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ABSTRACT
TIME EVOLUTION OF THE CHIRAL PHASE TRANSITION
DURING A SPHERICAL EXPANSION
by

Melissa Anne Lampert
University of New Hampshire. December. 1996

We examine the nonequilibrium time evolution of the hadronic plasma produced in a
relativistic heavy ion collision. assuming a spherical expansion into the vacuum. We study
the O(4) linear ¢ model to leading order in a large-N expansion. Starting in the high tem-
perature unbroken chiral symmetry phase. the system expands and cools. finally settling
into the broken symmetry vacuum state. We consider the proper time evolution of the
effective pion mass. the order parameter (o). and the particle number distribution. We
examine several different initial conditions and look for instabilities (exponentially growing
long wavelength modes) which can lead to the formation of disoriented chiral condensates
(DCCs). We find that instabilities exist for proper times which are less than 3 fin/c. We
also show that an experimental signature of domain growth is an increase in the low momen-
tum spectrum of outgoing pious when compared to an expansion in thermal equilibrium.
In comparison to particle production during a longitudinal expansion. we find that in a
spherical expansion the system reaches the “out™ regime much faster and more particles get
produced. However the size of the unstable region. which is related to the domain size of

DCCs. is not enhanced.

xi
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~If my view is correct. the universe may have a kind of domain structure. In one
part of the universe. you may have one preferred direction of the aris: in another

part. the direction of the azxis may be different.”

— Y. Nambu

Chapter 1

Introduction

When two highly relativistic heavy nuclei collide. there is a possibility of forming a state of
very hot. dense quark matter. It is believed that such a high-energy collision can produce
a quark-gluon plasma. a ~deconfined™ state of quarks and gluons. This deconfined state is
a new state of matter. and is the subject of intense investigation. both experimental and
theoretical. As such a system cools. it will recombine into hadrons. This type of collision
would provide a unique opportunity to study the phase transition between confined and
deconfined matter. as well as high-density. high-temperature matter. QCD predicts the
existence of such a phase transition. and observation of the quark-gluon plasma would
provide further evidence in support of the Standard Model. With the construction of two
heavy ion colliders. the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory. and the Large Hadron Collider (LHC) at CERN. we will have the available
technology to try and create a quark-gluon plasma (QGP) and study the phase transition
between this plasma and hadrons.

What happens during a heavy ion collision? The two nuclei will collide. actually pass-
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quanta emerging from
collision point at speed
of light

—— et

receding nuclear pancake——

Figure 1-1: Central rapidity region of a nucleus-nucleus collision.

1f=10fm

"Central plateau”

Hydrodynamic phase
Tp=1fm

> I

-

Figure 1-2: Space-time diagram for a radial evolution of the quark-gluon plasma.

ing through each other. In any center-of-mass frame. they will appear as highly Lorentz-
contracted pancakes (see Fig. 1-1). We will consider a hydrodynamical approach first pro-

! and separate the fragments carrying the “leading baryons™ from the

posed by Bjorken.
so-called central rapidity region. the fluid of quanta between the two pancakes. In order
to consider the projectile pancakes and the central region independently. they must be well
separated in phase space. and the initial energy must be sufficiently high. After hadroniza-

tion occurs. the central rapidity region counsists mostly of pions. so we can use scalar models

to study the dynamics. We will assume that a hydrodynamical approach is appropriate. and
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therefore may locally define quantities such as energy density. pressure. and temperature.
The fluid is assumed to be homogeneous and isotropic. and we consider the case of uniform
radial flow. Therefore the appropriate variables to describe the system are the proper time
7 = V2 = 2 and the fluid rapidity 5 = arctanh(r/t). which are Lorentz invariant in any
frame. In Fig. 1-2 we show the space-time diagram for the evolution of the quark-gluon
plasma! for a radial expansion. Constant proper time is indicated by a hyperbola. and the
rapidity specifies the position on the hyperbola. .

We would like to use nucleus-nucleus collisions as a laboratory tool to examine the
deconfinement phase of quarks and gluons. Unfortunately this problem is rather difficult:
the phenomena are very short-lived (the transition occurs on a time scale of 10~*} s). and the
question of what experimental signatures to expect is unanswered. It is necessary to achieve
large energy densities over a large space-time volume in order to study this transition. on
the order of several GeV/fm?3. The energy density grows with the size of the colliding nuclei.
and must be high enough so that the system rapidly comes into local thermal equilibrium.
Heavy projectiles will provide a larger interaction volume. a better chance to thermalize.
and longer lifetimes than lighter projectiles. Kinematically. the energy available for particle
production is described by the total center-of-mass energy. For RHIC. 100 GeV per nucleon
in each beam (for gold). giving a center-of-mass energy of 200 GeV /n—n. will be available in
1999. The LHC will have 7 TeV per nucleon in each beam (for lead) with a total center-of-
mass energy of 14 TeV /n—n. and is planned to be operational in 2005. These center-of-mass
energies should provide energy densities? on the order of 1-5 GeV/fm?.

The global observables one can consider are the average transverse momentum. mul-

tiplicity distributions (number of particles per unit rapidity) in rapidity space. particle
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spectra. and two-particle correlations. The average transverse momentum can be related
to the initial pressure and temperature. and multiplicity distributions depend on the initial
values of energy and entropy density. Therefore we are able to obtain information on the
thermodynamics of the initial state.

The question of what experimental signatures to look for is still open.” One possible
signature is the production of thermal dileptons. Thermal dileptons are not produced in
hadron-hadron collisions. and are specific for a plasma that can be described thermody-
namically. However. the background processes for dilepton production are large. and it will
be difficult to sort out the thermal dileptons. In addition. measuring dilepton spectra can
provide information on decays of resonances. Current experiments show a suppression in
J/1 production with increasing mass number of the projectiles.? It is also expected that
the QGP will contain as many strange quarks as up and down quarks. and therefore one
should see an enhanced strangeness content after the collision. Ongoing experiments show

4-6 However. initial

an enhancement in the expected K+ /#x* ratio by about a factor of two.
and final state interactions in a hadronic gas can also explain this enhancement. so it may
not be a signature of a quark-gluon plasma. Measuring two-pion correlations through the
use of pion interferometry can provide information on the size of the source of pions. There
is also a possibility of forming large clusters of pions aligned in a single direction in isospin
space. These clusters would have a fixed ratio of neutral pions to the total number of pions.
Such regions are termed disoriented chiral condensates (DCCs). and are the focus of this
dissertation.

When heavy ions collide and produce deconfined quarks at high temperatures and densi-

ties. the recombination of the quarks back into hadrons can proceed in a number of ways. If
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the condensation event occurs slowly in thermal equilibrium by nucleation. the hadrons pro-
duced should be distributed according to their statistical weights uniformly throughout the
physical space. However. if hadrons are formed by rapid cooling. then the evolution will be
far from equilibrium. and condensation can take place in which domains of hadrons in phys-
ical space can be oriented in arbitrary directions in isospace. The long wavelength modes
will relax more slowly to the equilibrium state. thus producing a misaligned condensate.
We look for the formation of ~droplets™ of pions in which the quark condensate is nonzero
but points in the wrong direction in isospin space. These domains are called disoriented
chiral condensates. and may provide another signature of the chiral phase transition.

There are several ways in which the system can cool. If the expansion of the plasma is
more rapid than the typical interaction time. then a “quenching”™ approximation is valid:
however. for strong interactions. the collision time is shorter. or on the order of. the expan-
sion time. For strongly coupled theories. the coupling constant is quite large. therefore a
quenching approximation cannot be used. Our methods allow for the dynamical expansion
of the system to govern the cooling mechanism. which we believe is a more realistic scenario.
If the system evolves in thermal equilibrium. the ~droplets™ would be at most pion-sized.
and therefore too small to matter. However. if the system evolves out of equilibrium. there
is a strong likelihood of forming many large pion domains.

Our method attempts to answer some of the questions about the nature of the phase
transition by looking at the time-dependence of th_e process. The model used to examine
the chiral phase transition is the O(4) linear ¢ model. where we have four scalar mesons. the
sigma and three pions. This model is a phenomenological model based on SU(2) , x SU(2),

chiral symmetry. which is a reasonable approximation to 2-flavor QCD as long as we are at
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energy scales < 1 GeV. This is the simplest model which can be studied using our techniques.
and may provide some insight into the physical nature of the phase transition. We also
understand how to parametrize and renormalize this model. and can carry out explicit
computer simulations of the time evolution of the system through the phase transition. To
study the formation of DCCs. we derive and solve time-dependent equations of motion for
the plasma oscillations. using a semi-classical approach called the large-N expansion. This
expansion includes specific quantum effects such as pair creation. and can. in principle. be
carried out to higher accuracy.

How realistic is it to “disorient™ the vacuum? The true vacuum state for this system is
given by:

(@) = (o) = fz #0. (1.1)

Now cousider -tilting”™ the isospin orientation into one of the pion directions
(o) = frcosf () = frusin€. (1.2)
Classically. the energy required to do this is given by’
AE = %m'ﬁ f2sin®0 = (10MeV/fm®) sin®6 . (1.3)

This is not a very large amount of energy! Therefore it is quite possible for the vacuum to
become disoriented during a heavy ion collision.
We assume a spherically expanding system. since at late times the flow becomes spher-

ical. and is also the simplest geometry which can be studied. The equations of motion are
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derived in a special coordinate system which is appropriate for a hydrodynamical expansion
which satisfies the scaling relationship » = r/t. We introduce the fluid coordinates proper
time 7 and fluid rapidity 7. Using these coordinates. we obtain a line element that is the
form of a Robertson-Walker metric with a fixed uniform expansion. Thus this model could
also be viewed as a type of spherically expanding cosmological model. The treatment is
then similar to the study of quantum fields in curved space.?

In a hydrodynamical model. all expectation values depend only on the fluid proper time.
so we are able to solve the equations of motion given the initial values of the fields and their
derivatives. We start the system in a state of thermal equilibrium at a temperature above
the phase transition. with all particle masses positive. This is one way to ensure that the
initial state is in the disordered phase. The equations are solved self-consistently at the
starting time to obtain the values of the (o) and (7) fields. We compute the effective pion
mass. the order parameter (o). and a time-dependent number operator. This operator
allows us to compute a physical particle distribution which an experimenter could measure.
We look for the exponential growth of long wavelength modes. which signifies that the
system has gone unstable and that pion domains are forming.

There have been many recent investigations into the possibility of forming DCCs fol-
lowing a relativistic heavy-ion collision. both theoretical'®'® and experimental."-?%-2! The

original motivation for studying this problem was the Centauro events.?>- 23

rare cosmlic ray
events in which a deficit of neutral pions was observed.?® This could be explained by the
formation of domains containing only charged pions. Rajagopal and Wilczek!!-!? examine

the evolution of the QGP. assuming a quench of the system. where the initial configuration

is in thermal equilibrium at a temperature above the phase transition. then the temperature
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is brought to zero. The dynamics can then be studied classically using a zero-temperature
formalism. They find strong amplification of long wavelength modes. but do not include

[M4-19-extend this work to include an estimation of the domain size

expansion. Gavin ef a
and the experimental neutral pion fraction. for strong and wecak coupling. They find the
domains to be essentially pion-sized. and thus too small to provide any significant formation
of DCCs. The neutral pion distribution is a binomial peaked at 1/3. which is what one ex-
pects for an even distribution of pions in isospace. Gavin and Miiller!® propose an alternate
scenario to the quench of annealing. which is a phenomenological model that incorporates
expansion and cooling. and find somewhat larger domains. Blaizot and Krzywicki'® !¢ orig-
inally studied the non-linear o model classically in 1+1 dimensions. but without the context
of hydrodynamics. They analytically examine the dynamics of the system. and find large
fluctuations of the neutral/charged ratio and soft pion production. In their later work.
they consider the linear ¢ model within the same framework. Boyanovsky et al.'® use a
density matrix formalism that takes into account both thermal and quantum fluctuations
in a non-perturbative manner. They use a Hartree approximation. which is analogous to
the 1/N expansion at lowest order in 1/N. They also find very small domain sizes. on the
order of 1-2 fm.

In a recent work by Cooper et al..? the time evolution of the hadronic plasma produced
in such a collision was studied using the O(4) linear ¢ model in a longitudinal expansion.
The large-N expansion was used to incorporate nounequilibrium and quantum effects into
the problem. After performing numerical simulations to solve the time-dependent equations

of motion. instabilities were found to exist for only a short time. and thus there would be no

significant amount of domain formation. In this dissertation. we study the same problem
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using a spherical expansion. This situation produces the most rapid cooling of the system.
We would like to see if the formation of instabilities in this geometry is more pronounced
than in a longitudinal expansion.

