-megy=S—m;—~K (9 r-
Z(-) s : (21\+1){S | U,}
(l'mpl —-m l a'mf,)(Smg S - mss { a m,,)
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= SyNOLLr 2J+IZ YN (M USYK | Vig(r n (I1S) K

K mmspu Mmymg crp’

(_)l’—m,c-(-l—m; \/(2’\, + 1)(2’\ + 1)
2L +1

! !
Z 1+m,:-l-p-L(2L+1){ )\l f\ UII;, }

m

AN A —pld"mD{U —mil' mp | 6" m”

\S'—ma=S—p=J ATST T
> ) erenf s S T

ome

MNp' A —p|lome)(Sms S — ms | 7 m,)
ey =Sty — ' 8 K
mgr—=S—m—~K

mpl —my o' my){Sms S —ms |a'ml).
(B.5.10)

All sums involving the Clebsch-Gordon coefficients can be reduced by token of the orthog-
onality relationships, which yields

gt M)
1)

(0N (UL (3 D)ot TMy | Vig(r) -S| nN (IL), (f:%
= dnNOrp Z(—)"J ALK+ 1)V + 1)(2) +
=
(n' (I'S"YK | V(r)[-§|n(S)K)

Z(_)H.p_, NS T ' S K ANUL
S AN o S | o I N\ o

CMg

= dynOrr Z(—)"J_" QK+ 1)VN+ 12X+ 1)

K
(=) (" (I'S") K | Vig(r) T- 5 | n (I1S) K)

—G e XS g " S K NUL
Z(—) (20+1){5 /\0’}{5 lo}{l,\ o‘}’

-4

Using the identity ([Sh-74], p 929: 2.91)
A\NMEAto S S o S’ [ ' o
2 (2”+1){A' 1}{ 1 XA L
AL
K S

a v
Y,
}{ J K s} (B.5.12)

= (_)l’+5'+l+S+L+K+J{
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we evaluate the o sum of Wigner 65 symbols. and obtain
(n'N"(I'L") (3 2)5' JMy | Vig(r)[- S| nN (IL)\(5 %)t M)
= SvndLr VRN + 1(2A+ 1) () VTS

. [ AL roxN L
> 2K +1) {J i {J K S,}('(z's') {Vis(r) -S| n (IS) K) .
=

(B.5.13)

The only missing link now is that the matrix element (n’ (I’S") K’s’ | Vi,(r) - § | n (IS) KK)
shown in Eq. (B.5.9) has a §;;rdss/ built-in condition in addition to the fact that the matrix
is diagonal in K-space. This fact, together with Eq. (B.5.9), gives
('N (L) (3 L) i TMy | Vig(r) [-§ | nN (ID)\(L L) g: M)
= 5JJ'5M,w,,5\rN'l>LL'5u'Oss' (=) Ve + DA+ 1) RM| ‘!s(r)](nl nl)
2K +1
3 ‘+ (K(K+1)—Il(+1) - 5(5+1)]{ }{ }

K

(B.5.14)

B.6 (2 Interaction.

The matrix element of the [? interaction can be easily calculated when the matrix element
is written in the m representation

(W' N'U'mp L'M' S'mss | Via(r) [2 | nN lm; LM Sms)

= ()-NNI 6[.[,’ O.._y[‘,w/ ()-“/ Smlmu () msm g l(l + 1) R,\/“H,/Z nl) . (B.ﬁ.l)

As we alreaay have done many times before, we use the transformation

(@' N (L) (3 D)t S My | Via(r) P | nN (IL) (3 3) g2 T 0LY)
= Z (Ump L'"M' | N (/YN W' S"mse | J' M)
muyM'mgrp!

> Um LM | ApyApSms|J M)
miMmsyu

(KN U'mp L'M' S'ms | Via(r) P | nN Imy LM Sms),  (B.6.2)

substitute Eq. (B.6.1) and apply the orthogonality of the Clebsch-Gordon coefficients in
order to reduce the sums over the magnetic moments. We have

(N (L) (3 ) gt "My | Vig(r) B N (IL)y (3 1) g2 M)
= dvn b G bssr {14+ 1) RM[Wip(rl(n'l; nl)
ST (NW Sms | MpYApSms | MY S (Umy LM N /) (Emy LM | Ap)

meopu' mM
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= SynOrp b bssr LI+ 1) RM(n'l; nl)
Sy Z AuSms | J' Mp)YAupSms | J M)

msup
Finally, we get

(N (L) (b 1) i J" My | Via(r) 12 | nN (1), (
= dyy SMyMy Sxn Syt Sppr Gy 550 LI+ 1

F) g JMy) .
) RM(n'l: nl). (B.6.3)

B.7 (2 o, - o, Interaction.

