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ABSTRACT  

PERFECT MATCHINGS: MODIFIED AZTEC 

DIAM ONDS, COVERING GRAPHS AND n-MATCHINGS

by

Adriana Badauta Cransac 
University of New Hampshire, September, 1997

In the Introduction, we present the problems we Eire going to study and we estab

lish the basic definitions, concepts and results that axe used throughout.

We begin the first chapter with a presentation of the Aztec diamond and the 

behaviour of its random domino tilings. We introduce the dual -  matching -  problem 

and we explore the structure of the perfect matchings of modified Aztec diamonds. 

We show that some of these matchings can be extended to matchings of the dual Aztec 

diamond, pointing out a bijection between these types of matchings. We determine 

the number of perfect matchings for each of the modified graphs and the placement 

probabilities of the edges belonging to such a matching at a given location. We 

conclude with a theorem presenting the common asymptotic behaviour of the dual and 

the modified Aztec diamonds and we deduce a version of the Arctic Circle Theorem 

for these graphs.

The second part is dedicated to the study of non-ramified perfect n-matchings, 

their decomposition into perfect matchings and 2-matchings as well as their relations 

to the perfect matchings of covering graphs. For the n-covering graphs we use the 

permutation derived graph construction. We determine the number of liftings of a

xiv
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given re-matching to a matching of a branched covering graph and then of an re

covering graph, together with necessary and sufficient conditions for the existence of 

the lifting. In particular, for the case of 2-matchings, we obtain a uniform behaviour 

of liftings of cycles. First, we deduce a theorem that relates the number of perfect 

matchings of the branched covering graph we have introduced to the number of perfect 

2-matchings of the initial graph. Then we study the 2-covering graphs, their number, 

we determine the number of liftings of a 2-matchings (as a power of 2) and we obtain 

a theorem that characterizes the 2-matchings as the average of perfect matchings 

of 2-covering graphs. We conclude with some considerations about the maximum, 

minimum and the realization of this average and methods of computing it.

xv

f
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INTRODUCTION

D E F IN IT IO N S, NO TATIONS A N D  BA SIC  RESULTS

This purpose of this study is to address two questions from perfect matching

theory.

The first part is inspired by the results obtained in [EKLP92a], [EKLP92b], 

[JPS95] and [CEP95] regarding random domino tilings of a plane region called the 

Aztec diamond and a very interesting phenomenon called the Arctic Circle theorem. 

An abstract of these results can be found in section 1.1. Considering this, we intro

duce some modifications of the dual problem, creating non-planar graphs that are 

not very different from the initial ones regarding the number and structure of their 

perfect matchings, and which turn out to have the same asymptotic behaviour.

The second part has as a starting point by the same articles mentioned above. 

We want to investigate the case of a 2-layer domino tiling, or respectively, a perfect 

2-matching in the dual. This leads to the study of perfect 2-matchings and their 

relations with perfect matchings of covering graphs. The results that we obtain hold 

not only for the dual Aztec diamond, but for all graphs, therefore we present them 

in this general form.

Illustrations for chapters I and II can be found in Appendix A, respectively in 

Appendix B.

Here follows a collection of basic definitions, notations and elementary results from

1
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graph theory and topology, which will be assumed throughout the thesis. Additional 

terminology and theorems will be presented, as needed, in each chapter or may be 

found in the list of references, as indicated.

0.1 Graph Theory

The basic mathematical structures which are the object of this study are defined 

in the following paragraph:

D E F IN IT IO N  0 .1  A multigraph G =  ( V(G),  E(G)  ) consists o f a set o f vertices 

V(G) and a set of  edges E(G) such that every edge determines a subset o f V(G)  with 

at most two elements.
□

• an edge and a vertex are incident if  the vertex belongs to the edge;

• the vertices incident to an edge are called endpoints o f that edge;

• two vertices are adjacent i f  there exists an edge to which they both belong;

• two edges are adjacent i f  they share a common vertex;

• edges with only one endpoint are called loops;

• several edges that have the same (two) endpoints form  a m ultip le edge.
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D E F IN IT IO N  0.2 A (simple^ graph is a multigraph with no loops or multiple 

edges.
□

Let v G V{G) and e G E(G).

• E(z;) =  {e G E(G) : e and v are incident};

• N(i;) =  {116 V{G) : u and v are adjacent},

and the elements of this set are called the neighbors of v;

• the degree of a vertex dc(i') =  |£ (v )|.

D E F IN IT IO N  0.3 A k-regular (multi)graph is a (multi)graph such that 

dc{v)  = fc,Vv G V(G).
□

• a walk is an alternating sequence of incident edges and vertices, beginning and 

ending with vertices;

• a path is a walk in which all edges are distinct and all vertices, except possibly 

the endpoints, are distinct;

• the len gth  of a path is the number o f edges in the path;

• a closed  walk is a walk in which the endpoints coincide;

• a cycle is a closed path;

• H is a subgraph of G i f V ( H )  C V(G) and E ( H ) C E(G);
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4

• H  is a spanning subgraph of G i f V( H)  = V(G);

• a graph is connected i f  every two vertices are joined by a path;

• a maximal connected subgraph of a graph is a com ponent of the graph;

• a tree is a connected graph without cycles;

• a rooted  tree is a tree with a distinguished vertex called root;

• a bijection f  : V (G ) -» V (H ) such that {u,u} G E(G) iff { f {u) ,  f ( v) }  G E{H)  

is an isom orphism  between G and H ; in this case we say that the two graphs 

are isomorphic,-

• a graph autom orphism  is an isomorphism from the graph to itself.

The following basic results will be used in section 2.4.2.:

• a tree with v vertices has v — 1 edges;

• the cycles in a graph G can be identified with the set Z(G) of  {0 , 1} vectors of 

dimension |£?(G)|: a cycle C is represented by the characteristic function of its 

edge set, a vector zc  E Z{G);

• Z(G) is a vector space over Z2/ i f  k(G) is the number of connected components 

of G the dimension of this space is |i?(G)| — IV'(G)! +  k(G),  and it is called the 

cyclom atic number of the graph;

• the sum of two cycles C and C' is the cycle C” such that zcn =  (zc + zc)m o d  2;
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• the parity of the sum of two cycles is equal to the parity of the sum of their 

lengths;

• the cycles corresponding to a vector space basis for Z{G ) form  a cycle base of 

the graph.

We axe going to introduce the concepts of matchings and factors in a graph. 

Various types of matchings will be studied in this paper.

D E FIN IT IO N  0.4 Given an integer valued function f  : V(G)  —> N,  an f-m atching  

is an assignment o f non-negative integer weights to the edges so that the sum o f the 

weights at any vertex v is less or equal to f (v) .

A f-matching is perfect if  we have equality for each v.
□

D E FIN IT IO N  0.5 A m atching in a graph is a set of edges such that any two edges 

in the set are disjoint.
□

Note that a matching is just a special type of /-matching, for f ( v )  =  1, Vv £ ^(G)-

• the number of perfect matchings o f a graph G is denoted by 4>(G).

D E FIN IT IO N  0.6 An  f-factor is a spanning subgraph G' of G such that 

dc'('tf) =  /(v ))V v  € V'(G).
□
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Sometimes it is necessary to introduce an orientation of the edges of a graph.

D E F IN IT IO N  0.7 An orientation of a graph is a function which associates to 

each edge {u , v}  either the pair (u,u) or the pair (v ,u ).

.4 plus-m inus orientation of a graph is a function which associates to each edge 

e = {u, u} one of the sets: {e+ =  (u , v), e~ =  (u, u)} or {e+ =  (u, u), e~ = (u, u)}.
□

D E F IN IT IO N  0.8 I f  G is an orientation of G, the skew adjacency m atrix of

G, A S(G), is defined by:
t

1 (Ui,Uj) 6 E(G)

ai,i — -1  {uj,Ui) €  E{G)

0 otherwise
□

We will use plus-minus orientations in section 2.3. and graph orientations together 

with the concepts mentioned below, in section 2.5.

• a cycle C in a graph G is nice if the graph obtained from  G by deleting all 

vertices of C has a perfect matching;

• a nice cycle is oddly oriented iff it has an odd number of edges oriented in 

the direction of the routing chosen on the cycle (it does not matter which one);

• a PfafBan orientation of a graph is an orientation such that 

det (Aa(G)) =  (<S(G))2;

• a graph is Pfaffian iff  it has a Pfaffian orientation.
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0.2 Topology and Topological Graph Theory

We begin this section with a few notions about covering spaces:

D E F IN IT IO N  0.9 A map p : X  —> X  between two topological spaces is a cover

ing projection  i f  every point x in X  has a neighborhood U such that p maps each 

component of p~l (U) homeomorphically onto U.

A map p : X  —>■ X  between two topological spaces is a branched covering projec

tion  i f  there exists a finite set B  of points of X  (called branch points) such that 

the restricted map p : X  \  p~1(B)  —> X  \  B is a covering projection.
a

• the space X  is called a ('branched,) covering space;

• the set p~l (x) is the fiber above x;

• i f  the size (p_1(x)| of the fiber is n for all x 6  X  we have an n-covering space.

Often, when we talk about a graph, we have in mind some topological represen

tation of it:

D E F IN IT IO N  0.10 An  em bedding of a graph G on a surface S is a mapping of 

the vertices o f G to distinct points of S  and of edges of G to disjoint open arcs o f S  

such that:

- the image of no edge contains that of a vertex;

- the image of the edge {ujt;} joins the points corresponding to vertices u and v.
□
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8

When dealing with a topological representation of a graph, most of the times we 

refer to it as “the graph”.

D E F IN IT IO N  0.11 A graph is planar iff it can be embedded in the plane.
□
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CHAPTER I

S T A T IS T IC S  F O R  R A N D O M  M A T C H IN G S  O F  M O D IF IE D  A Z T E C

D IA M O N D S

1.1 The Initial Problem

This is a brief introduction to the Aztec diamond, the problems and the terminol

ogy related to it. We present an abstract of the shuffling method and the main results 

from [EKLP92a], [EKLP92b], [JPS95] and [CEP95] that are used in this chapter.

D E F IN IT IO N  1.1 The A ztec d iam o n d  of order n  is the union of those lattice 

squares [a, a +  1] x  [6 ,6 + 1 ], a, 6 6 Z, that lie completely inside the tilted square 

{(x,y) : |x| +  |y| < n  +  1}.
□

This region was studied for the particularly interesting behaviour of its domino 

tilings.

• a dom ino  is a closed 1 x 2  rectangle;

• a tilin g  of a region R by dominos is a set o f dominos whose interiors are disjoint 

and whose union is R.

Figure 3 presents an example of a tiled Aztec diamond.

9
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A first result concerns the number of domino tilings of an Aztec diamond of order 

n—denoted AD (n). This result was obtained using various methods like alternat

ing sign matrices ([EKLP92a]), urban renewal ([GEP96]) or the shuffling algorithm 

([EKLP92b]). We describe the last method and we explain how it is used to deduce 

AD (n).

Before presenting the shuffling algorithm we need to introduce some conventions:

• the s ta n d a rd  co loring  of the Aztec diamond is a black-white checkerboard 

fashion coloring of the squares so that the line { ( i,y )  : x + y = n + 1} passes 

only through white squares;

• the union of two adjacent squares is a dom ino  space (to distinguish it from  

an actual domino);

• a horizontal domino is n o r th  or so u th -g o in g  according to whether its leftmost 

square is white or black, and a vertical domino is w est or eas t-g o in g  according 

to whether its upper square is white or black;

• two dominos that share a side o f length 2 form  a good  block i f  they point away 

from each other and a b ad  b lock  i f  they point towards each other;

• a lo ca tio n  is the midpoint of the bottom edge of a north-going domino space;

• p jj denotes the p lacem en t p ro b a b ility ^ / a north-going domino at location 

( i , j )  in a random tiling of the Aztec diamond of order n.
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For an illustration of the standard coloring and locations see figure 1. The loca

tions are marked by black dots.

Note that the standard coloring depends upon the size of the Aztec diamond, in 

the sense that for odd values of n  (like the one we presented in figure 1) the square

[0 ,1 ] x  [0 ,1 ] is black, while for n  even the same square is colored white.

For examples of north, south, west and east-going dominos, good blocks and bad 

blocks, see figure 2.

We mention that bad blocks can only appear on square regions formed of four 

squares such that the upper left one is black, while good blocks occupy similar regions 

but with the upper left square white.

Figure 3 displays an example of tiling of an Aztec diamond of order 5, with the

directions of the dominos marked by arrows.

The shuffling algorithm allows the creation of a random tiling of the Aztec diamond 

of order n  +  1 starting with a random tiling of the Aztec diamond of order n.

A L G O R IT H M  1.2 (Shuffling Algorithm)

I n p u t:  a random tiling of Aztec diamond o f order n.

