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ABSTRACT

ECOLOGICAL DATABASE DEVELOPMENT AND ANALYSES OF SOIL 

VARIABILITY IN NORTHERN NEW ENGLAND

by

Michael A. Okoye 

University of New Hampshire, December, 1997

The 1983 Forest Inventory and Analysis (FIA) data of the states of Maine, New 

Hampshire and Vermont (the study area) contain large amounts of field-measurements of 

many ecologically important variables. Despite the vast potential usefulness of the FIA data 

for scientific research, the data were until now, literally unused except for a few 

administrative purposes, because of problems in the way the data were organized, 

summarized, and coded for storage. The primary objective of this research was to solve the 

problems that had thus precluded these FIA data from use in scientific applications, and 

present the data in a form that is readily accessible and usable for research. This objective 

was achieved by adapting the un-summarized data in a relational database management 

system (RDMS) and geographic information systems (GIS). RDMS-GIS technologies 

would make these data amenable to more types and multiple spatial scales of analyses than 

previously possible, thus providing the scientific community with an unusually large, high- 

quality, and spatially referenced data set.

x i v

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The FIA data also contain field and laboratory measurements of soil properties made 

at the geo-referenced FIA plot locations. These soil data also provided the basis for other 

studies in this dissertation. These studies included analyzing the spatial variability of 

selected soil attributes in the study area; evaluating the nature of the differences in specific 

soil properties among the ecological land classification map (ECOMAP) section and 

subsection units; and assessing the variability of specific soil properties in the NRCS-State 

Soil Geographic Database (STATSGO) of the study area. Both the ECOMAP and the 

STATSGO studies involved the use of GIS techniques and multivariate statistical methods 

for map unit analyses.

This dissertation also included more theoretical investigations relating to applied 

statistics and soil science. One of these addressed the unanswered question of whether or 

not it is necessary to use non-linear transformations prior to computing variability statistics 

from non-normally distributed soil data, and explored the use of coefficient of variation as a 

semi quantitative index of nonnormality in soil variables. Another study looked at why and 

how error matrices and related statistics can be used as an effective, comprehensive 

quantitative method of evaluating soil classification and soil map quality.

XV
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CHAPTER 1

INTRODUCTION

1.1 Background and Perspective Of Studies

Many studies in the natural and environmental sciences critically depend on reliably 

measured spatial data. Such data are often not available especially for large areas because 

of prohibitively high costs. This dissertation consists of three major parts involving five 

separate studies. However, each study depends on, and uses the 1983 USDA-Forest 

Service Forest Inventory and Analysis (FIA) data for the states of Maine, New Hampshire 

and Vermont (the study area). FIA data consist of field-measured ecological data from 

over 4,000 geo-referenced locations (Figure 1). These data include about 100 important 

variables that comprehensively characterize the forest sites, soils, forest composition, 

land cover, etc. in these states. These data are potentially valuable for a number of 

scientific applications including ecological modeling and ecologically-based management 

of natural and environmental resources at regional scales. But despite the vast potential 

usefulness of these multi-million dollar data, FIA data are literally unused except for a 

few administrative purposes, because of problems in the way the data were organized, 

summarized and computer-coded for storage.

This dissertation research started primarily as an effort to solve these problems 

and make these FIA data available and usable for scientific applications. The other

i
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3

purposes of the dissertation research were to use the soil components o f the FIA data to 

explore and describe the spatial variability of selected soil properties in the study area; 

evaluate the nature of the differences in specific soil properties among the ecological land 

classification map (ECOMAP) sectional and sub-sectional map units; and evaluate the 

reliability of the NRCS-State Soil Geographic Database (STATSGO) o f the study area. 

The scope and goals of each of the dissertation studies are briefly described below.

1.2 Delimitation and Scope

1.2.1 Development of Northern New England Ecological Database from 1983 FIA.

Traditionally, FIA results are reported as aggregated summaries on county basis. With 

such summarization and the use of political boundary as scale, essential details and the 

spatial variability of the ecological variables were lost. The un-summarized data and 

especially the “non-forestry” information (e.g., soil chemistry data, geographic 

coordinates, etc.) were computer-coded in a format that discourages and/or prohibits their 

further use, and stored away from accessibility. Chapter 3, Development o f  Northern New 

England Ecological Database from 1983 FIA, describes how the un-summarized form of 

the ecologically important variables in the 1983 FIA data of Maine, New Hampshire and 

Vermont were reorganized in a relational database management system (RDMS), and 

structured in a fashion that allows the databases to be readily interfaced to both raster- 

and vector-based geographic information systems (GIS). The adaptation of the FIA data 

to RDMS-GIS technologies make these data amenable to diverse types and multiple 

spatial scales of analyses. The study also involved the development of comprehensive

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



hardcopy and computer on-line documentation (i.e., user’s guide) for the developed 

ecological databases. It is hoped that the database structure developed in the study will 

become a prototype and be adopted for subsequent FIA survey data. This will ensure 

consistency between survey projects and compatibility of inter-survey data, thereby 

permitting FIA data in the future to serve as a valuable tool for change analyses (change 

detection studies) of many of the dynamic ecological variables.

1.2.2 Variability Of Soil Properties In Northern New England Based On FIA 

Data.

The 1983 FIA data also contain field and laboratory measurements o f some physical and 

chemical soil properties, made from the B-horizons of soil profiles at the geo-referenced 

plot locations. These soil data include variables that are known to affect land use and are 

important for environmental studies and resource management. In Chapter 4, Variability 

O f Soil Properties In Northern New England Based On FIA Data, these FIA data were 

used to explore and describe the spatial variability of some of these soil properties in the 

study region. The spatial scale chosen for this study was the section ecological map units 

of the National Hierarchical Framework of Ecological Units (ECOMAP, 1993), recently 

adopted by the USDA-Forest Service (Avers et al., 1994). ECOMAP is a geographically- 

based ecological regionalization, classification and mapping system for stratifying the 

earth into progressively smaller areas of increasingly uniform ecological potential. 

ECOMAP is based on multiple biotic and environmental factors which include climate, 

physiography, geology, soils, water, and potential natural communities. Based on
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available national, regional and state resource maps and information, and through the 

participation of numerous individuals from federal and state agencies and non­

governmental organizations, an ecological map and characterization data of the eastern 

United States have been produced (Keys et al., 1995). These maps present 10 section and 

30 subsection ecological units for the Northern New England or study region (see Figure 

4-1).

The primary goal in this study was to provide summary statistics of important soil 

attributes within each ECOMAP Section in the study area. These statistics include central 

tendency and variance statistics (including coefficients of variation), estimate of 

confidence intervals o f means, and the number of observation (sample sizes) required to 

estimate the population means of soil properties at different levels of precision. This type 

of information is important for soil-based resource and land use management, and is 

needed in much pedological and environmental research requiring field sampling on 

regional scales. Also, although ECOMAP subsections are expected to reflect differences 

in “soil types”, no studies have been done to empirically assess the nature of these 

differences and/or to express how these map units differ in terms of specific soil 

properties. A secondary objective in this study was to evaluate the differences among 

subsection ecological map units with respect to specific soil attributes. This objective is 

analogous to evaluating the potential suitability of ECOMAP subsections as a basis for 

partitioning and describing field variation of soil properties and on a regional scale, and 

for extrapolating soil attribute information from place to place in the study area.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1.2.3 The Legitimacy Of Variability Statistics Computed From Non-normal Soil 

Data

Statistical analyses and exploration of the large data and several soil variables carried out in 

Chapter 4 provided a unique opportunity to re-evaluate some the conclusions frequently 

made about the distributions of soil variables. More importantly, the course of the study 

brought my attention to a major unanswered question and controversy in soil variability 

studies. One of the consistent conclusions is that natural soil populations are rarely normal 

or symmetrically bell-shaped about the mean, but are mostly positively skewed, often in a 

lognormal fashion. However, much confusion still exists about whether or not to use 

transformations prior to the computation of traditional variability statistics, namely, the 

mean, standard deviation, coefficient of variation, confidence intervals of the mean, and 

optimum sample sizes for the estimation of the mean. The soil science literature reveals 

conflicting recommendations, and the publication of studies advocating contradicting 

approaches to this problem. This chapter of the dissertation was developed posteriorly to the 

study in Chapter 4, to address this apparent contradiction in the soil science literature, 

among other objectives.

Through the review of pertinent statistical and soil science literature, and extensive 

statistical analyses of real soil data sets, this study showed that it is desirable but not 

necessary to achieve normality in soil data to validly compute traditional variability 

statistics. It discusses the limitations of the use of non-linear transformations and why it is 

not advisable to employ them prior to the computation o f variability statistics on soil data. 

The study also showed that valid and more appropriate interpretation of variability statistics 

would require certain types of information about the nature and degree of non-normality in
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the untransformed soil data set, but that the coefficient of variation (CV) and other 

distribution characteristics can be used to provide such information. It shows why the CV is 

a better index of non-normality in soils than both the qualitative and commonly used 

quantitative tests of normality. This study provides practical guide on how to use the CV 

and other information to more validly interpret variability statistics computed from non- 

normally distributed and untransformed soil data.

1.2.4 Multivariate Analysis of Map Unit Variability In NRCS-STATSGO: A Case 

Study in Northern New England.

Soil survey has traditionally been the most practical method for partitioning field 

variation or grouping similar and separating different soils on a regional scale (Trangmar 

et al., 1985). However, within the last two decades, concerns about the reliability of soil 

survey or accuracy of soil map information have gained increased importance among 

scientists and users of soil surveys and land evaluation data. The literature is replete with 

documentation of the causes o f these concerns. For instance, Moore et al. (1993) stated 

that conventional soil maps neither delineate all of a field’s inherent variability nor 

represent specific soil attributes; and the inferred homogeneities do not exist for many 

physical and chemical attributes that affect environmental modeling and soil-specific 

management. These and other problems of soil survey have created the need to 

quantitatively evaluate soil map quality, and further characterize the variability within 

soil map units.
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The USDA-NRCS soil survey data are presently being automated or computerized 

nation-wide, and made available as one of three types of digital geographic databases, 

reflecting different levels of details (SCS, 1991). From the most to the least detailed, the 

digital soil databases are the Soil Survey Geographic Database (SSURGO), the State Soil 

Geographic Database (STATSGO), and the National Soil Geographic Database 

(NATSGO). STATSGO is compiled at a scale of about 1:250, 000 and is designed to be 

used “primarily for regional, multi-state, river basin, state, and multi-county resources 

planning, management and monitoring” (SCS, 1991, p. 2). Data for STATSGO are 

distributed as complete coverage for a state, and are available for most states of the US. 

Digital soil databases like STATSGO, and GIS technology have introduced new users to, 

and expanded the functions of soil survey information, and they greatly facilitate 

operations of familiar soil-based analyses especially on a regional scale. However, these 

digital soil databases are subject to all the potential errors o f soil survey as well as other 

errors which are introduced in the further process of digitization or automation.

The goal of this study was to assess the “reliability” of NRCS-STATSGO data 

and elucidate the nature of the variability of specific soil properties in STATSGO map 

units in the study region. Among other analyses, multivariate statistical methods (i.e., 

multivariate analysis of variance and discriminant function analysis) were used to 

ascertain how STATSGO map units differ on the basis of specific soil attributes, and to 

assess the relative efficiency with which specific soil properties were mapped in 

STATSGO. Results of this study provide scientists and others who must use the readily 

available NRCS STATSGO data some ideas of when and for what soil properties the data 

are adequate, and the degree of variation in soil properties to expect within a given map
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unit and between related map units. Also, map unit variability studies like this are 

important in order for us to better understand soil genesis and improve soil survey 

methodology. Assessing map unit variability in STATSGO provides some evaluation of 

the efficiency of the traditional compilation methodology for making small-scale, large- 

area soil surveys in similar sites.

1.2.5 The Use Of Error Matrix In Evaluating Classification Accuracy And Soil 

Map Quality

The reliability of soil survey or accuracy of soil maps has become a critical issue to many 

users of soil survey information. Published research in soil survey and land evaluation 

has continued to reveal the need to find an effective quantitative method of evaluating 

and expressing the reliability of soil classification and soil map quality. At the same time, 

the remote sensing community has made significant advancement within the last two 

decades in the area of accuracy assessment of classification through the use of error 

matrix and discrete multivariate statistical analyses. The error matrix and related statistics 

are state-of-art, quantitative techniques that provide comprehensive information about the 

accuracy of maps or classifications from remotely sensed data. The thrusts of this part of 

my study are that 1) the art and science of classification in remote sensing are markedly 

similar to those of soil classification and mapping, and 2) therefore, the use of the error 

matrix techniques could also be adapted in soils to significantly improve the present 

methods of assessing soil map quality.
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The objective of this study was to introduce the use of error matrix and related 

statistics in evaluating soil classification and soil map quality. The study discusses 

pertinent error matrix concepts, and demonstrate their applications in soils through the 

analysis of real data from STATSGO classification. It reviews the present methods of 

evaluating soil map quality, and shows why the use of the error matrix techniques could 

be a solution to the age-long search for an effective, comprehensive and quantitative 

method for evaluating and communicating soil map quality.
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CHAPTER 2

LITERATURE REVIEW

2.1 USDA-Forest Inventory and Analysis (FIA) Data

2.1.1 Background History.

Forest Inventory and Analysis (FIA) is a continuing endeavor mandated by Congress in 

the Forest and Range Renewable Resources Planning Act of 1974 and the McSweeney- 

McNary Forest Research Act of 1928. Its objective is to periodically determine the 

extent, conditions, and volume of timber, growth, and depletion of the Nation's forest 

land (Hansen et al., 1992). Initial inventory efforts began in the West in 1930, and by the 

1960s, inventories were completed for all of the 48 conterminous states, and more than 

once for many of the more heavily forested states (Birdsey & Schreuder, 1992). These 

initial inventories were conducted on state-by-state basis, and were concentrated 

essentially on providing volume data on the timber resources of most states and regions.

Between the 1960s and 1970s, significant changes and rapid expansion in natural 

resource inventory were introduced. The 1974 Resources Planning Act emphasized the 

need for FIA to provide information about the various resources occurring on forest and 

range lands, i.e., forage, timber, water, wildlife habitat, recreation (Birdsey & Schreuder,

1992). Today, FIA procedures are standardized, and data are collected and published by 

each of the USDA Forest Service regional experiment stations for a number of specific 

states. Statistics from each experiment station are presented in manner that permits

li
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aggregation with those from the other stations in order that uniform regional and national 

statistics may be produced.

The Northeastern Experiment Station at Radnor, Pennsylvania is responsible for 

the FIA of 14 northeastern states including Maine, New Hampshire and Vermont. In this 

region, inventories are usually conducted every 5 to 15 years (Hansen et al., 1992). For 

the states of Maine, New Hampshire and Vermont (the study area), the last survey was 

completed in 1983 and the next survey which started in 1995 is being completed. The 

1983 survey was the fourth inventory conducted by the Northeastern Forest Experiment 

Station for New Hampshire and Vermont (USDA-FS, 1982), and the third for Maine 

(USDA-FS, 1981). The inventory data were collected at over 4,000 geo-referenced plot 

locations (Figure 1), and include about 100 measured variables (see Tables l(a-e), 

Chapter 3) on soil, geology, land-use, forestry and related resources, in addition to tree- 

level forest composition data.

2.1.2 Present Problems.

The purpose of FIA surveys is to gather data for use in management planning and policy 

making, and to provide expert advice and assistance in solving resource questions (Han­

sen et. al, 1992; USDA-FS, 1992). FIA data have been used primarily for the evaluation 

of forestry resources and tracking of merchantable timber volumes by county. To serve 

these administrative purposes, FIA survey findings are traditionally summarized and re­

ported on a county basis. With such summarization and the use of political boundary 

scale, essential details and the spatial variability of the forestry variables are lost. The un­

summarized data, most “non-forestry” data and all locational information were computer-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



13

coded in a format that discourages and/or prohibits their further use, and then stored away 

from accessibility. The limited access to the un-summarized data is partly to ensure that 

the public is kept from visiting the plot locations. There is an agreement between the 

Forest Service and the land owners that specific information on plot locations will be kept 

confidential. There is on-going discussion about this agreement and how it affects the 

attempts to use FIA for scientific research. For now, potential investigators that wish to 

use the FIA data for research have to be considered on a case by case basis. Access and 

permission to use the data are granted but with conditions and restrictions about visiting 

the plot locations

Although FIA has been going on for 60 years and some areas of the USA have 

been surveyed six times, many significant changes have occurred from one survey to 

another (Birdsey & Schreuder, 1992). Hansen et al. (1992) affirmed that inconsistency in 

data collection and processing methods creates data incompatibility among FIA projects 

and precludes analysis of data from more than one FIA project. There is, therefore, the 

need to make efforts towards the development of a uniform data collection method and 

sampling plan between FIA surveys. Consistency between survey projects would permit 

FIA data in the future to serve as a valuable tool for change analysis (change detection 

studies) of many of its dynamic ecological variables.

2.1.3 Quality and Potential Scientific Uses

Being field-measured is one the unique qualities of FIA data. Hansen et al. (1992, p.3) 

describes the high accuracy standards with which the USDA Forest Service carries out 

forest inventory plans. FIA inventories are said to be designed to meet the specified
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sampling errors of 67-percent confidence limit (one standard error) at the state level. A 3- 

percent error per 1 million acres of timberland is the maximum allowable sampling error 

for an area. A 5-percent error per 1 billion cubic feet of growing stock on timberland is 

the sampling error goal for volume, removal, and annual growth (Hansen et al., 1992). 

There are strong reasons to think that FIA tree-level (species types, volume and 

conditions), vegetative and other landcover and landuse records are reasonably accurate. 

FIA surveys were conducted by Forest Service personnel to whom such inventory must 

have be familiar routine. Pertinent Forest Service publications (e.g., USDA-FS 1980 & 

1982) show high level preparation and training of the Forest Service personnel prior to 

FIA surveys.

Field measured or field-verified regional data are scarce for most natural and 

environmental resources. The paucity of, and critical need for reliable and extensive data 

sets for validating ecological models at the regional scales are documented by Aber et al. 

(1993). Remote sensing and field extrapolation techniques have been the traditional 

means of obtaining regional-scaled data. One of the advantages of remote sensing is that 

it gives a complete census of the object of interest. However, research (e.g., in soils and 

forestry) has shown that remotely sensed data often do not have the same level of 

reliability as field measurement. In fact, field measured data are usually required to assess 

the accuracy or reliability of data from remote sensing and extrapolative survey 

procedures. Congalton (1988; 1991) showed that an integral cost in most remote sensing 

studies is for the acquisition of field data as "training sites" and for accuracy assessment 

of classification results. Being actual field measurements, FIA data present a rare source 

of important data for many scientific studies at the regional scale.
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The regional coverage, intensive field sampling and comprehensive nature of FIA 

data make them usable for regional ecologically-based resource management and 

analysis. They are also potentially valuable for ecological model validation, and for cross- 

validation of traditional sources of environmental and natural resource data. As a reliable 

source of actual field measurements, FIA may have the potential of being used as 

"ground truth" or as reference data for calibration of airborne remote sensors and for 

classification and accuracy assessment of remotely sensed data at a regional scale. If 

used in these ways, FIA data will reduce the cost and effort required to acquire data for 

remote sensing studies. The idea of making the un-summarized FIA data available and 

useable for scientific applications was presented at the Second International Conference/ 

Workshop on Integrating Geographic Information Systems and Environmental Modeling 

(Smith & Hallett, 1993). The response and interests generated at this conference 

convinced us that there will be many new users of these data if the un-summarized data 

are presented at the plot level with corresponding geo-referenced coordinates for each 

plot.

2.2 Relational Database Management and Geographic Information 

Systems

Adaptation of FIA un-summarized data to a relational database management system 

(RDMS) and geographic information systems (GIS) technologies will allow diverse types 

of data analyses and multiple spatial scales to be applied to these data. RDMS and GIS
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are the most up-to-date and efficient computer-based systems for organizing, storing, 

managing, manipulating, analyzing and presenting geographic information.

Geographic information is data about objects and phenomena where space or 

locational position is an important characteristic or is critical to the analysis (Aronoff,

1993). Geographic information typically has two components: the spatial features which 

show the dimension (e.g., area), shape and location in space, and descriptive or attribute 

data associated with the spatial features. Attribute data are usually organized in a tabular 

form as independent tables of related information. RDMS is the data model "most widely 

accepted" for handling non-spatial attribute data in GIS applications (Aronoff, 1993), and 

most GIS are built to readily accept geographic data from standard RDMS. RDMS allows 

one to define relationships between different tables, extract or combine data from these 

tables, and to use Boolean logic and mathematical operations to formulate queries in an 

unlimited ways (Aronoff, 1993; Burrough, 1987). RDMS is also used to display and 

present query results in a variety of ways (Borland, 1994).

One of the most important benefits of a GIS is its spatial analysis function; the 

ability to organize and integrate large volumes and multiple types of spatial information 

from a range of sources (Lillesand & Kiefer, 1994), and analyze these to show expected 

or previously unidentified relationships within and among these data sets. GIS-RDMS 

interfaces are used when there is need to manipulate and analyze data in both a spatial 

and a tabular sense thereby providing the scientist with a richer data model than the 

traditional tabular data structures alone (Lanfear, 1989), and also allowing query results 

to be cartographically displayed and spatially visualized.
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2.3 Soil Spatial Variability

2.3.1 Importance of Soil Variability Information.

Humankind depends on soils for a multitude of agricultural and non-agricultural uses. 

Many of these land uses are known to be discriminatory on properties of soils. Weismiller 

et al. (1977) stated that soil information is the bedrock of any sound decision on land use 

planning, optimization of agricultural production, and conservation and management of 

many natural/environmental resources. According to Lillesand & Kiefer (1993), soil 

information forms a primary source of resource data about an area. Way (1985) states 

that when development activities are undertaken, land planners must be concerned with 

and understand the properties of soils if planned land use are to be in harmony with the 

environment.

Spatial variability is change in a given variable over distance. Soil scientists have 

recognized variation in soil from place to place for many years (Webster, 1985; Arnold & 

Wilding, 1991), and much effort has been devoted to understanding and describing this 

phenomenon. The need to understand, describe, document or report soil spatial variability 

is well documented (Wilding & Drees, 1983; Wilding, 1984; Arnold & Wilding, 1991). 

Knowledge of soil variability is essential to properly monitor and understand much of 

long-term ecological research data (Nash & Daugherty, 1990), and soil maps have 

become valuable tools for natural resource management (Moore et al., 1993). Values 

associated with soils and their combination in space are vital for tax assessment, land 

values, route locations, preservation of areas deemed important for society such as fragile 

land, wilderness, prime farm land, and wetlands, and the identification, inventory, and
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evaluation processes underlying policy decisions concerning land uses (Arnold & 

Wilding, 1991). Soils are also sinks, sources, and filtering membranes, as well as blocks 

of memory (Arnold & Wilding, 1991), and play vital roles in mitigating the effects of 

natural and anthropogenic perturbations of ecosystems (Lammers & Johnson, 1991). 

Understanding of soil variability is very important in studies to predict tree growth and 

timber production from forest site attributes (Blyth & Macleod, 1978). Grigal et al. 

(1991) stated that variability in soil properties is a particularly vexing problem for those 

attempting to assess either the present status or changes in ecosystems. They added that 

this variability can affect both precision of estimates and the ability to detect true 

underlying relationships. In a study he entitled: Soil Variability—A Serious Problem in 

Soil-Site Studies in the Northeast, Mader (1963) stated that “the degree of variability in 

forest soil and limits of accuracy of mean plot values for soil variables is an important 

problem needing evaluation for soil-site studies in the Northeast”. Wilding and Drees 

(1983, p. 84) and Boul et al. (1989, p. 358) list major reasons why pedologists continue to 

pursue soil spatial variability. These reasons include the following:

(1) To estimate central tendency and variance statistics for specific soil classes 
and class differentiae

(2) To quantify soil genesis studies, including both the effects of pedogenic 
process and of external soil-forming factors

(3) To more quantitatively determine the composition of soil mapping units

(4) To develop better sampling designs and statistical models for soil survey and 
pedogenic applications

(5) To determine optimum allocation of sampling units for the most efficient 
statistical design
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(6) To differentiate between systematic variations (such as change in one or more 
soil-forming factors) and random variation (associated with sample selection, 
collection and laboratory analyses)

(7) To improve efficiency and quality o f soil surveys

(8) To determine spatial variability in three dimensions so that soil formation and 
soil behavior can be easily visualized

(9) To determine more precise and quantitative information about land tracts that 
can be applied by land users (both agricultural and nonfarm) to improve decision 
making.

2.3.2 Random versus Systematic Soil Variation.

Spatial variations of soil properties are categorized into two components: systematic 

versus random variations. Random variations are observed differences in soil properties 

which cannot be readily attributed to a known cause, and thus cannot be explained. 

Systematic variability is a gradual or marked change (or sign of trend effects) in soil 

properties as a function of landforms (e.g. mountains, basins, plains, terraces, valleys 

moraines, etc.) and Jenny's (1941) soil-forming factors. Soil forming factors are climate, 

geologic parent material, topography, biota (especially vegetation and soil management 

by man) and time or age of soil in the landscape (van Wambeke & Dudal, 1978; Wilding 

& Drees, 1983). Where these factors are similar, similar soils are formed, and the 

cumulative and differing effects of these factors on soil formation are expressed as 

observable properties (Hartung et al, 1991).

Systematic variability implies that soils with discrete sets of properties have a 

degree of predictability on the landscape (Miller et al., 1979; Soil Survey Staff, 1980a, b; 

Witty & Arnold, 1987); it is the scientific basis of soil survey and mapping. Hudson 

(1980) stated that “Soil mapping is possible because of observable discontinuities
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between landscape units, and the strong covariance between landscape units and soils. 

These relationships make it possible to accurately delineate bodies of soil with limited 

observations". Soil properties have observable relationships with soil forming factors 

(Jenny, 1941), and a degree of predictability on the landscape (Soil Survey Staff, 1980a, 

b). Visible changes in slope, vegetation, surface color, and drainage pattern enable a soil 

scientist to locally extrapolate soil/landscape relationships previously established 

(Wilding, 1984).

To summarize, random variability occurs simultaneously and concurrently with 

systematic variability. Systematic variability is explained heterogeneity while random 

variability includes what is left, and the relative proportions of the systematic and random 

components of variation will be inversely related and dependent on our present level of 

knowledge and the nature and scale of investigation. Wilding & Drees (1983) state that 

when the soil system is investigated in greater detail, a part of the variation originally 

considered random may be recognized as systematic, and if  our state of knowledge were 

perfect, perhaps all variation in soil properties would be recognized as systematic.

2.3.3 Soil Classification, Soil Survey and Soil Maps.

Soil classification and soil survey have been the most practical methods for investigating 

field systematic variation or grouping similar and separating different soils on a regional 

scale (see Trangmar et al., 1985). Soil survey is a technique for determining soil 

resources and describing their spatial distribution on the landscape. During soil survey, 

the land surface is divided into parcels. Within each parcel, the land is considered to be of 

the same kind or of a few kinds of soils that can be listed and described. Usually, soil

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



surveys are made using a particular soil classification system which guides the naming of 

delineated areas and the placement or location of boundaries that are not readily visible 

by external features (Arnold, 1983). Soil classification is the systematic arrangement of 

soils into groups or categories on the basis of their characteristics (SSSA, 1987). Soil 

classification is used to help soil scientists predict the behavior of one kind of soil for 

which experimental data are lacking, by its relationship to the other kinds of soils for 

which knowledge and experience exist (Van Wambeke, 1982). A conceptual group of 

soils having defined or specific ranges in particular soil properties constitutes a soil class 

or taxonomic unit (TU). A soil taxonomic unit could be described as a well-defined, 

highly structured sets of taxonomic criteria (Markewich & Cooper, 1991), or a defined 

portion of a multi-dimensional array of sets of soil properties that are known from 

studying pedons or other sampling units of the landscape (Arnold, 1983).

