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ABSTRACT

MODELING OF THE ELECTROMAGNETIC RADIATION 
FROM SHIELDED ENCLOSURES WITH APERTURES AND 

ATTACHED WIRES 
IN A REAL-WORLD ENVIRONMENT

by

Bruce Archambeault 
University of New Hampshire. May 1997

A hybrid modeling technique using the Finite-Difference Time-Domain (FDTD) approach in conjunction with 

the Method of Moments (MoM) approach was developed to allow simulation of electromagnetic interference 

(EMI) emissions through apertures due to sources within a shielded enclosure. These apertures can include air 

ventilation openings, option card slots, mating cover seams, or any other opening in the metal shielded 

enclosure. Modeled emission results can now be directly compared to U.S. and other countries’ regulations to 

allow engineers to predict compliance before hardware prototypes are built. The effects of the test 

environment, including ground plane and specified measurement distance, as well as configuration 

requirements, such as long attached wires, are included and result in more accurate models of the real-world 

environment than previously possible.

The first stage of the hybrid technique uses the FDTD approach to model the source within the shielded 

enclosure and to find the electric fields within the aperture or apertures. The sources within the enclosure 

include printed circuit board traces, internal wires and cables, and discrete devices, such as integrated circuits 

and heatsinks. Errors in the aperture fields at low frequencies due to limitations in the FDTD absorbing 

boundary conditions are then corrected using an extrapolation technique. Once the electric fields within the 

aperture are known, they become the source for the second stage of the hybrid technique. This second stage 

uses MoM to find the external fields while including the effects of long attached wires, ground planes, and a 

distant receive location. The results from the second stage can then be compared to the various regulator}’ 

agency requirements.

xii
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CHAPTER 1

INTRODUCTION

1.1 Background

In 1981. the Federal Communications Commission (FCC) established limits on the strength o f 

electromagnetic radiation allowable from computing devices sold in the United States. [1] In the 

past few years, various other countries have developed similar standards, mostly to control these 

devices' potential to interfere with data communications systems, broadcast radio and television, 

and emergency systems. The European Community has recently standardized these requirements 

in Europe, and expanded them to include not only computing devices, but nearly every' product 

containing digital electronics [2],

The result o f these various regulations is that all manufacturers, not only computer manufacturers, 

must pay close attention to the electromagnetic interference (EMI) levels that their products 

produce. Pressures to shorten design cycle times, reduce product costs, and meet EMI regulations 

has served to increase the interest in using modeling and simulation to help ensure optimum 

hardware designs. An optimum design will ensure only required EMI features are included, since it 

is no longer acceptable in industry to simply use excessive shielding, costly filters, small aperture 

air vents, and other such fixes to meet EMI regulations.

1
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If sufficient computer resources (memory and speed) were available, the entire problem could be 

modeled using the Finite-Difference Time-Domain (FDTD) approach. Unfortunately, due to limits 

in computer speed and memory, present modeling capabilities are not even close to the point where 

a complete design layout can be entered into a EMI modeling application, all the various 

components included, and a pass/fail estimate be obtained. However, modeling and simulation have 

been used in the past for specific aspects of the overall problem, such as shielding of apertures and 

slots, radiation from cables, and radiation from simple printed circuit boards. Although these 

various models can help the EMI engineer by providing additional understanding into the nature of 

the electromagnetic phenomena, it often gives too little information about the overall system 

performance to be used in assessing whether or not the final product will pass the emissions 

requirements.

Typically, electromagnetic radiation testing is performed as a system, that is, all the various parts 

that are generally used together must be tested together. In the case of a most personal computers, 

this would include the computer system box, monitor, keyboard, mouse, and printer. Also, any 

other cables that might be connected to the units must be included, for example, modem cables, 

speaker cables, etc.

Measurements to test for regulatory compliance are performed over a ground reference plane, with 

all the equipment placed on a wood table 80 cm high. The radiated emissions are measured at a 

distance 10 meters away from the equipment under test (EUT) while it is rotated 360 degrees and 

the receive antenna is scanned vertically from one to four meters above the ground reference plane. 

[1][2] All interconnecting cables for the device being measured are to be positioned for maximum 

radiation. Results generated by existing models have been of limited use because they have not 

been able to effectively account for cables or the test environment. Consequently, these models

2
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have not been able to provide crucial pass/fail estimates of equipment performance against the 

regulatory standards.

The work presented here focuses on modeling the entire problem, that is, the radiation from a 

source within a shielded enclosure, the coupling of that energy to the outside via apertures in the 

enclosure, the effect of wires connected nearby those apertures, and the test environment itself. 

Because of the complex nature of the problem, it is impractical to accurately model this problem 

without using multiple modeling stages and different modeling approaches. The method to be 

presented here makes possible the modeling of configurations that were previously considered 

impractical. This method also makes possible direct comparisons of the simulation results to the 

regulatory limits to predict pass/fail of the device.

1.2 Practical EMI/EMC Problem and Test Environment

Although there is a large number of different types of products that must meet EMI/EMC 

regulations, most fall into the general class of products with shielded enclosures containing 

apertures and having long wires attached to the enclosure1. Plastic enclosures are often shielded 

either by a metal internal coating or by metal fragments imbedded in the plastic during the molding 

process. Computer products, consumer electronics products, and communications devices all fit 

this category.

1 Note: the attached wires are assumed to be connected to the enclosure shield, and are not in the aperture 
itself. Although wiring connectors can be modeled as an aperture with a wire through it, experience has 
shown that conducted emissions along the wire/connector are a more important concern in those cases. 
This effort focuses on radiation through apertures (without wires). Since all exiting wires are
intentionally capacitively decoupled to the shielded enclosure for EMI control reasons, they can be 
modeled as being physically connected to the shielded enclosure.

3
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The source of the radiated emissions is usually a high speed (fast rise time) clock or data signal on 

the printed circuit board within the shielded enclosure. The source creates a complex electric and 

magnetic field structure within the enclosure. Some of this energy ‘leaks’ out through the apertures 

(e.g. air vents, slots between option cards, shielded enclosure seams) and creates RF currents on 

the outside of the shielded enclosure. These currents are then distributed over the entire outside 

structure (including wires, cables, etc.), and radiate into the outside environment. The fields are 

then measured 10 meters away in the presence of a ground reference plane, as described earlier.

The products under test typically have long wires attached to different connectors (power cords, 

modem lines, printer cables, etc.) which will greatly affect the radiated emissions from the product. 

RF currents that have leaked out from an aperture and are on the outside of the metal shield will 

couple onto the wires and cables. The wires will greatly increase the effective aperture of the 

'antenna' (the equipment under test or EUT) since the overall size of the EUT with wires is 

typically increased by more than an order of magnitude by the presence of the wires. Experience 

has shown that products without attached cables and wires can more readily achieve EMI 

regulatory compliance. The test standards require that every type of port/interface must be 

connected to the correct cable or wire, and the cables and wires must be positioned to ensure 

maximum radiated emissions. Furthermore, the EUT must include all equipment typically included 

in system configurations (e.g. computer, printer, keyboard, mouse, monitor, etc.). Figure 1.1 

shows a t\pical example of such a computer product with cables. This is a difficult modeling task. 

Including the test environment makes this modeling task even more difficult because the interaction 

between the ground reference plane and the EUT must be taken into account.

4
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1.2.1 Partitioning the Problem into Solvable Modules

Using contemporary computational technology and techniques, there is no practical way to model 

the entire problem described above with a single model. Earlier work has been performed that 

successfully models certain aspects of the overall problem, (e.g. radiation from printed circuit 

boards (PCB) with a microstrip near a reference plane edge [3][4], PCB via’s [4], decoupling 

capacitor placement [5], or shielding through apertures [6][7][8][9][10]), but because these efforts 

have addressed only specific facets of the overall problem, they were not adequate to predirt 

compliance with regulatory' standards. For example, in both [3] and [4], emissions from an 

unshielded printed circuit board (PCB) with a microstrip was modeled. No attempt to include a 

shielded enclosure with apertures was made. In [6][7][8][9][10] emissions through apertures in a 

infinite metal sheet were modeled, but no attempt was made in these previous studies to include a 

PCB as the source, nor to include the required measurement environment. These studies were 

useful to help understand specific phenomena, but did not include all the parts of the overall 

problem to allow for comparison to the regulatory limits.

The focus of this dissertation is the development of a hybrid technique to model much more of the 

overall problem than has been previously possible. The strengths of the two modeling approaches 

implemented in the hybrid technique allow a source, a shielded enclosure with apertures, and the 

required measurement environment. Thus the results of the overall problem can now' be compared 

to the regulatory limits for pass/fail analysis. Other internal features, such as partial shielding 

walls, extra cables, etc. can be included as required. This hybrid technique uses the Finite- 

Difference Time-Domain (FDTD) method to model the source and the inside of the shielded

5
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10  NONCONDUCTIVE
EUT TABLE 1.5 X 1 METER

10

U F  ̂ 8 0  cm TO 
\  GROUND PLANE

4 0  cm

©

Figure 1. 1 Real World EMI Emissions Test Environment

enclosure, including the effects of the apertures. The Method of Moments (MoM) approach is 

used to model the outside of the shielded enclosure, including attached wires, and the test 

environment.

