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Abstract

A METRIC-BASED SCIENTIFIC DAaTA MODEL

FOR KNOWLEDGE DISCOVERY
by

David T. Kao

University of New Hampshire. December. 1997

Scientific data. which include muitimedia (e.g.. images. audio. and video) and non-standard
data (e.g.. finger prints and DNA scquences). is characterized by rich and complex inter-
instance relationships in addition to the inter-entity relationships found in traditional data.
Conventional data models are insufficient for modeling such inter-instance relationships.
This thesis proposes a metric-based scientific data model from the notions of data-as-
functions and pseudo-quasimetrics. which are used to model inter-entity and inter-instance
relationships respectively. Compared to other scientific data models. the metric-based con-
ceptual model can be applied to many data sets where geometric views might not otherwise
be available.

A detailed approach is outlined for exploring and deriving pseudo-quasimetrics to
represent inter-instance relationships in a wide variety of data. In particular. we introduce
the notion of observable properties and show how it can be applied with ideas from point
set topology to systematically derive metrics from nonmetric data components such as cat-
egorical data. We also demonstrate the use of continuity as a mathematically precise tool
to validate metrics derived through the proposed approach.

[n order to support the metric-based model at the physical level. we developed two
simple mechanisms. the multipolar mapping. for transforming a pseudo-metric space into
a multidimensional space. and the median transformation. for deriving a pscudo-metric
from a pseudo-quasimetric. After application of multipolar mapping and (possibly) median
transformation. it is easy to use existing point spatial data structures such as quadtree
or octree for metric data storage and access. The results of our performance analysis
demonstrate that the multipolar approach is robust and stable over a wide range of data
parameters for data sets with intrinsic dimeunsionality of 10 or less. While it is still unclear

whether the multipolar approach offers significant performance advantage on proximity
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queries for data sets of very high dimensionality. preliminary results for 100 dimensional

data still show excellent performance on nearest neighbor queries.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VORI

Chapter 1

Introduction

1.1 Scientific Data

[nterrelationships in scientific data are fundamentally more implicit. difficult to
capture. and harder to model than those in other database applications. For most con-
ventional applications. the only interrelationships of interest are the ones among different
semantic entities. such as the ones which can be described by an ER diagram [16. 12].
[nstances of a particular semantic entity - a tuple of a relation or an object of a class
are only related by sharing a set of common properties of that semantic entity. In most
situations. such inter-entity relationships are known in advance and expressed directly as
metadata.

For scientific data. there is another aspect of complexity in the interrelationships
- the interrelationships among instances of the same semantic entity. While the precise
meaning of scientific data is still open to discussion. we define scientific data as data which
possess rich inter-instance relationships. For example. both multimedia (¢.g.. images. audio.
and video) and non-standard data {(e.g.. finger prints and DNA sequences) are cousidered
as scientific data by our definition. A scientific database system wmust manage data before
such inter-instance relationships are well understood. In fact. one major objective of data
mining or knowledge discovery in databases (KDD) [19, 18. 6] is to discover. quantify and

further validate these relationships.!

"The process of exploring meaningful patterns in data is known by different names in various research
disciplines. In particular. the term ezploratory date analysis (EDA) [63] has been used extensively in the
past for such activity by the statistics community. For the rest of this thesis. we use the term knowledge
discovery to represent all kinds of activities involving exploring. extracting. and discovering information or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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[n a broad seuse. scientific database systems are database systems with integrated
support for the management and analysis of scientific data. Similar to conventional database
systemns. scientific database systems also model and manage data according to its semantic
structure. l.e.. the interrelationships in data. Since part of the semantic structure is detor-
mined or evolves as the data analysis process proceeds. the coupling between data man-
agement and data analysis is a tight one. A scientific data model is a coherent framework
for modeling both inter-entity and inter-instance relationships to support data management
and analysis activities.

This thesis summarizes our research in the development of a formal scientific data
model. As part of the thesis. a data model and a class of physical data models are proposed.
The data model. which we call the metric-based scientific data model. is developed to extend
the capabilities of existing conceptual and implementation data models such that inter-
instance relationships can be properly represented. A class of physical data models are
developed for efficient implementation of such a conceptual extension.

At the conceptual level. our scientific data model is based on a mathematical
framework developed from two basic notions - data-as-functions and pseudo-quasimetrics
- which are used for modeling inter-entity and inter-instance relationships respectively. By
representing data as functions. the mathematical function formulations of data can be used
for modeling inter-cntity relationships. A detailed approach is outlined for exploring and
deriving pseudo-quasimetrics to represent inter-instance relationships in a wide variety of
data. In particular. we introduce the notion of observable properties and show how it can
be applied with ideas from point set topology? [5] to systematically derive metrics from nou-
metric data components. Finally. we demonstrate the use of continuity as a mathematically
precise tool to validate metrics derived through the proposed approach.

At the physical level. various hierarchical metric data structures can be utilized as
physical data models to implement our metric-based conceptual model. In order to have
efficient implementations. we propose an innovative approach to derive a new class of hicr-

3

archical metric data structures from point spatial data structures.® Instead of performing

direct decomposition on metric data as is done for existing hicrarchical metric data struc-

knowledge from data.

*Point sei topology is also known as general topolagy.

*In point spatial data structures, the spatial objects to be stored are discrete points in multidimensional
spaces. compared to other spatial data structures such as region. rectangle. or line spatial data structures
which are designed for continuous spatial objects [54. 33].
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tures such as metric trees [65. 64] and vp-trees [67]. we define a class of simple procimaty-
preserving mappings from pseudo-metric spaces to multidimensional spaces. which we call
multipolar mappings. By applying multipolar mappings to metric data. hierarchical de-
compositions can be done in multidimensional space. and various existing well-understood
point spatial data structures [51. 52]. such as quadtree. octree. or k-d tree. can be utilized

as hierarchical metric data structures.

1.2 Taxonomy of Conventional Data Models

A data model is a collection of conceptual tools for describing data. relationships.
semantics. operations. and constraints [43]. We can categorize data models by how they
describe the data abstraction. Traditional database architecture partitions data models into
three different levels of abstraction: conceptual. implementation. and physical {16]. Idcally.
data abstraction at each level is independent of the ones in the other two.

Conceptual data models are based on the users’ perceptions of data. They provide
a high-level abstraction of the real world entities and the interrelationships among them.
The Entity-Relationship (ER) model proposed by Chen [7] along with its various extensions
[57. 61. 24] is the most widely used conceptual data model.

Physical data models specify the low-level organization of how data is stored in
the computer. Physical data models are usually invisible to database users. It is the
database system designer’s job to define the physical data models and decide how they are
implemented. Common physical data models include B-tree. B7-tree. B*-tree. R-tree.
and so on.

Implementation data models serve as a bridge between conceptual and physical
data models. They provide concepts at an intermediate level of abstraction still understand-
able by users but with enough detail to define the way data is logically organized within
the computer. The interactions between users and database systems also take place at this
abstraction level. The interface is implemented using a DDL (data definition language) and
a DML (data manipulation language). A DDL is used to specify the logical structures of
data while a DML is used to access data stored in the logical structures specified by the
DDL. Common implementation data models include hierarchical. network. relational. and
object-oriented.

The description of a database in a specific data model is called a schema. While
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ideally the choices of data models at the three abstraction levels should be independent from
cach other. in reality they are correlated. Generally. not every data model at one abstraction
level supports all the models at the higher level(s) equally well. Even two different schemas
of the same data model can have different requirements which are better served by different
data models at the lower level(s). Thus. when a new data model is introduced or an old
data model is extended. it is important to make sure that there exist data models at lower

level(s) to provide the necessary support efficiently.

1.3 Inter-Instance Relationships

The focus of conventional data models is inter-entity relationships which are of
primary interest in traditional data. However. scientific data also encapsulate complex
inter-instance relationships. Let us illustrate such inter-instance relatiouships through a
sitmple example.

A multi-band land satellite image can be represented as a two-dimensional array
of records with each of the records representing multiple measurements of a specific small
land area. Each such record shares the same membership information of the semantic entity
in question. in this case. the image or the 2-D array representation of the image. The mem-
bership information includes the format of the record and other relevant information such
as the domain and possible constraints on each measurement. These are the structures and
relationships which can be modeled by conventional conceptual data models. However. in
addition to the membership sharing. records of the 2-D array are also interrelated spatially.
While a conventional conceptual data model such as the ER model can associate each record
with its spatial coordinates. the spatial relationship among records can not be adequately
described.

Let us use the entity name SQUARE to represent the records of the 2-D satellite im-
age. Using the ER model. the conceptual schema of the image is illustrated in Figure 1.1(a).
The ER diagram shows that there are four possible relationships among instances of en-
tity SQUARE - NORTH. SOUTH. EAST. and WEST - based on the spatial relationship among

instances. However it fails to represent:

l. The way instances of SQUARE are related through NORTH. SOUTH. EAST. or WEST:

For example. we can see from the ER diagram that relation NORTH is a one-to-one
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relation and thus. no instance can be immediately to the NORTH of two different
instances and no instance can have more than one instance as its immediate NORTH.
Beyond that. we know nothing about the way instances are related through the NORTH
relation. For example. the constraint that the NORTH relation introduces no cycles
(i.e.. there is no instance s such that s is NORTH of ... itself) can not be seen from

the ER diagram.*

2. The way the relationships NORTH. SOUTH. EAST. and WEST are interrelated:  For
example. given two instances s; and s». we can not conclude from the ER diagram
that s, is the NORTH of s, if and only if s, is the SOUTH of s;. Neither can we say
that the EAST of the SOUTH of an instance. if it exists. is the same as the SOUTH of

; the EAST of that instance.
1
N T ‘A TN //\t
TT- T Y7
E, SQUARE | | SQUARE

I

N

M ~o ]
—— NEXT - —

I/S\ I ;
Lot
N>
N\
(2) (b)

Figure 1.1: ER Schema Diagrams of the Satellite Image

The second issue is a classical example of one well-known limitation of the ER
model - it is not possible to express relationships among relationships [43]. For conventional

database applications. this limitation can be overcome by the introduction of the aggregation

P xds

E construct as an extension to the ER model. However. in the case of the 2-D satellite image.

aggregation results in a single relation. say NEXT. by collapsing NORTH. SOUTH. EAST. and

WEST (Figure 1.1(b)). This simply reduces the second issue into the first issue above.

Various other extensions to the ER model have been proposed to alleviate this inherent

*In fact. even implementation schema derived from this ER diagram can not enforce this constraint
efficiently. A violation of this kind can not be detected by checking the content of a specific instance: it is
necessary to traverse all instances in the transitive closure.
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limitation [61. 62. 24]. None of them succeeds in providing an effective mechanism to
describe complex inter-instance relationships in general.

In summary. ER diagrams can not represent the regularities. constraints. or pat-
terns of the relationships among instances of an entity. For example. from the ER schema.
it is not possible to tell the differences among the three distinct patterns in Figure 1.2,
Since making relationships explicit is one of the most basic objectives of data models at
the conceptual level in particular - conventional conceptual data models are inadequate as
models for scientific data. Clearly. we need a conceptual scientific data model that supports
the representation of inter-instance relationships. This is the principal contribution of the

metric-based scientific data model described in this thesis.

Figure 1.2: Different Patterns of Inter-Instance Relationships

As mentioned in Section 1.2. the development of a new conceptual data model
may necessitate the development of new data models at the two lower abstraction levels.
The development of supporting data models for our metric-based scientific data model at
the implementation and physical levels is discussed later. In particular. the development
and analysis of supporting physical data models. i.e.. hierarchical metric data structures.
form an important component of this thesis.

In the rest of this thesis. the general term “scientific data model™ is used in place

of “conceptual scientific data model” or “scientific data model at the conceptual level.”

1.4 Models of Inter-Instance Relationships

While there exist differences in terminology and implementation. existing scientific
data models are all based on the same conceptual model of inter-instance relationships
the geometric model. Depending on the complexity of the inter-instance relationships. three

primitives. geometry. topology. and indezable topology. can be used to support the geometric
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model at the implementation level (Chapter 2). Each of the existing scientific data models
incorporates some or all of the three implementation primitives. There also exists a group
of data structures to support each of these notions in a physical data model. Figure 1.3
illustrates a hierarchy of data models for inter-instance relationships. where cach data model
is represented by a rectangle. Instead of representing each of the existing scientific data
models. only the modeling primitives employed. represented by ellipses. are illustrated in
the implementation layer. In general. the more expressive and flexible the data model and
the modeling primitive. the wider the range of data that can be modeled. but the less

efficient the supporting data structures.

Conceptual Data Model Implementznon Data Models Phvsical Data Models
onceptual Data Models and Pnimitives tSupporting Data Structures)
Median
= . R Trunsformanion . . z
=2 Metric-Based Model Formulation of . plecki o_ _'_‘ ... Hierarchical Metric z
- (Pseudo-Quasimetric) Pseudo-Quasimetric - Data Structures -

~._ Multipolar Mapping

z Exnting Scrennfic Data Models ™ N -
::.: H Point Spatial ::
z : Geometry : Data Structures =
. H B Graph
Geometric Model Topology H Data Structures
. Indexable Multidimensional -
B : Topology Arrays =

Figure 1.3: Data Models and Primitives for Representing Inter-Instance Relationships

In this thesis. we propose the use of a special data function. the pseudo-quasimet-
ric. as a basic conceptual modeling primitive for representing inter-instance relationships
(Chapters 3 and 4). In terms of expressiveness. a pscudo-quasimetric is more powerful than
the geometric model and can be applied to a much wider range of scientific data. While
there are no data structures readily available to support pseudo-quasimetrics as a conceptual
model. there exists a group of hierarchical metric data structures. such as metric trees [65. 6-]
and vp-trees [67]. which can be utilized to support pseudo-metrics. a more restrictive notion
than pseudo-quasimetric. In Chapter 5. we propose an innovative approach. the multipolar

mapping. to use point spatial data structures for supporting pseudo-metrics. In addition.



we develop a simple and practical technique. median transformation. for utilizing existing
hierarchical metric data structures as well as multipolar mappings to support pseudo-qua-
simetrics.

[t should be noted that the term topology has dual interpretations in this thesis.
The first interpretation is based on the conventions used and understood by researchers and
practitioners in various fields of computer science. Based on this interpretation. a topology
is a description of connection patterns (Section 2.2). Formally. it can be represented as a
directed graph. For instance. we can talk about the topology of a computer network. or the
topology of a computational grid. The second interpretation of topology in this thesis is
based on its formal definition in general topology (Section 3.1). In this sense. we can talk
about things such as the usual topology of the real numbers. or neighborhood structure of a
topological space. Nonetheless. there exists a connection between the two interpretations
namely. both interpretations provide a way to describe the idea of “closeness.” “nearbyv.” or
“neighborhood.” In this thesis. the intended interpretation of the term topology is obvious

from its context.

1.5 Thesis Outline

Chapter 2 presents a survey of existing scientific data models and the primitives
cemployed for representing inter-instance relationships. namely. geometry. topology and in-
dexable topology. Four models are selected based on the criterion that each one can represent
inter-instance relationships explicitly based on one or more of these primitives. While none
of these models adequately addresses the problem of modeling inter-instance relationships.
the survey provides a framework for the proposed metric-based scientific data model.

In Chapter 3. we give a brief introduction to the mathematical foundation of the
metric-based model. Some basic terminology and notious from general topology and metric
theory are covered there. The main theme is the study of semantics for continuity in
different mathematical settings. In the subsequent chapters. the notion of continuity plays
an important role in both the metric-based model and the supporting data structures.

Chapter 1 describes our proposed metric-based data model. Several examples are
given to illustrate the basics. A systematic approach is developed to derive metrics from
non-metric attributes such as the ones in categorical data. Last but not the least. we present

a formal method for validating the derived model.
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Chapter 3 is devoted to the study of physical data models. i.e.. supporting data
structures. for the proposed metric-based data model. Two innovative approaches. mult:-
polar mapping and median transformation. are developed for this purpose. They enable the
applications of existing hierarchical metric data structures and point spatial data structures
as physical data models for the metric-based model.

In Chapter 6. we present a performance study on major parameters of the mul-
tipolar mappings. [n particular. we are interested in learning how these parameters affect
efficiency of prozimity queries in data sets of various characteristics. The results give us a
simple guideline to formulate an effective multipolar mapping for a wide range of data.

Chapter 7 provides concluding remarks and directions for future research.

¢
s
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Chapter 2

Scientific Data Models

2.1 Introduction

The need for modeling scientific data with complex inter-instance relationships
has long been recognized by the computational fluid dynamics and scientific visualization
communities. Notable work includes the computational grid model [40. 60] and its various
extensions. the AVS model of Gelberg et al. [23]. the fiber bundle model of Haber. Lucas
and Collins [28]. and the lattice model of Bergeron and Grinstein [2. 35]. From the per-
spective of modeling inter-instance relationships. they all share the same geometric model
at the conceptual level. While there exist differences in terminology and methodology. the
objective for all the existing scientific data models at the implementation level is to derive
a compact representation of “structured data™ or “data with regular patterns™ based on
some adjacency relations in the logical space on which a mapping to the physical space is
defined. For instance. in a 2-D logical space. four-neighbor adjacency and eight-neighbor
adjacency are two common adjacency relations. These models are not capable of efficient
representation of highly complex inter-instance relationships where closed form adjacency
relation specifications are not available.

Advances in spatial data models [54] present a different approach for modeling
inter-instance relationships. [n a spatial data model. the inter-instance relationships are
represented as a set of coordinates in a vector space. Spatial data models are extremely
useful as the foundation for spatial data structures such as the quadtree or R-tree [52. 53].
which have numerous applications [51]. However. for non-spatial data. there might not exist

a natural mapping from data point records to some vector space such that the inter-instance
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relationships are represented by coordinates in that vector space.

[t should be noted that there also exists a group of scientific data exchange stan-
dards which do not fall into the three layer data model taxonomy. Nonetheless. in a subtle
way. their formats do represent implicit conceptual views of the data. The most popular
two such data exchange standards are CDF (Common Data Format) developed at NASA
[49. 26. 45] and HDF (Hierarchical Data Format) developed at NCSA [46]. The conceptual
models implicitly defined by both CDF and HDF are encompassed by the general compu-
tational grid model (Section 2.4). Data exchange standards such as these are specifications
of file formats which can be considered as scientific data models for file systems.

This chapter summarizes the four scientific data models which represent inter-
instance relationships explicitly: computational grid model. AVS model. fiber bundle mode.
and lattice model. Before we get into details of the four respective data models (Sectious 2.4,
2.5. 2.6. and 2.7). it is useful to study the general concepts of data organization (Section 2.2)

and common operations performed on scientific data (Section 2.3).

2.2 Implementation Primitives and Physical Data Models

A scientific data set is a finite set of data points. Each data point corresponds
to observations made at a point or small area in the physical space at a specific time or
period. A physical space can be a volume of atmosphere. a magnetic energy field. a specific
biological population. or a computer simulation of such physical entities. Each data point is
represented by a record of attributes reflecting observations made at that point. Since the
physical space is where the data sampling takes place. it is also called the sampling space.!
Since we are only interested in scientific data. the term data set is used instead of scientific
data set in the thesis.

At the conceptual level. existing scientific data models are all based on the geo-
metric view of the physical space - the geometric model. For a given data sct. while there
is exactly one physical space. there can be many different geometric views of the same data
set. The possibility of multiple geometric views enables us to explore implicit interrela-
tionships in data. both inter-entity and inter-instance. without the limitation imposed or
suggested by the process used for sampling data in the physical space. Among the existing

scientific data models. the lattice model. in particular. is specially designed to facilitate

‘The physical space is also known in the literature as the physical domawn or the physical obyect [40].
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multiple geometric views (Section 2.7).

While the existing scientific data models differ in terminology and objectives. they
are all based on one or more of the three implementation primitives identified in this see-
tion for representing the inter-instance relationships at the implementation level. These
primitives are geometry. topology. and indezable topology. In terms of the complexity of the
inter-instance relationships they are capable of expressing, the three notions form a hierar-
chy with geometry being the most powerful and indexable topology being the least. This
kind of expressive power comes at the price of efficiency. however. The notions of gcometry.
topology. and indexable topology provide a framework for studying the four scientific data
models presented in this chapter and our proposed metric-based model. One important
objective is to derive suitable physical data models. i.e.. data structures. for cach of these
primitives. While there is a group of data structures for each of these primitives. a scientific
data model might need to be supported by more than one kind of data structure at the
physical level. Figure 1.3 illustrates the relationships among all the data models. primitives.

and supporting data structures discussed in this section.

2.2.1 Geometries

The term geometry has many different meanings. Given a data set. we define
geomelry as an implementation primitive for its inter-instance relationships. i.c.. the in-
terrelationships among its data points. based on a direct interpretation of the conceptual

geometric model. Specifically. a geometry consists of two components:
l. a mapping from data records to coordinates in the geometric space.
2. a distance function in the geometric space.

Essentially. geometry describes the interrelationships among data points based on their
locations in the geometric space. Geometric information is encoded in the form of attributes
of data points. metadata of the data set. and the geometric view supplied by the user.
Attributes selected for representing geometric coordinates are called geometric attributes.
A data set can have many different geometrics. Different sets of attributes might be used as
geometric attributes. resulting in different geometric spaces. and thus. different geometries,
For the same geometric space. different choices of distance functions also induce different

geometries.
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Note that for many data sets. there might not be a meaningful geometric repre-
sentation for its inter-instance relationships. While there is always a natural geometric view
for a spatial data set. the physical space for a non-spatial data set might not be a coordinate
space - for instance. it might be a metric space or a binary relation. A geometric view and
a geometric representation. i.e.. a geometry. might not be readily available in such cases.

The most obvious way to store a data set based on its geometry is to utilize some
point spatial data structure [54. 53] encoding that geometry. Point spatial data structures.
however. are generally not as efficient as multidimensional arrays where cach data record
can be accessed by its numerical index. For many data sets with a “simple” or “regular”
geometry. it is often possible to derive a better data structure for its access and storage.

The reduction in complexity results in the notions of topology and indezable topology.

2.2.2 Topologies

A topology? is a directed graph defined on a set of data points based on a chosen
geometry. Theoretically. a topology is equivalent to a distance function which takes only
two values. 0 and 1. There exists an arc. i.e.. directed edge. from p to ¢ in a topology if
and only if the distance from p to ¢ is 0. The mapping from data records to geometric
coordinates in the geometric space. i.c.. the first component of a geometry. is not part of a

topology. A topology is usually derived to achieve one of the following two objectives:
1. the geometry can be traversed or explored more efficiently through the topology [60].
2. specific computational procedures can be applied to the data more efficiently [H0].

Depending on the requirements of an application. more than one topology can
be derived from the geometry. Nevertheless. the existence of an arc from a point p to a
point ¢ usually implies that g is relatively close to p (it does not necessarily imply that p
is close to ¢). Under most circumnstances. the distance function specified by a geometry is
symmetric (Section 3.2) and so is the simplified two-value distance for the topology derived
from it. Thus. undirected graphs suffice to describe most topologies. For the rest of the
thesis. unless specified otherwise. we assume undirected graphs for topologies.

In general. a useful topology for a data set is a trade-off between the following two

factors:

*Refer to Chapter 3 for the second interpretation of the term topology.
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Figure 2.1: Two Different Topologies Derived from the Same Geometry

—

. The topology closely reflects the geometry.

[ V]

. The topology consists of mostly simple and repetitive patterns such that data access

and/or computation are facilitated.

Figure 2.1(a) illustrates the geometry of a data set. assuming Euclidean distance. For
the convenience of computation and access. we might derive a topology as depicted in
Figure 2.1(b). As can be scen. the edges roughly indicate closeness between points in the
geometry. with a few exceptions. Figure 2.1(c) depicts another topology introduced by
setting a distance threshold such that two points are connected by an edge if and only if
their distance is lower than the threshold. Although this topology represents the geometry
in a more precise way - the existence of an edge represents a certain degree of closeness. as
specified by the threshold - it does not consist of regular patterns to facilitate computation
or storage access. Thus. it might not be as useful as the first topology.

The derivation of a topology which closely reflects the geometry is usually achieved
through a series of refincments. The initial topology is often constructed from some variant
of the basic notion of nearest neighbor. For instance. we can construct an initial topology
by connecting each point to its nearest neighbor. or the nearest k& neighbors. The approach
for deriving Figure 2.1(c) is also based on a variant of the nearest neighbor notion.

For a data set where the inter-instance relationships can be adequately modeled
by a topology. it is often better to derive a data structure using such a topology than to
utilize a point spatial data structure based on its geometry. Each edge in the topology can
be implemented as a bi-directional pointer from one data point to another. We can also
label each point with a unique index and store the adjacency matriz. Either way. access to

data points still often requires some sequential traversal of part of the topology. and random
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access might be very expensive. If the topology of a data set is highly regular. it is possible
to model its geometry with a special class of topologies. inderable topologies. that enable

especially efficient access.

2.2.3 Indexable Topologies

Data are stored and retrieved by computers based on indexes. Mathematically. the
process of indexing corresponds to mapping each unit of data to elements in an index set.
An index set does not have to be equipped with any structure on its elements. However. in
practice. we do want some mathematical structure on an index set. so data can be organized
in a more meaningful way and be efficiently manipulated.

In many scientific and engineering applications. it is a common practice to map
data points in a physical space. to a simpler logical space to simplify data analysis and
computation. For instance. a manifold in a three-dimensional physical space can be mapped
to a rectangular area of a two-dimensional logical space. In this section. we study mappings
from the geometric space - recall that multiple geometric spaces can be associated with one
physical space - to discrete logical spaces in which each coordinate can only take integer
values. Such logical spaces are known in mathematics as vector spaces over the integer field.
For convenience. we call such logical spaces inder spaces.

The objective is to find a mapping such that the data points are uniformly dis-
tributed and properly aligned with each axis in an index space. Thus. the coordinates of
the index space can serve as indexes for points in the data set such that a multidimensional
array can be used for its storage. Specifically. we are looking for a mapping possessing the

following three qualities:

1. The mapping should be an injection. i.e.. one-to-one. Thus. every point in the geo-

metric space is mapped to a unique point in the index space.?

2. A mapping should be continuous. so that data points close in the geometric space

stay close in the index space.?

3In reality. this criterion can be relaxed to a certain extent. A limited number of data points in the
geometric space can be mapped into a single indexing point in the index space. Examples are hashing or
the bucket varieties of many data structures.

*However, the reverse might not be true. Points closc in the index space are not necessarily close in the
geometric space.
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3. The logical coordinates of all the data points should be uniformly distributed in a
“rectangular” area (not necessarily two-dimensional) in the index space. However.
there might exist a relatively small number of points in this area which are not mapped
into. corresponding to unassigned indexes. This quality enables us to specify a range

of valid index access for each dimension of the index space.

We call mappings having all three qualities indec mappings. Note that in the sec-
ond criterion. continuity is defined in the context of some meaningful neighborhood structures
on both the geometric and index spaces (see Chapter 3 for the definitions and semantics
of continuity and neighborhood structure). Under most circumstances. these neighborhood
structures are induced by some distance measure.