The results of soil survey are usually portrayed as a soil map. Choroplethic maps 

are the most common kind. Parcels or geographic delineations similar in nature are 

grouped into classes called map units (MU). Names for the map units which also 

constitute the legend for the map are chosen from the TU that best describes the typical or 

modal soil profile apparently found in the map unit (Webster, 1979). In summary, soil 

survey identifies bodies of soils that can be recognized as natural units, predicts and 

delineates their areas on maps, and identifies the delineated areas in terms of defined 

kinds of soils or conceptual soil classes called taxonomic units. Hence the ranges in soil 

properties assigned to MUs are based on typical values of the TUs that are supposedly 

predominant within the landscape delineations. Map units of the USDA-Natural
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Resources Conservation Service (NRCS) soil surveys are described with Soil Taxonomy 

(Soil Survey Staff, 1975), the US system of soil classification.

Soil spatial variability is anisotropic (multi-directional) in nature and occurs in a 

continuum that ranges from sub-microscopic to megascopic in scale (Wilding, 1984; 

Upchurch et al., 1988). It is impossible to observe or sample the soil at every point on the 

landscape. Therefore, the soil scientists are restricted by resource and other pragmatic 

constraints to actually observe or sample a limited number of spots during soil survey of 

an area. From the knowledge of soils in these places, they interpolate or predict the 

properties of soils in other unsampled locations. Wilding (1984) argued that the soil 

scientist needs only enough observations to determine soil/landscape relationships and to 

confirm predictions of soil models established from these relations. The predictive 

approach of soil survey has been praised for substantially reducing the amount of money, 

time and effort required for physically visiting and sampling many spots (see Hartung et 

al., 1991; Bie & Beckett, 1971) while still producing information reliable enough for 

many uses (Webster, 1985; Hudson, 1980 and 1990; Hartung et al., 1991). Soil survey 

technology has thrived because the “procedure has undoubtedly been successful” 

(Webster, 1985), and “practical experience has convinced us that soil maps are reliable 

and provide valid interpretations” (Hudson, 1990).
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2.4 Limitations of Soil Survey and The Need To Further 

Characterize Map Unit Variability

The possibility of reliable soil resource information at a reasonable cost is certainly the 

greatest merit of soil survey methodology, and the prime reason for the continued and 

predominant use of this approach especially for large area studies. However, this 

approach has limitations which are of significant concerns to many users of soil survey 

results. The literature is replete with documentation of the shortcomings of traditional soil 

surveys (Butler, 1980; Holmgren, 1988; Nash & Daugherty, 1990; Netttleton et al., 1991: 

Moore et al, 1993). First, the reliability of the predictions obtained from soil survey varies 

widely as a function of the soil scientists' experience, knowledge and abilities. It also 

depends on the complexity of or abruptness of change in the mapping area (Hartung et 

al., 1991), and the degree of correlation among different soil properties and their relations 

in the landscape (Webster, 1985). Rogowski & Wolf (1994) considered, the assignment 

of properties derived from "typical" or modal soil profiles to the entire map unit without 

regard for the inherent spatial and temporal variability of field soils, as the most serious 

limitation of the current survey process. Moore et al. (1993) reported that the inferred 

homogeneity of soil maps does not exist for many soil physical and chemical attributes, 

and ranges given for some attributes often vary by an order of magnitude (see also 

Wilding, 1984). They attributed this problem to the fact that the nearest sampled pedon or 

soil used to derive mapping unit attributes could be kilometers from point of interest.

Other concerns of surveys include uncertainty regarding the placement of soil 

boundaries, presence of inclusions [mixing of soils that are taxonomically and
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interpretively dissimilar within the MUs] and lack of a mechanism to quantify spatial 

variability within map units (Rogowski & Wolf, 1994). Webster (1979) stated that soil 

maps do not show soil data but merely serve as indices to data; they show the limits, as 

soil boundaries, within which data can be safely used for prediction. As a result of such 

variation within sampling units, soil survey cannot be expected to reliably predict 

variation of all properties, particularly those that are easily influenced by soil 

management (Arnold, 1983; Trangmar et al., 1985). Moore et al. (1993) added that the 

approach lacks quantitative framework and does not delineate all o f a field's inherent 

variability nor represent specific soil attribute variability. Webster (1985) explained that 

although the soil survey procedure has undoubtedly been successful, nowadays scientists 

increasingly require quantitative estimates of soil properties for regions. They need 

confidence limits, probabilities, and frequency analyses on the composition of map units 

and information on how the inclusions within a given map unit influence the 

interpretation (Miller, 1978; Brubaker & Hallmark, 1991). They want to know the 

probability that knowledge about variability can be extrapolated from one mapping unit 

to the next (Wilding, 1988). These types o f information are rarely included in traditional 

soil surveys, but they can be determined from more intensive sampling, and field and 

laboratory measurements of specific soil attribute, even after the survey had been 

completed.

For the purposes of this dissertation, the limitations of soil survey (discussed 

above) can be categorized rather arbitrarily into two groups. First are problems that are 

naturally concomitant of the predictive nature of soil survey methodology, and are direct 

tradeoffs of the advantage of economy in field sampling and laboratory data analysis.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



/

25

These “problems” include functions that the conventional soil survey methodology is 

simply not capable or appropriate to perform. Most soil classes are poiythetic, depending 

on values of multiple soil attributes. It is practically impossible to efficiently separate the 

variability of all these soil attributes in a field of any reasonable size by soil survey 

method. Arnold (1983) noted that the art and scale used in map making, and the 

recognition of intermingled soil bodies having contrasting qualities preclude delineating 

areas containing the same limits of variability as taxonomic classes. Soil survey cannot be 

expected to reliably predict variation of all properties, particularly those that are easily 

influenced by soil management (Arnold, 1983; Trangmar et al., 1985). The main thrust 

from these problems is the obvious need to augment soil survey (i.e., interpolated) data 

with more empirical or observed and quantitative estimates of specific soil attributes. 

Lammers & Johnson (1991) explained the need for an alternate strategy [to soil survey] 

that captures local-scale soil variability and provides a mechanism for maintaining 

integrity across scales of extrapolation. Quantitative, precise and multi-scale analysis of 

spatial variability of individual soil properties requires actual measurements of the soil 

properties of interest at reasonably intensive scale. Such measured data are sparse 

(Burgess & Webster, 1980) and practically non-existent for large areas or regions.

The second type of problems indicate the necessity to improve the traditional soil 

survey information to accommodate new and more sophisticated pedocentric needs. 

Concerns about the reliability of soil survey or accuracy of soil maps became much more 

important within the past two decades. Since then there has been a steady proliferation of 

research studies and published literature on soil spatial variability. This trend appears to 

parallel our increasing concerns about the environment, and the increasing number of
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soil-based studies of global change, environmental quality and ecological management. 

Lammers & Johnson (1991) observed that scientists from many disciplines are 

recognizing the vital role that soils play in mitigating the effects of natural and 

anthropogenic perturbations of ecosystems. It could be argued therefore that many of the 

inadequacies of soil survey (mentioned above) have “evolved” essentially from recent 

changes in land use, and from the “paradigm shift” in soil geographic research from the 

traditional predominant focus on agricultural production. As Nordt et al. (1991) put it 

"land use today is frequently more intensive and, as a result there is greater demand for 

more precise statements... so that management decisions can be made with a higher 

degree of confidence" (see also Brubaker & Hallmark, 1991). Many of these new and 

more sophisticated land uses require quantitative expression of spatial variability. The 

descriptive and qualitative measures of variability which soil maps carry, though 

adequate for agricultural soil management, are often not so adequate anymore. And as 

Bouma (1988) put it, these don't stand up in court. This is the reason for the observed 

growing pressure by modem users of soil surveys for quantification of spatial variability 

and assignment of confidence limits for soil composition, specific soil properties, and soil 

performance within mapping units (see Miller, 1978; Wilding & Drees, 1983). Again, 

collection of statistical data (actual field observations and laboratory analysis of specific 

soil attributes) by transect or other types of sampling (see Brown & Huddleston, 1991) is 

required to provide such quantitative characterization of map units and their variability.
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2.5 NRCS State Soil Geographic Database (STATSGO)

The USDA-Naturai Resources Conservation Service (NRCS) formerly known as Soil 

Conservation Service (SCS) has the Federal leadership in a national effort to provide 

digital soil data for use in geographic information systems (GIS). NRCS has established 

three soil geographic databases representing kinds of soil maps at differing levels of 

detail. Soil Survey Geographic Data Base ( SSURGO) is the most detailed of these digital 

soil databases, and is made from NRCS standard county soil surveys at scales typically 

between 1:15,000 to 1:24,000. Soil maps for STATSGO are compiled by generalizing the 

more detailed SSURGO maps. Where SSURGO maps are not available, data on geology, 

topography, vegetation, and climate are assembled and used, together with remotely 

sensed satellite images. Soils o f like areas are studied, and the probable classification and 

extent of the soils is determined. Map unit composition for STATSGO is determined by 

sampling areas on the more detailed maps and expanding the data statistically to 

characterize the whole map unit. Then, using the US Geological Surveys 1:250,000 

quadrangle series as a map base, the soil data are digitized to comply with national 

guidelines and standards (see SCS 1991, p. 2; 1994). STATSGO, therefore, is not only 

subject to all the potential errors of soil survey discussed earlier, but more errors are 

introduced in the further process of automation. Jordon et. al., (1986) as cited in Day et 

al. (1988) stated that in the US, approximately 80% of published soil surveys and 50% of 

soil surveys in progress are on spatially distorted base maps that do not meet National 

Map Accuracy Standards. There are other potential sources of serious errors (Lunetta et 

al., 1991; Heuvelink et al., 1989; Burrough, 1987) in a geographic information system.
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As Aronoff (1993) notes, error is introduced and propagated at every step in the process 

of generating and using geographic information. Yet as Hammer et al. (1991) noted, soil- 

based applications of GIS technology introduce new demands upon soil surveys and 

produce new users of soil survey information, many of whom may be unaware of either 

the potentials or limitations of soil survey information. To serve these numerous and 

often crucial demands well, it is important that the reliability o f soil geographic databases 

be assessed, and the variability of specific soil attributes within their map units be further 

characterized.

2.6 Methods Of Assessing Map Unit Variability

Brubaker & Hallmark (1991) contains an excellent treatise on the methods for evaluating 

map unit composition. These methods have been used by Protz et al., 1968; Amos & 

Whiteside, 1975; Bascomb & Jarvis, 1976; Campbell, 1978; Steers & Hajek, 1979; Bigler 

& Liudahl, 1984; Edmonds & Lentner, 1986; Hopkins et al., 1987; Nordt et al., 1991). 

Quantification of map unit reliability involves selecting unbiased samples (usually by 

transecting but also by stratified random sampling) from delineations of map units to be 

studied. These samples are then used to estimate either (1) the compositional purity of the 

map unit in terms of TU content or (2) to evaluate the variability of individual soil 

properties. In the former, the objective is to determine proportion of soils within the MU 

that are in the same taxonomic class as the named soil or TU. Confidence intervals are 

then calculated using either the Student's t-distribution or a binomial method (see 

Wilding & Drees, 1983; Upchurch et al., 1988; and Burrough, 1991). A good soil survey
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was required to have a mapping unit purity of 85% or better (Soil Survey staff, 1951), but 

many studies such as McCormack & Wilding, 1969; Amos & Whiteside; Edmonds & 

Lentner, 1986; and Hopkins et al., 1987 reported taxonomic purity of 50% and less. This 

number increases significantly when the taxonomic purity is examined at higher levels of 

soil taxa, or when interpretive (instead taxonomic) purity is examined (West et al., 1981; 

Nordt et al., 1991). In interpretive purity, soils that were taxonomically dissimilar but had 

similar interpretations are allowed to be included in the map unit. The problem here is 

that the definitions of similar and dissimilar soils (Soil Survey Staff, 1983) used in 

taxonomic purity are subjective, user-biased and dependent on intended land use (Nordt 

etal., 1991). According to Miller etal. (1979), and Wilding & Drees (1983), taxonomic 

purity of map units is not a proper measure of quality or precision of soil survey.

A better approach (and also the method employed in this study) is to assess the 

variability of specific soil properties. This method uses parametric or nonparametric 

statistics to analyze the between and within map units variances for selected soil 

properties, and to compute summary statistics including coefficients of variation (CV) 

for these soil properties within map units. The results indicate the "quality" of soil map 

units, revealing if values of soil attributes are within the limits expected for the reference 

taxa they represent, as well as showing the relative efficiency with which the spatial 

variability of the selected soil properties is mapped. An assessment based on individual 

soil properties is more useful to many users (Trangmar et al., 1985), and specialists and 

map interpreters (Ragg & Henderson, 1980). The probability estimates of soil variability 

and individual soil properties provided by this approach are needed if we are to
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extrapolate properties from one delineation to the next (Wilding, 1988; Nordt et al., 

1991).

2.7 Statistical Analyses Used in Soil Variability Studies

2.7.1 Central Tendency and Variance Statistics.

The statistical procedures for expressing the variability of a specific soil variable within 

an area of land (e.g., a map unit or study area) are discussed in Webster (1977), Warrick 

& Nielsen (1980), Wilding & Drees (1983), and overviewed more recently by Webster & 

Oliver (1990), and Upchurch & Edmonds (1991). These include the estimation of the 

mean, variance, coefficients of variation and frequency distributions for the soil 

population represented by the sample data set. Warrick & Nielsen (1980) stated that “—a 

population is more completely defined by its frequency distribution. Given the frequency 

distribution, we can determine all sorts of things—including averages, dispersions, and 

even the probability that a randomly drawn value will be within specified limits”. The CV 

is a useful and meaningful index to compare variability among different soil properties 

(Wilding & Drees, 1983), while standard error of the mean and confidence limits of 

sampled data are used to make probability statements concerning the expected variance or 

limit of accuracy for randomly drawing a given size sample, and to determine the number 

of samples or observation necessary to estimate the mean within specified limits at 

desired confidence levels.
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2.7.2 Geostatistical Techniques

Although, classical statistical procedures give valuable information about the soil 

population for a soil property, they say nothing about where the samples are located, and 

they assume independence among sample points. Soil properties are distributed in space 

and their values are related to their spatial location. Variables are not independent if 

values at points close together approximate one another and increasingly differ as the 

distance separating them increases. Such variables are described as having spatial 

structure or showing spatial dependence or spatial continuity. Geostatistics is a set of 

statistical tools which are extensions of classical statistics with the assumption of sample 

independence removed (Upchurch & Edmonds, 1991). The relationship or spatial 

structure among values at different location in the study area is mathematically described 

by the variogram. Based on the variogram, the statistical interpolation procedure of 

kriging is used to estimate values at any unsampled location within the study area (see 

Isaaks & Srivastava, 1989). Because kriging takes into account the spatial dependence in 

the data, its estimations have minimum variance or error. The variance or error of 

estimation by kriging depends only on the degree of spatial dependence and the 

configuration of the observation points in relation to the point or area (block) to be 

estimated. This error is itself estimated during kriging, and therefore can be known. 

Kriging is described as a “best linear unbiased estimation (b.l.u.e)” method. It is 

“unbiased” since it tries to have the mean residual or error of estimation that is equal to 

zero; and it is “best” because it aims at minimizing the variance of errors (see Isaaks & 

Srivastava, 1989). Kriging is also termed an optimal interpolation procedure because 

"the sparsest sampling intensity that can achieve a desired precision could be derived for
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a given soil attribute" (Odeh et al., 1990). McBratney and Webster (1983) reported 3.5 

to 9 fold gain in efficiency of sampling effort required by geostatistical method (for a 

given estimation variance and standard error) over that estimated by classical method. 

Also, with kriging, very precise contour maps can be drawn for space-distributed 

variables, reducing sampling and analysis costs (Vieira et al, 1983).

The use of geostatistical methods has gained much support among soil scientists 

for examining the spatial variation of soil properties (e.g. Burgess & Webster, 1980a, b; 

Yost et al., 1982a, b; McBratney et al., 1982; McBratney & Webster, 1983; Uehara et al., 

1984; Yates & Warrick, 1987). However, most of these studies have been for small areas 

where the luxury of intensive grid sampling could be afforded. The commonly reported 

correlation distances for soil properties are under a few hundred meters (Wierenga, 1984), 

although Cipra et al. (1972) reported some correlation between soil chemical properties 

sampled 45 km apart for a loess-derived soil, and Yost et al. (1982a) reported ranges of 

32 km for some cations and pH, and 42 km for phosphorus from samples taken at 45-cm 

depth. Yost et al (1980a) remarked that there have been few application of these methods 

over distances of several kilometers as might be useful in mapping of soils and soil 

properties over areas which might be independently managed. This is most probably due 

to the large number of samples required for adequately computing variograms for such 

large areas. Recently, Webster & Oliver (1992) observed that many of these geostatistical 

studies had the variograms computed from insufficient sample sizes. Such inadequate 

sample sizes result in erratic variograms and large estimation variances.

Although it could not be conveniently accommodated in this dissertation, an 

interesting geostatistical study would be to determine optimal sampling efforts (number
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of samples required to adequately sample an area) for various soil attributes, and see how 

these compare to those determined by classical statistical methods. It was apparent that to 

carry out such a study, some of the selected soil variables would require additional 

samples or increased sampling density in order to yield stable variograms. SSURGO data 

seem an appropriate source from which to create supplementary data or more closely 

spaced samples of soil attribute values, but SSURGO data are not available for much of 

the study area. Consistent and well-defined study area is important in geostatistical 

studies because degree of soil spatial dependence or correlation length not only depends 

on the soil property but also on area of study, and may be a function of time (see 

Wierenga, 1984). The proposed geostatistical study would entail many trials to fit 

variograms for many of the soil variables and each of the ECOMAP Sections or 

Subsections. It therefore seemed appropriate to defer these geostatistics studies to the 

immediate future following this dissertation when such studies will be more feasible and 

appropriately done.

2.7.3 Multivariate Statistics

Soil classes are usually polythetic—class membership is based on observations of several 

variables, no one of which is either [absolutely] necessary or sufficient to define the class 

(Webster & Burrough, 1974). Soil variables are usually intricately interrelated, and it is 

difficult for soil map units to efficiently reflect spatial variation in all soil variables 

simultaneously. To assess the effectiveness of soil classification and/or evaluate the 

reliability of a soil survey usually involves comparing two or more map units for 

differences on a set of soil attributes. Classical univariate analysis of variance (ANOVA)
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used for assessing group differences on a single dependent variable is inappropriate when 

more than two variables must be considered simultaneously. Multivariate analysis of 

variance (MANOVA) and discriminant function analysis (DFA) are commonly used 

multivariate statistical analyses to answer questions about how two or more groups or 

classes differ from one another on the basis of multiple criteria (considered 

simultaneously). They also provide means for assessing the contribution or relative 

effectiveness of each of the variables in distinguishing the groups or predicting group 

membership. Except for some nuances, MANOVA is practically the same as DFA; they 

are used to answer the same types of research questions but stated differently (see 

Tabachnick & Fidell, 1996).

MANOVA evaluates the differences among centroids for a set of dependent 

variables when there are two or more groups or levels of an independent variable 

(Tabachnick & Fidell, 1996). A centroid is the multivariate equivalent of the mean of a 

variable. MANOVA is used to test the hypothesis that groups are significantly different; 

to tests if it is worth treating the map units as different from one another (Norris, 1970). 

Like MANOVA, discriminant function analysis (also called Multivariate Discriminant 

Analysis) is also a technique for analyzing the differences between groups or interpreting 

ways in which groups differ. With DFA, “one is able to discriminate between groups on 

the basis of some set of characteristics, assess how well the properties discriminate, and 

which characteristics are the most powerful discriminators (Klecka, 1980; see also Norris, 

1970). Horton et al. (1968) used a computer program much like MANOVA (or 

multivariate analysis of covariance) to show that the top, slope, and depression areas of a 

gilgaied landscape in Queensland are significantly different taken over all properties,
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though not over most properties taken individually. In a similar research, Little et al. 

(1968) showed that soil materials on a certain valley fill were significantly different from 

each other taken over their contents of trace-elements and other soil properties.

Unlike MANOVA, DFA has been used very frequently in soil classification 

research, to both measure and test differences between soil groups (see Horton et al, 

1968; Webster & Burrough, 1974; Pavlick & Hole, 1977; Webster, 1977; Duning et al., 

1986). Recently, Bell et al. (1992) gave a detailed review of the application of this 

method in pedology. A major advantage of DFA over MANOVA is that the former also 

offers classification procedures to evaluate how well individual subjects (i.e., soil units or 

profiles) are classified into their appropriate groups (i.e., soil map units), on the basis of 

their scores on the independent variables (i.e., soil properties) (see Tabachnick & Fidell, 

1996). Webster & Burrough (1974) and Webster (1978) discussed the advantages of 

using DFA as an allocation tool for soil classification. Norris and Loveday (1971) found 

that soil profiles classified using multivariate discriminant techniques were more 

consistent than classification by surveyors using their mental concepts of the modal soil 

for each group.
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CHAPTER 3

DEVELOPMENT OF NORTHERN NEW ENGLAND ECOLOGICAL
DATABASE FROM 1983 FIA

3.1 Introduction

Regional coverage, inclusion of locational attributes (in latitude and longitude), intensive 

field sampling and comprehensive nature of the 1983 FIA data of Maine, New Hampshire 

and Vermont are qualities that make these data potentially valuable for a number of 

scientific applications. These extensive environmental and ecological data are certainly 

useable for ecological modeling (e.g., ecological model validation), and ecologically- 

based management of natural and environmental resources at the regional scales. Being 

field measured and reliable data, they may have the potential to be useful as reference 

data for the calibration of airborne remote sensors and for classification and accuracy 

assessment of remotely sensed data, and cross-validation of other traditional but 

interpolated sources of environmental and natural resource data. However, despite these 

potential scientific uses, and the paucity of like regional ecological data, FIA data have 

merely sat in archives; being unused for research because of poor data summarization and 

presentation, and trouble-some computer storage format of the un-summarized data.

To be accessible and readily usable for the identified and other potential scientific 

research, un-summarized FIA data needed further processing and major reorganization,

35
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and adaptation to relational database management and geographic information systems 

technologies. This chapter discusses the research effort undertaken to achieve this goal. 

The specific objectives of the research were to:

(1) Develop 1983 FIA data of Maine, New Hampshire and Vermont into an 
ecological relational database (using Paradox 5.xfor Windows)

(2) Create interfaces for raster- and vector-based geographic information systems 
(GIS) for the developed data tables

(3) Develop comprehensive hardcopy and computer on-line documentation on the 
contents, source, limitations, uses, etc. of the ecological databases.

During each stage in the development of the databases, necessary steps were taken to 

check for obvious errors such as anomalous or suspicious data, and also to correct errors 

that might have been introduced in the process of the database development.

3.2 Methods

The development of this ecological database involved the following steps: First, 

computer programs were written in FORTRAN to read the data tapes obtained from the 

Northeastern Regional Forest Service office (Radnor, Pennsylvania) into comma- 

separated ASCn format. The maze of data (close to 100 data files in all) were then 

imported into Paradox (relational database management system) 5.x fo r Windows, and 

evaluated for any inconsistency or obvious errors (e.g., misplaced decimals, mis-coding, - 

etc.) resulting from data reading and retrieval processes. Then all related data files for 

each data type were added together for each state. Again, effort was exercised to ensure 

that the number of records summed as expected after the addition procedure. Data fields
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were then named appropriately following related document and FIA survey manuals. 

Some components of the FIA data were received from a different source and at a different 

time. For instance, the soil chemistry data and geographic coordinates (along with other 

data) were received about two years earlier, and not directly from Northeastern Forest 

Experiment Station. With later support and collaboration from the Forest Service, we 

sought to get original and perhaps more complete and valid copies of the FIA database 

directly from the Forest Service. These later data from Forest Service included about 70 

data files many of which were not among the initial data set we had received. However, 

there were no data for the state of Vermont, and no soil chemistry or geographic 

coordinate data at all in this later batch of data. Therefore, it was necessary to combine 

data from both sources during the database development; we had to resort to the old data 

set for the “missing” components of the data received from the Forest Service.

The next step was to link or associate the data in each data file in each state with 

appropriate geographic coordinates. Each FIA data file (including the locational data) had 

three variables or keys (i.e., Unit, County, and Plot #) which when combined or indexed, 

uniquely identified each FIA plot location. However, we had two initial concerns. First 

we were not sure if the locational data (from old data-source) would match the later 

incomplete data when indexed by Unit/County/Plot#. Fortunately, they matched 

perfectly, thereby assuring that the potentially developed database would have the 

necessary spatial component. Also, since we had to supplement the data received from 

Forest Service with data (e.g., latitude, longitude and soil chemical properties) from the 

other source, we needed to verify that the latter were valid data. Fortunately again, both 

sources of data contained many variables (e.g., soil moisture class, soil series, rooting
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depth, organic depth, parent material, soil geology, soil drainage, B-texture etc.) in 

common. When these common data fields were compared (using Paradox query 

procedures) they were exactly same, plot for plot in the two data sources. This gave us 

confidence that the old data set was also valid and could be used. In all, only plot 

locations that were unique when indexed by State, County and Plot #s, and could also be 

associated with unique latitude and longitude values were used in the database 

development. These include about 2270 “New Ground” l/5th acre plots (FIA Sample 

Kind = 3, see US-FS, 1982, p. 15) for ME, and about 700 for NH and 800 for VT. FIA 

“Remeasured” or permanent plot data were not used as these did not have associated 

latitude and longitude data.

To keep the plot locations uniquely and permanently identified without the use of 

compound keys (i.e., Unit/County/Plot#), an Auto-increment field was added to the 

indexed and sorted data files. The auto-increment values (originally named Serial#) were 

then concatenated with the state name and code (e.g., NH and 23 respectively for New 

Hampshire) to form alphanumeric and numeric data fields. With these fields each of the 

about 4000 FIA plots in the study area was uniquely identified. For instance, the FIA 

plot in New Hampshire which was #100 when indexed and sorted as described above, 

became permanently and uniquely identified in the study area as NH100 and 23100 in 

these fields which were named UNIQID-A and UNIQID-N respectively. These fields 

would later also serve as the interfaces for linking the developed data tables to vector- and 

raster-based GIS respectively.

Next, the ecologically relevant variables were selected from the clutter of data 

within each state, and re-organized into tables of related items such as soils, forest
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composition, site and locational data, tree-level data table, etc. In all, each state has five 

(5) data tables containing the following information:

1) Geographic coordinates and other locational information about each plot site

2) Soil and soil-related variables

3) General site characteristics

4) Forest composition data, and

5) Tree-level measurements.

Contents of each of the data tables are provided in Tables 3-1 to 3-5. Miscellaneous 

suggestions (see Bowers, 1988) were followed to develop the data into efficient, 

intelligible and easy-to-use databases. Finally, a hardcopy meta-data or user’s guide 

(compiled from existing FIA documents) about the contents, definitions of variables, 

methods of survey, limitations of data and other relevant information about the FIA data 

was developed for the ecological database. A computer on-line, abridged version of the 

user’s guide was also designed and built into the database. The on-line meta-data is in a 

relational database Memo format. It was intended to accompany all developed data ta- 

ble(s); to provide quick information and reference when the unabridged hardcopy user's 

guide is not readily within reach.

3.3 Results and Discussion

The names of the data tables and the variables they contain are given below. Often, a 

variable appears in more than one table if and when such duplication makes the affected 

tables more complete and sufficiently independent. Also, every table has two additional
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fields which contain alpha-numeric and numeric unique identifications for each plot. One 

of these two fields is required as the relate item or common field for interfacing the tables 

to either a raster or vector-based GIS. Item#s (in the tables) are used to easily locate the 

variable in the User’s Guide. The full or more descriptive names and the abbreviated field 

names for the data variables appear in the second and third columns (respectively) of the 

tables.

