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ABSTRACT

NUMERICAL ANALYSIS FOR BLOOD DISTRIBUTION DM COMPLETE FLOW CROSS- 
SECTION MICROVASCULAR NETWORKS

by

Jewen Xiao 
University of New Hampshire, May, 1997

As the blood flows through a bifurcation, the axisymmetric red blood cell 

concentration profile is skewed by plasma skimming. In the downstream segment of the 

bifurcation the concentration profile of red blood cells recovers symmetry by the red 

blood cell dispersion process.

In this study, the concentration convective equation, which models the red blood 

cell dispersion process, is solved with the method of finite differences in cylindrical 

coordinates. In the computation, a shear-induced difiusivity coefficient is used. The 

computed hematocrit ratios at the second bifurcation are compared with in vitro 

experimental data obtained from 50 |im serial trees with two bifurcations. The variable 

dispersion model gave the best description of experimental data. The symmetric 

recovery lengths are computed to compare to branch segment lengths measured in vivo. 

The comparison shows that for 25 jim or above microvascular vessels, the concentration 

profile most likely remained as asymmetric when the blood reached the next bifurcation.

xi
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A new way to measure the quantity of heterogeneity of blood flow in 

microvasular network based on vector algebra and conservation of mass is proposed. 

The heterogeneity of red blood cell flow is strongly correlated with the heterogeneity of 

blood flow. No correlation existed between the heterogeneity of hematocrit and the 

heterogeneity of blood flow. The influences of departure angle, vessel diameter and 

branch segment length to the heterogeneity of red blood cell flow were examined. The 

computational results shows that the heterogeneity o f red blood cell in a 3 dimensional 

microvascular tree network is in the range of the heterogeneity in a 2 dimensional 

network. The serial tree type of microvascular network has higher heterogeneity of 

hematocrit and red blood cell flow than the parallel type one.

xii
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CHAPTER I

INTRODUCTION

1.1 Introduction

It is generally agreed that William Harvey was the first person to clarify that 

blood flows in circulatory manner, i.e. the blood passes en route from arteries to veins. 

Blood circulates to supply oxygen, metabolic fuels, hormones, and vitamins to the 

organs and individual cells of the body. It also provides a means of removal of metabolic 

products (such as CO2 ,water) from the cells. The blood circulation also serves to 

maintain a stable temperature within the body under varying external conditions. The 

vascular system conveys the blood. It consists of a distributing system of arteries and 

arterioles to the organs and a diffusing system of fine capillaries which are in contact 

with the cells of the body. The venous system returns the blood, depleted in oxygen, to 

the heart and lungs.

Blood consists of three types of particles suspended in a continuous medium. 

The three types of particles are red blood cells(RBC), white blood cells(WBC) and 

platelets. RBC occupy 97% of the total cell volume of the blood. The volume fraction of 

red cells in normal human blood—hematocrit—is about 42 to 45% [1], The continuous 

medium (plasma) is a complex solution of organic and inorganic salts and organic 

macromolecules in water. Each of the red blood cells, also called erythrocytes, consists

l
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of a thin, flexible, but essentially unstretchable membrane, and an interior filled with a 

complex aqueous solution, which is a nearly saturated hemoglobin solution. The resting 

shape of normal human red cell is a bioconcave discoid, with a major diameter of 8.1 

microns and a maximum thickness of about 2 microns. The macromolecules in plasma 

(fibrinogen, globulin, and plasma expanders, etc.) cause red cell aggregation. These 

aggregations contain 6-10 red cells in a stack, called a rouleau. Under shear force, red 

blood cell undergo a deformation without changing volume or surface area.

Table 1 -1 Cells in the blood
Cell Number 

(per mm3)
Unstressed shape and 

dimensions (jim)
Volume concentration 
(%) in blood

Erythrocytes 4-6x106 Biconcave disc, 8x1-3 45
Leukocytes 4-llxlO3 Roughly spherical, 7-22
Platelets 250-500x103 Rounded or oval 2-4

1.2 Blood and its Rheology 

The Theological properties of blood and its constituents play an important role in 

the physiology of the blood circulation. The Theological complexities of blood and its 

flow in small vessel systems have posed a serious challenge to researchers through the 

ages. One and a half centuries ago Poiseuille[2] attempted to quantify the pressure flow 

relation for blood but his efforts were restricted to fluids much simpler than blood. His 

very careful and accurate experiments resulted in the establishment of the law 

governing flow of water, alcohol and mercury in fine circular glass capillaries. The 

results are summarized by the so called Poiseuille’s law :

128 ^ d 4
q = — t - a p  ( i - i )

HL

■>
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The rheology of blood is largely influenced by its particulate nature. Blood 

plasma is a Newtonian fluid and the normal value of plasma viscosity (tip) averages 1.2-

1.3 cP at 37°C. The plasma viscosity is primarily a function of the concentration of 

plasma proteins, especially large proteins with molecular asymmetry, like fibrinogen and 

some of the globulin fractions.

Results of viscometric measurements, however, demonstrate that normal blood 

is a non-Newtonian fluid. The apparent viscosity rises with decreasing shear rate. This 

behavior can be interpreted by red cell aggregation and deformation. In low shear rate 

range, rouleaux are formed due to red blood cell aggregation. NP in Figure 1-1 is 

normal human blood having aggregation and deformation. NA is blood without cells 

aggregation, but cells having the ability to deform. HA is blood having neither 

aggregation nor deformation. In low shear rate regions, cell aggregation causes the 

apparent viscosity increase, comparing the curves NP and NA in Figure 1-1. As shear 

rate increases, aggregates are dispersed and the apparent viscosity decreases. At higher 

shear rates, red blood cells deform along with streamlines. The apparent viscosity 

decreases to a constant as shear rate further increases. [3]The apparent viscosity is 

independent of further increased shear rate. Along with shear rate, hematocrit is another 

factor which influences the rheology of blood. The apparent viscosity increases as 

hematocrit increases( see Figure 1-2).
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NP
- Aggregation

HA

NA101
Deformation

10°
10*

Shear Rate (sec )

Figure 1-1 The relative viscosity of human blood as a function of shear rate[3], 
The relative viscosity equals the apparent viscosity divided by the 
suspending medium viscosity (1.2 mPa*s). NP =normal red blood cells 
in plasma, NA =normal blood cells in isotonic saline containing 11% 
albumin (having the same viscosity as plasma), and HA =hardened 
discoid red blood cells in the same saline.

500

Blood at 37

Shear Rate = 0.1 Sec400

fe , 300

200

100

0 0 0.1 0.2 0.3 0 4 0.5 0.6 0.7 0.8

Hematocrit

Figure 1-2 The apparent viscosity of human blood as a function of hematocrit
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1.3 Definition of Microcirculation 

Arterioles, capillaries, and venules are often referred as the microcirculation, or 

peripheral circulation. The arterioles, capillaries, and venules function as a physiological 

entity where the exchange of materials between the blood stream and the tissue happens. 

The capillaries are endothelial tubes, 5 to 10 pm in diameter. Their walls consist of a 

single layer of flattened endothelial cells, 0.1 to 0.3 pm in thickness. Most of exchange 

of materials takes place through the capillary wall. Some transfer of water, repiratory 

gases, and macromolecules also occurs across the wall of terminal segments of arterioles 

and venules. The terminal arterioles contain smooth muscle and are 10 to 20 pm in 

diameter. Venules are slightly larger in diameter and with less smooth muscle. 

Architecture and flow dynamics in the microcirculation are suited to mass transfer.

Table 1-2 Diameters and flow rates in the microcirculation of various species[4]
Property Arteriole 

Large Small
Capillary 

Artery end Vein end
Venule 

Small Large
Diameterfpm)
Bat wing 19 7 3.7 7.3
Bat mesentery 70 20 10
Rat cremaster muscle 80 14 5.5 6.1 24 74
Cat tenissimus muscle 22 10 4.7 5.9 10 40
Length (pm)
Bat wing 3500 950 450 1000
Bat mesentery 380 200 130 130 350
Rat cremaster muscle 615 300
Cat tenissimus muscle 300 100 1000 100
Number
Bat wing 12 120 1700 350 25
Bat mesentery 2 9 20 10 2
Velocity (mm/s)
Bat mesentery 1.0-31.7 0-1.7 0.5-11.1
Rat cremaster muscle 0.8-12.9 0.2-1.2 r 0.4-6.6
Cat tenissimus muscle 0-1.5

5
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The microcirculation network consists of many bifurcations. Arterioles become 

smaller during the evolution of the terminal vascular bed. Idealized versions depict the 

microvascular beds as a series of dichotomous branchings that on the arterial side 

become successively smaller and terminate by forming a network of endothelial tubes, 

the capillaries. The venous side is represented as essentially a mirror image except for 

the greater of the successive confluences of returning blood to the systemic circulation. 

The diameters of arterioles range from 100 to 10 pm; by progressive bifurcation it is 

decreased until at the level of metarterioles in about 30 pm. One single arteriole can 

provide several metarterioles along its length. The angle at which metarterioles branch 

off the parent arteriole strongly depends upon the particular vascular bed. In many 

mesenteric tissues metarterioles have been found to branch off at 30-60°, while in 

skeletal muscle they often have right branching angle.

Williams and Segal [5] reported the length of unbranched arteriole segments 

varies widely, from 10 pm to more than 1000 pm in rat soleus muscles. In tissue like 

skeletal muscle the vascular bed extends into three dimensions. The microcirculation 

follows a tree-like branching pattern and the capillaries form a complex meshwork, often 

supplied by several arterioles and drained by several venules. This architecture clearly 

provides for a great diversity of pathways through the microcirculation. In addition to 

geometrical parameters such as diameters and lengths of vascular segments, and the 

branching angles, the knowledge of topological structure is important to understand the 

microcirculation of a network. The topological structure differs from one network to 

another. Microvascular network topology can be described by grouping vessels

6
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according to their structural characteristics. Horton introduced centripetal ordering to 

describe rivers. In centripetal ordering scheme, the most distal branches in the tree are 

assigned order one. When two vessels of order one converge an order two vessel is 

formed, two order two vessels form an order three vessel, etc. When vessels of unequal 

order converge, the higher order is retained. Fenton [6] was among the first to use the 

centripetal ordering scheme to the microcirculation.

The branching ratio (bifurcation ratio) is defined as the ratio of the number of 

vessels of a given order to the number of vessels of the next higher order.

* N “
(Rb)‘ =  55̂ 7 <'-2>

where Na is the number of branches of order a  and Na+! of order a+1, (Rb)a is the 

bifurcation ratio of order a. It has been shown that Rb is independent of a. So N a can 

be expressed as:

No =  N i Rb''“ (i-3)

where Ni is the number of branches of order 1.

A similar relationship can be applied to the average length and diameter of 

vessels of a given order.

La =  L lR T 1 (1-4)

Da  — Dl RdC '  (1"5)

7
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where La, Da are the average length and diameter of a given order a  respectively, Li, Di 

of first order and Rj, R<j bifurcation ratios for length and diameter. The bifurcation ratios 

for several microvascular networks have been reported[7].

Table 1-3 Bifurcation ratio for some microvascular networks
Microvascular network Rb Ri Rd
Rabbit omemtum

Arterioles 3.12 1.61 1.30
Venules 2.30 1.56 1.35

Human bulbar conjunctiva
Arterioles 2.77 1 36 1.26
Venules 2.80 1.41 1.51

Cat sartorius
Muscle arterioles 3.35 1.86 1.25

1.4 Hemodynamics Microcirculation 

The Reynolds number is very low in the microcirculation. Typical Reynolds 

numbers in 100 pm arterioles are about 0.09 and in a 10 pm capillary, they fall to less 

than 0.005. It means viscous rather than inertial effects dominate the flow in the 

microcirculation. Another important parameter in hemodynamics of circulation is 

Womersley number a. It indicates the extent to which the velocity profile in laminar 

flow in a long pipe differs from the Poiseuille profile when the fluid is subject to a 

sinusoidally varying pressure gradient of angular frequency o. In the microcirculation, a  

is very small. It approximately ranges from 0.08 in 100 pm vessels to 0.005 in 

capillaries. This means that in the microcirculation the flow is in phase with the local 

pressure gradient. It can be considered as quasi-steady. In addition to small Reynolds 

and Womersley numbers, the wall shear rates in the small vessels are much higher than 

in the large vessels of systemic circulation. It is of the order of 1000 s'1.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The velocity profile of blood in microcirculation is changed by the presence of 

cells in blood. Goldsmith[8]measured the velocity profile of emulsions, ghost cell plasma 

suspensions and found that the particle velocity distribution depends on volume 

concentrations, particle to tube radius ratio and flow rate. As volume concentration and 

particle to tube radius ratio increase, the velocity profile changes from parabolic to 

blunted in the center of the tube. Schmid-Schonbein and Zweifach[9] measured RBC 

velocity profiles in arterioles and venules of rabbit omentum. They found the velocity 

profiles are often asymmetric; profiles on the arteriole side are less asymmetric than on 

the venous side. The vessel diameter has the most influence on the velocity profile. The 

velocity profile becomes more blunt as the vessel diameter decreases. The shape of 

velocity profile also depends on the hematocrit. The increase in hematocrit resulted in a 

more blunt velocity profile. When the maximum velocity is larger than 1.5 mm/sec, the 

velocity profile is independent of flow rate. Tangelder et al. [10] measured red blood 

cell velocity profile in rabbit mesenteric arterioles (diameter 17-3 2pm). They concluded 

that the velocity profile was blunt compared to the parabolic profile. And the velocity 

profile became more parabolic as the vessel diameter increased. Baker and Wayland[l 1] 

reported that velocity profiles in tubes above 40 pm diameter, hematocrit between 0.06 

and 0.60, are almost parabolic at the value of average velocity divided by the vessel 

diameter above 6 sec ' l. Sato and Ohshima[12]used a ten channel dual-sensor method to 

measure velocity profiles of blood flow at arteriole bifurcation. They found that at about 

two- diameters downstream length from the bifurcation the velocities of the branches 

become axisymmetric and blunt. Their results were in conflict with Schmid-Schonbein

9
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and Zweifach’s results. This discrepancy may be due to the different experimental 

measuring techniques.

The interaction of particles in suspensions with a vessel wall cause radial 

migration. In a diluted suspension, deformable spheres migrate away from the wall 

toward the tube axis[13]. As the concentration of the suspension increases, particle- 

particle interaction and near collisions happen, altering the radial migration of RBCs. 

Furthermore the red cells deform much more than they do in a diluted suspension. The 

radial migration of cells leads to the nonuniformity of cell concentration across the tube. 

It is highest in the center of the tube and decreasing sharply in a small layer near the wall 

that is depleted of cells - the cell free layer ( plasma layer). The importance of the 

plasma layer depends upon hematocrit, shear rate and cell to tube radius ratio. The 

thickness o f the plasma layer increases with decreasing shear rate, decreasing hematocrit 

and cell to tube radius ratio. It was also found that when the suspending fluid contained 

dextran, which enhances aggregation of RBCs, the plasma layer width increased. Up to 

the present there has been no theoretical way to derive the thickness of the plasma layer.

The wall exclusion effect - the impossibility of having cells within one cell radius 

of the tube wall is one of the mechanisms that cause the existence of the plasma layer. 

Thomas [14] reported that the thickness of the plasma layer is about 0.71 times the 

particle radius. Bugliarello and Sevilla [15]found that hematocrit is a major factor which 

affects the thickness of the plasma layer. It ranges from 4 - 13 pm depending on the 

hematocrit in 40 - 70 pm diameter glass tubes. Tateishi et al. [16] measured the 

thickness of cell-free layer in microvessels of isolated rabbit mesentery. The thickness of 

the cell-free layer was reported from 0 . 5 - 6  pm in microvessels with diameters 5 - 4 0

10
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jim. The cell free layer increased with microvessel diameter in a saturation manner. 

Decreasing hematocrit increased the thickness. Published[9, 15] in vivo and in vitro 

experimental data suggests that for vessel diameters of 5 - 40 jim, cell-free layer 

thickness to vessel radius ratio ranges from 0.05 to 0.3, for vessel diameters of 100 - 

135 (im, the ratio is between 0.05 and 0.38.