Figure 2.2 illustrates an index mapping. As can be seen. the coordinates on the

index space correspond to the indexes of a two dimensional array.
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Figure 2.2: Geometric Space and Index Space

For a data set X with a topology consisting of regular patterns. points in the
data set can be indexed by a set of coordinates in the index space such that a closed form
connection rule. C : X — P(X). can be defined to describe the adjacency relations. i.c..
arcs or edges. in the topology.® Unless otherwise specified. the connection rule among
coordinates is based on the four-neighbor adjacency relation of 2-D grids and its analogue
in higher dimensions. For example. a 3-D grid point (i. j. &) is connected to six neighboring
points: (i —1.j. k), (1 + L.5.k), (i.5 — L. k). (.7 + L.k). (i.7.k = 1), and (i. 5.k + 1). Not all
of the neighboring points have to exist. This is the implicit connection rule for the topology
of Figure 2.2. A topology having this kind of connection rule is known as the structured
grid in the commputational grid model (Section 2.4). Connection rules other than the default

one. such as the eight-neighbor adjacency relation. can also be specitied.

*P(.X) represents the power set of X.
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Given a data set. the union of an index mapping and a connection rule uniquely
specifies a topology - an indezable topology. Not every topology can have such a compact
representation as an indexable topology. however. The directed graph implied by the index
mapping and connection rule of an indexable topology need not be the same as the one
described by the topology from which the indexable topology is derived. Nevertheless. from
the graph perspective. an indexable topology is usually a subgraph of the topology used for
its derivation.

Topologies other than the orthogonal grid illustrated in Figure 2.2 can also be
indexed. I[n Figure 2.3(a). we give an example of a topology which is not an orthogonal
grid. The connections are also illustrated on the 2-D index space in Figure 2.3(b). For this

example. the connection rule is defined as follows.

}
i
!

(G=1j)(+1j).(i+Lj+1)} ifimodd=0.
{i=1lg=1).(i =1 j). e+ 1Ly} ifimodd=1
{G-L).G+Ly—-1.+1y)} ifimod4=2.
{t=1.j).(i—=1.j+1).(¢+1.5)} ifimod4=23.

C((z.7)) =

(a) (b)

Figure 2.3: Non-Default Connections

S Sk ik 7 A

2.2.4 Structured Data

There are data sets whose data points exhibit a repetitive pattern only along a
proper subset of all the dimensions. An index mapping on this kind of data set might

introduce dimensions in index space in which there are no connections between coordinates
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along that direction. Indexable topologies can still be useful in such cases where repetitive
patterns in topologies are “sparse.”

Figure 2.4(a) illustrates a data set counsisting of 21 data points. Although the
data points appear to be distributed randomly on the X-Y plane. they do exhibit regular
patterns along the Z axis. Since there is no meaningful index mapping which can map points
on the same X-Y plane to a two-dimensional index plane. we have to map those points
to a sequence of one-dimensional indexes. For instance. we can start with an arbitrary
point. assigning it an index 1. and proceed to its nearest neighbor. assigning it an index 2.
and so on (Figure 2.4(b)). Through this indexing, the data set can be mapped to a two
dimensional index space with axes o and /3 corresponding to indexes on the X-Y plane and
along the Z axis respectively (Figure 2.5(a)). The indexes on a may not reflect the closeness
relationship among points. For instance. the point with a = 7 is actually closer to the point
with @ = 1 than the one with @ = 5 of the same X-Y plane in the geometric space. It
should be noted that all the points are still uniformly distributed and properly aligned with

each axis in the index space.
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Figure 2.4: Data Sct with Pattern along One Dimension Only

Figure 2.5(b) illustrates an indexable topology of the data set based on the follow-

ing connection rule:
C(E.4) ={G - L.j).(i + L.j)}

While random access to individual data points on the X-Y plane (i.e.. along the o axis of
the index space) is not possible based on this indexable topology. random access along the
Z axis (i.c.. the 3 axis of the index space) can be easily achieved. Retrieval of all points on

the same slice is also possible.
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Figure 2.5: Index Space for the Data Set in Figure 2.4

A data set is structured if a subset of its topology can be represented by a closed
form connection rule. Otherwise. it is unstructured. In other words. the data set is consid-
ered structured if an indexable topology can be defined on it. Note. however. that if a good
portion of important edges in the topology are not represented in the indexable topology.
the indexable topology may not be useful. If no useful indexable topologies can ever be
derived from any meaningful topology on the geometry. we can consider that data set to be
unstructured with the respect to the given geometry.

Intuitively. a data set is considered structured. if its geometry can be described
by a topology consisting of regular patterns. This translates to the existence of a "natural”
indexing scheme for its points based on the topology such that a multidimensional array
can be efficiently used for its storage. Continuity of the index mapping assures that such
an indexing scheme is natural: that is. points close in the geometric space stay close in the
index space. For structured data. there might be more than one useful index mapping and
thus. more than one natural indexing scheme.

The actual data structures to be employed for data storage and access are deter-
mined by the topology of the data set. For a structured data set. where there is a useful
indexable topology. an array structure can be incorporated as part of the data structure
for the data set. Suppose the indexable topology described in Figure 2.5(b) is ouly part of
the topology. where there are connections along the o axis. unspecified in the figure. Lot
G denote an unspecified data structure which can be used to store data points on the same
X-Y plane according to the topology.® The data set can be stored as a one dimensional

array of three elements where each element is an instance of G. Thus. random access of a

®Many approaches have been proposed for efficient graph representations.
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slice of data along the J axis is made possible. A useful indexable topology enables us to
have at least some degree of random access in a structured data set.

[n practice. given a structured data set. its dimension usually refers to the dimen-
sion of its index space or the subset of the index space that allows random access. The
dimension of an unstructured data set is considered to be zero. Since there might be more
than one useful index mapping for a particular data set. the common notion for dimension-
ality of a data set is not well-defined. This problem is addressed in the lattice model [2. 35]
(Section 2.7).

The real advantage of the indexable topology lies in the ability to utilize multidi-
mensional arrays for data storage and access. While there are many efficient data structures
around. the multidimensional array remains the most popular since it closely resembles the
way data is actually stored by a computer and its cells can be efficiently accessed based on

simple calculations on their indexes.

2.3 Basic Operations

Since the ultimate objective of a scientific data model is to facilitate scientific data
analysis in a scientific database environment. it is important to identify the basic operations
on data involved in the process of scientific data analysis. Ideally. a scientific data model
should enable effective and efficient implementation of these operations. In this section. we

focus on several generic types of operations on scientific data.

2.3.1 Subset Operations

Subset operations correspond to SELECT and PROJECT operations in relational
algebra. It can be argued that subsct is the most important operation that can be performed
on scientific data. There are many different types of subset operations. depending ou how
the selection criteria are formulated. Nonetheless. they can be classified into three major
categories: topological subset. geometric subset. and value subset. The topological subset
operations perform the selection based on the topology of the data set. Geometric subset
operations perform the sclection based on the geometric coordinates of data points. Value
subset operations depend upon the data values at each point.

Similar to the relational PROJECT. a topological subset operation has the potential

to reduce the dimensionality of a data set. For structured data. it is usually relatively
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straightforward to implement and often involves simple manipulation on the array indexes.
For data with irregular or complex topology. topological subset operations correspond to
partial traversals of a graph. The result of a topological subset operation is usually a
connected subgraph of the topology of the data set. The general procedure for performing

topological subset operations on complex topologies consists of the following two steps:

1. Locate the seed: A seed is the first identified point belonging to the target subset.
[t is usually discovered by calculation on the indexes of the topology. If such index
calculations are not possible. as with unstructured data sets. a seed has to be located
by an index search starting from an arbitrary point of the topology. Since only one

seed is required. depth-first search (DFS) is preferred over breadth-first search (BFS).

2. Determine the subset: The target subset can be found by either a DFS or BFS starting

from the seed.

The geometric subset operation is usually the computationally most intensive un-
less the gecometry is closely mirrored in the topology. It involves the processing of geometric
attributes at each data point. The general procedure for geometric subset operations is
similar to the one for topological subset. The searches performed in each of the two steps
arc now guided by values of gecometric attributes. One popular geometric subset operation
is known as geometric slicing. which is used for visualizing high dimensional data sets.

An important geometric subset operation is prozimity query which originates from
the spatial data models. Due to recent advances in utilizing database systems for access
and storage of multimedia (e.g.. images. audio. and video) and non-standard data (c.g..
finger prints and DNA sequences). the applications of prozimity query are no longer limited
to spatial data. Note that while the proximity query is considered as a geometric subscet
operation. it does not rely on mapping of records to the geometric space. but is based
exclusively on the distance function defined in the geometric space. Compared to normal
geometric operations. proximity query can be applied to a much wider range of data sets.
The complex inter-instance relationships in multimedia and non-standard data. or scientific

data in general. suggest:

I. There might not be a meaningful geometric representation of the inter-instance rela-

tionships and ordinary geometric operations can not be applied.
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2. Although there might exist a geometry. one or more axes of the geometric space 1s
unordered or nonmetric. As a result. most geometric notions. such as slicing. might

not be well defined in the geometric space.

3. While there might be a geometry and most geometric operations are applicable. there
is usually no obvious reduction to a topology which can properly model the geometry.
Thus. topological subset operations might not be available or useful to implement

geometric subset operations.

For the reasons just described. the applications of proximity query are proliferating [48. 39.
3]. In fact. the proximity query is an integral part of the proposed metric-based scientific
data model.

The value subset operation is equivalent to the relational SELECT operation. Al-
though it is conceptually casy. special considerations must be made for efficient implementa-
tion. Building indexes on attributes frequently involved in selection criteria is one conmon
technique. Applications of value subset operations include statistical analysis. outlier iden-
tification. etc.

The boundaries between the three kinds of subset operations are not always well-
defined. The categorization depends on the nature of the data set as well as the data
structure chosen for its storage and access. For instance. as is stated in Section 2.2.1.
different sets of attributes might be used as geometric attributes. rvesulting in different
geometries. Thus. a value subsct operation in one implementation can be a geometric
subset operation in another. It should also be noted that there exist procedures. such as
iso-surface location and boundary detection. which may involve all three kinds of subset

operations.

2.3.2 Analysis and Exploration

Analysis and exploration is one important activity to be supported by scientific
database systems. Techniques such as resampling. scaling. translation. and rotation arc often
applied to the raw data set such that subsequent data analysis routines can be successfully
performed.

Given a data set with its geometry specified. resampling is a procedure to derive
new data sets from the original one with different geometries. The derived sets may contain

more or fewer data points than the original one. Although they have different geometries. the
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new data sets produced by the resampling process share the same geomnetric interpretation
of the original data set. because the resampling is performed on the original geometry.
The topologies of the new data sets may be different from that of the original data set.
Resampling is usually applied to derive a new data set with the kind of geometry or topology
that may be required by specific data analysis procedures. Resampling can also be applied
to each one of a collection of data sets for normalization. Thus. operations such as merging
can be performed between data sets.

Various techniques can be used for resampling. Among them. interpolation is
the most common. Interpolation is based upon the assumption that the domain to be
interpolated is continuous in nature. Otherwise. there is no foundation to assume ~good”
behavior between data points. and the result of interpolation is meaningless. There are
various kinds of interpolation methods. Mathematically. interpolation is a function defined
for data points in the neighborhood of the point to be interpolated (sce Chapter 3 for the
definition of neighborhood). In addition. interpolation is a common technique used to fill
missing data values.

Operations like scaling. translation and rotation are also based on a specific ge-
ometry of the original data. The results can be viewed as new data sets with geometries
having the same geometric interpretation of the original one or just as new geometries of
the same data set.

Among all data analysis approaches. statistical analysis is the most commonly
used. Statistical operators arc often applied to subsets of the data. Although they typically
do not rely upon the geometry of the data set. they arc essential for exploratory data
analysis. in which the interrelationships among data values are to be found. In addition. they
can also give us information to measure the quality of the data set. Statistical operations
are often applied after a resampling or subset operation.

Other data analysis techniques include FFT [66]. wavelets [13. 17]. syntactic pai-
tern recognition [22] (useful in scene analysis). and various classification and clustering

techniques.

2.3.3 Miscellaneous Database Operations

All database retrievals are just subset operations. Other database operations in-

clude updates. indezing. and joins. Updates in scientific data models are similar to the ones
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in conventional data models. In addition to the normal indexing applied to data values.
indexes can be built on the topology to make data retrievals in scientific data models more
efficient. For structured data which can be stored in a multidimensional array. the array
indexes can serve as the indexes of the topology.

Join is a classic operation of the relational data model. It is used to correlate
one relation with another. Due to the differences between conventional data and scientific
data. the notion of a relational join operation has to be extended to merge two scientific
data sets. If two data sets share the same geometry (which directly implies that they
have the same geometric space) they can be easily joined. i.e.. merged. For data sets with
different geometries. meaningful joins can still be done by applying one of the three following

techniques:

1. Resampling: Resampling can be applied to either one or both of the two data sets in

order to convert them to the same geometry.

[V
.

Revised .Join Condition: Instead of joining two data points at exactly the same geo-
metric location. we can redefine the join condition such that two or more data points

can be joined if they are sufficiently close in the geometric space.

3. Outer Joins: Join operations only match data points satisfying the join condition.
Hence. data points of a data set without “related™ points in the other data set par-
ticipating in the join operation are climinated from the result. Instead of eliminating
all these “unrelated™ points in both data sets. outer joins keep all such points in one
or both of the data sets. There are three kinds of outer joins: left. right. and full
outer joins [16]. Left and right outer joins keep all ~unrelated” points of one specific
data set. while full outer joins keep all such points in both data sets. Full outer joins
can be performed on two data sets with very different geometries without losing data.
Outer joins are also useful when one of the two data sets to be joined is significantly

smaller than the other.

2.4 Computational Grid

Computational grid generation arose from the need to compute solutions to par-

tial differential equations of computational fluid dynamics (CFD) on physical spaces with
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complex geometry [40]. [t is also useful for CFD visualization and general scientific visu-
alization as well. A computational grid describes a mapping from the logical space to the
physical space. It depicts the interrelationship among data and is useful for interpolation.
slicing, and other data manipulation or visualization purposes.

Computational grids are user-imposed topologies on data sets to simplify compu-
tation and storage. This is exemplified by the original application for which computational
grids were developed. computational fluid dynamics. Various kinds of grids have since been
utilized by people in the CFD and visualization communities. The terminology is often
conflicting in the literature. We choose to base our discussion on the terminology and work

of Speray and Kennon [60].

2.4.1 Taxonomy of Computational Grids

Seven types of computational grids are identified by Speray and Kennon [60]. They
are presented in order of increasing generality and complexity. [u the list below. the names
of most of the grid types are followed by the mapping from the indexes of grid points to
corresponding coordinates in the physical space. Block structured and hybrid grids can not
be formulated as such simple mappings. however. For convenience. ouly the mapping of
3-D grids is presented. Mapping for grids of other dimensionality are similar. Let (i. ;. k)

represent the index for a grid point of a 3-D grid.

1. CARTESIAN (i.j. k)
A Cartesian grid is a typical 3-D matrix with no explicit physical coordinates. so

indexes map identically to physical space.

o

REGULAR (tdx. j dy.kdz)
Along each axis A. grid points are equally spaced at intervals of size dA. The intervals
on different axes do not have to be the same. Cells are identical rectangular prisms

(bricks) of size dr x dy x dz aligned with the axes.

3. RECTILINEAR (z(2).y(J). z(k))
Along each axis A. grid points might not be equally spaced and the physical co-
ordinates of axis A are determined by a mapping A(A). The function X is strictly
increasing. .e.. i} < iy € A1) < A(iy). Cells are still rectangular prisms aligned

with the axes. but of different sizes.
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Figure 2.6: Various 2-D Grids

. STRUCTURED ({x(i.j. k). y(i. 5. k). z(d. . k) )

A structured grid is logically a Cartesian grid which is subjected to non-linear trans-
formations so as to fill a volume or wrap around an object. This type. also known as

curvilinear. allows a non-boxy volume to be gridded.

. BLOCK STRUCTURED

A block structured grid is a composition of several different structured grids. Each
component. i.e.. block. of a block structured grid is a structured grid by itself and
has its own mapping function from the logical space to the physical space. Extra
information has to be provided as metadata to specify the connections among blocks
- in particular. the connections from the boundary points of onie block to the boundary

points of the adjacent blocks.

. UNSTRUCTURED (x(7). y(¢). z(i))

An unstructured grid is represented as a list of points. There is no implicit connectivity
and no implied topology. Connectivity must be supplied in some other form. Speray
and Kennon also assume that the connections of points in an unstructured grid form a
homogeneous collection of non-overlapping cells such as tetrahedra. hexahedra. prisms.
pyramids. etc. [60]. However. there need not be a uniform pattern for the connections

among cells.

. HYBRID

A hybrid grid is a composition of structured and unstructured grids. Similar to the
block structured grid. metadata should be supplied to specify the connections among

components.

Figure 2.6 shows 2-D grids for some of the above varieties.
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2.4.2 Computational Grid Summary

From the database perspective. the operations on structured grids are straightfor-
ward. since they are based on a common data structure - a multidimensional array. Value
subset operations can be easily achieved by a simple database SELECT operation. Topolog-
ical subset operations are also easy and efficient. only involving the manipulations of array
indexes.

Geometric subset operations can be achieved by a single value subset operation
based computation done on the values of geometric parameters. This requires visiting
every single grid point and deciding whether or not it is 2 member of the target subset. For
efficiency. geometric subsets can be computed by a sequence of topological and value subset

operations as follows:

1. Locate an arbitrary point or points of the target subset cither through some indexes
B [o)

or database SELECT operations.

2. Perform a topological subset operation to retrieve points topologically close to the

points located in the previous step.
3. Perform a value subset operation on the topological subset from the previous step.
4. Repeat Steps 2 and 3. as necessary.

Topological and geometric subset operations are significantly more expensive on
unstructured grids which usually do not allow cfficient indexing on topology. Theoretically.
such operations might require the traversal of all data points.

Computational grids can be considered as the reverse of index mappings. There
exist topologies which can not be modeled by any of the seven grids. Figure 2.7(a) illustrates
such a topology. In order to model the same data set as a grid. a different topology has
to be induced from the geometry. Figure 2.7(b) shows such a topology. which consists of a
homogeneous collection of non-overlapping triangles.

All structured and block structured grids are considered structured data based on
our definition (Section 2.2.3). However. unstructured grids exhibiting some regular patterns
can also be mapped to an index space with at least one dimension of usual distance by an
index mapping. One such topology is illustrated in Figure 2.7(c¢). In fact. even topologies

without grid representation can be structured (Figure 2.7(d)).
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Figure 2.7: Topologies Which Can Not Be Modeled by Computational Grids

The taxonomy of computational grids presented here is quite standard in the
computer graphics and visualization community with much of its popularity due to the
simple underlying data structure. the multidimensional array. normally used to implement
structured grids. The majority of current counceptual scientific data models incorporate some
notions of computational grids. either implicitly or explicitly. as part of their framework.

The lattice model (Section 2.7), in particular. is a notable extension of computational grids.

2.5 Application Visualization System (AVS)

Gelberg ct al. [23] present a set of data structures and corresponding algorithims
for visualizing scientific data in AVS (Application Visualization System). a general purpose
visualization environment [15]. We loosely call the set of conceptual data structures defined
in [23] as the AVS data model. AVS supports two major classes of data - structured
and unstructured. In order to distinguish the two classes of data from the structured and
unstructured data defined in Section 2.2.3. we call the ones described in [23] AVS structured

data and AVS unstructured data. respectively.

2.5.1 AVS Structured Data

AVS structured data has two components - a logical organization of data elements
into multidimensional arrays. and a physical mapping of each data clement into the geometry
under study. There are three types of AVS structured data: uniform. rectilinear. and
irreqular. While all three data types have an underlying logical structure based on a regular
array. they vary in terms of the representation of the physical mapping.

Uniform data is orthographic. with constant spacing between the nodes. [t has an
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Figure 2.8: Primitive Cell Types

implied physical mapping identical to its logical structure. This kind of data is equivalent
to the Cartesian grid as described in [60]. Rectilinear data is also orthographic. with non-
constant spacing between nodes. This kind of data is equivalent to the rectilinear grid as
described in [60]. Irregular data is non-orthographic. with variable spacing between nodes.
Each data element has an explicit coordinate specifying its location in the physical space.

[rregular data is equivalent to the structured grid in [60].

2.5.2 AVS Unstructured Data

While AVS structured data is essentially the same as the structured grid in the
computational grid model. AVS unstructured data is a true extension of the computational
grid model because it introduces the notion of cells. AVS unstructured data is a set of
connected points in 2D or 3D space. consisting of vertices. aggregates of vertices into edges.
aggregates of edges into faces. and aggregates of faces into polyhedra. or cells. Unlike AVS
structured data. AVS unstructured data is not based on arrays of data. but instead upon
groups of cells.

An AVS unstructured data set is a list of cells where cells can be one of the
following primitive types: triangles. rectangles. tetrahedra. pyramids. prisms. or hexahedra
(sce Figure 2.8). Unlike the unstructured grid of the computational grid model. AVS allows
the representation of data sets consisting of a heterogeneous collection of cells. This gives
AVS the power to represent many kinds of nongrid topologies as AVS unstructured data.

Although AVS simplifies the representation of a topology by modeling localized
patterns in the topology as cells. it does not provide a mechanism to facilitate the modeling
of connections among cells. All such connections have to be specified explicitly. Although
there might exist regular patterns in the connections among cells in an AVS unstructured
data set. AVS can not take advantage of them.

An AVS unstructured data set consisting of cells of the same type is equivalent
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to the unstructured grid in the computational grid model. AVS unstructured data sets
exhibiting regular patterns are considered structured in our definition. since there exist

logical transformations to index spaces with at least one dimension of usual distance.

2.5.3 AVS Summary

For structured data in the AVS model. the subset operations are the same as the
ones for structured grids in the computational grid model. Since AVS does not model the
interrelationship among cells. topological subsets are irrelevant on AVS unstructured data.
Since data points in a cell are close to each other in the physical space. a basic assumption
in the AVS model. geometric subset operations can be made more efficient by a two stage
process - selection of cells followed by selection of points.

; Gelberg et al. [23] provide a practical set of data structures for data visualization.
The AVS structured data types correspond to the structured grids described in [60]. [t is
the idea and implementation of the AVS unstructured data types that are of most interest.

Through the introduction of cells. the AVS model can support some data sets more efficiently

RRITOONPHay - 2 Pn

than the unstructured grids of the computational grid model by capturing local regularities

in cells.

2.6 Fiber Bundle

The fiber bundle model of Haber. Lucas. and Collins [28] is based on the mathe-
matics of fiber bundles. The emphasis is on the effective representation of field data  as
might arise in a variety of scientific applications. One distinct feature of the fiber bundle
model is that a systematic method can be easily formulated to estimate the data value of
an arbitrary point in the field through interpolation. which makes it especially useful in

visualization.

ol e o it

2.6.1 Fiber Bundle Model of Field Data

TR

A field is an object comprised of a base and dependent data. A base is a manifold’
whose coordinates are the independent variables for the field. The dependent data prescribes

a value of the dependent variable for every position on the base.

“A manifold is simply an abstract surface of arbitrary dimension. See Appendix A for a precise definition.

.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Mathematically. a base is a manifold Q C B: where B is a base-coordinated space.
Every position on € is associated with a base position vector. = € B. A manifold-coordinate
space. M. and a manifold domain (or manifold). w C M. are introduced to describe Q. A
position on the manifold is designated by a manifold position vector. £ € M. The relation
between © and w is established by an invertible. differentiable mapping ¢ : w — B such

that:

Figure 2.9 illustrates the mapping ¢. Note that the dimensions of the manifold-coordinate
space and the base-coordinate space need not be 2 and 3 as illustrated. although the
manifold-coordinate space does usually have a lower dimension than the base-coordinate
space.

The dependent data for a given field is designated by the variable y € Y. where
Y is the dependent variable space. Mathematically. dependent data can be viewed as a

5 continuous mapping V¥ : w — Y. such that

y="(). V¢€w.

Note that while ¢ has to be invertible and differentiable. ¥ only has to be continuous.
The dependent variable space can be almost anything as long as there is a neighborhood
structure on it such that continuity of ¥ can be interpreted (sce Section 3.3 for the definition
of neighborhood structure and its relation to continuity). In Figure 2.9. the mathematical
structure of Y is left unspecified intentionally.

A field space. S. is defined as Q@ x Y. A field. F. is obtained by assigning a specific
value of the dependent variable y € Y. to every position on the manifold. Thus. a ficld F

is a pair of mappings (¢P. V) that share the same manifold domain w. F can be defined as:
F = (w.b.0).

A field space is simply the union of all fields that share the same base Q and the same

dependent variable Y. [n the standard mathematical terminology. a field space is called a

fiber bundle and a field is a fiber bundle section.d

“In fact. to be precise. they are called a bundle and a bundle section respectively. See Appendix A for
their definitions.
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Sometimes. a data set is represented or modeled by more than one ficld. For
instance. a particular data set S can consist of two different observations made at each
of a finite set of points on a manifold in the base space. i.c.. the physical space. S can
be modeled by two fields sharing the same base-coordinate space and manifold-coordinate
space. F} = (w. ®.¥) and Fo = (w. P.Py).

The notion of field enables interpolation on a manifold such that the value of an ar-

bitrary point on the manifold can be estimated from a finite binary relation. ($(£). ¥(£)). £ €
w. With piecewise field representations and compact field representations. such interpolation

can be extended to complex objects in the physical space.

2.6.2 Piecewise Field Representations

Sometimes. the entire base domain Q might be too complicated to be deseribed
by a single mapping ¢ and a simple range of the manifold coordinates &. or the variation of
the dependent variable y might be too complicated to be conveniently described as a single
analytic function® U over w. In such cases. it is often useful to subdivide the base into a

number of segments so that simple. local descriptions of the manifold w and the mapping

® and V¥ suffice within cach segment. Each such segment and its corresponding & and P
define a field element. Figure 2.10 illustrates a base consisting of two segments. cach of

which is a part of two scparate field clements. Fy = (w,. ®,. W) and F), = (w,y. Py W0,). It

9 Analyvtic functions are functions which can be represented by power series. i.e.. functions of the form
fley =YX _yenle —a)?. See [30] for their mathematical properties.

"y
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is pussible that Y, = Y,. however.

M,

Figure 2.10: A Base Consists of Two Segments

A field element consists of a base representation. a dependent variable represen-
tation and a global topology description. These are specified in a standard format that is
unique to each element type. Each element type is defined by a unique combination of a
manifold space. a range of the manifold coordinates to define the manifold domain w. and
the parametric models for specifving the mapping ® and ¥. A field element description
includes a specification of the field element type and the data needed to define the global

topology and the complete parametric definitions of ¢ and P.

2.6.3 Compact Field Representations

A complex data object might need to be decomposed into a large set of field
elements. Fortunately. by decomposing the data object carefully. it is often possible to
decompose the object into collections of field elements of the same element type. Thus. a
compact representation can be derived to describe each such collection consisting of coherent
field elements.