The derivation of the matrix element for the {2 o - o4 interaction follows closely the cal-
culation of the matrix element corresponding to the /2 interaction. Again. we go to the
m representation where the calculation of the matrix element is particularly simple, even
though a little more involved that the one in the previous section: we have now a spin-space
part in addition to the angular part

('N' N S'mgi | Vigs(r) 12 a1 - 02 | nN A Sms)
= S b G5 Omomy 2[S(S+1) - ;] (/N A | Vias(r) £2 | n.V Ape)

c . 3
W Oy 055t Omsmg, 2[5(5 +1) - z]

mp LM | Ap){{mg LM | Ap) (W' N"Ump LM | Ving(r) 12| N Imy LM)
myMmp M’

.. . - 31 . - .
= O\ 8y 0557 Smem,, 2[5(5 +1) - 5] o Smym,, LI+ 1) RM[Vias(r)](n'l 2 nl)

(1’ my L, .’\’[, I /\ﬂ)(l my LM l /\,u) 6,\';\" JLL’ ()1\[_\[1
myMim M’

.. - - . 3 ]
= O\ 0y 655 dmem, ONNv OLLr Sy 2[5(5'*' -3 W+ RM{ 12s(r)](n'l 2 nl).
(B.7.1)
Then, we have
(W'N" (L") (5 ) g3 T My | Vias(r) 2 o1 - 02 | AN (IL) (5 5) g2 S M)
= > (N Sms | Mp)ApSms|J M)
msuimgrp’
(RN Ump L'M' S'mg | Vias(r) [? oy - a2 | N Imy LM Sms)
- - - 3
= dy\y dss SNt dppe Oy ’2[5(5—1- 1) - 5] ({4 1) RM[Vias(r)](n'l: nl)
Y AuSms | J MpYAuSms | J M)
msp
= 806,050 bss SNt Spp Sur 2 [5(5 + 1)~ -] [l 4+ 1) R as(r)](n'L; nl) .
(B.7.2)
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B.8 Quadrupole Spin-Orbit Interaction.

The second procedure used to derive the spin-orbit matrix element, Eq (B.5.14) allows us
to write down immediately the matrix element of the quadrupole spin-orbit interaction

(W'N" (L") \i(5 5) g5 TMy | Viga(r) (- $)2 | nNV (IL) (L L) 52 T M)
= SynOrpdwdss ()N VN F 120+ 1) RM[Viea(r)](n'L = nl)

2K+1 0o N L [ XN L
ZI\: T KK+ 1) =11 +1) - S(S+1)] {J e 5}{_, e s}‘

(B.8.1)
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Appendix C
Three-Body Matrix Elements Calculation.

We shall consider the case of tensor products of spherical tensors of the form
3 (k)
(Xf"’ 3 [Yz"‘" ) é’”’] ) : (C.0.1)

Then, we calculate expectation values of the operator (C.0.1). between 3-body states where
the angular momentum of the first particle is coupled by particle-hole ccupling to the total
angular momentum of the second and third particles. This can be shown to be equal to

- (ke .,y 1 (F) L L
((JIJ_G),\ l (_\i") * [Yg(kl) o) Z:(;L-)] > ' ((J5J4)J—54 (JZJS)E)\>

o aads 2 Js ki
= & (_).123+Js4 2:\04 Ja  Ja ko
J23 Jsa A

G X ey Gl Y sy Gall 2%y (C.0.2)

The corresponding three-body matrix element in the m-representation can be obtained as:

N A I )TN L
(Lijylag2 b33 (X{k) = [YZ(L‘) ) Zé 2)] ) [ leje IsJs Lids)

o aden B2 Js K

- 23J5 . -
= E Ok A E (—)letse 5 J3  Ji k2
A J23 Jss J23 Jse A

Gl XN e) G2l YEI | s) Gall 2520 [ i)

Z (=)™ (jamg jama | jaamaz) (Jsms jymy | jsamsg)

ma3 msy
Z (Jimy je — me | Ap) (Jsamsy joz — maz| Ap)
I3
= I X® N de) Gall Y| js) Gall 25201 fa)
s a J2 Js ki
Z (—)otise 23031 J3 j: L
J23 Js4 k Jjoz Jsa Kk

Y (=)™ (jomg jama | jasmas) (Jsms jama | jaimsa)
ma3 mMsy
> (jimije ~ me| kK) (jsamsa joz — mas| k)