It may be important to note that many of the FIA plots (shown in Figure 1.1) were 

not sampled for each and every of the variables shown in the tables, and some of the 

tables or groups of variables had many more samples than others. For instance, only 

Maine had soil series data, and very limited number of plots in the study area had soil 

chemical data especially CEC, OM and TN. Also, as at the time of this report, much of 

the data for the state of Vermont were yet to be received from the Forest Service.

ITEM# DESCRIPTION FIELD NAME

ItemA 00 Unique Identity UniqidA
ItemN 00 Unique Identity (numeric) UniqidN
Item 990 Latitude Latitude
Item 999 Longitude Lngtude
Item 1 State State
Item 2 Unit Unit
Item 3 County County
Item 4 Town or Sub-county Town

Table 3-1: Geographic coordinates and other locational information about plot sites
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ITEM# DESCRIPTION FIELD NAME

ItemA 00 Unique Identity UniqidA
ItemN 00 Unique Identity (numeric) UniqidN
Item 14 Land use Class Landuse
Item 15 Disturbance since Photo Disturb
Item 17 Previous Land use Prev-lnduse
Item 18 Previous Date Prev-Date
Item 19 Month of Current Tally Crmt-Date
Item 25 Aspect Aspect
Item 26 Terrain position Tm-positn
Item 27 Percent Slope %Slope
Item 28 Percent exposed Soil %expo-soiI
Item 65 Distance to Nearest Road Dist-to-Road
Item 66 Recreation Opportunity Recreatn-oppty
Item 75 Water on Plot Water-on-plt
Item 73 Equipment Limitation Eqmt-Lmtn
Item 74 Surface Boulder class Surf-Bouldr
Item 79 Elevation Elevation

Table 3-2: General site characteristics or description of plot locations
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ITEM# DESCRIPTION

ItemA 00 Unique Identity
ItemN 00 Unique Identity (numeric)
Item 06 Sample Kind
Item 14 Land use Class
Item 16 Owner Class
Item 17 Previous Land use
Item 18 Previous Date
Item 19 Month of Current Tally
Item 24 Point History
Item 29 Less than 1ft seedling
Item 30 Cover class
Item 31 Crown Closure
Item 32 Foliage Condition
Item 33 Canopy height
Item 34 Stratum Volume
Item 35 Life form volume
Item 41 Stem Count
Item 64 Stand Area class
Item 67 Forest Type
Item 68 Plot Origin
Item 69 Plot age
Item 7 Photo Interp Class
Item 70 Timber Management
Item 71 Harvest History
Item 72 Time Since Harvest
Item 76 Browse Line
Item 77 Forest Openings
Item 78 Edge on Plot
Item 104-107 Site Index Trees
Item 104 Site Index Tree Species
Item 105 Site Index Tree D.B.H
Item 106 Site Index Tree Total Height
Item 107 Site Index Tree Age
tern 108 Gross Cubic-foot Volume
tern 109 Photo Edge Information

FIELD NAME

UniqidA
UniqidN
Smpknd
Landuse
Owner
Prev-landuse
Prev-Date
rmt-Date
Pnt-hist
Ift-Seedling
Cover
Crown-closr
Foliag-Condt
Canopy-hgt
Stratum-vol
Life-form-vol
Stemcount
Stand-area
Forest-type
Plot-Origin
Plot-Age
PI Class
Timber-Mgt
Harv-History
Since-Harvst
Browse-lne
Forst-Opns
Edge-on-Plt
Site-Index
S-I-Tree-Spp
S-I-Tree-D.B.H
S-I-Tree-Height
S-I-Tree-Age
G.C.F.Vol
Phot-Edg-Info

Table 3 -3: FIA forest composition data
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ITEM# DESCRIPTION

ItemA 00 Unique Identity
ItemN 00 Unique Identity (numeric)
Item 06 Sample Kind
Item 14 Land use Class
Item 16 Owner Class
Item 39 Species
Item 40 Diameter at Breast Height
Item 41 Stem Count
Item 42 Cavities
Item 45 Sawlog Length
Item 46 Bole Length
Item 47 Board-foot cull
Item 48 %Soundness(board-ft-cull)
Item 49 Cubic Foot cull
Item 50 %Soundness(cubic-ft-cull)
Item 51 Crown Ratio
Item 52 Crown Class
Item 53 Crown Availability
Item 54 Primary Damage/Agent
Item 57 Tree Class
Item 58 Merchantability Class
Item 59 Tree History
Item 60 Previous Tree Number
Item 61 Previous D.B.H
Item 62 Previous Merchantability

Table 3-4: Tree-level data in FIA

44

FIELD NAME

UniqidA
UniqidN
Smpknd

Landuse
Owner
Species
D.B.H.
Stemcount
Cavities
Sawlog-lgth
Bole-length
Board-ft-cull
%Sndness-brd
Cubic-ft-cull
%Sndness-cub
Crown Ratio
Crown Class
Crown-Avail
Prmry-Damage
Tree-Class
Merchbty-class
Tree-History
Prev-Tree-#
Prev-D.B.H.
Prev-Merchbty
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ITEM# DESCRIPTION FIELD NAME

ItemA 00 Unique Identity UniqidA
ItemN 00 Unique Identity (numeric) UniqidN
Item 79 Elevation Elevation
Item 80 Depth of Organic Layer Organic-Dept
Item 81 Rooting Depth Rootg-Depth
Item 82 Depth to Mottling Motlng-Dept
Item 83 Subsurface Soil Texture Subsoil-Text
Item 84 Depth of Bedrock Bedrk-Depth
Item 85 Parent Material Parent-Matl
Item 86 Soil Geology Soil-Geolgy
Item 87 Soil Moisture or Drainage Soil-Dmge
Item 88 Lab Soil pH Lab-Soil-pH
Item 89 Soil Series Soil-Series
Item 90 Field Soil pH Fld-Soil-pH
Item 91 Soil extractable sodium (Na) Extble-Na.
Item 92 Soil extractable calcium (Ca) Extble-Ca
Item 93 Soil extractable Magnesium (Mg) Extble-Mg
Item 94 Soil extractable Potassium (K) Extble-K
Item 95 Soil extractable Phosphorus (P) Extble-P
Item 96 Soil extractable Aluminum (Al) Extble-Al
Item 97 Soil extractable Iron (Fe) Extble-Fe
Item 98 Soil extractable Manganese Extble-Mn
Item 99 Soil extractable Zinc (Zn) Extble-Zn
Item 100 Soil extractable Copper (Cu) Extble-Cu
Item 101 Soil Cation Exchange Capacity Soil-CEC
Item 102 Total extractable Nitrogen Tkn- %N
Item 103 extractable H+ Extble-acid (meg/lOOg)

Table 3-5: Soil and soil-related data

The ideas of this study were presented at the Second International Conference/ 

Workshop on Integrating Geographic Information Systems and Environmental Modeling 

(Smith & Hallett, 1993). The response and interests generated at this conference clearly 

showed that there will be many new users of the data if the un-summarized data are 

presented as shown in this study. There are already research proposals and Ph.D.
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dissertations (mainly from University of New Hampshire) in which the results from this 

study would be a primary data source. The adaptation of FIA un-summarized data to 

RDMS and GIS will allow these data to be more efficiently analyzed. The kinds and 

scales of data analysis will increase, making FIA data suitable for many more uses (as 

mentioned above).

Although FIA has been going on for 60 years and some areas of the USA have 

been surveyed six times, many significant changes have occurred from one survey to 

another (Birdsey & Schreuder, 1992). Hansen et al. (1992) affirmed that inconsistency in 

data collection and processing methods creates data incompatibility among FIA projects 

and precludes analysis of data from more than one FIA project. This study has built a 

prototype database structure which if adopted for subsequent FIA surveys, will ensure 

consistency of data between survey projects. Such consistency among survey projects 

would permit FIA data in the future, to serve as a valuable tool for spatial and temporal 

change analyses (change detection studies) of many of the dynamic ecological variables 

in the data sets.

3.4 Summary

Hansen et al. (1992, p.3) describes the high accuracy standards with which the USDA 

Forest Service carries out forest inventory plans. FIA inventories are said to be designed to 

meet the specified sampling errors of 67-percent confidence limit (one standard error) at the 

state level. A 3-percent error per 1 million acres of timberland is the maximum allowable 

sampling error for an area. A 5-percent error per 1 billion cubic feet of growing stock on
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timberland is the sampling error goal for volume, removal, and annual growth (Hansen et 

al., 1992). FIA tree-level (species types, volume and conditions), vegetative and other 

landcover and landuse records were collected by Forest Service personnel to whom such 

activities must be familiar routine. Pertinent Forest Service publications (e.g., USDA-FS 

1980 & 1982) also show high level preparation and training of the Forest Service personnel 

prior to FIA surveys.

The importance of, and the critical need for reliable, regional-scale data for 

ecological modeling and other studies is well established (e.g., Aber et al., 1993). 

Diekkruger et al., (1995) wrote that “considering the amount of published models it 

seems that it is much easier to develop a new model than verifying or validating existing 

computer codes. This is mainly due to the fact that laboratory and field measurements 

necessary for model verification are expensive....” They added that “testing a model on 

an independent data set is often not possible because usually those data are not available, 

unpublished, or not documented.” However, the 1983 FIA data of the states of Maine, 

New Hampshire and Vermont which are a large amount of quality, field measured 

regional data have not been used for scientific applications due to inappropriate data 

organization and presentation, and problematic data storage format. This study involved 

the adaptation of these multi-million dollar data set to relational database management 

and geographic information systems technologies which are the most up-to-date and 

efficient computer-base systems for organizing, storing, managing, manipulating, 

analyzing and presenting data. By so doing, this study has provided the scientific 

community with regional data of rare quality and proportion, and in forms that are 

readily amenable to diverse types and scales of data analyses.
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FIA is a national endeavor, and it is very probable that similar large and expensive 

data sets that are potentially valuable for research, are just sitting on the shelves and 

accumulating dust in other Forest Service regions in the country. It is our hope that the 

ideas of this study will be quickly adopted in other parts of the country where similar 

situation already exists. In addition, it is hoped that the US Forest Service will seriously 

consider the database management structure developed in this study as a model for 

organizing data from subsequent FIA surveys. The prospect o f using FIA data for 

scientific research (brought about by this study) has already caused the Forest Service to 

start reconsidering some of its policies that may be adverse to this idea. One of such 

policies prohibits the Forest Service from giving out the geographic coordinates of FIA 

plots to scientist and/or disallows people using FIA data from visiting the plot locations. 

We hope that this discussion and policy re-evaluation remains in the forefront until it is 

resolved, hopefully in favor of more accessibility and wider use of FIA data than is 

presently the case.
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CHAPTER 4

VARIABILITY OF SOIL PROPERTIES IN NORTHERN NEW 
ENGLAND BASED ON FIA DATA 

4.1 Introduction

4.1.1 Overview

The importance of soil variability studies is well documented (e.g., Wilding & Drees, 

1983; Wilding, 1984; Arnold & Wilding, 1991). The nature of soil substrata is a major 

abiotic factor in ecological land classification systems (e.g., ECOMAP, 1993; Avers et 

al., 1994), and the importance of soil-site relationship has been recognized in forest site 

classification systems (e.g., Pregitzer & Bames, 1984; Corns & Annas, 1986; Zelazny et 

al., 1989). Knowledge of soil variability is essential in ecological research (Nash & 

Daugherty, 1990); to predict tree growth and timber production from forest site attributes 

(Mader, 1963; Blyth & Macleod, 1978); and to assess either the present status or changes 

in ecosystems (Grigal et al., 1991). Aber & Mellillo (1991, p.139) identified soil 

chemistry as a major factor determining the availability of nutrients in ecosystems. Taylor 

(1987) thought that tree types found on New England may be related to the chemical 

status of the B-horizons of on these soils, but remarked that the chemical characteristics 

New England forest soils have scarcely been studied.

Quantitative expressions of soil variability require intensive sampling and actual 

measurements of specific soil attributes. Soil data obtained in this fashion are scarce, and 

almost non-existent on a regional coverage, due to the prohibitive cost of field sampling 

and laboratory analyses. However, in the states of Maine, New Hampshire and Vermont,

4 9
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the 1983 USDA Forest Inventory and Analysis (FIA) survey included field and laboratory 

measurements of many physical and chemical soil attributes. The chemical properties 

were determined from samples taken from the B-horizons of about 2400 soil profiles dug 

at sites that were representative o f FIA plot locations. Table 2 shows the soil and soil- 

related variables that were measured in the said FIA surveys, and their units of 

measurement.

Depth of Organic Layer (inches)
Depth to Mottling (inches)
Depth to Bedrock (inches)
Soil Geology 
Soil pH
Elevation (feet)
Exchangeable calcium (mg kg'1) 
Exchangeable Potassium (mg kg'1) 
Exchangeable Aluminum (mg kg'1) 
Exchangeable Manganese (mg kg'1) 
Exchangeable Copper (mg kg'1) 
total Nitrogen (%)
Cation Exchange Capacity (meq/lOOg)

Rooting Depth (inches)
Subsurface Soil Texture 
Parent Material 
Soil Moisture or Drainage 
Soil Organic Matter (%)
Slope (%)
Exchangeable Magnesium (mg kg'1) 
Exchangeable Phosphorus (mg kg'1) 
Exchangeable Iron (mg kg'1) 
Exchangeable Zinc (mg kg'1) 
Exchangeable sodium (mg kg'1) 
Exchangeable acid (mg kg'1)

Table 4-1: Soil and soil-related variables in the FIA data

4.1.2 Purpose of Study.

The primary purpose of this study was to explore and quantitatively describe the 

variability of selected soil properties in the study area based on these FIA data. The soil 

properties selected for this study were those on ratio-interval scales, and include 

exchangeable basic cations; calcium (Ca), potassium (K), sodium (Na) and magnesium 

(Mg), and cation exchange capacity (CEC), organic matter (SOM), depth to organic
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matter (OM_depth), phosphorus (P), total nitrogen (total N), the micronutrient cations; 

aluminum (Al), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu). Soil variability is 

virtually continuous, and generally increases with size o f area (Beckett & Webster, 1971; 

Webster & Oliver, 1990; Grigal et al., 1991). Spatial variability studies of soils on 

landscape and regional scales are usually more meaningful when such large areas could 

be partitioned into smaller, more homogeneous sub-areas. Stratification of a large study 

area minimizes within-unit variances and maximize between-unit variances of soil 

properties. This increases precision (i.e., relative lack o f change in repeated values) of 

estimates of variation for local areas (see also McBratney et al, 1981 and Stein et. al, 

1988). As Chen et al. (1995) stated, spatial sampling efficiency depends on soil 

variability, and increases as variability decreases. Hence, minimizing within-unit 

variation also makes sampling designs for soil properties more efficient (see also 

Campbell 1978; McBratney et al., 1991).

Crepin and Johnson (1993) suggested using topography, underlying geology, and 

dominant vegetation type for horizontal subdivisions of the landscape for soil sampling. 

The recently produced ecological map of the eastern United States (Keys et al., 1995) 

which is based on the National Hierarchical Framework o f Ecological Units (ECOMAP, 

1993) has partitioned the study area into 10 section and 30 subsection map units (Figure 

4-1). ECOMAP sections and subsections are based on biotic and environmental factors 

many of which are well known factors of soil formation (Jenny, 1941), i.e., they cause or 

affect soil spatial variation. In fact, ECOMAP subsections are described as smaller areas of 

sections, with similar surficial geology, lithology, geomorphic processes, subregional
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Figure 4-1: ECOMAP section and subsection boundaries in the study area 

(Map units’ descriptive names are given in Table 4-2 below).
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Section
ID

Section Names Subsect
ID

Subsection Names

212A Aroostook Hills and Lowlands
212Aa
212Ab

Aroostook Lowlands 
Aroostook Hills Subsection

212B Maine and New Brunswick Foothili 
and Eastern Lowlands

s
212Ba
2l2Bb

Central Maine Foothills 
Maine-New Brunswick Lowlands

212C Fundy Coastal and Interior
212Ca
2l2Cb

Maine Eastern Interior 
Maine Eastern Coastal

212D Central Maine and Coastal interior
2l2Da
2l2Db
2l2Dc

Central Maine Embayment 
Penobscott Bay Coast 
Casco Bay Coast

212E St. Lawrence and Champlain Valleyr

2!2Ec
2l2Ed

Chaplain Glacial Lake & Marine Plains 
Chaplain Hills Subsctions

M212A White Mountains
M2I2Aa
M212Ab
M212Ac
M212Ad
M212Ae
M212Af
M212Ag

International Boundary Plateau 
St. John Upland Subsection 
Maine Central Mountains 
White Mountains Subsection 
Mahoosic-Rangely Lakes Subsection 
Connecticut Lakes Subsection 
Western Maine Foothills Subsection

M212B New England Piedmont
M212Ba 
M212Bb 
M212 Be 
M212Bd

Vermont Piedmont Subsection 
Northern Connecticut River Valley 
Sunapee Uplands Subsection 
Hillsboro Inland Hills and Plains

M212C Green, Taconic, Berkshire Mountaii
M212Ca
M2I2Cb
M212Cc
M212Cd

Northern Green Mountain Subsection 
Taconic Mountains Subsection 
Berkshire-Vermont Upland Subsection 
Sourthern Green Mountain Subsection

221A Low New England
22lA i
221Ak
221AI

Gulf ofMaine Coastal Lowlands 
Gulf ofMaine Coastal Plain Subsection 
Sebago-Ossipee Hills and Plains

22 IB Hudson Valley
221Bb Taconic Foothills Subsection

Table 4-2: Names of ECOMAP sections and subsections map units 
in the study area. Source: Keys et al., 1995, Map.
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climate, potential natural communities and soil groups (ECOMAP, 1993, p.4). ECOMAP 

sections and subsections are recommended for use in multi-forest, statewide and multi­

agency analysis and assessment (Avers et al., 1994), and for data aggregation, generating 

and testing research hypotheses, and technology transfer and data extrapolation (Smith and 

Carpenter, 1996).

4.1.3 Study Objectives

The objectives of this study were to provide central tendency and variance statistics of the 

selected soil properties within each ECOMAP section in the study area; estimate confidence 

intervals of means, and the sample size required to estimate the population means of soil 

properties within ECOMAP sections; and evaluate the nature of the differences among 

ECOMAP ecological map units in terms of specific soil properties. Although ECOMAP 

subsections are expected to reflect differences in “soil types”, no studies have been done 

to empirically assess the nature of these differences and/or to express how these map 

units differ in terms of specific soil properties. In this study, multivariate analysis of 

variance (MANOVA) was used to test if subsections within an ECOMAP section were 

statistically different from one another; determine the soil variables on which they differ; 

and assess the general effectiveness of ECOMAP ecological map units in partitioning the 

geographic variation in forest-soils of the study region.

Results from this study are expected to contribute to the development of ECOMAP 

which is still an on-going and iterative process. Smith & Carpenter (1996) expressed the 

need for collaborative research efforts to evaluate the validity and utility of the present 

ecological units, and to better understand and interpret ECOMAP map units. The regional
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analyses of geographic variation in soil properties will be useful for resource management 

and environmental research, and will provide important basis for other studies requiring 

field sampling and/or involving analysis of spatial patterns of soil variation in the study 

area.

4.2 Materials and Methods

4.2.1 Routine Soil Sampling and Analysis

Selection of soil profiles, and field sampling procedures used to collect FIA soil data are 

described in USFS (1982, p. 84). The soil profiles were located on sites that were 

representative of the overall soil conditions on FIA geo-referenced plots. Following 

elaborate field guide provided for them, Forest Service personnel made measurements of 

the field data, and also sampled the B-horizons of the soil profiles, for laboratory 

determination of chemical properties by soil scientists. Sample preparation, and laboratory 

analyses were performed by Taylor (1987), following standard procedures, and the results 

were written to a data-tape, in FORTRAN. This study started with the receipt of the data- 

tape, and the reading of it to retrieve the soil data in a comma-separated ASCII format. 

Next, the soil chemistry data were imported in a relational database management system, 

and were relationally joined to other soil variables and the larger FIA data as described in 

Chapter 3. In all, about 2400 soil units were sampled and analyzed in the study area 

(Taylor, 1987), but only about 1800 units were properly geo-referenced (had locational 

attributes) and could be used in this study.
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4.2.2 Geographic Information Systems Procedures.

The next step in the study involved the use of geographic information systems (GIS) 

procedures to “combine” both FIA data and ECOMAP data, so as to identify the ECOMAP 

section and subsection to which each FIA plot falls. The GIS procedures were accomplished 

using Arclnfo—a GIS software by Environmental Systems Research Institute (ESRI), Inc. 

First, the Arclnfo GENERATE procedure was used to create a point coverage from the 

latitude and longitude values (in decimal degrees) of FIA plots. There were about 3800 

labels in the resulting point coverage. The ECOMAP map was in Albers Equal Area 

projection and covered much (approximately 40 eastern states) of the US (see Keys et al., 

1995). Using the Arclnfo CLIP command, and a clip coverage with the right map extent 

and appropriate projection, the study area (ME, NH and VT) was clipped or cut out from 

the ECOMAP map. Concurrent analysis of two or more maps (of the same area) in a GIS 

requires that the maps be registered. Registration is the process of ensuring that a location 

in one map (e.g., the point coverage showing FIA sample locations) is perfectly aligned, or 

corresponds to the same location on another map (e.g., the ECOMAP map of the study 

area). To accomplish this, the point coverage was projected from Geographic Reference 

grid or latitude and longitude to Albers Equal Area, using Arclnfo PROJECT procedure. 

Finally, IDENTITY— a point-in-polygon overlay procedure was used to “combine” the 

point features in the FIA coverage with the polygon features of ECOMAP map of the study 

area. With this overlay analysis, every one of the FIA plots in the point coverage also took 

on additional attributes from the ECOMAP map units in which they were contained. 

Miscellaneous GIS operations preceding this overlay procedure made it possible to identify 

both the ECOMAP section and subsection within which each FIA sample plot falls. The
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data resulting from these spatial analyses were then brought up in Paradox for Windows 

(Borland, 1995), edited to remove unnecessary variables (created by the GIS operations), 

and then relationally joined to the table of soil variables. The resulting composite data were 

then exported to SPSSfor Windows (by SPSS, Inc.) for statistical analyses.

4.2.3 Data Screening and Estimation of Variability Statistics.

As an initial data screening procedure, frequency distribution and summary statistics of 

each soil attribute were evaluated for the study area using SPSS HISTOGRAM procedure, 

and the Kolmogorov-Smimov (KS) procedure was used to test the hypothesis that the 

distribution of the dataset is not significantly different from normal distribution. None of the 

soil variables passed the Kolmogorov-Smimov test of normality, p < .01, and most soil 

variables showed distributions that departed grossly from normality. In some instances it 

was possible to bring the distribution closer to normal by excluding outliers. Outliers were 

data values greater than the variable mean plus four standard deviations. Most of the time, 

however, non-linear transformation was needed to correct for departure from normal 

distribution. Where transformation was needed, two or more types of plausible 

transformation were tried, and the one which produced the most normally distributed 

outcome, indicated by least KS Z value and/or largest p value, was finally used. KS factor is 

based on the largest absolute difference between the distributions being compared, in this 

case, the soil variable and a hypothetical normal distribution. Distribution characteristics of 

soil variables were determined for the entire study area, before, and after the use of non­

linear transformation. Summary statistics of soil properties were also computed, for the
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entire study area, and within each of the three states. The statistics were determined for the 

untransformed soil data before, and after the exclusion of outliers.

Next, the soil data were aggregated by ECOMAP sections, and SPSS EXAMINE 

procedure was used to provide central tendency and variance statistics of soil properties 

within each ECOMAP section. These statistics include the number of observations used in 

the analysis (n), the mean, minimum and maximum values; standard deviation (SD)—the 

square root of variance; coefficient of variation (CV) which is SD/mean, expressed as a 

percentage; and confidence intervals (Cl) for the mean. Cl is a range of values within which 

one can have a certain degree of confidence that the true mean lies (see Young et al., 1991), 

and is calculated as:

Cl = mean + •  SE

where t = tabulated Student’s t-value, determined by the desired alpha (a) level or 100(1- 

oc/2)% confidence and appropriate degrees of freedom (V). SE is standard error (also called 

the standard deviation of the mean, and = SD / n. For this study, Cl was calculated for 90% 

confidence, but any desired confidence can be readily computed for a soil variable of 

interest from the values of SD and n shown in Table 4-5 (see Results and Discussion).

Next, the optimum number of samples (N ) required to estimate the population 

mean of each soil variable within specified error margins (E) or deviations from the mean, 

and a given level of confidence were also estimated. N ' is computed as ( fia ji . SD^ )/E2, 

where SD and t ^  are as defined earlier. The desired margin of error, E, is determined as a

percentage of the mean of the soil property. Calculating N ’ with the above equation is an 

iterative process: first the value of t would be based on V or (n-1)... an unknown but
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“guesstimated” sample size. Knowing t allows N ’ to be calculated, and this would most 

probably differ from the initially chosen n. Substituting v or n-1 with N -1, the sample size 

is recalculated till v and N ’-l are the same. Zar (1996, p. 107) discusses how to arrive at the 

final estimate of sample size faster, and notes that the procedure works well even if the 

initial guess is far from the final estimate. But Barrett & Nutt (1979, p. 65) recommend that 

for moderately large to large sample sizes (when n > 30), the table of confidence levels and 

t-values below could be used.

Confidence Levels t-values
.80 1.3
.90 1.7
.95 2.0
.99 2.7

This is because t-values are more or less constant (for a given a level) when sample size is 

large (see also Webster & Oliver, 1990, p. 37). This study followed Barrett & Nutt (1979) 

recommended procedure, and sample sizes were determined at the 90% confidence level, 

given 10%, 20% and 30% margins of error.

4.2.4 Evaluating ECOMAP Map Units Differences.

Finally, multivariate analysis of variance (MANOVA) was used to test hypotheses about 

the nature of differences, if any, among ECOMAP map units. First, subsections within a 

given section were analyzed to determine 1) if the subsections were significantly different 

from one another, 2) on which soil attributes they differ, and 3) the relative proportion of 

variance in each soil attribute that was captured or explained by subsectional delineations. 

These analyses were performed in SPSS for Windows using the MANOVA procedure,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



entering all the variables on one step. Preliminary data screening and pre-analysis tests for 

violation of the assumptions of MANOVA were done. Often, it was necessary to apply non­

linear transformations to the soil data so as to achieve normality and also stabilize the 

variance. Again, multiple transformations were tried within each ECOMAP section, and the 

one that gave best result was chosen. Soil data were also tested for multicollinearity (too 

high inter-correlation among discriminating variables), and for heterogeneity of within 

group variance-covariance matrices (through Boxes’ M test). Similar but less scrupulous 

analysis was also performed to evaluate the variation in specific soil properties among 

ECOMAP sections.

4.3 Results and Discussion

4.3.1 Frequency Distributions and Normality Tests of Soil Variables

Frequency histograms, and the effects o f non-linear transformation on the distribution 

parameters of soil variables were evaluated. Table 4-3 shows the distribution characteristics, 

that is, KS factor, skewness, kurtosis, and CV, before and after the use of non-linear 

transformations. The frequency histograms of soil variables were examined for the entire 

study area, and also within ECOMAP sections . The results are shown on Figure 4-2 and 

Figure 4-3, respectively. As seen on Figure 4-2, most soil properties were positively 

skewed, and none passed the Kolmogorov-Smimov test of normality (p < .001). Of all the 

soil variables, the distributions of CEC and soil pH were the closest to normal, but their 

KS tests of normality were still highly significant. Most times non-linear transformations, 

namely, logarithmic and square root, were needed to make the soil data more normal. The
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logarithmic and square root transformations are only two of the members of a family of 

power transformations in which the observed values, Xj, are indexed by a parameter, yC, such 

that XX (see Johnson & Wichem, 1982). A is continuous and ranges from negative to 

positive for X > 0. Although the appropriate A for any dataset can be objectively obtained 

by maximizing a normal likelihood function as described in Johnson & Wichem (1982, p. 