There are two questions which should be examined. First. we want to know which
types of initial conditions lead to the formation of instabilities in the system: and second. if
instabilities do form. we want to find out if the size of the unstable region is large enough to
make any experimental observation. To answer the first question. we examine the proper-
time evolution of the system. starting a short time after the phase transition. where the
linear & model is appropriate. We look for the effective mass of the pion to go negative during
the time evolution. This signifies the onset of growth of long wavelength modes. which is
believed to lead to the formation of DCCs. We then compute the momentum distribution
of outgoing pions, and compare to a hydrodynamical model calculation. assuming local
thermal equilibrium. In cases where instabilities arise. we find a noticeable enhancement
of low momentum modes as compared to the hydrodynamical model. This provides an
experimental signature which can be measured. The implication is that the system is
evolving out of thermal equilibrium. which is a necessary condition to have significant
growth of low momentum modes. We find that the amount of proper time the system is
unstable is at most a few fermis/c, thus the domain size will not be significant.

One other system which should be briefly mentioned is the early universe. After the
Big Bang. the universe underwent several phase transitions. The first is the electro-weak

_tra.nsition. which occurred at a temperature around 200 GeV. At this time. the electro-
magnetic and weak forces were unified. Due to the non-zero expectation value of the Higgs

field. particles acquired mass. At a temperature around 150 MeV a second transition oc-
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10

curred. the “deconfinement™ transition. Nucleus-nucleus collisions may provide a means of
“re-creating” this early universe phase transition. and thus provide some insight into the
dynamics of the universe. The systems are quite different. however. due to the strength of
the coupling (strong for heavy ion collisions. weak for the universe). Also for the universe.
the relevant time scale for expansion is controlled by the gravitational constant. and is
around 107% 5. For a nucleus-nucleus collision. the time scale is controlled by Aqcp (the
QCD cutoff. around 200 MeV) and is around 10~%3 .26

We now present a brief summary of the contents of this dissertation. In Chapter 2. we
discuss the O(4) linear ¢ model in the large-N approximation. We derive all of the necessary
formalism. including renormalization. We then derive the thermodynamics to model the
initial state of the system and discuss fitting parameters in the model and the calculation
of physical observables. In Chapter 3 we derive the energy-momentum tensor and discuss
its renormalization. Chapter 4 describes all of the numerical simulations and shows these

results. Finally in Chapter 5 we state our conclusions.
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“Strange fascinations fascinate me ... oh changes are taking this phase I'm going

through ...~

— David Bowie

Chapter 2

The O(4) Linear ¢ Model in the

Large-N Approximation

The model most commonly employed for the study of disoriented chiral condensates is the
O(4) linear o model.?” This model is a phenomenological one based on SU(2) r xSU(2),
chiral symmetry. It contains four scalar mesons. the sigma and the three pions. with a
quartic self-interaction. This model is renormalizable. and contains many of the features of
QCD at low energies (< 1 GeV). Although the original model also contains nucleon fields.
we use only the meson fields. The parameters in the model can be fit reasonably well using
existing experimental data. There are many shortcomings to this model: in particular. it
does not fit properties of nuclear matter well. But it is the simplest model that can be
studied with our techniques. and can provide some insight into the problem at hand.
The Lagrangian density for the linear o model in a generalized curvilinear coordinate
system is given by
cied = =on S aworealorea) - 3 o -2 e

11
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—
[3%]

where the mesons are in a O(4) vector. ® = (0. 7). The factor of \/—g(z). where —g(r) =
det[g,, (<)]. has been introduced to make the Lagrangian a scalar density. The potential
here is the “Mexican hat”. with degenerate minima at any values of ® such that ®? = »*.
We will remove this symmetry by introducing a non-zero current term in the o direction.
In this work. we use the convention of an implied sum over a repeated index i. which runs
from 1 to N. (Here N = 4.) The large-N expansion is a semi-classical approximation used
when perturbation theory is not valid. as is the case here. We assume we have N copies of
the fields. and examine the limit as NV grows large. The counting for the large- N expansion
is implemented by introducing a composite field x = A(®? — v?). That is. we add to the

Lagrangian a term given by28-30

[ x(2) = M@Hz) ~ %) /42

This gives an equivalent Lagrangian

[S]
L

—(1 1 _, o2 1,
[.[(I),'.)d = —g(z){5_(;,,,,(.’1:)[0“@,’][3”@,‘] - 5)(@,7 + %—X + 4—/\)("} . ( .

The advantage of this form of the Lagrangian density is that it is now quadratic in the ¢

fields. and therefore the path integral over these fields can be performed exactly.
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2.1 The Generating Functional and Effective Action

We counsider the generating functional. given by the path integral

Zlji J] = / dlx] / d[@;] exp{iS[®:. x: ji- ]} - (2.3)

where the action is given by

S[®i. x4 ] = /d":L' {L',[(I),'. x] + v/ —9(zx) [7i®:i + Jx]} . (2.4)

We use units where i = ¢ = 1. The large-N approximation is equivalent to integrating
out the ®; variables. then performing the remaining x integral using the method of steep-

est descent. After performing the Gaussian integral for the ®; variables using standard

techniques.?! we obtain
Z[ji. ] = / d[x] &S Txein! (2.5)
1.
Sleged] = [t/ =g { Sxte) + x¥(e) + Jax@
+ —ln[Gal(z.z:x)]}
+ / d'z\/—g( / d*y\/=9(y) ji(=)Gole- y: X)ii(y) -
where
Gollr.y:x) = [0+ x(z)] i6*(z —y)/\/—glx)
[@+x(2)] Go(r.y:x) = i8'(z—y)/\/—g(z). (2.6)
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We now evaluate the remaining x integral using the method of steepest descent. We expand

S’ about a stationary point xo(z).

! - . (5 ! - ",'.J
S'[x- ji- J] = So[xo- ji- J] +/d413\/ —g(z) [M] [x(z) = xo(z)]

ox(x) 1,

’ o
/d4 xy/—g(r) /d yV —9(y) [od: E;OO;(U)]] [x(x) — xol=)]{x(y) — xo(y)] + -

The stationary point is determined by the requirement

‘0

This gives the equation
o Y N
xol{z) = A {—v' + ¢iplz) + TGQ(I..’L'Z Xxo) — 2J(:1:)} . (2.8)
where we have defined ¢;o(x) to be

pio(z) = /d*y\/—g(y) Gol(z. y: x0)7i(y) - (2.9)

and Go(z. y: xo) satisfies

(@ + xo(2)] Go(z.y: x0) = id* (x — y)/\/—g(x) . (2.10)

These equations at the stationary points determine xg as a function of .J and j;.

Although we do not need the expression for the second derivative to this order in our
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approximation. it is necessary if we want to calculate next order effects. In theory. we can
carry out the calculation to include these next order corrections: however. this task is very
difficult computationally. and has never been doue. even in quantum mechanics. We will
also see below that we need this derivative in order to evaluate the pion-pion scattering

amplitude. Thus the second derivative is

28" x. ji. J
H Yz y:dio-x0) = - |5 ,[YJ ]
ax(x) dx(y) .
= h7Ya.y) + (. y: dio- xa) (2.11)
where
-1 1
h™ (z.y) = ——d(r—-y) (2.12)

2 )

II(x.y: dio. x0) = L’Q_GO(I-'!/:XO)GO(-T-!/:XO)—¢i0(-”f)G0($-y:X0)¢i0(!I)-

In principle. we can find H.%? which is necessary to get next order corrections. For com-

pleteness. we compute the inverse. First consider

/ d'yh~Hoyhly.z) = 6z - 2)
1 . .
s / Ay 6tz —y)h(y.2) = &'z - 2)

h(z.z) = =2X3*(z-2z). (2.13)

Now consider

]
oy
[
rend
&5
|
(&
~—

/ d'y H™ ' (2. y)H(y.2) (2.14)
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We write

H(z.y) = h(z.y) + AH(z.y) .
and insert this result. plus the definitions for A=! and & into Eq. (2.14):
/d“y [II._[(.'I?. y) + (. y)] [h(y. z) + AH(y. z)} =z - 2)

/d"y {h“(w- y)hly. z) + R~ (z. y)AH (y. z) + (x.y)h(y. z) + D(z. y) AH (y. Z)} = §l(z—2)
oMo - 2) - %AH(I. z) — 2A(z.z) + /d*_y (z.y)AH(y.z) = 8 (z — 2).

Finally we obtain
H(z.z) = ~4)\TI(z. z) + 2 / d'y [(z. y) AH(y. 2) . (2.15)

This gives an integral equation for AH. which is not trivial to solve.

The integral in Eq. (2.5) over x can now be done, to order 1/N. The result is

Z[j,]] = etH'[j...l]

Wiji.J] = N {PV'OU,-..I] + %Wﬁ[j;.]] + - } . (2.16)
where

Wi a] = [ ae /=g | Sxol@) + 530 + TExol)

+ -”—V-ln[GO (z. I:Xo)]}
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i1 / d'z /=g / d*y \/=g(y) i (2)Golz. 1 x0)ji (v)

Wil.J] = 5 / Atz \/—g(x) In[H ' (. z: $io- x0)] - (2.17)

We now compute the effective action. given by a Legendre transform of Wj;..J]. The

average fields are given by

1 462 oW 1
di(r) = Zii@ - @ - dio(z) + 1—\7¢u(1) + -
(2.18)
1 6Z 144 1
x(c) = A XO(-’”'*'NX[(":)'*"”
The effective action I is defined as
Clgiox) = Wi J] = [ d'ay/=g(@) Li@)u(a) + J()x(o)] - (2.19)

In this expression. we need to rewrite W as a function of the full fields ¢; and x. rather

than ¢; and xo. We can do this by substituting

1
dio = ‘f’i"‘ﬁ‘pil—’"
1
Xo = TN T (2.20)

and use the stationary condition for W. To order 1/N. the result is

1 IN
T¢i. x] /da: {2)(-4-4/\)( +?lnG0 (z.x:x)
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+ s H™ (.26 ) —j.-(z)r»,-(z)}

- / d'z/=g@) [ d'y\/~g) i@IGote.yexiit) . 221

Rewriting the last term as a function of the fields gives

2 1 Y
’/’l X] /d T { {Juu -’:)[ap‘bt -")][du‘pz -L')] X¢1} X+ 4—,\X-
-i-%lnG0 (.L'.x:x)+élnH"l(1:.x:¢,-.x)}. (2.22)

which is the classical action plus the trace-log terms. In this dissertation. we neglect the

last term involving H — which is of order 1/N.

2.2 Coordinate System and Choice of Metric

The case we would like to consider is a spherical expansion into the vacuum. since at late
proper times the energy flow becomes spherical. Minkowski's line element in spherical

coordinates is

ds? = dt? —dr? + 1 (da — sin® 6 d¢? ) (2.23)
We then consider a transformation to the fluid variables

t = rcoshny, T = Vt2-r2,

t
r = 7 sinhy. n = tanh™!( /t)——ln{ +r}.

We restrict the range of these variables to the forward light cone. 0 < 7 < >c. and 0 < 75 <

oc. The variables 7 and 7 are useful to describe a free spherical expansion of a plasma into
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the vacuum. Minkowski's line element then becomes
ds? = dr? — 72 (dn2 + sinh? 7 d6? + sinh? nsin®@ d¢2) . (2.25)
from which we can read off the metric tensor

gw = diag(l.—7%. —77sinh®n. —7%sinh® nsin®6) .

—g = t’sinh?ysind. (2.26)

We can compare this to a Robertson-Walker line element for a hyperbolic. spherically

expanding universe
dsiy = dr? — a¥(7) [mf + sinh? 7 d6? + sinh?  sin® 0d¢2] . (2.27)

Thus the case we consider here corresponds to a cosmological model with a fixed uniform
expansion proportional to the proper time 7 and zero curvature.
2.3 Equations of Motion

We can derive the equations of motion from the effective action. Eq. (2.22). Varying the

action with respect to ¢; and x gives

O+ x(z)]pi(z) = ji(z) = Hépo

[0+ x(2)] Golz.2') = i6*(x —2')/\/~g(x). (2.28)
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and the gap equation.
x(z) = A[~v® + g}(z) + NGo(z.2) — 2J ()] - (2.29)

In order to give the pions mass. it is only necessary to have a current in the zero (o)
direction, so that jo(.r) = H = constant.

In a hydrodynamical model. all expectation values only depend on the proper time 7.
We now specialize to the case when .J = 0 and ¢; and x are functions of T only. We can see
that Eq. (2.28) is also the equation for a free scalar quantum field with a time-dependent
mass x(7). which is self-consistently determined by Eq. (2.29). Therefore we can introduce

a quantum field ®; = ¢; + éi. The equations for ®; are:

or

[0+ x(n)]gi(x) = 0. (2.30)

[i}aﬁ (r*i) + x(r )] ¢i(t) = Hdi

where the four-vector £ = (7.7.6.¢). Then for Gy we find
Golz.z') = (T{d(z.T). d(='.7')}) .

where T, corresponds to a r-ordered product.??-3¢ following the closed-time-path formalism
of Schwinger. When (‘) = 0. this is the true Green's function.