The distribution of red blood cells through the microcirculation plays an 

important role in oxygen transport and nutrient delivery to tissues. Microvessel 

hematocrits in several tissues have been measured. The experimental data showed that 

the average tube and discharge hematocrits gradually decrease through the arterial 

network and increase through the venous network [17], Table 1-4 shows the ratio of 

microvessel hematocrit to systemic hematocrit.

Two important concepts are involved in microvessel hematocrits. I) Tube 

hematocrit which is determined by suddenly stopping the flow in a vessel i.e. by freezing 

and measuring the packed red cell fraction. 2) Discharge hematocrit which is obtained by 

collecting the effluent of a vessel in a mixing cup and measuring its packed red cell 

fraction. Hematocrit measurements in whole organs have indicated that microvessel 

hematocrits are lower than systemic ones.

Table 1-4 The ratio of micro vessel hematocrit to systemic hematocrit, Hmv/Hsys
Human Hmv/HSys Reference

Cerebrum 0.92 [18]
Cranium 0.84 [19]

Cat
Kidney 0.48 [20]
Tongue 0.84 [21]

Rabbit
Placenta 0.68 T22]
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The mechanisms governing the hematocrit distribution in the microcirculation are 

not fully understood. Some mechanisms have been proposed. They are the Fahraeus 

effect, the Fahraeus-Lindqvist effect, the screening effect, the network Fahraeus effect 

and plasma skimming at bifurcations,.

When vessel diameter smaller than 500 pm, the average hematocrit in tube ( Ht ) 

is less than the feed hematocrit ( Hf ) or discharge hematocrit ( Hd ). This is generally 

referred to as the Fahraeus effect. This phenomenon can be explained by two factors: (1) 

the distribution of red blood cells across the vessel lumen is not uniform; (2) the velocity 

is highest at the center of the vessel and decreases toward zero at the wall. Thus the 

mean velocity of red cells is higher than the mean velocity of the blood. Consider the 

plasma layer exists near the wall. The mean residence time of red blood cells is less than 

that of the plasma. To satisfy the mass conservation, the tube hematocrit Ht should be 

less than the feed hematocrit HF or discharge hematocrit HD. Ht / HD decreases with 

decreasing vessel diameter. For single circular vessel blood flow, the value of Ht / Hd is 

above 0.5. This ratio is a function of the tube hematocrit and the blood velocity.

The fact that the effective viscosity ( evaluated from Poiseuille equation ) of 

blood decreases as vessel diameter decreases below about 300 pm is called Fahraeus- 

Lindqvist effect. This effect could be due to the Fahraeus effect, i.e. the hematocrit 

decreasing in the vessel causes a lower viscosity of the blood. Barbee and Cokelet 

[23]proposed that, for vessels greater than 29 pm, the viscosity is equal to the bulk 

viscosity if the bulk hematocrit is equal to the vessel tube hematocrit.
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The screening effect [24]occurs when blood flows into a small vessel. The cells 

may collide with the entrance edge or other cells, and be retarded, while plasma flows 

easily into the tube. It is a hydrodynamic effect, which results in a decreased tube 

hematocrit.

Network Fahraeus effect generalizes the Fahraeus effect to microvessel 

networks. The phenomenon that the average discharge hematocrit over a complete flow 

cross-section is less than the feeding hematocrit is called network Fahraeus effect [25], 

In any complete flow cross-section conservation of mass is required for total blood flow 

and red blood cell flow. The network Fahraeus effect is caused by the velocity difference 

of red cells and blood between the vessels in a complete flow cross-section. The 

prerequisite for the network Fahraeus effect is a correlation between hematocrit and 

velocity among the vessel segments of a complete flow cross-section. Pries et al. [25] 

showed that the network Fahraeus effect can account for about 20% of the total 

hematocrit reduction.

Due to the presence of a plasma layer near the vessel wall, a side vessel 

branching off a main vessel will contain blood with a higher fraction of plasma than that 

in the parent vessel. This is because the side vessel gets blood from near the wall in the 

main vessel where blood cells are in low concentration. This phenomenon is called as “ 

plasma skimming” [26]. Many studies have been made on plasma skimming both in vivo 

and in vitro. Krogh [27]observed that the hematocrit in the small side branch is lower 

than that in the main vessel. Svanes and Zweifach [28] studied plasma skimming at 

arteriolar bifurcation by using the micro-occlusion technique. They found that the flow
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fraction which split into the side branch determines the hematocrit change at the 

bifurcation. Klitzman and Johnson el al [29] used optical opacity as an index of 

hematocrits in cat mesentary. They found that the hematocrits of side branches depend 

on the flow fraction in each branch. Schmid - Schonbein et al. [30] studied plasma 

skimming at capillary bifurcations in rabbit ear chambers. They found that cell 

concentration profile can be characterized by a nonaxisymmetric eccentricity and 

depends on the blood cell distribution at the upstream entrance to the branch.

Plasma skimming has been studied by conducting in • vitro experiments. 

Bugliarello and Hsiao [31]used scaled-up model to simulate plasma sk im m in g at small 

vessels. They found that plasma skimming at bifurcations was determined by the flow 

rate of the side branch, particle concentration of the main vessel, and the ratio of side to 

main vessel radius. The bifurcation angle had no effect on the extent of plasma 

skimming. Yen and Fung [32]used flexible gelatin disks suspended in silicone oil in their 

experiments. They noticed that there exists a critical flow rate, above which all of the 

particles will flow into the branch with the highest velocity. This critical flow rate 

depends on the feeding particle concentration and the particle to tube diameter ratio. 

Palmer [33]conducted plasma skimming experiments using 2 dimensional slit 

bifurcations. He showed that nonuniform red cells distribution existed across the slit. A 

layer of cell - free ( at least deficient ) fluid near the vessel wall should cause plasma 

skimming. Fenton et al. [34] used normal and rigid blood cells flowing through 20 to 

100 pm bifurcations. They observed that deformability has a negligible effect on plasma 

skimming. They concluded that three major factors to plasma skimming at bifurcations
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are feed hematocrit, tube diameter and flow rate distribution. Carr and Wickham[35] 

conducted plasma skimming experiments in simple two bifurcation networks. Their 

findings indicated plasma skimming at an upstream bifurcation can influence the phase 

separation at downstream bifurcations.

Several mathematical models have been developed to describe the plasma 

skimming effect at bifurcations. Klitzman and Johnson [36] conducted experiments to 

study the red cell distribution in hamster cremaster muscle. They correlated their in vivo 

data to a sigmoidal curve represented by a single- parameter logit function,

logit F* = A logit Q* (1-6)

where F* the ratio of side branch to main vessel red blood cell flux; Q* the ratio of side 

branch to main vessel volumetric flow; and logit x = ln[(l-x)/x]. The single-parameter 

logit function does not include the effect of critical flow.

Pries et al. [37] studied the red blood cell distribution at 65 arteriolar bifurcations in the 

rat mesentery. They proposed a three-parameter function to take account for the critical 

flow,

Q* -  Xo
logit F = B logit———— + A (1-7)

1 -2X o

where the three unknown parameters A, B, and Xo should be evaluated for each 

bifurcation.

Another model of plasma skimming has been developed based on physical 

grounds. In vivo and in vitro data for plasma skimming indicated the fractional 

volumetric flow rate, feeding hematocrit, cell to vessel diameter ratio, and red cell 

concentration profile in the feeding vessel are important factors. When blood flows
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through a microvascular bifurcation, the flow domain in the main vessel is divided into 

two capture tubes flowing into the distal branches. The separation surface is defined as 

the three dimensional boundary surface separating those two capture tubes. The 

separation surface is either flat or a concave arc depending on the ratio of the bifurcation 

type (T or Y) , the ratio of daughter to parent branch diameters and the Reynolds 

number of the inlet flow to the bifurcation [38]. The separation surface plays an 

important role in the red blood cell distribution in downstream of the bifurcation. It has 

been shown that plasma skimming at a bifurcation can skew the red cell concentration 

profile in downstream branches. If this asymmetric red cell concentration profile is not 

completely rearranged when it reaches the next bifurcation, this asymmetric red cell 

concentration profile will change the plasma skimming of the second bifurcation [35], 

The rearrangement process of the skewed red blood cell concentration profile between 

bifurcations is thought to be due to random collisions among the red cells and depends 

on the particle diffusivity [39],

1.5 Summary of the Dissertation 

The rearrangement process of the skewed red cell concentration profile is 

considered as a diffusion process. A mathematical model is developed to describe this 

rearrangement process. The mathematical model is solved by using finite differencing in 

cylindrical coordinates to obtain red blood cell concentration profile symmetry recovery 

length. The calculated symmetry recovery lengths are compared to anatomical distances 

between branch points measured in hamster cremaster muscle. The result will indicate
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the need to consider the influence of the upstream bifurcations to plasma skimming of 

the downstream bifurcations. The mathematical model is then applied to calculate the 

red blood cell concentrations at each branch outlet in a microvascular network. The 

effects of topological and geometric parameters of a microvascular network to the 

hematocrit heterogeneity and the red blood cell flow heterogeneity are studied. The 

computational results showed that for a 25 pm or larger microvascular vessel the red 

blood cell concentration profile is most likely not axisymmetric when the blood reached 

the next bifurcation.

17
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CHAPTER II

MATHEMATICAL MODEL OF PLASMA SKIMMING AT A BIFURCATION AND 

RBC DISPERSION AT BRANCH SEGMENT

2.1 Introduction

Separation surface, velocity profile and red blood cell concentration profile are 

three important factors determining the amount of plasma skimming at bifurcations. 

Fu[40] used the dye tracing technique to determine the shapes of separation surfaces of 

in vitro bifurcations. The flat separation surfaces were obtained when the side branches 

had similar diameters with the parent vessel. The arc separation surfaces bulging away 

from the opening of the side branch were got when the side branches had smaller 

diameters than the parent vessel. The mapping technique was developed to determine 

how the red blood cells followed the streamline through the bifurcation and shifted into 

the downstream branch of the bifurcation. The red blood cells can migrate across the 

streamline in the downstream vessel segment to rearrange the red blood cell 

concentration profile. This migration process will be modeled as the dispersion process 

due to random collisions between the red blood cells.
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2.2 Velocity and Red Blood Cell Concentration Profiles 

Several velocity profiles will be considered in this study. They are the uniform 

velocity profile, the generalized Poiseuille flow profile, and the two concentric 

Newtonian phases velocity profile. The two concentric Newtonian phases are cell-rich 

core phase in the vessel center and cell-free plasma layer near the wall. These velocity 

profiles can be expressed in the following dimensionless forms:

1). the uniform velocity profile

V;

2). the generalized Poiseuille velocity profile

V(^) = 4 ^  = l 0 < f < l (2- 1)

V(#) = —  ( 1 - |" )  0 < £ < 1  (2-2)
CO ~

If co is equal to 2, the velocity profile is parabolic. Asco increases the profile 

becomes more bluni.

3). the two concentric Newtonian phases velocity profile

2(1-4** >

U S < 4 < 1

V® H  { { l - t f + i i - a - f t y - f ]  ( 2 ' 3 )

# + ( w J * ( w )

where Vav is average velocity, £ is a dimensionless radial coordinate, 8  is a normalized 

plasma gap width with respect to vessel radius, =g / R. <j> is the ratio of core viscosity to 

gap viscosity, and <j> can be found from the correlation suggested by Barbee [41],

19
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^ = exp — ij-
v U J

(2-4)

where H is the hematocrit, u is the average velocity divided by the vessel diameter. 

The above velocity profiles can be expressed as:

One red blood cell concentration profile examined in this study is uniform profile. 

1). uniform concentration profile

Flat and concave arc separation surfaces will be considered in this study. When

will be used. When the side branches have smaller diameters than the parent vessel, 

concave arc The wall exclusion effect prohibits the center of any cell from being located 

at the wall. That will assume a minimum plasma gap which width is at least one cell 

radius near the wall. The cells cannot be mapped into plasma gap when using the 

mapping technique. It means the mapping techniques apply to the core region of the 

two phase model of blood flow.

When blood flows through a bifurcation, plasma skimming skews the red cell 

concentration profile downstream of the junction, separation surface will be used. 

Figure (2-1) shows flat and concave arc separation surfaces. The flat surface can be 

defined by the perpendicular distance from the separation surface to the vessel center, p.

V(S)=a0 - O (2-5)

0 < £ < 1  - S  

! - * < £ < !
(2-6)

2.3 The Mapping Technique

the side branches have similar diameters with the parent vessel, flat separation surface

20
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The Perkkio-Keskinen model [42] will be used in this study for concave arc separation 

surface. The center of concave arc separation surface is always located at the parent 

vessel wall. The arc can be determined by the radius of the arc, r.

Figure (2-1) Flat or concave arc separation surface 

The mapping technique developed by Rong and Carr [43] will be used to 

compute the shift of the concentration profile across the branch. This technique is based 

on the principle of mass conservation. It assumed that the fluid elements follow the 

streamlines across the junctions. In the case of flat separation surface, each fluid element 

can be located by the intersection of two chords as shown in Figure (2-2).
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B'

C1

Upstream Downstream

Figure 2-2. The Mapping Technique 

In upstream, the fluid element P is described by the chords AC and BE. In 

downstream, the fluid element P’ is described by the chords A’C’ and B’E’. The 

principle of mass conservation requires that the flow through area ABPEF upstream 

matches the flow through area A’B’P’E’ downstream. Similarly the flow through area 

ABCP upstream matches the flow through area A’B’C’P’. The location of chord B’E’ 

and A’C’ are found by matching the flow in these areas. The result of this mapping 

technique is almost as good as that obtained by solving the Navier-Stokes equations 

[44]when comparing with the experimental data of the streamline tracing measurements. 

The mapping technique can account for the shift of upstream concentration profiles to 

downstream when they are not uniform.
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2.4 The RBC Dispersion Process

The asymmetric red cell concentration profile will regain symmetry due to red 

cells migration across streamlines. The particle migration across streamlines can occur 

due to the following reasons:

(1). Tubular pinch effect.

Segre and Silberberg [45]observed that single rigid particles migrate away from 

the tube wall as well as from the tube center, toward an equilibrium annulus position at 

high enough particle Reynold number. This phenomena is induced by inertia force. 

Goldsmith [8 ] showed that for deformable drops, even without inertia, there is the 

possibility of cross streamline migration to the tube axis as the equilibrium position.

(2). Shear-induced particle diffusion in the lateral direction.

Particle migration down a gradient of the shear rate arises when interparticle 

interactions in a sheared suspension cause suspended particles to experience random 

fluctuating motion across flow streamlines. A particle moves randomly as it follows 

along the whole suspension motion. This random motion is due to the chaotic nature of 

the particle evolution equations in concentrated suspensions. This random motion can 

give rise to a diffusive behavior. The shear-induced self-diffusivity of non-Brownian 

rigid particles has been measured experimentally by Eckstein, Bailey and Shapiro [46], 

and Leighton and Acrivos [47], From a theoretical standpoint, the mechanism for shear- 

induced migration has been controversial. Abbott et al. [48] attributed it to the existence 

of forces not described by Stokes equations because it was implicitly assumed that the 

reversibility of the Stokes flows cannot produce irreversible motion. Leighton and
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Acrivos [49]proposed a mechanism to explain the irreversible motion. The small-scale 

surface roughness of the rigid particles leads to irreversible motion during inter-particle 

interactions.

In microcirculation, Reynold numbers are much smaller than one. Tubular pinch 

effect is not likely to account for the cross streamline migration of red cells. Therefore 

shear induced particle diffusion is assumed to be the mechanism through which the red 

cell concentration profiles are rearranged.

In this study, the steady-state convective diffusion equation is used to model the 

rearrangement process of the skewed red cell concentration profile between junctions.

v V H  = VDVH + V m  (2-7)

where v is the fully developed velocity profile. H is the cell concentration or hematocrit 

profile, m is a fictitious body force, and D is the effective particle dispersion coefficient. 

The m is included to account for concentration profiles that are not flat at an infinite 

distance downstream from the junction. The axisymmetric asymptotic red cell 

concentration profile can be obtained by solving the following equation:

0 = V D V H + V m  (2-8)

Only constant m will be considered. Constant m results in a uniform asymptotic 

concentration profile. It will eliminate the last term in equation (2-8).If red blood cell 

motion in sheared blood is considered random, the effective particle dispersion 

coefficient can be introduced, analogous to the molecular diffusion coefficient.

