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ABSTRACT

THE USE OF AN ARTIFICIAL LIGHT SYSTEM TO ASSESS 
THE INFLUENCE OF RELATIVE LIGHT CHANGE ON DIEL ACTIVITY 

CYCLES OF NYMPHS OF THE MAYFLY,
STENONEMA M OD ESTUM ,

IN THE PRESENCE AND ABSENCE OF PREDATORS

By

Annette L. Schloss 
University of New Hampshire, December, 1997

A mechanism by which light controls diel changes in locomotor activity and surface 

location of mayfly nymphs (Stenonema modestum Banks), named the Stimulus-based 

Timing and Activity-Rate (STAR) Model, was tested. Nymph movements were video- 

recorded in time-lapse from underneath unglazed artificial substrates in a laboratory stream. 

Light/dark cycles were simulated using computer-controlled halogen lamps. Light increases 

and decreases were generated to maintain constant rates of relative light change throughout 

simulated twilight periods. Nymph locomotor activity and position on the substrate were 

measured in response to rate of light change. Experiments tested whether adaptation light 

intensity (10"4 or 10"6 W cm'2), time of day (AM or PM), length of the period of light 

change, or predators, altered nymph responses to light change.

Timing of both heightened nocturnal locomotor activity and leaving the substrate 

were significantly correlated (R2 = .93; p < 0.001 and R2 =.71; p < 0.004, respectively) 

with rate of relative light decrease. Rate of change in light was also correlated with the 

difference between daytime and nighttime locomotor activity (R2 = .38, p < 0.02). The 

onset of nocturnal locomotor activity was advanced when nymphs were adapted to a low 

daytime light intensity. Lowered daytime light did not change the time mayflies left the 

undersides of the substrate. There was no difference in the locomotor activity response

xiv
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between AM and PM experiments, but significantly greater numbers of nymphs left the 

substrate undersides during simulated twilight in the PM experiments (p < 0.009, F, l4 = 

9.3). The difference between daytime and nighttime locomotor activity diminished during 

shortened periods of light decrease. When the time intervals over which light was reduced 

became smaller than the latency period of the response, there was no nocturnal increase in 

locomotor activity. Nymphs left the substrate undersides regardless of the length of time 

over which light was reduced. Locomotor activity was greater in the presence of fish odor 

(Notropis comutus and Rhinichthys cataractae) than in water not containing predators. 

Locomotor activity was reduced during the daytime in the presence of Paragnetina media 

stoneflies. Synergistic effects between fish and stoneflies resulted in differences in the 

timing and locomotor activity of both stoneflies and mayflies.

xv
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INTRODUCTION

Proximate and Ultimate Factors that Influence Diel Behavioral Cycles

Light and predation are important proximate and ultimate factors influencing diel 

periodicity in the behavior of stream invertebrates, in particular mayfly nymphs.

Periodicity in nymph behavior may be manifest as changes in the amount of locomotor 

activity (Elliott 1968, Allan et al. 1986, Grace 1990), preference for a particular substrate 

surface (Elliott 1968, Graesser and Lake 1984, Casey 1987, Glozier and Culp 1989, Grace 

1990, Peckarsky and Cowan 1995, McIntosh and Peckarsky 1996), feeding at a particular 

time of day (Meier and Bartholomae 1980, Grace 1990, Scrimgeour et al. 1991, Cowan 

and Peckarsky 1994) and/or changes in the numbers drifting in the water column (reviews 

by Waters 1972, Muller 1974, Brittain andEikeland 1988).

Behavioral patterns, such as diel periodicity, may evolve as a result of the feeding 

habits of predators. Mayfly nymphs are under a variety of predation pressures from fish 

and other invertebrates. Many species of fish are visual predators that feed primarily from 

the drift during daylight. These include trout, (e.g., Oncorhynchus, Salvelinus, Salmo 

spp.) (Allan 1981, McNicol et al. 1985), and darters (Percidae) (Cordes and Page 1979). 

Other common lotic fish feed from the benthos primarily at night, including sculpins 

(Cottus bairdi) and some longnose dace (Rhinichthys cataractae) (Beers and Culp 1989, 

Culp 1989, Culp et al. 1991, Hoekstra and Janssen 1985), while others such as the 

speckled dace (Rhinichthys osculus), reportedly feed during the twilight periods (Angradi 

et al. 1991). Stoneflies are important invertebrate predators that feed primarily at night 

(Malmqvist and Sjdstrom 1980, Walde and Davies 1985, Soluk and Collins 1988, 

Peckarsky and Cowan 1995).

1
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Recent studies have suggested that diel drift periodicity protects mayfly nymphs 

from visual fish predators and that the behavior has probably evolved as a defense against 

discovery by drift-feeding fishes (Allan 1978, Allan et al. 1986). Mayflies in streams 

containing visual-feeding fish exhibit diel behaviors, but mayflies in naturally fishless 

streams often do not (Malmqvist 1988, Flecker 1992, Cowan and Peckarsky 1994, 

Douglas etal. 1994, McIntosh and Townsend 1994, McIntosh and Peckarsky 1996). Less 

is known about the influence of benthic-foraging fishes on the evolution of diel periodicity. 

To date, there is no evidence that mayfly nymphs have evolved diel periodicity to evade 

stonefly predators (Peckarsky and Cowan 1995), an indication that avoidance of daytime 

foragers has been the most important ultimate cause of diel behavior in mayflies. Stoneflies 

are also vulnerable to predation by fish and must time their foraging activities to best avoid 

detection by fish (Allan 1981, Moore and Gregory 1988, Feltmate and Williams 1989a, 

1991), suggesting that their activities may also have evolved to best avoid visual fish 

predators.

Light is universally accepted as a proximate cue that regulates day/night activity 

cycles (Bunning 1973, Moore-Ede et al. 1982, reviewed by Page 1985, Rapp 1987).

Light has been shown to control mayfly locomotor activity, location on the substrate, and 

drift (Elliott 1968, Chaston 1969, Kohler 1985, Glozier and Culp 1989). Manipulations of 

light intensity have demonstrated that drift can easily be turned off and on (Holt and Waters 

1967, reviewed by Brittain and Eikeland 1988) or the timing of the onset of evening drift 

during twilight can be altered, by artificially darkening or illuminating a section of a natural 

stream (Haney etal. 1983).

Other proximate cues, such as the immediate risk of predation or food abundance, 

may alter the likelihood that an individual will exhibit a particular behavior. Diel cycles are 

maintained within the organism through an internal clock, or endogenous rhythm (reviewed 

for insects by Page 1985). Evidence that locomotor activity and drift may be regulated by 

an endogenous clock comes from observations of nymphs kept in continuous darkness in

2
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which they maintained several 24-hr cycles of activity (Elliot 1968) and drift (Muller 1965. 

Chaston 1968). Individual differences within a population are observed as variability in the 

timing of a behavioral change or plasticity in behavior, suggesting that endogenous 

rhythms are not fixed. Many genera of mayflies are grazers (Merritt and Cummins 1984) 

that feed primarily at night on the daily crop of algae located on stone tops. Mayflies show 

plasticity in location on the substrate and feeding by altering the amount of time spent 

grazing and on the upper stone surfaces in the presence of fish (Kohler and McPeek 1989, 

Culp etal. 1991, Cowan and Peckarsky 1994, McIntosh and Townsend 1994), in the 

presence of high and low food resources (Kohler 1985, Kohler and McPeek 1989, 

Peckarsky 1996), and in numbers in the drift in response to different risks of predation by 

drift-feeding fishes (Malmqvist 1988, Flecker 1992, Douglas etal. 1994, Forrester 1994, 

Peckarsky 1996). Individuals may drift in response to encounters with actively foraging 

stoneflies (Peckarsky 1980, Malmqvist and Sjostrom 1987, Peckarsky 1996). Such 

behavioral changes are most likely related to tradeoffs between obtaining food and avoiding 

predators (Dill 1987, Lima and Dill 1990, Scrimgeour and Culp 1994a, 1994b).

Proximate and ultimate causes of diel periodicity in behavior have been investigated 

in other aquatic environments, such as lakes and marine systems. Diel vertical migration of 

zooplankton is a prominent example, occurring in lakes containing planktivorous fish 

(Gliwicz 1986, Haney 1988), but not necessarily in fishless lakes (Gliwicz 1986). There 

are numerous examples of rapid induction of vertical migrations of prey species in 

freshwater and marine environments after the introduction of predators or water that had 

previously contained predators (Bollens and Frost 1991, Forward and Rittschof 1993,

Neill 1990, Ringelberg 1991a, 1991b). Large differences in vertical depth in the water 

column between the leading and trailing edges of migrating populations demonstrate that 

there are differences in the response of individuals within a single lake population to daily 

light cues (Haney et al. 1990, Ringelberg et al. 1991a, 1991b). It is not yet known 

whether the same individuals are typically on the leading or trailing edge, suggesting a

3
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genetic basis for the difference, or if particular conditions determine an individual’s location 

during the migration on any given day, suggesting an interaction between environmental 

cues and the individual’s response to light (Ringelberg et al. 1991a).

Diel cycles are also common in the behavior of many terrestrial species (reviews by 

Daan and Aschoff 1975, Lima and Dill 1990). The change in illumination during twilight 

has been shown to be the environmental cue by which fireflies and glowworms time the 

daily onset of luminescent activity (Dreisig 1975), and by which mosquitoes (Jones 1982), 

pond bats (Voute etal. 1974), and several species of nocturnal moths (Dreisig 1980) time 

the onset of evening flight, but these behaviors have not been studied in the context of both 

light and predation. Light control of the diel activity patterns in several species of birds has 

also been documented (Daan and Aschoff 1974), but also not in the context of predator- 

prey interactions. Nocturnal foraging in some terrestrial species, such as deer mice (Clarke 

1983), kangaroo rats (Lockard and Owings 1974), and fruit bats (Morrison 1978), has 

been shown to be reduced during periods of bright moonlight, presumably a strategy to 

avoid predators (Clarke 198, Kotler 1984), suggesting similar light controls on foraging 

behavior in nocturnal organisms in terrestrial and aquatic systems.

Development o f  the STAR light control model o f  diel activity cycles o f

mavflv nvmphs

The mechanisms by which mayflies become active and move to the upper substrate 

surfaces to feed or enter the drift are not well understood (reviews by Waters 1972, Brittain 

and Eikeland 1988). Falling light levels at evening twilight have long been regarded as 

proximate cues for diel changes in the locomotor activity of terrestrial organisms (Daan and 

Aschoff 1975), suggesting that properties of light that are unique to twilight provide the 

necessary external cue for timing of diel changes in activity. Two important aspects of the 

twilight period are a large change in absolute light intensity and large relative changes in

4
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light intensity. During evening twilight, the rate of relative light change during a given time 

interval is a measure of how quickly the illumination decreases over that time-interval 

(Ringelberg 1964). Changes in absolute light intensity are largest before sunset, but the 

rates of light change are smallest; whereas after sunset, changes in absolute light intensity 

are small, but the rates of light change are large. Relative light change as a measure of the 

rate at which light is varying in time is therefore independent of absolute light intensity 

(Ringelberg 1964, Haney etal. 1983, Ringelberg 1991b, Ringelberg eta l 1991a).

My Master’s Degree research combined direct observation of the behavior of 

nymphs of a locally abundant riffle-dwelling mayfly, Stenonema modestum, in a laboratory 

stream under natural light conditions together with continuous measurements of light, in 

order to assess how changes in light during twilight act as a proximate cue for the initiation 

of diel changes in locomotor activity and migrations away from the lower substrate surfaces 

(Grace 1990). Aspects of the light environment that were considered as the mechanisms of 

control of behavioral changes were the rate of relative light change as the control of the 

onset of evening locomotor activity, and light intensity as the control of the moment 

nymphs began to leave the substrate undersides. A particular rate of relative light change 

has been related to the onset of vertical migration in the water flea, Daphnia (Ringelberg 

1964) and in the phantom midge, Chaoborus (Haney et al. 1990), suggesting that there is a 

minimum, or threshold, rate of light change that can trigger an activity response in those 

aquatic organisms. I assumed these two particular mechanisms of control based on the 

model proposed by Haney et al. (1983). Their model predicts that the diel increase in 

locomotor activity is a photokinetic response to the surpassing of a threshold rate of relative 

light change during evening twilight, and that the vertical movement to the upper substrate 

surfaces is a phototactic response to a minimum level of illumination (their model and other 

models regarding light control of diel behaviors in mayflies are described in Chapter Two).

I collected data over consecutive 24-hr periods during several months in 1987-88. 

Results from the study did not strongly support the predicted rate of light change and light
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intensity thresholds, because variability in the light environment associated with diel 

changes in activity and position on the substrate was large from day to day and mean values 

changed seasonally (Fig. 1), indicating that there were no fixed thresholds.

An unexpected finding of the research was that increases in daytime locomotor 

activity underneath the substrate corresponded to periods of light decrease (cloud events). 

This result was surprising because changes in locomotor activity in response to light were 

assumed to only occur during twilight, the time period when the diel changes in behavior 

typically begin. Both the length of time over which light was decreasing and the magnitude 

of the rate of light decrease (and not the absolute change in light intensity) contributed to the 

likelihood of a response and to the amount of activity change (Fig. 2). For example, a 40- 

minute cloud event in which the rate of light decrease was reasonably weak did not elicit an 

observable change in locomotor activity (Fig. 2, hatched area), nor did a 10-min cloud 

event in which the rate of light decrease was reasonably strong (Fig. 2, checkered area).

The cloud event that did elicit a significant change in locomotor activity was both long- 

lasting ( -  40 min) and the rate of light decrease was reasonably strong (Fig. 2, solid area). 

These and other data (Grace 1990), suggest that impressive changes in activity, positioning 

on the substrate, and numbers of individuals in the water column typically occur around 

sunset and sunrise, because those are the periods when there are both large and sustained 

relative changes in light, two aspects of light that appear to strongly influence diel activities.

None of the previously proposed light control models of diel activity changes in 

stream invertebrates included relative light change as a regulator of locomotor activity 

during periods outside of twilight (the more prominent light control models are discussed in 

Chapts. 1,2). Therefore, I propose a light control model of the diel activity patterns of 

stream invertebrates that can predict both the timing of diel changes in locomotor activity 

and vertical movements on the substrate, and also the difference between daytime and 

nighttime locomotor activity, as a consequence of relative light change. The basic premise 

of this Stimulus-based Timing and Activity-Rate Model (STAR) is that both the rate of light
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change, or the strength of the light stimulus, and the time interval over which light changes 

occur, or the duration of the light stimulus, determine the timing of heightened locomotor 

activity and leaving the substrate undersides, as well as the magnitude and time-course of 

the initial peak in nocturnal locomotor activity. I define light stimulus here as the rate of 

relative light change, described by Ringelberg (1964). Specific predictions of the model are 

outlined below.

Predictions o f  the STAR Model

A. Predictions regarding diel changes in locomotor activity in relation to 

light stimulus.

1. Timing. Based on the strength-duration relationship between light stimulus (the 

rate of light decrease) and the timing of the onset of diel vertical migration that 

has been developed for Daphnia magna (Ringelberg 1964), the model predicts 

that the timing of the initial change between daytime and nighttime locomotor 

activity levels can be defined by a strength-duration curve. This type of a 

relationship is common in physiological excitable systems (cf. Grinnell 1977), 

because in such systems, a response occurs after a buildup of the appropriate 

stimulus. The time-interval over which the stimulus builds is known as the 

latent period. The length of the latent period is dependent on the strength of the 

stimulus, such that, in the case of a stimulus-based timing and activity 

response, the latent period between the beginning of the light stimulus and the 

onset of the activity change should be shorter at larger rates of light change 

(strong light stimuli) and longer at smaller rates of light change (weak light 

stimuli).
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2. Magnitude (difference between daytime and nighttime levels o f locomotor 

activity). Based on my own observations that the level of locomotor activity in 

S. modestum nymphs increased during cloud-related daytime periods of light 

decrease (Grace 1990, Fig. 2), and observations by Haney et al. (1990) that the 

vertical displacement of a population of migrating chaoborid larvae was 

proportional to the rate of relative change in light intensity, the model predicts 

that changes in the amount of locomotor activity shall be a direct consequence of 

light stimulus. Therefore, the amount of locomotor activity beneath the 

substrate should increase during periods of decreasing light, and decrease 

during periods of increasing light, by an amount proportional to the rate of 

relative light change. During those periods when relative light changes are 

smaller than the minimum rate or time-duration capable of eliciting a response, 

locomotor activity should oscillate around a daytime or nighttime mean, the 

level of which is seasonally dependent (Elliott 1968, Grace 1990).

3. Time-course. Based on observations that there are seasonal differences in the 

height and width of nocturnal activity peaks (Chaston 1968, 1969, Grace 

1990), the model predicts that the duration of the initial peak in heightened 

locomotor activity should be longer when stimulus strength is weak, and 

shorter when stimulus strength is strong; conversely, the height of the peak 

should be smaller when stimulus strength is weak, and larger when stimulus 

strength is strong. Seasonally, stronger stimuli occur during fall and winter 

when the length of twilight is reduced, and weaker stimuli occur during spring 

and summer when the length of twilight is increased, because of differences in 

the angle of the sun in relation to the ground (cf. Daan and Aschoff 1975 and 

Dreisig 1980, for detailed representations of the course of daily light intensity 

seasonally and at different latitudes). During the tests of the Haney et al. 

model, seasonal differences were apparent in the time-course of the initial peak

8
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of nocturnal locomotor activity of Stenonema recorded over several 24-hr 

periods during various months in the laboratory (Grace 1990). Peaks were 

sharper and considerably abbreviated during the fall compared to summer, 

when nocturnal locomotor activity endured throughout most of the nighttime 

period. The model seeks to explain these differences in terms of a response to 

light stimulus.

4. Influence of the endogenous clock. Circadian clocks govern the daily biological 

rhythms of most organisms (Brady 1975, reviewed for insects by Page 1985). 

The circadian clock keeps time and regulates physiological processes on a 

cyclical basis. As a result of such regulation there is a sensitive period at a 

particular time of day during which the organism is in a heightened excitatory 

state, and this period occurs prior to the timing of the change in activity (Brady 

1975). Because circadian clocks are so common in insects (review by Page 

1985), and some species of mayflies have been shown to possess an 

endogenous circadian rhythm in one or more of their activities (Muller 1965, 

Chaston 1968, Elliot 1968), it is assumed that there is an endogenous 

component in the diel activity cycles examined here. Because the increase in 

locomotor activity takes place during evening twilight, the sensitive period is 

proposed to occur in the evening. Greater responsiveness to light at that time 

should translate into an earlier onset of heightened locomotor activity and larger 

changes in the magnitude and extent of the initial peak of heightened locomotor 

activity at any given rate of light change, than at other times of the day.

B. Predictions regarding vertical movements on the substrate in relation to 

light stimulus.

The timing when nymphs begin to leave the substrate undersides in relation to light 

stimulus should also be defined by a strength-duration curve, as is the timing of diel
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vertical migration of Daphnia magna (Ringelberg 1964). Evidence suggests that these 

movements are strictly phototactic (Elliot 1968, Grace 1990), and not governed by an 

internal rhythm; therefore, an influence of the endogenous clock on vertical movements 

between the substrates is not expected.

C. Predictions regarding the influence of adaptation light intensity on the 

response to light stimulus.

Based on observations that the timing of the activities of nocturnal organisms is 

advanced in lowered illumination (Edwards 1962, Dreisig 1975, 1980, Haney et al. 1983, 

Baldwin 1993), the model predicts that adaptation light intensity will influence the timing of 

heightened locomotor activity and migrations away from the lower substrate surfaces. 

Terrestrial examples include nocturnal moths that reacted more quickly to artificial light 

decrease when adapted to reduced light intensity than when adapted to high light intensity 

(Dreisig 1980), and other nocturnal moths that advance their flight times during cloudy 

skies, so that nocturnal moths may even fly during the day (Edwards 1962). In aquatic 

systems, invertebrate drift has been shown to begin earlier in artificially darkened sections 

of a stream than in unmanipulated sections (Haney et al. 1983, Baldwin 1993), indicating 

that the diel activity of stream insects is influenced by sky conditions.

D. Predictions regarding alterations in the light response in the presence of 

predators.

1. Day-active foragers. Because the diel activity pattern is assumed to have

evolved to reduce the risk of predation from visual predators (Allan 1978, Allan 

et al 1986), the amount of nocturnal locomotor activity under the rock should 

be greater in presence of day-active fish or fish odors than in the absence of fish 

or fish odors. The timing of movements away from the substrate undersides
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should take place later, because nymphs are predicted to move to the substrate 

uppersides at lower light intensities, to avoid exposure in light bright enough 

that visual foragers are still active. The latter prediction is based on drift studies 

in which aperiodic or weakly periodic drift in mayfly populations from naturally 

fishless streams became nocturnal in the presence of fish (Douglas et al. 1994, 

McIntosh and Townsend 1994), indicating that the presence of fish can modify 

the timing of diel activities in mayflies.

2. Night-active foragers. In the presence of night-active fish and invertebrate 

predators, the timing of heightened locomotor activity and movements to the 

upper substrate surfaces should not be altered, because there is no evidence that 

the timing of these activities evolved as avoidance strategies for night-active 

predators (Peckarsky and Cowan 1995). This prediction assumes that mayflies 

can distinguish between the odors of day-active and night-active fish, an 

assumption that has not yet been tested. The change in locomotor activity 

following the period of light decrease should be directly related to the activity of 

the predators, because mayflies have been shown to actively avoid predator 

encounters with stoneflies (Peckarsky 1980, Malmqvist and Sjostrom 1987, 

Peckarsky 1996), and benthic-foraging fish (Scrimgeour and Culp 1994).
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Chapter Overview

The chapters that follow describe a mechanistic study of the proximate cue, light 

stimulus, that has been proposed to be responsible for the observed diel behavioral cycles 

in stream invertebrates, using nymphs of the mayfly, Stenonema modestum, as the test 

species. The objective of the study was to test the predictions of the STAR model in a 

controlled laboratory environment that included artificial manipulations of the 24-hr 

light/dark cycle. Chapter One describes the various components of the system used in the 

model tests, including the computer-controlled artificial light system, the laboratory stream 

and the video-recording system. Validation that the expected changes in locomotor activity 

and vertical movements on the substrate actually take place in an artificial light environment 

is presented, thus providing the groundwork for the detailed tests of the STAR model in 

Chapter Two. Mathematical relationships between rate of light decrease and three of the 

activity response variables; timing of heightened locomotor activity, the difference between 

the “daytime” and “nighttime” levels of locomotor activity, and the timing of leaving the tile 

undersides, are presented in Chapter Two. Tests of STAR predictions regarding the 

influence of adaptation light intensity (cloudiness) and time of day (the endogenous clock) 

are discussed. Because both rate of light change and the length of time over which the light 

change takes place are important in eliciting a response (Fig. 2), a series of experiments for 

which light was decreased over abbreviated time intervals was performed in order to assess 

how rate of light change and duration of the light change interact to produce a response. 

Results from those tests are also presented in Chapter Two. The influence of some predator 

combinations; no predators, fish odor, stoneflies, and fish odor + stoneflies, on the light 

response of 5. modestum nymphs are reported in Chapter Three. Those experiments were 

carried out using artificial light/dark cycles for which the light changes occurred at the same 

rate. Therefore, direct comparisons of locomotor activity and position on the substrate 

could be made between predator treatments. Chapter Four presents a preliminary
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comparison of the light response of Stenonema in natural light/dark cycles with the light 

response in artificial light/dark cycles. Objects of the comparison were the mathematical 

relationships developed in Chapter Two and data collected during the tests of the Haney et 

al. model. The first step towards developing a comprehensive light-control model of diel 

changes in behavior was to correlate the timing and magnitude of the activity change with 

particular rates of light change (Chapter Two). The rate of light change during natural 

twilight is not constant, and the next step will be to predict activity changes under natural- 

light conditions. In Chapter Four, the feasibility of translating the light-stimulus/activity 

relationships developed at constant rates of light change into relationships applicable to light 

changes at variable rates is demonstrated. The closing discussion section considers the 

adaptive significance of a stimulus-based timing and activity response, and possible 

physiological pathways by which the response may function.
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Figure 1. Results from tests of the mechanisms by which Stenonema nymphs use light 
cues to initiate diel behavioral changes recorded as part of the study to test the Haney et al. 
(1983) model: (a) rate of light change at the moment nymphs became more active during 
evening twilight, and (b) the light intensity at the moment when nymphs began to move 
away from the tile undersides in the laboratory stream. The data recorded during evening 
twilight for three consecutive days during the months of May, Jun., Jul., Aug., and Sep. 
1987-88 were included in the summer estimates, and the months of Oct., Nov., Dec., and 
Feb. 1987 were included in the winter estimates (From Grace 1990). Data are mean ± SD.
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Figure 2. Comparison of locomotor activity (solid line) and the rate of light change (black 
bars) during the daytime and twilight period on May 7, 1988 recorded during tests of the 
model of Haney et al. (1983). Shaded areas represent some cloud events in the daytime 
period during which light decreased. The cloud event near 3:00 PM (solid area) elicited a 
significant (p < 0.05, ANOVA) increase in overall locomotor activity from an average of 
23 ± 2.4, % ± SD, to 40 ± 3.3, % ± SD of nymphs active, whereas the two other hi- 
lighted cloud events (hatched area and checkered area), did not. Each bar (solid black) 
represents the rate of light change during a 10-min interval; bars above die zero line 
represent periods when the light was increasing and bars below the zero line represent 
periods when the light was decreasing (light intensity is shown by the broken line). 
Horizontal bar at top delineates the twilight period. Time is reported in Eastern Standard 
Time (EST). Data are from Fig. 22, Grace 1990.
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CHAPTER I

THE USE OF AN ARTIFICIAL LIGHT SYSTEM TO ASSESS THE

INFLUENCE

OF RELATIVE LIG H T CHANGE ON DUEL ACTIVITY CYCLES OF

NYMPHS OF

THE MAYFLY, STENONEMA M ODESTUM :

PART 1. A TEST OF THE METHOD

Introduction

Mayfly nymphs exhibit diei periodicity in one or more behaviors, including 

locomotor activity (Elliott 1968, Kohler 1985, Grace 1990, McIntosh and Townsend 

1994), preference for an exposed or unexposed substrate surface (Elliott 1968, Allan et al., 

1986, Grace 1990, Kohler 1983, McIntosh and Townsend 1994, McIntosh and Peckarsky 

1996), feeding (Elliott 1968, Casey 1987, Glozier and Culp 1989, Wilzbach 1990, Cowan 

and Peckarsky 1994), and/or drift (Muller 1966, Elliott 1968, Waters 1972, reviewed by 

Brittain and Eikeland 1988). Selection pressures to avoid predation are the ultimate causes 

of many of these behaviors, which are considered to have adaptive significance (Sih 1980, 

reviewed by Dill 1987). There is strong evidence that the threat of predation from day- 

active visual-foraging fish has been a major influence in shaping mayfly diel periodicity 

(Allan et al. 1986, Flecker 1992, Malmqvist 1992, Forrester 1994, McIntosh and 

Townsend 1994, McIntosh and Peckarsky 1996).

This study investigates the proximate mechanisms or cues used by mayfly nymphs

to recognize when it is appropriate to switch between daytime and nighttime behavior and

thereby entrain the diel cycle on a daily basis. There is some evidence that diel rhythms in

mayfly locomotor activity and drift are endogenous, as they persist in continuous darkness
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(Muller 1965, Elliott 1968). It is well accepted that circadian rhythms are regulated by 

light-sensitive mechanisms and that the endogenous natural oscillation can be entrained to a 

periodic light signal with a 24 hr period (Bunning 1973, Moore-Ede et al. 1982, for insects 

reviewed by Page 1985, Rapp 1987).

Falling light levels at evening twilight have long been regarded as proximate cues 

for diel changes in the locomotor activity of terrestrial organisms, including birds (Daan 

and Aschoff 1975, Daan 1976), small mammals (Voute et al. 1974, Daan and Aschoff 

1975), primates (Kavanau and Peters 1976), and insects such as nocturnal moths (Persson 

1971, Dreisig 1980), mosquitoes (Nielsen and Nielsen 1962), chafer beetles (Evans and 

Gyrisco 1958), glowworms and fireflies (Dreisig 1975). Onsets of evening activity 

changes have been variously related to absolute light intensity (Dreisig 1980), seasonally 

variable light intensity (Nielsen and Nielsen 1962, Persson 1971, Daan and Aschoff 1975, 

Dreisig 1975), and light intensity together with the surpassing of a threshold, or minimum, 

rate of relative decrease in light intensity (Voute et al. 1974). At evening twilight, the rate 

of relative light decrease is a measure of how quickly the illumination level is falling over 

time. Properties of the 24-hour light/dark (LD) cycle that have been considered as 

proximate cues regulating the amount of dispersion or precision surrounding the onset of 

diel activity changes include the range of light intensities between daytime and nighttime, 

day length or ratio of light to dark period, and duration of twilight (Daan and Aschoff 1975, 

Dreisig 1975, 1980). These properties vary with season and latitude and are thought to be 

factors that determine the strength of the light cue. Stronger cues are associated with 

higher precision and weaker cues with higher dispersion of individual onsets around the 

group mean activity change (Daan and Aschoff 1975).

Attempts to identify the mechanism by which light controls substrate location 

preference and drift in mayflies indicated that both are responses to light intensity (Holt and 

Waters 1967, Elliott 1968, Bishop 1969, Chaston 1969, Haney etal. 1983, Glozier and 

Culp 1989, Grace 1990), but there is no accepted value for an absolute light-intensity
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threshold required to trigger these responses (Fig. 1). Laboratory and field manipulations 

of light intensity (Haney et al. 1983), light to dark ratio (Chaston 1968, Elliott 1968; 

Bishop 1969, Corkum 1978) and duration of daylight (Ciborowski 1979) also have not 

conclusively defined any single light parameter as the controlling mechanism, similar to the 

findings for terrestrial species.

