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ABSTRACT

REPRODUCTIVE ECOLOGY OF CANADA 
MAYFLOWER (MAIANTHEMUM CANADENSE DESF.)

by

Michael Ganger 
University of New Hampshire, May, 1998

Canada mayflower (Maianthemum canadense var. canadense Desf.), a rhizomatous 

perennial herb, was the subject of field experiments investigating the role of several factors 

on the sexual reproduction of ramets. Mayflower ramets may be either flowering (with 2 - 

3 leaves and a terminal inflorescence consisting of 4—35 perfect flowers) or vegetative (1 

leaf).

Pollen addition increased the number of seeds matured by ramets in three out of 

four years in which pollen level was experimentally manipulated. The lack of compatible 

pollen is thought to be a major factor limiting seed maturation by ramets.

The act of severing the rhizomes, such that ramets were isolated from the rest of 

the genet, also limited the number of seeds matured by ramets, but only when pollen was 

not limiting. In addition, rhizome severing was responsible for a reduction of, on average, 

3.2 flowers brought to anthesis per ramet. Rhizome severing did not appear to delay 

flowering or to decrease the length o f time that flowers were receptive to pollen.

Rhizome severing also resulted in increased initiation of rhizomes, while the level of 

pollination (open pollinated, overpollinated, bagged, and vegetative) was independent of 

rhizome initiation.

ix
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The number of seeds matured per ramet was negatively correlated with the mean 

weight of seeds, indicating that individual ramets were to some extent resource limited 

with few-seeded ramets maturing heavier seeds than ramets bearing many seeds. There 

was no difference detected in the mean number of seeds matured by overpollinated ramets 

flowering for the first and second time.

The number of seeds matured per ramet was related to the identity of the ramet 

directly acropetal and basipetal on the same rhizome system ("context"). The most 

common constext was also the one with the lowest seed maturation (no ramet or a dead 

ramet both acropetal and basipetal). Flowering ramets were older than vegetative ramets 

and differed in their contexts. Ages also differed with context and permitted a first 

attempt at inferring ramet and genet development.

x
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INTRODUCTION

Background and Significance

Reproductive systems may be classified as either sexual or asexual (Fisher 1930). 

Sexual reproduction involves the creation of a novel genotype and is exclusively a "whole- 

organism" process. Asexual reproduction involves the duplication of an existing genotype 

and may occur at the level of genomes, organelles, cells, and individuals (Buss 1985). In 

seed plants, two types of asexual reproduction predominate at the level of the individual: 

apomixis (the production of asexual seed) and ramet production (Abrahamson 1980).

Due to the tendency for newly produced ramets to remain connected with the parent plant 

for some time, ramet production has been termed clonal growth or clonal reproduction 

(Jackson, Buss, and Cook 1985).

Clonal reproduction is represented by species in many animal phyla (Hughes and 

Cancino 1985) and in 10 of the 11 vascular plant classes (Mogie and Hutchings 1990). 

Clonal plants are represented throughout geological time (Tifihey and Niklas 1985) and 

are represented in many present-day communities with some communities being 

dominated ecologically and/or numerically by clonal plant species (Pacala 1989). For 

example, 70% of plant species in the temperate, deforested zone of the earth’s surface are 

clonal (van Groenendael and de Kroon 1990). Clonal plants also occur in the forested 

zones. Many trees species are clonal and the vast majority of temperate, understory herbs 

are clonal as well (Anderson and Loucks 1973, Sobey and Barkhouse 1977, Bierzychudek
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1982). Given these statistics, knowledge of how clonal plants grow and reproduce may be 

crucial to our understanding o f the ecology and evolution of plant communities.

Sexual and Clonal Reproduction 

The resources available to a plant are likely to vary through time and at any time at 

least one resource is likely to be limiting (Bazzaz et al. 1987). In any year, a plant must 

allocate potentially limiting resources to structures associated with growth, reproduction, 

and defense, while over the lifetime of the plant, resources must be balanced between 

reproduction and survivorship (Bazzaz et al. 1987).

Clonal plants are rarely exclusively clonal but have the ability to reproduce sexually 

as well (Silander 1985). Within an individual, resources allocated to one form of 

reproduction may come at the expense of allocation to the other form of reproduction 

(Williams 1975) and the pattern of reproductive allocation is likely to differ among 

genotypes (Watson 1984). If at least a portion of the allocation patterns o f plants is 

heritable and these patterns represent different fitnesses, then over time one form of 

reproduction would be expected to be lost since genotypes engaging in this form of 

reproduction would have lower fitnesses.

Clonal reproduction has been touted to have a numerical advantage over sexual 

reproduction. Individuals engaging in clonal reproduction do not incur the "cost" of 

producing males and can be shown, at least on paper, to hold a two-factor advantage in 

offspring production (Maynard Smith 1978). Individuals engaging in clonal reproduction 

pass all o f  their genes onto the next generation including gene complexes that may be 

optimal for the local environment. Sexual reproduction with its recombination and
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meiosis can result in the loss of such gene complexes (Kondroshov 1988). Indeed, the 

question generally posed for clonal individuals is "Why have sex?".

Several hypotheses have been offered as to why sexual reproduction is 

advantageous. Levin (1975) points out that certain genotypes may be more susceptible to 

particular pests and pathogens. Given such a situation, the ability to recombine genes 

(sexual reproduction) may represent an advantage. The number of deleterious mutations 

may accumulate in a population of exclusively clonal individuals and the number of such 

mutations could only increase over time (termed Muller’s ratchet; Maynard Smith 1978). 

Sexual reproduction, through recombination, can result in the removal o f linkage 

disequilibrium and "restore" beneficial gene complexes (Kondroshov 1988).

Given the relative advantages and disadvantages o f each form o f reproduction, 

should not there be ecological situations under which one form of reproduction should be 

favored to the exclusion of the other? The answer may be that environments are variable 

enough with respect to both space and time and therefore neither form o f reproduction 

would have a clear advantage for long (Warner 1977). Both forms of reproduction would 

be predicted to remain, although not in equilibrium. This may be true o f a species viewed 

over ecological time, but what of the land plants viewed over evolutionary time?

The earliest land plants were clonal (Mogie and Hutchings 1990). Over 

evolutionary time, one form of reproduction has emerged to exclude the other in many 

cases; that is, there are many plants capable of reproducing sexually but not clonally. In 

fact the question might better be posed as "Why reproduce clonally?"
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Advantages o f Clonal Reproduction

Survivorship in plants (and in many animals as well) is generally positively 

correlated with size (Harper 1977). Offspring, typically small in size, experience higher 

rates of mortality than adults. The function relating survivorship and size can be such that 

small increases in size for small individuals may result in much higher survivorship. 

Sexually produced offspring, beginning independent life as a seedling, must pass through 

the higher mortality phase in order to eventually reproduce themselves. Clonally 

reproduced offspring may be supplemented through this high mortality phase by the parent 

plant such that the probability o f surviving to reproduce may be significantly higher (Cook 

1979).

In addition to supplementing offspring, the genet, through the activities o f  specific 

ramets, may also alter the survivorship and even reproductive activities o f other ramets. 

Resources have been shown to move from older to younger ramets through acropetal 

translocation (Pitelka and Ashmun 1985). Basipetal translocation has been shown to 

occur as well during periods o f "stress," typically shading or defoliation, experienced by 

older ramets (Marshall 1990).

A seed may disperse to a location where other individuals of the species do not 

occur. If that individual cannot reproduce clonally, a new population could not grow. 

However, if the individual were capable of clonal reproduction, the new population could 

increase in size. It is also possible that seed from several insect-pollinated individuals 

could be dispersed into a location outside of the range of its pollinators. Again, clonal 

reproduction would represent the only method of enlarging the population. This latter 

case may be rarer, and in fact Levin (1997) presents many examples o f self-incompatible
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outliers that do set seed and o f pollinators crossing large distances to outlier populations. 

Eriksson (1992) suggests that clonal reproduction will be more strongly favored in species 

with long distance seed dispersal, as clonal reproduction would make genet fitness less 

dependent on local seed dispersal.

In locations where resources are patchy, clonal reproduction may also have an 

advantage. Sexually-produced offspring must count on chance to bring them to the 

location of these resources. Clonally-produced offspring may be dispersed to resource- 

rich patches if the plant has some method of detecting higher concentrations of resources 

in the soil (Cook 1983, Salzman 1985, Bazzaz 1991). This may also apply for plants in 

locations such as the understory of forests where light is patchy (Pearcy 1990).

Clonal plants are ubiquitous and present a challenge to ecologists interested in 

quanifying reproduction in such plants. Since the growth of clonal populations may occur 

through the clonal or sexual production of ramets, it may be necessary to address 

reproductive questions with a clonal plant in which clonal and sexual reproduction are 

easy to quantify. Canada mayflower fMaianthemum canadense Desf.) is such a plant.

Canada Mayflower

Canada mayflower fMaianthemum canadense var. canadense Desf.; Gleason and 

Cronquist 1991) is common to the woodlands o f eastern North America (Williams 1985). 

Its range extends north to Labrador and New Foundland, south to Maryland and the 

mountains of Kentucky and North Carolina, and west to Minnesota (Gleason and 

Cronquist 1991). The range of var. canadense overlaps in eastern Ontario, western New
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York, and western Massachusetts with the more central U.S./Canada var. interius Fern. 

(Gleason and Cronquist 1991).

Carleton and Maycock (1980) found mayflower to inhabit the understory o f a 

variety of canopies in boreal forests. Crowder and Taylor (1984) found a positive 

association between mayflower and the following canopy species in Ontario: eastern 

hemlock (Tsuea canadensis), sugar maple (Acer saccharum). and shagbark hickory (Carya 

ovata). In northern Massachusetts mayflower was found to occur most often in old field 

white pine (Pinus strobusl sites, however, it also occurred in secondary woodland, 

broadleaf sites (Whitney and Foster 1988).

In the University of New Hampshire woodlands, Durham, NH, mayflower is 

common under canopies that have any of the following: eastern hemlock (T. canadensis"), 

red oak (Ouercus rubra), red maple (Acer rubrum). sugar maple (A. saccharum).

American beech (Fagus grandifolial. black birch (Betula lenta). white ash (Fraxinus 

americanal, and shagbark hickory (C. ovatal (Ganger, personal observation). Also in the 

U.N.H. woodlands, mayflower co-occurs with a number o f understory perennials 

including wild sasparilla (Aralia nudicaulisl. starflower (Trientalis borealis). Solomon's seal 

(Polveonatum biflorum). partridge berry (Mitchella repens'). poison ivy (Toxicodendron 

radicans), and Clintonia borealis (Ganger, personal observation). Each of these understory 

plants is clonal as well.

Mayflower reproduces clonally through the production of a monopodial rhizome. 

At some point in its development, the rhizome turns upward and produces an 

overwintering bud that will bcome a vegetative ramet in the following year. Mayflower 

reproduces sexually through the production of seeds. A more detailed explanation of
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mayflower reproduction will be presented in the relevant chapters. Densities o f mayflower 

in the U.N.H. woodlands can approach 250 ramets per m2 and mayflower has proven itself 

to be quite amenable to experimental manipulation.

In this dissertation the following broad question is addressed—what factors 

influence the success of sexual reproduction in mayflower? Several field experiments were 

performed to test specific hypotheses concerning the number of seeds matured by 

mayflower ramets.

The investigations with mayflower began with an attempt to determine if 

mayflower ramets are essentially independent o f one another with respect to sexual 

reproduction and whether or not a lack of pollen could explain differences in fruit and seed 

among ramets. A two-year field experiment, described in Chapter I, was used to 

determine if sexual reproduction was pollen limited and whether there was physiological 

integration such that ramets connected to the genet were more successful than ramets 

severed from the genet. Also investigated was whether there was a difference in fruit and 

seed production o f ramets between the two years and whether patterns of ramet 

reproductive success were similar between years.

Any differences in the number of seeds matured by ramets observed in the Chapter 

I experimental treatments may be explained by resource limitation at the time o f fruit 

initiation. It is also possible that resource limitation occurred prior to or at the time of 

flowering and therefore a negative impact on specific aspects of flowering may have been 

responsible for the observed differences in the number of seeds matured by ramets. In 

Chapter n, data from a field experiment were analyzed to determine if the act o f severing 

the rhizome of a ramet had a negative impact on the number of flowers brought to
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anthesis, the timing and duration o f anthesis, and therefore the number o f seeds matured. 

Also investigated was whether severing had a positive impact on rhizome initiation.

The question o f whether mayflower ramets are essentially independent of other 

ramets with respect to the number of seeds they mature and whether ramets themselves 

bear the cost o f previous flowering was addressed. In Chapter IE a field experiment was 

performed to test whether ramets flowering for the first time differed in the number of 

seeds that they matured compared to ramets flowering for the second time. Also 

addressed was whether the number of seeds matured by ramets was correlated with the 

mean weight of these seeds and whether this relationship was similar for ramets flowering 

for the first and second time.

As more and more evidence pointed toward the role o f the genet in the number of 

seeds matured by individual ramets, an attempt was made to quantify the genet. In 

Chapter IV the concept of "context" was introduced. On a monopodial rhizome system, 

the context o f any ramet may be defined as the identities o f the ramets directly acropetal 

and basipetal on the same rhizome. A study was conducted to determine whether the 

number o f  seeds matured ramets could be predicted from context or from ramet-specific 

variables such as the local density of flowering ramets, the nearest-neighbor flowering 

ramet, the number of times that the ramet had flowered, and the number o f years prior to 

or since flowering. The context o f both vegetative and flowering ramets was explored. 

Whether vegetative and flowering ramets differed in ages was also investigated

The number of seeds matured by ramets was correlated with their context. 

Therefore it may have been possible for a ramet's context to ameliorate stresses, such as 

shading, experienced by the ramet. In Chapter V, a field experiment was undertaken to
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determine if the number o f seeds matured by ramets was related to context, pollen 

addition, and shading. This experiment was much larger than the previous study and was 

able to further explore whether vegetative and flowering ramets differed in their contexts 

and their ages. Whether contexts differed with location was also addressed.
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CHAPTER I

THE INFLUENCE OF POLLEN ADDITION AND RAMET ISOLATION ON 
CURRENT SEXUAL REPRODUCTION IN A CLONAL HERB

Abstract

Canada mayflower fMaianthemum canadense var. canadense Desf.), a 

rhizomatous, perennial herb, was the subject of a two-year field experiment that 

examined two factors potentially affecting fruit and seed production: pollen addition and 

ramet isolation. Ramets were either open pollinated or overpollinated by hand to 

supplement natural levels. Rhizomes of the ramets were either severed, to prevent 

resource supplementation from the genet, or left intact. Ramets that were overpollinated 

matured more fruits and more seeds than ramets that were open pollinated. Thus, 

mayflower appears to have been pollen limited in both years. Ramets that were open 

pollinated and whose rhizomes were severed matured as many fruits, seeds, and 

seeds/fruit as ramets that were open pollinated and whose rhizomes were left intact. 

Ramets that were overpollinated and whose rhizomes were severed matured fewer fruits, 

seeds, and seeds/fruit than overpollinated ramets whose rhizomes were left intact. It 

appears that at natural levels o f  pollination mayflower ramets are physiologically 

independent but as the level o f pollen increases, mayflower ramets receive support from 

other parts of the genet.
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Introduction

On an ecological level, plants must allocate limited resources to structures 

associated with growth, defense, and reproduction. On an evolutionary level, allocation 

patterns must balance fecundity and survivorship over the lifetime o f the plant (Bazzaz et 

al. 1987).

Clonal organisms are rarely exclusively clonal but are capable of reproducing 

sexually as well (Silander 1985). Because of the dual reproductive habit o f clonal plants, 

resources destined for reproduction may be allocated to either sexual or clonal 

reproduction, or some combination of the two. Different patterns o f allocation among 

individuals are likely to have ecological significance (Abrahamson 1975) and, if at least 

some of the patterns of allocation are heritable and represent different fitnesses, are likely 

to have evolutionary significance (Watson 1984). Since at least one resource may be 

limiting at a given time, allocation to one form of reproduction is likely to result in lower 

allocation to an alternative form of reproduction, i.e., a “trade-off” (Williams 1975, 

Harper 1977). In clonal plants, sexual reproduction and clonal reproduction may operate 

under phenological constraint with the two modes of reproduction separated temporally 

(Watson 1990). Decreased allocation to sexual reproduction may result in increased 

allocation to clonal reproduction and this in turn may affect the allocation to sexual 

reproduction in subsequent years. Alternatively, the modes o f reproduction may co-occur 

and thus compete directly (Benner and Watson 1989).

The reproductive allocations made by an individual ramet must be placed within 

the context o f the entire genet, which consists o f all ramets derived from a single seed. 

