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ABSTRACT

T IM E  EV O LU TIO N  OF T H E  C H IR A L  PH ASE T R A N S IT IO N  

D U R IN G  A SP H E R IC A L  EXPA NSIO N

by

M elissa A nne  L a m p ert 
University of New H am pshire. December. 1996

We examine the nonequilibrium  tim e evolution o f the hadronic p lasm a produced in a 

relativistic heavy ion collision, assum ing a  spherical expansion into the vacuum . We study 

the 0 (4 )  linear o  model to leading order in a  large-W expansion. S ta rting  in th e  high tem­

pera tu re  unbroken chiral sym m etry phase, the system  expands and  cools, finally settling 

into the  broken symmetry vacuum  sta te . We consider the proper tim e evolution of the 

effective piou mass, the order param eter (<r). and the  particle num ber d istribu tion . We 

examine several different initial conditions and  look for instabilities (exponentially growing 

long wavelength modes) whicli can lead to  the form ation of disoriented chiral condensates 

(DCCs). We find that instabilities exist for proper tim es which are less th a n  3 fm /c. We 

also show that an  experim ental signature o f dom ain grow th is an increase in th e  low momen­

tum  spectrum  of outgoing pious when com pared to an  expansion in therm al equilibrium. 

In comparison to particle production du ring  a  longitudinal expansion, we find th a t in a 

spherical expansion the system  reaches the  "outr regime much faster and m ore particles get 

produced. However the size of the unstab le  region, which is related to th e  dom ain size of 

DCCs. is not enhanced.

xi
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"If my  view in correct, the universe m ay have a kind o f domain structure. In one 

part o f the universe, you m ay have one preferred direction o f the axis: in  another 

part, the direction o f the axis may be different. "

— Y. Nambu

Chapter 1

Introduction

W hen two highly relativistie heavy nuclei collide, there is a  possibility of forming a  s ta te  of 

very hot. dense quark m atter. It is believed th a t  such a  high-energy collision can  produce 

a quark-gluou plasma, a  "deconfined'' s ta te  of quarks and  gluons. This deconfined s ta te  is 

a  new state of m atter, and  is the subject of intense investigation, both experim ental and 

theoretical. As such a  system  cools, it will recom bine into hadrons. This type o f collision 

would provide a unique opportunity  to study  the  phase transition  between confined and 

deconfined m atter, as well as high-density. h ig li-tem perature m atter. QCD predicts the 

existence of such a phase transition, and observation of the quark-gluon plasm a would 

provide further evidence in support of the S tandard  Model. W ith the construction of two 

heavy ion colliders, the  Relativistie Heavy Ion Collider (RHIC) at Brookhaveu National 

Laboratory, and the Large Hadron Collider (LHC) a t CERN . we will have the  available 

technology to try  and create a quark-gluon plasm a (Q G P) and study the phase transition  

between this plasm a and  hadrons.

W hat happens during a  heavy ion collision? T he two nuclei will collide, actually  pass-

1
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receding nuclear pancake-

Figure 1-1: C entral rap id ity  region of a  nucleus-nucleus collision.

'Central plateau*

Hydrodynamic phase

Figure 1-2: Space-time d iagram  for a  radial evolution of the quark-gluon plasm a.

ing through each other. In any center-of-mass frame, they will appear as highly Loreutz- 

contracted pancakes (see Fig. 1-1). We will consider a hydrodynam ical approach first pro­

posed by B jorken.1 and separate the  fragments carrying the “leading baryons" from the 

so-called central rapidity region, the fluid of quanta between the two pancakes. In order 

to consider the projectile pancakes and the  central region independently, they  m ust be well 

separated in phase space, and the in itial energy must be sufficiently high. A fter hadroniza- 

tion occurs, the  central rapidity region consists mostly of pions. so we can use scalar models 

to study  the dynamics. We will assum e th a t a  hydrodynam ical approach is appropriate , and

quanta emerging from
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3

therefore may locally define quantities such as energy density, pressure, and  tem perature. 

The fluid is assum ed to  be homogeneous and  isotropic, and we consider th e  case of uniform 

radial flow. Therefore the appropriate  variables to  describe the system  are  the proper tim e 

r  =  \ j t2 — r-  and  the  fluid rapidity  r/ =  a rc tauh (r/£ ). which are Lorentz invariant in any 

frame. In Fig. 1-2 we show the space-tim e diagram  for the evolution o f the  quark-gluon 

plasm a1 for a radial expansion. C onstant proper tim e is indicated by a  hyperbola, and the 

rapidity specifies the position on the hyperbola.

We would like to use nucleus-nucleus collisions as a laboratory tool to examine the 

deconfinement phase of quarks and gluons. Unfortunately this problem  is ra ther difficult: 

the phenomena are very short-lived (the transition  occurs on a  tim e scale o f 10-23 s). and the 

question of w hat experim ental signatures to  expect is unanswered. It is necessary to  achieve 

large energy densities over a  large space-tim e volume in order to s tudy  th is transition, on 

the order of several G eV /fm 3. The energy density grows with the size o f th e  colliding nuclei, 

and must be high enough so th a t the system  rapidly comes into local therm al equilibrium. 

Heavy projectiles will provide a  larger in teraction volume, a  be tter chance to therm alize. 

and longer lifetimes th an  lighter projectiles. Kinematically, the energy available for particle 

production is described by the  to ta l center-of-mass energy. For RHIC. 100 GeV per nucleon 

in each beam (for gold), giving a  center-of-mass energy of 200 G eV /n  — n. will be available in 

1999. The LHC will have 7 TeV per nucleon in each beam (for lead) w ith  a  to tal center-of- 

mass energy of 14 T e V /n —n. and is planned to be operational in 2005. These center-of-mass 

energies should provide energy densities2 on the order of 1-5 G eV /fm 3.

The global observables one can consider are the average transverse m om entum , mul­

tiplicity d istributions (num ber of particles per unit rapidity) in rap id ity  space, particle
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4

spectra, au d  two-particle correlations. The average transverse m omentum can be related  

to the in itial pressure and tem perature , and m ultiplicity d istributions depend on the  initial 

values of energy and entropy density. Therefore we are  able to obtain inform ation on the 

therm odynam ics of the initial sta te .

The question of w hat experim ental signatures to  look for is still open.2 One possible 

signature is the production of therm al dileptons. T herm al dileptons are not produced in 

hadron-hadron collisions, and are specific for a plasm a th a t can be described therm ody­

namically. However, the  background processes for dilepton production are large, and  it will 

be difficult to  sort out the therm al dileptons. In addition, measuring dilepton spectra  can 

provide inform ation ou decays of resonances. C urrent experim ents show a suppression in 

J /4 ’ production with increasing mass num ber of the projectiles.'5 It is also expected tha t 

the QGP will contain as many strange quarks as up and  down quarks, and therefore one 

should see an  enhanced strangeness content after the collision. Ongoing experim ents show 

an enhancem ent in the expected / ir+ ratio by abou t a  factor of two. *~f‘ However, initial 

aud final s ta te  interactions in a  hadronic gas can also explain th is enhancem ent, so it may 

not be a  signature  of a  quark-gluon plasma. M easuring two-pion correlations through  the 

use of pion interferom etry can provide information on the  size of the source of pious. There 

is also a possibility of forming large clusters of pious aligned in a  single direction in isospiu 

space. These clusters would have a  fixed ratio of neu tral pions to  the total num ber o f pions. 

Such regions are term ed disoriented chiral condensates (DCCs). and are the focus o f this 

dissertation.

W hen heavy ions collide and  produce deconfined quarks a t high tem peratures and  densi­

ties. the recom bination o f the quarks back into hadrons can proceed in a num ber of ways. If
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the  condensation event occurs slowly in therm al equilibrium  by nucleatiou. the hadrons pro­

duced should be d istribu ted  according to their sta tistical weights uniformly throughout th e  

physical space. However, if hadrons are formed by rapid cooling, then  the evolution will be 

far from equilibrium , and condensation can take place in which dom ains of hadrons in phys­

ical space can be oriented in arb itrary  directions in isospace. T he long wavelength modes 

will relax more slowly to the equilibrium  state , thus producing a  misaligned condensate. 

We look for the form ation of "droplets" of pious in which the quark  condensate is nonzero 

bu t points in the w rong direction in isospin space. These dom ains are called disoriented 

cliiral condensates, and may provide another signature of the chiral phase transition.

There are several ways in which the system  can cool. If the  expansion of the plasm a is 

more rapid than  th e  typical interaction tim e, then a  "quenching" approxim ation is valid: 

however, for strong interactions, the collision tim e is shorter, or on the order of. the expan­

sion time. For strongly coupled theories, the coupling constant is quite large, therefore a 

quenching approxim ation cannot be used. O ur m ethods allow for the dynamical expansion 

of the system to govern the cooling mechanism, which we believe is a  more realistic scenario. 

If the system evolves in therm al equilibrium , the “droplets" would be a t most pion-sized. 

and therefore too sm all to m atter. However, if the system  evolves out of equilibrium, there 

is a strong likelihood of forming many large pion domains.

Our m ethod a ttem p ts  to answer some of the questions abou t the nature of the phase 

transition by looking at the tim e-dependence of the process. T he  model used to examine 

the  chiral phase transition  is the 0 (4 ) linear a  model, where we have four scalar mesons, the 

sigma and three pions. This model is a phenomenological model based on SU(2)R x SU (2)L 

chiral symmetry, which is a reasonable approxim ation to 2-flavor QCD as long as we are a t
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energy scales <  1 GeV. T h is is the simplest model which can be studied using ou r techniques, 

and may provide som e insight into the physical natu re  o f the phase transition . We also 

understand how to param etrize and renormalize this m odel, and can carry  out explicit 

com puter simulations o f the tim e evolution of the system  through the phase transition. To 

study  the formation o f DCCs. we derive and solve tim e-dependent equatious o f motion for 

the plasma oscillations, using a semi-classical approach called the large-iV expansion. This 

expansion includes specific quan tum  effects such as pair creation, and can. in principle, be 

carried out to higher accuracy.

How realistic is it to  "disorient" the vacuum? The tru e  vacuum sta te  for this system is 

given by:

($ ) =  (a) = U  ?  0 . (1.1)

Now consider "tilting" the  isospin orientation into one o f the  piou directions

(<r) =  / - c o s 0  (if) =  f - u s i u d . (1.2)

Classically, the energy required to do this is given by1

A E  = ^ m 2f l  sin2 6 =  (10 M eV /fm '1) sin2 8 . (1.3)

T his is not a very large am ount of energy! Therefore it is quite  possible for the vacuum to 

become disoriented du ring  a  heavy ion collision.

We assume a spherically expanding system, since a t late  times the flow becomes spher­

ical. and is also the sim plest geom etry which can be studied. The equations of motion are
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derived in a  special coordinate system  which is appropriate for a  hydrodynam ical expansion 

which satisfies the  scaling relationship v =  r / t .  We introduce the  fluid coordinates proper 

tim e t  and fluid rap id ity  r/.8 Using these coordinates, we obtain  a line element th a t is the 

form of a  Robertson-W alker m etric w ith a  fixed uniform expansion. Thus this m odel could 

also be viewed as a  type of spherically expanding cosmological model. The trea tm ent is 

then sim ilar to the  s tudy  of quantum  fields in curved space.9

In a  hydrodynam ical model, all expectation values depend only on the fluid p roper tim e, 

so we are able to solve the equations of motion given the initial values of the fields and their 

derivatives. We s ta r t  the system  in a s ta te  of therm al equilibrium  a t a  tem pera tu re  above 

the phase transition , w ith all particle masses positive. This is one way to ensure th a t the 

initial s ta te  is in the  disordered phase. The equations are solved self-consistently a t the 

starting  tim e to ob ta in  the values of the (a) and ( t t ) fields. We com pute the effective pion 

mass, the order param eter (a),  and a  tim e-dependent num ber operator. T h is  operator 

allows us to  com pute a  physical particle d istribution which an  experim enter could measure. 

We look for the exponential growth o f long wavelength modes, which signifies tha t the 

system has gone unstab le  and th a t pion domains are forming.

There have been many recent investigations into the possibility of forming DCCs fol­

lowing a relativistie heavy-ion collision, both theoretical10-19 and experim ental.1 • 1 The

original m otivation for studying this problem was the C entauro ev e n ts ."  *'1 rare  cosmic ray 

events in which a  deficit of neutral pions was observed.24 This could be explained by the 

formation of dom ains containing only charged pions. Rajagopal and  W ilczek1112 examine 

the evolution of the  QGP. assum ing a quench of the system , where the initial configuration 

is in therm al equilibrium  at a tem perature above the phase transition , then the tem pera tu re
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8

is brought to zero. The dynam ics can then be studied classically using a  zero-tem perature 

formalism. They find strong  am plification of long wavelength modes, b u t do not include 

expansion. Gavin et al. 1'1' 19 ex tend  this work to include an  estim ation o f the  dom ain size 

and  the experimental neutral pion fraction, for strong aud  weak coupling. They find the 

dom ains to be essentially piou-sized. and thus too small to  provide any significant formation 

o f DCCs. The neutral pion d is tribu tion  is a binomial peaked at 1/3. which is w hat one ex­

pects for an even d istribu tion  o f pions in isospace. Gavin and M idler10 propose an alternate  

scenario to the quench of annealing, which is a  phenomenological model th a t  incorporates 

expansion and cooling, and  find som ew hat larger dom ains. Blaizot aud K rzyw icki10' lfi orig­

inally studied the non-linear a  m odel classically in 1+1 dimensions, bu t w ithout the context 

of hydrodynamics. They analy tically  examine the dynam ics of the system , and find large 

fluctuations of the neu tral/charged  ratio and soft pion production. In their later work, 

they  consider the linear a  m odel w ithin the same framework. Boyanovsky et a l.iS use a 

density  m atrix formalism th a t  takes into account bo th  therm al and quan tum  fluctuations 

in a non-perturbative m anner. T hey use a H artree approxim ation, which is analogous to 

the  l / N  expansion at lowest o rder in l / N .  They also find very small dom ain sizes, on the 

order of 1-2 fm.

In a recent work by C ooper et al..2:i the tim e evolution of the hadronic p lasm a produced 

in such a  collision was stud ied  using the 0 (4 ) linear a  model in a longitudinal expansion. 