In lakes and marine systems, diel vertical migration of zooplankton (DVM) is also 

an evolved predator-avoidance behavior timed to the 24-hr light/dark cycle (Neill 1990, 

Bollens and Frost 1991, Ringelberg 1991a, b. Forward and Rittschof 1993, but see Bayly 

(1986) for other views on the adaptive significance of DVM). Zooplankton swimming 

velocity and mayfly locomotor activity, and zooplankton vertical swimming direction and 

mayfly vertical position on the substrate, appear to have some similar adaptive 

consequences for each group. For example, vertical position in either the open water 

column in a lake or on the unexposed or exposed substrate surface in a stream incur 

differential risks of either being seen by a visual predator or detected by a non-visual 

predator. Food availability increases higher up in the water column in lakes and on 

exposed substrate tops in streams, linking food availability with greater risk of predation 

and with the necessity of locomotor movement in the direction of the food source, for both 

groups. Aspects of DVM, including the onset, swimming velocity and vertical swimming 

direction, have recently been related to relative decreases and increases in light intensity for 

two aquatic genera in the field, the water flea, Daphnia (Ringelberg 1991a) and the 

phantom midge, Chaoborus (Haney et al. 1990). Because diel behaviors in both stream 

and lake organisms are adaptive and have evolved around the same predictable 

environmental variable, the 24 hr light/dark cycle, it is reasonable to test relative light 

change as an external mechanism controlling those diel behaviors in mayflies which are 

analogous to diel behaviors in zooplankton.

Relative change in light intensity is defined as the rate at which the amount of light 

intensity varies over some time interval, usually measured in seconds or minutes. In
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general, relative changes in light intensity are largest after the sun has sunk below the 

horizon (Nielsen 1963, Dreisig 1980, Grace 1990, cf. Ringelberg etal. 1991a), whereas 

the changes in absolute light intensity are largest before the sun has sunk below the horizon 

(cf. Grace 1990, Ringelberg et al. 1991a). Sustained periods of large relative decreases in 

light intensity are unique to evening twilight (cf. Haney et a l  1983, Grace 1990, 

Ringelberg etal. 1991a), suggesting that activity changes that occur during twilight may be 

stimulated by the strength and/or duration of these large relative light decreases. Relative 

light change is a particularly attractive stimulus or response cue in aquatic systems because 

there are large variations in absolute light intensity within the water column in a lake or 

along a reach of stream, whereas the relative change in light is unaffected by the level of 

light intensity and is therefore consistent everywhere within the system (cf. Ringelberg 

1964, Haney etal. 1983).

Hypotheses regarding the influence of light on behavior can only be tested 

thoroughly under controlled light conditions. Natural light is not suitable for several 

reasons, mostly because relative light change cannot be controlled or manipulated. During 

twilight, rapid changes in the rate at which the light decreases make it difficult to correlate 

activity changes with any particular rate of light change (Grace 1990). Furthermore, 

relative light changes fluctuate when the sky is cloudy, resulting in higher variability in the 

response variables (Grace 1990).

I describe a method by which the effects of light, including relative light change and 

light intensity, on mayfly nymph behavior, can be tested in the laboratory. The method 

makes use of computer-controlled lamps, video-tape and image-processing technology.

The system was designed to test the effects of relative decreases in light on the timing and 

magnitude of heightened locomotor activity, and substrate preference of nymphs of the 

riffle-dwelling mayfly, Stenonema modestum. This chapter describes the feasibility of 

using the system to test the response of Stenonema nymphs to changes in light by 

describing a representative light manipulation experiment. I chose S. modestum because
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nymphs maintain diel cycles of both locomotor activity and location on the substrate 

(Haney and Grace 1988, Grace 1990), and can be found in the evening drift (Bishop 1969. 

Bishop and Hynes 1969, Kohler 1983, Krueger and Cook 1984, Forrester 1992), 

although they are not highly abundant in the drift. Using examples from field studies 

reported in the literature, I show why it is important to study behavior intensively at short 

time intervals during twilight before we can begin to understand the mechanism by which 

light controls diel behaviors.
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Figure 1. The range of light intensities associated with the onset of nocturnal increases in various mayfly 
activities as reported in the literature. Values reported in other units were converted to W cm'2 for 
comparison purposes (conversions used were taken from Wetzel 1983).
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Methods

Overview

Light-manipulation experiments were carried out in the Anadromous Fish and Aquatic 

Invertebrate Research Laboratory at the University of New Hampshire, in Durham. Two 

channels of a clear acrylic laboratory stream were used, each measuring 0.15 m wide x 

0.25 m high x 2.4 m long (Fig. 2). A tank located at the lower end of the stream was filled 

with well water that was recirculated at a rate of 5 cm-sec'1 (241 min'1) and aerated by 

flowing over upstream barriers (Fig. 2). Oxygen was measured at 8.63 mg I'1 ±0.39 SD 

(n = 280), an average saturation of 93% ± 4.0 SD. Water depth in the channels was 10 

cm. Water temperature was maintained at 18 ± 2.0 °C by the use of immersion coolers. 

Fish odor was added to the water from two common shiners (Notropis comutus) and two 

longnose dace (Rhinichthys cataractae) kept in the tank throughout the experimental period 

(fish density = 2.5 fish m'2). Measurements of the light responses of mayflies in the 

laboratory while in the presence of fish should be more applicable to the field than 

measurements in the absence of fish, because the majority of natural streams contain fish 

(Berra 1981) and fish are important in shaping mayfly activity patterns (Flecker 1992, 

Douglas et al. 1994, McIntosh and Townsend 1994). Fish water was used in the 

experiments to better approximate the natural conditions under which diel behaviors in 

mayflies have been consistently observed.

Substrate for the nymphs was one unglazed tile (dimensions 10 x 10 x 0.5 cm) placed 

in the center of each of the two channels. Tiles were raised 0.5 cm above the stream 

bottom by plastic spacers glued to each comer with silicon. The tile undersides were 

videotaped continuously by a black-and-white Daage Video Camera (Model 65) placed in 

the viewing area underneath the stream and connected to a time-lapse video recorder (Gyyr, 

Fig. 2). Recordings were made at a rate of one frame per second at a time compression of
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1:72. The camera is sensitive into the far infrared range (> 750 nm), allowing videotaping 

in the dark under the infrared illumination provided by an array of wide-angle GaAIAS 

infrared emitting diodes (LEDs, average power of 20 mW at peak wavelength ± 50%, 940 

± 20 nm). Insects reportedly are not sensitive to infrared light (Heise, 1992).

The stream was completely enclosed in black plastic to ensure that light came only 

from the halogen lamps located directly above the tiles (Fig. 2; see description of the light 

source below.). Light intensity was manipulated between 7.9 x 10“* W cm'2 and 1.3 x 10'7 

W cm'2. The high value is comparable to local noontime incident light intensity in July and 

the low value occurs about 30 minutes after the period of largest light changes during local 

twilight (unpubl. data). The low value was chosen because it was lower than values 

associated with changes in Stenonema locomotor activity and vertical movements between 

the substrates (Grace 1990), but also high enough to be measurable with the light meter and 

maintained at a steady intensity by the lamps for long periods of time. The low value is 

below light intensities at which nymphs became active and left the tile undersides under 

natural light conditions in an earlier study (Grace 1990). This ensures that if minimum 

light intensity is a factor controlling behavioral periodicity, the minimum light-intensity 

threshold would be attained.

Handling o f  Experimental Animals

Stenonema modestum nymphs (excluding last instars), were collected from the 

Oyster River, a permanent 3rd order stream in Durham, NH. The fish were collected from 

the same reach. The collection site is a 30 m riffle directly below a dam. Natural substrates 

consist of granite bedrock and various-sized boulders and small pebbles. The river channel 

is approximately 5 m wide and 6-20 cm deep. Current velocity is highly variable during 

the summer months, depending on daily rainfall, and ranges typically from < 10 to > 30 cm 

sec'1. A survey of benthic invertebrates in the Oyster River (Hooker et al., 1996) showed
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that the density of Ephemeroptera exceeded 2000 individuals m \ of which S. modestum 

were the most abundant. Reaches such as this are very typical of coastal New England 

rivers.

Six nymphs were placed on each tile at a density equivalent to that on comparable

sized rocks in the river. To avoid unknown effects of light history on their behavior, 

nymphs were collected every day and used once. Periphyton was provided at natural levels 

on pebbles (2-4 cm diam.) obtained from the Oyster River and placed on top of the tiles. In 

earlier experiments, video-recordings of the upper tile surfaces showed nymphs 

continuously grazing upon these periphyton-covered pebbles (Grace 1990), indicating that 

the food was adequate. The level of food was not controlled. Activity of several species of 

mayflies kept on natural or artificial substrates in the laboratory has been shown to be 

strongly regulated by light regardless of whether supplemental food was provided (Bishop 

1969, Ciborowski 1979, Grace 1990) or not (Chaston 1968, 1969, Elliott 1968). There is 

evidence that mayflies do not alter their diel patterns of vertical movements in relation to 

food abundance (Glozier and Culp 1989).
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Figure 2. Schematic diagram of the laboratory stream showing the location of the overhead 
halogen lamps in relation to the tile substrates and the light sensor. The diagram shows one 
of the two stream channels used. One unglazed tile (dimensions 10 x 10 x 0.5 cm) was 
placed underneath the lamps in each of the two stream channels as illustrated.
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Light Control and Light Monitoring System s

Illumination was provided by four FCL 500 W tungsten halogen lamps (horizontal

beam angle = 50°; field angle = 70°; vertical beam angle = 65° of field angle) housed in 

a 4-cell ground eye compartmented multi-circuit luminaire (Altman Stage Lighting Co.) and 

covered with blue filters that simulate daytime distribution of wavelengths. Drop-off of 

light intensity with distance from the lamps was measured (Fig. 3). Drop-off was not 

considered a problem because the substrates provided for the mayflies were placed directly 

beneath the lamps where light was the brightest, and the distance from the tiles to the area 

where the light became considerably reduced was about 60 cm (Fig. 3), a distance 

considered longer than that generally traveled by S. modestum nymphs in bright light in 

this stream (Grace 1990). Light values across the channels were within < 1% of each 

other.

The lamps were powered by passing a signal once every second from a Zenith 

80/86 PC computer to a Leprecon LD-360 dimmer pack (CAE, Inc.). Signals were 

generated through the QBASIC (Microsoft) programming language and ranged by whole 

numbers from 4095 (maximum voltage, approximately 10 volts) to 0 (no voltage). The 

lamps were calibrated by measuring the light intensity associated with each whole number 

signal and the calibration data were stored on disk. The light intensity values needed to 

generate the desired light curve, in this case a constant rate of change over the entire light- 

change period, were determined as:

where /  = the target light intensity, 1 ^  = the beginning light intensity, S = the 

desired rate of light change per second (light stimulus), and At = total elapsed time in s 

(derived from Ringelberg 1964). The whole number signal most closely associated with
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each target light value was obtained from the stored calibration data and the whole number 

signals were saved on disk. It was necessary to perform these calculations because the 

relationship between voltage (represented by the whole numbers) and light-intensity was 

not linear throughout the entire range. The resulting file of whole number signals was then 

used by the QBASIC program to control the lamps. To account for differences in actual 

lamp output due to aging and use, I calibrated the lamps once a week and regenerated the 

whole number file when necessary.

Ambient light conditions were monitored using an International Light radiometer 

(Model IL-1700) and sensor (SED033) with a 2-pi collector corrected for cosine response. 

The light sensor was placed facing upwards 10-cm above the water surface adjacent to the 

tiles in one channel of the laboratory stream (Fig. 2). Light intensity was sampled every 

second and mean values for every minute were saved on disk.
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Figure 3. Longitudinal distribution of light intensity (I) upstream and downstream from the 
four 500-W halogen lamp light source. The tiles measured 10 cm across and were placed 
on the stream bed directly underneath the lamps as shown in Fig. 2. The shaded area 
represents the location of each tile in relation to the longitudinal distribution of light in the 
stream.
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Experimental Protocol

An artificial light/dark cycle was generated by manipulating light through four 

phases (Fig. 4): (1) an adaptation period at the brightest light intensity (BRTTE) of at least 

60 min, (2) a period of light decrease (DECRS) at a constant rate of light change, (3) a 60- 

min dim-light adaptation period (DARK), and (4) a period of light increase (INCRS) at the 

same, but opposite rate of light change as used to decrease the light. The length of the 

DECRS and INCRS phases were 76 min each.

Constant rates of light change were used to examine the effects of a particular rate 

of light change on the timing and magnitude of heightened nymph activity. This was the 

first step in studying the response of nymphs to the changing relative decreases in light 

typical of natural twilight. The applied rate for the initial test described here was ± 1.9 x 

10'3 sec This value is larger than the 1.7 x 10‘3 sec *' “Ringelberg stimulus value” 

estimated by Ringelberg (1964) and Ringelberg etal. (1991a) as the strength of the light 

stimulus below which no phototactic swimming reaction took place in Daphnia, and used 

as a target threshold for diel changes in the activity of mayflies by other researchers (Haney 

et al. 1990, Grace 1990, Baldwin 1993). I used a larger value to increase the probability of 

a strong nymph response without also applying an unnaturally large rate of light change. 

The time required to complete the light decrease at this particular rate, 76 min, is a 

reasonable representation of the temporal duration of twilight in New Hampshire.
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Figure 4. Light intensity and rate of light change (light stimulus) for one experiment From left to right, 
the time-series represents the 60-min bright-adaptation phase (BRITE), the light decrease phase 
(DECRS), the 60-min dim-adaptation phase (DARK) and the light increase phase (INCRS). Light was 
decreased and increased at a constant rate of ± 1,9 x 10'3 sec The time required to complete the light 
reduction (DECRS) and light increase (INCRS) phases was 76 minutes each.
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Data Analysis

There are no universally accepted methods for quantifying activity of organisms in 

time and space. Locomotor activity of mayfly nymphs has been measured by direct 

observation (Elliott 1968, Allan et al. 1986) or by time-lapse recording (Wiley and Kohler 

1981, Soluk and Collins 1988b, Grace 1990, Wilzbach 1990, McIntosh and Townsend 

1994). Activity has been estimated as number of animals moving within some minimal 

time interval, such as 10 s (Elliott 1968, Allan et al. 1986), or 30 s (Wilzbach et al. 1990), 

and then aggregated into larger time intervals, generally of 10 min. Activity has also been 

estimated as distance moved during a particular time interval, either as number of body 

lengths (Wiley and Kohler 1981, Soluk and Collins 1988b) or movements between patches 

of a common size (McIntosh and Townsend 1994).

I measured locomotor activity as the distance a nymph moved during 30 s intervals 

using computer-aided image-processing software (NIH-Image 1996, vl.60; the macro

language code is written out in Appendix B). Video frames were captured every 30 s and 

saved on disk. I chose the 30 s time interval because it was the longest interval over which 

the movements of individual mayflies on the tiles could be readily distinguished and 

allowed nymphs to be tracked by hand. In each frame, the position of every nymph was 

recorded as an x-y coordinate. The distance moved by each nymph was then calculated as 

the straight-line distance between x-y coordinates on every two successive frames. When a 

nymph left the tile (i.e., was visible on one frame and not on the next), the distance moved 

was determined as the shortest distance to the edge of the tile. Conversely, when a nymph 

moved onto the tile underside (i.e., was not visible on one frame and appeared on the 

next), the distance moved was determined as the shortest distance in from the edge of the 

tile. Although this approach would tend to underestimate the distance moved when 

nymphs left or returned to the tile undersides, a preliminary comparison of data collected 

from 1-min, 30 s and 20 s snapshots showed no appreciable difference in total nymph
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activity over the time-series, indicating that the activity measured at 30 s intervals was 

representative of the true nymph activity.

Time-series of the average nymph activity were constructed for each experiment by 

combining the individual 30 s data into 1-minute snapshots and then calculating the 1- 

minute averages as:

i  «i>
i = 1

nj (2)

where d.i = total distance in mm moved by each nymph during the 1-min interval j, 

and rij = number of nymphs visible during time interval j . Data were collected at 30 s 

intervals only to simplify the tracking of individuals. Because the response time of the 

nymphs to changes in light was expected to be > 10 min (Grace 1990), 1-minute intervals 

were considered as sufficient to detect activity changes and also adequately measure light 

changes.
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Results

Response o f  Stenonema  to an Artificial Light/Dark Cycle

Reduction in artificial light at a constant rate from a high noontime intensity to 

darkness was accompanied by the expected changes in nymph locomotor activity and 

location on the substrate (Fig. 5). Activity was lowest during the BRITH adaptation phase, 

then began to increase well before dark, within 15-30 minutes of the onset of the light 

reduction (DECRS phase), supporting the hypothesis that the mechanism of control is not 

simply the onset of darkness. The activity increase was not instantaneous, but continued 

over a period of about 45 min. Nymphs began to leave the lower tile surfaces within 40-50 

min of the onset of light decrease and continued to leave through the first half of the DARK 

phase. The number of nymphs visible on the lower tile surfaces ranged between a high of 

12 to a low of 6 (Fig. 5). Overall, activity was higher during the DARK phase than during 

the BRITE phase (Table I), and the heightened activity persisted during the first half of the 

light increase (INCRS) phase (Fig. 5). Activity decreased about 30 min following the 

onset of the light increase to an average of 2.7 mm nymph'1 min'1 ± 0.3 SE (n = 45,

Fig. 5).

TABLE I. Mean activity during each of the four light phases of the
artificial light/dark cycle. Different letters represent values 
significantly different from each other (a  = 0.05, Tukey- 
Kramer (HSD) multiple comparisons test*)._______________

Light phase

Activity 
(mm nymph'1 min'1 

x  ± 1 SE) n
BRITE 1.8 ± 0.2 a 60
DECRS 4.4 ± 0.4 b 76
DARK 6.9 ± 0.5 c 60
INCRS 4.3 ± 0.5 b 76
“Tukey-Kramer test performed on normalized data.
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Figure 5. Locomotor activity (white area) and number of nymphs visible on the tile undersides (—) 
during the light manipulation plotted in Figure 4. Locomotor activity for each I-min time interval 
represents the average distance moved per nymph. Activity is defined as: [( total distance (mm) moved 
by all nymphs) /  number of nymphs visible during the time interval]. From left to right the time-series is 
as in Fig. 4. Data were recorded on July 16, 1995. Light reduction began at 10 AM Eastern Standard 
Time, and the applied rate of light change was ± 1.9 x 10'3 sec The time required to complete the light 
reduction (DECRS) and light increase (INCRS) phases was 76 minutes each.
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Differences in activity between the four light phases were tested for significance. 

Because the variability appeared to be larger once locomotor activity increased, the O’Brien 

test for equal variances was performed. Variances were not equal (p < 0.02, F3270 = 3.3; 

due to a smaller variance around the BRlTE-adaptation mean compared to the other three 

light phases). The Welch ANOVA test for unequal variances was used to test for 

differences in the average locomotor activity between light phases. There was a significant 

difference in the mean locomotor activity between the four light phases (p < 0 .0001,

F3140 = 44.5). Variances were normalized and means compared using the Tukey-Kramer 

(HSD) multiple comparisons test (Table I). Significant differences in activity between light 

phases that were adjacent in time indicate that the artificial light/dark cycle strongly 

influenced the amount of nymph activity (Table I).

Response o f  Stenonema to Natural Tw ilight.

I compared the results of the artificial light test to an earlier recording of Stenonema taken in 

natural light (Fig. 6). The increase in activity and reduction of nymphs on the tile 

undersides over a period of 30 - 60 min while light was decreasing were consistent in both 

situations. Locomotor activity, averaged over the first and last hours shown (an hour 

beginning 30 min before sunset and an hour beginning 30 min after sunset, Fig. 6), was 

used as an estimate of activity in natural light. The pre-sunset average distance moved per 

nymph was 4.0 mm min'1 ± 0.2 SE (n = 60), and post-sunset, the distance moved per 

nymph rose to an average of 14.4 ± 0.7, mm min'1 ± SE (n = 60).

Response to the light change was larger in natural light than in artificial light 

(activity increased by an average of 10.4 mm nymph'1 min'1 in natural light and 5.1 mm 

nymph'1 min'1 in artificial light). The larger response in natural light supports the 

hypothesis that the change in activity is proportional to the strength of the light stimulus, 

because the stimulus (defined as the rate of relative light change) was bigger, and therefore 

stronger, in natural light than in the artificial light test (Figs. 4 ,6). The larger response in

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



natural light also supports the presence of an endogenous clock, because the larger 

response in natural light corresponded with the time when nymphs would be in a higher 

excitatory state and expected to react more strongly to light stimulus (Brady 1975), whereas 

the smaller response in artificial light took place in the morning, when nymphs would be in 

a lower excitatory state.

The overall amount of activity prior to the light decrease was significantly higher in 

natural light than in the artificial light test (pre-sunset vs. BRITE period; p < 0.0001,

Ft 1,3 = 54.7 by ANOVA). This difference between the activity during the natural and 

artificial light tests may be due to several factors, one of which was that temperature was 

not controlled during the natural-light test and averaged 27°C, compared to 18°C in the 

artificial light test. Despite differences in temperature, year (1988 vs. 1995), time of day 

(evening twilight vs. morning), size of substrate (5 x 5 cm vs. 10 x 10 cm), and source of 

the water (Oyster River water vs. well water plus fish odor), the time-course of activity 

changes in relation to falling light levels are so similar, that it is likely that light has a major 

influence on mayfly activity.
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Figure 6. Time-series of locomotor activity (white area) and number of nymphs visible on the tile undersides
(__ ) in the laboratory stream during natural twilight. Data were recorded on Aug. 4, 1988 (cf. Grace 1990).
Light was measured at 10 min intervals, but the nymph data were re-analyzed at 1-min intervals for 
comparison with the data recorded in artificial light. Top panel) light intensity and relative light change 
beginning 90 min before sunset, Eastern Standard Time (Old Farmer’s Almanac, 1988). Bottom panel) 
locomotor activity and number of nymphs visible on the underside of the tiles. Sunset is marked by the arrow.
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Responses o f  Individuals to the Artificial Light/Dark Cycle

As an initial step to understanding individual responses to light, I plotted the activity 

•of each nymph during the BRITE and the DECRS phases. Individual behavior appeared to 

fall into three distinct types based on the activity during the BRITE phase (Fig. 7).

A nymph was classified as “non day-active” when the average activity was < 6 mm min'1 

(Fig. 7, 1-7); as “day-active” when average activity was > 6 mm min'1 (Fig. 7, 8-10); and 

as “other” for various reasons, the most common being either the nymph was not visible on 

the lower tile surface at all during the BRITE phase, or the nymph was visible during some 

portion of the BRITE phase, but left before the application of the light decrease (Fig. 7, 11- 

12). I chose 6 mm as the cutoff distance because that was the average body length of the 

test nymphs (± 0.5 mm, 1 SD) and movement of at least one body-length has often been 

used as a measure of mayfly activity.

Most of the non day-active nymphs appeared to respond to the light decrease by 

increasing their activity above the daytime level (Fig. 7, nos. 1-5). Activity of some day- 

active nymphs oscillated between activity and no activity (Fig. 7, nos. 9,10), suggesting 

that in the absence of light-cues there may be some rhythmicity in the level of activity.

Some nymphs did not appear to respond to the light decrease (Fig. 7, no. 8), or did not 

respond strongly (Fig. 7, nos. 6,7).

Sizes of nymphs in the non day-active category were compared to the day-active and 

“other” categories to test if size was a factor in the amount of daytime activity expressed by 

the nymphs. The mean length of the non day-active nymphs was 6.4 mm ± 0.3 SE (n = 7) 

and the day-active and “other” nymphs combined was 6.5 mm ± 0.5 SE (n = 5). The 

difference was not significant by ANOVA (p = 0.6, F, 10= 0.4).
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Figure 7. Time-series of the activity of the twelve individual nymphs by type (see text for description of 
types) measured as distance moved during 1-min time intervals. Breaks in the data along the x-axis 
represent times when a nymph was not visible underneath the tile. Data for all nymphs, non day-active 
(n=7), day-active (n=3), and “other” (n=2), were combined to create the time-series shown in Figure 5. 
From left to right this time-series represents the bright-adaptation (BRITE) and the light decrease 
(DECRS) phases of the artificial light/dark cycle. Once nymphs began to move frequently between the 
under and upper tile surfaces in response to falling light levels, it was not possible to distinguish if an 
individual that had left was the same individual that later returned. Therefore, traces of individuals are 
limited to the BRITE and DECRS phases. The onset of the light decrease is marked by the vertical dotted 
line.
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Discussion

It has been observed that many species of stream invertebrates exhibit diel 

periodicity in some of their behaviors, be it substrate preference (Elliott 1968, Kohler 

1983), feeding (Casey 1987, Glozier and Culp 1989, Wilzbach 1990, Cowan and 

Peckarsky 1994), locomotor activity or drift (reviewed by Brittain and Eikeland 1988). 

These diel cycles are ecologically important as they often represent evolutionary trade-offs 

between obtaining food and avoiding predators (Dill 1987, Kohler and McPeek 1989, Culp 

et al. 1991, Scrimgeour and Culp 1994a, b).

Light is generally acknowledged as the most important proximal environmental 

factor that controls diel cycles. Data presented here suggest that activity and positioning 

changes occur just after sunset, so are stimulated by some aspect of light that is unique to 

twilight. I propose that it is the sustained, large relative light decreases that are the most 

significant aspect of the twilight stimulus, as has been suggested for other aquatic species 

(Ringelberg 1964, 1991b, Buchanan and Haney 1980, Steams and Forward 1984, Haney 

etal. 1990).

There are a few studies in which nymph behavior has been systematically observed 

in the field without disturbance, and these studies are supportive of the idea that the twilight 

period is the critical time when diel changes in behavior commence (Kohler 1983, Allan et 

al. 1986, Casey 1987, Wilzbach 1990). Most studies report hourly observations, but some 

consistencies are apparent. The largest changes in benthic density on stone tops and drift 

of Baetis in a Maryland stream (Wilzbach 1990), in activity of Baetis and Cinygmula 

nymphs on stone tops in a Colorado stream (Allan et al. 1986), and in drift of Baetis, 

Paraleptophlebia and Ephemerella spp. in a Michigan stream (Kohler 1983) all occurred 

between the two hourly observations bounding sunset. My own study in the Oyster River 

recorded the appearance of Stenonema nymphs on the uppersides of artificial substrates in
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conjunction with recordings in the laboratory of nymphs underneath similar substrates. 

Position changes from the lower to upper surfaces in the two systems began around sunset 

(Grace 1990). Only Casey (1987) reported diel changes in location on the substrate of 

several species of mayflies that began more than a half-hour post-sunset in an Alberta 

stream. If relative changes in light are an important cue, then Casey’s data may have been 

confounded by overcast skies, as he reported > 50% cloud cover on each collection date. 

The majority of these studies suggest that twilight is a critical time in the onset of diel 

changes in behavior. Haney et al. (1983) measured drift in a New Hampshire stream at 5- 

minute intervals and demonstrated that the onset of evening drift took place during the 

period of most rapid relative changes in light intensity near sunset. Additional observations 

at shorter time intervals during the twilight period would more clearly define the moment 

when behavioral changes occur and lead to a better understanding of the relationship 

between light changes at twilight and diel changes in behavior.

If diel cycles were fixed, there would be no further purpose in studying them 

beyond a determination of where and for whom they exist. Because animal behavior is not 

fixed, but plastic, there arises opportunity for a whole array of behavioral possibilities 

(Kohler and McPeek 1989, Culp et al. 1991, Culp and Scrimgeour 1993, McIntosh and 

Peckarsky 1994, Peckarsky 1996) not attainable in a population that acts in complete 

synchrony. The advantages of plasticity are obvious, for as environmental conditions 

change, animals that can react favorably have the best chance of survival. The different 

behaviors recorded for individual nymphs from the same population support the presence 

of plasticity in mayfly behavior. Daan and Ringelberg (1969) also reported differences in 

the swimming behavior of Daphnia magna in the absence of light cues. Daphnids were 

described as either rhythmic or non-rhythmic based on the amount of vertical displacement 

in constant light. Clones of daphnids have been observed to be both rhythmic and non

rhythmic, indicating that the presence or absence of rhythmicity is not fixed within an
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individual (Ringelberg, pers. comm.)- In mayflies, it is not presently known how 

differences in daytime activity or responsiveness to light cues affect individual fitness.

Well-designed laboratory experiments can be reveal patterns relevant to the natural 

environment. Assessing the role of light in the diel activity of mayfly nymphs and other 

lotic invertebrates in the field under natural light conditions is not currently practical. To 

fully understand proximate mechanisms behind diel behaviors, we must first understand 

how individuals recognize an environmental cue. My results indicate that light is important 

in regulating diel periodicity of mayfly nymph behavior, and show an encouraging 

consistency to nymph behavior in natural situations. Additional studies describe linear 

relationships between the rate of light change and the timing and magnitude of the 

heightened locomotor activity (Chapter Two) and the modification of the light response 

under different predator treatments (Chapter Three).
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CHAPTER H

THE USE OF AN ARTIFICIAL LIGHT SYSTEM TO ASSESS THE

INFLUENCE

OF RELATIVE LIGHT CHANGE IN DIEL ACTIVITY CYCLES OF

NYMPHS

OF THE MAYFLY, STENONEMA MODESTUM :

PART 2. TEST OF A MODEL 

Introduction

Diel periodicity in locomotor activity, vertical location on the substrate and drift of 

stream invertebrates, in particular, mayfly nymphs, is well documented (Elliott 1968, 

reviews by Waters 1972, Brittain and Eikeland 1988). The 24-hr light/dark cycle is 

recognized as a strong environmental driver of diel behavioral cycles, most of which result 

from complex couplings between a photoreceptor organ and a circadian oscillator (reviewed 

for insects by Pener 1985). Light plays a crucial role in regulating the physiological 

processes that lead to cyclic behaviors such as locomotion and feeding (Beck 1980, Jones 

1982, Powers and Barlow 1985, Lee et al. 1996, Myers et al. 1996).