These ramets may or may not be connected to one another. To the extent that they are
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connected, one ramet may influence the reproductive activities and survivorship of other 

ramets. Newly produced ramets may he subsidized by older ramets, increasing the 

survivorship of younger ramets through stressful periods (Cook 1979). Resources have 

been shown to move from older to younger ramets through acropetal translocation 

(Pitelka and Ashmun 1985). Basipetal translocation has been shown to occur as well 

during periods of “stress,” typically shading or defoliation, experienced by older ramets 

(Marshall 1990). Newly produced ramets have also been shown to receive resources, 

though there is debate as to whether aid is direct from one ramet to another (Hartnett and 

Bazzaz 1983) or indirect, with ramets depositing and withdrawing resources from a 

common rhizome (Abrahamson et al. 1991). Ramets are thought to develop with the aid 

of subsidization, pass into an “adulthood” characterized by minimal if any subsidization, 

and eventually subsidize other ramets (Pitelka and Ashmun 1985, Marshall 1990, Price 

and Hutchings 1992).

Canada mayflower (Maianthemum canadense var. canadense Desf.; Gleason and 

Cronquist 1991) is a rhizomatous, perennial herb with genets that consist of dimorphic 

ramets. Flowering ramets have 2—3 leaves with a terminal inflorescence consisting o f 4— 

35 perfect flowers, while vegetative ramets have only 1 leaf. Mayflower is self­

incompatible (Worthen and Stiles 1986; TD Lee unpublished data) and is insect 

pollinated (Thaler and Plowright 1980), and has been shown to be pollen limited in New 

Jersey populations (Worthen and Stiles 1988). Fruits contain 1-4 seeds. Individual 

ramets have been reported to provide “virtually all” of the resources needed to mature 

their own fruits and seeds and experimentally defoliated ramets were found to be 

subsidized by other ramets (Silva 1978 cited in Pitelka and Ashmun 1985). In the fall,
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ramets “die back,” leaving an overwintering bud that will become next year’s ramet. At 

this point it is possible to determine by touch whether the bud is vegetative or flowering. 

The status of this bud appears to be determined much earlier, and flower primordia may 

be visible under a microscope as soon as May (Kana 1982). With the “die back” of the 

ramets, an abscission scar is left. The scar is distinct for vegetative and flowering ramets, 

and it is possible to determine the age o f the ramet and whether the ramet has been 

flowering or vegetative for each of its previous years (ramet history) (Silva et al. 1982; 

Fig. 1).

A field experiment was used to address the following questions about mayflower. 

Is there a difference in the current sexual reproduction of ramets between two years? Is 

mayflower pollen limited in local populations? Is there physiological integration such 

that ramets connected to the genet are more successful than ramets severed from the 

genet?

Methods

The experiment was located within a mixed canopy forest dominated by white 

pine (Pinus strobusl. various hardwoods, and eastern hemlock (Tsuga canadensis-) in 

southeastern New Hampshire. In the spring of 1994, seven experimental blocks were 

selected based on the presence of mayflower. Blocks were separated by at least 30 m and 

were intended to limit the potential of a genet bias and/or a location effect. Buds within 

each block were felt by hand and twenty buds identified as flowering buds were 

randomly assigned to each of four treatments. Two of the treatments consisted of 

severing the rhizome on either side of the ramet (Fig. 1). This process involved partially 

excavating the rhizome, severing the rhizome with a scalpel such that each ramet
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Fig. 1 Portion of a mayflower genet consisting of a vegetative ramet (v) and a flowering 
ramet (f) that has matured three fruits. The location of the overwintering bud (ob) is 
noted. A new rhizome (g) develops from a lateral bud located at a node (n) and at some 
point in the rhizome’s development it will turn upward and become a new ramet. 
Flowering ramets in the severing treatments had their rhizomes (r) severed so as to 
include two nodes (n) on either side o f the ramet. The vegetative ramet (v) is five years 
old and the flowering ramet scar (fs) shows that this ramet flowered in its third year. The 
location o f a lateral bud (lb) and bud scales (bs) are also noted.
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contained two nodes on either side, and then re-covering the rhizome with soil. Ramets 

within the other two treatments were partially excavated and treated similarly except that 

the rhizome was not severed.

In May, when the ramets began to flower, all flowers in one of the “severed” 

treatments and in one o f the “intact” treatments received an overabundance o f exogenous 

pollen each day for the life of the flowers. Pollen was collected immediately prior to use 

from 10-20 flowering ramets not more than 20 m distant and applied to the treatment 

ramets with a toothpick. The other severed treatment and intact treatment were not 

manipulated and thus presumably received natural levels o f pollination. The fates o f 

fruits and seeds were followed throughout the season and the number matured was noted 

for each ramet. After a final number of fruits and seeds was determined in late August, 

the ramets were excavated and the history o f each ramet was determined.

In the spring of 1995, a similar experiment was undertaken in the same mixed 

canopy forest except that three experimental blocks were used instead o f seven and the 

number of replicates per treatment was increased from five to ten. Blocks were separated 

by at least 30 m.

The number of seeds that an individual matures is an important aspect of fitness in 

that each seed may equal a distinct individual in the future. However, the number of 

fruits that an individual matures may also be an important aspect of fitness since fruits are 

the method by which many seeds are dispersed (Lee 1988). If  fruits are dispersed whole, 

then a plant that matures few-seeded fruits may have a greater fitness than a plant with a 

similar number of seeds that matures many-seeded fruits (Casper and Wiens 1981). 

Alternatively, if many-seeded fruits are selectively eaten by animal dispersers, then a
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plant maturing many-seeded fruits may have a greater fitness than a plant with a similar 

number of seeds that matures few-seeded fruits (Lee 1988).

A multiple analysis o f variance (MANOVA) was used to determine differences in 

both seed number and fruit number. A MANOVA was preferred over two separate 

analyses of variance (ANOVA) since performing two ANOVAs would have required the 

assumption that seed number and fruit number had a zero correlation or that this 

correlation was not of interest (Bray and Maxwell 1985). The MANOVA was able to 

evaluate seed number and fruit number simultaneously and also considered any potential 

correlation between the two variables (Bray and Maxwell 1985). The MANOVA created 

a new “variate” by linearly combining the two dependent variables. The Pillai trace 

statistic was used to determine significance since it is robust to possible violations in the 

assumptions o f the analysis (Scheiner 1993; Bray and Maxwell 1985). If the Pillai 

statistic yielded significance then the canonical correlation squared indicated how much 

variation in the new variate was explained by the variation in the independent variable.

The analysis was intended to include a blocking term, but in 1994 five replicates 

per block were not enough to offset losses of individuals within different treatments 

among blocks. Thus, few blocks contained the complete experiment. Variation was 

therefore not partitioned out for block{year} but was instead added to the error term 

(unexplained variation). Three factors were included in the analysis: time (1994 vs. 

1995), pollination (overpollinated vs. open pollinated), and severing (severed vs. intact). 

Each of these factors was fixed, and the second and third order interactions were included 

in the analysis (Table 1).

Four pairwise comparisons were used to answer specifically the experimental
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questions. In order to preserve the experimental a  at 0.05, a Bonferroni adjusted a  of 

0.0125 (0.05 / 4 comparisons) was used as recommended by Winer et al. (1991).

Results

Eighteen ramets either were lost or were not able to be aged accurately. The 242 

remaining ramets used in this experiment were found to be, on average, 5.78 years old 

(S.D.=2.71 years; Fig. 2). One hundred ninety-four of these ramets were found to have 

flowered once in their lifetimes, thirty-eight were found to have flowered twice, and 9 

were found to have flowered three times. Of the ramets that flowered once, the mean 

number o f years prior to flowering was 3.97 years (S.D.=2.03 years; Fig. 3) and no ramet 

had flowered in its first year. Of the 48 ramets that flowered more than once, the average 

number o f years between flowering events was 2.71 years (S.D.=1.50 years; Fig. 4), and 

no ramet was found to have flowered two years consecutively. There was a positive 

relationship between the age of the ramets and the number of times that they flowered 

during their lifetime (p«<0.001, adj. r2=0.422, n=242).

The MANOVA of seed and fruit number (Table 1) showed that there was a 

significant difference in the current sexual reproduction of ramets in 1994 and 1995 

(Pillai trace=0.214, F2, i7o ,o .o5= 23 .02 , p«<0.001). The year of the experiment explained 

21.4% of the variation in the new variate (a linear combination of both seed number and 

fruit number). Ramets in 1994 matured comparable numbers of seeds as those in 1995 

(univariate Flt i6 3 ,o .o 5 = 0 0 1 5 , p=0.902). However, there was a difference in the number of 

fruits matured (univariate Fi, i63 ,o .o 5 = 6 -5 31, p=0.0l2) and, thus, how the seeds were 

distributed among fruits differed as well. Ramets in 1994 matured fewer fruits with a
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Table 1 Results of a multiple analysis of variance (MANOVA) performed on the number 
of Suits and seeds matured

Source Pillai Trace Multivariate F p-value Canonical Correlation

0.463

0.276

YEAR 0.214 F2,170,0.05=23.02 p « 0 .0 0 1

POLLEN 0.008 Fxhoaos^^O O NS

SEVERING 0.076 F2,i70.o.o5=6-994 p<0.005

YEAR*POLLEN 0.001 F2470.0.05=0.068 NS

YEAR* SEVERING 0.026 F2,170.0.05=0-104 NS

POLLEN*
SEVERING 0.059 F2j70,o.05=:5.344 p<0.01

YEAR*POLLEN*
SEVERING 0.021 F2.170.0.05= l-789 NS

0.243
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Figure 2. Histogram of ages of ramets used in this experiment (n=242, mean=5.78, 
SD=2.71).
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Figure 3. Histogram of ages at which the experimental ramets first flowered (n=194, 
mean=3.97, SD=2.03).
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Figure 4. Histogram of the mean number of years between flowerings (n=48, mean= 
2.71, SD=1.50). This histogram includes only ramets that flowered more than once 
during their lifetime.
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greater number of seeds/fruit while ramets in 1995 matured more fruits with fewer 

seeds/fruit (Fig. 5; Table 2).

In order to test for pollen limitation, the overpollinated, intact treatment was 

compared with the open pollinated, intact treatment. There was a significant difference 

between the two treatments (Pillai trace=0.063, F2, 162, 0 .05= 6 - 165, p=0.003). The addition 

of pollen explained 7.7% of the variation in the new variate (a linear combination of both 

seed number and fruit number). The ramets of the overpollinated, intact treatment 

matured more seeds (univariate Fi, 163, 0 .05= 10.258, p=0.002) and more fruits (univariate 

Fi, 163,0.05=5.470, p=0.002) than the ramets of the open pollinated, intact treatment. The 

number of seeds/fruit did not differ between treatments (Fig. 6; Table 2).

In order to test for physiological integration, two comparisons were made. The 

open pollinated, intact treatment was compared with the open pollinated, severed 

treatment and there was no difference between the two (Pillai trace=0.001, F2, 162, 

o . o 5 = 0 . 0 0 2 ,  p=0.998). The overpollinated, intact treatment was compared to the 

overpollinated, severed treatment and, here, there was a significant treatment effect (Pillai 

trace=0.132, F2, 162,0.05=12.371, p«<0.001). Severing explained 13.2% of the variation 

in the new variate (a linear combination of both seed number and fruit number). The 

overpollinated, intact ramets matured more seeds (univariate Fi, i63,o.os=19.787, 

p«<0.001), fruits (univariate Fi. 163.0.05=9.969, p=0.002), and seeds/fruit than did the 

ramets of the overpollinated, severed treatments (Fig. 7; Table 2).

The overpollinated, severed treatment was compared to the open pollinated, 

severed treatment and there was no significant difference between the two (Pillai 

trace=0.012, F2, i7o.o.os=0.989 , p=0.374; Table 2).
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Figure 5. Relationship between the number o f seeds matured and the number of 
fruits matured for ramets from 1994 and 1995.
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Table 2 The mean number and standard deviation (S.D.) of fruits and seeds matured per 
ramet in both years of the experiment and in each of the four treatments. Small case 
letters denote treatment means that are not significantly different. Comparisons are made 
separately for fruit number and seed number. Comparisons between years are also made 
separately from comparisons among the four treatments.

FRUIT SEED
MEAN ST). MEAN S.D.

1994 1.371a 1.979 3.300 a 4.807

1995 2.147 b 2.391 3.009 a 3.765

overpollinated, 2.694 a 2.785 5.163 a 5.728
intact

overpollinated, 1.244 b 1.694 1.622 b 2.300
severed

open pollinated, 1.770 c 2.101 2.904 c 3.604
intact

open pollinated, 1.515 b,c 2.048 2.485 b,c 3.251
severed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

T 3
<D

cds
<u
<L>
03

0
t-i
<L>

1
5 5

25 -

20 -

15 -
• «

10 - • • • • □□ «□ • • G
n

5 - C J  LJ •
n  a p i  aLJ W LJ W□ c  c

o -

GG)

□

= over,i
open,i

I I I I I I I

0 2 4 6 8 10 12
Number of fruits matured

Figure 6. Relationship between the number o f seeds matured and the number of 
fruits matured for ramets from the overpollinated, intact (over,i) and the open 
pollinated, intact (open,i) treatments.
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Discussion

There was a significant difference in the number o f fruits matured and the number 

o f seeds/fruit between years that is reflected in all treatments. While the number o f seeds 

matured did not differ between years, the way in which seeds were distributed among 

fruits did differ. Ramets in 1994 tended to mature fewer fruits with more seeds per fruit, 

and ramets in 1995 tended to mature more fruits with fewer seeds/fruit. It is likely that 

some form o f resource limitation and not pollen limitation was responsible for the 

difference in fruit number. It could be that fruits in 1994 contained a greater number of 

seeds/fruit on average because individual ramets selectively aborted fewer-seeded fruits 

(Stephenson 1981). Ramets in 1995 may not have experienced resource limitation to the 

same degree; therefore, the fruits with fewer seeds were retained.

Mayflower ramets have been demonstrated to be pollen limited in New Jersey 

populations (Worthen and Stiles 1988). In both 1994 and 1995 mayflower ramets were 

shown to be pollen limited in local New Hampshire populations as well. Although seed 

and fruit number increased with pollen addition, the proportion o f variation in current 

sexual reproduction explained was only 7.7%. Many ramets that received an 

overabundance of exogenous pollen matured comparable numbers of seeds as the open 

pollinated ramets, and in fact, eleven of the overpollinated, intact ramets matured zero 

seeds. The low number of seeds and fruits in the open pollinated, intact ramets is 

attributed to a lack of pollen. However, a lack of compatible pollen could have produced 

this result as well. Handel (1985) has demonstrated that older, more central ramets of 

Carex platvphvlla and Trifolium repens are more likely to receive self pollen than 

younger, more distally located ramets. This effect is possible for mayflower, although
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not as likely, since ramets spend the bulk of their time as vegetative ramets and, 

therefore, there is a low probability that a flowering ramet’s nearest-neighbor ramet on 

the same genet is also flowering.

Ramets that were open pollinated matured comparable numbers of seeds, fruits, 

and seeds/fruit whether their rhizomes were severed or not. This suggests that at natural 

levels o f pollination the ramets had adequate resources to support the seeds and fruits that 

resulted from pollination. Ramets may have drawn on photosynthates stored in “local” 

rhizomes or on their own photosynthates that were being produced currently. Ramets and 

the local rhizome appeared to have had enough root mass to provide sufficient water to 

support current sexual reproduction. However, ramets that received an overabundance of 

pollen differed with regard to the number of seeds, fruits, and seeds/fruit matured, 

depending on whether the rhizome was severed or not. Thus, it appears that the genet 

may play a role in increasing a ramet’s realized sexual reproduction when pollen is not 

limiting. It is not clear whether other ramets supplemented the experimental ramets or if 

the experimental ramets drew on a larger resource pool composed o f resources stored in 

the rhizome by other ramets and by the experimental ramet in the past. It may also be 

that a larger root mass was needed to mature more seeds and fruits and that a larger 

rhizome meant a larger root mass which would have been unavailable to the severed 

treatment. With regard to current sexual reproduction, individual ramets may be more or 

less independent at natural levels of pollination, but as the level o f pollination increases 

ramets require support, in some form, from the genet.

Seed production may be limited by a number o f factors including pollen 

availability (Widen 1992; Johnston 1991; Bierzychudek 1981) and resource availability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

(Stephenson 1981). Pollen limitation and resource limitation may act together to 

influence seed production (Haig and Westoby 1988) or may act on different aspects of 

sexual reproduction such as flower and seed production (Campbell and Halama 1993). 