162), the reciprocal transformation (A = -1), logarithmic transformation (A = 0), and the 

square root transformation (A = lA) are most commonly used because these are readily 

available in most statistical and data analysis software. The use of these non-linear

Soil
Variables n

BEFORE TRANSFORMATION 
CV KS Kurt Skew

Transform.
Type

AFTER TRANSFORMATION 
KS* Kurt Skew CV

Exch_Acid 1674 75.61 4.57 6.67 2.02 sqrt 2.35 .98 .38 38.77
Exch_AI 1679 90.48 5.13 4.68 1.78 sqrt 1.161 ns .11 .31 49.84
Exch_Ca 1679 173.03 11.54 34.71 4.44 log Ca+l 2.02 .36 -.55 37.27
CEC 735 43.92 2.02 4.09 1.13 log 1.04 ns 0.38 0.01 21.29
Exch_Cu 1679 174.14 12.58 95.77 8.34 sqrt 6.57 8.81 1.58 70.07
Exch_Fe 1679 94.75 7.18 20.71 3.59 log Fe+1 1.469 ns 2.23 -.31 18.35
Exch_K 1679 71.75 4.85 3.73 1.66 log K.+1 2.02 2.36 -.85 25.08
Exch_Mg 1679 197.46 12.39 108.70 7.69 log 2.83 .31 .49 48.27
Exch_Mn 1679 267.26 14.51 182.45 10.90 log 1.32 -.22 .10 68.38
Exch_Na 1679 67.41 6.52 11.28 2.22 logNa+l 2.65 1.93 .13 19.40
total_N 749 91.95 3.81 5.85 1.61 log N-f-1 3.27 1.05 0.75 85.01
OM_dept 3034 179.29 17.75 22.63 4.47 log 5.85 1.03 .66 29.07
Exch_P 1679 152.13 10.47 8.38 2.74 log 0.9268 ns -.41 -.12 66.99
Soil_OM 750 73.36 2.72 2.46 1.35 sqrt 1.032 ns .02 .30 38.58
Soil_pH 2327 12.33 4.39 3.84 .83 sqrt 3.21 0.48 0.48 7.5
Exch_Zn 1679 118.51 9.32 28.69 4.15 log Zn+1 5.28 1.39 .95 60.81

Table 4-3: Distribution characteristics of soil variables, before and after non-linear 
transformation of data of the study area. * ns = non- significant KS test of normality, p > 
.05.

transformation almost always brought the soil data closer to normality, but most of the soil 

variables still could not pass the quantitative test of normality even after transformation.
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Also, some of the soil variables (e.g., Acid, AI and SOM) were less responsive to 

logarithmic transformation; their non-normality was better corrected with the square root 

transformation.

The distributions of soil variables and the effect of transformation of data in 

ECOMAP sections were very similar to those of the study area. However, soil data in some 

ECOMAP sections showed much greater departure from normality, and more varied 

distribution shapes. Even soil pH and CEC which were almost normally distributed in the 

study area, showed marked non-normal distributions for some ECOMAP sections. This 

might have been due, in part, to the smaller sample sizes in the sub-units than for the study 

area. Figure 4-3 shows that the transformation that best corrected non-normality in a data 

set for the entire study area, usually led to better distributions within subunits also. 

However, a transformation that was effective on data of the study area, indicated by 

minimum KS factor and/or largest p value did not always produce the same result within 

each of the areas. The distribution characteristics (degree of skewness and kurtosis) of a 

data set in the sub-areas were often different from those of the study area, and from one 

another.

Based on this and other studies, soil pH may be the most normally distributed soil 

variable, especially in forested environment In a similar study of the forest soils in north 

central US, Grigal et al. (1990) also found that pH was almost normally distributed, and 

they attributed this to the fact that pH (log of FT concentration) is already a transformed 

variable. This study also confirms the pedologic truism that soil variables are rarely 

normally distributed. However, it has also demonstrated that soil variables may not conform 

to the lognormal distribution as frequently as published literature would lead one to expect.
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Figure 4-2: Histograms before and after transformations of 
soil data of the study area
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Figure 4-2 (cont.)
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Figure 4-3: Histograms showing that transformation of data for study area usually 
resulted in more normally distributed data for subareas (e.g., ECOMAP Section 7)
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Figure 4-3 (cont.)
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A data set is said to be lognormally distributed if the logarithm of its value is normally 

distributed (see Gaddum, 1945). As demonstrated in this study, soil variables show diverse 

distributions as a function of sample size, the size and heterogeneity of the study area, and 

perhaps also, the prevalent pedological factors and functions in the study site. It is 

important therefore that the soil or environmental scientist evaluates actual histograms, and 

the effect of alternative transformations if the objective is to achieve normality and/or 

variance stabilization. These tasks are much easier today with readily available, easy and 

quick-to-use data analysis programs, than they were many years ago.

4.3.2 Variability Statistics of Northern New England Forest Soils

Table 4-4a shows the CV, as well as the number of samples (n), maximum, mean, and 

standard deviation (SD) of the soil variables, for the entire study area. These summary 

statistics were computed both before and after outlying data values were removed, to 

evaluate the effect of the presence of outliers on these statistics. The results of statistical 

analysis performed to evaluate how the CV’s and KS’ of soil variables are affected by the 

removal of outliers, is discussed more fully in the next chapter 5, The Legitimacy o f  

Variability Statistics Computed From Non-normal Soil Data. Before the removal of 

outliers, most variables had CV of 90% and above. Soil pH, CEC, Na, K, SOM, and Acid 

had low to moderate (12 to 75%) CV’s before the removal of outliers, and were mostly 

unaffected by their removal. However, the CV’s o f many others variables (especially Cu, 

Zn, Mn, and OM_depth) which were initially above 100% were considerably reduced by 

the removal of outliers.
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Based on published and unpublished data that were available at the time, Wilding 

& Drees (1983, p. 100) provided mean CV’s of several soil variables, and also indicated 

that chemical properties, especially exchangeable Ca, Mg and K, are among the more 

variable soil properties, having CV’s up to 160%. Table 4-4a shows that among the soil 

properties examined in this study, Ca, Mg, and Mn, P and OM_depth are the most 

variable, while pH, CEC, K, Na, and total N are the least variable in the study. For the 

purposes of comparison, many of the statistics computed for the study area were 

recomputed for each of the states of Maine, New Hampshire, and Vermont. The results, 

given on Table 4-4b show that the above observation about the least and most variable 

soil properties also applies to the states. Table 4-4b shows that in Vermont the mean 

value of Na (12 mg kg'1) was highly significantly different from that of Maine and 

especially New Hampshire (20 mg kg'1), p < .001. This is not surprising considering that 

unlike Vermont, a large portion of Maine, and New Hampshire to less extent, is bordered 

by the coast—a major source of alkalinity and sodicity in soils. On the other hand, the 

mean of Ca in Vermont (424 mg kg'1) was about three times that of Maine or New 

Hampshire. Aside from these, Table 4-4b shows that the means and CV’s of most soil 

properties were generally similar among the states. The apparent lack of variability of soil 

attributes among the states points to the fact that political boundaries are not an effective 

scale for studying the variability of natural phenomena.

The geographic variation of soil properties was evaluated by computing 

variability statistics within each of the ECOMAP sections in the study region. Table 4-5 

shows the results of the analyses which include the number of soil samples (n) used for 

the computation, the minimum, maximum and mean values, the standard deviation

with permission of the copyright owner. Further reproduction prohibited without permission.
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Soil 1
_________ USING ALL DATA VALUES AFTER SCREENING DATA FOR OUTLIERS I

Variables j N Max Mean SD CV KS* N Max Mean SD CV KS*
Exch_Acid 1674 36.90 7.10 5.37 75.61 4.57 1672 36.90 7.11 5.36 75.48 4.51

Exch_AI 1679 998.00 159.13 143.98 90.48 5.13 1660 778.00 155.71 133.24 85.57 5.00
Exch_Cu 1679 20.71 .70 1.22 174.14 12.58 1355 4.20 .73 0.58 79.34 8.01
Soil_OM 750 19.91 4.32 3.17 73.36 2.72 744 19.91 4.35 3,16 72.51 2.74
Exch_Ca 1679 7205.00 291.55 504.46 173.03 11.54 1649 2297.00 265.75 397.67 149.64 10.24
Exch_Fe 1679 939.08 90.01 85.29 94.75 7.18 1663 442.00 85.84 68,86 80.22 6.35
Exch_K 1679 109.85 22.12 15.87 71.75 4.85 1646 84.00 22.04 14.80 67.14 4.66

Exch_Na 1679 99.90 17.22 11.61 67.41 6.52 1660 62.10 16.71 9.81 58.69 5.94
ExchJZn 1679 28.00 1.75 2.07 118.51 9.32 1561 9.84 1.69 1.50 88.76 7.55
Exch_Mg 1679 909.00 23.38 46.16 197.46 12.39 1638 203.00 20.83 30.25 145.24 10.36
Exch_Mn 1679 1666.50 27.91 74.60 267.26 14.51 1666 397.00 24.32 45.31 186.31 12.09
OM_dept 3034 40.00 2.88 5.16 179.29 17.75 2958 25.00 2.86 3.09 108.05 13.43
Exch_P 1679 216.50 22.04 33.52 152.13 10.47 1648 149.00 20.09 28.18 140.27 9.72

Sotl_CEC 735 24.00 6.55 2.88 43.92 2,02 718 24.15 6.70 3.16 47.09 2.25
Total_N 749 1.00 .15 .14 91.95 3.81 574 1.00 .19 .13 64.73 2.77
Soil_pH 2327 7.75 4.74 .58 12.15 4.42 2326 7.75 4.74 .58 12.15 4.42

Table 4-4a: Summary statistics and distribution charateristics of soil properties in the study region 
before, and after the removal of outliers. * KS is an index of misfit or departure from normal distribution
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Soil MAINE NEW HAMPSHIRE VERMONT I
Variables N Max Mean CV (%) N Max Mean CV (%) N Max Mean o < 3s

*

Exch_Acid 1139 33.48 7.61 50.46 533 36.90 6.03 125.37 n/a n/a n/a n/a
Exch_AI 523 765.00 155.11 72.28 549 753.00 155.54 83.03 588 778.00 156.40 97.86
Exch_Cu 524 3.95 .61 53.76 541 4.20 0.58 104.34 290 4.00 1.24 49.52
S o il_ O M 212 15.37 3.99 71.68 368 19.91 4.34 76.96 164 17.00 4.87 62.83
Exch_Ca 511 2281.25 214.85 147.94 553 1891.48 144.71 156.54 585 2297.00 424.63 121.94
Exch_Fe 522 421.60 99.89 70.21 547 442.00 79.07 82.75 594 419.00 79.93 86.43
Exch_K 502 83.50 22.69 68.84 547 84.00 22.99 66.25 597 82.00 20.61 65.74
Exch_Na 521 48.60 17.87 46.67 543 62.10 20.36 56.34 596 59.00 12.39 60.05
Exch_Zn 523 6.50 1.08 81.20 542 9.84 1.88 95.16 496 9.00 2.13 68.54
Exch_Nlg 496 194.38 19.79 163.21 553 153.01 13.26 147.21 589 203.00 28.82 119.88
Exch_Mn 519 384.00 24.50 196.47 552 397.00 18.40 229.29 595 386.00 29.65 116.53
OM_dept 1821 25.00 3.23 103.72 567 23 2.55 113.33 570 24.00 2.00 111.29
Exch_P 515 142.80 20.61 127.46 546 137.83 14.96 161.23 587 149.00 24.40 132.30

S o il_ C E C 200 19.13 6.28 40.61 365 24.15 6.82 41.50 153 19.00 6.97 38.16
T o ta l_ N 206 .71 .17 59.14 365 .70 0.20 57.33 n/a n/a n/a n/a
S o il_ p H 1776 7.75 4.73 13.11 550 6.40 4.75 8.45 n/a n/a n/a n/a

Table 4-4b: Some descriptive statistics of soil properties by states in the study area.

o



(SD), CV, and 90% confidence interval (Cl) of the mean. Also, the sample size required 

to effectively estimate the mean at the 90% confidence level, and given 10, 20 and 30% 

marginal errors or deviations from the mean were also computed (Table 4-5). This part 

of the discussion will focus on general trends in these results, and will highlight 

important geographic patterns of variation in the means and CV’s of the more important 

soil variables. The mean and CV were selected for the following reasons. Bivariate 

correlation based on the data in Table 4-5 showed that the means are highly correlated 

with the SD’s, r (df = 79) = .97, so that ECOMAP sections which have relatively high 

mean values in a given soil property, almost always have relatively high SD’s also. This 

situation is termed heteroscedasticity, and is an evidence that soil samples within 

ECOMAP sections come from populations with unequal variances (see Zar, 1996, p.204). 

Heteroscedasticity is caused by non-normality of the variables, or by the fact that one 

variable is related to some transformation of the others (Tabachnick & Fidell, 1996, p. 

80). Both situations are rather common in soil data. The linear correlation coefficient (r) 

between the maximum and mean values was .88, and between maximum and SD was .95. 

The positive and very strong association among the mean, maximum and SD implied that 

it would be redundant to discuss each of these statistics. However, there was a weak 

relationship between the CV’s and maxima, r = .40 (and even weaker relationship 

between the former and the mean, r = .32). This implies that the relative CV value is 

independent of the relative mean value, for most soil variables. The CV and mean, 

therefore, provide information that is similar to that of the SD and maximum, but 

different from each other.
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Table 4-5 (cont.)

Section
MUID

N Min Max Mean SD CV (%) 90%CI of the 
Mean

Sample size requirements* 
10% error 20% error 30%error

f:(16) Extractable Zn (In ppm of soil}
212D 316 0.10 6.50 1.04 0.83 79.21 0.97-1.12 182 46 21
212E 55 1.00 6.00 2.06 1.35 65.84 1.75-2.36 126 32 14

M212A 364 0.18 9.84 1.90 1.83 96.32 1.74-2.06 269 68 30
M212B 312 0.10 9.00 1.84 1.49 80.98 1.70-1.98 190 48 22
M212C 246 1.00 8.00 2.35 1.53 65.13 2.19-2.51 123 31 14
221A 249 0.07 9.16 1.24 1.17 94.26 1.12-1.36 257 65 29
221B 18 1.00 5.00 2.22 1.35 60.89 1.67-2.78 108 27 12

* Sam ple S ize required for estim ating th e mean at 90% confidence level given 10, 20 and 30% error margins

-0



The mean and maximum values in Table 4-5 as well as Tables 4-4a & 4-4b are all 

within limits of published (e.g., Tisdale et al., 1985) concentrations of these nutrients in 

US’ soils. Exchangeable Acid, CEC, pH, total N, and SOM were not sampled or analyzed 

in ECOMAP section 22IB. In many instances, the CV of available data in this section 

was consistently the least (e.g., Zn, P, K, and Mn), or next to the least (e.g., Mn and Na) 

among ECOMAP sections. However, because of the limited sample sizes (n < 24) used 

for the analyses in Section 22IB, much significance may not be attached to the apparent 

trend in the statistics of this section.

Soil pH, CEC and total N which were identified as least variable in the study area 

(Tables 4-4a & 4-4b), also showed the least variation in means among ECOMAP 

sections. Low variation among ECOMAP section means implies that the mean of such a 

soil property in any section may be well approximated by the mean of the entire study 

area (Tables 4-4). Moreover, pH, CEC, total N, in addition to K and Na exhibited low to 

moderate variability or CV’s 'vithin most sections. Most ECOMAP sections had a mean 

soil pH around 4.70 except 221A which was more acidic, with mean pH of 3.75. The 

maximum CV for pH within ECOMAP section was observed in section 212A. The mean 

of CEC ranged from 4.75 meq/lOOg in 212D to 7.51 meq/lOOg in M212A. The CV for 

CEC was under 50% within all sections, and was the lowest (8.20%) in section 212D. 

Data on total N were available only in four ECOMAP sections where the CV’s ranged 

from .15 to .22%. Of all the basic cations, K seemed to be the least variable among sub- 

areas. Mean K concentrations ranged between 20.57 mg kg-1 in section 221A to 24.21 mg 

kg-1 in section 212D. The CV’s of K were > 60% < 70% within all ECOMAP sections.
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As noted in the analysis for the study area (Tables 4-4a & 4-4b), Ca, Mg, Mn. 

and to a less extent, P and OM_depth, also had the most variable means among 

ECOMAP sections, and highest CV’s within sections. The mean concentrations of Ca 

range from less than 100 mg kg-1 in section 221A to more than 750 mg kg-1 in section 

221B. The means of Mg were between 8.80 mg kg-1 in section 221A to 42.32 mg kg-1 in 

section 212E. There was substantial variability in both Ca and Mg concentrations within 

ECOMAP sections, indicated by very large SD values and CV’s well above 100%. The 

CV of Ca in section 212E and 22IB were exception, and were slightly under 100%. 

Although the mean concentration of Na varied well among ECOMAP sections, the 

variability within any section was low to moderate, CV’s > 65%. Variability of SOM 

both among and within ECOMAP sections was moderate. The means of SOM ranged 

from 3.11% in 212D to 5.91% in M212A, and the CV’s ranged from 45% in M212C to 

70% in 212D. The highest mean depth of organic matter, 3.92 inches, was observed in 

section 212A, while the highest CV’s or within unit variability was in 212E and 212D. 

Both depth of organic matter and P varied considerably from section to section, and 

within each section. The means concentrations of P ranged from about 17 mg kg-1 in 

section 212D to 32.21 mg kg-1 in 212E, and the CV’s were consistently above 100%.

The preceding discussion, and further evaluation of Table 4-5 show that 

ECOMAP section M212C has the highest or next to the highest means for Al, Fe, and Zn, 

but lowest mean in organic matter depth, and lowest within-unit variability or CV in 

organic matter (SOM) and organic matter depth. Section 212D had the highest means for 

K and Na, and lowest or second to the lowest means for SOM, CEC, total_N and Zn. 

Section 212A had data for only exchangeable acid, organic matter depth and pH, and had
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the highest means for all three variables. Notable was section 212E which has the highest 

means for SOM, CEC, Ca, BC, Mg, P, Cu, and Mn, but had the lowest mean for Na. 

Section 212E also has the maximum CV’s for Al and organic matter depth, but the lowest 

CV’s for Cu, Ca, and Mn. Section 212E had markedly small sample sizes for most 

variables. However, Figure 4-1 shows that this ECOMAP section also has limited aerial 

extent, perhaps proportionate to the number of samples used. On the other end from 

section 212E, is 221A which has the lowest or next to the lowest means for SOM, CEC, 

Ca, Mg, K, Fe, Al, Cu, totaI_N, Mn and pH. ECOMAP section 221A also has the 

maximum within unit variability for Acid, Cu, SOM, Na, Zn, Mn, and Mg. Descriptions 

of the lithology and soil taxa (see McNab & Avers, 1994), for example, about ECOMAP 

sections would offer explanation for some of the trends observed in these sections. Linear 

correlation between pairs of soil variables was evaluated, first based on data for the entire 

study area, and then within states and ECOMAP sections. As expected, inter-correlation 

among soil attributes provides an aid to the understanding of why highs and/or lows of 

certain of soil variables were frequently associated as seen above. However, this study 

showed that the strength of association between pairs of soil variables changes spatially 

depending on the location and scale of reference or size of the study area. For example, 

the correlation coefficients between exchangeable acid and other soil variables were all 

less than .25 in the study area. In New Hampshire, and all ECOMAP sections for which 

there were data on exchangeable acid (except 212D), it had similar maximum r, but the 

variable it was most correlated with was usually different. However, in Maine, acid had r 

= .65 with SOM, .56 with Al, .50 with total_N, and -.42 with pH. And within section 

212D, these r values were .74, .69, .66, and -.52 for SOM, Al, total_N, and pH,
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respectively. The influence of SOM and Al on acidity, the relationship between pH and 

soil acidity, and between SOM and total_N are well established and even expected in soil 

science and ecology. But, this study demonstrates the importance of scale and prevailing 

local conditions in evaluating such global “truisms” about inter-correlations among soil 

variables. The local pedo-geomorphic status in ECOMAP section 212D (see McNab & 

Avers, 1994) allow some relationships among soil variables that may not otherwise hold 

true on a larger scale.

4.3.3 Required Sampling Intensity of Soil Variables in ECOMAP Sections

The sample sizes required to estimate the mean of each soil property within each 

ECOMAP section, at the 90% confidence level, and given 10%, 20, and 30% deviations 

from the means, are also given in Table 4-5. Optimum sampling intensity is related to the 

variability of that attribute, and hence to CV. The linear relationship between CV and 

sample size requirements at the 20% marginal error was evaluated using the data on 

Table 4-5. The Pearson’s correlation coefficient, r(df = 110) = .96, p < .001. The strong 

correlation between CV and sample size also held true within each ECOMAP section, 

r(13 - 16) = .98 on average, and p <.001 always. The strength of association between CV 

and sample size was exactly the same for 10% and 30% error margins also. Although the 

relative variability of individual soil attributes changes spatially, soil pH, CEC and 

total_N generally required the smallest sample sizes in most ECOMAP sections. For pH 

and CEC, the sample sizes required even at 10% error margin was usually less than 50. 

Next to this group of soil variables are Na, K, SOM and Fe; these require sample sizes of 

50 or less within most sections at 20 or 30% error margins. As expected, the largest
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sample sizes were required by Mn > Ca > Mg > P. These highly variable soil properties 

required sample sizes much greater than 100 at the 30% error, about 300 at the 20% error, 

and close to 1000 at the 10% error margin in many of the studied ECOMAP sections.

As shown earlier (Figure 4-1 and Table 4-2), there are ten ECOMAP sections in 

the study area. Soil chemistry data (except exchangeable acid and pH) were not available 

for 212A, 212B, and 212C—three of the four ECOMAP sections in the New England 

geomorphic province or northeastern parts of Maine. It was interesting to compare the 

actual number of FIA soil samples (n), and the sample sizes required to efficiently 

estimate the means of the selected soil properties within the ECOMAP sections included 

in this study. Table 4-5 shows that over 90% of the time, the number of soil samples (n) 

analyzed during the 1983 FIA surveys were more than the sample sizes required to 

efficiently estimate the means of the selected chemical properties within each ECOMAP 

section, at the 90% confidence level and given 20% error margin or greater. The small n’s 

available for section 22IB were noted earlier, and this section accounts for many of the 

occasions where n was smaller than the optimum sample size required. Almost 100% of 

the time, the sample size requirements at the 10% error margin were substantially greater 

than n’s for Mn, Ca, P, and Depth of organic matter. When these highly variable soil 

properties were excluded, n’s were larger than the sample sizes requirements at the 10% 

error margin over 80% of the time.

Although small marginal errors are desirable, sample sizes required to achieve 

ambitiously low (10% or less) error margins are often impractical for most soil variables. 

Allowable error of 20% has been commonly used in soil studies, and error margins of 

25% and more are warranted where sample sizes estimated at higher precision levels are
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too unrealistic or impractical to carry out (see Troedsson & Tamm, 1969; Wilding, 1984; 

Grigal et al., 1990). Choosing a lower confidence level has been the alternative to low 

precision or high allowable error margins in sampling schemes of highly variable soil 

attributes. The traditional 95% level used in many fields is a rarity in soils, and 

confidence levels of 80 to 90% have been commonly reported in the literature. Wilding 

(1984) remarked that in soils a confidence level of 70 to 80% is probably more realistic in 

terms of time and money inputs that are practical to a sampling scheme, and that there are 

many circumstances under which confidence levels lower than 80% and error margins up 

to 50% would still permit sufficiently accurate mean estimates (see Grigal et al., 1990).

4.3.4 The Nature of Soil Variation Among ECOMAP Map Units

Table 4-6 shows the results of MANOVA, to test the hypothesis that subsections within 

an ECOMAP section do not differ significantly from one another with respect to selected 

soil properties. This analysis was done only for ECOMAP sections with three or more 

subsections, and where these subsections had sufficient samples for the soil variables 

used. MANOVA (like many other multivariate methods) requires that sample-to-variable 

ratio exceed certain threshold to ensure that the results of the analysis are not unstable. It 

is recommended that the number of samples (n) in the smallest group be greater than five 

times the number of variables (Tabachnick & Fidell, 1996, p. 513), and/or that the total n 

in the analysis be equal to or greater than ten times the number of variables (Norman & 

Streiner, 1997, p. 132). When n-to-variable ratios are critically low, the robustness of 

MANOVA to violations of assumptions of homoscedasticity and multivariate normality 

diminishes, and the analysis results (significant or not) become unreliable and unlikely to
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be found if the study were replicated (Tabachnick & Fidell, 1996; Norman & Streiner, 

1997). To guarantee favorable ratios, the selected soil variables in this study were 

rationally divided into two groups (Table 4-6), and MANOVA among the selected 

sections was done for each of the variable groups.

Within each section, data were evaluated for conformity to the assumption of 

normality. In most instances, log and square-root transformations where used to achieve 

univariate normality and/or homoscedasticity. Box’s M test for homogeneity of within- 

group variance-covariance matrices was, in most cases, highly significant, p < .01. 

However, the Box’s M test is notably sensitive and has been known to reject the 

hypothesis of homogeneity of dispersion matrices even when the group covariance 

matrices are not really dissimilar (Norusis, 1990, p. 104). Heuristically, heterogeneity is 

perceived if there are variables having ratios > 10:1 between the largest and smallest 

group variances (see Tabachnick & Fidell, 1996, p. 413), but this was not the case in this 

study. Pooled within-group correlation matrices indicated modest inter-correlations 

among soil variables with no evidence of the problem of multicollinearity. For the 

variables used in each analysis, the highest correlation was always between Ca and Mg, r 

= .73, and .71 in sections 212D and M212A, respectively, and r < .70 on all other 

instances. In all analyses, the different multivariate test criteria (Wilk’s Lambda, 

Hotelling’s trace, Pillai’s and Roy’s gcr criterion) gave similar results, so only one, 

Wilk’s Lambda, was reported.
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(a) Section 212D: (i) macronutrient cations, P and OM_Depth

E stim ated M eans
S u b sec tio n n s ize Log_Acld LogjCa Log_Mg Log_Na Log_P LogjOMD SqrtJC

212Da 162 0.822 1.881 1.022 1.285 0.946 0.167 4.723
212Db 22 0.881 0.917 0.913 1.251 0.769 0.278 4.009
212Dc 49 0.869 1.546 0.919 1.307 0.707 0.287 4.734
Total 233 0.8S7 1.448 0.951 1.281 0.807 0 2 4 4 4.489

Sig. univ. F (2, 230) te s t 0.165 <.001 0.372 0.449 0.018 0.034 0.121
Univ. Wilk's Lambda: 0.984 0.908 0.991 0.993 0.966 0.971 0.982

Sig. Multivariate F (14, 448) test < .001

Multiv. Wilk's Lambda = .833 R2 (variance explained) = apprx. 17%

(a) Section 212D: (ii) micronutrient cations

E stim a te d M ean s
S u b sec tio n n size Exch Al Log_Cu Log_Fe Log_Mn Log_Zn

21 2 0 a 225 146.82 -0.251 1.893 1.092 -0.07
212Db 34 190.34 -0.329 1.876 0.704 -0.166
212Dc 54 188.48 -0.211 1.911 0.863 -0.058
Total 313 158.73 -0.253 1.894 1.01 -0.079

Sig. univ. F(2, 310) test: 0.011 0.015 0.814 0.001 0.133
Univ. Wilk's Lambda: 0.971 0.973 0.999 0.953 0.987

Sig. Multivariate F (10, 612) test <  .001
Multiv. Wilk's Lambda =  .90 R2 (variance explained) = apprx. 10%

Table 4-6: Results of MANOVA of soil properties among subsections 
within selected ECOMAP sections in the study area
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Table 4-6 (cont.)