Circadian behavioral cycles in nocturnal animals are known to be connected with 

twilight (Nielsen and Nielsen 1962, Daan and Aschoff 1975, Daan 1976). The onset of 

nocturnal activity in birds, mammals and moths has been related to illumination level; 

variations in both the timing and in the amount of dispersion around the mean onset have 

been attributed to the ratio of light to darkness (reviewed by Page 1985 for insects), the
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level of illumination during the light and dark periods, and the duration of twilight (Aschoff 

1969, Daan and Aschoff 1975, Dreisig 1980). Regulation of the diel activity cycles of 

stream insects has not been thoroughly tested and it is not clear which aspects of light that 

stream insects use as their cue to initiate changes in behavior.

Early researchers of mayfly drift periodicity tested for a minimum absolute light- 

intensity threshold that signaled when it was appropriate to enter the drift. For many 

reasons, including seasonal differences between studies and widespread heterogeneity in 

the light environment between streams and within the same stream, there has been no 

consensus on a threshold value required to initiate evening drift (Holt and Waters 1967, 

Elliott 1968, Bishop 1969, Chaston 1969, Haney etal. 1983). Elliott (1968) hypothesized 

that drift was preceded by diel changes in two other behaviors; in particular, an endogenous 

cycle of locomotor activity combined with release of negative-phototaxis at a minimum light 

intensity. Elliott’s model was modified and successfully field-tested by Haney et al.

(1983), who proposed a photokinetic-phototactic (PK-PT) model. Their model predicts the 

timing of evening drift based on two mayfly responses to the light environment during 

evening twilight: ( 1) diel increase in locomotor activity (the photokinetic activity) following 

the surpassing of a threshold rate of relative light change and (2) the subsequent vertical 

movement to the upper substrate surfaces (the phototactic activity) at a minimum light 

intensity threshold. Relative light change is defined as the rate at which light intensity 

changes over time. The term is most often used in the context of changes in light intensity 

that occur during twilight. At evening twilight, changes in absolute light intensity are 

largest before sunset, but the rates of relative light change are smallest; whereas after 

sunset, changes in absolute light intensity are small, but the rates of relative light change are 

large. Relative light changes are therefore a measure of the rate at which light is changing 

and are independent of absolute light intensity (Ringelberg 1964, Haney et al. 1983, 

Ringelberg 1991b, Ringelberg etal. 1991a).
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The rate of relative light change used as the threshold value by Haney et al. was the 

same value previously determined as a releasing stimulus for the onset of diel vertical 

migration (DVM) in the water flea, Daphnia (Ringelberg 1964). Their data, collected 

during manipulations of light intensity in two sections of a stream, indicated that the length 

of time drift was delayed following the threshold rate of light change was linearly related to 

the light intensity at the time the threshold occurred. Thus, drift began only during the 

most rapid light decreases during twilight (i.e., only after the threshold rate of light 

decrease had occurred), and began earlier in the darkened section of the stream than in the 

unmanipulated section. Despite the predictive power of the PK-PT model, there was no 

direct evidence that the sequence of events proposed in the PK-PT model actually took 

place in the benthos.

Tests of the predictions of the PK-PT model made in previous studies in the 

laboratory with the riffle-dwelling mayfly, Stenonema modestum indicated a strong 

influence of relative light change on locomotor activity (Grace 1990). Changes in 

locomotor activity at times other than twilight occurred when large increases in cloud cover 

darkened the sky over periods of twenty minutes or longer. The data suggested that 

relative light changes regulated the amount of locomotor activity rather than merely 

triggering an all-or-nothing response at twilight by the surpassing of a threshold rate of 

light change. Vertical movements to the upper substrate surfaces appeared to be 

independent of heightened evening locomotor activity, and so the temporal PK-PT 

sequence of events was not supported. Based on those observations, I propose a new 

light-control model for diel changes in mayfly locomotor activity and vertical movements 

between the substrates.

The Stimulus-based Timing and Activity-Rate Model (STAR) seeks to explain some 

components of nocturnal locomotor activity in mayfly nymphs: timing, magnitude and 

time-course of the initial peak of heightened locomotor activity. Differences in the 

expression of each component represent tradeoffs between minimizing energy costs,
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minimizing predation risks and taking advantage of maximum food availability (Allan et al. 

1986, Kohler 1985, Kohler and McPeek 1989, Soluk 1993, Scrimgeour and Culp 1994a, 

1994b, Palmer 1995, McIntosh and Peckarsky 1996). For example, nymphs that begin to 

move about later may reduce the risk of predation but also may reduce the opportunity of 

obtaining food than nymphs that begin to move about earlier.

The basis of the STAR model is that an adequate light stimulus produces changes in 

locomotor activity. The definition of light stimulus as used here is the rate of relative light 

change described by Ringelberg (1964). An adequate light stimulus is one that is large 

enough, or above the threshold necessary to evoke a response in the organism (Ringelberg 

1964). The timing and magnitude of nocturnal locomotor activity are determined during 

periods of light decrease by the combined effects of stimulus strength (measured as the rate 

at which light change takes place) and length of time over which the light decrease takes 

place. (Daytime locomotor activity is similarly determined during periods of light 

increase). The difference between the levels of daytime and nighttime activity should be 

proportional to the strength of the stimulus (e.g., the difference between daytime and 

nighttime locomotor activity should be larger when the rate of light decrease is larger and 

vice-versa), whereas the duration, or time-course, of the initial peak of heightened 

nocturnal activity should be inversely related to stimulus strength (e.g., the duration of the 

initial peak should be shorter when the rate of light decrease is larger and vice-versa).

These predictions are based on observations of seasonal changes in the nocturnal locomotor 

activity of mayflies (Holt and Waters 1967, Chaston 1968, 1969, Elliott 1968, Grace 

1990) that might correspond with the length of the twilight period and the strength of the 

stimulus during the twilight period. For example, in New Hampshire, the extended 

twilight periods of summer (weaker stimuli) correspond with long-lasting heightened 

nocturnal activity whereas the shorter twilight periods of fall (stronger stimuli) correspond 

with an initial sharp activity peak that decays more quickly (Grace 1990).
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The model assumes that animals do not respond immediately to light stimulus, and 

predicts that there should be a latent period between the time when adequate decreases in 

light begin and the onset of nocturnal locomotor activity (Ringelberg 1964, Dreisig 1975, 

1980). The length of the latent period should also be proportional to the strength of the 

light stimulus (Ringelberg 1964).

Although relative light change is considered to be the most important control of diel 

changes in locomotor activity, absolute light intensity has been shown to influence the 

timing of diel behaviors (Daan and Ringelberg 1969, Dreisig 1975, 1980, Haney et al. 

1983). Nocturnal moths reacted more quickly to light decrease when adapted to reduced 

light intensity than when adapted to high light intensity (Dreisig 1980). Cloudiness, and 

thus lowered light intensity, is known to advance the flight times of some species of moths, 

so that typically nocturnal moths may even fly on cloudy days (Edwards 1962).

Invertebrate drift has also been shown to begin earlier in artificially darkened sections of a 

stream than in unmanipulated sections, locally (Haney et al. 1983), and in a subarctic 

stream (Baldwin 1993). These observations suggest that ambient light intensity, which 

changes depending on sky conditions, affects the timing of the onset of nocturnal activities 

in aquatic as well as in terrestrial organisms.

An important assumption of STAR is that mayflies respond to light stimulus 

regardless of when it may occur in the 24 hr period. Striking variations in locomotor 

activity are not usually observed outside of the twilight periods only because relative 

changes in light are not normally of sufficient strength or duration to elicit such differences. 

This is not in conflict with the known endogenous component of the expressed locomotor 

activity cycle (as shown by diel activity cycles in mayflies kept in continuous darkness by 

Muller 1965 and Elliott 1968), but indicates that animals will be in a higher excitatory state 

near natural twilight (Brady 1975). The higher excitatory state should be expressed by a 

shorter latent period and greater increase in heightened locomotor activity in the evening 

than at other times of the day.
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Diel vertical movements between substrates appear to be phototactic in some mayfly 

species (Elliott 1968, Casey 1987, Glozier and Culp 1989, McIntosh and Peckarsky 

1996), including Stenonema (Grace 1990). These vertical movements are likely a response 

to the surpassing of a minimum threshold rate of relative light change similar to that 

initiating the phototactic swimming response of Daphnia (Ringelberg 1964). With 

decreasing light the probability of an individual leaving the underside of the substrate is 

predicted to be proportional to the strength of the light stimulus. This prediction implies 

that vertical movements will be more synchronous at larger rates of light change and more 

disperse at smaller rates.

This chapter reports results of tests of the STAR model on Stenonema mayflies 

using the laboratory stream and system for generating artificial light/dark cycles described 

in Chapter One. These tests represent a first step toward determining the proximate cues 

that control diel behaviors of mayfly nymphs. Understanding the cues that lead to 

particular behaviors will lend insight into the mechanism of control, and help to assess how 

environmental conditions, such as predator assemblages and changes in the patterns of 

cloud cover (Houghton et al., 1995), may alter the response. Because information gained 

from studying stream invertebrates may be appropriate to diel cycles of aquatic organisms 

in general, such insights may be crucial to long-term management and protection of aquatic 

resources.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Methods

Detailed descriptions of the laboratory stream, artificial light system, and methods 

used to measure locomotor activity are given in Chapter One. Analyses pertaining to tests 

of the STAR model along with brief overviews of the methods are presented here.

Overview

Mayfly nymphs (Stenonema modestum Banks) were taken daily, avoiding last 

instars, from the Oyster River, in Durham, NH, during the summer of 1995, and from 

both the Oyster River and a nearby stream, the Bellamy River, in Madbury, NH, in 1996. 

Collection was expanded in 1996 to include the Bellamy River because large numbers of 

nymphs were needed and the population in the Oyster River was relatively small. Earlier 

tests of the photokinetic-phototactic activity (PK-PT) model of Haney et al. (1983) included 

nymphs from both rivers and there were no observable differences in behaviors between 

the two populations (Grace 1990). Both collection sites are riffles directly below dams in 

permanent 3rd order streams. The Oyster River channel is approximately 5 m wide and 6- 

20 cm deep, whereas the Bellamy River channel is about 8 m wide and 2-10 cm deep. 

Current velocities in both rivers are highly variable and reliant on daily rainfall during the 

summer months, typically ranging from < 10 to > 30 cm sec'1.

Experiments were carried out in two channels of a clear acrylic laboratory stream 

(dimensions 0.15 m wide x 2.4 m long). The channels were filled to a depth of 10 cm with 

well water (18 ± 2.0 °C ± SD; 0 2 saturation = 93 ± 4, % ± SD) that was continuously 

filtered (150-jim net) and recirculated from a tank located at the lower end of the stream at a 

flow rate of 5 cm sec'1. Two shiners (Notropis comutus) and two longnose dace 

(Rhinichthys cataractae) taken from the Oyster River were kept in the tank throughout the
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experimental period and provided fish odor to the water (fish density = 2.5 fish m'2). Two- 

thirds of the volume of water in the tank was replaced with fresh water every week. Fish 

water was used in all tests of the model because the diel behaviors are considered to be an 

evolved response to day-active visual fish predators (Allan etal. 1986, Flecker 1992); 

therefore the model results should be more readily applicable to the field if fish were 

present during the tests than if fish were absent. Also, fish water has been shown to 

enhance the phototactic swimming response of Daphnia (Ringelberg 1991a), and in a 

population of Baetis mayflies taken from a fish stream, to increase the numbers of drifting 

Baetis without altering the timing of the onset of drift (McIntosh and Peckarsky 1996). 

Responses to light that give rise to diel changes in behavior may therefore be closely tied to 

extant predation. The fish were fed natural assemblages of Oyster River benthos each 

afternoon during the times when no experiments were underway.

The entire stream was enclosed in black plastic to block out all natural light. Four 

500 W halogen lamps controlled by computer were used to generate artificial light/dark 

cycles. Downwelling light intensity was measured continuously (International Light EL- 

1700 radiometer, SED033 probe with 2-pi collector corrected for cosine response) from a 

location at the water level adjacent to the tiles. Illumination from two arrays of wide-angle, 

narrow-wavelength GaAIAS infrared emitters (average power of 20 mW at peak 

wavelength ± 50%, 940 ± 20 nm) allowed videotaping during the darkened periods of the 

light/dark cycles.

Six nymphs were placed on an unglazed tile (10 x 10 x 0.5 cm, raised 0.5 cm 

above the streambed) located in each of the two stream channels. Nymphs were acclimated 

at the highest light intensity for a minimum of 1 hour. Time-lapse videos were recorded 

from the tile undersides (recording speed = 1 frame s'1, time compression = 1:72). 

Locomotor activity was measured as the distance moved by each nymph between 

consecutive video-frames captured at 30 s intervals. Movements of individual nymphs 

were tracked by hand using the NIH-Image software package (NIH-Image vl.60, 1996).
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Data collected at 30 s intervals were combined to produce total distances moved by each 

nymph over whole minutes. Data from individuals were pooled and 1-minute time-series of 

the average nymph activity underneath the tiles and the number of nymphs visible were 

constructed. Because the response time of the nymphs to changes in light was expected to 

be > 10 min (Grace 1990), 1-minute intervals were considered as sufficient to detect 

activity changes and also to adequately measure light changes. For this work, over 400 

hours of videotape were processed, and over 3 gigabytes of computer disk were needed for 

image storage.

Experimental Design

Ambient light intensity was manipulated between 7.9 x 10"* W cm'2 and 1.2 x 10'7 

W cm'2, an approximately 4 log-unit range in light intensity. The high value is comparable 

to noontime incident light intensity in July in New Hampshire and the low value occurs 

about 30 min after the period of largest relative light changes during local twilight (unpubl. 

data). The low value was chosen because it was lower than values associated with changes 

in Stenonema locomotor activity and vertical movements between the substrates (Grace 

1990), but also high enough to be measurable with the light meter and maintained at a 

steady intensity by the lamps for long periods of time.

For each experiment, light was manipulated in sequence through four phases 

(illustrated in Chapter One): (1) an adaptation period at the brightest light intensity (BRITE) 

of at least 60 min, (2) a period of light decrease (DECRS) at a constant rate of light 

change, (3) a 60-min dim-light adaptation period (DARK), and (4) a period of light 

increase (INCRS) at the same, but opposite rate of light change used to decrease the light. 

The lengths of the DECRS and INCRS phases were dependent upon the strength of the 

light stimulus, i.e., the rate of light change applied (Fig. 1).

Characteristic nymph responses to the light/dark cycle were predicted based on 

observed diel cycles in locomotor activity and vertical position on the substrate in S.
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modestum (Grace 1990) and other mayfly species (Chaston 1968, Elliott 1968, Glozier and 

Culp 1989). Locomotor activity was expected to start out at a low level during the BRITE- 

adaptation phase, increase during the DECRS phase, remain elevated during the DARK 

phase and decrease again during the INCRS phase. Numbers of nymphs visible beneath 

the tile surfaces were expected to be highest during the BRITE-adaptation phase, decline 

during the DECRS phase, remain low during the DARK phase, and increase during the 

INCRS phase. Combined, these typical responses are referred to as the response curve .
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Figure 1. Graphical representation of the amount of time required to decrease ambient light 
intensity between the experimental high and low values (7.9 x 10“* W cm'2 and 1.3 x 10'7 
W cm'2) at some of the rates of light change used to test the predictions of the STAR model. 
The number of minutes necessary to decrease the light between the high and low values is 
smaller at larger rates of light change, and longer at smaller rates; thus the light stimulus (S) 
is stronger at larger rates of light change and weaker at smaller rates of light change. The 
negative signs represent light decrease (positive signs would represent light increase). A 
complete list of rates used to test the model is located in Table A. 1. in the Appendix.
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T ests o f  the STAR Model

Predictions of the STAR model were tested with a series of artificial light/dark 

cycles following the experimental design outlined above. A set of experiments was 

conducted to establish a baseline relationship between rate of light change and the light 

response of the nymphs (Table la). In these experiments, the BRITE-adaptation light 

intensity was maintained at the ambient noontime value, and all light/dark cycles were 

started in the AM (Table A. I in the Appendix).

Treatments to test for effects of the endogenous clock and cloud cover on the light 

response were performed at four rates of light change (Table A.l in the Appendix). In the 

experiments that tested for alterations in the light response due to the influence of the 

endogenous clock, the light reduction (DECRS phase) was begun at one of two times of 

day, AM or PM (Table la). The effect of cloud cover on the light response was simulated 

by adapting the nymphs at a reduced light intensity (Table la). Light was manipulated 

between this lowered BRITE-adaptation intensity and the same low value of light intensity 

used to develop the baseline relationships and in all subsequent experiments. Treatments 

were combined to make a complete 2 x 2  factorial design. The four rates chosen for the 

treatments represent certain conditions within the typical range of conditions that occur 

during twilight at most locations except at high latitudes: (1) a sub-threshold [+ 1.4 x I O'3 

s'1] rate of relative light change, (2) the Ringelberg (1964) stimulus value [± 1.7 x 10'3 s'1] 

for the onset of phototactic swimming in Daphnia, (3) a mid-range value [± 2.5 x 10'3 s'1], 

and (4) a large value [± 3.6 x 103 s'1] close to the maximum rate of relative light change 

recorded at local twilight. These four values were considered sufficient to characterize 

differences in the stimulus-based activity responses between the baseline and treatments.

A set of experiments to test the effect of short and discontinuous periods of light 

stimulus (such as occur during cloud events), on locomotor activity were carried out for 

three rates of light change (Table la). The rates were the same as used for the time-of-day
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and adaptation light-intensity treatments, excluding the sub-threshold value (Table A.2. in 

the Appendix). For each rate of light change tested, experiments were conducted in which 

the DECRS phase was divided into one, two, or four equally long periods (steps) separated 

by 90-min periods of no light change (Table A.2 in the Appendix). The difference between 

these “step” experiments and the experiments already described was in how the light 

decrease (and light increase) was accomplished. The light decrease was continuous over 

the entire range of light values (approximately 4 log units) in the 1-step, the baseline, and 

the time-of-day and adaptation light-intensity treatment experiments. The light decrease was 

continuous over half the range o f light values (~ 2 log units) in the 2-step experiments and 

over one-quarter of the range of light values (~ 1 log unit) in the 4-step experiments. Each 

partial light decrease during the 2-step and 4-step experiments was followed by 90 minutes 

of no light change. The total change in absolute light intensity from the beginning to the 

end of all light-decrease steps was therefore the same (~ 4 log units) in all experiments; the 

only difference being that in the step experiments, the light decrease was interrupted by 

periods of no light change. The subsequent phases of the light increase were applied in a 

similar manner so that the ending light intensity value was equal to the beginning BRITE- 

adaptation light intensity in all experiments.
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Test Variable tested
Expected departure 

STAR-predicted response* from baseline Description of experiments
Baseline
relationships

Rate o f  relative light 
change, or 
light stimulus (S)

- latent period light stimulus
- magnitude o f  response «  light stimulus.

N/A
N/A

Scries of artificial light/dark cycles at sixteen 
rates o f  light change (listed in Table A, 1. in 
the Appendix). The light decrease (DECRS 
phase) commenced at 10AM EST. The change 
in absolute light intensity was -1 O'1 W cm'2 .

Treatments Endogenous clock - latent period Ab in P M .
- magnitude o f  response A in P M .

Shorter
Larger

Series o f artificial light/dark cycles at four of 
the above sixteen rates o f  light change (listed 
in Table A .I. in the Appendix). Treatment 
was time o f day. The light decrease (DECRS 

, phase) commenced at either 10AM or 6PM 
EST. The change in absolute light intensity 
was -104 W cm'2'.

Adaptation light- 
intensity 
(cloud cover)

- latent period A in reduced light.
- magnitude o f  response «  light stimulus.

Shorter 
No change

Series o f artificial liglit/datk cycles at a subset 
o f four of the above sixteen rates o f  light 
change (listed in Table A. 1. in the Appendix). 
Treatment was /i/?/7£-adaptation light 
intensity level. Levels were noontime- 
ambient (approx. KT* W cm 2 ) and reduced 
(approx. I0 6 W e n t2).

Periods of short 
•and discontinuous 
light decrease 
(steps)

Length of time over 
which light stimulus is 
applied; light changes 
applied over discrete 
periods disconnected in 
time.

- if length of time is >= response time o f nymphs;
- latent period  «  light stimulus.
- magnitude o f  response «  to length o f each step

- if length o f time is < response time o f nymphs:
- latent period becomes infinite.
- magnitude o f  response not controlled

by light stimulus.

No change 
Smaller

N/A

Variable

Series of artificial light/daik cycles at three of 
the above sixteen rates o f  light change in which 
the light decrease was distributed over one, 
two, or four equal steps (Table A. 2. in the 
Appendix). Multiple light-decreasc steps were 
interspersed with 90-min periods of no light 
change. The length of each step was 
dependent on the applied rate o f relative light 
change (cf. F ig 1). The light decrease (DECRS 
phase) commenced at 6PM EST. At the 
completion of all DECRS steps, the change in 
absolute light intensity was -1 0 ' W cm'2 .

A = an expected  ch an g e  from  the base line  in the activity  re sp o n se  d u e  to the  applied  treatm ent.



Table lb. List of terms defined in testins the STAR model.
Name Definition and Comments

Light environment
Artificial light/dark cycle

Phases of the artificial light/dark cycle 
BRITE 
DECRS 
DARK 
INCRS

Steps
LOW
HI

Light change terms
Rate of light change, or 
Relative light change, or 
Light stimulus (S)

Strength of S, the light stimulus

Response variables 
Locomotor activity 
Response curve

Latent period

Magnitude of the change in activity

Data smoothing technique 
Exponential Weighted 
Moving Average 

(EWMA) transformation

r parameter

Simulated 24-hr light/dark cycle comprised of four light 
phases that represent; daytime (BRITE), evening 
twilight (DECRS), nighttime (DARK), and morning 
twilight (INCRS).

Adaptation period at the maximum light intensity.
Period of light decrease.
Adaptation period at the minimum light intensity.
Period of light increase.

Shortened periods of light decrease (DECRS) or increase 
(INCRS) interrupted by periods of no light change 
(labeled as “LOW” when between light-decrease phases 
and as “HI” when between Iight-increase phases).

The first derivative of the light intensity vs. time curve, 
estimated from the equation:
S = Pn(Iw)-In(I;)]/dr
where, S = the rate of relative light change per s,
I = light intensity in W cm'2 at time period j  or j+1, 

t = length of time-intervals in s (from Ringelberg 1964).
A measurement of the magnitude of the rate at which light 

changes over time. Stronger stimuli are associated with 
larger rates of light change, and weaker stimuli are 
associated with smaller rates of light change (see Fig. 1).

Average distance (mm) moved per nymph per min.
Activity response to each of the light phases measured as 

the average distance moved per nymph per light phase. 
Used as repeated measures in the analysis.

The delay (min) between the beginning of the light decrease 
and the onset of the change in locomotor activity. A 
delay occurs because the animal must accumulate a large 
enough light stimulus (provided by the rate of relative 
light decrease) to evoke a reaction (from Ringelberg 
1964).

The difference in locomotor activity between the “daytime” 
and “nighttime” periods.

Smoothing of a time series by application of a weight (r) to 
the point of interest and all preceding points. The weight 
is largest for the point of interest and decreases 
exponentially with each point further back in time. (From 
SAS v.5, SAS Institute Inc., 1989-95).

Value of weight applied to the point of interest, (0<r <l). 
Data are smoothed more when smaller weights are used, 
as smaller weights are less sensitive to short-term data 
fluctuations than are larger weights.
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Data Analysis

Sm oothing Technique for Improving the Resolution o f Activity Patterns 

from Time-Series Data.

Because time-series data can be highly variable, (examples, see Cobelas et al. 1995, 

Prairie et al. 1995) and it is difficult to determine precisely the timing of a change in activity 

or to identify patterns, it was desirable to smooth the time-series data. Smoothing 

techniques of a single time-series are typically some variation of a moving average (Box 

and Jenkins 1976, Chatfield 1997). In the data presented here, activity at each point in time 

was assumed to be dependent on the activity at the points before it, with diminishing 

influence. For these reasons, the exponential weighted moving average technique 

(EWMA, SAS/QC SAS Institute, 1989) was chosen for smoothing the time series. 

EWMA-transformed time-series of individual nymph activity were used in estimating the 

length of the latent periods between the beginning of the DECRS phase and the onset of 

heightened locomotor activity. EWMA-transforms of the average nymph activity produced 

from the pooled data were used for all time-series plots of locomotor activity and for visual 

comparisons of activity patterns within and between experiments. All other analyses were 

made from the raw data.

Each point in an EWMA time-series represents the weighted average of the point of 

interest plus ail previous points. The weight of each point decreases exponentially going 

backward in time starting at the point of interest. The weight r (0 < r < 1) assigned to the 

point of interest is a parameter of the EWMA. Small values of r are less sensitive to short 

fluctuations, and larger values of r are more sensitive to short fluctuations (Fig. 2). For 

example, if r  = 1, the EWMA-transformation returns the original data, because the point of 

interest carries all of the weight. The recommended value for r is 0.2 (SAS Institute,

1989).
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The choice of r was important as it could bias the estimates of the response 

variables. As an example, estimates of the timing of the onset of heightened locomotor 

activity, measured as the length of the latent period between the beginning of light decrease 

and the moment when nymph activity increased above the BRITE-adaptation mean, were 

compared between four values of r and the default value, r = 0.2 (Fig. 3). When r was 

large ( r > 0.5), relatively long latent periods were estimated at strong rates of light decrease 

(shown by ‘s’ Fig. 3c, d), indicating that data were still too noisy to reliably detect an 

activity change. Relatively long latent periods were estimated at weak rates of light 

decrease when r = 0.9 (shown by ‘w’ Fig. 3d), but not when r = 0.5 (Fig. 3c). When r 

was small (r = 0.05), latent periods were also relatively long (Fig. 3a). This was 

particularly problematic when weak light stimuli were tested, because the response of the 

nymphs was dampened so much that the smoothed data revealed no activity change. In 

between the two extremes (when r = 0.1 or 0 .2 ), the estimated latent periods were within a 

few minutes of each other and were more consistently within the mid-range of estimates for 

all values of r (Fig. 3b). As it was not possible to know which estimate of the latent period 

was the correct value, the raw data and the EWMA-smoothed data were visually compared 

and a decision was made to use the recommended weight (r = 0 .2), as it appeared to best 

estimate the timing without excessive smoothing of the data. The removal of the noise 

allowed for visual comparisons of locomotor activity between experiments without altering 

the general shape of the curves (Fig. 2). The EWMA-transformation was also appealing 

because the transform did not alter the mean activity values (Table II), so that reasonable 

opinions about the magnitude and the time-course of the initial peak of heightened 

locomotor activity could be made from visual inspection of the time-series. EWMA- 

transformations and statistical analyses were made with SAS (SAS Version 5, or JMP 

Version 3.1.5, SAS Institute Inc., 1989-95).
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Figure 2. Representative time-series of average locomotor activity demonstrating the effect 
of EWMA-smoothing at five values of r, the parameter used as a weight that determines the 
amount of smoothing (terms are defined in Table lb). From left to right, the time-series 
represents the 60-min BRITE-adaptation phase, the DECRS phase, the 60-min DARK 
phase, and the INCRS phase of the artificial light/dark cycle. Shading represents the light 
environment. The applied rate of light change was ± 1.9 x 10'3 s '1. The time required to 
complete the light reduction and light increase (DECRS and INCRS phases) was 76 
minutes each. Data are same as shown in Table 2 and in Chapter One, Figures 5 and 7.
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Figure 3. Comparisons of estimates of the latent period (the length of time between the 
beginning of the light decrease and the moment when nymphs began to increase their 
activity) determined from Exponential Weighted Moving Average (EWMA) time-series for 
the default parameter weight r = 0.2, and each of four other values of r (see text and Table 
lb for explanations of r). Data points represent the individual experiments used to test the 
STAR model (n=28, including all tests except those of discontinuous periods of light 
change; see Table A.I. in the Appendix). Experiments for which the rate of light decrease 
was < -1.7 x 10'3 s'1 are marked with (w); those for which the rate was > -1.9 x 10’3 s'1 are 
marked with (s); and the experiment depicted in Figs. 2 and 4, for which the rate of light 
decrease was -1.9 x 10'3 s'1, is marked with (0). The 1:1 lines are drawn on each plot for 
comparison purposes.
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TABLE H. Mean distance moved per nymph (mm min'1) during selected phases 
of an artificial light/dark cycle. Comparisons are between raw data 
and five EWMA-transformatiohs (r values). Data are the same 
shown in Fig. 2 and in Chapter One, Figs. 5 and 7, for which the 
applied rate of light decrease was -1.9 x 10'3 s 1.

BRITE DARK Entire
r value Phase Phase time-series

0.05 2.6 7.0 4.5
0.1 2.2 7.1 4.5
0.2 2.0 6.9 4.4
0.5 1.9 6.8 4.4
0.9 1.9 6.8 4.4
raw data 1.9 6.8 4.4

Analysis o f  the Activity Response Variables

Response curve ('activity changes during the artificial light/dark cycle). Mean 

values of the locomotor activity measured during each of the four light phases were used 

together in a repeated-measures analysis of variance to compare activity within and between 

treatments. Mauchly’s criterion test for the compound symmetry of the variance-covariance 

matrix was non-significant (p > 0.05) for all analyses, indicating that the probabilities 

associated with ordinary F  tests were correct, and the univariate mode of the repeated 

measures tests (ANOVAR) are reported as recommended by Potvin et al. (1990). Before 

the time-series data could be compared, it was necessary to make sure that patterns were 

not confounded by lengthy periods in which there were no nymphs visible on the tile 

undersides and consequently zero locomotor activity. Because no experiments fell into this 

category, all were included in the analysis.

Timing (latent period). Preliminary results suggested that nymphs that were 

inactive during the BRTTE-adaptation phase responded more strongly to the light decrease 

than did nymphs that were active during the BRTTE-adaptation phase (Chapter One). 