LY

(C.0.3)

[n any actual calculation we shall only encounter three-body matrix elements in the m-
representation, summed over all the magnetic quantum numbers (m;. my, mg, my, ms,
ms).
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Note. The following reduced matrix element is particularly important ([Ed-65], Eq. 7.1.5):

Ul ok
ar [ (k2) . ik
(('s)i'| [C"‘"Gw] ’ [(3)5) = 17k { Lol } c*ntle] L)
J g ks
U0k
= V6jj'k, LoLo L (eI, (C.0.4)
JJ ok
where we have
re®nn = 1 uoko| o) (C.0.5)

with [ + ' + k = even. Note that, if k, = 0and [ = [’ . then k; = 1 . and the reduced
matrix element (C.0.4) vanishes.

C.1 Radial Part of the Three-Body Matrix Elements.

Based on the experience gained in dealing with the two-body matrix elements, we shall now
address the calculation of the radial part of the three-body matrix elements:

[a <)
ky kp sy koskl _ 2 p .
R I malynsls ingle nslsnals = | ridry Ry, (r1) Ragis(ri)

[» o]
/ 12 dry Rty (r2) Rosta (r2) w(ri. r2)
(4]

~
/ "%(lr:} Rn313(7'3) anh(".’%) v(ri.r3) .
o

where we have

2 [ _
u(ri.ra) = WFRR(ry ry) = :/ p*dp @*)(p) jr, (pri} jr, (pra)
" 0
o 2 e , , '
o(ri,ra) = v (ry rg) = :/ > dq 69(q) ju, tqr) Jny(qra). (C.1.2)
= Jo
with
ia o)
a®(p) = /0 rdr A(r) ji(pr)
- (> o3
b(q) = / r¥dr B(r) ji(qr) . (C.1.3)
0

Similarly to Egs. (A.1.8) and (A.1.10), we have

% _ 1 ik
| s Ry (r2) Rt (r2) sy ora) = T L A

m - —
/0 "gdr:; Rnsls(r3) Rﬂ.gl.;(r:;) jnz(qr.?) = (\/2)3 Xm: A:‘;;i naly [ 3 Homnz(ql)] s
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where we have p’ \/-p and ¢ = \/-q and the expansion coefficients are defined as
k * 2
AND ls = /0 z'5dz) anlz(:;?l"g) Rnsls(vlz-x'g) HO ke, (£'3)
(=]
3 =
ame o / 234y Bogiy(257'3) Ruyty(252'3) HOpy(2's) . (C.L3)
0

kyka,myrockl
nyly naly n3yly inglg nsls nyly

2 L ¢ nk; me: - 2
; (ﬁ) Z,,: Anz?znsls Z Anal:mh A J"ld"":l Rnlll(‘rl) Rnsl&(xl)

m

with / = 3bér . Therefore, the radial piece R hecomes

/ P2 dp &® (p) HO iy () ji (p71) /0 2 dg 5O(q) HO s () s (a71) -
0

(C.1.6)
The integral
°° k
| 5o 6¥6) 0wty 1) i () (€.L.7)
0
can be calculated by changing variable from p to p’ ‘/—p
AN
(—,;) / p? dp' @) p) HOumi, (6) i, (#21) (C.18)
0
and expanding out part of the integrand in a harmonic oscillator basis
%) (L p') HO i, (p Z Bk .. HOu, (1) . (C.1.9)
where the new expansions coefficients, sz‘nk are
k 2 o —
Bity, = /0 p* dp’ @™ (32 p') HO i, (p) HOuk, (p') - (C-1.10)

Then, the integral (C.1.7) is readily calculated

/0. p*dp @ (p) HO iy (7') i, (PT1)

= < ) Z szlnh /0 p"3 ([p/ ﬁbskl (1)/) Jk, ([},.l"[)

<¥> B ., [\/- HO o1, (2’ ‘)] (C.1.11)
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In a similar manner, we also obtain

3
= I 21 o \/§ Ry Q 4
/0 q* dq 89(q) HOmu, (¢) Jui (qr1) = (—b— Z = [ 5 HOtx, (= 1)] .
(C.1.12)

with

Bl =/0 ¢ dg’ BV (L ¢') HO e, (') HOrx, (1) - (C.1.13)

I, mxy

The substitution of the p and ¢ integrals in Eq. (C.1.6). using Eqs. (C.1.11) and (C.1.12),
plus one more change of variable (z; — 2= z'1). lead to the final form of the radial part of
the three-body matrix element

3
Rklkzy"l"Q ikl _ ( 1 gnk2 {2
nylynala nalyinglg nsls ngly = S 12 “*nala ngls S tnaly ngly
) &

m

k t kyny cst .
Z Bi’.lnkz Z Bl,,c;nfcz In,:llxn‘._[ﬁ . (C.l.l4)
t

s

where we have introduced the notation

Iklm = / -"-"f d.l’,l lel(Vli'a’Jl) Rnsls(Vlf't,l) Hoskl(rll) HOM‘:(IIl) (C.1.15)
0

nyly nelg

C.2 Two-Pion-Exchange Interaction.