Modeling the source within the enclosure is a difficult problem. Due to memory and processor 

speed limitations in contemporary computers, approximations must be made when modeling 

components within the enclosure. The high speed traces, bus traces, or CPU heatsinks are 

typically considered the most important EMI sources, and are modeled as relatively simple wire

6
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sources (without all the detail of the true printed circuit board). Depending upon the design, 

separate models might be used to determine the primary’ emission sources on a printed circuit 

board, and then the circuit board is reduced to a simple model with only that source. In order to 

demonstrate this technique, a PCB edge is assumed to be in close proximity to an enclosure 

aperture. It has been shown [3] that RF currents along an edge of a PCB reference plane due to 

microstrip or stripline currents are equivalent to a thin wire (replacing the PCB edge) with a dipole

like current distribution. This is assumed to be the worst case EMI source, but other sources can 

also be used. The hybrid technique is not dependent on a given source type. The power of this 

technique allow s sources to be modeled as needed. In this dissertation, a simple wire with a current 

on it is used as the initial source. Simplifying the complex PCB source into a wire with a current 

has been shown through practical use to provide good first-order results [3][11][12].

Once the source model has been developed, the next problem is to correctly model the amount of 

energy leaking through the apertures in the shielded enclosure due to the fields within the shielded 

enclosure. For example, the rear panel of a computer enclosure typically has openings which 

appear as large electromagnetic apertures, often 10 cm long with wires attached nearby.

In order to achieve the necessary model accuracy, it is not sufficient to model the aperture alone, or 

even an aperture with a wire in close proximity, but the complete test environment must be 

included as w ell. Although Figure 1.1 shows a number of different interconnected shielded 

enclosures, single enclosure products are often tested alone. For the purposes of this study, the 

problem in Figure 1.1 is restricted to a single shielded box, with apertures and wires attached to the 

enclosure, placed over a ground plane, with the measuring antenna 10 meters away. The intent here 

is to demonstrate that the hybrid model can be used to effectively model leakage through apertures 

in an enclosure in the presence of the standard test environment. The cases presented here are

7
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intentionally canonic in nature, although in practice more-complex configurations involving 

multiple enclosures can be modeled using this technique.

1.3 Description of the Thesis

This work is divided into four parts. The first part of this dissertation, contained in Chapters 1 and 

2. is devoted to examining the problem to be solved, the various modeling approaches available, 

and their limitations when applied to this problem. Chapter 1 describes the real-world application, 

and evaluates the basic strengths and limitations of each different modeling approach in this basic 

application. Chapter 2 presents a short discussion on previous modeling efforts for apertures.

The second part of the dissertation, (Chapters 3 through 5), is devoted to the FDTD approach. 

FDTD is used as the 'first stage' modeling approach. That is, it is used to find the electromagnetic 

fields within the aperture(s) due to a source within the shielded enclosure. This first stage models 

the inside of the enclosure, including the source and the aperture(s) and can include the complex 

internal structure, if desired. Fields in the aperture(s) are used later in the Stage Two models to 

find the fields outside the enclosure. Chapter 3 serves as an introduction to the FDTD approach, 

including limitations due to the Absorbing Boundary Conditions (ABC) used by FDTD. Chapter 4 

shows the results of a study of aperture(s) using FDTD. Chapter 5 discusses techniques to 

compensate for errors in the fields within the aperture which may occur at low frequencies when 

certain constraints are violated in the FDTD approach (and therefore is of interest for many EMC 

applications).

The third part of the thesis. Chapter 6, describes the MoM approach. The MoM approach is used 

as the second stage modeling technique. It is used to find the electromagnetic fields outside the

S
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enclosure (including long wires attached and over a ground plane, etc.) due to the electromagnetic 

field within the aperture(s). Chapter 6 serves as an introduction to MoM and its application to 

modeling enclosures.

In the fourth and final part of the dissertation. Chapter 7 validates the use of the simplified source 

used in the stage two MoM aperture models by comparing results from similar FDTD models. 

Chapter 8 gives a detailed description of how to apply this hybrid technique to aperture problems 

for users who wish to implement this hybrid technique. An example is given which presents the 

entire hybrid model, where the inside of the enclosure is modeled using FDTD. and the outside of 

the enclosure is modeled using MoM. Results are presented for increasingly complex 

configurations thus demonstrating the utility of this hybrid approach.

1.4 Modeling Approaches

There is no closed-form solution technique which can solve the problem described above, leaving 

numerical approaches as the only practical solution approach. Two proven methods are the MoM 

approach and the FDTD approach. Each of these approaches are briefly described here as an 

introduction to their theory of operation. Greater detail in each modeling approach is given in 

Chapters 3 and 6.

1.4.1 The Finite-Difference Time-Domain (FDTD) Method

The FDTD approach has become very popular over the last 10 years for EMI applications. FDTD 

is a volume-based approach, where the volume of space containing the problem is partitioned into 

small cubes, and Maxw'ell's equations are solved directly using a central difference scheme. (See 

Chapter 3 for more details.) The electric and magnetic fields are solved directly using a leapfrog

9
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approach, where the field components are offset in time and space to ensure greater accuracy in 

approximating their derivatives.

FDTD is well suited for shielding applications with apertures. However, it is not practical for 

applications with long wires (long with respect to the wavelength), or applications with long 

distances between the source and the measurement location because of the amount of computer 

memory required. Since the entire volume must be partitioned into small cells, the memory 

requirements w ould far exceed contemporary computer resources if long wires or long distances 

were to be included.

Part of the overall problem can be modeled using FDTD; FDTD will be used to model the source 

inside the enclosure and to find the fields in the aperture due to the source inside the enclosure.

The inside of the enclosure can be as complex as necessary, and can include partial internal 

shielding walls, compartments, and whatever other features are important.

1.4.2 Method of Moments

The Method of Moments is a commonly used frequency-domain approach whereby the RF currents 

are found everywhere on a metal structure due to a specified source (see Chapter 6 for more 

details). Once the currents are known, the radiated fields can be found by summing the 

contribution from each current element. Since only the external structure is modeled (rather than 

gridding all the volume around the shielded box, as with FDTD), MoM is very useful for 

applications with long wires. MoM is also very useful for applications with appreciable distances 

to the observation point. However, MoM is not appropriate for problems involving leakage through 

apertures, since the currents are assumed to be constant everywhere on the segments, which is not

10
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true in cases with metal shields (the current on the outside is different than the current on the

inside).

MoM is useful for modeling sources within the aperture and so part of this problem can be 

modeled using MoM. The long wires on the outside of the shielded box, and the measurement 

distance of 10 meters can be readily included in MoM. However, the leakage through the 

aperture(s) can not be modeled in MoM.

1.5 Hybrid Technique

Because no single modeling technique can be used to solve the entire problem, a hybrid technique is 

required. In the hybrid technique addressed here, both the FDTD and MoM approaches are used. 

These two approaches have been successfully used together in the past for shielded-cable problems 

[13], but did not include shielded enclosures, or long measurement distances. In this work, the 

FDTD approach is used to model the source within the shielded box and the fields in the aperture. 

The fields in the aperture (found by FDTD) are then used as a source for the external model, which 

is a MoM model accounting for the effect of extra wires, the presence of a ground plane and long 

measurement distances.

1.6 General Approach to Developing a Hybrid Model

In developing the hybrid model presented here, a number of studies were performed to ensure that 

neither FDTD nor MoM produced anomalous results when modeling apertures. The first such 

study was to investigate how well FDTD modeled fields in an aperture, and to determine the 

sensitivity of modeled field distribution to source distance, illumination angle, and the presence of 

other apertures. That investigation, presented in Chapter 4, shows that the fields in the aperture

11
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are relatively insensitive to variations in the aforementioned parameters provided that frequencies 

are at or below the first resonance frequency of the aperture. This constraint should not pose a 

limitation for most EMC applications since the first resonance o f most enclosure openings are 

typically well above frequencies that are present in contemporary devices.

That first study also showed that FDTD can induce errors at lower frequencies when the distance 

in wavelengths from the aperture to the absorbing boundary condition becomes small. A simple 

theoretical means for compensating for this error is presented in Chapter 5.

Since MoM is used to model fields on the outside of the enclosure in the hybrid model, another 

study was performed to verify- that MoM-modeled fields in the aperture are the same as FDTD- 

modeled fields in the aperture. As expected, the field distribution in the aperture was nearly 

identical for both models, indicating that the hybrid approach is viable. This finding is used to 

facilitate the implementation of the hybrid technique. Specifically, the FDTD modeled electric field 

in the center of an aperture, determined in the first stage of the hybrid model, is used as the 

excitation source in the center of the aperture for the MoM model in the second stage. This 

simplifies the modeling process, since only the field values at one location needs to be stored for 

each aperture in the problem space. Details of this implementation are given in Chapter 8.

12
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CHAPTER 2

TRADITIONAL APERTURE MODELING EFFORTS

2.1 Introduction

Apertures in metal shields have created an EMI problem since they are a primary means by which 

interference can leave an enclosure. The analysis of the amount of electromagnetic fields leaking 

through the apertures has been the subject of study ever since the wavelength of the clock 

frequencies and its harmonics have approached the size of the enclosure apertures. This chapter 

will present a brief review of the traditional approach to calculating the shielding effects of these 

apertures.