Following Parker and Fulling,?” we expand #; into a complete set of states.

bi(r.n.0.0) = /0 ds S léiatn V() Duim(1:0. ) + o (2:31)
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with

Vsim(n. 0. @) = 7st(n)Yirm (6. ¢) . (2.32)

and where ¢. 7. and Y satisfy:

L a/,0\ s+1
[—,d—< —)+9T”.: +x(r)]ws=0.

1 9 d 9 {r+1
[ ( nh' 0 )-{-s‘”-*-l—"(.fll.;—-)-]‘lfs[:().

sinh® 7 an sinh®
1 9 d 1 &
[5111900( mo%) + sin? B(dqb ) i+ 1)] Yim =0

Here. Y;,,(6.¢) are the usual spherical harmonics. and wy(n) are a complete set of radial
functions. discussed in Appendix A.

The functions Vg, (7.0. ¢) satisfy the orthonormalization relation.

> T 2
/ sinh? 1 dy / sinddf / A Y7 (7.0.6) Verme (1.6. )
0 0 0
= d(s — S,) S dmm - (2.33)

Therefore we can write

bisim(T) = /sinhzn sinfdndfde¢ Y;,.(n.0.¢) &(7.1.0.9) .
= Gistmts(T) + (=)™al, L wi(T) . (2.34)
Siumlr) = / sinh?7 sinfdndodé V. (1. 0. ) d(r.1.6. ) .

= atslmdj?(‘r) + (= ) zsl—m w:(T) . (2.35)
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where the overdot means differentiation with respect to 7. We now require 5(7) to satisfy

the Wrounskian condition
W3 (T (7) = s (T)b (1) = =i/ . (2-36)
This fixes the normalization of (7). Inverting Eqs. (2.34) and (2.35). we find

b = 0T [w:(r)r}%,-.s,m(r)—'eb.:(r)«i,-..,.,m(r)].

- -3 o ; i .
Lisim = TUT [ws(7)¢i.slrn(7)—ws(T)(bi.s[,,,(T)] - (2.37)

Now using the equal 7 commutator

3n =) 80 &) d(&— &)

(7. 1.0.4).6,(r. 7. 0. 8] = idy; . 2.38
[#e(7-7.8.). (7. $ = iy 3 sinh” 7 sin@ ( )
we find
. 2 . . : .
[¢i.slm(7)- ¢j,s'l’m'(T)] = 10;j 5(3, - s) ‘)ll'omm'/""5 . (2.39)
All other quantities commute. Therefore.
[i.5tm- @5 ] = 85 805" = 5) O s - (2.40)

We are now in a position to calculate (¢;’) We choose the (Heisenberg) state vector such

that the bilinear forins of the creation and annihilation operators are diagonal:

- - - , -
(a;_sl(lmlai,slm) = nyd;j d(s" ~ ) 0 mme -
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(@t ) = (0 + 1) 855 8(5" ~ ) b0 -
(&j,s’l'm’di.slm) = Ps Jij (s("’J - S) 611'6mm' .
(d}.s'l’m'dzslm) = p; ‘SU 6(3, - 5) 6“' {smm' .

Here n, and p, are the particle and pair densities. They will be taken to be a function of s

ouly. In addition. we will take n, to be a thermal distribution in the comoving frame.

1
s = o)kl —_ 1 °
with wy = /52/7¢ + x(70). We can choose p; = 0 for all our simulations. since one has the

freedom to make a Bogoliubov transformation at 74 so that this is always true. Using the

results in Appendix A. we then find

@ = [ dsn + D T Dm0 001

lm
< ¢?ds .
= /0 o (g + Dl () (2.41)
Therefore Eq. (2.29) becomes
9 2 < ¢2ds "
X(7) = A2 + AB2(r) + AN/O o Cng+ Dl (1) (2.42)

and is a function of 7 only. This completes the derivation of the equations of motion.
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2.4 Conformal Time Variables

The equations we want to solve are given by

.2

d}str)+§¢vs(r)+[ 1+x(T)] blr) = 0.

12

- 3.
Bil7) + 29i(r) + (i) = ilr). (2.43)
with
(1) = =2 + 2g3(r) + AN [ Sy + D ()2 (2.44)
X 1 - 0 27r-_) S S . .

The variable 7 does not allow for a good WKB expansion. due to the singularity at
7 = 0.%® Instead. we use the conformal time «. with u = In(m7). where m is any mass scale

(we choose m = ;). This transformation maps the origin to —>x. We now let

¢i(t) = pi(u)/7. Ys(r) = gslu)/7.
(2.45)
jilr) = wilu)/T. x(1) = &u)/r*.
We also have
d 19 .
prdades wk (2.46)
Then the equations of motion (2.43) become
d? Y
[-—., + &(u) + s"} gs(u) = 0
du?
d? -
[—» +&(u) — 1] pi(u) = wi(u). (2.47)
du?
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with

f(u) /A = % (u) + p2(u) +N/ ® (2ny + 1)|gs(w)]? - (2.48)

and we have defined v(u) = ve" /. = vr. The Wronskian coudition for gs(u) is

dg,(u) dJS(u)

gs(u) gs(u) = (2.49)

2.5 Renormalization

Using a WKB analysis. one can show that Gg(z.x) has quadratic and logarithmic diver-
gences.?® The quadratic divergence can be removed by mass renormalization. We carry out
our renormalization in the vacuum. i.e. in equilibrium at zero temperature. In the vacuum
sector. the mass of the pion is given by

NRdk 1
2r2 2Vk2 ¥ 2’

= X2 +Afj;’+,\N/
0

with cutoff A. We note that if we change variables in the integral to s = kv = ke"/m.

Eq. (2.50) becomes

m s2ds 1

2 _ 4,2 2 2~ [°
m? = —Xo? + Af2 + ANmPem [T 200 = (2551)
where s, = AT = Ae*/m. Dividing this expression through by Amnm?e~2* gives
. . - N [sm s2ds 1
du ~2 2
UIN= -0 — . 2.52
e/n= P+ B+ 5 [T o (2.52)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

where f; = fi7. Subtracting Eq. (2.52) from Eq. (2.48). we obtain a logarithmically

divergent expression for &:

[Ew) ~e®Y/x = pi(u) - f3

A/V s"l 52(13 ') l
_ 9 w? — —— 5
3 )y o [(_ns + 1) 2{gs(u)| T (2.53)
Note that the second term in the integral is independent of wu.
The coupling constant is renormalized by taking
1 1 N /-\ k2dk
AT A 872 o (k2 +m2)32
1 N [om s2ds
= - —5 - 2.54
,\r 871'2 A (Sz + elu)-‘l/.’ ( 2 )

The divergences are contained in the integrals. Using the adiabatic result |gs(u)|*> =
1/2\/s? + &. and the integrals defined in Appendix F. we can write the divergent part
of £ as

oo N . o N N
o = (€ ™) 13 Ia(e™) + TL(O) ~ Fh(e™). (2.55)

Using the results in Appendix F. we see that the quadratic and logarithmic divergences

have cancelled. leaving a finite result.
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2.6 Initial Conditions

In order to solve the equations of motion. we must specify the values of the functions p;(u)

and g,(u) and their derivatives at u = up = In(mn7y). For p;(u). we have

pilug) = 7odi(m) -
dpi(ug) _ 5 (ddi(7o) . -
e 0 ( ar ) + 10¢i(70) - (2.56)

The values for the ¢; fields are chosen so that the system is in local thermal equilibrium
at a temperature slightly higher than the critical temperature of the phase transition. The
value of the critical temperature will be computed in the next section. The system starts
in a disordered state with unbroken chiral symmetry. In thermal equilibrium. the system
is characterized by x = xr. and the mean field values ¢ = or = H/xr. 7; = nr = 0.
We maintain the constraint that ¢? + 7 = a%-. The solution to the gap equation at some
temperature T gives the -effective mass™ of the quasiparticles. and is always taken to be
positive. If xr were allowed to be negative in the initial state. we would be imposing a
quench. By requiring x7 > 0. we allow the cooling mechanism to drive x negative. We will
discuss below how this initial state is calculated. We have the freedom to vary the derivative
of the ¢; fields. and we will choose a range of initial values. to see which values give rise
to instabilities. A nonzero derivative adds some initial kinetic energy to the system. which
destroys the local equilibrium of the initial state. However. the expansion alone is sufficient

to drive the system out of equilibrium. even with ¢; = 0.
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For g,(u) we use a WKB ansatz

gs(u) = 7\/-;.&—(—1‘)&:::[) [—i /u : W's(u')du'] .

where W, (u) satisfies:

"o o1y 2
w," 3 (%_) + W2 =uwl(u). (2.57)

L
2 W, 1

and w,(u) = /52 + €(u). We will then take the initial conditions

Wilug) = ws(ug)

Wi(ug) = wylug).

which correspond to the adiabatic vacuum. This allows us to introduce an interpolating
number density which interpolates between n,(u) and the true ~out™ density. ngy..

Therefore we take

gs(uo) = 1/y/2ws(uo) -

dgs(ug) _ _{[dws(uo)/du]

du 2w, (1g) + iws(uo)}gs(uo) . (2.58)

(2.59)

with

ws(u) = /s2+&(u).

dws(u) [dé(u)/du]

du - 2w, (u)

(2.60)
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We take n; to be a thermal distribution at 1

n, = 1/[6*',('10)/%7' -1]. (2.61)

In addition. we will need values for £(ug) and d&(ug)/dwu. &(up) is the solution of

E(ug) = €20 + ) [p‘;’(uo) - 7’;—'?18"0] (2.62)
sm g2ds n.+1 1

AN / = : ~ : 2.63

Tho2w [2\/-*‘2‘*'6(“0) ‘2\/32+63“°] (2.63)

and dé(ug)/du is given by

sm s2ds 2ng + 1
€' (o) [1 +AN /0 T

AN 4 [27Ls,,, +1 1

—5 . .
2m2 ™ | 2wy, (ug)  2(/s2, + eZuo

=2\ |:pi('ll.())p;(u0) — %e2u0:l

+ AN g / meds 1 96y
0

+ 2 272 w3 (ug)

2.6.1 Finite Temperature Partition Function for the Linear ¢ Model

In order to solve for the initial thermal equilibrium state of the system. we need to have all
the thermodynamic information about the system. The best way to obtain thermodynamic
relations is from the partition function Z. In Appendix B we derive an expression for the

partition function at finite temperature. The final result for the partition function is

3
Z(8) = N'(8) / d[¢]exp{— /0 dr / d“xcg}. (2.65)
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where the subscript on the Lagrangian density means that it has been transformed to

Euclidean space. and 7 is the imaginary time (7 = it). In Appendix B we calculate Z to

leading order in 1/N. and Legendre transform to obtain the finite temperature effective

action. which is used to calculate the effective potential.

In order to calculate the critical value of the temperature. we must compute the effective

potential V:ﬁ(&). The critical temperature is defined by?

200
-/\Tc
150 | —
< 100
[
50 |
0 .
0 20 40 60 80 1 100
o; (MeV) f1t

Figure 2-1: Critical temperature curve. The unstable (spinodal) region where xy < 0 is given
by the interior of the curve. The points T, and g¢ = f are marked. to show the bounds of

the curve.

av
d¢2 o=0

I
o

(2.66)
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We calculate the temperature-dependent effective potential in Appendix B. and obtain

—Xovz/?. - x'(';/-l/\ + xga§/2

N [AY xoA? X3 4A2 N [t
A KL _Xo , 967
+ n? { 1 + 1 16 In VEI + YL /(; F(y)dy . (2.67)

<
=
Q
[=F 1
)

In Appendix C we evaluate xq. which is a function of ¢ = g¢. The result is

AR -

F(z). (2.68)

NA?  Nxo 4A? N
-~ — ——In + >
872 1672 exo 124°

Insertion of the gap equation. Eq. (2.68). into Eq. (2.67) gives the effective potential as a
function of 8 and gg. For T < T, and 0g < o7. the gap equation cannot be satisfied.!!
and no thermal equilibrium state exists. What is usually done is to perform an analytic
continuation across the spinodal region defined by the curve in Fig. 2-1. and the effective

potential becomes complex. Therefore the effective potential is undefined in this region.