(b) Section M212A: (i) macronutrient cations, P and OM_Depth

E stim ated M eans
S u b sec tio n n s iz e Log_Acld Sqrt_Ca Log_Mg Log_Na Log_P LogjOMD Log_K

M212Ad 73 0.413 9.642 0.972 1.354 0.441 0.404 1.359
M212Ae 92 0.713 13.153 1.027 1.223 0.87 0.237 1.285
M212Af 77 0.796 13.802 1.107 1.156 1.009 0.173 1.258
M212Ag 33 0.822 13.189 0.909 1.089 1.249 0.241 1.068

Total 275 0.67 12.407 1.021 1.223 0.841 0.264 1.271
Sig. univ. F (3, 271) test: <.001 0.003 0.115 <.001 <.001 <.001 <.001
Univ. Wilk's Lambda: 0.858 0.951 0.978 0.873 0.828 0.916 0.913

Sig. Multivariate F (21, 761) test < .001
Multiv. Wilk's Lambda = .562 R (variance explained) = apprx. 44%

(b) Section M212A: (ii) micronutrient cations

E stim a te d M eans
S u b sec tio n n s iz e Sqrt_AI L o g C u Sqrt_Fe Log_Mn LogJZn

M212Ad 75 14.403 -0.215 10.109 0.63 0.294
M212Ae 104 12.645 -0.294 9.991 0.765 0.049
M212Af 78 13.152 -0.182 10.173 1.046 0.12
M212Ag 46 8.828 -0.271 9.211 0.666 -0.179

Total 303 12.631 -0.242 9.949 0.789 0.093
Sig. univ. F (3, 299) test: <.001 0.04 0.509 <.001 <.001
Univ. Wilk's Lambda: 0.881 0.973 0.992 0.941 0.831

Sig. Multivariate F (15, 814) test < .001
Multiv. Wilk’s  Lambda -  .677 Rz (variance explained) = apprx. 32%
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Table 4-6 (cont.)

(c) Section M212B: (i) macronutrient cations, P and OM_Depth

E stim ated M eans
S u b sec tio n n size Acid LogjCa Log_Mg Sqrt_Na Log_P LogjOMD Sqrt_K

M212Ba 147 n/a 2 .417 1.292 3.3141 1.149 0.128 4.213
M212Bb 31 n/a 2.131 1.106 3.857 1.053 0.091 4.631
M212Bc 102 n/a 1.887 0.935 4.592 0.523 0.288 4.618
M212Bd 56 n/a 1 .742 0.792 4.432 0.792 0.189 4.686

Total 336 n/a 2.117 1.083 3.863 0.89 0.1833 4.453
Sig. univ. F (3, 332) test: n/a < .001 <.001 <.001 <.001 <.001 0.065
Univ. Wilk's Lambda: n/a 0 .799 0.822 0.649 0.826 0.939 0.978

Sig. Multivariate F (18, 925) test < .001
Multiv. Wilk's Lambda = .436 R2 (variance explained) = apprx. 56%

(c) Section M212B: (ii) micronutrient cations

E stim a te d M eans
S u b sec tio n n s ize Sqrt_At Sqrt_Cu Log_Fe LogMn SqrtZn

M212Ba 40 8.062 1.02 1.688 1.34 1.416
M212Bb 30 9.406 0 .867 1.687 1.429 1.183
M212Bc 104 12619 0.631 1.819 0.797 1.315
M212Bd 57 10.516 0.559 1.751 0.932 1.12

Total 231 10.894 0.711 1.762 1.006 1.267
Sig. univ. F (3, 227) test: <.001 < .001 0.063 <.001 0.013
Univ. Wilk's Lambda: 0.883 0.661 0.968 0.856 0.954

Sig. Multivariate F (15, 616) test < .001
Multiv. Wilk's Lambda = .532 R2 (variance explained) = apprx. 47%
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Table 4-6 (cont.)

(d) Section M212C: (i) macronutrient cations, P and OM_Depth

E stim ated M eans
S ub sec tio n n s iz e Acid LogjCa Log_Mg Log_Na Log_P Log_OMD Log_K

M212Ca 109 n/a 2.183 1.064 1.001 1.012 0.247 1.183
M212Cb 2 7 n/a 2.495 1.354 1.108 1.036 -0.002 1.243
M212Cc 51 n/a 2.107 1.101 1.19 0.9 0.141 1.333
M212Cd 58 n/a 2.079 1.099 1.124 0.797 0.125 1.283

Total 245 n/a 2.177 1.112 1.084 0.941 0.169 1.245
Sig. univ. F (3, 241) test: n/a <.001 0.015 <.001 0.062 < .001 0.003
Univ. Wilk's Lambda: n/a 0.937 0.958 0.879 0.971 0.911 0.945

Sig. Multivariate F (18, 667) test < .001
Multiv. Wilk's Lambda = .702 R2 (variance explained) = apprx. 30%

(d) Section M212C: (ii) micronutrient cations

E stim a ted M eans
S ub sec tio n n s iz e Sqrt_AI SqrtjCu Sqrt_Fe Sqrt_Mn LogJZn

M212Ca 106 13.361 n/a 9.97 4.484 0.307
M212Cb 30 10.805 n/a 8.159 6.658 0.321
M212Cc 49 12.555 n/a 10.002 4.909 0.283
M212Cd 51 14.594 n/a 9.194 2.686 0.216

Total 236 13.135 n/a 9.579 4.46 0.284
Sig. univ. F (3, 232) test: 0.039 n/a 0.063 <.001 0.159
Univ. Wilk's Lambda: 0.965 n/a 0.969 0.845 0.978

Sig. Multivariate F (12, 606) test <  .001
Multiv. Wilk's Lambda =  .805 R2 (variance explained) = apprx. 20%

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 4-6 (cont.)

(e) Section 221A: (i) macronutrient cations, P and OM_Depth

E stim a te d M eans
S u b s e c tio n  n  s ize Sqrt_Acld LogjCa Exch_Mg Log_Na Log_P LogjOMD Sqrt_K

221 Ai 84 1.909 1.413 6.943 1.131 0.882 0.127 4.114
221 Ak 20 1.804 1.633 21.65 1.183 0.154 0.203 4.809
221 Ai 108 2 8 2 5 1.68 7.064 1.111 0.91 0.211 4.139
T o ta l 212 2.365 1.57 8.392 1.126 0.922 0.177 4.192

Sig. univ. F (2, 209) test: <.001 <.001 0.002 0.336 0.256 0.139 0.101
Univ. Wilk's Lambda: 0.886 0.943 0.893 0.989 0.987 0.981 0.978

Sig. Multivariate F (14,406) test <  .001
Multiv. Wilk's Lambda = .687 R2 (variance explained) = apprx. 31%

(e) Section 221A: (ii) micronutrient cations

E stim a te d M eans
S u b s e c tio n  n  s iz e Log_AI LogjCu Log_Fo Log_Mn Sqrt_Zn

221 Ai 94 1.857 -0.464 1.69 0.568 0.952
221 Ak 26 1.93 -0.426 1.805 0.836 0.84
221 Al 126 1.86 -0.327 1.717 0.548 1.113
T otal 246 1.866 •0.389 1.716 0.586 1.023

Sig. univ. F (2, 243) te s t 0.686 <.001 0.079 0.055 0.002
Univ. Wilk's Lambda: 0.997 0.934 0.979 0.976 0.948

Sig. Multivariate F (10,478) test < . 0 0 1

Multiv. Wilk's Lambda =  .826 R2 (variance explained) = apprx. 17%
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As shown in Table 4-6, differences among subsections were analyzed for 

ECOMAP sections 212D, M212A, M212B, M212C, and 221A. The soil variables used, 

the number of observations, and the subsection and section means of these variables 

arereported in Table 4-6. Note that the means were often on transform scales (log = 

logarithmic, and sqrt = square root). The p values for both the univariate and multivariate 

F-tests are also given. The p values that are less than the traditional .05 may be 

considered significant. Univariate significance means that, at least, one of the subsections 

was significantly different from the others with respect to the mean concentration of that 

particular soil variable. Multivariate significance means that the vector of means of the 

soil variables in one or more subsections are significantly different from other subsections 

(i.e., the subsections are different on some weighted linear composite of the soil 

variables). Wilk’s Lambda (X) is the most commonly reported test statistics in 

multivariate analyses, and tells the proportion of variances in the dependent variables 

(soil properties) not explained by the independent variable (subsections). Effect size or 

the percent variance explained (like R2 in multiple regression), therefore, is computed as 

1- X. Wilk’s Xls are given for both the univariate and multivariate tests of significant 

differences.

Table 4-6 shows that except for section 212D, the subsections within other 

ECOMAP sections were significantly different from one another both with respect to 

individual soil properties, and when all soil properties are taken together. However, it 

seems that spatial variability in soil properties were best captured by the subsectional 

delineation in ECOMAP sections M212B > M212A > M212C. In these sections, the
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number of soil properties on which the subsections differ was more, the univariate 

significance of these variables were higher (p was almost always less than .001), and the 

percent explained variance (1-A.) in many of the variables was relatively high (up to 15% 

and higher), compared to the others. Section 212D did poorly—the percent variance 

explained was mostly less than 5% except for Ca which had 10%. No one soil variable 

was consistently well delineated from section to section, by subsectional map units. There 

were occasional highs in percent explained variances in M212B which showed 35%, 34% 

and 20% for Na, Cu and Ca, respectively.

Six ECOMAP sections: 212D, M212A, M212B, M212C, 221A, and 212E had 

sufficient data to allow a similar analysis of the differences in soil properties among 

ECOMAP sections. This analysis was done for soil attributes that are important in most soil 

mapping, namely, texture of the B-horizon, depth to bedrock, soil drainage, elevation, 

parent material type, depth to organic matter, and rooting depth. The results showed that the 

ECOMAP sections were highly significant different from one another with respect to each 

of these variables, p < .001. The results also revealed that ECOMAP section map units 

could explain 53% of the variation in elevation in the study area, about 9% of the variances 

in each of drainage and depth to organic matter, and 5% or less for all others. The 

multivariate F-test was also highly significant, p < .001, and showed that about 63% ( or A. 

= .368) of the variation in the composite of these soil variables in the study area could be 

explained by ECOMAP sections. The analysis was repeated with only soil chemical 

properties, namely, Al, Ca, Fe, K, Mg, Mn, Na, P, and Zn. Again, the univariate F(3, 1311) 

was highly significant, p < .001 for all variables, except K and P whch had p = about .04.
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Percent variance in the study area that was explain for the individual soil properties was 

about 16% for Zn (the highest), about 10%for each of Al, Ca, Fe, Mg, Mn, and Na, and 

lowest for P (< 1%). The multivariate F(50,5941)-test was highly significant, and 50% (k = 

.507) of the variance of the chemical properties in the study area was predictable from 

knowledge of ECOMAP sections.

4.4 Summary and Conclusion

The initial objective of this study was to provide variability statistics of several chemical 

soil properties measured during the 1983 FIA of the states of Maine, New Hampshire, 

and Vermont. These statistics, and other information provided in this study will be useful 

for resource management on a regional scale, and may provide important aids to future 

studies requiring field sampling and/or analyses of geographic variation of soil properties in 

the study area. To increase precision o f estimates and sampling efficiency o f the selected 

soil properties, the study area was stratified by ECOMAP sections.

Although, soil properties exhibited a clear case of heteroscedasticity, Table 4-7

shows that about 80% of the time, the CV’s (variability) of soil properties within 

ECOMAP sections were lower than those for the entire study area. The relatively low 

within-section variability may also explain why over 90% of the time, the available FIA 

soil sample sizes in these sections were greater than the sample sizes required to 

efficiently estimate the means of the selected chemical properties, at the 90% confidence 

level and given 20% or more margins of error. Perhaps not surprisingly, the optimum 

required sample sizes were very highly correlated with CV’s, r = .96 or higher.
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Study
Area 212D 212E

ECOMAP Sections in the Study Area 
M212A M212B M212C 221A 221B

Soil Props. % Coefficient of Variation
Acid 75.48 45.65 n/a 61.31 139.19* n/a 102.74* n/a
Al 85.57 71.19 108.49* 73.14 12.84 78.17 86.27 124.92*
Ca 149.64 159.38* 98.65 129.05 139.61 131.28 174.89* 93.86
CEC 47.09 8.20 34.63 45.17 34.76 29.15 38.55 n/a
Cu 79.34 56.18 45.28 84.84* 77.09 51.76 96.73* 58.09
Fe 80.22 69.87 74.36 76.53 81.01 77.56 62.68 83.64*
K 67.14 68.00 69.72 69.68 65.52 63.10 67.90 41.63
Mg 145.24 163.09* 124.96 136.92 125.01 128.93 151.11* 97.65
Mn 186.31 189.35 106.88 197.47* 176.23 166.60 191.17* 136.24
Na 58.69 43.33 62.86* 65.22* 61.51* 61.25* 47.77 54.04
SOM 72.51 7023 54.78 64.92 69.05 45.57 73.54 n/a
OM_dept 108.05 122.17* 135.25* 95.71 124.96* 88.47 108.30 93.87
P 140.27 146.19* 104.73 135.94 148.21* 143.70 132.68 30.38
totalN 64.73 55.31 n/a 63.53 57.99 n/a 56.98 n/a
Zn 88.76 79.21 65.84 96.32* 80.98 65.13 94.26* 60.89

Table 4-7: Comparison of variation (CV) of specific soil properties in ECOMAP 
sections, and also the entire study area. * CV of soil property in these sections were 
greater than that of the study area.

Generally speaking, Ca, Mg, and Mn, P and OM_depth were most variable 

among the soil properties examined in this study. Soil pH, CEC, and total N were the 

least variable, while Na, K, SOM and Fe were intermediate between this and the first 

group of variables. Optimum sampling intensity is a function of the degree of variability, 

hence the relative sample sizes required to estimate the means of these soil properties, 

would more or less follow the same pattern. Some ECOMAP sections showed notable 

trends in either the mean concentrations or degree of variability o f soil properties (data 

not shown ). Section 212E had the highest means for SOM, CEC, Ca, K, Mg, P, Cu, and 

Mn, the maximum CV’s for Al and organic matter depth, and the lowest CV’s for Cu, Ca, 

and Mn. On the other hand, section 221A had the lowest or next to the lowest means for
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SOM, CEC, Ca, Mg, K, Fe, Al, Cu, totaI_N, Mn and pH, and the maximum variability 

for Acid, Cu, SOM, Na, Zn, Mn, and Mg. Further investigations and/or explanation of 

why these and other observed trends hold in the ECOMAP sections are certainly 

appropriate, but could not be accommodated in this study. The large data sets (large 

number of samples and soil attributes) available for this study, made it possible for some 

conclusions about the distribution characteristics of natural soil populations to be 

empirically evaluated. This study confirmed the reports in other studies that soil variables 

are rarely normally distributed, but they are not always lognormal either.

Another major objective of the study was to test the hypotheses that ECOMAP 

sections in the study area, and subsections of a given section, are not significantly 

different from one another, and/or to evaluate the nature of the differences among 

ECOMAP ecological map units, in terms of specific soil properties. Table 4-8 provides a 

synoptic view and summary of MANOVA tests of differences among subsections within 

selected ECOMAP sections in the study area. The univariate F-tests of differences among 

subsections were highly significant for most soil variables in the sections. The multivariate 

F-tests were all highly significant, p < .001. The proportion of explained variance in the 

composite of soil variables within ECOMAP sections, ranged from 10% in 212D to 56% in 

M212B. The percent explained within-section variances of individual soil properties were 

also evaluated (Table 4-6), but these were always much smaller than the multivariate 

counterpart This demonstrates one of the superiorities of multivariate analysis to multiple 

univariate tests in soils and other studies involving many variables with reasonably high 

inter- variable correlation. It is not uncommon for univariate tests of soil variables that were 

all non-significant to have significant multivariate effect No one soil variable was
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consistently well delineated by the subsection map units. The notably high percent 

explained variances occurred in section M212B where 35%, 34% and 20% of the 

variances in Na, Cu and Ca, respectively, were captured by the subsectional delineations.

SOIL VARIABLES 212DSS=3
ECOMAP 
M212 A

SECTIONS
M212B M212C 221Ass=3

Exch_Acid
Exch_AI
Excb_Cu
Exch_Ca
Exch Fe
Exch_K
Excb_Na
E x c h Z n
Exch_Mg
Exch_Mn
OM _dept
Exch_P

0.165
.011**
.015**

<.001***
0.818
0.121
0.449
0.133
0.372

<.001***
.034**
.018**

<.001***
<.001***

.04**
<.001***

0.509
<.001***
<.001***
<.001***

0.115
<.001***
<.001***
<.001***

n/a
<.001***
<.001***
<.001***

.063*

.065*
<.001***

.013**
< .001*** 
<.001*** 
<.001*** 
<.001***

n/a 
.039** 

n/a 
< .001*** 

0.063* 
<.001*** 
<.001*** 

0.159 
.015** 

<.001*** 
<.001*** 

.062*

<.001***
0.686

<.001***
<.001***

.079*
0.101
0.336

<.001***
<.001***

.055*
0.139
0.256

M ultivariate Signif. 
Explained Variance

<.001*** 
10 -17%

<.001***
3 2 -4 4 %

<.001*** 
47 - 56%

<.001***
2 0 -3 0 %

<.001*** 
17 - 31%

Table 4-8: p values of tests of among-subsection differences in soil attributes, within 
selected ECOMAP sections in the study area, ss = # of subsections; when not indicated 
= 4 (out of 7 for M212A ); n/a = not used in the MANOVA study.

Six out of the essentially nine sections in the study area had enough data to allow 

similar analysis of the differences in soil attributes among these sections. All univariate, and 

multivariate tests were highly significant, with K and P at the bottom of the list. The percent 

univariate and multivariate variances in the study area explained by ECOMAP sections 

were much higher than those explained by the subsections in any ECOMAP section. 

Elevation topped the list with 53% of its variation in the study area explained. Others 

include Zinc with 16%, about 10% for each of Al, Ca, Fe, Mg, Mn, Na, drainage and
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depth to organic matter. The percent multivariate variance in the soil variables in the study 

area that was accounted for or explainable by the ECOMAP section map units was as high 

as 63% (X = .368) for a group of field variables, and 50% for chemical properties. 

Although ECOMAP was not primarily a soil-mapping endeavor, this study provides some 

assessment of the effectiveness of the ecological land classification system in delineating 

targeted soil-site conditions in this forested study region, and perhaps, similar areas.
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CHAPTER 5

THE LEGITIMACY OF VARIABILITY STATISTICS COMPUTED 
FROM NON-NORMAL SOIL DATA

5.1 Introduction

5.1.1 Statement of Problem

Preliminary analysis of data, and a complete characterization of the population of a data set 

often include the examination of the frequency distributions (see Warrick & Nielsen, 

1980). The normal distribution is a requirement of most parametric statistical analyses and 

procedures, and frequency distribution is usually examined to see if this requirement is met. 

When normality or other assumptions of parametric tests are violated, the validity of test 

statistics may be questionable, and severe violations can lead to spurious conclusions (see 

Thoni, 1967; Wilding & Drees, 1983; Zar, 1996, p.278).

One of the consistent conclusions from soil variability studies is that the frequency 

distributions of soil attributes are rarely normal or symmetrically bell-shaped about the 

mean. Instead, the distributions of natural populations of many soil properties have been 

found to be positively skewed, often in a lognormal fashion (Wilding & Drees, 1983, p. 91; 

Parkin et al., 1988; Grigal et al., 1990; Webster & Oliver, 1990, p.24; Parkin & Robinson, 

1992). The frequency distribution of a positively skewed data set is both asymmetrical, and 

has high and infrequent scores to the right of the data values that are considered typical or

9 7
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representative scores (i.e., the mean, median, or mode) of the distribution. If the logarithm 

of scores of a positively skewed distribution yields normally distributed scores, the initial 

data set is said to be lognormal (see Gaddum, 1945). Non-linear transformation is often 

used to correct non-normality, i.e., to make a skewed data set more normally distributed and 

better suited for parametric analyses. Transformation changes the scores of the original 

variable, Y, into a new variable, Z, by a single-valued monotone function, X  = T(Y), such 

that Z may fulfil one or more of the basic requirements of parametric statistics (Thoni, 

1967) namely, normality, homoscedasticity and linearity.

Transformation is a subject of many statistical texts and much research literature 

including those cited in this study. Clear answers exist in these sources about the use of 

nonlinear transformations for standard statistical analyses (e.g., analysis of variance) used 

in soil studies. However, much confusion still exists about whether or not to use 

transformations prior to the computation of traditional variability statistics, namely, the 

mean, standard deviation, coefficient of variation, confidence intervals of the mean, and 

optimum sample sizes for the estimation of the mean. A review of existing literature reveals 

conflicting recommendations, and the publication of studies advocating incongruous 

approaches to the problem of estimating these statistics from non-normally distributed soil 

data. The more common practice in soil variability studies has been not to use 

transformation but to assume normal distributions (see Beckett & Webster, 1971; Wilding 

& Drees, 1983, p. 90). Wilding & Drees observed that the normal distribution is hastily 

assumed in these soil studies because this eases calculation, analysis and interpretation of 

restdts. Webster & Oliver (1990) also noted that results from transformations are not as 

readily understood as are those from data that do not need transformation. However, there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

have been a number of published research papers that decried the observed disinclination to 

the use of transformation, and questioned the validity of variability statistics computed from 

non-normally distributed soil data.

Wilding & Drees (1983) stated that results of statistical analyses may be misleading 

if they are based on invalid assumptions of normality. In a study involving pore water 

infiltration velocity, Warrick & Nielsen (1980) showed that the mean (21.52 cm/day) of a 

data set of 20 samples computed with assumption of logarithmic distribution, was higher 

than the arithmetic mean (19.19 cm/day) calculated by assuming normal distribution. Grigal 

et al. (1990) showed that a smaller mean, smaller width for a given confidence interval, and 

much smaller sample size requirement at a given margin of error and confidence, were 

computed when lognormal transformation was used, compared to when normality was 

assumed for soil calcium. They also noted that the discrepancy between statistics from 

transformed and untransformed soil pH data was smaller because the original data set was 

not grossly non-normal. The ostensible conclusion from these and other studies (Warrick & 

Nielsen, 1980; Parkins et al., 1988; and Grigal et al., 1990) is that, not recognizing the 

actual skewed distribution of a data set leads to invalid variability statistics, and spurious 

conclusions. Most young soil scientists would find the above situation confusing, and many 

older colleagues might be abashed at the apparent contradictions in our research literature. 

Parkin et al. (1988) observed that there is a knowledge and communication gap between 

statistics and soil science, and that some of the work done in the statistical sciences simply 

do not find its way into soil science.
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5.1.2 Objectives and Justification

The Large data and several soil properties analyzed in Chapter 4 confirmed the pedological 

truism that soil data are almost always non-normally distributed. The goals of this study 

were based posteriorly on this and other findings from Chapter 4. The major objectives in 

this study were to 1) review some of the findings in Chapter 4 about the distribution 

characteristics of natural soil populations; 2) review pertinent statistical and soil science 

literature in order to answer questions about whether or not to transform non-normally 

distributed soil data prior to the computation of traditional variability statistics; 3) 

empirically determine the relative impact of kurtosis (peakedness) and skewness 

(asymmetry) on the failure of soil properties to pass normality tests; and 4) evaluate the use 

of the coefficients of variation (CV) as a “semi-quantitative” index of non-normality in soil 

variables.

Non-normality is caused by skewness or kurtosis or both. Severe skewness and 

kurtosis each affects variability statistics in a unique and predictable fashion. If the relative 

impact of skewness and kurtosis on non-normality of soil data can be determined, this 

information can be used to better understand and more validly interpret variability statistics 

computed from soil data with skewness and/or kurtosis that are significantly greater than 

zero. In other words, knowledge about the nature and degree of the non-normality is needed 

in order to correctly interpret variability statistics computed from non-normally distributed 

and untransformed soil data. The qualitative (graphical) methods and commonly used 

quantitative indices of non-normality have major limitations and are impractical for use in 

soils. On the other hand, there are reasons to think that CV—an easy to compute and 

already familiar statistics to soil scientists, is also a measure of non-normality in data. If CV
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is highly and reliably correlated with skewness or kurtosis or both, this would mean that CV 

can be used to provide more practical and easier-to-interpret information about non- 

normality in soil data than the presently used quantitative indices of the departure of a 

distribution from the normal.

5.2 Materials and Methods

The frequency histograms and other distributive characteristics (e.g., skewness, kurtosis, 

and CV) of several soil variables were evaluated (Chapter 4) to determine the nature of the 

distributions of these soil variables. Kolgomorov-Smimov test of normality was then used 

to ascertain the extent of the departure of distributions of the soil data from normality. The 

Kolgomorov-Smimov test yields a KS factor which is based on the largest absolute 

difference between the distributions (i.e., the cumulative density functions) being compared, 

in this case, the soil variable and a hypothetical normal distribution. A large KS factor 

implies that the distribution being evaluated is significantly different from the normal. The 

distributive statistics and KS factors were determined before and after non-linear 

transformations were used on the soil variables, and also before and after the removal of 

outlying values from the soil data. These investigations were carried out at different spatial 

scales in the study area, and using more than one plausible alternative transformation. These 

studies were performed in Chapter 4, but the pertinent results from them are reviewed 

shortly.

Extensive correlation analyses were used to evaluate the nature and strength of 

association between each pair of KS factor, CV, and measures of skewness and kurtosis.
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Statistical analysis was also used to see if  the variability statistics computed after the use of 

alternative transformations are significantly different from each other and from those of 

untransformed soil data. Pertinent literature in applied statistics and soil science were 

reviewed to 1) show that it is desirable but not necessary to achieve normality in data to 

validly compute traditional variability statistics; 2) show major limitations in the use non­

linear transformations on soil data prior to the computation of variability statistics; 3) 

review how peakedness and asymmetry differentially impact variability statistics, and the 

limitations of the qualitative and commonly used quantitative tests of normality; and 4) to 

provide practical guide on how the CV and other distributive characteristics of soil can be 

used to adequately handle the problem of non-normality in soil variability studies.

5.3 Results and Discussion

5.3.1 Distribution Characteristics of Natural Soil Populations

Most of the soil properties examined in Chapter 4 were positively skewed, and none of 

them passed the Kolmogorov-Smimov test of normality (g < .001). Based on that and other 

studies (e.g., Grigal et al., 1990), soil pH may be the most normally distributed soil variable, 

especially in forested environment. This is apparently due to the fact that pH (log of H+ 

concentration) is already a transformed variable. These studies also showed that soil 

variables have diverse distributions which may be a function of the size and heterogeneity 

of the study area, the sample size being analyzed, and perhaps, the pedological factors and 

functions that are prevalent in the study site.
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Most of the soil variables examined in these studies still could not pass quantitative 

tests of normality even after the use of non-linear transformation (see Section 4.3.1), and 

some of the soil variables (e.g., Acid, Al and SOM) were less responsive to logarithmic 

transformation than to the square root transformation. Some of the conclusions derivable 

from these and other studies are that soil variables are rarely normally distributed, and they 

may not conform to lognormal distribution as frequently as published literature would lead 

one to expect. This means that uncritical assumption of either the normal or lognormal 

distribution in analyses where knowledge of the distribution of a soil variable is important, 

may lead to spurious results. This fact underscores the need for the soil or environmental 

scientist to evaluate actual histograms, and the effect of alternative transformations if the 

objective is to achieve normality and/or variance stabilization.

5.3.2 Major Problems With the Use of Non-linear Transformations

Obviously, the assumption of a normal distribution in parametric procedures is the 

theoretical basis for recommending the use of non-linear transformation in variability 

studies. Parametric statistics are techniques for estimating population parameters, and for 

testing hypotheses and making inferences about features of a population, from a sample set. 