2.2 The Surface Equivalence Theorem

The surface equivalence theorem [14] is probably the best known and most commonly used general 

approach for determining emissions from apertures. It represents the actual source (for example, 

an antenna and a transmitter) by replacing it with equivalent sources. These new sources are said 

to be equivalent within a region since they produce the same fields as the actual sources within that 

region. The surface equivalent theorem is based on the uniqueness theorem which states that "a 

field in a lossy region is uniquely specified by the sources within the region plus the tangential 

components of the electric field over the boundary, or the tangential components of the magnetic 

field over the boundary, or the former over part of the boundary' and the latter over the rest of the 

boundary." [15]

13
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The fields radiating through an aperture in an enclosure may be calculated by placing suitable 

electric and magnetic currents over the entire surface, satisfying the boundary condition 

requirement of the tangential electric field equals zero along perfect conductors. The currents on 

an imaginary closed surface are selected so the fields inside the closed surface (box) are zero (thus 

exactly matching the tangential fields at the closed surface) and the fields outside the closed surface 

are the same as those created by the actual sources within the closed surface. Thus this technique 

can be used to find the fields radiated outside an enclosure by sources inside the enclosure.

To use the approach, the tangential fields must be known in the aperture. This is fairly 

straightforward when a plane w ave is the source, or in the case of a waveguide structure as shown 

in Figure 2.1a. In this example, the closed surface is represented by metal plate extending to 

infinity. By selecting the closed surface to correspond with the surface of a metal plate the 

tangential electric fields are known to be zero over most of the plate (except in the aperture). The 

original problem is replaced by an equivalent problem by removing the metal plane, and assigning 

the equivalent electric and magnetic surface currents to the aperture and the metal areas. (See 

Figure 1.1b) The equivalent magnetic current density Ms in the aperture is given by equation 2.1. 

The magnetic current density elsewhere will be zero, since the tangential electric field along the 

metal surface will be zero.

M s =  -n  x E, (2.1)

Now an imaginary flat electrical conductor is placed over the surface and shorts out the electric 

current density everywhere. The magnetic current density M, exists only in the area previously

14
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occupied by the aperture, and it radiates in the presence of the conductor. (See Figure 2 .1c.) By 

image theory, the conductor can be removed and replaced by an imaginary (equivalent) source Ms? 

as shown in Figure 2.Id. Finally, this equivalent problem reduces to the problem shown in Figure 

2. le (that is the magnetic current density is doubled), and standard formulas can be used to find the 

radiated fields from the equivalent sources.

This approximation approach is appropriate for applications where the tangential fields are well 

defined [16][17][18][19][20][21]. as in this waveguide example. However. EMI/EMC 

applications seldom have well behaved fields, such as plane waves. Finding the fields in the 

aperture with a true EMI source in close proximity to the aperture (non-far field source) is a 

difficult problem unless numerical techniques are used. (See Chapter 4.)

Js
M s

2  Js=0 o
Ms

o , o  2 M s

(a) (b) (c) (d) (e)

Figure 2. 1 Equivalent Models for Aperture in Infinite Plate
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2.3 Closed Form Approaches

There are examples in the literature [15] describing the effect of apertures using closed-form 

expressions. These efforts all make the assumption that the fields entering the aperture are plane 

waves. Although these solutions can be used for many electromagnetic applications, they are not 

particularly useful for EMI problems.

2.4 Summary

Emissions through an aperture in a shielded enclosure, due to sources within the enclosure, can be 

found once the fields in the aperture are known. Finding the fields within the aperture is difficult in 

EMI/EMC applications since the source geometry' within the enclosure is complex and electrically 

close to the aperture. The next chapter describes how the FDTD modeling approach can be used to 

determine the fields in the aperture due to sources within the enclosure.

16
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CHAPTER 3

INTRODUCTION TO THE FINITE-DIFFERENCE 

TIME-DOMAIN TECHNIQUE

3.1 Background

The Finite-Difference Time-Domain (FDTD) technique is a direct solution method for Maxwell's 

time-dependent curl equations. FDTD is straightforward to implement on a computer, and 

possibly more importantly, it is simple to understand and use. while being extremely powerful. It 

was originally introduced by Kane Yee in 1966 [22] but was not widely used until after 1975 when 

Talfove published the first validated FDTD models of sinusoidal electromagnetic wave penetration 

into a three-dimensional metal cavity [23], Since 1986. FDTD has been extensively used for a 

wide range of applications involving electromagnetics.

3.2 The Basics of FDTD

As stated above. FDTD is based directly on Maxwell's curl equations (3.1).

d D  
V x H  = J  + —  

d t
S B  (3”
~dt

Although the FDTD equations are fully capable of handling materials with volume dielectric 

displacement currents (J in 3.1). the application of interest in this work is either free space or 

perfect electrical conductor (PEC). Therefore, since there is no dielectric material and this J term 

will be always zero in these materials, it is removed to make the explanation of FDTD clearer.
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3.2.1 One-dimensional FDTD

The three dimensional Maxwell’s equations can be converted to a one-dimensional case to 

introduce FDTD in (3.2). Simply stated, the spatial change in magnetic field at a point in space is 

equal to the change in the electric flux density with time; and the spatial change in electric field at a

dH__dD_ 
dx di
dE dB K }
dx dt

point in space is equal to the change in the magnetic flux density with time (ignoring the permitivity 

and permeability for a moment). Converting these differential equations into central-difference 

equations (3.3)(3.4), creates a simple set of linear equations. When the terms are rearranged,

H ” - H ” E T ' - E "
- . - • = * -  A— ■ (3-3)Ax A/

Ax At

where: i denotes position in space 

n denotes time

the equations now provide a solution to the ‘new’ value of the electric field, based upon the ‘old' 

value of the electric field at that same point, and the difference of the magnetic fields on either side 

of it (3.5). The 'new' value of the magnetic field, based upon the ‘old' value of the magnetic field 

at that same point, and the difference of the electric fields on either side of it (3.6).

e ; - ' = e : + - ^ ( h ;  -  h ;_) o . »
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(3-6)

In order to maintain accuracy when converting from differential equations to central difference 

equations, the spatial position where the central difference is taken is the center between the 

alternate positions. Figure 3.1 shows the alternating positions of the electric and magnetic fields in 

space. The distances between adjacent electric or magnetic field points must be small, that is, the

E (i-2) E(i-1) ^i) E 0+1)
A A  A  A

H(i-2) Hq-1)

Figure 3- 1 One Dimensional FDTD Grid

fields must not vary rapidly between adjacent points. A normal rule-of-thumb is to require the 

FDTD grid size to be no larger than 1/10* of the shortest wavelength. For cases where extreme 

accuracy is required, grid sizes of 1/20* the shortest wavelength are typically used. Since the 

electric and magnetic fields are not found at exactly the same point, the time when they are 

calculated must be slightly different as well. Typically, the time calculation for the electric fields is 

specified at +/- Vi time increment. So equations (3.5) and (3.6) become:

’ + - £ L ( h ; - H ^ )  (3.7)

H r  = n ; + - £ ~ ( E r ' ■ - £ $ " )  a s )
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3.2.2 Two-dimensional FDTD

When the above formulation is expanded into two dimensions, there will be three fields to solve, for 

example: either Ex, E>. and Hz or Hx, Hy, and Ez. A typical two dimensional FDTD grid is shown 

for the TM case in Figure 3.2. (Although the TM case is shown here, the TE case can also be 

used.) Note the same basic conditions apply, that is, the ‘new* value o f the magnetic field (Hz, 

where 'z is out of the page) is dependent on the ‘old' magnetic field at that point, and the 

difference between the Ex components on either side of it, and the difference between the E, 

components on either side of it.

Figure 3- 2 Two Dimensional FDTD Grid

As before, the 'new' value of the electric field is found from the ‘old* value of electric field at that 

point, and the difference between the magnetic fields on either side of it. The FDTD two-
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dimensional equations are given in (3.9). (3.10) and (3.11) for this case, but the opposite case with 

Ez. Hv. and Hs can easily be found as well.

3 .2.3 Three Dimensional FDTD

The above FDTD expressions can be expanded into full three dimensions (as used in this effort). 

Although difficult to draw many 3-D cells, a single cell is shown in Figure 3-3. The three electric 

fields are found along the axis, while the magnetic fields are found in the center of the face of the 

cube Although the example in Figure 3-3 is a cube, the shape of the FDTD cell can be any 

rectangular shape. Typically, the aspect ratio of the 3-D FDTD cell is kept to 3:1 or less.

The basic operation of FDTD remains the same as earlier, that is, the 'new' electric field E* is 

found from the old' electric field Ex, and the difference between adjacent Hz fields and the 

difference between adjacent Hv fields. Similar descriptions apply for the other five fields. 

Equations (3.12) through (3.17) show the simplified three dimensional FDTD equations.

(3.9)

(3.10)
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Ez

Hx

Hz
Ex

Figure 3- 3 Three Dimensional FDTD Cell

+  A,  [Eyu.j'it)  (3 .12)A://

Af

Ay//

A/
Hyrj.ki -  Hyu.j.k, + ^^{EzO.j'lc) £•(.-!.7.*)) (^O M ) ^xO.M-l)) (3 13 )

r r « - i  — r r n  , .
*!i t tr 1 ”  ** ?n  1 m

— ( F"n~l ~ — /T"*1- \ ^  (t?'1*1-   ZT'1*1 -
-i! “  “ : u . j . k )  ‘ A y / / ^  ’ * ( '. / " •  •* ) / < 3 1 4 >

i! j "11 “  ^yU.i'k)  +  A r f  K . , * ,  ”  ^ 1>) "  ~  (3-16)

e ; ’ v, * , , - r * , u .) o .it )
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3.3 Stability Conditions

The size of the FDTD cell must be set to be electrically small (small compared to the shortest 

wavelength) to satisfy the linearity assumption when converting from the derivative to central- 

difference equations. However, the size of the time step must also be small to ensure stability. 