Now we need to evaluate Eq. (2.66):

d o s .
v _Woxe WV _ (2:69)

do3l,m0 Ox0 002  Dof

The implicit derivative term is zero. since dV/dxg reproduces the gap equation. Evaluating

the explicit derivative gives

=0. (2.70)
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Setting x¢ = 0 and g9 = 0 in Eq. (2.68) gives

In the vacuum. v® = f2. so the critical temperature is defined as
x p

T. = V3f: = 159.83 MeV . (2.

|8
-1
=~

This value of the critical temperature is used to start the calculation above the phase
transition. In order to choose the starting values y1 and or. we evaluate the gap equation.
Eq. (2.68). with yo = xr and ag = H/xr. then solve for the value of o7 = H/xT.

In Fig. 2-1 we show the critical temperature curve. defined by setting xo = 0 in
Eq. (2.68). We define the critical temperature at the point where g = 0. At T = (.

we have og = f-.

2.7 Fitting Parameters in the Linear ¢ Model

We determine the parameters in the model by considering the vacuum sector. We will use
three experimentally defined quantities: the mass of the pion. m: the pion decay constant.

f=: and the I = 0 s-wave m — 7 scattering phase shift. Spatial homogeneity gives

xo00 = H.
. . k2dk 1
= —Av?+Aop + AN/ : .
X ° 2?2 3/ + xo
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The matrix element for charged pion decay is given by*?

(014 (2)lmj(q)) = ifrqe ™73 (2.73)

where the axial vector current is given by

Al(r) = [mi(2)d*a(z) — o (2)d*mi(z)] . (2.74)

Consider the divergence of Eq. (2.73):

(010, AY (x)|7j(q)) = frq’e "9 78;j = fmize™"945;;. (2.75)

This relation. along with

(Ofm; (2)|mj(q)) = e 74y

gives the PCAC (partial conservation of axial vector current) condition

uAL(z) = famimi(z) . (2.76)

If m, were zero. this axial current would be conserved. Taking the divergence of Eq. (2.74)

then leads to

H=fm2.

Since we have defined the vacuum by xgo9 = m?0y = H. we then find that og = f;.

In order to fit the coupling constant A. we look at low-energy = — m scattering. The
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o X3 . xz. 1 Xy. m
( ¥-O1m + f . ~
‘) W.(sjk I/\VAV/—, y.é,,,, W.(Sjm fvrﬁvﬁ Y-‘Skl
)
S
AN t t + +
7N | | | |
/ \ Xl.j Xa. k xl.j ‘{_g.k
X[.j X2. k

Figure 2-2: Feynman diagrams for @ —  scattering. to order 1/N. Each dashed line corre-
sponds to a Gg. and the wavy line represents the x propagator. given by H(w.y).

calculation of the scattering amplitude is given in Appendix D. The result for the total

scattering amplitude to order 1/N is
Sgi = 6'(P; = Pi) |8jk6im H (5) + 8j10km H (t) + Sp0jm H (u) | - (2.77)

where the Mandelstam variables s. {. and u are defined in Appendix D and

- —2)
H(p) = o
1+ AN (p) - 3553

(2.78)

We have set 02 = f2 and defined

I (p) = IL(p) — M(p = 0) .
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Figure 2-3: Imaginary vs. real part of s-wave 7 — 7 scattering amplitude. The solid line
shows a unitarized curve. and the dashed line shows our curve before unitarization.

with the polarization I1(p)*®

Mp) = i / d'q Golg)Golp - q)

= i/d“q k-a" [x-tw-a7]"

1 1 1
= @lln(;-i' 1+;.—_,)

1- In

1
+ 3 = - (2.79)
1+\/(1 - %:)(14»:2)
where £ = m/A and x = m?. The I = 0 scattering amplitude is given by
H® =3H(s)+ H(t) + H(u) . (2.80)
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and the s-wave scattering amplitude is obtained by integrating the I = 0 amplitude over all

. 2 I
fizo = €90 sin 6(s) = —— ne m / dzH" . (2.81)
c327'l'2 S -1

where z = cos @ and @ is the scattering angle in the s channel center of mass system.

angles:

In Fig. 2-2. we show the relevant Feynman diagrams for the s-wave scattering amplitude.

150
T T
125 | - E il
_ - 3
== =
— 100 [ ‘:;_'7 e
[72] :
Q -
e = T
g 75 - 5
g ‘:;:_—’— *—
< 2 = _
25 I
& " - hd -
o F_
0 250 592 750 1000 1250
s (MeV)

Figure 2-4: ©# — 7 s-wave isoscalar phase shifts. using our “renormalized” amplitude. The
fits give the theoretical predictions: solid line. fr = 92.5 MeV: dashed line. f; = 125 MeV.
The data are from the following references: o*3 : OH ; 045 ; A6, 147

We recall that & is a cutoff theory which becomes trivial as the cutoff is removed.
We must define the cutoff to be below the Landau pole. where the bare coupling becomes

negative for positive renormalized coupling. Also. on physical grounds. we want 2m, <
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mqs < A. In order to have a reasonable value for the 5 mass. we must have 0.7GeV < A <
1 GeV. This limits the renormalized coupling to be between 7 and 10.2

The large-N approximation for the scattering amplitude does not satisfy unitarity. We
can see this by plotting the real and imaginary parts of the s-wave scattering amplitude.
In Fig. 2-3 we show this plot. for a unitary amplitude (solid line) and the result of our
calculation (dashed line). Unitarity can be enforced by simply multiplying the amplitude
by a constant and “renormalizing™ it. However. our calculation does work for values of the
pion center-of-mass energy close to threshold. in the range 300-400 MeV. We then take our
unitarized amplitude and calculate the s-wave isoscalar phase shift. In Fig. 2-4. we show
several sets of data. along with our calculated curves. The solid line is for the value f; =
92.5 MeV. which is the value we use in the calculations. The dashed line is for f; = 125
MeV. The larger value of the pion decay constant gives a better fit to the data: however.
we choose to use the physically accepted value of 92.5 MeV. The value of A, we use to fit

this data is 7.3.

2.8 Phase Space Interpolating Number Density

We are interested in how the particle number changes during the time evolution of the
system. In order to define this number operator. we need to define a time-dependent set
of creation and annihilation operators. with first order adiabatic mode functions. The

expansion (2.31) can also be written:

di(u.1.0.6) = /0 " ds S s atm (1) 90 () Vutn (7.8 8) + Hec. ] (2.82)
{m
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where
P(u) = gd(u)/7.
and
¢ (u) = ——1—exp [—i/“ wg(u')du'] .
* V2w, (1) wo
By construction. g%(u) satisfies
95 95 — 95" g3 = —i. (2.83)

Therefore 1?(7) satisfies the Wronskian

P (r1R (7) = R (1) (1) = =i/ (2.84)

In addition. we require the time-dependent operators &; ,,,(7) to satisfy the condition

: o f .
Qistm (T) ¥ (T) + @y gty (T) 437 (7) = 0. (2.85)
These properties allows us to invert Eq. (2.82) to find @, ¢, (7) as a function of the fields.

As before. we obtain

&?.slm(T) = ir’ [¢?*(T) Jéi.slm('r) - '/)9'(7’) 6(i)i.slm(r)] .

—ir? [‘/).?(T) éé:.slm(T) - 1/)2(7‘) 6(§f.slm(‘r):| : (2.86)

alt, (1)

i.slm
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Using Eq. (2.39). we find

[di.slm(‘l—)' d;.,«'pm'('r)] = d-ij ‘).(S, — $) 0 dmm’

39

and therefore these operators are particle operators for the field at time 7.

We can also find a relation between these time-dependent operators and the time-

independent ones. Substituting Eqgs. (2.34) and (2.35) into Eq. (2.86) gives the Bogoliubov

transformation

(—)"a

where

3 (u)

a;sim(7) =

i.

i.sl—m(T) =

f

as(T) G stm + BS(T) (_)m&z.sl—m .

al(t) (=) "a! (2.88)

isl—-m

+ ‘3:(") di.slm .

i [0 (7) &y (7) — Y08 (7) (7))
i[9 (u)gh(u) — g2 (u)gs(u)]

(O
(-2}

(Qs +ws) + %

V4 Qs { 2
ir? [0 (r) iy (1) — ¥ (7) (7))

(2.89)

ilgy (u)g; (u) — gd*' (u)g; (u)]

9: g>

if:o ws+Qdu

Sl PICR )
10, w50 T

igYg;

(2.90)
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It follows that

|y (u)f® — |35 ()P =1. (2.91)

We can define the first order adiabatic number density as

ns(u) = (di(u)ds(u)) . (2.92)

where. for simplicity. we have suppressed the angular indices on @, and a.
One can show*® that ng(u) is an adiabatic invariant. and would be the true number

density in a slowly varving expansion. We then choose

ds(u())

a,

gs(wg) = ¢2(uq)

so that the initial @ and a' are the adiabatic ones. This means that at u = ug. we choose
Q, = ws; and Qs = w,. When y(u) = m? then ny(u) = ngy. which is the true out-state
phase space number density.

Using the results derived above. we then find

ny(1) = ns(ug) + |Bs(u)*[L + 2n4(ug)] . (2.93)

Notice that at u = ug. 35(ug) = 0. so ny(u) = n,{ug) = n,. Since n,(ug) is the initial phase
space number density. and at late times. becomes the out-state number density. it is an

interpolating number deunsity.
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2.9 Transformation to Physical Variables

In terms of the initial distribution of particles n,(79) and 3 we have

ny(7) = ng(7) + lﬁ_,-(r)l"’[l +2n(70)] -

where ny(7) is the adiabatic invariant interpolating phase space number density which
becomes the actual particle phase space number density in the comoving frame when inter-
actions have ceased. We now need to relate this quantity to the physical spectra of particles
measured in the lab. At late 7 > 7y = 10 fm our system relaxes to the vacuum and y
becomes the square of the physical pion mass m?. The comoving center-of-mass energy of

outgoing particles can then be identified with

The actual distribution of momenta in the lab frame is a combination of the collective
(~fluid™) motion described by the boost 7 from the comoving frame to the center-of-mass
frame and the comoving particle distribution. Here. the space-like hypersurface on which
one is counting particles is at fixed proper time 7;. This distribution is given by the Cooper-

Frye formulat?-30

dN _ _ dN

&~ Eimprap = /f(I-P)P"dUu . (2.94)

We identify the relativistic phase space distribution function f(r.p) with ns(rs). The

dependence of s on the space time variable r and the outgoing momentum p is found from
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the relationship

pHuy, = wy(ry) =

We choose the measured momentumn p to be in the z direction e3 of our spherical coordinate

system. We have

u* = (cosh7.sinh7 €.)

" = (E.pé&).

so that

p"u, = Ecoshn — pcos@sinhn.

The surface on which one is counting particles is the time-like surface 7 = 7, with

Changing variables from r to n at fixed 7 we then obtain

dN
inp?dp

= n(p.7)

= /f(x.p)dndcoser}’sinh2np"lt,,. (2.93)

where

p"u, = E coshn — pcos@sinhny

and we have used the isotropy assumption and chosen p as the z axis. Here E = \/p* + m?.
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The calculation that Eq. (2.95) needs to be compared with is a hydrodynamical model
calculation for a local thermal equilibrium flow. In a hydrodynamical model of heavy ion
collisions.!® the final spectrum of pions is given by a combination of the fluid flow and a
local thermal equilibrium distribution in the comoving frame. One calculates this spectrum

at the critical temperature T,(x.t) when the energy density goes below

1

€C=‘(h/TT_)3.

This defines the breakup surface 7.. after which the particles no longer interact so that
the distibution is frozen at that temperature. For an ultrarelativistic gas of pions. this
occurs when T, = rn. The covariant form for the spectra of particles is again given by the

Cooper-Frye formula9-30

dN
4mrp3dp

=/f(a:,p)dndcos@‘rgsinhznp“u,,. (2.96)

but now f(z.p) is the single particle relativistic phase space distribution function for pions

in local thermal equilibrium at a comoving temperature T.(7.)

flz.p) = {exp[piu,/Te] - 1) .

We have identified the left hand side of Eq. (2.96) as ng,(p. 7).
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“It is ezxciting to think that it costs nothing to create a new particle ...~

— R. P. Feynman

Chapter 3

Energy-Momentum Tensor

In this chapter. we derive an expression for the energy-momentum tensor. T#. and discuss
its renormalization. We are interested in global energy conservation as a check ou our nu-
merics. and to examine the energy density and pressure for our system. Even though we are
not solving a gravitational problem. it is still instructive to construct a physically meaning-
ful energy-momentum tensor. which would act as a source of gravitation in Einstein’s field
equations.

The energy-momentum tensor T#” is defined by?
5S = _% / dir /=g T (2) 60" () - (3.1)

with the action given by Eq. (2.4). To do the variations. we will need the following:

1 {14
(f\/—g = -2- v—g g“,,dg‘

og" = —g"g""dgpe . (3.2)

44
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Performing the variations. we find
T;w(l') = ((‘);L(I)i) (0, ®:) ~ g[w[-: . (3.3)
where the Lagrangian density is given by Eq. (2.2). We add to this a divergence free piecc

so as to make the trace of the energy-momentum tensor vanish in the limit of zero mass.

