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ABSTRACT

PORIN PROTEINS OF SALMONELLA TYPHTMIIRTTJM MEDIATE ADHERENCE TO

MACROPHAGES

by

Robert Solomon Negm 

University of New Hampshire, September,1997

Salmonellosis continues to be a major infectious disease in both the United States 

and elsewhere. The outer membrane porin proteins (Omp) from Salmonella typhimurium 

play a key role in the initial adherence of this microorganism to murine macrophages and 

this mechanism is a critical event in the pathogenesis of infections. In this study 

macrophages were found to make contact with an OmpC-Iike protein of S. typhimurium 

and inhibition assays using the purified protein significantly reduced bacterial binding to 

macrophage. The ompC gene in a strain of S. typhimurium that is resistant to killing by 

macrophage was inactivated by transposon mutagenesis. Bacterial binding assays with 

these ompC-defident bacteria and isogenic wild-type strains confirmed the role of the 

OmpC protein in mediating bacterial adherence to macrophages. The ompC gene of S. 

typhimurium was amplified using a polymerase chain reaction and the corresponding 

nudeotide sequence indicated that this gene was unique to our test strain. These results 

support the role of porin proteins as ligands in the initial adherence of this pathogen to 

host defense cells and may be helpful in developing strategies for disease prevention.

viii
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INTRODUCTION

Salmonellosis continues to be one of the major infectious diseases affecting people 

worldwide (46). About 12. x 106 cases of human salmonellosis are reported annually, 

excluding most of the self-limiting forms of enterocolitis that go unreported (22). Forty 

thousand cases per year are reported in the United States alone, resulting in 500 

fatalities and more than 50 billion dollars in health care expenses (12). About 25-30% of 

these cases in the United States are due to S. typhimurium (20), which is also a 

prominent cause of disease in animals. In general, people in poor health, neonates, the 

elderly, and individuals with compromised immune systems, e.g., ADDS (2,27) are 

particularly prone to infection with Salmonella spp. Animals are the main reservoir of 

Salmonella sp p ., with the exception of S. typhi—the causative agent of typhoid fever, for 

which humans are the only reservoir (20). Clinically salmonellosis may present as enteric 

fever, gastroenteritis, empyema, bone and joint infections, or a combination of these.

Most Salmonella infections arise from oral ingestion of contaminated water or food 

products of animal origin (20). Ingested organisms move to the distal small bowel where 

they invade epithelial cells through their apical membrane (22). Specialized intestinal 

cells, known as mouse ileal membranous or M cells appear to be the major epithelial cell 

associated with uptake of these pathogens (10). In systemic disease the organisms 

penetrate past the basolateral membrane of these epithelial cells and travel to their 

principal target of infection, the Macrophage (Me) underlying the lamina propria (22). 

These cells are professional phagocytic cells that form an important line of defense 

against invading microorganisms- These bacteria may be subsequently transported

1
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within the M0 to regional lymph nodes, the spleen and liver, where Salmonella may 

multiply further and become disseminated hematogenously (15).

To survive, even thrive, under these varied and, at times, inimicable conditions. 

Salmonella spp. must be remarkably versatile organisms. Mounting evidence strongly 

suggests that a major contributor to this adaptability is a complex set of genetically 

regulated responses leading to expression of new or altered proteins. For example, to 

survive the low pH found in the stomach as well as in phagolysosomes of Mo (31), 

Salmonella may utilize one of several add-tolerance response genes (18). The products of 

this inducible system are called acid-shock proteins (18). It has been proposed that 

Salmonella spp. adhere to animal cells in a two-stage process: an early reversible step 

and a subsequent irreversible one. The latter but apparently not the former requires de 

novo RNA and protein synthesis by the microorganisms (22). Salmonella have been 

shown to synthesize new proteins during binding to epithelial cells (24) as well as to Mo 

(8). The stress conditions assodated with encounters with host cells such as Mo can be 

mimicked in vitro during growth under anaerobic conditions (26). This feature has been 

used to identify a protein (p44) that is expressed in significantly higher amounts under 

anaerobic growth and that appears to be a major site of attachment to peritoneal Mo 

(36).

At the same time, some of our basic models for infection are being challenged. Thus, 

type 1 pili of S. typhimurium appear to offer no advantage for bacterial colonization of 

the intestine and subsequent infection compared to non-piliated controls (28), although 

changes in expression of type I pilin, a major protein of bacteria pili, is assodated with

?
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delayed clearance of S. typhimurium from animal tissues (29). A virulence plasmid is 

associated with S. typhimurium, but recent evidence suggests that it is not necessary for 

adherence or invasion of eukaryotic cells nor for resistance to phagocytosis or killing by 

Mo (42). Of course, microbial virulence factors and corresponding host defenses may be 

demonstrable only under certain conditions. Indeed, how the potential pathogen and 

host cell initially interact may greatly influence the clinical result For example, bacteria 

entering Mo through opsonin-mediated processes are likely to trigger the production of 

reactive oxygen molecules associated with intracellular killing, whereas the same 

organisms entering via opsonin-independent mechanisms may fail to trigger production 

of these oxygen products (32).

Adherence to host cells is considered to be a major contributing factor for infections 

by many pathogens, including Salmonella (3). Salmonellae typically encounter several 

different types of host cells during the course of infection and the binding requirements 

may be quite distinct in each case. Unlike pathogens such as Yersinia pseudotuberculosis,

S. typhimurium and Y. enterocolitica have genetically separate loci for adherence and 

invasion (39), although in epithelial cells adherence and internalization of Salmonella are 

closely linked events (16). These two events can be separately studied in S. typhimurium 

models. Adherence and uptake of Salmonella appear to be regulated by environmental 

conditions (17). Such binding may, in turn, induce global changes in the host cells, 

thereby facilitating bacterial uptake by specific receptors not usually involved in 

phagocytosis (39). The nature of the bacterial ligands of S. typhimurium involved in 

attachment to host cells is not known (39). Studies from out laboratory suggest that 

porins may be one such ligand.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Porins are protein trimers that produce transmembrane channels in the outer 

membrane of S. typhimurium and other bacteria (35). Although recognized initially for 

their role in the transport of low molecular weight compounds in and out of the bacterial 

cell, porins have also been associated with immune defenses against infection. Porins, 

with variable amounts of copurified Iipopolysaccharide, have been shown to induce 

protective immunity in mouse models (30,34). The contribution of contaminating 

Iipopolysaccharide (LPS) in such studies is unclear, but at a minimum LPS appears to 

enhance both the humoral and the cellular immune response to porins (34). Indeed, it has 

been proposed that porins must be associated with LPS to be biologically active (11). 

Porins from which LPS has been removed lose their ability to form pores but retain their 

ability to bind C lq (25). To our knowledge no studies have been published on the 

possible role of porins in the interaction of salmonellae with host phagocytic cells. 

However, porins from Neisseria species are capable of inserting into the membranes of 

human neutrophils (5). These highly purified neisserial porins (with no detectable 

contamination with other outer membrane proteins and with >0.01% LPS 

contamination) reduced expression of Fc receptors, impaired upregulation of 

complement receptor (CR) 1 and CR3, and inhibited phagocytic capacity of neutrophils 

for serum-opsonized meningococci (5).

One member of the porin family of proteins from Salmonella and related bacteria, 

OmpC, is synthesized and incorporated into the bacterial envelope under conditions of 

both low- and high-osmolarity, suggesting that it might be expressed under both free- 

living conditions (low-osmolarity) and during infection (high-osmolarity) (40). Studies 

suggest that the ompR system regulates the relative expression of OmpC and OmpF,

4
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with OmpC being preferentially expressed under the high-osmolarity conditions 

associated with infection (38). An ompC-like gene was found in all 17 clinical isolates of 

S. typhi examined with no restriction fragment length polymorphism, supporting the idea 

that this gene is associated with the infectious process. Although the ompC gene 

sequence from S. typhimurium has not been published, hybridization studies with the 

ompC genes from £. coli and from S. typhi with DNA from S. typhimurium suggest a 

similar, but not identical match in each case (9,13). The S. typhi ompC gene has been 

cloned into a porin-less mutant of E. coli and the protein product identified on the outer 

membrane of the transformed E. coli host (48). Preliminary studies from our laboratory 

suggest that OmpC from S. typhimurium is involved in recognition of this microorganism 

by murine peritoneal Mo.

The role of opsonophagocytosis in protection against infection of pyogenic bacteria 

is firmly established; however, there is good evidence that phagocytosis can occur in the 

absence of opsonins, suggesting that animals may rely on alternative mechanisms for 

early recognition of invading microorganisms (reviewed in (37)). This evidence derives 

from studies of both gram-positive and gram-negative bacteria, animal and human 

systems, and various phagocytic cell populations, including peritoneal Mo, alveolar Mo, 

and granulocytes. Receptors on these phagocytic cells implicated in direct recognition of 

bacteria include CR 1 (23,24,43), CR3 (19,23,24,43), CR4 (19,23,43) . Recent studies in 

our laboratory w ith group B streptococci (45) and S. typhimurium (1), using blocking 

studies with monoclonal antibodies to C D llb and CD18, provide evidence for the 

involvement of CR3 in the recognition of these bacteria by murine peritoneal Mo.

5
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When blocking experiments are used to indicate involvement of corresponding 

receptors, complete inhibition of bacterial binding is seldom achieved, suggesting that 

multiple receptors may be responsible for microbial recognition by Mo. This has been 

shown for Leishmania promastigotes, in which both CR3 and the mannose/fucose 

receptor on Mo were required for optimal adherence (6) and Mycobacterium curium, which 

required the mannose/fucose receptor, CR3, and the fibronectin receptor for effective 

recognition by human Mo (4). A model is emerging that includes both receptor 

redundancy and cooperativity in this recognition (33). An intriguing possibility that 

remains to be confirmed experimentally is that microbial interaction with different 

receptors on phagocytic cells determines the fate of these potential pathogens. For 

instance, some receptors, such as the mannose and Fc receptors, seem particularly well- 

suited to convey the bound Leishmania promastigotes to phagolysosomes and to trigger a 

lethal respiratory burst, whereas recognition of the same microorganism by another 

receptor, e.g., CR1, leads to parasite survival, possibly due to a lack of effective 

transduction of specific cellular signals intracellularly following receptor ligation (33). 

Conversely, intracellular events may affect the binding of externally expressed receptors 

(41).

Not unexpectedly multiple pathways have been described by which LPS interacts 

with Mo, and this initial binding may result in cell activation (47). It has been proposed 

that CR3 and CR4 are normally immobilized in the plane of the cytoplasmic membrane 

and thus unable to directly promote phagocytosis, although particles may avidly bind to 

them (21). High doses of LPS can activate these receptors, leading to their mobilization 

and, presumably, internaliza tion of bound components. Microbial recognition by Mo

6
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may involve multiple receptors, e.g., (43), and they may be sequentially activated (14). 

Moreover, the same receptors, e.g., CR3 and CR4, may exist in various states of activity 

(44), so detection and quantification of these surface molecules in the absence of 

functional binding assays may not provide accurate information regarding their role in 

microbial recognition. Clearly, the information currendy available suggests that the initial 

recognition of microorganisms by Mo in the absence of exogenous opsonins is a complex 

process.

The resurging interest in innate immunity in recent years reflects a growing 

appreciation of its importance in early defenses. As recently presented in an editorial 

introducing a series of papers on this subject "Because of its essential role in immunity, 

and its importance in pathology and pathogenesis of various diseases, and because of 

the increasing number of severely immunocompromised hosts encountered in clinical 

medicine, the study of antigen-independent host defense has become increasingly 

important" (7). The subtide of this editorial—Innate immunity: 50 ways to kill a 

microbe—provides a fitting closing statement Understanding the initial events in 

host-microbe interactions can provide valuable information on both the pathogenesis of 

infectious disease and strategies for intervention. This is the overall rationale for the 

present study.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

1. Al-Bahry, S. and T. Pistole. 1996. Adherence of Salmonella typhimurium to murine 
peritoneal macrophages is mediated by Iipopolysaccharide and complement receptors. 
Zbl. Bakt. Hyg. In press.

2. Altekruse, S. F. and D. L. Swerdlow. 1996. The changing epidemiology of foodbome 
disease. Am. J. Med. Sd. 311:23-29.

3. Aslanzadeh, J. and L. J. Paulissen. 1992. Role of type 1 and type 3 fimbriae on the 
adherence and pathogenesis of Salmonella enteri.tid.is in mice. Microbiol. Immunol. 
36:351-359.

4. Bermudez, L. E., L. S. Young and H. Enkel. 1991. Interaction of Mycobacterium avium 
complex with human macrophages: Roles of membrane receptors and serum proteins. 
Infect. Immun. 59:1697-1702.