T he large-iV expansion was used to incorporate nouequilibrium  and quan tum  effects into 

the problem. After perform ing num erical sim ulations to  solve the tim e-dependent equations 

of motion, instabilities were found to exist for ouly a  short time, and thus there  would be no 

significant am ount of dom ain form ation. In th is d issertation, we study the  sam e problem
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using a  spherical expansion. This s itua tion  produces the m ost rapid  cooling of the system. 

We would like to see if the form ation of instabilities in th is  geom etry is more pronounced 

than in a  longitudinal expansion.

There are two questions which should be examined. F irst, we want to know which 

types of initial conditions lead to the form ation of instabilities in the  system: and second, if 

instabilities do form , we want to find out if the size of the unstab le  region is large enough to 

make any experim ental observation. To answer the first question, we examine the proper­

time evolution of the  system, s ta rtin g  a short time after the  phase transition, where the 

linear a  model is appropriate . We look for the  effective mass o f  the pion to go negative during 

the tim e evolution. This signifies the  onset of growth of long wavelength modes, which is 

believed to  lead to  the  formation o f DCCs. We then com pute the m om entum  distribution 

of outgoing pions. and compare to  a  hydrodynam ical m odel calculation, assuming local 

therm al equilibrium . In cases where instabilities arise, we find a  noticeable enhancem ent 

of low m om entum  modes as com pared to the hydrodynam ical m odel. This provides an 

experimental signatu re  which can be m easured. The im plication is th a t the system is 

evolving out of therm al equilibrium , which is a necessary condition to have significant 

growth of low m om entum  modes. We find th a t the am ount of proper tim e the system  is 

unstable is a t m ost a  few ferm is/c. thus the domain size will not be significant.

One o ther system  which should be briefly mentioned is the early  universe. After the 

Big Bang, the universe underwent several phase transitions. The first is the electro-weak 

transition, which occurred a t a  tem pera tu re  around 200 GeV. At th is time, the electro­

magnetic and weak forces were unified. Due to the non-zero expectation  value of the Higgs 

field, particles acquired mass. At a  tem peratu re  around 150 MeV a second transition  oc­
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curred. the "deconfiuem ent" transition . Nucleus-nucleus collisions may provide a m eans of 

"re-creating" th is early universe phase transition, and  thus provide some insight into the 

dynamics of the  universe. T he system s are quite different, however, due to the streng th  of 

the coupling (strong for heavy ion collisions, weak for the universe). Also for the universe, 

the relevant tim e scale for expansion is controlled by the gravitational constant, and is 

around 10-6 s. For a nucleus-nucleus collision, the  tim e scale is controlled by A q c d  ( t h e  

QCD cutoff, around  200 MeV) and is around 10“ 2:i s.2fi

We now present a brief sum m ary of the contents of th is dissertation. In C hapter 2. we 

discuss the 0 (4 )  linear a  m odel in the  large-N  approxim ation. We derive all of the necessary 

formalism, including renorm alization. We then derive the therm odynam ics to model the 

initial sta te  of the  system  and discuss fitting param eters in the model and the calculation 

of physical observables. In  C hap ter 3 we derive the  energy-momentum tensor aud discuss 

its renorm alization. C h ap te r 4 describes all of the num erical sim ulations and shows these 

results. Finally in C h ap te r 5 we s ta te  our conclusions.
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"Strange fascinations fascinate me . . . o h  changes are taking this phase I'm  going 

through . . .  “

— David Bowie

Chapter 2

The 0 (4 )  Linear a Model in the 

Large- N  Approximation

The model most comm only employed for the s tudy  of disoriented chiral condensates is the 

0 (4 ) linear <r m odel.2' This model is a  phenomenological one based on SU (2)R x SU (2)L 

chiral symmetry. It contains four scalar mesons, the  sigma and the  three pious, w ith a 

quartic self-interaction. T his model is reuorm alizable. and contains many of the features of 

QCD at low energies (<  1 GeV). Although the original model also contains nucleon fields, 

we use only the meson fields. T he param eters in the  model can be fit reasonably well using 

existing experim ental da ta . There are many shortcom ings to this model: in particular, it 

does not fit properties of nuclear m atter well. B u t it is the sim plest model that can be 

studied with our techniques, and can provide some insight into the problem  a t hand.

The Lagrangian density  for the linear a  m odel in a  generalized curvilinear coordinate 

system is given by

£[$,■] =  J - g { x ) { j g llv(x)[d>t * d x ) ][cT $((x)] -  ^  [$ 2(;r) -  r 2]2} . (2.1)

11
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where the mesons are in a  0 (4 )  vector. $  =  (a . if). The factor of s j —g(x) .  where —g(x) = 

clet[<7/it,(x)]. has been in troduced  to make the Lagrangian a  scalar density. T he potential 

here is the "Mexican h a t” , w ith  degenerate minima at any values of $  such th a t =  tr.  

We will remove this sym m etry  by introducing a non-zero current term  in the a  direction. 

In th is work, we use the convention of an  implied sum  over a repeated index i. which runs 

from 1 to iV. (Here N  =  4.) T he  large-rV expansion is a semi-classical approxim ation used 

when perturbation theory  is no t valid, as is the case here. We assume we have N  copies of 

the fields, and examine th e  lim it as N  grows large. The counting for the  large-./V expansion 

is implem ented by in troducing  a  composite field x  =  -M'&f — u2). T h a t is. we add to the 

Lagrangian a  term given b y 'a ;i0

[ X (x)  -  \(<f>2(x) -  v2) ] 2 / 4A .

T his gives an equivalent Lagrangian

W i . x l  =  ^ - 9 { x ) [ \ g , A x ) { d ^ t\ { ^ t\ -  +  J X  + ± x 2} • (2.2)

T he advantage of this form  of the  Lagrangian density is th a t it is now quadra tic  in the <1* 

fields, and therefore the p a th  integral over these fields can be perform ed exactly.
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2.1 The Generating Functional and Effective Action

We consider the generating functional, given by the path  integral

Z[j , . J]  =  I d[x] I d[*,-] e x p • (2-3)

where the action is given by

S [$ „  x - j t - A  =  I d4x  { £ [$ ,,  x] +  y / - g ( x )  U&i  +  • '* ]}  • (2.4)

We use units where h =  c =  1. The large-AT approxim ation is equivalent to integrating

out the <&, variables, then performing the rem aining x  in tegral using the m ethod of steep­

est descent. A fter performing the Gaussian integral for th e  <f>, variables using standard  

techniques.31 we obtain

Z\Jt. A  = I  d[X}eiS' ^ - ,]‘ (2.5)

_____  , 2 i
=  J  d lx ^ J - g ( x )  | y X ( x )  +  ^ jX 2(^) +  J ( x ) x ( x )  

i N  1
+  —  Iu[Gq ‘ (x . x : x ) ] |

+  ^  J dAx \ J - g ( x )  J d 4y y j - g ( y )  j i ( x ) G 0(x . y : x ) j i ( y )  •

where

G 0 l ( x . y ; x )  =  [□ +  y(x)] ^ 4(x -  y ) f y j - g ( x )

[□ +  x(x)] G0( x . y : x )  = iSA(x -  y ) / ^ - g ( x )  . (2.C)
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We now evaluate the rem aining x  integral using the m ethod  of steepest descent. We expand 

S'  abou t a  stationary point Xo(x).

S '[* - .y W ] =  So[xo-./.--/] +  J  d4x^/-g(x)  

\  J  d AxyJ-g{x) J  d ly\J—g(y)

SS ,[X0. j i . J \
d'xU)

[x(x ) ~  Xo(*)]
\o

[ x (^ )  -  xo(*)][x(?y) -  xo(?/)]
\0

The sta tionary  point is determ ined by the  requirem ent

£x(*)
=  0 . (2.7)

This gives the equation

Xo(*) =  A j-tr +<f>iQ(x) 4- y G q{x . x : x o )  - 2 J ( x ) |  . ( 2 .8 )

where we have defined (pio(x) to  be

<f>io(x) =  J dAy \ J - g { y )  G0( x , y: xo)j i(y) (2.9)

and G q(x . y: xo) satisfies

[□ +  x o (^ )]  G0( x . y : x o ) =  iSA{x  -  y) / \ J~g(x ) . (2.10)

These equations a t the s ta tionary  points determ ine xo a  function of J  and j t .

A lthough we do not need th e  expression for the second derivative to this order in our
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approxim ation, it is necessary if we want to calculate next order effects. In theory, we can 

carry out the calculation to include these next order corrections: however, th is task  is very 

difficult com putationally, and has never been done, even in quantum  mechanics. We will 

also see below th a t we need th is derivative in order to evaluate the pion-pion scattering 

am plitude. Thus the second derivative is

H  1 (*.;/: 0,o-Xo)

( 2 . 1 1 )

where

h 1 (x. y) =

IN 
n.{x. y:<pi0.xo) =  ~y  G0(x. y :xo)G0(x.y:xo) ~  4>io(x)G0(x. y: Xo)4>io(y) ■

(2.12)

In principle, we can find H : i2 which is necessary to get next order corrections. For com­

pleteness. we com pute the inverse. F irst consider

h (x . z )  = — 2A<fl (x — z) . (2.13)

Now consider

(2.14)
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We write

H ( x . y )  =  h ( x . y )  +  A H ( x . y )  .

and  insert this result, plus the  definitions for h 1 and li into Eq. (2.14)

/  A h  1 [x. y) 4- fl(x . y) h(y.  z ) +  A H(y .  z) =  <Tl (:r — z)

J d ly  j /i  l (x .y )h{y.  z) + h  1 ( x . y ) A H ( y .  z) + U.{x. y)li{y.z)  +  U ,{ x . y ) A H ( y . z ) ^  =  z)

<5l(x — z)  — ^ - A I i ( x .  z) — 2AII(x. z) +  f  d ly U ( x . y ) A H { y . z ) = 8 i {x — z ) .
I  A  J

Finally we obtain

A H { x . z )  =  - 4 A - n (x .z )  +  2A J  d ly U ( x . y ) A H ( y .  z) . (2.15)

This gives an integral equation for A H .  which is not trivial to  solve.

The integral in Eq. (2.5) over x  can now be done, to order l / N .  T he result is

(2.16)

where

NWoHi.J]  = J d ‘x y X o ( r )  +  ^ X o ( x ) +  J (X )Xo(*)

ln[Go ‘(x -^ X o )]}
i N
2
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+ ^ J  cl’l;r J  d4?y yJ -g (y ) j i ( x )G o{x .y :  xo) j i (y)

W\ \j i -J]  =  5  J  d lx  ^ - g { x ) l n [ H ~ l (x.x:4>io.xo)} ■ (2.17)

We now com pute the effective action, given by a  Legendre transform  of The

average fields axe given by

1 S Z  S W  1
< M ^ )  =  ? .  , . =  j r - —  =  <Pio{x) +  — 4>n (x )  +

i Z  d j i ( x )  d j i ( i r) N

1 S Z  SW  , » 1 , *
* (x) =  T z J J  =  1 7  =  *■<*> +  **><*> +  ■

(2-18)

The effective action  T is defined as

r [0i- X] =  W [ii -J )  ~  JdAx s J - g ( x )  \ji{x)4>i(x) +  ./(x)x(x)] . (2.19)

In this expression, we need to rew rite W  as a  function of the full fields 4>t and x- rather 

than  (f>iQ and xo- We can do th is by substitu ting

<PiQ =  4>1 -  " y ^ ' l -------

Xo =  X -  j j X i  • (2.20)

and use the s ta tio n a ry  condition for W .  To order l / N .  the result is

r[^-x] = J d'‘x^/-£f(x)|yx + ^ x 2 + ^-InGo '(x-^x)
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+  H  X{ x . x : 4 > i , x )  ~  3 i { z ) < i > i ( x ) j

~ \ J  d  Ax ^ J - g { x )  J  d ^ y y j - g ( y )  j i ( x ) G 0 ( x . y :  x ) j d y )  • ( 2 .2 1 )

Rewriting the  last term  as a  function of the fields gives

r [0<- x\ = J dAxyj-g(x) |  i  {ĝ{x)[&l4>i[x)][ff'<l>i(x)] - x<l>j } + y  X + ^ x 2

+  ^ - I n G o  l { x . x : x )  +  ~ In H ~ l ( x . x : < t > i . x ) ^  • (2 .2 2 )

which is the  classical action plus the  trace-log term s. In  this dissertation, we neglect the 

last term  involving H  — which is o f order 1 / N .

2.2 Coordinate System and Choice of Metric

The case we would like to consider is a  spherical expansion into the vacuum, since a t late

proper tim es the energy flow becomes spherical. Minkowski's line element in  spherical

coordinates is

ds2 = d t 2 -  d r 2 +  r 2 ( d d 2 -  sin2 8 d<£2) . (2.23)

We then  consider a transform ation to the fluid variables 

t  =  r  cosh T] . t  =  \Jt-  — r 2 .
(2-24)

1 f t +  r  1
r  =  r s in h r / .  r/ =  tan li- l ( r /f )  =  -  In j - ------> .

We restrict the range of these variables to the  forward fight cone. 0 <  r  <  oc. an d  0 <  r/ <

oc. The variables r  and t/ are useful to describe a  free spherical expansion of a p lasm a into
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the vacuum. Minkowski’s line element then becomes

d.s2 =  d t 2 — t1 +  sink2 r/ dd2 +  sink2 r/ sin2 6 df/>2) . (2.25)

from which we can  read off the metric tensor

<7/»/ =  diag( 1. —t 2. — r 2 sink2 rj. — r 2 sinh2 7/ sin2 9) .

y/—g =  t '1 sinh2 tj sin 9 . (2.26)

We can com pare this to  a  Robertson-W alker line elem ent for a hyperbolic, spherically 

expanding universe

Thus the case we consider here corresponds to a cosmological model with a  fixed uniform  

expansion proportional to the proper tim e r  and zero curvature.

2.3 Equations of Motion

We can derive th e  equations of motion from the effective action. Eq. (2.22). Varying the 

action with respect to (pi and  x  gives

d.s^u - =  d r 2 — a 2(r) |̂ d772 -I-sink2 r/d02 +  sinh 2 r/sin2 0 d ^ 2 . (2.27)

[□ +  x(x)] (pi(x) =  j i (x )  =  H 5iQ

(2 .28)
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and the gap equation.