S te p s  to perform:

• d e s tru c tio n : remove all bad blocks;

• slid ing; move the remaining dominos according to their directions;

• c rea tio n : fill the empty squares randomly with vertical or horizontal par

allel dominos.
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O u tp u t:  a random tiling o f the Aztec diamond o f order n + 1.
□

An illustration of this algorithm can be found in figure 4. Part (a) represents 

a tiling of an Aztec diamond of order 4 with the directions of the dominos marked 

by arrows and with the unique bad block emphasized. Part (b) is the result of the 

first step of the algorithm, destruction: the bad block has been removed. Part (c) 

represents the result of sliding. The directions of the dominos correspond to the new 

coloring and the free regions are split into 2 x 2  blocks. Part (d) is the result of the 

creation stage: the free blocks have been filled with pairs of dominos.

Shufiling is introduced in [EKLP92b], where it is shown that it is an involution 

on the partial domino tilings of the plane with no bad blocks. We will explain now 

why this algorithm produces random tilings and how it can be used to deduce the 

number of tilings of an Aztec diamond of order n.

Let us begin with a random Aztec diamond of order n  — which appears with a 

probability of Suppose the tiling we chose has k  bad blocks. We delete all

bad blocks and then all dominos that are left are free to move in their direction. As 

mentioned above, there are no bad blocks after sliding and dominos do not collide 

while sliding. It is clear that they remain inside the region of an Aztec diamond of 

order n + 1. In [EKLP92b] it is also proved that after sliding there is an unique way 

of organizing the free space inside this bigger Aztec diamond into 2 x 2  squares. Note 

that the free space is formed by 4k squares that were freed by removal of bad blocks 

plus 4(n + 1) squares obtained by increasing the region from order n  to order n  +  1. 

Thus the number of free 2 x 2  squares is k -f n -f- 1. Each of them can be filled either
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with a pair of horizontal dominos or a pair of vertical ones, which form good blocks 

in the new standard coloring (we have to change the coloring after sliding). All good 

blocks of the new tiling appear this way, since if there were any good blocks before 

the creation stage, they would have represented bad blocks in the old coloring, and we 

already know that this is impossible. Thus, starting with a tiling with k bad blocks, 

we obtain 2k+n+l distinct tilings (with exactly k + n  + 1 good blocks) of the Aztec 

diamond of order n + 1, each with a probability of AD{n) •

Let us start now with a domino tiling of the Aztec diamond of order n +  1. In 

order to obtain a tiling of order n  that produced it, it is enough to run the algorithm 

backwards, step by step. Change the coloring, remove the bad (ex-good) blocks and 

slide the dominos back. The result is a partial tiling of an Aztec diamond of order n 

with no bad blocks, and with a number of free 2 x 2  squares. All the domino tilings 

of the Aztec diamond of order n  that produce, through the shuffling algorithm, the 

thing we started with, must have their bad blocks exactly in these free 2 x 2  squares. 

Their positions being determined, the only thing that could vary is the orientation 

of the dom inos: vertical or horizontal. Thus there are 2k tilings of order tl which 

generate each tiling of order n  +  1 with k +  n + 1 good blocks.

Putting the two observations together we obtain a (uniform) probability of ^p^jn+r 

for any of the tilings of the Aztec diamond of order n +  1. This insures the fact that 

the outcome is a random tiling and it offers us a recurrence relation for AD(n): 

AD(n  +  1) =  AD(n)2n+1. Hence, the number of domino tilings of an Aztec diamond 

of order n  has been determined:
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T H E O R E M  1.3 (Elkies, Kuperberg, Larsen and Propp)

The Aztec diamond of order n  has exactly

AD(n)  = 2n(n+1>/2

domino tilings.
□

The shuffling algorithm appears, in the form we presented above, in [JPS95], where 

it is used to prove the Arctic Circle theorem. As mentioned, this algorithm produces 

random tilings, the order of the diamond increasing with 1 at each step. Running 

the shuffling until we get a large enough Aztec diamond we notice that a typical 

random tiling can be split into two regions. In the center the dominos seem to have 

no privileged direction, while close to the borders the dominos organize in layers with 

the same direction. The border between these regions is close to a circle. In order to 

formalize this result, we need the following conventions:

• the n o r th  p o la r  reg io n  is the union of those north-going dominos that are 

each connected to the boundary by a sequence of north-going adjacent dominos; 

the so u th , e a s t or w est p o la r  reg ion  are defined similarly;

• the te m p e ra te  zone is the union of those dominos that do not belong to any 

of the polar regions.

In figure 5 we present the polar region of a tiling. In this example the north, 

south and east and west polar regions are differentiated using arrows which indicate 

the directions of the dominos.

The result is the following:

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



15

T H E O R E M  1.4 (Arctic Circle Theorem)

Fix e > 0. Then for sufficiently large n, all but an t  fraction o f the domino tilings 

of the Aztec diamond o f order n will have a temperate zone whose boundary stays 

uniformly within distance en of the inscribed circle (of radius n / \ / 2) .
□

Another proof of a slightly stronger form of the Arctic Circle theorem is based on 

the study of placement probabilities, i.e. the probability that a domino covers a given 

pair of adjacent squares in a random tiling. Due to the rotational symmetry of the 

Aztec diamond it is enough to study only the north-going placement probabilities. 

For purposes of uniformity, the regions are “normalized”, i.e. rescaled by a factor 

of n so that all locations are inside the circle of radius 1. The following asymptotic 

behaviour of the probabilities has been deduced in [CEP95]:

T H E O R E M  1.5 (Cohn, Elkies and Propp)

Let U be an open set containing the points ( ± | ,  | ) .  I f  (x,y)  is the normalized location 

of a north-going domino space in the Aztec diamond of order n, and (x ,y ) ^  U, then 

as n —» oo, the placement probability at (x , y ) is within o(l) of V(x , y ) ,  where

0 i f  x 2 +  y 2 >  1/2 and t/ < 1/2

V (x , y )  = < i f  x 2 +  y 2 > 1/2 and y > 1/2

j  +  ;  t a n '1 i f  x 2 + y 2 < 1/2

The o(l) error bound is uniform in (x , y ).
G

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



16

As we can see, outside the inscribed circle, in the northern region we are “sure” 

to find only north-going dominos, while in the remainder of the region we are sure 

that there are no north-going dominos (but there are, respectively, south, east or 

west-going dom ino s). This formula alone is not enough to prove entirely the Arctic 

Circle theorem. For a complete proof see [CEP95].

1.2 The Dual Problem

The problem of a (complete) tiling of the Aztec diamond (or any region formed 

of squares) with dominos is equivalent to a perfect matching problem for the dual 

graph, (i.e. the dual of the graph determined by the line segments which border the 

squares).

We work with subgraphs of the plane square grid with vertices

{ (s/2 ,£/2) : s , t  odd, s , t  6 Z }

and edges

: |« -  fc| +  |j  -  !| = 1 }

D E F IN IT IO N  1.6 The d u a l A ztec  d iam ond  of order n, G n, is the subgraph of 

the plane grid induced by the set o f vertices:

{ (s/2, t /2)  : s , t  odd, |s| +  |£| < 2n }
□

This representation of the graph has (0,0) as a center of symmetry. VVe consider 

this representation as the standard one and we will mention any exception (modifi

cation of the coordinates of the center).
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• the co rn e rs  are the vertices o f the dual Aztec diamond of order n with

I®| =  n ±  1/2 or \y\ = n ±  1/2;

• the b o rd e rs  are the lines y =  ± x  ±  n.

Figure 6 presents a domino tiling of an Aztec diamond of order 5 and the corre

sponding matching of the dual.

For our further investigations we choose to work in terms of the dual graph. All 

the results of the previous section hold, by the following dictionary:

• dom ino  translates as edge;

• tiling  translates as m atch ing ;

• n o r th , /so u th , east or w est/-go ing  dominos become n o rth , /so u th , e a s t or 

w est/-go ing  edges;

• the p o la r  regions, te m p e ra te  zone or in sc r ib ed  circle are the zones defined 

in the previous section;

9  the p lacem en t p robab ility  for an edge is the same as the placement probability 

for the corresponding domino.

For the dual version of the shuffling algorithm we introduce the following conven

tion:

• the s ta n d a rd  coloring of the dual square lattice is a checkerboard coloring 

such that the line x + y = n (the upper-right border) passes through only black 

squares.
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Note that with this convention, white squares of the dual correspond to 2 x 2 

blocks of the Aztec diamond such that the upper left square is white. Thus the 

following are true:

• a location  is the center o f a white square;

• an edge is a n o r th , fso u th , e a s t or w estJ-going edge i f  it is situated north 

(respectively east, south, west)  o f the location in the white square adjacent to it;

• a bad  block is formed by two parallel edges on the sides o f a black square, while 

a good  block is form ed by two parallel edges on the sides of a white square.

Figure 7 presents a dual Aztec diamond of order 5 with the standard coloring and 

the north-going edges represented on it.

Let us mention that 90,180 and 270 degrees rotations are isomorphisms of the 

dual Aztec diamond which transform the north-going edges into east, respectively 

south and west-going edges. There is an isomorphism between the set of matchings 

that contain a north-going edge at location (i , j ) and each of the sets of matchings 

that contain an east, south or west-going edge at its transforms: (j, —i), (—i, —j)  or 

(—j,  i). Thus it is enough to determine the placement probabilities for the north-going 

edges, p?j, the other probabilities being easily determined by:

K i = P-i,i

for the east-going edges at location (z, j ) ,

^  „n n
Psi j  = P-j,-i
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for the south-going edges at location ( i , j )  and

= Pl-i

for the west-going edges at location (i , j).

Figure 8 presents all possible types of perfect matchings of the dual Aztec dia

mond of order n  with respect to the way its borders were matched. We will refer to 

these types throughout the chapter. In all illustrations the dashed regions are free 

zones for which all possible matchings are accepted.

In the dual Aztec diamond two adjacent comers may be matched with each other, 

and we say they are matched to g e th e r , or each of them with their other neighbor, in 

which case we say that they are matched sep a ra te ly .

In the subsequent sections we need the observations :

L E M M A  1.7 The following are true for matchings o f the dual Aztec diamond of 

order n:

i) The number o f perfect matchings in which two specified adjacent comers are matched 

separately is 2(n-1)Tl/2. The restriction of these matchings to the dual Aztec diamond 

of order n — 1 with the center shifted one unit in the direction opposite to the comers 

determines a bijection between the two sets of matchings.

ii) The number o f perfect matchings in which two specified adjacent comers are 

matched together is 2n(n+1)/2 — 2̂ n -lln/2.

Hi) The number o f perfect matchings of the graph form ed by deleting two adjacent 

comers from the dual Aztec diamond is 2n n̂+1^ 2 — 2̂ n - l n̂ 2̂.
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iv) The number o f perfect matchings in which two pairs o f adjacent comers are 

matched, pair by pair, separately, is equal to The restriction o f these

matchings to the dual Aztec diamond of order n  — 2 determines a bijection between 

the two sets o f matchings.

Proof:

i) Once two adjacent corners are matched separately, there is a unique way of 

matching the vertices on the border lines which start at these two corners. This can 

be further extended to a perfect matching by matching the remaining vertices, which 

form an Aztec diamond of order n — 1. Figure 9a illustrates this situation.

ii) Follows from i).

iii) Any perfect matching of this graph, (represented in figure 9b) can be uniquely 

extended to a perfect matching of the dual Aztec diamond in which the two vertices 

that were deleted are matched together (figure 9c). Thus we obtain the same value 

as in part ii).

iv) Note that in this case we are talking either about matchings of type F  or type 

G as in figure 8. It is clear that the region left to be matched is an Aztec diamond of 

order n — 2.

q.e.d .

The standard colorings of the graphs involved in the various types of matchings 

described above (the dual Aztec diamond of order n — 2 centered at (0, 0), and the var

ious dual Aztec diamonds of order n — 1 centered at (0,1), (0, —1), (1,0) and ( — 1,0)) 

all conform to the standard coloring of the dual Aztec diamond of order n. Thus the
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positions of the north (south, east, west)-going edges coincide for all these graphs.

1.3 Modifications of the Problem

We define a series of graphs, small modifications of Gn, of higher genus or cross

cap number, and which inherit to some extent the matching properties of the dual 

Aztec diamond.

The idea is to take the planar representation of the dual Aztec diamond given 

by its definition as a subgraph of the plane grid, to form the rectangle defined by 

the lines y =  ± (n  — 1/2) and x = ± (n  — 1/2) and to consider this rectangle as a 

representation of some other surface, therefore to paste opposite sides and, together 

with them, the corresponding corners and edges of the Aztec diamond.