Plants demonstrated to be pollen limited in one year may ultimately be resource limited 

(Ehrlen and Eriksson 1995; Bierzychudek 1981). This may be the case for mayflower 

ramets. Individual ramets do not flower two years consecutively; instead there is a period 

of years that separates the flowering events. Time may be required for local resource 

accumulation and storage. If  the probability of flowering increases with a larger resource 

store, then a greater allocation of resources to current sexual reproduction may delay 

subsequent flowerings, or even reduce the success of future sexual reproduction.

While mayflower ramets were pollen limited during the years of this experiment, 

it is not possible to evaluate the extent to which pollen limitation and resource limitation 

may interact, since resources were not manipulated directly. Rhizomes were either 

severed to prevent the potential for physiological integration or left intact to allow for the 

possibility o f physiological integration. Resources external to the genet were not 

manipulated; instead the distribution of resources internal to the genet was influenced. 

Ramets that were overpollinated and whose rhizome was left intact were able to mature 

more seeds because they received an overabundance of pollen and were presumably able 

to generate a strong sink that capitalized on resources available in another part of the 

genet (Watson and Casper 1984). These resources would be unavailable to ramets whose 

rhizomes were severed. The concepts of pollen limitation and resource limitation need to 

be placed within the context of the entire genet. It is possible that a ramet, pollen limited 

in a given year, is within a genet that is pollen limited or even resource limited. It is also
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possible that a ramet, resource limited in a given year, is within a genet that is pollen 

limited or resource limited. Future research should concentrate on what effect, if any, 

current sexual reproduction in one ramet has on both future reproduction in the same 

ramet as well as on the current and future reproduction of ramets within the same genet.
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CHAPTER II

THE SUMMER OF 1994 REVISITED: FLOWERS AND RHIZOMES

Abstract

Canada mayflower (Maianthemum canadense var. canadense Desf.) was the 

subject o f a field experiment to determine if rhizome severing 1) reduced the number of 

flowers brought to anthesis by ramets, 2) delayed flowering, or 3) reduced the length of 

time that flowers were receptive to pollen. An experiment was also undertaken to 

determine if the number of rhizomes initiated by flowering ramets was related to whether 

their flowers were overpollinated, open pollinated, or bagged, or whether their rhizomes 

were severed or left intact. Ramets whose rhizomes were severed brought, on average, 

3.2 fewer flowers to anthesis than ramets whose rhizomes were left intact. Ramets whose 

rhizomes were severed did not appear to delay flowering or reduce the length of time that 

flowers were receptive. Rhizome severing resulted in an increase in the number of 

rhizomes initiated. However, the number of rhizomes initiated was independent of 

pollination level (open pollinated, overpollinated, bagged, and vegetative).

Introduction

In Chapter I, the number o f fruits and seeds matured by overpollinated Canada 

mayflower (Maianthemum canadense var. canadense Desf.) ramets was reduced in ramets 

whose rhizomes were severed compared to those whose rhizomes were left intact. It was 

concluded that ramets with intact rhizomes did not experience resource limitation to the
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same degree as ramets whose rhizomes were severed. This chapter investigates the effects 

o f severing and overpollination on other aspects of sexual and clonal reproduction, 

specifically the number of flowers brought to anthesis, the timing o f anthesis, the length of 

time that flowers are receptive, and the number of rhizomes that a ramet initiated.

For some insect-pollinated plants, infloresence size is positively correlated with the 

number of fruits matured by the plant (Willson and Bertin 1979). For mayflower, the 

number of flower primordia are determined early in the year, prior to the growth o f the 

flowering ramet (Kana 1985). The number of flower primordia may exceed the number of 

flowers actually brought to anthesis. This may represent "bet hedging" and occurs in other 

insect pollinated plants (Stephenson 1981).

For mayflower that were overpollinated, rhizome severing reduced seed and fruit 

maturation. If rhizome severing affected resource levels before flowers expanded, then 

the number of flowers actually brought to anthesis in these ramets may have been lower 

than the number of flowers brought to anthesis by ramets whose rhizomes were left intact. 

The timing of flowering may have been different as well, with ramets whose rhizomes 

were severed delaying flowering or shortening the length of time that individual flowers 

were receptive to pollination.

Clonal plants must allocate limited resources to growth, sexual reproduction, and 

ramet production. It is widely accepted that allocation of resources to one form of 

reproduction should come at the expense of the other form of reproduction (Abrahamson 

1975, Williams 1975). Thus, if severing increases the allocation of resources to ramet 

production (rhizome initiation), then sexual reproduction may be reduced.
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The following questions were addressed in an experimental study with mayflower: 

Did ramets separated from the genet via rhizome severing bring fewer flowers to anthesis 

than ramets left connected to the genet? Was a reduction in the number o f flowers 

brought to anthesis associated with a reduction in the number of fruits matured? Did 

ramets severed from the genet delay flowering when compared to ramets that remain 

connected to the genet? Was there a relationship between the number of rhizomes 

initiated and the number of seeds matured by ramets?

Methods

The experiment was located within a mixed canopy forest dominated by white pine 

fPinus strobusl- hardwoods, and eastern hemlock CTsuea canadensis! in the University of 

New Hampshire woodlands, Durham, NH. In the spring o f 1994, seven experimental 

blocks were selected based on the presence of mayflower. These blocks were separated 

by at least 30 m and were intended to limit the potential of a genet bias, a location effect, 

or both. Thirty buds within each block identified as flowering buds, based on size and 

shape, were randomly assigned to each of six treatments. Three of the treatments 

consisted of severing the rhizome on either side of the ramet (Fig. 1). This process 

involved partially excavating the rhizome, severing the rhizome with a scalpel such that 

each ramet contained two nodes on either side, and then re-covering the rhizome with soil. 

Ramets within the other three treatments were partially excavated and treated similarly 

except that the rhizome was not severed. Ten buds within each location identified as 

vegetative were selected and randomly assigned to each of two treatments. One treatment
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consisted of severing the rhizome in the same way as were rhizomes o f flowering buds. 

Rhizomes in the other treatment were not severed.

In May, when the ramets began to flower, all flowers in one o f the "severed" 

treatments and in one of the "intact" treatments received an overabundance of exogenous 

pollen each day for the life o f the flowers. Pollen was collected immediately prior to use 

from 10—20 flowering ramets not more than 20 m away and applied to the treatment 

ramets with a toothpick. All o f the flowers in one of the severed and one of the intact 

treatments were open pollinated and thus presumably received natural levels of pollination. 

All o f the flowers in the final severed and intact treatments were covered with a dialysis 

tubing bag for the life of the flowers. The tubing prevented insect pollination but 

permitted moisture and gas exchange. The two overpollinated treatments and the two 

open-pollinated treatments contained the same ramets discussed in Chapter I.

The number o f flowers that each ramet brought to anthesis was determined. The 

number of flowers that were receptive each day for ramets within each of the two 

overpollinated treatments was also determined. In mid-September, after fruiting had 

finished, all ramets (flowering and vegetative) were excavated and the number of rhizomes 

that each ramet initiated was determined. Rhizomes were counted as initiated if there was 

new rhizome growth from the two nodes on either side of the ramet.

A two-way analysis o f variance (ANOVA) was used to determine if there was a 

difference in the number of flowers brought to anthesis among treatments. Two factors 

were included in the analysis: pollination (overpollinated, open pollinated, and bagged) 

and severing (severed vs. intact). Each of the factors was fixed and the interaction term 

was included in the analysis.
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The number o f fruits matured by the open-pollinated, intact ramets was regressed 

on the number of flowers brought to anthesis by these ramets to determine in there was a 

relationship.

The number of flowers at anthesis each day was determined for the overpollinated, 

severed and the overpollinated, intact ramets. A histogram was produced for each 

treatment based on these values. The median and mean date of flowering was calculated 

for each treatment. No analysis was performed on these data since the number o f flowers 

at anthesis on a particular day was not independent of the number of flowers at anthesis on 

the previous day. The date of first flowering was determined for ramets in the 

overpollinated, severed and the overpollinated, intact treatments. A non-parametric 

ANOVA was used to determine if the date o f first flowering differed between treatments.

A two-way ANOVA was used to determine differences in the number o f rhizomes 

initiated among ramet treatments. Two factors were included in the analysis: pollination 

(overpollinated, open pollinated, bagged, and vegetative) and severing (severed vs. intact). 

Each factor was fixed and the interaction was included in the analysis.

Results

Flowering ramets whose rhizomes were severed brought significantly fewer 

flowers to anthesis than flowering ramets that had their rhizomes left intact 

(Fi,u7,o.o5=5.324, p<0.05,1^=0.104; Table 3, Fig. 8). Neither the pollination 

(F2,u7,o.oo5:=0.528, p=0.568) nor the pollination*severing interaction (F2,u7,o.o5=2.742, 

p=0.069) was significant.
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Table 3. The mean number and standard deviation (SD) o f flowers brought to anthesis for 
each of the six flowering ramet treatments.

Treatment mean SD

overpollinated, intact 20.7 6.67
open pollinated, intact 16.3 6.12
bagged, intact 18.0 7.12

overpollinated, severed 14.8 6.98
open pollinated, severed 16.3 7.54
bagged, severed 14.3 7.77
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X5

Figure 8. The mean number and standard deviation (SD) of flowers 
brought to anthesis for each of the three intact (i) ramet treatments and the three 
severed (s) ramet treatments.
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The number of fruits matured was not related to the number of flowers matured by 

the open-pollinated, intact ramets (p=0.822, n=21; Fig. 9).

The median date of flowering in the overpollinated, intact treatment was May 28 

and the mean date o f flowering was May 27. The median date o f flowering in the 

overpollinated, severed treatment was May 29 and the mean date of flowering was May 

28 (Fig. 10). The date of first flowering for ramets in each of the overpollinated 

treatments did not differ (Mann Whitney U test statistical60, p=0.533).

Ramets whose rhizomes were severed initiated more rhizomes than ramets whose 

rhizomes were left intact ( F i , i 9 i , o . o 5 = 1 6 . 4 8 9 ,  p<0.0001, r2=0.122; Fig. 1 1 ) .  There was no 

difference in the number of rhizomes initiated by ramets attributable to the pollination 

factor 0̂ 3,191,0.05=0.838, p=0.475) or the interaction of pollination and severing 

(F3,i9i,o.<>5=2.419, p=0.068).

Discussion

Flowering ramets with intact rhizomes have been shown to mature more seeds and 

fruits than flowering ramets with severed rhizomes when pollen is not limiting (Chapter I). 

The data from this experiment suggest that flowering ramets whose rhizomes are left 

intact are also able to bring more flowers to anthesis than ramets whose rhizomes were 

severed. The average difference in the number of flowers brought to anthesis was 3.2 

flowers and rhizome severing explained only 10.4% of the variation in the number of 

flowers brought to anthesis. Since the flower primordia were produced much earlier than 

the experimental manipulations, it is likely that rhizome severing induced flower abortion. 

In fact, flower abortion was observed in the experimental ramets (Ganger, personal
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Figure 9. The relationship between the number of flowers brought to 
anthesis and the number of fruits matured by each open-pollinated, intact ramet.
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oberservation). Ramets whose rhizomes were severed would not have been able to draw 

resources from other parts of the genet while ramets whose rhizomes were left intact 

would have. The large amount of variation in the number of flowers brought to anthesis 

not explained by rhizome severing (89.6%) may have been due to the resource state o f the 

ramets prior to the manipulations. For example, some ramets that produced very few 

flower primordia may have been assigned to the intact treatment and some ramets that 

produced many flower primordia, due to being situated in a high resource area, may have 

been assigned to the severed treatment.

It does not appear that a reduction in the number of flowers brought to anthesis 

reduced the number of fruits matured. The proportion o f flowers maturing fruit in 

mayflower was almost always much less than one and therefore the loss of a few flowers 

(average of 3.2) should not have constrained fruit and seed production much if at all.

It is possible that ramets that were resource limited early in the season may have 

delayed bringing flowers to anthesis or remained in this stage (receptive) for a shorter 

period of time (Primack 1985) and this in turn may have been responsible for the reduction 

in fruits and seeds observed in ramets whose rhizomes were severed. Ramets whose 

rhizomes were severed may have indeed been resource limited early in the season, as 

evidenced by the decreased number o f flowers that they brought to anthesis. While there 

was a difference in the number of flowers receptive on a given day between overpollinated 

ramets whose rhizomes were severed or left intact, there did not appear to be a difference 

between them in either the median or mean date of flowering. There was no difference in 

the date of first flowering. Any resource limitation experienced by the ramets whose 

rhizomes were severed probably did not affect the flowering phenology of these ramets.
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Ramets whose rhizomes were severed initiated more rhizomes than ramets whose 

rhizomes were left intact. Whether the ramets were overpollinated, open pollinated, 

bagged, or vegetative did not have an effect on the number of rhizomes initiated. The 

increased initiation of rhizomes may have been due to the release of lateral buds at the 

nodes from inhibition (Phillips 1975, Cook 1985). The relationship between apical 

dominance and lateral bud induction is related to the balance between the concentrations 

of auxins, cytokinins, and gibberellins (Woolley and Wareing 1972). Control over these 

lateral buds through apical dominance may have been held by ramets other than the 

experimental ramet (McIntyre 1969, 1971, Phillips 1975, Jonsdottir and Callaghan 1988). 

An alternative to the hypothesis of phyohormonal control is that lateral buds remained 

dormant due to a lack of resources and that rhizome severing released these resources to 

an extent that the experimental ramet was not able to retain control over these buds 

(McIntyre 1969, 1971).

It is generally accepted that sexual and clonal reproduction compete for limited 

resources and that allocation o f resources to one form of reproduction will come at the 

expense of allocation to the other form (Abrahamson 1975, Williams 1975). Mayflower 

reproduces sexually through the production of seeds and reproduces vegetatively through 

the initiation of rhizomes. Each rhizome initiated may eventually become a new ramet. 

The hypothesis of reproductive competition would predict that ramets maturing more 

seeds would initiate fewer rhizomes than ramets maturing fewer seeds. Although not 

specifically tested, there does not appear to be much, if any, support for this hypothesis 

since there was no pattern o f rhizome initiation among flowering ramets receiving an 

overabundance of pollen, natural levels of pollen, and no pollen, and for vegetative ramets
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which are not capable of producing seeds. This lack of pattern may be due to large 

differences in the stored resources among individual ramets. Ramets with fewer resources 

may not initiate rhizomes regardless of the resource demands of maturing seeds, and 

ramets with more resources available may have initiated more rhizomes regardless of 

resources allocated to seed maturation. In ramets of Clintonia borealis, another 

herbaceous clone that inhabits similar areas to mayflower, the increased production of 

flowering ramets was correlated with increased initiation o f rhizomes (Pitelka, Hansen, 

and Ashmun 1985). Moreover, mayflower genets are typically linear and bifurcations are 

not common. Therefore the initiation of new rhizomes may be, to some extent, 

developmentally constrained.
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CHAPTER m

DO RAMETS INCUR A REPRODUCTIVE COST OF PREVIOUS 
FLOWERING: A NATURAL EXPERIMENT

Abstract

A field experiment tested whether the number o f seeds matured by Canada 

mayflower (Maianthemum canadense var. canadense Desf.) ramets was pollen limited and 

whether ramets flowering for the first time differed from ramets flowering for the second 

time in the number of seeds that they were able to mature. The addition o f pollen resulted 

in an increase in the number of seeds matured by ramets and therefore the number of seeds 

matured by ramets was pollen limited. No difference in the number o f seeds matured by 

ramets flowering for the first time and ramets flowering for the second time was detected 

and therefore previous flowering was not thought to affect the number of seeds matured 

by ramets in the future. There was, however, a negative relationship between the number 

of seeds that individual ramets matured and the mean weight of the ramet's seeds, 

indicating that ramets were experiencing resource limitation to some degree.

Introduction

Plants must allocate limited resources to structures associated with growth, 

defense, and reproduction (Bazzaz et al. 1987). Over a plant's lifetime, allocation patterns 

must balance fecundity and survivorship (Bazzaz et al. 1987). Therefore, allocation of 

resouces to reproduction in the current year may not only reduce growth in the current
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year, but may also reduce future fecundity and survivorship due to decreased size 

(Stephenson 1981, Lovett-Doust 1989).

The immutability o f the "tradeoff1 between current and future fecundity may be 

mitigated in some species (Snow and Whigham 1989): flowers and fruits may carry on 

their own photosynthesis (Bazzaz et al. 1979, Williams et al. 1985), plant structures may 

serve functions in addition to reproduction (Reekie and Bazzaz 1987), photosynthetic 

rates in nearby leaves may increase with reproduction (Reekie and Bazzaz 1987), and 

finally plants may be able to recover nutrients from reproductive structures (Whigham 

1984, Chapin 1980). Despite the potential influence of these mechanisms, a tradeoff 

between current fecundity and subsequent growth and fecundity has been reported for the 

orchids Cypripedium acaule (Primack and Hall 1990), Epidendrum ciliare (Ackerman and 

Montalvo 1990), and Tipularia discolor (Snow and Whigham 1989). Current fecundity 

also reduced growth in mayapple fPodophvllum peltatum. Sohn and Policansky 1977; 

although see Benner and Watson 1989) and reduced the probability of becoming female in 

jack-in-the-pulpit (Arisaema triphvllum: Bierzychudek 1984).