The limit of the size of the time steps is given by the Courant Stability Condition [27] in equation

Since equation (3 .18) uses c (the speed of light) it sets the maximum time step for free space. For 

applications where the speed of propagation is less than c (for example in a dielectric), then the 

slowest propagation velocity must be used instead of c in (3.18).

3.4 Absorbing Radiation Boundary Conditions

One important use of FDTD is in geometries with 'open' regions where the spatial domain of the 

computed field is unbounded in one or more coordinate directions. Clearly, no computer can store 

an unlimited amount of data, and so the computational domain must be limited in size. Although 

the computational domain must be large enough to enclose all the physical features of the model, it 

must be small enough to allow reasonable calculation times.

Since there is a limit to the size of the computational domain, there must be some boundary 

condition to ensure there is no non-physical (and unwanted) artificial reflection from the edge of the

(3.18).

1
(3.18)
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computational domain. As is seen in Figure 3.1 and equations 3.5 and 3.6. the 'new* electric field 

value at any point is found by using the 'old* electric field values, and the difference between the 

magnetic fields on either side o f  that point. However, at the edge of the computational domain 

there is no magnetic field outside the electric field on the boundary, and some other means to find 

this outer electric field is needed. It is not correct to simply set fields outside the computational 

domain to zero, since this would effectively place a perfect electrical or magnetic conductor along 

the boundary (depending upon which field is set to zero). Therefore, an absorbing boundary 

condition (ABC) is needed to simulate free space to approaching fields to ensure they do not reflea 

from the edge of the computational domain.

The simplest ABC would be to force the far-field relationship in (3.19) and find the outer electric 

fields

£  = 120*-// (3.19)

from the magnetic fields and the wave impedance of free space. This is not practical, since the 

knowledge of the magnetic fields is not known at the point where the electric field is needed. Some 

other means to find the outer value of the elearic field is needed.

Quite a number of different ABC’s have been proposed in the literature. Some are better than 

others, that is. less error (apparent artificial reflection), and some take more processing resources 

than others. The most popular ABC's in use today are the Mur [24], Higdon [25], and Liao [26] 

ABC"s. Comparisons between these and others can be found in the references [27][28], and are 

not be repeated here. All these ABC's operate correaly when the approaching fields are 'far-
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fields', that is. the relationship between E and H is as shown in equation 3.19. The amount of error 

(unwanted reflection) increases dramatically w’hen the far-field condition is not maintained.1 This 

results m so-called ’white space' around the model elements of interest to ensure the far-field 

condition is met. The white space is typically l^ *  lambda at the longest wavelength of interest 

(since this distance is commonly used as the distance where the far-field condition exists between 

the E and H fields). This results in much larger computational domain (to include the necessary 

white space) than is required for simply the model itself.

3.5 Summary

The FDTD technique is a fairly simple and straightforward technique, but very powerful 

nevertheless. FDTD solve Maxwell's curl equations by converting them to central difference 

equations, and solving the electric field and magnetic fields in leap-frog fashion.

The above description is intended to provide a general review- of the FDTD technique. The reader 

is encouraged to use [27] and [28] for further reading of the FDTD technique.

1 All ABC's require the far-field relationship between the electric field and the magnetic field 
except the recently developed ABC's by Ramahi [29][30] and Berenger [31].
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CHAPTER 4

STAGE ONE MODEL USING FDTD

4.1 Introduction

As stated in the introduction, the first stage of the hybrid model is to estimate the fields in the 

aperture of an enclosure using FDTD. The second, and final, stage of the hybrid approach is to 

use the fields found in the first stage as the excitation source for an MoM model to enable the 

modeling of fields outside of the enclosure. In order for the hybrid approach to be valid, the 

aperture field distribution modeled by FDTD in stage one must be the same as the field distribution 

modeled by MoM in stage two. The objective of this chapter is to present FDTD modeled data 

showing field behavior in an aperture and its sensitivity to source geometry and frequency. A 

similar study of MoM-modeled fields in an aperture, presented in Chapter 7, shows that the field 

distribution for both techniques is nearly identical.

4.2 Characterizing Aperture Field Distribution using FDTD

FDTD has been shown to correctly model radiation through an aperture in earlier studies (e.g.,

[23] and [32]). although little attention has been paid to the fields within the aperture. Further, 

earlier work did not investigate sources in very close proximity to the aperture, a condition that will 

exist in many EMC scenarios, nor did they investigate cases where the electrical distance between 

the aperture and absorbing boundary becomes small at low frequencies.
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To characterize the distribution of the electric field in the aperture and the effects of different 

source-to-aperture configurations, the aperture impedance is used here to determine sensitivity to 

the effects of angle of illumination, source distance, and distance from the aperture to the absorbing 

boundary. The effect that is observed, as detailed below, is that for frequencies below the first 

resonance of the aperture, field distribution is nearly invariant to source location, which makes 

implementation of the hybrid approach straightforward, as is shown in Chapter 8.

As a rule of thumb, apertures are normally constrained to be shorter than a half wavelength at the 

internal clock frequencies and harmonics of the clock frequency. This means this effort can focus 

on the emission leakage of apertures at frequencies below the first resonance frequency of the 

aperture. For example, a clock frequency of 100 MHz with a rise time of 5 ns will typically 

include significant harmonic energy up to the 12th harmonic (1200 MHz). The corresponding 

maximum aperture size would be 125 mm for this maximum harmonic frequency.

Aperture

Infinite Metal Shield

Source Wire

Figure 4. 1 Single Aperture in Infinite Conducing Sheet
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4.3 Aperture Impedance

The impedance of a particular location within the aperture is frequency dependent and is found by 

dividing the electric field by the magnetic field at the same point in space. The FDTD technique 

was used to model the aperture in the infinite metal plate by extending the metal plate to ABC. A 

diagram of the FDTD computational space used for single-aperture modeling is shown in Figure

4.2.

Aperture

Infinite Metal Shield

Absorbing Boundary
Source Wire

Figure 4. 2 FDTD Model for Single Aperture in Infinite Metal Sheet

It is recognized that the inherent offset between the electric and magnetic fields in FDTD will have 

an effect on the calculation of impedance, however earlier work has shown that this Vz cell offset 

will result in only negligible error [33], Hence, that offset will be ignored here.

Because there are tw o orthogonal pairs of electric and magnetic fields in the aperture, there are two 

possible aperture impedances as defined by the equations below:
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Figure 4.3 shows a typical modeled impedance vs. frequency curve for a point within an aperture. 

The impedance is very low at frequencies well below resonance, and increases to a maximum at the 

lowest resonant frequency. This is consistent with expectations, since the aperture can be 

considered a high impedance source (electric-field source), with little or no field transmission at

Impedance (Zxy) at Center of 10x2 mm Aperture

3000

3500

200G

“  150C

1000

500

1 0E -08  1 0 e -0 9  1.0E*10 1.0E*11
Frequency (Hi)

Figure 4. 3 Typical Aperture Impedance vs. Frequency

low frequencies. As the frequency increases, the field transmission increases to a maximum at the 

frequency where the aperture length is 1/2 wavelength. While the impedance is very low over the 

low frequency region, the aperture acts like a conductor, and shorts out a significant portion of the
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tangential electric field. When the impedance is high the electric field is no longer shorted, and the 

electric field level in that area will increase accordingly. This electric field across the aperture is 

seen from the outside of the aperture, and is therefore transmitted to the outside environment. As 

the impedance is sampled within the aperture, it will vary depending upon the observation position 

within the aperture. The family of curves in Figure 4.4 show’ the impedance along the center line of 

the aperture for one half of the aperture. (The field distribution, and therefore the impedance, is 

symmetrical in the aperture.) The electric field levels within the aperture are seen to be a 

maximum in the center of the aperture (at frequencies below the first resonant frequency), and 

taper to zero at the ends of the aperture, similar to the impedance.1 The magnetic fields tend to 

van- very little across the aperture.

Aperture Impedance Zxy (10x2 mm Aperture)

4000

3500

300C

w 2500 
E

R

150-0

1000

500

Fraqumcy (Hz)

Figure 4. 4 Typical Aperture Impedance Along Aperture

1 Zxy is used as this example since it is the dominant impedance. Zyx is discussed briefly in a later 
section.
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4.4 Single Aperture Model

The goal of this section is to determine the distance between the aperture and the ABC necessary to 

achieve good results inside the aperture, and to demonstrate the impedance in the aperture does not 

significantly change when the source distance or source illumination angle is varied.

4.4.1 Computational Domain Size

Figure 4.5 shows the three dimensional FDTD computational space and the various sizes of 

computational domain used to find the fields within the aperture. The size of the initial aperture 

was 10 mm x 2 mm. The FDTD cell size was 0.5 mm. which resulted in an aperture of 20 x 4

cells.

As can be seen in Figure 4.6. the impedance for a 10x2 mm aperture is affected by the amount of 

white space' above the aperture. At the frequency of the first resonance (15 GHz) the wavelength 

is 20 mm. so the far field (using the 1/6 lambda rule) begins at a distance of only 3+ mm. Since 

each cell is 0.5 mm (in this case), the 50 cell white space is much more than is needed at 15 GHz. 

However, since the frequencies below resonance are also important, the required white space must 

be extended to about 55 mm at 1 GHz (110 cells), and further at lower frequencies. As can be 

seen in Figure 4.6. the impedance is very low at low frequencies in this example, and so the impact 

of the absorbing boundary condition is not apparent.