The operation of identification that we use is described below:

• by p a s tin g  the oriented edges (u, v) and (u' ,v') of  a graph G we create a new 

graph with the set o f vertices V{G)\{u' ,  v'} and with set of edges 

£ J (G )\{ {u ;, t / } }  U { { u , u;} : w 6  A'(u')} U { { v ,  w }  : w G N(v')}.

Thus the vertex u is identified with u v  with v' and after the identification only 

one representative is kept for the eventual double edge.

Using this tool we can define now the following graphs:

D E F IN IT IO N  1.8 The C ylindrical A ztec d ia m o n d  of order n is the graph CGn 

formed from  Gn by pasting

((1/2 -  n, 1/2), (1/2 -  n, -1 /2 ))  with ((n -  1 /2 ,1 /2), (n -  1/2, -1 /2 )) .
□
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Note that this graph is obviously planar, but we study it first, as an intermediate 

step to some more interesting constructions (the Torus Aztec diamond and the Klein 

Aztec diamond).

D E F IN IT IO N  1.9 The M obius A ztec diamond of order n is the graph M G n 

formed from  Gn by pasting

((1/2 -  7z, 1/2), (1/2 -  7i, -1 /2 ) )  with ((ti -  1/2, -1 /2 ) , (ti -  1 /2 ,1 /2)).

This is a graph of genus 1 and cross-cap number 1.

D E F IN IT IO N  1.10 The K lein A ztec diamond of order n is the graph K G n 

form ed from  Gn by parting

((1/2 -  t i ,  1/2), (1/2 -  t i ,  -1 /2 ) )  with ( ( t i  -  1/2, -1 /2 ) , ( t i  -  1/2,1/2))

Q.tld

( ( -1 /2 ,1 /2  -  t i ) ,  (1 /2 ,1 /2  — t i ) )  with ( ( -1 /2 ,7 1 -  1/2), (1/2, n -  1/2)).

This graph has genus 1 and cross-cap number 2.

D E F IN IT IO N  1.11 The P rojective  A ztec diamond of order n is the graph PGn 

formed from  Gn by pasting

((1/2 -  t i ,  1/2), (1/2 -  t i ,  -1 /2 ) )  with ( ( t i  -  1/2, -1 /2 ) , ( t i  -  1 /2 ,1 /2))

ojid

( ( -1 /2 ,1 /2  -  n), (1 /2 ,1 /2  -  n)) with ((1 /2 ,n -  1/2), ( -1 /2 ,  n  -  1/2)).
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This is a graph of genus 2 and cross-cap number 1.

D E F IN IT IO N  1.12 The T orus A ztec  d ia m o n d  o f order n  is the graph TG n 

form ed from  Gn by pasting

((1/2 -  n, 1/2), (1/2 -  n, -1 /2 ))  with ((n -  1 /2 ,1 /2), (n -  1/2, -1 /2 ))

and

( ( -1 /2 ,1 /2  -  n), (1/2,1/2 -  n)) with ( ( -1 /2 ,  n  -  1/2), (1/2, n  -  1/2)).
□

This graph has genus 1.

In what follows, whenever we talk about the planar representation of these graphs 

we refer to the one obtained by cutting apart the sides of that we have pasted to

gether from Gn. Figure 10 shows the planar representations for each of these graphs 

(n =  3), where the identified vertices have been marked with the same symbol. The 

generic name for the graphs described above will be m odified  Aztec diamonds. For 

them, we apply the same vocabulary as the one developed in section 2 for dual Aztec 

diamonds. It makes sense to talk about orientation of edges if we consider the planar 

representation of these graphs. We have to pay special attention to the edges that 

we have pasted together, and which become east and west, or south and north-going 

edges in the same time.

Note that the Projective and the Torus Aztec diamonds preserve the property of 

the dual Aztec that 90,180 and 270 degrees rotations (of the planar representations)

»
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are isomorphisms, while for the Cylindrical, Mobius and Klein Aztec diamonds only 

the 180 degrees rotation remains an isomorphism. Thus the computation of the 

placement probabilities for an edge in a perfect matching of one of the first two 

graphs reduces to the computation of the north-going ones, while for the other three 

graphs we have to compute the west-going probabilities as well, the other two being 

deduced with the help of the following relation:

nn __ pn
r iJ -J,-»

which relates east to west and south to north.

We have to mention that in the planar representation of these graphs, the edge 

obtained through pasting appears twice, so if this edge belongs to some matching we 

represent, we have an extra apparent edge in the drawing of the matching.

Figure 11 presents a comparison between the perfect matchings of the modified 

graphs and those of the dual Aztec diamond, for n = 2. We already notice some 

similarities between the matchings situated in the same rows and above the line, the 

way they seem to “arise” , in a natural way, from the first column, and the somehow 

“special” character of the matchings situated under the line. We prove here that 

there is a bijection between the group of similar matchings and then we study the 

special matchings in the sections dedicated to each of these graphs.

We need a way of distinguishing the two situations.

A perfect matching o f a modified Aztec diamond is:

• ex ten d ib le  (to the dual Aztec diamond) iff  a planar representation of it is a
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submatching for some perfect matching of the dual Aztec diamond;

• special i f  it is not extendible.

Note that the only edges we can add to an extendible matching to form a perfect 

matching are between two adjacent corners.

T H E O R E M  1.13 There is a bijection between:

i) the perfect matchings o f the dual Aztec diamond of types A -F  and the extendible 

matchings of the Cylindrical Aztec diamond or of the Mobius Aztec diamond.

ii) the perfect matchings o f the dual Aztec diamond of types A -E  and the extendible 

matchings of the Klein, the Projective or the Torus Aztec diamond.

P ro o f:

We describe the bijection for the first part and then we will see that small modi

fications give us the second part.

To make the proof easier to follow, the bijections presented in this theorem sire 

graphically represented in figures 12, 13, 14 and 15. The contents of the dashed zone 

is to be copied from one drawing to the other within the rows for figures 12, 13 and 

within the columns for figures 14, 15.

The two modified Aztec diamonds we are discussing here have two fewer vertices 

than the dual Aztec diamond. According to the definition, the deleted vertices Eire 

(n -  1/2,1/2) and (n -  1/2, -1 /2 ) .

In the planar representation all vertices, except possibly the ones that were in

volved in the identification process, appear matched.

Is _____________ ____  _____________
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Suppose that (1 /2 —n, 1/2) and (1 /2—n , —1/2) are matched together in a matching 

of one modified Aztec diamond (figures 12 A, B, C and 13 F). Then, in a planar 

representation of the matching, the deleted vertices appear as matched, therefore it 

is sufficient to add this edge and sill vertices of the dual Aztec diamond are matched 

in a matching of type A, B, C or F. Conversely, deleting this edge from the set of 

edges of a matching of the dual Aztec diamond of type A, B, C or F produces a 

matching of the modified Aztec diamond in which (1/2 — n, 1/2) and (1/2 — n, —1/2) 

are matched together. These matchings differ, between types, by the way the non

identified corners are matched, and, within the same type, at some vertex other than 

the ones where we modify the matching. So far we have a one-to-one correspondence.

Suppose now that the vertices (1/2 — n, 1/2) and (1/2 — n, —1/2) axe matched 

separately in a matching of a modified Aztec diamond (figure 13 D, E). In this case, 

in the planar representation of the graph, no edge of the matching appears twice, 

thus two vertices appear as unmatched. If these two vertices are not adjacent we 

have a special matching (figure 16 a, b). If they are adjacent then we can match 

them together, thus obtaining one of the matchings of the dual Aztec diamond of 

type D or E. Deleting this edge from a matching of type D or E gives us the matching 

of the modified Aztec diamond we started with.

Thus we have defined the bijection we were seeking.

The definition of our bijection for the second case is a refinement of the previous 

one, since we delete four vertices this time, and each pair of two could be matched 

together or separately in the dual Aztec diamond.
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Suppose vertices (1/2 — n , 1/2) and (1/2 — n, —1/2) axe matched together and 

vertices (1 /2 ,1 /2  — n) and (—1/2 ,1 /2  — n) are matched together in a modified 

Aztec diamond. In the planar representation, (n  — 1 /2 ,1 /2) and (n  — 1/2, —1/2), 

respectively (1/2, n — 1/2) and (—1/2, re — 1/2) appear m atched (figure 14 A) and 

by adding/deleting these two edges we get a bijection between the matchings of the 

dual Aztec diamond of type A and the matchings of the modified Aztec diamond 

extendible to these.

If only two of the corners are matched together (figures 14 B and C, 15 D and E), 

and the two vertices that are apparently unmatched in the planar representation are 

adjacent, adding/deleting the edge between them as well as the apparent edge between 

the doubles of the first two corners determines a bijection between the remaining 

extendible matchings of the modified Aztec diamonds and matchings of the dual 

Aztec diamond of types B-E.

There is nothing extendible to matchings of types F or G because by identification 

two of the corners would be matched, each, with two other vertices.

q.e.d .

It is worth mentioning that there are no perfect matchings with two consecutive 

pairs of corners matched separately for any of the graphs considered here. Figure 17 

indicates a quick way of eliminating this case.

The bijections from theorem 1.13 will also be the source of results concerning the 

placement probabilities of the modified graphs, which we are able to express using 

the placement probabilities for the dual Aztec diamond.
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1.4 Cylindrical Aztec Diamonds

We define a one-to-one function from the set of perfect matchings of CGn to the 

set of perfect matchings of G„. For that purpose we need the following partial result:

LEM M A 1.14 There are no special matchings of the Cylindrical Aztec diamond. 

P roof:

For n =  2 all matchings are presented in figure 11, and there Eire no special 

matchings.

Suppose that n > 3. A special matching would fall into the following two cate

gories, with respect to the way its corners are matched (figure 16 a):

(1/2 — t i ,  1/2) with (3/2 — n , 1/2) and (1/2 — n, —1/2) with (71 — 3/2, —1/2)

or

(1/2 -  t i ,  1/2) with ( t i  -  3 /2 ,1 /2) and (1/2 -  n , -1 /2 )  with (3/2 -  t i ,  -1 /2 ) .

The two cases being symmetric we only study the first one. For any matching

with these two edges there is only one way of matching the vertices on the lines

y =  x ±  t i ,  presented in figure 18. We still have to find a matching of a subgraph of

the plane grid, therefore a bipartite graph, which has (71 — 1)71 vertices in one class

and (n + l ) (n  — 2) vertices in the other, therefore evidently has no perfect matching.

q .e .d .

COROLLARY 1.15 There is a one to one correspondence between the perfect match

ings of the dual Aztec diamond o f order n o f types A-F and the perfect matchings of 

the Cylindrical Aztec diamond o f order n.

S _  _____________ _____ ____________
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P roof:

This theorem is a direct consequence of theorem 1.13 and of the previous lemma.

q .e .d .

T H E O R E M  1.16 The number o f perfect matchings o f the Cylindrical Aztec dia

mond of order n is

CAD(n)  =  2{n=2¥ =ll{22ri- 1 -  1)

P ro o f:

From lemma 1.7 we can deduce that the number of matchings of type G is 

AD(n  — 2). We apply then theorem 1.3 and we find that

CAD{n)  = AD(n)  -  AD(n  -  2).

Using the fact that AD(n) = 2 j we obtain the result.

q .e .d .

T H E O R E M  1.17 The placement probabilities for the Cylindrical Aztec diamond at 

location (i , j ) are described by the formulas:

m iJ "

D"._21-2"Dn_2
1_ 2l - 2 n

_n «>1 —2n
p->~2___1-21-3"

|i| +  |j | <  n  -  2 

1*1 +  lii > n -  2

and j  > 0

|*| +  | j | > n - 2  

and j  < 0

i
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for the north-going edges and

CW?j =

p? —2l~2nvn~2 y i . - ‘l_2l -3n

P "  •
1-21-2"

p ^ _ ; - 2 -Tl+ 2 1_2r*
1_2i-3«

1*1 +  lil <  n -  2

1*1 +  lil >  n  -  2 

and (*\j) ^  (1 -  n >0)

(*»j) =  (1 ~  n.0)

/o r £/ie west-going edges.

type E type G

1*1 +  lil <  n -  2 ___ A D (n  -  2) p l f
1*1 +  lil >  ** -  2 

and j  > 0 ___ AD {n  -  2)
1*1 +  lil >  n -  2

and i  < 0 ___ -----

Table 1 Matchings to be subtracted for north-going edges in the Cylindrical Aztec 
diamond

type E type G

1*1 +  lil <  n  -  2 ___ AD(n -  2) r f - \
1*1 +  lil >  n  -  2

and (z, i )  #  (1 -  *i,0) — ___

(*.i) =  ( i  -  **,o) AD{n  -  1) -  AD {n  -  2) -----

Table 2 Matchings to be subtracted for west-going edges in the Cylindrical Aztec 
diamond
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P ro o f:

The number of matchings of the Aztec diamond of order n  that contain a north- 

going edge at location (i , j ) is AD{n)p'>- and for west-going edges it is AD{n)p^ 

From theorems 1.13 and 1.15 we deduce that from this total we have to subtract the 

number of matchings of type G that might contain an edge at our current location. 