Most of the statistical procedures undertaken in a standard soil variability study are 

parametric. However, the assumption of normality applies differently to different parametric 

statistics. In analyses that are based on the Pearson’s product-moment correlation such as 

the different forms of regression, the assumption of normality is critical, and applies to the 

distribution of the observed scores themselves or to the residuals of the analyses (see 

Tabachnick & Fidell, 1996, p. 70). But in analyses such as the Z test, t tests, and the
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different forms of ANOVA where the hypotheses are tested about the means, the 

distribution representing hypothetical states of reality are the distributions of means rather 

than distribution of individual scores (Tabachnick & Fidell, 1996, p. 34). The central limit 

theorem guarantees that the sampling distributions of means differ systematically from the 

distribution of individual scores, and are normal irrespective of the distribution of the 

sampled population. The subject of our inquiry in variability studies are the distributions of 

the means of natural soil populations, not necessarily of the samples at hand, and traditional 

variability studies usually do not even involve formal hypotheses testing. Hence, the 

requirement of normality, though desirable, is not critically important nor necessary (see 

Zar, 1996, p. 325) in order to validly estimate most variability statistics.

Chapter 4 and other studies (e.g., Grigal et al., 1990; Cambardella et al., 1994) have 

shown that often normality can not be achieved even after non-linear transformation o f soil 

data. Even if normality is achieved, the use of transformation for variability studies is 

fraught with serious and hard-to-deal with problems, and practically prohibits the 

comparison of studies done at different times and places. Webster & Oliver (1990) noted 

that the results from transformations are not as readily understood as are those from data 

that do not need transformation. In addition, variability statistics computed from 

transformed data are said to be biased, and therefore require to be further corrected in a 

certain fashion (see Thoni, 1967, p. 16; Parkin etal., 1988; Zar, 1996, p.281).

Chapter 4 (section 4.3.1) discussed the use of a family of power transformation for 

normalization among which the logarithmic and square root transformations are the most 

commonly used members. Perhaps, the most serious problem with transforming soil data in 

variability studies is the vagaries associated with the choice of transformation from the suite
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of commonly used members of the family of power transformation discussed in Chapter 4 

(section 4.3.1), the magnitude of differences among statistics from alternative 

transformations, and between these and those of the untransformed data. Below are actual 

data, computed from the 511 available soil Ca records in the state of Maine. Exch_Ca is in 

original unit while log Ca and sqrt_Ca are back-transforms of the logarithmic and square 

root transformations, respectively, of the same data. These data represent the rather 

common situation where there is more than one plausible transformation for a data set, and 

no clear choice between the alternative options of transformation. Notice the chasm 

between corresponding back-transformed statistics from the logarithmic and square root

Exch_Ca Log Ca Sqrt_Ca
Mean 214.85 49.55 130.41
SD 317.84 10.93 84.64
90% C l mean 191.68-238.02 41.62-58.99 115.50- 146.12
CV (%) 147.93 61.28 80.57
KS Z 5.64(p. < .001) 3.04(p. < .001) 2.57(p. < .001)

transformation of the data. The means were different by an order of almost 300%, and the 

standard deviations (SD), about 800%. Without a universal agreement to always transform 

a particular soil variable in a specified way (as the soil science community has successfully 

and consistently done for pH), sporadic use of transformation in soil variability studies 

would prohibit the comparison of results among different studies.
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5 3 3  The Use of CV’s as an Index of Non-normality in Soil Variables

The conclusion from the preceding discussion is that transformation is unnecessary or 

even inadvisable in variability analyses of soil data. However, the extant problem is that the 

standard deviation and standard error of a skewed data set are not symmetrical about the 

mean. Therefore, probability statements about an observation (e.g., that there is 68% chance 

that an observed value will be within the mean + one SD), and confidence intervals of the 

mean, are suspect and must be interpreted with caution. A more valid interpretation of these 

and other variability statistics would require some knowledge of the degree of non­

normality in the (untransformed) soil data set.

While the qualitative (“it looks good”) test of normality is too vague and subjective, 

most quantitative tests are either too sensitive (i.e., they always reject the null hypothesis 

with slightest departure from normality) especially with a reasonable sample size (see 

Tabachick & Fidell, 1996, p. 73), or they have major limitations and are cumbersome to 

apply (D’Agostino, 1986; Zar, 1996, p. 89). On the other hand, Beckett & Webster (1971) 

in their classic review paper on soil variability had indicated that CV values greater than 

100% may be symptomatic of skew distributions, implying that CV may also be an 

expression of the departure of soil data from normality. Extensive statistical analyses of 

large data sets and several soil variables were done in this study to see if CV and KS Z 

(from Kolmogorov-Smimov test of normality) are multicollinear, and therefore, provide 

equivalent information. The Kolmogorov-Smimov test is a quantitative test commonly used 

to evaluate if a distribution is significantly different from the normal. The KS Z is based on 

the largest absolute difference between a distribution and hypothetical normal distribution, 

and KS values are indices of relative degree of non-normality.
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Non-normality is caused by skewness or kurtosis or both. Cambardella et al. (1994) 

had observed that some soil properties could not pass normality tests after log 

transformation, more because of a failure to reduce kurtosis than a failure to reduce 

skewness. Knowledge of the differential effect of skewness and kurtosis on the non- 

normality of soil data has significant implication (as discussed below) in the quest for a 

practical solution to the problems of non-normality in soil variability studies. This study, 

therefore, also investigated the interrelations among KS factor, kurtosis and skewness, in 

addition to evaluating if CV is reliably correlated with KS factor enough to serve as an 

alternative index of non-normality.

Table 5-1 shows Pearson’s correlation coefficients between pairs of CV, KS, 

kurtosis and skewness, based on the data in Table 4-3 (Chapter 4). The analysis was first 

done with all 32 observations, and then repeated for the before transformation, and after 

transformation subsets of data, to see if  results were consistent. Because of the similarity 

between the first two results (Table 5-1), only one will be discussed, and where this is 

different from the third analysis (of transformed data) will be highlighted. This table shows 

that KS was highly correlated with each of skewness and kurtosis (as expected), but had 

stronger association, r(df=32) = .86 or r2 = .74, with skewness than with kurtosis, r = .70 or 

r2 = .49. The r2 (coefficient of determination) is equivalent to the percent variation in KS 

that is explained or accounted for by skewness or kurtosis. The table also shows a very 

strong correlation between kurtosis and skewness (r as high as .96), implying that their 

individual correlation with KS may be an artifact of their relationship with each other. 

Appropriate multiple regression procedures were then performed to assess the percent
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variance in KS that is uniquely attributable to each of skewness and kurtosis, and to the two 

combined.

(a): All data in Table 4-3 were used, so n =32

KS Kurtosis Skewness
c v 0.876 0.825 0.915
KS 0.701 0.856

Kurtosis 0.944

(b): With untransformed data (Table 4-3), n=16
KS Kurtosis Skewness

CV 0.883 0.83 0.905
KS 0.642* 0.786

Kurtosis 0.963

(c): With transformed data (Table 4-3) only, n=16

KS Kurtosis Skewness
CV 0.196ns 0.15ns 0.33ns
KS 0.641* 0.811

Kurtosis 0.785

Table 5-1: Bivariate correlation coefficients among distribution characteristics of soil 
properties, p < 001 when not indicated; = .006 for *; and >.10 for ns.

Semi partial correlation (sr) computed from the regression analysis shows the strength of 

association between the dependent variable, DV (e.g., KS) and each of the independent 

variables, IV (e.g., skewness and kurtosis) after statistically controlling the effect of the 

other. The multiple regression R2 is the variance in DV that is explained by all the IV’s 

combined, and can be partitioned into percentages that are uniquely accounted for by each 

IV (sr2), and that which is shared or common to them.
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The multiple regression based on all 32 observations in Table 4-3 had R = .92 and 

R2 = .85 (adjusted R2 = .84) which was significantly different from zero, p < .001. The 

squared semi partiais (sr2) for skewness and kurtosis were .37 and .12, respectively. Hence 

based on this analysis, about 85% of the variance in KS was predictable from measures of 

skewness and kurtosis together. Of this 85%, 37% was uniquely attributed to skewness 

alone, 12% to kurtosis, and about 36% was shared variance between the two. The above 

analysis was repeated with only the untransformed, and then the transformed data in Table

4-3. The result in the former was almost identical with the one described above. With 

transformed data set, R2 went down to .66 (adjusted R2 = .60), and sr2 for skewness and 

kurtosis were .25 and .007 respectively, while share variance went up to about 40%.

These analyses have shown, rather consistently, that KS (index of departure from 

normality) is more responsive, or affected more by changes in skewness than in kurtosis, 

and that the discrepancy in the response is further accentuated after the use of non-linear 

transformation, and/or in data that approach normality. Except for when data were 

transformed, Table 5-1 also shows r > .88 (r2 > .77) between CV and KS. To validate the 

this result, Pearson’s correlation between CV and KS was also computed using the 32 

sample data on Table 4-4 (Chapter 4). Again, the r(32) = .85 or r2 > .72, confirming that on 

the average, CV explains about 75% of the same information as KS or kurtosis (see Table

5-1), and often higher percentage (r as high as .92) of the information in skewness.

5.3.4 Practical Guide to Handling the Problem of Non-normality in Soil Data

To recap, there is rarely the question of whether or not soil data are non-normally 

distributed. The preceding sections showed that it is unnecessary and probably inadvisable
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to transform soil data for the purpose of computing traditional variability statistics. But it 

also showed that knowledge of the degree of non-normality in the untransformed soil data is 

required for a more valid interpretation of variability statistics computed from them. The 

limitations of presently used qualitative and quantitative indices of non-normality were 

highlighted. Thus, the extant and pandemic problem is how to quantitatively express the 

degree of non-normality in soil data, when it is clearly inexpedient to use non-linear 

transformation. It was then shown that CV is highly and significantly correlated with KS 

factor, and thus can be reliably used as an index of non-normality. Some of the advantages 

of this proposition include the facts that CV (i.e., SD2/mean, expressed in percentage) is 

readily computed from summary statistics, and it is already a familiar statistic to soil 

scientists. If used as a “semi-quantitative” index, CV would provide a more practical and 

easier-to-interpret measure of non-normality in soil data than the KS factor or other 

commonly used quantitative indices of the departure of a distribution from the normal. In 

this section, practical guidelines or “rules of thumb” are provided on how CV and other 

distributive characteristics of soil data can be used to adequately handle the problem of non­

normality in soil variability studies.

The following suggested rules of thumb in interpreting CV values of soil variables 

are based on the examination of the frequency histograms (Figure 4-2), and tables of the 

distribution characteristics of several soil variables (Tables 4-3, 4-4a, and 4-4b) shown in 

Chapter 4. It seems that CV values less than 50% shows soil variables that are exceptionally 

(by “soils’ standard”) close to normal. CV values between 50 and 70% can be regarded as 

satisfactory. Soil variables with CV values above 70% but less than 100% are skewed with 

probable presence of outliers. CV’s above 100% is definitely skewed and/or kurtosis that is,
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perhaps, severely non-zero. Recall that it was shown that the differential influence of 

skewness on non-normality is greater than that of kurtosis, but also, that CV differentially 

captures more of the variance in skewness than in kurtosis. However, knowledge of the 

differential impacts of severe kurtosis or skewness on variability statistics, and how to 

mitigate each of these separately were also investigated, and presented below.

When a data set has non-zero kurtosis, the variance is underestimated especially if 

sample size is small (see Tabachnick & Fidell, 1996, p. 73). One solution to the use of soil 

data with non-zero kurtosis in variability studies is to increase the number of samples used 

to compute statistics. If sample size can not be increased, awareness that the expected value 

of the variance may be higher could be used to subjectively interpret the statistical results. 

For instance, a higher variance would imply that the actual range of confidence interval of 

the mean may be wider, and sample size requirement at a given confidence and marginal 

error would be higher, than those computed from the untransformed dataset with either a 

positive or negative kurtosis.

Skewed soil data can be remedied by the exclusion of outliers. Using the data in 

Table 4-4a (Chapter 4), one-tail Paired t-test (df = 15, t = 3.35) showed a highly 

significant difference, p = .002, between both the CV’s and KS’ of soil variables before 

and after the removal of outliers. Based on that study, the CV’s of soil variables were on 

the average 28% lower after outliers were removed. Note that most soil studies do not 

have the luxury of the very large sample sizes used in Table 4-4a. With smaller sample 

sizes, the disproportionate influence of outliers on variability statistics would become 

more pronounced, and the mean CV difference after the removal of outliers will, 

expectedly, be higher.
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I would recommend that the cutoff point for outliers in soil data be the mean plus 

four standard deviations (SD). However, the mean + 3 SD is more commonly 

recommended, especially in the social sciences where data are less likely to be as expensive 

and harder to come by as in soil science. Apparently also, the use of three standard 

deviations assumes that the data are near-normally distributed, so that the mean + 3 SD 

covers about 99.7% of the population. But we know that soil variables are mostly skewed, 

and although data outside three standard deviations may be less common, they may still be 

within expected range of values in the natural soil populations.

5.4 Summary and Conclusion

This study provides the basis to put an end to the apparent confusion and contradiction in 

the soil science literature about the need to transform soil data before computing variability 

statistics. The probable problems associated with variability statistics computed from non­

normal or skewed data were recognized and discussed. But unlike those emanating from the 

use of transformation, these problems are systematic and could be solved in the way put 

forward in this study. Moreover, variability statistics from untransformed data represent 

natural states of reality in the field, and are facts of the discipline of pedology, but what 

exactly are we measuring with transformed soil variables?. On occasions I agree with those 

who describe statistics as social conventions. And it is clear, therefore, that the desire to 

follow statistical convention cannot but be often tampered by practical considerations. This 

is as true in soil science as it is in most specific traditional fields of studies.
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CHAPTER 6

MULTIVARIATE ANALYSIS OF MAP UNIT VARIABILITY IN 
NRCS-STATSGO: A CASE STUDY IN NORTHERN NEW

ENGLAND

6.1 Introduction

6.1.1 State Soil Geographic Database (STATSGO).

The US Natural Resources Conservation Service (NRCS) formerly known as Soil 

Conservation Service (SCS) has the Federal leadership in a national effort to provide 

digital soil data for use in geographic information systems (GIS). NRCS has established 

three soil geographic databases representing kinds of soil maps at differing levels of 

detail, namely, Soil Survey Geographic Database (SSURGO), the most detailed; State 

Soil Geographic Database (STATSGO); and the National Soil Geographic Database 

(NATSGO), the least detailed of these digital soil databases. SSURGO is made from 

NRCS standard county soil surveys at scales typically between 1:15,000 to 1:24,000. Soil 

maps for STATSGO are compiled by generalizing the more detailed SSURGO maps. 

Where SSURGO maps are not available, data on geology, topography, vegetation, and 

climate are assembled and used, together with remotely sensed satellite images. Soils of 

like areas are studied, and the probable classification and extent of the soils is determined. 

Map unit composition for STATSGO is determined by sampling areas on the more
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detailed maps and expanding the data statistically to characterize the whole map unit. 

Then, using the US Geological Surveys 1:250,000 quadrangle series as a map base, the 

soil data are digitized to comply with national guidelines and standards (see SCS 1991, 

p. 2). Data for STATSGO are distributed as complete coverage for a state, and are 

available for most states of the US (see Bliss & Reymond, 1989; Lytle, 1993).

Soil survey has traditionally been the most practical method for partitioning 

field variation or grouping similar and separating different soils on a regional scale 

(Trangmar et al., 1985). The importance of soil surveys as a source of detailed 

information about the landscape, has been recognized in environmental and earth 

sciences, natural resource management, and land use planning (Lytle, 1993). Bliss & 

Reymond (1989) discussed the importance of the small-scaled digital soil data in 

regional, state and multistate-level resource management and planning, and noted that 

STATSGO was developed in recognition of the many values of small-scaled soil 

maps. In many soil-based regional and national analyses, STATSGO is the only source 

of soil information that is appropriate and/or available. STATSGO is of particular 

interest to regional ecosystem modeling community (Lathrop et al., 1995) because of 

its wide availability and digital format or readiness for use in geographic information 

systems GIS. As Hammer et al. (1991) observed, soil surveys have become a frequent 

component of GIS applications in natural resources planning, landuse planning, and 

environmental protection. And, such soil-based applications of GIS technology have 

continued to produce new users, and significantly increase the uses of soil survey 

information.
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6.1.2 Problem Statements

Within the last two decades, concerns about the reliability of soil survey or accuracy 

of soil map information have gained increased importance among scientists and users 

of soil surveys and land evaluation data. The literature is replete with documentation 

of the causes of these concerns (e.g., Butler, 1980; Holmgren, 1988; Nash & 

Daugherty, 1990; Netttleton et al., 1991; Moore et al, 1993; Rogowski & Wolf, 

1994). A soil survey is a predictive study to identify bodies of soils that can be 

recognized as natural units, predict and delineate their areas on maps, and describe 

the delineated areas in terms of kinds and properties of soils. One of the 

shortcomings of traditional soil surveys include the fact that the reliability of the 

predictions obtained from soil survey varies widely as a function of a number of 

factors (Webster, 1985; Hartung et al., 1991; Oberthur et al., 1996). Also, the inferred 

homogeneity in conventional soil maps does not exist for many soil physical and 

chemical attributes, and ranges given for some attributes often vary by an order of 

magnitude (Moore et al., 1993; Wilding, 1984). Other concerns of surveys include 

uncertainty regarding the placement of soil boundaries, presence of inclusions or map 

units containing dissimilar soils, and absence of quantitative expressions of map unit 

variability with respect to specific soil attributes. Digital soil maps such as the NRCS 

soil geographic databases are not only subject to all the problems of traditional soil 

survey procedures, but the process of digitization or automation is a source of other 

potential errors and uncertainties. Jordon et. al., (1986) as cited in Day et al. (1988) 

stated that in the US, approximately 80% of published soil surveys and 50% of soil
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surveys in progress are on spatially distorted base maps that do not meet National 

Map Accuracy Standards (NMAS). The kinds and sources of serious errors in a 

geographic information system are discussed by Lunetta et al. (1991), Heuvelink et 

al. (1989) and Burrough (1987). As Aronoff (1993) notes, error is introduced and 

propagated at every step in the process of generating and using geographic infor­

mation.

The need to evaluate soil map quality or characterize the variability present 

within soil map units (Nordt et al., 1991; Brown & Huddleston, 1991) and of 

individual soil properties (Lammers & Johnson, 1991) is well documented. However, 

evaluating soil map reliability requires intensive field sampling and actual 

measurement of many properties of soil—a luxury that is often rare and practically 

non-existent for large areas. Hammer et al. (1991) warned of the existence of 

databases of unknown accuracy and precision, and emphasized the need to obtain 

ground-truth measurements to verify the precision of computer-generated soil maps. 

Lathrop et al. (1995) used STATSGO data to estimate soil water holding capacity 

needed in a regional ecosystem modeling study, and found greater within-unit 

variability than between map unit variability. They discussed other practical 

limitations of STATSGO, and concluded that estimates of the spatial variability of 

soil properties in STATSGO need to be better quantified and communicated to the 

prospective users, if the utility of STATSGO for modeling purposes is to be 

improved. To our knowledge, no systematic study has been done to evaluate the 

reliability of STATSGO or the degree of variation of specific soil properties within 

STATSGO map units, and between spatially-, and/or pedologically-related
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cartographic units. The ostensible reason for this is the unavailability of measured 

soil data, especially on regional scales, required for such a study.

6.1.3 Study Objectives

The objectives of this study were to 1) assess the reliability of STATSGO in the 

northern New England states; 2) quantitatively assess the variability of individual soil 

properties within selected STATSGO map units; and 3) evaluate the relative efficiency 

with which a number of edaphologically important soil chemical properties were 

mapped in STATSGO of the study region. The goal was to provide the users of the 

readily available STATSGO soil data, information on when and for what soil 

properties STATSGO is adequate, or the degree of variation in specific soil properties 

to expect within a given map unit and between related map units. The reference data 

used for this study were collected during the 1983 USD A Forest Inventory and 

Analysis (FIA) survey of the states of Maine, New Hampshire, and Vermont. The data 

include actual field and laboratory measurements of many taxonomically and 

edaphologically important soil variables, made from about 2,000 geo-referenced soil 

profiles in the study region. Using geographic information systems and multivariate 

statistical techniques, these data were analyzed to answer the following specific 

questions:

1) Are delineations of the same STATSGO taxonomical units significantly 
similar with respect to soil attributes that are important in soil classification and 
mapping?

2) Are STATSGO map units significantly different from one another, i.e., 
having smaller within-unit than between-unit variability, with respect to 
specific soil attributes?
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3) What are the relative efficiencies with which the spatial variabilities of 
specific soil attributes are mapped in STATSGO of the study area?

4) Based on the taxonomically relevant soil attributes used in this study, how 
accurate was STATSGO in assigning soil profiles to the most probable map 
units, and what soil properties are most effective predictors of map unit 
membership?

6.2 Materials and Methods

6.2.1 Available FIA soil data

The FIA soil variables used in this study include the following soil chemical properties 

measured from the B-horizons of soil profiles dug at the FIA plots in the study area: 

calcium (Ca), potassium (K), sodium (Na) and magnesium (Mg), soil pH, phosphorus 

(P), aluminum (Al), iron (Fe), manganese (Mn), and zinc (Zn). In addition to these, 

field determinations of parent material types, texture of the B horizon, elevation, 

percent slope, and drainage condition, of the plot sites were also used. The chemical 

soil properties selected for this study have established and well documented 

edaphological importance (influence on agricultural and forestry plant growth). The 

field variables were selected because they are soil-forming factors (Jenny, 1941), 

criteria in Soil Taxonomy (Soil Survey Staff, 1975)—the US soil classification system, 

and/or are commonly used in soil mapping as indicators of change in soil types in the 

field. The field sampling and laboratory analyses of the selected soil attributes were as 

described in Chapters 4 of this dissertation.
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6.2.2 GIS and Sample Selection Procedures

The processes of adapting FIA data to a relational database management system 

(Chapter 3), and creating a point coverage, in a geographic information system (Chapter

4) were described earlier. STATSGO data for each state in the study area were received 

from the New Hampshire Geographically Referenced Analysis and Information Transfer 

Systems (GRANIT), as polygon coverage in Arclnfo (by ESRI, Inc.) format. STATSGO 

spatial data were in Albers Conical projection, and were accompanied by a number of 

attribute data files in a relational database format. The objectives of the GIS procedures 

in this study are similar to those described in the Materials and Methods section of 

Chapter 4. GIS techniques were used to spatially combine FIA and STATSGO maps, so 

that the STATSGO map units within which each FIA plot falls will be identified. The 

GIS operations required to achieve this objective were also performed in Arclnfo (ESRI, 

Inc.) just as described in Chapter 4. The result of the overlay analysis was brought up in 

Paradox for Windows, and again, relationally joined to the tables of FIA soil variables.

Each STATSGO polygon or delineation had a unique, four-digit polygon 

identification (PID) number. A polygon is a parcel within which the land is considered 

to be of the same kind or of a few kinds of soils that can be listed and described. For 

example, there were about 1250 of these polygons in Maine. Polygons or delineations 

that are similar in nature form a soil class called map unit. STATSGO map units are 

uniquely identified within each state by MUID—a concatenation of two-character State 

FIPS code (e.g., ME for Maine) and a three-digit Arabic number. There are about 70 

STATSGO map units in Maine and 45 in New Hampshire, for example.
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Although there were almost 3900 georeferenced FIA plot sites, only a fraction of 

these had any soil data, and much fewer had measurements for all the soil variables 

needed for this study. Convenience and especially ease of interpretation of statistical 

results dictated that list-wise method be used in the selection of FIA plots to include in 

many of the analyses. List-wise selection means that only FIA plots or soil profiles with 

data for all or most soil attributes of interest were included for analysis. Although, most 

STATSGO map units encompassed some FIA plot samples, only few map units had 

large enough samples to allow the statistical analyses in this study to be done with a 

satisfactory degree of confidence. Consideration about the adequacy of available 

sample-size, therefore, had a major influence on the way many of these statistical 

analyses were designed and eventually carried out in this study. Elaborate and prolonged 

data exploration and pre-analysis procedures were performed in Paradox for Windows (a 

relational database management program), Microsoft Excel (a spreadsheet program), and 

SPSS for Windows (a major statistical analysis, data management and display program), 

in order to gain familiarity with the content and structure of STATSGO data, and 

determine if and how the STATSGO and available FIA soil data could be used achieve 

the desired study objectives.

6.2.3 Statistical Analyses

The first hypothesis was that different delineations of the same STATSGO map unit 

are reasonably similar or internally homogeneous with respect to many soil attributes. 

To test this hypothesis, STATSGO map units (MUIDs) with multiple delineations 

(PIDs) having sufficiently large samples were selected. If a STATSGO soil class or
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map unit occurs in two or more states, it is usually given a different MUID in each of 

the states. Hence, PIDs were used to represent delineations of the same map unit 

within a state, while MUIDs were for delineations of the same map unit across states. 

The SPSS Independent t-tests and one-way analysis of variance (ANOVA) procedures 

were used to test if the means of specific soil attributes were significantly different 

among the delineations of same map units. Hotelling’s T2(the multivariate equivalents 

of the Student’s t-test) and multivariate analysis of variance (MANOVA) would have 

been more appropriate statistical procedures than the t-test and univariate ANOVA 

since this study involved multiple and correlated variables. However, the selected 

STATSGO delineations had insufficient number of samples to allow the analysis of 

more than a few variables at a time. The constraint of sample size-to-number of 

variable ratios in multivariate analyses was discussed in detail in Chapter 4.

Next, multivariate analysis of variance (MANOVA) and discriminant function 

analysis (DFA) procedures were used to test if STATSGO map units were distinct 

with respect to selected soil attributes. Seven STATSGO map units had sufficiently 

large sample sizes (ranging from 32 to 64) to allow their inclusion in the analysis. The 

analysis was two-fold, one for a group of soil chemical properties, and also for a group 

of soil variables considered important for classification. As in Chapter 4, the analyses 

were used to see if the STATSGO map units were statistically different from one 

another based on individual soil properties, and on all members of the group of soil 

properties considered together. The percent explained variance in individual soil 

variables or the relative efficiency with which the variation in each soil property was 

separated by STATSGO map units, was also assessed. Finally, the relative effect of the
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selected “soil mapping variables” in discriminating among STATSGO map units, and 

the classification accuracy of STATSGO based on these soil attributes, were also 

evaluated. The analyses were performed in SPSS for Windows using the MANOVA 

and DISCIMINANT procedures, and entering all the variables on one step. The seven 

selected map units were separated into two groups of five map units each, to allow the 

analysis of each group of soil variables (mentioned above) to be replicated. The two 

groups of map unit were formed by splitting the seven map units in half after ordering 

them by sample size, and including the median map units in both groups.

Table 6-1 provides limited taxonomic information about the STATSGO map 

units used in one or more of the analyses in this study. It lists the MUID’s and major 

component soil types in the map units, and also, the Soil Taxonomic (Soil Survey 

Staff, 1975) descriptive names of the components. More detailed information about 

STATSGO data structure and/or nature of data it provides will be found in SCS (1991) 

or Bliss & Reymond (1989).