As well as a plant's reproductive history, current fecundity in self-incompatible, 

insect-pollinated plants may be influenced by the availability o f compatible pollen 

(Bierzychudek 1981, Thompson and Stewart 1981). This is not to suggest that a plant 

shown to be pollen limited in a given year is not ultimately resource limited (Bierzychudek 

1981) as the addition of pollen in one year may increase fecundity at the expense o f future 

fecundity (Janzen et al. 1980).

For some plants, such as many trees, size tends to increase over time as these 

plants accumulate biomass. For others, including many herbaceous clonal plants, the size
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of ramets (the functional units capable of reproduction) may be more or less fixed and the 

accumulation of biomass may result in the increase in size of the genet as additional ramets 

are produced. The consequence of this is that ramet size may not predict accurately 

reproductive success (Ashmun and Pitelka 1984). It may also be that genet size (the sum 

of all ramets of a particular genet) does not accurately predict reproductive success either. 

Connections between ramets may "break down" resulting in smaller subunits that 

themselves may have lower immediate reproductive success due to decreased size, 

although this may not mean lower lifetime reproductive success if the breakup of the genet 

increases ramet survivorships (Cook 1979, 1985, Eriksson and Jerling 1990).

The probability of detecting a relationship between current and future ramet 

fecundity in clonal plants is likely to be influenced by the degree of integration among 

ramets (Lovett-Doust 1989). Ramets that are essentially independent may experience 

their own "cost of reproduction" while an integrated ramet may have the cost mitigated by 

other ramets.

Canada mayflower (Maianthemum canadense var. canadense Desfi; Gleason and 

Cronquist 1991) is a rhizomatous, perennial herb with genets that consist of dimorphic 

ramets. Flowering ramets have 2-3 leaves with a terminal inflorescence consisting of 4— 

35 perfect flowers, while vegetative ramets have only 1 leaf. Mayflower is self­

incompatible (Worthen and Stiles 1986; TD Lee unpublished data) and has been shown to 

be pollen limited in New Jersey (Worthen and Stiles 1988) and in southeastern New 

Hampshire (Chapter I).

In the fall, ramets "die back," leaving an overwintering bud that will produce the 

aboveground ramet in the following year. With the die back o f the ramets, an abscission
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scar is left. The scar is distinctive for vegetative and flowering ramets, and it is possible to 

determine the age of the ramet and whether the ramet has been flowering or vegetative for 

each of its previous years (Silva et al. 1982). It is also possible to identify ramets that 

have flowered previously by the dead flowering stalk that is sometimes present (Ganger, 

unpublished data).

In a manipulative, field experiment, ramets that were open pollinated were able to 

mature an equal number of seeds whether their rhizomes were severed or left intact. 

However, ramets that were overpollinated matured more seeds when their rhizomes were 

left intact than when they were severed (Chapter I). In that experiment, mayflower ramets 

flowered for the first time when they were on average 3.97 years old (SD=2.03, n=194). 

Of the 47 found to have flowered more than once, the mean number of years separating 

these flowerings was 2.71 years (SD=1.50). No ramets were found to have flowered in 

two consecutive years (Chapter I). One hypothesis for the variability in the number of 

years separating flowerings is that greater success o f sexual reproduction in one year 

necessitates a greater "recovery" time for the ramets. Alternatively, ramets that wait 

longer to flower may be able to acquire more resources and thus mature more seeds.

While individual mayflower ramets have been shown to be pollen limited overall, 

and resource limited if their rhizomes were severed and hand pollinated, it is not known 

whether ramets themselves bear a cost o f having flowered in the past. If there is a cost, 

ramets flowering for the second time may mature fewer seeds than ramets flowering for 

the second time. This cost may also be reflected in the resources allocated to these seeds. 

Specifically, some ramets may allocate more resources to their seeds than other ramets. It 

is important to note that the ramets flowering for the second time are a subset of ramets
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that flowered previously. It may be that only ramets of higher "vigor" are capable of 

flowering more than once and as such these ramets may be predicted to mature a greater 

number of seeds than ramets flowering for the first time.

A field experiment was undertaken to address the following questions: Is 

mayflower pollen limited in local populations? Is there evidence of a cost o f flowering 

such that ramets flowering for the first time are able to mature more seeds than ramets 

flowering for the second time? Are ramets that remain vegetative for a longer period of 

time able to mature more seeds? Is there evidence of resource limitation such that the 

number of seeds a ramet matures is related to the mean weight o f these seeds, and is this 

relationship different for ramets flowering for the first and second time?

Methods

In the summer o f 1996, 60 ramets that were flowering for the first time were 

identified as well as 60 ramets that were flowering for the second time. These two 

"flowering" treatments represented one of the factors in a two-factor experiment. Half of 

the flowering ramets in each o f these treatments were hand pollinated while the other half 

of the flowering ramets were open pollinated. These two treatments formed the 

"pollination" factor. The experiment was conducted in a mixed coniferous-hardwood 

canopy forest within the University of New Hampshire woodlands, Durham, NH.

Each of the flowers o f the hand-pollinated ramets were pollinated each day for the 

life of the flowers. Pollen was collected immediately prior to use from 10-20 flowering 

ramets not more than 20 m away and applied to the flowers with a wooden toothpick. All 

of the flowers in one o f the first-time flowering treatments and in one of the second-time
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flowering treatments were open pollinated and presumably received natural levels o f  

pollination. At the end of the fruiting season, all of the flowering ramets were excavated 

and taken to the laboratory. The numbers of fruits and seeds matured by each ramet were 

noted. Seeds were dried for 72 hours at 80°C in a drying oven and then weighed to the 

nearest 10'5 g using a Mettler AE 163 balance. The mean weight of seeds per ramet was 

calculated. For each of the ramets that flowered for the first time, the age and number of 

years prior to flowering was noted. For each o f the ramets that flowered for the second 

time, the age and number of years since flowering was noted.

A two-way analysis of variance (ANOVA) was used to test whether ramets 

flowering for the first time matured more seeds than ramets flowering for the second time 

and whether ramets were pollen limited. The statistical model consisted o f two factors: 

flowering (first time flowering vs. second time floweing) and pollination (overpollinated 

vs. open-pollinated). Both factors were categorical and the dependent variable was the 

number of seeds matured. If  there was an effect of previous flowering on the number of 

seeds matured, then this effect was more likely to be observed in ramets that received an 

overabundance of pollen. Therefore, one a priori contrast was considered: the number of 

seeds matured by overpollinated, first-time flowering ramets was compared to the number 

o f seeds matured by overpollinated, second-time flowering ramets.

In order to determine if ramets that remained vegetative for a longer period o f time 

were able to mature more seeds, two regressions were performed. For overpollinated, 

first-time flowering ramets, the number of seeds that they matured was regressed on the 

number of years prior to flowering. For overpollinated, second-time flowering ramets, the 

number of seeds they matured was regressed on the number of years since flowering.
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The final experimental question involved the relationship between the number o f 

seeds a ramet matured and the mean weight of these seeds, and whether this relationship 

varied between first- and second-time flowering ramets. If  all of the flowers of an 

inflorescence were pollinated simultaneously and fruits developed synchronously, then the 

mean weight o f the seeds per ramet might be dependent on the number of seeds. Since the 

flowers of a mayflower inflorescence open sequentially, the number of seeds may be 

dependent on the mean weight of these seeds. For example, if one of the early-developing 

seeds were able to gamer a large amount of resources then the development of seeds by 

later-pollinated flowers may be prevented (Lee 1988). In order to determine whether 

there was a relationship between the number o f seeds matured by a ramet and the mean 

weight of these seeds and whether this relationship varied between first- and second-time 

flowering ramets, an analysis o f covariance (ANCOVA) was performed. The number of 

seeds was the dependent variable. The number of times flowering was the independent, 

categorical variable and the mean weight of seeds per ramet was the covariate. In this 

analysis, only those ramets that matured seeds were considered.

Results

Forty-six of sixty open-pollinated ramets matured one or more seeds while 51 of 

60 overpollinated ramets matured one or more seeds. Six ramets were excluded from 

analyses because they were found to have flowered more than twice or they could not be 

accurately aged or their reproductive history determined due to decay.

Ramets that were overpollinated matured more seeds than ramets that were open 

pollinated (Fi,io7,o.o5=1 1.157, p<0.005,rM ).112; Fig. 12). There was no difference in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

Q
C/3

"O
<L>

C3

co
"O
<D
<D

<+*
O

<D
X

aa
<L>

12

10

8

6

4

2

0

open over

Type of pollination

Figure 12. The mean number and standard deviation (SD) of seeds matured by open- 
pollinated ramets (open) and overpollinated ramets (over).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

number o f seeds matured by ramets flowering for the first and second time 

(F 1,107,0 .05= 0 . 503 ,  p=0.480; Fig. 13). There was also no interaction between the pollination 

and flowering treatments ( F u o 7.o .o5= 0 .898 ,  p=0.345). The a priori contrast was also not 

significant; there was no difference between the number of seeds matured by 

overpollinated, first-time flowering ramets and overpollinated, second-time flowering 

ramets ( F i , io«,o.o5= 0 . 6 3 0 ,  p=0.429). In concluding that there was no difference between 

these two treatments, there is an associated probability of being wrong. This is the Type 

II error or B. Following Winer et al. (1991) it was possible to determine B and therefore 

the statistical power of this comparison (1-B) given specific alternative hypotheses. The 

statistical power of the comparison was determined assuming a true difference between 

the treatments of 1, 2, and 3 seeds (Table 4). Statistical power for the alternative 

hypothesis of 1 seed difference between the treatment means was low (power=0.208) and 

only with an alternative hypothesis of 3 seeds difference did the statistical power become 

greater than 0.80.

The average number of years prior to flowering for ramets flowering for the first 

time, was 3.94 years (SD=1.81) and the average age of these ramets was 4.94 years 

(SD=1.81). For ramets flowering for the second time, the average number of years since 

first flowering, was 2.88 years (SD=0.75) and the average age of these ramets was 8.41 

years (SD=1.87). The number of seeds matured by overpollinated ramets was not 

correlated with the number of years prior to flowering for first-time flowering ramets 

(F i , 2 o ,o . o 5 = 0 . 5 3 3 ,  p=0.47) or with the number of years since flowering for second-time 

flowering ramets (Fi^g.0.05=2.336, p=0.14).
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Table 4. The probability of making a Type II error (B) and the statistical power for three 
alternative hypotheses comparing the number o f seeds matured by overpollinated, first- 
time flowering ramets and overpollinated, second-time flowering ramets.

Alternative hypothesis: p.i-{i2=_______ B_________ power (1-B)

1 seed 0.792 0.208
2 seeds 0.491 0.509
3 seeds 0.197 0.803
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Seeds varied in weight from 0.00328g to 0.0180g. Overall, there was a negative 

relationship between the number of seeds matured by ramets and the mean weight of these 

seeds ( F i ,4o,o.o5 = 9 . 8 5 5 ,  p<0.005,1^=0.217). There was no difference in this relationship for 

ramets flowering for the first (Fig. 14) or second time (Fig. 15) either in the slopes o f this 

relationship (F 1,40,0.05=0 .105, p=0.747) or in the y-intercepts (Fi,4 1,0 .05=1.428, p=0.239).

Discussion

The addition of pollen resulted in an increase of, on average, 2.7 seeds. This 

suggests that ramets were pollen limited during the experiment and this represents the 

third consecutive year that mayflower ramets were experimentally demonstrated to be 

pollen limited at this site (Chapter I).

Ramets matured comparable numbers of seeds regardless of whether this was their 

first- or second-time flowering. Thus the act of flowering did not appear to influence the 

number of seeds matured in the future. This was true as well for ramets that received an 

overabundance of pollen. Statistical power was low for a hypothesized difference of 1 

seed. However at a hypothesized difference of 3 seeds (approximately the difference 

between the pollination treatment means) power was quite high. While it was possible to 

determine if ramets had previously flowered, it is important to note that nothing is known 

about the success of previous flowering. It could be that the number of seeds matured in 

the past was low and therefore the costs incurred by ramets at that time were also low.

The cost of having reproduced before may also have been mitigated by other ramets at the 

time of flowering. Mayflower ramets are known to mature a greater number o f seeds if
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Figure 14. The relationship between the number of seeds matured per ramet and the mean 
weight of these seeds for ramets flowering for the first time.
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Figure 15. The relationship between the number of seeds matured per ramet and the 
mean weight of these seeds for ramets flowering for the second time.
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they receive ample pollen and if their rhizomes are left intact (Chapter I). This suggests 

that resources are translocated to the flowering ramet, either from the rhizome or from 

other ramets, and may offset the cost o f reproduction incurred by the ramet. There are 

alternative ways in which the cost of reproducing may be expressed other than an effect on 

future sexual reproduction. Ramets may experience reduced rhizome growth, reduced 

storage of resources, and reduced survivorship.

While the lack o f  an effect o f previous flowering on the number of seeds matured 

currently was not evident, it appears that overall the ramets did experience resource 

limitation—even when ramets that were pollen limited were included. The number of 

seeds that ramets

matured was negatively related to the mean weight of these seeds indicating that ramets 

were allocating limited resources. The cost of maturing heavier seeds was a decrease in 

the number of seeds matured. That this relationship was similar for ramets flowering for 

the first and second time further suggests that there was not a cost of having flowered in 

the past.

Mayflower is not the only example of plants in which a cost of previous flowering 

was not detected and in fact some plants show an increased likelihood of future flowering 

with greater current reproductive allocation. In the orchid Spiranthes cemua. Antifinger 

and Wendel (1997) found that there was an overall trend of individuals producing fewer 

flowers being less likely to flower in the following year than individuals producing more 

flowers. This was despite the fact that individuals producing many flowers had a tendency 

to decrease in size in the following year. In the early spider orchid Ophrvs sphegodes. 

Hutchings (1987) found that individuals flowering in the current year were: 1) more likely
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to flower in the following year than either vegetative or dormant individuals, 2) less likely 

to enter dormancy than either vegetative or dormant individuals, and 3) had a smaller 

chance o f dying than dormant individuals.

Other plants show no effect o f current flowering on future reproduction. Horvitz 

and Schemske (1988) experimentally created high and low levels of reproductive effort in 

Calathea ovandensis and found no difference in the growth, survival, and reproduction of 

individuals between treatments in the following year. Smith and Yound (1982) found that 

individuals of Senecio keniodendron that had high levels of reproduciton were more likely 

to die than other individuals. However, those that did survive were found to have higher 

levels of reproduction than other individuals in the following year.

For mayflower, the number of years prior to flowering for first-time flowering 

ramets and the number of years since first flowering for second-time flowering ramets 

were not correlated with the number o f seeds matured. The number of years since 

flowering may represent the combination of two variables: 1) the cost incurred by the 

ramet for past flowering and the number of seeds matured (this may be influenced by the 

degree of ramet integration) and 2) the quality of the habitat. In other words, a ramet that 

waited a greater number of years to flower again may have incurred a great cost of 

previous reproduction, one that the genet was not able to offset, or the quality of the 

habitat was such that resources were able to be replenished only very slowly or even some 

combination of the two. It may also be that another part of the genet was flowering 

during the years between flowerings and that the ramet in question was subsidizing the 

number o f seeds matured in another part of the genet.
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CHAPTER IV

RAMET CONTEXT AND RAMET-SPECIFIC VARIABLES: A COMPARISON OF 
THEIR EFFECT ON THE NUMBER OF SEEDS MATURED BY A CLONAL HERB

Abstract

A study was undertaken with Canada mayflower (Maianthemum canadense var. 

canadense Desf.) to determine if the number of seeds matured by ramets was related to 

ramet-specific variables and ramet context. The ramet-specific variables investigated were 

the density of flowering ramets, the distance to the nearest-neighbor flowering ramet, the 

number of times that the ramet flowered, and the number of years prior to/since flowering. 

Context was defined as the identities o f the ramets directly acropetal and basipetal on the 

same rhizome system. The number of seeds matured by ramets was not related to any of 

the ramet-specific variables. The number of seeds matured by ramets, however, was 

found to be related to context.