Therefore, estimates of latent periods were made from time-series data for non day-active
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nymphs only (Fig. 4). Nymphs were classified as non day-active when the average 

distance moved during the BRiTE-adaptation phase was < 6 mm min'1 (the average body 

length of the mayflies, see Chapter One). The length of the latent period was calculated 

from the EWMA-transformed time-series as the amount of time that passed between the 

beginning of the DECRS phase and the moment at which the individual’s locomotor 

activity rose above the BRiTE-adaptation mean (Fig. 4). Increases in activity were 

considered spurious if the average increase was not sustained above the BRITE-adaptation 

mean for a minimum period of 10 minutes (Fig. 4, example: nymph 6). Ten minutes has 

been shown to be the shortest amount of time necessary to elicit a response in S. modestum 

under cloud conditions in natural light (Grace 1990), and was considered to be a 

conservative estimate of the timing of the actual change in activity.

Other researchers have classified animals by their predominant activity for purposes 

of detecting a change, including Belanger and Orchard (1988) who grouped freshwater 

leeches (Macrobdella decora) into three types; as still (i.e., not moving), movers and 

swimmers, before application of an activity-producing hormone; and Daan and Ringelberg 

(1969), who described water fleas (Daphnia magna), as either rhythmic or non-rhythmic 

based upon the amount of vertical displacement in constant light prior to a light- 

manipulation. In both cases, the response of the animals to the treatment was dependent 

upon their initial activity. These studies suggest that at any given time, differences in 

individuals may be common, and must be considered when studying response variables.

By describing the activity change in terms of the starting activity, a clearer understanding 

was made of the change in activity following the treatment in both studies.

Nymphs not used in the estimates of the latent period were those classified as day- 

active (average activity > 6 mm min'1), or “other” (either the nymph was not visible on the 

lower tile surface at all during the BRITE period, or the nymph was visible for some 

portion of the BRiTE-adaptation period, but left before the application of light decrease). 

Examples from each category are illustrated in Chapter One. Non day-active nymphs
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comprised 47% (n = 197) of the total nymphs used in all tests of the STAR model (n = 

420). Of the rest, 32% (n = 134) were day-active and 21% (n = 89) were classified as 

“other”. Of those, 9% (n = 38) never moved to the tile undersides and 12% (n = 51) left the 

tile undersides before any light change. Despite these differences in individuals, the 

averaged time-series of locomotor activity produced from the pooled data of all nymphs 

showed the expected changes to the light/dark cycle at all rates of light change tested.

Magnitude of the change m activity. Locomotor activity increased in response to 

light decrease. Estimates of the magnitude of the activity change were made for each 

experiment by subtracting the mean activity during the BRTTE phase from the mean activity 

during DARK the phase. A least-squares regression of the rate of light change on the 

resultant differences was performed for the baseline experiments and for each treatment.

Vertical movements between substrate surfaces. There was little change in the 

numbers of nymphs visible during the BRiTE-adaptation periods, making it 

straightforward to estimate the moment when nymphs began leaving the tile undersides. 

Using the technique outlined by Haney et al. (1983), the onset of leaving was recorded as 

the mid-point between the first two of three points having decreasing numbers of nymphs 

below the BRiTE-adaptation average.
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RAW DATA EWMA-TRANSFORMED DATA

nymph

spurious activity

spurious'activity

T im e (min)

Figure 4. Time-series of individual non day-active nymphs during the BRTTE-adaptation and DECRS 
phases of an artificial light/dark cycle. Right panels). Examples o f latent periods (the length of time 
between the beginning of the light decrease and the moment when nymphs began to increase their activity) 
estimated from EWMA-transformed time-series of the non day-active nymphs. Short vertical lines mark 
the onset of increased activity for each nymph. Heightened activity of < 10 min duration was not 
considered a response to light change (marked as “spurious activity’’). Left panels). Raw data used in 
generating each EWMA-transformed time-series. The onset of the light decrease (DECRS phase) is 
marked by the vertical dotted line. Shading represents the light environment during the two light phases. 
The average latent period for this experiment was estimated as 34 min ± 3 . 2  SE (n = 6). Light was 
decreased at a constant rate of -1.9 x 10‘3 sec '' over a period of 76 minutes. Time-series of the average 
locomotor activity generated from the pooled dat$ for all nymphs is shown in Fig. 2, and in Chapter One, 
Figs. 5 and 7.
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R esults

Relationship o f  Relative Light Change to the Timing. Magnitude and Time- 

Course o f  the Initial Peak o f  Heightened Locomotor Activity

Timing (Tatent Period)

The latent period, estimated as the length of time between the beginning of the light 

decrease and the onset of heightened locomotor activity (of the non day-active nymphs), 

was significantly correlated with rate of light decrease (Fig. 5). The correlation curve 

traces a typical strength-duration relationship of physiological excitable systems (Grinnell 

1977), suggesting that the locomotor activity response is the result of the buildup of light 

stimulus over time. It was therefore possible to estimate the rheobase, or the minimum rate 

of light decrease that was capable of eliciting an activity response (Fig 5). Rates of light 

decrease smaller than the rheobase are incapable of eliciting a response, and are therefore 

considered as “inadequate stimuli”, or sub-threshold. The buildup of the excitatory state in 

such cases is equal to or lower than the rate of decline of the excitatory state; therefore 

there is no net accumulation of stimulus over time and no change in locomotor activity.

The rheobase was calculated as 1.0 x lCTV from equation (1):

In (S/S-R) = c x t ( 1)

where S is the applied rate of light decrease per second, R is the minimum rate of 

light decrease per second capable of eliciting an activity response (the rheobase), c is the 

rate of decline or the disintegration constant of the excitatory state, and t is the measured 

length of the latent period for each rate tested, in seconds. Data used for t and S in the 

equation were the measured latent periods and their corresponding rates of light decrease, 

respectively (n = 14, data points from Fig. 5). The rheobase was determined by iteration; 

expected values were substituted in the equation until the best linear fit to the data was
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obtained (Ringelberg 1964, pers. comm.). The resulting relationship (R: = .94, p < 

0.0001, n = 14), was used to estimate the value of the disintegration constant, c (3.3 x 10° 

s'1). This relationship between the onset of locomotor activity and relative light change in 

Stenonema is similar to the relationship between the phototactic swimming response and 

relative light change previously determined in Daphnia (Ringelberg 1964).

To test whether non day-active nymphs behaved differently than the population as a 

whole, latent periods were estimated from the averaged time-series that had been produced 

from the pooled locomotor activity of all nymphs and compared to the baseline relationship 

estimated from the non day-active nymphs (Fig. 6). The shape of the curves were the same 

but intercepts were significantly different (p < 0.008, F ,, = 15.3, ANCOVA). 

Consequently, the estimates of the amount of time between the beginning of the light 

decrease and the onset of heightened locomotor activity were about 7 minutes shorter for 

the group average than for the non day-active nymphs. This is not consistent with a 

spreading out of the population’s response over a broad time period that would tend to 

mask the detectable response until later, rather than earlier. However, because the day- 

active nymphs were already active prior to the light stimulus, the earlier onset may have 

been caused by their reacting sooner to the light stimulus than did the non day-active 

nymphs (Ringelberg pers. comm.). Similar differences in the onsets of upward swimming 

of daphnids classified as rhythmic and non-rhythmic have been reported (Daan and 

Ringelberg 1969), suggesting differences in individual responses to light stimulus may be 

important in shaping the observed response of the population as a whole.
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Figure 5. Relationship between the rate of light decrease (S) and the length of time to the 
onset of heightened locomotor activity (the latent period). The equation of the line is: 
ln[latent period (min)] = -1.32 - 0.776 x In |S (s'')|, (R2=.93; p< 0.001; n=14). Each data 

point represents the mean estimate from the non day-active nymphs at each rate of light 
decrease. Dotted line represents the rheobase value below which no response to a light 
stimulus occurs (see text for explanation of the method of calculating the rheobase). This 
relationship represents the baseline from which comparisons with the various treatments are 
made. The line was fitted using log-log transformed data.
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Figure 6. Comparison of the baseline relationship (shown in Fig. 5) between rate of light 
decrease (S) and length of the latent period estimated from non day-active nymphs 
(redrawn here with the black line), and the relationship produced using data from the 
averaged locomotor-activity time-series (+, gray line). Slopes of the lines were equal, but 
differences in intercepts resulted in an average 7 minute difference in the estimates of the 
length of time between the beginning of the light decrease and the onset of heightened 
locomotor activity between the non day-active nymphs and the “population” (by 
ANCOVA). The lines were fitted using log-log transformed data.
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Magnitude o f  the Change in Locomotor Activity and Time-Course o f  the 

Initial Peak in Heightened Locomotor Activity

As predicted, the magnitude of the changes in locomotor activity as a result of the 

decrease in light were greater at larger rates of light change (stronger stimuli) than at smaller 

rates of light change (weaker stimuli, examples, Fig. 7). Initial peaks of heightened 

locomotor activity appeared to be sharper when stronger stimuli (e.g., S > -4.8 x 10'3 s ') 

were applied than when weaker stimuli (e.g., S < -2.5 x 10'3 s'1) were applied, also as 

predicted (Fig. 7, left panels). At most of the applied rates of light change, locomotor 

activity reached a maximum within the DECRS period, and then decayed to a lower, but 

still elevated, level throughout the entire DARK phase (Fig. 7). The initial peaks decayed 

faster at stronger stimuli than at weaker stimuli, supporting the STAR prediction that 

duration of the initial activity peak is inversely proportional to the rate of light decrease.

At very weak stimuli (e.g., -1.2 x 10° s'1), secondary peaks were common in the 

INCRS phase that were as large as the original activity peak (Fig. 7, left panels). At larger 

stimuli, secondary peaks began earlier and were lower than the initial peak, with some 

secondary peaks that began well within the DARK phase (e.g., S > -3.6 x 10'3 s'1; Fig. 7, 

left panels), suggesting that although the duration of the highest activity was short-lived, 

there were more complex changes in activity during the dark adaptation period (when there 

were no light changes) than predicted by the STAR model.

The change in locomotor activity following the completion of the DECRS phase 

was examined as a function of the rate at which the light decreased. Despite the variability 

in the amount of activity during each minute over the time-series (Fig. 7, left panels), the 

magnitude of the change in locomotor activity increased as a function of increasing rate of 

light change as predicted by the STAR model (Fig. 7, right panels; Fig. 8).
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Figure 7. Sample time-series illustrating the differences in locomotor activity during 
artificial light/dark cycles at six rates of light change (S = s'1 x 103), increasing in strength 
from top to bottom. Left panels). EWMA-transformed time-series of average locomotor 
activity during each artificial light/dark cycle. Arrows mark the beginning of the light 
decrease (DECRS) phases, shaded area represents the DARK phases. Time0 = 0900 EST. 
Right panels). Mean locomotor activity during the phases before (BRITE) and after 
(DARK) the light decrease. Bars are mean ± SD.
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Figure 8. The relationship between rate of light decrease (S) and the magnitude of the 
change in locomotor activity from before and after the light decrease. Each data point 
represents the difference between the mean activity during the DARK and BRITE light 
phases. The equation of the line is:
Change in locomotor activity (mm nymph'1 min'1) = 15.386 + 1.79 x In IS in s 'I,
(R2 -  -38, p < 0.02, n = 14). Data point marked by (X) was excluded from the 
determination of the regression line, because the standardized residual was > 3 SD from 
zero (Neter et al. 1990).

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Effects o f  the Time o f  Day and Adaptation Light-Intensitv on the Activity

Response to Relative Light Change

Response Curve

Activity responses to the light/dark cycles were examined for each treatment (Fig. 

9). The main influence of time of day was a larger activity change during the DECRS and 

DARK phases in the PM experiments than in the AM experiments (Fig. 9). Adaptation light 

intensity appeared to have a strong influence on locomotor activity, both in the AM and PM 

experiments, as the characteristic responses to the various phases of the light/dark cycle 

were observed in the ambient-light adaptation treatments (Fig. 9 a, c), but not in the 

reduced-light adaptation treatments (Fig. 9 b, d).

Significant differences between treatments were not detected by repeated measures 

tests of locomotor activity across the four light phases (Table El). A weak effect of time of 

day (DAY) was detected, and may have been a result of the overall higher locomotor 

activity during the PM than during the AM experiments (Fig. 9). The significant effect of 

Time within treatments indicates that nymphs responded to the light changes in all 

treatments. There was a strong interaction between Time x BRITE-adaptation illumination 

level (Table IE), that indicated that the light level at which nymphs were adapted was 

related to differences in activity during particular light phases. Two observations may 

explain where these differences occurred: first, for some of the BRITE-reduced 

experiments, the length of the measured latent period was within 1-2 min of the length of 

the DECRS phase, consequently there were no significant differences in locomotor activity 

between the BRITE and DECRS phases (Fig. 9, b, d); and secondly, during many of the 

BRITE-reduced experiments, locomotor activity did not decline during the INCRS phase as 

expected, but remained elevated, most notably in the BRITE-reduced/PM experiments (Fig. 

9, d). There were no significant interactions between Time x Time of Day indicating that
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time of day did not strongly affect the shape of the response curves at either level of 

adaptation light intensity.

TABLE ID. Analysis of variance with repeated measures3 for treatment1* effects of time 
of day (Day) and adaptation light intensity (BRITE) on the activity response 

__________ of 5. modestum nymphs.________________________________________

Source of variation MS F df P
Between
treatments Day 112.1 4.1 1 0.07

BRITE-level 0.6 0.02 1 0.9
Day x BRTIE 6.8 0.3 1 0.6
Error 27.5 12

Within treatments Time 91.5 22.4 3 0.0001
Time x Day 6.8 1.6 3 0.2
Time x BRITE 30.1 7.4 3 0.0006
Time x Day x BRITE 2.6 0.6 3 0.6
Error (Time) 4.1 36

aRepeated measures (time) = average locomotor activity during the BRITE, DECRS, DARK, INCRS 
phases.

‘Treatments = combinations of time of day (AM vs. PM start-times) and BRITE-adaptation light intensity 
(ambient noontime vs. reduced), see Table la for description of treatment experiments.

Overall, the locomotor activity response during various phases of the artificial 

light/dark cycle was altered by the different treatments; in some cases the response was 

contrary to that expected (e.g., heightened locomotor activity during the INCRS phase in 

the BRTTE-reduced/PM experiments). The stimulus-activity response was triggered in all 

combinations of treatments, supporting the hypothesis that relative light change is the most 

important control of locomotor activity in this mayfly species.
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Figure 9. Response curves of locomotor activity during artificial light/dark cycles by time of day and 
light-adaptation treatments: (a) bright-adaptation/AM, (b) reduced-light adaptation/AM, (c) bright- 
adaptation/PM, and (d) reduced-light adaptation/PM.
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Timing (Latent Period)

Least-squares regressions were made between rate of light decrease and the timing 

of the increase in locomotor activity (measured as the length of the latent period between the 

beginning of the light decrease and the onset of heightened locomotor activity) for each 

treatment. Correlations were significant for all treatments (p < 0.05) except for BRITE- 

reduced/PM. Tests for covariance of slopes and intercepts (ANCOVA) between the 

baseline regression (see Fig. 5) and those treatment regressions that were significant did 

not detect differences in the slopes (p > 0.05), but the intercept of the BRITE-reduced/AM 

treatment was significantly different from the baseline (p < 0.002, F , , = 14.6). This 

indicates that the latent periods were different in length when the adaptation light intensity 

was reduced, as expected. (Because the regression was not significant for the BRJLTE- 

reduced/PM treatment, an estimate was made by subtracting the individual latent periods at 

each rate from the calculated baseline latent period at the same rate [c.f. Fig. 5], and 

averaging the results.) The length of the latent period at any particular rate of light change 

was significantly shorter for nymphs in the BRITE-reduced treatments, by an average of 16 

and 11 minutes for the AM and PM experiments, respectively. There was no shortening of 

the latent period in the BR1 i'E-noontime ambient/PM treatments, contrary to predicted 

effects of the endogenous clock.

Although reduced light-adaptation modified the timing of the activity change, there 

was no particular value of light intensity associated with the onset of heightened locomotor 

activity. The average light intensity at the onset of heightened locomotor activity was 

significantly lower (p < 0.0001, F, I3 = 45.7, ANOVA) in the BRITE-reduced treatments 

than in the BRITE-ambient treatments (8.4 ± 2.3 x 10‘7 vs. 3.3 ± 1.3 x 10'5 W cm’2, 

respectively). Light intensities at which the BRTTE-noontime adapted nymphs initiated 

changes in locomotor activity were higher than the light intensity at which the BRITE- 

reduced nymphs were originally adapted. Even at the reduced adaptation light intensity,
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locomotor activity did not increase until after the beginning of the DECRS period, 

indicating that although low light intensity enhanced the stimulus-activity response, low 

light intensity did not initiate the increase in locomotor activity.

Magnitude o f  the Change in Activity

The mean locomotor activity during the BRITE and DARK phases and the 

difference in activity between them were compared within and among treatments (Fig. 10). 

Locomotor activity was significantly higher during the DARK periods than during the 

BRITE periods within all treatments (p < 0.0001, F ,,, = 51.77, ANOVAR), indicating that 

in all cases there was a heightened locomotor activity response to light decrease. There 

were no significant differences in BRITE activity or DARK activity between treatments (all 

p »  0.05, ANOVA).

Because light could not be reliably measured much below the experimental 

minimum light intensity, it was not possible to test the effect of a light decrease over a 

comparable 4 log-unit range in the BRITE-reduced treatments. Because the adaptation light 

intensity was lower during the BRITE-reduced treatments, the duration of the light decrease 

was smaller than in the BRTTE-noontime-ambient treatments. The magnitude of the activity 

change was therefore expected to be smaller in the BRITE-reduced treatments. When the 

treatments were pooled into two groups by adaptation light intensity, there was no 

significant difference in the amount of the activity change between groups (p = 0.3, F, I4 = 

1.4, ANOVA), but there was a significantly smaller activity change in the BRITE- 

reduced/AM treatment when compared with the other three treatments (Tukey-Kramer 

(HSD) multiple-comparisons test, a  = 0.05). The DARK activity was somewhat higher in 

the PM experiments, regardless of the BRITE-adaptation light intensity (Fig. 10), 

suggesting an effect of the endogenous clock, but even when the PM and AM experiments 

were pooled and tested as two groups, the difference was not significant (p = 0.09, F, l4 = 

3.3, ANOVA).

77

with permission of the copyright owner. Further reproduction prohibited without permission.



These results demonstrate that the onset of heightened locomotor activity was 

modified by adaptation light intensity although the absolute value of light intensity did not 

determine the timing of the activity change. In contrast, the overall change in the activity 

between the “daytime” and “nighttime” levels was not strongly affected by any of the 

treatments.
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Figure 10. Locomotor activity before (BRITE) and after (DARK) the light-decrease phase compared 
between four treatments (listed in Fig. 9). (a) Average locomotor activity during the BRITE and DARK 
phases. Differences between the BRITE and DARK activity were significant (p < 0.05, ANOVA) within 
all treatments, (b) Average change in locomotor activity between the BRITE and DARK phases. There 
were no significant differences (p > 0.05, ANOVA) between pairwise comparisons of the activity change 
between treatments. Data are means ±  SE (n = 4 for each treatment).
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Movement Between Substrate Surfaces

Nymphs began to leave the tile undersides during the DECRS phase of the 

light/dark cycles and fewer were visible during the DARK phase as expected (Fig. 11). 

Nymphs that left the tile undersides did not always return to the tile undersides during the 

INCRS phase (Fig. 11). There was no relationship (R2 = 0.08, p = 0.16, n = 16) between 

rate of light change and the total numbers of nymphs that left the tiles. There was also no 

relationship between rate of light change and the timing when nymphs began to leave the 

tile undersides (R2 = 0.03, p = 0.99). However, most of the variability in timing took 

place during experiments in which the light stimulus was relatively weak (S < -1.7 x 10'3 

s'1). This was attributed to a combination of lengthy periods of light decrease and small 

numbers of nymphs used in the tests; nymphs tended to leave and return again to the tile 

undersides when the light reduction was slow, making it difficult to clearly define the 

timing of leaving the undersides (example, see Fig. 11 top panel, S = ± 1.2 x 10'3 s'1). 

Re-examination of the relationship using only rates of change > -1.7 x 10'3 s"‘ indicated a 

significant correlation between the strength of the light stimulus and the length of the delay 

(Fig. 12), suggesting that light stimulus controls phototactic movements. The rheobase, or 

minimum rate of light change capable of eliciting phototactic movements between the 

substrate surfaces, was calculated as 6.0 x lO^s'1 from equation (1) in a similar fashion as 

for the locomotor activity response. (The best fit regression using Eq. (1), R2 = .71, p < 

0.005, n = 9, yielded a disintegration constant (c) of 9.0 x 10'5 s'1.) This rheobase value is 

substantially greater than the rheobase value of 1.0 x 10"4 s'1 for the locomotor activity 

response, suggesting that although both the photokinetic locomotor activity and the 

phototactic vertical movements are controlled by relative light change, the locomotor 

activity response is much more sensitive to light stimulus than is the vertical location 

response. For example, during light decrease at a constant rate of -1.7 x 10'3 s'1, the 

estimated time between the beginning of light decrease and the onset of heightened
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locomotor activity is about 38 minutes, whereas for the onset of leaving the substrate 

undersides is about 46 minutes.

There were significant differences in the response curves across all light phases due 

to time of day (Table IV). This difference between the AM and PM experiments was 

attributed to significantly fewer (p < 0.009, F, I4 = 9.3, ANOVA) nymphs visible during 

the DARK phase in the PM experiments than in the AM experiments, regardless of the 

BRTTE-adaptation light intensity (Fig. 13). The effect of Time was significant but there 

were no significant interactions between Time and either Time of Day or BRTTE-adaptation 

light level (Table TV), an indication that light changes were the strongest influence on the 

movements between the tile surfaces.

The delay following the beginning of the DECRS period was somewhat longer (p = 

0.07, FU4 = 3.6, power = 0.43, ANOVA) in the AM treatments regardless of BRITE- 

adaptation intensity (Fig. 14), indicating another effect of the endogenous clock in addition 

to fewer nymphs remaining on the tile undersides during the DARK phase. The average 

light intensity when nymphs began to leave was significantly lower (p < 0.03, F ,,, = 6.3, 

ANOVA) in the BRITE-reduced treatments than in the BRITE-ambient treatments (9.6 ±

2.3 x 10-7 vs. 8.4 ± 2.7 x 10"5 W cm'2, respectively), demonstrating that absolute light 

intensity did not control location on the substrate.
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TABLE IV. Analysis of variance with repeated measures3 of the effects of time of day 
(Day) and adaptation light intensity (BRITE) on numbers of nymphs 
visible underneath the tiles.

Source of variation MS F df P
Between
treatments Day 44.1 6.1 1 0.03

BRlTE-level 0.1 0.01 1 0.9
Day x BRITE 6.3 0.9 1 0.4
Error 7.2 12

Within treatments Time 56.8 51.1 3 0.0001
Time x Day 1.2 1.1 3 0.4
Time x BRITE 1.8 1.6 3 0.2
Time x Day x BRITE 0.03 0.03 3 0.9
Error (Time) 1.1 36

'‘Repeated measures (time) = average number of nymphs visible during the BRITE, DECRS, DARK, 
and INCRS phases.
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Figure 11. Sample time-series illustrating the differences in number of nymphs visible on 
the tile undersides for the same experiments shown in Fig. 7. Left panels). Time-series of 
the number of nymphs visible during each artificial light/dark cycle. Arrows mark the 
beginning of the DECRS phases, shaded area represents the DARK phases. Right panels). 
Mean number of nymphs visible during the BRITE and DARK phases. Values were 
significantly different between phases (p < 0.0001, ANOVA) for all experiments. Bars are 
mean ± SD.
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Figure 12. Relationship between the rate of light decrease (S) and the length of time before 
nymphs began to leave the tile undersides (the delay period). The equation of the line is: 
ln[delay period (min)] = -3.51 -1.15 x In |S (s'')|, (R2=.71; p< 0.004; n=9), and 

represents data points for rates of light decrease > -1.7 x 10*3 s'1 (large symbols). Data 
points at weaker rates of light change (*) were excluded to demonstrate the presence of a 
threshold rate of light change for the onset of phototactic movement. The line was fitted 
using log-log transformed data.
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Figure 13. Response curves of average number of nymphs visible during each of the four light phases 
grouped by treatment (listed in Fig. 9). Nymphs did not return to the tile undersides during the INCRS 
phase as predicted, regardless of BRITE-adaptation light intensity or time of day. Error bars are ± 1 SD.
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Figure 14. Comparisons of the average delay between the beginning of the DECRS phase 
and the moment when nymphs began to leave the tile undersides between treatments, (listed 
in Fig. 9). Delays were longer in both AM treatments, but differences were not significant. 
Bars are mean + SE.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Effect o f  Abbreviated and Discontinuous Periods o f  Light-Decrease

A key assumption of the STAR model is that the light stimulus, which is the rate of 

relative light change, must take place over a sustained period of time in order to elicit a 

locomotor activity response. In addition, the magnitude of the activity response should be 

proportional to both the strength of the stimulus (i.e., the rate at which light changes) and 

the length of time over which the stimulus is applied. Time-series of locomotor activity 

during artificial light/dark cycles when light was reduced over one, two, or four equal steps 

at S = ± 2.5 x 10'3 s'1 are discussed in support the hypothesis (Fig. 15).

During the I-step experiment, locomotor activity increased from the BRITE- 

adaptation level of 6.7 ± 0.5 mm nymph'1 min'1 ± SE to a DARK level of 17.0 ±1.0  mm 

nymph'1 min'1 ± SE, an average increase of 10.3 mm nymph'1 min'1 (Fig. 15a); during the 

2-step experiment, locomotor activity increased from the BRTTE-adaptation level of 3.3 ± 

0.3 mm nymph'1 min1 ± SE to an intermediate level of 6 .1 ± 0.5 mm nymph'1 min'1 ± SE 

during the LOW-1 phase following the initial light decrease phase, then to a high of 7.5 ± 

1.9 mm nymph'1 min'1 ± SE during the DARK phase following the final light decrease, an 

overall increase of 4.3 mm nymph'1 min'1 (Fig. 15b). All activity changes between light 

phases were significant (p < 0.05, ANOVA) except the final activity increase during the 2- 

step experiment. Although locomotor activity increased sharply following the second light 

decrease step, there was a large drop in locomotor activity during the DARK phase (Fig. 

15b) that accounts for both the lack of significance between the level of activity between the 

DARK and LOW-1 phases, and for the overall smaller change in locomotor activity 

compared to the 1-step experiment. In contrast, during the 4-step experiment, there were 

no significant changes in locomotor activity during any of the light phases (Fig. 15c).
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Figure 15. Time-series of average nymph locomotor activity ( ~ ) during three artificial 
light/dark cycles when the applied rate of light change was S = ± 2.5 x 10'3 s '1. In each 
panel, light intensity is represented by the shaded areas, and periods of no light change are 
labeled, (a). 1-step experiment: Locomotor activity increased and decreased as predicted 
during the light decrease and light increase phases.
(b). 2-step experiment: Locomotor activity increased during both light decrease phases, 

reached a maximum during the DARK phase, then decreased during both light increase 
phases, (c). 4-step experiment: Changes in locomotor activity did not correspond with 
changes in light, as the lowest amount of activity took place during the DARK phase. The 
light-change steps were 56 min long in the 1-step experiment, 28 min each in the 2-step 
experiment, and 14 min each in the 4-step experiment. Time0 = 1700 EST.
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R esponse Curve

There were unexpected differences in the response curves between the three rates of 

light change tested during the 2-step and 4-step experiments (Fig. 16). In the 2-step 

experiments, locomotor activity increased above the BRTTE-adaptation level during the first 

light decrease phase (DECRS-1) for all three rates of change tested (Fig. 16a). However, 

at the Ringelberg stimulus (-1.7 x 10'3 s'1), locomotor activity did not continue to increase 

as a consequence of the second light decrease phase (DECRS-2) as was the case for the 

two larger rates, but decreased to the BRITE level, and stayed low throughout the 

remainder of the light/dark cycle (Fig. 16a). In the 4-step experiments, there was a 

complete breakdown of the stimulus-activity response at the two larger rates, in that 

changes in activity did not correspond with changes in light (Fig. 16b); whereas, at the 

Ringelberg stimulus (-1.7 x 10'3 s'1), locomotor activity rose during the last light decrease 

(DECRS-4), then declined during and after the third light increase phase (INCRS-3). These 

results suggest that locomotor activity was more strongly regulated when both the rate of 

light change and the time interval of the light change were large (i.e., 2 larger rates of light 

decrease in the 2-step experiments), such as occurs during natural twilight, than when one 

or both were small (i.e., the weaker rate of light change (S = ± 1.7 x 10'3 s'1, and all of the 

4-step experiments), as occurs during transient cloud events.