6.3 Results and Discussion

6.3.1 Variation Among Delineations of Same STATSGO Map Units

STATSGO MUID’s ME059 and NH027, and ME005 and NH037 are each a map unit 

pair in which each member occurs in a different state. The Student t-test was used to 

test if members of each pair were significantly different from each other in terms of 

soil chemical properties. In addition, MUID’s NH031, NH023, ME053 and ME064
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STATSGO Muid Major Component Soils
ME005 Becket-Monadnock-Tunbridge
ME019 Dixfield-Brayton-Colonel
ME053 Scantic-Buxton-Lamoine
ME059 Skerry-Hermon-Monadnock
ME064 Swanville-Boothbay-Lyman
NH012 Canton-Hollis-Chatfield
NH017 Colton-Adams-Monadnock
NH022 Marlow-Pem-Monadnock
NH023 Monadnock-Lyman-T unbridge
NH026 Hermon-Lyman-Berkshire
NH027 Skerry-Hermon-Monadnock
NH031 Marlow-Lyman-Berkshire
NH037 Becket-Monadnock-Tunbridge
Compname Classification
Adams Typic Haplorthods, Sandy, Mixed, Frigid
Becket Typic Haplorthods, Coarse-Loamy, Mixed, Frigid
Berkshire Typic Haplorthods, Coarse-Loamy, Mixed, Frigid
Boothbay Aquic Dystric Eutrochrepts, Fine-Silty, Mixed, Frigid
Brayton Aerie Haplaquepts, Coarse-Loamy, Mixed, Nonacid, Frigid
Buxton Aquic Dystric Eutrochrepts, Fine, Illitic, Frigid
Canton Typic Dystrochrepts, Coarse-Loamy Over Sandy, Or

-Sandy-Skeletal, Mixed, Mesic
Chatfield Typic Dystrochrepts, Coarse-Loamy, Mixed, Mesic
Colonel Aquic Haplorthods, Coarse-Loamy, Mixed, Frigid
Colton Typic Haplorthods, Sandy-Skeletal, Mixed, Frigid
Dixfield Typic Haplorthods, Coarse-Loamy, Mixed, Frigid
Hermon Typic Haplorthods, Sandy-Skeletal, Mixed, Frigid
Hollis Lithic Dystrochrepts, Loamy, Mixed, Mesic
Lamoine Aerie Haplaquepts, Fine, Illitic, Nonacid, Frigid
Lyman Lithic Haplorthods, Loamy, Mixed, Frigid
Marlow Typic Haplorthods, Coarse-Loamy, Mixed, Frigid
Monadnock Typic Haplorthods, Coarse-Loamy Over Sandy, Or

-Sandy-Skeletal, Mixed, Frigid
Peru Aquic Haplorthods, Coarse-Loamy, Mixed, Frigid
Scantic Typic Haplaquepts, Fine, Illitic, Nonacid, Frigid
Skerry Aquic Haplorthods, Coarse-Loamy, Mixed, Frigid
Swanville Aerie Haplaquepts, Fine-Silty, Mixed, Nonacid, Frigid
Tunbridge Typic Haplorthods, Coarse-Loamy, Mixed, Frigid

Table 6-1: Soil components and their classification, of STATSGO map units used
in this study.
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had multiple delineations (PID’s) and sufficient data to allow similar test of 

homogeneity of soil properties within each of the map units. Univariate ANOVA 

instead of Independent t-test was used to evaluate NH031 because this map unit had 

three delineations. The results of these tests are reported in Table 6-2, and include the 

soil variables and number of samples used, their means and standard deviations in each 

delineation, and the p values of the tests of significance. In the ANOVA test (for 

NH031), the mean total, and F-ratio were added, but the standard deviation was not 

reported. Prior to analysis, the data were evaluated to ensure that they were within 

reasonable limits of test assumptions. Non-linear transformation was used when 

necessary to correct gross departure from normality, and a preceding test of 

homogeneity of within-group variances was used to decide which t-test results to 

report.

As shown in Table 6-2, there were about 60 tests in all, that is, ten soil 

chemical properties were each analyzed within each of the six STATSGO map units. 

In 17 or about 30% of these tests, the delineations of the map units were significantly 

different from one another at the 95% confidence level. The delineations of ME053 

(Table 6-2(b)iii) were not significantly different on any of the soil properties, while the 

delineations of NH023 Table (12(b)ii) were significantly different on only two soil 

properties (exchangeable acid and K). Probably contrary to expectation, delineations 

occurring in separate states (Table 6-2(a)’s) did not appear to be more heterogeneous 

with respect to the selected chemical properties than delineations occurring within a
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(a)i
Soil Vars. Transf. d f

MEANS 
ME059 NH027

STD DEVIATION 
M E059 NH027

P fo r 
2-tail t-test

Exch Ca sqrt 52 12.00 9.52 7.26 5.49 0.127
Exch Fe non 67 93.43 91.81 72.66 111.41 0.945
Exch K. sqrt 67 4.06 4.38 1.43 1.49 0.79
Exch Na log 67 1.08 1.42 0.13 0.20 <.001*
Exch Mg non 67 11.07 10.08 1.91 1.54 0.688
Exch P log 66 1.23 0.51 0.52 0.64 <.001*
Soil CEC non 27 4.63 6.92 1.56 1.88 0.002*
Org. Matter non 28 4.32 4.53 3.01 4.53 0.871
OM dept non 75 3.58 3.43 6.80 3.53 0.903
Soil pH non 67 4.55 4.67 0.26 0.43 0.012*

Soil Vars. T ransf d f
MEANS 

ME005 NH037
STD DEVIATION 
M E005 NH037

P fo r 
2-tail t-test

Exch Ca sqrt 34 20.96 14.29 7.32 8.45 0.042*
Exch Fe sqrt 33 10.30 10.07 3.68 3.60 0.876
Exch K. log 33 1.23 1.28 0.18 0.27 0.523
Exch Na non 32 13.96 24.21 5.49 13.89 0.003*
Exch Mg log 34 1.26 1.10 0.41 0.48 0.371
Exch_P log 21 1.16 0.76 0.36 0.64 <.001*

Soil CEC non 18 5.02 8.99 0.94 1.42 0.032*
Org. Matter non 18 3.08 4.54 2.30 4.37 0.354
OM dept log 34 0.45 0.24 -0.75 -0.69 0.09
Soil pH non 35 4.69 4.65 0.31 0.46 0.163

Soil Vars. T ransf PID1957
MEANS
PED1862 PID1926

Total 
mean (df) F-ratio

P. for 
ANOVA

Exch Acid log 0.68 0.62 1.11 0 .77 (27) 4.37 .024*
Exch Ca log 1.66 2.01 2.03 1.89 (33) 3.27 0.052
Exch Fe sqrt 6.50 11.62 11.15 9.65 (33) 9.97 <.001*
Exch K log 1.30 1.42 1.45 1.39 (33) 1.50 0.238
Exch Na non 10.58 20.33 23.33 17.95(33) 10.39 <.001*
Exch Mg log 0.69 1.14 1.24 1.02 (33) 11.22 <.001*
Exch P log 0.25 0.38 0.70 0.45 (33) 2.82 0.075
Soil CEC non 8.74 9.50 7.33 8.13 (24) 1.68 0.21
Org. Matter non 5.23 7.15 5.02 5.28 (24) 0.424 0.659
OM dept sqrt 1.40 1.32 1.28 1.33 (33) 0.25 0.782
Soil pH non 4.69 4.47 4.61 4.60 (28) 1.45 0.254

Table 6-2: Mean, standard deviations, and results of tests of differences in soil 
properties among delineations of the same STATSGO map units. (a)i & ii show 
the same map units occuring in different states, while (b)i - iv represent multiple 
delineations of NH031, NH023, ME053, and ME064, respectively. * = test was 
significant at the 95% confidence level.
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(b)ii
Soil Vars. Transf df

MEANS 
PID 1813 PID 1939

STD DEVIATION 
PID 1813 PID 1939

P for 
2-tail t-test

Exch Acid sqrt 33 3.19 2.02 1.37 0.62 .001*
Exch Ca log 42 1.71 1.94 0.54 0.54 0.162
Exch Fe log 42 1.89 1.76 0.31 0.33 0.192
Exch K. log 42 1.13 1.38 0.31 0.25 .006*
Exch Na log 42 1.12 1.13 0.13 0.15 0.735
Exch_Mg log 42 0.71 0.90 0.28 0.36 0.065
Exch P log 41 0.75 0.39 0.67 0.73 0.100
Soil CEC non 39 6.91 7.68 2.98 2.65 0.394
Org. Matter non 38 4.29 5.90 3.20 3.93 0.162
OM_dept log 44 0.37 0.29 -0.66 -0.56 0.500
Soil pH non 43 4.91 4.80 0.39 0.34 0.111

(b) Hi

Soil Vars. Transf d f

MEANS 
PID PID 
751 1134

STD DEVIATION 
PID PID 
751 1134

P fo r 
2-tail t-test

Exch Acid non 39 6.04 7.20 2.63 2.74 0.173
Exch Ca log 28 2.17 1.78 0.62 0.48 0.101
Exch Fe sqrt 28 8.68 8.17 2.45 1.41 0.48
Exch K. log 28 1.48 1.54 0.23 0.16 0.51
Exch Na sqrt 28 4.50 4.77 0.93 0.62 0.425
Exch_Mg tog 27 1.24 1.03 0.58 0.44 0.35
Exch P log 26 1.08 0.89 0.57 0.17 0.181
Soil CEC non 28 7.41 6.22 3.33 2.21 0.335
Org. Matter non 28 1.89 2.90 1.66 1.58 0.133
OM_dept log 40 0.07 0.19 -0.70 -0.65 0.26
Soil pH non 41 4.89 4.75 0.60 0.55 0.445

(b)iv MEANS STD DEVIATION P for
Soil Vars. T ransf d f PID 553 PID 868 PID 553 PID 868 2-tail t-test
Exch Acid sqrt 41 2.41 2.92 0.51 0.56 .004*
Exch Ca log 32 2.12 1.23 0.80 1.05 .023*
Exch Fe log 34 1.95 1.89 0.21 0.24 0.519
Exch K sqrt 32 5.98 4.20 1.25 1.52 .003*
Exch Na non 34 23.20 21.65 6.46 8.17 0.595
Exch_Mg log 30 1.25 0.89 0.70 0.38 0.171
Exch P log 31 0.74 0.71 0.51 0.50 0.193
Soil CEC n/a n/a n/a n/a n/a n/a n/a
Org. Matter n/a n/a n/a n/a n/a n/a n/a
OM_dept log 40 0.29 0.39 -0.54 -0.74 0.362
Soil pH non 22 4.89 4.58 0.70 0.39 0.111
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state (Table 6-2(b)i & iv). In three out of the four map units in which data on 

exchangeable acid were available, the delineations were significantly different from 

one another. Test for Na was significant three times out of six. Aside from these, no 

chemical property showed consistent heterogeneity within the map units analyzed in 

this study. It seems, however, that the macronutrient cations and hence, cation 

exchange capacity were clearly more variable (Na > CEC = Ca = K < Mg) among 

delineations, compared to micronutrient cations.

6.3.2 The Variation of Soil Chemical Properties in STATSGO Map Units

Preliminary data screening showed that non-linear tranformation was needed, for most 

of the soil variables, in order to achieve univariate normality. Inspection of pooled 

within-group correlation matrices (Table 6-3) showed modest inter- correlations 

among the soil variables in the MANOVA and DFA tests. The highest inter- variable 

correlation was 0.75, hence there was no evidence of the problem of multicollinearity. 

However, the Box’s M multivariate test of homogeneity of within-group variance- 

covariance matrices was found to be highly significant, p < .001. Bartlett-Box F test of 

univariate homogeneity of variance was significant for Ca > Mg > Na > Fe, p > .005, 

indicating that these variables were responsible for the significant Box’s M test, most 

likely because of their non-normal distributions. Again, the sensitivity of Box’s M test 

was recognized, and secondary or confirmatory diagnostics (as explained in Chapter 4) 

suggested that there was no real problem of heterogeneity of dispersion matrices. No 

problem was also found when the stability of the MANOVA and DFA results was
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evaluated by the addition and/or deletion of variables, and by repeating the analyses on 

a fresh batch of data.

Exch_AI Exch_Ca Exch_Fe Exch_K Exch_Mg Exch_Mn Exch_P Exch_Na Exch_Zn
Exch_Al
Exch_Ca -0.296
Exch_Fe 0.380 0.172
ExchJK 0.265 0.371 0.321
Exch_Mg -0.025 0.758 0.347 0.591
Exch_Mn -0.157 0.426 0.024 0.400 0.485
Exch_P -0.385 0.311 0.050 -0.043 0.075 0.179
Exch_Na 0.041 0.260 0.191 0.334 0.343 0.266 0.086
Exch_Zn 0.377 0.150 0.207 0.394 0.333 0.326 -0.130 0.032
Soil pH -0.668 0.470 -0.076 -0.021 0.228 0.253 0.318 0.090 -0.223

(a)

Prnt Mtrl. B-text. Elevatn. Exch_Ca Exch_Acid Slope
Prnt. Mtrl.
B-texture
Elevation
Exch_Ca
Exch_Acid
Slope
Drainage

0.042
-0.138
-0.060
0.008
-0.084
-0.119

0.135
0.242
-0.017
0.078
0.079

0.073
-0.075
0.241
0.138

-0.187
-0.105
0.249

-0.022
-0.013 -0.302

(b)
Table 6-3: Pooled within-group correlation matrices of soil attributes used in 

MANOVA and DFA of STATSGO map units.

The results of MANOVA tests of significant differences in selected chemical 

properties among STATSGO map units, are shown in Table 6-4. The table shows the 

seven selected map units, the soil variables used, their sample sizes, the group and total 

means. It also shows the p values of univariate and multivariate tests of significance, as 

well as the univariate and multivariate Wilk’s Lambda’s and effect-size (1 - Lambda) 

for the analysis. The selected STATSGO map units were significantly different from 

one another, both with respect to individual soil chemical properties, and when all the
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Map Units n size |sqrt_AI Sqrt_Ca Log_Fe Log_K Log_Mg Log_Mn Log_P Log_Zn Log_Na Soil pH

Group Means
ME059
NH027
ME064
ME019
NH017
NH012
NH022
NH023

30 
32 
32 
37
31 
49 
61 
66

10.871
12.813
12.276
10.627
9.405
9.401
10.400
11.626

11.990
9.191
10.533
13.711
8.187
5.796
10.658
9.068

1.860
1.781 
1.897 
1.802 
1.646 
1.715 
1.697
1.782

1.167
1.240
1.325
1.304
1.146
1.176
1.230
1.254

0.878
0.875
1.029
1.028
0.750
0.672
0.879
0.833

0.765
0.443
0.950
1.249
0.658
0.522
0.660
0.674

1.233
0.533
0.795
0.990
0.831
0.790
0.765
0.610

-0.064
0.150
-0.113
-0.149
0.051
-0.071
0.111
0.077

1.081
1.422
1.349
1.331
1.246
1.089
1.341
1.181

4.546
4.676
4.716
4.805
4.834
4.848
4.843
4.829

Total 338 10.876 9.718 1.764 1.232 0.858 0.723 0.791 0.011 1.249 4.782
Sig. univ. F (7,330) test 0.003 <.001 0.004 0.106 <.001 <.001 <.001 <.001 <.001 0.006

Univ. R2 (1 Lambda) 0.062 0.103 0.061 0.035 0.079 0.120 0.084 0.084 0.248 0.057

Multivariate Test of Significance
F (70,1878) = 5.41 
Wilk's Lambda = .343

Sig. of F = < .001
R2 (variance explained) = apprx. 65.70%

Table 6-4: Results of MANOVA of soil chemical properties in selected STATSGO map units 
in the study area
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soil properties were considered simultaneously. Table 6-4 shows highly significant 

univariate F(7, 33), p < .001 or close for all variables except K for which the p value 

was 0.106. The variance of each of the soil variables that was explained by the selected 

map units ranged from about 6% for pH ~ Fe = Al, to 25% for Na. The multivariate 

F(70, 1878) was 5.41, and was highly significant, p < .001. The multivariate Wilk’s 

Lambda was .343, indicating that about 65% of the variance in the composite of the 

chemical properties could be explained by, or predicted from the map units. The 

observed univariate and multivariate proportions o f explained variances in the 

chemical properties seem rather impressive considering that 1) these variables are not 

field-observable or mappable soil properties, 2) capturing the variability of many of 

them (e.g., the macronutrient cations) is, usually, not the primary objective focus of a 

general soil survey like STATSGO, and 3) except for a few of them (e.g., Ca) these 

soil variables are not major criteria in Soil Taxonomy (Soil Survey Staff, 1975) on 

which STATSGO is based.

6.3.3 Statistical Evaluation of the Reliability of Soil Classification in STATSGO

Soil classification is usually polythetic, that is, soil class membership is based on 

observations of several variables, no one of which is either [absolutely] necessary or 

sufficient to define the class (Webster & Burrough, 1974). As Edmonds et al. (1981) 

observed, soil characteristics can be categorized into those observable [in the field] by 

the senses and those observable only by laboratory procedures. Soil mapping usually 

involves the evaluation o f the spatial variation in field-observable soil characteristics,
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and the assumption that the observable characteristics are correlated with those 

measurable only by laboratory procedures, it is not possible for a soil map to 

efficiently reflect spatial variation in all soil variables simultaneously. However, to be 

reliable, a soil map would have relatively high within-map unit homogeneity and 

between-map unit variances in soil properties relevant to the purpose of the survey, 

and/or used in making the soil map. The reliability of a soil map, or the effectiveness 

of its soil classification can be statistically evaluated by comparing the within and 

between variances of the map-unit differentiating characteristics and characteristics 

strongly correlated with them (see Webster & Oliver, 1990; Burrough, 1993). Higher 

between-unit than within-unit variance (i.e., a high F-ratio or significant F-test) in a 

soil property implies that the map units are distinct, and hence that the classification is 

effective with respect to that soil property (see Leenhardt et al., 1994; Oberthur et al. 

1996). MANOVA and discriminant function analysis (DFA) are the statistical 

procedures for evaluating the reliability of soil maps involving multiple variables 

simultaneously.

DFA and MANOVA were performed to assess how well selected STATSGO 

map units could be predicted from parent material type, texture of B-horizon, 

elevation, percent slope, drainage status, exchangeable Ca, and exchangeable acid. 

These soil variables were selected because of their known importance in soil 

classification and mapping systems. DFA also allowed the assessment of the relative 

importance of these variables in the assignment of soils to STATSGO map units. The 

STATSGO map units selected for this study, and some of the results of the analyses 

are shown Table 6-5 . The number of soil samples in the selected map units are as
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follows: NH017 (n = 31), ME059 (n = 31), NH027 (n = 32), ME064 (n = 38), ME019 

(n = 39), NH012 (n = 52), NH023 (n = 64), and NH022 (n = 66). The analyses were 

performed twice to see if the results would be consistent, and they were. Table 6-5(i) 

shows results based on five map units with relatively smaller sample sizes (total n = 

170), while Table 6-5(ii)’s results were based on map units with larger sample sizes 

(total n = 259). Pre-analysis evaluation o f data for conformity to the assumptions of 

MANOVA and DFA was done as in Chapter 4, and the results were satisfactory.

Univariate F-tests showed that STATSGO map units in each of the two groups 

were highly significantly different from one another with respect to each of the 

selected soil-mapping variables. All of the univariate tests had p < .001 except for 

parent material which was .016 and .005 in the first and second tests, respectively. 

Recall that Wilk’s Lambda expresses the percent of variance in a dependent variable or 

set of variables not explained by the independent variable. Wilk’s Lambda values for 

the univariate tests (Table 6-5) show that parent material had the least proportion of 

variance about 6 - 8%) explained by STATSGO map units in the study area. On the 

other hand, about 55 - 60% of the variation in elevation among STATSGO map units 

could be explained in each of the tests. In both tests, parent material and elevation were 

the least and most effective discriminator of STATSGO map units, respectively. 

According to this study, STATSGO map units membership is weighted on the selected 

variables in the following order: elevation > exchangeable acid > drainage > B texture 

> %slope > Exchangeable Ca > parent material. The variance explained in the 

variables other than elevation and parent material was always greater than 10% and 

sometimes as high as 30%.
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(0 Dl D2 d3
Group Centroids for Disc. Functions ( D j )

ME059 0.016 0.999 -0.115
NH017 -1.542 -0.326 -0.650
NH027 -2.417 -0.146 0.524
ME064 1.911 -0.322 0.019
ME019 1.333 -0.076 0.157

Std. Canonical Disc. Function Coefficients Univ. W 's. L.
Parent Material -0.254 0.315 -0.314 0.929
B_horiz. Texture 0.362 -0.496 0.486 0.779
Elevation -0.815 0.370 0.160 0.412
Sqrt_Ca 0.033 0.341 0.108 0.919
Log^Acid 0.371 0.664 -0.175 0.636
%SIope -0.035 0.179 0.501 0.803
Drainage 0.397 0.463 0.383 0.698
Can. Correlation 0.860 0.433 0.350
Eigenvalue 2.840 0.231 0.141
W ilk's Lambda for significant Disc. Functions (D l, 2 &  3) = .177

(ii) D l d 2 1 d 3
Group Centroids for Disc. Functions (Dj)

ME064 -2.057 0.265 <.001
ME019 -1.480 0.497 -0.352
NH012 -0.440 -1.123 0.208
NH023 0.911 0.52 0.511
NH022 1.522 -0.066 -0.452

Std. Canonical Disc. Function Coefficients Univ. W ’s. L.
Parent M aterial 0.318 0.010 0.281 0.943
B_horiz. Texture -0.438 0.070 -0.126 0.865
Elevation 0.912 0.630 -0.134 0.452
Sqrt_Ca -0.026 0.470 -0.338 0.883
Log Acid -0.301 0.681 0.499 0.791
%Slope 0.038 0.342 0.487 0.889
Drainage -0.153 0.540 -0.280 0.863
Can. Correlation 0.803 0.523 0.358
Eigenvalue 1.820 0.376 0.147
W ilk's Lam bda for significant Disc. Functions (D l, 2 &  3) — 220

Table 6-5: Results of discriminant function analysis of taxonomic soil
variables on selected STATSGO map units in the study area.
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Table 6-5 also shows that three discriminant functions, Dl, D2 and D3 were 

derived in each of the two tests, implying that there are three orthogonal or non- 

overlapping dimensions along which the group of STATSGO map units can be 

separated based on the selected variables. In both tests, the discriminant functions were 

highly significant, p < .001. This means that the optimal weighted linear combination 

of the variables (D’s) differ significantly across the map units, and hence can be used 

to predict map unit membership at significantly better than chance levels of accuracy. 

With five map units, up to four discriminant functions are theoretically possible but 

usually only the first few are important. The first discriminant function provides the 

best separation among the groups, followed by the second discriminant function, and 

so on. And since the discriminant functions are orthogonal to one another, the second 

function, for example, separates groups only on the basis of association not used in the 

first. Table 6-5 also shows the canonical correlations and eigenvalues for the 

discriminant functions (Dl to D3), the within-group centroids (vector of means) for 

these functions, Wilk’s Lambda for the analyses, and the standardized canonical 

discriminant function coefficients. Canonical correlation indicates the strength of 

relationship between each discriminant function and group membership, while the 

standard canonical discriminant function coefficient (CDFC) shows the strength of 

relationship or correlation between group membership and the discriminating variables 

on each of the functions. The larger the absolute CDFC values, the more the variable 

contributes to the discriminating power of a particular discriminant function, while 

weights close to zero indicate variables that do not add much to discriminating among
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groups. Eigenvalues (k) convey equivalent information as the canonical correlation 

(R); X/Q.+  1) = R2.

In the two tests shown in Table 6-5, Dl had R = .86 and .80, indicating that it is 

highly related to STATSGO map units. In both tests also, Dl was most highly loaded 

on elevation, and much more weakly on any other variable. The within-group centroids 

shows rather high distinction among map units on this discriminant function (Dl), in 

both tests. The second discriminant function, D2, was moderately but also significantly 

related to map unit membership, R = .43 and .52 for test 1 and 2, respectively. In test 

2, D2 was still moderately loaded on elevation, underscoring the importance of 

elevation in predicting STATSO map units. In both tests, D2 showed relatively high 

CDFC with exch_Acid, drainage, and B-texture in test 1 but exch_Ca in test 2. The 

within group centroids also show good separability among the map units on D2. The 

multivariate Wilk’s Lambda was .177 and .220 in the two tests, implying that on the 

average, about 80% of the variation among the selected STATSGO map units could be 

explained, accounted for, or predicted from the variables used in this study.

Finally, the discriminant functions developed from the selected variables 

(discussed above) were used to classify the sampled soil profiles into the selected 

STATSGO map units. The resulting statistical classification was then used as a 

reference to assess how accurate STATSGO soil map was in predicting map unit 

membership. The result of accuracy assessment of soil classification by STATSGO are 

shown on Table 7-2, and are more fully discussed in the next chapter (The Use o f 

Error Matrix in Evaluating Classification Accuracy and Soil Map Quality). In
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summary, the results showed that based on soil parent materials, texture of B-horizon. 

elevation exchangeable Ca, exchangeable acid, percent slope and Drainage information 

(Table 6-5), the overall accuracies of STATSGO in classifying the map units shown on 

Tables 6-5a and 6-5b were 61.76% and 63.32%, respectively. This is about 300% 

better than the expected rate of accuracy by random chance alone (i.e., 20% or 100% 

divided by number of map categories). The results are also impressive because the soil 

variables used in this study are neither the only ones used in soil mapping, nor are they 

necessarily the most important or even the primary classification criteria used by 

STATSGO.

6.4 Summary and Conclusion

The importance of STATSGO as the only source of small-scaled digital soil data 

appropriate and/or available for regional soil-based studies was discussed. The 

literature reveals concerns about the reliability of STATSGO, and the need to evaluate 

the degree of variation of specific soil properties within and between STATSGO map 

units. Using the soil component of the 1983 FIA data as reference, this study provides 

the only known systematic regional analysis of the reliability of the classification in 

STATSGO soil map. A variety of statistical analyses were used to provide specific 

answers about map unit variabilities of individual soil properties in, and about the 

reliability of soil classification and soil map quality of STATSGO.

The study showed that 60% or more of the time, the delineations of a 

STATSGO map unit occurring across states are homogeneous with respect to specific
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soil properties. This percentage increases (up to 100% in Table 6-2b(iii)) for 

delineations in the same state. Table 6-2 shows that 70% of the 60 univariate tests of 

differences in soil properties among multiple delineations was not significant at the 

95% confidence level. Exchangeable acid, P, Na, Ca, and hence CEC are the soil 

properties on which the delineations of a STATSGO map units may be statistically 

different from one another.

DFA and MANOVA were used to see if selected STATSGO map units were 

significantly distinct from one another, both with respect to individual soil chemical 

properties, and when all the soil properties were considered simultaneously. The 

univariate tests were highly significant for almost all soil properties. The multivariate 

F-test was also highly significant, and indicated that about 65% of the variance in the 

composite of the chemical properties could be explained by, or predicted from 

STATSGO map units.

Finally, DFA was used to assess the reliability of soil classification in 

STATSGO, and evaluate the relative predictive efficiency of selected soil properties 

that are important in soil classification and mapping. The DFA test was replicated with 

five STATSGO map units each. Both tests were consistent, and showed that there were 

optimal weighted linear combinations of the variables on which the selected map units 

differ significantly; that on the average, about 80% of the variation among the selected 

STATSGO map units could be explained, accounted for, or predicted from the selected 

soil variables; and that elevation is the most effective discriminator (among the 

selected variables) of STATSGO map units, while parent material is the least effective. 

Only about 8% or less of the variation in parent material among the STATSGO map
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units could be explained, while as much as 60% of the variation in elevation was 

captured by the map units. The assessment of classification accuracy based on DFA 

showed that STATSGO has, on the average, an overall accuracy of about 62%—about 

300% better than the expected rate of accuracy by random chance alone.