AR2

D = W  (2-9>
where AR2 is the mean square displacement, and At is the time between observations.
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Zydney and Colton [50]proposed a correlation for deformable particle diflusivity 

in tube flow:

where D is the particle diflusivity, a is the particle radius, y is the shear rate, and H is the 

hematocrit. The particle diflusivity varies linearly with shear rate. For particles of size 

a=1.6-3.5pm, the above equation gives D=(l-5)10‘9y cm2/sec. Thus, D=2xl0'7-10'6 

cm2/sec for y=200sec*1, and D=2xl0'6-I0 's cm2/sec for y=2000sec'1. In the limit H=1 the 

effective particle dispersion coefficient become zero. This is supported by experimental 

observations that in packed ghost suspensions tracer red cells undergo no significant 

lateral migration.

tube flow while developing their correlation. Thus, the particle diflusivity will vary 

linearly with the tube radius.

Dimensional analysis shows that the dispersion in the axial direction is negligible. 

Equation (2-7) can be expressed in cylindrical coordinates as:

(2- 10)

Zydney and Colton[50] assumed that the velocity profile was parabolic in

(2- 11)

Vava (2- 12)

with boundary conditions:
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H(r, 0 = 0, z) = H(r, 0 = 2n, z),
dH
d d

dH
o=o dQ 0=tic

H(r = 0 ,6, z) is finited, 
3H

(2-13)

<?r =  0.
r=R-g

initial condition: H = H0 (r, 0).

Ho(r,0) is determined by the mapping technique.

(2-14)

Equation (2-12), boundary conditions and initial condition are normalized by 

introducing the dimensionless variables:

2ttA

7 £ 3 6 '- )
(2-15)

The normalized boundary conditions are:

H(<f, 0 = 0,//) = !< £  0  = 2 ^ 77),
<?H
3 6 0=0 de 0=1 it

H(^ = 0,0 , 77) is finited, 
3U

=  0.
|=i-j

(2-16)

The normalized initial condition: H = H0(g,9). (2-17)

Where £ is the dimensionless radial coordinate, £ = —, and 0<£<l-5; r\ is the
R

dimensionless axial coordinate, // = —-, and r|>0 ; 0  is the angular coordinate and
R

g
0<9<27t; 5 is the dimensionless plasma layer width, S = — .

R
The Peclet number, Pe, is defined as:

Pe
0 .6 h ( i_ h ) ° ‘

(2-18)
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The finite differencing method is used to solve equation (2-15). The tube center 

(£=0 ) is singular to equation (2-15). To eliminate the singular point, L’Hopital’s rule 

was used to take the limit of each term of equation(2-15) as £ goes to zero[51]. This 

gives the new equation for the centerline (£ = 0 ):

a d 2H
di] P e l dif d g d 0 2J ’ 

at £ = 0 .
(2-19)

The alteraating-direction-implicit (ADI) method [52] was used.

At £=0,

Al]
T "

p  Pe

T T K  T J K  I T  K  . T T k

2  2,1 J Z-j-1-! 2.j-l 2.j
A£ A #A 0 ) 2

(2-20)

for r direction, where j=0, NJ-1 and

^ -Tk+I rrk+1 Tjk+i , Trk+| />TTk+̂ ''

Arj p  pe 
2

H; J1 -  Hf J1 H a + H S - 2 H g  
2 ’ A£ + A£(A0 ) 2

(2-21)

for 0  direction, 

For £*0,

[P g  1 drj  P e U ^  ^

 ̂ 1 (_ d H  „<?2/ /  1 <?2h"
Pe 2- ^ - +Z ^ r r +

(2-22)

in radial direction:
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{0 -4 ? ) - Arj 
2

Pe
{  - « d  . 1 Hjrl -ffl*  +H\j.i

2 ^  4 i m 2

(2-23)

in angular direction:

A^
T

(2-24)
Where £ ; = (i - l)A£, and i, j, k are indices in 0-, r|-directions respectively.

Indices scheme is shown in Figure 2-3 for discretization in 0- directions.

j=2

j=1

i=2

Figure 2-3. Indices Scheme 

Combining the similar terms the equations become, in radial direction:

u k+5 
i-i. j

1 4i
+  H m' S

f ,  2P
T + -

(A 4) A rj L(A4)2 *

HkJ. l - 2 H k) + H k,., 2 P J f i - 4 - )
+  rl;

4 A * 9 Y UJ A rj (2-25)
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fi = 2, NI + 1
| j = o ,  N j - r

in angular direction:

H k+1
i.j-1

-1

£,(A  0 f
+ H k+l

•.j

2 P e( f i-4 ;)
H k+1

i.j+1
I Z X M ) 2}

 -Li f u k +7 t t t Ic+? . tt^ I  , 1 / TTk+’ TT*+’  ̂ i TTk+  ̂ 2Pe( ^ ' ^  > )
~ (A£ ) 2 1 MJ w l+1Jl A ^ * *  " H- J i  + H u --------^ -----(a £ ) :

Ji = 2 , NI + 1
| j  = o, n j - t

The boundary condition, = 0  becomes:

^NI+2,j ~ ^NI,j

Substituting the above equation into equations (2-25) and (2-26) gives: 

radial direction

NI+I r y k + i  2 ^  N1+, 2 P e ( / ? - £  NI+1)

; ( a ^ )2 A n

k+i
N l+ l.j

L t e ) 2

tjk , ITk
NI+1J-1 N l+ l.j  ~r  N l+ l.j- l

angular direction

rrk+l
“ NI+l.j-l

-1 . trk+1
L £ m+, ( a * ) 2 J

+ NI+I,j
2Pe(/?-<f"+1)

£ni+i(A0 ) 2 A77

2 £  NI+1 f r r k + i  r r k + l  1 . r r k + l  2 P e ( / ?  -  £  N, +, )

- H k+l
NI+l.j+l

(2-26)

(2-27)

(2-28)

NI+1 f r r M  _  t t H  1 . H k + ’

(A£ ) 2 I j J At]

X> ni+i(A$ ) 2 

(2-29)
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Where j = 0,1, 2,........... ,NJ-1.

Periodic boundary condition H(£, Q = 0,r\) = H(£, 0 = 2tz, r|) gives:

^i.0 = 1̂.-1 =

for radial direction: 

j = 0 :

Uk+:
i-1,0

2 E

[ a|  (a|)= J
2 2P j p - S t )

[ # ) '  + A ,
- H k+A

i+l.O
L(a#)! A|J

H‘,-2 H J 0 + H ^,., , ik 2 P e (^ .# r)  
+ H - —I , ( a eY

(i -  2, 3, ......... , NI + l)

j = NJ-1:

HkT:
i-l.NJ-l

I ,
Af ( A l ) 1

+ H k+I 2 + 2P e(A -f")
(A |) : A ,

- H k+l
i+l.NJ-1

Zi
(Al)

T +

H ^ H U ,  + H kNJ, _ Tik 2Pe(/? - 4  r )
£ ,(A  9 f  

0 = 2 , 3, ......... , NI + l).

for angular direction: 

j = 0 :

• + H kNJ,
A rj
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(2-31)

_2_

^ .

(2-32)
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H k+1
i,NJ-l

— 1

f i (A O f
+ Hk+I

■.0
__2_ +» itu l
4 , ( A e f  + A n

+ H**'
- 1

 l_ i o fTk+^ I H k+* 1 i 2  (FTk+^ TTk+M  I TTk+’ 2Pe( ^ ’ ^  Ni*l)
~ (A | )2 I 0 ^  I+,-°J ~ H"10) H **  Trj------(A l ) 2

0 = 2 , 3, .........., NI + l).

j = NJ-1:

I T  k + l

i.NJ-2

(2-33)

- 1
+ H k; l ,

_ |,(A 0 )2_
2 2Pe(/7-£f)

# ,(A 0 ) 2 + A//
+ H™

- I
I  ,(A0 ) 2

 - fHk̂  - 2 H k+̂  + H k+̂  1 + — (Hk+= H k+2 ) + H k*2 2Pe( ^ ~ ^ 1 )(A £  ) 2 L '•N^1 i+l,NJ-l J ^ ^ \ n i+l.NJ-l i-l,NJ-l j  ^  ^ kNJ-I Â TJ 

(2-34)
(i = 2, 3, ....... ., NI + 1).

Let i = 2 in equation (2-25) to obtain:

H k+2-,j
" 2 £ ,i , 2 Pi P - z i )  
_(A£ ) 2 A/7

-H S » ^  + 1

H^j+i ~ 2Hk, + H k j-t 2Pe(yS - 1 ")

I 2 ( a < ?)2
+ H2.j A/?

+ H k+l
i.r

i l 2

*  (A l ) 2

rk+i •
(2-35)

H, j2 in the above equation can be obtained from equation (2-20).

If we assign the notation A,(i), A,(i), and A3(i) to the coefficients 

corresponding to unknown variables Hk̂ ,  H k+2, respectively in equations (2-

25), (2-28) and (2-34), and we assign the notation B(i,j) to the right hand side of
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equations (2-25), (2-28) and (2-34). The linear equations can be expressed in a matrix 

form as follows:

A2(2) A,(2) 0
A,(3) A,(3) A3(3) 0

0 A,(4) A 2 (4) A3(4)
1 0

0

A,(NI) A,(NI) A3(NI) 
0 A,(NI + 1) A,(NI + 1

r B(2 ,j) 1

3»j B(3.j)
Hk̂4,J

=
B(4,j)

Hk+*NI,j B(NI,j)

(_ N I+ l,j_
B(NI + l,j)

(2-36)

When j = 0, or NJ-1, equation (2-31) and (2-32) were used to account for 

periodic boundary condition.

k+~ kf-The Computed 2are substituted into equation (2-26) to solve for

Similarly Aj(j), A’2(j),A 3(j) and B'(i, j) denote the coefficients in 

equations (2-26), (2-27)

Asd)
0

AW (̂1) 0
a;w 4 $ 4(2)

0 4(3) 4(3)

_a;(n-i) 0

0

0 Al(M-2) A,(M-2) A,(M-2)
0  A,(M-0 A^(N-l)

'  I" HET*" B '(U )
H^ 1 B(i,3)
r r k + l

i.4

.

B (i.4)

T jk +l
i.NJ-2 B (i, NJ - 2)

i jk + 1 B (i,NJ -l)

(2-37)

In finite differencing equations, moving a full step in r\- direction will require the 

solution of two systems of linear algebraic equations. Solving systems of linear equation
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in radial direction will move the first half step. The second half step is moved by solving

the systems of linear equation in angular direction. The matrix in radial direction is a

tridiagonal matrix. It can be solved by simple eliminations and back substitutions. The 

matrix in angular direction is a symmetric matrix. One typical FORTRAN program used 

is listed in Appendix A. The ADI method is unconditionally stable in rectangular 

coordinates, but this is not true in cylindrical coordinates. It becomes unstable as A 7  

increases. By trial and error the solution is found to be stable when A 7  is less than 

0.05. The numerical solution was checked by comparing to an analytical solution using 

the following initial condition

The analytical solution can be obtained using separation of variables and the 

method of Frobenius.

O<0 < ^  

3 n / / a  n .
(2-38)

H (£0,7 ) = Z Z e x p (-A  L  % J Z R^ ( V y  [AmCos(m^) + B^Sintm#)]
n=0 m -0 p=0 V I *  Os

(2-39)
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The constant is computed as follows:

p = 0

R - I *  LO 1 < p < co (2-40)mnp

0) + l< p
p(p + Vl-Mm2)

The eigen values ^  are found from the boundary condition:

(2-41)

The constants Amn and Bmn are found from Sturm Liouville theory.

Figure 2-4 and 2-5 show the absolute difference between the analytical solution 

and numerical calculation obtained by the method of finite difference for the red blood 

cell concentration. The absolute differences decrease as the solution distance moves to 

further downstream. At 500 diameter downstream position the absolute differences are 

less than 0.003.
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A red blood cell flow mass balance check was conducted to make sure the finite 

differencing calculation does not lose any red blood cell mass. The total red blood cell 

mass at any cross section of the tube is computed by numerical integration.

f»bc ° )S d td e .  (2-42)

H(l;,0,r|) is calculated by the ADI finite difference method. The results ( Table 2- 

1) shows that the loss of red blood cell mass by the ADI finite difference method is less 

than 0 .0 1 %.

Table 2-1 The total red blood cell mass of various distances downstream of the
bifurcation

tl 0.05 5 1 0 400 500
F rbc 1.26189552 1.26189562 1.26189571 1.2618923 1.2618914

The stability of the ADI finite difference program was tested by varying mesh 

sizes in radial and angular directions. The change of the mesh size in angular directions 

has little effect on the stability of the program. Forty-eight nodes in both radial and 

angular directions have given satisfactory results.

2.5 Comparison of Numerical Solution to Experimental Data 

The computational results were compared to the in vitro experimental data in 

serial bifurcations. These data were obtained in a straight tube with two bifurcations 

located in opposite sides of the parent branch as shown in Figure 2-5. Both straight tube 

and side branches had the same diameter, 50|am.
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^Blood flow Second Bifurcation

First bifurcation

Figure 2-6. Schematic of a serial bifurcation 

The distances between two bifurcations range from 0.08 mm to 12.0 mm. The 

variables used to report experimental data are Q*, the volumetric flow fraction into first

bifurcation; Q2, the volumetric flow fraction in the second bifurcation; (F2) , the red

blood cell flux fraction into the second bifurcation. The computational results, (F2)cal,

were obtained by running the computer program. In the computer program the flat 

separation surfaces were used because all of the branches have the same diameters. The 

experimentally measured Q*, Qj were used as inputs in the program to calculate the 

location of the separation surface in each bifurcation. There exist several possible 

models to account for the dispersion process of red blood cells between junctions. The 

mathematical model for cell dispersion in this study is called the variable dispersion 

model. The constant dispersion model was considered in a previous dissertation[40]. 

The difference between these two models is that in the constant dispersion model the 

diSusivity is evaluated as a global constant and independent of local shear rate; in 

variable dispersion model, the diffiisivity varies linearly with local shear rate. Both 

models assumed that the dispersion process of red blood cells between junctions has 

impacts on the plasma skimming of downstream bifurcation. Two other models are also
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considered in this study. One assumes the dispersion process of red blood cells is rapid, 

the skewed concentration profile after each bifurcation will always recover axisymmetry 

before the blood reaches next junction downstream . This model is called the symmetric 

profile model. The other model considered that the radial diffusivity of red blood cells in 

the microvasculature is very small. Goldsmith [8 ] recorded the radial position of tracer 

red blood cells with time in ghost cell suspensions. He calculated the dispersion 

coefficient ranged from 3xlO' 8 cm2/sec near the tube axis to 1.5xl0' 7 cm2/sec near the 

tube wall. So the change of red blood cell concentration profile along the axis of any 

vessel in the microcirculation could be small, perhaps even negligible. This model is

called the no dispersion model. The computational results, (FT) of variable dispersion 

model, constant dispersion model, symmetric profile model and no dispersion model 

were compared to the experimental measured (f,* ) in effort to determine which model 

best describes the experimental data. The best model is the one which gives the smallest 

sum of the squares of residuals between (e ,*)^ and (F j)^ , and the residuals have a

normal distribution. Fu [40]has shown that the flat red blood cell concentration profile 

has a smaller sum of the squares of residuals than the parabolic concentration profile. In 

this study only flat red cell concentration profile is considered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(F 
2>

ca
l 

(F 
2)

ca
|

1.0

o.g ■>

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 O.g 1.0

(F 2 ^esn
Figure 2-7. The parity plot for velocity profile 0) =2 model

1.0

o.g

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 1.0

(F 2 êxp
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To find out which velocity profile gives the best description of experimental data, 

(F2 )cai were plotted against (F2*)cxp- Table 2-2 shows the results of the curves for 

different velocity profiles. As the value of a  increases, the slopes of the curves are closer 

to 1. That means the blunt velocity profile has better description of experimental data 

than the parabolic velocity profile (a>=2). This result agreed with in vivo measurement 

of red blood cell velocity profiles. The two-phase velocity profile gave almost the same 

description result as the case of a> =6 velocity profile. But the two-phase velocity profile 

depends on hematocrit, 0) =6 velocity profile does not depend on hematocrit. When 

hematocrit in microvascular network changes much, the two-phase velocity profile is 

expected to give the best description. As a result, only the two-phase velocity profile is 

considered in the rest of the study.
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Table 2-2 The linear regression results for different velocity profiles
Model Parity line Sum of squares of 

deviations
Two-phase velocity profile (F*2)cai=0.9889(F*2)exD+0.0222 0.19556

co =2 velocity profile (F*2)ci=0.971 0(F*2)cxp+0.0265 0.17915
to =4 velocity profile (F*2)cai=0.9847(F*2)CXp+0.0239 0.19345
co =6 velocity profile (F*2)cai=0.9924(F*2)exp+0.0229 0.20270

Once the two-phase velocity profile was chosen, the different dispersion 

models (variable dispersion, constant dispersion, symmetric profile and no RBC 

dispersion) were compared to select the model which best describes the experimental 

data. Again, ( F 2 * )c a i  computed from various models were plotted against ( F 2 * )c x p -  The 

results of these plots were shown in Table 2-3.