X(x) =  A [ - v 2 +  $ ( x )  +  N G 0{x. x)  -  2J (x ) ]  . (2.29)

In order to give the pious mass, it is only necessary to  have a current in the zero (a) 

direction, so th a t jo(x)  = H  =  constan t.

In a hydrodynam ical m odel, all expectation values only depend on the proper tim e r .  

We now specialize to the case when .7 =  0 and 0, and x  3X6 functions of r  only. We can see 

th a t Eq. (2.28) is also the equation  for a  free scalar quan tum  field w ith a tim e-dependent 

mass x ( T)- which is self-consistently determ ined by Eq. (2.29). Therefore we can introduce 

a quantum  field ‘h, =  <p, -I- <•/>,. T he equations for are:

[ ± A  (V *
t 1 d r  v d r ) +  X(t ) = H S i0

[□ +  X(r)]0i(ar) =  0 - (2.30)

where the four-vector x  =  ( r . r/. 6 . 0). T hen  for Go we find

G q(x . x ') =  (T c{4>(x . t ). <j){x'.T')}) .

where T c corresponds to a r-o rdered  p ro d u ct .32 30 following the  closed-tim e-path formalism 

of Schwinger. W hen (nl) =  0. th is is the  true  Green’s function.

Following Parker and Fulling.3' we expand </>, into a com plete set of states.

4>i(T.T].e.<f>) = f  d s ' ^ J a iM m  'PAT)ysim{V-8-<t>) +  H .c .] (2.31)
Jo lm
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with

and where 0 . tt. and Y  satisfy:

(2.32)

j _ d _ (  : i d _ \  -s2 +  1

T:i d r  V  d r )  +  r 2 X ( T ) 0.s =  0

1 Q (  • ,2  d  \  , 2 , , W +  
L s i 5 ^ ^ l s,nh ’?^ J +S + 1 -  —

1(1 + D 1
sinh" T}\

1 d (  • /. d \  —— I sint/ —
.sin 9 d 9 \  dd J

+ — + 1(1 + l) sir 9 \  d(f>- J

7TS, =  0  .

Ylm =  0 -

Here. yjm(<?.0 ) are the usual spherical harm ouics. and 7r.,/(/;) are a complete set o f radial 

functions, discussed in Appendix A.

The functions y sim(v-9.4>) satisfy th e  orthonorm alization relation.

[  sinh2 r/dr? [  s in fld#  [  d<j>y*lm(ri. 9 . 0) y s>i'm'(n-<t>)
Jo Jo Jo

=  S ( s  — .s') Su'd,mm'

Therefore we can write

(2.33)

4>iMm(r )  =  J s i n t i 2 r] s m 9 d T ] d 9 d ( t > y * l jn (T}.9.(j))<j>(T.Ti.9.(p)

=  +  ( - ) m a L . / . - m  'A’ ( r ) •

4>i,slm(T ) =  J s i n l r r i  S i n 0 d 7 / d 0 d 0 ; y . * / m ( r / . 0 . 0 ) 0 ( r . 7 ? . 0 . 0 )

=  0 s ( r )  +  ( - ) m a L . / . - m  ^ s ( T ) •

(2.34)

(2.35)
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where the overdot means differentiation w ith respect to r .  We now require ips(r) to  satisfy 

the Wrouskiau condition

>Ps(r)ips{r) -  0 . , ( r ) 0 ; ( r )  =  - i / r *  . (2.36)

This fixes the norm alization of t/>.,(t ). Inverting Eqs. (2.34) and (2.35). we find

®i.alm — i f

(..s/m

V’.s(T)0/.. ,/m(r ) ~  i ’s ( T )<t>i.slm(r)

-.t
(2.37)

Now using the equal r  com m utator

[<£,-( r .  r/. 0 . 4>).<pj{r. r /. 0 '. <■/>')] =
r f ( r / - i / ) d - ( 0 - 0 / ) t f ( 0 - ^ )  

r ;! s i n l r  t) s i n  0
(2.38)

we find

- t
(2.39)

All o ther quantities commute. Therefore.

[® i..s/m - — &ij  •**") ^ // (2.40)

We are now in a  position to calculate We choose the (Heisenberg) sta te  vector such

that the bilinear forms of the creation and annihilation operators are diagonal:
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{(L).s'I'm' =  ^ ^ ( -S •’O ^ll'^rnm' •

(®j.s'l'm’&i.slm) = Ps ^ij •s) ^ll'^mm' •

= P, *0 ^  — •'’) ^tl'^mm' ■

Here «„ and p s are th e  particle  and pair densities. They will be taken to be a  function of .s 

only. In addition, we will take n s to be a therm al d istribu tion  in the comoving frame.

1
7ts “  f^Aro)/kBT _  i •

with u s = \ jx1 / To ■+- x ( ro)- We can choose ps = 0 for all our sim ulations, since one has the 

freedom to make a  Bogoliubov transform ation a t To so th a t this is always true. Using the 

results in Appendix A . we then  find

(4>i) = [  d s (2 n s 4- 1)|i/>.,(t) |2 ^  \ y sim(v^-4>)\2
Jo hZ

=  ^ ° C ^ ( 2 n s +  l) |'0 .,(r) |2 . (2.41)

Therefore Eq. (2.29) becomes

« 2 |

X(t ) =  —An2 +  At f (T )  +  AN  J  ^  (2ns +  1)|</>,(t) |2 • (2.42)

and is a function of r  only. T h is  completes the derivation of the equations of motion.
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2.4 Conformal Time Variables

The equations we want to solve are given by

<Ps{r) +  -  0 , ( r )  +  
T

•S- +  1 

T2
3 -

X(t )

<f>i(r) +  —(pi(r) + x {T )<Pi(T) = j i (r )  
T

(2.43)

with

X (T) =  - X v 2 +  X t f ( T )  +  A NN f
Jo

^ ^ ( 2 n ,  +  l) |V ,. s ( r ) |2 (2.44)

T he variable r  does not allow for a  good WKB expansion, due to  the  singularity at 

t =  0 . 18 Instead, we use the conform al tim e u. w ith u = ln (m r). where m  is any mass scale 

(we choose m  = m -). This transform ation  maps the origin to —oc. We now let

<Pi(r) =  P i ( u ) / r .  i p s ( T )  = 3 . ,(u ) /r

j i ( r )  = Wi(u) /T3 . x ( t )  =  £ ( u ) / r 2

(2.45)

We also have

d_ _  i a _
Or t du

(2.46)

Then the  equations of m otion (2.43) becom e

d 2
du

d2

r, -K (u )  4-.s-

du 2
T +  sc ( u )  - 1

g s ( u )  =  0 

P i ( u )  =  W i ( u ) ( 2.47 )
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with

£ ( u ) /A =  - v 2 (u) -hpf(u) +  N  J  (2n., +- l)|<7»(w)|“ - (2.48)

aud we have defined v(u)  =  v e u/rn =  vt . The W ronskian condition for gs(n) is

2.5 Renormalization

Using a  W KB analysis, one can  show th a t Gq{x . x ) has quadra tic  and logarithm ic diver­

gences.39 The quadra tic  divergence can be removed by mass renorm alization. We carry  out 

our renorm alization in the vacuum , i.e.  in equilibrium  a t zero tem perature. In  the vacuum 

sector, the mass o f the  pion is given by

m 2 =  - A i r  +  A/ 2 +  AN  ^  = . (2.50)
J o  2 7 t-  2 V k 2 +  m 2

with cutoff A. We note th a t if we change variables in the integral to s  =  k r  = k e u/m .  

Eq. (2.50) becomes

r s 2 J  1
m 2 =  —An2 +  A/ 2 +  AN m 2e~2u j  ^  ^  . (2.51)

J o  2 tH  2 y / s 2 +  e

where sm = At = Ae“ /m . D ividing this expression through by Am 2e~2u gives

N  f  Srn .s2d.s 1•>u / . ■'V s“ds 1r  / a =  +  / „ +  T ^ (2.52)
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where f -  =  f - T .  Subtracting Eq. (2.52) from Eq. (2.48). we obtain a logarithm ically 

divergent expression for

[£(u) — e2“]/A =

N  [ Sm .s~d.s
J  Jo ~2tt2

{2yis +  1) 2 |<7s (m)|2 —
\ /  s- +  I>2 u

(2.53)

Note th a t the second term  in the integral is independent  of u. 

The coupling constan t is renormalized by taking

A
1 N  f x k 2dk

\ r 8 tt2 Jo (k2 +  m 2);i/-
_  1 N  f Sm s2ds

Ar 87T2 J o (.s~ 4- e - “):i/-
(2.54)

The divergences are contained in the integrals. Using the adiabatic result |<7s (u)|" =

l / 2 \/.s- +  £. and  the  integrals defined in A ppendix F. we can write the divergent p a rt 

of £ as

.. /V .. /V /V
(2.55)Sdiv =  -  e2“ ) ^ / :J(e2“ ) +  ^ / t ( 0  -  y / i ( e 2u) .

Using the results in Appendix F. we see th a t the quadratic  and  logarithmic divergences 

have cancelled, leaving a  finite result.
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2.6 Initial Conditions

l a  order to solve the equations of motiou. we must specify the  values of the functions p,(u)  

and  gx(u) and their derivatives a t u  =  uo =  hi(mro). For pi(u).  we have

^ < ( u 0 ) =  7 o 0 / ( r o ) .

dp.(uo) 2 / d0 i(ro) \
— — —  =  r 0- l  - d r  j + r o 0 i ( r o ) .  ( 2 . o 6 )

The values for the <•/>,• fields are chosen so tha t the system  is in local therm al equilibrium  

a t a tem perature slightly higher than  the critical tem pera tu re  of the phase transition . The 

value of the critical tem pera tu re  will be computed in the next section. The system  s ta rts  

in a  disordered sta te  w ith unbroken chiral symmetry. In therm al equilibrium, the  system  

is characterized by x  =  XT-  and  the mean field values a  — rrj- =  H / x t -  t ,  =  t t t  =  0. 

We m aintain the constrain t th a t a 2 +  if- =  a f .  The solution to  the gap equation at some 

tem perature  T  gives the “effective mass" of the quasiparticles, and is always taken to be 

positive. If x t  were allowed to be negative in the initial s ta te , we would be imposing a 

quench. By requiring x t  >  0- we allow the cooling m echanism  to drive x  negative. We will 

discuss below how this initial s ta te  is calculated. We have th e  freedom to vary the derivative 

of the 4>i fields, and we will choose a range of initial values, to  see which values give rise 

to  instabilities. A nonzero derivative adds some initial kinetic  energy to the system , which 

destroys the local equilibrium  of the  initial state. However, the  expansion alone is sufficient 

to drive the system out of equilibrium , even with =  0 .
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For </,(«) we use a  W KB ansatz

<J*(u) =  - 7= = == =  exp [ - i  f  W 3{u')du' 
\JL rK .s ) L j  UO

where IF*(m) satisfies:

s h g d ’- * - * -
and a;„(«) =  \/V- +  £ (u). We will then take th e  in itial conditions

W ,(u 0 ) =  u s(uq)

W^( i io) =  w ' ( « o ) .

which correspond to the  ad iabatic  vacuum. T his allows us to in troduce an  interpolating 

number density which in terpolates between n s(u) and  the true "out" density. nout. 

Therefore we take

9ai^o) — 1/ y 2ii,s (uo) •

dgs (uo) f [dwa(uo)/dii] , . , ,1 , ,
s r -  =

(2.58)

(2.59)

with

ws(u) =  s j s 1 +  £(u)  .

du)s(u) _  [d£(u)/du] 
du 2 u}s (u)

(2.60)
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We take n ,  to be a  therm al d istribu tion  at ro

(2.61)

In addition, we will need values for £(uo) and d£(uo)/diz. £(«o) is the solution of

£(«<,) =  c-'“° +  A f t  -.-“0P j M  T em i

A N
j - S m  i f - d .s

Jo 2^
2ns + 1 1

2 v/ * 2 + £ ( u o )  2  >/.s- +  e - Uo

(2.62)

(2.63)

and d£(ito)/du is given by

sC'(« 0 ) 1 +  AiV ISm t rd s  2n s +  1

AW 3
27T- Sm

2 tt2 4w3(u0) 

+ 1  1

=  2 A

_2wSm(u o )  2 \ J s 2, 4- e - “°
+

Pi(uQ)p'i(uQ) -  ~ ^ e ~ Uo
in-

r Sm 1___g-uo r
2 io 27T- u > 2 (u 0 ) ’

(2.64)

2 .6 .1  F i n i t e  T e m p e r a t u r e  P a r t i t i o n  F u n c t io n  f o r  t h e  L in e a r  a  M o d e l

In order to solve for the  initial therm al equilibrium  sta te  o f the  system , we need to have all 

the therm odynam ic inform ation about the system. The best way to obtain therm odynam ic 

relations is from the partition  function Z.  In Appendix B we derive an expression for the 

partition function a t finite tem perature. The final result for the partition  function is

Z{(3) =AT(p)  J d[0 ] e x p | - ^  d r  J  d 3x £ £ : |  . (2.65)
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where the  subscript ou the  Lagrangiau density m eans tha t it has been transform ed to 

Euclidean space, and r  is the imaginary tim e ( r  =  it). In A ppendix B we calculate Z  to 

leading order in l / N .  a n d  Legendre transform to  ob tain  the finite tem perature  effective 

action, which is used to  calculate the effective potential.