5. Bjerknes, R-, H. K. Guttormsen, C. O. Solberg and L. M. Wetzler. 1995. Neisseria! 
porins inhibit human neutrophil actin polymerization, degranulation, opsonin receptor 
expression, and phagocytosis, but prime the neutrophils to increase their oxidative 
burst. Infect. Immun. 63:160-167.

6. Blackwell, J. M., R. A. B. Ezekowitz, M. B. Roberts, J. Y. Channon, R. B. Sim and S. 
Gordon. 1985. Macrophage complement and lectin-like receptors bind Leishmania in the 
absence of serum. J. Exp. Med. 162:324-331.

7. Brown, E., J. P. Atkinson and D. T. Fearon. 1994. Innate immunity: 50 ways to kill a 
microbe. Curr. Opin. Immunol. 6:73-74.

8. Buchmeier, N. A. and F. Heffron. 1990. Induction of Salmonella proteins upon 
infection of macrophages. Science 248:730-732.

9. Chatfield, S. N., C. J. Dorman, C. Hayward and G. Dougan. 1991. Role of 
ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both 
ompC and ompF are attenuated in vivo. Infect. Immun. 59:449-452.

10. Clark, M. A., Jepson, M. A., N. L. Simmons and B.H. H irst 1994. Preferential 
interaction of Salmonella typhimurium with mouse Peyer's patch M cells. Res. Microbiol.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



145:543-552.

11. Q as, R-, B. Euteneuer, F. Stemmer and M. Loos. 1989. Interaction of fluid phase 
C l/C lq  and macrophage membrane associated C lq with Gram-negative bacteria. 
Behring Inst. Mitt. 84:236-254.

12. Cohen, M. and R. Tauxe. 1986. Drug-resistant Salmonella in the United States: an 
epidemiological perspective. Science 234:964-969.

13. Dorman, C. J., S. Chatfield, C. F. Higgins, C. Hayward and G. Dougan. 1989. 
Characterization of porin and ompR mutants of a virulent strain of Salmonella 
typhimurium: ompR mutants are attenuated in vivo. Infect. Immun. 57:2136-2140.

14. Ezekowitz, R. A. and S. Gordon. 1990. Alterations of surface properties by 
macrophage activation: Expression of receptors fo Fe and mannose-terminal 
glycoproteins and differtiation antigens, p. 33-56. In D.O. Adams and Jr. Hanna,M.G. 
(ed.). Contemporary Topics in Immunobiology: Volume 13: Macrophage Activation, 
Plenum Press, New York and London.

15. Finlay, B., J. Fry, E- Rock and S. Falkow. 1989. Passage of Salmonella through 
polarized epithelial cells: role of the host and bacterium. J. Cell Sci. Suppl. 11:99-107.

16. Finlay, B., M. Stambach, C. Francis, B. Stocker, S. Chatfield, G. Dougan and S. 
Falkow. 1988. Identification and characterization of TnphoA mutants of Salmonella that 
are unable to pass through a polarized MDCK epithelial cell monolayer. Mol. Microbiol. 
2:757-766.

17. Francis, C. L., M. N. Stambach and S. Falkow. 1992. Morphological and cytoskeletal 
changes in epithelial cells occur immediately upon interaction with Salmonella 
typhimurium grown under low-oxygen conditions. Mol. Microbiol. 6:3077-3087.

18. Garda-del Portillo, F., J. W. Foster and B. B. Finlay. 1993. Role of add tolerance 
response genes in Salmonella typhimurium virulence. Infect. Immun. 61:4489-4530.

19. Gbarah, A., C. G. Gahmberg, I. Ofek, U. Jacobi and N. Sharon. 1991. Identification of 
the leukocyte adhesion molecules CD11 and CD18 as receptors for type 1-fimbriated 
(mannose-spedfic) Escherichia coli. Infect. Immun. 59:4524-4530.

20. Goldberg, M. B. and R. H. Rubin. 1992. Nontyphoidal Salmonella infection, p.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



579-585. In S. L. Gorbach and J. G. Bartlett (ed.). Infectious Diseases, Saunders, 
Philadelphia.

21. Griffin, F. M., Jr. and P. J. Mullinax. 1990. High concentrations of bacterial 
Iipopolysaccharide, but not microbial infection-induced inflammation, activate 
macrophage C3 receptors for phagocytosis. J. Immunol. 145:697-701.

22. Groisman, E. A. and M. H. Saier, Jr. 1990. Salmonella virulence: New clues to 
intramacrophage survival. Trends Biochem. Sd. 15:30-33.

23. Hirsch, C. S., J. J. Ellner, D. G. Russell and E. A. Rich. 1994. Complement 
receptor-mediated uptake and tumor necrosis factor-a-mediated growth inhibition of 
Mycobacterium tuberculosis by human alveolar macrophages. J. Immunol. 152:743-753.

24. Ishibashi, Y. and T. Arai. 1990. Roles of the complement receptor type 1 (CR1) and 
type 3 (CR3) on phagocytosis and subsequent phagosome-lysosome fusion in 
Salmonella-infected murine macrophages. FEMS Microbiol. Immunol. 64:89-96.

25. Latsch, M., F. Stemmer and M. Loos. 1992. Purification and characterization of 
LPS-free porins isolated from Salmonella minnesota. FEMS Microbiol. Lett. 90:275-282.

26. Lee, C. A. and S. Falkow. 1990. The ability of Salmonella to enter mammalian cells is 
affected by bacterial growth state. Proc. Natl. Acad. Sd. USA 87:4304-4308.

27. Levine, W. C., J. W. Buehler, N. H. Bean and R. V. Tauxe. 1991. Epidemiology of 
nontyphoidal Salmonelle bacteremia during the human immunodefidency virus epidemic. 
J. Inf. Dis. 164:81-87.

28. Lockman, H. A. and R. Curtiss, HL 1992. Virulence of non-type 1-fimbriated and 
nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever. 
Infect. Immun. 60:491-496.

29. Mahan, M., J. Slaugh and J. J. Mekelanos. 1993. Selection of bacterial virulence genes 
that are specifically induced in host tissues. Sdence 259:686-688.

30. Matsui, K. and T. Arai. 1992. The comparison of cell-mediated immunity induced by 
immunization with porin, viable cells, and killed cells of Salmonella typhimurium. 
Microbiol. Immunol. 36:269-278.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31. Miller, S. 1.1991. PhoP/PhoQ: Macrophage-specific modulators of Salmonella 
virulence? Mol. Microbiol. 5:2073-2078.

32. Miller, V. L., K. B. Beer, W. P. Loomis, J. A. Olson and S. I. Miller. 1992. An unusual 
pagC::TnphoA mutation leads to an invasion- and virulence-defective phenotype in 
Sahnonellae. Infect Immun. 60:3763-3770.

33. Mosser, D. M. 1994. Receptors on phagocytic cells involved in microbial recognition. 
Immunol. Ser. 60:99-114.

34. Muthukkumar, S. and V. P.. Muthukkaruppan. 1993. Mechanism of protective 
immunity induced by porin-lipopolysaccharide against murine salmonellosis. Infect. 
Immun. 61:3017-3025.

35. Nakae, T. 1976. Outer membrane of Salmonella. Isolation of protein complex that 
produces transmembrane channels. J. Biol. Chem. 251:2176-2178.

36. Negm, R. S. and T. G. Pistole. 1994. Macrophages recognize and adhere to p44, an 
outer-membrane protein of Salmonella typhimurium, independently of antibody, abstr. 
E-103, p. 161. In Abstracts of the 94th General Meeting of the American Society for 
Microbiology 1994, American Society for Microbiology, Washington, D.C.

37. Ofek, I., R. F. Rest and N. Sharon. 1992. Nonopsonic phagocytosis of 
microorganisms. ASM News 58:429-435.

38. Pickard, D., J. Li, M. Roberts, D. Maskell, D. Hone, M. Levine, G. Dougan and S. 
Chatfield. 1994. Characterization of defined ompR mutants of Salmonella typhi: ompR is 
involved in the regulation of Vi polysaccharide expression. Infect. Immun. 62:3984-3993.

39. Portnoy, D. A. and G. A. Smith. 1992. Devious devices of Salmonella. Nature 
(London) 357536-537.

40. Puente, J. L, V. Alvarez-Scherer, G. Gosset and E. Calva. 1989. Comparative 
analysis of the Salmonella typhi and Escherichia coli ompC genes. Gene 83:197-206.

41. Rabb, H., M. Michishita, C. P. Sharma, D. Brown and M. A. A m aout 1993. 
Cytoplasmic tails of the human complement receptor type 3 (CR3, CDllb/CD18) 
regulate ligand avidity and the internalization of occupied receptors. J. Immunol.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



151:990-1002.

42. Riikonen, P., P. H. Makela, H. Saarilahti, S. Sukupolvi, S. Taira and M. Rhen. 1992. 
The virulence plasmid does not contribute to growth of Salmonella in cultured murine 
macrophages. Microb. Pathog. 13:281-291.

43. Roecklein, J. A., R. P. Swartz and H. Yeager, Jr. 1992. Nonopsonic uptake of 
Mycobacterium avium complex by human monocytes and alveolar macrophages. J. Lab. 
Clin. Med. 119:772-781.

44. Ross, G. D., W. Reed, J. G. Dalzell, S. E. Becker and N. Hogg. 1992. Macrophage 
cytoskeleton association with CR3 and CR4 regulates receptor mobility and 
phagocytosis of iC3b-opsonized erythrocytes. J. Leuk. Biol. 51:109-117.

45. Sloan, A. R. and T. G. Pistole. 1993. Characterization of the murine macrophage 
receptor for group B streptococci. Intematl. J. Med. Microbiol. Virol. Parasitol. Infect 
Dis. 278:541-552.

46. Tietjen, M. and D. Y. C. Fung. 1995. Salmonellae and food safety. Crit. Rev. 
Microbiol. 21:53-83.

47. Tobias, P. S. and R. J. Ulevitch. 1994. Lipopolysaccharide-binding protein and CD14 
in the lipopolysaccharide-dependent activation of cells. Chest 105 Suppl.:48S-50S.

48. Zaror, I., I. Gomez, G. Castillo, A. Yudelevich and A. Venegas. 1988. Molecular 
cloning and expression in Escherechia coli of a Salmonella typhi porin gene. FEBS Letters 
229:77-81.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER ONE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER ONE

Macrophage Recognize and Make Contact with an OmpC- like Protein of Salmonella

typhimurium.

ABSTRACT

Murine peritoneal Ma bind to S. typhimurium in vitro in the absence of exogenous 

opsonins. An outer membrane protein of S. typhimurium mediates this interaction. 

Biotin-labeled Ma were used to probe electroblotted envelope proteins of S. typhimurium 

that had been previously resolved by polyacrylamide electrophoresis under denaturing 

and reducing conditions. Ma bound to an outer membrane protein with an apparent 

molecular mass of 44-kDa. The protein was purified to homogeneity and free of 

detectable Iipopolysaccharide. Limited microsequencing of this protein resulted in a 15 

amino-add query sequence of A-E-V-Y-N-K-D-G-N-K-L-D-L-Y-G, which shares 

complete identity with the OmpC polypeptide (residues 22-36) of Escherichia coli K-12. 

Picomolar concentrations of this purified protein significantly inhibited the subsequent 

adherence of ̂ S-labeled S. typhimurium to Ma in monolayers. It is proposed that this 

44-kDa protein is involved in the recognition of S. typhimurium by Ma during the initial 

stages of infection.
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INTRODUCTION

The global incidence of human Salmonella infections has markedly increased in recent 

years (49). A more complete understanding of the interactions of Salmonella spp. with 

the host immune system may contribute to approaches for reducing the incidence of 

salmonellosis. The course of infection by mouse-virulent S. typhimurium in the mouse has 

been described (17) and serves as a model of the human disease typhoid fever, caused 

by S. typhi. Although non-typhoid strains of Salmonella are most commonly associated 

with a self-limiting gastroenteritis in humans, individuals who are immunocompromised 

may develop disseminated disease with these strains (43). Salmonellae normally enter 

the body via the oral route and establish an invasive infection in the lining of the bowel. 

In systemic infections these organisms spread from the bowel into underlying tissues 

where they encounter tissue Mo (16). Studies have shown that Salmonella spp. require 

genetic loci both to invade host cells and for intracellular survival (11,15) within many 

types of mammalian cells. Furthermore, attachment to and subsequent invasion of 

mammalian cells by S. typhimurium appear to be independent phenomena (15,24). Our 

investigations have focused on early events in the interaction between the host defense 

cell, the Mo, and S. typhimurium in the absence of exogenous opsonins.