The results of this study are significantly better than some of the literature cited 

in this study would cause one to expect. Perhaps, many of the critics of soil survey data 

are not aware of the nature of soil variation and/or the practical and invariable 

limitations of soil survey methodology. A general and small-scale soil map like 

STATSGO can not be reasonably expected to capture the vertical and horizontal 

variabilities of all soil and soil-related properties simultaneously and with great 

precision. Soil water holding capacity (SWHC) on which Lathrop et al (1995) based 

their critique of STATSGO is well known to be difficult to determine even by direct 

methods (Nielsen et. Al., 1973; Peck et al., 1977). Lathrop et al. (1995) acknowledged 

that “field studies indicate that soil-water properties are particularly spatially 

heterogeneous, even for study areas that were fairly uniform in soil classification.” The 

high within map unit variability of SWHC reported in that study should not have been 

surprising, and must have been aggravated by the scale at which the analysis was 

carried out and level of spatial interpolation reported in that study. This study shows 

that STATSGO map units in the northern New England area are distinct; that soil 

classification in STATSGO may be surprisingly accurate; and that the within-map unit 

variability of many individual soil properties are within very reasonable limits, 

especially for a small-scale generalized soil map.
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CHAPTER 7

THE USE OF ERROR MATRIX IN EVALUATING 
CLASSIFICATION ACCURACY AND SOIL MAP QUALITY

7.1 Introduction

The last one-half of the sixty or more years of soil survey has witnessed ever 

increasing concerns about the reliability of soil survey or accuracy of soil maps. The 

literature is replete with documentation of the causes of these concerns (e.g., Moore et 

al., 1993; Rogowski & Wolf, 1994). Published research has continued to reveal the 

need to find an effective quantitative method of evaluating and expressing the 

reliability of soil classification and soil map quality. Prior to the mid-1960’s, soil maps 

were simply presumed to have met the theoretical standard of 85% map unit “purity” 

or better (Soil Survey Staff, 1951). This means that the cartographic units of a soil map 

were expected, 85% of the time, to be composed of soils that are in the taxonomic 

units they purport to represent. However, later studies (e.g., Wilding et al., 1965; 

Powell & Springer, 1965; McCormack & Wilding, 1969; Amos and Whiteside, 1975) 

showed that the impurity of soil survey mapping units was much higher than the 

theoretically expected 15%. In fact, these studies showed that up to 50% or more of the 

soils included in a soil survey map units may be taxonomically different from the 

named soil. These studies spawned concerns about quality of soil maps, and clearly 

established the need to evaluate and document soil map unit composition.

1 3 9
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Determination of map unit composition involves using transects or stratified 

random sampling to sample delineations of map units to be studied. These sampled 

soils are then evaluated to see if they are the same as the taxonomic unit (soil class) the 

map unit represents. The objective is to determine the proportion of soils within a map 

unit that is in the same taxonomic class as the named soil. Confidence intervals are 

then calculated using either the Student's t-distribution or a binomial method (see 

Wilding & Drees, 1983; Upchurch et al., 1988; and Burrough, 1991).

By late 1980’s (e.g., Edmonds & Lentner, 1986; and Hopkins et al., 1987), it 

was well understood that map unit purity of 85% was impossible and that 50% or less 

was more practical, unless the taxonomic purity was examined at higher levels of soil 

taxa, or interpretive (instead taxonomic) purity was examined (West et al., 1981; Nordt 

et al., 1991). In interpretive purity, soils that were taxonomically dissimilar but had 

similar interpretations are allowed to be included in the map unit. The problem is that 

the definitions of similar and dissimilar soils (Soil Survey Staff, 1983) are subjective, 

user-biased and dependent on intended land use (Nordt et al., 1991). According to 

Miller et al. (1979), and Wilding & Drees (1983), taxonomic purity of map units is not 

a proper measure of quality or precision of soil survey. The alternative and “better” 

approach to evaluating soil map “quality” has been to assess the variability of 

individual soil properties in the map units. This method uses parametric or 

nonparametric statistics to analyze the between and within map units variances of 

selected soil properties, and to compute summary statistics including coefficients of 

variation for these soil properties within map units.
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The major advantage of the soil-property-variability method is that it allows 

“precise quantification” of some sort. Quantification gives soil survey the glamour of 

“real science”, but more importantly, quantitative evaluation has become an absolute 

necessity in the information age where there is “—an increasing need for measured data 

and hard conclusions” (Bouma, 1988). And as Bouma also asserted, users of soil 

survey data have become more professional and sophisticated, and “descriptive and 

qualitative recommendations are often not adequate anymore: they don’t standup in 

court” (see also (Miller, 1978; Wilding, 1988; Brubaker & Hallmark, 1991). However, 

the apparent advantages of the soil-property-variability method overshadow and 

preclude the consideration of major limitations of this approach to assessing soil map 

accuracy. First, we know that soil classes are usually polythetic—class membership is 

based on observations of several variables, no one of which is either [absolutely] 

necessary or sufficient to define the class (Webster & Burrough, 1974). And map units 

cannot be expected to efficiently separate the variations in all important soil properties 

simultaneously. Hence, the assessment of soil map quality by the soil-property- 

variability method involves the sampling and laboratory measurements of a plethora of 

soil properties. This (as we know) is a costly venture, and the major reason why soil 

surveys are often based primarily or even entirely on field-observable soil properties 

and soil-related factors. On the other hand, the taxonomic purity method is in 

consonance with the soil survey methodology or the art and science process with 

which the soil map under evaluation was made. What the taxonomic purity method 

lacks at present is a more efficient way to describe “map unit purity”, and to further
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quantify the extent of “similar” and “dissimilar” soils included in the map units. This 

paper presents a technique—the use of error matrices and associated descriptive 

statistics, which will allow these objectives and more to be achieved. These techniques 

have become the standard for providing comprehensive, quantitative accuracy 

assessment of maps or classifications of remotely sensed data. The objective of this 

section is to show that the error matrix techniques can be readily adapted for use in 

assessing the reliability of soil classification and soil map quality.

7.2 Advances in Classification Accuracy Assessment: the Use of 

Error Matrices

The error matrix and related techniques have gained much popularity in remote sensing 

where they have become the standard form for expressing classification accuracies, 

and reporting site-specific errors o f commission and omission (see Congalton 1991; 

Lillesand and Kiefer 1994, p 612; Jensen, 1996, p. 247). The art and science of 

classifying the landscape into specifically defined map categories based on satellite 

remotely sensed data, are markedly similar to those of soil classification and mapping. 

Both remote sensing and soil mapping are interpolative, and are based on the indirect 

use of surrogate or correlated data to make judgement about the nature of map units. 

As a result, the need to evaluate and effectively express the level of “correctness” in 

the results of classification and mapping is equally critical in both remote sensing and 

soil mapping products. Campbell (1987) writes that accuracy assessment of remotely 

sensed data affects the legal standing o f maps and reports, the operational usefulness of
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such data for land management, and their validity as a basis for scientific research. 

Within the last two decades, the remote sensing community has made significant 

advancement in the area of accuracy assessment of classification through the use of 

error matrix and discrete multivariate statistical analyses. Hay (1979) showed that 

accuracy assessment of map accuracy involves answering the following essential 

questions:

1). What proportion of the classification decision is correct?

2). What proportion of assignments to a given category is correct?

3). What proportion of a given category is correctly classified?

4). Is a given category overestimated or underestimated?

5). Are the errors of classification randomly distributed?

Since their introduction (Congalton et al., 1983), error matrix and associated analytical 

statistical techniques have been used by the remote sensing community to effectively 

answer these classification accuracy questions. The error matrix has been declared 

...“essential for any serious study of accuracy” (Campbell, 1987), and a “starting 

point for a series of descriptive and analytical statistical techniques” (Congalton 1991) 

that provide comprehensive information on the accuracy of a classification or 

reliability of a map. Clearly, these techniques can also be adapted for use in evaluating 

the accuracy o f soil classification and soil map quality.

The thrust of this paper is that the use of error matrix and the related statistics 

would significantly improve the present methods of assessing soil map quality. The 

following discussion will briefly introduce the concepts of error matrix and the
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complementary statistics; and show that adapting these techniques for use in soils is 

potentially the solution to the age-long search for an effective method of evaluating 

and communicating soil map quality. The application of these techniques is 

demonstrated with real data of STATSGO soil classification.

7.3 Description of the Error Matrix

An error matrix is a square array o f numbers set out in rows and columns that 

represents the number of information classes or classification categories, used to 

compare on a category-by-category basis, the relationship between known reference 

data and the corresponding results of a classification. Table 7-2 shows an error matrix 

developed to assess the classification accuracy of a map involving five map units 

(MU’s). The columns and rows of an error matrix show the number of sample units 

assigned to a particular map category (i.e., soil map unit) relative to the number that 

actually belong to that category (e.g., soil taxon) as verified in the field. The

Soil Map Data

&13
MU_1 MU_2 MU_3 MU_4 MU_5 Ref. total

MU_1 28 15 7 0 0 50
Q
0) MU_2 9 21 6 2 3 41
oc
£a

MU_3 1 2 36 10 7 56
MU_4 0 0 0 43 18 61

<D
£ MU_5 0 1 3 11 36 51

Map total 38 39 52 66 64 259

Overall Classification Accuracy = 63.32%

Table 7-1: Example of an error matrix of a soil classification
involving five map units.
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effectiveness of the use of error matrix stems from the fact that the accuracy of 

classification of each category or class is well described, along with both the errors of 

inclusion or commission and errors of exclusion or omission (Congalton, 1991 Jensen, 

1996).

Three types of accuracy are typically determined from an error matrix. The first 

of these accuracies is the overall accuracy. In soil science, this will be the percentage 

of the reference soil units that were correctly classified through mapping. The overall 

accuracy is averaged over all map units identified in the mapping procedure. It does 

not indicate how the accuracy is distributed across the individual map categories [i.e., 

soil classes] (Story and Congalton, 1986). Fortunately, it is possible also to compute 

the accuracies of specific map units or soil classes from the error matrix of any 

classification scheme. These are termed the producer’s accuracy and user's accuracy.

The producer’s accuracy indicates how well members of a particular map 

category are classified. It is a measure of the errors of omission in a specific map unit, 

and/or indicates the propensity with which members of a particular soil class in the 

field were misclassified or placed in inappropriate map units. On the other hand, the 

user’s accuracy indicates the probability that samples (e.g., pedons and polypedons) 

assigned to a particular map category (i.e., map unit) on the [soil]map actually 

represents the appropriate and expected category [i.e., soil type] in the reference data 

or on the ground. The user’s accuracy is termed a measure of reliability and/or a 

measure of the errors of commission in specific map categories. The user’s accuracy, 

more or less, measures the probability of encountering the inclusion of “dissimilar”
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soil types in a particular map unit. However, the use of error matrix also allows the 

confusion among soil classes to be further analyzed by showing the relative 

contributions of each class to the confusion (errors of omission or commission) found 

in a specific soil class.

Congalton (1991) and Jensen (1996) explain why it is important to report all 

three accuracies—the overall accuracy, producer’s accuracy, and user’s accuracy. As 

revealed in the preceding discussion, each of these accuracies conveys unique, yet 

complementary information about the reliability of the classification and mapping 

project. Campbell (1987) remarked that the overall accuracy may suggest the relative 

effectiveness of a classification, but does not form convincing evidence of the accuracy 

of the classification. The overall accuracy may be unduly high or low due to the ease 

or difficulty, respectively, of correctly identifying members of one or only a few 

specific map categories. The producer’s accuracies of individual map units will show 

the relative tendencies for members o f each of these map categories to be correctly 

identified, classified or mapped by the mapping methodology. However, the 

producer’s accuracy alone will tell incomplete and perhaps misleading story about the 

effectiveness with which the classification scheme or mapping methodology can 

identify map categories. In soil survey and mapping for instance, a soil scientist who 

thinks that a certain soil type is “typical” in an area may, in the field, classify far more 

pedons into this expectedly predominant taxon than there actually are in reality. 

Similarly, it may be less likely that pedons which actually belong to such a typical 

taxon will be misclassified into other less “popular” or populous soil classes. In this 

instance, the producer’s accuracy for the typical soil taxon will be high, but the user’s
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accuracy will be low. This implies that although the soil survey person and mapping 

methods did a great job at correctly identifying soils in this soil class, they also had 

significant number of soils in other classes wrongly identified as belonging to this soil 

class or map unit.

In addition to the overall, producer’s, and user’s accuracies, more advanced 

statistical techniques can be used to further analyze the information contained in the 

error matrix. The advanced techniques include discrete multivariate statistics 

traditionally used (in social sciences) to analyze contingency tables. Congalton et al. 

(1983) introduced the use of these discrete multivariate methods in remote sensing for 

analysis of the accuracy of classification derived from satellite remotely sensed data. 

Since that time, these techniques have become adopted as the standard accuracy 

assessment tool (see Rosenfield & Fitzpatrick-Lins, 1986; Hudson & Ramm, 1987; 

Campbell, 1987; Congalton, 1991; Jensen, 1996). The reasons discrete multivariate 

methods are appropriate, and are preferred over parametric or normal theory statistics 

(e.g., analysis of variance) for the analysis of remotely sensed data are discussed in 

Congalton et al. (1983) and Congalton (1991). These include the facts that remotely 

sensed data are discrete rather than continuous, and are binomially or multinomially 

distributed rather than being normally distributed. Since these statements about the 

nature and distribution of remotely sensed data are also true for soils, it is reasonable to 

posit that these discrete multivariate techniques will also be suitable for analysis of the 

accuracies in soil classification and mapping projects. The application o f these 

advanced analyses to an error matrix, yields two additional measures of the accuracy of 

classification called normalized accuracy and K^at statistics.
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The main difference between the overall accuracy and the normalized accuracy 

stems from the way the two are computed. As shown in the succeeding section, the 

overall accuracy is computed by summing up the major diagonal cells of the matrix 

(this equals the total correctly classified samples), and dividing this sum by the total 

number of samples in the error matrix. Thus, the overall accuracy does not reflect 

information from the off-diagonal cells or the levels of the errors of omission and 

commission in the matrix. On the other hand, the normalized accuracy is computed 

after an iterative proportional fitting procedure called normalization or standardization, 

which forces each row and column in the matrix to sum to a unit or one. The 

normalization process involves the iterative balancing of the row and column cells, and 

the summation of these to form column and row totals or marginals. This changes the 

cell values along the major diagonal of the matrix in a way that forces these diagonal 

cell values to reflect the off-diagonal cell values also.

Normalized accuracy is nothing more than overall accuracy computed from a 

normalized or standardized error matrix. But unlike the overall accuracy, the 

normalized accuracy also incorporates the errors of omission and commission all 

together (Congalton, 1991). The normalized accuracy, it is argued, is a better 

representation of accuracy than is the overall accuracy computed from the original 

matrix (Jensen, 1996). Standardized or normalized error matrices have another 

advantage which will be of value in soil classification and mapping. Normalization 

provides a convenient way of comparing individual cell values between error matrices 

regardless of differences in the number of samples used to derive the matrices. 

Consider a situation where we want to evaluate the soil mapping skills of two trainee
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soil scientists, or we want to evaluate the relative performance of two soil mapping 

methodologies or techniques. After normalizing the error matrices generated in each 

pair of situations, each individual cell can be readily converted to a percentage by 

multiplying by 100, hence producing a single index by which corresponding cells 

could be compared. This is a better, and certainly a simpler alternative to comparing 

the producer’s and user’s accuracies of the corresponding cells from two or more 

matrices.

KAPPA analysis and the Khat statistic are not discussed fully in this research but 

interested readers should see one or more the references in this work. It may suffice to 

say that KAPPA analysis is a discrete multivariate technique, used to get another 

measure of the degree of agreement or accuracy (Khat) in a classification matrix. The 

computation of the Khat statistic incorporates the off-diagonal elements (just as in 

normalized accuracy) as a product of the row and column marginals. The Khat statistic, 

therefore, is usually different from the overall accuracy, and the magnitude of the 

discrepancy would depend on the amount of errors of omission and commission 

included in the matrix. The Khat statistic is useful for 1) determining whether the results 

presented in an error matrix are significantly better than the result of randomly 

assigning samples to map categories (i.e., a null hypothesis of K ^ = zero), and/or 2) 

comparing two matrices consisting of identical categories to see if they are 

significantly different from each other. My present position is that the rigor with which 

a soil sample is assigned to a soil class is much more than the effort required to assign 

a remote sensing pixel to a map category. Hence, it may rarely be necessary to test that 

a soil mapping and classification procedure produces results that are better than that of
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random assignment. And if such a hypothesis is tested, it is almost certain that it will 

be rejected. Also, although can be used to statistically compare two matrices, an 

almost equally adequate but easier process may be to compare the normalized 

accuracies of such matrices. It is still not clear (even in remote sensing) if statistic 

contains more information about the accuracy of classification than the normalized 

accuracy, and how the discrepancies between the Khan statistic and the overall and 

normalized accuracies should be interpreted. For these (and other) reasons, it may be 

expedient in this initial stage of adapting and applying the error matrix techniques to 

the evaluation of soil map quality, for attention not to be dissipated on the more 

challenging issues of KAPPA analysis and its attendant statistics.

7.4 Computing Soil Map Accuracies: An Example with STATSGO 

Data

The computation of the overall, producer’s and user’s accuracies is demonstrated by 

using the error matrices of the STATSGO data shown in Table 7-2. The accuracies and 

associated errors (commission and omission) in this data set are then used as the basis 

for inferring the probable quality or reliability of the soil classification in the 

STATSGO data of the northern New England area. Recall that Table 7-2 were 

developed from the discriminant function analysis discussed in Chapter 6. In that 

study, soil parent materials, texture of B-horizon, elevation exchangeable Ca, 

exchangeable acid, percent slope and Drainage information were used to [statistically]
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(i)
STATSGO Classification

ME059 NH017 NH027 ME064 ME019 DFA total
ME059 20 8 4 1 4 37

■O _
3  o NH017 2 16 8 0 0 26
O
o> £
CL to
<  (0 U-
a  °

NH027 1 7 20 0 0 28
ME064 3 0 0 29 15 47
ME019 4 0 0 8 20 32
STATSGO Grand Total

total 30 31 32 38 39 170

Overall Classification Accuracy = 61.76%

(H)
STATSGO Classification

ME064 ME019 NH012 NH022 NH023 DFA total

ME064 28 15 7 0 0 50
"O _s! ME019 9 21 6 2 3 41
t s  g  0) .2 NH012 1 2 36 10 7 56
l_ H—

Q_ '( / } NH022 0 0 0 43 18 61
<  ca
U. 7T
Q  u

NH023 0 1 3 11 36 51
STATSGO Grand Total

total 38 39 52 66 64 259

Overall Classification Accuracy = 63.32%

Table 7-2: DFA e rro r m atrix  o f the classification accuracy o f selected 
STATSGO map units in the study area, (i) and (ii) were for tests involving 
map units with smaller and larger n sizes, respectively.

classify the FIA sampled soil units into the selected STATSGO map units. The 

discriminant function analysis procedure then used the resulting statistical 

classification as reference to asses how accurate STATSGO soil map was in predicting 

map unit membership. Hence, Table 7-2 is the result of accuracy assessment of soil 

classification by STATSGO of the study area, based on the selected soil variables 

(listed above), and the groups of five STATSGO map units.
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To illustrate, let us think of the STATSGO soil map as a completed mapping 

project with only five map units. To evaluate the quality of this soil mapping project, 

the soil scientist would need to sample selected spots in each of the map units. The 

samples are selected by one of the various methods (see Wilding & Drees, 1983; 

Upchurch et al., 1988; Brown & Huddleston, 1991; Burrough, 1991) used in traditional 

studies of map unit composition. Table 7-2 shows that a total of 170 and 259 of such 

soil units were used for the first and second parts of the table. The columns in these 

error matrices represent how the sampled soil units were classified by the soil mapping 

project. Hence, the column totals indicate the number of observations the soil scientist 

made in each of the selected map units that (s)he intended to evaluate. The rows 

represent the actual, true classifications of the sampled soil units. The error matrix 

techniques presuppose that mutually exclusive and totally exhaustive system of 

classification was used in the mapping project. This means, therefore, that each of the 

sampled soil units must belong to one and only one of the map units identified during 

the classification. If this is true, then the row cells represent the way the reference data 

or the sampled soil units are distributed among the identified map units.

Table 7-2 (i) for instance shows that of the 30 soil units sampled from the 

STATSGO map unit ME059, only 20 of these could be verified by the soil scientist 

(using actual field or laboratory data or both) as actually belonging to this map unit. 

The numbers of the “correctly classified” samples in each of the map units make up the 

major diagonal cells (indicated also in boxes. Dividing each diagonal cell by the 

column total (sample size observed in that map unit) represents the user’s accuracy for
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that map unit (20/30 = 66.7% for ME059). In soil science parlance, the user’s accuracy 

is equivalent to percent map unit purity. It is a measure o f reliability (Congalton, 1991) 

and/or indicates the probability that soils in a map represent the intended soil class on 

the ground. The difference between a major diagonal cell (or the user’s accuracy) and 

the column total (or 100%) represent error of commission or rate of inclusion. Hence 

for ME059, the commission error is 30 minus 20, divided by 30 = about 33% or 100% 

minus 66.7%.

One of the advantages of the error matrix techniques is that they allow the 

commission error to be further analyzed to gain better understanding of the sources of 

this error. The off-diagonal column cells show how the inclusions are distributed 

among the other map units. Table 7-2 shows that the inclusion in ME059 are almost 

evenly distributed among the other map units. However, the two matrices consistently 

reveal that most of the inclusions in ME064 are soils that should actually be classified 

as ME019. With this type of information, the user of the soil survey can decide, given 

the intended use, if ME064 has sufficiently high user’s accuracy, and whether or not 

ME064 and ME019 are significantly dissimilar to warrant concerns. This is a 

significant improvement over the traditional one-value map unit composition method.

The row total shows the number of sampled soil units that actually belong to a 

particular map unit. Hence, of the 170 soil units examined for the first error matrix, 37 

of them were actually verified as ME059. Dividing the major diagonal by this row total 

(i.e., 20/37) gives the producer’s accuracy (54.05% for ME059). The producer’s 

accuracy tells the ease or difficulty with which members of a particular map category 

can be correctly identified or classified, and 100% minus the producer’s accuracy is a
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measure of the omission error. The off-diagonal row cells show how the omitted 

portions of a map unit are distributed among other map units. This type of information 

is vital to a better understanding in pedology, and especially to the improvement of soil 

survey and mapping methodologies. Table 7-2 shows that almost all of the omissions 

in NH027 are put in NHO17, and vice versa. This is not surprising given what is known 

about these two map units (see Table 6-1). But more importantly, this observation 

suggests that NH027 and NHO 17 should be re-examined to see if they are really 

distinct (theoretically or practically, or both). The user’s and producer’s accuracies, as 

well as the errors of omission and commission of the map units in Table 7-2 are thus:

Table 7-2 fi) with 170 samples

Map units User's Commission Producer's Omission
Accuracy E rror Accuracy Error

ME059 20/30 = 66.7% 33.30% 20/37 = 54.1% 45.90%
NH017 16/31 =51.6% 48.40% 16/26 = 61.5% 38.50%
NH027 20/32 = 62.5% 37.50% 20/28 = 71.4% 28.60%
ME064 29/38 = 76.3% 23.70% 29/47 = 61.7% 38.30%
ME019 20/39 = 51.3% 48.70% 20/32 = 62.5% 37.50%

Table 7-2 (ii) with 259 samples

Map units User's Commission Producer's Omission
Accuracy Error Accuracy Error

ME064 28/38 = 73.7% 26.30% 28/50 = 56.0% 44.00%
ME019 21/39 = 53.8% 46.20% 21/41 =51.2% 48.80%
NH012 36/52 = 69.2% 39.80% 36/56 = 64.3% 35.70%
NH022 43/66 = 65.2% 34.80% 43/61 = 70.5% 29.50%
NH023 36/64 = 56.3% 43.70% 36/51 = 70.6% 29.40%
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Finally, the overall accuracy is computed by summing all the major diagonal 

cells, and dividing by the total number of samples in the matrix. Hence for Table 7-2 

(i), this will be 20 (for ME059) + 16 (for NHO 17) + 20 (for NH027) + 29 (for ME064) 

+ 20 (for ME019) = 105, divided by 170 (the grand total) = 61.76% overall accuracy. 

Table 7-3 shows the results of normalizing the error matrices in Table 7-2. Recall that 

the normalization process forces the rows and columns to sum to one, and that the 

normalized accuracy is computed by dividing the sum of the major diagonals by the 

number of rows or columns. The normalized accuracies for the two matrices in

(i)  
STATSGO Classification

ME059 NH017 NH027 ME064 ME019
ME059 .590 .170 .083 .044 .113
NH017 .123 .562 .268 .025 .021
NH027 .072 .250 .632 .025 .021
ME064 .073 .007 .007 .632 .282
ME019 .142 .011 .010 .275 .563
Normalized Classification Accuracy = 59.57%

(ii)
STATSGO Classification

ME064 ME019 NH012 NH022 NH023
ME064 .616 .288 .091 .004 .003
ME019 .284 .552 .108 .024 .033
NH012 .050 .072 .685 .113 .079
NH022 .024 .020 .013 .664 .277
NH023 .026 .068 .103 .195 .607
Normalized Classification Accuracy = 62.47%

Table 7-3: Results of normalizing the matrices and classification 
accuracies in Table 7-2
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Table 7-2 are given in Table 7-3 as 59.57% and 62.49%. These are essentially the same 

as the overall accuracies of (61.76% and 63.32%, respectively) given on Table 7-2. 

Congalton (1991) explained that the overall and normalized accuracies tend to disagree 

when the original matrix has great many off-diagonal cell values of zero—a situation 

which happens when the matrix is constructed with insufficient sample size or the 

classification is exceptionally good. Since none of these situations was true for Table 

7-2, the equivalence between the overall and normalized accuracies in this study was 

not surprising. It is tedious to carry out normalization by hand, but Congalton (1983) 

has written an easy to use computer program (available on request) for this purpose.

7.5 Summary and Conclusion

The error matrix and associate statistics are state-of-the-art techniques for 

comprehensive assessment of classification or map accuracies. These techniques have 

been in use in remote sensing. The main idea of this paper is that the use these 

techniques can also be adapted to improve the map unit composition method of 

assessing soil map quality. The primary objective of the paper was to introduce the 

concepts of error matrix techniques to the soil science community, and demonstrate 

how and why these new techniques can be applied to soil survey and mapping. The 

different types of accuracies derivable from the error matrix were discussed, and their 

practical implications in soil mapping were demonstrated with real data.

Some of the advantages the use of error matrix in the analysis of soil map 

quality were highlighted. First, the new techniques are simple to understand and use.
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Second, the procedure parallels those which the soil scientists have traditionally used 

in assessing map unit composition. However, the new techniques overcome major 

limitations of the present method of assessing map-unit purity. For instance, map-unit 

purity is usually analyzed for one map unit at a time, and if two or more map units are 

involved, the present method does not provide a means for comparing them. But with 

the use of an error matrix, as many map units as are present in the soil map or as 

resource availability allows could be simultaneously analyzed. In addition to the 

overall accuracy of classification, the producer’s accuracy and errors of commission, 

and the user’s accuracy and errors of omission can also be computed. When there is 

confusion in discriminating among soil classes (either high omission or commission 

errors), error matrix can be used to effectively show what specific soil classes are 

confused, and the relative proportion of that soil class that is incorrectly assigned to 

each of the other map units. This kind of information enables the users to better 

interpret soil survey data, and allows soil classification and mapping methodology to 

be improved with time. The use of the error matrix is also more practical and much 

less costly than the method that requires laboratory measurements of a plethora of 

individual soil properties.

It seems clear that these new techniques are potentially the solution to the age­

long need for an effective, quantitative method of evaluating and communicating soil 

map quality. It is my hope, therefore, that this research (upon publication) will 

stimulate the interests of more experienced soil scientists, and generate further 

investigation and discussion on the necessary considerations that will enable these 

novel techniques to be optimally applied in soil classification and mapping. An ample
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bibliography on accuracy assessment in remote sensing, the error matrix and related 

concepts (such as appropriate sampling schemes) is included in the study for this 

reason.
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