For instance. the Cartesian product operation is a powerful tool for generating comn-
pact representations of higher-dimensional fields using lower-dimensional fields. A product
field is the Cartesian product of two lower-dimensional fields. Suppose we have defined
a pair of field spaces that share the same dependent-variable space. Sy = Q4 x Y and
Sp =Qp x Y. The product field space S =54 x Sp =0 xY. where Q = Q4 x Qp.

Let n. ny. and npg be the number of field elements of Q. 4. and Qg respectively.
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Clearly. n = ny x ng. The parameters associated with each of the n field elements in €2 can
be derived from the parameters of the n 4 + ng field elements in 2 4 and Qg systematically.

Figure 2.11(a) illustrates a field F with a complex base which can be represented
by the cross product of two simpler fields Fy and Fp described in Figure 2.11(b). While
Q, is still rather complicated. Qg is as simple as a one-dimensional base can get. €4 can

be further decomposed as the cross product of yet another two bases.

Rat . ]
e ! N
.
\i ™
Qa Qp
(a) (b)

Figure 2.11: Cross Product of Fields

2.6.4 Fiber Bundle Summary

The fiber bundle field data model provides a way to decompose a complex data
object into components which can be described by simple mappings. Given a collection of
data points and the topology among them. the fiber bundle model can be used to store the
data sct along with the topology. and interpolate data values at arbitrary points on the
geometry.

The ability to generate complex fields. i.e.. topologies. through the cross product of
simpler fields of lower dimensions enables us to take advantage of regular patterns oceurring
along specific dimensions of the topology. While the AVS model extends the computational
grid to modecl repetitive local patterns through cells. the fiber bundle model extends the

computational grid to model repetitive dimensional patterns through cross products.

2.7 Lattice

The lattice data model was first proposed by Bergeron and Grinstein [2] and was

extended by Kao. Bergeron. and Sparr {35]. The lattice model is based on the idea that
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data are mathematical functions defined on physical spaces. Similar to the computational
grid and the fiber bundle data model. the major goal of the lattice model is to capture the
adjacency interrelationships among sampled data points.

It should be noted that the term. lattice data model. is also used by Hibbard et al.
to describe a very different approach [30. 31] based on the idea that scientific data objects
are usually approximations to mathematical objects. and that data objects can be ordered
according to the precision of that approximation. [n the lattice data model of Bergeron and
Grinstein [2]. the order relation exists between points in the function domain of a single
data object. In the lattice model of Hibbard et al. [30. 31]. the order relation exists between

different data objects.

2.7.1 Multiple Views of a Data Set

A data set is a collection of data points which represent observations made at
various locations in a physical space (Section 2.2). Based on a physical space. the set of
attributes can be partitioned into two disjoint sets. geometric attributes and nongeometric
attributes. The set of geometric attributes spans the physical space. and the set of nongeo-
metric attributes spans a value space. The data can be viewed as a function from a physical
space (independent variables) to a value space (dependent variables) [34].

Given a data sct. the physical space where the data sampling actually takes place
is called the sampling space. There exist views for a data set other than the one based on
the sampling space. since we might want to study a data set based on geometric spaces
other than the sampling space. Theoretically. any subset of the attributes can be used as
geometric attributes to specify a geometric space. The lattice model provides a mechanisin
to incorporate multiple views. called lattices. with a given data set. [t also describes the

interrelationships among different views.

2.7.2 Definition of Lattice

A lattice is a function from an index space to a value space. Figure 2.12 illustrates
the relationships among index space. physical space. and value space.

In its simplest (and most common) form. the points of a lattice are related to
its "neighbors™ in a regular rectangular pattern. Such a lattice maps readily to a mul-

tidimensional rectangular array. and is called a rectangular lattice. Let L} represent an
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Figure 2.12: Lattice as a Function

n-dimensional rectangular lattice of points with £ data attributes. The lattice dimension
of L} is defined as n. the data dimension of L} is defined as k. and the norm of LY is
defined as n + k. The lattice dimension is actually the dimension of lattice topology. An
n-dimensional lattice means a lattice with a lattice dimension of n.. For instance. L} is just
a set. and LL is a linear list. Through different geometry mappings. we can have different
interpretations of the data being stored in one lattice. The dimension of the geometry need
not be the same as the dimension of lattice topology. For example. a 2D lattice can be
mapped to a surface in 3D.

There are some pre-assumned structures associated with every non-zero dimensional
rectangular lattice: i.e.. adjacent elements in the associated array of the lattice are assumed
to be related in some way. This pre-assumed structure is described by the indexes of the
associated array. By extending the adjacency among data tuples in the associated array.
we can often capture part of the interrelationships among data points in the sampling space
without storing or specifying them explicitly. In other words. not all of the location param-
eters have to be stored in order to store the geometry. The extended adjacency is called the
connectivity of a lattice and it can be specified by a set of connectivity methods defined on
the indexes of the associated array. The geometry of the lattice can be reconstructed from
array indexes. connectivity methods. and location parameters.

Lg_ has a O-dimensional associated array. which has no indexes at all. No connec-
tivity methods can be defined on it. The geometry of the lattice has to be inferred from
the location parameters exclusively. [t is casy to sec that one data set might have more
than one lattice representation. The transformation from one lattice representation of a
data set to another is said to be lossless if the transformation is invertible. A non-lossless
transformation is a lossy transformation.

Every data set has a trivial O-dimensional lattice representation. Starting from

the 0-dimensional lattice. we can usually transform it to some higher order lattice of the
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same norm without loss of information by specifying a set of connectivity methods. Some
repository data sets with inherent structures have trivial mappings to non-zero dimensional

lattices.

2.7.3 Lattice Summary

The lattice model framework is flexible enough to accommodate a large collection
of scientific data sets and a wide range of data representations. In particular. rectangular
lattices map directly to multidimensional arrays. However. more work is needed to extend its
utility to non-rectangular lattices. The precise notions of geometry. topology. and indexable
topology presented in Section 2.2 are inspired by previous work on the lattice model [2. 35

and can be easily incorporated.

2.8 Summary

As we can see from the models described in the previous sections. there are con-
sistent and well constructed models for highly structured scientific data but there is no
clear way to have a compact representation of the interrelationship among data clements
in a complex data set. Ideally. such a representation (or model) should have the following

properties:

1. Flexible: It should be able to accommodate various kinds of structured and unstruc-

tured data sets.
2. Comprehensive: It should also model metadata. such as the representation of error.
3. Efficient: The model should be efficient in terms of data storage and retrieval.

4. Effective: There should be a systematic and effective method to map the conceptual

data model into a database implementation level schema.

Above all. it should be noted that a data model is just a vehicle to support ex-
ploratory data analysis and visualization. It is important to understand the needs of data
analysis/visualization procedures. and thus a data model can be developed to facilitate

them.
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Chapter 3

Mathematical Preliminaries

3.1 Introduction

[n order to formally describe the proposed metric-based scientific data maodel
(Chapter 1) and the theoretical aspect of multipolar mapping (Chapter 5). we need to
introduce several basic mathematical notions from the fields of metric theory and general
topology.

Sections 3.2. 3.3. and 3.4 present a natural progression from distance to neighbor-
hood to topology. allowing for the introduction of various metric spaces. neighborhood spaces.
and topological spaces: and the study of continuity in these settings. The proofs of many

claims made in this chapter are omitted. but most are casily derived or found in [5. 58].

3.2 Distance Function and Metric Axioms

Definition 3.2.1 (Distance Function) A distance function (or distance} d on a non-
empty set X is a function such that d : X x X — R™ U {0}. The notation d(p.q) is read

as the distance from p to q.

Given a nonempty sct X. any function d : X x X — [0.) imposes a notion of
“abstract” distance on the points of X. We use the word ~abstract™ because it may not be
immediately clear that an arbitrary nonnegative real-valued function on X x X satisfying
no particular axioms necessarily describes what can be regarded on an intuitive level as a
~distance.” For example. it may not appear reasonable to allow d(p.p) > 0 for some point

p € X. In fact. there are several metric arioms which many mathematicians and scientists
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would expect a function d : X x X — [0.x) to satisfy if d is to describe a “reasonable”
notion of distance among points of X. [n Table 3.1. the four most common metric axioms

are listed.

Let d be a distance function on X and Vp.q.r € X:

ML. d(p.p) = E
M2. d(p.q) < d(p.7) +d(r.q) M2'. d(p.q) < max{d(p.r).d(r.q)} |
M3. d(p.q) = d(q.p) |
Mi. d(p.q) =d(q.p) =0=>p=gq MY. d(p.q) =0 =>p=gq

Table 3.1: Basic Metric Axioins

Axioms M2’ and M4 are the “strong” versions of axioms M2 and M- respectively.
Note that axiom M1 requires that the distance from a point to itself be 0. a quality known
as reflecivity. Axiom M2 effectively tells us that when we wish to “move™ from one point
p to another point ¢. there is no advantage (from the point of view of minimizing distance)
in “visiting” some other point of X along the way. This is commonly known as the trian-
gle inequality. From a different perspective. it also guarantees that d(p.q) represents the

minimum effort to “move” from p to ¢. Axiom M3 is known as symmetry. If there exists

a subset of X in which the distance between each pair of points is 0. axiom M4 identifies
the subset with a single representative point. a quality that is sometimes called identity of

indiscernibles [58].

Definition 3.2.2 (Pseudo-Quasimetric) Let d be a distance function on X. d is a pscu-

do-quasimetric and (X.d) is a pseudo-quasimetric space if axiomns N1 and M2 are satisfied.

Definition 3.2.3 (Pseudo-Metric) Let d be a distance function on X. d is a pseudo-

metric and (X.d) is a pseudo-metric space if azioms M1. M2, and M3 are satisfied.

Bl 7 g

Definition 3.2.4 (Metric) Let d be a distance function on X. d is a metric and (X.d)

is ¢ metric space if arioms M1, M2. M3. and M4 are satisfied.

Example 3.2.5 Let R denote the set of real numbers and Z~ the set {1.2.3....} of positive

s
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integers. For each n € Z~. define d,, : R* x R" = [0.x) by

'H.
dn((£1-- - La). (y1e- - .uu))=\‘Z<zl—.u.)‘-’.
=1

Note that d| describes the usual distance between real numbers on the number line. d,
the usual distance between points in the Cartesian plane. and dy the usual distance between
points in three-dimensional Euclidean space. The distance function d,, is a metric. generally

known as the Euclidean distance for R". |

Although many distances employed in mathematical or scientific settings are met-
rics. the following examples point out that none of the axioms M1 - M- need be considered

essential if d : X x X — [0. 5¢) is to describe some notion of distance.

Example 3.2.6 Suppose A and B are cities connected by one-way rail lines. The rail line
from A to B is five miles long. but the rail line from B to A is only four miles long. Let

X ={4.B} and defined : X x X — [0.x) by
d(A. A) =d(B.B) =0. d(A.B)=5. d(B.4) =41

Observe that although d describes the rail distances between cities. it does not satisfy wriom

M3. |

Example 3.2.7 Let ¢ > 0 and suppose that a real number £ may he used as an approrsi-
mation for a real number y provided that the Fuclidean distance from r to y is less than
c. We can view € as the smallest unit measurable by a particular measuring device. Then

=

d. :Rx R — [0.x) defined by

0. ifle—-yl<e:
de(5.y) = o=
L. otherwise.
models this situation in the sense that it identifies those real numbers “close enough” to a

given real number x to he constdered approrimations for . Note that d. violates M2 and

M. i

Example 3.2.8 Let Q be the set of rational numbers in [0.1] and P = [0.1] — Q. Given

£ € [0.1]. recall that r has a unique decimal representation which does not terminate.
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For each £ € [0.1] and each positive integer k. let £(k) be the k-th decimal digit in thes
representation of r. Now define d : [0.1] x [0.1] = [0. x) by

ifr.ye P:

O -

Iz y) fry€eQ and r =y:
dlc.y) =
L otherwise. where n is the least of

all k € Z* such that (k) # y(k).

The motivation behind the definition of d stems from the attempt to approzimaete an ir-
rational in [0. 1] using rationals in [0.1]. Since it would be impractical to use irrationals
as epprocimations. we have constructed d so that irrationals become “far”™ from one an-
other (even from themselves). Thus. d does not satisfy M1. [t should also be noted that

d does not satisfy M2 (d(‘/f}:. -‘{,—E) = 1. since ¥2 is irrational. and. as %2 = 0.707106 ... .

) “’l :

‘

d(-‘é—i.OJI) = d(0.71. \/TZ) = 1‘ so that d(—"._,j. VTQ) > d(%’;.O.’t’I) +d(0.71. %2)). Of course. in

M

] a very concrete and useful way. d does describe a notion of “distance” on the points of {0). 1]

o 2ans

(points of [0.1] which are “close™ to an irrational p € [0.1]. as measured by d. are exactly

those rationals in [0. 1] which “agree™ with p in the first several decimal places). [ |

Quite often. the mathematical structure imposed (naturally or otherwise) on a set

can be represented in the form of a binary relation on that set.

Example 3.2.9 For eech n € Z7. the set {1.... .n} is called an initial segment of Z~.
Define

By = {0y u{clz: A - {0.1} for some initial segment A of Z7}.

B, = {z|x:Z~ — {0.1}}.
By and B; are isomorphic to the sets of finite and infinite bit strings. respectively. Thus.
3 B = By U B; is the set of all bit strings. Given r.y € B. we say that £ is a prefix of y.

3 denoted x C y. provided that the domain of z is a subset of the domain of y and for cach k

in the domain of r. x(k) = y(k). Now define d- : B x B — [0.x) by

0. ifc Cy:
de(z.y) =
- 1. otherwise.

Then. given r.y € B. r s a prefir of y if and only if d-(x.y) = 0. Thus. dz is a represen-

tation of the prefiz order T imposed on B. |

3
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Observe that C introduced in Example 3.2.9 is a binary relation on the set of all

bit strings. The situation described in that example can be generalized as follows. Given a

binary relation R on a nonempty set X. define dp : X x X — {0. x) so that

0. if(r.y) €R:
dr(c.y) = i
l. otherwise.

Then dpr encapsulates the information included in the binary relation R in the sense that
(r.y) € R ifand only if dp(z.y) = 0.

From the examples considered. we have shown that while basic metric axioms arc
satisfied by many common distance functions. there exist useful mathematical structures
which are better represented by distance functions satisfying none or only some of those
metric axioms. In the literature. the distance function defined in Definition 3.2.1 is some-
times referred as weak distance function (wdf) to emphasize the fact that it might not satisfy
any metric axioms [59)].

Based on Definition 3.2.1. a distance function d on a set X has to be defined for
all (p.q) € X x X. However. for many domains. such a “comprehensive” distance might

not be necessary or might not even exist.

Definition 3.2.10 (Partial Distance) Given a set X. a partial distance on X is a dis-

tance function d defined for all (p.q) € X4 x Xg. where X and Xg are nonempty subsets

of X.

There are also times when we are only interested in the distances originating from
14 g

one particular fixed point.

Definition 3.2.11 (Point Distance) Given a set X and a point p € X. a point distance

on p is a distance function defined on {p} x X.

Clearly. a point distance is a partial distance by definition. There are times when
we want to examine a distance or a partial distance d from a single point perspective. say

point p. The point distance induced from d on p is represented by d|,,.

3.3 Continuity and Neighborhoods

A function can possess many mathematical properties of which continuity is prob-

ably the most important one. The basic idea of continuity can be described in a single
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statement.

A function f : X — Y is continuous at p € X if and only if the images of points
in X that are “close™ to p are “close” to f(p) in Y.

The precise definition of closeness in the above statement depends on the mathe-
matical structure in context. Since X and Y might not have the same mathematical struc-
ture. the meaning of closeness in X and Y can be very different. The notion of distance
function provides an intuitive definition of closeness. Using distance functions. continuity

can be defined as follows.

Definition 3.3.1 (Continuity by Distances) Let X. Y be nonempty sets and dy . dy
be distance functions for X and Y. respectively. A function f : X — Y is continuous

at a point p € X provided that for each = > 0 there exists & > 0 such that Yo € X.
dy(p.c) < d = dy (f(p). flr)) <e.

Since we are always able to represent a binary relation using a distance function.
Definition 3.3.1 provides us with a natural notion of continuity for a function whose domain
and codomain have binary relations imposed on them. Continuity in such a setting can be

characterized in terms of the binary relations.

Proposition 3.3.2 (Continuity and Binary Relations) Let Ry. Ry be binary rela-
tions on the nonempty sets X and Y. respectively. For f : X = Y and p € X. the

following are equivalent:
1. f is conlinuous at p.
2. Ve € X.(p.x) € Rx = (f(p). f(x)) € Ry.

Based on distance functions. sphere is a mathematical notion for representing all

e

the points within a certain degree of closeness or prozimity to a fixed point (i.c.. the center

of the sphere).

Definition 3.3.3 (Sphere) Let d be a distance function on X. p € X. and v > 0. The

sphere centered at p of radius r is defined as

Salp.r) ={q€ X |d(p.q) <T}.
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The following notation is used to identify a sphere restricted to X'. a subset of X.
Salx(p.r) = Salp.r) N X',
The set of all spheres centered at p is then denoted Sy(p)-

Example 3.3.4 [fd, is the Euclidean distance for R. then. givenp € R and = > 0. Sy, (p. =)
is the open interval (p — c.p + €) consisting of all real numbers strictly between p — = and
P+

If dy is the Euclidean distance for R*. then. given p € R? and ¢ > 0. Sy, (p. )
conststs of all points in the Curtesian plane lying within the interior of the circle centered
at p of radius =.

If dy is the Euclidean distance for R, then. given p € R® and = > 0. Sy, (p.<) con-
sists of all points in three-dimensional space lying within the interior of the sphere (here we
are using the word sphere in the contect of three-dimensional Euclidean geometry) centered

at p of radius €. |
Example 3.3.5 Let R be a hinary relation on a nonempty set X and p € X. Then

{re X|(p.r)e R}. if=<1:

Sll ([) S) =
§ X. otherwise.

In particular. if B and C are defined as in Example 3.2.9. then given p € B.

{reBlpCz}. fe<l:
S{lr: (Pf) = .
- B. otherwise.
Thus. the “smallest™ d-sphere centered at a bit string p is the set of all bit strings having
p as a prefic. |
Example 3.3.6 A sphere need not contain its center. Let d be the distance function for

[0.1] introduced in Ezample 3.2.8 and note that 4 =3 S,l(-{—z. 1). |

Example 3.3.7 A sphere may be empty. Let X be a nonempty set and d : X x X — [0. <)
be defined by d(z.y) = 1.Vr.y € X. ThenVr € X.Sy(z.1) = 0. |

[ntuitively. a sphere centered at p represents a set of points which are considered
“near” p. where “near” is defined by a particular distance function. Thus. any set which

contains a sphere centered at p includes points which are “near™ p.
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Definition 3.3.8 (Neighborhood) Let d be a distance function for a nonempty set X.

A neighborhood of p € X is a superset of a sphere centered at p. The set of neighborhoods
of p is denoted Ny(p).

Clearly. any sphere centered at p is a neighborhood of p. We can characterize

continuity using either spheres or neighborhoods.

Proposition 3.3.9 (Continuity, Spheres and Neighborhoods) Let X. Y he nonempty
sets and dy- . dy- be distance functions for X and Y . respectively. For f : X = Y and p € X.

the following are equivalent:

1. f is continuous at p.

e

For each S € Sy, (f(p)) there erists S' € Sy, (p) such that f{S') C S.
v X

3. For each N € Ny, (f(p)) there exists N' € Ny, (p) such that f[N'] C N.
Y X

Note that the characterization of continuity given in Proposition 3.3.9 (3) is based
on the neighborhoods induced by distance functions but makes no explicit reference to
distances. It thus appears intuitively plausible to develop a notion of continuity for a
function from a set X to a set Y provided that appropriate notions of “neighborhood of a
point™ exist or can be imposed on X and Y. Within the context of a set X for which a

distance function d has been prescribed. given p € X. we observe that:

1. If N € Ny(p). then there exists ¢ > 0 such that Sy(p.z) C N. So. if N C M C X.
we can conclude that M € Ny(p). Hence. supersets of neighborhoods of a point are

neighborhoods of that point.

2. If Ni. Na € My(p). then there exist £1. 2 > 0 such that Sy(p.c;) C Ny and Sy(p.2) C
N,. So. if ¢ = min{e;.e2}. then Sy(p.€) C Ny N N, so that Ny N Ny € Ny(p). Hence.

the intersection of two neighborhoods of a point is a neighborhood of that point.

These observations motivate the following definition (due to Smyth [59]).

Definition 3.3.10 (Neighborhood Structure) Let X be a nonempty set. A neighbor-

hood structure on X is a map N : X = P(P(X)) (for any set Y. P(Y) denotes the power
set of Y ) which satisfies:
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[ Ve X. if NEN(z) and NC M C X. then M € N(x):
2. VL e X. lf .’V[.." 9 € .’V(;L') then .Vl N .'V_: (S .V(.L')

For each £ € X. N'(x) is the set of neighborhoods of r. The pair (X.N') is called a

neighborhood space.

Example 3.3.11 If d is a distance function on a nonempty set X. then Ny is a neighbor-

hood structure on X. |

Example 3.3.12 Given a neighborhood structure N on X. it is possible that .V # .\
for any distance function d for X. Let X = {f|f : [0.1] — R}. For each f € X. define
A(f) = {Ar:(f)|F C [0.1] is finite and € > 0}. where. for each finite F C [0.1] and cach
2> 0. Ap:(f) ={g € X| |f(x) —g(r)] < e.Vx € F}. Now define N : X = P(P(X)) by
N(f) ={N C X|A C N for some A € A(f)} and note that N is a neighborhood structure

on X.

Claim 1: For any U4 C N(f) for which ¥ € N(f) = 3U € U with U C V.
there exist U'}. Uy € U such that Uy € U, and U, € U,.

Proof: See [42].
Now consider any distance function d for X.
Claim 2: N # Ny.
Proof: Suppose to the contrary that N = Ny. Then. Vf € X.S4(f) T N(f) and if N €
N(f). there exists S € Sy(f) such that S C N. Thus. by Claim 1. 35,.Ss € S4(f) such

that S\ € S» and S; € Sy. This contradicts the trivial observation that given two spheres

centered at the same point. one is a subset of the other. |

Example 3.3.13 Lei X = {0.1.2} and define N(0) = {{0.1}. X}. N (1) = {{L[.2}. X}.
and N(2) = {{0.2}. X}. Then N is a neighborhood structure on X. [

Continuity is defined within the setting of neighborhood spaces as expected.

Definition 3.3.14 (Continuity by Neighborhood Structures) Let (X.\N'y). (Y.\Yy)
he neighborhood spaces. f: X =Y. and p € X. f is continuous at p provided that for cach

N e Ny (f(p)) there exists N' € N'x(p) such that f[N'] C N.
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3.4 Topologies and Distances

We have shown that the notions of neighborhood and continuity can be extended to
the general setting of neighborhood spaces. But it should be pointed out that neighborhood
spaces are not the usual mmathematical setting for the study of such ideas. The primary (and

much more commonly employed) alternative is that of topological spaces.

Definition 3.4.1 (Topological Neighborhood) Let d be a distance function for u non-
empty set X. p € X. and N C X. N is a topological neighborhood of p provided that there
erists A C N such that

. pe A:
2. Vo€ A.3e, >0 with Sy(c.z.) C A.

We denote by N7,(p) the set of topological neighborhoods of p.

Observe that a topological neighborhood of p is always a neighborhood of p. In
other words. given a distance function d for a nonempty set X. N7,(p) C Ny(p).Vp € X.

The converse may fail. however.

Example 3.4.2 Even if d is a distance function for X which satisfies M1. it is possible that
Nu(p) € Nr,(p) for some p € X. Let X and N be as in Ezample 3.3.13. Then N = \.

where d is the distance function for X defined by

L. if (z.y) € {(0.2).(1.0). (2. 1)}:

0. otherwise.

dc.y) =

Note that d satisfies M1 and {0.1} € Ny(0). But {0.1} &€ N7, (0). |

Definition 3.4.3 (Open) Let d be a distance function for a nonempty set X. A C X /s

open if it contains a topological neighborhood of each of its points.

Example 3.4.4 If d is a distance function for X satisfying M2. then any sphere is open.
It then follows that Ny(x) = N, (r).Vr € X. [

Let 7 denote the collection of all open subsets of a set X for which a distance

function has been defined. T satisfies:
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TiL. 0.XeT.
T2. I[fA,eT.Viel. then Ux-EI A, € T (i.e.. T is closed under arbitrary unions).

T3. IfA...... 4, € T forsome n € Z~. then (|, A; € T (i.e.. T is closed under finite

=1

nonempty intersections).

Proposition 3.4.5 Let d be a wdf for a nonempty set X and A C X. The following are

equivalent:
1. A is open.

2. ¥r € A.Je, > 0 such that Sy(x.c.) C A.

We denote by T, the collection of open subsets of a set X for which a distance

function « has been specified. Using Proposition 3.4.5. 74 can be represented as
Te = {A C X|Vp € A.Je > 0 such that Sy(p.<) C A} (3.1)

Definition 3.4.6 (Topology and Topological Space) Let .X' bhe a nonempty sct and
T C P(X). T is a topology on X if it satisfies Tl T3. The pair (X.T) is called a

topological space and the members of T are called open sets.

For every set X. there are two trivial topologies that can be introduced upon it:
{0. X}. the indiscrete topology (or the triviai topology). and P(X). the discrete topology.
where P(.X) represents the power set of X (i.e.. the collection of all subsets of X). The

discrete topology is the finest topology of X. while the indiscrete topology is the coarsest.
Example 3.4.7 Ifd is a distance function for a set X. then Ty is a topology on X. |

Ta is called the topology induced by d. Based on Proposition 3.4.5 and Equation 3.1.
there is a unique topological space corresponding to an arbitrary distance. However. for an
arbitrary topological space 7. there exist infinitely many distances d such that 7 = T.!
Topological spaces are. in fact. much more general mathematical structures than distance

spaces. Let us illustrate the idea with a simple example.

'Kopperman proves that all topologies on any given set can be obtained through the use of “suirable
generalized™ metrics [42].
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Example 3.4.8 Let (X.d;) and (X.d») be two distance spaces. X = {a.b.c} and the
values of d\ and d» are depicted in Figure 3.1 (assuming that both d| and dy are symmetric).
Although dy # dy. we have Ty, = Tq, = P(X). the discrete topology of X. In fact. for an
arbitrary finite distance space (X.d). Ty = P(X) if and only if d satisfies axiorn N4. |

(X.d. ) 5 (x,d-)

W

ac N ob ac ot

Figure 3.1: Two Distances on the Same Set

Every topology on a set induces a neighborhood structure on that set in the fol-

lowing way. Given a topology T on X. define N7 : X = P(P(X)) by
Nr(z) ={NC X|r€ A C N for some 4 € T}.