Table 2-3. The linear regression results for different dispersion models
Model Parity line Sum of squares of deviations

Variation dispersion (F*2)cap0.9889(F*2)eXD+0.0222 0.19556
No RBC dispersion (F*2)cai=0.9652(F*2)exD+0 .0199 0.16460
Symmetric profile (F*2)cai=0.9862(F*2)exn+0.0112 0.17325
Constant dispersion (F*2)cai=0.9886(F*2)eXD+0.0192 0.19896

From Table 2-3 the slope of parity line for no red blood cell dispersion model has 

the biggest difference from one. It means that no red blood cell dispersion model is not 

the best model to describe the experimental data. This model can be eliminated from 

further consideration. The other three models have no obvious difference. But the 

constant dispersion model needed a smaller step in computation to avoid numerical 

instability. So it was also not considered in the rest of this study.

Notice that as r\ increases the red blood cell concentration from the variable 

dispersion model will become axisymmetric. This is the concept of symmetry recovery
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length discussed later. It means that no difference between the variable dispersion model 

and symmetric model in describing the experimental data with large r\. It is necessary to 

select the experimental data for which the downstream branch segment distances are less 

than the symmetry recovery length defined in the next chapter. Table 2-4 showed the 

comparison result of the variable dispersion model and symmetric model with the “short 

distance” experimental data.

Table 2-4. The linear regression results for variable dispersion and symmetric profile 
models

Model Parity Line Equation Sum of squares of deviations
Variable Dispersion (F*2;U=0.968(F*2U + 0 .0369 0.0403
Symmetric Profile (F,2)cai=0.952(F*2)CXD+0.021 0.0389
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Figure 2-14. Residual histogram for variable dispersion model.
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Figure 2-15. Residual histogram for symmetric profile model.

Figure 2-14 and Figure 2-15 showed the residual histograms for variable 

dispersion model and symmetric profile model, respectively. An Anderson-Darling 

test[53] for normality showed that the residuals for the variable dispersion model were 

normal distribution (p=0.061), but the residuals for the symmetric profile model were 

not normal distribution (p=0.032). The level of significance for this test is 0.05. Because 

the least squares regression assumes that the resulting residuals are normal distribution, 

the variable dispersion model is superior to the symmetric profile model in describing the 

experimental data.

The variable dispersion model with the two-phase velocity profile and a flat 

asymptotic red blood cell concentration profile gave the best description of the 

experimental data of plasma skimming in serial bifurcations.
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Residuals for the Symmetric Profile Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER ID

THE SYMMETRIC RECOVERY LENGTH

3.1 The Calculation of the Symmetric Recovery Length 

In the last chapter, a flat red blood cell concentration profile, with the two-phase 

velocity profile and variable dispersion model gave the best description of experimental 

plasma skimming data. It means that the dispersion process of red blood cells between 

bifurcations has an significant effect on the plasma skimming on the downstream 

bifurcation. But if the distance between two bifurcations is long enough, the red blood 

cell concentration profile will eventually become axisymmetric due to radial diffusion. 

The knowledge of the distance between bifurcations in that red cell concentration profile 

turns axisymmetric will allow us to establish more accurate mathematical models for 

microcirculation. The symmetric recovery length is defined as the distance downstream 

from the bifurcation at which the maximum absolute deviation of computed F2*c from the 

symmetric profile F*mis less than 0.02 for all possible values of Q*, i.e.

max|F;c -F ^ |< 0 .02 . (3-1)

Obviously, the symmetric recovery length is a function of both Q[, the 

volumetric flow fraction into the first bifurcation, and the plasma layer width, 6. The 

value of Q* will determine the magnitude of the shift in the concentration profile over
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the bifurcation. The larger value of Q’ causes the concentration profile more skewed. It 

needs a longer distance for the concentration profile becomes axisymmetric. The size of 

the plasma layer width 8, also influences the magnitude of the shift of the concentration 

profile. For smaller 8, the concentration profile only shifts very slightly away from the 

symmetric profile even for a large Q*, and the symmetric length will be short. When 8 is 

near one, which means the red blood cells only occupy very small portion of the center 

of the vessel, the red blood cells cannot be shifted very far away from the center of the 

vessel because of the presence of the vessel wall. The vessel wall will exert a strong 

exclusion effect on the red blood cells. That forces the red blood cells shift back to the 

center of the vessel soon. Then the symmetric recovery length should not be long. It can 

be expected that between these extreme situations there exists a maximum recovery 

length.
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Figure 3-1. Dimensionless symmetry recovery length for flat separation surface 

Figure 3-1 shows the dimensionless symmetric recovery length, q/Pe, as a 

function of O* and 5. The flat separation surface was used in the computation. The 

maximum of symmetric recovery length locates in the value of 5 between 0.23 to 0.25. 

When 5 is larger then 0.3, the symmetric recovery length decreases quickly. As stated in 

the introduction, the value of 6 ranges from 0.05 to 0.38 from in vivo and in vitro 

experimental data. That suggests the maximum of symmetric recovery length can happen 

in in vivo condition.
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Figure 3-2. Dimensionless symmetry recovery length for curved separation surface

Figure 3-2 shows the dimensionless symmetric recovery length for curved 

separation surface. The curved separation surface expressed the plasma skimming in the 

branches which have different diameters. The Perkkio and Keskinen’s [42] model is 

used to describe the curved separation surface plasma skimming  A  maximum of 

symmetric recovery length locates in the value of 8 between 0.25 to 0.27. For the same 

Q*, the magnitude of symmetric recovery length for curved separation surface is larger 

than one for flat separation surface.

It is helpful to translate the dimensionless result into a dimensional result in order 

to compare the symmetry recovery length to the experimental data. Carr [54]estimated 

the plasma gap width from plasma skimming experimental data for branches with
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diameters ranging from 20 to 100 (im. A plasma gap width was suggested to correlate 

the experimental data. Here the same width of a plasma gap (4  pm ) is assumed:

g = 4 pm (3-2)

The dimensionless plasma gap width is converted into the expression of vessel diameter.

5 = g / R t  => Rt= 4 /8  (3-3)

The dimensionless segment distance is changed into the downstream distance.

r |= Z /R i => Z = r] Rt= tv 4 /5  = Pe On / Pe)-4 /5  (3-4)

where Pe = a  ( R* / Rc )2 { 1 / [ 0.6H (1-H)°8]} (3-5)

From the two concentric Newtonian phases velocity profile, a  is:

 2
“ ” «S + ( l -^ ) ( l -« i )  <3-s>

In equation 3-5, Rc is the radius of red blood cell (=  4 pm ). H is hematocrit. Its value is 

assumed to be 0.45. In equation 3-6, <{> is the ratio of core to gap viscosity determined by 

equation 2-4.

4> = exp ( 4.2H / u1'2 ) (2-4)

u is the average velocity divided by the tube diameter.

U = VIV/d t (3-7)

The value of a  depends on the averaged velocity .

Figure 3-3 shows the results for = 1000 pm / sec. ( light curves ) and Vav = 

30000 pm / sec. ( dark curves) for flat separation surface.
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Figure 3-3. Dimensional symmetry recovery length for flat separation surface
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Figure 3-4. Dimensional symmetry recovery length for curved separation surface
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Figure 3-4 shows the results for curved separation surface. The lower average 

velocity results in a blunter velocity profile produces in a shorter symmetry recovery 

length.

The dimensional symmetry recovery length increases as the volumetric flow 

fraction Qi* increases for a given tube diameter. It can be explained as follows. As the 

volumetric flow fraction increases, the streamlines bend more, the red blood cells follow 

the streamlines through the bifurcation, the red blood cell concentration profile shifts in a 

greater extent. Then the symmetry recovery length is longer.

For a constant volumetric flow fraction Q i\ the dimensional symmetry recovery 

length increases with the tube diameter, reaches a maximum value, then decreases with 

the tube diameter. This phenomena can be explained as follows. In a very small tube, the 

red blood cells cannot be shifted very far away from the tube centerline because of the 

tube geometry. Then the red blood cell concentration profile gets very slightly skewed 

and is almost symmetric, the symmetric recovery length is short. As the tube diameters 

increase, the red blood cell concentration profile gets more skewed. But in a big 

diameter tube, the plasma gap is relatively small. A relative small plasma gap width 

means the inlet red blood cell concentration profile is almost uniform across the entire 

section of the tube. After the bifurcation the concentration profile still remains nearly 

uniform. It needs a shorter distance to get back to an axisymmetric red blood cell 

concentration profile. Again a shorter symmetry recovery length results. Between these 

two extreme situations, there is a maximum in the symmetry recovery length. The 

maximum value depends on the volumetric flow fraction and the tube diameter.
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3.2 Comparison to In Vivo Experimental Data 

One o f the purposes in this study is to answer the following questions. Is it 

necessary to consider the influence of asymmetry of the concentration profile after the 

first bifurcation on the plasma skimming at the second bifurcation? Or is the 

concentration profile symmetric when it gets to the second bifurcation? To answer the 

questions, we need to compare the calculated symmetry recovery lengths to 

experimentally measured lengths between bifurcations in microvascular network. Frame 

and Sarelius [55] reported anatomical data on microvascular tree structures in hamster 

cremaster muscles. Frame [56] provided us with raw data on 68 different arteriolar 

bifurcations. Sarelius [57] measured red blood cell velocity at branches of microvascular 

trees which have the same structure as those reported in reference [55], The diameters 

of feeding vessels reported by Sarelius [57]ranged from 24 to 43 nm.

brapc branch 3 branch 5

branc branch 4

Figure 3-5. Schematic of a microvascular tree structure in Hamster cremaster muscles 
(provided by Frame [55]).

Table 3-1. The range of volumetric flow fraction from Sarelius’s [54] data

Control vessels Dilated vessels 
with 0 2

Constricted vessels 
with Adenosine

Q* at branch 2 0.24 0.38 0.28
Q* at branch 3 0.39 0.34 0.15
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Table 3-1 shows the volumetric flow fraction Q* estimated from Sarelius’s 

[57]data. The average volumetric flow fraction Q* is 0.29, with a range of 0.15 ~ 0.39. 

Figure 3-6 and 3-7 showed the in vivo lengths and computed recovery lengths when 

average velocity is 30, 1000 (im/sec, respectively. When Qi*=0.2, concentration profile 

asymmetries occur between vessel diameters of 25 and 41 pm. If the vessel diameter is 

larger than 41 (am, the concentration profile becomes symmetric when the blood reaches 

the second bifurcation. But for vessel diameters between 27 and 41pm, the 

concentration profile is asymmetric when the blood arrives the second bifurcation for all 

of bifurcations. When the average velocity is 1000 pm/sec, 67% of the bifurcations in 

the experimental data set are affected by concentration profile asymmetries. When 

average velocity is 30pm/sec, 72% of the bifurcations in experimental group are 

influenced by concentration profile asymmetries.

When Qi*=0.3, concentration profile asymmetries occur between vessel 

diameters of 25 and 61pm. If the vessel diameter is larger than 61pm the concentration 

profile become symmetric again when the blood reached the second bifurcation. But for 

vessel diameters between 25 and 61pm, the concentration profile is still asymmetric 

when the blood flow into the second bifurcation for all of bifurcations. When average 

velocity is 1000 or 30pm/sec, all of bifurcations in the experimental data set are affected 

by concentration profile asymmetries.
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CHAPTER IV

HETEROGENEITY OF BLOOD FLOW IN MICROVASCULAR NETWORK

4.1 Introduction

The most obvious feature of the microcirculation to the person who looks it 

through a microscope, is the large variability of microvascular structure ( diameter, 

length, departure angle from the main branch). And the person will notice the fact that 

there is a great variability in red blood cell perfusion among individual microvascular 

vessels. Some arteriolar vessels appear to have few red blood cells traveling at high 

velocities, whereas other vessels have more red blood cells traveling at low velocities. 

This situation gets further complicated by the fact that red blood cells flow is not steady 

but fluctuates with time within each vessel.

Some studies[58-60] have been attempted to quantify this heterogeneity of 

perfusion and its physiological effects. The effect of hematocrit and red cell flow 

variation on oxygenation of different organs have been extensively studied, oxygen 

transport rate has been described either as being constant for a large range of 

hematocrits (as for myocardium), or as presenting an optimum for a given value of 

hematocrit depending on the organ considered. Even if total red cell flow arriving at the 

organ is constant in a large range of hematocrits as for myocardium, distribution of red 

cell flows into the organ can differ under the effect of rheological changes associated
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with hematocrit changes. Large heterogeneity of red cell flow in the microvascular 

network suggests that consequences of hematocrit variations cannot be discussed solely 

in terms of total red cell flow or total oxygen arriving to the organ. Kanzow e( al. [61] 

measured the hematocrit distribution in mesenteric microvascular network. For a given 

systemic hematocrit, a large heterogeneity of capillary discharge hematocrits has been 

reported. The heterogeneity is frequently reported to be the consequence of both a 

biologically controlled process ( based on vascular tone) as well as a physical 

phenomena resulting from the unequal red cell partitioning at the bifurcations. Thus, it is 

apparent that a clear understanding of the amount of microvascular flow heterogeneity 

and its control in the microcirculation is essential to explain the interaction between 

tissue function and vascular perfusion.

The intrinsic heterogeneity of microcirculation perfusion can be described as 

spatial and temporal, respectively. The variability of perfusion among vessels at a given 

time has been termed as spatial heterogeneity, and temporal heterogeneity refers to the 

variability with time in a given vessel. The heterogeneity of perfusion can also change 

along a given vessel at a point in time. The physiological significance of spatial 

heterogeneity has been related to the efficiency of tissue oxygenation and capillary 

exchange of diffusible solutes[62]. Thus, one would expect that spatial heterogeneity 

should be under some kind of regulatory control on response to changes in metabolic 

demand or oxygen delivery to the microvasculature. The physiological significance of 

temporal heterogeneity , usually linked with vasomotion, has been less clear, although it 

likely affects the efficiency of microvascular exchange.
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To understand how the heterogeneity of perfusion in microvasculature might be 

regulated or changed, one needs to consider the possible sources of this heterogeneity. 

Krogh [27] considered the capillary as the smallest independent controller of capillary 

perfusion. But Sweeney and Sarelius [63] showed the perfusion of large numbers of 

capillaries arising from a common arteriolar feed is coordinated. The control of capillary 

blood flow lies entirely within the arteriolar tree. Pries et al [64]reported the distribution 

of perfusion among the arteriolar feeding groups of capillaries reflected the level of 

perfusion within these capillaries. And temporal heterogeneity has been associated with 

arteriolar vasomotion. Thus, the arteriolar tree appears to be a major component in 

determining both spatial and temporal heterogeneity of capillary perfusion. Plasma 

skimming has been considered as a potential source of heterogeneity of perfusion within 

the arteriolar tree.

Another potential source of heterogeneity in microvasculature may be the 

capillary network. The capillary bed is made up of networks of interconnected diverging 

and converging capillary segments. This structure provides numerous alternate routes 

for red blood cells flow to follow. As a result, the level of flow in individual capillary 

segment must be quite different. This type of spatial heterogeneity has been called as the 

logitudinal heterogeneity in capillary segment flow [65]. The heterogeneity of 

microvascular flow also depends on tissue metabolism.