Surface structures on the outer membranes of Gram-negative bacteria include a class 

of proteins called porins, which produce relatively non-specific channels that allow the 

passage of small hydrophilic molecules across the outer membrane (38). Porins exist as 

tightly associated trimers and in this form are highly associated with lipopolysaccharide 

(LPS). Porins have also been reported to act as receptors for the attachment of various 

bacteriophage, colidns, and complement components (9,21,45). Although recognized 

initially for their role in the transport of low molecular weight compounds in and out of
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the bacterial cell, porins have also been associated with immune defenses against 

infection (25,34).
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MATERIALS AND METHODS

Chemicals. Unless otherwise stated all chemicals used were obtained from Sigma 

Chemical Co, St. Louis, Mo.

Bacterial Strains and Growth Conditions. S. typhimurium strain 14028 (Difco 

Laboratories, Detroit, MI) and strain 1826 (Max Planck Institut fur Immunbiologie, 

Freiburg, Germany), were used. Both strains have an LD^ in mice of -10 

microorganisms when administered intraperitoneally. Cultures were grown to post

exponential phase in Luria-Bertani broth (Difco) at 37°C under anaerobic, non-agitated 

conditions, (5% C 02, 10% H ,, 85% N,) using a bi-phasic batch culture method (47).

Envelope protein preparations from S. typhimurium. Bacterial cultures were 

harvested, concentrated, washed 2X, and resuspended in ice-cold sonication buffer 

consisting of 10 mM Tris-HCl, pH 7.4,5 mM MgCl^, 1.0 mM dithiothreitol (DTT), 50 pg 

milliliter'1 (ml) each of ribonudease A and deoxyribonudease I (Worthington 

Biochemical Corp., Freehold, NJ), 10 pg m l'1 leupeptin, 10 pg m l'1 pepstatin, 1.0 mM 

phenylmethylsulfonylfluoride, and 1.0% aprotinin (Calbiochem, San Diego, CA) Sonic 

extracts were made using four 30-s exposures to sonic oscillation (Ultrasonics, Inc., 

Heat-Instruments Co, Plainview, NY). Whole cells were removed by centrifugation at 

10,000 x g; bacterial envelopes contained in the supernatant fluid were sedimented by 

centrifugation at 44,000 x g  for 1 h. The supernatant fluid was decanted and the cell 

envelopes washed 2X with 5 ml of sonication buffer and collected by centrifugation. 

Following the third centrifugation the envelope proteins were solubilized by the addition 

of 500 pi of solubilization buffer containing 2.3% sodium dodecylsulfate (SDS), 5% 2- 

mercaptoethanol, 10 % glycerol, and 60 mM Tris-HQ, pH 6.8. This mixture was
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incubated at 60°C for 30 min and the insoluble material was removed by centrifugation 

at 44,000 x g  at 37°C for 1 h. The supernatant fluid containing solubilized envelope 

proteins was transferred to a clean tube and stored at -20°C until used.

Mia. Peritoneal exudate Mo from 8-12 week-old Balb/c mice, obtained from our 

breeding facility, were elicited by intraperitoneal injection of 3.0 ml of aged Brewer 

thioglycollate (Difco). After 5 d the Mo were harvested by lavage using 10 ml of 

Dulbecco's phosphate-buffered saline with Ca2+ and Mg2* (DPBS). The Mo were 

washed twice by centrifugation at 200 x g, using cold DPBS and resuspended at a final 

concentration of 108 cells ml*1 in DPBS. Approximately 95% of these cells were Mo, as 

judged by cell morphology.

Labeling Mo. The biotin labeling reagent, suffosucdnimydal-6-[biotinamido] 

hexanoate, 100 pg, (Pierce Chemical Co., Rockford, IL) was solubilized in DPBS. This 

was added to a viable Mo suspension (10® cells ml*1) and incubated for 1 h at 4°C with 

end-over-end rocking (18). Triple washed, labelled Mo were resuspended in opsonin-free 

Morgan's 199 medium (M199) at a final concentration of 10s cells ml*1 and used 

immediately for probing. Mo viability after labeling was assessed by trypan blue 

exclusion.

Salmonella envelope proteins probed with labeled Mo. Envelope proteins from S. 

typhimurium were separated by discontinuous electrophoresis (11.5% acrylamide gel) in 

the presence of SDS, electrophoretically transferred to nitrocellulose, and probed using 

modifications of other previously reported protocols (20,29). Fifty micrograms each of 

envelope proteins of S. typhimurium strains 1826 and 14028 were resolved by SDS- 

polyacrylamide gel electrophoresis (SDS-PAGE, 11.5% acrylamide) (26) and transferred
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to nitrocellulose membranes (46). These nitrocellulose replicas were blocked with 2.0% 

gelatin, washed with DPBS for 30 min, and transferred to a polyester heat-sealable 

pouch (Kapak, Inc., Minneapolis, MN). Labelled Mo (108 cells m l'1) in M199 medium 

were allowed to attach to electroblotted envelope proteins through incubation without 

agitation for 30 min at 37°C, then the membranes were transferred to a platform rocker 

for an additional 30 min. The membranes were removed and washed 4X with DPBS for 

1 min each, then fixed for 5 min in DPBS, pH 7.2, containing glutaraldehyde (1%), to 

enhance visualization. Washed membranes were incubated with avidin-conjugated 

horseradish peroxidase (avidin-HRP, Pierce) at a concentration of 2 pg m l'1 in 10 ml of 

DPBS. Unbound avidin-HRP was removed by washing the membrane with PBS for 30 

min. Biotin-labelled Mo that had adhered to electroblotted envelope proteins were 

detected by the addition of the peroxidase substrate 4-chloro-l-naphthol (Bio-Rad, 

Richmond, CA).

Separation Of Envelope Proteins. Solubilized envelope protein samples were 

buffer-exchanged and concentrated against three volumes of elution buffer (20 m M  

Hepes, pH 8.2, containing 4.0 m  urea and 1% n-octyl-P-D-glucopyranoside) by 

centrifugal dialysis (Centricon-30, Amicon, Inc., Beverly, MA). The protein samples were 

then applied to an anion-exchange chromatography column (MonoQ HR 5/5) and 

resolved by Fast Protein Liquid Chromatography (Pharmacia LKB, Upsala Sweden,) 

(27). Fractions enriched in protein, identified by analysis, were pooled, 

concentrated, and further separated by SDS-PAGE. Coomassie blue-stained proteins 

excised from the electrophoretic gels were electrodialyzed against a buffer containing 

0.01% SDS, 15 mM ammonium bicarbonate, pH 82, in a Micro-electroelutor (Amicon) 

and dialyzed 3X against DPBS through centrifugal dialysis. Dilutions of this protein 

were used to treat Mo monolayers in M199.
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Protein, Endotoxin and Phosphatase Assays. Subsamples were assayed for 

protein concentration, and endotoxin, and phosphatase contamination. LPS was 

assayed using Limuhis amebocyte lysate (E-toxate®' Sigma) and purified endotoxin from 

E. coli 055:B5 as a reference. Protein concentration assays were performed by the 

bidnchoninic ad d  (Pierce, CA) method or by ultraviolet spectrophotometry at 280 nm 

using bovine serum albumin as the reference. Phosphatase activity was measured by 

colorimetric spectrophotometry (405 nm) using p-nitro-phenyl-phosphate as a substrate 

(36).

In vitro Adherence Assays. All cell culture manipulations were done using media 

free of exogenous opsonins and serum components.

Biosynthetic radiolabeling of Salmonella. Bacterial cultures were grown as 

described above to a final culture density of -109 cfu ml*1. Bacteria from 0.4 ml of 

culture were washed with 1.0 ml of DPBS at 4°C and resuspended in 0.1 ml of 

methionine-free medium (Methionine Assay Medium, Difco) containing 250 pCi of 

[^SJmethionine and [^Jcysteine (Tran35S-label, ICN, Irvine, CA). Samples were 

incubated at 37°C for 10 min and the reaction was quenched by the addition of 10 pi of

0.10 m L-methionine. The labeled bacteria were collected by centrifugation at 10,000 x g 

and washed repeatedly with PBS. Bacteria were resuspended in M199 medium and 

used for adherence assays.

Inhibition studies on Mo monolayers. Mo in M199 medium were allowed to attach 

to polystyrene tissue culture wells and held at 37°C for >6 h prior to washing and 

removal of unadherent cells with DPBS. Mo were then incubated in DPBS containing
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1.0% bovine serum albumin for 30 min at which time the medium was replaced w ith 

M199 m edium  The effect of the 44-kDa protein on adherence of S. typhimurium was 

investigated by preincubating the Mo with the electrodialyzed and DPBS buffer- 

exchanged protein for 30 min at 37°C at varying concentrations before the addition of 

bacteria. Radiolabeled bacteria were added to each plastic well containing Mo (the ratio 

of Mo to bacteria was 1:100). Labeled S. typhimurium attached to Mo were detected by 

solubilization of the cell culture well contents with heated (70°C) SDS (10% w /v). The 

contents of the well were transferred to liquid scintillation vials containing fluor (Ecolite, 

ICN). Counts m in'1 were obtained using an scintillation counter (LS7000, Beckman 

Instruments, Co.).

N-terminal sequencing. Greater than 1 pg (>22 picomoles) of protein samples were 

purified by SDS-PAGE separation, as described above, and excised from the gel after 

staining w ith Coomassie blue. The protein samples contained in gel fragments were 

either reduced with dithiothreitol, alkylated with iodoacetamide, and digested w ith 

cyanogen bromide, or left untreated. Proteins were electroeluted, concentrated, and 

applied directly to a polypeptide support disk for sequencing. The resultant in situ 

digested fragments were electrophoresed in gels containing SDS (15% acrylamide) and 

electroblotted to polyvinylidene fluoride membranes (Immobilon-P, Millipore, Bedford, 

MA) (33). Protein bands on these membranes were located by staining with 0.1% 

Coomassie blue, excised and applied to a protein sequenator (Model 475A, ABI, Foster 

City, CA). Automated Edman degradation was performed for 15 cycles for each protein 

analyzed. Computer-assisted, basic local alignment search tools (2) were used to 

identify the sequence of the obtained query sequences through the network service of the 

National Center for Biotechnology Information using the Genpept (Release 85.0), SWISS- 

PROT (release 30.0) and PIR (release 41.10) databanks.
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RESULTS

Probing envelope proteins with labeled Mo. Nitrocellulose membranes containing 

transferred envelope proteins of these two serovars, were used to detect an in vitro 

interaction between a 44-kDa outer membrane protein of S. typhimurium strains 14028 

and 1826 and viable Mo that had been surface-labeled with biotin (Fig. 1, lanes a and 

b). Mo bound to no other electroblotted envelope proteins. The binding of Mo to the 44- 

kDa protein occurred in the absence of serum opsonins. Viability of the Mo used for 

probing was greater than 90 percent.

Purification of the 44-kDa protein by anion-exchange chromatography and SDS- 

PAGE. The recovery of a 44-kDa protein free of LPS was achieved after sequential 

purifications (Fig. 2) beginning with sonic bacterial lysates (lane d), enrichments for 

envelope proteins (lane c), then NaQ-elution of proteins from the anion-exchange 

chromatography column (lane b), and finally gel electrophoresis and excision of the 

stained 44-kDa protein band from acrylamide gels (lanes a and f). Endotoxin assays 

indicated that the protein sample recovered from chromatography fractionation 

contained significant amounts of LPS and no detectable periplasmic phosphatase (Table 

1). Protein samples obtained after electroelution from polyacrylamide gel contained no 

detectable LPS.
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t  109.6

70.3

>  44.1

Fig. 1. Nitrocellulose membranes containing 50 (ig of envelope proteins from 
S. typhimurium 1826 (lane A) and S. typhimurium 14028 (lane B) and probed with 
labeled Mo. The arrow on the left indicates envelope proteins to which viable 
biotinylated Mo have attached. The binding of Mo was revealed by the avidin- 
peroxidase activity. Molecular weight standards are shown on the right (lane C).
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Fig. 2. Protein composition of various preparations of the 44-kDa protein. Proteins 
were heated in SDS-containing sample buffer (26) at 100°C for 2 min and then 
separated by SDS-PAGE (11.5% acrylamide) and stained with Coomassie blue. Lane 
D contains bacterial sonic lysates (150 pg); lane C contains envelope proteins enriched 
by differential centrifugation and solubilization with SDS (100 pg); lane B contains 
pooled fractions recovered after N a d  elution from the anion-exchange chromatography 
column (lOOpg); and lanes A and F contains electrodialyzed 44-kDa protein excised 
from SDS-PAGE (lOpg). Lane E contains molecular weight standards and their weights 
are shown on the right.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r<: \tr§^

- 200.1
- 116.3
-  97.4
-  66.3
-  55.4

36.5

31.0

21.5

14.4

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE 1. Levels of contaminating lipopolysaccharide (LPS) and phosphatase in 

preparations of the 44-kD protein from S. typhimurium at sequential stages of 

purification

Sample LPS (EU/ mg)a Phosphatase (mU /  mg)

Bacterial lysate6 3300 4.2

Envelope, solubilizedc 6.5 0

Anion-exchange column** 3.0 0

Electroelution* 0 0

a Endotoxin units, using E. coli 055:B5 as reference 
b Prepared by sonic disruption
c Derived from lysate by differential centrifugation and solubilization with SDS 
d Pooled fractions recovered from anion-exchange chromatography column 
e Derived by electrodialysis of Coomassie blue-stained bands from SDS-PAGE of anion- 
exchange column pooled fractions
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Bacterial adherence to Mo treated with the enriched 44-kDa protein. Adherence 

of ̂ S-labeled S. typhimurium to Mo monolayers, pretreated with the 44-kDa protein 

and sham-treated, were measured. The 44-kDa protein inhibited bacterial adherence to 

tissue culture monolayers of Mo in a dose-dependent manner (Fig. 3). When Mo were 

treated with 100 or 1000 picomolar concentrations of the LPS-free 44-kDa protein, there 

was a 40 and 60% reduction in the bacterial attachment to Mo, respectively, compared 

to untreated controls.