Introduction

Clonal plants (genets) grow through the iterative production of ramets. These 

ramets may be of various ages and reproductive histories and may be situated in locations 

with different edaphic and climatic conditions (Marshall 1990). Despite this spatial 

separation, ramets may be physiologically integrated and resources may be translocated 

between them (Pitelka and Ashmun 1985). Young ramets are thought to develop with 

subsidization from older ramets, pass into a period o f relative independence, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

eventually subsidize younger ramets (Pitelka and Ashmun 1985, Marshall 1990, Price and 

Hutchings 1992). For many plants, this developmental program may be altered during 

periods of "stress" or high resource demand (Marshall 1990). For example, younger 

ramets may subsidize stressed older ramets. The ability of ramets to subsidize one another 

is constrained by the plant's phyllotaxy (Bell and Tomlinson 1980; Price, Marshall, and 

Hutchings 1992) as well as the distance between ramets (Marshall 1990). In order for 

resources to be translocated, the xylem and phloem must connect the ramets and the 

distance between them should not be such that the cost of translocation exceeds the value 

o f the resources themselves (Marshall 1990).

Determining which ramets in a population are part of which genets is difficult. 

Genets are often extensive and diffuse (Cook 1985). Connections between ramets may 

decay over time and even those ramets that remain physically connected may not always 

be physiologically integrated. Due to this, researchers have attempted to describe the 

demography o f clonal plant populations through the demography of ramets (Cook 1985). 

Theoretically, conclusions based on ramet demography can oppose conclusions based on 

genet demography for the same population (Cook 1985).

If the survivorship and reproduction of a ramet is influenced by other ramets within 

the same genet, then adjacent ramets may be more greatly affected than are more distant 

ramets. This would especially be true of a ramet on a monopodial rhizome system whose 

phyllotaxy connects it to these proximate ramets. The identity of these proximate ramets 

as well as their age and reproductive history is termed the “context” of a focal ramet. On 

a monopodial rhizome system, the context of a focal ramet could be described by the
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identity o f the ramet directly acropetal and the ramet directly basipetal along that rhizome 

system (Fig. 16).

There may be other variables important in determining the survivorship and 

reproduction of a given ramet that are not related to the ramet’s context. These may 

include the ramet’s own reproductive history, its age, the local density o f ramets, and local 

microenvironment variables. To the extent that these other variables are important, the 

use o f a ramet-based approach may be adequate in determining the demography of a 

population of clonal plants. To the extent that the ramet’s context is important, the use of 

a genet-based approach may be required to make accurate predictions concerning the 

clonal plant population.

Canada mayflower (Maianthemum canadense var. canadense Desf.; Gleason and 

Cronquist 1991) is a rhizomatous, perennial herb common to the understory of boreal 

forests. The ramets of mayflower are dimorphic and may be either vegetative (1 leaf) or 

flowering (2-3 leaves with a terminal inflorescence consisting of 4—35 perfect flowers). 

Mayflower is self-incompatible (Worthen and Stiles 1986) and local populations of 

mayflower have been demonstrated to be pollen limited (Chapter I). The ramets of 

mayflower are potentially long-lived and it is possible to determine the age of the ramet 

and the type of ramet (vegetative or flowering) that it was in each of its previous years 

(reproductive history) (Silva et al. 1982). Given this record, it is possible to determine the 

number of times that a flowering ramet has flowered during its lifetime and the number of 

years prior to flowering for ramets that are currently flowering for the first time or the 

number of years since flowering for ramets that are currently flowering for the nth time.
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Figure 16. Two contexts are presented for two flowering ramets. A This 
flowering ramet has a vegetative ramet both basipetal and acropetal while 
B this flowering ramets has no ramet basipetal and a vegetative ramet acropetal.
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A study was conducted to determine if ramet context and ramet-specific variables 

were related to the number of seeds matured and flowering bud production in mayflower. 

The following questions were addressed in the study: Is the surface area o f vegetative 

leaves related to the age of the ramet and/or the production o f a flowering bud? Is the 

success of a ramet’s current sexual reproduction related to local factors, to the ramet’s 

reproductive history, and/or to the ramet's context? Does the ramet’s context correlate 

with ramet age and are flowering ramets older than vegetative ramets?

Methods

Work was conducted in the University of New Hampshire woodlands in Durham, 

NH where mayflower common throughout the mixed deciduous-coniferous forest.

Ramets tend to occur in patches and it is possible that a patch of mayflower would contain 

plants in a similar stage of development. Therefore ramets were collected from 53 

locations within a three hectare area o f the woodlands. Locations were separated by at 

least 20 m. Two ramets, a flowering ramet and a vegetative ramet, were selected that 

were closest to a randomly-placed stake within each location. The stake’s location was 

determined by throwing it along a random compass bearing.

Information concerning local factors was collected at each location. The density 

of flowering ramets within a im 2  circle centered on the chosen flowering ramets was 

determined. The density of both vegetative and flowering ramets within a 0.25m2 circle 

centered on the chosen flowering ramet was also determined. The distance from the 

chosen flowering ramet and the nearest flowering ramet was measured.
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Both the chosen vegetative and flowering ramets were excavated to include any 

ramets acropetal and basipetal along the same rhizome. Bifurcations in the rhizome were 

excavated as well. In the laboratory, the age and reproductive history of all ramets was 

determined following Silva et al (1982). The number of fruits and seeds matured by each 

flowering ramet was also determined. The leaf surface area o f each vegetative ramet was 

estimated. Estimations were based on an established relationship between the leaf surface 

area and two linear measures of the leaf. The length (L) from the tip of the leaf to the 

base o f the leaf and the width (W) of the leaf at the midpoint of the length together 

accurately predict leaf surface area (area = 27.778*L + 54.998*W - 1198.16; p<0.001, 

1^=0.936; Ganger, unpublished data)

An analysis of variance (ANOVA) was used to determine if bud type and the 

estimated leaf surface were related. It is not known if the bud type produced is dependent 

on the leaf surface area or vice versa. Therefore the estimated leaf surface area was 

chosen as the dependent variable and the bud type as the independent, categorical variable. 

In order to determine if leaf surface area increased with age, the estimated leaf surface 

area was regressed on age.

In order to determine if the number of seeds matured was related to local factors, a 

multiple regression was performed: the number of seeds matured by each ramet was 

regressed on the local density of flowering ramets, the local density of all ramets, and the 

nearest flowering neighbor. In order to determine if the success of sexual reproduction 

was related to the ramet’s reproductive history, the number of seeds matured by each 

ramet was regressed on the number of times that the ramet flowered during its lifetime and 

the number of years prior to the flowering in the case of first time flowerers or the number
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of years since the last flowering occurrence in the case of ramets that flowered more than 

once during their lifetime.

Vegetative and flowering ramets were classified according to the following 

schedule: vegetative ramet basipetal, flowering ramet basipetal, no ramet basipetal 

(decayed rhizome), or dead ramet basipetal. This classification was termed the basipetal 

context. The same ramets were assigned to classes according to the following schedule: 

vegetative ramet acropetal, flowering ramet acropetal, no ramet acropetal (decayed 

rhizome), dead ramet acropetal, or growing rhizome. This classification was termed the 

acropetal context. The flowering ramets were also assigned according to the following 

schedule: 1 ) dead ramet or no ramet basipetal and dead ramet or no ramet acropetal, 2 ) 

vegetative ramet basipetal and dead ramet or no ramet acropetal, 3) dead ramet or no 

ramet basipetal and vegetative ramet acropetal, 4) vegetative ramet basipetal and 

vegetative ramet acropetal, or 5) flowering ramet either basipetal or acropetal. This 

classification, which contained information on both the acropetal and basipetal ramets, was 

termed context. If any class contained fewer than two observations, then it was dropped 

from the analysis. In order to determine whether the success of current sexual 

reproduction was related to ramet context, an ANOVA was performed with the number of 

matured seeds as the dependent variable and the context as the independent, categorical 

variable. In order to determine whether ramet age was related to ramet context and if 

vegetative ramets and flowering ramets differed in ages, an ANOVA was performed with 

the ages of both the vegetative and flowering ramets as the dependent variable and the 

ramet type (vegetative vs. flowering), the basipetal context, and the acropetal context as 

the three independent, categorical variables.
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Each question posed concerning mayflower required a different statistical analysis 

and it was not possible to perform all analyses simultaneously. This was due to the fact 

that there are three populations of interest: flowering ramets, vegetative ramets, and both 

types of ramets combined. There were also specific variables, such as estimated leaf 

surface area, considered in different analyses as dependent and independent variables. 

Because several analyses were used, the probability of making a Type I error was 

increased (Winer et al. 1991). The results therefore should be viewed with this in mind 

and future experiments should be conducted to validate any demonstrated relationships.

Results

The average number of flowering ramets withing the m2 surrounding the selected 

ramet was 12.4 (SD=12.75 ramets, range=l- 6 6  ramets), while the average number of 

flowering and vegetative ramets per 0.25m2 was 44.4 ramets (SD=22.45 ramets, 

range=5-99 ramets). The average distance from the chosen flowering ramet and the 

nearest flowering ramet was 28.2 cm (SD=22.41 cm, range=4.4-107 cm). Ramets on the 

same rhizome were separated on average by 23.5 cm (SD 7.28 cm, range=10.9-50.1 cm). 

Three vegetative and three flowering ramets could not be aged due to decay.

There was a relationship between the bud type and the estimated leaf surface area 

of vegetative ramets ( F i >Jo.o.o5==1 5 . 3 8 0 ,  p<0.0005,1^=0.254; Fig. 17). Variances were 

homogeneous (F^x test, p>0.05; Winer et al. 1991). In addition to the 53 vegetative 

ramets collected, an additional 43 vegetative ramets were collected. These 43 vegetative 

ramets were the basipetal and acropetal vegetative ramets collected as part of the 

excavations. These 43 ramets were added to the original 50 and the analysis was
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leaf surface area. The VI and FI represent only the 53 focal ramets. The V2 and F2 
represent the 53 focal ramets plus any vegetative ramets basipetal or acropetal (43).
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performed again. Note that it is possible that some genets may be overrepresented 

compared to other genets. With the additional observations, the bud type and the 

estimated leaf surface area were still related (Fi^4,o.o5=36.207, p<0.001,1^=0.288; Fig 17).

The estimated leaf surface area of vegetative ramets was not related to age 

(Fi,48,o.o5=0-605, p=0.440). The addition of the other 43 vegetative ramets did not change 

the results CFî 2,o.o5=0.030 , p=0.864)

The number o f seeds matured by flowering ramets was not related to the local 

density o f flowering ramets (p=0.830), to the local density of all ramets (p=0.994), or the 

distance to the nearest flowering ramet (p=0.867). The number of seeds matured by 

flowering ramets was also not related to ramet reproductive history, including both the 

number o f times that a ramet flowered (F3,47,o.o5=0 .761, p=0.521) and the number of years 

prior to/since flowering (F 1,47,0 .05=2 .591, p=0.114). There was a significant difference 

between the number of years prior to flowering for ramets flowering for the first time 

(mean=3.8 years, SD=1.57 years, n=38) and the number of years since flowering for 

ramets flowering for the second time (mean=1.7 years, SD=0.500 years, n=9; 

F i ,4 5 ,o .o 5 = 1 6 .1 3 9 ,  p<0.0005, ^=0.264).

O f the 53 flowering ramets collected, 26 of them had a dead ramet or no ramet 

basipetal and acropetal, 1 2  had a dead ramet or no ramet basipetal and a vegetative ramet 

acropetal, 3 had a vegetative ramet basipetal and a dead ramet or no ramet acropetal, 3 

had a vegetative ramet basipetal and a vegetative ramet acropetal, and 5 had a flowering 

ramet either basipetal or acropetal. The number of seeds matured by flowering ramets 

differed with context (F4,47,o.os=4161, p<0.01, ^=0.262). Specifically, flowering ramets 

that had a dead ramet or no ramet basipetal and a vegetative ramet acropetal matured
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more seeds than flowering ramets that had a dead ramet or no ramet basipetal and 

acropetal (Table 5; Fig. 18).

Of the 26 flowering ramets that had a dead ramet or no ramet basipetal and 

acropetal, 17 of these had no ramet basipetal or acropetal due to decayed rhizome. The 

number of seeds that these ramets matured was positively related to the total distance of 

rhizome basipetal and acropetal (F 1,16,0.05 =20.480, p<0.001,1^=0.549; Fig. 19).

Flowering and vegetative ramets were grouped according to their basipetal context 

and then separately according to their acropetal context. Of the 100 ramets collected, 12 

of these ramets had a dead ramet basipetal, 18 of these ramets had a vegetative ramet 

basipetal, and 70 of these ramets had no ramet basipetal. Of the same 100 ramets 

collected, 1 0  o f these ramets had a dead ramet acropetal, 37 had a vegetative ramet 

acropetal, 34 had no ramet acropetal, 5 had a flowering ramet acropetal, and 14 had a new 

rhizome/bud acropetal. Of the 14 ramets that produced a new rhizome/bud, 13 of these 

were from a vegetative ramet (mean age of ramet=2.39 years, SD=1.61 years) and only 1 

of these was from a flowering ramet (age of ramet=12 years). Ramet ages differed 

significantly between ramet types (F1̂ 2,0.oj:=14.330, p<0.0005), among basipetal contexts 

(F2̂ 2,o.o5=3.589, p=0.0316), and among acropetal contexts (F4>92 ,o.o5= 3 . 1 2 1 , p=0.0187). 

Flowering ramets averaged 6.2 years (SD=3.15 years) and were older than vegetative 

ramets which averaged 3.4 years (SD=2.14 years; Fig. 20). Ramets with no ramet 

basipetal were older than ramets with a vegetative ramet basipetal (p=0.009; Fig. 21 A; 

Table 6 ). Ramets with a flowering ramet acropetal were older than ramets with a dead 

ramet acropetal (p=0.032), a vegetative ramet acropetal (p=0.0109), or ramets with a
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Table 5. The mean number and standard deviation (SD) of seeds matured by flowering 
ramets in each of the contexts. The vegetative ramet basipetal and a dead ramet or no 
ramet acropetal class was not included since only one ramet in this class matured any 
seeds. Small case letters denote means which are similar. 0 = dead ramet or no ramet, v = 
vegetative ramet, f  = flowering ramet.

Context n Mean SD

0 , 0 2 1 2.95 2.31 a

0 ,v 1 2 5.50 3.75 b

v,v 3 5.67 3.51 a,b

f 3 3.00 2 . 0 0  a,b
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Figure 19. Plot of the number of seeds matured by the total length of rhizome available 
for ramets in the no ramet acropetal and basipetal context.
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growing rhizome acropetal (p=0.040; Fig. 2 IB; Table 6 ). Ramets with no ramet acropetal 

were older than ramets with a vegetative ramet acropetal (p<0.01; Fig. 2 IB; Table 6 ).

Discussion

The percentage of vegetative ramets that produced a flowering bud was <10% (3 

of 50 or 8  of 93). This was not unexpected since the percentage o f flowering ramets in 

many local patches is typically under 10% (Ganger, unpublished data). Vegetative ramets 

that produced a flowering bud had significantly larger estimated leaf surface areas than 

vegetative ramets that produced a vegetative bud. Kana (1982) and Williams (1985) both 

found this to be the case with mayflower in their studies. It is not clear if a larger leaf 

surface area is needed to produce a flowering bud or if the developing flowering bud 

induces the production of a larger surface area leaf.

The estimated surface area of vegetative leaves was not related to the age of the 

ramets or to the number of years prior to/since flowering. The surface area of leaves in 

the pink lady's slipper orchid fCvpripedium acaule) has been shown to be related to the 

surface area o f the leaf in the previous year (Primack and Hall 1990). In mayflower, Kana 

(1982) found a positive relationship (r*=0.63) between the leaf size o f a vegetative ramet 

in one year and the leaf size o f the vegetative ramet in the following year. This is not 

inconsistent with the finding here that leaf surface area was not related to age. It appears 

that the leaf surface area of vegetative ramets is likely to be related to the previous year 

but that small ramets are likely to remain small and large ramets are likely to remain large.

Neither the local density of flowering ramets nor the nearest-flowering ramet 

distance was related to the number o f seeds matured by flowering ramets. Had either o f
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Table 6 . The mean age and standard deviation (SD) of mayflower ramets in each o f  the 
basipetal and acropetal contexts. The same lower case letters denote means that are not 
significantly different. Comparisons among basipetal contexts are made separately from 
acropetal contexts.