Up to the present, our understanding the properties of the microvasculature that 

lead to flow heterogeneity and how these properties might be regulated is far from 

complete. Research into this area has yielded contradictory results. Damon and Duling 

[66]reported the heterogeneity of capillary perfusion in striated muscle is constant and
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independent of muscle blood flow and /or 0 2 demand. Tyml and Mikulash [67] showed 

that the heterogeneity of red blood cells flow increased with reduced average flow rate. 

And many studies of spatial heterogeneity have depended on pooled in vivo data from 

randomly sampled capillaries in different animals. Tyml [68] pointed out that this sample 

method can result in a mixture of spatial and temporal heterogeneity.

4.2 Definition of Heterogeneity

Flow heterogeneity means that total flow is not distributed evenly among the 

perfused vessels. In opposition to heterogeneity, completely homogeneous perfusion is 

that all vessels receive 1/n of the total inflow, where n is the number of vessels arranged 

in parallel. If some vessels receive more and some less flow than their appropriate 

fraction of the total, the flow is judged to be heterogeneous.

The coefficient of variation or relative dispersion is widely used to quantify the 

extent of heterogeneity. The coefficient of variation is the quotient of the standard 

deviation and the mean. A common method to assess flow heterogeneity is to use 

tissue deposition indicators ( e. g. tritiated water, antipyrene, and microspheres). Those 

indicators are deposited in the tissue in proportion to the rate at which they are 

converted into a region by the inflowing blood. The tissue will be dissected into small 

samples and the flow in each pieces of tissue will be estimated from the quantity of 

indicator trapped. Although these techniques give a way to measure flow heterogeneity, 

they have some limits. The accuracy of these methods is inversely proportional to the 

organ sample size. And the size of organ in which heterogeneity will be detected
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depends on the specific activity of the indicator and the amount of indicator that can be 

deposited in the organ. Using microspheres as indicator just can detect flow 

heterogeneity in arterioles. Bassingthwaighte et al. [69] have shown that the coefficient 

of variation depends on the size of the pieces of the sample to be divided into. The

heterogeneity has no upper bound. It causes problem in comparing heterogeneity 

between different microvascular networks, tissues, organs and animal species.

A fractal structure is a shape composed of smaller parts which are similar to the 

whole. Mandelbrot [70] showed that the diameters of successive branches of the 

bronchial tree and of the arteries of an organ have fractal structure. A heterogeneous 

distribution of blood flow could be one consequence of the passive architecture of the 

fractal vasculature. Glenny and Robertson [71] showed that the heterogeneity of 

pulmonary blood flow has a fractal dimension of -1.1. Bassingthwaighte et al. [69] 

obtained a fractal dimension of 1.17-1.25 for the dispersion of myocardial blood flow by 

using the following method. Assume RD(m) is the coefficient of variation in the blood 

flow distribution for a sample size m. The dependence of RD(m) on the sample size m 

has the following relation.

where mo is an arbitrary reference size, RD(mo) is the coefficient of variation for sample 

size of mo, and D is the spatial fractal dimension. Bassingthwaighte concluded that 

when D=l, a lower limit is reached, the coefficient of variation keeps the same for all of

coefficient of variation is zero for completely homogeneous perfusion. But this index of

Bassingthwaighte has therefore adopted a fractal approach to describe heterogeneity.

(4-1)
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the sample size. That represents a uniform or completely homogeneous blood flow 

distribution. When D=1.5, the upper limit is obtained that indicates the distribution of 

blood flow in the network is completely random or completely heterogeneous.

In this study a new method to measure the extent of heterogeneity of blood, red 

blood cell flows and hematocrit in network is proposed. This method is based on the 

concepts from vector algebra. In order to carry out a network analysis, it is necessary to 

specify the network topology. The Horton scheme may be useful in identifying 

functionally homogeneous groups of vessels. It is not suitable for study of the 

distribution of microvascular blood flow ,red cell flow or/and hematocrit. 

Gaehtgens[72]proposed the complete flow cross-section scheme for such study. A 

complete flow cross-section has one inflow and several outflows. Conservation of mass 

in any complete cross-section under steady state requires the sum of the outflow blood 

and red blood cells equals the inflow blood and red blood cells. The advantage of this 

scheme is that it can trace the whole inflow into a network through its microvessel 

segments and find the distributions of blood, red blood cell and hematocrit among the 

network.

A useful value of heterogeneity should be bounded by lower and upper limits. 

The lower limit is the completely homogeneous distribution. A homogeneous 

distribution for blood volumetric flow is all of outflows have the same volumetric flow 

value. If the blood inflow is 1, then volumetric flow for all of outflows are 1/n, assuming 

the complete flow cross-section has n outflows. A homogeneous red blood cell flow 

distribution is that the red blood cell flow in each outflow has the same value. If the red 

blood cell inflow is I, then the red blood cell flow in each outflow branch is equal to 1/n,
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assumed the network considered has n outflows. A homogeneous hematocrit 

distribution happens when the hematocrit in each outflow branch is equal. If the 

hematocrit in feeding blood is H, then the hematocrit in each outflow branch is H too.

The opposing case to a homogeneous distribution is called a completely 

heterogeneous distribution. A completely heterogeneous blood flow and red blood cell 

distribution occurs when one of the outflow branch receives all of the inflow (volumetric 

or red blood cell) and the other outflow branches receive nothing. The completely 

heterogeneous hematocrit distribution depends on the structure of the complete flow 

cross-section network to be considered. If the network is a serial tree type, a completely 

heterogeneous hematocrit distribution happens when the outflow branch which is the 

farthest away from the inflow branch receives all of feeding hematocrit and the other 

outflow branches receive nothing. If the network is a parallel tree type, a completely 

heterogeneous hematocrit distribution happens when one of the outflow branch receives 

all of the feeding hematocrit and the other outflow branches receive nothing. This 

definition of completely heterogeneous distribution is based on conservation of mass 

over the complete flow cross-section. It represent a natural upper limit for heterogeneity 

of spatial network.

A complete flow cross-section network is considered by vector algebra. A vector 

is defined by the value and direction of its each component. It means not only the value 

in each branch is important, but also the ordering of these values. Assume in a given 

complete flow cross-section network there are n outflow branches. Each branch is given 

an ordering number. The spatial distribution of blood flow, hematocrit and red blood cell 

flow are represented by three n dimensional vectors Q, H, and R. Q is the vector of
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blood flow. H is the vector o f hematocrit and R is the vector of red blood cell flow. The 

components of each vector are the value of blood flow, hematocrit and red blood cell 

flow in each ordering outflow branch. The components in each vector have the following 

relation.

Ri =  Qi x Hi (4-2)

The degree of heterogeneity for a given complete flow cross-section network is 

determined by comparing the vector which describe that distribution with the 

homogeneous vector. One way to compare the vectors is to compute the magnitude of 

the difference between those two vectors. Because this difference magnitude depends on 

the dimension of vector space, it is convenient to normalize this difference magnitude by 

the magnitude of the homogeneous vector. The normalized magnitude of the vector 

difference is called the “magnitude of heterogeneity”. Assume V* is the components of a 

n-dimensional vector and Vo is the components of corresponding homogeneous vector. 

Then the magnitude of heterogeneity is:

VZ(Vi-Vo)!

The summation includes all of the outflow branches in the complete flow cross- 

section network. For a completely homogeneous distribution the magnitude of 

heterogeneity is zero. Completely heterogeneous distributions for blood flow and red

blood cell flow have the magnitudes of heterogeneous of . For a completely

heterogeneous distribution for hematocrit in a serial tree network the magnitude of 

heterogeneity is given as follows.
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(Mh)™ = e005727n (4-4)
where n is the number of the outflow branches in a serial tree network. Equation 4-4 is

empirical curve fit for a completely heterogeneity of hematocrit. For a serial tree

network a completely heterogeneous distribution for hematocrit happens when all of the

branches except the last one receive only plasma and the last branch get all of the

feeding hematocrit. For a parallel tree type network a completely heterogeneous

distribution for hematocrit has the magnitude of heterogeneity calculated from equation

4-4. In equation 4-4 n is the number of the outflow branches of the largest serial tree

inside the parallel tree. Because the magnitude of heterogeneity has both upper and

lower limits, it can be scaled to range from 0 for a completely homogeneous distribution

to I for a completely heterogeneous distribution.

4.3 Complete Flow Cross-Section Network 

The configuration of the complete flow cross-section network to be considered 

includes both serial and parallel tree branching arrangement. For a serial tree network, 

the parent and daughter branches have the same diameters. The diameters used are 28, 

35, or 40pm. The branch junction segment is assumed to have the same length in any 

one numerical calculation. The departure angles which are the angles around the main 

branch axis between the spatial direction of each successive side branch are 60°, 90°, 

180°, 360°. Network topologies with the different departure angles are shown in Figures 

4-1 to 4-6. The networks shown in Figure 4-1 and 4-2 have 2 dimension structure. And 

the networks shown in Figure 4-3 and 4-4 have 3 dimension structure. In this study,
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these networks will be used to investigate how the network topology effect the 

heterogeneties of blood flow, red blood cell flow or/and hematocrit.

Blood Flow In

Figure 4-1. Microvascular Network Structure: Branches at the same side

s '
Blood Flow In

Figure 4-2. Microvascular Network Structure: Branches alternating or rotating 180°
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Blood Flow In

Figure 4-3. Microvasular Network Structure: Branches alternating 90°

Blood Flow In

Figure 4-4. Microvascular Network Structure: Branches rotating 90°

t r

i  i  i  i

Figure 4-5. Microvascular Network Structure: Serial Tree
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Figure 4-6. Microvascular Network Structure: Parallel Tree

4.4 Computational Results 

The mathematical models described in the previous chapters are applied to 

complete flow cross-section microvascular networks to investigate the heterogeneity of 

hematocrit and red blood cell flow. The discharge hematocrit and red blood cell flow in 

each branch of the microvascular network for different geometry parameters and 

topological arrangement are computed when the different distribution of blood flow in 

branches of a given vascular tree are used as initial inputs. The distribution of blood flow 

which satisfy the mass conservation is randomly generated. The computation take 

account of the plasma skimming at each branch, or red blood cell concentration profile 

shifts at each branch and red blood cell dispersion process injunction segment.

The first question to be answered is whether there is a correlation between the 

heterogeneity of hematocrit and the heterogeneity of blood flow, between the 

heterogeneity of red blood cell and the heterogeneity of blood flow for a given
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microvascular network. For this purpose the branch alternating 180° serial tree is 

selected. The symmetric profile model is used as the dispersion model for the dispersion 

of red blood cell between junctions. The symmetric profile model decreased the 

computational time. 2000 different distribution of blood flow are randomly generated to 

be the input of the computation. The results are shown in Figures 4-7 and 4-8. No 

correlation between the magnitude of hematocrit heterogeneity and blood flow 

heterogeneity exists. A minimum point of the magnitude of hematocrit heterogeneity is 

observed when the magnitude of blood flow is around 0.4 to 0.6. For a given value of 

the magnitude of blood flow a minimum value for the magnitude of hematocrit 

heterogeneity can be found. But the maximum value for the magnitude of hematocrit 

heterogeneity is undefined. Figure 4-8 is the plot of the magnitude of red blood cell 

heterogeneity verse the magnitude of blood flow.

1.0

Magnitude of Blood Flow Heterogeneity

Figure 4-7 The heterogeneity of hematocrit for a serial tree with six branches. The 
symmetric dispersion model was used in calculation.
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Figure 4-8. The heterogeneity of red blood cell flow for a serial tree with six 
branches. The symmetric dispersion model was used in calculation

A strong correlation between the magnitude of red blood cell heterogeneity and 

the magnitude of blood flow heterogeneity is observed (see Figure 4-8). The magnitude 

of red blood cell heterogeneity increases as the increase of the magnitude of blood flow 

heterogeneity.

The next question to be answered is how the vascular tree spatial geometry 

influences the heterogeneity of hematocrit, red blood cell and blood flow. This influence 

includes two major factors. One of factors is plasma skimming at bifurcations. The 

thickness of plasma layer plays an important role in plasma skimming. The role played by 

the plasma layer can be expressed by the ratio of the cell to parent vessel diameter, 

Dc/Dp. In this study the parent vessel diameter is changed to investigate the role of 

plasma skimming on the heterogeneity of hematocrit, red blood cell and blood flow. The
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other factor is the rheology of vascular trees. Can the disturbance of red blood cell 

profile caused by plasma skimming at a bifurcation propagate to the downstream in a 

network and then affect the distribution o f hematocrit and red cell flow? The 

concentration profile is shifted when blood pass through a bifurcation. In the previous 

chapters the symmetry recovery length is obtained under different conditions. If the 

distances between bifurcations are greater than the symmetry recovery length, then the 

shifting red blood cell concentration profile become axisymmetry before the blood 

reaches the next bifurcation. In this case, the disturbance does not propagate to the 

downstream bifurcation. There is no communication between the bifurcations. So the 

plasma skimming at each bifurcation determine the distribution of hematocrit and red 

blood cell flow. If the distances between bifurcations are less than the symmetry 

recovery length. The disturbance can propagate to the downstream network and 

influence the distribution of hematocrit and red blood cell flow. The spatial arrangement 

of branches can influence the distribution of hematocrit and red blood cell flow. In this 

study the departure angle is changed to consider the effect of the spatial arrangement of 

branches. Also the branch arrangement (serial or parallel) can affect the distribution of 

hematocrit and red blood cell flow.
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Figure 4-9 showed the change of magnitude of red blood cell heterogeneity as a 

function of magnitude of blood flow heterogeneity at different total feeding flow rates. 

The complete flow cross-section network considered is that all of the branches are at 

the same sides of the parent vessel on one plane. The network was shown as Figure 4-1. 

The diameters for all of segments in the network are 28 pm. As the total feeding flow 

rate changed from l.OxlO6 to 6.0x10s pm3/sec, the relationship between magnitude of 

red blood cell heterogeneity and magnitude of blood flow heterogeneity did not change. 

It means that the total feeding flow rate has not influence on the magnitude of red blood 

cell heterogeneity.

Figure 4-10 shows the influence of departure angles on the magnitude of red 

blood flow heterogeneity. The complete flow cross-section network considered is a 

serial tree with six flow outlets. All o f the branch segment distance are set the same. 

.They are 100 pm. The diameter is 28 pm. The serial tree with branches at the same sides 

has the lowest red blood cell heterogeneity. The serial tree with an alternating 180° 

departure angle for the branches showed in Figure 4-10 has the highest red blood flow 

heterogeneity. The serial tree with a rotating 90° departure angle for the branches 

showed in Figure 4-10 has almost the same red blood flow heterogeneity as the one with 

a alternating 180° departure angle. The magnitude of red blood flow heterogeneity for 

serial trees with branches alternating 60°, 90° and rotating 90° is located in the middle of 

magnitudes of red blood flow heterogeneity for serial trees with branches alternating 

180° and at the same side. Notice that the serial trees with branches rotating 60° and 90° 

have 3 dimensional structures, and the serial trees with branches alternating 180° and at
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the same side have 2 dimensional structures. It means that the range of the magnitude of 

red blood flow heterogeneity for serial trees which have 2 dimensional structures can 

cover the magnitude of red blood flow heterogeneity for serial trees which have 3 

dimensional structures. This result can be interpreted that the computational results for 

microvascular networks which have 2 dimensional structures can be used to represent 

the results for microvascular network which have 3 dimensional structures. Comparing 

the results of magnitudes of red blood flow heterogeneity for the networks with 

branches rotating 90° and alternating 90° shows the departure angle has some influence 

on the magnitude of red blood flow heterogeneity.

Figure 4-11 shows the influence of branch segment distance on the magnitude of 

red blood cell flow heterogeneity. Branches of the serial tree considered are at the same 

sides. The diameter is 28 pm. Notice that as the distance increases the magnitude of red 

blood cell flow heterogeneity increases. The red blood cell concentration profile 

becomes more axisymmetry as the branch segment distance increases. The more 

axisymmetric red blood cell concentration profile in each branch segment results in 

higher magnitude of red blood cell flow heterogeneity. This result can be explained by 

the plasma skimming at the bifurcations. If more plasma is withdrawn out at each 

bifurcation, the higher the magnitude of red blood cell flow heterogeneity. For the serial 

tree with branches at the same sides the more axisymmetric concentration profile allows 

more plasma skimming at the bifurcations. So the higher magnitude of red blood cell 

flow heterogeneity means the same side microvascular network has more axisymmetric 

concentration profile. A similar plot is given in Figure 4-12 for the alternating side
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branch microvascular network. In contrast to the same side microvascular network, the 

magnitude of red blood cell heterogeneity decreases as the branch segment distance 

increases. When the blood flows through a bifurcation, the concentration profile will be 

shifted off axisymmetric. If  the next downstream bifurcation is in the opposite direction, 

more plasma without red blood cells can be drawn into this bifurcation when the branch 

segment distance is shorter. It will let the last branch has almost all of the feeding red 

blood cells. It will results in the higher magnitude of red blood cell heterogeneity.