Microsequencing the 44-kDa protein. Partial digestion of the 44-kDa protein 

yielded several lower molecular weight products; however, only the undigested 44-kDa 

band provided a readable sequence. Partial N-terminal sequencing of the 44-kDa protein 

of both serovars 14028 and 1826 provided a 15-mer of A-E-V-Y-N-K-D-G-N-K-L-D-L- 

Y-G. Comparison of this partial N-terminal sequence with known sequences in world

wide nucleotide and protein sequence databases generated complete sequence identity 

with amino add residues 22 through 36 of the OmpC precursor protein of E. coli K-12. 

The partial sequence obtained in this study differed by one or two residues in this highly 

conserved porin protein region from other previously sequenced porins (Table 2). N- 

terminal sequencing the 36-kDa envelope protein of S.typhimurium 14028 confirmed that 

the 44-kDa protein is similar to, but not identical with the OmpC porin protein of S. 

typhimurium 14028- The 36-kDa protein yielded a 15-mer sequence of A-E-I-Y-N-K-D- 

G-N-K-L-D-L-F-G. This amino add sequence is identical to the amino add  sequence for 

the OmpC of S. typhimurium LT2 SH7457 (42) (Table 2).
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Fig. 3. Effect of pre-incubating Mo with purified 44-kDa protein on the adherence of S. typh im urium . Mo were treated for 30 
min with the appropriate concentration of the 44-kDa protein, followed by the addition of 35S-labeled S. typhim urium . 
Bacterial adherence measurements were determined in triplicate after 1 h incubation, and the means ± standard deviations of 
the results are shown. It was found that the effect of the 44-kDa protein inhibited adherence in a dose-dependent fashion, r2= 
0.997.
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DISCUSSION

Adherence to host cells is considered to be necessary for the initiation of infection by 

many pathogens, including Salmonella (15). Salmonellae encounter different host cell 

types during the infection process, although the molecular participants in these 

interactions are poorly understood (40). Surface components of salmonellae, including 

fimbriae (7,8), flagella (22), and LPS (23), have been implicated in host-cell attachment, 

but these findings have not been universally accepted (30,31).

A key host defense cell in Salmonella infections is the Mo. Previous studies in our 

laboratory have shown that S. typhimurium adhere to Mo in the absence of opsonins 

(39) and that multiple receptors on Mo are involved in recognition of these bacteria (1). 

To identify the molecular participants of S. typhimurium involved in the early adherence 

to Mo, this study focused on the envelope proteins of S. typhimurium. Bacteria were 

grown under anaerobic conditions since this has been associated with enhanced 

attachment and entry into mammalian cells (12,28). Probing immobilized bacterial 

envelope proteins with labeled Mo allowed us to identify the 44-kDa protein. Standard 

biochemical techniques were used to purify the protein free of detectable LPS. The final 

purified material was also devoid of phosphatase activity, whose presence is associated 

with periplasmic contamination (35). Picomolar to nanomolar concentrations of this 44- 

kDa protein were able to block attachment of S. typhimurium to Mo.

Partial amino add sequence data obtained from the N-terminus of the 44-kDa 

protein completely matched a 15-mer from OmpC of E. coli K-12 (37). A similar but not 

identical sequence is assodated with 36-kDa OmpC from S. typhimurium LT2 (42) and 

14028. Based on this sequence data, the bacterial protein recovered in this study is

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



OmpC-Iike; its physiological relationship with OmpC and other recognized porin 

proteins is, at present, unknown.

In situ porins are tightly associated with LPS. Indeed, it has been proposed that 

porins must be associated with LPS to be biologically active in vitro (9). Our studies 

suggest that bacterial adherence mediated through the 44-kDa outer membrane protein 

does not require LPS.

Salmonella porins are immunogenic in mice (25) and have been shown to confer 

significant protection against challenge with live S. typhimurium (2534). The binding of 

S. typhimurium porins to human polymorphonuclear leukocytes induces a decreased 

oxidative burst in these cells as well as inhibits their migration in the presence of 

chemotactic agents (14). Salmonella porins also induce the release of tumor necrosis 

factor-a, interleukin-1 a  and interleukin-6 by human monocytes (13). Subcellular events 

in Me following attachment of the 44-kDa protein have not yet been characterized. 

Studies with two other Gram-negative species provide possible models.

Porins of Neisseria species are capable of inserting into the membranes of human 

neutrophils (4), resulting in the inhibition of actin polymerization, degranulation, and 

opsonin receptor expression. These porins translocate from live meningococci and 

gonococci and integrate directionally into the lipid-bilayer membrane of mammalian cells 

(532,41). Bemardini et al. (3) have shown that the OmpC of Shigella flexneri is involved 

in the invasion of HeLa cells, perhaps by directly interacting with cytoskeletal 

components.

This study suggests that Mo recognition of porin-like molecules may be an key event
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in early defense against S. typhimurium infections. Understanding how porin proteins 

interact with host defense cells may help in developing preventive strategies for reducing 

the morbidity and mortality of salmonellosis world-wide.
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CHAPTER TWO

OmpC of Salmonella typhimurium Mediates Attachment to Mo and Resistance to

Intracellular Killing.

ABSTRACT

Murine peritoneal Mo recognize, adhere to, and phagocytose S. typhimurium in the 

absence of serum opsonins. OmpC mutants were developed in our test strain of S. 

typhimurium and measurements of both bacterial adherence and phagocytic 

internalization were compared to those of the parent wildtype strain. These studies 

were performed in an opsonin-free environment that models in vitro the mammalian 

innate host defenses against S. typhimurium. The ompC mutation resulted in a five-fold 

decrease in the adherence of bacteria to the Mo. Moreover, internalized ompC mutants 

were susceptible to Mo killing in contrast to the wildtype strain. Evidence from this 

study supports a role for the OmpC protein in both initial recognition by Mo and in 

subsequent intracellular survival.
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INTRODUCTION

Non-typhoidal salmonellosis remains a major foodbome disease. Intervention 

strategies hold promise for reducing the incidence of self-limiting gastroenteritis caused 

by Salmonella spp. Major efforts have been developed to prevent the spread of this 

organism within the population (25). This study focused on innate defenses against 

Salmonella infections and is based on the premise that such defenses are an important 

means for preventing development of clinical salmonellosis and that a good 

understanding of the interaction between Salmonella spp. and the key cell of the innate 

defense system—the M0—can lead to the development of intervention approaches at the 

individual level. Research has shown that Salmonella bacteria adhere to specialized small 

intestinal epithelial cells called M cells (29). After attachment, these bacteria mediate 

cytoskeletal and cell surface rearrangements causing internalization within a membrane- 

bound vesicle (22). Once internalized Salmonella destroy these cells (29) and enter Mo in 

the mesenteric lymph follicles. Following entry into Mo, these bacteria reside in 

membrane-bound vacuoles, resist killing, and replicate (47). Survival within the Mo is 

critical for Salmonella virulence because it enables these bacteria to evade key defenses of 

the immune system and to disseminate to other tissues (11,34).

The role of innate defenses in thwarting the initial microbial aggression has become 

increasingly recognized as an important component of our ability to prevent disease 

development following exposure to potential pathogens (8). A key defense cell in 

Salmonella infections is the Me. Usually understood as a major cell involved in 

phagocytic uptake and internal destruction of microbial pathogens, for some 

intracellular bacterial pathogens such as Salmonella spp. the Me becomes a haven, a 

protected environment in which the microorganism may thrive (28). Involvement of the

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



porin protein OmpC in recognition of S. typhimurium by Mo supports a role for this 

protein in linking salmonellae with key cells of the innate defense system.

Constituting up to 2% of the total cellular protein in enteric bacteria (43), porins are 

strong candidates for recognition by host defense cells. They are highly antigenic, 

particularly in their native association with lipopolysaccharide (32), and may confer 

protection to challenge with the live microorganism (323937). Cell-mediated immune 

responses to porins from 5. typhi (4) and from S. typhimurium (40) support a role for 

these outer membrane proteins in inducing a specific immune response.
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MATERIALS AND METHODS

Chemicals. Unless otherwise stated all chemicals used were obtained from Sigma 

Chemical Co, St. Louis, Mo.

Bacterial strains and media. The bacterial strains used in this study are listed in 

Table 1. All strains were cultivated in Luria-Bertani broth (LB) or on LB agar plates 

unless otherwise stated. Wild-type S. typhimurium 14028 is a virulent strain isolated 

from a cow that had died from septicemia. This strain has been shown to be resistant to 

killing by Mo, to survive intracellularly and to resist killing by 1% Na deoxycholate (21). 

Unlike more commonly used S. typhimurium LT2 strains S. typhimurium 14028 retains 

its virulence in vitro (21). This strain has a lethal dose (LDjq) = 30 organisms when 

injected intraperitoneally in BALB/c mice. S. typhimurium strain 103 is an ompC mutant 

derived from the parent 14028 developed in this study. Tetracycline concentrations used 

in LB agar were at 20 pg m l'1. The Escherichia coli strain HB101 was used as a control for 

a internalization experiments, because it is readily phagocytosed and killed (20,31).

Bacteriophages. The bacteriophage used in this study are listed in Table 2. Unless 

otherwise stated bacteriophage lysates were propagated in exponential cultures of the 

host strain S. typhimurium 14028 which was grown in Luria Bertani (LB) broth to an 

early exponential phase of growth to a concentration of 1 x 109 CFU m l'1. Bacteria were 

removed from lysates by centrifugation at 10,000 x g for 10 min and the supernatant 

fluids transferred aseptically to sterile tubes by filtration through a sterile 0.2 pm filter 

syringe. One ml of chloroform was added to each lysate, which was then incubated for 

18 h at 4°C. Viable bacteria were monitored in these lysates by inoculating LB agar with 

0.1 ml of the phage lysate and incubating at 37°C for 18 h.
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TABLE 1. Bacterial strains used.

Strain Genotype Source

S. typhimurium 14028 
S. typhimurium 14028 
S. typhimurium 103 
S. typhimurium LT2 23564 
S. typhimurium LT2 SH7241 
S. typhimurium LT2 SH5014
S. typhimurium LT2 SH6017 
E. coli HB101 
E. coli HB101

smooth wild-type 
ompCnTnlO 
ompC mutant 
smooth wild-type 
ompCr.TnlO 
rfa,fla
ompC::TnlO 
smooth wild-type 
harbors plasmid pBR328

ATCC
SGSCd
SGSCe
SGSCe.f
CGSCg
CGSO

Difco3 
this study*3 
this studyc

a American Type Culture Collection strain 14028, CDC 6516-60.
6 Derived from S. typhimurium 14028 ompCr.TnlO.
c S. typhimurium strain 103 is an ompC mutant derived from the parent 14028 
ompC::Tnl 0 through positive selection for tetr.
d Kenneth E. Sanderson , Salmonella Genetic Stock Center, University of Calgary, 
CANADA, In this strain, the ompC gene has been inactivated by transposon 
mutagenesis through the transposition of TnlO after nucleotide residue 396 of the ompC 
open reading frame (18).
e Derived from S. typhimurium LT2 strain SL1027 and is an rfa m utant (44,53). This 

rough mutant contains less than a complete LPS (27) and is fla-r therefore lacks 
flagellar-driven motility (53).

/Derived from S. typhimurium LT2 SH5014 (44).
g Barbara Bachmann and Mary Berlyn, Coli Genetic Stock Center, Yale, New Haven, CT. 
h Plasmid pBR328, genbank accession number L08858, contains genes tet which encodes 
for the tetracycline resistance protein at nucleotide residues 86-1276, bla which encodes 
for P-lactamase at residues 2209-2997, and chi, which encodes for chloramphenicol- 
acetyl transferase at residues 3477-4136 (16,45,51).
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TABLE 2. Bacteriophages used. 