In order to calculate the  critical value of the tem pera tu re , we m ust com pute the effective 

potential The critical tem perature is defined by40

200

150

2  100

50

40 60 
aT (MeV)

100

Figure 2-1: Critical tem pera tu re  curve. The unstable (spinodal) region where ^  <  0 is given 
by the interior of the curve. The points Tc and <7q =  / -  are marked, to show the bounds of 
the curve.

dV
d

=  0
0=0

( 2 .66 )
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We calculate the  teinperature-depeudent effective potential in Appendix B. and  ob tain

V ' V o )  =  - xo« 2 / 2  -  X o /4A  +  x o ^ o /2

N  f A'1 xoA2 xo , f  4 A M  1 N  [* ,

In A ppendix C we evaluate xo- which is a functiou of <f> = <?o- The result is

Xo , , 2 , N A* N-xo, ( 4A- ̂  N  ,0_  =  +  <r„ +  — j .  -  ln I _  I +  . (2 .6 8 )

Insertion of the gap equation. Eq. (2.68). into Eq. (2.67) gives the effective po ten tia l as a 

function of ft and <tq. For T  < Tc and  a0 <  a?-. the gap equation cannot be satisfied . 11 

and no therm al equilibrium sta te  exists. W hat is usually done is to perform  an  analytic 

continuation across the spinodal region defined by the curve in Fig. 2-1. and th e  effective 

potential becomes complex. Therefore the effective potential is undefined in th is region.

Now we need to evaluate Eq. (2.66):

dV

d^o <T0

dV dxa d v  
=  ^ - ^  +  77- 7 = ° .  (2.69)

_ 0 dxo ocq da 5

The implicit derivative term  is zero, since d V / d x 0 reproduces the gap equation. Evaluating 

the explicit derivative gives

dV
=  Xo =  0 . (2.70)
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Setting Xo =  0 anti cr0 =  0 in Eq. (2.68) gives

(2.71)
12

In the vacuum, v- =  f z .  so the critical tem peratu re  is defined as

Tc =  n/3/st =  159.83 MeV . (2.72)

This value of the critical tem pera tu re  is used to start the  calculation above the phase 

transition. lu  order to  choose the  sta rting  values \ T  and err- we evaluate the gap equation. 

Eq. (2.68). w ith xo =  XT  and <to =  H / x t • then  solve for the  value of aj -  =  H / x t -

In Fig. 2-1 we show the critical tem peratu re  curve, defined by setting xo =  0 hi

Eq. (2.68). We define the critical tem peratu re  a t the poin t where cro =  9- At T  =  0.

we have ag =  /-■

2.7 Fitting Parameters in the Linear a Model

We determ ine the param eters in the model by considering th e  vacuum  sector. We will use

three experim entally defined quantities: the mass of the pion. m -: the pion decay constant. 

/ - :  and the /  =  0 s-wave ir — 7r scattering  phase shift. Spatial homogeneity gives

XoOq =  H .
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T he m atrix  elem ent for charged pion decay is given by 12

(0|A?(x)\nj(q)) =  i U f e - ^ S i j  . (2.73)

where the axial vector current is given by

-4f(x) =  [7t,(x)S/‘ct(j:) — a i x ) ^ ! r,-(x)| . (2.74)

Consider the divergence o f Eq. (2.73):

<0 | ^ A f  (X)|7Vj(q)) =  U q - e - “>TSij = . (2.75)

This relation, along with

(OlTTifxJlTTjte)) =  e ~ iqxSij 

gives the PC AC (partial conservation of axial vector current) condition

c)f,A?(x) =  U m i K i ( x )  . (2.76)

If m T were zero, th is axial current would be conserved. Taking the divergence of Eq. (2.74) 

then leads to

H = U m i -

Since we have defined the  vacuum by xo^o =  rn2<jq =  H.  we then  find th a t  ctq =  / T.

In order to fit the coupling constant A. we look at low-energy tt — n  scattering. The
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Figure 2-2: Feynm an diagrams for i t  — n  scattering , to order l / N .  Eacli dashed line corre­
sponds to a  Gq. an d  the wavy line represents the  x  propagator, given by H{u>.y).

calculation of the scattering am plitude is given in A ppendix D. The result for the  to tal 

scattering  am plitude to order l / N  is

S f i  = d [ ( P j  -  P i) (2.77)

where the  M andelstam  variables s. t. and  u  are defined in Appendix D and

H(p) =
—2Ar

1 +  Ar i v n r (p) -
(2.78)

We have set a 2 = f 2 and defined

nr(p) = n(p) -  n(P = o)
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/ \ i \

Figure 2-3: Im aginary vs. real part of s-wave w — ir scattering am plitude. T he solid line 
shows a unitarized curve, and the dashed line shows our curve before unitarizatiou.

w ith the polarization n(p)2°

n(p ) =  i J  d 4<7G0 (<7)G0 (p-<7)

: J  dAq [x -  <r] [x -  (p -  9)2]=  i

1

8 jt2
In

1 4 m 2
+  ~ \ / 1  T" In

yo-^) ( l + x 2) -  1
(2.79)

where x  =  m / A  and x  =  m ' .  T he 1 = 0 scattering am plitude is given by

H°  = 3 H(s)  + H(t)  + H(u)  . (2.80)
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and the s-wave scattering  am plitude is obtained by integrating the 1 = 0 am plitude over all 

angles:

/ , = o  =  e ' r f(s)  s i n r f ( . s )  =  3 2 ^ 2  y 1 -  ^ 7 ~ j \  d z H ° • <2 -8 1 )

where z =  cos 0 and 9 is the  scattering angle in the s channel center of mass system .

In Fig. 2-2. we show the relevant Feynman diagram s for the s-wave scattering  am plitude.

co
©
2
o>
©"O

to

150

125

100

75

50

25

0
250 500 750 1000 1250

s 1/2 (MeV)

Figure 2-4: tt — k s-wave isoscalar phase shifts, using our "renormalized" am plitude. The 
fits give the theoretical predictions: solid line. / -  =  92.5 MeV: dashed line. =  125 MeV. 
The data  are from the  following references: o 13 : ID4'1 : O4 ' : A 46 : -f4' .

We recall th a t <h4 is a  cutoff theory which becomes trivial as the cutoff is removed. 

We must define the cutoff to be below the Landau pole, where the bare coupling becomes 

negative for positive renorm alized coupling. Also, on physical grounds, we want 2 <
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tti„ <  A. In order to  have a reasonable value for the a  m ass, we must have 0.7 GeV <  A <  

1 GeV. T his lim its th e  renormalized coupling to be betw een 7 and 10.2n

T he large-V  approxim ation for the scattering  am plitude  does not satisfy unitarity . We 

can see th is by p lo tting  the real and  imaginary parts o f the  s-wave scattering am plitude. 

In Fig. 2-3 we show this plot, for a  un itary  am plitude (solid line) and the result of our 

calculation (dashed line). U nitarity  can be enforced by sim ply multiplying the  am plitude 

by a constan t and “renormalizing" it. However, our calcu lation  does work for values of the 

pion center-of-m ass energy close to  threshold, in the range 300-400 MeV. We then  take our 

unitarized am plitude and calculate the s-wave isoscalar phase shift. In Fig. 2-4. we show 

several sets of da ta , along with ou r calculated curves. T he  solid line is for the value / -  =  

92.5 MeV. which is the  value we use in the  calculations. T he dashed line is for / -  =  125 

MeV. T he larger value of the pion decay constant gives a  b e tte r  fit to the da ta : however, 

we choose to  use the  physically accepted value of 92.5 MeV. The value of Ar we use to fit 

this d a ta  is 7.3.

2.8 Phase Space Interpolating Number Density

We are interested in  how the particle num ber changes during  the time evolution of the 

system. In order to define this num ber operator, we need to define a tim e-dependent set 

of creation and  annihilation operators, w ith first o rder ad iabatic  mode functions. The 

expansion (2.31) can also be w ritten:

Mu.ri .e. f j ))  = [  d sY^[a i . s im W  ii>°(u)ysim (Ti.9. $ ) +H.C.} (2.82)
J° lm
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where

<Ps{u) = <J°*(U) / T

and

9s(u ) = , - l- T ~- exp \ - i  f  u},(u')du'  
s/ 2 l L J un

By construction. g^(u) satisfies

<js* g f  -  g°*' g° = (2.83)

Therefore <p^(r) satisfies the W rouskian

-  0 ° ( t ) z/>“ * ( t ) =  —i / r J (2.84)

In addition, we require the tim e-dependent operators ai..,/m ( r )  to satisfy th e  condition

di.,im(r) +  a ] s l m { T )  ^ * ( r )  =  0 . (2.85)

These properties allows us to invert Eq. (2.82) to find ai..s/m(T) as a function of the fields. 

As before, we obtain

=  I T £4>t.,,m(r) -  # * ( r )  S4fiMm[T)

=  —zr
: t

^ 0 ( T ) ^ , s/rfl( r ) - ^ ( r ) < 5 $ [ , Zni(r) (2 .86 )
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Using Eq. (2.39). we find

( ” )• d j  ( t ) ]  =  f i i j  S ( s  ,s) f i l l ' r u n '  • ( 2 . 8 / )

and therefore these operators are particle opera to rs for the field a t time r.

We can also find a  relation between these tim e-dependent operators and  the time- 

independent ones. S ubstitu ting  Eqs. (2.34) an d  (2.35) into Eq. (2.86) gives the Bogoliubov 

transform ation

a , . s lm ( r )  =  o . s ( t )  a i ^ i m  +  3 s ( t ) ( ~ ) m a J sl_ m .

= « :(r)(-)maL/-m + ^:( ')“- /m. am

where

a , ( u )  =  i V J t y ’° * ( r )  0 s ( r )  -  iP°s ‘ ( t ) 0 s ( r ) ]

=  ' [</./(u)<7.U“ ) - f f s *'(u)9s(u)]

■o. id's 9°s«  \
=  i<J s 9 s <  57 >

[9s 9° J

= e J j s u  { (n < + “’’) + i f e - g ) }  (2'89>

3 s ( u )  =  i r J  [ t / ? ° * ( r )  t l - ' ( r )  -  0 ° * ( t )  i i \ ( r ) ]

= i [9°s*(u )9s(u) ~  »?*'(«)0 *(u)]

-  /n0*O* / ff*, 9° * ' \~ 'a-g-\7riF]
i f  v .-n .idu e “o"

s / T s U f , 2 M )
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It follows tha t

|« ,( ii) |2 - |A ( « ) f -  =  1 . (2.91)

We can define the first order adiabatic num ber density  as

ns(u) = (al(u)ds (ti)) . (2.92)

where, for simplicity, we have suppressed the angular indices on a ,  and dj.

One can show 18 th a t  n s(u) is an adiabatic invariant, and would be the true num ber 

density in a slowly varying expansion. We then choose

ds =  d.,(u0 )

9 A n  o) =  ff“ (uo)

so th a t the initial d and  d T are the adiabatic  ones. T his m eans th a t at u =  uo- we choose 

=  u}s and =  ujs. W hen \ ( u )  —► rn2 then n s(u) —> nout. which is the true  out-state  

phase space num ber density.

Using the results derived above, we then find

n s (u) =  ns(u0) +  |& (u ) |2[l -i-2ns (u0)] • (2.93)

Notice tha t at u = uo. ds {uo) =  0. so n s(u) = t i s ( u q ) = n s. Since n s(uo) is the initial phase 

space num ber density, an d  at late times, becomes the  ou t-sta te  num ber density, it is an 

interpolating num ber density.
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2.9 Transformation to Physical Variables

In  terms o f the  initial d istribu tion  o f particles n.,(ro) and 3  we have

71*(r) =  77.,(T o )  +  |f t ( r ) |- [ l  +  277.s (T o ) ]  .

where 77.,( r )  is the ad iabatic  invariant interpolating phase space num ber density which 

becomes th e  actual particle phase space num ber density in the comoving frame w hen inter­

actions have ceased. We now need to relate  this quantity  to the physical spectra of particles 

m easured in  the lab. At late t  > ry ~  10 fm our system  relaxes to the vacuum and \  

becomes th e  square of the physical pion mass m 2. The comoving center-of-mass energy of 

outgoing particles can then  be identified with

Us(Tf) =
.2

— -f m 2
Ti

The ac tua l d istribu tion  of m om enta in the lab frame is a com bination of the collective 

("fluid") m otion described by the boost 7/ from the comoving frame to the center-of-mass 

fram e and th e  comoving particle d istribu tion . Here, the space-like hypersurface on which 

one is counting particles is a t fixed p roper time r / .  This d istribu tion  is given by the Cooper- 

Frye form ula49 00

We identify the relativistic phase space distribution function f ( x . p )  w ith us{t j ). The 

dependence of s  on the space time variable x  and the outgoing m om entum  p  is found from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

the relationship

= u ; s ( r f ) =
.2

—  -I- rri2
Ti

We choose the  measured m om entum  p to  be in the  z direction of our spherical coordinate 

system . We have

u" =  (cosh r/. sinh  p er ) 

p^ =  (E . p  e3) •

so th a t

p^ Uf, = E  cosh 7] — p cos 6 sinh p .

The surface on which one is counting particles is the  time-like surface r  =  tj with

Changing variables from r  to  r/ a t fixed r  we then  ob tain

diV
E  . =  n (p .r )

47rp-dp

=  J  f(x.p)dr]d cos d r j  sinh2 pp^u^ . (2.95)

where

pfxu il = E  cosh p — p  cos 6 sinh p

and we have used the isotropy assum ption and chosen p as the 2 axis. Here E  = \Jp2 +  m -.
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The calculation th a t Eq. (2.95) needs to be compared w ith  is a  hydrodynamical m odel 

calculation for a  local therm al equilibrium  flow. In a hydrodyuam ical model of heavy ion 

collisions. 1-8 the final spectrum  of pions is given by a com bination of the fluid flow and  a 

local therm al equilibrium  d istribu tion  in the comoving frame. One calculates this spectrum  

a t the critical tem pera tu re  Tr(x . t )  when the energy density goes below

_  1 

c (h / m c )-J

This defines the breakup surface r c. after which the particles no longer interact so th a t 

the distibutiou is frozen a t th a t tem peratu re . For an ultrarelativ istic  gas of pions. this 

occurs when Tc =  m . The covariant form for the spectra of particles is again given by the 

Cooper-Frye form ula49-00

=  [  f { x . p )d p d c o s 0 r -Jsinh2 T)p,tXL.l . (2.96)
47rp-dp J

but now f ( x . p )  is the  single particle relativistic phase space d istribu tion  function for pions 

in local therm al equilibrium  a t a comoving tem perature Tc(tc)

f { x .p )  =  {exp[p/tu,1/T c] -  I } -1  .