Figure 4-13 shows the influence of vessel diameter on the magnitude of red 

blood cell flow heterogeneity. The result is for the same side network with vessel 

diameters of 28, 35 and 40 (im. As the vessel diameter increases the magnitude of red 

blood cell flow heterogeneity decreases. It is usually considered that the plasma layer 

plays an important role in the red blood cell flow heterogeneity. But in larger 

microvascular vessels the importance of plasma layer becomes less.

The results for comparing the serial branching and parallel branching trees were 

shown in Figure 4-14 and 4-15. Both serial and parallel trees have eight flow outlets. 

The same blood flow distributions were used in the computations. The computational 

results show that the serial microvascular tree has a higher heterogeneity of red blood 

cell distribution than the parallel microvascular tree.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The conclusions of this study are as follows:

1. A mathematical model using the variable dispersion model, tv/o-phase velocity profile 

and the asymptotic flat red blood cell concentration best described the in vitro 

experimental data.

2. The model predicts that asymmetric red blood cell concentration profiles can exist in 

microvascular vessels with 25 pm or larger diameters.

3. A method to measure the heterogeneity of blood flow distribution in microvascular 

network is proposed. This method is based on vector algebra and mass of conservation 

in a complete flow cross-section network. It can be used to compare the experimental 

data from different species and laboratories.

4. Combining the mathematical models for plasma skimming at bifurcations and red 

blood cell dispersion process between junctions, the distribution of hematocrit and red 

blood cell concentration can be obtained over a serial or parallel type of microvascular 

tree.

5. A strong correlation exists between the heterogeneity of red blood cell flow and the 

heterogeneity of blood flow. No obvious correlation between the heterogeneity of 

hematocrit and the heterogeneity of blood flow is observed.
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6. The feeding blood flow rate has no impact on the heterogeneity of red blood cell 

distribution in microvascular networks.

7. The heterogeneity of red blood cell flow in three dimensional microvascular networks 

is bounded by the heterogeneity in two dimensional microvascular networks.

8. A serial microvascular tree has higher heterogeneity of red blood cell flow than a 

parallel tree.

Based on the results obtained in this study the following recommendations are

made:

1. Asymmetric red blood cell profile should be considered in modeling the blood flow in 

large microvascular networks.

2. A correlation between the width of plasma layer and shear rate, the ratio of cell 

diameter to the vessel diameter needs to be developed.
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NOMENCLATURE

a: The particle radius.

D: The effective particle dispersion coefficient, or fractal dimension.

d: Vessel diameter.

g: The plasma gap thickness.

H: Hematocrit.

Hd core hematocrit.

Hmv: Hematocrit in microvessel.

Ht: The tube hematocrit.

Hf: The feeding hematocrit.

Hd: The discharge hematocrit.

(Rb)a: The bifurcation ratio of order a.

La: The length of order a.

Da: The diameter of order a.

F*: The ratio of side branch to main vessel red blood cell flux.

Q*: The ratio of side branch to main vessel volumetric flow.

R: The vessel radius.

L: The vessel length.

Re! The red blood cell radius.

Pe: The Peclet number.
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Frbc: The total red blood cell mass.

Q: The volumetric flow rate.

AP: The pressure drop.

Q: The vector of blood flow.

H: The vector of hematocrit.

R: The vector of red blood cell flow.

Mv: The magnitude of heterogeneity.

RD(m): The coefficient of variation for sample m.

V: The blood velocity profile.

Z: The axial coordinate.

AR2: The mean square displacement.

At: The time between observations, 

m: The fictitious body force.

u: The average blood velocity divided by the vessel diameter.
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Greek letter: 

y: Shear rate.

0: The angular coordinate.

tj: The dimensionless axial coordinate.

The dimensionless radial coordinate.

6: The dimensionless plasma gap thickness.

<J>: The ratio of core viscosity to gap viscosity. 

<a: The parameter in velocity profile expression. 

Pp.- The plasma viscosity, 

a: The parameter in velocity profile expression. 

0: The parameter in velocity profile expression.
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APPENDIX A

COMPUTER PROGRAM

The following FORTRAN 77 program is used to F*, the ratio of red blood cell 

flux in the side branch to that in the parent vessel, in variable dispersion model.

c variable diffiisivity coefficient, two-phase velocity profile,
program main
implicit double precision (a-h,o-z)
parameter (ni=48,nj=48,dz=0.05)
dimension h(ni+l,-l :nj),hd(ni+l,-l :nj),r(ni+l),theta(nj+l)
dimension hl(ni+l,-l :nj)
common beta, delta, pi, d,k
pi=4.0*atan(1.0)
d=0.02
dc=8.0
coef=0.15
exx=0.8

c open (unit= 10,file='d 10.dat1, status-old')
c read (10,*) ind,k,delta
c close (10)

ind=2 
k=2
sumf=0.0
kk=k
open (u n i^ .f i le ^ o th 10 .dat', status-new1) 
open (unit=9,file='exper. dat', status='old')

2 read (9,*) bll,al,tl,hl,bl2,a2,t2,h2,bl3,a3,t3,h3,dt,hf,z
tl=100.*tl-40.*aint(tl) 
t2= 100. *t2-40. *aint(t2) 
t3=100.*t3-40.*aint(t3)
ql=(bll*al/tl)/(bll*al/tl+bl2*a2/t2+bl3*a3/t3) 
q2=(bl2*a2/t2)/(bl2*a2/t2+bl3 *a3/t3) 
fe2=(h2*bl2*a2/t2)/(h2*bl2*a2/t2+h3 *bl3 *a3/t3) 
hf=(h2*bl2*a2/t2+h3*bl3*a3/t3)/(bl2*a2/t2+bl3*a3/t3) 
delta=dc/dt
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if (ind .eq. 2) then 
delta=dc/dt
ubar=4.d09*(bl2*a2/t2+bl3 *a3/t3)/(pi*dt**3.) 
fld=visrat(delta,hf,ubar) 

beta=(l .-delta)**2.+(l .-(1 .-delta)**2)*fld 
alpha=2./(fld+( 1 .-fld)*( 1 .-delta)**4.) 
else 
beta=l.
alpba=float(k+2)/float(k) 
end if
pe=alpha*(dt/dc)**2./(4.*coePhf*(l.-hf)**exx) 
dr=( 1.0-delta)/float(ni) 
dtheta=2.0*pi/float(nj) 
z=z/dt*2000.

do 100 i=l,ni+l 
r(I)=float(i-l)*dr 

100 continue
do 200 j=0,nj 
theta(j+1 )=float(j)*dtheta 

200 continue
do 300 i=l,ni+l 
do 400 j=0,nj-l 
h(ij)=1.0 

400 continue
300 continue

epsilon=coord(ql) 
do 500 i=l,ni+l 
rr=r(i)
do 600 j=0,nj-l 
the=theta(j+l)
call map(rr,the,epsilon,rl,thetal)
if (rl .gt. 1.-delta) then
hh=0.0
goto 550
end if
if (rl .le. dR) then 
kkk=l 
goto 530 
end if
call locate(r,ni+l,rl,kkk)

530 call locate(theta,nj+l,thetal jj)
call bilineaR(h,kkk,jj,r,theta,r 1 ,theta 1 ,hh)

550 hd(i,j)=hh
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600 continue
500 continue
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c The range of calculation
g  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

ka=0
10 zend=dz*ka

if (zend .gt. z) goto 1200 
call adi(hd,ni,nj,delta, dz, dr,pe,beta,kk,dtheta) 
ka=ka+l 
goto 10 

1200 continue
call rot(hd,180,nj,ni,hl) 
do 650 i=l,ni+l 
do 680 j=0,nj-l 
h(ij+l)=hl(i,j)

680 continue
650 continue

epsilon2=coord(q2)
fstart=fhum(epsilon2,beta,delta,k,h,nj,ni+l)
sumf=sumf+(fstart-fe2) * * 2
if (bll .eq. 35.56) then
close (7)
goto 1300
else
write (7,*) fstart,fe2 
goto 2 
end if

1300 open (unit=8,file='comparel0.dat',status-new') 
write (8,*) sumf,fstart,fe2 
close (8) 
end

subroutine bilinear(h,kj,rd,thetad,r 1 ,thetal ,hH) 
double precision h(49,-l :48),rd(49),thetad(49) 
double precision rl,thetal,t,U,hh 
integer kj 
nj=48
t=(theta 1 -thetad(j))/(thetad(j+1 )-thetad(j))
u=(r 1 -rd(k))/(rd(k+1 )-rd(k))
if 0 eq. nj) then
h(k,nj)=h(k,0)
h(k+l,nj)=h(k+l,0)
end if
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if (k .eq. 1) then
hh=( 1 ,-t)*h(kj-1 )+t*( 1 .-u)*h(kj)+t*u*h(k+1 j)  
else
hH=(l ,-t)*(l ,-u)*h(kj-l)+t*(l .-u)*h(kj)+t*u* 

& h(k+l j)+(l.-t)*u*h(k+l j-1) 
end if 
return 
end

subroutine locate(xx,n,xj) 
double precision xx(n),x 
integer nj 
jl«0 
ju=n+l 

10 if(ju-jl.gt.l)then
jm=(ju+jl)/2
if((xx(n).gt.xx( 1 )).eqv.(x.gt.xx(jra)))then
jl=jm
else
ju=jm
endif
go to 10
endif
J=jl
return
end

function visrat (delta,hfeed,u)
double precision delta, hfeed, fid, fldl
double precision a, g, visrat, qtot, ftot, hcore, u, c
c=0.12
if(u .It. 50.) c=0.13 
if(u .It. 30.) c=0.14 
if (u .It. 17.) c=0.15 
if (u .It. 3.) c=0.14 
if (u .It. 1.) c=0.16 
fldl=l. 
fld=0. 
g= 1.0-delta 

60 if (dabs(l.-fld/fldl) .gt. 0.001) then 
fld=fldl
a=g*g+(l-g*g)*fld 
flot=a*g*g/2.-g**4./4. 
qtot=flot+fld*(0.25-(g*g/2.-g**4./4.)) 
hcor e=hfeed * qtot/ftot
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fid 1 =exp(4.2*hcore/(u* *c))
go to 60.
endif
visrat=fld
return
end

subroutine MAP (R,THETAepsilon,rl,thetal)
double precision theta,r,thetal,rl,x,y
double precision epsilon,qstar,dx,dy,dqxc,dqyk
double precision qx,qy,xl,yl,x2,y2,q,qyc
double precision qxc,qyk,fl,f2,f3,y3,x3,arg,pi
integer knx,kny
external qstar,partq,qyc
pi=4d0*datan( 1 dO)
y=r*sin(theta)
x=r*cos(theta)
qx=l ,-qstar(x)
q= 1 .-qstar(epsilon)
knx=0
x2=(epsilon-1,00)/2.000 
xl=2000.

900 if (abs(xl-x2) .gt. Id-05) then
knx=knx+l 
if(knx.le. 10) then 
xl=x2
qxc=( 1 ,-qstar(xl ))/q 
dx=xl+ld-03
dqxc=(( 1 .-qstar(dx))/q-qxc)/l d-03
x2=x 1 +(qx-qxc)/dqxc
x3=x2
if (abs(x2) .gt. 1.) knx=l 1 
goto 900 

end if 
end if 

if(knx .gt. 10) then 
xl=epsilon 
x2=-l.
fl =( 1.-qstar(x 1 ))/q-qx 
f2=( 1 ,-qstar(x2))/q-qx 

end if
800 x3=(xl+x2)/2.

f3=( 1.-qstar(x3 ))/q-qx
if ((abs(x 1 -x3). It. 1 d-05). or. (abs(x2-x3) .It. 1 d-05 )) then 
xl=x3
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else
knx=knx+l 

if (f3*fl .It. 0.) then 
x2=x3 
£2=f3 
go to 800 

else if (f2*f3 .It. 0.) then 
xl=x3 
fl=f3 
go to 800 

end if 
end if

if (dabs(y) .le. Id-05) then 
yl=0d0 

else 
qy=qstar(y) 
yl=1.00 
y2=0. 
kny=0

100 if(abs(yl-y2) .gt. Id-05) then
kny=kny+l 
if ( kny .le. 10) then 
yl=y2
qyk=qyc(y 1, epsilon) 
dy=yl+ld-03
dqyk=(qyc(dy,epsilon)-qyk)/l d-03 
y2=y 1 +(qy-qyk)/dqyk 
if (abs(y2) .gt. 1.) y2=sign(.999d0,y2) 
goto 100 
end if 

end if 
if(kny.gt. 10) then 
yl=1.0 
y2=-1.0
fl =qyc(y 1,epsilon) 
f2=qyc(y2, epsilon) 

end if
801 y3=(yl+y2)/2.

f3=qyc(y3,epsilon)
if ((abs(yl-y3).lt.ld-05).or.(abs(y2-y3).lt.ld-05)) then
yl=y3
else
kny=kny+l 
if((f3*fl) .It. 0.) then 

y2=y3
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f2=B 
go to 801 

else if ((£3*f2) .It. 0.) then 
yl=y3 
fl=f3 
go to 801 

endif 
endif 

end if
arg=datan2(dabs(y 1), dabs(x 1)) 
if((xl.gt.O) .and. (yl.gt.O)) thetal=arg 
if((xl.lt.O) .and. (yl.gt.O)) thetal=pi-arg 
if((xl.lt.O) .and. (yl.lt.O)) thetal=pi+arg 
if((xl.gt.O) .and. (yl.lt.O)) thetal=2*pi-arg 
if ((xl.ge.OdO) .and. (yl.eq.OdO)) thetal=0. 
if((xl.lt.0d0) .and. (yl.eq.OdO)) ihetal=pi 
r 1 =dsqrt(x 1 *x 1 +y 1 *y 1) 
return 
end

function QYC (y, epsilon) 
real*8 qyc,y,epsilon,yc,partq 
if (y .It. 0) then 

yc=dabs(y)
qyc=l .-partq(yc,epsilon) 

else
qyc=partq(y, epsilon) 

endif 
return 
end

function partq (y,x) 
double precision beta,delta,pi 
double precision d,term
double precision x,y,r,thetal,theta2,hold,dr,rr,qq 
double precision fld,qtot,p,partq,top,denom,qstar 
integer nr,i,k 
common beta,delta,pi,d,k 

external qstar 
if (y .It. 1. d-05) then 

partq=0.5 
else
if (delta .ne. 0.) then
fld=(beta-(l .-delta)**2.)/(l .-(1 ,-delta)**2.) 
else

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fld=l. 
end if
p=l.-delta
qtot=(beta*p**2./2.-p**(k+2.)/(k+2.)+fld*(0.5-l./(k+2.) 