Locomotor acdvity during the BRITE and DARK phases, which represents the 

level of activity before and after the completion of all phases of the light decrease, was 

examined in order to test which factors were more important to the stimulus activity- 

response (Table V). Significant differences in the response could not be attributed solely to 

rate of light change, number of light-change steps, nor length of step (Table V), suggesting 

a complex relationship between stimulus strength (e.g., rate of light change) and length of 

time over which the light stimulus was applied, in producing a characteristic stimulus- 

activity response. Overall, larger changes in locomotor activity occurred with larger rates,
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and smaller changes in locomotor activity occurred with more steps (Fig. 17). The shape 

of the relationship between the magnitude of the activity change and the length of the light- 

decrease steps suggests that there may be an optimal length of time (-40-60 min) that can 

trigger the largest, sustained changes in locomotor activity (Fig. 17). Because locomotor 

activity failed to increase in the DARK period at the shortest steps (10 and 14 min, S = -2.5 

and -3.6 x 10'3 sec'1, respectively; Fig. 17), the role of light intensity as the primary 

control of diel activity changes was again not supported.
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Figure 16. Response curves of locomotor activity during each light phase for the multiple-step 
experiments, (a). Locomotor activity during each of the experiments for which light was decreased over 
two separate periods (DECRS-1, DECRS-2), interspersed with a 90-min period of no light change 
(LOW-1). Following the 60-min DARK period, light was then increased over two separate periods 
(INCRS-1, ENCRS-2) interspersed with a 90-min period of no light change (HI-1), (b). Locomotor 
activity during each of the experiments for which light was decreased over four separate periods 
(DECRS-1, DECRS-2, DECRS-3, DECRS-4), interspersed with 90-min periods of no light change 
(LOW-1, LOW-2, LOW-3). Light increase following the DARK period took place over four separate 
periods (INCRS-1, INCRS-2, INCRS-3, INCRS-4) interspersed with 90-min periods of no light change 
(HI-1, HI-2, HI-3). Due to a power failure, the light increase phases were not recorded for the 4-step 
experiment at the largest rate of change, S = ± 3.6 x 10'3 s'1. Shaded areas represent the light 
environment during the periods of no light change. Error bars are ± 1 SD.
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Figure 17. Relationship between the length of each light-decrease step and the change in 
locomotor activity as a consequence of the complete 4 log-unit decrease in light intensity. 
The data were fitted to a two-degree polynomial (R2 = .66 , p < 0.03, n = 8). The shaded 
point (representing the 2-step experiment when S = -1.7 x 10'3 s'1; see Fig. 16a) was not 
included in the fit of the line because the value of standardized residual was > 3 SD from 
zero (Neter et al. 1990). Symbols represent the rates of light decrease: S = -3.6 (A), -2.5 
(+) and -1.7 (X) x 10‘3 s '1. Values in parentheses indicate the number of light-decrease 
steps.
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TABLE V. Analysis of variance with repeated measures3 for the effects of number of 
steps, the length of each step (min) and the rate of light change (S) for 
the discontinuous light-decrease experiments.

Source of Variation MS F df P

Between subjects
S 15.19 1.81 I 0.24
Steplength 34.22 4.08 1 0.10
S x Steplength 72.50 8.65 I 0.03
Error 41.89 5

Within subjects
Time 2.53 0.41 I 0.55
Time x S 5.14 0.84 I 0.40
Time x Steplength 15.35 2.51 I 0.17
Time x S x Steplength 37.08 6.05 1 0.06
Error(Time) 6.13 5

BLOCKED BY NUMBER OF STEPS
Between subjects

Steps 38.98 11.17 2 0.04
Steplength 1.08 0.31 I 0.62
Steps x Steplength 22.75 6.52 2 0.08
Error 3.49 3

Within subjects
Time 21.00 6.56 1 0.08
Time x Steplength 1.08 0.34 1 0.60
Time x Steps 29.07 9.08 2 0.05
Time x Steplength x Steps 11.32 3.53 2 0.16
Error(Time) 3.20 3

BLOCKED BY S CLASS6
Between subjects

S Class 4.58 0.30 2 0.76
Steplength 121.24 7.93 1 0.07
S Class x Steplength 29.85 1.95 2 0.29
Error 15.29 3

Within subjects
Time 7.29 1.28 1 0.34
Time x Steplength 87.04 15.29 1 0.03
Time x S Class 7.73 1.36 2 0.38
Time x Steplength x S Class 24.73 4.34 2 0.13
ErrorCTIme) 5.69 3

'Repeated measures (time) = average locomotor activity during the BRITE and DARK phases.
The three applied rates of light change, S = ± 1.7,2.5 and 3.6 x 103 s'1, were used as class variables.
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Timing (Latent Period)

The lengths of individual light decrease steps were a few minutes longer than the 

baseline estimates of the latent periods (see Fig. 5) in the 2-step experiments, but were 

shorter than the estimated latent periods in the 4-step experiments. Characteristic latent 

periods in which light stimulus was built up were supported, and during the 4-step 

experiments, the light stimulus was not applied over a long enough period of time to elicit 

the response.

During the 2-step experiments, the length of the latent period between the beginning 

of the initial light decrease and the onset of heightened locomotor activity was estimated as 

22.2 ± 3.6 min ± SE at the Ringelberg stimulus (S = -1.7 x 10'3 s'1), and 22.0 ± 6.7 and 

16.6 ± 2.7 min ± SE at the two larger rates of light decrease, S = -2.5 and -3.6 x 10'3 s'1, 

respectively. Predictions calculated from the baseline model (equation of Fig. 5) were 

37.7, 28.0 and 21.0 min. The measured latent periods were all somewhat shorter than 

those predicted by the baseline model, more so at the Ringelberg stimulus (15.5 min) than 

for the two larger rates (6.0 and 4.4 at S = -2.5 and -3.6 x 10'3 s'1, respectively). The 

estimates at the two larger rates were within the 95% confidence interval of the baseline, 

whereas the estimate at the Ringelberg stimulus was not, suggesting that the response is 

more synchronous at larger rates of light decrease, and thus at stronger stimuli.

Magnitude o f  the Activity Change

The amount of change in locomotor activity was also expected to be a function of 

both rate of light decrease and the amount of time over which the light decrease took place. 

Once the stimulus-activity response was activated, (e.g., during the 2-step experiments), 

changes in locomotor activity following each light-decrease step did occur and were smaller 

than the changes in locomotor activity observed during the 1-step experiments (example, 

see Fig. 15 a, b). The direction of the activity change following each step was as expected 

for the two larger rates, but not for the Ringelberg stimulus, in which all of the activity
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increase took place following the initial light-decrease step (Fig. 18). The magnitude of the 

actual activity changes were compared with those predicted by the baseline relationship 

(equation of Fig. 8) for each rate of light change tested (Table VI). The expected and actual 

activity changes were not significantly different for the first light-decrease step (Stepl, 

Table VI), but the actual activity change was somewhat lower than expected (p < 0.07) for 

the second light-decrease phase (Step2, Table VI). In every case, more of the activity 

increase took place during the first step (BRITE to LOW-1) than during the second step 

(LOW-1 to DARK), suggesting that once the response is triggered, further reduction in 

light at that rate of light change has a lesser effect.

TABLE VI. Comparison of the magnitude of locomotor activity following each light- 
decrease step and that predicted by the baseline model for the two-step 
experiments.

Rate of 
light 

decrease 
S (s'1 x 103)

Locomotor-activity A 
between phases 

(mm nymph'1 min'1)

Expected Aa 
(mm nymph'1 

min'1)

Difference 
(actual - 

expected)
t-Ratio (p > t; p < t)h 

[DF = 2]
Stepl A = L0W1 - BRITE 0.52 (0.3; 0.7)
1.7 7.8 4.0 3.8
2.5 3.0 4.7 -1.7
3.6 5.7 5.3 0.4
Step2 A = DARK-LOW 1 -2.40 (0.9; 0.07)
1.7 -7.4 4.0 -11.4
2.5 1.4 4.7 -3.3
3.6 1.5 5.3 -3.8

“Expected differences (A) are those estimated using the equation in Fig. 8 for each rate of light decrease (S). 
'’Paired t-tests were performed on the actual and the expected differences in locomotor activity for all rates of 

light change combined for each light-decrease step.
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Figure 18. Comparison of locomotor activity following each phase of light change in the 
two-step experiments. Bars represent mean locomotor activity ± SE during the BR1TE- 
adaptation phase, the 90 min interval (LOW-1) following the first light-decrease phase, the 
DARK phase following the second light-decrease phase, and the 90 min interval (HI-1) 
following the first light-increase phase. Locomotor activity during adjacent phases that are 
significantly different from each other (p < 0.05, ANOVA) are underlined.
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Movement Between the Substrate Surfaces

Significantly fewer nymphs were visible during the DARK phase than during the 

BRITE phase in both the 2- and 4-step experiments (p < 0.0001, F512 = 19.3, Fig. 19). 

Repeated measures ANOVA of the BRITE and DARK periods detected an interaction 

between Time x Rate of Light Change within subjects (p < 0.05, Fi6 = 5.1) that was 

attributed to significantly higher numbers of nymphs leaving the tile undersides at the 

Ringelberg stimulus, regardless of number of light-decrease steps (7.5 ± 0.3 nymphs ± SE 

compared to 5.5 ±1.0 and 4.5 ± 0.6 at S = -2.5 and -3.6 x 10'3 s'1, respectively). There 

were no differences detected between or within subjects that could be attributed to the 

number of light-decrease steps (p = 0.88, F16 = 0.93). Numbers of nymphs visible on the 

tile undersides were examined during the intervals of no light change to determine during 

which light-phase the majority of leaving took place during the 2- and 4-step experiments 

(Fig. 19). Most nymphs left following the first light-decrease phase (DECRS-1), even in 

the 4-step experiments when the length of the light-decrease phase was shorter than the 

latent period for the stimulus-activity response. Also, in the 4-step experiments, nymphs 

continued to leave during the second light-decrease phase (DECRS-2), and fewer left 

thereafter (Fig. 19b).

The delay between the beginning of the light decrease and the moment nymphs 

began to leave the tile undersides was measured for all of the step experiments at each rate 

of light change as 18.7 ± 4.4 min ± SE at the Ringelberg stimulus, and 9.3 ±1.8 and 11.7 

± 1.2 min ± SE at S = -2.5 and -3.6 x 10"3 s '1, respectively. Although the delay was 

shorter at the two larger rates, the differences were not significant (p = 0.13, Fi6 = 3.0). 

There was no significant effect of number of steps (p = 0.57, Fi6 = 0.6) on the length of 

the delay (10.3 ± 0.3, 13.3 ± 5.5, and 16.0 ±3.1 min ±  SE at one, two and four steps, 

respectively), although there was a trend towards longer delays with shorter periods of 

light decrease. The lengths of the delay compared to those estimated from the baseline
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model (see Fig. 12) were significantly shorter (p «  0.05, t-Test), by 22.4 ± 1.0 min ± SE 

at the Ringelberg stimulus, and 19.9 ± 3.7 and 7.1 ± 2.2 min ± SE at S = -2.5 and -3.6 x 

10° s'1, respectively. Smaller differences between the expected and the actual delays at 

larger rates of light change suggest that the likelihood an individual will exhibit phototactic 

movement increases at stronger stimuli. All step experiments were performed in the PM, 

and significandy earlier onsets of leaving the tile undersides than those estimated by the 

baseline model, which was produced from AM experiments, suggest an effect of the 

endogenous clock.

Results from the step experiments indicate that there are different mechanisms by 

which relative light change controls locomotor activity and vertical movements between the 

substrates. There are different requirements for which the duration of a light stimulus can 

elicit a locomotor activity response or a phototactic response. Although the baseline 

relationships indicated that the locomotor activity response was more sensitive to light 

stimulus than was the phototactic response, results of the step experiments suggest that the 

phototactic response may not be as dependent on the length of time over which a light 

stimulus is applied as is the locomotor activity response.
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Figure 19. Response curves of nymph movements between the substrate surfaces during each light phase 
for the multiple step experiments, (a). Number of nymphs visible on the lower tile surfaces during each 
of the 2-step experiments, (b). Number of nymphs visible on the lower tile surfaces during each of the 
4-step experiments. Light phases are as in Fig. 16. Shaded areas represent the light environment during 
the periods of no light change. Error bars are ± 1 SD.
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Discussion

Relative change in light intensity was the most important environmental cue 

initiating changes in locomotor activity and vertical movements on the substrate in nymphs 

of the mayfly, Stenonema modestum, prevailing over the influence of either time of day or 

absolute light intensity. Light manipulations carried out over equivalent ranges of light 

intensities, in which the dominant variable was the rate of relative light change, elicited 

increases in locomotor activity for which the timing, magnitude, and time-course of the 

initial peak in activity corresponded to the rate at which the light changes took place. 

Responses proportional to the rate of light change, or the stimulus strength, strongly 

support relative light change as a regulator of locomotor activity (the photokinetic activity) 

as well as a cue for the diel activity cycle. In addition, relative light change provides the 

releasing stimulus allowing nymphs to leave the substrate undersides (the phototactic 

activity).

Relative light change has been described in regulating the swimming velocity and 

vertical swimming direction during evening twilight of two other aquatic genera, the water 

flea, Daphnia (Ringelberg 1964; Buchanan and Haney 1980), and the phantom midge, 

Chaoborus (Haney et al. 1990), indicating that relative light change is useful in both 

regulating locomotor activity and as a cue initiating phototactic movements in other aquatic 

organisms. Specific aspects of the response to such a light stimulus may have different 

purposes in each species, resulting in the observed differences in the timing of the 

response, the minimum rate of light change capable of eliciting the response, or in the 

particular behavior that is being regulated. For example, the length of the latent periods, 

the amount of time between the light stimulus and the initiation of a change in behavior, 

were much longer in Stenonema than recorded for Daphnia magna (Ringelberg 1964), for 

which delays were estimated in seconds rather than in minutes. Comparable latent periods
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to those for Stenonema mayflies have been measured for the onset of daily flight of the 

nocturnal moth, Plusia gamma (data from Dreisig’s Fig. 6, 1980), suggesting that a wide 

range in the length of latent periods in response to a common light stimulus may be 

prevalent among different species. The estimated 6.0 x 10a s'1 minimum rate of light 

change capable of eliciting the phototactic response in Stenonema was however, very 

similar to the 6.7 to 8.3 x 10-4 s'1 estimated for initiating the phototactic swimming response 

in Daphnia (Ringelberg 1964,1991b), even though daphnids may have to swim upwards 

over considerable distances to reach their food source whereas the distance over a rock 

surface that mayflies must travel to reach their food source may be much shorter. It is 

remarkable that despite the many differences in the environments in which stream insects 

(Stenonema) and zooplankton (Daphnia and Chaoborus) live, vertical movements within 

those environments have similar adaptive consequences for each group, and adaptive goals, 

such as maximizing food availability while minimizing threat of predation, can be reached 

using the same light cues. Differences between species in the latent periods subsequent to 

the light stimulus probably reflect habitat differences and the different adaptive strategies 

necessary for success in those habitats.

A light response in organisms that exhibit periodic behaviors should function as an 

exogenous timekeeper capable of predicting the daily onset of darkness or light. The 

strength-duration relationships between rate of light change and the timing of heightened 

locomotor activity and vertical movements to the upper substrate surfaces suggest that the 

build-up of an excitatory state is the physiological basis of the periodicity in the behaviors 

and that the buildup over time may then be used as the exogenous timekeeper. Changes in 

light intensity during twilight are exponential with time (Ringelberg 1964, Dreisig 1980, 

Haney et al. 1983, Grace 1990), making relative light change a very reliable predictor of 

the light environment of the immediate future, and therefore a valuable external cue for 

timekeeping. Furthermore, relative light change is not altered by differences in the value of 

the beginning light intensity (Ringelberg 1964, Haney et al. 1983, Grace 1990, Baldwin
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1993), making it an excellent cue in different environments such as lakes and streams, 

particularly streams, where the light intensity under any given rock depends on such local 

effects as shading, channel depth, and angle from the sun. Such an exogenous timekeeper 

would be successful in nature, as stronger stimuli are associated with a more imminent 

onset of darkness at evening twilight or of light at morning twilight, than are weaker 

stimuli. In stream invertebrates, longer latent periods due to a longer buildup period prior 

to initiating a response at weaker stimuli protect the animal from behavioral changes at 

inappropriate times.

The influence of the endogenous clock on the mechanism that measures light 

stimulus appears to be unequal for the photokinetic locomotor activity and the phototactic 

movements between the substrate surfaces. At any particular rate of light decrease, the 

magnitude of the change in locomotor activity following the light decrease was somewhat 

enhanced in the PM as expected, but contrary to the STAR prediction, there was no 

advance in the timing of heightened locomotor activity that would indicate greater 

sensitivity to a light change. However, vertical movements between the substrate surfaces 

were initiated earlier in the PM and significantly more nymphs left the tile undersides in the 

PM than in the AM, suggesting that these movements are more strongly influenced by an 

endogenous cycle. This conflicts directly with Elliott’s (1968) conclusion that vertical 

movements in Baetis rhodani kept for 8 days in continuous darkness were strictly 

phototactic, but was indicated for Stenonema modestum kept in light reduced by 3 log units 

during tests of the PK-PT model (Grace 1990). In both species, weak diel cycles in 

vertical location on the substrates were maintained. Vertical movements on the substrate 

are probably primarily driven by hunger (Wiley and Kohler 1981, Kohler 1984, Glozier 

and Culp 1989), although diel changes in oxygen levels have been related to positioning 

changes in lake (Rahel and Kolar 1990) and stream-dwelling mayflies (Wiley and Kohler 

1980), and caddisflies (Kovalak 1976). During tests of the STAR model, there were no 

diel fluctuations the controlled physical environment in the laboratory stream; in particular,
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oxygen saturation was maintained around 93%, indicating that oxygen stress was not a 

factor in positioning on the substrate in this study. Because the level of hunger was greater 

in the PM than in the AM (Stenonema feed in darkness but were collected early in the 

morning), and there were no diel fluctuations in the controlled physical environment in the 

laboratory stream, the enhancement of the response may have been related to hunger rather 

than directly driven by an endogenous cycle.

Light intensity, although not supported as the primary regulator of diel locomotor 

activity and vertical movements on the substrate in Stenonema, did influence the timing of 

locomotor activity changes. Nymphs adapted at reduced light were quicker to respond to 

equivalent relative light changes than those adapted at a noontime light intensity. Such 

advancements in timing of nocturnal activity, such as drift in stream invertebrates (Haney et 

al. 1983, Baldwin 1993), and flight times of nocturnal moths (Edwards 1962) have been 

reported, suggesting that reduced light intensity may signal that conditions are appropriate 

for the activity change.

The most striking effect of light intensity, however, was not in the response to the 

light decrease, but in the response to the subsequent period of light increase. Activity of 

the dark-adapted nymphs did not return to the initial level, as was the case for the bright- 

adapted nymphs. If locomotor activity is strictly regulated by relative light change, then the 

levels of beginning and ending light intensity should have no effect on the activity 

response-curve, which was not the case. Light intensity has recently been implicated in the 

regulation of the circadian clock controlling locomotor activity in the fruit fly, Drosophila 

melanogaster (Lee et al. 1996, Myers et al. 1996). The clock is regulated by two proteins, 

TIM and PER, that must form a complex to be effective. Both TIM and PER are produced 

cyclically, but TIM is rapidly degraded by light, regardless of where in the cycle the light is 

applied. The light-induced destruction of TIM causes a rapid breakdown of the TTM-PER 

complex and subsequent resetting of the circadian pacemaker (Barinaga 1996). In my 

reduced-light experiments, the adaptation light level was comparable to the illumination
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level at local sunset ( -  4-6 x 10'6 W cm'2). If a similar regulatory system operates in 

mayflies, the failure of nymphs in reduced light to lower their activity during the light- 

increase phase may have been a result of an ending light intensity that was too low to reset 

the circadian clock.

Regulatory pathways comparable to the TIM-PER complex in fruit flies may exist 

in other insects, as suggested by the pacemaker system that controls circadian flight activity 

in the mosquito, Culex pipiens (Jones 1982). The system consists of two pacemakers, 

labeled as labile and stable, that show differential responses to light intensity and may 

represent a variation of the fruit fly TIM-PER regulatory pathway. Continuing research in 

the physiological basis of circadian rhythms in insects will certainly yield new insights into 

the mechanisms by which relative light change controls diel behaviors.

Currently, the process by which relative light change and the duration of twilight 

combine to produce characteristic patterns in locomotor activity is not entirely clear. In the 

step experiments, the expected change in locomotor activity following periods of partial 

light decrease should have been smaller as the length of time over which the light decrease 

took place was shortened. In the 2-step experiments, locomotor activity increased as 

expected, following both light-decrease phases, and the magnitude of each activity change 

was smaller than the change in activity when the entire decrease in light was uninterrupted, 

as in the 1-step experiments. It was not expected that the change in activity would be larger 

following the initial phase than following the second light-decrease phase. Because the 90- 

min interval periods were not long enough for the initial reaction to fade away, subsequent 

responses were not independent. The subsequent responses varied by stimulus strength, 

and at the larger stimuli, the change in activity following the second light-decrease phase 

was sharper than the initial reaction, but faded away much more quickly. This suggests 

that both the magnitude and time-course of the stimulus-activity response are not simply 

multiplications of rate of light change and time interval, but are also dependent on light 

history. This is in concordance with alterations in the light response of Daphnia magna
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(Daan and Ringelberg 1969), larvae of the estuarine crab Rhithropanopeus harrisii 

(Forward 1985), the copepod Acartia tonsa (Steams and Forward 1984), and several 

species of terrestrial moths, (Edwards 1962, Dreisig 1980) under different light-history 

regimes.

Periods of light decrease as short as 10 minutes resulted in significant migrations 

away from the tile undersides, and when the completion of the light-decrease was broken 

up into discrete phases, the majority of nymphs that responded did so during the initial 

phase of light decrease. Similar behavior was shown in the onset of flight activity of the 

nocturnal moth, Plusia gamma (Dreisig 1980). When exposed to discontinuous periods of 

light decrease, the distribution of flight onsets rose steeply just after the initial light change 

and then more gradually (Dreisig 1980). P. gamma also responded to instantaneous 

changes in light, but there was a characteristic delay of approximately 7 minutes. This 

compares to the 6 to 14-minute delays estimated for Stenonema at the two larger stimuli in 

the 4-step experiments, and is probably indicative of a minimum reaction time in both 

species. It is not clear if the strength-duration curve between rate of light change and the 

timing of leaving the substrate undersides that was defined over an uninterrupted period of 

light decrease can be applied during periods of fluctuating light intensity. Contrary to the 

predictions of Elliott (1968) and Haney etal. (1983) that individuals become activated prior 

to leaving the substrate undersides, there appears to be no mandatory sequence between the 

cycle of locomotor activity and the movements between the substrates in Stenonema, as 

there were significant movements away from the tile undersides following periods of light 

change that were too short to trigger the locomotor activity response. Thus, nymphs left 

the substrate undersides without increasing their level of locomotor activity, suggesting that 

these two activities serve different adaptive purposes.

Sensitivity to light history, light intensity, and short-term fluctuations in light 

complicate attempts to predict in nature precisely when behavioral changes will take place 

and how pronounced the changes will be. Large scatter in the onset of nocturnal activity on
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the same evening within a population is widespread. For example, large dispersion in the 

onset of DVM and the distribution of the population in the water column of Chaoborus 

(Haney et al. 1990) and Daphnia (Ringelberg et al. 1991a), in the onset of stream 

invertebrate drift (Haney et al. 1983), and in the onset of flight in nocturnal moths (Dreisig 

1980) and birds (Daan and Aschoff 1975) have been recorded. Differences in the 

probability that an individual will express a particular behavior in response to an external 

cue depends on internal factors, such as individual variations in level of hunger or genetic 

differences that result in differences in the endogenous rhythm, and external factors, 

including food conditions, and immediate risk of predation (Dill 1987, Ringelberg et al. 

1991a). Fluctuations in the light environment can compound these multiple individual 

differences and result in greater dispersion of the response over time. For example, 

cloudiness near twilight may cause striking differences in patterns of an activity that is 

regulated by a stimulus-based activity response (examples, Grace 1990, Baldwin 1993). 

The results of the step experiments verify that nymphs will not increase their locomotor 

activity during abbreviated periods of light decrease, such as cloud events, when they are 

shorter than the latent period of the response. But changes in activity in response to cloud 

events long enough to trigger the stimulus-activity response, when combined with 

subsequent twilight period, may result in variable timing, magnitude and duration of diel 

activities.

Specific predictions of the STAR model regarding locomotor activity changes, 

vertical movements between the substrate surfaces, and light stimulus were supported. 

There were significant correlations between rate of light change and the timing of and the 

amount of the change in heightened locomotor activity, and the timing when nymphs began 

to leave the undersides of the substrate. Preliminary results indicate that the time-course of 

the initial peak of nocturnal activity was also a function of the rate of light change. 

Adaptation light intensity altered the timing of nocturnal locomotor activity, resulting in 

nymphs initiating their activity increase earlier in reduced light than in bright light.

106

with permission of the copyright owner. Further reproduction prohibited without permission.



Shortened periods of light decrease resulted in smaller changes in locomotor activity, 

indicating that both stimulus strength and duration are important in regulating locomotor 

activity. There were minimum time limits below which relative light changes did not elicit 

changes in locomotor activity, but no such limits were detected for leaving the tile 

undersides. Thus, mayflies may be able to take advantage of food resources on cloudy 

days by frequent movements to the upper substrate surface without having to also increase 

their metabolic rate. Perhaps the diel increase in locomotor activity protects mayflies from 

predation by actively foraging stoneflies, tactile predators that also feed at night (Peckarsky 

and Cowan 1995, Peckarsky 1996), rather than as a prerequisite to the onset of feeding 

(Chapter Three presents tests of the light response under different predation regimes).

Particular predictions of the STAR model that were not supported were those 

regarding the influence of the endogenous clock on the stimulus-activity response. There 

was little evidence that the endogenous clock influenced either the timing or change in 

nocturnal locomotor activity. However, the timing and numbers of nymphs that left the tile 

undersides were altered at different times of the day, suggesting that these movements may 

be influenced by an endogenous rhythm. The most unexpected result was the failure of 

locomotor activity to return to a low level during light increases, when nymphs had been 

adapted at a reduced light intensity, suggesting that there may physiological responses to 

light that play a role in regulating diel behaviors.

Geographical and seasonal differences in the angle at which the sun crosses the 

horizon cause the strength of the twilight light stimulus to vary seasonally and with latitude. 

The regulation of locomotor activity by a seasonally changing light stimulus has fitness 

consequences throughout the entire life-cycle of these organisms. Future modifications to 

the STAR model will include the effects of non-constant rates of light change typical of 

natural twilight, and external factors, such as food availability and predators, on the light 

response. The effect of light stimulus on the duration of nocturnal locomotor activity must
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be tested during dark periods long enough to represent normal nights in nature before any 

definitive conclusions regarding duration and light stimulus can be drawn.

Studies of relative light change as a control of diel cycles in aquatic species have 

been largely confined to diel vertical migration in plankton. This study demonstrates that 

relative changes in light intensity are an important regulator of the diel locomotor activity of 

a common mayfly species. S. modestum mayflies can be added to a small but growing list 

of aquatic organisms ([Daphnia, Chaoborus, and calanoid copepods), for which relative 

light change has been shown to influence diel behaviors (Hart and Allanson 1976, Steams 

and Forward 1984, Haney etal. 1990, Ringelberg 1991a, Ringelberg etal. 1991a). 

Interactions between species timed to the 24-hr light/dark cycle are widespread in lakes, 

streams, and marine systems; therefore it would be useful to examine the predictions of the 

STAR model with the full variety of aquatic prey, and their predators, both invertebrate and 

vertebrate.
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CHAPTER III

LOCOMOTOR ACTIVITY AND LOCATION ON THE SUBSTRATE 

OF STENONEMA MODESTUM  (EPHEMEROPTERA)

IN RESPONSE TO RELATIVE LIGHT CHANGE 

IN THE PRESENCE OF FISH ODORS AND STONEFLIES

Introduction

Light and predation are important proximate and ultimate factors influencing diel 

changes in locomotor activity, vertical location on the substrate, and drift in stream 

invertebrates. Of these activities, drift has been the most thoroughly studied (reviews by 

Waters 1972, Muller 1974, Brittain and Eikeland 1988). Drift in most taxa is primarily 

nocturnal and has been considered to be a fixed response to ambient light levels (Holt and 

Waters 1967, Bishop 1969, Chaston 1969, Glozier and Culp 1989). It has been proposed 

that this response evolved as a predator-avoidance strategy, in species such as mayflies, 

that are prey to visual-foraging fish (Allan et al. 1986, Flecker 1992). Recent findings that 

the numbers of mayflies drifting correspond to the density of visual-foraging drift-feeding 

fishes (Flecker 1992, Douglas et al. 1994, Forrester 1994), indicate that the drift response 

can change in response to changing predation pressure. In mayfly populations from 

naturally fishless streams, rapid shifts in aperiodic or weakly periodic drift to nocturnal 

drift in the presence of fish (Douglas et al. 1994, McIntosh and Townsend 1994), support 

predation as an important causal reason to drift, rather than purely as an evolutionary force 

from the past.
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Light strongly influences drift, as illustrated by the suppression of drift in 

continuous illumination and initiation of drift in artificial darkness (Holt and Waters 1967, 

Chaston 1968, Bishop 1969). However, the diel drift pattern has been shown to persist in 

continuous darkness, indicating an endogenous component. Endogenous activity cycles 

are common in insects (reviewed by Page 1985). An endogenous clock would serve to 

maintain the activity level on a 24 hr cycle, thus ensuring that an individual is in a state of 

readiness to perform the activity change in response to the appropriate external cue. 

Mayflies removed from fish streams continue diel cycles in drift under day/night 

illumination in the absence of predators (Flecker 1992, McIntosh and Townsend 1994, 

McIntosh and Peckarsky 1996), indicating that such internal and external controls may be 

in place. Once established, the diel cycle of activity appears to be maintained in individuals 

by a combination of external light control and an internal circadian clock. Local conditions, 

such as the risk of predation, are capable of altering an individual’s propensity to drift, and 

possibly to become more active and move to the exposed upper substrate surface to feed.

Factors affecting behaviors that may precede the drift response are also important, 

such as locomotor activity level and movement to the exposed upper surfaces of the 

substrate to feed (Kohler 1983, Glozier and Culp 1989, Grace 1990, Wilzbach 1990, Culp 

and Scrimgeour 1993, Cowan and Peckarsky 1994, Peckarsky 1996). Diel periodicity in 

mayfly locomotor activity and vertical position on the substrate are well established (Elliott 

1968, Kohler 1985, Malmqvist 1988, Glozier and Culp 1989, Cowan and Peckarsky 

1994, McIntosh and Peckarsky 1996). The diel periodicity in feeding and vertical position 

on the substrate in mayflies from fish inhabited and fishless streams has been shown to 

change in ways analogous to the changes reported for drift (Cowan and Peckarsky 1994, 

McIntosh and Townsend 1994), indicating that these diel behaviors are under similar 

controls.