We have identified the left hand side of Eq. (2.96) as ri</,(p. t ) .
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''It is exciting to think that it costs nothing to create a new particle . . .  ~

— R. P. Feynman

Chapter 3

Energy-Momentum Tensor

In tills chapter, we derive an expression for the  euergy-m om entum  tensor. T ftu. and discuss

its renorm alization. We are interested in global energy conservation as a check on our nu­

merics. and to examine the energy density and pressure for our system. Even though we are 

not solving a gravitational problem, it is still instructive to construct a physically m eaning­

ful energy-momeutum tensor, which would act as a  source of gravitation in E instein 's field 

equations.

The energy-momentum tensor T ^ u is defined by9

w ith the action given by Eq. (2.4). To do the variations, we will need the following:

J d4xv^— Sĝ lx) (3.1)

= - 9 iip9uah Pc • (3.2)

44
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Performing the  variations, we find

T,tu(x) = (du$ i)  -  gftl/C . (3.3)

where the Lagrangian density  is given by Eq. (2.2). We add to  this a  divergence free piece 

so as to make the  trace  o f the energy-m om entum  tensor vanish in the lim it of zero mass. 

We thus arrive a t  th e  "improved" energy-m om entum  tensor01

Tuv(x)  — (V,A) (v„$i) + -  v„v„) 9tii/£ • (3.4)

where V /t denotes the  covariant derivative. Using the  equations of m otion.

[□ +  x] =  j i

x /X  =  — v 1 . (3.5)

we find tha t the  trace  is given by:

=  ~X« 2 -  37 , $ , .  (3.6)

and thus vanishes as x - j i  0 - This leads to an  additional dilatation (or scale or confomial) 

sym m etry of the  L agrangian .01

We now com pute expectation values of the energy-m om entum  tensor. We first replace 

the fields by opera to rs , using 4>, =  (pt +  <£,. and  take expectation values of the energy- 

m omentum tensor. A careful analysis shows th a t the  second derivative operations commute
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w ith the  expectation values. Thus, we have

=  (gflun  -  V ttV u ) { $ j )

=  ( i?/u/° -  V , , V „ )  [ 0 / ( 1-) +  ( 0 / ( r ) )

(3.7)

( <f>i(~)) is defined in Eq. (2.41). Using the results in A ppendix E. the covariant derivatives.

v„<af(r) = (a„au - r* dx )<pj(T) . (3.8)

work o u t to  be

V r V r ^ ( r )

V ,V ,0 ?(t)

V flV fl^ (r)

V oV 0(fif(T)

& 4 4 ( t )
d r 2

dtf)f(T)
Ot

• u2 ^ ( r )  
- r s i n h  77 —  ------

OT

■ i-i • 2 n v<t>i{T)—r  sinh r/sin  0 —  ----
OT

(3.9)

The off diagonal elem ents vanish.

Using the results in A ppendix A. we find for the  T tt component

( t r )  =

+

(a<Pi\2 i a<pj ,  
V O t )  + r ~ d T  +  X 't‘-

- . 1 1 •> 1 - 7

N  r x  •S2d.s

2 L  2^< 2" ’ + I»

8 t t 8 t T~
(3.10)
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Changing variables to conform al tim e u .  we find

t

-  w,pi

da*

1 - 2 C 1 rf
- - V  Z ~  Tt Z

du
(3.11)

In a  similar way. we find for the  (Xw ) component

<7V,)A2 =
\  Ot )  3 0 t ~ 3 r  Or

11 •>
H— ? ) '  y  H V

2 *  4A*
iV /-* .s2da-V r * ^ d s („

+t /0 2^ - (2" -  +  1) 

x  _  1 a w  _  2
clr 3 d r -  3 r  c?t

(3.12)

Changing variables to conform al tim e u. and using the equations of motion, we find

3 (Xw ) r 2 =
m

+ ( - Z - l ) p f +  2 W iP i 1 +  | e 2 £ +  - j ^ £ 2 .

N  f*- s 2d.sN  f  
T /o 2 tr

T (2n., +  i) i)gs
du +  (•*’•' -  Z) ls*-l (3.13)

It turns out th a t the  energy-m om entum  tensor is diagonal and tha t the spatia l com­

ponents are all equal, except for a geometric factor. We follow the standard  practice and 

define the “energy density" and  “pressure" by8

( T'nv ) =  d iag  ( e'T . p '  r 2. p '  r 2 sinh2 r/. p '  r~  sinh2 tj sin2 9 ) . (3.14)
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The energy-m om entum  tensor obeys a  conservation law. given by

=  - ± = - £ - ( y/ ^ T n + K x T,tX

=  a ^  +  r £ A t At/ +  r " A T ttX =  o . (3 . 15)

Using the Christoffel symbols tabu la ted  in A ppendix E. we find the v — 0 com ponent of 

the conservation equation (3.15) takes the form

*  +  0 .  (3.16)
c/r r

The energy density  and pressure include source term s, which we remove by defining

e ' =  e -  ji<Pi 

2
?' =  P + ^ji4>i- (3.17)

Then the energy conservation equation becomes

since for our case, is independent of r .  We can also w rite this equation in term s o f the 

conformal tim e variable u. It is convenient in this case to  define

p = p r A . (3.19)
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TUeu we have

e' =  e -  wtpi 

2
P  =  P  +  ■

aud the energy couservatiou equation in the  conform al tim e variable becomes

- Op, 
+ J p _ t  =  „

where the energy and  pressure densities are now given by

V du

N  srd.s
+ -T  /  +  1 )I  Jo 4/i-

1 .., 1 ■>

du + (* -+ S ) \9 , \

and

3fl = sfdr) , ^ -2 r ,  ̂ c-

+
N  f *  s 2d.s [ dgs
t /o  air5-1 * a: +  (-s2 - 0 lffs

Subtracting Eq. (3.22) from Eq. (3.23). and  using Eq. (2.48). we find

3 p — e = V

f af

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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which ju st reproduces the  trace expression we derived earlier in Eq. (3.6). If we want, we 

can use this expression to  completely elim inate p  from  the  energy conservation equation. 

T h a t is. since 3p =  e + v~£. we find

+  v 2£ =  uu . (3.25)
an o u

Keep in m ind th a t Eq. (3.25) is derived w ith the assum ption  th a t the integrals over * run 

to  infinity. In  fact, in order to make them  finite for num erical com putations, they are cut 

off a t $ =  am (u). This means th a t when we carry o u t the renorm alizatiou. equations like

(3.24) and (3.25) m ust be reexamined, which we do in the following section.

3.1 Renormalization of

Using a  W KB analysis, we can see that the energy-m om entum  tensor contains quartic. 

quadratic, and  logarithm ic divergences which m ust be  removed. The quartic  and quadratic 

divergences are quantities which arise solely from the  use of the non-covariant cutoff in the 

integrals, and  m ust be sub trac ted  by hand. If we could use a  fully covariant renorm alization 

procedure, such as dim ensional regularization, these divergences would not be present, which 

we will show below.

In order to carry ou t the renorm alization, we use the  ad iabatic  regularization scheme of 

Parker and Fulling.3' In the adiabatic lim it, we exam ine the divergences which exist, and 

define the renorm alized energy-momentum tensor by

ren =  { T ( i v )  ~  ( T #ii/ ) a d  • ( 3 . 2 6 )
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It should be pointed out th a t this is a regularization scheme, and  the integrations need to 

be performed in a covariant m anner. First we will form ally exam ine the energy-momentum 

tensor w ith a  dim ensional regularization process, which is fully covariant, and prove tha t Tin, 

is finite. Then we will examine the problems th a t arise  through the use of a  non-covariant 

cutoff, and  discuss how to take care of these problem s.

We first consider the  energy density.

(&)’♦«->* 1 -2 f  1 ci
~ 2 V ~  4A '

dg.s
du

(3.27)

In the W KB approxim ation, we need to expand th e  mode functions to second adiabatic 

order to isolate all of the divergences

l9.s(u) |2

|gs (u ) |2

_L -  _L jL
2 f t  “  2 u  +

1 (  f t2

3d>2

2ft V 4ft2
ft2 =

16ur>
. ‘)u r

8^

t H-----

UJ
2

3d> 
16 a;3

+ (3.28)

Using the expressions for v1 and  1/A. we can write the  divergent part of i  as

(3.29)
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where we have defined the divergent integrals In as

L i a 1) =  I
ddk * [dm ,  i= - r (a = 4 )  

(2tt)rf(jta +  «2 )(»/2) (2*)d(a  ’ * r(S.)
(3.30)

These integrals are finite for d > 3. so we will choose the basic divergent integral as In

h ( a 1. M 2) = ------
(4tt) j

(3.31)

w ith M 1 any mass scale. We will also need the  recursion relations

h  =  

I - i  =

(1 - d )  "
1 a*

(1 + rf)  (1 - d ) h . (3.32)

Applying these residts to  Cdiv- and taking th e  lim it as d —¥ 3. we then ob tain

^div —
N e
16

(3.33)

which contains only a  finite logarithmic contribu tion . We also must look a t the  pressure

3i> =

tig*
du

(3.34)

Perform ing the same m anipulations as above, we find the divergent part of the  pressure to
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be

Carrying out the integrations and taking the lim it d  3. we then obtain

(3.36)

Thus our ad iabatic  subtraction , combined w ith  dim ensional regularization. has given a 

completely finite energy-m om entum  tensor.

While dim ensional regularization is an  elegant tool to examine the structu re  o f diver­

gences. it is nonetheless im practical for num erical calculations. In order to regularize on 

the computer, we must pu t in a cutoff on the upper lim it o f the integration. As we will 

see below, this gives rise to artificial term s proportional to the  non-covariant cutoff, and  we 

must subtract these term s by hand.

Returning to Eq. (3.29). we now define the divergent integrals as

A list of these integrals, evaluated and expanded to  the appropriate order, can be found 

in Appendix F. Using these results, and discarding all finite terms, we find

(3.37)

(3.38)
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T hus this term  must be sub trac ted  by hand. In order to  examine the pressure, it is 

sim pler to consider the trace of the  energy-momentum tensor, then use the relation (3.24). 

The infinite part of the trace can be w ritten  as

C arry ing  out the  integrations, we find

■ (M l)

which again m ust be subtracted  by hand. As we will show below, these ex tra  term s are

necessary in order to prove the energy conservation equation. Eq. (3.25). is true  with an

upper lim it on the integrals.

If  we define

fff =  c ~ ediv

vr  =  »2 - « d i v  (3-41)

where

;  _
£diV “  1671-2

8 tt2
N s 2

«div =  i d r  (3.42)
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then we must show that

0 1  r  . 2 Of),
—  + , „ {  =  — w,. iiAi)

reduces to Eq. (3.25).

Because the  upper lim it on the integral in e depends on u.  we m ust take this term  into 

account when taking derivatives with respect to  u. We will now show that the divergent 

terms, when sub trac ted , exactly cancel the  derivative th a t arises from the limit.

Ocr _  0£_ _  d l(Kv 
Ou du  du

=  PiPi +  ( f  “  1 )piPi +  ^ P ' i  -  ~2 & R V R  ~

iV f Sm s~ds r •> •>
+ ~2 Jo ! ^ {2Us +  ^  +  +  +

+  j 2 ^ ( 2n*»> +  ^  [l^s™ I2 +  +  y*m I” — ;j^in • (3.44)

where the overdot m eans derivative w ith respect to u. Using the  equations of motion, v = v. 

and the ad iabatic  approxim ation for |. we then  obtain

N.s

^  =  piWi -  £v2r  -  ^ 2 1  +  - ^ 2 - 4 ( 2 n Sm 4- l)u;.,m . (3.45)

T he nSm term  goes to zero for large .sm. so we can neglect it. Expanding out wSm:

and replacing v R by Eq. (3.41). we can then see the term s proportional to .sm cancel, and
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we are left w ith

d l
du

dpt
=  —

du
(3-47)

which is exactly the  result we w anted to show.
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"The purpose o f computing is  insight, not numbers. "

— Richard Hamming

Chapter 4

Numerical Results

The sim ulation was performed on the  UNH Nuclear Physics G roup 's Silicon Graphics work­

station. We use a fourth-order R unge-K utta integration to evolve the differential equations 

in tim e, and Rom berg integration to do the integrals. These routines are taken from N u­

merical Recipes in F O R T R A N  S’1

To choose the  in itial conditions, we s ta r t the system  at a  tem pera tu re  above the phase 

transition  in therm al equilibrium , w ith  all particle masses positive. The equations are solved 

self-consistently a t the starting  tim e to obtain  the values of the x- (a ) and  (if) fields. We 

fixed the value of x  the initial tim e as the solution of the  gap equation in the initial 

therm al state . We also required th a t  the initial expectation values of the a  and n  fields 

satisfy

jr~(‘ro) +  <7~(~o) =  nT •

where o r  is the equilibrium  value o f $  a t the initial tem pera tu re  T .  We choose T  =  ‘200 

MeV. which gives crp =  0.3 fin -1 . We com pute the tim e evolution of these fields, s tarting  

at a  proper tim e to = 1 fm. The value of / T used in all the sim ulations is 92.5 MeV. and Ar 

is 7.3. Below we show results for several sets of initial conditions. Once the initial values

57
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are  chosen, we have the freedom to vary the first derivative of the <I>, field.

Line o - ( r o ) C T (ro ) 7T l(T o ) 7h(7(>)

Solid (T j - 1.0 0.0 0.0

D otted CTJ 1.0 0.0 0.0

Dashed ( T j 0.0 0.0 0.0

Long dashed 0.0 - 1.0 ( T j 0.0

D ot-dashed ( T j 0.0 0.0 -1.0

Table 4.1: In itial conditions used in sim ulations for a  field.

Line t f ( 7 b ) o-(to) t t i( t o ) ^ i ( t o )

Solid 0 .0 0 . 0 CTj - 1 .0

D otted 0 .0 0 . 0 (Tj 1 .0

Dashed 0 .0 0 . 0 Oj 0 .0

Long dashed 0 .0 - 1 . 0 ( T j 0 .0

D ot-dashed ( T j 0 . 0 0 . 0 - 1 .0

Table 4.2: In itial conditions used in sim ulations for 7ri field.