Thus we have to consider separately the locations situated inside the Aztec diamond 

of order n  — 2 and the ones situated outside this region. For the ones outside we have 

to decide whether an edge situated at such a location can belong to a matching of 

the forbidden type, G. Finally we have to study separately the location (1 — n, 0), 

since here, when using the bijection from theorem 1.13, we delete a west-going edge 

(from type E). This is the only case when we delete a north or west-going edge. We 

know from lemma 1.7 that there are AD(n  — 2) matchings of type G and A D(n  — 

1) — A D ( n  — 2) matchings of type E.

The tables 1 and 2 present the amounts that have to be subtracted from matchings 

of types E or G for each of the regions.

Subtracting these and dividing through by CAD(n)  we obtain the placement 

probabilities.

q.e.d .

1.5 Mobius Aztec Diamonds

The results of this section are somewhat similar to those referring to the Cylindri

cal Aztec diamond because we are using the same bijection to the perfect matchings
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of the dual Aztec diamond of types A — F, from theorem 1.13, but in this case we 

have some special matchings to consider.

L E M M A  1.18 The number of special matchings of the Mobius Aztec diamond is 

equal to

2AD{n -  1).

P roo f:

There are two possibilities for special matchings, as presented in figure 16 b: 

{(1/2 -  n, 1/2), (3/2 -  n, 1/2)} and {(1/2 -  n, -1 /2 ) ,  (n -  3/2,1/2)}

or

{(1/2 -  n, 1/2), (n -  3/2, -1 /2 )}  and {(1/2 -  n, -1 /2 ) ,  (3/2 -  n, -1 /2 )}

The two cases are symmetric with respect to the z-axis. Any matching of this 

type must also contain all edges that link the vertices on the borders of positive, re

spectively negative, y-coordinate to their unique (left or right) neighbor still available 

(figure 19). We notice that the vertices that are left unmatched form a dual Aztec 

diamond of order n  — 1 centered either at (0,1) or at (0, —1).

q .e .d .

T H E O R E M  1.19 The number of perfect matchings o f the Mobius Aztec diamond 

of order n  is

MAD( n)  =  2(n"J,̂ riJ (22"-1 + 2n -  1)
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Proof:

From theorem 1.13 and lemma 1.5 we can deduce that the number of perfect 

matchings of the Mobius Aztec diamond is equal to the number of matchings of the 

dual Aztec diamond of types A-F plus the special matchings.

MAD( n)  = AD(n)  + 2AD(n  -  1) -  AD(n -  2)

Using the fact that AD(n)  = 2 ( * * we obtain our result.

q .e  .d.

*
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T H E O R E M  1.20 The placement probabilities fo r  the Mobius Aztec diamond at lo

cation (i, j )  are described by the formulas:

m n i j =

_n I •)— I , in—1 \  *1 —2n_n—.
Pj. i+2 Wi . j - i+Pi . j+i )  2 Pi.j 

l-j_2L_rx-2i-2rl

P^+2-"(p?-iL+l)-2l-
l+2l- n-21~2r‘

P i . i+ 2 P i .i  +  l
l+2l— 21-2"

p jV + 2 —n —2l —2n
1+21-"—2l-2n

1*1 + lil < 71 -  2

1*1 +  \j\ > 71 ~  2 and j  > 0

1*1 +  lil > 71 — 2 and j  < 0

(*.i) = (± (»  -  1)»0)

fo r  the north-going edges and

m w

P i  _ j + 2  -  " ( p y r f . - j  + P ^ l\ - i ) ~ 21 ~ 2n P ? .-2i
l + 2 l - n —21—2n

P l- i+ 2 -np i : j - i  
1+21— 21—2"

=
P , . - ; + 2  P y + l . - i  

l+2l_n —2l—2"

P
1+21_n_2l - 2rx

p " _ ( —2 - n + 2 l - 2 n  
1 + 2 l - n - 2 1 - 2 n

1*1 + Ij’l <71 — 2

1*1 + \j\ > n -  2 and j  > 0

1*1 + |j | > 71 -  2 and j  < 0

(*, j )  =  (»* -  1,0)

(*> j )  =  (1 -  » ,o)
fo r  the west-going edges.

P ro o f:

The number of matchings of the Aztec diamond of order n  that contain a north- 

going edge at location (i , j ) is AD(n)p"’ • and for a west-going edge, AD(n)p^_{. For
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special type a specicil type b

|*| +  |j | <  n ~  2 AD (n -  1 )p U ll A D (n -
|*| + \ j \ > n  — 2  

and j  > 0 AD (n -  1) A D (n  -
|*| +  \j\ > n — 2 

and j  < 0 AD (n -  1 ) ^ ___

(*»i) = (M n -  i ) - 0) AD (n -  1) -----

Table 3 Matchings to be added for north-going edges in the Mobius Aztec diamond

special type a special type b

1*1 + lil < n -  2 AD (n  -  1 A D (n -  l j p j r f . i
1*1 + lil > n -  2 

and j  > 0 ___ A£>(u -  i)p?r;,.,.
|*| +  |i | > n -  2  

and j  < 0 AD (n  -  1 ) ^ _ .

(*.i) =  ( H n ~  i ) - 0) ___ -----

Table 4 Matchings to be added for west-going edges in the Mobius Aztec diamond
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the Mobius Aztec diamond we have to subtract from these the number of matchings 

of type G that might contain a north or west-going edge at the current location, and 

to add the number of special matchings that have such an edge. Finally we have to 

study separately the location (1 — n, 0), since here, when using the bijection from 

theorem 1.13, we delete a west-going edge (from type E). This is the only case when, 

through the bijection, we delete a north or west-going edge.

The regions involved in the creation of these matchings can be deduced from 

figures 12, 13 and 19.

The number of matchings to be subtracted from matchings of types E or G is the 

same as for the Cylindrical Aztec diamond, presented in tables 1 and 2 from the proof 

of theorem 1.17.

The number of matchings to be added (the special ones) cire represented in tables 

3 and 4.

After combining the corresponding tables and dividing through by M A D ( t l )  we 

obtciin the formulas.

q .e .d .

1.6 Klein Aztec Diamonds

This graph combines the properties of the two previous ones: it behaves like a 

Cylindriccd Aztec diamond with a horizontal Eixis and like a Mobius Aztec diamond 

with a vertical axis. As the latter has no special matchings it turns out that all the 

special matchings of the Klein Aztec diamond can be derived from special matchings
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of the Mobius Aztec diamond.

L E M M A  1.21 The special matchings of the Klein Aztec diamond are in one-to-one 

correspondence with the special matchings of the Mobius Aztec diamond.

P ro o f:

If a matching of the Klein Aztec diamond is extendible to the Cylindrical Aztec 

diamond from which it could be obtained by pasting, then it is extendible to the dual 

Aztec diamond, because the Cylindrical Aztec diamond has no special matchings. 

Thus all special matchings must contain a pair of edges like in figure 16. These two 

cases extend uniquely to one of the two types of matchings presented in figure 20, 

i.e. all vertices on borders with the y-coordinate positive, respectively negative, are 

matched with the unique (left or right) neighbor which is still free, with the exception 

of the corners, which have both two neighbors available.

The two cases are symmetric with respect to the x-axis.

We notice that the vertices that are left unmatched form a dual Aztec diamond

of order n — 1 and that by adding the edge between the two corners apparently

unmatched we extend these matchings to the corresponding special matchings of the

Mobius Aztec diamond (figure 19). Deleting the same edge gives the inverse direction.

q .e  .d.

T H E O R E M  1.22 The number of perfect matchings o f the Klein Aztec diamond of 

order n is

KAD{n)  = 2 ^ T ~ 1} (2 2 n ~ 1 +  2n -  2)
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Proof:

From theorem 1.13 and lemma 1.21 we deduce that the perfect matchings Klein 

Aztec diamond are in one-to-one correspondence with the perfect matchings of the 

Mobius Aztec diamond which are not extendible to a matching of type F. Therefore

KAD( n)  = AD(n)  +  2AD{n  -  1) -  2AD {n  -  2).

q .e .d .

T H E O R E M  1.23 The placement probabilities for the Klein Aztec diamond at loca

tion (i , j ) are described by the formulas:

_n i o —n  'n —L \ «j2 —2n ■Pt.i+2 (p.-.j-i+Pi.j+i)-2 p..,
22~2n

„ n  I n l - ] nPi.i+2 P«.»-l~2 
l+2l - "-22_Jn

kn l j  =
_n  I »>— I 
P . . J + 2 P.,,4-1
l + 2 1 - f I - 2 2 _ 2 n

pJ‘J-+2-n-2l-2n
l+21-',-22-2n

p"i +2 ~n(pr.7-i +P-7.-y-i)
l+21~"-22-2r*

|l| + \j\ < Tl -  2

1*1 +  |j | > n  -  2 

and 1 < j  < n  — 1

1*1 + |j | > n  -  2 

and 1 — n < j  < 0

(*,j) =  (±(** ~  1). 0) 

(*.j) =  (0 ,n  -  1)

for the north-going edges, and
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p?.-«+2~w(p?rt\-i+p?+u-J-23-2,,p?,-<
l - f 21— 22—3n

p? + 2 - n p n _ ,1
l-j-21 -rx—22—2n

P- f+2-"p7r1l._i-2l
—22—2r

=
n r» 4 - 2 ~ r*Dn — 1Pj.-«+ Pj + L.-t 
1+21-" —22—2n

p" . J - 2 - n p . ~  -j i  • yj+ i.—i
1 -j-21 —n—22-2r

p" .

l+2l~n —22 ~2n

p” _i-2-n+22~2n
l + 21_" - 2 2- 2n

fo r  the west-going edges.

\i\ + \ j \ < n - 2

|z| +  \j\ > n -  2 

and i , j  > 0

|i| +  \j\ > 7i -  2 

and j  > 0, i <  0

1*1 +  lil >  7 1  -  2

and j  < 0, i > 0

1*1 +  lil > n  -  2

and i < 0 , j  < 0  

(i , j )  = { n -  1,0) 

(*,j) =  (! “  n i°)

Proof:

According to theorem 1.13, we have to exclude from the matchings of the dual 

Aztec diamond those that have of an north or west-going edge at the current location
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type B type F type G

1*1 + b'i <  ™ ~  2 ___ AD (n  -  2)P" ; ! AD (n -  2)p772
1*1 + \ j \  > n  -  2  

and 0 <  j  < n  — l ---- ___ AD (n  — 2)
1*1 + \ j \ >  n - 2  

and j  < 0 ___ ___ ___

( i j )  =  (0 ,n  -  1) AD (n  -  1) -  AD (n  -  2) ----- 1 to

Table 5 Matchings to be subtracted for north-going edges in the Klein Aztec diamond

type E type F type G

i*| +  lil <  n -  2 ________ AD (u -  2)p?-2 AD (n -  2)Vr . \
|l| +  \j\ > n  — 2 

and 1 — n  < i < 0 — . - AD {n -  2) _________

1*1 + iil > 7i -  2 
and i > 0 ________ ________ ________

i h j )  =  ( i -  n ,o) AD (n  -  1) -  AD{n -  2) AD {n -  2) -----

Table 6 Matchings to be subtracted for west-going edges in the Klein Aztec diamond

and cure extendible to a matching of type F or G. We also have to pay special attention 

to the location (0, n — 1), where a north-going edge disappears from matchings of type 

B. Thus, tables 1 and 2 extended to include types B and F become tables 5 and 6.

As for the special matchings, it is clear from lemma 1.21 that we can use the 

tables 3 and 4 for the Mobius Aztec diamond, which just have to be updated at 

location (0, n  — 1) for the north-going edges, that is, to add at this location the extra 

AD( n  — l)p”7 - j- i  fchat we get from the special matchings of type a.

After division by K A D ( n ) we obtain the formulas.
q .e .d .
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1.7 Projective Aztec Diamonds

If we cut open any of the sides that have been pasted together we end up with a 

Mobius Aztec diamond with a vertical or with a horizontal axis of symmetry. Thus 

we prove that all the special matchings of the Projective Aztec diamond “come from” 

special matchings of a Mobius Aztec diamond.

L E M M A  1.24 The special matchings of the Projective Aztec diamond are in one- 

to-one correspondence with the special matchings of a Mobius Aztec diamond with 

horizontal symmetry and a Mobius Aztec diamond with vertical symmetry.