The locomotor activity and vertical movements of S. modestum nymphs on artificial 

substrates have been examined in laboratory experiments designed to investigate the role of
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light as a proximate control of the diel activity of mayflies (Chapt II). Relative light 

change, defined as the rate at which light intensity changes over time (Ringelberg 1964, 

Ringelberg 1991b, Ringelberg et al. 1991a), appears to control the timing of both 

heightened locomotor activity on the substrate and vertical migrations away from the lower 

substrate surfaces during simulated twilight periods. Relative light change also regulates 

the amount of change in locomotor activity. This leads to heightened locomotor activity 

during the nighttime (Chapt. II). These relationships between rate of light change and 

locomotor activity form the basis of the Stimulus-based Timing and Activity Rate (STAR) 

model, that predicts linear correlations between relative changes in light intensity and the 

timing of diel changes in activity and location on the substrate, and the difference between 

daytime and nighttime levels of locomotor activity (Chapt. II). During lengthy periods of 

rapid light changes as occur during natural twilight, changes in locomotor activity are 

triggered after a characteristic delay during which an excitatory state is built up. The length 

of this so-called latent period is proportional to the strength of the light stimulus, defined as 

the rate at which the light is changing. At stronger stimuli, or larger rates of light change, 

the latent periods are shorter, and at weaker stimuli, or smaller rates of light change, the 

latent periods are longer. Because of this dependence of the length of the latent period on 

the strength of the stimulus, the STAR model predicts that organisms will not respond to 

abbreviated periods of light change such as occur during transient periods of cloudiness.

Because of the evidence that fish odor enhances the extent of diel behaviors in 

mayflies, the light response was initially tested in water that contained fish (Chapt. II). 

However, stream invertebrates are under multiple predation pressures. Other important 

predators, such as stoneflies, may also alter the activity response in mayflies. Small shifts 

in the timing of the activity change or mechanical interference related to encounters with 

tactile predators such as stoneflies are possible effects. Currently there is no evidence that 

mayflies alter their diel pattern of behavior in the presence of stoneflies (Peckarsky and 

Cowan 1995, Peckarsky 1996), although drift as a response to encounters with actively
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foraging stoneflies has been reported (Peckarsky 1980, Malmqvist and Sjostrom 1987, 

Peckarsky 1996). Stonefly nymphs are also prey of various fish (Moore and Gregory 

1988, Feltmate and Williams 1989), and their behavior may be altered in water with and 

without fish odors. Activity of predatory Megarcys stoneflies from a trout stream was 

reduced in the presence of trout odor in a recent study (Peckarsky and McIntosh 1997), an 

indication that fish odors influence stonefly behavior. If the behavior of stoneflies brings 

about changes in the behavior of the mayflies, then differences in stonefly behavior with 

and without fish odors should result in detectable differences in the behavior of the 

mayflies.

This study examines the light response of Stenonema modestum mayfly nymphs 

exposed to fish odors and stoneflies, separately and together, and predator-free water. 

These combinations were chosen because fish odor is capable of eliciting changes in diel 

behavior without confounding the effect from interference by mechanical interactions 

between predator and prey; in contrast, the most probable detectable effect of stoneflies 

would be due to physical encounters with the mayflies. The objectives of this study were 

to compare differences in the stimulus-activity responses, measured as the timing and 

magnitude of changes in mayfly locomotor activity, in response to relative changes in light 

to those predicted by the baseline relationships developed during initial tests of the STAR 

model (Chapt. II). Further, vertical movements on the substrate were examined to test for 

predator-mediated changes in timing and preference for a particular surface. Nymph 

movements were monitored over 1-minute time-intervals so that subtle differences in the 

timing of nocturnal locomotor activity and movement to the upper substrate surfaces could 

be detected.
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Methods

Experimental Design and Handling o f  Experimental Animals

Three replicates were performed for each of four treatments: no predators, fish 

water, stoneflies, and fish water + stoneflies (Table A.3 in the Appendix). The 

relationships between locomotor activity and relative changes in light defined by the 

Stimulus-based Timing and Activity Rate (STAR) model were developed in fish water 

(Chapt. II), and this treatment was considered as the reference. For each experiment, light 

was manipulated in sequence through the same four phases of a simulated light/dark cycle 

as the initial tests of the STAR model: (1) an adaptation period at the brightest light 

intensity (BRITE) of at least 60 min, (2) a period of light decrease (DECRS) at a constant 

rate of light change, (3) a 60-min dim-light adaptation period (DARK), and (4) a period of 

light increase (INCRS) at the same, but opposite rate of light change used to decrease the 

light.

Experiments were carried out in two channels of a clear acrylic laboratory stream 

(dimensions 0.15 m wide x 2.4 m long). Well water (18 ± 2.0 °C) was continuously 

filtered (150-mm net) and recirculated from a tank located at the lower end of the stream at a 

flow rate of 5 cm-sec'1 (O, saturation measured at 5 min intervals over an -24 hr period 

was 93 ± 4, % ± SD, n = 280). Stenonema nymphs (average length = 6.97 ± 0.73, mm ± 

SE, n = 144) were hand-picked daily from stones, avoiding last instars, from riffles located 

just below a dam in the 3rd order Oyster and Bellamy Rivers, in Durham and Madbury,

NH. Nymphs were used once to avoid unknown effects of light history on their behavior. 

Six nymphs were transferred to an unglazed tile situated in each of the two stream channels 

(10 x 10 x 0.5 cm, raised 0.5 cm above the streambed) by 1400 Eastern Standard Time 

(EST) and acclimated at the highest (BRITE-adaptation) light intensity. The light decrease 

(DECRS) phase commenced at about 1800 EST.
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For treatments to test the effects of fish odor, fish common to the area, two shiners 

(Notropis comutus) and two longnose dace (Rhinichthys cataractae), were taken from the 

Oyster River and kept in the water-recirculation tank. Density of fishes (2.5 fish m'2) was 

kept at the same level as for the initial tests of the STAR model (Chapter Two). Two-thirds 

of the volume of water in the tank was replaced with fresh water every week.

Large, predatory stoneflies, Paragnetina media (average headwidth = 3.90 ± 0.22 

mm ± SE, n = 5) were also collected from the Oyster River. Stoneflies were not 

particularly abundant in either river during the summer of 1996; therefore stoneflies were 

kept in pans of aerated water and used for multiple experiments over a period of ten days. 

Stoneflies thus retained were kept with a variety of small invertebrate prey as a source of 

food. The effects of light history on the stoneflies was not as much of a concern, because 

only their presence was required as a perceived threat to the mayflies. However, stoneflies 

used in an experiment were not used again for two days to allow them to spend 24 hours in 

a natural light regime before being subjected to another simulated light/dark cycle.

Stoneflies were placed on the tiles first and allowed to move to the undersides, after 

which the mayflies were placed on the tiles. This sequence was preferred as more mayflies 

remained on the tiles than did so when the mayflies were placed first followed by the 

stoneflies. One stonefly was placed on each tile. Stoneflies were placed on the same tiles 

with the mayflies because there was doubt that olfactory cues alone would produce 

detectable changes in the mayfly activities, although Stenonema fuscum have been shown 

to move away from areas of high chemical stimulus when placed downstream from 

Acroneuria lycorias stoneflies (Peckarsky 1980). A preliminary experiment in which 

stoneflies were placed on a rock immediately upstream from the experimental tiles did 

indicate that the activity of the mayflies was not altered until the stonefly appeared on the 

tile surface with the mayflies.

Stoneflies were allowed free range over the tiles and were not prevented from 

feeding. Several recordings over 24 hr periods in natural light taken between 1987 - 1997,
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revealed that Paragnetina nymphs taken from the Oyster River were most active during the 

nighttime and individual stoneflies consumed only one or two mayflies per evening, an 

indication that there would be few, if any mayflies consumed during the 60-min simulated 

“nighttime” periods. This was the case, as only one incident of successful predation was 

recorded during all six experiments with stoneflies.

As in all tests of the STAR model, the entire stream was enclosed in black plastic to 

block out all natural light. Four 500 W halogen lamps controlled by computer provided 

light (the system is described in detail in Chapt. I). Light intensity was sampled every 

second with a light sensor placed facing upwards adjacent to the tiles and mean values for 

every minute were calculated and saved on computer-disk. Illumination from two arrays of 

wide-angle GaAIAS infrared emitters (average power of 20 mW at peak width ± 50%, 940 

± 20 nm) allowed videotaping of the mayflies from underneath the tiles in the dark.

Ambient light intensity was manipulated between 7.9 x 10-4 W cm'2 and 1.2 x 10'7 

W cm'2. These values were chosen to simulate the summertime light environment between 

noontime and about 30 min after the period of largest light changes post-sunset. This range 

of illumination was adequate in eliciting responses in locomotor activity and migrations 

away from the tile undersides during the initial tests of the STAR model (Chapts. I, II).

Tests were carried out at one target rate of light change; S = ±  2.5 x 10'3 s'1. 

(Negative sign represents decreasing light and positive sign represents increasing light).

This value is larger than the Ringelberg stimulus value of -1.7xl0'3 s'1 defined as the 

minimum rate of light decrease, or smallest light stimulus, capable of initiating diel vertical 

migration (DVM) in the water flea, Daphnia (Ringelberg 1964, 1991b). At the particular 

light stimulus chosen, the estimated length of the simulated evening and morning twilight 

periods (DECRS and INCRS phases) was ~ 60 min, comparable to the length of local 

twilight during the summer (Old Farmer’s Almanac, 1988-1996). Therefore, the chosen 

rate of light change was both large enough to elicit a response in Stenonema and the time- 

period of light decrease resembled actual twilight. These efforts along with starting the
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light-decrease close to the beginning of local twilight, were undertaken to provide the best 

possible conditions that would elicit the anticipated responses.

Video-tapes were recorded in time-lapse from the tile undersides (recording speed = 

1 frame s'1, time compression = 1:72). Locomotor activity was measured as the distance 

moved by each nymph between consecutive video-frames captured at 30 s intervals. 

Individual nymphs were tracked by hand using the NIH-Image software package (NIH- 

Image v l .6 ,1996, the macro-language code is written out in Appendix B). One-minute- 

interval time-series of the average locomotor activity of the nymphs visible underneath the 

tiles were produced for each experiment from pooled data of individuals (see detailed 

methods in Chapt. II).

Data Analysis

Response Variables

Locomotor activity was expected to start out at a low level during the BRTTE- 

adaptation phase, increase during the DECRS phase, remain elevated during the DARK 

phase and decrease again during the INCRS phase. Numbers of nymphs visible beneath 

the tile surfaces were expected to be highest during the BRITE-adaptation phase, decline 

during the DECRS phase, remain low during the DARK phase, and increase during the 

INCRS phase. These expected responses were based on observed diel cycles in locomotor 

activity and vertical position on the substrate in Stenonema and other mayfly species (Elliott 

1968, Glozier and Culp 1989, Grace 1990, Chapt. II).

For each experiment, mean locomotor activity was calculated for each light phase.

Means for each light phase were compared between treatments with the Tukey-Kramer

multiple comparisons test (HSD). The means for all four light phases were used together

to define a response curve to light changes and as repeated-measures in a multi-variate

analysis of variance (e.g., the mean locomotor activity during each light phase was a

measurement of locomotor activity across time). Response variables tested among
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treatments included the differences in the shape of the response curves, the timing of the 

increase in locomotor activity, and the magnitude of the change in locomotor activity from 

before and after the light-decrease phase. Similar aggregation and analyses of the number 

of nymphs visible underneath the tiles during the artificial light/dark cycles were also 

performed. Statistical analyses were made with SAS (SAS Version 5, or JMP Version 

3.1.5, SAS Institute Inc., 1989-95).

Timing of the activity change was estimated from time-series data of individual 

nymphs as the latent period, or the length of time between the beginning of the light 

decrease and the moment when each individual’s locomotor activity rose above their 

BRITE-adaptation mean. Only activity increases that lasted for a minimum of 10 minutes 

(unless the nymph left the tile underside within 10 minutes of increased activity), were 

considered a response to the light decrease. Ten minutes has been shown to be the shortest 

amount of time necessary to elicit a response in S. modestum under cloud conditions in 

natural light (Grace 1990), and was considered to be a conservative estimate of the timing 

of the actual change in activity. These latent periods were estimated only for nymphs that 

were considered to be inactive during the BRITE-adaptation phase. Differences in the 

BRITE-adaptation behaviors of the nymphs were observed in all experiments and 

categorized into three types: non day-active (average activity < 6 mm min'1); day-active 

(average activity > 6 mm min'1); and other (either the nymph was not visible on the lower 

tile surface at all during the BRITE-adaptation period, or the nymph was visible during 

some portion of the BRITE-adaptation period, but left before the beginning of the light 

decrease). There is evidence that an individual’s state of excitement affects the expression 

of a light response, as in Daphnia (Daan and Ringelberg 1969), and in some nocturnal 

moths (Dreisig 1980). Individuals such as the day-active nymphs were already in a 

heightened state of excitement so would be less likely to respond with increased activity to 

a light stimulus. For this reason, data from non day-active individuals were used to 

estimate the timing of the locomotor activity response because their responses to decreasing
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light were very distinct compared with mayflies in the other classifications (illustrated in 

Chapter One). In the initial tests of the STAR model, correlations between rate of light 

decrease and the timing of the locomotor activity response were examined for time-series of 

individual non day-active nymphs and for the “population” (using the time-series of the 

averaged activity of data pooled for all nymphs). The shape of the relationships between 

rate of light decrease and the timing of the onset of heightened locomotor activity were the 

same, but significant differences (p < 0.05, ANCOVA) in the intercepts indicated that the 

timing of the increase in locomotor activity of the “population” was a few minutes earlier 

than the timing of the non day-active nymphs (Chapt. II). For this initial test of predator 

effects, individual data were considered a more sensitive comparison than the combined 

data. In future tests with larger numbers of mayflies, averaged data will be used in 

anticipation of testing the model predictions in the natural environment.

Estimates of the magnitude of the change in locomotor activity following the light 

decrease were made by subtracting the mean BRITE activity from the mean DARK activity 

for each experiment. The moment when nymphs began leaving the tile undersides was 

estimated using the technique outlined by Haney et al. (1983), as the mid-point between the 

first two of three points having decreasing numbers of nymphs below the BRITE- 

adaptation average.

Comparisons Between Treatments

Before the effects of treatments could be tested, it was necessary to determine if the 

responses of nymphs in the fish water were comparable to those in previous tests of the 

STAR model (cf. Chapt. II, the BRITE-noontime ambient/PM treatments). Both sets of 

experiments represent the same treatment (i.e., same illumination level during the BRITE- 

adaptation phase, same time of day that the light decrease began, and same predator 

regime), but the initial STAR tests were carried out in 1995 and the current study took place 

in 1996. Possible differences between years were considered. MANOVA performed for

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ail locomotor activity response variables (locomotor activity during the four light phases, 

and the difference in locomotor activity between the BRITE and DARK phases), was not 

significant (Pillai’s trace = 0.72, p = 0.6, F, 4 = 1.0), nor for all positioning response 

variables (Pillai’s trace = 0.98, p = 0.22, F ,A = 11.6), indicating that the 1996 fish water 

treatments were within the limits of the 1995 baseline STAR results described in Chapt. II.

Next, the percentages of nymphs in each activity class were compared between all 

treatments in the current study (Table I). Some differences were detected in the percentage 

of day-active nymphs and in the numbers of nymphs visible during the BRITE-adaptation 

phase. There were significantly fewer nymphs visible and a significantly smaller 

percentage of day-active nymphs in both treatments containing stoneflies (Table I), 

suggesting that mayflies were less likely to move to the tile undersides when a stonefly was 

already there or to be active in the presence of a stonefly. There were no significant 

differences in the percentage of non day-active nymphs by treatment (Table I), ensuring 

that the estimates of the latent periods for each treatment would be made from equivalent 

numbers of nymphs.

One effect of stoneflies was to chase the mayflies off the tile undersides. This 

activity resulted in lengthy periods in which there were no mayflies visible on the tile 

undersides, and consequently, zero locomotor activity. For comparison of activity levels, 

those time periods were subtracted from the number of minutes used to calculate the mean 

locomotor activity for each light phase, so that mean locomotor activity was estimated only 

from time periods when nymphs were underneath the tiles.

119

with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE I. Comparison of numbers of nymphs in each classification by treatment. Values
with different letters were significantly different from each other (a  = 0.05, 
Tukey-Kramer (HSD) mean separation test2). Classifications are defined in the 
text. The total number of nymphs per treatment was 36.

Treatment
Non day-active 

(%)
Day-active

(%)
Not visible 

(%)

Left prior to 
light decrease 

phase 
(%)

Fishwater (F) 41.7 ±4.8 a 19.4 ±2 .8  a 11.1 ± 7.4 a 27.8 ± 7.4 a
No Predators (N) 52.8 ±5.6 a 19.4 ±2 .8  a 11.1 ±5.6 a 16.7 ±4.8 a
Stoneflies (S) 33.3 ±4.8 a 5.6 ± 5.5 b 33.3 ± 4.8 b 27.8 ± 5.6 a
Mixed (SF) 33.3 ±9.6 a 8.4 ±4.8  a,b 33.3 ±4.8 b 25.0 ±8.3 a
“Data were arc-sine transformed.

Parameters o f  the STAR-Model Used in the Comparison

The average rate of light change that was applied over the entire DECRS and 

INCRS phases was calculated for each experiment from the light intensities measured at 1- 

minute intervals as:

I
c —J ~ 1________

n (from Ringelberg 1964) (1)

where, S = the rate of relative light change per second, I  = light intensity in W cm'2

at time period j  or j+1, n = total minutes of decreasing (or increasing) light, t = length of the

time-interval in s (in this study, t = 60 s).

The stimulus-activity responses predicted by the STAR model, measured as the

latent period during the light decrease phase and as the magnitude of the change in

locomotor activity from before and after the light decrease, were calculated for each

experiment from the baseline equations developed in Chapter Two:
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ln[latent period] = -1.32 - 0.776 x In | S | (R2= .93; p< 0.001; n = 14) (2)

magnitude of the change in locomotor activity = 15.39 + 1.79 x In IS I

(R2 = .38, p < 0.02, n = 14) (3)

where latent period is the length of time in minutes between the beginning of the 

light decrease phase and the onset of heightened locomotor activity, magnitude o f the 

change is the difference in the mean activity between the DARK and BRTTE phases in mm 

per minute, and S is the average applied rate of relative light change per second, calculated 

from Eq. (1). The STAR model assumes that the magnitude of the change in locomotor 

activity depends on both the strength of the light stimulus (the rate at which light changes), 

and the duration of time over which the light stimulus is applied (Chapt. Et). In the present 

study, both the range of light intensity and time-duration of the light decrease were the 

same as used to develop Eq. (3), therefore the baseline estimates of the magnitude of 

change in locomotor activity were used without modifications for shorter or longer periods 

of light decrease.

Tests of the STAR model using small numbers of nymphs were more appropriate to 

the locomotor activity response than to the timing of vertical movements on the substrate, 

because individual nymphs could be tracked, whereas fewer nymphs made it difficult to 

detect the time when nymphs began to leave the tile undersides. For this reason, 

comparison of location on the substrate between treatments was limited to the differences 

between the numbers of nymphs visible during each light phase and no attempt was made 

to compare the timing of leaving the substrate undersides with the STAR predictions 

(Chapt. II).
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Results

Locomotor-Activitv Response to Light Changes

Examination of the locomotor activity response curves of S. modestum nymphs 

during the artificial light/dark cycles revealed that nymphs responded to light decrease in all 

predator regimes, but there were treatment effects noticeable as differences in the shapes of 

the response curves (Fig. 1). Locomotor activity was higher during the BRITE-adaptation 

phase in fish water than in the other three treatments. Increased activity as a response to the 

light decrease (DECRS phase) was smaller in the no predator treatment than in fish water 

(Fig. 1). Once the stimulus-activity response was triggered during the DECRS phase and 

locomotor activity had increased, there were continued increases in the locomotor activity 

during the DARK-adaptation and light-increase (INCRS) phases in the stonefly treatment 

that were unrelated to changes in the light environment (Fig. 1). Locomotor activity also 

did not diminish in response to light increase (INCRS phase) in the fish water treatment as 

was the case in the no predator and mixed predator treatments (Fig. 1), indicating that 

locomotor activity was not controlled solely by relative light change.

Repeated measures ANOVA indicated no significant effect of either fish odor or 

stoneflies on the mayflies response to the light/dark cycle (Table II). There was, however, 

a significant interaction between the two predator regimes, Fish x Stonefly (Table II). This 

interaction resulted in depressed locomotor activity during the DARK and INCRS phases 

when both predators or no predators were present, compared to the heightened locomotor 

activity under single predator treatments (Fig. 1).

Light was a strong influence on locomotor activity within all treatments, as shown 

by the significant effect of Time (Table H). A significant interaction between Time x Fish x 

Stonefly suggests that the responses of the mayflies to light were altered in the different 

predator treatments, and that neither the presence or absence of fish odor alone or stoneflies
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alone was powerful enough to solely determine the response of the mayflies to light (Table 

II, Fig. 1), suggesting some facilitation was occurring between the predators.

Within the light decrease (DECRS) phase, the STAR model predicts that there 

should be a characteristic delay, or latent period, between the beginning of the light 

decrease and the moment when locomotor activity begins to increase (see Eq. 2 in the 

Methods). Differences between the observed and STAR-predicted latent periods were 

compared for the fish water treatment. The observed latent periods were 6.77 ± 0.8, min ± 

SE, earlier than predicted, a difference that was weakly significant (p < 0.07 that 6.77 min 

> 0.0 min, Wilcoxon Signed-Rank Test), suggesting that there was some variability in the 

timing between the original tests of the STAR model and the fish water treatments that did 

not alter the overall activity levels during the light phases.

Differences between the observed and STAR-predicted latent periods were 

compared by treatment to determine if nymphs began to move around earlier or later than 

predicted in the presence or absence of different predators. No significant differences 

(p = 0.28, F3 g = 1.5) between treatments were detected (Fig. 2). However, variability in 

the timing of the activity change within treatments was large, and the power of the test was 

low (power = 0.24), indicating that a significant difference would not be detected. There 

was a tendency for nymphs in the no-predator and mixed-predator treatments to leave later 

than nymphs in the fish water treatment, and this tendency was weakly significant between 

the fish water and the mixed predator treatments (p < 0.06, F, 4 = 6.5, power = 0.48), 

indicating that mayflies may indeed initiate locomotor activity later when in the presence of 

both fish odor and stoneflies than in the presence of fish odors alone.

The STAR model also predicts that the difference between daytime and nighttime 

locomotor activity in response to light decrease at a particular rate of light change will be a 

function of the rate of change (see Eq. 3 in the Methods). Differences in the observed and 

STAR-predicted changes in locomotor activity were not significantly different (p = 0.31,

F3 s = 1.4) for any of the treatments (Fig. 3). Here again the power of the test was low
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(power = 0.25), indicating that a significant difference probably would not be detected. Of 

the relationships developed between rate of light change and stimulus-activity response in 

S. modestum, the magnitude of the change in locomotor activity was the weakest (the 

correlation coefficient for the baseline relationship was significant, but not highly 

predictive, see Eq. 2 in the Methods). The comparison between predator treatments was 

confounded by a lack of a significant difference in locomotor activity between the BRITE 

and DARK phases in the fish water and no predator treatments (both p values > 0.05, 

ANOVA, data square-root transformed, see Fig. 1). Although the level of activity was 

significantly higher during the DECRS phases than during the BRITE-adaptation phases 

(Fig. 1), the baseline relationship was developed using differences between the locomotor 

activity during the BRTTE and DARK phases. Rapid decline in locomotor activity 

following the end of the light decrease may be indicative of response to predators that 

should be further investigated.

TABLE II. Analysis of variance with repeated measures1 table for the locomotor activity
response to the artificial light/dark cycle compared by treatment. Treatments 
were presence or absence of fish odors (Fish) and presence or absence of 
stoneflies (Stonefly). Data were square-root transformed.________________

Source of variation MS F df P
Between treatments Fish 23.9 1.8 1 0.2

Stonefly 0.8 0.1 1 0.8
Fish x Stonefly 290.8 21.8 1 0.002
Error 13.4 8

Within treatments Time 59.8 1.3 3 0.001
Time x Fish 7.5 0.7 3 0.6
Time x Stonefly 5.2 1.0 3 0.5
Time x Fish x Stonefly 32.0 7.4 3 0.019
Error (Time) 9.7 24

Repeated measures (Time) = average locomotor activity during the BRITE, DECRS, DARK, INCRS light 
phases.
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Figure 1. Response curves of the locomotor activity during the artificial light/dark cycles by treatment. 
Treatments are: fish water (F), no predators (N), stoneflies (S), and mixed fish water + stoneflies (FS). 
Bars are ± SE, (n=3). Mean separation tests (a = 0.05, Tukey-Kramer (HSD) multiple comparisons 
test) indicated that locomotor activity during the BRITE-adaptation phase was significantly higher in fish 
water than in the other three treatments; locomotor activity during the DARK phase was significantly 
higher in fish water than in the no predator treatment; and locomotor activity during the INCRS phase 
was significantly higher in the fish water and stonefly treatments vs. the mixed predator and no predator 
treatments.
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Figure 2. Comparison of differences between the observed and predicted length of the latent period, the 
amount of time between the light decrease and the beginning of heightened locomotor activity, by 
treatment. (Treatments are listed in Fig. 1). Negative values represent earlier onsets of heightened 
locomotor activity and positive values represent later onsets than predicted by the STAR model. At the 
target rate of light decrease, S = -2.5 x 10'3 s'1, the STAR-predicted latent period was 27.9 minutes. 
Values were not significantly different from each other (p < 0.05). Data are treatment means ± SE, (n=3).
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Figure 3. Comparison of differences between the observed and predicted magnitude of the change in 
locomotor activity from before and after the period of light decrease, calculated as mean DARK activity 
minus mean BRITE activity, by treatment (Treatments are listed in Fig. 1). Negative values represent a 
smaller change and positive values represent a larger change than predicted by the STAR model. At the 
target rate of light decrease, S = -2.5 x 10‘3 s'1, the STAR-predicted change in locomotor activity was 
4.66 mm nymph'1 min'1. Values were not significantly different from each other (p < 0.05). Data are 
treatment means ± SE, (n=3).
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Vertical Movements on the Substrate in Response to Light Changes

Nymphs began to leave the tile undersides during the DECRS phase of the artificial 

light/dark cycle in all treatments, as expected (Fig. 4). Numbers of nymphs visible during 

the DARK phases were significantly lower (p < 0.05, ANOVA) than numbers visible 

during the BRITE-adaptation phases in the two treatments without stoneflies, but 

differences were not significant in the two treatments containing stoneflies (Fig. 4). 

Nymphs did not return to the substrate undersides during the light-increase (INCRS) 

phase, contrary to that expected (Fig. 4). The same pattern of nymph movements during 

the artificial light/dark cycles were observed in the original tests of the STAR model 

(Chapter Two), and it was proposed that there may be an effect of the endogenous clock 

that inhibits mayflies from responding to increasing light by moving to the darker underside 

of the tiles after the much abbreviated artificial “nighttime” in these tests.

Within treatments, there were no significant interactions between predator regime 

and time (Table IH), indicating that the light response was stronger than the effect of 

predators on mayflies preference for a particular substrate surface. Between treatments, the 

presence or absence of stoneflies was the only significant effect on the numbers of nymphs 

underneath the tiles (Table HI). Mayflies avoided stoneflies and were less likely to utilize 

the lower tile surfaces during periods of high light intensity when the surface was occupied 

by a stonefly. The significant effect of stoneflies indicated that for movements between the 

substrate surfaces, the mayflies response to light change was the same regardless of the 

presence or absence of fish odors. Thereby, the two stonefly treatments (S and SF) and the 

two non-stonefly treatments (F and N) were combined for further analysis. Examination of 

the number of nymphs visible during the BRITE-adaptation phase in the combined 

treatments revealed significantly fewer nymphs visible (p < 0.02, F, 10 = 6.8 , ANOVA) 

when stoneflies were present than when stoneflies were absent. There were, however, no 

significant differences in the numbers of nymphs that left the tile undersides during the
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light-decrease period (p = 0.2, Fuo = 2.3), indicating that those mayflies that remained 

under the tiles with a stonefly were just as likely to leave the tile undersides in response to 

decreasing light as those mayflies that remained under the tiles with no stonefly.

TABLE ID. Analysis of variance with repeated measures1 table for the numbers of nymphs
visible underneath the tiles compared by treatment. Treatments were presence 
or absence of fish odors (Fish) and presence or absence of stoneflies 
(Stonefly). Data were square-root transformed.

Source of variation MS F df P
Within treatments Time 2.5 16.1 3 0.0001

Time x Fish 0.1 0.7 3 0.6
Time x Stonefly 0.1 0.9 3 0.4
Time x Fish x Stonefly 0.1 0.4 3 0.7
Error (Time) 0.2 24

Between treatments Fish 0.1 0.2 1 0.7
Stonefly 2.4 102.0 1 0.01
Fish x Stonefly 0.5 2.2 1 0.2
Error 0.2 8

aRepeated measures (Time) = average number of nymphs visible underneath the tiles during the BRITE, 
DECRS. DARK, INCRS light phases.
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Figure 4. Response curves of the number of nymphs visible on the tile undersides during 
the artificial light/dark cycles by treatment. (Treatments are listed in Fig. 1). The maximum 
possible number of nymphs visible during any light phase was 12. Bars are ± SE, (n=3). 
Mean separation tests (a  = 0.05, Tukey-Kramer (HSD) multiple comparisons test) 
indicated there were significantly fewer nymphs visible during the DECRS phase for the 
stonefly treatment than for the no predator treatment; and significandy fewer nymphs 
visible during the INCRS phase for the stonefly treatment than for the other three 
treatments. Data were square-root transformed.
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Time-series o f  Locomotor Activity and Vertical Movements on the Substrate

Examination of one time-series from each treatment demonstrates the variability in 

locomotor activity and vertical movements on the substrate of S. modestum and the 

differences between treatments (Fig. 5). Locomotor activity during the BRITE-adaptation 

phase fluctuated around a low value in all treatments (Fig. 5). When stoneflies were 

present, there were abrupt changes in mayfly locomotor activity during the three 

subsequent light phases that were not related to changes in light (Fig. 5, Stoneflies and 

Mixed predators). There were also periods when several nymphs left the tile undersides 

within 1 or 2 minutes during the DECRS period (Fig. 5, Mixed predators) or during the 

INCRS period (Fig. 5, Stoneflies), suggesting that the activity of the stoneflies may have 

been the cause of these abrupt mayfly movements.