Phage Genotype Source

P22 HT105/1 
H5
PH105

int-201
d2
wild-type

SGSCa
SGSCb
P. Helena Makelac

* Kenneth E. Sanderson , Salmonella Genetic Stock Center, University of Calgary, 
Canada, Derived from P22. P22 was isolated by Zinder and Lederberg from S. 
typhimurium LT22. It adsorbs to Salmonella with O-antigen 12 (serogroups A,B,D1) 
and has been shown to be a generalized transducing phage (59). Schmieger 
isolated the lysogen deficient (znf~) high-transdudng phage HT105/1 (49) 
because of lytics problems in genetics using P22 (55,59).

•> Derived from P22. The c2 mutation of P22 is a dear-plaque mutant which does not 
lysogenize and the c2 gene encodes a repressor equivalent to cl of bacteriophage 
lambda and this mutant bacteriophage is called H5 (35). 

c P. Helena Makela, National Public Health Institute, Helsinki, Finlandand this phage 
can only infect OmpC+ S. typhimurium strains without discrimination for smooth 
or rough LPS (27).
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Preparation of transducing particles. S. typhimurium LT2 strain SH7241 was used 

as the donor strain for preparing transducing lysates of ompC::Tnl 0. P22-transdudng 

lysates were obtained by mixing 4 ml of P22 lysate with 1 ml of post-exponential S. 

typhimurium SH7241 culture. This mixture was incubated for 8-16 h at 37°C and the 

phage (transducing particles) were obtained as described above. P22 titers were 

determined by a soft agar overlay method with S. typhimurium 14028 as the host (35). 

This transducing lysate was used to infect wild type S. typhimurium 14028.

Transduction. This experiment was carried out by mixing LB-grown post

exponential cultures of the lysogenic recipient strain S. typhimurium 14028 (-2 x 109 ml' 

l) with phage lysate at a ratio of 0.01 to 0.1 bacteriophage per bacterial cell (49). The 

infected cultures were incubated at 37°C for 1 h without agitation and serial dilutions of 

this were plated onto LB agar containing tetracycline (25 pg m l'1). The plates were 

incubated for 2 d at 37°C. Tetracycline-resistant (fef7) transductants were isolated. 

Transductants were screened to eliminate pseudolysogens and stable lysogens. Selected 

strains were used for curing S. typhimurium 14028 of TnlO.

Screening transductants for pseudolysogeny. Pseudolysogens were differentiated 

from nonlysogens by the growth of te f  transductants overlaid with nutrient agar (0.8%) 

containing the host S. typhimurium 14028 and incubated at 37°C for 18 h (6). The 

presence of pseudolysogens was detected by the appearance of a plaque formation 

around the transductant colony (pers. comm., R. Zsigray).

Screening transductants for stable lysogeny. Stable lysogens are immune to P22
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superinfection and these transductants were not useful for further genetic studies in the 

event of lysis of the bacterial host The transductants were tested for susceptibility to 

bacteriophage H5 infection by the soft-agar overlay technique. Those sensitive to this 

phage were considered nonlysogens as previously described (6,17) and were retained for 

further study.

Preparation of O-Antigen bacterial vaccine. Heat-killed Salmonella were used to 

elicit antibodies in rabbits to the O antigen (12,19). S. typhimurium 14028 was grown in 

LB broth from frozen glycerol stocks for 18 h at 37°C with shaking. The bacteria (=2 x 

109 CFU m l'1) were concentrated by centrifugation (10,000 x g) for 10 min and 

resuspended in PBS, pH 7.3. The thrice-washed bacterial mass was resuspended in 

absolute ethanol and heated at 60°C for 1 h (12). The pelleted bacteria (10,000 x g) were 

resuspended in formal-saline (0.6% formaldehyde in 0.85% N ad) and washed three 

times. The bacteria were resuspended in 0.85% N a d  at a final concentration of =1 x 109 

bacteria m l'1 .

OmpC-spedfic antibody preparation. Four New Zealand rabbits were immunized 

over a 4-week period to obtain predominantly IgG-spedfic antiporin antibodies 

(12,19,50). Each rabbit was injected intravenously in the lateral ear vein with 0.1 ml of 

bacterial vaccine on d 1, 3,5, 7, 8,10,12,15,17, and 21. On d 28 the rabbits were 

starved for 24 h  and sacrificed. Approximately 100 ml of blood from each rabbit was 

collected by cardiac puncture. Rabbit serum was obtained by centrifugation to remove 

cellular material (800 x g). An IgG-rich fraction was obtained by precipitation w ith 50% 

saturated ammonium sulfate, centrifugation at (10,000 x g), and exhaustive dialysis 

against PBS pH 7.3 containing 0.1% thimerosal. This material was further purified by 

affinity chromatography on a Protein G Surperose column (Pharmacia LKB,
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Biotechnology, Piscataway, NJ) equilibrated with PBS, pH 73, containing 0.1 % 

thimerosal. The IgG was eluted with 0.10 M glycine, pH 2.7, and collected as 13 ml 

fractions in tubes containing 45 pi 1.0 M Tris-HCl, pH 9.0 to preserve the activity of the 

add-labile IgG. Column size and flow rates were determined by the rat IgGa and IgGb 

binding properties quoted in the data sheet accompanying the affinity chromatography 

product. Anti-Salmonella activity was measured using a bacterial agglutination assay 

(12). OmpC-spedfic IgG was obtained through polydonal sera absorption with an 

ompC-deBdent strain of S. typhimurium. Approximately 1010 PBS-washed S. 

typhimurium SH7241 ompC::Tnl 0 were added to rabbit anti-O antigen-specific S. 

typhimurium 14028 IgG and the mixture incubated for 30 min at 37°C. Bacteria were 

removed by centrifugation (10,000 x g) and the supernatant fluids containing OmpC- 

spedfic IgG were kept frozen at -20°C until used.

Screening transductants for phenotypic mutations. Western profiles of envelope 

proteins from the mutant strains were compared to that of the wild-type parent S. 

typhimurium 14028. Envelope proteins from ompC mutants and wild type strains were 

prepared as previously described in Chapter One. Approximately 100 fig of envelope 

proteins was separated by electrophoresis in acrylamide gels (11.5%) containing SDS 

(33), and transferred to nitrocellulose membranes (58). These transferred proteins were 

probed with rabbit anti-S. typhimurium strain 14028 OmpC-spedfic IgG, and the 

nitrocellulose membranes washed with PBS pH 7.3. The bound antibody was detected 

by goat anti-rabbit IgG conjugated to horseradish peroxidase followed by the addition 

of the substrate 4-chloro-l-naphthol (58).

Transposon curing. Tn20 was cured from S. typhimurium 14028 ompC::TnI0 

mutants by inoculating these strains on minimal medium agar containing fusaric add (12
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pgm l'1) and chlortetracycline (50 pg ml'1) according to standard procedures for positive 

selection for tetracycline sensitivity (tef) of Salmonella (7,36). Loss of Tnl 0 is 

accompanied by the loss of tetracycline resistance; therefore; fusaric add-treated 

isolates were further screened for sensitivity to this antibiotic and for susceptibility to 

the OmpC-spedfic phage PH105.

Screening transductants for reversion. Selected te f  cured strains were screened to 

determine if reversion to wild-type ompC had occurred using PH105 (27,44). Isolates 

that were tef* and phager were considered phenotypically defident of the OmpC protein.

Isolation of a t e f  gene fragment probe. The gene coding for the tetracycline 

resistance protein at nudeotide residues 86-1276 (tef) of pBR328 was isolated and used 

as a probe. £. coli HB101 containing plasmid pBR328 (16,45,51) was inoculated into a 

10-ml shake flask of LB broth containing tetracycline (50 pg ml*1) and incubated for 8 h 

at 37°C. This culture was used to inoculate 500 ml of LB broth containing tetracycline 

(50 pg ml'1) and grown for 12 h. Plasmid DNA was isolated by the alkaline lysis method 

of Bimboim and Doly (3) and double digested with restriction endonudeases EcoRV and 

Sal I following the supplier's recommendations (New England Biolabs, Beverly, MA). 

These unique restriction sites at residues 187 and 651, respectively contain a portion of 

the te f  gene. This mixture was separated by agarose electrophoresis (1% agarose, (37)). 

A 464-bp fragment was excised from the gel and digested with 5 U of (5-agarase 

overnight at 37°C (FMC, Rockport, ME, (15)). The recovered fragment was predpitated 

by the addition of 1/10 volume of 5 m  N ad  and two volumes of absolute ethanol, 

sedimented by centrifugation (10,000 x g), dried, and resuspended in milliQ-HjO. 

Approximately 5 pg of isolated DNA was randomly labeled by the method of nick- 

translation using commerdally supplied enzymes, deoxynudeosidetriphosphates (Gibco
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BRL, Gaithersburg, MD), and 65 (iCi of 32P-alabeled deoxycytidinetriphosphate (3,000 

Ci m M ol *1, ICN Pharmaceuticals, Irvine, CA).

TnlOutet Southern hybridization. Selected te f  strains of S. typhimurium were 

tested for the presence Tnl 0 insertions in their chromosomal DNA by Southern 

hybridization analysis (52,54). Genomic DNA of ompC mutants and of wildtype S. 

typhimurium was purified by the method of Marmur (38). Restriction fragment analysis 

of ompC from S. typhimurium was performed by digesting 5 pg of chromosomal material 

with EcoRV (46). These digests were separated by electrophoresis in 1 % agarose gels, 

transferred to nylon membranes, probed with radiolabeled tet (= 109 dpm pg'1), and 

exposed to Hyper-film MF® (Amersham) for 24 h by the method of Southern (52,54).

Me. Peritoneal exudate Me from 8-12 week-old Balb/c mice, obtained from our 

breeding facility, were elicited by intraperitoneal injection of 3.0 ml of aged Brewer 

thioglycollate (Difco). After 5 d the Me were harvested by lavage using 10 ml of 

Dulbecco's phosphate-buffered saline with Ca2+ and Mg2+ (DPBS). The Me were 

washed three times by centrifugation (200 x g), using cold DPBS and the final Me 

resuspensions were made in cell culture medium M199 deficient in serum components 

and without supplements at a final concentration of either 5 x 10s or 5 x 1(P Me ml'1. 

Approximately 95% of these cells were Me, as judged by cell morphology.

Growth and preparation of bacteria for adherence and internalization assays. 

Stationary-phase cultures of bacteria (=2 x 109 CFU m l'1) were prepared by inoculating 

LB with bacteria (=10* CFU m l'1) from frozen glycerol stocks and incubating them with 

vigorous shaking for 18 h at 37°C. Bacterial cultures were collected by centrifugation (5 

min at 3,000 x£  at 37°C) and suspended in prewarmed (37°C) M199 w ithout
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supplements. From this suspension either 5 x 109 or 5 x 10lt} bacteria m l'1 were 

prepared.

Internalization assay. Internalization of ompC*■ and ompC S. typhimurium strains 

was measured at two different Mo concentrations in the absence of serum opsonins. 

Bacterial inocula (10 pL per tube) were added to siliconized microcentrifuge tubes and 

the Mo suspensions were added to the bacteria as 1.0 ml suspensions (time zero [f = 0]). 

The ratio of Salmonella to Mo was 100:1. At each time point measurements were made in 

triplicate. The infected cells were incubated at 37°C for 15 to 120 min (t = 15 to 120), 

end-over-end on a Rotamix (Applied Technical Resources, MD) at 12 revolutions m in'1. 

At either 15- or 30-min intervals the appropriate tubes were placed on ice and the Mo 

were washed with DPBS by differential centrifugation (400 x g) for 5 min at 4°C to 

remove nonadherent bacteria. This wash step was repeated three times. The supernatant 

fluids containing nonadherent bacteria were transferred to a clean tube and the bacterial 

concentration determined by direct colony counts on Plate Count Agar (PCA, Difco,

MI). The number of colony-forming units (CFU) was counted following 18 h of 

incubation at 37°C . The Mo were overlaid with 1.0 ml of PBS containing 1% Na 

deoxycholate to release the bacteria from the Mo and incubated for 10 min at room 

temperature with occasional mixing. One-half of Mo lysate was plated on PCA agar 

directly and the other half volume was serially diluted and plated. The number of CFU 

was determined following 18 h of incubation at 37°C . Bacterial sedimentation in the 

centrifugation step was controlled by monitoring bacteria without Mo in the same test 

conditions. A positive control was the nonpathogenic E. coli strain HB101, which is 

recognized as susceptible to Mo killing.