P ro o f:

All special matchings must contain a pair of edges like in figure 16 b, which can be 

situated either along a horizontal axis (exactly like in the figure), or along a vertical 

axis. The first situation produces one of the special matchings from figures 21 a or c, 

i.e. all vertices on borders with the y-coordinate positive, respectively negative, are 

matched with the unique (left or right) neighbor which is still free, with the exception 

of the corners, which have both two neighbors available. For the other case we get 

the matchings from figure 21 b and d. It is now clear that no other combination is 

possible, since once we have chosen which pair of opposite vertices is to be matched 

the special way, the other corners cannot be matched the special way anymore.

We notice that the vertices that are left unmatched form a dual Aztec diamond 

of order n — 1 and that by adding the edge between the two corners apparently 

unmatched, we extend these matchings to special matchings of one of the two Mobius

t
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Aztec diamonds mentioned. Deleting the same edge gives the inverse direction.

q .e .d .

T H E O R E M  1.25 The number of perfect matchings of the Projective Aztec diamond 

of order n is

PAD( n)  =  2I=̂ lii(22Tl- 1 + 2n+1 -  2)

P roo f:

From lemma 1.24 we deduce that the Projective Aztec diamond has twice as many 

special matchings as the the Mobius Aztec diamond, i.e. 4AD( n  — 1). Combining 

this with theorem 1.13 we have

PAD(n)  = AD(n)  +  4AD{n -  1) -  2AD{n -  2).

q .e .d .

T H E O R E M  1.26 The north-going placement probabilities for the Projective Aztec 

diamond at location (i , j ) are described by the formula:
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_ n  , •*— n ( - j i — I , _ r t —> 1 , r»—I 1 ^ __ »>2—2 r » n —.
Pi . j+2 lP..i-1+Pi.i+l+Pt-l.j+Pi-fl.jJ 2 P».i

22—2n |*| +  |jj < n — 2

pR,-+a-n ( i+ p " ji i  +P?-T1,j ) - 2 L-
l+22_,*-22~3n 1*1 +  | j [  >  71 -  2 

and i > Q,j >  0

|*| +  |j | > n -  2 

and i < Q,j > 0

P j . i + 2 ~ n ( P i . 7 + i  + P i - U i  )
l-j-22 —n—22 —2”

PPUi,j =

p?,-+2-"(i+p?rlI.,-)-21-2w
1-I-22 - 22~2n

p?.+2-"(i+p?r1ij )-21-2" 
1+22-n—22-2,1

_n I •>—n _ n - l
p » .i+ 2 P i.j+ i
l +22-n _ 22-2n

P ^ + 2 - ra(P - ~ l- i - i + P ? ~ i i - l )  
l+22—f*—22—2n

1*1 + \ j \ > n - 2  

and i > 0 ,j < 0

|*| + \j\ > n  -  2  

and * < 0 ,j < 0

(*.i) = (1 -  **>0) 

(*>j) =  (n -  1,0) 

(*,j) =  (0,1 - n )  

(*,j) =  (0,n -  1)

for the north-going edges.

fe . ___________ _______________________ __________  ________________________
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special type a special type b

1*1 + lil < 71 -  2 AD (n  -  1 ) ^ AD (n -  1 ) p - \ ,
1*1 + |j| > n -  2 
and i > 0 ,j > 0 AD {n -  1) ___

1*1 + lil > n ~  2
and i < 0 , j  > 0 AD [n  -  1) AD (n  -  1 ) p ^ \ i
1*1 + |j| > n  -  2 
and i > Q,j < 0 AD (n  -  1)P^ X ___

1*1 + lil > 71 -  2
and i < 0, j  < 0 AD (n -  l )P u h AD (n -

(*.i) =  (1 - n ,0 ) A D (n -  1) AD (n -  l ) ^ .
(*', j )  = (n -  1,0) AD {n -  1) ----
(*»j) = (0,1 - n ) AD (n  -  1 ) ^ ----
(*.j) = (0 ,n  -  1) AD (n  -  l)p"71_7-_1 ----

special type c special type d

1*1 + lil < n -  2 AD (n -  1 K ’i , AD (n  -  1 )p?-‘(
1*1 + lil > n  -  2 
and i > 0, j  > 0 AD(u -  l)p"7—i AD (n  -  1 ) ^
1*1 + |j | > n -  2 
and i < 0 , j  > 0 AD (n  -  l)p"7ii ___

1*1 + lil > n -  2 
and i > 0 , j  < 0 ___ AD (n -  I K " 1. •
1*1 + |j'| > n  -  2 
and i < 0 , j  < 0 ___ ___

(*\i) = ( i -**.o) ---- ----
(*.i) = ( n -  1,0) ----- AD (n  -  1 K - ‘(

II 1 3 j—* i ----- -----

(*,i) =  (0,n -  1) AD{n -  l K T ^ -----

Table 7 Matchings to be added for north-going edges in the Projective Aztec diamond

if
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The special matchings are contained in table 7. As mentioned before, in is suf

ficient to determine the north-going probabilities. From theorem 1.13 we know that 

we have to exclude from the matchings of the dual Aztec diamond that have a north- 

going edge at the given location those of types F or G that have an edge there. To 

this, we have to add the matchings of one of the Mobius Aztec diamonds mentioned 

in lemma 1.24 that have an edge at the current location. These matchings could be 

obtained by extending one of the dual Aztec diamonds of order n  — 1 and of center 

(0,1), (0, —1), (1, 0) or ( — 1,0). We also have to pay special attention to locations 

(± (n  — 1),0) and (0, ± (n  — 1)), and to keep in mind that for type B the north-going 

edges at (0 ,n  — 1) disappear.

The numbers that we have to subtract are the same as for the Klein Aztec diamond 

and they are presented in the table from theorem 1.23.

q .e .d .

1.8 Torus Aztec Diamonds

This category of Aztec diamonds can be of course related to the Cylindrical Aztec 

diamonds, but it turns out that, unlike the latter, they have special matchings, as 

proved in the following:

L E M M A  1.27 There is a bijection between the special matchings of the Torus Aztec 

diamond and the perfect matchings of the dual Aztec diamond of types F and G.
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Proof:

Any special matching of the Torus Aztec diamond must have a t least two adjacent 

corners matched in the special way (like in figure 16 a).

If only two corners are matched like this, the matching could be extended to a 

matching of one of the Cylindrical Aztec diamonds obtained by cutting apart the pair 

of pasted edges. Since the Cylindrical Aztec diamond has no special matchings, this 

situation cannot occur.

The remaining situation, with all corners matched in the special way, produces 

one of the two types of matchings from figure 22. After completing the matching to 

all positions that have just one neighbor left available we can see that the regions 

left to be matched are dual Aztec diamonds of order n — 2, like in the case of the 

matchings of types F and G for the dual Aztec diamond of order n. Thus we can 

define a bijection from one set to another, and, as no other particular relation seems 

to exist between these matchings, we make a choice: for every matching of type F 

we associate the matching from figure 22 a which has the same matching of the dual 

Aztec diamond of order n — 2, and similarly for type G with figure 22 b.

This result, combined with theorem 1.13 leads directly to the foEowing:

T H E O R E M  1.28 The number o f perfect matchings of the Torus Aztec diamond of 

order n is
n(n+ i)

TAD{n)  = 2-Lt - 1
□

I
i __ ___ ____________  _______ ___
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From what we have proved so fax we expect th a t the placement probabilities do 

not change too much. This is actually the case.

T H E O R E M  1.29 The north-going placement probabilities for the Torus Aztec dia

mond are:

P?,j (*\j) #  ( M  ~  1)

K i  =  <

P roof:

Due to the bijection we have established in theorem 1.13 all placement probabilities 

remain the same at locations situated in the region of the dual Aztec diamond of order 

n — 2. The same is true for the locations of negative y-coordinate situated outside 

this region, because north-going edges do not occur at these locations in matchings 

of types F or G or in the corresponding matchings of the Torus Aztec diamond.

All matchings of type G and no matching of type F have north-going edges at 

locations ( i , j )  r  (0,tx — 1)>J > 0 outside the dual Aztec diamond of order n  — 2, 

therefore there Eire A D (n  — 2) matchings with a north-going edge at such a location. 

On the other hand, at the same locations, a north-going edge can be found in all 

special matchings of type a if i < 0 and for all special matchings of type b if i > 0. 

The number of these matchings is in each case A D (n  — 2). Thus the placement 

probabilities at these locations change by —AD(n)  -I- AD(n)  = 0.

For the special location however, we have a modification due to the fact that all 

matchings of types B and G have a north-going edge there, which is deleted when
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we apply the bijection from theorem 1.13 and none of the other special matchings 

contain a north-going edge there.

Thus the toted decreases by AD[n — 1) — AD (n  — 2) +  A D (n  — 2) = AD (n  — 1).

q.e.d .

F in a l ly ,  as a consequence of theorem 1.13 and lemma 1.27 we notice that with a 

small modification, described in the lemma, we can apply the shuffling algorithm  

to generate random  m atchings of the Torus A ztec diam ond.

1.9 Conclusions

From what we could see, despite the differences for some categories of matchings, 

these graphs are very similar with respect to the structure and the statistics of their 

matchings. The difference between their placement probabilities and the probabilities 

of our initial graph tend to zero as n  goes to oo. Thus we have a common :

C O R O L L A R Y  1.30 (Arctangent Formula for the Modified Aztec Diamonds)

Let U be an open set containing the points (±^, | ) .  I f  (a:, y) is the normalized location 

of a north-going edge place in the Aztec diamond of order n, and (®,y) £ U, then as 

n oo, the placement probability at (x ,y ) is within o(l) of V(x , y) ,  where

0 i f  x 2 +  y2 > 1/2 and y < 1/2

V{x, y)  =  < i f  x 2 +  y2 > 1/2 and y > 1/2

|  +  1 ta n "1 i f  x 2 + y 2 < 1/2
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The o(l) error bound is uniform in (x , y ).

Proof:

From theorems 1.17, 1.20, 1.23, 1.26 and 1.29 it follows that the difference between 

the north-going probabilities of the dual Aztec diamond and those of the modified 

graphs is bound, in each case, by a sequence that not only tends to zero as n goes to 

infinity, but in addition does not depend on the location:

22-2n
b £ .» -c n “ yl <  L _ -2r -

1 — 2 i-2 n

22 -n

1 + 21-n  — 2 l-2 n

2 2-n

1 + 21 —71 — to to 1 to 3

23 -n

1 +
22-n  _ 22-2n

in the case of the Torus the difference being in fact zero at all locations but one. 

This ensures not only the equalities:

km  Px,y =
n—►+00

lim cn" „ = lim m n! „ =  lim kn ”_ =  lim ppn™ = lim tn^ v
n—v+oo n-H-oc n—*+oo n —y+oo n—t+oo '*

but also the uniform bound of the error. By theorem 1.5 we obtain the result. 

Similarly

km pu/"tf =
n—►-foo

lim p" _ = lim cu£ =  lim mtu" =  lim fcio” .
n -y+o= y' X n—►+oo 'V n —y+oo x 'y n-H-oo X,y
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Thus we need not worry about the west-going probabilities of the modified graphs 

because they have the same limit as the west-going probabilities of the dual Aztec 

diamond, so they can be easily obtained from the north-going ones.

q .e .d .

The resemblance between the Aztec diamond and its modifications does not stop 

here. In fact we can prove a result similar to theorem 1.4:

C O R O L L A R Y  1.31 (Arctic Circle Theorem for the Modified Aztec Diamonds)  

For any e > 0, for sufficiently large n, the probability that the boundary of the tem

perate zone stays within distance en o f the arctic circle differs from  1 by an amount 

exponentially small in n.

P ro o f:

This result is based on the knowledge of the structure of matchings for modified 

Aztec diamonds that we aquired in the previous section. Let us fix one (any of the) 

modified Aztec diamond. First, when we choose a random matching of the modified 

Aztec diamond, the probability that this matching is extendible approaches 1 as 

n —> oo. Second, when we choose a random matching of the dual Aztec diamond, the 

probability that it is the extension of a matching of the modified Aztec diamond also 

approaches 1 as n —v oo. Thus our theorem is a direct consequence of 1.4.

q .e .d .
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CHAPTER II

M ATCHINGS A N D  CO VERING  GRAPHS

2.1 Perfect Matchings, 2-Matchings and n-Matchings

In this chapter we study some special types of /-matchings: perfect 7i-matchings 

and perfect non-ramified ra-matchings, the relations between the matchings, 2-matchings 

and ra-matchings, ra > 3, of the same graph G, as well as their relation with the match

ings of some covering graphs of G. From th a t we deduce some information about the 

number of non-ramified perfect ra-matchings for G.