Time-series of stonefly activity was examined to determine if the observed abrupt 

changes in mayfly activity were directly related to activity of the stoneflies (Fig. 6).

Stonefly behavior throughout the light/dark cycle was very similar to that of the mayflies. 

Stoneflies were quiescent during the BRITE-adaptation period, then became active during 

the DECRS period, and heightened locomotor activity continued through the DARK phase. 

In contrast to the pattern of activity in the mayflies, once activated, the stoneflies were 

extremely mobile, often traversing more than the entire width of a tile within a 1-minute 

interval (Fig. 6). Stoneflies did not appear to lower their activity during the INCRS phase, 

as the mayflies typically did. It was possible to track individual stoneflies through the 

entire light/dark cycle, revealing that the stoneflies spent long periods away from the tile 

undersides and presumably on top of the tiles, and cycled between the tile surfaces often, 

resulting in the abrupt changes in mayfly activity and in mayflies leaving the tile undersides 

over very short time intervals (Fig. 6).
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Figure 5. Sample time-series of locomotor activity and number of nymphs beneath the tiles for each 
treatment From left to right, the time-series represent the 60 min BRITE-adaptation period, the light 
decrease (DECRS) phase, the 60 min DARK-adaptadon period and the light increase (INCRS) phase. 
Shading represents the light environment. Timen= 1700 EST.
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Figure 6. Time-series of individual stoneflies and the average locomotor activity of mayflies underneath 
each tile in a mixed predator experiment. Filled areas below the zero line represent periods when there 
were no individuals, either mayflies (white areas) and/or stonefly (hatched areas) visible beneath the tile. 
Where hatching is not visible, that particular stonefly was visible, but inactive. For plotting purposes, 
distances moved by individual stoneflies were clipped above 75 mm min'1, but occasionally reached as 
high as 200 mm min'1. Shading represents the light environment. Time„= 1700 EST.
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Activity o f  the Stoneflies in Response to Light Change

The activity of the stoneflies with and without fish water was examined to 

determine if the stoneflies altered their behavior in fish water. There were no significant 

differences in the response curves between treatments (p = 0.75, F3, = 0.12, ANOVAR), 

indicating that there was no consistent difference in stonefly activity whether or not fish 

odor was present. There was a significant effect of Time (p <0.01, F3J = 28.0), 

indicating that stoneflies responded to the light changes. A significant interaction between 

Time x Treatment was detected (p < 0.02, F33 = 19.5), suggesting that stonefly activity 

during particular light phases of the artificial light/dark cycle was different depending on 

whether or not fish odor was present. However, differences in activity were not detected 

between individual light phases (p > 0.05, ANOVA), indicating that the interaction between 

time x treatment shown by the repeated measures test was not due to significant differences 

in locomotor activity between any one particular light phase, but by smaller differences 

during some of the light phases, such as the DARK and INCRS phases, not detectable by 

ANOVA (Fig. 7).

Because stoneflies became activated during the DECRS phase (Fig. 7), the latent 

period between the beginning of the light decrease and the onset of heightened activity was 

compared to that predicted for the mayflies by the STAR model (see Eq. 2). Latent periods 

were within 3 to 10 minutes of predicted, suggesting that stoneflies may also use relative 

light change as a timing cue. Stoneflies in the fish water treatment became active later 

(p = 0.06, power = 0.5) than stoneflies in well water without fish odor (Fig. 8a), and left 

the tile undersides significantly later (Fig. 8b), suggesting there were fish odor effects on 

the timing of both of these stonefly activities.
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Figure 7. Response curves of stonefly locomotor activity during the artificial light/dark 
cycles with (FS) and without (S) fish odors. Bars are ± SE, (n=3). Activity during each 
light phase was not significantly different (p < 0.05, ANOVA) between treatments.
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Figure 8. (a) Comparison of differences between the STAR-predicted latent period (the length of time 
between the beginning of the light decrease and the onset of heightened locomotor activity), and the 
observed latent period for stoneflies with (FS) and without (S) fish water. Negative value represents 
earlier onset of heightened locomotor activity and posidve value represents later onset than predicted. 
Differences were weakly significant (p < 0.06, ANOVA). (b) Comparison of the delay between the 
beginning of the light decrease and the moment when stoneflies left the tile undersides. Differences were 
significant (p < 0.046, ANOVA, data square-root transformed) between fish water treatments. Values 
are mean ± SE, (n=3).
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D iscussion

Responses of Stenonema to light stimulus, the relative change in light, were altered 

in the presence and absence of fish and stonefly predators. Although changes in light 

during natural twilight are not constant as they were during these tests, the baseline 

relationships developed to test the STAR model provided a benchmark from which changes 

in behavior could easily be assessed. Mayflies modified their behavior in response to 

chemical cues from the fish and mechanical cues from the stoneflies. Mayflies were more 

active in the fish water than in the other three treatments. If activities such as locomotion, 

feeding, and drift are under similar internal and external controls, then the increased activity 

during the simulated night in the presence of fish odors was expected, as nocturnal drift 

and feeding have been shown to increase in mayflies exposed to fish or fish odors (Cowan 

and Peckarsky 1994, Douglas et al. 1994, McIntosh and Townsend 1994, Tikkanen et al. 

1994).

A different result was observed when stoneflies were present. Mayflies initially 

avoided surfaces occupied by a stonefly, regardless of whether or not the stonefly was 

actively moving about. This is consistent with the reported avoidance by Stenonema 

fuscum of areas containing high chemical cues from caged Acroneuria lycorias stoneflies 

(Peckarsky 1980), and suggests that chemical cues from the stoneflies influence the 

preference for a particular substrate in mayflies. Once the mayflies were settled on the 

substrate, they were often situated on the tiles in positions downstream from the stoneflies, 

and locomotor activity was lower in the presence of stoneflies than in fish water alone. 

During the simulated twilight, the stoneflies began to move about and roam over both the 

lower and upper tile surfaces. The mayflies actively avoided the stoneflies, and there were 

abrupt changes in the locomotor activity of the mayflies that did not correspond with 

changes in light. The most prevalent stonefly avoidance strategy in Stenonema modestum

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



was crawling away from the stonefly rather than swimming or drifting as has been 

observed in some Baetis species (Peckarsky 1980, Malmqvist and Sjdstrom 1987). 

Peckarsky (1980) and Ode and Wissinger (1993) recorded similar behavior in Stenonema 

fuscum and Paraleptophlebia adoptiva, respectively, in response to Acroneuria spp. 

stoneflies. Ode and Wissinger (1993) noted that Paraleptophlebia adoptiva remained 

motionless in the presence of chemical cues from Acroneuria stoneflies and responded only 

to physical contact. Malmqvist (1992) also reported reduced activity of Baetis, and a 

caddisfly, Agepetus, in response to Dinocras stoneflies. These observations suggest that 

chemical cues or close proximity to a stonefly may not significantly disrupt the daytime 

activity of the mayflies, but mayflies lower their activity when situated on substrates 

occupied by stoneflies. In a natural stream, every rock does not harbor a stonefly, and the 

overall effect of the reduction of activity is not known, nor the fitness consequences of 

reduced daytime activity. However, avoidance of stoneflies has been related to reduced 

overall fitness of mayflies (Peckarsky etal. 1993, Peckarsky and McIntosh 1997), 

suggesting that reduced daytime activity does not compensate for energy consumed in 

avoiding stoneflies during the night. The short bursts of large increases in mayfly activity 

observed during treatments containing stoneflies did not translate into significantly higher 

locomotor activity during the simulated night periods, but such bursts of activity may 

consume more energy than when locomotor activity is sustained over a more consistent 

level, resulting in reduced fitness.

In the stonefly treatments, the latent period between the beginning of the light 

decrease and the onset of heightened locomotor activity in the mayflies was either a few 

minutes later or earlier than predicted, depending on whether the water also contained fish 

odors (later) or not (earlier). Although the differences in timing were not all significantly 

different, the same trend was observed in the timing of the onset of heightened locomotor 

activity in the stoneflies, suggesting that the activity of the stoneflies influenced the timing 

of the change in locomotor activity in the mayflies. If the lower daytime locomotor activity
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was a strategy by the mayflies to avoid disturbing and thus provoking an attack by the 

stoneflies, perhaps mayflies also wait to become active to avoid encounters with stoneflies. 

In the tests by Ode and Wissinger (1993), mayflies were more reactive to stonefly 

encounters in water that contained both stoneflies and stonefly odors than in water that 

contained only stoneflies, suggesting that mayflies are aware of the presence of stoneflies 

and react accordingly.

Differences in the activity response of stoneflies in the two treatments suggest that 

the behavior of the stoneflies may have been altered by fish odors. Strong similarities 

between mayflies and stoneflies in the timing of heightened locomotor activity in response 

to decreasing light suggest that behaviors in both prey and predator species are under a 

similar suite of controls. Diel periodicity in stonefly behavior, vertical location on the 

substrate, and feeding has been documented in some species including Dinocras 

(Malmqvist and Sjostrom 1980), Megarcys (Peckarsky and Cowan 1995) and Kogotus 

(Walde and Davies 1985, Peckarsky and Cowan 1995), although some stoneflies may feed 

during the daytime (Waide and Davies 1985, Feltmate and Williams 1989b, Peckarsky and 

Cowan 1995). Because the larger and more conspicuous stoneflies are also prey of visual- 

foraging fish (Allan 1981, Moore and Gregory 1988, Feltmate and Williams 1989a,

1989b, 1991), modification of their behavior by becoming active and leaving the refuge of 

the tile underside later in the presence of fish is consistent with a predator-avoidance 

strategy timed to the 24 hr light/dark cycle. Synergistic effects between stonefly and fish 

predators have been reported elsewhere (Soluk and Collins 1988a, 1988b, McIntosh and 

Peckarsky 1997), suggesting that particular predator-prey interactions may be modified 

depending on the assemblage of species that are present in a stream ecosystem, and 

interactions must therefore be assessed in the context of the larger environment.

Some understanding may come from observations from lakes and marine 

environments that suggest a similarity in the mechanisms by which predator and prey 

species in aquatic systems interact with each other. Diel vertical migration of zooplankton
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is an analogous example of a predator avoidance strategy timed to the 24 hr light/dark cycle 

(reviewed by Haney 1988). Predation regimes under which DVM is present or absent 

parallel those reported for the presence or absence of invertebrate drift in streams. DVM 

occurs in lakes containing planktivorous fish (Gliwicz 1986, Haney 1988), but not 

necessarily in fishless lakes (Gliwicz 1986). There are numerous examples of rapid 

induction of vertical migrations of prey species in freshwater and marine environments 

following the introduction of predators or water that had previously contained predators 

(Neill 1990, Bollens and Frost 1991, Ringelberg 1991a, 1991b, Forward and Rittschof 

1993, Loose 1993). The phototactic swimming response of the water flea, Daphnia, and 

the phantom midge, Chaoborus, is enhanced in water containing fish odors (Ringelberg 

1991a, 1991b, Tjossem 1990), as is the drift response in mayflies. Chaoborus, like 

stoneflies, are both predator and prey (Fedorenko 1975, Luecke 1986), and like stoneflies, 

their impact on the diel activity of their prey species (cladocerans and copepods), may be 

masked in lakes containing fish (review by Haney 1988).

This study demonstrated how interactions between predator and prey, and between 

predators, can alter the response of prey organisms to a strong environmental cue, such as 

the 24 hr light/dark cycle. Stoneflies, the tactile predators, were capable of overriding the 

preference of mayflies for the darkened surface of the substrate during daytime light 

conditions and disrupted their activity response to light by forcing the mayflies into actively 

avoiding encounters. In streams containing both stonefly and visual fish predators, the 

trade-offs between avoiding stoneflies and avoiding fish may be considerable. Synergistic 

effects between predators may override the effect of any single predator type on the overall 

response of the prey species in natural systems, where the implications of alterations in 

timing and amount of nocturnal activity, or positioning on substrates of mayflies have not 

yet been assessed. Predation also affects individual behavior and differences are 

recognizable as variability in observed activities. More knowledge about how organisms 

use relative changes in light as a daily cue to change their behavior, and how local
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environmental conditions can modify the timing or extent of the behavior change, is needed 

to fully understand how the interactions between internal and external cues in individuals 

combine to produce the observed behaviors of stream populations. Laboratory studies 

such as this one, can reveal detailed interactions between predators, prey, and light, 

important to understanding the function of the ecosystem.
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CHAPTER IV

PRELIMINARY EVALUATION OF THE PREDICTIONS OF THE

STAR  M ODEL

W ITH RESPECT TO DIEL ACTIVITY CYCLES OF NYMPHS OF THE

MAYFLY,

STENONEMA MODESTUM , IN NATURAL LIGHT

Introduction

The Stimulus-based Timing and Activity Rate Model (STAR) was developed to 

explain the mechanisms by which mayfly nymphs become active and move to the upper 

substrate surfaces to feed during evening twilight. The basis of the STAR model is that 

light stimulus regulates changes in locomotor activity on the lower substrate surfaces (a 

photokinetic response) and causes individuals to leave the darkened lower substrate 

surfaces and move to the brighter upper substrate surfaces (a phototactic response). Light 

stimulus is defined as the rate of relative light change, described by Ringelberg (1964). 

Relative changes in light are most pronounced and long-lasting during the twilight periods, 

and it is during twilight that largest changes in locomotor activity and vertical movements 

between substrate surfaces are observed (Kohler 1983, Allan etal. 1986, Casey 1987, 

Grace 1990, Wilzbach 1990).

According to the STAR model the timing and magnitude of nocturnal locomotor 

activity are determined during periods of light decrease by stimulus strength (measured as 

the rate at which light decrease takes place) combined with the length of time over which
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the light decrease takes place. The differences between the levels of daytime and nighttime 

activity is proportional to the strength of the stimulus (e.g., the magnitude of the change 

will be larger when the rate of light decrease is larger and vice-versa). These predictions 

were tested in Chapter Two and mathematical relationships were developed between rate of 

light decrease and both the timing of the onset of heightened locomotor activity and the 

magnitude of the change in activity as a consequence of light decrease. Similarly, the 

timing of migrations away from the tile undersides during periods of light decrease were 

correlated with the rate at which the light decreased.

Tests of the STAR model were carried out in the laboratory in an artificial light 

environment. During simulated twilight periods of artificial light/dark cycles, light changes 

were produced over a constant rate of light change, which resulted in the same relative 

change in light over the entire light decrease phase of the artificial light/dark cycle. During 

natural twilight, relative changes in light are not constant, but become larger as the sun 

approaches the horizon and thereafter the largest relative changes in light take place 

following sunset (Haney et al. 1983, Ringelberg 1991b, Ringelberg etal. 1991a). The 

objective of this chapter is to compare the stimulus-activity response predictions of the 

STAR model with activity changes of nymphs of the mayfly, Stenonema modestum, in 

natural light as a preparation to testing the model in the natural environment.
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M ethods

O verview

All observations were carried out in the Anadromous Fish and Aquatic Invertebrate 

Research Laboratory at the University of New Hampshire, in Durham. Two channels of a 

clear acrylic laboratory stream were used (0.15 m wide x 0.25 m high x 2.4 m long). A 

tank located at the lower end of the stream was filled with water that was recirculated at a 

rate of 5 cm sec'1 (241 min'1) and aerated by flowing over upstream barriers. Water depth 

in the channels was 10 cm. Well water (temperature controlled at 18 ± 2.0 °C by 

immersion coolers), plus fish odor (fish density = 2.5 fish m 2, two common shiners, 

Notropis comutus, and two longnose dace Rhinichthys cataractae, kept in the tank 

throughout the experimental period) was used during the artificial light/dark cycles, which 

were carried out in the summer of 1995. Oyster River water was used during the natural 

light experiments, which were carried out during 1987-1988. Temperature varied between 

the natural-light experiments and averaged 22.4 ± 0.1 °C ± SE (n = 297) in October 1987, 

12.6 ± 0.03 °C ± SE (n = 115) in February 1987, and 27.2 ± 0.1 °C ± SE (n = 54) in 

August 1988.

During the artificial light/dark cycles, the stream was completely enclosed in black 

plastic to ensure that light came only from the four halogen lamps located directly above the 

tiles (see Chapter One). Light intensity was manipulated between 7.9 x 10-4 W cm'2 and 

1.3 x 10'7 W cm'2. During the natural light experiments, floor-to-ceiling south-facing 

windows provided ambient light (see Grace 1990).

Tests of the STAR model used in this comparison were those that were carried out 

during the evening (light reduction began at 1800 EST), in which nymphs were placed on 

one large (10 x 10 x 0.5 cm) unglazed tile substrate and adapted for 1 hour to a noon-time
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ambient light intensity typical of July (n = 4). Natural light experiments (October, 

February, and August) were each carried out over three consecutive days and nights, and 

nymphs were placed on four small (5 x 5 x 0.5 cm separated by 0.5 cm) unglazed tile 

substrates.

Activity of the nymphs was recorded from underneath the tiles on time-lapse video 

(time compression was 1:120 in the natural-light experiments, and 1:72 in the artificial 

light/dark cycles). Locomotor activity was measured as the average distance moved per 

nymph during 1-minute intervals for the STAR model tests (see Chapt. I), and as the 

percentage of nymphs that moved during 10-min intervals for the natural-light experiments 

(Grace 1990). Detailed descriptions of the methods for measuring activity are located 

elsewhere (Chapt. I, Grace 1990). Comparisons of distance moved and percent active 

nymphs indicate that these two measures of activity are comparable when used for 

estimations of the timing of activity changes over the short time intervals tested (Fig. 1).

Rate of light change was calculated as:

c — ' '
At (1)

where S = rate of light change per second, /  = light intensity in W m'2 during time 

interval j  or j+I, and t = the time interval between light measurements in s (from Ringelberg 

1964).

Baseline Relationships in the STAR Model

Two of the stimulus-activity responses predicted by the STAR model were tested: 

the latent period during the light decrease phase and the magnitude of the change in 

locomotor activity from before and after the light decrease. The latent period is the length 

of time between the beginning of the light decrease and the onset of heightened locomotor 

activity; the magnitude of the change in locomotor activity is a measurement of the 

difference in average locomotor activity before and after the period of light decrease.
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Baseline relationships between the rate of light decrease and both of these response 

variables were developed in Chapt. II:

ln[latent period] = -1.32 - 0.776 x In | S | (R2 = .93; p< 0.001; n = 14) (2)

magnitude of the change in locomotor activity =

15.386 + 1.79 x In I S I (R2 = .38, p < 0.02, n = 14) (3)

where latent period is the length of time in minutes between the beginning of the 

light decrease phase and the onset of heightened locomotor activity, magnitude o f the 

change is the difference in the mean activity between the artificial night and artificial 

daytime phases in mm nymph'1 min'1, and S is the average applied rate of relative light 

change per second, calculated from Eq. (1). Both relationships can be applied to the 

natural light environment, but it will be important to carefully define the boundaries of each 

light phase (i.e., daytime, light decrease, and nighttime phases) before meaningful 

comparisons between dates can be made.

Vertical movements between the substrate surfaces were also correlated with the 

rate of light decrease (Chapt. II). There was a delay between the beginning of the light 

decrease and the moment when nymphs began to leave the tile undersides. A baseline 

relationship between the length of the delay and rate of light change was defined as:

ln[delay period] =-3.51-1.15 xln | S | (R2= .71; p< 0.004; n = 9) (4)

where delay period is the length of time in minutes between the beginning of the 

light decrease phase and the moment when nymphs began to leave the tile undersides, and 

S is the average applied rate of relative light change per second, calculated from Eq. (1).
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Because the rate of light change during natural twilight is not constant, a direct 

comparison of the timing of the change in locomotor activity and the rate of light decrease 

was not possible. However, because the expression of the behavior depends on an 

accumulation of light stimulus over time as indicated by the shape of the strength-duration 

curve, in which longer latent periods correspond to smaller rates of change and shorter 

latent periods correspond to larger rates of change (defined by Eq. 2 and illustrated in 

Chapt. II, Fig. 5), then it is possible to compare the amount of accumulated light stimulus 

at the onset of heightened locomotor activity under both constant and variable light stimuli. 

The accumulated light stimulus was calculated as:

LP
Slp = Z  Sj

i = l (5)

where the accumulated light stimulus between the beginning of the light 

decrease and the onset of nocturnal locomotor activity per second, j  = time-interval in 

minutes, IP  = the length of the latent period in minutes, and Sj = the light stimulus at time 

interval j, measured as the rate of light decrease per second during time interval j , from Eq. 

(1). A similar calculation was made to estimate the accumulated stimulus between the 

beginning of the light decrease and the moment when nymphs began to leave the tile 

undersides, by substituting the length of the delay period for IP , and summing the light 

stimuli over the delay period.
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R esults

Estimates of S^, the accumulated light stimulus prior to the onset of heightened 

nocturnal locomotor activity, were not significantly different (%2 = 10.9, p > X2 = 0.01,

3 df, Wilcoxon/Kruskal-Wallis test for different n sizes) between the STAR model tests 

and the natural-light experiments during August and October (Table I), suggesting that the 

timing of nocturnal activity may be a function of the amount of light stimulus accumulated 

during twilight. A significantly larger amount of stimulus was accumulated in February 

before nymphs initiated higher evening locomotor activity (Table I), suggesting that greater 

light stimuli are required to elicit a locomotor activity response in nymphs during the winter 

than during summer or fall.

Comparison of the magnitude of the activity change between the artificial light 

cycles and natural light was not as straightforward as for the timing of the nocturnal change 

in locomotor activity. This is because the magnitude of the change in locomotor activity is a 

function of both rate of light decrease and the amount of time over which the light decrease 

takes place (Chapt. II). The baseline curve (see Eq. 3 and Chapt. II, Fig. 8) was developed 

for absolute changes in light over a factor of 104, a subset of the actual range in natural light 

intensity (a range of about 1012, RCA 1968).

For this initial comparison, the magnitude of the change in locomotor activity was 

estimated for the data of Aug. 4,1988 (Fig. 1). The daytime level of locomotor activity 

was determined from a half-hour period before the rapid light changes (5:30 - 6:00 PM) 

and the nighttime value was determined from a half-hour period after the period of rapid 

changes (8:00 - 8:30 PM, Fig. 1). A change in activity of 10.1 mm was estimated between 

the daytime and nighttime values. This is considerably larger than that predicted by the 

STAR baseline relationship, where the maximum change in activity for large rates of light 

decrease, those greater than the maximum measured locally in natural twilight, was about
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7.5 mm (Chapt. H, Fig. 8), indicating that locomotor activity responses were greater 

during the natural light changes than in the artificial light changes.

The delay between the beginning of light decrease and the moment when nymphs 

began to leave the tile undersides was also correlated with rate of light change during tests 

of the STAR model (Eq. 4, Chapt. II Fig. 12), a demonstration that this phototactic 

response also requires the buildup of light stimulus prior to the expression of the behavior. 

The amount of light stimulus accumulated before nymphs left the tile undersides was 

compared between tests of the STAR model and natural-light experiments in August and 

October. Experiments in February were not included because very few nymphs left the tile 

undersides making the estimation of the timing difficult (Grace 1990). There were no 

significant differences between tests of the STAR model and the natural light experiments 

(X2 = 3.8, p > x 2 = 0.2, 2 df, Wilcoxon/Kruskal-Wallis test for different n sizes), 

suggesting that nymphs left the tile undersides after accumulating similar amounts of light 

stimulus during the light decrease phase in natural and artificial twilight.

TABLE I. Cumulative stimulus3 for three seasons in natural light and tests of the STAR 
model in artificial light. Means with different letters were significantly 
different by the Tukey-Kramer (HSD) multiple comparisons test (a  = 0.05).

Test Period

Locomotor Activity 
Response 

(SInx 103 s '1)

Leaving the Tile 
Undersides 

(S ,„ x l0 V ) nb
August -42.0 ± 1.8 a -60.2 ± 6.9 a 12
October -34.3 ± 4.0 a -56.5 ± 8.0 a 11
February -63.4 ± 7.7 b N/A 9
STAR model3 -36.0 ± 9.5 a -35.9 ± 5.8 a 4
‘See Eq. 1 for the method by which light stimulus (rate of light decrease, S,p) was accumulated. 
bDaily values are only reported for tiles that contained at least three nymphs (see Grace 1990). 
CSTAR model experiments used here are those labeled as “BRTTE-ambient/PM” in Chapt. n.
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Figure 1. Comparison of measurements of locomotor activity as distance moved over 1 - 
min intervals (— ), percent of nymphs visible underneath the tiles that moved during
1-min intervals (  ) and 10-min intervals (•). Data were originally analyzed at 10-min
intervals for another purpose, then re-analyzed at 1-min intervals for comparison with 
tests of the STAR model. Correlation between distance moved and percent active 
nymphs during the 1-min intervals was highly significant (R2 = .73, p < 0.0001, n = 179). 
Data were collected on August 4, 1988.
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D iscussion

A goal of this research is to apply the STAR model to the natural situation. 

Stenonema modestum nymphs appear to initiate nocturnal increases in locomotor activity 

after the accumulation of a particular amount of light stimulus, an environmental variable 

that is easily measured in the laboratory and in the field. There appear to be seasonal 

differences in the amount of light stimulus required to elicit a locomotor response, a result 

that is consistent with an earlier study (Grace 1990, Fig. A.l in the Appendix).

The relationship between the change in locomotor activity in response to light 

decrease and rate of light decrease is not simply a summation of light stimulus over time. 

During tests of the STAR model, increases in locomotor activity were shown to be 

proportional to the rate at which the light changed (Chapt. II), rather than solely the result 

of accumulated stimulus. If accumulated stimulus regulated the magnitude of the activity 

change, then the expected locomotor activity changes during the tests of the STAR model 

would have been equal, regardless of the rate of light change, because the light decrease 

during the model tests always occurred over the same range of light intensity, and thus, the 

accumulated light stimulus from the beginning to the end of the light decrease periods was 

always the same.

The much larger change in activity in natural light than that predicted by the baseline 

relationship suggests that there are other influences on nocturnal locomotor activity that are 

not present when light decrease occurs at a constant rate. Recent tests with Daphnia 

suggest that phototactic responses are enhanced when relative changes in light increase over 

time such as occurs during natural twilight (Ringelberg, pers. comm.). A similar response 

in Stenonema could explain the larger change in locomotor activity during natural twilight 

than during the tests of the STAR model.
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The baseline relationship between rate of light change and the magnitude of the 

stimulus-activity response was developed for absolute changes in light intensity over a 

factor of 104. In natural light the range is much larger, up to a factor of 1012 between day 

and night, and this difference may explain the disagreement between the predicted and the 

observed stimulus-based changes in locomotor activity. Most of the entire range of light 

intensity is detectable by various aquatic species, such as the calanoid copepod, Acartia 

tonsa, that responds by positive phototaxis to illuminations as low as 5.6 x 10'12 W cm'2 

(Steams and Forward 1984, value reported as 2.8 x 10" photons m'2 s'1, conversion from 

Wetzel, 1983), and the phantom midge, Chaoborus americanus, for which a lower 

intensity threshold for action spectra was recorded at 1 x 10'9 W cm'2 (Bradshaw 1974). It 

is not known whether or not visual acuity in low light increases sensitivity to light stimulus 

beyond the period of most rapid light changes, and thus, a larger accumulation of stimulus 

during the twilight period.

Comparisons of the timing of S. modestum nymphs leaving the tile undersides in 

the laboratory stream with the timing of nymphs arriving on the uppersides of tiles placed 

in the Oyster River indicated that the timing of these activities are not different in the 

laboratory and in the field (Grace 1990), and lends support that the assumptions of the 

STAR model will be applicable to the natural situation. Attempts to correlate the stream 

drift with rate of light change (Haney et al. 1983, Baldwin 1993), have demonstrated a 

relationship between the timing of the onset of evening drift and light intensity at the time 

when the rate of light change surpassed the Ringelberg threshold value (S = -1.7 x 10'5 s ') 

for the onset of phototactic swimming in Daphnia. Because drift is such an important 

component of many stream ecosystems and these studies support the hypothesis that the 

initiation of drift is regulated by light stimulus, it would be useful to test the STAR model 

in the laboratory and in the natural environment with other mayfly genera, such as Baetis or 

Leptophlebia, that drift regularly. As methods improve for observing stream invertebrates 

in natural streams, such as videotaping under infrared illumination (Grace 1990), using a
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fiber optic scope (Wilzbach 1990), or other methods not yet in current use, the mechanisms 

by which organisms initiate diel behavior changes in response to light and how local 

conditions alter the light response can be better resolved.
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GENERAL DISCUSSION

Relative change in light intensity during twilight is a reliable proximate cue that 

plays an important role in the diel locomotor activity and vertical location on the substrate in 

nymphs of the mayfly, Stenonema modestum. The light response can be modified in the 

presence of predators such as fish and stoneflies, so providing plasticity in timing the 

activity change when a mayfly is faced with immediate risks. Considering the day to day 

variability in predators and predation risk faced by mayflies, a strictly fixed light response 

would have little adaptive value.

Adaptive Considerations o f  a Stimulus-Activitv Response

Timing o f  the Activity Change

Although the adaptiveness of such a light-response mechanism is apparent, it is not 

readily apparent that the actual outcome is adaptive, because timing of both the nocturnal 

increases in locomotor activity and moving to a presumably riskier location on the exposed 

surfaces of the substrate occur well before darkness. If the presence of visually foraging 

day-active predators was the only proximate cue driving the system, the nocturnal activity 

change in the prey should take place when illumination is lowest, rather than during the 

period of rapid changes in light, as observed. I suggested in Chapter Three that the activity 

of stonefly predators directly influenced the timing of nocturnal locomotor activity in 

Stenonema, indicating that non-visual predators may also be important in the stream 

environment Other studies have demonstrated that actively-foraging benthic-feeding fish 

modify the locomotor activity and amount of time nymphs of various species of mayflies 

spend on the top of substrates (Kohler and McPeek 1989, Culp et al. 1991), indicating that 

these non-visual predators also influence the activity of their mayfly prey. Initiation of
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nocturnal activity prior to darkness supports the hypothesis that other factors in addition to 

visual-foraging day-active predators influence the timing of diel activity changes.