Figure 4-1 shows the  results o f the proper tim e evolution of the auxiliary field x • f°r the
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initial conditions listed in Table 4.1. and  Fig. 4-2 shows the results for the in itia l conditions 

listed in Table 4.2. We see th a t  having the derivative of 4>, >  0 is not sufficient to generate 

instabilities (y  <  0). When the  initial value of <1>, is chosen in the  a  or tt, direction  w ith  a 

negative derivative, there is an  unstable region that lasts for a t  most 2-3 &n. The system  

quickly approaches the vacuum  value of x  =  m ~ =  0-5 fm “ “. on a time scale of ~  10 fin. 

This is in d istinction  to the longitudinal expansion, where even a t r  =  30 fin. one had not 

yet reached the "out“ regime.

CM
E

0.5

0.0

-0 .5
0 5 10 15 20 25

t (fm)

Figure 4-1: P roper time evolution of the \  field for the initial conditions given in Table 4.1. 

We find there is a  wide range of values which will allow the system to becom e unstable.
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0.15 < \a\ <  4.95. This cau be com pared w ith  the longitudinal expansion .20 where the 

regime of instability was much smaller. 0.25 <  \&\ < 1.3. T his is because the spherical 

expansion leads to a  much larger negative gradient for x  than  the longitudinal case.

1.5

1.0

0.5

0.0

-0 .5
0 5 10 15 20 25

X (fm)

Figure 4-2: Proper tim e evolution o f the x  field for the initial conditions given in Table 4.2.

In Fig. 4-3 we show the proper time evolution of the classical a  field, for the initial 

conditions in Table 4.1. and in Fig. 4-4 the evolution of the tv\ field for the  initial conditions 

in Table 4.2. We see th a t both fields oscillate then  reach their vacuum  values on the same 

tim e scale as the x  field (~  10 fm). The vacuum  value of the a  field is / -  =  0.47 fin -1 , and 

the pion field is zero.
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0.6

0 .4

0.2
E
A
O
V

0.0

- 0.2

- 0 .4
0 5 10 15 20 25

x (fm)

Figure 4-3: P roper tim e evolution of the (a) field for the initial conditions given in Table 4.1.

0.6

0 .4

0.2
E
A
K
V

0.0

- 0.2

- 0 .4
0 5 10 15 20 2 5

x (fm)

Figure 4-4: P roper tim e evolution of the (7Ti) field for the initial conditions given in Table 4.2.
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In  Fig. 4-5. we show the effect o f the initial tem pera tu re  on the evolution of the auxiliary 

field. We see that varying the in itia l tem pera tu re  has little  effect. In  Fig. 4-G. we show the  

evolution of the x held for different values of th e  cutoff A. We can see th a t x  is independent 

o f A. which shows tha t the renorm alization has been  carried out correctly. In our sim ulations 

we use the value A =  800 MeV. since A =  1 GeV is too close to the Landau pole. W hen 

one chooses a cutoff too close to the Landau pole the  late time behavior becomes unstable, 

as can be seen for A =  1 GeV.

0.9

0.7

0.5

0.3
T = 200 MeV 
T = 164 MeV 
T = 150 MeV

0.1

- 0.1

-0 .3

-0 .5
0 5 10 15 2 0 25

x  ( fm )

Figure 4-5: Proper time evolution of the x  field for three different in itial therm al d istribu­

tions with T  =  200. 164. 150 MeV for the in itia l conditions (t(tq) =  cry. 7t, ( t o ) =  0. and 

< t ( t 0 ) =  - 1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

CMI
E

1.0

0.5

—  A = 1.0 GeV 
A = 0.8 GeV

-  - A = 0.6 GeV

0.0

-0 .5
0 1 05 15 20

x (fm)

Figure 4-6: P roper tim e  evolution of the x  field for th ree different values of the cutoff A. w ith 

A =  600.800.1000 M eV for the initial conditions <t ( t o ) =  < x r -  7r«(-ro ) =  0. and d’(ro) =  —1.

Figures 4-7 and  4-8 show the number density calculated  from Eq. (2.93). for several 

different proper tim es. Figure 4-7 is a  case where instabilities have arisen in the system , 

and there is a large am ount of particle production during  the tim e th a t \  bas gone negative. 

Figure 4-8 is a case w ith  no instabilities, and while th ere  is some particle production, it is 

quite small com pared to  the case with instabilities.
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200.0
r  = 1.2 fm 
z  = 4.5 fm 
t  = 9.5 fm 
t  = 20.0 fm150.0

100.0
c

50.0

0.0
1.0 1.5 2.00.0 0.5

S

Figure 4-7: t i s ( t ) com puted from Eq. (2.93). for the  in itial conditions o - ( t q ) =  a r -  ~ i ( t o )  =  0. 

and < t ( t o )  =  - 1 .

3.0
—  t  = 1.0 fm 

z  = 4.5 fm 
■ - - z  = 9.5 fm 

x = 20.0 fm

2.0

<0C

1.0

0.0
1.00.0 0.5 1.5 2.0

S

Figure 4-8: Same as the previous figure, bu t for the in itial conditions o-(ro) =  &t- ^t(To) — 0. 

and <t ( t o ) =  0 .
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Figures 4-9 and  4-10 show the sam e distributions transform ed to  the physical m om entum  

p. as discussed in Section 2.9. T he m om entum  p is p lo tted  in un its  of m -. We com pare these 

d istribu tions to  a  liydrodynauiical m odel calculation [s£e Eq. (2.96)]. where we have assum ed 

that when the system reaches the "out" regime, the final d istribu tion  is a  com bination o f a 

therm al d istribu tion  in the comoving frame a t Tc = mi? boosted  to the center of mass frame 

using the boost variable T](r.t) (see8). For comparison purposes, we have renorm alized 

the therm al distributions to  give the same center of m ass energy (E  =  100 GeV) as the 

corresponding non-thermal d istribu tions. We see th a t as a  result of the nonequilibrium  

evolution, there is an enhancem ent a t low momentum independent of whether or not there 

are instabilities: however, the effect of instabilities is to  g reatly  magnify this low m om entum  

enhancem ent.

Figures 4-11 and 4-12 show the  energy density and pressure as a function o f the proper 

time. F igure 4-13 shows the left an d  right hand sides o f the energy conservation equation.

(3.25). Energy appears to be num erically conserved for sh o rt tim es, within the lim its of our 

approxim ations. We can only analytically  prove energy conservation in the adiabatic  lim it 

when we use the tim e-dependent cutoff in the integrals. I f  we could extend our integrals to 

infinity, then  we can analytically prove energy conservation.
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400.0
— n(p,T,)

nm(p,t,), Tc = 140 MeV

300 .0

200.0

100.0

0.0
6.04.02.00.0

P / n \

Figure 4-9: n ( p . r )  com puted from Eq. (2.95) and n tf,(p. r) com puted from Eq. (2.96). for 

the same in itia l conditions as Fig. 4-7.

4 0 .0
n(p.x,)
rV(P43.T e= 140MeV

35 .0

30 .0

25 .0

20.0

15.0

10.0
6.04.00.0 2.0

P / m *

Figure 4-10: Sam e as the previous figure, bu t for the same initial conditions as Fig. 4-8.
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1.0

0.8

0.6

w 0 .4

0.2

0.0
0 5 10 15 20 25

T (fm)

Figure 4-11: Energy density  for the initial conditions <j (tq) = nr-  7r ,(To) =  0. and ct{tq) =  

- 1.

1500

1000

E 500
Q.CO

-5 0 0
0 5 10 15 20 25

T (fm )

Figure 4-12: Three tim es the  pressure for the in itial conditions n(r0) = n j .  tt,(r0) =  0. and 

c t ( t 0 ) =  - 1.
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3 5 0 0 0

2 5 0 0 0

15000

5000 Ihs
rhs

- 5 0 0 0
250 5 2010 15

x (fm)

Figure 4-13: Left and  right hand  sides of the  energy conservation equation. (3.25). for the  

same initial conditions as the  previous figure.
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"Ft V> the end o f  the world as we know it. and I  feel fine. ~

-  R.E.M.

Chapter 5

Conclusions

We have studied the tim e evolution of the chiral phase transition during a  uniform  spherical 

expansion of the hadrouic plasm a formed in a  relativ istic heavy ion collision. We used the 

linear a  model to leading order in a  large-/V expansion, which incorporates both  therm al 

and quan tum  fluctuations. We looked for evidence of the  formation o f disoriented chiral 

condensates as a signature for the  quark-gluon plasm a. We chose the in itial sta te  of the 

system to  be in therm al equilibrium  with unbroken chiral symmetry. T h is  initial sta te  is 

characterized by a  single param eter, the tem pera tu re . We examined the finite tem pera­

ture therm odynam ics of the system , and calculated the critical tem pera tu re  of the phase 

transition . We found Tc % 160 MeV. which is in agreement with the critical tem perature 

predicted by QCD. R ather than  imposing any cooling by hand, we allowed the free radial 

expansion o f the system to govern the cooling.

We used a pa th  integral approach and derived the equations of m otion from an effective 

action. We then assumed the system  could be modeled using relativistic hydrodynamics 

assum ing a  uniform spherical expansion, and used fluid coordinates th a t satisfy the scaling 

relationship v =  r / t .  A hydrodynam ical m odel assumes th a t all expectation values depend
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only on the proper tim e. O ur problem  was then  an  in itia l value problem where we prescribed 

the values of the fields and  their first derivatives a t a  tim e (to =  1 fin) shortly a fte r  the 

phase transition, where the linear a  model is appropria te . We studied a  wide range o f in itial 

values and looked for unstable, exponentially growing long-wavelength modes, which relax 

much more slowly to  the  equilibrium  sta te  and  produce a  misaligned condensate. Due to 

the necessity of using a  strongly  coupled theory  w ith a  ra th e r large renormalized coupling 

constant, the instabilities were quickly dam ped  ou t. and thus no significant am ount of 

domain formation would occur. However, we find th a t the phase space num ber density  

for our nonequilibrium  evolution is significantly different from one which would resu lt from 

an evolution in therm al equilibrium . Thus we suggest th a t an  experimental signatu re  for 

domain formation is an  increase in the pion particle  production rate  at low m om entum  

(momenta on the o rder of the  pion mass).

Our calculations were done in a mean-field approxim ation, where all the mode coupling is 

due to the presence of th is m ean field. In next order in large-iV. scattering in the background 

mean field occurs, an d  the  possibility for re-equilibrization exists. Since our value o f N  is 

not very large, scattering  effects at next order could provide significant corrections.

In comparison to particle  production during  a  longitudinal expansion, we found th a t  in 

a  spherical expansion the  system  reaches the "out“ regime much faster and more particles 

get produced. However the size of the unstable region, which is related to the size o f the 

domain of DCCs. is no t enhanced.

We would like to  ex tend  the work in th is d isserta tion  to incorporate the next-order 

corrections of the large- N  expansion. We have derived the necessary formalism to carry  out 

this next-order calculation, although com putationally  it is very difficult. It is im portan t to
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test the validity o f the  large-Af expansion by looking a t the size of these corrections, and 

see how much of an  effect they would have on the resu lts  already obtained. We are  also 

interested in the  effect of using the full linear a  model and  including nucleon fields. It would 

be interesting to see the  effect of baryons. which could be im portant for d a ta  analysis of 

11011-central collisions, where there is still some finite baryou density contribution. Another 

extension would be to look in the weak coupling regime, and  consider the model as an  early 

universe model. Inclusion of gravity a t a semi-classical level would be possible, a lthough it 

brings up some delicate issues w ith the definition of a  physical energy-m oinentum  tensor to 

act as a source o f gravity. Some preliminary work has been done on all of these topics.
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Appendix A

Properties of the irs/ Functions

In this appendix , we discuss properties of the functions 7rs/(r/). which are  real solutions of 
the equation.

1 d (  ■ u2 &R*i\ . f a . - ,  + n
— .- - - 77- sm h v  +  Vs + 1 — . -.2  • r ^  =  0 •sinh" t]OT] \  or] J L sm h r/ J

or.
# V s/ 2 I [ ■> . / ( ^ + 1 ) 1

U t)'2 tan h  77 d g  \  siuli2 g J s/Ug2 tanh  7/ dg 1 s u ii r  7/

for 7/ in th e  range: 0 <  g < oc. W ith  the substitu tion .

0

7rs/(jy) =  i h t i w ) / s in h 77.

we find th a t  u si(g) satisfies

,  /(/ +  1) s~ —
sinh 7/.

u s/ =  0 .

(A.2)

(A.3)

(A.4)

Solutions can be found which are  regular or irregular a t the origin (7/ =  0). For example, 
the regular solution for / =  0 is

fts,o(v) =  A/” s'm{sT])/s in h g  . (A.a)

where A" is a  norm alization constant. Thus 7rs/(7/) resemble spherical Bessel functions: 
however, they  are functions of three argum ents. 7/. .s and  I. rather than  two for the  Bessel 
function case.

The differential equation for 77,/(r/) is of the Stunn-L iouville type, w ith  weight function 
sinh2 g. T h is  means th a t it satisfies

■> ■) [** •> sr2 -  s'2) /  77,7 (7/) 77,/(//) sinh2 77 d77 =  
J a

(A.6)

drj
sinh" 7/

for a rb itra ry  limits a and b. In term s of « s/(7/) we have 

( s ' 2  '

dirsi(g) £>77,7 (77)
dg *sdn) }*■* a

s ' 2 - S 2) [  u s>t( g ) u sl(g)dg  =  [us>,(g)u'sl(g) -  u'sll(Ti)usi(T))]ba . (A.7)
J a
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For regular solutions. us/(0) =  0. Thus, if  we choose a =  0 the lower lim it of the right hand 
side of Eq. (A.7) vanishes. Now from Eq. (A.4). we find th a t for r/ —r oc. the asym ptotic  
form of usi (t)) is given by

Usi(t)) -*• Afsi siri(.s/7 +  d j ) . (A.8)

where AT,/ is a  function o f I and  -s but dz is a  functions o f I only. VVe will find 3i explicitly 
below. Therefore, if we take the upper lim it b to infinity in Eq. (A.7). we find

[  u.s'1 (V) u.si (71) dr/ /  j\fs’i jVs[
Jo

’.s sin(.s'r/ +  dz) cos(.s7/ 4- dz) — •s'/ cos(.s'tj +  dz) sin(.s7/ -h dz)
=  l i m

rj-i-oc

=  l i mr;—3C

(.S'2 -  *2)

-  s i n [ ( . s '  +  +  2d / ]  s i u [ ( d  -  . s ) r / j

2 ( . s '  +  .s) 2( . s ' -  .s )

(A.9)

if the range of .s is restric ted  to positive real numbers. 0 <  s < oc. Therefore, if we choose 
the normalization factor such th a t

(A .10)

we have

[  u si(rf) u s> =  S ( s  -  . s ' )  .
70

/ • x
/  “ st( )  tt.s'/(r/) sinh2 t j  dr/ =  r) ( .s  -  . s ' )  .