• an n-m atching is an f-m atching such that f ( x )  =  ra, Vz G V{G);

• a non-ram ified / -matching is an f-m atching such that at each vertex there 

are at most two edges with non-zero weights;

• the sum  of an / i -matching with an f 2 -matching is a (f \  + f 2)-matching such

that

u;(e) = u;i(e) + w2(e) for each edge o f the graph;

• the support of an f-m atching is the set o f edges o f non-zero weight;

• we say that an f-matching is trivial i f  its support is a matching;

• we say that an f-m atching is proper i f  it is not trivial.

51
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In what follows we only study perfect n-matchings.

Let us note a few elementary facts:

• the support o f a non-ramified perfect n-matching is a set of independent edges 

and cycles;

• all 2-matchings are non-ramified;

• i f  a graph has perfect n-matchings for some n then it has, perfect nk-matchings 

for all k >  1, obtained trivially by adding the n-matching to itself k times;

in particular, i f  a graph has perfect matchings then it has (trivial) n-matchings 

for all n  >  1.

Figure 23 presents a few examples of perfect n-matchings, all but the last one 

being non-ramified (to be included).

We have mentioned some sufficient conditions for the existence of n-matchings in 

a graph. For a given graph, the existence of n-matchings is not guaranteed.

E xam ple 2.1

Let us consider the graph represented in figure 24, with vertices {u , v , x , y ,  z}  and 

edges {u, x}, {x,u}, {u, y}, {y,u}, {u, z}, {z, u}.

This graph has no n-matchings, for any n. To see that this is true, let us notice 

that the pairs of edges adjacent to x, respectively y, z, have to be given weights of 

the type {k,  n  — k},  {/, n  — /}, {m, n  — m}  for some 1 < fc, I, m  < n  — 1. The weights 

add up to k +  I + m  a t u and 3n — (k -f / -f- m) at v. Obviously, these two numbers 

cannot be both equal to n. □
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Some necessary and sufficient conditions for the existence of perfect /-matchings 

are known (see [LP86] pg 72, for example) for bipartite graphs. For general graphs, 

these conditions have been deduced via /-factors ([LP86], chapter 10).

We are interested in the possible decompositions of a given n-matching into sums of 

matchings and 2-matchings. From theorem 6.4, [HS93], we can deduce the following:

L E M M A  2.2 All perfect n-matchings, f o r n  even, can be decomposed into a sum of 

perfect 2-matchings.

P roof:

Suppose we have a perfect n-matching for some even n  > 2. We use the idea 

from [LP86] page 383, which relates /-matchings and /-factors. Replace each edge 

of weight k with k parallel edges. We have constructed an n-regular multigraph. 

Theorem 6.4, [HS93], assures us that all the connected components of this new graph 

have 2-factors. Take the union of these 2-factors and transform them back into 2- 

matchings the obvious way. Subtract then from the initial n-matching the perfect 

2-matching that we have obtained, we are left with a perfect (n — 2)-matching and 

we can apply an inductive argument.

q .e .d .

Let us note that:

• a perfect 2-matching can be written as the sum o f two perfect matchings iff its 

support has only even length cycles.
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Thus, in certain circumstances, for example when the graph has only even cycles, 

we can deduce that any perfect n.-matching, for n  even, is the sum of n  perfect 

matchings.

Another consequence of the lemma is:

C O R O L L A R Y  2.3 A graph has a perfect n-matching, f o r n  even, iff  it has a perfect 

2-matching.
□

The phenomenon does not repeat for odd values of n. The two graphs below 

constitute counterexamples to what could be a decomposition theorem for n = 3.

E x a m p le  2.4

In figure 25 we have a (smallest) 3-regular graph which has no perfect matching. 

Assign the weight 1 to each edge and we have a perfect 3-matching which is neither 

the sum of 3 perfect matchings nor the sum of a perfect matching with a perfect 

2-matching.
r-*I ;

E x a m p le  2.5

The graph from the previous example has perfect 2-matchings, but it has no 

perfect matchings. Would the existence of both perfect matchings and 2-matchings 

be enough to obtain a decomposition? The answer is negative, as it can be seen from 

the following:
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As we can see, the graph in figure 26 has a perfect 3-matching, it has perfect 

matchings and 2-matchings, but their sum can not be the 3-matching we started 

with.
□

2.2 Structure and Decomposition of Non-Ramified Perfect 

n-Matchings

We have already noticed that the support of a non-ramified perfect n-matching 

is a set of independent edges and cycles. This fact leads to a decomposition theorem, 

that does not apply, as we have seen before, for the general n-matching.

Let us detail the structure of a non-ramified perfect n-matching first (see figure 

27 for an illustration):

• all independent edges in the support have weight n;

• the edges along the cycles have weights m  an d n  — m , alternating along the cycle, 

for some 1 <  m < n  — 1;

• i f  the cycle has even length, m  can take any of the n — 1 values mentioned above;

• an odd length cycle can only belong to a n  =  2k matching, and in this situation 

the unique possibility is o f having all edges o f weight k .

A consequence of these observations is:

L E M M A  2.6 Let C be a cycle o f length I with a perfect proper n-matching.

i) I f  I is even then the n-matching is the sum o fm  perfect matchings having as support
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the edges o f weight m, and n  — m  perfect matchings having as support to the edges of 

weight n  — m .

ii) I f  I is odd and n — 2k then the n-matching is the sum of k perfect 2-matchings 

which have all as support the cycle itself.

From this we can deduce our decomposition theorem.

T H E O R E M  2.7 For k > 1 the following are true:

i) Any non-ramified perfect 2k-matching is the sum of k perfect 2-matchings.

ii) Any non-ramified perfect {2k +  1 )-matching is the sum of 2k +  1 perfect matchings.

P roof:

i) This part could be deduced from 2.2, but the previous lemma gives us a construc

tive argument: we can decompose the odd length cycles into 2-matchings, the even 

length cycles into matchings an then group them to obtain the perfect 2-matching we 

were looking for. The independent edges pose no problems.

ii) Follows from the lemma, using the fact that we have no odd- length cycles in 

this case.

q .e .d .

C O R O L L A R Y  2.8 I f  G has no odd cycles, any non-ramified perfect n-matching is 

the sum of n perfect matchings o f G.
a

We notice that there Eire many ways in which these decompositions could be done. 

We will attempt to enumerate them later on.
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Now let us mention the necessary and sufficient condition for the existence of 

non-ramified perfect ra-matchings, which results from the theorem:

C O R O L L A R Y  2.9 For a given k >  1

i) G has a non-ramified perfect 2k-matching iff it has a perfect 2-matching.

ii) G has a non-ramified perfect {2k +  1 )-matching iff  it has a perfect matching.
□

Let us introduce the following notations, for ra >  2:

• N n(G) is the number of non-ramified perfect n-matchings for G;

• N^(G) is the number of non-ramified perfect n-matchings of G with c cycles in

the support;

• N^’C'(G) is the number of non-ramified perfect n-matchings of G with c cycles 

in the support, exactly c' o f them being of odd length.

The following result shows that it is enough to know the structure of the set of 

perfect 2-matchings of a graph G to be able to determine completely all non-ramified 

perfect ra-matchings.

L E M M A  2.10 Let G be a graph and ra > 3.

i) The numbers of non-ramified perfect n-matchings are described by

A£c' (G) = (ra -  l)c- c' N C/ { G )  i f  n  = 2k 

N'{G)  =  (ra -  1)CN ‘'°{G) i f  n  = 2k + l.
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ii) I f  the graph has no odd cycles,

= 2 >  -  1)“JVJ(<3).
c>0

P ro o f:

These equalities axe obtained by counting how many rc-matchings have the same 

support as a given 2-matching. They are based on the observation from the beginning 

of the section, that there are n — 1 ways of assigning weights to an even length cycle, 

there is only one way of assigning weights for an odd length cycle when n  is even and 

no way of doing it for an odd length cycle when n  is odd.

q .e .d .

2.3 Covering Graphs and Perfect rc-Matchings

D E F IN IT IO N  2.11 A graph G is a (Ijranched^ covering  g rap h  o f G i f  it is a

(branched) covering space such that the (potential) branch points are only among the 

vertices o f G.
□

We begin this section with an observation, which is the source of all results pre

sented further on.

L E M M A  2.12 Suppose G is a (branched) covering graph of G. I f  M  is a perfect 

matching o f G , then, for f (x)  = |p-1(x)|,Vx € V{G),  there exists a perfect f  -matching
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of Gwith the weights of the edges defined by w(e) =  \E(M)  D p 1(e)|. The support of 

this f-m atching i sp(M) .
□

D E F IN IT IO N  2.13 I f  M  is a perfect matching o f a (branched) covering graph of G 

then the f-m atching with w(e) = \ E(M)  PIp-1 (e)| is the p ro je c tio n  of  the matching 

M ; we say that the same f-m atching  lifts  to the matching M .
□

2.3.1 Branched Covering Graphs

A construction sim ilar to the following graphs can be found in [LP86], chapter 

10, where theorem 10.1.1 mentions the equivalence between the existence of a perfect 

matching of such graphs and the existence of a perfect /-m atching for the initial one. 

Here, for the case of non -ramified perfect n-matchings, we prove more: we find the 

number of matchings corresponding to a given non-ramified perfect n-matching.

D E F IN IT IO N  2.14 Given a graph G, Gn are the graphs with:

V n = V ( G ) x { l , . . . , n }

En =  { { (x ,i),(y , j ) }  : V{x,y} 6 E{G) and i , j  =  1 . . .  n}
□

Note that ail these graphs are branched covering graphs with |p~1 (m) | =  n  for all 

the vertices x G V(G),  and that the projection of a perfect matching in such a graph 

determines a perfect n-matching of G. In fact, the fiber above an edge is the bipartite 

complete graph Kn n̂.
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Given a non-ramified perfect re-matching of G, we may ask in how many ways 

does it lift to a perfect matching of Gn. The next lemma gives us the answer:

L E M M A  2.15 Let £  be the set o f independent edges in a non-ramified perfect 

n-matching of G and let Ci%m be the set of cycles of length I in which there exists an 

edge o f weight rre. The number of perfect matchings o f Gn this n-matching lifts to is

where the * term is to be considered only for  re =  2k.

Proof:

The fiber above one edge is formed of re2 edges, each vertex being incident to re of 

them.

On the fiber over an independent edge, there are re! perfect matchings, which 

explains the term involving £.

Suppose that we want to lift a cycle with weights m and re — rre. Start at a vertex 

u in the cycle and let us choose rre edges over the edge {re, re} of weight rre incident to 

our vertex. There are (m) ways of choosing the rre vertices we start with (in the fiber 

over re) and ^  ways of choosing the rre vertices we match them with (in the fiber 

over v), then we have re — rre edges left in this fiber and we can choose the vertices we 

match them to in ways, and so on, we alternate these values along the cycle till

we reach the fiber over the last vertex before re. Here we have only the choice which 

of the vertices that are still unmatched to match together. This can be done (re — rre)! 

ways. Taking the product of these, we obtain the rest of the formula, including, for
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7i = 2 k, the special case m  ~ k.
q .e .d .

These numbers depend highly on the weights assigned to the edges. We will see 

that when n = 2, this result takes a much nicer form.

2.3.2 Permutation Derived Graphs

We have seen in the previous section that there are many possibilities of lifting 

a non-ramified perfect n-matching of a graph to perfect matchings of the branched 

covering graphs Gn. This seems natural, since the fiber above each edge has size n 2. 

If we want the number of perfect matchings of a covering graph to get closer to the 

number of non-ramified perfect n-matchings of the initial graph, it makes sense to 

reduce the fibers above the edges to n. This is the minimum we can take to give to 

each edge the possibility of participating to a n-matching as an independent edge (of 

weight n). We create these covering graphs by choosing n independent edges from 

each of the fibers of Gn over the edges of G. For any such graph, there might exist 

some n-matchings which lift to this covering graph only. Therefore we study all the 

possibilities.

The construction of such coverings can be done via voltage graphs.

D E F IN IT IO N  2.16 Let G be a graph whose edges have been assigned plus and 

minus directions. A p e rm u ta tio n  v o ltag e  assignm ent for G is a function a  from  

the plus-directed edges into the symmetric group S n. The pair < G, a  > n is called a 

p e rm u ta tio n  voltage g raph .
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D E F IN IT IO N  2.17 To a given permutation voltage graph < G ,a  >n we associate 

a perm utation  derived graph, Ga, which is a graph such that

V'(G-) =  V '(C ) x { l , . . . ,n }

E(G “ ) =  { {(*, • ) ,(} ,» (•))} : i £ { 1 .. .n } ,a (x ,t/)  =  ir}

where (x,y)  =  e+ for the edge e = {e,*/}.
□

Figure 28 presents a few examples of ^-voltage graphs and their associated per

mutation derived graphs for a cycle of length 4.