Context n Mean SD

Dead ramet basipetal 1 2 4.67 2.35 a,b

Vegetative ramet basipetal 18 3.17 1.47 a

No ramet basipetal 70 5.27 3.32 b

Dead ramet acropetal 1 0 4.50 2.27 b,e

Vegetative ramet acropetal 38 3.97 1.84 b

No ramet acropetal 34 6 . 1 2 3.66 c,d,e

Flowering ramet acropetal 5 7.80 2.17 a,c

New rhizome acropetal 15 3.13 2.90 a,d
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these variables been related to the number o f seeds matured, then some aspect o f the 

pollination biology of mayflower would have been suggested to be important. Lower 

nearest-neighbor distances typically correlate with greater a greater number of seeds 

matured for plants pollinated by insects that travel from nearest neighbor to nearest 

neighbor (Levin and Kerster 1968, 1969). A greater density of flowering ramets may 

mean a greater opportunity for pollination or a greater opportunity for competition for 

nutrients as well as pollinators (Heinrich 1979). Another aspect that may affect the 

number of seeds matured in mayflower is the genetic identity of the flowering ramets 

occurring nearby. Mayflower is self-incompatible (Worthen and Stiles 1986) and 

genetically similar flowering neighbors may lower the number of seeds matured by a 

chosen flowering ramets despite receiving pollen (Barrett and Thomson 1982, Handel 

1985). The density of all ramets also had no effect on the number of seeds matured 

suggesting that competition for resources was not important in determining the number of 

seeds matured by flowering ramets. Flowering ramets do benefit from an attachment to 

other ramets (Chapter I) and any competition for resources that does occur may be offset 

by translocation of resources through the rhizome.

Reproductive history, which includes the number o f times a ramet flowered during 

its lifetime and the number o f years prior to or since flowering, was not related to the 

number of seeds matured by flowering ramets. It might be expected that ramets that 

waited longer to flower would have a larger store of resources available for flowering. 

Alternatively, ramets may wait for a critical level of resources before flowering—ramets in 

"poorer-quality" locations would wait longer to flower than ramets in "better-quality" 

locations. It might be expected that ramets that flowered for the first time would mature
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more seeds than ramets flowering for the nth time if there was a cost of previous flowering 

(see Chapter IE). Alternatively, ramets in better quality locations might not experience 

this cost since resources can be replaced during the vegetative years of the ramet. The 

number of years prior to the first flowering of a ramet was significantly longer than the 

number of years between the first and second time flowering. Prior to the first flowering 

of a ramet, resources may be invested in the rhizome and in adjacent ramets. Ramets 

flowering for the second time are likely to have already borne this cost. Alternatively, 

ramets flowering for a second time may find themselves in "better" locations than ramets 

flowering for only the first time.

Only 15% of the flowering ramets existed with a vegetative or flowering ramet 

both basipetal and acropetal. The flowering ramets that were physiologically isolated 

(49.1%) were not as successful as those with a vegetative ramet acropetal. Whether the 

success of ramets with a vegetative ramet acropetal is due to subsidization o f the 

flowering ramet by the vegetative ramet or overall greater health is not known. However 

it is surprising that the most numerous class of flowering ramets was the one with the 

lowest number of seeds matured. In these isolated ramets, the number of seeds matured 

was related to the total amount of rhizome available. This suggests that the rhizome is 

providing resources for flowering ramets to mature seeds.

Eriksson and Jerling (1990) categorize plants as either "genet splitters," in which 

the duration of genet integration is shorter than one year, or "integrated genets," in which 

integration is much longer. They list Rubus saxatalis. Fraearia moschata. Trientalis 

borealis. Potentilla reptans. Potentilla anserina. Fraearia vesca. Aster acuminatus. and 

Medeola vireiniana as genet splitters and list Linnaea boeralis. Lvcopodium clavatum.
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Pteridium aquilinum. Maianthemum canadense. Comus canadensis. Gaultheria 

procumbens. Clintonia borealis, and Oxalis montana as integrated genets. Their 

classification is based in part on the premise that maintaining integration between widely 

dispersed ramets would be more expensive than maintaining integration between close 

ramets. In fact Eriksson and Jerling (1990) state that overall, genet splitters tend to have 

longer between ramet spacings than integrated genets.

The term integrated genet may be somewhat of a misnomer and in fact ramets o f 

both C. borealis (Ashmun and Pitelka 1982) and M. canadense (Silva 1978 cited in Pitelka 

and Ashmun 1985, Chapter I) have been shown to be physiologically independent the 

majority of the time, but have the ability to integrate under periods of stress such as 

defoliation, shading, or increased seed maturation. This may mean that ramets 

experimentally demonstrated to be physiologically independent may actually be integrated 

if they do not display independent mortalities in conditions of prolonged stress since 

initially, the stress may be buffered by the utilization of locally stored carbohydrate 

(Marshall 1990). Even with the "break up" of the genet through the disintegration of the 

connections between ramets, ramets may still experience a subsidy since the resources 

stored in the local rhizome may have been translocated there by the genet.

Growing rhizomes develop with subsidization by the genet (Williams 1964, Rogan 

and Smith 1974, Ryle et al. 1981, Noble and Marshall 1983) and may serve a variety o f 

functions such as 1) a storage organ for carbohydrates (Ashmun et al 1982), 2) the uptake 

of water and nutrients and translocation to young ramets (Marshall 1990), 3) conservation 

and recycling of nutrients within a genet at a nutrient poor site (Callaghan 1980), and 4) 

keeping a bud bank (Ashmun et al. 1982, Fagerstrom 1992). The rhizome in mayflower
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may also be thought o f as a method for the placement ramets in space and subsidy of them 

through the early years prior to their flowering. As the "placed" ramet becomes more 

independent it may begin subsidizing its own acropetal ramet and as the "old" connection 

decays this ramet may flower.

Flowering ramets were older than vegetative ramets and this is likely to do with 

the fact that no ramet flowered in its first or second year and many ramets delayed 

flowering for a longer period of time (Chapter I). The ramets with a basipetal vegetative 

ramet were younger than those with no ramet basipetal. Ramets with a flowering ramet 

acropetal were older than ramets with a growing rhizome acropetal, a vegetative ramet 

acropetal, or a dead ramet acropetal. Ramets with a vegetative ramet acropetal were 

younger than ramets with no ramet (decayed rhizome) acropetal. There was no difference 

in the ages of ramets with a flowering ramet acropetal and ramets with no ramet acropetal. 

The basipetal ramet is likely to exist as a vegetative ramet initially and a consequence of 

the aging of the focal ramet is the reduction or cessation of integration, either through 

disintegration o f the connection between the focal and basipetal ramet or the mortality of 

the basipetal ramet. The acropetal ramet appears to follow one of two possible 

developmental pathways. The acropetal ramet begins as a growing rhizome, develops into 

a vegetative ramet, and then either the acropetal ramet develops into a flowering ramet or 

the potential for integration is reduced or ceases as the acropetal ramet dies or the rhizome 

between the focal and acropetal ramet dies.

Despite the fact that most flowering ramets existed as isolated ramets the variables 

that related directly to the ramet, such as ramet age, reproductive history, local density of 

flowering ramets, and nearest flowering ramet distance did not explain any o f the variation
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in the number of seeds matured among flowering ramets. However variables related to 

the genet (such as context and amount of rhizome) did explain some of the variation in the 

number o f seeds matured. Consequently, it appears that, for mayflower, a ramet-based 

approach to demography would not be as predictive as an approach that incorporated 

some aspects o f the genet.
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CHAPTER V

THE ROLES OF RAMET CONTEXT AND SHADE ON THE CURRENT SEXUAL 
REPRODUCTION OF A CLONAL HERB

Abstract

A manipulative field experiment was undertaken to examine the role o f shading, 

ramet context, and pollen addition on the number of seeds matured by the ramets of 

Canada mayflower (Maianthemum canadense var. canadense Desf.). Flowering ramets 

that were shaded matured more seeds than unshaded flowering ramets. Flowering ramets 

that were overpollinated matured comparable numbers of seeds to those flowering ramets 

that were open pollinated. Flowering ramets connected to another flowering ramet, either 

basipetal or acropetal, matured more seeds than flowering ramets in other contexts with 

the exception of flowering ramets with either no ramet or a dead ramet basipetal and a 

vegetative ramet acropetal. Flowering ramets and vegetative ramets differed in the 

distribution of ramets among contexts indicating that these ramets are not only 

anatomically different but differ as well in their potential for physiological integration. 

Flowering ramets were older than vegetative ramets. Ramets in the 'no ramet1 or 'dead 

ramet both acropetal and basipetal' contexts were consistently older than ramets in other 

contexts with the exception of ramets connected to a flowering ramet.
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Introduction

Plant genets are often composed of a number of ramets connected by rhizomes or 

stolons. To the extent these ramets are physiologically integrated, ramet survivorship and 

reproductive success may be different from that o f isolated ramets (Pitelka and Ashmun 

1985). Though connected, individual ramets may be quite independent, but integrate 

during periods o f stress (Pitelka and Ashmun 1985, Marshall 1990). Ramets of Fragaria 

chiloensis were shown to translocate resources to shaded and water stressed sister ramets, 

increasing their survivorship—isolated ramets experienced very high mortalities (Alpert 

and Mooney 1986). Ramets of Clintonia borealis were found to translocate resources to 

defoliated sister ramets (Ashmun, Thomas, and Pitelka 1982). Ramets of Ambrosia 

psilostachva were found to translocate resources to sister ramets in high salinity locations 

(Salzman and Parker 1985).

Ramets of Solidago canadensis have been demonstrated to translocate resources to 

shaded, sister ramets (Hartnett and Bazzaz 1983). Translocation in S. canadensis 

appeared to last seven weeks, after which time unshaded ramets ceased to subsidize 

shaded ramets. Based on these results, the extent o f translocation and the length o f time 

that ramets remain connected (potential for integration) is thought to be under selective 

pressure (Marshall 1990). As such, the "connectedness" of ramets may differ among 

genets and among locations. In Salvinia molesta. genets remain connected longer in 

"infertile" locations than in "fertile" locations (Room 1983). This is evidence for the 

theory that young ramets develop through subsidy and then eventually become 

independent and subsidize their own daughter ramets (Marshall 1990). The length of time 

that a ramet remains in each phase may be related to its own resource state. Daughter
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ramets in low resource locations may remain dependent longer, as they slowly accumulate 

resources.

For understory herbs, such as Canada mayflower (Maianthemum canadense var. 

canadense Desf.; Gleason and Cronquist 1991), light may be an important "resource" and 

the light regime experienced by mayflower may differ dramatically depending on neighbor 

canopy species. A deciduous canopy may allow for high light levels during the early 

growth of mayflower (prior to leafing out of the trees) and then low light levels during 

mayflower's fruiting season. A coniferous canopy may present a more uniform light 

regime throughout the season (Ashmun and Pitelka 1984).

There is evidence that shading has a negative effect on the number o f seeds 

matured by mayflower. In a pilot experiment (Ganger, unpublished data), flowering 

ramets that were shaded and connected to a basipetal vegetative ramet matured fewer 

seeds than flowering ramets that were not shaded and connected to a basipetal vegetative 

ramet. However, flowering ramets that were not shaded and connected to a shaded, 

vegetative ramet matured more seeds than flowering ramets connected to an unshaded, 

vegetative ramet.

The tentative conclusion is that mayflower ramets compete for resources stored in 

a common rhizome and that the unshaded ramet is benefitting at the expense of the shaded 

ramet. This type o f an experiment deserves to be repeated with a larger sample size and 

more common contexts.

In Chapter IV, the number of seeds matured by flowering ramets was found to be 

related to their context, i.e., the identity of the ramets directly basipetal and acropetal on 

the same rhizome system. These ramets were collected over a large area (3 hectares) and
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therefore little is known about the relationships, if any, between specific locations and 

ramet context. For example, are specific contexts more prevalent in specific locations?

Since shading, context (Chapter IV), and pollen addition (Chapters I and m ) have 

been shown to affect the number of seeds matured, these three factors will be considered 

together in a manipulative field experiment that addresses the following questions: Was 

the number o f seeds matured by mayflower pollen limited? Did ramets that were shaded 

mature fewer seeds than unshaded ramets? Did flowering ramets with different contexts 

differ in the number of seeds that they matured? Did vegetative and flowering ramets 

differ in their contexts? Did vegetative and flowering ramets differ in age? Did ramet 

contexts differ with location?

Methods

In the spring of 1997, seven locations were selected within the University of New 

Hampshire woodlands, Durham, NH based on the presence of mayflower. Within each 

location 30 flowering buds were selected. Ten buds were randomly assigned to each of 

three treatments: shaded, overpollinated; unshaded, overpollinated; and unshaded, open 

pollinated. The shaded treatment consisted of a shadecloth hood that was placed over the 

flower ramet from the time that the ramet reached its maximum height (prior to flowering) 

until the end of the fruiting season. These hoods reduced light levels by 50%.

In May, when the ramets began to flower, all flowers of ramets in the shaded, 

overpollinated and the unshaded, overpollinated treatments received an overabundance of 

exogenous pollen each day for the life of the flowers. Pollen was collected immediately 

prior to use from 10-20 flowering ramets not more than 20 m away and applied to the
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ramets with a toothpick. Flowering ramets in the unshaded, open-pollinated treatment 

were unmanipulated and presumably received natural levels o f pollination.

At the end of the fruiting season, all of the flowering ramets were excavated to 

include any ramets directly basipetal and acropetal on the same rhizome, as well as any 

ramets that originated from this rhizome segment, and taken to the laboratory. In the 

laboratory, the number o f fruits and seeds matured by each ramet was determined. The 

age and reproductive history (whether the ramet was vegetative or flowering in each of its 

previous years) of each experimental ramet along with the identity, age, and reproductive 

history of any basipetal or acropetal ramets was determined.

Also at the end of the fruiting season in locations adjacent to but not contiguous 

with the flowering-ramet locations, 20 vegetative ramets were haphazardly selected, 

excavated to include any ramets directly acropetal and basipetal on the same rhizome as 

well as any ramets that originated on this rhizome segment, and taken to the laboratory.

In the laboratory, similar data was collected for these ramets as was collected for the 

flowering ramets.

A two-way analysis of variance (ANOVA) was used to assess differences in the 

number of seeds matured by flowering ramets. The first factor was "flowering" (shaded, 

overpollinated; unshaded, overpollinated; and unshaded, open pollinated) and the second 

factor was "context." Normally a variable such as context would be treated as a covariate, 

however in this case it was treated as a classification factor following Winer et al. (1991). 

Both factors were fixed. Site was also included as a blocking factor (fixed) and as such 

none of the interactions with site were calculated. The interaction of flowering and 

context was not able to be included due to a problem with the distribution of contexts
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among treatments. Two a priori contrasts were of interest. In order to determine if the 

number o f  seeds matured was pollen limited, the number of seeds matured by the 

unshaded, overpollinated ramets was compared to the number o f seeds matured by the 

unshaded, open-pollinated ramets. In order to determine if there was an effect o f shading, 

the number of seeds matured by shaded, overpollinated ramets was compared to the 

number o f seeds matured by the unshaded, overpollinated ramets. The second contrast 

involved a resource effect and therefore the amount of pollen was controlled for, with 

each treatment receiving an overabundance of pollen.

In order to determine if flowering and vegetative ramets differed with respect to 

their contexts, a two-way Chi-square (x2) test of independence was performed (Wilkinson 

1991).

In order to determine if aspects o f the vegetative and flowering ramets differed 

with respect to their ages, a three-way ANOVA was performed with age o f the ramet as 

the dependent variable. The three factors were 1) ramet type (flowering or vegetative), 2) 

site (each o f the seven locations), and 3) ramet context. Each of the two-way interactions 

was considered; however, the three-way interaction was not included due to a problem 

with the distribution o f  contexts among ramets and among sites. Each of the three factors 

was fixed. Ramet context was considered a classification factor following Winer et al. 

(1991). Site in this case was also considered as fixed since sites were not chosen 

randomly but based instead on their high densities of flowering ramets.
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Results

The number of seeds matured was generally low. Thirty of sixty-four ramets 

(47.9%) in the shaded, overpollinated treatment matured seed. Only 5 of 61 ramets 

(8.2%) in the unshaded, overpoilinated treatments matured seed, and 3 of 53 ramets 

(5.6%) matured seed in the unshaded, open-pollinated treatment. Thirty-one ramets were 

lost or could not be accurately aged or their reproductive histories determined and 

therefore were not included in the analyses.

There was no difference in the number of seeds matured by flowering ramets 

among sites ( F 6 ti6o,o .o5= 1 . 6 4 9 ,  p=0.137). There was a significant difference in the number 

of seeds matured by ramets among treatments ( F 2, i 6o,o.os= 8 . 834 ,  p<0.001). The first a 

priori contrast revealed that the number of seeds matured by mayflower was not pollen 

limited

( F i , i 6o ,o .o s = 0 .0542 ,  p=0.816; Fig. 22 A ) .  The second a priori contrast found that shaded, 

overpollinated ramets matured more seeds than the unshaded, overpoilinated ramets 

( F i , i6 o ,o .o 5 = 1 4 . 2 6 0 ,  p<0.001; Fig. 22 B ) .  There was a significant difference in the number of 

seeds matured by flowering ramets in different contexts ( F 4,i6o ,o .o5= 3 . 9 3 1, p<0.005). 