Thus. an open set is a neighborhood of each of its points. Note that if d is a distance
function for X. then {N C X|r € 4 C N for some A € Ty} is indeed the collection of
topological neighborhoods of z € X (so the notation N, () is not ambiguous). We will
say that a neighborhood structure AV on X is topological if there exists a topology 7 on .X

such that N = N7.

Example 3.4.9 Not all neighborhood structures are topological. Let X and N be as in
Ezample 3.3.13. If N = N7 for some topology T on X. then {0.1} € T and {1.2} € T so
that {1} € T. a contradiction. |

A notion of continuity can be introduced within a topological setting.

Definition 3.4.10 (Continuity by Topology) Let (X.Tx). (Y. Ty) be topological spaces.
f:X = Y.and p€ X. f is topologically continuous at p if for each N € N7,.(f(p)) there
ezists N' € N (p) such that f[N'|C N.

The reader interested in learning more about topology may consult [44. 5].
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3.5 Summary

The notions of neighborhood and continuity developed in the settings of neigh-
borhood spaces and topological spaces are natural extensions of those ideas as they are
commonly understood in the (weak) distance setting. They provide us with powerful tools
for representing and studying the inter-instance relationships of data. I[nterested readers

are referred to [10] for more information on this topic.
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Chapter 4

A Metric-Based Scientific Data
Model

4.1 Introduction

This chapter presents the framework of a metric-based scientific data model based
on data-as-functions and pseudo-quastmetrics. The data function formulation and the do-
main pseudo-quasimetric encapsulate the inter-entity and inter-instance relationships re-
spectively. In addition to the theoretical foundation. a detailed approach is outlined for
exploring and deriving metrics in a wide variety of data. In particular. we introduce the
notion of observable properties and show how it can be applied with idecas from point sect
topology to systematically derive metrics from nonmetric data components. The approach
presented can also serve as a useful paradigm for knowledge discovery from the metric per-
spective. Finally. we demonstrate the use of continuity as a mathematically precise tool to

validate metrics derived through the proposed approach.

4.2 Data as Functions

This section presents the idea of deta-as-function which is central to our metric-
based scientific data model. Formal definitions for data function. data set. and other essen-
tial terminology are given here. The relationship between a given data sct and the collection
of possible data functions which can be defined on it is also illustrated. A brief discussion is

made to compare our data-as-function formalism with the functional data model. The ob-
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jective is to establish the background for using data function formulation as a mathematical

model for inter-entity relationships in scientific data.

4.2.1 Data Sets and Functions

Data sampling is the process of recording observations made on an object which
might or might not actually exist in the physical world. An object can come from direct
measurement or computer simulation in a wide range of domains. such as a volume of the
atmosphere. a magnetic energy field. a piece of land. a mass of soil. a specific biological
population. or a progression of urban development for a city. Data sampling results in a set
of observations. called a data set. Although most of the objects under study are inherently
infinite. we must deal with finite data sets in order to complete the analysis in a finite
amount of time. Depending on the nature of the physical phenomena to be observed and
the sampling techniques cmployed. a data set is a finite approrimation of the object beharvior
at a specific timme or over a particular time period.

Mathematically. dafe can be considered as a function from a domain space to a
value space. The domain space is the mathematical representation of the object of interest.
[t is the set of points where the phenomena or behavior to be observed takes place. The
mathematical structure of a domain space (i.e.. the relationship among points in the domain
space) is known as domain geometry. Common domain geometries can have many different
forms such as orders and vector spaces.

Given a data set. there might be more than one meaningful function which can be
defined on it [36]. In fact. formulating such functions is one of the most important goals
for knowledge discovery. In this context. a scientist needs to experiment with different
data function formulations on a data set using various data analysis tools. This process
includes a “trial-and-error™ component driven both by intuition and by the feedback the
scientist receives from the analysis. In the past. most knowledge discovery has been done
by statistical analysis coupled with visualization. which proves to be only partially effective.
Statistical analysis focuses on the analysis of values of the value space for simple and well
understood domain spaces. It is often of very limited use for exploring domain geometries

of nonmetric or unordered domain spaces.
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4.2.2 Formulations of Data Functions

Mathematically. data is formulated as a function f : D — V. where D and V~
are the domain space and value space. respectively. Excluding metadate. a data set is
just a mathematical set. The elements of a data set are the recorded observations. called
observation points. data points. or simply points. A point can be represented as a tuple
(ay.aa.... .a,). where a;’s are the attribute values. as in the relational deta model.

Many data functions can be defined on a data set S: some are useful. others are
not. In general. a data function maps some subset of the attributes to another subset plus
zero or more new attributes. called derived attributes. Let 4. Ao.... .. 1, be the domains
of ay.as.... .a, respectively. Similarly. let zy.24.... .2, and Z,.2Z,.... . Z,, be derived

; attributes and their domains. A data function can be defined as
; BIETSIET IR (4.1)
t€lp €14 tely

where Ip. - C {1.2.... .n}.and [z = {1.2.... .m}. Given an arbitrary data set S. there

is a natural membership function fs defined as

et LN

fs: A x Ay x---x 4, — B.

where B = {T. F}. such that f¢(p) =T if p € S. fs(p) = F otherwise. Many other data
functions can be defined on a given data set. Let us illustrate this point with a simple

example from environmental study.

Example 4.2.1 Let S bhe a data set consisting of tuples of the form (r.y.z.t.p). where

L.y.z are the three-dimensional atmospheric coordinates over a particular metropolitan arca

located in a valley. t is the time index. and p is the pollutant density. The goal is to study
how nearby mountains affect the pollutant circulation. The usual data function on S to be
analyzed is fo(x.y.z.t) = p. However. from the same data set S. we might want to study

the behavior of several other functions such as

I fi(z.y.z)=p

7 is the average pollutant density over time.

2. falc.y.t) =p

p is the total amount of pollutants in the air column over a small area represented

3
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by a surface point (£.y) at time t. Let A denote a small time pertod. [f rain starts
falling at t. p would provide some useful information about the water quality during

the interval (t.t + A).

1 fa{t.p)=r
r is the percentage of air volume over the area which has pollutant density p or above
3 fatp)=r L

r is the percentage of air volume over the area which has pollutant density p or above
We have shown that a given data set can be associated with many different functions and

thus different domain spaces. Given a data set. finding or defining a meaningful data func-
tion is one of the most important goals for the knowledge discovery process. In Section -1.7.

the importance of this generalization becomes apparent.

we o ma

4.2.3 Functional Data Model

Our concept of “data as functions™ is a generalization of the idea of functional
data models (FDMs) [56. 4] in databases. The main modeling primitives of a functional data
model are “entities” and ~“functions.” A function takes an entity as the argument and returns

another entity. The key operation of functional data models is function composition which is

used to define derived functions and formulate queries in functional query languages. There
are several proposals for functional data models and functional query languages. among
which the DAPLEX model and language [53] is the best-known [27. 16].

Although our “data as functions™ notion is sitnilar to FDMs in concept. there are

subtle yet significant differences between them.

l. The functions in FDMs are not pure mathematical functions. FDMs functions not only
describe the sernantic structure of data but also dictate the way in which data is stored

and retrieved.

2. In an FDM database. the semantic structure of data has to be known (or assumed)

in advance. Even though multiple views (as entities/functions) can be defined later.

they have to be derived from the original set of entities/functions which are used for
data modeling and storage. The distinction between functions and data sets is not

clear in FDMs.
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3. In FDMs. there is no notion of attributes and all entities/functiouns derived from the
original set of entities/functions are necessarily composite. This makes the data anal-

vsis process more cumbersome.

In summary. FDMs use functions primarily to describe the semantic structure of abstract
entities. Only one group of basic (i.e.. non-composite) functions can be defined for a set of
entities. The information encapsulated by entities is accessed through those basic functions
or their composites. In this perspective. the FDM approach shares some characteristics with
the object-oriented approach. In fact. some database researchers view the functional and
object-oriented approaches as the same thing under different names [11].

Our approach puts emphasis on the mathematics of functions. Functions are not
viewed as data access mechanisms but as mathematical notions to be studied. Instead of
having a set of entities/functions on which all derived entities/functions are based. we treat
each function as a peer to all the others. Thus. the relationships among functions (i.c..
orders of data: Section 4.2.1) can be studied based on mathematics rather than the wayv

they might have been derived in FDMs.

4.2.4 Orders of Data

Let Fs denote all the functions which can be defined on a data set S either basic
or not. Fys is a partial order. based on its information content. The intuition behind this
is that if two different functions have exactly the same information content. we would like
to identify one with the other - even though the two functions might have very different
formats. Informally. we would like to say that a function f is more informative than a
function g. denoted by g < f. if all the objects and theories observable or derivable from ¢
can also be observed or derived from f.

In this context. both objects and theories are viewed as products of scientific
discovery. Objects are entities existing in the real world whose existence might be observed.
Epistemologically. theories are not real world entities: instead. theories are created by us.
although not entirely by our free imagination. The process of creation is constrained by the
data and conceptual resources available to us [32]. It should be noted that the discovery of
both objects and theories depends not only on the state of affairs of the real world. but also
on our cognitive apparatus. conceptual system. and background knowledge. Thus. given

the same data. a theory derivable by one person might not be derivable by another. This
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is a minor point in our context and thus. is not addressed in our informal definition of
informativeness.

The development of a mathematically precise informativeness relation will enable
us to study a data set at the next higher abstract level. the function domain. which deseribes
the interrelationships among functions defined on the same data set. With such an order
of functions in place. systematic data function formulations will be possible within the
process of exploratory data analysis. Although we have not yet been able to define the
informativeness relation on Fs mathematically. we can provide the definition of richness
which approximates the informativeness relation in a limited sense.

Distinct attributes might have the same domain. The attributes indicate different
roles. or interpretation. for the domain [16]. For instance. two different attributes «, and
a, might mathematically share the same domain R. the set of all real numbers. However.
for arbitrary r € R. r may have different semantics for a; and a,. In order to formulate the
richness definition. we would like to distinguish two attribute domains A, and A,. i # .
semantically. even if A, = A; mathematically. This is achieved through the introduction of
semantic tag.

A semantic tag or identifier (name) of an attribute q, is represented as t{a,) € T.
where T is an arbitrary set. The function ¢ is a one-to-one function such that no two
attributes. including derived ones. can have the same tag. Through the use of semantic
tags. two mathematically identical attribute domains A, and A,. i # j. can be distingnished
with their semantic tags  (£(a;). A.) # (t(a,). A,) since t(a,) # t(a,).

For convenience. given a function f. we define the set of tegged domain attributes.

Af = Uielo{(t(a,). A.)}. and the set of tagged value attributes.
Ay = [ (8@ 40y u | {(t(z). 20}
el €l 7

(see Equation 4.1).

Definition 4.2.2 (Richness) A function f is richer than a function g. denoted by g < f.
if Ag CA I

Note that the richness relation is a preorder instead of a partial order. The reason
is that the richness relation does not precisely reflect the true order of information content.

since the definition of the richness relation is based on the domain spaces only. The intuition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the richness relation is that the more attributes we keep in the domain of a data functioun.
the more information remains intact. For instance. in Example 4.2.1. if there are two
measurements of pollutant density at the same time and same location. both of them are
represented by fs(.y. z.t.p). the membership function of the pollutant density data set S.
However. this distinction is lost in fg. Based on this relation. the order of the functions in
Example 4.2.1 is illustrated in Figure 4.1. Note that the membership function is a marimal

point of this relation.

O fytxy.zep)

Sfotey.zt) O O
f3ttp)

O O
fitevz)  faeya)

SRR pnT

ﬁ Figure 4.1: Example of a Richness Relation

4.2.5 Inter-Entity Relationships and Function Formulation

Let S be a data set consisting of 7 attributes a,.... .a; with attribute domains
A ;7 respectively. We define a data function f: D — V. where D = 4| x A3 x Aq
and V' = Ay x A;. The inter-entity relationships specified by the function formulation of f
can be illustrated by an ER diagram (sce Figure 4.2). Since f is a mathematical function.
the corresponding relationship in the ER model can not be many-to-many. This is not a
limitation. however. To describe a many-to-many relationship between two sets D and 17
in a function formulation. a function f’: D — P(V'). where P(V) is the power set of V.

can be defined.

Figure 4.2: Inter-Entity Relationships Specified by Function Formulation

Once a data function formulation is determined. there are two kinds of inter-

o
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instance relationships among data points. They can be specified by the mathematical
structures on D and V respectively. L.e.. the domain geometry and the value geometry.
[n the process of knowledge discovery. the attributes of the value space are often selected
such that there exists a simple natural value geometry. Determining the domain geometry.
however. is often one of the objectives of knowledge discovery.

Since the value geometries are usually simple and predetermined. we focus on
the exploration and modeling of domain geometries only. Unless otherwise specified. the
term “inter-instance relationship™ is used interchangeably with “domain geometry.” In
subsequent sections. we present the mathematical basis and a systematic approach to use

pseudo-quasimetrics as a foundation for exploring and modeling domain geometries.

4.3 Functional Dependency among Attributes

Given a data set S and a function f to be analyzed. the domain space of f is de-
termined. However. there might be more than one meaningful domain geometry associated
with the domain space. Finding such a meaningful domain geometry is one of the major
goals of knowledge discovery.

Syntactically. each element of a domain space is a composite of values of domain
attributes - similar to a tuple or record in a relational database. Given a function and.
hence. its domain space. the set of domain attributes is determined. From the perspective
of domain geometry. the set of domain attributes can be partitioned into a set of variates!
based on some meaningful semantic properties.

Similar to an attribute. a variate can be an unordered set. a preorder. a partial
order. a total order. a lattice. a complete lattice. an algebraic field. and so on [14]. The set
of variates of a domain space depends upon its domain geometry. A variate in the domain
geoutetry is typically constructed from one or more domain attributes. An attribute is the
smallest syntactic unit while a variate is the smallest semantic unit. The difference between
variates and attributes is illustrated in the following example.

Let the domain space D be a square piece of land. If the land is flat and void of

obstacles. the "normal” distance from a point p; = (z;.y;) to point p» = (&4.y2) can be

‘In multwariate data analysis [29], a variate is a linear combination of variables. i.e.. attributes. where
the coefficients are determined by applving multivariate techniques to the data set. Thus. each variate is a
unique description for the group of interrelated variables. We extend the variate definition to represent anv
kind of combination. aggregation. or integration of a set of interrelated variables.
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defined as the Euclidean distance

de(pr.p2) = V(z1 = £2)2 + (11 — y2)?.

and the corresponding domain geometry is called the Euclidean geometry (Figure 4.3(a)).
To be specific. dg is the Euclidean distance of R2. Euclidean distances of R*. n € N. also
known as the usual distances. can be similarly defined. However. given the same domain
space D. a different domain geometry might impose restrictions such that only movements
along the r-axis and y-axis are allowed. In this case. the distance between p; and p» becomes
the Manhattan distance

dar(pr.p2) = oy — £a| + [y1 — yai-

and the corresponding domain geometry is called the Manhattan geometry (Figure 1.3(b)).
Comparing the formulations of dg and dys. we notice that both of them can be represented
in terms of

dr(p1.p2) = |£1 — £ dy(p1-p2) = |y — yal-

the Euclidean distances on the r-axis and y-axis respectively. This is not a coincidence.
In both Euclidean and Manhattan geometries. the z dimension and the y dimension are
functionally independent. For such domain geometrics. we can treat the clements of the
domain space as comnposites of values from functionally independent attributes. Instead
of finding the distance of the domain directly. we can start by finding the distance for
each of the attributes first. Once we have the distances for cach attribute. their functional
independence assures us that the domain distance can be represented as a function of
individual attribute distances. In both the Euclidean and Manhattan geometries. each
attribute is independent of the other. and thus a variate by itself.

Suppose there is an impassable lake in the middle of the land of interest (Fig-
ure 4.3(c)). Let L C D represent the lake region in the domain space D. The domain space
stays the same - a set of two dimensional coordinates within the land boundaries. but the
domain geometry is changed. Let us still keep the movement restrictions of Manhattan
geometry and call this geometry the Winnipesaukee geometry. Let us denote the distance
function of the Winnipesaukee geometry by dyy-. even though its precise mathematical for-

mnulation is too complicated to be presented here.? To enforce the impassability of L. we

*Here are some general ideas for formulating dw-(p.q). For p.q € D — L. dw (p.q) = ds(p.q). if q s
“visible” from p (i.e.. q can be seen from p without the lake area in front of ¢). Otherwise. du (p.q) =
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Figure 1.3: Different Domain Geometries on the Same Domain Space

only need to ensure that passing through L is prohibitively expensive in the geometry. so
the distance between two points in D — L is not measured through L. This can be done
by defining dyy-(p.q) = ¢ - dy(p.q) for p.q € L. where ¢ > 0 is a very large constant. Now.
consider the distances dyy-(p.p2) and du-(p1.p3). Clearly. diy-(py.p2) > du(pr1.p3). even
though d.(p1.p2) = d(pi.p3) and dy(p1. p2) = dy(p1.p3).

This shows that the Winnipesaukee distance dyy- can not be a function of o, and
dy. Otherwise dy-(pi. p2) and di-(p. p3) would have the same value. The difference between
dy-(p1- p2) and dy-(py. p3) is caused by the functional dependency between attributes r and

' In other words. the distance between two elements in the domain

y in the geometry.
space can not be determined by their distance in the z dimension and the distance in the
y dimension alone. Thus. we can not treat £ and y as two separate variates. Instead. we
must treat the pair (z.y) - which may be considered as two variates in both Euclidean or

Manhattan geometries - as a single variate in the Winnipesaukee geometry.

4.4 Pseudo-Quasimetrics

From both the data modeling and knowledge discovery perspectives. the general

notion of distance functions. i.e.. the weak distance functions. provides the most flexibility

min(Urev, {dar(p.r) + dar(r.q)}). where V5, is the set of the corners of the lake which are “visible™ to p.
dw (p.q). in which exactly one of p and q is in L. can be formulated in a similar but much more complicated
way.

It should be noted that. in addition to the functional dependency just described. there exist other kinds
of dependencies in a set of attributes. For instance. a set of attributes might exhibit multicollinearity {29].
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and expressiveness. However. in general. the more metric axioms a distance function satis-
fies. the more likely it is that we can develop efficient data structures based on the distance
function. Section 1.4.1 studies the impact of various metric axioms on data structures.
Together with other considerations. the results of such study convince us that pseudo-qua-
simetric represents a good balance of conceptual expressiveness and implementation effi-
ciency. and thus. a proper modeling primitive for representing inter-instance relationships.

Section .4.2 examines the relationship between pseudo-quasimetrics and partial orders.

4.4.1 Motivation

An obvious way to develop a data structure based on distances is to decompose
a data set into a collection of spheres. All existing hierarchical metric data structures are
based on this principle. Axioms M1. M2. and M3 (as satisfied by a pscudo-metric) are
particularly useful qualities for efficient access to spheres.

Assume that d is a distance function on X. and Sy(p.s) and Sy(q.t) are two
spheres. M1 guarantees that the center of a sphere is always in the sphere. e.g.. p € Sy(p. )
and g € Sy(q.t). M2 enables us to determine the set-inclusion relationship between Sy(p. 5)

and Sy(q.t) by d(p.q) using the following rule:
d(p.q) < s —t = Sylq.t) C Sy(p.s). Y¥p.q € X.

Thus. a collection of spheres can be organized into a hierarchy based on set-inclusion rela-

tionships. With Axioms M1. M2. and M3. another rule can be established:
d(p.q) 2 5+t = Sy(p.s) N Sy(q.t) = 0. ¥p.q € X.

Together. the two rules cnable efficient prozimity retrievals (e.g.. find all points within
distance s from point p) from the sphere hierarchy based on pseudo-metric.

Axiom M4 ts not as essential. compared to M1, M2. and M3. M- assures that
every point can be differentiated from the rest based on the distance perspective. For a
pscudo-metric. it is possible that there are clusters consisting of indiscernible points. This
is generally not a problem. however. as long as the sizes of those clusters are not extremely
large. This situation is analogous to hashing where a group of data points might share
the same hash index. In other words. that group of points are indiscernible based on hash

indexes. Other similar examples include the bucket varicties of many data structures.
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Although M3 scems to be as essential as M1 and M2. we have discovered a simple
method to transform a pseudo-quasimetric to pseudo-metric by inducing M3 artificially
such that there is a precise correlation between spheres in the original pseudo-quasimetric
space and the ones in the transformed pseudo-metric space (Chapter 5). This approach
enables efficient access to spheres decomposition of pseudo-quasimetric space.

Thus. pseudo-quasimetric seems to be a reasonable compromise between distance
function (for model expressiveness) and pseudo-metric (for implementation efficiency). In
addition. there exists theoretical reason for using pseudo-quasimetrics as the modeling prim-
itive of inter-instance relationships. Pseudo-quasimetrics guarantee that the neighborhood
space [59] defined by the pseudo-quasimetric is the same as the one defined by the topology
induced by it. Thus. continuity is consistent among pseudo-quasimetric spaces and topo-
logical spaces from the perspective of distances. Interested readers should refer to [10] for
more details on this matter.

The rest of this chapter can be equally applied to general distance functions which
are particularly useful for knowledge discovery purpose where the data structure issues
are of no concern. For convenience. we use the term pg-metric for pseudo-quasimetric in

subsequent context.

4.4.2 From Pseudo-Quasimetrics to Partial Orders

A pg-metric space can be ordered in many different ways. For a space of size n.
there are 27 possible orderings.* Metric-based orders are derived from a pg-metric (or
a set of pg-metrics) on the space. while other orders are not. We are only interested in
metric-based orders.

There are many ways to derive metric-based orders. We describe one such method.
First. we pick a fixed point p in the pg-metric space. called the geornetric center. Second.
all the points are ordered based on their distances from the geometric center. Clearly. the
resulting order is a preorder. since there might be more than one point at the same distance
from the geometric center (i.e.. there might be no antisymmetry). Note that only a point
pg-metric on p is required for this ordering.

Let the domain space D be a square piece of land as defined in Section 4.3. Sup-

pose there is a lake region L on D (Figure 1.4(a)). We now define a geometry similar to the

*This is the number of different binary relations which can be defined on a set of size n. Thus. even
non-preorder binary relations are accounted for.
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Winnipesaukee geometry. except we allow movements in the x and y directions simultane-
ously. Because of the existence of the impassable lake region. Euclidean distance does not
always reflect the practical distance between two points in this geometry. Since we do not
know how to formulate the pqg-metric on the geometry mathematically. ordering D based

on a pg-metric seems to be a rather difficult task.

[ A A
Y Y Y
’ i...’l-kcr 7 Lakc . : K] Py Lake
1 1
! .0 s,
p 2 ;
. X X X
]
(a) (b) (¢)

Figure 1.4: Choosing a Geometric Center

However. if we choose point p; as the geometric center. the Euclidean distance

dg would indeed reflect the practical distances between p; and all the points in D (Fig-

ure -.-4{b)). In other words. dg can be taken as a valid point pg-metric on p;. Thus. the
domain space can be ordered based on dg|,,. If point ps is chosen to be the geometric cen-
ter instead. we have dg(ps. p3) = de(ps. py) which does not indicate the practical distance
from py to p3 (Figure 4.4(c)). Formulating a valid point pqg-metric on p» might require
formulating a partial pg-metric on D — L.

This example demonstrates an important observation that a comprehensive pq-
metric is not always required to derive a metric-based order of the domain space. A valid
point pg-metric can be induced by a comprehensive pg-metric on a much simpler geometry.

and a metric-based order can be derived from that point pg-metric.

4.5 Observable Properties

In the course of the metric-driven knowledge discovery process. the derivation of

domain pqg-metrics is based upon the individual variate pq-metrics. A variate might have

4

-y
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an explicit and natural distance function or order from which a variate pq-metric can be

derived relatively easily. Nonetheless. from time to time. there exist variates
1. which have no explicit order or distance function defined on them. or

2. whose explicit order or distance function are meaningless with respect to their seman-

tic structure. or

3. for which an alternative order or distance function can be useful for identifying their

semantic structure.

Nominal categorical data [1] consist of variates which satisfy the first two cases. Scientific
data subject to classification satisfies the third. In this section. we present a systematic

approach to derive pg-metrics for those variates.

4.5.1 Order-Theoretic versus Set-Theoretic

Given an arbitrary variate (or set) X void of any mathematical structure. there
are two basic ways to “organize” X (i.e.. define a mathematical structure on X): the
order-theoretic approach and the set-theoretic approach.

The order-theoretic approach is based on binary relations. Through the introduc-
tion of a binary relation. say r. (X.r) can be a preorder. partial order. total order. lattice.
etc. However. defining a binary relation on X itself is often a very difficult task. because a
binary relation involves direct comparison of pairs of points in X. In many aspects. defining
a binary relation is very similar to defining a distance function. For instance. given a binary

relation r on X and p.q € X. a distance function d can be defined as.

dp.q) = 0. if (p.q) € r:

dip.q) = L otherwise.

Due to the amount of domain knowledge involved and its inherent complexity. the order-
theoretic approach is of limited use for organizing an arbitrary set.

The set-theoretic approach is based on differentiation. The goal of differentiation
is to distinguish a subset of X from the rest of X. From the logic perspective. differentiation
is achieved by applying a predicate on elements of X. Those satisfying the predicate are

differentiated from the ones that fail. For p € X. the satisfaction of a certain predicate
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can be viewed as p possesses an observable property® . From a slightly different view point.
the subset of X differentiated by o can be “identified” with ¢. Thus. an observable property
or a predicate on X is identified with a subset of .X. After multiple differentiations. the
structure of X can be defined as O C P(X). which is called a set of observable properties
of X.

Extra care has to be taken in the process of “identifying™ an observable property
with a subset of X. For instance. the set of elements in X having property P, may be
exactly the same as the set having property P». In this case. the set is to be identified with
a new obscrvable property Py A P». From the set-theoretic perspective. property P, and
property P> are not distinguishable in .X.

Although there might be no apparent order on X. P(X) is a partial order bascd
on the set-inclusion relation and O C P(X) can have additional mathematical properties
as a subset of a partial order. For instance. O can be an upper set. a lower set. an ideal.
or a filter on P(X) [33]. Apart from the set-inclusion relation. O can also have a set-
theoretic structure such as topology. The idea of obscrvable properties can be regarded as
a generalization of nominal categorical data in which each distinct data value is considered

as an observable property itself.

4.5.2 Property-Based Metrics

Given a set X and a set of observable properties O C P(.X). there are many ways
to derive a pg-metric on X based on 0. A pg-metric derived in this way is called a property-
based pg-metric or a set-theoretic pg-metric. Based on their formulations. property-based
pg-metrics can be classified into two categories: population-independent and population-
dependent. A population-independent property-based pq-metric on X is a pg-metric that
assigns fixed metric values even if the membership of X changes. as long as the sets of
observable properties possessed by the original elements in X stay the same. In other

words, it is independent from the population in the variate domain X.