First we need to show that all possible covering spaces of G can be obtained 

through the method mentioned above. The answer to this question is given by theo

rem 2.4.5 from [GT]:

T H E O R E M  2.18 (Gross and Tucker, 1977)

Let the graph map q : G —> G be a covering projection. Then there is an assignment a  

of permutation voltages to the base graph such that the derived graph Ga is isomorphic 

to G.
□

Automorphisms (homeomorphisms) of perm utation derived graphs can be ob

tained by permuting the vertices from each of the fibers amongst themselves. The 

next question is how many of these are in fact homeomorphic covering spaces. We 

will not address this question here, we just mention a version of theorem 2.5.4 from 

[GT], to be used in section 2.4.2.:
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T H E O R E M  2.19 Let G be a graph, let a  be a permutation voltage assignment for 

G, and let T  be a spanning tree fo r  G. There exists a voltage assignment (3 such that 

all the edges in T  have voltage e and the derived graph G& is isomorphic to Ga .
□

Ail permutation derived graphs with permutations from Sn are subgraphs of Gn. 

Their perfect matchings also project to perfect n-matchings of G. We are going to 

determine a necessary and sufficient condition for a non-ramified perfect n-matching 

of G to lift to a given permutation derived graph of G. For this, we define the voltage 

of a walk in a voltage graph:

• the voltage of a m inus-oriented edge is the group inverse o f the voltage of 

the corresponding plus-oriented edge;

• the total voltage of a (oriented) walk is equal to the product of the voltages 

encountered in a traversal of that walk.

Given a permutation ir,

• c, represents the number o f cycles o f length i in the cycle decomposition of it;

• (c i , . . .  ,Cn) is the cycle structure of k .

Let us note that:

• reversing the direction o f the walk replaces the total voltage of the walk with its 

group inverse;

• the cycle structure of the voltage of a given walk does not depend on the direction 

of traversal;
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•  the cycle structure of the voltage of a cycle with a chosen routing does not depend 

on the point where we start.

Keeping these facts in mind, we mention another result from [GT] (theorem 2.4.3).

T H E O R E M  2.20 Let C be a cycle of length k in the base graph G of a permutation 

voltage graph < G, a  >n with net voltage ir, and let be the cycle structure o f tt . Then 

the preimage of C in the derived graph Ga has Ci +  . . .  +  c„ components, including, 

fo r  j  =  1 . . .  n, exactly Cj cycles o f length k j .
□

Now we can present our result about liftings of non-ramified n-matchings. Obvi

ously, there is only one way of lifting an independent edge of weight n: we take all 

the edges above it in the matching. Thus it is enough to determine how many ways 

does a cycle lift.

T H E O R E M  2.21 Let C be a cycle of length I with a proper n-matching N , let a 

be a voltage assignment for C , p : Ca —>• C be the covering projection and tt be the 

voltage o f C of cycle structure (c1}. . . ,  c„).

i) I f  I is even and the edges along C have weights m  and n — m  (m  > I), the N  lifts 

to a perfect matching of p~l {C) if f  p~1 (C) is the union o f an m-covering graph Si 

with an n — m-covering graph S 2 .

The number of liftings of N  is equal to the number of ways we can form  Si and S2 if 

m  7  ̂ n — m  and it is twice this number i f  m  = n — m .

ii) I f  I is odd and n = 2k, then N  lifts to a perfect matching of p~l (C) iff
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d  — 0, Vi odd (i.e. i f f  all components of the preimage have even length).

In this case the number of liftings of N  is 2Cl+'"+Cn.

Proof:

i) Let Mi, (M2) denote the perfect matching of C formed of the edges of weight 

m  (n — m). Suppose that N  lifts to a perfect matching, M. For each component of 

the preimage: cycle K  of even length li, with the size of the fiber equal to i, M \k  is a 

perfect trivial i-matching of the cycle, of support either Mi or M2. Let Si, respectively 

S2, be the union of those components that project to Mi, respectively M2. According 

to definition 2.13, w{e) =  \E(M)  f lp _1(e)|, so m  = \E(M)  f! E(Si )  D p-1(e)| and 

n  — m  = |E( M)  D E ( S 2) f lp _1(e)|. This gives us the required size of the fibers.

Suppose now that Si and S2 which satisfy the conditions of the hypothesis exist. 

Proceed as follows: split N  into a perfect m-matching Ni  and a perfect 

(n — m)-matching iV2 (both formed of independent edges), lift Ni to Si  and N 2 to S2 

(we have already noticed that there is no problem in lifting independent edges) and 

the problem is solved.

If m  ^  n — m,  for each choice Si and S2 we can only lift Ni to Si and N2 to S2, 

so we have a one-to-one correspondence. If m  = n — m  then we can also lift N i to S 2 

and N2 to Si, thus the correspondence is two-to-one.

ii) N  is a perfect 2A:-matching and I is odd.

Suppose that N  lifts to a perfect matching M. M  is a union of perfect matchings 

for the components of p~l (C).  The length of a component is, as we know from 2.20, 

equal to il, for each of the c, components corresponding to the Cj cycles of length i in
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t . Since I is odd, components with i odd have no matchings. Thus, Ci = 0 for ail i 

odd.

Conversely, if p~l (C) has no cycles of odd length, then it has at least a perfect 

matching. Let us choose one such matching, M.  Given of a component K  with fiber 

size i , the projection of M \ k  is a z/2-proper matching. Adding these weights over all 

components of p~l (C)  gives us the n /2  = k value we were looking for.

In the argument above, we made a choice M.  It is clear that any such matching 

would do. Each cycle in p~l (C) has exactly two perfect matching and we have 

Ci -i- . . .  +  Cn cycles, which gives a total of 2Cl+- +Cn liftings.

q.e.d.

From the theorem above we can see that odd length cycles and even length cycles 

have a different behaviour with respect to their liftings. In particular, for the even 

length cycles, not only the number of components of its preimage is involved, but 

also the size of the fiber for each component. Thus, in the general case, there is no 

uniform way of describing the liftings of a non-ramified perfect n-matching. We will 

see later that for n — 2 the situation becomes more favorable.

2.4 Perfect 2-Matchings

We now apply the results of the previous section to the case n  =  2. Our purpose 

is to study the enumeration of perfect 2-matchings of a graph.

In what follows, C@2 (G) represents the number of 2-covering graphs of a given 

graph G.
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2.4.1 Matchings of G2

L EM M A  2.22 A perfect 2-matching of a graph G with exactly d edges o f weight 2 

lifts to 2v~d perfect matchings o f G2, where v = \ V{G)\.

Proof:

We apply lemma 2.15 for the case n — 2. We recall the general formula:

even l<m<[n/2J V V ' 7 J  \ l  o d d  s  '  J

Here we can only have m  = 1. Let Ci =  |Cjti. Thus the formula above becomes:

II 4̂ |C'1 ) ( E[ 2Z |Cl' ) 2'£i = ( II2̂ '1 ) 2'f| = 2(E<'(c:,l,+[£|
t even J  \ l  o d d  /  V I /

Since I • l̂ zl +  2|6T| =  v and \£\ — d the result follows.
q .e .d .

Thus we can express the relation between the number of perfect matchings of G2 

and the number of perfect 2-matchings of the base graph G, as follows:

T H E O R E M  2.23 The number of perfect matchings of G2 is

i ( G 2) = '£ , n 2(G;d) 2"~d
d

where n 2(G',d) represents the number of perfect 2-matchings o f G with d edges of 

weight 2.
□

• the weight of a perfect matching is 2d if  the projection has d edges o f weight 2. 

COROLLARY 2.24 The weighted number o f perfect matchings of Gn is

2 vN2{G)
□
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2.4.2 A Mean Value Theorem for Perfect Matchings of 

2-Covering Graphs

In this section we show that the average number of perfect matchings of 2-covering 

graphs for a given graph G is the number of perfect 2-matchings of G.

As an introduction, we present in figures 29, 30, 31 and 32, tables labeled, on the 

columns, by 2-covering graphs of the initial graphs, on the rows, by their 

2-matchings, and at each entry in the table we have the number of liftings of the 

respective 2-matching to the 2-covering graph. We also include the totals by rows 

and by columns. We observe that all rows sum up to the same value, which is equal 

to the number of columns. Thus the total is the product between the number of lines 

and colum ns, i.e. the number of 2-matchings and the number of 2-covering graphs of 

our graph. Dividing the equality by the number of 2-covering graphs produces the 

result we mentioned in the beginning of the section.

The previous examples suggest the following approach for the proof of the main 

theorem: after computing \CQi{G)\ (the number of 2-covering graphs of a given graph 

G), show that the total number of perfect matchings of 2-covering graphs that a 

perfect 2-matching can lift to is equal to |C£/2 (G)|, then conclude the way we did 

above.

We will limit ourselves to the study of connected graphs without loss of generality. 

We can do so because both /-matchings and covering graphs for a given graph are a 

union of /-matchings, respectively covering graphs for its components.

We begin with counting the 2-covering graphs of a given (connected) graph. Let
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e represent the group identity of S n- With the convention that IV'(G)! =  v and 

|f?(G)| =  e, we have the formula:

L E M M A  2.25 The number of 2-covering graphs of a given graph G is

\cg2(G)\ = 2e~ ^ 1.

P ro o f:

By theorem 2.18 we know that we can think of 2-covering graphs as permutation 

derived graphs with permutations from S 2- The voltages of the edges are be either e 

or (12). We must mention that there is no need for a plus-minus orientation in this 

case, since all permutations of S 2 are there own inverses.

Let T  be some spanning tree for G.

If G = T, then e — v +  1 = 0  and indeed there exists a unique 2-covering graph 

for G.

Suppose G has at least one cycle. Theorem 2.19 tells us that there are at most 

2e-v+1 different derived graphs (up to isomorphism), since once we have fixed the 

voltages for all the edges of T  to be e, there are only |£ (G )| — |ff(T )| =  e — (v — 1) 

edges left and for each we have two choices.

To complete the proof we must show that all 2e-u+1 choices mentioned above lead 

to distinct graphs: We begin by choosing such a 2-covering graph, Ga given by the 

set of voltages a. Let us remember that isomorphisms of perm utation derived graphs 

are in fact permutations of the vertices within the fibers. We apply an isomorphism 

and we produce a new permutation derived graph, G 3, which corresponds to another 

choice of voltages, (3. Suppose we have an edge a =  {u, w} in T  such that /3(a) = (12).
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This means that we have permuted one of the two sets of vertices from the fibers over 

the endpoints. Suppose that we have permuted Ui with u2. We want to keep the 

voltages along T  equal to e. The only way to have these voltages, (except, of course, 

the obvious, which is to permute back Ui and 1*2 ), is to permute the other endpoints, 

Wi and w 2, from the fiber over w, and to keep on doing so, (updating the voltages 

at each step), as long as we meet edges of voltage (12) in T.  In fact the procedure 

stops when we meet endpoints of T  or vertices that have already been perm uted by 

the initial isomorphism. Thus we end up permuting all the vertices that haven’t been 

perm uted by the initial isomorphism, clearly producing back the graph Ga, and our 

claim is proved.

q . G *d*

Note that the power of 2 in the previous theorem is in fact the cyclomatic number 

of the graph and that to construct our permutation derived graphs we choose the 

voltages for a cycle base of G, built with the help of a spanning tree (see for example 

[BolJ pg 35-37).

C O R O L L A R Y  2.26 A planar graph G with f  finite faces has 2* double covers.
□

Recall that e is an even permutation and (12)is an o d d  permutation.

We are going to show how theorem 2.21 transforms in this context.

L E M M A  2.27 Let M  be a perfect 2-matching of G and choose G' a 2-permutation 

derived graph. Then M  lifts to a perfect matching of G' iff, for each cycle in the
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support of M , the length and the voltage of the cycle have the same parity.

The number of liftings o f M  to perfect matchings o f G1 is 2C, where c is the number 

of cycles in the support o f M .

Proof:

Both even and odd length cycles have the weights of the edges equal to 1. From 

theorem 2.21 we deduce that a 2-matching of an even length cycle lifts iff there axe 

exactly two components in the preimage of the cycle. There is, evidently, exactly one 

way of getting two components, corresponding to a total voltage of the cycle equal to 

e, and there are two possible liftings of the 2-matchings of this cycle. On the other 

hand, for odd length cycles we need exactly one component in the preimage, thus a 

total voltage of (12). The number of liftings of the 2-matching is again 2. Since for 

the independent edges there is just one possible lifting, we take the product over all 

the cycles in the support and we obtain a total of 2C liftings.

^■6 ■ d .

In figure 33 we have a summary of the proof, described by the two possible liftings 

of a proper 2-matching for a cycle of length 3 and for a cycle of length 4.