Biosynthetic radiolabeling of Salmonella. Bacterial cultures were grown as
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described above to a final culture density of -109 CFU m l'1. Bacteria from 1.0 ml of 

culture were washed with 1.0 ml of DPBS prewarmed to 37°C and resuspended in 0.5 

ml of sterile methionine-free medium (Methionine Assay Medium, Difco) containing 250 

pCi of [35S]-methionine and [^SJ-cysteine (Tran35S-label, ICN, frvine, CA). Samples 

were incubated at 37°C for 10 min and the reaction was quenched by the addition of 10 

pi of 0.10 M L-methionine. The labeled bacteria were collected by centrifugation at

10,000 x g and washed three times with PBS, pH 7.3. Bacteria were resuspended in 

M199 medium and used for in vitro binding assays.

Adherence assays. Mo were infected with 35S-labeled S. typhimurium as in the 

internalization assays. After 1 h the infected cells were fixed by the addition of an equal 

volume of 2% glutaraldehyde in PBS and incubated for 10 min. Mo were collected by 

centrifugation (200 x g) for 5 min. The supernatant fluids were collected and transferred 

to a scintillation vial for the determination of the radioactivity (dpm pi'1). The 

sedimented Mo were washed three times with PBS to remove the non-adherent bacteria 

from the interstitial cellular space between cells. The sediment was resuspended in 1 ml 

(10% SDS, 70°C), transferred to a scintillation vial and counts m in'1 of solubilized Mo 

pellet were obtained. The percentage of radiolabeled bacteria bound to Mo was 

calculated from the division of the radioactivity in the Mo sediment (Mo with adherent 

bacteria) by the total activity in the reaction vessel which included the sum of the 

radioactivity obtained from the sedimented Mo and supernatant fluids (adherent plus 

non-adherent bacteria).

Statistics. Each system was measured in triplicate and the assays repeated at least 

twice. In each experiment the data were expressed as mean± standard deviation of the 

cpm for adherence assays or viable bacteria recovered from the internalization assays.
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RESULTS

Transduction. The phage lysate prepared from S. typhimurium SH7241 had a titer 

of 4.93 x 109 PFU ml*1. The phage lysate was free of viable S. typhimurium as 

determined by the failure of growth on LB agar inoculated with 0.1 ml of the phage 

lysate. S. typhimurium 14028 transduction with this lysate developed 633 te f  

transductants of which 267 were discarded as pseudolysogens. There were 13 isolates 

that were resistant to PH105 infection (PH1051)- Six of these 13 isolates were 

susceptible to P22 c2 infection and confirmed as non-lysogenic strains.

OmpC-specific Western blot analysis. Serum prepared in this study had a titer of 

1280 for S. typhimurium strain 14028, based on bacterial agglutination assays. Western 

blot profiles of envelope proteins of the six selected te f S. typhimurium 14028 

transductants were probed with OmpC-spedfic antiserum (fig. 1). Antibody bound to 

the 36-kDa protein from envelope preparations of the wild type strain S. typhimurium 

14028. No antibody binding to the envelope proteins of the six te f  strains was seen and 

these were considered to be phenotypically OmpC-defident.

Adherence assay. Binding of the S. typhimurium ompC mutants and the wild-type 

parent strain of S. typhimurium 14028 to murine peritoneal Mo was quantitatively 

measured in vitro using a 35S-labeled bacterial binding assay. The percentage of 

radiolabeled wildtype S. typhimurium 14028 bound to Mo was five-fold higher than that 

of the six derived ompC::Tnl0 mutants derived from S. typhimurium 14028 (fig. 2). 

Furthermore, the binding activity of the wildtype S. typhimurium LT2 strain 23564 was 

comparable to that of the m utant strains.
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Figure 1. Western blot of electroblotted envelope proteins (100 pg per lane) probed 
with rabbit anti-S. typhimurium 14028 polyclonal sera previously absorbed with S. 
typhimurium SH7241 ompC::TnlO. Goat anti-rabbit antibody conjugated to 
peroxidase was used to visualize OmpC protein. Lane A contains molecular weight 
standards. Lane B contains envelope proteins from ompC wildtype S. typhimurium 
14028, lane C -G contains envelope proteins from S. typhimurium ompC::TnlQ 
trandsductants. Lane H contains envelope proteins from S. typhimurium LT2 strain 
SH7241 ompCizTnlO. Lane I contains 10 pg of purifed bovine serum albumin.
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Figure 2. The percentage of radiolabeled bacteria that bind to Mo in suspension 
for one hour was determined in triplicate by measuring the amount of 
[35S]-methionine labeled bacteria bound to Mo divided by the total amount of 
radiolabeled bacteria present in each assay tube multiplied by 100 percent. The 
above histogram indicates that on average S. typhimurium 14028 ompC::TnlO 
mutants adhere to Mo in suspension 14.81% as compared to the wild-type 
ompC S. typhimurium 14028 which occurs at 62.54%. Binding assays were done 
with the following strains: wild-type S. typhimurium LT2 ATCC 23564 ompC+, 
A, S. typhimurium strain SH7241 ompC::Tnl0, B, wild-type S. typhimurium 
14028 ompC+, C, S. typhimurium 14028 ompC::Tnl0, D-I.
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Curing Salmonella of TnlO. Drawbacks to these studies include the potential for 

wildtype revertants from unstable transpositions, which occur at a frequency of 1 in

10,000 and the requirement for the presence of the antibiotic, tetracycline (R. Zsigray, 

pers. comm.). Out of 166 fusaric add-treated isolates tested 35 were tef5 and of these 18 

were PH105r. One of these isolates, S. typhimurium 103 ,was selected for the 

internalization studies. All 18 strains were considered prototrophic by their ability to 

grow as well as wild type strain in 18 h at 37°C on Davis minimal medium agar in the 

absence of supplements. Genomic DNA preparations from all of these selected strains 

failed to hybridize with a labelled te f  fragment and were confirmed cured of TnlO. 

The cured strain S. typhimurium strain 103 was used in the internalization assays.

Internalization assay. Wild-type S. typhimurium 14028 attached to, was 

internalized by, and continued to survive and grow within Mo; however, the ompC 

mutant S. typhimurium 103 could no longer be recovered from Mo. OmpC mutants 

appeared to be completely killed within 90 min after phagocytosis by Mo (fig. 3 and fig.

4.). S. typhimurium LT2 strains 5014 and 6017 were both killed within the first 60 min 

subsequent to phagocytosis. The uptake assays did not determine whether ompC 

conferred a selective advantage of the S. typhimurium LT2 strains 6017 or 5014. 

Escherichia coli strain HB101 was internalized by Mo after 30 min of infection and no 

viable bacteria were recovered after 60 min. The recovery of Mo less unbound bacteria 

was confirmed w ith sham controls of bacteria without Mo as these did not recover 

bacteria by relative centrifugal forces used (400 x g  for 5 min) in this assay.
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DISCUSSION

Early host recognition and effective control by components of the innate defense 

system are a likely means for intervention strategies at the individual host level. Beyond 

binding to key host cells, porin proteins from Salmonella spp. have been shown to 

activate the complement system (24), to induce the secretion of several cytokines (23), 

and to stimulate free radical production by Mo (56). Binding and subsequent 

internalization of mammalian cells by S. typhimurium are independent phenomena (31). 

This study indicates that adherence of the bacteria to Mo involves the OmpC protein 

and that this process is independent of serum factors. Support for this finding is seen in 

studies w ith Shigella flexneri, in which the OmpC protein has been shown to be involved 

in the invasion of epithelial cells (1,2,48).

To determine whether OmpC expression in S. typhimurium is linked to adherence 

and internalization, ompCnTnlO was transduced into the Mo-resistant strain S. 

typhimurium 14028 (9,21). These mutant strains were confirmed as OmpC protein- 

deficient (42). Findings from the adherence assay confirm that the OmpC protein of S. 

typhimurium is involved in early recognition and attachment by host phagocytic cells. 

Mutants cured of Tnl 0 and deficient in OmpC protein did not reveal selective 

advantages or disadvantages in the number of bacteria internalized by Mo at different 

times along the course of phagocytic uptake by Mo as compared to the wild type strains. 

The data do show that at select times viable ompC-defident S. typhimurium is no longer 

recovered from the lysed Mo. Explanations are 1) that the OmpC protein enhances S. 

typhimurium resistance to Mo killing, 2) that bacterial intoxication renders Mo unable to 

internalize bacteria (47), or 3) that bacteria can no longer enter Mo due to host cell lysis. 

Arguments for the last possibility are weak, however, since the wild type strain
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continues to be recovered from M0 after 2 h in these infection assays. OmpC-mediated 

survival of S. typhimurium is further supported by the observation that non-pathogenic 

E. coli are killed by Me (20,31).

Bacterial entry into M0 is a complex process because the constituents of both cells 

contribute to adherence and phagocytosis. Bacteria can invade M0 while M0 

phagocytose bacteria. Not only is the identity of the subcellular participants involved in 

these internalization mechanisms unknown, but how proteins contribute to the 

trafficking and the final location of these bacteria within M0 is also unclear. Electron 

microscopic studies of Mo infected with microbes have revealed that intracellular 

pathogens employ diverse survival strategies (10). S. typhimurium LT2 strains has been 

observed within fused phagolysosomes (5,13), and the final destiny and death of these 

bacteria was accepted (30). However, new evidence has shown that S. typhimurium 

14028 escapes phagosome-lysosome fusion (26) and that this process is independent of 

the O chains of the Iipopolysaccharide (10).

Bemardini et al. observed microscopically that the OmpC of Shigella flexneri mediates 

the extracellular spread of this pathogen from infected to uninfected epithelial cells (1), 

and that these bacteria lyse the phagosomal membrane and escape into the cytoplasm 

(14). This model supports the findings observed here with S. typhimurium. First, virulent 

S. typhimurium strains adhere better to M0 as than do a virulent S. typhimurium strains 

in the absence of opsonins (41). Second, ompC bacteria adhere significantly less to Me 

than do the virulent isogenic wildtype strains. The internalization findings show that the 

OmpC protein offers protection to the bacteria from intracellular killing by Me. Confocal 

microscopy of infected Me would be helpful to confirm the subcellular location of these 

ompO bacteria. In view of the possibilities, this study provides provides insight into the
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mechanism involved in the virulence S. typhimurium and the promise of new strategies 

directed at the prevention and protection of enteric disease caused by Salmonella spp.
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CHAPTER THREE

Complete Nucleotide Sequence and Comparative Analysis of the ompC Gene of

Salmonella typhimurium

ABSTRACT

Recent evidence suggests that the OmpC protein of S. typhimurium is involved in 

the adherence to host phagocytic cells and offers protection to the bacteria from 

intracellular killing by Mo. The nucleotide sequence of genes that encode for the classiscal 

porin proteins OmpC, OmpF, OmpD and PhoE of Escherichia coli, S. typhi, and S. 

typhimurium have each been determined except for the ompC gene of S. typhimurium. 

This study reveals that there are several distinct differences between the nucleotide 

sequence of this porin gene and its homologous gene in related enteric bacteria. The 

deduced OmpC amino add  sequence of S. typhimurium shares 77 and 98 percent 

identity with OmpC amino add sequences of E. coli and S. typhi, respectively. This 

study offers strategies that target specific regions of the nine extracellular loops of this 

porin protein that either partidpate in host cell recognition of bacteria by phagocytic 

cells or are involved in bacterial resistance to phagocytic killing.
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INTRODUCTION

The surface of Gram-negative bacteria include a class of proteins called porins that 

form diffusion channels for the transfer of small hydrophilic molecules across the outer 

membrane (1,17,22). The classical porin proteins of S. typhimurium are encoded by the 

structural genes ompC, ompF, ompD, and phoE (24,30-32,34). Support for the role of the 

outer membrane porin protein C in the pathogenesis of Salmonella species has been 

reported (15,36). These molecules are likely candidates to participate in the virulence of 

Salmonella since they are major outer membrane proteins (= 105 per cell(16)). S. 

typhimurium ompC and ompF mutants are attenuated as shown by the increase of the 

lethal dose 50 by a 1,000-fold in orally challenged Balb/c mice (5). In addition, the 

homologous OmpC protein of Shigella flexneri mediates extracellular spreading of the 

bacteria from one epithelial cell to another and resistance to host cell killing (2). There is 

no known nucleotide (nt) sequence for the ompC gene of S. typhimurium. The literature 

dtes n t sequences upstream of the ompC gene of S. typhimurium (10), limited amino add 

(aa) sequence of the OmpC protein of S. typhimurium (32), or reports that the ompC of

S. typhi and S. typhimurium are not heterogeneous (26). This study determined the 

complete n t sequence of ompC and showed it is unique to S. typhimurium. This 

information may provide insight as to how this protein is involved in the pathogenesis of 

Salmonella spedes.
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MATERIALS AND METHODS

Media and culture conditions. S. typhimurium ATCC strain 14028 was cultured in 

11 of LB broth for 18 h at 37°C. Cells were concentrated by centrifugation (10,000 x g) 

at 4°C. Genomic DNA was isolated from the cells by the method of Marmur (19).