Definition 4.5.1 (Population-Independence) For a set X and O C P(X). a pg-metric
d(x ) is population-independent if and only if for arbitrary set X' and O’ C P(X') such
that O|xnx = O'lxnxr. dix.o)(p-q) = dixr on(p-q).Yp.q € X N X', where Ols = {PN

"A property is observable. if its presence or absence is apparent. beyvond all doubt. The time required
to determine that is not an issue. In other contexts [58]. observable property means that the presence (not
absence) of such a property can be determined in a finite amount of time.
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SiP € O}.¥S C X.% A pg-metric diy o is population-dependent if and only if it is not

population-independent.

Population-independence is not always a desirable characteristic for a pg-metric. especially
when X is not fixed. From time to time. we need a pg-metric which can distinguish objects
with rare properties from the common ones - those constituting a significant part of the
variate domain. For instance. we might want to identify those data values with rare qualities
in some categorical data. Property topologization is one way to derive a population-dependent

pg-etric.

4.5.3 Property Topologization

Property topologization is a process for augmenting a set of observable properties
by making each observable property an open set and constructing the least topology having
those opens. The resulting topology is made to be the new augmented sect of observable
properties. For a set of observable properties O. we use the notation O to represent the
augmented set of observable properties. Mathematically. O* is derived by the following

process:
1. Find all possible intersections among elements in O. This results in a base’ for Q.
2. Each element of O* is the union of some subset of the basc.

[t can be easily verified that O* derived this way is indeed the least topology containing
0. Although this property topologization process seemns computationally expensive. more
efficient algorithms can be applied when the initial set of observable properties is well-
behaved - satisfying certain mathematical criteria.

[t should be noted that even though domain knowledge is required for identifving
the original observable properties. the topologization process itself (deriving O* from Q)
can be done automatically without domain knowledge and human intervention. Properly

implemented. the process can be made transparent to users.

SIn fact. the definition of population-independence can be made less restrictive by replacing the condition
dex.ovp.q) = dixr .0 (p.q) with d(x 0)(p.q) = c-d;x'.0\(p.q) where ¢ € R. After all. two pg-metrics can
be considered as “equivalent” on a set X if they differ only by a constant factor on all the points in X.
This equivalence relation can be further generalized to ordered equivalence. Two pq-metrics d; and d» are
ordered equivalent on X, if and only if di(p.q) < d\(p.r) < da(p.q) < d2(p.r).VYp.q.r € X.

“A base of a topology T is a subset B of T such that every apen set is a union of elements of B.
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4.5.4 Metric Evaluation

There are many ways to formulate pg-metrics based upon the set of observable
properties. The choice of such formulations depends on (1) the set-theoretic structure of the
set of observable properties. and (2) the semantic structure of the variate domain. Thus.
variate pg-metric formulation might or might not involve domain knowledge.

If d is an appropriate variate pq-metric based on O. ideally most properties in O
should be opens in Ty. the topology induced by d. Ideally. if ¢’ is an appropriate variate
py-metric based on O~. the topologization of Q. Ty should be simnilar® to O*. Nonetheless.
as illustrated in Example 3.4.8. the same topology can be induced by very different pqg-
metrics. Thus. evaluation of this kind is not a precise one. True evaluation and validation

of pg-metrics have to be done at a more abstract level (Section 4.3).

4.6 Variate Metric Derivation

In Chapter 3. and Section 1.5. we establish the foundation for deriving property-
based variate pg-metrics through a set-theoretic approach. The complete process is illus-

trated in Figure 1.5. Note that domain knowledge is only required for the very first step

of the process - identifying the initial set of observable properties. In this section. the
derivation process is demonstrated in detail through a simple example based upon the six

steps described in Figure 4.5.

STEP 1 STEP 2 STEP 3
Domain . --. | Differentiation: Metric Derivation: : Metric Evaluation:
Rnowledge - =V | defina O define d from O . compare Ty with o
STEP 4 STEP $ STEP 6
Property Topologization: Metric Derivation: | Metric Evaluation:
construct O : define d’ from oO» compare Td' with ge

Figure 4.5: The Process of Variate Metric Derivation

e N i b

Consider a variate X = {9.11.12,16.20.25.30.49}. Although there is a natural

order and metric on integers. let us ignore that and treat X as unordered and nonmetric.

In fact. we derive a pg-metric on X which is completely different from the natural one.

Each positive integer other than 1 can be decomposed into a product of prime numbers. In

*Unfortunately. there is no precise definition for one set to be “similar” to another. Here. we loosely sav
two sets are similar if their intersection is relatively large compared to their sizes.

y
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this example. we take the view that the existence of a specific prime number in an integer’s
product expansion is an observable property. The prime factorization of each element in X

is presented below:

9 =32 11 =11t 12 =223t 16 =2
20 =2%5! 25 =357 30 =235t 49 =77

STEP 1  Although there are five prime numbers - 2. 3. 5. 7. and 11 - that exist in the
expansions of the integers in X. let us assume that only the existence of 2. 3. and 5 are
observable or of interest. Let Py. Py. and P; denote the subsets of integers in X coutaining
prime numbers 2. 3. and 5 respectively. Neither 11 or 49 has 2. 3. or 5 as prime factors.

The fact itself can be defined as an additional observable property. Py. We have
Py ={12.16.20.30}. P; ={9.12.30}. P; = {20.25.30}. P, = {11.49}.

Let O = {P,. P;. P5. Py} represent a set of observable properties. Note that although
integers are used in .X. they are actually treated like nominal categorical data. Once we
have O defined. the elements in X are only observable through O. For instance. with
O = {P,. P;. P5. Py}. the fact that 16 has four 2’s in it is no longer observable. From O. all
we know is that 16 has at least one 2 factor.
The introduction of By is to make sure that O is a cover of X (i.e.. X CUp-p )
a convenient feature which allows easier metric formulation. If Py = §. it can be safely
removed from (0. Similarly. if any of the properties of interest results in an empty set. it

can also be removed from O.

STEP 2 A trivial metric d; can be defined as

dy(p.q) = 0. ifp=gq:

di(p.q) = 10| - Zo(p.q). otherwise.

where Zp(p. ¢) is the number of observable properties shared by p.q. i.c.. Zo(p.q) = |{P €
Ol{p.q} C P}|.Vp.q € X. It is easy to verify that d, is indeed a metric according to
Definition 3.2.4. The intuition of d; is that the more properties p.q € X share. the closer
they are. For instance. d,(12.30) =2 < d,(12.16) = 3 < d,(12.25) = 4. In Table 4.1. all

values of d; over X are listed.

STEP 3 Since metric d; satisfies M4, Ty, = P(X) (sce Example 3.1.8). We have

O C Ty, and every observable property is an open in Tg,. In fact. the formulation of o,
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[d Jo]11[12]16]20[25]30] 49 |

9o 47 3] 4] 4 4] 3| 4
114 o] 4] 4 4| 4] 4] 3
1231 4] o) 3| 3] 4] 2| 4
164] 17 3] o 3] 4] 3] 4
201 1] 3] 3] of 31 2] ¢
25 4] 4 4] 4] 3] o] 3] 4
03] «] 2] 37 2| 3] o] 4
49 [ ] 31 4] 4] 4] 4| 4] 0

Table 4.1: Distances Specified by d; over X

is general enough that for an arbitrary set X and O C P(X) such that Py € O. we have
Ti, = P(X) and Ty, has every property as an open. It can be seen from the formulation that
d, is population-independent. The objective of subsequent steps is to derive a population-

dependent metric.

STEP 4 Since (P U Py U Py) N Py = 0. the topologization of O can be made casier by
dividing O into O) = {FPy} and Oy = {P,. P3. P;}. and topologizing separately O; and O..
After Of and O are derived. from the definition of topology we have O* = {4, U Ay|d; €
O7. 45 € O5}. We have O7 = {0. {11.49}} and O3 consisting of the following 14 open sets:

RN BRI AT gt A 11 e 7 o

0

{30}

{12.30} {20.30}

{9.12.30} {12.20.30} {20.25. 30}
{9.12.20.30} {12.16.20.30}  {12.20.25.30}

{12.16.20.25.30}  {9.12.20.25.30} {9.12.16.20.30}
{9.12.16.20.25.30}

Thus O* has 28 open sets in total which include all the members in O3 and the union of
{11.49} with each element in O}. Each open set corresponds to an observable property.

é For instance. {9.12.20.30} = P; U (P, N P5) corresponds to the property Py Vv (P2 A Ps).

STEP 5 There might or might not be a pg-metric (see Section 3.4) which can induce

O*. For p.g € X. let us define a pg-metric d, on X as

dy(p.q) = Zo-(p.p) — Zo-(p-q).

where Zp-(p. g) is the number of opens in O* containing both p and g (the same function

Z used in the definition of dy). Clearly. da(p.p) = 0.¥p € X. It should be obvious that .,

L
”y
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is not symmetric although Zo-(p.q) = Zo-(q.p).VYp.q € X. In Tables 1.2 and 1.3. we list

all Zp- and d, values over X. For p.q.r € X. we have
dy(p-r) + do(r.q) — da(p.q) = Zo-(r.r) + Zo-(p-q) — Zo-(p.T) — Zo-(r.q) 2 V.

and thus d, satisfies the triangle inequality. [t should be noted that Py € O assures

dalp.q) #0for pe Pyand g€ X — By.

=
(=]

| Zo- || 9] 11] 12
90| 5] 10

20 | 25 | 30 | 49
8| 4[10] 5

11 53| 14 10 10 3| 13| 14
12 || 10| 10} 20 16 8120 10
16 4] 44 8 8 4 38 4
20 8| 10| 16 10| 20 ¢ 10

10| 10} 10 5
20| 10| 26 | 13

25 1] 5| 8
30 || 10| 13| 20

: 29| 51 14| 10

| CO| = OO CC] CO| | W=
o
o

Table 1.2: Values of Zp-

dy ] 9711]12]16[20]25[30] 49 |

o] 37 o] 6] 2] 6] o 5
11 9 o 4]l 4] 9] 1] 0
12010 o]12] 4[12] 0] 10
16 4| 4] o] o] o 4] o] 4
201210 47127 o]1w0] o 10
25 6| 3] 2] 6] o] o o 5
3016 13] 6]18] 6]16] 0] 13
49 9 1T1w0] 47 9] 1] o0

Table 1.3: Values of d,

The pg-metric d3 can be interpreted in several different ways. depending on how we
choose to interpret the collection of observable properties O. Some possible interpretations

include:

1. Let us look at all the point pg-metrics dalg.da|11, - - - . d2|ag. which correspond to rows

in the table of d»: clearly 30 is the most distant from all the others. This is because
30 has a rare quality - being the only number having all three properties 2. Pj. and
P5s. On the other end of the spectrum. 16 is the closest to all the others. This is

because the only property 16 has is the most common one .

I
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[t is easy to see that da|g ~ da|25 (i.e.. dajg and da|25 give the exact same collection
of distance assignments. only in different permutations). This tells us that the sets of
properties possessed by 9 and 25 have similar occurrence frequencies in the variate
population. although they might be very different. The same thing can be said for
da|12 ~ da]20. The observation. ds|11 = da|49. indicates that 11 and 49 are indistin-
guishable in O. From another perspective. pg-metric dy is only syminetric on pairs

(9.25). (12.20). and (11.49).

3. Taking da|20 for example. we have d»(20.30) = 0. since for all the observable prop-
erties in O (also O*). the existence of 20 always implies 30. In other words. 30 has
all the observable properties 20 possesses. d»(20.12) = 4 tells us that 20 and 12
are likely to cluster together. since d2(20.30) = d»(12.30) = 0. Further. 25 is a bit
closer to 20 than 9 and 16. because d,(25.20) = 0.

There exist many other interpretations as well. The important thing is that o, is population-
dependent. For instance. adding elements to X or removing elements from X may affect

the distance measure between two original elements.

STEP 6 Now. we want to ask: How good is da in modeling (or describing) O™ ? To answer
this question. we have to compare Ty,. the topology induced by d,. with O*. Let S,.Vp € X

represent the smallest of all possible spheres Sy, (p. €) centered at p (i.e.. {g[ds(p.q) < £} as

¢ —0).
Sq = {9.12.30} S11 = {11.49}
S12 = {12.30} Sie = {12.16.20.30}
S20 = {20.30} S2s = {20.25.30}
Ssp = {30} Si9 = {11.49}

Using the spheres. Ty, can be casily derived. If dy is reasonably well defined. 73, would not
be far different from O*. It is not hard to see that 74, = O and. therefore. d, is an optimal
pg-metric of O*.

In the above example. other observable properties can be defined to describe the
variate values more precisely. For instance. if we put a new value 8 into X. there is no way to
distinguish 8 from 16 using O = {Ps. P;. P;. Py} or O*. With a more comprehensive 0. we
can derive pq-metrics based on subtler characteristics. such as the greatest common divisor
of two elements - the greater the ged. the shorter the distance. In fact. in the metric-driven

knowledge discovery process. the formulation of the set of observable properties might be
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progressively refined based on domain knowledge and the validity of the metric derived (see
Figure 1.5).

Property topologization appears to be a viable approach to derive pg-metrics from
unordered and nonmetric variate domains. such as nominal categorical data. Even though
domain knowledge is required for identifying the original observable properties. the topol-
ogization process itself (deriving O™ from O) can be done automatically without dumnain

knowledge and human intervention.

4.7 Domain Metric Derivation

In Sections 4.5 and 4.6. we demonstrated the process for deriving variate pq-
metrics. Based on variate pq-metrics. we developed a systematic approach for domain
pg-metric derivation of a wide range of domain spaces. Given a data set to be studied. the

domain metric derivation process consists of the following steps:

1. Identify the data function.

2. Identify the variates.

3. Derive pqg-metrics for each of the variates.

4. Aggregate the variate pg-metrics into the domain pg-metric (i.e.. composite metric).
3. Validate the domain pg-metric.

Although all the steps involve domain-specific knowledge. once formulated. that knowledge
is applied in an algorithmic way.

Many different data functions can be defined on a data set. although it might
not always be clear what the “right” data function is. Sometimes. the domain-specific
knowledge might also be very difficult to formulate. Let us illustrate the metric derivation

process (excluding metric validation. which is the subject of Section 4.8) by an example.

Example 4.7.1 CAM (Computer-Assisted Matchmaker) is a project supported by a major
computer professional association to help its members find persons they would like to date.
CAM consists of a large database of personal information for its participating members. For

simplicity. let us assume each entry in the database is a record of the form:
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{ GENDER. AGE. HEIGHT. WEIGHT. LEISURE_ACTIVITIES. EMAIL_ADDRESS).

We denote the siz attributes by G. A. H. W. L. and E. For convenience. we also use the
same set of symbols to represent respective attribute domains. A search of CAM consists of

the following steps:

1. The user specifies a record which describes his/her perfect date - the search target.

e

The user describes a pg-metric to be used for measuring the distances between the

search target and all the records in CAM.

3. The user specifies the selection criterion (e.g.. k-nearest neighbors. or all entries within

a preset distance).
4. CAM does the search and outputs the resulls.

In CAM. the data function is not obvious from the data set itself. Can the value space
be one of the siz attribute domains G. A. H. W. L. and E. or is it a cross product of
more than one of these attribute domains? Does the value space contain domains of derived
attributes?

Since we are interested in the pg-metrics among entries in the data set (i.e.. the
domain geometry of the function). we would like to take the cross product of all attribute
domains of the data set as the domain space. The value space should be a set of domain
pg-metric values. However. a point in the domain space does not give us a pg-mnetric valie
automatically. because pq-metric values take on pairs of points instead of points. In other
words, the value space should be a metric-based order on which the selection is based. We
can choose a fized point o in the domain space as the geometric center. and make the value
space be the distances between o and points in the domain space. Thus. the value space can
be ordered based on the usual order of R. In CAM. the geometric center should be the point
specified by the user as the search target in Step 1. Now, the data function f of CAM can
he defined as

f:GxAxHxWxLx FEF— X.

where X C R™ U {0} is the distance between the given domain point and the geometric
center as specified in Step 2. Note that it is necessary to include E as part of the domain

space. so there exists a bijection (one-one and onto) hetween a CAM entry and a point in
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the domain spuce. From the perspective of the relational data model. E is the keyv of the
CAM databuse. However. E need not participate in the pg-metric.

The first step of pg-metric derivation is to identify the variates since some at-
tributes might be functionally dependent. or we might want to group several attributes into
a single variate. One such possibility is to integrate H and W into a single varate. so we
can group people according to their physique. such as slim. average. full-figured. and so on.
For simplicity. however. let us treat H and W as two separate variates. Assurming there are

only two possible values for G - male and female - d¢; can be defined as

0. if p.q are both male or female:
d¢(p.q) = .
1. otherwise.

For A. H. and W . let us use the usual distance (Section 4.3) functions on them as their
pq-metrics. E not only serves as an identifier for each entry in CAM. it might also contain
affiliation information of the person. Conceptually. we can also define a nontrivial py-metric
on E. Nonetheless. for simplicity. let us ignore the pg-metric contribution of E by defining
de(p.q) =0.Vp.q.

L is the variate which is not ordered. [t would be difficult to derive a meaningful
pqg-metric on it directly. For simplicity. let us assume L = P(Lg). where Lg = { BOWLING.
COOKING. GOLF. MOVIES. PAINTING. READING. SKIING. TENNIS. VIDEO_GAMES }

Let us examine one trivial pg-metric which can be derived directly from L: Map
each member in L into a binary string of 9 bits. The leftmost bit corresponds to BOWLING.
the first element in Lq. the second bit from the left corresponds to COOKING. the second
element in Lg. and so on. | indicates the presence of the hobby while 0 indicates the
absence of the hobby. The distance between two elements in L is defined as the number
of L's in the result of a bit-wise XOR operation of their corresponding bit strings. Let us
denote this metric as dj. Now consider py = { GOLF. TENNIS }. p» = { BOWLING. SKIING
}. and p3 = { READING, PAINTING }. Even though dj (p1.p2) = d}(p1.p3) = 4. we can see
that both p, and pa are sports oriented. implying that p, should probably be closer to py than
to p3.

The reason for the above problem is that we implicitly treat each element in Ly as
equal. In other words. we implicitly assume a non-zero constant distance between all pairs
of different elements in Ly. A better pg-metric can be derived by imposing some groupings

on L.
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Notice that L is a relatively large set (|L]| = 200! =29 = 512) and defining groups
based on L can be a tedious and inefficient task. In cases such as this. it is often easier
to define observable properties as subsets of Lo instead of L. Suppose we are interested in
the following four properties of Ly: PHYSICALITY. COMPETITIVENESS. INFORMATIVENESS.

and CREATIVITY.? Table 4.4 depicts the relationship between activities in Ly and those

properties.
[ ACTIVITIES IN Lg PHYSICALITY [ COMPETITIVENESS INFORMATIVENESS CREATIVITY ]
BOWLING X X
COOKING X
GOLF X X
MOVIES X
PAINTING X
READING X
SKRIING )
TENNIS X X
t VIDEO_GAMES X x x
3 .
: Table 4.4: Observable Properties for L
E Now. we can impose a topology QLg on Ly which is the least topology (ordered by

set-inclusion) that contains the four property-based opens. Recull L = P(Ly) and QLy C
P(Lo). In other words. L is the discrete topology (the finest topology) of Ly. and QLy C L

s coarser. For p.q € L. the distance dr(p.q) can be defined as the number of opens of QL

containing p minus the number of opens of QLg containing both p and q.
Now we have a pg-metric for each of the variates. Since each variate is independent
of the others. the domain pq-metric is a function of the variate pg-metrics. In the simplest

form. the domain pg-metric can be a linear combination of the variate pg-metrics:
d=cg-dg+cey-dy+cey-dy +ew -du +cp - dp.
where cg.cq.cy.cn-.cp € R |

The topologization process is highly adaptive to variates with various domain structures
the structure among points in the variate domain - as can be seen in the prime numbers

example in Section 4.6 and Example 4.7.1. It is also population-dependent and thus the

population information can be incorporated into the derived pq-metric if it is desirable.

Dxxr .y . . . - . P .

We can utilize the idea of specialization preorder [37] of open sets to describe similar properties at
different levels. For example. we could further classify a property such as PHYSICALITY into several different
levels of intensities (e.g.. low. medium. and high).
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The topology-based pq-metric definitions presented in the examples are by no means the

ouly ones which can be defined. Lots of possibilities exist and need to be explored further.

4.8 Continuity for Metric Validation

As shown in Section 4.7. the domain metric derivation process is guided by domain-
specific knowledge. In this process. some decisions and compromises have to be made.
Nonetheless. no matter how the domain metric is derived. either through the process just

described or other approaches. we need to validate it.
The validation is based on the mathematical notion of continuity. The continuity of
a data function depends on the neighborhood structures of both its domain space and value
' space (Definition 3.3.14). Since the neighborhood structure on the value space is usually
known in advance. the goal of domain metric derivation is to derive a pg-metric such that
the neighborhood structure on the domain space induced by the pg-metric would make the
data function continuous. Thus. a pg-metric can be validated if it preserves the continuity
of the data function. In [34]. we define continuity in several different mathematical settings
and describe its semantics in the context of data analysis. We demounstrate the relationship

between data continuity and metric validity in the following example.

Example 4.8.1 As in the prime numbers ezample of Section 4.6. let

X ={9.11.12.16.20.25.30.49}

be the domain space of interest. We define a data function f : X — C. where C = {a.b.¢}.
as follows:

f(9) =ua f(11) =a f(12) =b f(16) =a
f(20) =b f(25) =a f(30) =c f(49) =a

The intuition of f is that f(p) is an indication of the number of different observable prop-
erties p possesses. so Py = {12.16.20.30}. P; = {9.12.30}. P; = {20.25.30}. and

Py = {11.49}. Thus. a. b. and c correspond to one, two. and three observable proper-

ties respectively. In order to evaluate the continuity of f. we have to know the geometries
of domain space X and value space C. Let us specify the value geometry by the topology
QC = {0.{c}.{b.c}.{a.b.c}}. The idea of QC is that the opens {a.b.c}. {b.c}. and {c}

correspond to “having at least onc. two. and three observable properties”™ respectively. Let

b
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N,.Vp € C represent the smallest neighborhood of p. We have N, = {a.b.c}. Ny = {h.c}.
and N. = {c}. A pg-metric d3 on domain X can be defined as dz(p.q) = |Kp, — K,|. such
that Vr € X. r is the product of K, prime numbers (for instance. Kg = 2. K11 = 1. K12 =
3.... ). Note that {c} is a neighborhood of f(30) = c. However. for every neighborhood
of 30 induced by d3. {12.20.30} C M and {b.c} C f[M]. Thus. f is not continuous with
respect to dy and dy is not valid for f.

On the other hand. if we use the pg-metric dy in Section 4.6 as the domain metric.

it is easy to verify that f is continuous with respect to dy and d» is valid for f. i

In order to validate a metric derived for CAM in Example 4.7.1. all we have to do is to check
whether the data function is continuous or not. Unfortunately. this is not possible without
further domain-specific knowledge on the value space. Recall that the values in the value
space of CAM depend on the domain metric and the choice of geometric center. We really
do not have the “true” values (i.e.. values independent of the domain metric) in the value
space for us to evaluate the continuity. Thus. the validation can only be done if we have an
empirical data set which provides the “true” values in the value space. Alternatively. we
can form a panel of consultants and psychologists to give us their expert estimation of the
“true” values in the value space. Based on their opinions. we can conclude whether a given
domain metric is valid or not.

Metric validation is part of the “trial-and-error”™ process involved in knowledge
discovery. Given a data function. there are times when a mathematically valid domain met-
ric is extremely difficult (or computationally expensive) to derive. In such cases. we might
want to accept a partially valid domain metric such that the data function is continuous at

a large subset of the domain.

4.9 Summary

Scientific data is characterized by rich and complex interrelationships. especially
inter-instance relationships. Based on data-as-functions and pseudo-quasimetrics. this chap-
ter presents a formal mathematical model suitable for modeling complex interrelationships
in scientific data. Compared to the spatial data models and existing scientific data models
arising in computational fluid dynamics and scientific visualization. the proposed model

offers more flexibility and generality.
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[n addition to the mathematical foundation. we present a detatled approach for
metric derivation. The approach itself is also useful as a paradigm for knowledge discovery
from the metric perspective. Since our model is based on formal mathematical seman-
tics. the results can be formally validated. The notion of continuity is used as a precise
mathematical tool for validating the results of the metric derivation process. either for data
modeling or knowledge discovery purposes.

From the knowledge discovery perspective. we believe the metric-based data model
has tremendous potential as the foundation for developing various data mining mechanisms.
[n particular. the process for metric derivation based on observable properties can be very

valuable for data mining in categorical data which are pervasive in social sciences.

teanw

&
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Chapter 5

Physical Data Models

5.1 Introduction

A new data model leads to the development of data models at the lower abstraction
levels. Certainly. a conceptual or implementation model is not very useful if there is no
efficient physical data model to support and materialize it. While the DDL and DML of
the proposed metric-based data model are yet to be developed. it suffices to have an ad hoc
pseudo-quasimetric formulation as the implementation model for most applications. The
focus of this chapter is the study of supporting data structures. i.c.. physical data models.
for the metric-based conceptual and implementation models.

Metric data are data where the proximity relationships are either expressed exten-
stonally by explicit distance values or defined intensionally by a derived distance function.
such as the metric-modeled scientific data discussed in Chapter 4. The most obvious phys-
ical data model for supporting metric-based models is a group of data structures known
collectively as the hierarchical metric date structures. including metric trees. vp-trees. and
their variations. However. due to the reasons detailed in Section 4.4. all existing hicrarchical
metric data structures can only support pseudo-metrics.

This chapter presents an innovative. yet surprisingly simple. approach for deriv-
ing a new class of hierarchical metric data structures from tested-and-proven point spatial
data structures. Instead of performing direct decomposition on metric data as is done for
metric trees and vp-trees. we define a class of simple prozimity-preserving mappings from

pseudo-metric spaces to mulltidimensional spaces'. which we call multipolar mappings. By

1 g . - . -
The term k-dimenswonal space. or multidimensiwonal space in general. is often used in the literature 1o
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applying multipolar mappings to metric data. hierarchical decompositions can be done in
multidimensional space. and various point spatial data structures. such as quadtree. octree.
or k-d tree. can be utilized for storing the metric data.

The idea of mapping data points to multidimensional spaces based on distance
functions is not new. Various multivariate data analysis [29] techniques exist for mapping
a metric data set to a multidimensional space such that the implicit structure of the data.
as modeled by a distance function. can be observed or visualized. These techniques include
factor analysis [8]. principal component analysis [20]. and multidimensional scaling [9].
Although these techniques might have a limited value for organizing static metric data. the
mappings they employ are data-dependent and are not as useful for applications to dynamic
metric data.

However. similar to the requirement of existing hierarchical metric data structures.
multipolar mapping only works on pscudo-metrics. To solve both problems. we develop a
simple and practical approach. median transformation. which can be used to derive pseu-
do-quasimetrics from pseudo-metrics.