Varan such as presented in Equation (2.3.1) is not a convenient form to be implemented in a
many-body calculation. What we actually need is an operator form. where tensor operators
are coupled as in Eq. (C.0.1)

, ] 7R
<X{“ ) [Y_,“”) o) zg*ﬂ] ) . (C.2.1)
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Therefore, in order to transform Vax3x given in Eq. (2.3.1) and obtain the required operator
format, we shall make use of the following identities ([Ca-83])

1

0203 = {01001 05} (C.2.2)

(02-F12) (03 F12) = é{(slz +01-03). 0,03} (C.2.3)

(o2 -F13) (63-F13) = é {o1-02. (S13+ 01 -03)} (C.2.4)

(02-F12) (03 - F13) (Fr2- Fia3) = Tlg {(Si2+01-032). (Siz+a1-03)} (C.2.5)

oL 0y X 03 = % [o1 - 02. a1 - 03 (C.2.6)

(02 F12) (0301 X F12) = = [(Sa+a1-02). 01 -04] (C.2.7)

(02 - F1a) (01 - 05 X Fra) = é[a’l o2 (Sia+ o1 - @3)] (C.2.8)

(02 F12) (03 - F13) (01 - 12 X F3) = %}[(512 +01-02). (Siz+ 0y -03)]. (C.2.9)

The inclusion of the two-pion-exchange interaction V3.3, reduces then to the computation
of three-body matrix elements of the operators

l. 03-03

= Y @k+1) a5 ry) > () @+ 1) Oy > (k010 A0)
A

k {
- : [k A
—}J23 3. 8
Z( )% Jaz Z ka3 { kys jos 1 }
J23 k23
. (k23 ) (j22) M)
(C{"’ © [[CQ"’ Do) 3 [CY 2 ] m] ) (C.2.10)

2. (02 - F12) (03 - F12)

= Y (1010]50) Y i*+R (2ky + 1) (22 + 1) (k10 k201 jO) a1k (r, 1)

J kiky

) “ . - 1. lm' k .
Z (=) jaa Z (=)F2 kg Z (2k + 1) RO pa) { ; i kj }
.j23 k23 k 23
3 (=) (k0 £,0] A0) { kookeo A }
N ks Jjoz 1

. (k23) . (as) TN

(Cf'\) & [[C'éh) o 02] 23 2 [C;(;L) = 0_3] J23 ] ) C211)
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3. (02 F13) (03 - F13)

Z (1010150) Y~ i*2*k=d 2k 4 1) (2o + 1) (k10 k20 jOY etivk2i) (p 1)

kika
Z l"23 Z J23 Z (2 + 1) g(“o)(r ra) { ki ks J }
ka3 J23 L Jgas
S (k0 k10| A0) { kookyoA }
A Joz ko3 1
(k23) g 7N
(C(\) “C(L) 2 o ] 3 D {C':gkz) = 03] (1-3):|| ) C21

4. (02 - F12) (03 - F13) (F12 - F1a3)
Y (1010[k0) S (1010] j0)
% 3

Yo TR 2k 4 1) (ka4 1) (k1O ka0 | KOY uB1EH) (1 )

ky ko
DT (2 1) (26 + 1) (510 £20 | JOY 05152 () )
K1 K2
n ki k Kk - Ky K- 1
(_)ng k‘g { 3 2 } > { L 2 J
LZ,; S N S % Z IBU L1
ip A
k10 %10 | AO { %
Z< 105101 20) J2z kaz 1
(\) - (k2) (k23) - Arn) (2z)] Y
<C'l o [[Cé ) 5 0'2} 0 [Cé 2) 03] J (C.2.13)

3. 0y -092 X 03

= —V6i Y (2k+1) ultkO(r ry) > @+ 1) O ()
k {

- [
D (=Y k010150) 37 ()N 3 ka Y { Lol }
: ke A

J A k23 J22

([C{”a m]('\) [[C“’ 2 ](km D [C':(,” < az] (m}(‘\)> (C.2.14)
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6. (02-F12) (03 - 01 X Fia)