We thus arrive at the “improved” energy-momentum tensor®!
1 . .
T (2) = | (V@) (Vo ®i) + 2900 = ViVo) 7 | = gL (3.-4)

where V,, denotes the covariant derivative. Using the equations of motion.

O+x] @ = Ji

X/ o7 — 2. (3.5)

we find that the trace is given by:

T,ﬁ‘ = —~xv° — 35;9;. (3.6)

and thus vanishes as x. j; — 0. This leads to an additional dilatation (or scale or conformal)
symmetry of the Lagrangian.?!

We now compute expectation values of the energy-momentum tensor. We first replace
the fields by operators. using ®;, = ¢; + $i. and take expectation values of the energy-

momentum tensor. A careful analysis shows that the second derivative operations commute
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with the expectation values. Thus. we have

(g0 =V, V) 0F) = (g0~ V,V.,)(®]) (3.7)

= (gw0 = VuVo) [2(7) + (H1(r))] .

(d;;’('r) ) is defined in Eq. (2.41). Using the results in Appendix E. the covariant derivatives.

V. Vodi (1) = (I Fu,, O )3(T). (3.8)
work out to be
2 &2 (1)
vrv'rd);'-(T) = P
ar?
Y 92
VaVadi(r) = ng(_T)
2 _ _ . 2 () l-)(T)
VoVedi(t) = 7sinh“n g
VoVodi(r) = —‘rsinh")r)sinzﬂa(p(j_;(_r). (3.9)

The off diagonal elements vanish.

Using the results in Appendix A. we find for the T component

. fU[roe\? 1047 ol 1, 1,
(Trr) = {5 |:(a7‘) +T or + ¢z] _Jl¢x}_2v X—KX
—/ L (20, +1)

2 2
x [ O |* LA, (s +1 +x) w)slz] . (3.10)

or T or T2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

Changing variables to conformal time «. we find

r - L (%) ¢ 2 1‘,'-’: 1
(Trz) T = {5[(%) +(s—1)P.}"w¢P:}—§ x-—j\’f .

1
N [> s°ds Jgs
+-5-/O ; (2n, +1) D S l + (57 + &) lgs| ] (3.11)

In a similar way. we find for the (T,,,,) component

Py J L[99\ _ 186 2 94}
(T} /7 = {2[(07) 392 " 37 or W']“‘d"}

+1 +1
2V XT RX

N = s3ds
+?[) w(?n,,. + 1)

WP PP 20mE (241 Y\, o]
x[ 3 97 37 or s T X)Wl (B12)

aT
Changing variables to conformal time u. and using the equations of motion. we find

Ty = {%[(%%)24—(—6—1)9?
g g |

It turns out that the energy-momentum tensor is diagonal and that the spatial com-

3.
+2w,—p,~} + 36"6 +

+(5° = ¢) !gsl"’] (3.13)

ponents are all equal. except for a geometric factor. We follow the standard practice and

define the “energy density” and “pressure” by®

(T ) = diag (€. p' 2. p’ % sinh® 7. p’ 72 sinh? nsin®6)) . (3.14)
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The energy-momentum tensor obeys a conservation law. given by

1 9, — .
V”T“U = \/-_ga—g-; ( ht!} Tﬂ”) + r::/\ T’ A
= 9,T" + T4 TV + T, T* =0. (3.15)

Using the Christoffel symbols tabulated in Appendix E. we find the v = 0 component of

the conservation equation (3.15) takes the form

al 3 '} 'l
9  3le+p)

p m =0. (3.16)

The energy density and pressure include source terms. which we remove by defining

€ = €—jidi

2. - 3=
p = P+§Ji¢i~ (3.17)

Then the energy conservation equation becomes

£)_e_+3(e+p) =j-{

. I
ar T

Ooi _ .
d—T'f-(b,} . (3.18)

since for our case. j; is independent of 7. We can also write this equation in terms of the

conformal time variable u. It is convenient in this case to define

po= pri. (3.19)
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Then we have

€ = é-— w;p;
- 9
p = p+ Su‘xpx .

and the energy conservation equation in the conformal time variable becomes

where the energy and pressure densities are now given by

.

m
i
)

1._. 1 .
—1)p,} 7= €

i
du
d
/ o )(7ls+1) [l‘d_g" +(” &)lgsl]

and

du

N > s%ds dgs |*
+?/0 5z (2ns +1) U du

Subtracting Eq. (3.22) from Eq. (3.23). and using Eq. (2.48). we find

. 1{/9p:\? 3., 3,
3p = ;[(i) + (= l)p,] +58E+ €

+ (32 - sc) Igsl2J

3p—€ = f+¢ |:/\+v -p? - N/ 5 ,(2ns+l)lg,|]

In
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(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



30
which just reproduces the trace expression we derived earlier in Eq. (3.6). If we want. we
can use this expression to completely eliminate p from the energy conservation equation.
That is. since 3p = € + 5°¢. we find

Je ) i)/),‘

— e =
R S t . .
du du

Keep in mind that Eq. (3.25) is derived with the assumption that the integrals over s run
to infinity. In fact. in order to make them finite for numerical computations. they are cut
off at s = s,,,(u). This means that when we carry out the renormalization. equations like

(3.24) and (3.25) must be reexamined. which we do in the following section.

3.1 Renormalization of T,

Using a WKB analysis. we can see that the energy-momentum tensor contains quartic.
quadratic. and logarithmic divergences which must be removed. The quartic and quadratic
divergences are quantities which arise solely from the use of the non-covariant cutoff in the
integrals. and must be subtracted by hand. If we could use a fully covariant renormalization
procedure. such as dimensional regularization. these divergences would not be present. which
we will show below.

In order to carry out the renormalization. we use the adiabatic regularization scheme of
Parker and Fulling.?* In the adiabatic limit. we examine the divergences which exist. and

define the renormalized energy-momentum tensor by

(T;w>ren = (Tuu> - (Tuu)ad - (3.26)
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It should be pointed out that this is a regularization scheme. and the integrations need to
be performed in a covariant manner. First we will formally examine the energy-momentum
tensor with a dimensional regularization process. which is fully covariant. and prove that T},
is finite. Then we will examine the problems that arise through the use of a non-covariant
cutoff. and discuss how to take care of these problems.

We first consider the energy density.

au (246 lgslz] (3.27)

In the WKB approximation. we need to expand the mode functions to second adiabatic

order to isolate all of the divergences

g = —= =23
20 2w 8wt 16w’
N S A ¢ N W LS B B W
g} = E(@+92)=§J+§_@+16w3+"" (3.28)

2

Using the expressions for - and 1/\. we can write the divergent part of € as

Egiv = —-%Il(e"’") + (f_- - £e~") [f\lls(ez")]

+ %I—l(f)- (3.29)
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where we have defined the divergent integrals [, as

5 d?k ld/2)
Iia) = [ LN
(2m) 4 (k2 + a2)n/2)  (2m)d

o d=n [ n-d
(a°) 2 [(,( )).

e

(3.30)

[NTH-]

These integrals are finite for d > 3. so we will choose the basic divergent integral as [

g 4 4 2 a? O -
[3(0,",.1‘«‘[3) = yES, [3 —d —In rj_;] . (.3.31)

with M? any mass scale. We will also need the recursion relations

a'.!
[l = mll

1 a? 0
[__[ = mm[; (332)

Applying these results to €g4;;. and taking the limit as d — 3. we then obtain

NEg?

Ng* 2
6472

aiv = o [Ia(e®) = B(9)] =

In (i) . (3.33)

which contains only a finite logarithmic contribution. We also must look at the pressure

du

N = s%ds ags
"."?/0 W(Qns + 1) [‘E

35 = LI(90Y L e des e
3p = 2[( )+(£ 1)p,]+2v£+4l\£.

+(s* =€) |gs|2] (3.34)

Performing the same manipulations as above. we find the divergent part of the pressure to
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be
. 3t 32\ N . 3N, . N N .
@m=(2 méyfm%+75mﬁ-%mm+5um. (3.35)

Carrying out the integrations and taking the limit d — 3. we then obtain

—3Ng
16

3N{zln( $ > .

642 e2u (3.36)

3Pai = [Bs(e®) = By(8)] = -

Thus our adiabatic subtraction. combined with dimensional regularization. has given a
comnpletely finite energy-momentum tensor.

While dimensional regularization is an clegant tool to examine the structure of diver-
gences. it is nonetheless impractical for numerical calculations. In order to regularize on
the computer. we must put in a cutoff on the upper limit of the integration. As we will
see below. this gives rise to artificial terms proportional to the non-covariant cutoff. and we
must subtract these terms by hand.

Returning to Eq. (3.29). we now define the divergent integrals as

[ (a?) = sm §2ds 1 3.37
n(a )—/0 22 (52 + a2) (/D) (3.37)

A list of these integrals. evaluated and expanded to the appropriate order. can be found

in Appendix F. Using these results. and discarding all finite terms. we find

g
- Nsp,

€div = W . (3.38)
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Thus this term must be subtracted by hand. In order to examine the pressure. it is

simpler to cousider the trace of the energy-momentum tensor. then use the relation (3.24).

The infinite part of the trace can be written as

. Nee® Y NE¢ "
Taie = ———[(e™) = 2 L(e™). (3.39)

Carrying out the integrations. we find

NEs? )
Than = —g2 - (3.40)

which again must be subtracted by hand. As we will show below. these extra terms are
necessary in order to prove the energy conservation equation. Eq. (3.25). is true with an
upper limit on the integrals.

If we define

€ER = € — €div
T o= = (3-41)
where
e = stn
v 1672
. Ns?
-~ m B
U3, = - 3.42
div 872 ( )
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then we must show that

Oer  s2e i, (3.43)

reduces to Eq. (3.25).

Because the upper limit on the integral in € depends on u. we must take this term into
account when taking derivatives with respect to u. We will now show that the divergent

terms. when subtracted. exactly cancel the derivative that arises from the limit.

0& ﬁ _ aedi\'
du du du

L . | é.l}'_’ .
= pipi + (& — L)pipi + 569? - S2R —&URUR — %

N [sm gidg .. " ) s
+ _2’ 0 27['2 (2”5 + 1) [29595 + 2(3- + f)gsgs + flgslz]
N sfn Ly " o N5
—_ T (D < s - m ,
5 5 (215, +1) (1sn 2 + (53 + E)lgom ] . (3.44)

where the overdot means derivative with respect to u. Using the equations of motion. v = 3.

and the adiabatic approximation for |g,,,|. we then obtain

ge - Nsi N -
Ju = P~ Eig ~ 47rf_," + msfn(%tsm + Nws,, - (3.45)

The n,,, term goes to zero for large s,,. so we can neglect it. Expanding out w;,:

;i;) . (3.46)

o] —

Wsp = s;~’n+£zsm(1+

and replacing 4% by Eq. (3.41). we can then see the terms proportional to sn, cancel. and
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we are left with

du

which is exactly the result we wanted to show.
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“The purpose of computing is insight. not numbers.”

— Richard Hamming

Chapter 4

Numerical Results

The simulation was performed on the UNH Nuclear Physics Group's Silicon Graphics work-
station. We use a fourth-order Runge-Kutta integration to evolve the differential equations
in time. and Romberg integration to do the integrals. These routines are taken from Nu-
merical Recipes in FORTRAN 2

To choose the initial conditions. we start the system at a temperature above the phase
transition in thermal equilibrium. with all particle masses positive. The equations are solved
self-consistently at the starting time to obtain the values of the x. (o) and (7) fields. We
fixed the value of x at the initial time as the solution of the gap equation in the initial
thermal state. We also required that the initial expectation values of the o and 7 fields

satisfy

i

71'2(T0) + 02(70) =07 .

where g7 is the equilibrium value of ® at the initial temperature T. We choose T' = 200
MeV. which gives 7 = 0.3 fm ~!. We compute the time evolution of these fields. starting
at a proper time 79 = 1 fm. The value of f; used in all the simulations is 92.5 MeV. and A,

is 7.3. Below we show results for several sets of initial conditions. Once the initial values

(4
~1
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are chosen. we have the freedom to vary the first derivative of the ®; field.

Line o(7o) | o(70) | mi(70) | 71{m)
Solid or | -1.0 0.0 0.0
Dotted or 1.0 0.0 0.0
Dashed or 0.0 0.0 0.0

Long dashed 0.0 -1.0 or 0.0

Dot-dashed or 0.0 0.0 -1.0

Table 4.1: Initial conditions used in simulations for & field.

Line o(r0) | (70) | mi(70) | 71(70)
Solid 0.0 0.0 ar -1.0
Dotted 0.0 0.0 or 1.0
Dashed 0.0 0.0 ar 0.0
Long dashed 00} -1.0 or 0.0

Dot-dashed or 0.0 0.0 | -1.0

Table 4.2: Initial conditions used in simulations for 7, field.