The rest of this chapter starts with a brief introduction to the existing hierarchical
data structures and related terminology. Based on the mathematical foundations estab-
lished in Chapter 3. we present the definition of a multipolar mapping. Several important
characteristics of multipolar mappings are studied in the context of employing point spatial
data structures for managing metric data. Finally. we describe the notion of median frans-
formation and show how it can enable both the point spatial data structures and existing
hierarchical data structures to store metric data with pseudo-quasimetrics. The proofs for

major theoretical results of this chapter are presented separately in Appendix B.

5.2 Hierarchical Metric Data Structures

We consider a data set as a finite sct of records or data points. Hierarchical data

structures are based on hierarchical decomnpositions of the data scts they intend to store.

represent k-dimensional real coordinate space. denoted by R*. With vector addition and scalar multiplication
defined. R* can be made into a vector space over the real field or simply a real vecter space. The vector
space R* on which inner product and norm are defined is known as Euclidean k-space [50]. The Euclidean
distance of R*. denoted by Ej. follows directly from the definition of norm. Although in the computer science
literature the terms k-dimensional space and multidimensional space are often used to represent Euclidean
k-space with Euclidean distance. we use these terms to refer to the mathematical notion of k-dimensional
real coordinate space which allows definitions of new operations. such as distance functions other than the
Euclidean distances.
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Binary search tree [11] is a classic example. In fact. all data structures based on trees are
hierarchical data structures. Common non-hierarchical data structures include linked lList.
inverted list. hashing. and multidimensional array.

Nievergelt. Hinterberger. and Sevcik decompose hierarchical data structures into
two groups: those that organize the specific set of data to be stored. and those that organize
the embedding space from which the data is drawn [47].? Binary search tree. point quadtree
(52. 51]. and metric tree [65] belong to the first group. Region quadtree [52. 51] and tre?
[21. 25] belong to the second.

Comparative search techniques are used for the first group - the boundaries be-
tween partitions of the search space are determined by the data values to be stored. Thus.
the boundaries are dynamic during the life cycle of the data structure. Let us consider
a binary search tree for example. A particular data point of the left subtree at the root
level might be moved to the right subtree at a later time. as the data set evolves by adding
new points or deleting old points. Address computation techniques are used for the second
group - boundaries between partitions of the data space are fixed regardless of data val-
ues. For instance. let us cousider a 26-ary trie based on the alphabet A-z. The data point
corresponding to the string XEROX always belongs to the 24th subtree at the root level.

Hierarchical metric data structures are simply hierarchical data structures which
employ hierarchical metric decormposition. All existing hierarchical metric data structures
belong to the first group. In fact. they are all based on the basic notions of the metric trees
[65].' There are two kinds of hierarchical metric decompositions for metric trees: sphere
decomposition and generalized hyperplane decomposition (Figure 5.1).

A sphere decomposition divides the current data partition X into two subparti-

tions:
1. S(c.1).
2. X -S(c.r).

where ¢ € X and r € R*. Theoretically. any such ¢ and r can be used to carry out the

division. However, in order to have a more balanced metric tree. the choice of ¢ and r at

*In fact, Nievergelt et al. suggest such a decompoasition in the context of search techniques rather than
hierarchical data structures. Nonetheless. the way a data set is searched is closely tied to its hierarchical
organization. Thus. this decomposition can be equally applied.

3Trie is also known as digital tree.

*Metric trees are probably better known as vp-trees [67]. particularly in field of wnage retrieval.
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(a) Sphere (b) Generalized Hyperplane
Figure 5.1: Hierarchical Metric Decomposition

cach level is crucial. There is much ongoing research in this direction [68. 3].
A generalized hyperplane decomposition divides the current data partition .\ into

two subpartitions:
l. {x € X |d(c).2) >d(ca. L)}
2. {x € X |dlc;.z) <d(ca.r)}.

where ¢j.cx € X. Again. the choice of ¢; and ¢, is an important factor for balancing
the tree. While it takes one distance computation in a sphere decomposition to classify a
point. it takes two in a generalized hyperplane decomposition. For this reason. most current
hierarchical metric data structures are based on metric trees with a sphere decomposition.
For a metric data set. there is a certain criterion its distance function has to satisfv

in order for any meaningful hierarchical decomposition to take place. For instance. consider
the following distance function d on X.

0 ifr=uy.

d(r.y) =

I otherwise.
Although the distance function d is a metric. there is no meaningful hierarchical decompo-
sition possible based on d. Yianilos proposes a criterion. called the ZPS (Zero Probability
Spheres) property. which effectively excludes all such distance functions and many others
[67]. Although. the ZPS property might be too strong for our purposes. we assume that all

distance functions discussed in this paper satisfy the ZPS property.
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5.3 Multipolar Mappings

In this section. we introduce the notion of multipolar mapping and one of the most

important theoretical results of this chapter - multipolar mappings are continuous.

Definition 5.3.1 (Multipolar Mapping) Let X be a nonempty set. | X| = n. and let d
be a distance function on X. For k € N and k < n. a multipolar mapping with & poles or

simply a k-polar mapping. M. : (X.d) — B*. is defined as
Mi(z) = (d(pr.L).... .d(pg-z)). Y€ X.
where P = {p.... .pr} C X is the set of poles. To identify a specific k-polar mapping with

a set of poles P. the alternative notation My p is used. Let M (X) represent all k-polar

mappings on X and M(X) represent all multipolar mappings on X. That is.
Mi(X) = {Mpp|VPC X st |P|=k}.
U Mi(x).

k<n

M(X)

From the perspective of R¥ coordinates. M. p is a lossy transformation for k& < | X}.
The distance between two arbitrary points .y € X — P can not be derived from My p(r)
and My p(y). However. when & = |X]|. all distance information is preserved. If & = L. the
result can be used to derive a linear order on X.

Multipolar mappings possess the important quality that they preserve the prox-
imity relationships in pseudo-metric spaces. In the most primitive form. using the notion

of distance only. the proximity-preserving quality can be informally stated as:

If the distance from z to y is r. the distance from the image of r to the image
of y is bounded by h(r).

h(r) is a strictly increasing function. The proximity-preserving quality of a mapping corre-
sponds directly to the continuity of a function. The general notion of continuity is defined in
the context of neighborhood which has many different formulations in various mathematical
settings [10].

In Appendix B. we prove that given a point r in a pseudo-metric space. and an
arbitrary k-polar mapping. the images of all points within distance r from x arc within

distance vk r from the image of z. Mathematically. we have

My p[Sq(z.7)] C Sg (Me.p(x). VET). YMep € M(X).Vz € X.Vr € R™. (5.1)
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where (.X.d) is a pscudo-metric space.

Suppose we have a set of metric data X in which the proximity is defined by a
pseudo-metric. After applying M to X. we can store the data in a k-dimensional point
spatial data structure. To find all points within distance r from a particular point r. all we
need to do is to perform a proximity search at M (z) on the point spatial data structure
with a search distance vk r.

Let X be a metric data set. |.X| = 100 and d be its distance function. The relative
distances between pairs of points in X are illustrated on a 2-D plane of Figure 5.2. In
general. there is no guarantee that points of a metric data set can be plotted on a 2-D plane
such that the relative distances among points are correctly illustrated. It so happens that
this particular metric data set can be illustrated on a 2-D plane. because it is synthesized by
computing the Euclidean distance on a set of randomly generated points in a 2-dimensional
space. Let us assume that the coordinates used to compute the distances and plot the

points (Figure 5.2) are not available.

un

[t}
%

Un

Figure 5.2: Distance Illustration of .X

Two spheres. S| = Sy(c¢;.3) and Sy = Sy(e¢z. 10). are shown in Figure 5.2. Points
inside the spheres arc represented by -. those outside by =. S| and S, contains 2 and
4 points respectively. Recall that the only information we have about X is its distance
matrix. The objective of a A-polar mapping is to map a metric data set to a k-dimensional

space based exclusively on its distance information. which is either represented explicitly as
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a distance matrix or implicitly as a distance function. For demonstration purposes. let us
map X into a 2-dimensional space using a 2-polar mapping. Two points p; and ps. both
labeled in Figure 5.2. are randomly selected as poles for constructing M>[X]. The issue of
informed pole selection is discussed later.

Figure 5.3 illustrates the 2-dimensional space with M,[X] plotted. where ¢ =
Mi(cy). ¢y = My(ca). py = Ma(py). and p = Mo (p2). Note that the two axes A and A, rep-
resent d(x.p;) and d(. py) respectively. The two spheres illustrated are S| = Sg,(¢) .5V2)
and Sy = Sg,(c). 10v/2). All the points in S| and S» are mapped into S{ and S respectively.

We have |S'1[.\Ig{.\'§| = 5. and IS'SI.\[:{.\'}| =103
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Figure 5.3: Point Plot of M,[X]

Assuming that the evaluation of the distance between a pair of points in the metric
data X is counted as a single basic operation, the computational complexity of M. is kn— (‘_})
where n = | X| is the size of the metric data set. Multipolar mappings are well adapted to
dynamic data with frequent insertions and deletions of data records. since My (p).Vp € X
stays unchanged while some other points are removed and new points are added. In other

words. with respect to a fixed set of poles. the formulation of a multipolar mapping is

“The sizes of both restricted spheres are computed directly from M,[X] instead of examining Figure 5.3.
Only one of the two points near the border of Sh|yr,:x is actually inside the sphere.
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data-independent. a quality not possessed by mappings employed by multivariate analysis
techniques such as factor analysis. principal component analysis. and multidimmensional
scaling. The only exception involves the deletion of a pole. In such a case. we can always
treat the record associated with the pole as a pseudo record and keep it for reference when
new points are added in the future.

[t is possible to have two different points z;.r» in a pseudo-metric space (.X.d)
such that d(z;.r2) = 0. From the triangle inequality. d(p.z,) = d(p.r2).Yp € X. In
other words. the images of £, and z» are the same no matter what multipolar mapping is
applied. This is not a problem. however. All we need to do is to associate a set of data
records where the distances among them are 0 to a single point in the point spatial data
structure we choose to implement. Although a similar technique can be easily applied to
metric trees and vp-trees for storing metric data with pseudo-metrics. both Uhlmann and
Yianilos preclude such possibilities by restricting the application of metric trees and vp-trees

to metric space only [65. 61. 67].

5.4 Maxico Distances

Although Euclidean distances are the natural distances of multidimensional spaces.
they are not the most appropriate distances as search radii for multipolar mappings. This
section presents the notion of mazico distances and shows that maxico distances. when used
to define a search radius in a multidimensional space. represent a smaller sphere than is

required for Euclidean distances.

Definition 5.4.1 (Maxico Distance) The maxico (abbreviation of “maximum coordi-

nate difference”) distance function of R, my : R¥ x R¥ — R U {0}. is defined as
my ((ar..-. cag). (by.... .br)) = maz {{ay —by|.... Jar — bi|}.

[t can be verified that maxico distances are metrics. A sphere based on the maxico
distance of R*. say Sin, (z.7). corresponds to a k-dimensional hypercube with edge length
2r and r as its center. Similar to the results of Euclidean distances (see Equation 5.1).
multipolar mappings also preserve proximity relationships with regard to maxico distances
in multidimensional spaces.

In Appendix B. we prove that given a point r in a pseudo-metric space. and an

arbitrary A-polar mapping. the images of all points within distance r from r are within
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maxico distance r from the image of x. Mathematically. we have

My p[Si(x.7)] C S (Mi p(z).7). VM pe M(X).Vre X.VreR™. (3.2)

where {X.d) a pseudo-metric space.

Comparing Equation 5.1 with 5.2. we can see that the same sphere Sy(r.r) is
mapped into both Sg, (M p(x). vk r) and S (My p(z).r) in Rf. It is proved in Ap-
pendix B that

Smy(£.7) C Sg (£ VkT). YkEN.z € R*.r e R, (5.3)

Figure 5.4 illustrates this relation in R?. S,,,(z.r) is represented by the light shaded circular

area. and Sg, (. Vk r) is represented by the dark shaded rectangular area.

J2r

X

Figure 5.4: Comparison between Spheres Based on rn, and E,

From Equations 5.1. 5.2. and 5.3. it is clear that. compared to Euclidean distances.
maxico distances reduce the space that must be searched in multidimensional spaces. Thus.
maxico distances can potentially decrease the number of points to be examined for proximity

searches. For instance. based on the metric data set of Section 3. we have

E | v | [Sa(z ) | |Selaniy) (@ V21)] | [Smaslanix (7))
3 al s 2 5 5
! ¢y | 10 1 10 8

Note that the maxico distance eliminates two points from Sg,|1,x)(c2- 10v/2) while it has
no improvement over Sg,|yr,vj(ci- 5v2).
A final note on maxico distance is that if the search target happens to be one of

the poles. no distance evaluation is required to carry out a proximity scarch. since all points
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inside a restricted maxico sphere of radius r are within distance r to the search target in

the metric data set. Formally. this is expressed as

;\/[k.p[s([(l'. r)] = Smkl.\[{,\'E(i‘/[k.P(I)- r). Yy pe M(X).Vre P.Yvre =", (5.4)

5.5 Dimensionality Issue

We now examine how the efficiency of multipolar mappings are influenced by
dimensionality. Intuitively. we consider a multipolar mapping M, more efficient than M,
if and only if given an arbitrary proximity search. M}, has to examine only a subsct of the

points examined by M,. Formally. efficiency is defined as follows:

Definition 5.5.1 (Efficiency) Let (X.d) be ¢ pseudo-metric space. and M,. My, are a b-
polar mappings respectively. M, is more efficient than M,. denoted by M, < M,. if and

only if
My(y) € S, (Mp(z). 1) = Myly) € Sm, (Mu(x).7). Yoy € X.Vre = .

The above definition has to be read in light of Equation 3.2. The cfficiency relation
defined in this way is a partial order.

Definition 5.5.1 is defined to compare two multipolar mappings. In the same spirit.
we can say maxico distances are more “efficient”™ than Euclidean distances. since given a
k-polar mapping and a proximity search. the set of points that must be examined for rmy is
a subset of that required by Ej.

[n addition to the efficiency advantage over Euclidean distances. maxico distances
guarantee that efficiency increases with the dimensionality of multipolar mappings. Using
the notion of maxico distances. we prove that given two sets of poles P, and P. if P, C P,.
then the multipolar mapping based on P, is more efficient than the one based on P;. In
other words. if the images of r and y under My, p, are within r of cach other. then the

images of £ and y under My, p, are also within r of each other. Formally. this is expressed

by

./V[k.:.p._, (y) € Smk..., (JV[kz.pz(:E).T) — kal'pl(y) € S"lk-, (AJL'[.Pl (z).r). Ve.y € X.Vre R™.
(5.5)

where (X.d) is a pseudo-metric space. P. Py C X. k| = |[P|. ky = |P|. and Py C P». Sce

Appendix B for a proof.
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Note that a similar conclusion like Equation 5.5 can not be drawn for Euclidean

distances. In other words. for P, C P;.

Mk, p,(y) € Sg,, (M, py(2). Vk27) #= My, P (y) € SE (M, p (£). Vki r).

See Appendix B for details.

From Equation 3.5. the efficiency of a particular multipolar mapping can be im-
proved by adding new poles (while keeping the original ones) to increase its dimensionality.
This is demonstrated by an experiment performed on the metric data set shown in Fig-
ure 3.2. The data set consists of 100 points with a diameter. the largest distance value on
the set. of 127.83 and a mean distance value of 50.39. Its distance distribution histogram

is shown in Figure 3.5.

Frequency

[ S TS

L L1 .
20 40 80
Distance Value

140

Figure 5.5: Distance Distribution Histogram

We generated 10 sequences of poles. Py.... . Py. of 10 poles each such that every
point in the data set was randomly placed into one pole sequence. For cach P,. we assign a
random order to its elements and derive a sequence of 10 A-polar mappings. k = 1.... . 10.
A reasonable assumption is that most proximity searches have search radii much less than
the mean distance. Based on this assumption, for each k-polar mapping in the 10 P’s.
we compute the average size of all the 100 restricted spheres of search radius 5 in the
k-dimensional space. The results are listed in Table 5.1.

To put the numbers in Table 5.1 into perspective. we compute the average number
of points inside a sphere of radius 5 in the original metric data as 1.70. This is the lower

bound of the values in Table 5.1. Clearly. the contribution of additional poles is much
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Pole Number of Points Visited (Columnized by Dimensionality) |
Set 1 2 37 415 ] 6 T ] 8 [ 9 11
Py 1540 | 11.40 { 3.20 | 2.54 | 2.54 | 238 { 1.98 | 1.90 | 1.80 | 1.80
P 12.14 | 2.76 | 2.14 | 1.98 | 1.82 [ 1.80 | 1.72 | 1.72 | L.T2 | 1L.72
Py 1796 { +.72 220|188 1.80 | 1.80 | 1.74 | 1.72 | 1.70 | L.70
Py 344 336|200 1.80 | .78 | L.74 | L.74 | 1.72 | L.72 | 1.72
P; 10.84 | 6.84 1262260190 | L.84 | L.78 | 1.76 | L.74 | 1.74
P 11.38 | 230|182 182 | 1.78 | 1.78 { 1.78 | L.74 | L.74 | 1.74
P 10.82 | 236 ) 2.14 | 1.84 | 1.84 | 1.84 | 1.78 | L.74 | 1.72 | 1.72
Py 1470 { 512|312 2.18 | 1.86 | 1.80 | 1.78 | 1.78 | 1.74 | L.74
Py 13.36 | 3.10 | 1.88 | 1.80 | 1.80 | 1.80 | 1.80 | 1.76 | 1.76 | 1.76
Py || 17.00 | 3.84 [ 244224 | 1.86 | 1.86 | 1.82 | 1.82 | 1.78 | L.78

Table 5.1: Number of Points Visited versus Dimensionality

more significant at lower dimensionalities. The biggest improvement occurs when a L-polar

mapping is extended to a 2-polar mapping by adding one pole. For the majority of the 10

WYY QBTN N4 e v

pole sequences. the average number of points needed to be searched quickly decreases to
below 2.00 after ouly 4 poles are used. In particular. the pole sequence Py achieves perfect

score 1.70 after 9 poles are used.® This perfect score indicates a situation where there is no

misclassification for any proximity search at the fixed radius. All points mapped into the
corresponding sphere in the k-dimensional space are exactly those inside the sphere of the

same radius in the original metric data (see Equation 5.2). Formally. this is expressed as
Mi[Sa(z.7)] = Smelarx|(Mi(z). 7). Vre X.

[n fact. for an arbitrary finite metric data set and an arbitrary proximity query. the condition

of no misclassifications can always be satisfied after a certain dimensionality threshold [38].

% 5.6 Average Interpole Distance

While the efficiency measure of Definition 5.5.1 is uscful for developing theoret-

ical results such as Equation 5.5. it is too restrictive for practical purposes. For general

performance evaluation. we adopt the following less precise definition of efficiency.

“Note that the value 1.70 is the average size of all 100 spheres of radius 3 in the data set. Since two
decimals are used. there is no round-off error.

"
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M, is more efficient than M, . if for an average proximity search. M, examines
fewer points than M, does.

With this definition in place. we are ready to study one major factor influencing the efficicney

of multipolar mappings of fixed dimensionalities - the average interpole distance.

Definition 5.6.1 (Average Interpole Distance) Given a set of k poles (k > 2). P =

{p1---. .px}. the average interpole distance of P. ipd(P). is defined as
!
ipd(P) = (,,) Y dpip,).
- P -P;EP- <y

Consider the extreme case of My p. where P = {p;.p2} and d(p;.p2) = 0. From
the triangle inequality. d(py.x) = d(ps. ).V € X. Clearly. M, p is functionally identical
to My p,} and M| qp,}. The efficiency advantage of dimensionality cannot be realized. In
general. once the dimensionality is fixed. the larger the average interpole distance. the better
the efficiency. To illustrate this point. we present the results of a limited efficiency study
based on all possible 2-polar mappings of the same metric data set shown in Figure 5.2.

Recall that the data set consists of 100 points with a diameter of 127.83 and a
mean distance value of 50.39. Its distance distribution histogram is shown in Figure 3.5.
Given a particular 2-polar mapping, the size of the restricted sphere of radius 5 centered at
cach point is measured. and the mean restricted sphere size is computed. For each 2-polar
mapping, its average interpole distance and mean restricted sphere size are used to plot a
point in Figure 5.6a. There are 4.950 possible 2-polar mappings. and thus. 1.950 dots.”

Notationally. the points in Figure 3.6a arc represented by.
(ipd(P). B [|Smalstpivi(a-5)|] ) - ¥Mp € Mu(X).

where given a random variable V" defined on X. E[V] represents its expected value. The £
value indicated in the figure represents E [|S4(z.35)|]. the average number of points inside a
sphere of radius 5 in X. Figures 5.6b and 5.6¢ are the results of similar analyses at scarch
radii 10 and 15 respectively.

At the lower end of the average interpole distance scale. the efficiency of all three

search radii (in terms of number of points expected to visit) increases significantly as the

‘Theoretically. different 2-polar mappings with the same average interpole distance can have the same
mean restricted sphere size. Thus. some dots may be superimposed on each other.
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Figure 5.6: Number of Points Examined at Radius 5. 10. and 15

average interpole distance increases. The efficiency begins to level out around the mean
distance. Note that the best efficiency is not achieved at the higher end of the average

interpole distance scale. but rather in the middle section right after the mean distance.

& This phenomenon seems to be particularly pronounced for proximity scarches with larger
search radii (see Figure 5.6). It is also clear that the larger the search radius. the bigger the
variation in efficiency for a given average interpole distance value. Details of performance
analysis for pole selection based on average interpole distances are presented in Sections 6.8
and 6.10.

5.7 Coordinate Volume Reduction
[t can be noticed in Figure 5.3 that there are no points mapped into the triangle
arca marked by the origin. p|. and p/,. In fact. M>[X] is bounded by the following three
lines in R%.
r+y = d(pr.p2).

1 r—y = d(p.p2).

:

: —r+y = d(pi.p2)

r where .y correspond to axes A;. A, respectively (see Figure 5.7). This is not a happen-
stance. since for an arbitrary point £ € X.

d(pi.z) +d(p2.x) = d(pi.p2).
d(py.r) —d(pa.z) < d(p1.pa).
—d(pr.x) +d(ps.x) < dipr.p2).

"y
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Figure 5.7: Areas Void of Points

Similar results can be derived for M[X] where & > 2. For instance. M3[X] is

bounded by 9 planes in the following table. For convenience. let d,; = d(p;.p,).

r+y=dp y+z=dy z+r=d3
r—y=dypy y-z=dy :—-r=dp3
—r+y=dpnp —-y+:=dyy -—z+zI=d3

The planes of the first row are illustrated in Figure 5.8. where z. y.z correspond to axes
AL Ay Ay respectively. The other planes of each column are perpendicular to the one in
the first row. In general. M [.X].Vk > 2. is bounded by 3({}) hyperplanes.

The coordinate volume of M,[X] - the volume of the minimum rectangular arca
with all edges parallel to the axes required to contain M5[X] - can usually be reduced
by rotating both the A, and A, axes by f. resulting in a more balanced representation
when M,[X] is stored in a hierarchical data structure. A compact 2-polar mapping is a

composition of a § rotation and a 2-polar mapping.

Definition 5.7.1 (Compact 2-Polar Mapping) 4 compact 2-polar mapping is defined

as
cos } sin

PR

C g b 70
My, = o M,
— sin -‘- cos

-l

~y
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9-1

A )

Figure 5.8: Bounding Planes for M;[.X]

: where M., is an arbitrary 2-polar mapping.

ﬁj Note that rotation is an orthogonal transformation which is distance-preserving. a
stronger condition than proximity-preserving. Equation 3.1 is still true for compact 2-polar
mappings. However. the reduction of the coordinate volume occupied by M [X]. A > 2.

through similar rotation or rotations is much harder to achieve. For multipolar mappings

of higher dimensiouns. a non-trivial reduction in coordinate volume by orthogonal transfor-
mations is probably only possible through exhaustive trial-and-error.

Note that the distance-preserving quality of orthogonal transformations such as
rotations or translations only applies to Euclidean distances in general. While translations

also preserve maxico distances. rotations do not.

5.8 Provisions for Pseudo-Quasimetrics

While most commonly encountered distance functions are cither metrics or pscudo-
metrics. there exist metric data where symmetry. i.e.. axiom M3. cannot be guaranteed.

Multipolar mappings are not able to preserve proximity for pscudo-quasimetrics in those

occasions. This section presents a method for introducing symmetry in pseudo-quasimnetrics.
This approach allows indirect application of multipolar mappings to many “well-behaved™

pseudo-quasimetrics at the expense of reduced efficiency.

-
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Definition 5.8.1 (Median Transformation) Let d be a distance function on X. The
median of d is defined as
- 1
d7(z.y) = 5 (d(z.y) +d(y.x)). Vz.ye X.
Note that d* is also a distance function on X.

[t is easy to prove that if d is a pseudo-quasimetric. its median d™ is a pseudo-metric.

Let d be a distance function on X. For finite X. we define
a =max { |d(c.y) —d(y.£)] | Vr.y € X}.

Note that ¢ might not be well-defined for an infinite space.® In Appendix B. given a finite
pseudo-quasimetric space (X.d). we prove that if the distance between a pair of points is
within 7 in (X.d). the distance between the same pair of points is within r + % in (.X.d™).

Formally. this is expressed by
Sulx.1) C Sy=(r.r + ). Vo€ X.Vr € R, (5.6)

The result enables us to transform a pseudo-quasimetric to a pseudo-metric with proximity

preserved.

From Equations 5.1 and 5.6. the following result can be derived.
My p[Sy(z.7)] C Sg, (M p(). VE(r + %)). YMep € My+(X).Vz € X.Vr e R™. (5.7)

where My+(X) represents the set of all multipolar mappings on (X.d™). From Equa-

tions 3.2 and 5.6. a result parallel to Equation 5.7 can be derived for maxico distances:

4 M p[Sal2.7)] € S (Micp(z).1 + 5). ¥Mip € My-(X).Vr € X.¥r € R, (5)
1 For most applications. the distances among data points are not given explicitly.

but rather are values of an analytic distance function which computes distance between a

pair of points based on the information. i.e.. attribute values of data records associated with

the two points. From the formulation of the distance function and the domains of attributes
participating in distance computation. it is often possible to derive the value of & without

exhaustive computation of all distance values.

*If the value |d(r.y) — d(y.r)]. r.y € X is bounded in an infinite space X'. the value of ¢ can be defined
as sup { |d(z.y) —d(y.£)| | Vr.y € X}.

}
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In reality. ¢ has to be relatively small. compared to the mean value of /™. for
efficient proximity search based on Equation 5.8. For many wmetric data sets with pseudo-
quasimetrics. efficiency can often be improved by computing ~local™ ¢ values. Let us define

:r— R7 as
ao(r) = max{ |[d(r.y) —d(y.x)] | y€ X}. Vre X.

Equations 5.7 and 5.8 are still true with & replaced by a(x). Similar to the derivation of <.
it is often paossible to compute a(r) without evaluating distance values between r and all
other points. In such casecs. for a search target z. its a(z) value can be generated on the

fly. The advantage of « over & is demonstrated in the following simple example.