: White space is the commonly used term for the extra FDTD space outside the true model which is 
required to p r o v id e  the distance between any radiating source and the absorbing boundary condition along 
the computational domain's edge.
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25 cells

19 cells

6 cells

Aperture 200 cells

Infinite Metal Shield

Absorbing Boundary
Source Wire

200 Cells

200 Cells

Figure 4. 5 FDTD Model for Single Aperture 

with Different Computational Domain Sizes

A larger aperture (20 x 2 mm) was modeled to determine the effect of aperture distance to the 

ABC. Figure 4.7 shows that more effect was observed at the lower frequencies, since more of the 

energy at those frequencies is present with the larger aperture. From these various tests, it was 

decided to use at least 50 white space cells above the aperture to find the impedance in the 

aperture.
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Aperture Impedance (10x2 mm Aperture) on Center
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Figure 4. 6 Impedance Variation in Aperture Center 

Due to White Space Above Aperture (10x2 mm Aperture)

4.4.2 Aperture Resonant Frequency

As stated earlier, the resonant frequency is apparent from the impedance curves. Resonance is 

expected at the frequency where the length of the slot is 1/2 wavelength (using Babinets principle 

[34]) For a slot 10 mm long, the first resonant frequency is expected at 15 GHz, which 

corresponds to the highest impedance in Figure 4.8. Upon closer examination of the frequency 

where the highest impedance occurs, it is not at 15 GHz, but at 13.5 GHz. This is due to the fact 

that the aperture has a thickness (1 mm), which acts similar to an extension plate or disk on the end 

of a dipole antenna, low'ering the resonant frequency. Figure 4.8 and Appendix A Figures A-l
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Figure 4. 7 Aperture Impedance Variation 

Due to White Space for 20x2 mm Aperture

through A-4 give examples of the FDTD modeled impedance at the center of the aperture for 

different sized apertures. The effect of resonant frequency vs. aperture length is shown in Figure

4.9

4.4 .3 Source Position and Illumination Angle

To study the effect of source position on aperture impedance a number of different source positions 

were investigated, allowing the angle of illumination to vary over a range of 90 degrees 

(perpendicular or straight on) to 26 degrees. The impedance in the center of the aperture is shown 

for the various angles of illumination in Figure 4.10. As can be seen in this figure, the impedance

Frtqu«ncy (Hz)
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is nearly independent of the source position from low frequencies to well above the first resonance. 

Once the second resonant frequency is reached the impedance varies dramatically (with respect to 

frequency). However, this does not impact this effort, since the apertures are constrained to be 

smaller than a half wavelength long at the first resonant frequency. Therefore, the aperture 

impedance is independent of illumination angle over the frequency range of interest.

Aperture Impedance vs Source Illumination Angle 
at Center (MP6)

3 006-03

— Nonnal
 265deg
 45deg
— 56deg 
 6 3 4 a eg

5 00E-O2

1006-10
F n q u m cy (Hz)

Figure 4.10 Aperture Impedance Due to Source Illumination Angle (10x2 mm)

4.4.4 Source distance from Aperture

In the previous sections, the distance between the source wire and the aperture was typically 20 

cells (10 mm). This close proximity between the source and the aperture will likely occur when 

modeling practical configurations, and it can introduce errors at low frequencies. Fortunately, 

these errors can be compensated, as is shown in Chapter 5.
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The effect on the impedance in the aperture was examined as the source distance was increased to 

120 cells (60 mm). This puts the aperture in the far field of the source above 

833 MHz. As can be seen in Figure 4.11. there is no discernible difference in the impedance in the 

center of the aperture for the different source positions. Naturally, the electric and magnetic field 

levels do vary with source distance, but the relationship between the electric and magnetic fields 

(i.e. impedance) does not vary. Therefore, the aperture impedance can be considered to be 

independent of the distance between the source and the aperture for this study.

Aperture Impedance zxy at Center (MP6) 
for Different Source Distances

30CG

250C

g 2000

50C +

Frequency (Xx)

Figure 4.11 Effect of Source Distance on Aperture Impedance Z,y 

for 10x2 mm Aperture (ctr)
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4.4.5 Impedance Variation Alone the Aperture

The impedance along the aperture varies with position. It is maximum in the center of the 

aperture, and decreased as the observation point approaches the edge of the aperture for 

frequencies below resonance. The impedance is defined as the perpendicular polarized 

impedance (where the electric field is perpendicular to the aperture’s longest dimension). The Zy* 

impedance is defined as the parallel polarized impedance (where the electric field is parallel to the 

aperture's longest dimension).

Three different sized apertures were examined. The sizes were 10 mm by 2 mm. 20 mm by 2 mm. 

and 5 mm by 2 mm. The amplitude of the impedance was found to vary as a function of position, 

but the shape of the impedance as a function of frequency remained the nearly same as at the 

aperture center (shown in Figure 4.8 and Appendix A Figures A-l through A-4). As expected, the 

impedance decreases as the observation point moves closer to the edge of the aperture, since this 

aperture edge will tend to force the tangential electric field zero.

Figures 4 .12 and Appendix A Figures A-6 through A-7 show’ the variation of the impedance with 

position for selected frequencies. The frequencies were selected to include below first resonance, at 

first resonance, and above first resonance frequencies. In general, the variation of the impedance 

with position was sinusoidally shaped. (Some anolomities were seen and is discussed in a later 

section.) This sinusoidal shape was expected, since it fits well with the current distribution on a 

dipole antenna. The impedance must go to zero at the edge of the aperture (PEC walls), and will 

be at maximum at the center of the aperture (below resonance). The amplitude of the maximum 

impedance (at resonance) for the various aperture sizes is shown in Figure 4.13.
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Parallel-Polarized Impedance

All the previous impedance values were for Z^, that is. for the impedance where the electric field is 

perpendicular to the aperture's major dimension. This is the polarization where the greatest 

amount of emission leakage will occur.

The parallel-polarized impedance varies only slightly across the aperture, and is at least 40-60 dB 

less than the Z* impedance levels. Since the Zy* impedance is very low compared to the Z^ 

impedance throughout the frequency range of interest, the Ey electric field will also be very low.

The EMI measurement process typically provides a measurement accuracy of +/- 3 dB. Since a 

high degree of modeling accuracy is not generally required for EMI/EMC applications, the 

aperture can be modeled with no electric field polarized in the y-direction, and hence only the x- 

polarized electric field is used to characterize the fields in the aperture in the approach addressed 

here.

4.4.6 FDTD Impedance Anolmaties

At low frequencies, the impedance is expected to vary' similar to a Herzian dipole in agreement 

with Babinet's principle. However, at low frequencies the modeled impedance did not always 

agree with the expected impedance. This results from the feet that the electrical distance between 

the aperture and the ABC begins to encroach upon the 1 /6th wavelength limit at the lower 

frequencies. Chapter 5 shows a method to compensate for the errors introduced by the ABC at low 

frequencies

4.5 Multiple Apertures

Most practical problems include multiple apertures. These multiple apertures can be of the form of 

an air cooling vent area, a series of option slots in the rear of a personal computer, or for other
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applications. Consequently, the modeled effects of an additional side-by-side aperture are 

documented here which show that the second aperture does not introduce unexpected errors.

In the configuration modeled here, the apertures were both cross polarized with the source, and 

were separated along their length by 2 mm (equal to their width). Both apertures were 10 mm 

long. Figure 4.14 shows a drawing of the dual aperture configuration. Figure 4.15 shows the 

impedance for different points across one of the apertures. The family of curves are very similar to 

the single aperture cases. Figure 4.17 shows the variation of the impedance across the aperture, 

which is very similar to the results in Figure 4.12 for the single aperture case.

.Source Wire
 ̂ /  (Under Plate)

1

Apertures

I
1

Metal Plate

Figure 4.14 Dual Aperture Configuration
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4.6 Summary

This chapter shows that the impedance within the aperture varies in a predictable manner over the 

frequencies of interest. Importantly, the impedance distribution below resonance is independent of 

the source position, source illumination angle, and number o f apertures. Consequently, the fields 

within the aperture can be represented by the field at the center of the aperture, regardless of how 

the source/components are arranged within the enclosure containing the aperture. This can result 

in a significant simplification in implementing the hybrid approach, since only the field components 

at the center of the aperture, rather than for the entire aperture, will need to be stored. This 

simplification is valid only if the MoM-modeled fields in an aperture, excited by a source at its 

center, are the same as those estimated by FDTD. Chapter 7 addresses the modeling of apertures 

using FDTD and MoM, and documents that the field distributions are nearly identical for both 

techniques.

At low frequencies where the impedance curves do not vary according to theory or expectation, 

some form of compensation must be used to determine the correct field values. That compensation 

technique is the subject o f the next chapter.
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CHAPTER 5

CORRECTING THE ELECTRIC FIELDS WITHIN THE 

APERTURE AT LOW FREQUENCIES

5.1 Introduction

Chapter 4 showed how to find the fields in an aperture using FDTD, as long as the frequency was 

sufficiently high to insure the absorbing boundary conditions (ABC) constraints were not violated. 