PCR methodology. The GenAmp® PCR core kit (Perkin Elmer, CA) was used to 

amplify regions of the ompC DNA. All deoxyoligonudeotide primers were developed by 

a commercial supplier (Integrated DNA Technologies, LA). Synthesized oligonucleotide 

non-overlapping primers complementary to regions near or within the 1134 bp ompC 

reading frame of S. typhi (26) were designed to anneal to conserved regions of the 

related gene of S. typhimurium by use of the Lazer Gene Navigator Software Package 

(DNA Star®, Inc., Madison, WI). The oligonucleotides used for PCR reactions were also 

used for nt sequencing reactions. PCR reactions were performed with 0.1 pmol of each 

primer in a 100 pi of reaction mixture. S. typhimurium genomic DNA (100 ng) was mixed 

with 2 units of Taq DNA polymerase in 100 pi of reaction buffer and subjected to 

polymerase chain reaction (9). The ompC gene fragments were selectively amplified by 

several PCR reactions using oligonucleotide primers (fig 1A and B). The reaction 

conditions were as follows: 5.00 min at 95° C, 1 min at 55° C and 1 min at 72° C for 25 

cycles ending with a 7-min extension step. The PCR products were separated from PCR 

reagents by DNA gel electrophoresis.

Analysis of plasmid and PCR products. The presence of double-stranded PCR 

products were confirmed by agarose gel electrophoresis. The size of the PCR products 

were determined by comparison with known ds-DNA molecular weight markers (18). 

Electrophoresis was carried out at 5 V /cm  for 3 hr in a horizontal electrophoresis unit
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(Mini-cell, Bio-rad, CA) in the same Tris-acetate-EDTA buffer. The gel slabs were 

stained with 0.5% ethidium bromide and viewed using an ultraviolet transihuminator 

(C-63, Ultra violet products). Selected fragments were excised from gels and digested 

with 5 U of P-agarase overnight at 37°C (FMC, Rockport, ME, (6)). The recovered 

fragments were precipitated by the addition of 1/10 volume of 5 M NaCl and two 

volumes of absolute ethanol, sedimented by centrifugation (10,000 x g), dried, and 

resuspended in milliQ-E^O.

Southern hybridization. PCR products were confirmed as ompC DNA by 

hybridization against the chromosomal ompC gene (33,35). PCR fragments were 

prepared and radiolabelled with 32P-deoxycytidine triphosphate and resuspended in 

water as described in Chapter Two. Genomic DNA from wildtype S. typhimurium 

14028 (5 jig) was digested with the restriction endonuclease Eco RV (26). These 

mixtures were separated by electrophoresis in 1 % agarose gels, transferred to 

nitrocellulose membranes, and probed w ith radiolabeled PCR products (= 109 dpm pg'1). 

Membranes were exposed to Hyper-film MP®(Amersham) for 24 h. Hybridization of the 

radiolabelled PCR products with a 2.1-kb Eco RV fragment containing the ompC gene of

S. typhimurium(26) was detected autoradiography.

DNA sequencing using PCR products. The ds-DNA obtained above was 

sequenced with fluorescently labeled dideoxy chain termination reactions (29) and an 

automated DNA sequencer (ABI Model 373, (Perkin-Elmer Corporation, Foster Q ty , 

CA) (25). PCR -amplified DNA was primed for Sanger dideoxy sequencing as shown in 

Fig 1 C & D with 10 pmols of one of the following oligonucleotides: 74, 75, 63, 80, 81, 

83, 66, 76, 77, 78, or 79. Sequence data were edited with the computer-assisted 

application (SeqEd version 1.0.3, Perkin-Elmer Corporation, Foster Q ty, CA). Codon
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usage tables for S. typhimurium were provided from Genbank Release 99 (Feb 15,1997) 

and used for direct DNA to protein sequence translations. N t and deduced aa sequence 

identity comparisons were made with the ompC sequences from £. coli and S. typhi using 

Lazer Gene Navigator Software Package (DNA Star®, Inc.) and MacDnasis version 3.0 

(Hitachi Software Engineering Co., Ltd.) computer-assisted application programs.
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vmrmm  forw ard

l̂llinimi|nnm' reverse 
reverse 

m in im i reverse cnassn reverse 
rf* mmmmmm reverse

naaaa reverse 
reverse 
reverse

#82 (24 mer) GCTTTGAAATAGGGGTAAACAGAC* s tr a n d n t 5 -2 5
#65 (24 mer) ATTTCCGTATATTGTCTCC + s tr a n d n t 3 7 6 -3 9 4
#74 (24 mer) AAAGACCGCAACAAATTAGACCTG - s tr a n d n t 4 8 2 -5 0 5
#62 (24 mer) TTACGGTTTTGCCAACAAAG - s tr a n d n t 1 2 3 4 -1 2 5 3
#77 (20 mer) GCATCAACACCGACGACATC - s tr a n d n t 1 4 9 1 -1 5 1 0
#79 (22 mer) CGTAGTTGTGGCTGCTGTAG + str a n d n t 1 4 9 1 -1 5 1 0

#80 (20 mer) ACCAGTCGGCAAGTCCATTC s tr a n d n t 3 3 5 -3 1 6
#76 (24 mer) CAGGTCTAATTTGTTGCCGTCTTT + s tr a n d n t 5 0 5 -4 8 2
#78 (24 mer) GTCCAGATTAAACAACGGCAGAAA - s tr a n d n t 5 0 5 -4 8 2
#63 (22 mer) CTTTGTTGGCAAAACCGTAA + str a n d n t 1 2 5 3 -1 2 3 4
#75 (22 mer) GATGTCGTCGGTGTTGATGC + s tr a n d n t 1 5 1 0 -1 4 9 1
#66 (22 mer) CGTCCGGGAAATCGTTGTAGAAAA - s tr a n d n t 1 5 6 9 -1 5 4 6
#81 (19 mer) TTTGTACGCCGGAATAAGG + s tr a n d n t 1 6 0 4 -1 5 8 6
#83 (22 mer) ATCTTTGTACGCCGGAATAAGG* + str a n d n t 1 6 0 6 -1 5 8 6

Table 1. Oligonucleotide legend.
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RESULTS

PCR amplification. The ompC of S. typhimurium was amplified from the 

chromosome using the PCR strategy in Fig. 1. One of either the forward primers 74 or 82 

were mixed with one of the reverse primers 63,75,80 and 81 as seen in Fig. 1 and 2 

(26). PCR products were recovered from agarose gels as described in Chapter Two. PCR 

products were hybridized against the 2.1 kb Eco RV DNA fragment and confirmed as 

ompC DNA as shown in Fig. 3.

Sequencing OmpC The S. typhimurium ompC gene was nt sequenced following the 

strategy shown in Fig. 1 C and D. The nt and deduced aa sequences of ompC are shown 

in Fig. 4. Numbering of n t and aa was based on the gene sequence of open reading 

frames (ORF) described from nt sequences of ompC from S. typhi (1134 nt) and £. coli 

(1101 nt (20,26)). The ompC sequence of S. typhimurium 14028 contains a single ORF of 

1134 nt that corresponds to a protein (OmpC) of 378 aa. These results are consistent 

with the ompC reading frame of S. typhi (26).

Nt and aa sequence comparisons. At the nt level, the leader region (initiation codon 

at +1, Fig. 4) through nt 1134 has 98% and 77% nucleotide sequence identity with the 

ompC gene of S. typhi and E. coli. At the aa level, the OmpC of S. typhimurium shares 98 

and 79% sequence identity with the related protein of S. typhi and E. coli. There are 

other differences at the nt level. There are 160 single nt substitutions between the 

alignments of E. coli and S. typhimurium ompC, which results in 38 different aa 

substitutions. There are also differences in the nt sequences that are the result of either 

deletions or insertions. In comparison with the E. coli gene, S. typhimurium ompC lacks 

six codons between nt 543 and 544, and has additional one, three, nine, and four
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codons, at 610, 685, 802, and 955, respectively, which are shown at aa positions 210, 

233,274,325 in Fig. 5. Comparison with the S. typhi ompC gene reveals 12 nt 

substitutions at positions 124, 153, 315, 477, 621, 667, 774, 811, 828, 948, 1019, and 

1066; however, aa changes only occur at positions 43, 229, 259, 264, 346, 362, and 363 

(fig. 5.) There are no nt insertions or deletions between the ompC genes of S. 

typhimurium and S. typhi.

Protein secondary structure. The leader portion, which consists of 21 aa (starting 

before the arrow on Fig. 5), is identical in all three microorganisms. This shared identity 

was also confirmed by N  terminal sequencing of the 36-kDa protein , as reported in 

Chapter One. There are 357 aa as deduced from the nt sequence for the S. typhimurium 

OmpC protein (calculated Mr of 39,215). The protein shares 77% and 98% similarity 

with the £. coli and S. typhi mature OmpC proteins, respectively.

The 5' and 3' end regions. The nt sequence of the 5 ' untranslated region (UTR) 

upstream of the ompC of S. typhimurium shares 72.5% sequence identity w ith that of 

the UTR of £. coli and 99.6% sequence identity with that of the UTR of S. typhi. These 

non-identical nt residues are shown in Fig. 4 as either underlined or in bold type in Fig. 4 

as compared to either £. coli or S. typhi UTR, respectively.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A  B C D

23,130 
9,416 
6,557 
4,361

2332
2,027

Fig. 2. Agarose gel (1.0%) used to separate a 1.03 kb ompC developed 
from a PCR reaction m ixture using prim ers 74 and 75 and genomic 
DNA from  S. typhimurium 14028 (lane B), negative control using no
chrom osomal tem plate (lane C), Xffind in m olecular weight 
standards (lanes A and D) and their weights are show n on the right in 
base pairs.
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Autoradiograph - DNA Agarose Gel. 
EcoRV 

11 14G2S

2.1 kb

Fig. 3. Southern blot of S. typhimurium 14028 genom ic DNA 
digested w ith EcoRV restriction endonuclease, separated using 
agarose gel electrophoresis, transferred to nitrocellulose and probed 
using the 32P-labeled 1.03 kb PCR product which was developed 
with prim ers 74 and 75.
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5 ' AAAAAAAACCGAATGCGAiGCATCCGGTTGAAATAGGGGTAAACAGACATTCAGAA£TGAATGACGGTAATAAATAAAGTTAAT 
GATGATAGCGGTCACTATTTTAGTTGCGAATGAAGATTCTGTTTTATCATTCAGTGCTATGAATTTCATCAATTTAACCCGTTGAT 
ttta a a a g tttcg tg a a ta t a t t t t g tc ta tttg t g c t t a t t t tt a c t t g a t ttttg c tttaaaaaagttccgtaaaat tc a ta tt  
ttga aacatctatgtagata actgtaaca tctta a a a g tttta g ta tca ta ttcg tg ttg g a tta ttctg ta tttttg cg g a g a a t  
GGACTTGCCGACTG£TTAATGAGGGTTAA£CAGTA&GCAGTGGCATAAAAAAGCAATAAAGGCATATAACAGAGGGTTAATAAC

+ 1  9  1 8  2 7  3 6  4 5  5 4
ATG AAA GTT AAA GTA CTG TCC CTC CTG GT& CCA GCT CTG CTG GT£ GCG GGC GCA
M et Lys V al Lys V a l Leu S e r  Leu Leu V a l P ro  A la  Leu Leu V al A la  G ly  A la

6 3  7 2  8 1  9 0  9 9  1 0 3
GC£ AA£ GQG GCT GAA ^TT TAT AAT AAA GAC GGC AAC AAA TTA GA£ CTG TTT GGT
A la  A sn A la  A la  G lu  l i e  T y r  Asn Lys Asp G ly  Asn Lys Leu Asp Leu Phe G ly

1 1 7  1 2 6  1 3 5  1 4 4  1 5 3  1 6 2
AAA GT£ GA£ GGC CTG A&C TA£ TTC TCT GAC £AC AAA GGC AGC GAT GGC GAC CAG
Lys V a l Asp G ly  Leu Asn T y r Phe S e r  Asp Asp Lys G ly  S e r  Asp G ly  Asp G in

1 7 1  1 8 0  1 8 9  1 9 8  2 0 7  2 1 6
ACC TAC ATG CGT AT£ GGC TTC AAA GG£ GAA AC£ CAG GTT AAC GA£ CAG CTG ACC
T h r T y r  M et A rg l i e  G ly  Phe Lys G ly  G lu  T h r  G in  V a l Asn Asp G in  Leu T h r