$ -p**2./2.+p**(k+2.)/(k+2.)))*2.*pi
denom=l.-qstar(x) 
qq=0.
top=qstar(y)
r=sqrt(x*x+y*y)
hold=0.
if (r .le. 1) then 
if (r .le. 1.-delta) then 
nr=(l.-delta-r)/d 
nr=nr+nr+2 
dr=(l.-delta-r)/nr 
do 20 i=l,nr+l 
rr=r+dr*(i-l) 
if (x .gt. 0) then 
theta 1 =atan2(y,sqrt(rr*rr-y*y)) 
theta2=atan2(sqrt(rr*rr-x*x),x) 

else if ((x.eq.0.).and.(y.eq.0.)) then 
theta 1=0. 
theta2=pi/2. 

else if ((x.eq.O.).and.(y.ne.O.)) then 
theta 1 =atan2(y, sqrt(rr*rr-y*y)) 
theta2=pi/2. 

else
theta 1 =atan2(sqrt(rr*rr-x*x),x) 
theta2=atan2(y, -sqrt(rr*rr-y *y)) 

end if
term=rr * (beta-rr * * k) * (theta2-theta 1) 
if (mod(i,2) .eq. 0.) then 
hold=hold+4. *term 

else
hold=hold+2. *term 

end if
if ((i .eq. 1) .or. (i .eq. nr+1)) then 
hold=hold-term 

end if 
20 continue

qq=hold*dr/3. 
r=l.-delta 
endif
nr=(l.-r)/d
nr=nr+nr+2
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dr=(l.-r)/nr 
hold=0. 
do 30 i=l,nr+l 
rr=r+dr*(i-l) 
if (x .gt. 0) then 
theta 1 =atan2(y, sqrt(rr*rr-y*y)) 
theta2=atan2(sqrt(rr*rr-x*x),x) 

else if ((x.eq.O.).and.(y.eq.O.)) then 
theta 1=0. 
theta2=pi/2. 

else if ((x.eq.O.).and.(y.ne.O.)) then 
theta 1 =atan2(y,sqrt(rr*rr-y*y)) 
theta2=pi/2. 

else
theta 1 =atan2(sqrt(rr*rr-x*x),x) 
theta2=atan2(y, -sqrt(rr*rr-y *y)) 

end if
term=rr*fld*(l .-rr**k)*(theta2-thetal) 
if (mod(i,2) .eq. 0.) then 
hold=hold+4. *term 

else
hold=hold+2. *term 

end if
if ((i .eq. 1) .or. (i .eq. nr+1)) then 
hold=hold-term 

end if 
30 continue

qq=qq+hold*dr/3. 
qq=qq/qtot 
if (x .ge. 0.) then 

partq=(top-qq)/(denom) 
else

partq=qq/(denom) 
end if
else if (x .It. 0.) then 

c write (6,*) 'there is no answer1,x,y 
else

partq=(top)/denom 
end if 
end if 
return 
end

function qstar (epsilon) 
double precision beta,delta,pi
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double precision d,fld 
double precision epsilon,xl,x2,x3,yl,y2,y3 
double precision dx,qtot,qhold,startx,qstar,arccos 
integer k,i,nx 
common beta,delta,pi,d,k 
external arccos 
if (epsilon .ge. 1.) then 

qstar=0.0 
return

else if (epsilon .le. -1.) then 
qstar=1.0 
return 

end if
if (delta .eq. 0) then 

fld=l. 
else

fld=(beta-(l .-delta)**2.)/(l .-(1 ,-delta)**2.) 
endif
if (delta-1.-epsilon .gt. 0) then 

qhold=0.
nx=(l .0-dabs(epsilon))/d 
nx=nx+nx+2
dx=( 1.0-dabs(epsilon))/nx 
startx=dabs(epsilon) 
goto 1000 

endif
if (delta-l.+epsilon .gt. 0) then 

qhold=2*pi*(beta*(l.-delta)**2./2.-(l-delta)**(k+2)/(k+2)) 
qhold=qhold+fld*2.*pi*((epsilon**2.-(l.-delta)**2.)/2.) 
qhold=qhold-fld*2.*pi*((epsilon**(k+2)-(l.-delta)**(k+2)) 

% /(k+2))
nx=(l .0-dabs(epsilon))/d 

nx=nx+nx+2
dx=(l .0-dabs(epsilon))/nx 

startx=dabs(epsilon) 
goto 1000 

endif
if (epsilon .gt. 0 ) then 

qhold=2.*pi*(beta*epsilon**2./2.-epsilon**(k+2)/(k+2)) 
else 

qhold=0. 
endif
nx=( 1.0-delta-dabs(epsilon))/d 
nx=nx+nx+2
dx=( 1.0-delta-dabs(epsilon))/nx
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do 700 i=l,nx,2
x 1 =dabs(epsilon)+(i-1) *dx
x2=xl+dx
x3=x2+dx
yl=(beta-xl **k)*xl *(2.*pi-2.*arccos(epsilon,xl)) 
y2=Q>eta-x2**k)*x2*(2.*pi-2.*arccos(epsilon,x2)) 
y3=(beta-x3 **k)*x3 *(2. *pi-2. *arccos(epsilon,x3)) 
qhold=qhold+(y l+4*y2+y3)*dx/3.

700 continue 
nx=delta/d 
nx=nx+nx+2 
dx=delta/nx 
startx=l.-delta 

1000 continue
do 800 i=l,nx,2 
x 1 =startx+(i-1) *dx 
x2=xl+dx 
x3=x2+dx
yl=fld*(l.-xl**k)*xl*(2.*pi-2.*arccos(epsilon,xl)) 
y2=fld*(l.-x2**k)*x2*(2.*pi-2.*arccos(epsilon,x2)) 
y3=fld*(l.-x3**k)*x3*(2.*pi-2.*arccos(epsilon,x3)) 
qho!d=qhoId+(y 1 +4*y2+y3)*dx/3.

800 continue
qtot=(beta*(l ,-delta)**2./2.-(l .-delta)**(k+2.)/(k+2.)) 
qtot=(qtot+£ld*(0.5-l./(k+2.)-(l.-delta)**2./2.+

% (1 ,-delta)**(k+2)/(k+2)))*2.*pi
qstar=l ,-qhold/qtot 
return 
end
fixnction arccos (epsilon,xsi) 
double precision epsilon,xsi,pi,arccos 
if (dabs(epsilon) .gt. xsi) then 

stop 
endif
pi=4.*datan(l.d0)
if ( (epsilon .eq. 0.) .and. (xsi .ge. 0.)) then 

arccos = pi/2, 
return 

endif
arccos=dacos(epsilon/xsi)
return
end

function coord (qx) 
double precision beta,delta,pi
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double precision d
double precision x,x2,qx,qh,qstar,coord,xl,qhl,qh2 
integer k
common beta,delta,pi,d,k 
external qstar 
xl=l.d00 
x2=-l.d00 
x=0.0d00 
qhl=0.-qx 
qh2=1.0-qx 

30 qh=qstar(x)-qx
if(abs(qh) .gt. Id-05) then 
if (dabs(x-xl) .ge. Id-05) then 
if (qh*qhl .It. 0.) then 

x2=x 
qh2=qh 

else 
xl=x 
qhl=qh 

end if 
x=(xl+x2)/2. 
go to 30 

end if 
end if

coord=x
return

end
£  *****************************************************

subroutine adi(h,ni,nj,delta,dz,dr,pe,beta,kk,dtheta) 
double precision h(49,-l:48),r(49),t(48,48),e(49) 
double precision dd(49),bb(49),cc(49),ee(49) 
double precision delta,dz,dr,pe,beta,hh,dtheta,hs 
integer kpvt(49),info,kk 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c radial direction for adi
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

do 10j=0,nj-l 
if 0’ eq. 0) then 
h(2j-l)=h(2,nj-l) 
end if
if (j .eq. nj-1) then 
h(2,j+l)=h(2,0) 
end if
h( 1 ,j)=dz/beta/pe/2.0 * (2.0 *(h(2 j)-h( 1 ,j))/dr+

& (h(2,j+1 )+h(2 j - 1 )-
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& 2.0*h(2,j))/dr/dtheta**2)+h(l j)
c h( 1 j)=dz/(pe*dtheta*dr*(beta-(dr/2.)**kk))*
c & (dtheta*(h(2 j)-h(l j))+(h( 1 j+1 )-2. *h( 1 ,j)
c & +h(lj-l))*2./dtheta)+h(lj)
10 continue
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c r direction, assign the coeff.
do 20 j=0,nj-l 
do 30 i=3,ni+l 
r(i)=float(i-l)*dr 
if (i .eq. ni+1) then 
bb(i-l)=-2.0*r(i)/dr**2 
else
bb(i-1 )= 1.0/dr-r(i)/dr* *2 
end if 

30 continue

do 35 i=2,ni+l 
r(i)=float(i-l)*dr
cc(i-1 )=2.0 *r(i)/dr* *2+2.0 *pe*(beta-r(i) * *kk)/dz 

35 continue

do 40 i=2,ni
r(i)=float(i-l)*dr
dd(i-1 )=-(r(i)/dr**2+1.0/dr)

40 continue

do 50 i=2,ni+l 
if 0 eq. 0) then 
h(ij-l)=h(i,nj-l) 
end if
if (j .eq. nj-1) then 
h(ij+l)=h(i,0) 
end if
r(i)=float(i-l)*dr 

c r(i)=(float(i)-0.5)*dr
if (i .eq. 2) then
ee(i-1 )=(h(i j + 1 )-2.0*h(i j)+h(i,j-1 ))/r(i)/dtheta* *2 

& +h(i,j)*2.0*pe*(beta-r(i)* *kk)/dz-h(i-1 j)*
& (1.0/dr-r(i)/dr**2)

else
ee(i-1 )=(h(ij+1 )-2.0*h(ij)+h(i,j-1 ))/r(i)/dtheta* *2 

& +h(i,j)*2.0*pe*(beta-r(i)**kk)/dz
end if 

50 continue
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call dgtsI(ni,bb,cc,dd,ee,info) 
do 60 i=2,ni+l 
h(ij)=ee(i-l)

60 continue
20 continue
£ *************** ft******************************
c theta direction for adi

do 70 j=0,nj-l 
if (j .eq.O) then 
h(2j-l)=h(2,nj-l) 
end if
if (j .eq. nj-1) then 
h(2,j+l)=h(2,0) 
end if
h( 1 j)=dz/beta/pe/2.0*(2.0*(h(2j)-h( 1 j))/dr+

& (h(2,j+1 )+h(2,j-1 )-
& 2.0 *h(2 j))/dr/dtheta* *2)+h( 1 j )

c h( 1 j)=dz/(pe*dtheta*dr*(beta-(dr/2.)**kk))
c & *(dtheta*(h(2 j)-h( 1 j))+(h( 1 j+ 1 )-2. *h( 1 j)
c & +h( 1 j - 1 ))*2./dtheta)+h( 1 j)
70 continue

do 80 i=2,ni+l 
r(i)=float(i-l)*dr 

c r(i)=(float(i)-0.5)*dr
do 90 jj=l,nj
t(jjjj)=2.0/r(i)/dtheta**2+2.0*pe*(beta-r(i)**kk)/dz 
if (jj .eq. nj) goto 90 
t(jj jj+1 )=-1.0/r(i)/dtheta**2 

90 continue
t( 1 ,nj)=-1.0/r(i)/dtheta* *2 
call dsifa(t,nj,nj,kpvt,info) 
do 110jj=l,nj 
if (i .eq. ni+1) then
e(jj)=r(i) *2.0/dr* *2*(h(i-1 j j - 1 )-h(i j j - 1))

& +h(ijj-l)*2.0*pe*(beta-r(i)**kk)/dz
else
e(ij)=r(i)/dr* *2*(h(i-1 j j-1 )- 

& 2.0*h(ijj-l)+h(i+l,jj-l))+l .0/dr*
& (h(i+1 ,]j-1 )-h(i-1 j j-1))+
& h(i,jj-l )*2.0*pe*(beta-r(i)**kk)/dz

end if 
110 continue

call dsisl(t,nj,nj,kpvt,e) 
do 120j=0,nj-l
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h(ij)=e(j+l)
120 continue
80 continue

hh=0.0 
c hs=0.0

do 150j=0,nj-l 
hh=hh+h(l j) 

c hs=hs+h(2j)
150 continue

do 160j=0,nj-l 
h(l,j)=hh/float(nj) 

c h(l,j)=(4.0*hh-hs)/3.0/float(nj)
160 continue

return 
end

subroutine dgtsI(n,c,d,e,b,info) 
integer n,info
double precision c(l),d(l),e(l),b(l) 
integer k,kb,kpl,nml,nm2 
double precision t 

info = 0
c(l) = d(l) 
nml = n - 1 
if (nml .It. 1) go to 40 

d(l) = e(l) 
e(l) = O.OdO 
e(n) = O.OdO 

do 30 k = 1, nml 
kpl = k + 1

if (dabs(c(kpl)) .It. dabs(c(k))) go to 10 
t = c(kpl) 

c(kpl) = c(k) 
c(k) = t 
t = d(kpl) 
d(kpl) = d(k) 
d(k) = t 
t = e(kpl) 
e(kpl) = e(k) 
e(k) = t 
t = b(kpl) 
b(kpl) = b(k) 
b(k) = t

10 continue
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if (c(k) .ne. O.OdO) go to 20 
info = k 

go to 100 
20 continue

t = -c(kpl)/c(k) 
c(kpl) = d(kpl) + t*d(k) 
d(kpl) = e(kpl) + t*e(k) 
e(kpl) = O.OdO 
b(kpl) = b(kpl) + t*b(k)

30 continue
40 continue

if (c(n) .ne. O.OdO) go to 50 
info = n 
go to 90 

50 continue

nm2 = n - 2 
b(n) = b(n)/c(n) 
if (n .eq. 1) go to 80 

b(nml) = (b(nml) - d(nml)*b(n))/c(nml) 
if (nm2 .It. 1) go to 70 
do 60 kb = 1, nm2 

k = nm2 - kb + 1
b(k) = (b(k) - d(k)*b(k+l) - e(k)*b(k+2))/c(k)

60 continue
70 continue
80 continue
90 continue
100 continue

return
end

subroutine dsifa(a,lda,n,kpvt,info) 
integer lda,n,kpvt(l),info 
double precision a(lda,l)
double precision ak,akml,bk,bkml,denom,mulk,mulkml,t 
double precision absakk,alpha,colmax,rowmax 
integer imax,imaxp 1 j  jj jmax,k,kml ,km2,kstep,idamax 
logical swap

alpha = (l.OdO + dsqrt(17.0d0))/8.0d0 
info = 0 
k = n 

10 continue
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if (k .eq. 0) go to 200 
if (k .gt. 1) go to 20 

kpvt(l) = 1
if (a(l, 1) .eq. O.OdO) info = 1

go to 200 
20 continue

kml = k - 1 
absakk = dabs(a(k,k)) 
imax = idamax(k-l,a(l,k),l) 
colmax = dabs(a(imax,k)) 
if (absakk .It. aIpha*colmax) go to 30 
kstep = 1 
swap = .false, 
go to 90 

30 continue
rowmax = O.OdO 
imaxp 1 = imax + 1 
do 40 j = imaxpl, k 

rowmax = dmaxl (rowmax,dabs(a(imax,j)))
40 continue

if (imax .eq. 1) go to 50 
jmax = idamax(imax-l,a(l,imax), 1) 
rowmax = dmaxl(rowmax,dabs(a(j max, imax)))

50 continue
if (dabs(a(imax,imax)) .It. alpha*rowmax) go to 60 

kstep = 1 
swap = .true, 

go to 80 
60 continue

if (absakk .It. alpha*colmax*(colmax/rowmax)) go to 70 
kstep = 1 
swap = .false, 

go to 80 
70 continue

kstep = 2
swap = imax .ne. kml 

80 continue
90 continue

if (dmaxl (absakk,colmax) .ne. O.OdO) go to 100
c
c column k is zero, set info and iterate the loop,
c

kpvt(k) = k 
info = k
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go to 190 
100 continue

if (kstep .eq. 2) go to 140

if (.not.swap) go to 120

call dswap(imax,a(l,imax),l,a(l,k),l) 
do llOjj = imax, k 

j = k + imax - jj 
t = a(j,k) 
a(j,k) = a(imaxj) 
a(imaxj) = t 

110 continue 
120 continue

do 130 jj = 1, kml
j = k- j j
mulk = -a(j,k)/a(k,k) 
t = mulk
call daxpy(j,t,a( 1 ,k), 1 ,a( 1 j), 1) 
a(j,k) = mulk 

130 continue

kpvt(k) = k
if (swap) kpvt(k) = imax 
go to 190 

140 continue
if (.not.swap) go to 160

call dswap(imax,a( 1 ,imax), 1 ,a( 1 ,k-1), 1) 
do 150 jj = imax, kml 

j = kml + imax - jj 
t = a(j,k-l) 
a(j,k-l) = a(imaxj) 
a(imaxj) = t 

150 continue 
t = a(k-l,k) 
a(k-l,k) = a(imax,k) 
a(imax,k) = t 

160 continue

km2 = k - 2
if (km2 .eq. 0) go to 180 

ak = a(k,k)/a(k-l,k) 
akml = a(k-l,k-l)/a(k-l,k) 
denom = l.OdO - ak*akml
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do 170 jj = 1, km2 
j = kml - jj 
bk = a(j,k)/a(k-l,k) 
bkml = a(j,k-l)/a(k-l,k) 
mulk = (akml *bk - bkml)/denom 
mulkml = (ak*bkml - bk)/denom 
t -  mulk
call daxpy(j,t,a(l,k),l,a(lj),l) 
t = mulkml
call daxpy(j,t,a( 1 ,k-1), 1 ,a( 1 j), 1) 
a(j,k) = mulk 
a(j,k-l) = mulkml 