Flowering ramets that had another flowering ramet basipetal or acropetal matured more 

seeds than the other contexts with the exception of flowering ramets with either a dead 

ramet or no ramet basipetal and a vegetative ramet acropetal (Fig. 23; Table 7).

Flowering ramets and vegetative ramets were represented in each of the six 

contexts (Table 8). However, a two-way Chi-square test o f independence found a 

significant difference between flowering ramets and vegetative ramets with respect to their
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Table 7. The mean number and standard deviation (SD) of seeds matured by flowering 
ramets of mayflower in each of the contexts. Small case letters denote means that are 
similar.

Context n Mean SD

0,0 102 0.51 1.50 a

0,v 42 0.91 2.33 a

v,0 10 2.20 2.62 a,b

v,v 9 0.89 2.32 a

f 10 3.30 4.97 b
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Table 8. The number of flowering and vegetative ramets in each of the contexts. 
Numbers in parentheses indicate the percentage o f ramets within specific contexts. 0 = 
dead ramet or no ramet, v = vegetative ramet, f  = flowering ramet, b = growing rhizome.

Context Flowering Vegetative

0,0 102 (53.4%) 34 (25.6%)

0,v 46 (24.1%) 38 (28.6%)

v,0 10 (5.2%) 10 ( 7.5%)

v,v 10 (5.2%) 22 (16.5%)

f 18 (9.4%) 6 (4.5%)

b 5 (2.6%) 23 ('17.3%')

Total n 191 133
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distribution among contexts (x25,o.o5=2867.21, p<0.001). Fifty-three percent of flowering 

ramets existed with no ramet or a dead ramet both acropetal and basipetal while 25.6% of 

vegetative ramets were found to have the same context. Only 2.6% of flowering ramets 

were found to have a growing rhizome acropetal while 17.3% of vegetative ramets were 

found in this context.

Flowering ramets were found to be on average 5.65 years old (SD=1.96) and 

vegetative ramets ranged from 1 to 10 years old (mean=3.97, SD=1.62). Flowering 

ramets were significantly older than vegetative ramets (F 1 ,2 5 2 ,0 .0 5 = 8 .840 ,  p<0.005; Fig. 24). 

Overall, ramets differed in ages among the seven sites ( F 6,23 2 ,0 .0 5 = 2 .502, p<0.05) and 

among contexts ( F 5,252,o .o5= 4 .057 ,  p<0.005; Fig. 25, Table 9). Ramets with a dead ramet 

or no ramet both basipetal and acropetal were older than ramets in the other contexts 

except for ramets with a flowering ramet acropetal or basipetal. The site*ramet type 

interaction was significant as well (F6^52,o.o5=3.456, p<0.005; Fig. 26) making an 

interpretation of the two main effects, site and ramet type, more difficult. The ages of 

ramets in specific contexts did not vary among sites (site*context interaction;

F 3 0 . 2 5 2 ,o .o 5 = 0 . 6 5 1 ,  p=0.952). The ages of ramets in specific contexts did not differ whether 

they were vegetative or flowering ramets (ramet type*context interaction; F 5>25 2 , o . o 5 = 0 . 8 3 5 ,  

p = 0 . 5 2 6 ) .

Discussion

The number of seeds matured overall in 1997 was very low and in fact most ramets 

did not mature seeds. The number of seeds matured by mayflower at these sites was not 

pollen limited, as it was in previous years, but was likely resource limited. Shaded,
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Ramets

Figure 24. Mean age and standard deviation (SD) of flowering (F) and 
vegetative (V) ramets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

Q

GO

15
B03
t - i

O
<L>

0QaS
C

< D

8  ^  

7

6

5 - 

4 -

3 -  

2 -

1  -

0
0,0 0,v v,0 v,v f

Ramet context

Figure 25. Mean age and standard deviation (SD) of mayflower ramets in each 
context. 0  = dead ramet or no ramet, v = vegetative ramet, f  = flowering ramet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

Table 9. The mean age and standard deviation (SD) of ramets in each o f the contexts. 
Lower case letters denote means that are not significantly different. 0 = dead ramet or no 
ramet, v = vegetative ramet, f  = flowering ramet, b = growing rhizome

Context n Mean SD

0 , 0 136 5.80 2 . 0 2  a

0 ,v 84 4.76 1.79 b

v, 0 2 0 4.55 1.96 b

v,v 32 3.88 1.54 b

f 24 5.08 2 . 0 2  a,b

b 28 3.21 1.13 b
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overpoilinated ramets were probably not resource limited to the same extent that unshaded 

overpoilinated ramets were, as the former matured more seeds. There are at least two 

hypotheses to explain this: 1 ) unshaded ramets were stressed to a greater extent than 

shaded ramets or 2 ) shaded ramets were subsidized by other ramets on the same rhizome.

Data from 1994, 1995, 1996, and 1997 may provide insights into the first 

hypothesis. The number of seeds matured by mayflower was found to be pollen limited in 

the University of New Hampshire woodlands in three o f four years (Fig. 27). It appears 

that in 1997 the number of seeds matured by overpoilinated ramets was depressed instead 

of the alternative, which would be an increase in the number of seeds matured by open- 

pollinated ramets. This suggests that the number of seeds matured by ramets was resource 

limited in 1997 and that this acted to reduce the number of seeds matured despite 

adequate pollination. It is possible to infer whether ramets received adequate pollination 

and to determine if resource limitation was experienced early in the season prior to 

flowering or whether resource limitation was experienced throughout the fruiting season. 

An initial count o f fruits was made for each of three years (1994, 1995, and 1997) as well 

as a final count. The initial count was made 10-14 days after the cessation of hand 

pollinations. The number of fruits was used as a variable as seed number could not be 

accurately estimated until much later in the fruiting season.

For 1994, 1995, and 1997 the mean number o f fruits present during the first and 

final censuses was determined and plotted (Fig. 28). If the mean number of fruits present 

during the first census for ramets in 1997 was similar to that of ramets in 1994 and 1995, 

then severe resource limitation was not likely experienced prior to flowering. If  resource 

limitation was experienced throughout the fruiting season, then the mean number of fruits
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present during the final census of ramets in 1997 would be expected to be much lower. 

This appears to be exactly what occurred. In fact, in 1997, there was very little rainfall in 

the month following mayflower pollination: only 0.7 inches of rain fell in June 1997. In 

June 1994, 1.94 inches of rain fell, in June 1995, 1.36 inches o f rain fell, and in June of 

1996, 3.06 inches of rain fell (National Oceanic and Atmospheric Administration 1994, 

1995, 1996, 1997). The year 1997 may be considered a drought year for mayflower.

It appears that in a given year, at the scale of these experiments, the number of 

seeds matured by ramets is a function o f pollen availability and quality. This pattern is 

likely to be modified by the resource-state of individual ramets, but not to the extent that 

the overall pollen limitation trend disappears. It is only with a large-scale event like a 

drought that resource limitation overwhelms the effect o f pollen availability and quality.

This is not to suggest that in an average year resources are not important, only that 

the scale of resource limitation is likely to be with individual ramets and in an average year 

the pattern of pollen limitation is still evident overall. In fact, these experiments have 

shown that the number of seeds matured by individual ramets is influenced by whether the 

rhizome was left intact or severed. In 1994 and 1995 ramets that were overpoilinated and 

severed from the genet matured fewer seeds and fruits than overpoilinated ramets left 

connected to the genet. The inference from this result is that with high seed and fruit set 

additional resources are being used from outside those associated with the experimental 

ramet. Resources are likely being translocated from local rhizome; however, resources 

may also be coming from adjacent ramets on the same rhizome. Ramets that were open 

pollinated matured similar numbers of seeds and fruits whether their rhizomes were left 

intact or severed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

It is also possible that shaded, overpoilinated ramets were subsidized by other 

ramets on the same rhizome (hypothesis 2). This hypothesis is not as likely to be correct 

since many of these shaded, overpoilinated ramets existed as isolated ramets: a dead 

ramet or no ramet basipetal or acropetal (41.5%).

In 1997, context was shown to be related to the number o f seeds matured. This 

was also the case in 1996 (Chapter IV); however, there were differences in the way in 

which data were collected in these two years. In 1996, 53 flowering ramets were 

haphazardly collected from within a three hectare area o f the University of New 

Hampshire woodlands. Each ramet was collected from a site with potentially different 

light regimes and community structures. For example, ramets were collected from 

locations beneath deciduous, white pine (Pinus strobus). and eastern hemlock (Tsuga 

canadensis) canopies. In 1997, the 210 flowering ramets used in the experiment were 

located under canopies dominated by white pine. The ramets came from only seven 

canopies rather than from the range of canopies in 1996. Despite these differences it is 

useful to consider these data from different years to determine if some trends were 

repeated across years.

In both years (Fig. 29) ramets that had a dead ramet or no ramet acropetal and 

basipetal matured fewer seeds. This result was obtained despite the overall depression in 

the number of seeds matured by ramets in 1997.

Flowering and vegetative ramets differed from one another with respect to their 

contexts. This is perhaps surprising as flowering ramets and vegetative ramets are not 

distinct populations. Flowering ramets will have been vegetative ramets in the previous 

year and, if they survive, will be vegetative ramets in the following year. Over 80% of the
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ramets that were found to be producing a new acropetal ramet were vegetative while only 

17.9% were flowering ramets. In addition, vegetative ramets are more likely to be 

connected to other ramets (74.4%) than flowering ramets which are more likely to exist as 

isolated ramets (53.4%).

The pattern of age with respect to context as well as the frequency of contexts for 

vegetative and flowering ramets allows a first attempt at reconstructing ramet and genet 

development. A new acropetal ramet is produced on average when the ramet is 3.2 years 

old (SD=1.13). Isolated ramets average 5.8 years in age (SD=2.02) and are significantly 

older than ramets in the other contexts with the exception o f those with a flowering ramet 

basipetal or acropetal. The differences in flowering and vegetative ramet contexts are 

likely due to the difference in the ages o f flowering and vegetative ramets. Flowering 

ramets tend to be older than vegetative ramets.

Based on the ages of ramets in the collections, ramets did appear to pass through 

predictable stages. A new rhizome/bud is produced by a vegetative ramet that is about 3.2 

years old (2.4 years old based on the 1996 data). This new ramet (focal ramet) will then 

remain vegetative for approximately 3.2 years (2.4 years based on the 1996 data), when it 

will then produce a new rhizome/bud. The focal and acropetal ramets would then pass 

through their own stages probably independent of one another. The focal ramet is 

vegetative and then that ramet dies or the rhizome between the two decays. The acropetal 

ramet is vegetative and then becomes a flowering ramet (in only a few cases) or the 

rhizome between the two (focal and acropetal ramets) decays (in most cases). It appears 

that fragmentation (the breaking apart o f ramets from each other through rhizome decay) 

is very common in mayflower and that most ramets are likely to flower without the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

possibility of aid from other ramets. Furthermore, the likelihood that two ramets on the 

same rhizome will be flowering concurrently is very low.

The extent o f the differences in ages between vegetative and flowering ramets 

differed among sites (Fig. 26). The interaction of site and ramet type probably occurred 

because vegetative and flowering ramets at site B were similar in age. The recruitment of 

new acropetal ramets may be limited in this site and therefore the long term persistence of 

mayflower there may be in question. In each o f the other sites, vegetative ramets are 

similar to each other and consistently younger than flowering ramets. The average age of 

flowering ramets, however, varies and this is likely due to the length of time that ramets 

wait to flower. For example, ramets in site F may be flowering earlier than ramets in site 

D. In fact the ramets at site D were found to be younger than ramets at each of the other 

sites except site A.

It is difficult to place these results within the framework of clonal plant research in 

general for a number of reasons. First, not all clonal plants have distinct flowering and 

vegetative ramets, although many understory plants do—mayapple fPodophvllum 

peltatum: Sohn and Policansky 1977), wild sarsparilla (Aralia nudicaulis: Barrett and 

Thomson 1982). Second, aging of ramets may be difficult—including those of some 

understory plants such as Clintonia borealis (Pitelka, Hansen, and Ashmun 1985). Finally, 

although many clones have been mapped (Barrett and Thomson 1982, Cook 1985, 

Maddox et al. 1989, Klimes 1992), there have been no attempts to relate ramet contexts 

to their age and reproductive success. Although Falinska (1995) presents data for 

Filipendula ulmaria on the relationship between genet disintegration and both age and co­

occurring plant assemblages.
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The use of ramet context in this chapter may represent a new way to approach 

clonal plants. It is not necessary in mayflower, and perhaps other clonal plants as well, to 

excavate entire clones. Information about relations between ramets can be gathered with 

minimal excavation.
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CHAPTER VI

SYNOPSIS

Populations of Canada mayflower fMaianthemum canadense Desf.), and other 

clonal organisms are organized at a number of levels. Ramets (the structures that live, 

reproduce, and die) of a particular genotype are organized into a genet. Populations may 

be composed of a number of genets. It is possible that many factors may influence the 

seed maturation o f mayflower ramets. These factors may operate at the level of the 

ramet, the genet, or the population.

The ramets of mayflower differ from one another with respect to the number of 

seeds that they mature. Ramets differ from one another in other respects as well. 

Flowering ramets tend to be older than vegetative ramets (Chapter IV and V). The 

number of years that a ramet waits to flower is variable (Chapter I). Most flowering 

ramets were flowering for the first time (80.5%), 15.8% were found to be flowering for 

the second time, and 3.7% were found to be flowering for the third time (Chapter I). 

Ramets flowering for the second time varied in the number o f years that they last 

flowered and no ramet was found to have flowered in two consecutive years (Chapter I).

Ramets that waited a greater number o f years to flower did not necessarily mature 

more seeds. Ramets flowering for the second time matured as many seeds as ramets 

flowering for the first time when pollen was not limiting (Chapter HI). The addition of 

pollen did result in an overall increase in the number of seeds matured by ramets 

(Chapter I, m , and V).
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The genets o f mayflower may be extensive and diffuse. The rhizomes between 

ramets may break down over time. This makes the identification of genets by excavation 

difficult. If the survivorship or reproduction of a flowering ramet is affected by other 

ramets in the same genet, then more proximate ramets are likely to be involved than are 

more distant ramets. The context o f a ramet may thus be defined as the identity of the 

ramet directly basipetal and acropetal on the same rhizome system. The frequency of 

flowering ramets was found to differ among contexts (Chapter IV and V). Flowering 

ramets with no ramet basipetal or acropetal (isolated ramets) represented the most 

common context with > 53% o f flowering ramets occurring in this context (Chapter IV 

and V). Isolated flowering ramets were found to be older than non-isolated ramets 

(Chapter V). In both 1996 and 1997, isolated flowering ramets matured fewer seeds than 

non-isolated flowering ramets (Chapter IV and V). This trend was also validated 

experimentally in Chapter I and this experiment clarified the role of pollen in determining 

the number of seeds matured by ramets. Experimentally isolated ramets that were open 

pollinated matured as many seeds as non-isolated ramets that were open pollinated. 

However as the level o f pollen increased, non-isolated ramets were able to mature more 

seeds than experimentally isolated ramets.

Rainfall in June of 1997 was much lower than the rainfall in June o f 1994, 1995, 

and 1996 (Chapter V). It is possible that lower rainfall in June of 1997 limited seed 

maturation in the ramets of mayflower. Despite the overall reduction in the number of 

seeds matured in 1997, all flowering ramets were not limited to the same degree. Isolated 

ramets in 1997 matured fewer seeds than non-isolated ramets (Chapter V) suggesting that
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isolated ramets were influenced to a greater degree by low rainfall than non-isolated 

ramets.