Figure 4-1 shows the results of the proper time evolution of the auxiliary field x. for the
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initial conditions listed in Table 4.1. and Fig. 4-2 shows the results for the initial conditions
listed in Table 4.2. We see that having the derivative of ®; > 0 is not sufficient to generate
instabilities (x < 0). When the initial value of ®; is chosen in the ¢ or =; direction with a
negative derivative. there is an unstable region that lasts for at most 2-3 fin. The system
quickly approaches the vacuum value of x = m? = 0.5fm™>. on a time scale of = 10 fm.

This is in distinction to the longitudinal expansion. where even at 7 = 30 fm. one had not

yet reached the “out™ regime.

1.5 ¢
1.0
(\IIA s I
§ ) g ﬂ‘_"_s‘"~
= 05 | ' ‘=.,f'rf R e
00} |
.\’\/,‘/’
-0.5 : '
0 5 10 15 20 25

1 (fm)

Figure 4-1: Proper time evolution of the x field for the initial conditions given in Table 1.1.

We find there is a wide range of values which will allow the system to become unstable.
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0.15 < |6| < 4.95. This can be compared with the longitudinal expausion.”> where the

regime of instability was much smaller. 0.25 < [6| < 1.3. This is because the spherical

expansion leads to a much larger negative gradient for y than the longitudinal case.

15}
10 t
Q'IE SN
T 05 0 N ~~
= o
! . .
0.0}
05 b—uw
0 5 10 15 20 25

T (fm)

Figure 4-2: Proper time evolution of the x field for the initial conditions given in Table 1.2.

In Fig. 43 we show the proper time evolution of the classical o field. for the initial
conditions in Table 4.1. and in Fig. 4-4 the evolution of the m, field for the initial conditions
in Table 4.2. We see that both fields oscillate then reach their vacuum values on the same

time scale as the x field (= 10 fm). The vacuum value of the o field is f; = 0.47fm~". and

the pion field is zero.
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0.6
, '/:: \;: - = — e

0.4 " "‘ /'/" ) T
= 02}
g ,
e oof
v

-0.2

-0.4

0 5 10 15 20 25

T (fm)

Figure 4-3: Proper time evolution of the (o) field for the initial conditions given in Table 4.1.

0.6

04 t

02 -

00

0 5 10 15 20 25
T (fm)

Figure 4-4: Proper time evolution of the () field for the initial conditions given in Table 4.2.
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In Fig. 4-5. we show the effect of the initiall temperature on the evolution of the auxiliary
field. We see that varying the initial temperature has little effect. In Fig. 4-6. we show the
evolution of the x field for different values of the cutoff A. We can see that x is independent

of A. which shows that the renorinalization has been carried out correctly. In our simulations

we use the value A = 800 MeV. since A = 1 GeV is too close to the Landau pole. When

one chooses a cutoff too close to the Landau pole the late time behavior becomes unstable

as can be seen for A =1 GeV.

09 | /\.
\
0.7 ¢ ‘fl \\ 1
0.5 F '; \/\M
~ oo
! 0-3 - ," :
S L —— T=200MeV
X 01} ‘ ‘ T =164 MeV
'\ [, --- T=150 MeV
-0.1 | v
Vo
-03 | \/
-0.5 ' .
0 5 10 15 20 25
T (fm)

Figure 4-5: Proper time evolution of the y field for three different initial thermal distribu-

tions with T = 200. 164. 150 MeV for the initial conditions o(19) = or. mi(19) = 0. and

&(mo) = —1.
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1.0
|
05 |
£ ,
xR | |
| —— A=1.0GeV 1
0.0 ‘1 / - A=0.8GeV
b ~~- A=06GeV
i\ /
J
-0.5 :
0 5 10 15 20
1 (fm)

Figure 4-6: Proper time evolution of the x field for three different values of the cutoff A. with

A = 600.800.1000 MeV for the initial conditions o(79) = or. 7,{79) = 0. and (1) = —1.

Figures 4-7 and 4-8 show the number density calculated from Eq. (2.93). for several
different proper times. Figure 4-7 is a case where instabilities have arisen in the system:.
and there is a large amount of particle production during the time that y has gone negative.
Figure 4-8 is a case with no instabilities. and while there is some particle production. it is

quite small compared to the case with instabilities.
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t=12fm
& t=45fm
- t=95fm
150.0 |- - - t=20.0fm
<, 1000 |
o
500
0.0 - e
0.0 0.5 1.0 1.5 2.0
S

6-4

Figure 4-7: n,(7) computed from Eq. (2.93). for the initial conditions 5(7y) = o7. 7i(70) = 0.

and (7)) = —1.
3.0
t=1.0fm
t=45fm
-t=95fm
[ - —- t=20.0fm
20 |
E
:Q
1.0 .
_\ \\\
0.0 .
0.0 0.5 1.0 1.5 2.0
S

Figure 4-8: Same as the previous figure. but for the initial conditions (1) = or. mi(79) = 0.

and &(mg) = 0.
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Figures 4-9 and 4-10 show the same distributions transformed to the physical momentum
p- as discussed in Section 2.9. The momentum p is plotted in units of rnz. We compare these
distributions to a hydrodynamical model calculation [see Eq. (2.96)]. where we have assumed
that when the system reaches the “out™ regime. the final distribution is a combination of a
thermal distribution in the comoving frame at T, = s boosted to the center of mass frame
using the boost variable 7(r.t) (see®). For comparison purposes. we have renormalized
the thermal distributions to give the same center of mass energy (E = 100 GeV) as the
corresponding non-thermal distributions. We see that as a result of the nonequilibrium
evolution. there is an enhancement at low momentum independent of whether or not there
are instabilities: however. the effect of instabilities is to greatly magnify this low momentum
enhancement.

Figures 4-11 and 4-12 show the energy density and pressure as a function of the proper
time. Figure 4-13 shows the left and right hand sides of the energy conservation equation.
(3.25). Energy appears to be numerically conserved for short times. within the limits of our
approximations. We can only analytically prove energy conservation in the adiabatic limit
when we use the time-dependent cutoff in the integrals. If we could extend our integrals to

infinity. then we can analytically prove energy conservation.
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400.0
n(p.t)
— = - ng(p.,%), T, = 140 MeV
3000 | ~
200.0
100.0 } e
~
\\4
0.0
0.0 2.0 4.0 6.0

Figure 4-9: n(p.7) computed from Eq. (2.95) and ny,(p. 7) computed from Eq. (2.96). for

the same initial conditions as Fig. 4-7.

40.0

T~ 140 Mev
- = - ny(p,T), T, = 140 Me
35.0 (P T)

30.0 | Ny
25.0 |
200 F———————— - - o m s m s e :

15.0 | NN

10.0

0.0 2.0 4.0 6.0
p/m

T

Figure 4-10: Same as the previous figure. but for the same initial conditions as Fig. 4-8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

1.0

0.0 .\\_/\(
0 5 10 15 20 25

T (fm)

Figure 4-11: Energy density for the initial conditions o(7g) = o7. m;{79) = 0. and &(7) =

~1.
1500
1000 |
N -
ég 500 |
= P
(4]
o} ——
-500
0 5 10 15 20 25
T (fm)

Figure 4-12: Three times the pressure for the initial conditions o(7y) = or. 7;(79) = 0. and

&(1) = —1.
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5000 | " —— Ihs
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-5000
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Figure 4-13: Left and right hand sides of the energy conservation equation. (3.25). for the

same initial conditions as the previous figure.
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“It’s the end of the world as we know it. and I feel fine.”

— R.E.M.

Chapter 5

Conclusions

We have studied the time evolution of the chiral phase transition during a uniform spherical
expansion of the hadronic plasma formed in a relativistic heavy ion collision. We used the
linear o model to leading order in a large-N expansion. which incorporates both thermal
and quantum fluctuations. We looked for evidence of the formation of disoriented chiral
condensates as a signature for the quark-gluon plasma. We chose the initial state of the
system to be in thermal equilibrium with unbroken chiral symmetry. This initial state is
characterized by a single parameter. the temperature. We examined the finite tempera-
ture thermodynamics of the system. and calculated the critical temperature of the phase
transition. We found T, = 160 MeV. which is in agreement with the critical temperature
predicted by QCD. Rather than imposing any cooling by hand. we allowed the free radial
expansion of the system to govern the cooling.

We used a path integral approach and derived the equations of motion from an effective
action. We then assumed the system could be modeled using relativistic hydrodynamics
assuming a uniform spherical expansion. and used fluid coordinates that satisfy the scaling

relationship v = r/t. A hydrodynamical model assumes that all expectation values depend

69
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only on the proper time. Our problem was then an initial value problem where we prescribed
the values of the fields and their first derivatives at a time (79 = 1 fm) shortly after the
phase transition. where the lincar & model is appropriate. We studied a wide range of initial
values and looked for unstable. exponentially growing long-wavelength modes. which relax
much more slowly to the equilibrium state and produce a misaligned condensate. Due to
the necessity of using a strongly coupled theory with a rather large renormalized coupling
constant. the instabilities were quickly damped out. and thus no significant amount of
domain formation would occur. However. we find that the phase space number density
for our nonequilibrium evolution is significantly different from one which would result from
an evolution in thermal equilibrium. Thus we suggest that an experimental signature for
domain formation is an increase in the pion particle production rate at low momentum
(momenta on the order of the pion mass).

Our calculations were done in a mean-field approximation. where all the mode coupling is
due to the presence of this mean field. In next order in large-N. scattering in the background
mean field occurs. and the possibility for re-equilibrization exists. Since our value of N is
not very large. scattering effects at next order could provide significant corrections.

In comparison to particle production during a longitudinal expansion. we found that in
a spherical expansion the system reaches the “out™ regime much faster and more particles
get produced. However the size of the unstable region. which is related to the size of the
domain of DCCs. is not enhanced.

We would like to extend the work in this dissertation to incorporate the next-order
corrections of the large-N expansion. We have derived the necessary formalism to carry out

this next-order calculation. although computationally it is very difficult. It is important to
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test the validity of the large-N expansion by looking at the size of these corrections. and
see how much of an effect they would have on the results already obtained. We are also
interested in the effect of using the full linear ¢ model and including nucleon fields. It would
be interesting to see the effect of baryons. which could be important for data analysis of
non-central collisions. where there is still some finite baryon density contribution. Another
extension would be to look in the weak coupling regime. and consider the model as an early
universe model. Inclusion of gravity at a semi-classical level would be possible. although it
brings up some delicate issues with the definition of a physical energy-momentum tensor to

act as a source of gravity. Some preliminary work has been done on all of these topics.
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Appendix A

Properties of the 7, Functions

In this appendix. we discuss properties of the functions mg(n). which are real solutions of
the equation.

1 9 /(. ., 87&’_,4) { 2 il + 1)}
_— h*p—)+<¢s°+1 - ———>)my=0. Al
sinh” n dn (sm K an ” sinh® 7 sl (a.1)
or.
Py 2 dnyg { Y W+ 1)}
> — + 45 +1— S a=0. A2
un? + tanhn dn o sinh” 7 ™l (4.2)
for 7 in the range: 0 < n < oc. With the substitution.
ma(n) = ug(n)/sinhn . (A.3)
we find that uy(n) satisfies
. l+1
o) + [s" _d+ ) ] uy =0. (A4)
sinh” g

Solutions can be found which are regular or irregular at the origin (n = 0). For example.
the regular solution for { =0 is

7s,0(n) = N sin(sn)/sinhn . (A.5)

where N is a normalization constant. Thus 7y(n) resemble spherical Bessel functions:
however. they are functions of three arguments. 7. s and /. rather than two for the Bessel

function case.
The differential equation for 74 (n) is of the Sturm-Liouville type. with weight function
sinh? 7. This means that it satisfies

b
(' = %) [ () ma() sinbn dn = (A.6)

D) d s J s’ b
{smh’n [71'511(17) W(‘)ifn) - wa:’(n)”sl(ﬂ)]} .

for arbitrary limits a and b. In terms of ugy(n) we have

b
("2 = %) / wyt (1) ust(n) dn = [agi(m)dy (n) = wha(mhua(m)], - (A7)

a
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For regular solutions. uy(0} = 0. Thus. if we choose a = 0 the lower limit of the right hand
side of Eq. (A.7) vanishes. Now from Eq. (A.4). we find that for  — . the asymptotic
form of uy(n) is given by

ug(n) = Ny sin(sn + 4;) . (A.8)

where Ny is a function of { and s but J; is a functions of [ only. We will find ;3 explicitly
below. Therefore. if we take the upper limit b to infinity in Eq. (A.7). we find