170 continue
180 continue

kpvt(k) = 1 - k
if (swap) kpvt(k) = -imax 
kpvt(k-l) = kpvt(k)

190 continue 
k = k - kstep 
go to 10 

200 continue 
return 
end

subroutine daxpy(n,da,dx,incx,dy,incy) 
double precision dx(l),dy(l),da 
integer i,incx,incy,ix,iy,m,mpl,n 
if(n.le.0)retum 
if (da .eq. O.OdO) return 
if(incx.eq.l.and.incy.eq.l)go to 20

ix= 1 
iy= 1
if(incx.lt.0)ix = (-n+l)*incx + 1 
if(incy.lt.0)iy = (-n+l)*incy + 1 
do 10 i = l,n 
dy(iy) = dy(iy) + da*dx(ix) 
ix = ix + incx 
iy = iy + incy 

10 continue
return

20 m = mod(n,4)
if( m .eq. 0 ) go to 40
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do 30 i = l,m
dy(i) = dy(i) + da*dx(i)

30 continue
if( n .It. 4 )  return 

40 mpl = m + 1
do 50 i = mpl,n,4 
dy(i) = dy(i) + da*dx(i) 

dy(i + 1) = dy(i + 1) + da*dx(i + 1) 
dy(i + 2) = dy(i + 2) + da*dx(i + 2) 
dy(i + 3) = dy(i + 3) + da*dx(i + 3) 

50 continue
return 
end

subroutine dswap (n,dx,incx,dy,incy) 
double precision dx(l),dy(l),dtemp 
integer i,incx,incy,ix,iy,m,mpl,n 

if(n.le.0)retum
if(incx.eq. 1 .and.incy.eq. l)go to 20

ix= 1 
iy = 1
if(incx.lt.0)ix = (-n+l)*incx + 1 
if(incy.lt.0)iy = (-n+l)*incy + 1 
do 10 i = l,n 
dtemp = dx(ix) 
dx(bc) = dy(iy) 
dy(iy) = dtemp 
ix = ix + incx 
iy = iy + incy 

10 continue
return 

20 m = mod(n,3)
if( m .eq. 0 )  go to 40 
do 30 i = l,m 
dtemp = dx(i) 
dx(i) = dy(i) 
dy(i) = dtemp 

30 continue
if( n .It. 3 ) return 

40 m p l = m + l
do 50 i = mpl,n,3 
dtemp = dx(i) 
dx(i) = dy(i) 
dy(i) = dtemp
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dterap = dx(i + 1) 
dx(i + l) = dy(i + 1) 
dy(i + 1) = dtemp 
dtemp = dx(i + 2) 
dx(i + 2) = dy(i + 2) 
dy(i + 2) = dtemp 

50 continue 
return 
end

integer function idamax(n,dx,incx) 
double precision dx(l),dmax 
integer i,incx,ix,n

c
idamax = 0
if( n.lt. 1 .or. incx.le.0) return 
idamax = 1 
if(n.eq.l)retum 
if(incx.eq.l)go to 20 
ix = 1

dmax = dabs(dx(l)) 
ix = ix + incx 

do 10 i = 2,n
if(dabs(dx(ix)).le.dmax) go to 5
idamax = i
dmax = dabs(dx(ix))

5 ix = ix + incx
10 continue

return

20 dmax = dabs(dx( 1))
do 30 i = 2,n
if(dabs(dx(i)).le.dmax) go to 30
idamax = i
dmax = dabs(dx(i))

30 continue
return 
end

subroutine dsisl(a,lda,n,kpvt,b) 
integer lda,n,kpvt(l) 
double precision a(lda,l),b(l) 
double precision ak,akml,bk,bkml,ddot,denom,temp 
integer k,kp

1 1 1
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k = n
10 if (k .eq. 0) go to 80

if (kpvt(k) .It. 0) go to 40

if (k .eq. 1) go to 30 
kp = kpvt(k) 
if (kp .eq. k) go to 20

temp = b(k) 
b(k) = b(kp) 
b(kp) = temp 

20 continue

call daxpy(k-1 ,b(k),a( 1 ,k), 1 ,b( 1), 1)
30 continue

b(k) = b(k)/a(k,k) 
k = k - 1 

go to 70 
40 continue
if (k .eq. 2) go to 60

kp = iabs(kpvt(k)) 
if (kp .eq. k - 1) go to 50 

temp = b(k-l)
b(k-l) = b(kp) 
b(kp) = temp 

50 continue

call daxpy(k-2,b(k),a( 1 ,k),l,b(l), 1) 
call daxpy(k-2,b(k-1 ),a( 1 ,k-1), 1 ,b( 1), 1) 

60 continue

ak = a(k,k)/a(k-l,k) 
akml = a(k-l,k-l)/a(k-l,k) 
bk = b(k)/a(k-l,k) 
bkml = b(k-l)/a(k-l,k) 
denom = ak*akml - l.OdO 
b(k) = (akml*bk - bkml)/denom 
b(k-l) = (ak*bkml - bk)/denom 
k = k - 2 

70 continue
go to 10 

80 continue

k = 1
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90 if (k .gt. n) go to 160
if (kpvt(k) .It. 0) go to 120

if (k .eq. l ) goto  110

b(k) = b(k) + ddot(k-1, a( 1 ,k), 1 ,b( 1), 1)
kp = kpvt(k)
if(kp .eq. k) go to 100

temp = b(k) 
b(k) = b(kp) 
b(kp) = temp 

100 continue 
110 continue 

k = k +  1 
go to 150 

120 continue

if (k .eq. 1) go to 140

b(k) = b(k) + ddot(k-1, a( I ,k), 1 ,b( 1), 1) 
b(k+1) = b(k+1) + ddot(k-1 ,a( 1 ,k+1), 1 ,b( 1), 1) 
kp = iabs(kpvt(k)) 
if (kp .eq. k) go to 130

temp = b(k) 
b(k) = b(kp) 
b(kp) = temp

130 continue
140 continue

k = k + 2
150 continue

go to 90
160 continue

return
end

double precision function ddot(n,dx,incx,dy,incy) 
double precision dx(l),dy(l),dtemp 
integer i,incx,incy,ix,iy,m,mpl,n

ddot = O.OdO 
dtemp = O.OdO 
if(n.le.0)retum
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if(incx.eq.l.and.incy.eq.l)go to 20 
ix= 1 
iy= 1
if(incx.lt.0)ix = (-n+l)*incx + 1 
if(incy.lt.0)iy = (-n+l)*incy + 1 
do 10 i = l,n
dtemp = dtemp + dx(ix)*dy(iy) 

ix = ix + incx 
iy = iy + incy 

10 continue
ddot = dtemp 
return 

20 m = mod(n,5)
if( m .eq. 0 )  go to 40 
do 30 i = l,m
dtemp = dtemp + dx(i)*dy(i)

30 continue
if( n .It. 5 ) go to 60

40 mpl = m + 1
do 50 i = mpl,n,5
dtemp = dtemp + dx(i)*dy(i) + dx(i + l)*dy(i + 1) +

* dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 
50 continue
60 ddot = dtemp

return 
end

function fhum (epsilon,beta,delta,k,h,NT,NR) 
real*8 h(NR,NT),fpart,dt,dr,r,theta(100),pi,tstart 
real*8 epsilon,beta,delta,r 1 ,fin,ra,rb,rc,rd,thetaO 
real*8 fac,fact,tl,t2,ftot,fiium,tbreak 
integer k,i,nj,NT,NR,nstart,l,ll,12,m 
if((l.-delta)-abs(epsilon) .gt. Id-05) then 

pi=4.*datan(l ,d0) 
dr=( 1 ,-delta)/(NR-1) 
dt=2.*pi/NT 
n=int(abs(epsilon)/dr) 
r=n*dr 
rl=(n+l)*dr

fac=(abs(epsilon)-r)/(rl -r) 
c *** Integrate in theta direction first ***********************
e ******** Take care 0f  mismatch between epsilon and node ******

theta0=0.
if (epsilon .It. 0.) then
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do 22 j=l,NT,2
thetaO=h(n+1 j)+fac*(h(n+2j)-h(n+1 j))+

& 4*(h(n+1 j+ 1 )+fac*(h(n+2 j+ 1 )-h(n+1 j+ 1 )))+
& h(n+1 j+2)+fac*(h(n+2 j+2)-h(n+1 j+2))+theta0

22 continue 
theta0=theta0*dt/3. 
endif

c *** Now integrate in theta direction on radial nodes *******
c *#* g-Qjjj epsilon to 1. - delta *****************************

do 23 i=n+2,NR 
tstart=acos(epsilon/((i-1 )*dr)) 
m=int(tstart/dt) 

theta(i)=0. 
do 24 j=l,2*m,2 
l=mod(NT -m+j ,NT)

1 1 = 1 + 1
12= 1+2
if (1 .eq. 0) 1=NT 
if (12 .eq. nt+1) 12=1 
theta(i)=theta(i)+h(i,l)+4*h(i,l 1 )+h(i,l2)

24 continue
c *** Take care of mismatch in limits of theta and nodes ***

tl=m*dt 
t2=(m+l)*dt 
fact=(tstart-t 1 )/(t2-t 1)
tbreak=(2*h(i,49-m)+fact*(h(i,48-m)-h(i,49-m))+2*h(i,m+1)+

& fact*(h(i,m+2)-h(i,m+l)))*dt*fact/2.
theta(i)=theta(i)*dt/3 ,+tbreak

23 continue 
fpart=0.
if ( n+2 .le. NR-2) then 

c **** Use 3/8 simpson's rule for odd number of intervals *****
if (mod(NR-2-n,2) .eq. l)then 
ra=(n+l)*dr 
rb=(n+2)*dr 
rc=(n+3)*dr 
rd=(n+4)*dr 
nstart=n+5
fpart=(theta(n+l)*ra*(beta-ra**k)+3*theta(n+2)*rb*(beta-rb**k) 

& +3*theta(n+3)*rc*(beta-rc**k)+theta(n+4)*rd*(beta-rb**k))
& *1.125

else
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fpart=0.
nstart=n+2
endif
do 25 i=nstart,NR-2,2 
ra=(i-l)*dr 
rb=(i)*dr 
rc=(i+l)*dr
fpart=fpart+theta(i)*ra*(beta-ra* *k)+4*theta(i+1 )*

& (rb) *(beta-rb * * k)+theta(i+2) *rc*(beta-rc* *k)
25 continue

fpart=fpart*dr/3.
else if (n+2 .eq. NR-1) then
ra=(n+l)*dr
rb=(n+2)*dr
fpart=(theta(n+3)*rb*(beta-rb**k)+theta(n+2)*ra*(beta*ra**k)) 

& *dr/2.
endif
ra=(n+fac)*dr
rb=(n+l)*dr
fpart=fpart+(theta(n+2)*rb*(beta-rb**k)+theta0*ra*(beta-ra**k)) 

& *(rb-ra)/2.
fin^O.
if (epsilon .It. 0) then 
do 30 i=l,n 
theta(i)=0.

do 31 j=l,NT,2 
theta(i)=2*h(i,j)+4*h(i j+ 1 )+theta(i)

31 continue
theta(i)=theta(i)*dt/3.

30 continue
if (n .ge. 2) then 
if(mod(NR-l-n,2) .eq. l)then 
fin=(theta(2)*dr*(beta-(l *dr)**k)

& +theta(3) * 2 * dr * (beta-(2 * dr) * * k)+theta(4) *
& 3*dr*(beta-(3*dr)**k))* 1.125

nstart=4 
else
nstart=l
endif
do 35 i=nstart,n-l,2 
ra=(i-l)*dr 
rb=i*dr 
rc=(i+l)*dr
fin=(theta(i)*ra*(beta-ra**k))+4.*(theta(i+l)*rb*(beta-rb**k))

& +theta(i+2)*rc*(beta-rc**k)+fin
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35 continue 
endif
fin=fin*dr/3.+(theta(n+l)*n*dr*(beta-(n*dr)**k)+theta0* 

& (n+fac)*dr*(beta-((n+fac)*dr)**k))*(fac)*dr/2.
endif
fpart=fpart+fin 

c **** Compute total particle flow ******* 
ftot=0.
do 45 i=l,NR 
theta(i)=0. 
do 46 j=l,NT,2
theta(i)=2*h(ij)+4*h(ij+l)+theta(i)

46 continue 
theta(i)=theta(i) *dt/3.

45 continue
do 47 i=l,NR-l,2 
ra=(i-l)*dr 
rb=(i)*dr 
rc=(i+l)*dr
ftot=theta(i)*ra*(beta-ra**k)+4*theta(i+l)*rb*(beta-rb**k) 

& +theta(i+2)*rc*(beta-rc**k)+ftot
47 continue 

ftot=ftot*dr/3. 
fhum=fpart/flot
else if (epsilon .It. 0) then
fhum=1.0
else
&um=0.0
endif
return
end

subroutine rot(h,ga,nj,ni,hl)
double precision h(49,-l :48),hl(49,-l :48)
integer nj,ga,ni,Lj jnJo,dth
do 1000 i=l,ni+l
do 1010j=0,nj-l
dth=2*ga/15
if (j .It. dth) then
jo=nj+j
else
jo=j
end if
jn=jo-dth
hl(i,jn)=h(i,j)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1010 continue 
1000 continue 

return 
end

subroutine rerot(h,ga,nj,ni,hd)
double precision h(49,-l:48),hd(49,-l:48)
integer nj,ni,gajn
do 10 i=l,ni+l
do 20 j=0,nj-l
jn=j+2*ga/15
if (jn ge. nj) then
jn=jn-nj
end if
hd(ijn)=h(ij)

20 continue
10 continue

return 
end
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APPENDIX B

IN VIVO DATA

The following in vivo data is provided by Frame [56].

Table B-l The experimental data for vessel diameter and unbranched vessel segment.
Vessel Diameter (pm) Unbranched Vessel Segment (pm)

22.66 152
23.01 533
33.25 114
46.35 667
46.41 114
39.21 324
36.77 171
46.28 333
41.65 105
46.14 257
29.47 714
25.91 190
31.2 886

25.22 76
25.37 171
38.57 390
33.55 714
43.77 321
51.98 221
21.41 238
59.46 286
53.31 429
39.94 905
21.99 714
43.74 57
28.43 238
30.88 543
28.54 124
37.26 171
37.65 333
37.44 267
27.24 57
21.82 152
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22.72 105
30.75 457
40.78 257
32.43 95
42.89 67
37.42 429
27.19 114
24.62 86
32.62 457
31.63 381

50 210
47.61 638
31.55 257
25.38 219
31.59 705
34.09 571
34.83 381
28.75 152
26.78 552
28.24 152
38.36 248
29.56 152
26.66 124
37.04 321
25.71 221
55.92 286
49.19 429
20.05 286
22.37 238
21.1 333
21.64 619
31.89 124
31.17 600
20.18 48
20.73 171
33.25 114
31.75 210
46.92 667
49.78 114
25.69 324
27.54 333
27.44 743
26.28 171
22.05 714
21.35 267
23.12 114
23.89 86
31.1 457

28.94 381
27.94 210
27.45 181
32.37 57
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APPENDIX C

IN  VITRO DATA

The experimental data shown was collected by Carr and Wickham [35]. LI, L2 

and L3 are the collection lengths, mm. Al, A2 and A3 are the collecting tube cross- 

section area, mm2. Tl, T2 and T3 are the time for collecting blood in tube I, 2, and 3, 

second. HI, H2 and H3 are the discharge hematocrit for branch 1, branch 2 and branch 

3 respectively. Dt is vessel diameter, pm. Hf is the feeding hematocrit. Z is the distance 

between two bifurcations, mm. Figure c. 1 shows the schematic of experiment for serial 

bifurcations.

Blood Flow In 

1

Collection Tube 1

Collection Tube 2

Collection Tube 3

Figure C-l The schematic of experiment for serial bifurcation.
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