= —v6i ) (1010],0) YRR 2k 4 1) (2k2 4 1) (k10 k0] jO)

7 kyky

wkrk2id) () o) Z (2k + 1) o*0)(p 1) Z (=) [ (k0 k0] (0)
k {

Z( )k;;;l} kl k? j - \ kl ko
- 23 L1 ks } Z J23 Z (—=) 1 I 1

ka3 J23 A /‘.23 j 23 A

) . . )
( [ 2a] @ [[C&‘z’ ? ag]“’“ 2 [P 2 o) “'"’] ) (C.2.15)

7. (02-F13) (01 - 03 X F13)

= —V6i ) (1010]0) > #2787 (2 4 1) (2ks + 1) (k10 ko0 | jO)
j kiks

52 ) () N (2K 4 1) u®EO (i ry) ST (=) T (k0 k(0] 10)
k {

. o S . ko k|
Zkzsz(—)mjzs{"; "f jzi}Z(—)-‘{ L 1}

ka3 J23 A kaz  jaz A

( (e 5 0] = [[Cé“ 3o 3 [ed) 2 ] (’”TM) (C.2.16)

8. (02 - F12) (03 - F13) (01 - Fi2 X Fy3)
= —V6i Z(lOlO]kO)Z(lOLOIjO)
k J

S FTRE 0y 4 1) 2k + 1) (k10 K20 | KO) w2 (1)

ky ko
D T (k04 1) (265 + 1) (10 20| jO) 517 (. )
K1K2
z (=)' (k105,01 (0) Y (=) k { k; kf kk }
[ k23 23

o . " . Ix‘[ K l
Z (_).123 j23 { R K2 ..] } Z (_).\ 1 [ l
, L 1 Jjas :
J23 A k-_gg J23 A

[ N : (k22) i U]

([0l = o5 "™ s et - o]
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C.3 Repulsive Three-Nucleon Interaction.

Similarly to the two-pion-exchange interaction V3.3n treatment above. we need to trans-
form the short-range interaction part of the three-nucleon potential. V\- 5. and obtain the
required operator form (C.0.1) of the interaction. as

Vivp = Z( )E (2K + 1) ulkO rz)z Lt + 1) o9 (r, )

3=y (kOlOIAO)( cM g [c‘“ 5 c“’](\)) . (C.3.1)
A
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Appendix D

Isospin Matrix Elements Calculation.

The isospin dependence of the matrix elements is worked out in m. representation. We
introduce the isospin operator in terms of the usual Pauli matrices

rx=((1’é) ry=<? B’) T:=(é_01). (D.0.1)

We introduce the proton/neutron creation/destruction operators in terms of the Cartesian
components of the isospin operator

Ty = é(T,T + ity) (D.0.2)
T = é(‘rr - iTy) (D.0.3)
such that
Telp) =0 T+ n) = Ip)
T-|n) =10 —[p) = In).
Reciprocally. we have
Ty = T4 + 7— (D.0.4)
Ty = E(T+ - 7-) (D.0.5)

With these definitions, the expectation values of the various operators in m- representation,
are computed in terms of the matrices

L if |7) = |n) and |7") = |p)

(F'lrelm) = (D.0.6)
0 otherwise
if |7) =|p) and |7) = |n)
(f'|r-|7) = (D.0.7)
0 otherwise
L if|r) =) =|p)
('|m=|7) = -1 if |7) =|7") = |n) (D.0.8)

0 otherwise

The following two-operators are relevant for the calculation of two- and three-body matrix
elements:
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e T - T3: appears in the calculation of both two- and three-body matrix elements. In
terms of the proton/neutron creation/destruction operators. 7. this operator can be
expressed as

T -T2 = 2(TieTe- + Ti-T24) + ToT20 (D.0.9)

e 7| - (T2 X T3): appears in the calculation of three-body matrix elements. We first
introduce the spherical tensor components of the isospin operator:

L

Tl(l) — -E(Tt + iTy) (D.O.].O)
L .

T(—l[) = +ﬁ(r‘r —_ [Ty) (D’O'll)

A0 oo (D.0.12)

Note the relationship: r;ll) = FV27+. In terms of their spherical tensor components.
we have
71 - (T2 X 73)
= —iVv32 {—Tfll)[rg ol = (el + 7 2 ,-3]{]”} (D.0.13)
= -iva 3 Al Al {-(me tmeg )1 - )

My2Mer3

—(Imry L | 117 4 (L Ly | lo)r{g’} (D.0.14)
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