However, at low frequencies where the ABC is not functioning properly due to the lack of 

sufficient distance between the computational boundary and the aperture (the effective source), the 

aperture impedance and therefore the electric field levels are not correct. Since these aperture 

fields will be used by the second stage of the hybrid technique (in Chapter 7) as the source of the 

fields outside the shielded enclosure, this error introduced by the ABC must be compensated for or 

the final results of the hybrid technique will also be incorrect.1

1 For example, using the l/6th lambda rule, if the edge of the aperture is only 35 cells from the ABC, and 
the cells are .5 mm on a side, then the errors could be expected for frequencies below 3 GHz. Depending 
upon the fundamental clock frequency, EMI engineers must be concerned with frequencies as low as 30 
Mliz. and so this correction is important to most EMI engineering applications.
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There are three possible techniques available to correct the aperture field values at low frequencies: 

(1) increase the computational domain size in the original FDTD model to allow sufficient white 

space around the aperture to eliminate the errors at low frequencies, (2) use the Surface Impedance 

Boundary Condition (SIBC) with an FDTD model, and (3) use a Herzian dipole impedance 

technique to find the correct aperture impedance and electric field values. Unfortunately, it is not 

always practical to increase the computational domain sufficiently to allow the ABC to be far 

enough away to operate correctly at frequencies with wavelengths in the range of 3 to 10 meters, 

since the amount of FDTD cells, and the corresponding required computer RAM, would be 

excessive. For example, to correctly operate at 50 MHz, the ABC must be 1 meter minimum in all 

directions from the ABC. Using the same Vi mm cells size as earlier (to allow FDTD to correctly 

describe the aperture), the ABC must be at least 2000 cells away from the aperture in all 

directions. This would require at least 64 billion cells.

The SIBC allows the use of the true aperture impedance without requiring a large external white 

space to find the fields within the aperture. However, this requires a FDTD model to be run to first 

find the aperture impedance. This aperture impedance must then be corrected at low frequencies 

using the Herzian dipole impedance method, and then the FDTD model run again with the SIBC. 

So unless the aperture impedance is known in advance (through a previous modeling effort), the 

SIBC is computationally very expensive.

The Herzian dipole impedance technique has the advantage that it is quite easy to implement, and 

allows the user to find both the corrected aperture impedance and the corrected aperture electric 

fields quickly. Once this corrected electric field is found, it can then be used in the second stage of 

the hybrid technique as the source for the external fields.
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S.2 Using Herzian Dipole Impedance Technique to Correct the Low Frequency i";'r

Aperture Impedance _

Since the aperture impedance at low frequencies found using the stage one FDTD models is -  ̂

incorrect due to errors introduced by the too-close proximity oftheABCs, an Herzian dipole - - ^

impedance method is used to correct these impedances. This correction can be omitted when the 

FDTD model results are in error at frequencies outside the range of to the specific project.

However, if the low frequencies are of interest, (as in most EMI activities) the field levels must be 

corrected or errors will result in the final results.

aperture, shows this region to extend to lower frequencies.

Close examination of the aperture impedance curves showed that at frequencies above where the

ABC's error was introduced, the impedance varies according to expectation. Experiments with 7

larger FDTD computational domains, and thus greater distances between the ABC and the -

In the case of a long, thin aperture, Babinet’s principle [34] allows the aperture to be represented 

by an equivalent sized linear antenna. Since apperture impedance is incorrect at frequencies where 

the wavelength is long compared to the aperture size, the equivalent dipole antenna will be 

electrically short. The radiation impedance for a short, Herzian dipole is given in equation (5.3). ~ 

The radiation impedance from the Herzian dipole can be normalized and used to predict the correct 

impedance in the aperture at low frequencies.

_T.’ J2

tf.; 1'

fre
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Z„.,=80>r’( j )  (5-3)

where: / is the length of the Herzian dipole

As can be seen in Figure 5.1, the original FDTD impedance at these lower frequencies has been 

corrected.

The original impedance at low frequencies was fairly well behaved in the case of the 10 x 2 mm 

aperture. The correction of the impedance at low frequencies is more important in cases where the 

low frequency impedance is not well behaved. Figure 5.2 shows the impedance found in Chapter 4 

for a longer aperture (20 x 2 mm), and the effects of the FDTD ABC is clear at the lower 

frequencies.

The impedance at low frequencies (below 4 GHz) is again found using the normalized Herzian 

dipole radiation impedance. The corrected and original impedances are shown in Figure 5.3.
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The computational domain size can be increased to observe the effect on the impedance at lower 

frequencies and insure equation 5.3 correctly predicted this impedance. Figure 5.3 shows the 

impedance in the center of the aperture when the FDTD computational domain is expanded to 

double the original size. Although this expanded computational domain is impractical this FDTD 

model maintains the previous good agreement and extends the good agreement to lower frequencies 

(before the ABC's again corrupt the impedance).
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5.3 Correcting the Electric Fields in the Aperture at Low Frequencies

The previous sections show how to use the Herzian dipole impedance to correct the impedance at 

low frequencies. However, the real goal is to find the correct electric field levels in the aperture for 

use in the second stage of the hybrid technique. The electric field levels are directly proportional to 

the impedance. Since the impedance at low frequencies is found using the expected Herzian dipole 

impedance the corrected values of the electric field at low frequencies can be found using the same 

curve normalized to the electric field values.

Figure 5.4 shows an example of the corrected electric field at low frequencies using the Herzian 

dipole technique. This figure shows the results for the 20 x 2 mm aperture (this aperture size had a 

more dramatic electric field error at low frequencies than most of the other sizes). The fields from 

this technique agree with the original FDTD electric field levels at frequencies where the ABC was 

not contributing an error, and provide the correct electric field strengths at the lower frequencies.

5.4 Summary

This chapter briefly discusses the different possible techniques to correct the impedance and 

electric field levels in the aperture, and then demonstrates how' a technique based upon Babinet's 

principle and Herzian dipole radiation impedance is sufficient to correct these quantities at low 

frequencies. The corrected low frequency electric field levels are now used as the final output of 

the Stage One. and as the input (or source) in Stage Two of the hybrid technique.
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The corrected low frequency aperture impedance could also be used for SIBC implementation 

within a  second FDTD model. However, this approach is computationally expensive and time 

consuming unless the aperture impedance is to be used in a  number of different FDTD models.
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Figure 5. 4 Original FDTD and Corrected Electric Field Level in Aperture
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CHAPTER 6

INTRODUCTION TO THE METHOD OF MOMENTS

TECHNIQUE

6.1 Background

This chapter provides a brief introduction to the Method of Moments technique. This technique is 

used in the Stage Two part of the hybrid modeling technique. Readers already familiar with MoM 

may wish to skip straight to Chapter 7.

The Method of Moments technique (also called Moment-method technique) have become very 

popular in the past 30 years or so. MoM algorithms are generally run on high speed workstation 

or mainframe computers, but they can be used to model a wide variety of problems without 

requiring the user to assume a particular current distribution. MoM is used extensively to model 

radar cross section and antenna applications, and has recently been applied to EMI/EMC 

problems.

The structure to be modeled is converted into a series of metal plates and wires. In fact, often a 

solid structure is converted into a wire frame model, eliminating the metal plates. Once the 

structure is defined, the wires are broken into wire segments (short compared to a wavelength so 

the assumption of constant current on that segment is valid) and the plates are divided into patches
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(small compared to a wavelength so the assumption of constant current on that patch is valid). 

From this structure, a set o f linear equations is created. The solution to this set of linear equations 

is the RF currents on each wire segment and surface patch. Once the RF current is known for 

each segment and patch, the electric field at any point in space can be determined by solving for 

each segment/patch and performing the vector summation.

6.2 The Basics of MoM

MoM actually refers to a general procedure for solving linear mathematical equations of the form.

L(f)  = E (6.1)

where L is a linear operator f  is an unknown response and E is a known excitation. [35][36][37] 

For electromagnetic modeling, the known excitation is usually an imposed electric or magnetic 

field, and the unknown response is generally a current distribution. Once the currents are known 

everywhere on the structure, the electric and magnetic fields can be found at any point in space. 

The equation relating the currents and fields is known as the electric field integral equation (EFIE) 

w hen the know excitation is an electric field or the magnetic field integral equation (MFIE) when 

the excitation is a magnetic field. The relative usefulness and accuracy of a particular MoM model 

depends, in part, on the assumptions made in the process of deriving the integral equation and 

whether EFIE or MFIE is used. For EMI/EMC modeling, the source is usually an applied voltage 

(modeled as an electric field across a short distance), so the EFIE is typically used.

The first step in the MoM solution process is to describe the unknown response (in this case the 

current distribution) as a finite sum of basis functions,
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N

J  = 2 >,/, <«-2>
1= 1

where: fj = the j* basis function

aj = unknown coefficient 

Using this approximation the entire current distribution can now be solved by finding the values for 

the N coefficients, a,

The second step in the MoM procedure is to define a set of weighting functions, w„ which may or 

may not be the same as the basis functions. Defining the inner product as.

where s is the entire surface on which A and B are defined. We can then take the inner product of 

(6 .1) with each of the chosen w eighting functions.

(6.3)

< * „ £ ( /)>  = <*,,£> i = 1.2....N (6.4)

Using the linearity of L and making the substitution in equation (6.2),

N
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Setting:

Z, = < * „£ < /,)>

E , = ( w „ E >

And converting to matrix notation:

[ z I / ] = [ £ ]  (6 .6)

y

Figure 6.1 MoM Geometry for Current on a Wire Segment

The only unknown quantity in equation (6.6) is I, which is a vector containing the N coefficients 

describing the current distribution. Provided the matrix Z is not singular (that is, the problem has a 

unique solution), it is possible to solve for I in equation (6 .6) as shown in equation (6.7).
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P H * r a

Therefore, the current on a particular segment in the model is found from the contribution of the 

source, and the contribution from all other currents in the model. Equation (6.7) represents a set of 

N linear equations, with N unknowns.