X
/0 wr(n) wst(m) dy | Ny N

- [.s' sin(s'n + G) cos(sn + ) — 5’ cos(s'n + 3;) sin(sny + ;)
= ("2 — 52)
— lim [—sin[(s’ + s)n + 206] N sinf(s’ — s)r)]]
—x 2(s" + ) 2(s’ — )
T .
= 5 a(s" = ). (A.9)

if the range of s is restricted to positive real numbers. 0 < s < x. Therefore. if we choose
the normalization factor such that
/2
Na=y/—. (A.10)
7

~< ‘ i
/O ug(n) ugi(n)dn = 4&(s —s').

we have

< ) -
/0 wo(n) wer(n) sinh®ndny = (s = ') (A.11)
This means that the asymptotic form of u4(n) must be chosen such that

2
ug(n) — \/;sin(sn +3). forn - x<. (A.12)

We now return to the regular solutions of Eq. (A.1). or Eq. (A.2). subject to the nor-
malization given by Eq. (A.12). The general solution is given by®

sinh’ 7 d (1+0) )
wst(n) = M (dcoshr;) cos(sm) . (A.13)

where the normalization My, is given by

My = \J(r/2)s2(s2 + 12) - (s2 + 12) . (A.14)

The first two solutions are

2 ( —sin{sn) } -
s.ol = e A
ms.0(mn) - { sinh 7 (A.135)
1 —scos(sn)  sin(sn)coshy }
s = 5 n + 0]
1) NI CE { sinh 7 sink® 7
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(A.16)
An integral representation for 7, (n) is given by
, M, " osh 7 — cosh7’)!
motln) = (—1)"‘,11—_‘{/ dy’ cos(sn’) COSRT Ll L (A.17)
sinh'™'(n) Jo £
The completeness relation is given by
x
/ ds wa(n) wa(n') = 6(n — 7'} /[sinh nsinh 7] . (A.18)
0
Recurrence relations are given by
d [+1 -
— + —— b 7 = —Vs2+P2r 0
(G +mmgn =~V F )
d l 5 5
(- b = R T . (A.19)
dp tanhp
The addition formula is3
. ) s sin(sp)
%ﬂ:yszm(')1~91~¢>1)yslm(7rz-92~¢>3) = 32 sinhy (A.20)
_ 52 1_32-\‘-1 2
T e 6 T
where 7 is defined by
coshnp = coshn coshn — sinhn; sinhry cos
cosf@ = cosf cosfy + sinf; sinfa cos(p; — ) . (A.21)
Therefore. taking the limit. (77;. 6. ¢1) —= (72.02.¢%). or 7 — 0. we find
R
i s°
2 Vam(n.6.8)* = 5= . (A.22)
2
im
By differentiating both sides of the addition formula. we can show that
2 2 2
Z ayslm-(’]- 6. ¢) — _“_)_ S + 1 ] (A.23)
; dn 272 3
m
A Vsm(n.0. ¢) 2 2 (241 o
—_— = h' . Fs .24
,Z 28 oz \ "3 ) (a.24)
Vst (1.8.0) | s (241 . :
% W = 2;2 (5 i ) sinh? 7 sin®6 . (A.25)
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Appendix B

Derivation of the Finite
Temperature Partition Function

In this appendix. we derive an expression for the finite temperature partition function.
following the work of Kapusta.™

Let ¢(x.0) be a Schrodinger picture field operator at a time £ = 0 and #(x.0) be its
conjugate momentum. We define the eigenstates of the system by

$(x.0)|9) = $(x)|4) - (B.1)

The completeness and orthogonality relations are given by
[ detxions =1 (B2)
(Balpp) = d[¢pa(x) — Du(x)] . (B.3)

We have similar relations for the = eigenstates.
dn(x) _

[ S ) =1 (B.4)
(malmp) = d[ma(x) — mp(x)] . (B.5)

In field theory. we can write the overlap
(d|m) = expli / &z 7(x)(x)] - (B.6)

Counsider the transition amplitude for a system to evolve through a known Hamiltonian
between two states a and b:

(dnle ™ |¢a) . (B.7)
where

H= /d"’z’H(ﬁ'.J)). (B.8)

To derive the thermodynamics. we are interested in the case where the system returns
to its initial state after some time t = £;. Consider discretizing the system by dividing the
time interval (0.¢;) into N steps: At = t;/N. Then we look at Eq. (B.7) with ¢p = ¢,.
and insert a complete set of states at each time interval. alternating between Egs. (B.2)

34
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d (B.4):

(d’ale_i”tflqsn) = hm /lqubl j|(¢al7r\)

(mxle T o Wbalmn 1 ) (mv 1 le™ T8 gn_y) -

(ol )(mile™ H o4 b1 ) (b1 |¢a) - (B.9)

X

X

Now consider the limiting case At — 0. We can then expand
e tHAL 1 _iHNAt.
so that we can then write

(mle~ HA gy = (mi|(1 — iHAL)|¢;)
(mi|ldi)(1 — iH;At) = (1 — iH; At)exp [—i/d3x7r;¢i] . (B.10)

il

where

H = / Bz H(mi i) - (B.11)

Then using Eq. {B.10) and the orthogonality relationship for the last term in Eq. (B.9). we
have

. dr;
(dale™HY ) = Jim / LHd(b, ”] 8[d1 — ¢l

[em.\(wu—o.\)(l _ HNAt)] [el“’.\—l(a\"@‘\'—l)(l - HN—lAt)]
X e [e""-lw'-’-ol)(l —HlAt)] . (B.12)

X

Finally. we get

N—oox

. ) N d :
(Pale™ " |pg) = lim L_l'[d@?’:r-] 8[d1 — bal

x

exp{-zm\;/d‘ (mj.bj) — Ti(dj+1 — bj) /At]} . (B.13)
with the condition that

ON+1 = Pa =P . (B.14)

Taking the continuum limit gives

. o(x.tf)=0a(x)
(ol r1g0) =[] [ Vg

o(x.0)=dq(x)

x exp{/ dt/dx[ x. 1) (x”—u ¢)]} (B.15)
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Recall that the partition function Z is defined as:
2= {e="} = [ dgu(dale™"I60). (B.16)

If we change variables to an imaginary time 7 = i¢¢. 0 < 7 < 3. then

z = [dm / _dg]

3 5
X exp {/ dr /d:‘z [iw(x.r)g% — H(m. ¢)]} . (B.17)
0
where
per = ¢(x.0) = d(x. 8) = ¢q(x) . (B.18)
This periodicity requirement is a direct consequence of the trace operation in the definition
of Z.
Now consider the Lagrangian density for a scalar field. which is our case of interest:
1 5 -
L = 5(0u00"$ - m2¢?) - U(¢) . (B.19)
Then the conjugate momentum is given by
aL d¢ .
"7 @9 " bt (5:20)
and the Hamiltonian is
H = 9 _ 1, 2 2 42
_7r5t~_3[7r + (Vo)* + m-¢°] + U(9) . (B.21)

Changing variables to T = it. we can perform the Gaussian integral over the 7 fields. which
gives an overall constant to the partition function. The final result for the partition function

1S
N / d[¢] exp { /0 4 / &3z [—-;—(Vqﬁ)") - %m?& - U(¢)} }

N/d[¢] exp{—/ﬁddr /d"x cE} : (B.22)

where the subscript on the Lagrangian density means that it has been transformed to
Euclidean space.
Now that we have derived an expression for the finite temperature partition function.
we must work out this expression for our Lagrangian. We follow the work of Bernard® to
" do this calculation. In Euclidean space. we can write

Z

1

L',E=2

. 1 . . )
(0u®:) + 5x®B7 — xv*/2 = x*[4A - ji®i . (B.23)
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To simplify the notation. we will drop the subscript on ®;. with the understanding that a
sum is implied. We also consider x = constant. at some temperature T'.
Due to the periodicity requirement on ®. we can introduce a Fourier transform.

® = (%) ,.g"x / [d3k] el x+unTlg (k) (B.24)

where we have defined w, = 27n/g. and the notation

s [ &k
/[dk]_ T

We also need to Fourier transform the current operator j in the samne way.
Consider the ® part of the action:

1 3

Se = — [ dr [ 713 i@k % JEGD»>
x expli(k-x+k'-X+w,T +wp 7))
X {[~wawn — k- k' +x] ¢n(k)pn (K') + 2jn(k)pn (k') } . (B.25)

Now we use the results
/d3xei(k+k')’x = (271,)3 63(k+k') .
3 .
/ dr e:(u,.+u.'",)t = Bp_p .
0
Wep = —wp. (B.26)

Then we have
Sp = —% JICG 3y (@2 + 12 + X)nlk)b-n(—K) + 2n(K)d-a(-k)] . (B27)

Now define
Gi'(k)=w2+K +x =uwl +EE. (B.28)

Completing the square in the action gives. symbolically.

1 : . q s
Se =35 /[d"k] S {ls+GilG~" ¢+ Gil - iGi} . (B.29)
Changing variables to ¢' = ¢ + G;j. we can write the ¢ part of the partition function as
! 1 . Fald / . . B
[T exn{ -5 [0 Tlw6'# - jGin} (B.30)

The variable change from ¢ to ¢, gives a 3 dependent constant. which we absorb into the
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normalization factor. Carrying out the Gaussian functional integral gives
1
exp{—%/[d-*k] S [VNI(G'/B) — —B—jGj]} . (B.31)
n

where the factor of NV comes from the N Gaussian integrals over the ¢ variables. and V' is
a volume factor that comes from the trace operation. We now have

2(6.5) = N8 [ d[x]exp{— / Cdr / d"’x[—xv"’/2—x"’/4/\]}

x exp{-3 [l SN G/6) - 5iGil}
= () [didesp{-Sur} - (B.32)
Since x is independent of time and space. we can write
Ser = —BV(xv*/2+ x*/4))
+ 3 [l@H SN mGT - 2iGil. (B.33)

where we have absorbed the factor of In(1/4) into the normalization constant. We then
carry out the functional integral over x using the method of steepest descent. and obtain.
to lowest order in 1/N:

Z(B.5) = N (B)eSerlwol, (B.34)
where g is given by the stationary condition
84S
[ -"“} =0. (B.35)
dx Xo

and is computed in Appendix C.
To find the effective potential. we must first calculate the effective action at finite tem-

perature. We define the connected generating functional.
Z(B.j§) = N(B)e~Serlxadl = WUl (B.36)
We then Legendre transform to obtain the effective action
[ = =Ser = [ d'zj(z)pl)
= =Sur =5 [ Ekin(kignlk)

- / &'z [~Ver(d)]
= —BAVVer(d). (B.37)

Therefore. we define the temperature-dependent effective potential (we drop the subscript

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

on V) as
r
d = ——
Vi(g) = %
1 -
= —xov?/2 = X3/4A + — 55 [d*k] Z": NInG;!
1 3. -
+ 232V /[d I"] ;ansn . (B.38)

It can easily be shown that for our choice of current. jo(x) = Hd;p. we can write the second
integral as

1 H*V 1(ogx0)? 1 .
26)‘/ /[ ;I"] ZJud’n = _. o 5( OXXOO) = EXOO'(.; . (B39)

where we have used the fact that H = xo0oo-
Now we need to carry out the infinite sums. Consider ¥, InG;!. which diverges. In
order to sum this. we use the following trick.’® Define f(E) =¥ ,InG;! = ¥, In(w> + E?).

Then
of 2F N BE/2n
JE Z dmn2/B2 + B2 ; I(n2 + B2E2 [4n?)
_ s BE/2m o ,
- { S o pE o } (B.40)

We then use the following

X Y 1 T
Y == —g3; T 3 coth(m). (B.41)

g—é = i{—% + mcoth (6—25-> + ;—2}

13{1 + 8352_ 1} : (B.42)

Integrating then gives

f(E) = 23{% + 1 In(1 — e-JE)} . (B.43)

5

Therefore we have

l _ —3E;
Bln(l e )}. (B.44)

Now we must carry out the integrals over k. Consider the first term:

N . (47
¥ [enE = 27'))‘ K2\ /K2 + o di

.. . . 1. E
V3(03) = —xov?/2 — X3 /4M + 5,»(005’ + N/[d-"‘k] {TA +
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N [AY xoA? X3 44
= X0 _Xop, (=2 \ . 45
47"‘ { + 4 16 n exo (B.45)

where we have used the results in Appendix F. The second integral gives

%/[d“k} In(l — e JE) = ; (;7;‘)1/ k2 In [1 — e VIR F w} dk . (B.46)

We now change variables to y = #k. Then we can write Eq. (B.46) as

N x D) 2L -~
——L/ y'ln[l—e_V” "] dy. (B.AT)

£32n? Jy

where we have defined £ = 3%x¢. In order to do this integral. we let
x ;) . ¥
glzr) = / y~In [1 —e”V y'+r] dy .
0

The derivative of this function can be written as

% TP
or 12 )

where the function F(r) is defined as

o6 = yidy - ]"
I"(.z:)—7r2/0 m[exp( y>+z)—1 .