Another factor affecting the early movement to the upper rock surfaces may be the 

diel abundance of food resources available to grazers such as mayfly nymphs (Sladecek 

and Sladeckova 1964, McIntyre and Phinney 1965). To maximize efficient location and use 

of unevenly distributed food resources, foragers should be most active at the time when 

food is most abundant (Pyke 1979, McNamara 1982, Zimmerman 1982). Invertebrate 

grazers in temperate and northern streams are often limited by food quality, quantity, and 

seasonal constraints on metabolism and food abundance (Warren et al. 1964, Richardson 

and Tartar 1976, Mayer et al. 1987, Webb and Merritt 1987, Rader and Ward 1990, 

Peterson ef al. 1993, Palmer 1995). Food resources are often patchy spatially and grazers 

are capable of depleting algal patches over periods of days (Colletti et al. 1987) to weeks 

(Lamberti and Resh 1983, Hart et al. 1991, Scrimgeour et al., 1991). Mayflies cope with 

patchiness by colonizing areas where food is abundant (Clifford et al. 1992, Hinterleitner- 

Anderson et al. 1992), actively searching for suitable patches (Wiley and Kohler 1984, 

Kohler 1984), and drifting downstream when food becomes scarce (Hildebrand 1974, 

Kohler 1985, Clifford et al. 1992). It may thus be adaptive to be the first to arrive on the 

stone tops, to assess the patch quality and either take advantage of the daily growth of algae 

or quickly move on to better patches.

Another possibility is that the timing of nocturnal locomotor activity and movements 

to the substrate uppersides takes advantage of diel changes in the effectiveness of 

predators. Fish that locate their prey visually can more quickly locate and attack prey at 

illumination levels above 10 lux than in darkness (reviewed by O’Brien 1987). Fish and 

invertebrates that are not exclusively nocturnal feeders may nevertheless be constrained to 

forage in darkness by their primary predators that hunt by sight. Examples include some 

dace that naturally forage in darkness but are much better able to detect prey at twilight light

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



intensities (Beers and Culp 1989), and Dinocras stoneflies that starve rather than expose 

themselves under lighted conditions (Sjostrom 1980).

Even visual foragers are not prevented from feeding in the darkness (Allan 1980), 

but because of the dynamics of visual adaptation, the twilight period may be a time of 

especially low visual acuity. The dynamic range of a photoreceptor covers about 2 or 3 log 

units of light intensity (Laughlin 1981), necessitating a period of adaptation when the 

predominant light conditions shift to a higher or lower range (Menzi 1987). Sensitivity to 

light and the process of adaptation are under some circadian control (some examples: ants, 

Menzi 1987; beetles, Jahn and Wulff 1943; butterflies, Swihart 1963; horseshoe crabs, 

Barlow 1983; and moths, Edwards 1962, Nilsson et al. 1991). Light adaptation requires 

physiological changes in the photoreceptor, such as migration of pigments and other 

photomechanical changes in the photoreceptor cells within the eye (for insects reviewed by 

Jarvilehto 1985). The time course of full adaptation to a new illumination level varies 

according to species, cell types and stimulus conditions (reviewed by Jarvilehto 1985). 

Complete dark adaptation has been shown to take up to 60 minutes in nauplii of the shrimp, 

Eualus gaimardii, (Nordtug and Krekling 1989), and 2 hr. in Camponotus ants (Menzi 

1987). Recorded circadian movements of the cones in the retina of the Midas cichlid 

(Cichlasoma citrinellum), a teleost fish, demonstrated that cones begin to elongate after 

light reduction at dusk and begin to contract shortly before dawn. Therefore, the period 

when the photoreceptors are undergoing a shift in photosensitivity coincides with the 

period of most rapid light changes at twilight.

Temporal partitioning of prey resources between competing species is not 

uncommon (Johnson 1981, 1982, Allan 1983, Angradi et al. 1991). It is possible that 

predation may be somewhat lessened within the twilight period of rapid light changes when 

the efficiency of visual foragers begins to fall off but the non-visual foragers have yet to 

reach their maximum activity. The lower 10-lux illumination limit for the highest efficiency 

of visual predators occurs at sunset (10 lux = 4.2 x 10'6 W cm'2, conversion from
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Westlake, 1965; illumination measured at the Oyster River during the summer of 1988). 

The period between sunset when the visual foragers become less efficient, and darkness 

when the non-visual predators become most active, is therefore not only the time when 

food resources are most abundant, but perhaps is also a time of maximum safety for mayfly 

prey.

Magnitude and Time-Course o f  the Initial Peak o f Nocturnal Locomotor 

Activity

The adaptiveness of using light stimulus as a regulator of the magnitude and time- 

course of the initial peak in nocturnal locomotor activity is also not readily apparent. 

Seasonal changes in the strength and duration of twilight correspond with seasonal changes 

in food availability and temperature. Condensed, stronger twilight periods precede longer 

nights and lengthy, weaker twilight periods precede shorter nights. The positive 

relationship between light stimulus and the magnitude of the increase in nocturnal 

locomotor activity (Chapter Two, Fig. 8) indicates that higher nocturnal activity would 

occur following shorter twilights, such as in late fall, winter, and early spring. The 

negative relationship between the duration of heightened nocturnal locomotor activity and 

light stimulus (Chapter Two) indicates that bursts of activity during these same seasons 

would also then be short-lived. Conversely, the magnitude of the activity change during 

late spring, summer, and early fall would be relatively lower but the heightened activity 

would persist longer into the night. There is some evidence that these scenarios do occur 

for locomotor activity (Grace 1990) and drift (Chaston 1968, Koetsier and Bryan 1992), 

although data are not always consistent (Elliott 1968). In summer, a long-lasting period of 

heightened locomotor activity may be necessary for individuals to take advantage of the 

entire night for feeding. As food availability declines in the fall and winter, food intake 

may meet only the requirements for maintenance and a lowered metabolism, so a quick 

burst of activity may be all the energy that is possible or necessary to allocate to foraging.
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Interactions between light stimulus, temperature, and food availability have not been 

explored, but most certainly are important components in regulating the diel activity of 

mayflies.

Physiological Considerations o f  a Stimulus-Activity Response

The mechanism by which mayflies monitor the light environment over long periods 

of time prior to responding to light changes has not been established. Pathways of 

communication between photoreceptors and the circadian oscillators are subjects of recent 

research. The TIM-PER complex controlling the circadian cycle of locomotor activity in 

the fruit fly, Drosophila melanogaster, is one example (Lee et al. 1996, Myers et al. 1996, 

discussed in Chapter Two). Hormonal substances also play an important role as 

neurotransmitters, neurohormones and neuromodulators of various activities in insects 

(reviewed by Pener 1985). For example, in the leech, Hirudo medicinalis, serotonin 

decreases the latency period before the onset of swimming towards a vibrating point, and 

also increases the biting frequency and food ingestion rate (Lent and Dickinson 1984). 

Octopamine increases the excitability of the cockroach, Periplaneta americana, and as one 

consequence, lowers the threshold for the initiation of flight in response to wind-stimuli 

(Weisel-Eichler and Libersat 1996). Increased levels of octopamine in the haemolymph 

have been measured during flight of locusts (Goosey and Candy 1980), intensifying the 

activity of the leg muscles (reviewed by Orchard 1982). Serotonin and octopamine both 

modulate the response of motion-sensitive neurons in the visual system of the honey bee, 

Apis mellifera, (Kloppenburg and Erber, 1995).

Only recently, have cyclical fluctuations in the concentration of hormones been 

reported, indicating some hormonal function in regulating circadian changes in behavior. 

Dopamine content in the retinas of fish and frogs shows circadian rhythmicity (Pierce and 

Besharse 1985, Koblinger et al. 1990, McCormack and Burnside 1992). Octopamine has 

been identified as a circadian neurotransmitter in the photoreceptor organs of the horseshoe
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crab, Limulus polyphemus (Renninger and Farrell 1996). Octopamine increases the 

response to light, thus improving vision in the dark (Barlow 1983). The enhanced 

response to light is slow to develop and slow to disappear after removal of the hormone 

(Renninger and Farrell 1996). A similar slow time-course for the stimulus-based 

locomotor activity response in Stenonema (i.e., lengthy latent periods prior to the response 

and heightened locomotor activity for several hours following the stimulus), may indicate 

that the response has some hormonal basis.

For activity to be controlled by cyclical levels of hormones there must be a circadian 

clock. Tests of the STAR model during the early evening did not strongly support the 

importance of an endogenous rhythm on the locomotor activity response during the time 

periods tested (Chapter Two). A rigorous test of the stimulus-based locomotor activity 

response in Stenonema was carried out over a 24-hr period. Light was decreased and 

increased continuously at a constant rate of change with no intervening adaptation periods 

(Fig. C. 1, Appendix C). The change in locomotor activity in response to light decrease 

gradually became larger from 10:00 AM until about 10:00 PM, after which the response 

began to lessen, indications of the influence of an endogenous rhythm on the 24-hr pattern 

of locomotor activity (Fig. C.l, Appendix C). The shape of the curve (Fig. C. 1, Appendix 

C) suggests that nymph locomotor activity is enhanced during the nighttime, an indication 

that the endogenous component must be considered when interpreting diel locomotor 

behaviors.
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SUMMARY AND CONCLUSIONS

Relative change in light plays a dual role as a timer for regulating locomotor activity 

and vertical movements on the substrate, as well as controlling the overall level of 

locomotor activity in nymphs of the mayfly, Stenonema modestum. Cyclic behavior is an 

important strategy that prepares the organism for regularly changing conditions (Rapp 

1987), such as the time of day when predator activity or food abundance is greatest. Large 

relative changes in light reliably signal the approach of evening darkness and morning light, 

as the largest changes take place post-sunset and pre-sunrise (Ringelberg et al. 1991a). 

Light cues and local conditions, such as predator-prey assemblages and predator density, 

are therefore important in structuring interactions between predators and prey in stream 

ecosystems.

Through experimental tests of the STAR model, significant correlations were found 

between relative light change and the timing and amount of heightened nocturnal locomotor 

activity, and the timing when nymphs began to leave the undersides of the substrate. The 

difference between daytime and nighttime locomotor activity and the extent of the initial 

peak of nocturnal activity were also functions of relative light change. Shortened periods 

of light decrease resulted in smaller changes in locomotor activity, indicating the importance 

of both stimulus strength (i.e., the rate of light change) and duration of the light changes in 

regulating locomotor activity. Adaptation at a reduced light intensity advanced the timing of 

diel locomotor activity changes, but did not alter the timing of vertical movements between 

surfaces. The presence of predators (fish odor and stoneflies), also modified Stenonema 

locomotor activity. Mayflies were most active during the daytime in the presence of fish 

odors and least active in the presence of stoneflies. Nighttime activity was lower in the 

absence of predators and in presence of mixed predators than in the presence of either 

predator alone. Stoneflies began their activity later in the presence of fish odors, an
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interaction between fish and stonefly nymphs that influenced the timing of the mayfly 

activity. The endogenous clock had no measurable influence on the timing or amount of 

nocturnal locomotor activity. However, time of day influenced the timing and numbers of 

nymphs that left the tile undersides, suggesting that position on the substrate may be 

influenced by an endogenous rhythm.

To allow for its application in the natural environment, the STAR model must now 

be expanded to include the changing rates of light decrease during natural twilight. The 

STAR model may provide a mechanistic model of the behavior leading up to the entry of 

mayflies into the drift. As is the case with locomotor activity and vertical movements on 

the substrate, the timing of drift must be in phase with local conditions, such as the time of 

sunset, to ensure that nymphs restrict their time in the water column to safe periods, such 

as those when predators are less active (Allan et al. 1986, Glozier and Culp 1989). A 

stimulus-based drift response would therefore be a useful and appropriate mechanism of 

control of the timing and likelihood that individuals will enter the drift under the varying 

conditions in stream environments.
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APPENDIX A

Lists of Experiments Used to Test the STAR Model Predictions

TABLE A. 1. List of experiments used to test the predictions of the STAR model: development of
the baseline model and treatment1 effects.

Target rate of light change Minutes Required Date Collection
(sec'1 x 103) for DECRS phase Time of Day (m-d-yr) Siteb

Baseline model
10.0 15 AM 07-04-95 Oy
7.3 20 AM 08-12-96 Be
4.8 30 AM 07-09-95 Oy
3.6 40 AM 07-12-95 Oy
2.9 50 AM 07-13-95 Oy
2.7 55 AM 08-03-95 Oy
2.5 58 AM 07-11-95 Oy
2.3 63 AM 07-07-95 Oy
2.1 70 AM 07-25-95 Oy
1.9 76 AM 07-16-95 Oy
1.7 84 AM 07-24-95 Oy
1.4 100 AM 07-17-95 Oy
1.2 120 AM 08-16-95 Oy
1.0 150 AM 07-22-95 Oy
0.080 167 AM 08-15-96 Be
0.073 200 AM 08-04-95 Oy

Treatments
Bright-adaptation/PM

3.6 40 PM 07-12-95 Oy
2.5 58 PM 07-16-95 Oy
1.7 84 PM 07-03-95 Oy
1.4 100 PM 08-10-95 Oy

Reduced-light adaptation
AM/PM

3.6 20 AM 08-07-95 Oy
PM 08-07-95 Oy

2.5 29 AM 07-26-95 Oy
PM 07-31-95 Oy

1.7 42 AM 08-02-95 Oy
PM 07-24-95 Oy

1.4 50 AM 08-11-95 Oy
PM 08-01-95 Ov

*■ Treatments were time of day (AM and PM) and level of adaptation light intensity (bright and reduced). 
b Oy=Oyster River, Be=BelIamy River
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TABLE A.2. List of experiments used to test the predictions of the STAR model, con’t:
Tests of abbreviated and discontinuous periods (steps) of light decrease.

Target rate of 
light change 
(sec'1 x 103)

Minutes Required 
for each step of 

the
DECRS phase

Number of Steps 
Needed to 

Complete the 
Light Reduction

■■ T--- yVW

Time 
of Day

----- •

Date
(m-d-yr)

Collection
Site

3.6 40 1 PM 07-12-95 Oy
20 2 PM 08-14-96 Oy
10 4 PM 08-15-96 Be

2.5 58 1 PM 07-16-95 Oy
28 2 PM 08-12-96 Be
14 4 PM 08-13-96 Be

1.7 84 1 PM 07-03-95 Oy
41 2 PM 08-17-96 Be
20 4 PM 08-16-96 Be

TABLE A.3. Experiments used to test for predator-induced changes in
Stenonema’s response to relative light change. The target rate 
of light change was± 2.5 x 10'3 s'1 and light decreases began 
at 1800 EST.

Treatment Date Collection Site*
None (N) 07-23-96 Be

. 07-25-96 Be
07-26-96 Oy

Fish water (F) 08-06-96 Be
08-08-96 Be
07-16-95 Oy

Stonefly (S) 07-31-96 Be
08-01-96 Be
08-02-96 Be

Fish water + Stonefly 08-03-96 Oy
(FS)

08-07-96 Oy
08-09-96 Oy

xOy=Oyster River, Be=BeUamy River
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APPENDIX B

NIH-Image Macro Code for Macintosh Computers Used in Tracking 

Movements of Individual Mayflies

(© 1995 annette schloss; runs with NIH-Image > vl.57)

{
A set of macros to locate mayflies in a stack of images, to measure mayflies, 
and to output the results to a file for later use:
The program will mark up your images, so don’t save them, or make a copy.

TRACK MAYFLIES:
Lets you follow one mayfly. You select the # to track and then follow each individual.

Always (if possible) follow a mayfly through all slices. Results are saved in the results
window until the final mayfly is finished, then the results get saved to a file. You can quit the macro
without finishing:
counter is only reset if you re-start with mayfly # 1, otherwise the counter increments.
You tell the macro which mayfly to start with, 
the macro marks the mayfly with it’s # as it is tracked.
When a mayfly leaves the rock, hold down the <shift> key and click the mouse, and 

that mayfly will be counted as missing.
You can toggle between a slice and the slice before it by holding down the 

'option' key whilst macro is running.
If some mayflies are never present in the stack, use ‘Mayflies Out Of Here’ to fill in the output data file 
with missing values (the post-processing routines expect complete data for all mayflies).

IMPORTANT: use ‘Get-Comers’ to get the edges of the tiles, so that the program will 
correctly calculate the distance when mayflies move off/onto the tiles!
Code is setup to measure 1 or 2 tiles, if there are more, modify as necessary.

IMPORTANT: ‘TrackMayflies’ adds extra rows to the bottom of the results, which 
contain the top, bottom, left and right boundaries (in pixels) of the tiles.

IF YOU GET BEEPS when clicking the mouse, then you have reached max measurements; reset to a 
larger value in the options dialogue box in analyze menu

OUTPUT TO FILE: minsize,maxsize,nslices
slice#,nmayflies,xl,yl,x2,y2....xn,yn one line per slice

}

{INITIALIZATION OF GLOBAL VARIABLES} 
var {Global variable, initially zero}

RoiLeft,RoiTop,RoiRight,RoiBottom,xIoc,yloc,rC:integer;
x 1 ,x2,y 1 ,y2,top,left,width,height,dist,minarea,maxarea,myf,myfhalf,myfq I ,myfq3:integer; 
myfile:string;
ulx 1,11x1 ,urx 1 ,lrx 1 ,ulx2,llx2,urx2,Irx2:integer;
uly 1 ,lly 1 ,ury 1 ,Iry I ,uly2,lly2,ury2,Iry2,ntiles, kkk:integer;
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up I Jo 1 ,rt 1 ,If 1 ,up2,Io2.rt2,If2, value 1 ,value2,value3:integer, 
up3,lo3,rt3,If3,up4,lo4,rt4,If4:integer; 
upa,Ioa,rta.Ifa:integer;

{PROCEDURES (called by macros below)
Note, procedures marked with ‘nih’ were not written by A. Schloss and are available on the NIH web site}

procedure CheckForStack; {nih}
begin

if nPics=0 then begin
PutMessage(This macro requires a stack.'); exit; end; 

if nSlices=0 then begin 
PutMessage(This window is not a stack.'); exit end; 

end;

procedure GetDist; 
var

minx,miny,up,lo,rt,lf:integer
begin

rC:=rCount-l;
if myf <= myfhalf then begin 

up:=upl; lo:=Iol; rt:=rtl; lf:=Ifl; 
end
else begin 

up:=up2; lo:=lo2; rt:=rt2; lf:=I£2; end;

{No mayfly at all}
if ((rXfrC] = 0) and (rY[rC] = 0) and (rXfrCount] = 0) and (rY[rCount] = 0)) then 

rUser 1 [rCount] :=0;

{Mayflies in from the edge}
if ((rX[rC] = 0) and (rY[rC] = 0) and (rX[rCount] o  0) and (rY[rCount] o  0)) then begin 
if abs(rX[rCount} - rt) <= abs(rX[rCount]-lf) then minx:= abs(rX[rCount] - rt) else 

minx:= abs(rX[rCount]-lf); 
if abs(rY[rCount] - up) <= abs(rY[rCount]-lo) then miny;= abs(rY[rCount] - up) else 

miny:= abs(rY[rCount]-lo); 
if minx < miny then rUser 1 [rCount];=minx else rUserl[rCount]:=miny; 

end;

{Mayflies go off the edge}
if ((rX[rC] o  0) and (rY[rC] o  0) and (rX[rCount] = 0) and (rY[rCount] = 0)) then begin 
if abs(rX[rC] - rt) <= abs(rX[rC]-lf) then minx:= abs(rX[rC] - rt) else 

minx:= abs(rX[rC]-lf); 
if abs(rY[rC) - up) <= abs(rYfrC)-lo) then miny:= abs(rY[rC] - up) else 

miny;= abs(rY[rC]-lo); 
if minx < miny then rUser 1 [rCount]:=minx else rUserl [rCount]:=miny; 

end;

{Mayflies not on the edge]
if ((rX[rC] o  0) and (rY[rC] o  0) and (rX[rCount] o  0) and (rY[rCount] o  0))then 

rUserl [rCount]:=sqrt(sqr(rX[rCount]-rX[rC])+sqr(rY[rCount]-rY[rC])); 
end; 

end;

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



procedure GetLoc; 
begin 

xloc:=0: yloc:=0; 
repeat

SetCursor(’cross’); GetMouse(xIoc,yloc); 
MakeOvalRoi(xloc,yloc.5,5);
Drawboundary;
Undo;
while KeyDown('option') do begin 

if i >1 then begin 
Selectslice(i-l); wait(0.5);
Selectslice(i); wait(0.5); 

end;
end;
until button;

MakeOvalRoi(xloc,yloc,5,5); Drawboundary; Measure; 
rX[k+1 ] :=xIoc; rY[k+1 ] :=yloc;
KillRoi;

end;

procedure Getxy; 
begin 

xloc:=0; yloc:=0; 
repeat
SetCursor('cross'); GetMouse(xloc,yloc); 
until button;
Measure; MakeOvalRoi(xloc,yloc,5,5); Drawboundary; 
rX[kkk];=xloc; rY[kkk]:=yloc; Updateresults;
KillRoi;

end;

procedure GetComers; 
var
nc.integer,

begin
Resetcounter;
PutMessageCEnter the ul, ur, 11, Ir comers of each tile[start with left tile]');
ntiles:=GetNumberCEnter the number of tiles to measure comers:',2);
if ntiles > 2 then begin 

PutMessage(Too many tiles, need to rewrite macro!',ntiIes); exit; end;

nc:=ntiles * 4; {number of comers to get, NOTE kkk var is used by Getxy} 
kkk:=l; Getxy; wait(0.15); ulxl:=xloc; ulyl:=yloc; 
kkk:=2; Getxy; wait(0.15); urxl;=xloc; uryl:=yIoc; 
kkk:=3; Getxy; wait(0.15); llxl:=xloc; llyl:=yloc; 

kkk:=4; Getxy; wait(0.15); lrxl:=xIoc; lryl:=yloc; 
if ((ulxl >= urxl) or (llxl >= Irxl) or (uly 1 >=Ilyl) or (uryI >= lry 1)) then begin 

PutmessageCBad comers 1, try again'); exit; end; 
upl:=trunc((rY[l] +rY[2])/2); lol:=trunc((rY[3]+rY[4])/2); 
rtl;=round((rX[2]+rX[4])/2);lfl;=round((rX[l]+rX[3])/2);

if ntiles > I then begin 
kkk:=5; Getxy; wait(0.15); u!x2:=xIoc; uly2:=yloc;
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kkk:=6; Getxy; wait(0.15); urx2:=xIoc; ury2:=yIoc;
kkk:=7; Getxy; wait(0.15); llx2:=xIoc; IIy2:=yIoc;
kkk:=8; Getxy; wait(0.15); lrx2;=xIoc; Iry2:=yIoc:

if ((ulx2 >= urx2) or (11x2 >= lrx2) or (uly2 >=lly2) or (ury2 >= lry2)) then begin 
Putmessage('Bad comers 2, try again’); exit; end; 

up2:=trunc((rY[5] + rY[6])/2); lo2:=trunc((rY[7]+rY[8])/2); 
rt2:=round((rX[6]+rX[8])/2); If2:=round((rX[5]+rX[7])/2); 

end; {if ntiles > 1} 
end;
{ MACROS)

macro 'Select Slice... [S]'; 
var 

n:integer; 
begin
CheckForStack; n;=GetNumber('Slice Number.',trunc(nSlices/2»; SelectSlice(n) 
end;

macro 'GetLength ...[L]'; 
var
x I ,x2,y 1 ,y2,top,Ieft, width,height:integer;
xcenter,ycenter,radius,w,h:integer;
begin
GetLine(x 1 ,y 1 ,x2,y2, width); 
if xl<=0 then begin 

PutMessageCMake a line selection of average-sized mayfly.’); 
exit; 

end;
xcenter:=x I +(x2-x 1 )/2; ycenten=y 1+(y2-y 1 )/2; 
radius:=sqrt(sqr(x2-x 1 )+sqr(y2-y 1 ))/2; 
dist := radius * 2; 

end;

macro Track Mayflies .[K]’;
var width,height,MyStackId,istart,isl,nmyflies,myfstart,k,w.h,i,n:integer; 

reswin:string;
begin
CheckForStack;
GetPicSize(w,h);
MyStackId:=PidNumber;
SetOptionsCUser2; Userl; Headings; X-Y center; Min’); SetPrecision(l,9); 
SetUserlLabel('distance’); SetUser2Label(’10E4myfXtile');

nmyflies:=GetNumberCEnter the max # of mayflies', 12);
if odd(nmyflies) then begin PutMessage(’nmayflies must be even ’,nmyflies); exit; end; 

k:=rCount;
PutMessage('Hold "Shift" and click mouse when mayfly has left'); 
reswin:=concat(WindowTitle,'.trk'); 
if ((myf < 1) or (myf > 12)) then myf := 1; 
myfstart:=GetNumber('Enter the # of the mayfly to start',myf); 
if myfstart > nmyflies then begin
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PutMessage(’start myf less than n-mayflies\myfstart.nmyflies); exit: end:

{GetComers: assumes same tot # myfs per tile. ie. 12 myfs = 6 on left, 6 on right} 
if myfstart = 1 then begin GetComers:

Putmessage('top,bot,rt,Ieft\up 1:4,Io 1:4.1f 1:4,rt 1:4.up2:4,lo2:4,lf2:4.rt2:4): end; 
if myfstart = 1 then ReSetCounter;
myfhalf := nmyflies; if ntiles > 1 then myfhalf:=nmyflies/2; 
for myf:=myfstart to nmyflies do begin 
for i:=l to nSlices do begin 

istart:=k + 1;
SelectPic(MyStackId); SelectSlice(i); if i=l then Beep;
xloc:=0; yloc:=0;
repeat

SetCursor(’cross'); GetMouse(xloc,yIoc); 
while KeyDown('option') do begin 

if i >1 then begin 
Selectslice(i-l); wait(0.5); Selectslice(i); wait(0.5); 

end; 
end; 

until button;
Measure; rUser2[rCount]:=10000*myf+i; KillRoi; wait(0.15); 

if KeyDown('shift') then begin 
rX[rCount]:=0; rY[rCount]:=0; 

end
else begin 

rX[rCount] ;=xloc; rYfrCount] :=y loc; 
rUser 1 [rCount] :=0; 

end; {else begin} 
if i > 1 then GetDist; 

if (rX[rCount] o  0) and (rY[rCount] o  0) then begin 
MoveTo(xloc,yloc); DrawNumber(myf); end; 

end; {nslices loop} 
k:=rCount; 

end; {myf loop}

(add tile boundaries to the end of the results}
Measure;
rX[rCount]:=upl; rY[rCount]:=lol; rUserI[rCount]:=lfl; rUser2[rCount]:=rtI; 
Measure;
rX[rCount]:=up2; rY[iCount]:=Io2; rUserl[rCount]:=lf2; rUser2[rCount]:=rt2; 
UpdateResults; SelectPic(MyStackId);
SetExport('Measurements'); SetOption; Export(reswin); 
myf:=I; 

end;

macrobegin end; 

macro 'Mayflies Out o f Here
var width,height,MyStackId,istart,isl,nmyflies,myfstart,myfstop,myfst,myff,k,w,h,i,n:integer; 

reswin:string;
begin
CheckForStack;
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GetPicSize(w.h);
MyStackId:=PidNumben
SetOptions('User2; Userl; Headings; X-Y center; Min'); SetPrecision(1.9); 
SetUserlLabel('distance'); SetUser2Label(’10E4inyfXtiIe’);

nmyflies:=GetNumberCEnter the max # of mayflies', 12);
if odd(nmyflies) then begin PutMessagefnmayflies must be even ’.nmyflies); exit; end; 

reswin:=concat(WindowTitle,'.trk');
myfstart:=GetNumber('Enter the # of the mayfly to start’,myf); 
myfst := nmyflies; if (myf <= 6) then myfst := myfhalf; 
myfstop;=GetNumber('Enter the #  of the mayfly to end’.myfst); 
if myfstop > nmyflies then begin

PutMessage(’stop myf > than n-mayflies’,myfstop,nmyflies); exit; end;

{GetComers: assumes same tot # myfs per tile, ie. 12 myfs = 6 on left, 6 on right} 
if myfstart = 1 then begin GetComers;

Putmessage('top,bot,rt,left',up 1:4,lo 1:4,lf 1:4,rt 1:4,up2:4,Io2:4,lf2:4,rt2:4); end; 
if myfstart = 1 then ReSetCounter; 
myfhalf:=nmyfIies/2; 
for myff:=myfstart to myfstop do begin 
for i:=l to nSlices do begin 

Measure;
rX[rCount]:=0; rY[rCount]:=0: rUser2[rCount]:=10000*myff+i; rUserl[rCount]:=0; 

end; (nSlices loop} 
end; {myf loop} 
myf:=myff+l;

if myfstop = nmyflies then begin;
{add tile boundaries to the end of the results}
Measure;
rX[rCount]:=upl; rY[rCount]:=lol; rUserl[rCount]:=lfl; rUser2[rCount];=rtl;
Measure;
rX[rCount]:=up2; rY[rCount]:=Io2; rUserl[rCount]:=lf2; rUser2[rCount]:=rt2; 
UpdateResults; SelectPic(MyStackld);
SetExportCMeasurements’); SetOption; Export(reswin); 

myf;=l;
SelectPic(MyStackId); SelectSlice(nSIices);
end; {if myff)
end;
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APPENDIX C

Auxiliary Results
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Figure C.l. Time-series of number of nymphs visible and locomotor activity during light decrease 
and increase cycles continued over 23 hours. The rate of relative light change (S) was ± 2.4 x 10'3 
s'1 during the upward and downward portions of each cycle. Data are from June 17, 1994. (Top) 
nymphs visible beneath the tile surface. (Center) Light intensity (—) and relative light change 
(shaded area). (Bottom) Locomotor activity.
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