It appears that for mayflower, a genet-based approach to explaining variation in 

the number of seeds matured by ramets is most appropriate. In general the addition of 

pollen to ramets resulted in an increase in the number of seeds matured; however, the 

experiment presented in Chapter I demonstrated that not all ramets responded to pollen 

addition (Ganger 1997). Isolated ramets that received additional pollen did not mature 

more seeds. Low rainfall in 1997 may have limited the number of seeds matured by 

ramets overall; however, isolated ramets appeared to have been influenced to a greater 

degree than non-isolated ramets (Chapter V). The use of a genet-based approach to 

demography may also be preferable to a ramet-based approach for other clonal species.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill



REFERENCES

Abrahamson WG (1975) Reproductive strategies in dewberries. Ecology 56:721-726

Abrahamson WG (1980) Demography and vegetative reproduction. In: Sotbrig OT (ed) 
Demography and evolution in plant populations. University of California Press, 
Berkeley

Abrahamson WG, Anderson SS, McCrea KD (1991) Clonal integration: nutrient sharing 
between sister ramets o f Solidago altissima (CompositaeV Am J Bot 78:1508- 
151*

Ackerman JD, Montalvo AM (1990) Short- and long-term limitations to fruit production 
in a tropical orchid. Ecology 71:263—272

Anderson RC, Loucks O (1973) Aspects o f the biology of Trientalis borealis. Ecology 
54:798-808

Antifinger AE, Wendel LF (1997) Reproductive effort and floral photosynthesis in 
Spiranthes cemua (Orchidaceae). Am J Bot 84:769—780

Ashmun JW, Thomas RJ, Pitelka LF (1982) Translocation of photoassimilates between 
sister ramets in two rhizomatous forest herbs. Ann Bot 49:403—415

Ashmun JW, Pitelka LF (1984) Light-induced variation in the growth and dynamics of
transplanted ramets o f the understory herb, Aster acuminatus. Oecologia 64:255— 
262

Barrett SCH, Thomson JD (1982) Spatial pattern, floral sex ratios, and fecundity in 
dioecious Aralia nudicaulis (Araliaceae). Can J Bot 60:1662-1670

Bazzaz FA, Carlson RW, Harper JL (1979) Contribution to reproductive effort by 
photosynthesis of flowers and fruits. Nature 279:554-555

Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to 
reproduction and defense. BioScience 37:58-67

Bazzaz FA (1991) Habitat selection in plants. Am Nat 13 7: S116 -S 130

Bell AD, Tomlinson PB (1980) Adaptive architecture in rhizomatous plants. Bot J Linn 
Soc 80:125-60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

Benner BL, Watson MA (1989) Developmental ecology o f  mayapple: seasonal patterns of 
resource distribution in sexual and vegetative rhizome systems. Funct Ecol 3:539— 
547

Bierzychudek P (1981) Pollinator limitation o f plant reproductive effort. Am Nat 11:838— 
840

Bierzychudek P (1982) Life histories and demography o f shade-tolerant temperate forest 
herbs: a review. New Phyt 90:757—776

Bierzychudek P (1984) Determinants of gender in jack-in-the-pulpit: the influence of plant 
size and reproductive history. Oecologia 65:14-18

Bray JH, Maxwell SE (1985) Multivariate analysis of variance. Sage University Paper 
series on Quantitative Applications in the Social Sciences, series no. 54. Sage 
Publications, Beverly Hills

Buss LW (1985) The uniqueness of the individual revisited. In: Jackson JBC, Buss LW, 
Cook RE (eds) Population biology and evolution o f clonal organisms. Yale 
University Press, New Haven, pp 467-505

Callaghan TV (1980) Age-related patterns o f nutrient allocation in Lvcopodium
annotinum from Swedish Lapland. Strategies of growth and population dynamics 
of tundra plants, 5. Oikos 35:373-386

Campbell DR, Halama KJ (1993) Resource and pollen limitations to lifetime seed 
production in a natural plant population. Ecology 74:1043-1053

Carleton TJ, Maycock PF (1980) Vegetation of the boreal forests south o f James Bay: 
non-centered component analysis on the vascular flora. Ecology 61:1199-1212

Casper BB, Wiens D (1981) Fixed rates of ovule abortion in Crvptantha flava
(Boraginaceae) and its possible relation to seed dispersal. Ecology 62:866-869

Chapin FS (1980) The mineral nutrition of wild plants. Ann Rev Ecol Syst 11:233-260

Cook RE (1979) Asexual reproduction: a further consideration. Am Nat 113:769-772

Cook RE (1983) Clonal plant populations. Am Sci 71:244—253

Cook RE (1985) Growth and development in clonal plant populations. In: Jackson JBC, 
Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. 
Yale University Press, New Haven, pp 259-296

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

Crowder AA, Taylor GJ (1984) Characteristics of sites occupied by wild lily-of-the-valley, 
Maianthemum canadense. on Hill Island, Ontario. Can Field-Nat 98:151—158

Ehrlen J, Eriksson O (1995) Pollen limitation and population growth in a herbaceous 
perennial legume. Ecology 76:652-656

Eriksson O (1992) Evolution of seed dispersal and recruitment in clonal plants. Oikos 
63:439-448

Eriksson O, Jerling L (1990) Hierarchical selection and risk spreading in clonal plants. In: 
van Groenendael J, de Kroon H (eds) Clonal growth in plants: regulation and 
function. SPB Academic, The Hague, pp 79-94

Fagerstrom T (1992) The meristem-meristem cycle as a basis for defining fitness in clonal 
plants. Oikos 63:449-453

Falilnska K (1995) Genet disintegration in Filipendula ulmaria: consequences for 
population dynamics and vegetation success. J Ecol 83:9-21

Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

Ganger MT (1997) The influence of pollen addition and ramet isolation on current sexual 
reproduction in a clonal herb. Oecologia 110:231—236

Gleason HA, Cronquist A (1991) Manual of vascular plants o f northeastern United States 
and adjacent Canada, 2nd edn. New York Botanical Garden, Bronx, NY

van Groenendael H, de Kroon H (1990) Clonal growth in plants: regulation and function. 
SPB Academic Publishing, The Hague, The Netherlands

Haig D, Westoby M (1988) On limits to seed production. Am Nat 131:757—759

Handel SN (1985) The intrusion o f clonal growth patterns on plant breeding systems. Am 
Nat 125:367-384

Harper JL (1977) Population biology of plants. Academic Press, London

Hartnett DC, Bazzaz FA (1983) Physiological integration among intraclonal ramets in 
Solidago canadensis. Ecology 64:779-788

Heinrich B (1979) Resource heterogeneity and patterns of movement in foraging 
bumblebees. Oecologia 40:235-245

Holler LC, Abrahamson WG (1977) Seed and vegetative reproduction in relation to 
density in Fraearia vireiniana (Rosaceae). Am J Bot 64(8): 1003-1007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

Horvitz CC, Schemske DW (1988) Demographic cost of reproduction in a neotropical 
herb: an experimental field study. Ecol 69:1741-1745

Hughes RN, Cancino JM (1985) An ecological overview of cloning in metazoa. In:
Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal 
organisms. Yale University Press, New Haven, pp 153—186

Hutchings MJ (1987) The population biology of the early spider orchid, Ophrvs spheeodes 
Mill. II. Temporal patterns in behaviour. J Ecol 75:729-742

Jackson JBC, Buss LW, Cook RE (1985) Population biology and ecology o f clonal 
organisms. Yale University Press, New Haven

Janzen DH, DeVries P, Gladstone DE, Higgins ML, Lewisohn TM (1980) Self- and cross­
pollination o f Encvclia cordigera (Orchidaceae) in Santa Rosa National Park,
Costa Rica. Biotropica 12:72-74

Johnston MO (1991) Pollen limitation of female reproduction in Lobelia cardinalis and L. 
siphilitica. Ecology 72:1500-1503

Jonsdottir IS, Callaghan TV (1988) Interrelationships between different generations of 
interconnected tillers of Carex bigelowii. Oikos 52:120-128

Kana TM (1982) The influence of spatial and heterogeneity on the growth and
demography of Maianthemum canadense. Ph. D. Thesis, Harvard University

Klimes L (1992) The clone architecture of Rumex alpinus (Polygonaceae). Oikos 63:402- 
409

Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. 
Nature 336:435—440

Lee TD (1988) Patterns of fruit and seed production. In Lovett-Doust J, Lovett-Doust, L 
(eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, 
pp 179-202

Levin DA, Kerster HW (1968) Local gene dispersal in Phlox. Evolution 22: 130-139

Levin DA, Kerster HW (1969) Density-dependent gene dispersal in Liatris. Am Nat 103: 
61-74

Levin DA (1975) Pest pressures and recombination systems in plants. Am Nat 190:437- 
451

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

Levin DA (1997) Plant outliers: an ecogenetic perspective. Am Nat 145:109-118

Lovett-Doust J (1989) Plant reproductive strategies and resource allocation. TREE 
4:230-234

Lovett-Doust L (1981) Population dynamics and local specialization in a clonal perennial 
(Ranunculus repensL I. The dynamics of ramets in contrasting habitats. J Ecol 
69:743-755

Maddox GD, Cook RE, Wimberger PH, Gardescu S (1989) Clone strucutre in four 
Solida|go altissima (Asteraceae) populations: rhizome connections within 
genotypes. Am J Bot 76:318-326

Marshall C (1990) Source-sink relations of interconnected ramets. In: van Groenendael J, 
de Kroon H (eds) Clonal growth in plants: regulation and function. SPB 
Academic, The Hague, pp 23—41

Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

McIntyre GI (1969) Apical dominance in the rhizome of Agropvron repens. Evidence of 
competition for carbohydrate as a factor in the mechanism o f inhibition. Can J Bot 
47:1189-1197

McIntyre GI (1971) Apical dominance in the rhizome o f Agropvron repens. Some factors 
affecting the degree o f dominance in isolated rhizomes. Can J Bot 49:99-109

Moogie M, Hutchings MJ (1990) Phylogeny, ontogeny and clonal growth in vascular 
plants. In: van Groenendael J, de Kroon H (eds) Clonal growth in plants: 
regulation and function. SPB Academic, The Hague, pp 3—22

National Oceanic and Atmospheric Administration (1994) National Climatological Data: 
Concord, NH, June

National Oceanic and Atmospheric Administration (1995) National Climatological Data: 
Concord, NH, June

National Oceanic and Atmospheric Administration (1996) National Climatological Data: 
Concord, NH, June

National Oceanic and Atmospheric Administration (1997) National Climatological Data: 
Concord, NH, June

Noble JC, Marshall C (1983) The population biology of plants with clonal growth. II. The 
nutrient strategy and modular physiology of Carex arenaria. J Ecol 71:865-877

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

Pacala SW (1989) Plant population dynamic theory. In: Roughgarden J, May RM, Levin 
SA (eds) Perspectives in ecological theory. Princeton University Press, Princeton, 
pp 54-67

Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant 
Physiol Plant Mol Biol 41:421-53

Phillips IDJ (1975) Apical dominance. Ann Rev Plant Phys 26:341-367

Pitelka LF, Ashmun JW (1985) Physiology and integration of ramets in clonal plants. In: 
Jackson, Buss, Cook (eds) Population biology and evolution of clonal organisms. 
Yale University Press, New Haven, pp 399-435

Pitelka LF, Hansen SB, Ashmun JW (1985) Population biology of Clintonia borealis. I. 
Ramet and patch dynamics. J Ecol 73:169—183

Price EAC, Marshall C, Hutchings MJ (1992) Studies of growth in the clonal herb
Glechoma hederaceae. I. Patterns of physiological integration. J Ecol 80:25-38

Price EAC, Hutchings MJ (1992) The causes and developmental effects o f integration and 
independence between different parts of Glechoma hederaceae clones. Oikos 
63:376-386

Primack RB (1985) Patterns o f flowering phenology in communities, populations, 
individuals, and single flowers. In: White, J (ed) The population structure of 
vegetation. Dr. W. Junk Publishers, Dordrecht

Primack RB, Hall P (1990) Costs of reproduction in the pink lady's slipper orchid: a four- 
year experimental study. Am Nat 136:638-656

Reekie EG, Bazzaz FA (1979) Reproductive effort in plants. I. Carbon allocation to 
reproduction. Am Nat 129:876-896

Rogan PG, Smith DL (1974) Patterns of translocation of l4 C-labelled assimilates during 
vegetative growth of Agropvron repens (L.) Beauv. Z Pflanzenphys Bd 73:S405— 
S414

Room PM (1983) Falling apart as a lifestyle: the rhizome architecture and population 
growth o f Salvinia molesta. J Ecol 71:349-365

Ryle GJA, Powell CE, Gordon AJ (1981) Patterns of 14C-labelIed assimilate partitioning in 
red and white clover during vegetative growth. Ann Bot 47:505—514

Salzman AG (1985) Habitat selection in a clonal plant. Science 228:603-604

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Salzman AG, Parker MA (1985) Neighbors ameliorate local salinity stress for a
rhizomatous plant in a heterogeneous environment- Oecologia 65:273—277

Scheiner SM (1993) MANOVA: multiple response variables and multispecies interactions. 
In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. 
Chapman and Hall, New York, pp 94-112

Silander Jr. JA (1985) Microevolution in clonal plants. In: Jackson, Buss, Cook (eds)
Population biology and evolution o f clonal organisms. Yale University Press, New 
Haven, pp 107-152

Silva IF (1978) Studies on the population biology o f Maianthemum canadense. Ph. D. 
Thesis, Harvard University

Silva JF, Kana TM, Solbrig OT (1982) Shoot demography in New England populations of 
Maianthemum canadense Desf. Oecologia 52:181-186

Smith AP, Young TP (1982) The cost of reproduction in Senecio keniodendron. a giant 
rosette species ofMt. Kenya. Oecologia 55:243-247

Snow AA, Whigham DF (1989) Costs of flower and fruit production in Tipularia discolor 
(Orchidaceae). Ecology 70:1286-1293

Sobey DG, Barkhouse P (1977) The structure and rate of growth of the rhizomes of some 
forest herbs and dwarf shrubs of the New Brunswick-Nova Scotia border region. 
Can Field Nat 91:377-383

Schn JJ, Policansky D (1977) The costs of reproduction in the mayapple, Podophyllum 
peltatum (Berberidaceae). Ecology 58:1366-1374

Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate 
functions. Ann Rev Ecol Syst 12:253—279

Thaler GR, Plowright RC (1980) The effect of aerial insecticide spraying for spruce
budworm control on the fecundity of entomophilous plants in New Brunswick.
Can J Bot 58:2022-2027

Thompson K, Stewart AJA (1981) The measurement of reproductive effort in plants. Am 
Nat 117:205-211

TiShey BH, Niklas KJ (1985) Clonal growth in land plants: a paleobotanical perspective. 
In: Jackson, Buss, Cook (eds) Population biology and evolution of clonal 
organisms. Yale University Press, New Haven, pp 35-66

Warner RR (1977) Sexual-asexual evolutionary equilibrium? Am Nat 112:960-962

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

Watson MA (1990) Phenological effects on clone development and demography. In: van 
Groenendael J, de Kroon H (eds) Clonal growth in plants: regulation and function. 
SPB Academic, The Hague, pp 43—55

Watson MA (1984) Developmental constraints: effect on population growth and patterns 
of resource allocation in a clonal plant. Am Nat 123:411-426

Watson MA, Casper BB (1984) Morphogenetic constraints on patterns o f carbon 
distribution in plants. Ann Rev Ecol Syst 15:233-258

Whigham DF (1984) Biomass and nutrient allocation of Tipularia discolor (Orchidaceae). 
Oikos 42:303-313

Whitney GG, Foster DR (1988) Overstorey composition and age as determinants of the 
understorey flora o f woods of central New England. J Ecol 76:867-876

Widen M (1992) Sexual reproduction in a clonal, gynodioecious herb Glechoma 
hederacea. Oikos 63:430-438

Wilkinson L (1990) SYSTAT: the system for statistics. SYSTAT, Inc., Evanston, Illinois

Williams CL (1985) The population biology of Maianthemum canadense in Wisconsin. Ph. 
D. Thesis, University of Wisconsin-Madison

Williams GC (1975) Sex and evolution. Princeton University Press, Princeton

Williams KG, Koch GW, Mooney HA (1985) The carbon balance of flowers of Diplacus 
aurantiacus (Scrophulariaceae). Oecologia 66:530-535

Williams RD (1964) Assimilation and translocation in perennial grasses. Ann Bot 28:419- 
429

Willson MF, Bertin RI (1979) Flower-visitors, nectar production, and inflorescence size of 
Asclepias svriaca. Can J Bot 57:1380—1388

Weiner BJ, Brown DR, Michels KM (1991) Statistical principles in experimental design, 
3rd edn. McGraw-Hill, New York

Woolley DJ, Wareing PF (1972) The interaction between growth promoters in apical
dominance. I. Hormonal interaction, movement and metabolism o f a cytokinin in 
rootless cuttings. New Phytol 71:781-795

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

Worthen WB, Stiles EW (1986) Phenotypic and demographic variability among patches of 
Maianthemum canadense (Desf.) in central New Jersey, and the use o f self ­
incompatibility for clone discrimination. Bull Torrey Bot Club 113:398—405

Worthen WB, Stiles EW (1988) Pollen-limited fruit set in isolated patches of
Maianthemum canadense Desf in New Jersey. Bull Torrey Bot Club 115:299-305

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IMAGE EVALUATION
TEST TARGET (Q A -3 )

I . 0
|£  ■ 2.8
|jo

Ml 2.5

tH 1— I 2'2111

l . l uu. ^

1  2.0

■
i m

'. 2 5  , u  I« ' , 6

150mm

IIVU4GE. In c
1653 East Main Street 
Rochester. NY 14609 USA 
Phone: 716/482-0300 
Fax: 716/288-5989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 1998

	Reproductive ecology of Canada mayflower (Maianthemum canadense Desf)
	Michael Todd Ganger
	Recommended Citation


	tmp.1525704849.pdf.0HzS2