We then obtain

Vi(a5) = —xov*/2 = X3/4) + x005/2
N [AY xeA? X 4A?
W{T“L T 716 T zw*/ Flody. (B49)

Note that V is infinite and must be renormalized. We impose the zero-temperature renor-
malization conditions previously defined for the mass and coupling constant.
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Appendix C

Derivation of the Finite
Temperature Gap Equation

In this appendix. we derive the gap equation at finite temperature. which is given by the
stationary condition. Eq. (B.35):

[&ﬁﬂ] =0. (C.1)
JX Xo
Carrying out the derivative gives
X0 _ _2 L [ = |8 (R) :
T = —v° + E/[d k] zﬂ: {IVGn(k) + T . (C.2)
Consider the Y, G, term in the integral. First we need to carry out the infinite sum. We
have
< - x 1
Gn_ k = YD % >
n=z—'x; (k) n=Z-»x 4m2n? /32 + E?
8 27 ks (BE:/27)
= ' — +2 - 50 - C.3
(2«&) {ﬁEk X Ty (BE 2P (3
Using the summation formula. Eq. (B.41). then gives
— = B[l 1
Z G"(k)—E'—k{§+eTEk_—_l} . (C.4)

n=—x

Now we need to perform the integrals over k. The first term gives

N fia. 1 _ N [\ Kdk
—2-/[dk]-§; -

w2 Jo B2+ xo

N 2 X0 4A2 -

The second term is !

3
N/MHEEETTH' (C.6)

91
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Changing variables to y = Bk and z = §%xq gives

N

where F(z) is defined in Eq. (B).

The remaining term in xp is the ¥, ¢> term. First we introduce the inverse Fourier
transform

— ; ) L=
onl(k) = / & / dte k- Frenl@(F 1) . (C.8)
0

We also use the results (b;(E) = ¢_,,(—l;) and w_, = —w,. This gives

1 dllk 13, Jdt —i(E-E-I'-u—'nt)cp Tt

BV [d°k] z,,: @z | dte | (Z.t)
x / &' / 4t iFE a1 (3.1

0

g 3 , ,
- F}fz / &z /0 dt /0 dt' e~ =1 B(F. 1) B(E. ') . (C.9)

Then we use the result

% S ehnlt=t) = §(¢ — t') | (C.10)
4 n
and also assume that ®(Z£.t) = ® = g¢. independent of space and time. This gives
1 / 4 b
—— [ [dk] |¢nl® =05 - (C.11)
77 | 1 2 1
Putting everything together gives the gap equation at finite temperature
X0 2 2, N [,2 xo 1A2 N
= =—v 0+ == |A"— = — —F(z). .
) v + 05 + o) l 5 n(€X0 + 1o (z) (C.12)
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Appendix D

Derivation of the s-wave m — 7
Scattering Amplitude

In this appendix. we compute the s-wave m — 7 scattering amplitude. in order to fit the
coupling constant A\. We consider low-energy m — 7 scattering just above threshhold. To
calculate the scattering amplitude. we use the reduction formula given by3!

/d‘l.’L‘[ /d4$2 /df‘.’L'_’; /d4$4 ei(p3-.t3+p.;-.t.|—p|-.r|—-p-_»-J:;»)

x (O; + x)(T2 + x)(T3 + x)(0y + )G (21 2. 73.24) . (D.1)

where the subscript on each d’Alembertian refers to which r variable it acts on.
The four-point function G (. £a. £3.z4) is determined by

5 NWo[j;. J]

D.2
S (22)53:(23)850 ()55, @1) (D-2)

GH)(:El IL2.I3. .’1,‘4)

Onuly the connected diagrams contribute to the scattering. which is why we use the connected
generating functional W. We are also only interested in the lowest order (in 1/N) terms.
so we just need to consider Wy. given by Eq. (2.17)

NWolji.J] = / d'z\/~g(z) { xo($)+——¥o(£)+ J(£)xa(z)
iN

+ = ln[G0 Yz z: Xo)]}
/ d'z\/=9(@) [ d'y\/=g(s) ji@)Gole. v x0)ily) - (D3)
and xo is given by

xo(z) = A [—v2 + ¢3(z) + -1:7[-00(:2. :Xxo) — 2.](:c)] . (D.4)

¢i0 and Gg are defined in Egs. (2.9) and (2.10) respectively.
In order to carry out the functional derivatives. we will need the following:

6Gy ' (c.y) 5x0(x) o4
o Y ZXO) s
YHEN djj(z1) (=)

93
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dGo(z. y) w)

57 = /de(:z:w) X(( )G(wz/)
j( ji

dgi(z) Xo(w) =
ey = [ twGetw X 4w + Colrz)dy . (D

Now we are in a position to compute the remaining derivative that we need:

dxolc) _ doi () dGo(x. x) .
fijj(z‘l) [(’61( )5_]](1:[) N aji(x) 1 (D.6)

Using the results in Eq. (D.5).

) &1
/d‘ 61(0;:;[ (-’;/\ w) + ¢i(z) Go(z. w) p; (w) — INGo(w. £)Go(w. )
j(

= ¢i(£)Golx. £1)d;j . (D.7)

We recognize the term in square brackets as —H ~!(z.w). with H~! given by Eq. (2.11).
Therefore we can write

J .
()_Z(Z(fl)) = ‘/d"u’H(l’-w)¢j(w)G0(w-$l) . (D.8)

We now need to take four derivatives of NWj. The first derivative is:
ONWo [JNVVO] INWy dxolx)
oji(xr)  Loji(z1)]ly  Ox0 djj(x1)

Recalling the stationary condition. Eq. (2.8). the second term is zero. Therefore we have

INW,
= ¢;(xy). D.9
e =) (D9)
The second derivative is
(52NI’V0 _ ().d)j(.’L'[)
dj(x2)djj(x1) dJx(x2)
dxo(w)

- / d*w Golz1. w) X2 4 (w) + Golzy. 22)djk

Ok (x2)
Gol(z1.22)dk +/d4w/d4yGo(w1-w)Ejk(w.y) Go(y.T») .

where

Tir(w.y) = ¢j(w) Hw.y) dr(y) .
The third derivative is

53N"V0 _ ) (500(:1,'[.1,‘2)
851(£3)8k (£2)0; (1) K i(s)
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+ [ato [aty {2 0 )Gal 2

)——52 (i U)Go(

+ Golzi.w . Y. I2)
Goly. 2
+ Go(w1~‘w)zjk(w‘!/)_5§f;;'_;f)J} .

Keeping only terms to our order of approximation.

(53NW'0
01(x3) 07k (£2)d7;(x1)

= [ [y {8iGoter.w) B w 1)1 0)Goly. 29)Golw. 52)
+ Golc1. w)[0Go(w. £3)H(w.y)dr(y)
+ 5k1¢j(w)H(w~y)Go(y-Is)]Go(y-zz)}-

Finally. the fourth derivative is

I
T = ) dv /e
< {

+  010kmGo(xy. w)Go(w. £3) H(w. y)Go(x2.y)Goly. z4)
+ 5jm6le0($l-’w)GO('w~iU»l)H('w~.’/)GO('!I~$3)GO($2~U)}~
(D.10)

0ik0tmGo(x1. w)Golza. w)H(w. y)Goly. x3)Goly. £41)

We can now finish computing the scattering amplitude. given by Eq. (D.1). As an
example. we consider the first term in Eq. (D.10). We will use the equation of motion for
Go.

[O + xo(z)] Go(z.y) =8z —y).

We then have

S = / diz) / d*z / d'z; / 'y iP3-E3tpesi=prra—piocy)

ikt [ d'w [ty 6'as - )6 20 - 9)d (0 — 25 (0 - ) H(w.y)

= o‘jko',,"/d*w/d%/ ! (P3y+Piy=prw—prw) [ (g, ) (D.11)

X

We then introduce a Fourier transform of H

H(w.y) = / d' ke~ *e=v) f (k) . (D.12)
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which gives
S = d'jk(sh"/d~lw/d-‘y/d»lkeiy-(p3+p4—k)e—iu:.(p1+pg—k)f[(k)
= dk0im /d"k 8 (ps + pa — k)8 (k — p1 — p2) H(K)
= dj0md (p3 + ps — p1 — p) H(p1 +p2) - (D.13)

This corresponds to the s-channel amplitude. The other two terms in Eq. (D.10) will
give the t-channel and u-channel. These variables are the Mandelstam variables. defined by

s = (p+p)?
t = (p—ps)?
u = (p—ps)?. (D.14)

We can then write the total scattering amplitude as:

Sp =04 (P - Pi)[‘).jklslmH(Pl +p2) + 0u0km H(py — p3) + 0djmH(pr —py)| . (D.15)

This is our main result. To complete the derivation. we need the Fourier transform of
H. Recall that

l . iN
H™\(2.y) = —5:6"( — ) + 5-Go(z.y)Go(z.y) = ¢i(z)Golz.y)éily) . (D.16)

We need to Fourier transform this expression and invert it. to obtain an expression for H(p).
Therefore.

/d-lpe—ip-(.t—y)lf[—l(p) _ _al'x/cripe—ip-(.t—y)
”2\ /d~lpe—ip'u_y)éo(.l')/(141)'€_ip"(1—y)00(1)’)

- / d'pe= =Gy (p) . (D.17)

where we have set ¢? = . In the second term on the right-hand side. we need the form
/d“ke—“"‘f—y’f(k) .
Therefore. let k = p+p’ and ¢ = %(p ~ p') in the second term on the right-hand side of

Eq. (D.17). Since the Jacobian of the variable transformation is 1. we can then write this
term as

N | _ _
= /d*k/(14qe—"°‘(f‘y’co(k/2 +q)Go(k/2 - q) .
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Changing variables to ¢’ = k/2 — q. we finally have

N 1 N o =
S R . _ 2
A7\ (p) = -5 + 5 1p) - o*Ca(p) (D.18)
where we define C'o as |
Gol(p) = 5 - (D.19)
X —p
and the polarization [1(p)
Mp) =i [ d'q Gold)Golp — 1) - (D.20)

Now we just need to invert Eq. (D.18). Recalling the definition of the renormalized
coupling constant. Eq. (2.54). notice that we can can rewrite A as

1 1
b v NTI(p = 0). (D.21)

We can then write Eq. (D.18) as

- 1 N a?
-1 = — — = _ — 99
A (p) = ~55- + e =0) - N)] - = (D.22)
Therefore. we finally obtain
- =2\, .
H(p) = TR (D.23)
1+ /\rIVH,-(p) - ﬁ

where we have set 6° = f2 and defined

I (p) =(p) - (p=0).

This completes the derivation of the scattering amplitude. to order 1/N.
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Appendix E
Christoffel Symbols

With a diagonal metric g, . we can use the following relations to compute the Christoffel

symbols:
ry, = 0. Thy, = (—1/2gu,) dgan/Oc* .

Dy = I \/lguul)/0c* . Th, = 9(n\/|guul)/dz* .

Note there is no summation over repeated indices. Then the only non-zero Christoffel

(E.1)

symbols are
T = 7. , , 7o = Tsinh?7.
[oo = Tsinh“nsin”6. Ijy = -—sinhycoshy.
rr, = —sinhncoshnsin®d. Y = —sinfcosd.
F?rr = Fz‘r = FgT = 1/7' .
Fg,, = an = cothy.
ISy = cotf.

These coefficients are used to derive the conservation laws for the energy-momentum
tensor.

98
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Appendix F
Table of Integrals

We tabulate here a list of integrals used in Chapter 2 to renormalize the gap equation. and
in Chapter 3 to carry out the renormalization of the energy-momentum tensor. and their
expansions to the relevant order. The basic integral is of the form

” sm g2ds 1
La(a®) = /0

272 (52 + @2)(n/2) °

The integrals used are:

" 1 Sm a’s, 3 al Sm + /s + a2
I\(a") = 2—W§{T"(.s;’,,+a2)3/’-— 8" vV ,’,,+a-’——8—l [ a"’
1 [s} 3a> 3d a’s?, 1 a”
= —{im |42 22 LR
21r‘-’{ 1 [ Yoz TRt ] g8 | Ta2s
_ a_“lu[2sm+---]
8 a
2y _ L Jsm [ S, a” Sm+ Vs, +a
11((1) = é?{—?._ bm+a - ~lI1 7
1 [s2 la a’ [23,,, + .- ]
= = |l1+z-— - —=lIn|————
27r'-’{ 2 [ Yoz 5 a
Y 1 s Sm + V$%, +a*
I(a? - m 1 m m
) = g { e [ EEE]
1 : .
e )
27 a
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