C
Al Al A2 A3 A ' AS
f BO BI B2 B3 B+ B3
| co cl o c cs cs
. DO Di D2 D3 044 DS
EO El E2 E3 E4 ES

Figure 5.9: Example of Asymmetric Distance

Figure 5.9 illustrates an abstract street map where all streets are two-way except
for the two streets specifically marked. Let d be a distance function defined on the set of
street corners. X = {A0.... . E5}. The distance from one strect corner z to another one
y is measured by the minimum numbers of street segments required to travel from x to y.
For instance. d(A2. D2) = 5. d(C5. E5) = 2. and d(E5.C5) = 4. Clearly. d is a pscudo-
quasimetric. Let C represent the set of street corners inside the arca marked by the dashed

rectangle in Figure 5.9. It is easy to verify that

fdlz.y) ~d(y.z)| = 0. freCoryeC.

|d(z.y) —d(y.c)| < 2. otherwise.
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Thus. we have @ = 2. and

0 ifreC.

a(r) = )

2 otherwise.
Compared to &. a has the capability to model local asymmetry. and the efficiency can be
greatly improved for many search targets which are less influenced by asymmetric distance
values (i.e.. those points in C).

Note that the application of the proposed technique is not limited to data struc-

tures incorporating multipolar mappings. In fact. it can be applied to all hierarchical metric

data structures based on pseudo-metrics. including metric trees and vp-trees.

5.9 Multipolar Mapping versus Existing Approaches

There are two kinds of information in a metric data set. First. there is information
associated with each data point. Second. there is information describing the interrelation-
ships among data points. as encapsulated by the distance function. For a large metric data
set. the distance matrix is almost never pre-computed. since the size of the distance matrix
can easily outgrow the size required to store the information for the data poiuts.

The evaluation or computation of the distance between a pair of points is a good
choice as a basic measure counted toward the complexity or performance analysis of hier-
archical metric data structures. In fact. this is exactly the complexity measure used for the
limited performance studies in [64. 67]. Since metric trees with sphere decomposition and
the two non-bucket varieties of vp-trees share the same computational complexity when the
number of distance evaluations is used as the complexity measurement. we use the term
sphere trees to represent them as a group.

Given a metric data set of size n. to construct a balanced sphere tree takes nlogn
distance evaluations. The number of distance evaluations required to performn a proximnity
search in a sphere tree is the same as the number of internal nodes visited during the
search. [n a balanced sphere tree. it takes logn evaluations to locate just one point. i.c..
a proximity search with an infinitely small scarch radius. Since both the metric trees and
vp-trees were originally proposed for finding nearest neighbors instead of performing general
proximity searches. the performance analyses in [64. 67] are limited to very small search
radii. However. even for small search radii. the number of internal nodes visited for locating

nearcst neighbors is much larger than the theoretical lower bound log n.
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To compute a k-polar mapping requires kn — (ﬁ) evaluations. There are no more
evaluations needed to construct a point spatial data structure based on the mapping. Cow-
pared to the nlogn evaluations required for constructing the sphere trees. our approach is
certainly much more efficient. As for proximity search. the number of distance evaluations
needed is the number of points inside the corresponding sphere in the A-dimensional space
(sec Equation 5.2). While a more comprehensive performance study of multipolar map-
pings is still under way. it is clear to us that compared to sphere trees. point spatial data
structures based on multipolar mappings require significantly fewer distance evaluations for
proximity searches of small search radii.

We realize that when the distance evaluation is not a costly operation. our ap-
proach might not outperforin metric trees and vp-trees. Because of the fundamental dif-
ferences in these two approaches. only an empirical comparative study can flush out the
difference in performance under this circumstance.

Another potential advantage of the multipolar approach over the sphere trees is
that the multipolar approach only requires the ability to compute distances from the points
designated as poles to the other points in the data set. Spheres trees require the ability
to compute distance between arbitrary points in the data set. This could be a significant
issue when it is necessary to carry physical experiments or simulations in order to evaluate

a distance function.

5.10 Summary

Multipolar mapping and median transformation enable the application of existing
hierarchical metric data structures and point spatial data structures to support the metric-
based model at the physical level. Through this approach. metric data sets modeled by
pscudo-quasimetrics can be accessed effectively and efficiently through proximity queries.

While comprehensive performance results are not available at this moment. point
spatial data structures based on multipolar mappings demonstrate significant theoretical
improvements over existing hierarchical metric data structures such as metric trees and
vp-trees. There are two additional advantages to our approach. First. existing point spatial
data structures can be utilized with little or no modifications. Second. compared to existing
hierarchical metric data structures. our approach may require less distance information from

the metric data.
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Chapter 6

Performance Analysis

6.1 Introduction

[n order to evaluate the functionality and performance of multipolar mappings as
the foundation for a new class of efficient hierarchical metric data structures proposed in
Chapter 5. we present the results of a series of performance experiments.

The objective of these experiments is to explore the interrelationships amoung major
parameters of data sets and multipolar mappings. The results show us how various multi-
polar mappings perform under different circumstances. The performance index is based on
the efficiency of prozimity queries. In order to have a consistent and complete collection of
data sets with varying degrees of quantitative characteristics. synthesized metric data sets

are utilized for these experiments.

6.2 Data Synthesis

A metric data set of size n is synthesized by generating n points in a multidimen-
sional space where the Euclidean distance is used to calculate the distance between pairs
of points of the data set. The same process is also used to generate the metric data set
illustrated in Figure 5.2 of Section 5.3. A metric data set produced by this synthesis process

is determined by three factors:

1. the dimensionality of the embedding space.

2. the number of points to be generated. and
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3. the placement policy of those points.

To provide a standard framework for commparative study. all synthesized data sets
were generated such that the distance values fall into the standard interval [0. 100]. This was
achieved by restricting each coordinate of a data point in an m-dimensional embedding space
to the interval [0. 1007~ %] In other words. all points are selected from an rn-dimensional

!

hypercube of side 1007~ 2 where the distance between the furthest pairs of corners is exactly

100.

Our point placement policy is not concerned with the individual position of cach
data point. but rather the overall distance distribution induced by those positions as a
group. There are many placement schemes which can affect the distance distribution. For
analysis purposes. we focus on the degree of clusterness (or just clusterness) exhibited by
the actual point placement. As is shown in subsequent sections. the degree of clusterness
indeed affects overall distance distribution of a data set.

Based on clusterness. a synthesized metric data set is quantitatively characterized

by the following 5 parameters:

m  intrinsic dimensionality

n  number of data points

p percentage of points in clusters

¢ number of clusters

r  cluster radius
The value of p is in the interval [0.1]. First. (1 — p)n points are randomly and uniformly
selected from the embedded hypercube in the mn-dimensional space. Second. the remaining
pn points are randomly and uniformly selected from the ¢ embedded spheres of radius 7. A
uniform data set is a synthesized data set with p = 0. A data set with p > 0 is a clustered
data set.

Note that the notion of intrinsic dimensionality is just an artifact of the data syn-
thesis process. A similar notion might also be applicable to many real world metric data
sets. For instance. a census data set consisting of records of 1.000 attributes is sometimes
said to have 1,000 dimensions. Although the number of dimensions can have an impact
on the behavior of distance functions defined on the data set. a metric data set has no
dimensionality from the distance perspective. Another subtle point to keep in mind is that
a metric data set synthesized in this way is a pseudo-metric. It is not a metric since the syn-

thesis program might generate two or more points in the embedding multidimensional space
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with identical coordinates. However. the chance is extremely small and of no meaningful

consequence in our performance analysis.

6.3 Distance Distributions and Proximity Accumulations

In order to illustrate the performance analysis results. two kinds of graphs are
used extensively in this chapter - distance distribution and proximity accumulation. Both
graphs are histograms. although in this thesis they are usually drawn as continuous curves
instead of sequences of boxes. which allows multiple histograms to be overlayed in a single
figure for easier comparison.

Figure 6.1 is a distance distribution graph for a collection of 10 data sets of size
10.000 and varying intrinsic dimensionalities from 1 to 10. Each curve in Figure 6.1 rep-
resents a distance histogram of a specific data set. in which 100 bins are employed. The
r-axis of the distribution represents distance values which ranges from 0 to 100. the fixed
standard interval. and there are (10"‘)2 = 10® distance values among the 10% points of cach
data set.! By dividing the full interval of distance distribution [0. 100] into 100 bins. i.c..
subintervals. of equal size and counting the percentage of the 10® distance values falling into
each interval (represented as the y-axis). we have a histogram and a curve can be plotted
to connect the tops of all adjacent boxes.> The height of the curve is dependent on the
number of bins used for the underlying histogram. This is not a problem. however. since
we are only interested in the differences among curves.

Many distance distribution graphs are presented in this chapter. For convenicence.
we use the shorthand (n.n.p.c.r) = (1...10.10*.0.0.0) in the caption to indicate the
characteristics of the data set or data sets in question (Figure 6.1). The meanings of
individual symbols m. n. p. ¢. and r are described in Section 6.2. The keys listed on the
upper right corner of the figure correspond to the data sets described by the (. n.p.c.r)
shorthand. The first key indicates the data set with rn = 1. the second key for rn = 2. and

S0 O11.

For example. based on Figure 6.1. we can see that for rn = 2. about 2% of distance

'One might argues that there are only %10" x (10% - 1) “significant” distance values. since our svnthesis
process produces pseudo-metrics. This is a moot point. however. For our analysis purposecs. the reflexiviry
and svmmetry in the synthesized metric data are not taken into account.

*To reduce the computation time. only a subset of all 10° possible distance values are sampled to derive
the distance distribution. In this case. we randomly select 100 points and use all 10° distance measures
induced by the 100 point metrics as samples.
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Figure 6.1: (m.n.p.c.r) = (1...10.10%.0.0.0). Distance distribution.

values fall into [30.31] (recall that this histogram has 100 bins). In other words. for an
arbitrary point. we expect that about 2% of the points in the data set are at least 30 and
at most 31 away from it. Similarly. we can expect that for in = 1. there are about 2% of
the points are within 1 unit away from an arbitrary point. As mn increases. this percentage
drops drastically. For m > 7. for an arbitrary point. virtually all the other points are at
least at a distance of 10 away.

This phenomenon is known as the “curse of dimensionality.” That is. the spatial
density of data in the embedding space decreases rapidly as the dimensionality of the em-
bedding space increases. Figure 6.1 shows that while all distance values fall into the same
standard interval. the higher the intrinsic dimensionality. the more centralized. i.c.. less
spread. the distance distribution becomes. In other words. as the intrinsic dimensionality
grows. for an arbitrary point. the chance of having a close-by neighboring point decreases
significantly. This phenomenon has a significant performance impact on all proximity scarch
mechanisms.

Compared to a distance distribution graph. a proximity accumulation graph en-
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Figure 6.2: (rn.n.p.c.r) = (1...10.10%.0.0.0). Proximity accumulation.

ables us to examine the same data set from a proximity perspective. Figure 6.2 is a proximity
accumulation graph showing the proximity structures of the same 10 data sets illustrated
in Figure 6.1. Similar to a distance distribution graph. the z-axis of a proximity graph
represents the standard distance interval [0.100]. The y-axis represents the expected per-
centage of points falling into a sphere with its radius specified on the z-axis. Unlike distance
distribution graphs. proximity graphs are accumulative in nature. Thus. while the height
of a distance distribution curve depends on the number of bins. the height of a proxim-
ity accumulation curve stays the same no matter how many bins are used. The “curse of
dimensionality™ can also be clearly observed in Figure 6.2.

The proximity accumulation graph is a useful tool for illustrating the efficiency of
proximity searches after the employment of a multipolar mapping. Given a fixed distance as
search radius. the proximity graph of the transformed data set gives the expected munber
of points needed to check inside the search radius. While multipolar mappings preserve
proximity for pseudo-metrics. the results of a multipolar mapping has different distance

distribution and proximity accumulation compared to the original one. By plotting both
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the proximity curves of the original metric data and the transformed data. the percentage

of points that map to false positives is clearly illustrated.

6.4 Intrinsic Dimensionalities

This section presents performance results of multipolar mappings for uniform data
sets of the same size but different intrinsic dimensionalities. This provides us with the basic
insights and benchmarks of the performance issues from which subsequent results can be put
into perspective. All the results presented in this section are based on multipolar mappings
with randomly selected poles. The performance impact of pole selection is presented in a
later section.

Figures 6.1 and 6.2 show the distance distributions and proximity accumulations
of data sets of 10.000 points with intrinsic dimensionalities varying from 1 to 10. The
performance of a 5-polar mapping on these data sets is plotted in Figure 6.3. For each data
set. a pair of distance distribution and proximity graphs are presented. There are two curves
in each graph which correspond to the original data set and the multipolar-transformed data
set respectively.

Since the distance distributions and proximity accumulations for the [-dimensional
data set and its transformation under the multipolar mapping are almost identical. there
appears to be only one curve in both Figures 6.3(a) and (b). The impact of the “curse
of dimensionality™ shows clearly in Figure 6.3. Once the intrinsic dimensionality exceeds
3. the distance distribution of the transformed data set shifts away from the one of the
original data set. As a result. for small search radii. the percentage of false hits increases
dramatically which makes multipolar-based proximity search less efficient.

Theoretically. the “curse of dimensionality”™ would disappear if the size of the data
set increases along with the intrinsic dimensionality. However. to avoid the “curse of dimen-
sionality”. the growth rate in size would have to be exponential to match a lincar growth
rate in dimensionality. In order to demonstrate this point. a similar series of experiments
was done on a data set of 100,000 points.

Figure 6.4 shows the distance distributions and proximity accumulations of data
sets of 100.000 points with intrinsic dimensionalities varying from 1 to 10. The performance
of 5-polar mappings on these data sets is plotted in Figure 6.5. Two observations can be

drawn from a simple comparison between Figures 6.3 and 6.5:
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Figure 6.3: (m.n.p.c.r) = (1...10.10*.0.0.0). Distance distributions and proximity
accumulations.
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Figure 6.4: (m.n.p.c.r) = (1...10.10%.0.0.0). Distance distribution and proximity accu-
mulation (overlayed).

1. The curse of dimensionality stays unchallenged in these larger data sets.

PRI - -

o

Multipolar mappings have an almost linear time complexity (constant. percentage

wise) as the sizes of the data sets are increased 10 fold. This is one major advantage

ISP

of multipolar mappings which is extensively explored in Section 6.6.

Table 6.1 shows in detail the performance of 5-polar mappings as the size of a 2-

dimensional data set increases from 10.000 to 100.000. The numbers in the table indicate
the expected number of points inside a sphere centered at a randomly selected point with

the specified radii.

6.5 Clustered Data

Data points of a real data set are rarely distributed both randomly and uniformly
in the sampling spacc or geometric space. A uniform distribution often includes explicit
regular patterns for point placement such as those data sets which can be modeled by

regular grids (Section 2.4). A nonuniform distribution might or might not have explicit poiut

placement patterns. However, the notion of nonuniformity implies clusterness. which can be
considered as implicit point placement patterns. Note that the term “point placement” does
not necessarily mean point coordinates but rather the interrelationships among points. i.c..

the inter-instance relationships.

”y
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Figure 6.5: (m.n.p.c.r) = (1...10.10%.0.0.0). Distance distributions and proximity
accumulations.
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Distance 10* Points 10° Points
Original | 35-polar Original 5-polar
1 7.7000 8.9600 62.6400 86.5700
2 26.4100 30.9700 243.9800 335.8800
3 55.6600 64.9500 541.2000 741.2700
4 95.9700 | 113.8700 {f 957.1500 | 1300.5400
3 148.9100 | 175.2300 || 1483.4500 | 2011.5800
6 210.0100 | 249.9500 | 2115.8800 | 2866.2300
7 280.4900 | 335.0100 || 2857.8200 | 3866.4500
8 363.4000 | 434.9400 {| 3690.0600 | 4994.7000
9 155.0700 | 543.6100 || 4632.2300 | 6254.7000
10 555.1800 | 661.6100 || 5659.6300 | 7624.6100

Table 6.1: Performance of 5-polar mappings on 2-dimensional data sets of sizes 10" and
10°.

In other words. real data without explicit inter-instance relationships arc often
clustered. since. from a distance perspective. complex and implicit inter-instance relation-
ships are often manifested as a collection of clusters. Although there are various kinds of
clusters. for performance analysis purposes we focus on their most generic form sphere.
As mentioned in Section 6.2. two parameters. ¢ and r. are used to specify the number and
radius of clusters. in the form of spheres. embedded in the synthesized metric data set.
Parameter p is used to specify. indirectly. the number of points in clusters.

A series of experiments on data sets with (m.n.p.c.r) = (10.10%. p. 100.2). where
p = 0.0.1.... . 1.0. was performed. Figures 6.6{a)-(k) illustrate their respective distance
distribution histogram with 100 bins. Recall that cach distance distribution represents the
average of 100 point metrics at randomly selected points. In Figure 6.6(1). the curves of all
these histograms are overlayed for casy comparison. Note that as p increases. the size of
the bump near the origin also grows. In order to better illustrate the impact of clusterness.
Figure 6.7 shows the distance distribution histograms in the interval [0.20] for the same
data sets with 10.000 bins.

Figure 6.8 shows the distance distribution histogram on the interval [0. 20] for cach
of the data sets after a 5-polar mapping is applied. Similar to Figure 6.7, 10.000 bins are
used. Note that all subfigures in Figure 6.7 and Figure 6.8 have the same scale. Based on
Equation 5.2 in Section 5.4. the arca of the dark region in any interval [0.¢]. £ < 20. of a

subfigure in Figure 6.7 would have to be less than the area of the dark region in the samme
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interval of the corresponding subfigure in Figure 6.8.

For instance. let us compare Figure 6.7(k) with Figure 6.8(k). All points consti-
tuting the small peak in [0.4] of Figure 6.7(k) are mapped by the 3-polar mapping into a
small peak and its adjacent area in [0.4] of Figure 6.8(k) (Equation 3.2. Section 5.4 and
Theorem B.3. Appendix B).

Now let us examine the case of a uniform data set (Figure 6.7(a)). For an arbitrary
point. a proximity query of radius 8 or less is extremely unlikely to find its nearest neighbor.
However. lots of points would be mapped into a sphere of radius 8 by a 3-polar mapping
(Figure 6.8(a)). Locating the nearest neighbor for an arbitrary point is most likely to be a
very inefficient process under such circumstances.

On the other hand. we expect that a proximity query of radius 2 would suffice to
find the nearest neighbor for an arbitrary point in the data set of p = 0.5 (Figure 6.7(f)).*
Ouly a very small percentage of points would have to be checked in this case (Figure 6.8(f)}.

Figure 6.9 illustrates the performance of nearest neighbor queries. The z-axis
represents p. the degree of clusterness, while the y-axis represents the percentage of points
to be checked to carry out the queries. It is obvious from the figure that the performance
improves significantly as p increases from 0 to 0.2. However. as p increases bevond 0.2,
the density of each cluster reaches a level such that there exist many near but non-nearest
neighbors to an in-cluster search target. A significant portion of these points are mapped
to images which are even closer to the image of the search target than the image of the
nearest neighbor. As a result. the performance degrades very slightly and very gradually
as p increases from 0.2 to 1.

Figure 6.10 illustrates the performance of proximity queries at various scarch radii.
The notation n% indicated in each subfigure represents a search radius at n% of the average
distance of the metric data set. Similar to Figure 6.10. the r-axis represents p. the degree of
clusterness. PC indicates a graph for percentage of points checked for proximity queries. [n
a PC graph. the lower the percentage. the better the performance. FP indicates a graph for
percentage of false positives. An FP graph has to be interpreted in light of its corresponding

PC graph. however. Specifically. given a data set and a multipolar mapping, its PC and

*In fact. the appropriate search radius for nearest neighbor queries on a particular data set can be
determined by summing the individual bin percentages starting from the leftmost bin. i.e.. the one closest
to the origin. Since there are 10. 000 points in the data set. once the accumulated percentage reaches 0.01%.
the search radius corresponding to the last bin in the summation is the expected radius for locating the
nearest neighbor.
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Figure 6.8: (m.n.p.c.r) = (10.10*.0.0...1.0.100.2). Partial distance distribution his-
tograms after 5-polar mappings.
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Figure 6.9: (m.m.p.c.r) = (10.10*.0.0...1.0.100.2). Performance of nearest neighbor
queries.

: FP graphs are related by:
_ Pu(r) = Pr(r)
Prir) = Pr(r)

where Pr(r) represents the percentage of points expected in a sphere of radius r in the

: original data set - the percentage of true positives: Py(r) represents the percentage of
points expected in a sphere of radius r in the multipolar-transformed data set - the y index

of a PC graph. Pg(r) is the expected percentage of false positives at search radius r  the

y index of an FP graph.

Some remarks about the PC graphs in Figure 6.10 are in order.

l. From Figure 6.10(a). (¢) and (e¢). we can see that the PC performance decreases as
p increases. since the larger the p value. the more points are expected to be mapped

into a sphere of a modest radius. This effect can also be easily observed in Figure 6.8.

2. The performance of 10% average distance proximity query at p = 0.3 seems to be
slightly out of order (Figure 6.10(e)) - a phenomenon caused by a poor set of randomly

selected poles (Section 6.8).

TR

3. For 20% average distance proximity queries. the PC performance is rather erratic

(Figure 6.10(g)). since such a large search radius (compared to the size of clusters)

effectively masks the contribution of different p values. Thus. the quality of poles

dictates the overall performance in this situation.

4. Consistent with Figure 6.10(e). Figure 6.10(g) also suggests that the set of poles used

for p = 0.3 are indeed poor sclections.
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With respect to the FP graphs. the average distances for this series of data sets
range from 37 to 39 appreximately (Figure 6.6). Hence we can make the following observa-

tions.

1. 5% of the average distance is around 2 which is not large enough to include the entire
range of the small peaks corresponding to the clusters (Figure 6.7). Thus Pp(2) is
very small compared to Py;(2). Since the growth rate of Py;(2) is faster than P-(2).

the percentage of false positives increases as p increases (Figure 6.10(b)).

2. 7.5% of the average distance is around 3. A significant portion of the small peak of
clusters is included in Pr(3). In other words. there is significant growth in Pr(3) as
p increases. At the same time. the growth rate of Py;(3) is rather modest and the
difference between Py;(3) and Pr(3) gets smaller. As a result. Pp(3) decreascs as p

increases for 7.5% (Figure 6.10(d)).

3. The same reasoning of the 7.5% FP graph can also be applied to the FP graphs for
10% and 20% (Figures 6.10(f) and (h)).

For a 10-dimensional data set. in order to counter the effect of the curse of di-
meunsionality and get a relatively stable performance measure of both nearest neighbor and
proximity queries. it seems that 20% clusterness. i.e.. p = 0.20. is necessary (Figures 6.9
and 6.10). Also. it might be unrealistic to expect real world metric data to have 100%
clusterness. i.e.. p = 1.00. In the subsequent experiments. we focus on data sets with

p =0.25.0.50.0.75.

6.6 Data Set Sizes

From the preliminary results of Section 6.4, it seems that the multipolar approach
has an almost linear time complexity for proximity querics. Although we have not yet done
a formal complexity analysis. conceptually. this conjecture is very plausible. Recall that the
time complexity of a proximity query depends on the number of points falling into a specific
sphere in the transformed data. As the data set size increases. the point density increases
linearly. If the linear increment in point density is somewhat preserved by the multipolar
mapping. a linear increment in the number of points inside the sphere would be witnessed.

[n addition. an increase in point density would result in a smaller search radius required
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for nearest neighbor queries. and we suspect that the time complexity of nearest neighbor
queries would be even better than linear. Two series of experiments were conducted to
explore these two conjectures. The first used data sets of sizes from 10* to 10°: the second
from 10° to 10,

Figure 6.11 shows the performance results of 3-polar mappings on metric data sets
with (rm.n.p.c.t) = (3.1.20.100.20). where n = 10*.2 x 10%.... .10 x 10*. All the results
are estimated values based on 100 randomly selected points from the data sets.

Figure 6.12 shows the performance results of 5-polar mappings on metric data
sets with (m.n.p.c.r) = (3.n.20.100.20). where n = 10°.2 x 10°.... .10 x 10°. For easy
comparison. the result of the data set with n = 10" is also included in the figure. All the
results are estimated values based on 100 randomly selected points from the data sets.

From both Figures 6.11(a) and 6.12(a). it is clear that the time complexity of
nearest neighbor queries is better than linear. Note that a linear time complexity would
appear as a horizontal line. Upon closer examination. it seems that the percentage of points
to be checked for nearest neighbor queries on . = 10° is about 10% of the percentage for
n = 10*. Similarly the percentage for n = 10® is about 10% of the one for n = 105, Thus.
both curves suggest close to constant time complexity for nearest neighbor queries based
oun our performance model.

While the curves in Figures 6.11(b) and 6.12(b) are not strict horizontal lines.
they are strong evidences suggesting that the overall time complexity for proximity queries
is indeed linear. or close to linear. Although there are peculiar cases such as the ones for
n=4x10*.5x 10%.7 x 10°. they arc exceptions rather the rule. One has to remember that
there exist performance differences among 5-polar mappings on the same data set based
oun choice of pole sets. We believe that we happened to pick an underperformer in each of
the cases for n = 4 x 10*.5 x 10°.7 x 10°. The performance differences among multipolar

mappings on the same data set with the same number of poles is studied in Section 6.8.

6.7 Number of Poles

From Equation 5.5. Section 5.5 and Theorem B.6. Appendix B. it is clear that a
pole set P; would outperform a pole set P if P, C P,. Based on the theoretical result. we
conjecture that if |Py| < |Py]. Py is likely to outperform P. The objective of this section is

to validate this conjecture experimentally.
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Three collections of data sets were generated with an identical set of parameters.
(m.n.p.c.r) = (10. 10*. p. 100.2). where p = 0.25.0.50.0.75. The experiment results appear
in Figures 6.13. 6.14. and 6.15. based on 100 randomly selected points from each of the
transformed data sets.
Based on results from the three independent series. clearly. as the number of
poles increases. performance improves. From subfigures (a) and (b) of Figures 6.13. 6.1l
and 6.15. it is clear that the performance does not vary significantly for this range of p
values. Nonetheless. data sets with lower p values do have a slightly better overall perfor-
mance. except when only a small number of poles are employed (e.g.. three poles or less).
Performance with regard to a small number of poles has more to do with the quality of
pole sets than the degree of clusterness. As the number of poles increases. the performance
: differences among sets of poles diminish and the effect of clusterness prevails. However.
subfigure (c) of Figures 6.13. 6.11. and 6.15 show that lower p values do tend to have more
false positives than the ones with higher p values. Since a low p value implies a low Pr

value. the percentage of false positives rises as p increases.

6.8 Pole Selection

From the results presented in Sections 6.3. 6.6. and 6.7. it is clear that the selection

of poles dees have an impact on the performance of multipolar mappings. Compared to
data parameters such as size. dimensionality and clusterness. or the number of poles utilized.
the impact of pole selection is usually less significant. However. we have little control over
the data parameters. and a higher number of poles results in higher space complexity and
other performance overheads which are not part of our current performance model. Thus.
better pole selection remains the most cost-effective way to improve performance under
many circumstances.