6.3 Filling the Impedance Matrix

Once the basics of MoM are understood, the next task is to fill the impedance matrix, then the 

MoM solution simply requires inverting [Z] and a  matrix multiplication with the source Although 

there are a number of different formulations to find [Z], this work used a thin-wire formulation 

called Pocklington's integral equation. In general, the electric field from a current is given by

How ever, since the observation of the current is only along the surface, and only the z component 

is needed (see Figure 6.1) equation (6.8) is re-written as:

( O f J S  O i f d S

where:

- j PR

(6.9)

(6.10)
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and with o n l y  the z component equation (6.9) becomes:

/■- 2tt -jfiR

™  -//2 0 iV

since the wire is assumed to be thin (^ » a ) . the current density' Jz is not a function of the azimuth 

angle 4>. and the current density' becomes:

(6 -12)
2n a

where Iz is assumed to be an equivalent filament line current located on the wire segment's surface. 

Therefore.

A. =
4nr

iz ,

\ — fJ  i r  s i J
- I '2

1

2n a Jn R
ad<f>’ dz’ (6.13)

R = y j ( x - x  0 : + { y - y ' Y  + ( z - z ' ) 2 

R  = y j p z+ a 2 - 2 p a c o s ( 0 - 0 ' ) + ( z - z ' ) 2
(6.13a)

where p is the radial distance to the observation point and a is the radius.

Since the wire segment is symmetrical about <{>. the observation o f the current is not a function of <|>. 

so <{)=0 will be substituted into equation (6.13). Since the observation of the current is on the 

surface of the wire. p=a. and equation (6.13) becomes.
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112
A . ( p  = a) = fi  J / .( r ')G (z ,r ')c fe ' (6.14)

- 1/2

(6.14a)

R ( p  =  a )  = (6.14b)

where equation (6.14a) is a Green's Function. Combining equations (6.10) and (6.14). the electric 

field is

Equation (6 15) is referred to as Pocklington's integrodifferential equation [38]. and it is used to 

determine the current along the surface o f the wire, given an incident electric field.

As mentioned earlier, the selected weighting function varies depending upon the requirements for 

the modeling. If the segment length is kept electrically small (l/10th wavelength or shorter), then 

the point-matching method is commonly used for a weighting function. That is, the current is 

assumed to only exist on the center of the wire segment as a delta function. Since

(6.15)

(6.16)

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



equation (6.15) can be reduced to

Also, since we assume the wire segment is very thin (a«X ), then equation (6.14a) reduces to

Recall in Equation (6 .6) the electric field was a function of the unknown current and the 

impedance. Equation (6.17) fills this function, and the impedance matrix can be created, allowing 

the currents to be found.

6.4 Finding the Electric Fields from the RF Currents

Once the currents are known, the electric and magnetic fields can be found at any point in space 

(due to those currents), by using the Herzian dipole equations. The wire segments must be 

electrically short (X »L). but this requirement is necessary for the MoM technique and is already 

implemented. The general electric fields can be found using Equations (6.19) and (6.20).

(6.18)

/Lcostff 1 1
I  T  +  -  T2nen \c r2 j a  r 3>

(6.19)

4̂ r£-fl \ c :r crz j a r 3>
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6.4 Summary’

The MoM technique is a fairly straightforward and intuitive technique. Creating a wire structure, 

finding the current distribution over the entire structure, and then finding the fields due to those 

currents is intuitive to most engineers. The MoM technique requires the creation of a system of N 

linear equations with N unknowns, where each unknown is the current on a single segment. The 

unknown currents are solved by using matrix techniques. Once the current is known, the fields can 

be found using the Herzian dipole equations.
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CHAPTER 7

HYBRID TECHNIQUE STAGE TWO MODELING 

USING MOM

7.1 Introduction

In this chapter, an effective procedure to predict the fields outside the aperture and shielded enclosure 

due to an excitation within the enclosure is described. Using the FDTD approach outlined in the 

previous chapters, the field in the aperture can be accurately and efficiently predicted. Once the 

aperture field is calculated, it is then used as the driving function for the second stage o f modeling, 

which concerns only the outside region.

The calculations of the aperture impedance (Chapter 4) shows that the aperture impedance and the 

electric field levels are highest at the center of the aperture, providing the aperture is not electrically 

large. Therefore, the level of the electric field in the center of the aperture determined in the Stage 

One model (and corrected, if  necessary, using the extrapolation technique described in Chapter 5) is 

used as a source across the center of the aperture in the Stage Two models.

The results of several tests are presented in this chapter which demonstrate that the electric field at 

the center of an aperture, as determined by FDTD in the stage-one model, can appropriately be used
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as the excitation source at the center of an apeTture in the MoM model of stage two. This is shown 

to be true since the field distribution in the modeled aperture is the same using either FDTD or MoM.

The investigation presented in this chapter with MoM looks at the same configurations studied in 

Chapter 4 for FDTD where an electrically large metal sheet with a single aperture is modeled. This 

allows comparisons with the original FDTD model, and eliminates any potential effects from the 

enclosure's physical dimensions or other environmental effects. The initial single aperture model is 

then extended to include multiple apertures in an infinite ground plane. In the next chapter, the 

hybrid technique is expanded to include a finite sized shielded enclosure with an aperture and the 

required test environment.

7.2 Initial Aperture Models

Creating an infinite metal plane with an aperture using the MoM technique is not as practical as m 

the FDTD technique. In order to simulate an infinite metal plane, a single, electrically large, wire 

mesh plate is created. Wire mesh can be used successfully to simulate a solid plane [39] [40], 

especially when another wire is to be connected to the structure, as is discussed below. The wire 

mesh should be small compared to the wavelength of interest in order to insurethe currents flow over 

the sheet as if it w as a solid sheet of metal.

7.2.1 Single Aperture MoM Model

A 10 mm by 2 mm aperture is modeled as a hole in the wire mesh of a large plate using the MoM 

technique. Since it is desired for the model to be accurate to about 15 GHz (the first resonant 

frequency of this size aperture), the segment sizes are selected to be no larger than about 2 mm for
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the MoM model. Figure 7.1 shows this wire mesh model. The radial wires at the comers and sides 

are used to increase the effective size of the plate to simulate an infinite plate.

Figure 7. 1 MoM Wire Frame Model with Single 10x2 mm Aperture

The original FDTD 10 mm by 2 mm aperture problem is repeated with a larger computational 

domain in the outside area. The electric field level at a distance of 65 mm away from the aperture is 

found using FDTD. This distance is selected to create a reasonably-sized FDTD computational
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domain while allowing the fields to be found in the far field at frequencies above about 770 MHz 

(one-sixth lambda from the aperture to the observation point).

The electric field level is found in the aperture in the Stage One Model and then is corrected at low 

frequencies using the Herzian dipole impedance method. The corrected electric field is then used as 

the voltage source across the aperture in the MoM (Stage Two) model. A single electric field source 

is placed across the center of the aperture and set to the maximum value (center location) of the 

Stage One model results. The electric field distribution within the aperture is very similar to the 

FDTD models, and the results are shown in Figure 7.2. The radiated electric field results are 

compared in Figure 7.3. and show a good agreement between modeling techniques between about 4 - 

15 GHz. thus validating the use of MoM as a second stage in the hybrid approach to modelmg 

apertures

The lower frequencies (typically below 4 GHz) in the FDTD model results may be affected by the 

absorbing boundary condition. Since it is not always practical to increase the FDTD computational 

domain to a point where there are no ABC effects, the results in the FDTD case may be limited in 

that the low frequency information may be in error. However, since the hybrid FDTD/MoM model 

results at those same low frequencies use the corrected aperture fields (from the techniques discussed 

in Chapter 5), the hybrid FDTD/MoM results show the correct low frequency electric field values.
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Figure 7. 2 Electric Field Distribution from MoM Model for 10x2 mm Aperture
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Figure 7. 3 Comparison Between MoM and FDTD at 65mm from Single Aperture
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7.2.2 Double Aperture M oM  Model

The above effort is now repeated for the case of two side-by-side 10 mm by 2 mm apertures, 

separated by only 2 mm. Practical experience has shown that closely spaced apertures are more 

likely to interact than apertures spaced relatively far apart. A MoM wire mesh model was developed 

to include two apertures on an electrically large metal plate, and is shown in Figure 7.4. Electric 

field sources are placed across both apertures, and set to the level determined from the Stage One 

model, and corrected using the Herzian dipole impedance technique. The radiated field levels at the 

same location (65 mm away from the apertures) are shown in Figure 7.5 from both the FDTD-only 

and hybrid FDTD/MoM models, and again show good agreement between the techniques between 

3-15 GHz. The lower frequencies (below 3 GHz) in the FDTD model results are affected by the 

absorbing boundary condition. As in the single aperture case, the hybrid FDTD/MoM model results 

at those same low frequencies use the corrected aperture fields (from the techniques discussed in 

Chapter 5). and therefore show the correct low frequency electric field values. This again 

demonstrates the importance of modifying the aperture fields at low frequencies, and the importance 

of using this two stage hybrid modeling approach.

It is apparent from Figures 7.3 and 7.5 that the two modeling techniques agree over a limited 

frequency range very well. The limitation on the agreement at low frequencies is not due to the MoM 

model or the hybrid technique, but rather the FDTD model. As mentioned earlier, the FDTD 

absorbing boundary must be placed at a greater distance than the one used in order to provide higher 

accuracy. Unfortunately, this necessitates enlarging the computational domain to a size which can be 

very impractical. The hybrid FDTD/MoM results are more reliable at lower frequencies, since there 

is no comparable boundary condition problem.
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Figure 7. 4 MoM Wire Frame Model with Two 10x2 mm Apertures
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Figure 7. 5 Comparison Between MoM and FDTD at 65mm from Two Apertures

7.3 Summary

Comparisons between FDTD-only and Hybrid FDTD/MoM models for apertures in a metal plane 

show very good agreement over the range of frequencies where the FDTD-only model is valid (above 

the frequencies where the ABC introduces errors). The hybrid approach demonstrates its strength by 

improving upon the FDTD-only approach at low frequencies as described in Chapter 5. This chapter 

shows results which also validate the simplification of the electric field in the aperture from the entire

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



field distribution (found during the Stage One FDTD model) to a single electric field across the 

center of the aperture (for use by the Stage Two MoM model).