As a consequence we have the following resiilt regarding the number of 2-covering 

graphs given perfect 2-matching can lift to:

LEM M A  2.28 Given a perfect 2-matching M  with c cycles in the support, the num

ber of 2-covering graphs with perfect matchings which project to M  is equal to 2e-u-c+1.
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Proof:

We use again theorem 2.19. Choose all but one of the edges of each cycle in the 

support of M  and complete this to a spanning tree. Choose the voltages of edges 

along it to be e. Thus we have fixed the voltages for v — 1 edges. In lemma 2.27 

we have a necessary and sufficient condition for lifting of 2-matchings, expressed as 

a condition on the voltages of the cycles in the support. In order to have the right 

voltage for any of these cycles it is enough to set the voltage of the unique edge in 

the cycle that does not belong to the spanning tree so that is has the same parity as 

the length of the cycle. Thus we have fixed the voltages for other c edges. For the 

remaining ones we can use any of the two permutations available and we can argue 

like in lemma 2.25 that all choices generate different 2-covering graphs.
q .e .d .

The previous results lead to the main theorem of this chapter:

T H E O R E M  2.29 The number of perfect matchings o f 2-covering spaces of a given 

graph G is

${H)  = 2e~v+lN2{G).
secSiiG)

Proof:

To show that this is true we just have to put together the results from lemma 2.27 

and lemma 2.28. For each 2-matching, there are 2e-u-c+1 2-covering graphs that it 

can lift to, and there are 2C different liftings to each of these, which makes a total of 

2e-u+1. We have to make sure that they are all different, but two perfect matchings 

which project to different 2-matchings can not be identical.
q .e .d .
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• f tn (G) represents the average number of perfect matchings o f n-covering graphs 

for a given graph G.

A very interesting result, based on the previous theorem and on lemma 2.25, is 

that:

T H E O R E M  2.30 The average number of perfect matchings o f 2-covering graphs for  

a given graph G is the number o f perfect 2-matchings ofG.

pn(G) =  N2(G)

P roof:

We just need to point out that the factor which multiplies iV2(G) in the previous 

theorem is in fact the number of 2-covering graphs of G.

q .e .d .

The last theorem implies, non-const rue tively, that any graph G has a 2-covering 

that has at most as many matchings as G has 2-matchings. Of course the theorem also 

implies G has a 2-covering that has at least as many matchings as G has 2-matchings, 

but for this we can give a construction, see below.

2.5 Conclusions and Comments

First, we want to mention a slightly different approach for the results in the last 

subsection, avoiding the use of theorem 2.19, and implicitly the use of spanning trees.
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The alternate method consists of determining the size of the isomorphism classes of 

permutation derived graphs from lemmas 2.25 and 2.28 directly, using group-theoretic 

arguments. For the first one, for example, we would show that the number of per

mutation derived graphs is 2e and that the size of their isomorphism classes is 2”-1 , 

thus obtaining the number of 2e-u+1 different 2-covering graphs.

We would like to be able to deduce more information about the number of perfect 

2-matchings, from the perfect matchings of 2-covering graphs. Based on the results 

obtained so far, we draw some conclusions about the maximum and minimum number 

of perfect matchings among 2-covering graphs of a given graph G, whether or not the 

average can be realized for one such covering and some methods of computing these 

numbers.

For the maximum, we have a positive result:

L E M M A  2.31 For any graph G there exists a 2-covering graph GMax such that 

all perfect 2-matchings of G lift to perfect matchings of GMax.  Thus GMax has the 

maximum number of perfect matchings among the 2-covering graphs.

P roof:

The construction of GMax  is based again voltage graphs and uses a spanning 

tree T  with a fixed root. Proceed as follows: assign voltage e to all edges in T,  then 

stm t adding the remaining edges one by one and assign them the voltage e or (1 ,2 )  

depending whether the (unique) cycle formed with the new edge and which contains 

the root has even or odd length. Thus we built a cycle base and the total voltage
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for each of its cycles has the same parity with its length, because we get the identity 

on the even length cycles and the transposition for the odd length ones. From this, 

using the observation that the parity of the length /voltage of a cycle coincides with 

the parity of the number of odd length/voltage basic cycles which form it, we can 

conclude that all cycles in the graph have the correct voltage from the point of view 

of liftings (see lemma 2.27).

q.e • d •

If the graph has only even length cycles the proof of the lemma tells us in fact 

an obvious thing: GMax  is the (unique) 2-covering formed of two components, each 

of them isomorphic to the initial graph. This graph has (<£(G))2 perfect matchings, 

which is, again, the obvious upper bound for perfect 2-matchings of G, since all perfect 

2-matchings can be thought of as the sum of two perfect matchings in this case.

In fact, for the 2-covering graph formed of two copies of G the number of perfect 

matchings remains ($(G ))2 even if there are odd length cycles but this number might 

not be a maximum anymore. In addition we have:

(* (G ))J =  X > A /? ° (G )
c>0

This is the consequence of the fact that every 2-matching with c, cycles, all even, 

lifts 2C ways to this covering graph (which is another way of saying th a t every 

2-matching with c, all even, cycles can be identified with 2C pairs of matchings). We 

have already met the terms on the right-hand of the equation above (lemma 2.10), 

and we know it represents the number of non-ramified perfect 3-matchings. Thus:

N3(G) = ($(G ))2.
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The minimum is, obviously, at least $(G). From examples, we can see that this 

minimum can be 3?(G) (figures 29, 30, 31) or bigger (figure 32), that it can be attained 

at one or several covering graphs.

Given a graph G, if there exists a permutation voltage assignment such that, for 

all cycles in the supports of all 2-matchings, the parities of the voltage and of the 

length the are opposite, $(G) is the minimum. If not, some proper 2-matching can 

lift to the 2-covering graph, and the problem is to find the covering which accepts the 

minimum number of liftings. As we can see, in both situations we need to know the 

structure of the 2-matchings of G.

We conjecture that there is no algorithm for finding the 2-covering graph with a 

minimum of perfect matchings significantly better than the one that goes through all 

2-covering graphs and finds their number of perfect matchings.

By theorem 2.30, the existence of a 2-covering graph with exactly as many perfect 

matchings as the average would reduce our counting problem to ordinary matching 

theory. To help us decide whether, in general, this construction is possible or not, we 

give yet another version of theorem 2.29:

C O R O L L A R Y  2.32 The average number of perfect matchings of a 2-covering graph 

which project to proper 2-matchings is the number o f proper perfect 2-matchings.
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This can be deduced directly from

${H)  = 2 e~v+1N2{G).
H£CQ2

It is sufficient to subtract from both sides 2e-u+1$(G), since all trivial 2-matchings 

lift to each of the covering graphs exactly one way.

q .e .d .

Unfortunately, the following example shows us that the average is not easily real

ized:

E x am p le  2.33

Let Hn be the subgraphs of the plane grid Z x Z induced by the set of vertices 

{1,2} x { 1 ,. . . ,  7l}.

The number of perfect matchings of these graphs is described by a Fibonacci 

sequence:

a-n  =  O .n - 1  +  a n ~ 2 ,  a l  =  1) a 2 =  2.

The parity for the elements of this sequence is described by odd, even, odd, ... repeated

to infinity.

The number of perfect 2-matchings is expressed by the sequence bn which has as 

recurrence relation:

bn =  26n_! + fcn_2 — bn-3) &i =  1) h  = 3, b2 = 6.

Here we have the following parity sequence: odd, odd, even, even, odd, even, odd,... .
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Thus the difference of the two sequences, which represents the number of proper 

2-matchings, equal to the average, has infinitely many odd terms.

Each proper 2-matching lifts at a given covering graph an even (power of 2) number 

of ways. Therefore the number of perfect matchings of a covering graph which project 

to these 2-matchings must be even. If the average is odd, it can not be realized.
□

Theorem 2.30 suggests some other methods of finding the number of perfect 

2-matchings of a graph.

One such method is to compute the number of perfect matchings of all its 

2-covering graphs.

A less costly but less precise solution would be to generate random 2-covering 

graphs, then to determine their number of perfect matchings and then to take the 

average. Random 2-covering spaces are not hard to obtain, with the use of a spanning 

tree: we simply construct permutation derived graphs the way described in the proof 

of lemma 2.25.

Both methods require a good way of determining the number of perfect matchings 

of a graph. Such methods exist for planar graphs, and they use a Pfaffian orientation 

of the graph (see [LP86], chapter 8). Unfortunately the covering graphs are far from 

being planar, and they are as far from being Pfaffian graphs, as shown in the following 

example:

E x a m p le  2.34

Let G be the subgraph of the plane grid induced by {1,2,3,4} x  {1,2,3}. Assign
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the identity voltage to all edges but {(2,1), (1,2)} and {(3,1), (4,1)}.

We will show that the permutation derived graph with the voltages defined above 

(figure 34) is not Pfaffian.

Let us take the following cycles:

Cx : ( (1,1); (2,1); (3,1); (3,2); (2,2); (1,2); (1,1) ) x {1}

C2 : ( (1,2); (2,2); (3,2); (4,2); (4,3); (3,3); (2,3); (1,3); (1,2) ) x {1}

C3 =  Ci + C2

C i,C 2,C 3 are all nice cycles in the permutation derived graph and the first two 

have exactly two edges in common. According to theorem 8.3.2. in [LP86], G is a 

Pfaffian orientation of G iff all nice cycles are oddly oriented. In our case, for any 

routing of the first two cycles, with ki, respectively k2 edges in the direction of the 

routing, the third cycle has exactly 4- k2 — 2 edges oriented the same way, and this 

number is even. Thus the covering graph we constructed is not Pfaffian.
□

This negative result shows us how easily can covering graphs can fail to be Pfaffian. 

Finally let us mention that a theorem similar to 2.29 does not hold for n > 3. For 

this, it is enough to study the n-matchings of a cycle of length 4. Illustrations of this 

case, for n  =  3 and 4, are presented in figures 35 and 36.

E xam ple  2.35

Let C be a cycle of length 4.

The number of its n  matchings is n + 1 for all n.
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It has P(n) n -covering graphs, where P{n) denotes the number of integer parti

tions of n. An asymptotic evaluation of the number log P{n)  is 7T^/2n/3 — log(4n-\/3) 

([Tom], pg 65).

The n-covering graph formed by n copies of C  has 2n matchings.

um Mgi > Jk. = oo
n-*oa Nn(C) n—>oc 7 1 + 1

Thus not only the average is bigger than the number of n-matchings, but in the 

difference between them increases indefinitely as n  goes to oo.
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Figure 1 Standard checkerboard coloring and locations for the Aztec diamond of 
order 5

E

Figure 2 North, south, west and east-going dominos, good block and bad block

?
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Figure 3 A tiling of the Aztec diamond of order 5 with the directions of the dominos
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Figure 4 An illustration of the shuffling algorithm
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Figure 5 Polar region for a tiling of the Aztec diamond of order 5
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Figure 6 A tiling of the Aztec diamond of order 5 and the corresponding matching of 
the dual Aztec diamond, with an intermediate step

Figure 7 Standard checkerboard coloring and north-going edges
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Figure 8 Types of matchings of the dual Aztec diamond
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Figure 9 Illustration for Lemma 1.7
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Figure 10 Planar representation of modified Aztec diamonds
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Figure 11 Comparison of matchings of the modified Aztec diamonds for n =  2
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Figure 12 The bijection between matchings of the dual, the Cylindrical and the 
Mobius Aztec diamonds of types A, B, C
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D

Figure 13 The bijection between matchings of the dual, the Cylindrical and the 
Mobius Aztec diamonds of types D, E, F
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Figure 14 The bijection between matchings of the dual, the Klein, the Projective and 
the Torus Aztec diamonds of types A, B, C
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Figure 15 The bijection between matchings of the dual, the Klein, the Projective and 
the Torus Aztec diamonds of types D, E
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Figure 16 Types of special matchings
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V.J

Figure 17 Matching of the corners which can not be extended to a perfect matching

t

Figure 18 A hypothetical special matching of the Cylindrical Aztec diamond
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Figure 20 Special matchings of the Klein Aztec diamond
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Figure 22 Special matchings of the Torus Aztec diamond
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Figure 23 Examples of n-matchings
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Figure 24 Example of graph with no n-matching
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Figure 25 Example of graph with a perfect 3-matching and no perfect matching

Figure 26 Example of independent perfect matching and 3-matching
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Figure 27 Illustration of the structure of non-ramified perfect re-matchings
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Figure 28 ^ -vo ltage graphs and the associated permutation derived graphs for a cycle 
of length 4
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Figure 29 Liftings of 2-matchings for a cycle of length 4
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Figure 31 Liftings of 2-matchings for a graph formed of a square and a triangle 
adjacent at an edge
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Figure 32 Liftings of 2-matchings for a graph formed of two squares adjacent at an 
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Figure 33 All possibilities of lifting proper 2-matchings for an even length, cycle (a) 
and for an odd length cycle (b)
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Figure 36 Liftings of 4-matchings for a cycle of length 4
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