In Section 5.6. we define the notion of an average interpole distance which can
be used as a relative quality measurement for a collection of pole sets. Several series of

experiments were conducted to explore the relationship between average interpole distances

and performance of multipolar mappings. The results of these experiments are presented
and analyzed in this section. At the end. we derive a set of simple guidelines for better pole
selection based on the results.

Figure 6.16 illustrates the performance of a group of 4-polar mappings with a wide

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g L TSR

T RIS

Percentage of Points

Percentage of Points

Pescentage of Points

35

30

25

20

15 |

10

3as

30

25

20

15

100

20

80

70

60

50

40

30

20

10

s [
Number of Poles

(c) False-positives for 10% proximity queries.

"npla ——
"np2a”
“npla” B
<4 5 (=] 7 8 9 10
Number ot Poles
(a) Nearest neighbor queries.
"nplta® ——
“np2a”
“np3a” e
&".‘\
. \*\ . . N
2 3 a 5 (=] 7 a 9 10
Number of Poles
(b) 10% proximity queries.
—————r + —
e T "nptla® ——
. ~— ‘npga” .
IS “np3a”
\\ ~
o
~. B
AN
N -1
~
~. .
\.
. \\ .
\\\ |
N N - N . MRS N
2 3 4 a8 9 10

126}

Figure 6.13: Collection 1. (m.n.p.c.r) = (10.10%.p.100.2). p = 0.25.0.50.0.75. Efficiency
with respect to L.... .10 poles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RNy < e

PETRIP A

Percentage of Poinis

Percentage of Points

Pescentage of Points

35

30

25

20

35

30

25

20

100
90
80
70
&80
50
40
30
20

10

5 6
Number of Poles

(c) False-positives for 10% proximity queries.

AP ibe —
“np2b”
o “np3b” g
TS ) .
1 2 3 4 s 6 7 8 9 10
Number of Poles
(a) Nearest neighbor queries.
“npib”
“np2b”
“np3b" 4
e e "
1 a s (5] a8 9 10
Number of Poles
(b) 10% proximity queries.
"npitb® ——
- “np2b” -
“np3b”
o \ .
\\
1 2 3 a a8 9 10

Figure 6.14: Collection 2. (m.n.p.c.r) = (10.10*.p.100.2). p = 0.25.0.50.0.75. Efficiency

with respect to L.... .10 poles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Percentage of Points

Percentage of Points

Percentage of Points

35

30

25

20

35

100

[0

70

60

SO

40

30

20

10

“‘nple” ——
“np2c”
“np3c” -4
2 3 4 s [=3 9 10
Number of Poles
(a) Nearest neighbor queries.
“nple” ——
“np2c”
“Nnp3c” P
2 3 4 = (=] 9 10
Number ot Poles
(b) 10% proximity queries.
;\ "npile” ——
- - “np2c” - .
\\ “np3c”
N
—
2 3 9 10

5 [=3
Number of Poles

(c) False-positives for 10% proximity queries.

Figure 6.15: Collection 3. (m.n.p.c.r) = (10.10%.p. 100.2). p = 0.25.0.50.0.75. Efficiency
with respect to 1.... .10 poles.



W

Mo iz

123

range of average interpole distances on data sets of (m.n.p.c.r) = (10. 10, p. 100.2). where
p = 0.25.0.50.0.75. The performance of nearest neighbor queries is very stable over the
whole spectrum of average interpole distances (Figure 6.16(a)). This is hardly surprising.
however: from subfigure (a) of Figures 6.13. 6.14. and 6.135. it is clear that a 4-polar mapping
has enough differentiation power to provide good performance for small search radii required
for nearest neighbor queries. Using more than 4 poles has little effect on performance. If the
performance can not be further improved by adding poles. the variation in average interpole
distances certainly does not matter.

Figure 6.16(b) and (c) indicate that for 10% proximity queries. the performance
does improve as the average interpole distance increases. However. it seems that once the
average interpole distance reaches the average distance of the data (approximately 38) the
performance does not improve significantly.

In addition to the average interpole distance. we can measure the quality of a
pole set by the standard deviation of its interpole distances. Figure 6.17 illustrates the
average interpole distances versus standard deviations for 1.000 randomly generated 4-pole
sets on data sets of (rn.n.p.c.r) = (10.10*. p. 100.2). where p = 0.25.0.50.0.75 the same
collection of data sets used in Figure 6.16.

Two groups of pole sets can be identified in each subfigure of Figure 6.17. The
smaller group appears above and slightly to the left of the larger group. By inspection. we
determined that this outlier group consists of all pole sets which contain at least two poles
in the same cluster. Since the distance between these two poles is much smaller than their
distances to the other poles. these pole sets have a higher than usual standard deviation.
From a distance perspective. points of the same cluster share similar views toward the other
points outside the cluster. This is particularly true for small clnsters. Thus. a d-pole set
with two poles in the same cluster has the differentiation power roughly equivalent to that
of a 3-pole set. For convenience. we call the group of pole sets with at least two poles in
the same cluster as the degenerate group. and the other group as the normal group. In
the degenerate group. the larger the average interpole distance. the larger the standard
deviation. Also, as the value of p increases. the probability for a pole set to have at least
two poles in the same cluster increases. which results in a larger degenerate group.

Using the same data set as Figure 6.17(c). we illustrate the results for 1. 000 6-pole.
8-pole. and 10-pole sets in Figure 6.18. For clear identification. we test each pole set to see

if there are two poles in the same cluster. Pole sets in the degenerate group are marked as
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Figure 6.16: (m.n.p.c.r) = (10.10*.p.100.2). p = 0.25.0.50.0.75.

mappings with respect to average interpole distances.

Efficiency of 4-polar
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Figure 6.17: Average interpole distances versus standard deviations.
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- in the figures. As the number of poles increases. it becomes harder to differentiate the
two groups based on average interpole distances and standard deviations. Although the
degenerate group is not as well separated from the normal group. its members still tend to
have higher standard deviations than members of the normal group.

The performance of 4-pole sets on (m.n.p.c.r) = (10.10%.0.75.100.2) is illus-
trated in Figure 6.19. based on the average interpole distances. Two serics of pole sets
are selected from both the normal group and the degenerate group such that the whole
spectrum of average interpole distance are represented. The two curves in cach subfigure
correspond to samples in the normal group and the degenerate group respectively. As we
can see. while there is no significant performance differences in nearest neighbor queries for
the two groups. the normal group performs better for 10% proximity queries.

The performance of 4-pole sets on (mn.n.p.c.r) = (10.10%.0.75.100.2) is illus-
trated in Figure 6.20. based on the standard deviations of interpole distances. The results
are based on all the pole sets in the normal group with an average interpole distance be-
tween 34 and 36. Clearly. standard deviation has little influence on the performance of both
nearest neighbor queries and proximity queries.

From the results presented in Figures 6.16 and 6.19. we can derive the following

simple guidelines for pole selection with a fixed number of poles.

1. For nearest neighbor queries. the performmance is so stable that almost any pole set

provides good performance.

o
.

For proximity queries. there does exist appreciable performance differences among

pole sets. An ideal pole set would satisfy the following two criteria:

(a) There are no two poles in the same cluster.

(b) The average interpole distance is above the average interpoint distance.

In general. we do not have a priori knowledge of the data set in question. e.g.. the cluster
sizes and average distance. However. both criteria can still be easily verified with a good
confidence level through random sampling. For instance. we can randomly generated n pole
sets and computed their average interpole distances. This would give us an estimate of the
average interpoint distance. Among those with average interpole distance larger than the
average interpoint distance. we can pick one without a pair of poles which are particularly

close to each other.
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Figure 6.18: Average interpole distances versus standard deviations.
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Figure 6.19: (m.n.p.c.r) = (10.10'.0.75.100.2).

respect to average interpole distances.

Efficiency of 4-polar mappings with
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Figure 6.21: (m.n.p.c.r) = (10.10%.0.75. 4. 4). 1.000 4-pole sets.

6.9 Cluster Centers as Poles

Theoretically. it seems that the centers of clusters might be particularly good
candidates for poles. since they provide a less biased view to the other points in the clusters.
This conjecture can not be verified from the experiments described in Section 6.8. since they

are all based on clustered data sets with 100 clusters. With so many clusters. whether the

poles are cluster centers or not has almost nothing to do with the performance of the pole
set. The objective of this section is to study the validity of our conjecture by generating
and testing on data sets with a small number of clusters.

Figure 6.21 illustrates the average interpole distances versus standard deviations
for 1.000 randomly sclected pole sets on (rn.n.p.c.r) = (10.10".0.75.4.4). Since there arce
only 4 clusters in the data. there is a high probability that a pole set has two poles in the
same cluster. resulting in a rather large degenerate group. In fact. the degenerate group

can be further decomposed into 4 subgroups which correspond to:

l. pole sets with exactly one pair of poles in the same cluster.

(8]

pole sets that consist of two pairs of poles in which cach pair are in the same cluster.

3. pole sets with a triplet of poles in the same cluster. and

4. pole sets with all four poles in the same cluster.

Figure 6.22 illustrates the performance of 4-polar mappings with respect to average

interpole distances on (tn.n.p.c.r) = (10. 101.0.75. 4. 4). The normal group and degenerate

s
Y
4

el
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group are represented by > and - respectively. The 4-pole set consisting of the 4 cluster
centers is marked as 2. The normal group still performs better than the degenerate group in
both the nearest neighbor queries and proximity queries. However. the pole set consisting
of cluster centers does not seem to have a performance advantage over the other pole sets in
the normal group. Overall the performance is much worse compared to Figure 6.19. This
is understandable. however. Note that there are only 4 clusters. and points are distributed
uniformly inside ecach of the clusters. While it is easy to differentiate points from differcur
clusters. it becomes much harder to differentiate points from the same cluster. The fact
that there is a significant portion of points uniformly distributed in a cluster gives rise to
the curse of dimensionality at the intra-cluster level.

Another series of similar experiments was performed on a 2-dimensional data set.
(rn.n.p.c.r) = (2.101.0.75. 4. 5). which is illustrated as a scatter plot in Figure 6.23. Com-
pared to (re.n.p.c.r) = (10.10%.0.75. 1. 4). this data set has a much higher point density.
Figure 6.24 shows 1.000 randomly generated 4-pole sets in which both the normal group
and degenerate group are clearly marked. Again the degenerate group overlaps the normal
group but tends to be slightly above and to the left of it. The performance results are
presented in Figure 6.25. As we can see. the results of (m.n.p.c.r) = (2.10".0.75. 4. 5) are
better than the results of (rn.n.p.c.r) = (10.10*.0.75. 4. 4). The pole set consisting of the

cluster centers performs no better than the other pole sets in the normal group.

6.10 Greedy Algorithm

Based on the guidelines for pole selection in Section 6.8. a greedy algorithm can
be implemented to find a "good™ pole set. First. our greedy algorithm randomly generates
1.000 pole sets. Second. the algorithm sorts all the pole sets in the normal group and outputs
the pole set with the highest average interpole distance in this group. The objective of this
section is to evaluate the merits of such a greedy algorithm.

Figures 6.26. 6.27. and 6.28 duplicate the results of Figure 6.13. For each subfigure.
in addition to the curve of the randomly selected pole sets used in Figure 6.13. another curve
is drawn to represent the pole sets generated by the greedy algorithm. It is clear that the
pole set selected by a greedy algorithm does not always guarantee better performance. Even
when better performance is indeed achieved by the greedy algorithm. the improvement is

very marginal. Thus. such an aggressive approach is not necessary. It suffices to follow the
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Figure 6.22: (m.n.p.c.r) = (10.10*.0.75. 4. 4). Efficiency for 4-polar mappings with respect
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simple guidelines (Section 6.8) to find a reasonable pole set.

Figure 6.29 illustrates the performance of multipolar mapping with respect to the
number of poles. Five curves are plotted in each subfigure which correspond to the Ist. 3rd.
6th. 10th. and 1000th pole sets in 1000 randomly selected pole sets from the normal group
sorted by average interpole distance in ascending order. The results are consistent with
previous work. Pole sets with high average interpole distances tend to perform better than
ones with low average interpole distances. However. if enough poles are used. say four poles
for (m.n.p.c.r) = (10.10%.0.50.100.2). the performance can no longer be significantly
improved and thus the variation in average interpole distances has very little effect on

performance.

6.11 Very High Dimensionality

Most results presented in this chapter are based on metric data sets of 10 intrinsic
dimensions. In order to evaluate the curse of dimensionality in higher dimensions. several
tests on data sets of in = 100 and p = 0.25 have been performed. These preliminary
experiments show that with a 3-polar mapping. less than 0.1% of points are checked for
nearest neighbor queries. and almost 20% of points are checked for 10% proximity queries.
compared to 0.03% and 0.3% required respectively for data sets of m = 10 and otherwise
identical parameters (Figure 6.11). [t seems that while the curse of dimensionality has a
significant impact on proximity queries. the performance of nearest neighbor queries is much

less affected.

6.12 Summary

Based on the performance results presented in this chapter. we make the following

general conclusions.

[. Although the curse of dimensionality puts a toll on the performance of both nearest
neighbor and proximity queries. the impact on nearest neighbor queries on clustered

data is not significant.

2. The multipolar approach has an almost linear time complexity for proximity queries.

Time complexity for nearest ncighbor queries is almost constant.
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Figure 6.27: (m.n.p.c.r) = (10.10%.0.50. 100.2). Efficiency for multipolar mappings with
respect to the number of poles. A" and "B” correspond to randomly selected pole sets
and pole sets selected by greedy algorithm respectively.
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Figure 6.28: (m.n.p.c.r) = (10.10%.0.75.100.2). Efficiency for multipolar mappings with
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3. Compared to intrinsic dimensionality. it seems that only a small number of poles
is required to achieve good performance on clustered data. For instance. f-polar

mappings scem to be sufficient for 10-dimensional clustered data.

1. Simple and efficient guidelines are available to avoid poor pole sets which are rel-
atively rare under most circumstances. Aggressive pole selection. such as a greedy
algorithm. can not guarantee better performance most of the time. Even when there

is a performance improvement. it is very marginal.

Items 2 and 3 are our conjectures based on experiments on data sets of m < 10. They are

subject to further validation.
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Chapter 7

Conclusions

7.1 Overview

[n the recent past. there has been a growing trend in the database community to
extend existing database technologies to scientific applications. such as scientific database
systems. multimedia database systems. and geographic information systems. This trend
is fueled by the ever-increasing complexity in scientific data and made possible by the
availability of low-cost mass storage devices.

The objective of a database system is to maintain information and to make that
information available on demand [12]. To maintain information is to have the information
properly modeled and stored. To make the information available on demand requires ef-
fective and efficient data indexing. Scientific data. which include multimedia (e.g.. images.
audio. and video) and non-standard data (e.g.. finger prints and DNA sequences). are char-
acterized by rich interrelationships. both inter-entity and inter-instance. In order to apply
database technologies to scientific data. new data models and indexing schemnes are required
to maintain scientific data and make scientific data available on demand.

The metric-based scientific data model presented in this thesis is designed to ad-
dress the modeling need of a wide range of scientific data at the conceptual level. While
DDL and DML based on the proposed model are vet to be developed. ad hoe metric formu-
lations suffice as implementation models for many applications. A new class of hierarchical
data structures is proposed to provide direct support of metric-modeled scientific data at the

physical level. These data structures enable efficient indexing based on proximity queries.
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7.2 Contributions

This thesis presents a complete framework for scientific data management and
knowledge exploration based on current database technologies. This section summarizes its
major contributions.

In order to provide motivation and perspective. we start with a survey of existing
scientific data models. Three implementation primitives. geometry. topology. and index-
able topology. are defined to establish a coherent theoretical foundation for studying and
comparing the existing models.

At the conceptual level. we present a metric-based model developed from two fun-
damental notions. data-as-functions and pseudo-quasimetrics. which are used to model the
inter-entity and inter-instance relationships respectively. In addition. a detailed approach
for metric derivation based on metric theory and general topology is developed. The ap-
proach itself is useful as a paradigm for knowledge discovery from the metric perspective.

Thanks to the formal mathematical semantics of the metric-based model. the
models and metrics derived can be formally validated. The notion of continuity is used
as a precise mathematical tool for validating the results of the metric derivation process.
for both data modeling and knowledge discovery purposes.

Compared to the spatial data models and existing scientific data models arising
in computational fluid dynamics and scientific visualization. the metric-based model offers
more flexibility and generality. In particular. the process for metric derivation based on
observable properties can be very valuable for data mining in categorical data. From the
knowledge discovery perspective. we believe the metric-based data model has tremendous
potential as the foundation for developing various data mining mechanisms.

At the physical level. we have developed an innovative approach. the multipolar
mapping. which enables us to utilize existing point spatial data structures for storage and
indexing of metric data with pseudo-metrics. To extend this approach to pscudo-quasimet-
rics. a simple method. the median transformation. was developed to derive a pseudo-met-
ric from a pseudo-quasimetric. Using the median transformation. all existing hierarchical
metric data structures can also be used for metric data with pseudo-quasimetrics.

A series of experiments was carried out to measure the performance of multipo-
lar mappings under various circumstances based on a restricted performance model which

takes into account only the number of distance evaluations required for a proximity query.
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The results demonstrated good performance for both the nearest neighbor and proxim-
ity queries on clustered data of intrinsic dimensionality rn < 10. It is also evident that
the multipolar approach is very robust and predictable with regard to many parameters
of the mapping itself. Simple guidelines are available for fine tuning major parameters of
multipolar mappings based on characteristics of the metric data set in question.

Limited experiments on clustered data of mn = 100 showed a much more pro-
nounced curse of dimensionality for proximity queries. However. the perforimance of ncar-
est neighbor queries only suffers slightly compared to the performance on clustered data
of m = 10 and otherwise identical parameters. Note that the curse of dimmensionality also
exerts significant performance penalty on all existing metric data structures. While it is
still unclear how much performance edge the multipolar approach is able to maintain for
proximity queries on data sets with very high intrinsic dimensionalities. based on the pre-
liminary results. we are fairly confident that multipolar approach will easily outpertorm
existing hierarchical data structures on nearest neighbor queries on a very wide range of

data.

7.3 Future Research

Future research on the metric-based model can be done at all three abstraction
levels. At the conceptual level. we are most interested in the extension of continuity and
progressive refinements of topologies. The general notion of continuity can be further ex-
tended to incorporate probability. For instance. a data function can be continuous with
respect to a particular domain geometry with a 90% probability. By extending the seman-
tics of continuity. less-than-perfect or fuzzy interrelationships in data can also be modeled
and validated. Complex interrelationships in some nonmetric data require a large set of
complex observable properties to model. Property topologization can be computationally
expensive in this situation. A paradigm based on progressively refined topologies can al-
leviate such problem. Thus. a topology can “grow” as the users identify more observable
properties in the data.

From the knowledge discovery perspective. new mechanisms can be developed
based on the metric derivation paradigm. Since various properties of distance functions will
play important roles in developing metric data structures and data mining mechanisms. it

will prove to be beneficial to identify a larger set of metric axioms and study their semantics
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in the context of data management and analysis.

At the implementation level. the major tasks in the future include the development
of a formal DDL and DML. In particular. we are interested in studying the formulation and
implementation of pseudo-quasimnetrics and proximity queries using existing implementation
models such as the object-oriented model.

At the physical level. we plan to validate the three conjectures proposed in Chap-

ter 6 either analytically or empirically with a wider range of experiments:
1. nearest neighbor queries have a constant time complexity.
2. proximity queries have a linear time complexity. and

3. only a small number of poles. with respect to intrinsic dimensionality. is required for

good performance on clustered data.

We also plan to extend the performance model to include implementation parameters such
that the performance of the proposed multipolar-based approach and existing hierarchical
data structures can be comparecd and analyzed.

In addition to median transformation. we would like to develop new approaches
which can enable the application of pseudo-metric based data structures to pseudo-quasi-
metrics. A particularly promising direction involves using two pscudo-metrics to simulate
the proximity of a pseudo-quasimetric. If this is possible. a metric data set based on pseu-
do-quasimetrics can be stored as two instances of a pseudo-metric based data structure.
and the proximity query on the pseudo-quasimetric can be carried out by a set operation

on the results of two proximity queries on the two instances of data structures.
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Appendix A

Mathematical Definitions

This appendix contains several technical definitions not presented in the thesis.

Definition A.1 (Manifold) An n-dimensional manifold M is a set furnished with a col-
lection P of abstract patches (one-to-one functions £ : D — M. D an open set in E™ } such
that

[. M 1is covered by the images of the patches in the collection P.

1

2. For any two patches r and y in the collection P. the composite function y~'r and

£~ 'y are Euclidean-differentiable (and defined on open sets in E™).

Definition A.2 (Bundle) A bundle is a triple (E.p. B). where p: E — B is a« map. The
space B is called the base space. the space E is called the total space. and the map p is
called the projection of the bundle. For each b € B. the space p~'(b) is called the fiber of
the bundle over b.

Definition A.3 (Bundle Section) A4 cross section of a bundle (E.p.B) is a map s :

B — E such that ps = lg. In other words. a cross section is a map s : B - E such that
s(b) € p~L(b). the fiber over b. for cach b € B.
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Appendix B

Theorem Proofs

This appendix presents theorems and proofs which constitute the theoretical foun-
dation for multipolar mappings and median transformations.

. Theorem B.1 If(X.d) is a pseudo-metric space. My p : (X.d) — (RF. E}) is continuous.
i Y M p € M(X).
Proof: Since d is a pseudo-metric. Vp.g.r € X. we have

d(r.p) < d(r.q) + d(q.p).

d(r.q) < d(r.p) +d(p.q)
= d(r.p) — d(r.q) < d(q.p).

d(r.q) — d(r.p) < d(p.q)
= —d(p.q) <d(r.p) —dlr.q) < d(p.q)
= |d(r.p) —d(r.q)] < d(p.q)

Let i be an arbitrary point in X and ¢ an arbitrary positive real number. For y € Sy(.r. =)
NP

we have d(z.y) < 7

*

Er(Mi (). Mi(y)) ((d(p1.£) = d(p1-y))* + - + (d(pr. ) — d(pr- y))?)

< (d(z.y)? +--- +d(z.y)?)?
vk d(r.y)
KRV

<

A

Thus. My(y) € S, (Mi(z).€) and M[Sqy(x. ﬁ)] C Sg, (Mg(x).¢). Since r is an arbitrary
point of X. M} is continuous everywhere in X. |
Corollary B.2 follows directly from the proof of Theorem B.1.

Corollary B.2 Let r € R and (X.d) be a pseudo-metric space. VM. p € M(X). we have
M, plSqlr.mV] C Sg (M p(x). Vk r).
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Theorem B.3 [f (X.d) is a pseudo-metric space. My p : (X.d) — (B¥.mny) is continu-
ous. VM p € M(X).

Proof: The proof is similar to the one of Theorem B.1. Let r be an arbitrary
point in X and ¢ an arbitrary positive real number. For y € Sy(x. ). we have d(r.y) < :.

mi(Mi(z). Mi(y)) = max{|d(p1.x} —d(p1.y)l.... .|d(px.z) — d(px. y)|}
< max{d(c.y).... .d(z.y)}
= d(r.y)
< &

Thus. Mi(y) € S (Mi(x).<) and M[Sy(x.<)] C S, (Mi(£).2). Since r is an arbitrary
point of X. M, is continuous everywhere in X. ||
Corollary B.4 follows directly from the proof of Theorem B.3.

Corollary B.4 Letr € R and (X.d) be a pseudo-metric space. Y M. p € M(X). we have
NIL‘.P[S(I(I:-T)] - Smk.(f"[k.P(I)- r).

Theorem B.5 Let r € R* and r € R

T T S T

Sm(x.r) C Sg (z.VEkT).Vk € N.

Proof: For y € Sy, (x.7). we have my(c.y) < r. Let r = (&y.....x) and
y=(y1.... .yx). Suppose that h € {1.... .k} and |z, — y;| < |z, —yn|-Vi € {L.... .k}.
*) ) l,
Ei(z.y) = ((£1=m)* +- + (zx —)°) ?
: gy L
< ((@h—yn)? +--+ (xh —yn)?)*
oy L
= (k(xn — yn)?)?
= \/E I-’Eh - .’/h{
= Vk mg(z. y)
< Vkr

Thus. y € Sg, (. vVir). 1

Theorem B.6 Let (X.d) be a pseudo-metric space. P\.Ps C X. ki = |P|. ks = |P].
z€X.andreR. If P, C Ps, then

My py(4) € Stmg, (Miy py (). 7)
e 1‘/[kl.P; (y) € S"lkl (l‘/[kl.Pl (r).r).vy € X.

"
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Proof: Let y € X. P, = {py.... .px, }- and Py = {py.... .p,}. For My, p,(y) €
S,,% (M, p,(z).r). we have myg, (Mg, p,(£). My, p.(y)) <.

my, (M, p (). My, p,(y))

= max{|d(pi.x) —d(pr.y)|.... |d(px,. L) — d(pg,-y)|}
< max {|d(py.z) ~ d(pr-y)l-- .. . 1d(pr,- L) — dpr,-y)l}
= My, (M, py (). My, .py(y))

< r

Thus. My, p,(y) € Sm,cl (Mg, p(x).T). 1
Theorem B.7 [f d is a pseudo-quasimetric. its median d* is a pseudo-metric.
Proof:

1
(1) d7(p.p) = §(d(p p) +d(p.p)) =0
(2) d(p.q) <d(p.s) +d(s.q).
d(q.p) < dlg.s) +d(s.p)
) <

= d(p.q) +d(q.p) < (d(p.s) + d(s.p)) + (d(s.q) + d(q.s))
— ,_é(d(p.qnd(q,p))sg(cz(p.s)w(s.p)) 5 (dls.q) +d(g. )
= d(p.q) <dT(p.s) +d7(s.q)

‘ l -
(3) d7(p.q) = 5 (d(p.q) +d(q.p)) =d" (¢.p)
d™ satisfies all three axioms of pseudo-metrics. |

Theorem B.8 Let (X.d) be a pseudo-quasimetric space. r € R, and d(p.q) — d(q.p)

a.Vp.q € X.
«

Sa(z.7) C Sy+(z.7 + 3). vr e X.

Proof: Let z be an arbitrary point in X . and y € Sy(x.r). From d(p.q)—d(q.p) <

a.Vp.q € X. we have d(y.z) < d(x.y) + a.

. 1
& (oy) = 5 (day) +dy.2)
< < (2d(z.y) +a)
< %(2r+a)
= «@
= r+ 3

Thus. y € Sy=(z.7 + §) and Sy(z.7) C Sy=(z.7 + §).Vz e X. |
Corollary B.9 follows directly from Theorem B.8 and Corollary B.2.
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Corollary B.9 Let (X.d) be a pseudo-quasimetric space. r € R. and d(p.q) — dlq.p) <
a.Vp.q € X. VM p € My-(X). where M -(X) represents the set of all multipolar map-
pings on (X.d7). we have

My p[Su(z.7)] C Sk, (M plz). VE(r + 5)).

%

}
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