Hybnd models showing the effects of real-world test environment configurations demonstrate the 

importance of including these features in the model, and show how effectively the hybrid approach 

can include them.
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CHAPTER 8

IMPLEMENTING THE HYBRID TECHNIQUE

8.1 Introduction

In this chapter, the hybrid technique is extended from a flat metal plate with apertures to three- 

dimensional shielded enclosures with apertures including long attached wires and the required test 

environment. The implementation of the hybrid technique is described in detail and an example 

showing the effects of including the long wires and test environment is given.

8.2 Detailed Description of the Hybrid Modeling Technique

The first step to use the hybrid modeling technique described here is to create the FDTD model of 

the enclosure, aperture(s). the internal source and whatever internal structure is considered 

important. In the case of an empty shielded enclosure (100 mm cube) with a 10 x 2 mm aperture, 

the FDTD cells must be small enough to describe the aperture correctly. For this example, a 

FDTD cell size of .5 mm is selected. This size is also small enough to provide at least 10 cells per 

wavelength up to the highest frequency of interest, as per FDTD approach requirements.

The source is selected to be a simple current on a wire. As described earlier, this is representative 

of a PCB ground reference plane edge. The wire is oriented perpendicular to the aperture to ensure 

maximum possible emissions coupled through the aperture.
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Figure 8.1 shows a diagram of the FDTD model. The aperture is placed on the top face of the 

enclosure for convenience, but could be on any side desired. The top part of the enclosure is 

extended beyond the enclosure walls to restrict any external resonances from affecting the fields in 

the aperture. The internal structure of the enclosure is maintained to allow any internal resonances 

to occur. The FDTD simulation must be run long enough to ensure all the resonance effects have 

died down.1 Both the electric and magnetic field at the center of the aperture is saved as the output 

from this Stage One model.

The time domain electnc and magnetic field results are then converted to the frequency domain 

using a Fast Fourier Transform (FFT). The frequency domain impedance (E/H) is examined to 

determine if errors occurred due to the ABC's close proximity to the aperture at low' frequencies 

which are of interest. The electric field is then corrected using the Herzian dipole technique 

described in Chapter 5.

The enclosure is modeled in MoM for Stage Two using a wire mesh frame with the openings in the 

wire mesh small compared to the shortest wavelength of interest. The corrected electric field is 

then applied across the center of the aperture in the MoM model for each frequency desired.

1 The length of time needed to allow the resonances to die down depends on the Q-factor of the enclosure. 
The use of non-perfect conductivites [33] for the enclosure walls wUl greatly reduce the Q-factor of the 
enclosure and provide more realistic results.
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Figure 8.1 FDTD Example Model of Shielded Enclosure and Aperture

8.3 Enclosed Shielded Enclosure with Aperture Model

An example is presented to show the usefulness of the hybrid technique. A shielded enclosure with 

a size of 100 mm cubed and a 10 mm by 2 mm aperture on the front side of the enclosure is used to 

demonstrate this technique. The enclosure size is selected to insure that any physical size effects 

will be observed, and that the enclosure's dimensions will not appear as an infinite plane to the 

aperture at the frequencies of interest. Figure 8.2 shows a diagram of the wire frame enclosure 

model used for MoM second stage models.
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Figure 8. 2 MoM Wire Frame Enclosure Model

The (corrected) electric field in the center of the aperture from the Stage One model is then applied 

across the center of the MoM aperture and MoM used to find the fields at a 10 meter distance from 

the aperture.

8 .3 .1 Hybrid Model Comparison Between Free Space and Real-World Test Environment 

As stated earlier, it is important to model the test environment correctly. The following examples 

demonstrate the effects of the environment on the final results. As mentioned in Chapter 1, EMI 

emissions measurements are required to be made over a ground plane. The receive antenna must 

be 10 meters away, and it must be scanned (for maximum receive level) over a one to four meter
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height while rotating 360 degrees. The scanning of the antenna height ensures there is no chance of 

a destructive interference path artificially lowering the measured emissions levels. The rotation of 

the EUT through the 360 degrees ensures the maximum emissions are received, regardless of any 

possible directionality of the EUT's radiation pattern.

Figures 8.3 and 8.4 show the model results for the shielded enclosure EUT with and without the 

ground plane present for both the horizontal and vertical polarizations. The presence of the 

ground plane, and the effect of scanning over the height range, can greatly increase the measured 

emissions level due to the reflected wave adding in phase to the direct wave.

Comparison Between Maximum Received Electric field 
for Both Free Space and Ground plane Cases -  Horz Polarization

s>
3s 4C

UJ
S  30 
>©u©oc
E

I Free Space

!  w/Ground

3
E

1000 1000010C

Frequency (MHz)

Figure 8.3 Maximized Electric Field Comparison with and without Ground Plane
(Horizontal Polarization)
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Comparison Between Maximum Received Electric Field
for Both Free Space and Ground Plane Cases -  Vert Polarization
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Figure 8. 4 Maximized Electric Field Comparison with and without Ground Plane
(Vertical Polarization)

EMI Emissions test standards also require that all cables be attached to the EUT. This effectively 

increases the EUT's electrical size, and typically increases the emissions levels significantly at 

some frequencies. A single cable, one meter long, is now attached to the initial enclosure model, as 

shown in Figure 8.5. This cable is attached directly to the enclosure shield, as in the case of a 

cable shield being ‘grounded' to the case.
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Figure 8. 5 MoM Model of Shielded Enclosure with 1 meter Cable Attached

The same electric field is applied across the aperture for this new configuration. The maximum 

received emissions are greatly increased, as seen in Figure 8.6, due to the addition of the cable. 

This demonstrates the importance of the hybrid model including all of the test environment 

features.

8.4 Summary

This chapter provides a description of the implementation process for the hybrid technique. An 

example is provided to show how to create the Stage One FDTD model of a shielded enclosure as 

well as the Stage Two MoM model of the same enclosure. The example provides results showing 

significant impact the attached wire and the measurement environment has on the final results of 

the model.
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CHAPTER 9

SUMMARY

A hybrid FDTD/MoM approach has been shown to allow EMI modeling of emissions from PCB 

sources inside a shielded enclosure with apertures, including the required equipment configuration 

and test environment. This approach allows modeling of a complex problem that has been 

previously unpractical to model. Using this hybrid approach, engineers can now predict the 

pass/fail performance of a product against national and international EMI regulatory requirements.

The hybrid approach uses FDTD as the Stage One model to find the field in the aperture or 

apertures in a shielded enclosure due to a source within the enclosure and any internal enclosure 

features. The actual source can be whatever is considered to be the important source of EMI 

energy by the engineer. In this dissertation, the source is assumed to be the current along the edge 

of a PCB reference plane due to a microstrip on the PCB. Regardless of the source selected, the 

Stage One model determines the field within the aperture due to that source, the geometry o f the 

enclosure, and the distance to the aperture.

A detailed study of the field distribution throughout the aperture using the aperture impedance 

showed the variation of the field across the aperture under various conditions. The maximum field 

strength remained in the center of the aperture regardless of the source position and distance when 

the frequency was limited to wavelengths longer than twice the aperture length.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



At low frequencies, where the constraints o f the ABC are often violated in practical FDTD models 

(due to the electrically close proximity of the aperture to the computational boundaries), errors 

often occur in the aperture field. The impedance and the electric field level at low frequencies can 

be corrected using the Herzian dipole impedance technique described in Chapter 5.

The corrected aperture fields are then used as a source for the second stage models using the MoM 

technique. Wire frame mesh models of electrically large metal plates with apertures are used to 

validate the hybrid approach against the FDTD-only approach and showed good agreement where 

the FDTD results are not contaminated by the absorbing boundary condition proximity.

The hybrid approach was then extended to model finite-sized enclosures with apertures. Long 

attached wires are included, and the effects of the test environment ground plane is demonstrated 

Results are presented that include low frequencies where the FDTD fields are corrected, as well as 

frequencies where no correction is required. The final results from the hybrid approach can be 

directly compared to emission limits set by EMI regulations.

Suggestion for Future Work

This dissertation is restricted to frequencies where the aperture was smaller than one-half 

wavelength long. This is a reasonable limitation, since design engineers know that little shielding 

occurs when apertures are equal to, or greater than, one-half wavelength. Future work might 

investigate how this limitation could be eliminated, and more accurate modeling performed at these 

higher frequencies.
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All apertures in this effort were long thin apertures. Future work could examine how to implement 

this hybrid technique for wide apertures. For wide apertures it is expected that a MoM model of a 

patch antenna must be used to determine the correct impedance at low frequencies, in place of the 

Herzian dipole impedance approach used for long thin apertures.

Other future work could include a wire through an aperture. The use of a Surface Impedance 

Boundary condition (SIBC) [27][28] to model the impedance of the aperture with the wire could 

possibly allow the effect of long external wires to be included in the FDTD model.
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Aperture Impedance (Zxy) vs Position (20x2 mm Aperture)
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Figure A- 6 Variation of Impedance (Zxy) Along Aperture (20x2 mm)
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