Jo

This means th a t the asym ptotic  form of u s/(r/) must be chosen such tha t

(A.  11)

M r? ) sin(.sT7 +  d t )  • for t/  —?• oc . (A .12)

We nowT retu rn  to  the regular solutions of Eq. (A .l). or Eq. (A.2). subject to the nor­
malization given by Eq. (A.12). The general solution is given by9

, siuh 'r/ (  d \
=  ~ u T 1 1

where the norm alization A/,/ is given by

tl-H/)

K T  cos(5’'> •

The first two solutions are

77.
V 77 L sinh q J 

1
\ J ( 7 7 / 2 )  .s -  ( .s -  +  1) I sinh rj

(A.13)

(A .14)

(A .15)

7Ts.l(7/) =
— .s c o s (.st / )  s i n ( . s T / )  cosh 7 / ' 

s in lr  rj
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Au integral representation for tt,/(r/) is given by

Msi
xs[(r]) =  . 3 - 1 ,  [  d 7 / ' c o s ( . s 7 / ' ) -

sum  (7/) Jo t!

T he com pleteness relation is given by

f ds 77,1(7/) 77,1(7/') =  6 ( 7 /  -  7/ ' ) / [ s i n h 7/ s i n h 7/ ' ]  . 
Jo

Recurrence relations are  given by 

f  d  /  +  1 I

i\i, (cosll 7/ — cosh 7/')

=  - / ' ' 2 +  ( ' +  u 2 =r,J - , w .

T he add ition  formula is03

l m

•s sin(.s"7/)

27t2 sinh  7/

11 S’ +  1 2 ,

where r/ is defined by

cosh 7/ =  cosh 7/i cosh 7/2 — sinh 7/[ sinh  7/2 cos 0 

cos 6 =  cos 0i cos 0> +  sin0i s in 02 cos {4>\ — 0-1) ■

Therefore, taking the lim it. (7 /i.0 i.0 i) -+ (772-0a- ) -  or 77 -»  0. we find

/>
5 3 l^ /m (0 .0 - 0 ) |2 =  2 ^ .
/m

By differentiating bo th  sides of the addition formula, we can show that 

d y sim(ri.9.<t>)£
l m

£
/m

£
lm

Or]

dy,im(ri.d.4>)

s ~  /  .s -  +  1

2tt2 I 3

do

d y sim(ri.9.4>)

s m

d<t>

s -  + 1
2 772 \  3

•s2 / . s 2 +  I 

2tt2 1 3

sinh2 7/.

sinh* 7/ sin* 0 .

83 

(A .16)

(A. 17) 

(A. 18)

(A. 19) 

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A .25)
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Appendix B

Derivation of the Finite 
Temperature Partition Function

In  this appendix, we derive an  expression for the finite tem peratu re  partition  function, 
following the work of K apusta .11

Let 4>(x.O) be a Schrodinger p icture field operator at a  tim e t. = 0 and tt(x . 0) be its
conjugate m omentum. We define the eigenstates of the system  by

4>(x.0)\<t>) = <t>(xM . (B .l)

T he completeness and orthogonality relations are given by

d<t>(x)\ct>)(<t>\ = 1 (B.2)/ '
(<t>a\<f>b) =  % W x ) -  06(X)] . (B.3)

We have sim ilar relations for the  it eigenstates.

d 7r(x)I 2?r k ) (7 r | =  1 (B .4 )

(TTakft) =  <%a(x) -  7T4(x)] . (B.5)

In  field theory, we can w rite th e  overlap

(0|7r) =  exp[i J  d3x7r(x)^>(x)] . (B.6)

Consider the transition am plitude for a  system  to evolve through a known H am iltonian 
betw een two states a and b:

(4>b\e-iHtf \<t>a). (B.7)

where
H  = J  d;,xW (7r.^). (B.8)

To derive the therm odynam ics, we are interested in the case where the system re tu rns 
to  its in itial s ta te  after some tim e t =  t f .  Consider discretizing the system  by dividing the 
tim e interval (0. t f )  into N  steps: A t = t j / N .  Then we look a t Eq. (B.7) with 4>b =  4>a~ 
and  insert a  complete set of s ta tes  a t  each tim e interval, a lternating  between Eqs. (B.2)

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

and (B.4):

(0a |e iHtf\<t>n) =  lim [
A —*oc J

r s
d 7T,

2 7
(0ak.v)

✓ TT
Li=l

- i f f A i i / .  \ / j . ! — \ / _  i —i / f  A/ ix {7r.vie-ftt^ |^ v ) ( ^ v |7 r A:_ 1){7r;V_ 1! e " " A' |0 A.-_1) 

x (</>2|7ri)(7ri|e'"‘" Atk i ) ( 0 i k a )  •

Now consider the lim iting case A t  —*■ 0. We can then  expand

e~lf{At  i  _  i H A t .

so th a t  we can then write

f a l e - ^ U - )  =  ( T r .K l - i t f A t ) ^ )

where

(B.9)

=  (7r,|</>,)( 1 — i H j A t )  =  (1 — iH ,A t )  exp | —i J d3x7r,f/>, 

Hi  =  J d'ix'H(TTi.(/)i).

(B.10)

T hen using Eq. (B.10) and the  orthogonality relationship for the last term  in Eq. (B.9). we 
have

{(pa|e lHtf\4>a) =  lim f
A -t-oc J n"*£U=l

<i[0l -  0 a ]

x [e ,3rv < ^ - 9 ' ) ( 1 _  tf,v A t)] J e 'X v - , ( o .v - ^ .v - 1) ( 1 _

x x [e17ri(0-,- 0 l)( l -  i ^ A t ) ]  . (B.12)

Finally, we get

(<f>a \ e ~ l f { l f \<t>a) =  J i m  f
Ar->oc J n<**£

Li=l
6[<f> 1 ~  <t>a]

exp |  - i A t ^  J d3*  [H(irj.4>j) -7 r ,(0 J+1 -<pj) /At]  I . (B.13)

w ith the condition th a t

Taking the continuum  limit gives

j = i '

0A ‘+ l  =  0 a  =  0  1 • (B.14)

(0a|e lHtf\4>a) = [  d k ]  [  ' d [0]
J J 0(x . 0)=<i>n(x)

x exp { i  f o ’ a  j 7 r -H(n.(t>)  
at }•

(B.15)
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Recall th a t the partition  function Z  is defined as:

Z  = Tv { e - " '}  =  J d<t>a {<Pa\e-J H \<t>a) ■

If we change variables to an im aginary tim e r  =  it.  0 < r  <  8. then

(B.16)

Z  =

x exp

f  d[*r] /  d[0]
J  J  ner

J i ' x

'p e r

d r n r(x . -  y.(TT. (f>)
6 t

where
per =*> 0(x.O) =  0(x./3) =  4>a{ x ) .

(B. 17]

(B.18)

T his periodicity requirem ent is a direct consequence of the trace operation in the  definition 
of Z.

Now consider the Lagrangian density  for a  scalar field, which is our case o f interest:

C = -  m V )  -  U(4>) .

T hen  the  conjugate m om entum  is given by

DC
TT —

_  d(f> 

d ( d o  4>) O t

and the  Ham iltonian is

H  = =  \ [ * 2 +  (W>)2 +  m V ]  +  U W  •

(B.19)

(B.20)

(B.21)

C hanging variables to  r  =  i t .  we can  perform the  Gaussian integral over the i t  fields, which 
gives an  overall constant to the p a rtition  function. The final result for the partition  function 
is

Z  =  j V  J d[0]exp |  J d r  j  d3x' — 2 m ”^ 2 ~  ^ (0 )

= hf J d[0] exp d r  J d3x £ e |  . (B.22)

where the subscript on the Lagrangian density means th a t it has been transform ed to 
Euclidean space.

Now th a t we have derived an expression for the finite tem perature partition  function, 
we m ust work out th is expression for our Lagrangian. We follow the work of B ernard00 to 
do th is calculation. In Euclidean space, we can write

(B.23)
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To sim plify the no tation , we will drop the subscript on <!>,. w ith  the understanding th a t a 
sum  is implied. We also consider x  =  constant, a t some tem pera tu re  T.

Due to the periodicity  requirem ent on <I>. we can introduce a Fourier transform .

# = ( ^ )  £  / [ d 3A.1e'(kx+- r > 0„(k ). (B.24)

where we have defined u>n =  2 i m / 0 .  and the notation

We also need to  Fourier transform  the current opera to r j  in the same way.
Consider the  $  part o f the  action:

%  =  - \ C i T

x exp[i(k  • x  +  k ' • x  +  u ;„ r  4- u v r ) ]

x { [-u> „uv  -  k  • k ' +  x] <Mk)<£„'(k') +  2 jn (k)4>n' ( k ' ) } . (B.25)

Now we use the results

J d3x e l(k+k' ) x =  (27r):5(i;,(k  +  k /) .

r d
/  d T e ,(u-'n + " - '" 'u  =  06n _ n' .

Jo
UJ-n =  - t On . (B.26)

T hen  we have

S e  =  I [d3fc] ̂  N  +  k" +  x)*»(k W -« (“ k ) +  2 j„ (k )0 _ „ ( -k ) ]  . (B.27)
 ̂ n = —oc

Now define
G ~ l (k) =  u l  +  k2 +  X =  <4 +  E i  . (B.28)

Com pleting the square in th e  action gives, symbolically.

(B.29)
20

Changing variables to f t  = <f> + Gj .  we can write the  <p part o f the partition  function as

I d W )  e x p j - i ^  J [d:!fc] ■ (B -30)

The variable change from $  to  <pn gives a 0  dependent constant, which we absorb into the
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normalization factor. Carrying out the Gaussian functional integral gives

e x p j - i  j [d3fc] X > iV ln ( G - 7 /* )  -  . (B.31)

where the factor of N  comes from the N  Gaussian integrals over th e  <j> variables, and V  is 
a  volume factor th a t comes from the  trace operation. VVe now have

Z ( 0 . j )  =  Af{0) J d [ * ] e x p j - ^  d r  J d3x [ - x t r / 2  -  .\2/4A ]|

x exp{ 4 I [* ' k] Y H V N ^ G ~ l / 0 )  -

=  A / '( /3 ) |d [ x ] e x p { - S eff} .  (B.32)

Since x  is independent of tim e and space, we can write

Seff =  - ( K ' ( x v 2 / 2  +  x '7 -tA )

+  \  J D ™  ln G " 1 -  j j Gi \  • (B -33)

where we have absorbed the factor of ln ( l //?) into the norm alization constant. We then 
carry out the functional integral over x  using the m ethod of steepest descent, an d  obtain , 
to lowest order in l / N :

Z{(3.j) = t f ( l3 ) e - s ' a[xo-rt . (B.34)

where x o  i s  given by the sta tionary  condition

'5Sef[

. .
= 0 .  (B.35)

Xo

and  is computed in A ppendix C.
To find the effective potential, we m ust first calculate the effective action a t finite tem ­

perature. We define the  connected generating functional.

Z { 0 , j )  =  A/’(/3)e-Seffk °J'l =  eu 'W . (B.36)

We then Legendre transform  to obtain  the  effective action

r[0] =  - S eff -  J d lxj(x)(p(x)

— ~ •S'eff ~  ~p J d’ k j n(k)<pn (k)

= J [ - V efr(</»)]

=  - f l V V M ) . (B.37)

Therefore, we define the tem perature-dependent effective po ten tia l (we drop the subscript
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ou V) as

V^(0) =  — —
(IV

= — Y0»2/2  -  xS/4A + ^  J[rf*fe] £  iVlnG-1 

+  / l ^ I  ! > * ■  • (B.38)

It cau easily be shown that for our choice of current. jo(x)  =  HS,;q. we can write the second 
integral as

 ̂ [li'-hl ± 1 H 1]/ 1 (o"oXo)2 1 2 ir> in i
W v  J [d 41 = 2 F 1 7  = 2 xo = 2 ' (BJ9)

where we have used the fact th a t H  = x o^o-
Now we need to carry out the  infinite sums. Consider In G ~ l . which diverges. In

order to sum  this, we use the following trick .nG Define f { E )  =  ln G ~ 1 =  ln(ui^ + E 1).
Then

d f  y .  2 E  ~  f tE/2ir
r ) F  -  2 ^  4 ^ 2 T)2 /f l2  _L PTi ~  2 ^d E  ^  Air2n 2/(32 +  E 1 ^  § (n2 +  (EE*/Air2)

=  f f f . y  , 2*1
7rl "  (n2 +  (E E 2/An1) (3Ej '

We then use the following

5  +  ( a 4 1 )

where for our case, y  =  f3E/2ir. Then

Of p ( 2 i r  f p E \  2 i r \
a i  = A - M  + ’ a *h { — ) + j E i

=  4 1 +  ^ t } '  ( B W)

Integrating then gives

f ( E )  =  2 / ? { |  +  i l n ( l  - e - JE )J  . (B.43)

Therefore we have

V V 5 )  =  - x o « 2/2  -  X* /A \  +  i yo^o2 + N j [d3fc] { y  +  ^  ln(X “  e _ J£ ‘ )} • (R 4 4 >

Now we must carry out the integrals over k. Consider the first term:

t / w * - tiIf
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N  j  A ' xoA2 X L  ( * A2U
-  3 P | T  + —  - T 6 l u ^ j r

where we have used the results in A ppendix F. The second integral gives

j  J [d3fc] ln( 1 — N  < j * >It r  k2 In 1 -  e - y / ^ - ^ x o  
Jo’ a  (27t)-* jo

We now change variables to y = 0k.  T hen  we can w rite  Eq. (B.46) as

dA.-

In d y .

where we have defined x  =  0 2Xo- In order to do this integral, we let

g(x) = [  y~ 
Jo

In 1 d y .