2 2 5  2 3 4  2 4 3  2 5 2  2 6 1  2 7 0
GGT TAT GGC CAG TGG GAA TAT CAG AT£ CAG GGC AAC CAG ACT GAA ££C AGC AAC
G ly  T y r  G ly  G in  T rp  G lu  T y r  G in  l i e  G in  G ly  Asn G in  T h r G lu  G ly  S e r  Asn

2 7 9  2 8 8  2 9 7  3 0 6  3 1 5  3 2 4
£AC TCC TGG ACG C£T GTG GC£ TT£ GC£ GGT CTG AAA TTC GCT GAT GCA GGT TC£
Asp S e r  T rp  T h r A rg V al A la  Phe A la  G ly  Leu Lys Phe A la  Asp A la  G lv  S e r

3 3 3  3 4 2  3 5 1  3 6 0  3 6 9  3 7 8
TTC GA£ TAX GGT CGT AAC TAC GGC GTA ACC TAT GAC GT£ AC£ TCC TGG ACC GAC
P he Asp T y r G ly  A rg Asn T y r G ly  V al T h r T y r Asp V al T h r S e r  T rp  T h r Asp 

3 8 7  3 9 6  4 0 5  4 1 4  4 2 3  4 3 2
GTX CTG CC£ GA£ TTC GG£ GG£ GAC ACC TAC GG£ £CT GAC AAC TT£ ATG CAG CAG
V a l Leu P ro  G lu  Phe G ly  G ly  Asp T h r T y r G ly  A la  Asp Asn Phe Met G in  G in

4 4 1  4 5 0  4 5 9  4 6 8  4 7 7  4 8 6
CGT GGT AAC GGC TAT GCT ACC TAC CGT AAC AC£ GAC TTC TTC GGC CTG GT£ GAT
A rg  G ly  Asn G ly  T y r A la  T h r T y r A rg Asn T h r Asp Phe Phe G ly  Leu V al Asp 

4 9 5  5 0 4  5 1 3  5 2 2  5 3 1  5 4 0
GGT CTG £AC TT£ GC£ £TA CAG TAX CAG GG£ AAA AAC GGC A£C GTG AG£ GG£ GAA
G ly  Leu Asp Phe A la  Leu G in  T y r G in  G ly  Lys Asn G ly  S e r  V a l S e r  G ly  G lu

5 4 9  5 5 8  5 6 7  5 7 6  5 8 5  5 9 4
AAC A£C AAC GGT CG£ AGC CTG CTG AAC CA£ AAC GGC GAC GGT TAC GGC GG& TC£
Asn T h r  A sn G ly  A rg S e r  Leu Leu Asn G in  Asn G lv  Asp G ly  T y r G ly  G ly  S e r

6 0 3  6 1 2  6 2 1  635 6 3 9  6 4 8
£ T £  ACT TAT GCA AT£ GGC GAA GGC TTT TCT £TC GGT GG£ GCT ATC ACC ACG TCT
Leu T h r T y r A la  l i e  G ly  G lu  G ly  Phe S e r  V al G ly  G ly  A la  H e  T h r T h r S e r

6 5 7  6 6 6  6 7 5  6 8 4  6 9 3  7 0 2
AAA CGT ACT G££ G&T CAG GAC AAC ACC GCT AAC GCT CGC £T £  TAT GGT AAC GGC
Lys A rg  T h r  A la  Asp G in  Asp Asn T h r A la  Asn A la  A rg  Leu T y r G ly  Asn G lv

7 1 1  7 2 0  7 2 9  7 3 8  7 4 7  7 5 6
GA£ CG£ GC£ ACG GTT TAC AC£ GG£ GG£ CTG AAA TAC GAT GC£ AAC AAC ATT TAX
Asp A rg A la  T h r V al T y r T h r G ly  G ly  Leu Lys T y r Asp A la  Asn Asn H e  T y r

7 6 5  7 7 4  7 8 3  7 9 2  8 0 1  8 1 0
£TG GC& GC£ CAG TAX TTT CAG ACC TAX AAC GCA AC£ CG£ TT£ GGT ACC £CT AAC
V a l A la  A la  G in  T y r Phe G in  T h r T y r Asn A la  T h r A rg Phe G ly  T h r S e r  A sn

8 1 9  8 2 8  8 3 7  8 4 6  8 5 5  8 6 4
GGT AGC AAC CCG TCC ACG TCT TAC GGT TTT GC£ AAC AAA GC£ CAG AAC TT£ GAA
G ly  S e r  A sn P ro  S e r  T h r S e r  T y r G ly  Phe A la  Asn Lys A la  G in  Asn Phe G lu

8 7 3  8 8 2  8 9 1  9 0 0  9 0 9  9 1 8
GTG GTT GCT CAG TAC CAG TTC GAC TT£ GGT CTG CGT CCG TC£ £TG GCT TAC CTG
V al V a l A la  G in  T y r G in  Phe Asp Phe G ly  Leu A rg P ro  S e r  V a l A la  T y r Leu

9 2 7  9 3 6  9 4 5  9 5 4  9 6 3  9 7 2
CAG TCT AAA GGT AA£ £AC £T £  &G£ AAC GGT TAC GGC GCC AGC TAX G£C GAC £A£
G in  S e r  L ys G ly  Lys Asp l i e  S e r  A sn G ly  T y r G ly  A la  S e r  T y r G ly  Asp G in

9 8 1  9 9 0  9 9 9  1 0 0 8  1 0 1 7  1 0 2 6
GA£ ATC £T& AAA TA£ GTT GAT GT£ GG£ GC£ ACT TAC TAC TTC AAC A£A AAC ATG
Asp H e  V a l Lys T y r V a l Asp V al G ly  A la  T h r T y r T y r Phe A sn T h r Asn M et

1 0 3 5  1 0 4 4  1 0 5 3  1 0 6 2  1 0 7 1  1 0 8 0
TCC ACC TAX GTT GAI TAC AAA ATC AAC CTG CTG GA£ &A& TAC £AG TTX AC£ CG£
S e r  T h r  T y r  V al Asp T y r Lys l i e  Asn Leu Leu Asp Lys T y r G lu  Phe T h r A rg

1 0 8 9  1 0 9 8  1 1 0 7  1 1 1 6  1 1 2 5  1 1 3 4
GA£ GC£ GGC ATC AAC AC£ GA£ £AC ATC GTA GC£ CTG GGT CTG GTT TAC CAG TTC
Asp A la  G ly  l i e  A sn T h r Asp Asp l i e  V a l A la  Leu G ly  Leu V a l T y r G in  Phe

TAATCAGCAAAAGATGTTGCTAAAGGGGCCTGCGGGCCCTTTTTTCATGCCTTATTCCGGCGTACAAAA-3 '

Fig. 4. Complete nt sequence of the ompC gene of S. typhimurium 14028. Nt 
residues that differ from ompC of S. typhi or E. coli are shown in bold or 
underlined, respectively. gg
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Fig. 5. Comparative alignment of deduced OmpC amino add sequence from S. 
typhimurium 14028 (A) with OmpC sequences from S. typhi IMMS-1 (B), and £. coli K- 
12 (C). Shaded regions correspond to amino adds in boxes that differ from OmpC of S. 
typhimurium. The arrow indicates the site specific deavage of the OmpC precursor 
protein. One letter amino add abbreviations are shown.
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DISCUSSION

Many studies including this one use genetic approaches to study the mechanisms of 

disease (4,13,23). N t sequences of the genomes from Haemophilus influenzae, 

Methanococcus jannaschii, Mycobactererium genitalium and Saccharomyces cereoisiae have 

already been completed (3,11,14). These findings provide an useful database of 

information for both known and unknown proteins (8). Genome sequencing of the human 

pathogens Treponema pallidum, Borrelia burgdorferi, Mycobacterium tuberculosis, M. 

pneumoniae, E. coli and S. typhimurium are currently underway (12,28). Many 

recombinant DNA experiments require knowledge of the DNA sequence as a 

prerequisite for creating detailed restriction enzyme maps, determining protein coding 

regions (ORF) and valuable DNA or protein motif domains.

The ompC gene of S. typhimurium is located at 49.3 min on the chromosome (28). It 

has been reported on the basis of Southern blot analysis that the ompC gene of S. 

typhimurium is identical to the ompC gene of S. typhi (26). This study has shown that 

there are seven substituted aa residues of the S. typhimurium OmpC protein when 

compared to the OmpC aa sequence of S. typhi. The high degree of homology in the UTR 

between S. typhi and S. typhimurium are consistent with those of n t sequence and 

identity comparisons obtained with the 5' ompC UTR comparisons of S. typhimurium 

with other Gram negatives by Esterling et al. (10). Conserved regions amongst the enteric 

bacteria also include the N-terminus of the OmpC precursor protein which traffics the 

OmpC protein to the outer membrane following translation (21).

The ultrastructures of the OmpF and PhoE crystals of £. coli have been reported (7). 

A protein monomer folding pattern of 16 antiparallel p-barrel transmembrane (TM)
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regions that trimerize to form a pore has been proposed as the structural basis of porins 

(16). Comparison of the aa sequence of the members of the porin superfamily has led to 

the concept that the 16 TM P-strand sequences are highly conserved and are flanked by 

eight loops of variable aa sequences that promote turns of high hydrophilidty and low 

amphipathidty, oriented towards the baderial cell surface (16). Based on these 

concepts, one monomer of S. typhimurium OmpC protein contains seven intracellular 

loops (from now on referred to as loops 1 through 7) and eight extracellular loops 

(referred to as loops a through i),one of which does not span the membrane, and 16 TM 

spanning regions (referred to as TM 1 through 16 (27)). The aa substitutions on the 

OmpC protein of S. typhimurium are as follows: an N  to H substitution on extracellular 

loop a, N to D substitution at loop f, N to Y and D to E substitution at loop i, L to V, 

and S to F substitution at TM region number 11, and a K to T substitution at 

intracellular loop number 7.

The complete nt sequence of the ompC gene of S. typhimurium will be used for future 

projects related to the design of S. typhimurium partial OmpC chimeric molecules (e.g., 

His-tagged, GST fusion proteins) that will identify subcellular components of Mo that 

are involved in binding interactions with this porin protein. Potential strategies for 

protection of the host from Salmonella at the individual level may arise from blocking the 

the surface exposed extracellular loops of this protein since they appear as likely 

candidates involved in the direct host defense cell recognition, bacterial adherence and 

bacterial resistance to phagocytic killing
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GENERAL DISCUSSION

Salmonella species infect both animal and human hosts and are the causative agents 

of diseases including enteric fever (typhoid), gastroenteritis, bacteremia, and a variety of 

localized systemic infections (9). Numerous virulence determinants that play key roles in 

the ability of Salmonella species to infect, colonize, invade, and replicate within the host 

have been identified (5-7,13). Much of this research has been conducted on S. 

typhimurium, a serotype of particular interest since it is one of the leading causes of 

food-bome disease in humans (3) It also induces a typhoid-like disease in susceptible 

mice (14). Murine typhoid pathogenesis has served as a model of human typhoid 

infection and has enabled a detailed analysis of the organism's spread beyond the bowel 

to deeper tissues and the systemic circulation. A key defense cell in Salmonella infections 

is the Mo. Usually understood as a major cell involved in phagocytic uptake and internal 

destruction of microbial pathogens, for some intracellular bacterial pathogens such as 

Salmonella spp, the Mo becomes a haven, a protected environment in which the 

microorganism may thrive (8). One trait of S. typhimurium thought to be essential for its 

disease potential is its ability to survive in Mo (4,10). To survive within Mo, pathogens 

have developed defense mechanisms to counter antibacterial assaults such as toxic 

oxygen derivatives, reactive nitrogen intermediates, and defensins.

The role of innate defenses in overcoming the initial microbial infection has become 

increasingly recognized as an important component of our ability to prevent disease 

development following infection by potential pathogens (2). Recognition is an important 

component of early defenses against salmonellosis and peritoneal Mo from mice

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



associate with these organisms in the absence of exogenous opsonins such as 

specificantibody or complement (1). A global understanding of the events and 

subcellular participants involved in the initial interaction of S. typhimurium and host 

mononuclear phagocytes is essential for developing molecular strategies for disease 

prevention in individuals exposed to this microorganism.

Components of die innate defense system are an important first line of defense in 

controlling this disease early in the infectious process. A key bacterial ligand in this 

recognition process is a 44-kDa protein structurally related to the porin OmpC (11). 

Involvement of the porin protein OmpC in recognition of S. typhimurium by Mo and 

resistance to killing by Mo supports a role for porin proteins in linking salmonellae with 

key cells of the innate defense system (12).
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