T he derivative of th is function can be w ritten as

d 9 x 1 m  \ 
f e  =  I 5 F , I >-

where the function F (x )  is defined as

6 rx  y~ dy
F(x ) =  —  /  / . J  V- exp( \ / y 2 + x )  -  1

Jo \ / y -  +  x  .

- i

We then obtain

V 'V o )  =  -  W 2/2  -  Xo/4A +  xo^o/2
' 4A* ' 

e ' * X o .

(B.45)

(B.46)

(B.47)

Note tha t V is infinite and  must be renormalized. We impose the zero-tem perature renor­
malization conditions previously defined for the mass and  coupling constant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C

Derivation of the Finite 
Temperature Gap Equation

In this appendix, we derive the  gap equation  at finite tem peratu re , which is given by the 
stationary condition. Eq. (B.35):

=  0 . (C .l)
Xo

Carrying out the derivative gives

f  =  - v  +  I  J [d-’ fe] £  |jvc„(i) +  } . (C-2)

Consider the Gn term  in the  integral. F irst we need to carry o u t the infinite sum. We
have

t  G.W = t  1

-  }■ < « )

47r2n 2//32 +  E'i

( 2^ )  { W k + 2 ] ^ l n 2 + (PEk /27r)i 

Using the sum m ation formula. Eq. (B.41). then  gives

£ g"(*) = |{5 +̂ t } -  iCA)71=—OC K

Now we need to perform  the  integrals over k.  The first term  gives 

N  1 N  rA k'2 d kN A , 3,1 1 _  N f
2 J  [ ^  E k  4tt2 J oE k 4tt2 Jo s /k2 +  xo

^  rA. _ a t a f ^ '
8?r2 2 I e x o

(C.5)

The second term  is
W f  rd^fcl

E k (e?E* -  1)

91
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Changiug variables to y  =  f ik  and  x  — fi2Xo gives

N
12/3-

(C .7)

where F(x)  is defined in Eq. (B).
T he remaining term  in xo is the <f>jt term . F irst we introduce the inverse Fourier 

transform

<Pn{k) =  / d'?x J df(e~ ilk's+ulnl)$ ( x . t )  . (C.8)

We also use the results <f)*n{k) =  <p-n(—k) and w_„ =  — u n. This gives

J [d;iA:] £  J d 3x  £  d t e - M - ^ V Q i x . t )

x J d V  j *  At'

= -Jtt-'Y  !  <?x 13 At [ J d t 'e -^-^Qix . tW x.t ' )  Pz v  " j  Jo Jo
(C.9)

T hen we use the result
I ^ e- ,̂ ‘(t- £' ) = 6 { t - t ' )  . (C.10)

n

and also assume th a t <&(:?. t) =  $  =  <7o- independent of space and tim e. This gives

^ -5 • (C.11)

P u ttin g  everything together gives the gap equation a t finite tem perature

NX° 2 , 2 ,
-  =  - »  + » o  +  8 l2 ^  !n (

2 V eXo +  l | l F W -
(C.12)
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Appendix D

Derivation of the s-wave 7r — 7r 
Scattering Amplitude

In  th is  appendix, we com pute the  s-wave tt — tt scattering am plitude, in order to fit the 
coupling constant A. We consider low-energy n — ir scattering ju st above threshhold. To 
calculate the scattering am plitude, we use the  reduction formula given by31

S fi  = J d ‘x! /  d lx 2 J  d '1̂  y 'd 4i . 1e,(P3 X:î , x',_Pl Tl' p'-"x- )

X (D i +  x ) ( n 2 +  x K D:i + x ) ( n 4 + x ) G (4)(x l .x 2,x 3.x 4) . (D .l)

where the subscript on each d ’A lem bertian  refers to which x  variable it ac ts  on.
T he four-point function G ^ ( x i . x2. x;j. x.i ) is determ ined by

6*NW0\ji.J\
G  ( x i . Xo* ^ 4 )  ? • / \ jr - / \ £  ‘ f \£  * / \ * ( D - - )djm (2:4 )dji {x3)Sjk (x2)djj (x 1 )

O nly the connected diagrams con tribu te  to the  scattering, which is why we use the connected 
generating  functional W . We are also only in terested in the lowest order (in 1/N) term s, 
so we ju s t need to consider Wo. given by Eq. (2.17)

NW0\ji. J] = J d4xy-g(x) jyXo(:r) + ^Xo(*) + J(X)Xo(ar)
i N  1

+ — ln[Go l(x.x: xo)]j

+  \ J J d li j^-g( i y ) j i (x)Go(x. y:xo) j i {y )  • (D.3)

and  xo is given by

Xo(*) = A - v 2 +  <pj0 (x )  +  ~ - G q { x .  x :  x o ) -  2 J ( x )
I

(D.4)

<f>io and  Go are defined in Eqs. (2.9) and (2.10) respectively.
In order to carry out the functional derivatives, we will need the following:

s j m ) s j j M  ( J)

9 3
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SGo(x.y) f
- j -—— -  = -  / d w G a ( x .w )  — -
djj{x  i) J  S j j ( x

Afaix) r  , i ^  ,  » ^Xo(^) j. ,  i
— — - =  -  /  d w G q { x . w  — — -<f>i(w) + G 0( x . z i )Sij . (D .d)
*J j ( x  i J  &]j (x  1

fixo(w) 

(* i) 
<*Xo(u>)

G o ( w .y )

Now we are in a  position to com pute the  rem aining derivative tliat we need:

^Yo(^)
Ajj(x  1)

Using the results in Eq. (D.5).

=  A
Sjj(:r t ) t j j i *  l) .

(D.6)

t . . .  Sxo(w) 
( * i )J i m Wj

— w)
2A

4- G q (x . w ) <f>i{w) — i N G q{ w . x ) G q ( w . x )

=  (l>i(x)Go(x.xi)Sij . (D.7)

We recognize the term in square brackets as — H  1 (x. w).  with H  1 given by Eq. (2.11). 
Therefore we can write

Y ^ r ~ \  = ~  f  d'lw  H { x .w )  (pj{w) G0{ w . x i ) .
b j j ( x i )  J

(D.8)

We now need to take four derivatives o f N W q. The first derivative is:

S N W q

dj j ( x i )
S N W q

S j j { x  t ).
+

XO

6 N W 0 Sxq(x)  

<bco S j j [ x  i)

Recalling the stationary condition. Eq. (2.8). the second term  is zero. Therefore we have

S N W q

t j j ( x  i)
=  (f)j(xi) . (D.9)

T he second derivative is

S1N W q  _  S(f>j{x i )  

Sjk(x-2 )SjJ ( x l ) Sjk {x-2)

where

T he th ird  derivative is 

5:iN W Q

= -J d lw G 0( x i . w )  4>j{w) + G 0{x l .X2 )Sjk 

= Go(xx. x-2)S jk +  J d 'u i J dAy Gq(x\.  w )  T.jk (w. y) Go(y.  x  >) .

Z j k ( w . y )  =  <f)j(w) H{w.  y )  4>k {y)  .

8Gq{x \ . x 2)
Sj i ( x3)Sjk {x2)S j j (x  i)

=  SJk-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

+  /  ^  /  d  ' ?/ { V^G ^ V' X^  

+ Go(X{. w)  g Q(?/- £.y )

ri t i ^GoUj.Xo)  |G 0(a-i.u ;)S jfc(u ;.j/)——-— —  > .4-

Keeping only term s to our order o f approxim ation.

— — ‘I . .— r =  f  d lw  [ d 4/y \ s j k G o ( z l .w ) H ( w . ■;/)<£/( y )Go(y .x^ )G0( w .x , )

+  GQ{xi.w)[5jiG{j{w.x^)H{w.y)<l)k{y)

+  6ki<f>j(w)H(w.y)Go(y.xz)]Go(y.x2)^  .

Finally, the fourth derivative is 

S lN W 0
bjn

X ^ j k ^ i m G o ( x i . w ) G Q( x 2 . i v ) H ( w . y ) G o { y . x ^ ) G o ( y . x i )  

+  Sj^kmGo(xi .w)Go(w.x^)H(w. j / )Go{x2.y)G0{ y . xA) 

+  S j TnSk i G o ( x i . w ) G Q{ w . x . i ) H { w . y ) G o { y . ^ ) G o ( x - 2 . y ) ^  .

(D.10)

We can now finish com puting th e  scattering  am plitude, given by Eq. (D .l). As an
example, we consider the  first term  in Eq. (D.10). We will use the equation of m otion for
G0.

[°  +  X o(^)]G 0(^ .y )  = S l ( x - y )  .

We then have

Si — J d4x t J d4x2 J dV -j J d 'x ., e«'(P3-x3+P4-x4-P-. X.-P, x ,)

x Sj kSim J d '(/; J dAy S [(x:i — y ) S l (x.i — y)SA(w — x \ ) S l(w — x  2 )H (w .y )

=  SjkSlm J d Aw J d Ay e iiP3'y+p^ - p--w- p^ w)H(w .y )  . (D .l l)

We then introduce a Fourier transform  o f H

H ( w .y )  =  J d Ak e - lk {w- ,j)H ( k ) . (D.12)
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which gives

St = SjkSlmJ d lw J  d*y J  d4keiy-ll*+i,*-We-iw-{pi+l* - k)H{k)

= Sjks lm J d 'fc s l (p:i +  p., -  k ) d [(k -  p , -  p-2)H(k)

=  +  Pi -  P i  -  P > ) H ( p i  +  p-i) - (D.13)

This corresponds to the s-channel am plitude. The o ther two term s in Eq. (D.10) will 
give the t-channel and u-channel. These variables are the M andelstam  variables, defined by

•s =  ( p i+ p s ) 2

t  =  (Pi -P :»)"

u  =  (Pi P a ) ~  - (D.14)

We can then  w rite the to ta l scattering  am plitude as:

S fi =  6\ P f  -  Pi) + P ‘>) +Sji5kmH(p\  p.t) + S kl6j m H(px - p 4) (D.15)

This is our m ain result. To com plete the derivation, we need the Fourier transform  of 
H.  Recall th a t

H ~ l (x . y )  =  -  y) +  l- ^ - G 0{x .y )G0(x.y )  -  (t>i(x)G0{x.y)(f)i{y) . (D.16)

We need to Fourier transform  this expression and invert it. to ob tain  an  expression for H (p). 
Therefore.

J  d lp e - i p { x - y ) H - l ( p )  =  ~ J  d4p e -ip(x- !/) 

+ ^  J  d",pe_ip'(jr_!/,Go(p) J  d V e - V ^ G o i p ' )

-  a 2 J dAp e - ip lx- y)G0(p) . (D.17)

where we have set (t>j — rr2. In the second term  on the right-hand side, we need the form

J  d lk e - ik {x~p)X ( k ) .

Therefore, let At =  p +  p; and q = r,{p — p') in the second term  on the right-hand side of 
Eq. (D.17). Since the Jacobiau of the variable transform ation is 1. we can then w rite this 
term  as

Y  j  d lk  I  d'i q e - tk-{x- y)GQ(k/2  + q ) G o ( k / 2 - q )  .
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Changing variables to q' =  Ar/2 — q. we finally have

H ~ l (p) = ~  +  y l l ( p )  - a JG0( p ) . (D.18)

where we define Go as

G0(p) =  — —  - (D.19)
x - p ~

aud  the polarization ll(p)

n(p) =  i j  d V  G0(q')G0(p -  q') ■ (D-20)

Now we ju st need to invert Eq. (D.18). Recalling the definition of the renormalized
coupling constant. Eq. (2.54). notice th a t we can can rewrite A as

I  =  J _  _  iVn {p =  0 ) . (D.21)

We can then write Eq. (D.18) as

H ~ l {p) =  ~  +  ^ [ n ( P  =  0) -  H (P )]  -  - ^ 7  . (D.22)
2Ar 2 x -  p-

Therefore. we finally obtain

H(p) = ------------ ~ 2Ar , A «  • (D.23)
i +  v v n r ( p ) - ^

where we have set a~ =  / i  and defined

nr(p) = II(p) -  n(p = 0 ) .

This completes the derivation of the sca ttering  am plitude, to order 1/iV.
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Appendix E

Christoffel Symbols

W ith a diagonal m etric gtlt/. we can use the following relatious to com pute the  Christoffel 
symbols:

K x  =  0 - C ;A =  ( - 1/ 29m ) d g x x l0 z »  ■

=  a ( i i > y W ) / & " -

Note there is no sum m ation over repeated indices. T hen the only non-zero Cliristoffel 
symbols are

=  T - r oe = T sinh2 7/.
YT0O =  r  sinh2 77 sin2 0 . =  — siuh r/ cosh T] .

r©<» =  — ^ cosh ̂  s*q2 ^ =  ~  s*n ®cos ̂  •

r^ r  =  r l  =  C  =  l / r .  

r«„ =  C ,  =  n o tu ,,.  

r j ,  =  c o t # .

These coefficients are used to derive the  conservation laws for the energy-mom eutum  
tensor.
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Appendix F 

Table of Integrals

We tabulate  here a list of integrals used in C hap ter 2 to renormalize the gap equation, and 
in C hapter 3 to carry out th e  renorm alization of th e  energy-momentum tensor, and their 
expansions to the relevant order. The basic in tegral is o f the form

t i _  r s2(I* 1
1 Jo 2tt2 (*2 + o2)<n/2) '

The integrals used are: 

1T i '2 \ J s m , 2 , 2 \3 /2  a ~s m  / ~ 7 ' 7  a
I ~ i ( a )  =  2 ^  i t  * a — r v s ' " + a " i

In
.s-m 4- \J + a-

_ L J S l
2tt2 I 4

3 a" 3 a 4 *> •> 1 a-
+  2 ^  +  *• ''tn

a 1 T2.sm 4-----
— In

a

In sm + \J sm + a~

h (a^ )  =  — j

JL J Y,
2tv'2 \  2 

1

- - I n

a

2sm 4-
a

= 4- In
sm 4- \ /SjTl 4- (i~

2n
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