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ABSTRACT

GLOBAL TERRESTRIAL BIOGEOCHEMISTRY: PERTURBATIONS, INTERACTIONS,
AND T IM E  SCALES

by

Bobby H. Braswell, Jr.

University o f New Hampshire, December, 1996

Global biogeochemical processes are being perturbed by human activity, principally 

that which is associated with industrial activity and expansion of urban and agricultural 

complexes. Perturbations have manifested themselves at least since the beginning of the 19th 

Century, and include emissions of C 0 2 and other pollutants from fossil fuel combustion, 

agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through 

land conversion. These perturbations yield local impacts, but there are also global 

consequences that are the sum of local-scale influences.

Several approaches to understanding the global-scale implications of chemical 

perturbations to the Earth system are discussed. The lifetime of anthropogenic C 0 2 in the 

atmosphere is an important concept for understanding the current and future commitment to an 

altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to 

the lifetime of excess C 0 2 is demonstrated using dynamic, aggregated models of the global 

carbon cycle. A central theme is the annual flux of carbon into the terrestrial biosphere. 

Several mechanisms for modification of the natural amount of terrestrial carbon uptake are 

discussed, focusing on the effects of pollutant deposition; we estimate the historical flux of

x
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carbon due to nitrogen deposition, and its sensitivity to assumptions about the details of 

ecosystem function and to the accuracy of predicted deposition patterns. Further, we introduce 

the hypothesis that internal biogeochemical regulation results in extreme interannual 

fluctuations of carbon exchange. This hypothesis is evaluated, and found to be consistent with 

global data sets of temperature, atmospheric CO2 concentrations, and land surface reflectance.

Satellite remote sensing of vegetation amount and function is one of the most important 

sources of information about the perturbed terrestrial biosphere. Traditional techniques for 

using optical reflectance data are discussed, and an unconventional algorithm is introduced, 

based on the inversion of a plant canopy radiative transfer model. The observation of the land 

surface at multiple angles is critical in this method. Successful model inversions are performed 

on a transect in the Central African Republic. We extracted biophysical quantities, as well as 

implicit information about phenology. This technique will be most useful when proposed 

satellite instruments provide angular reflectance information.

xi
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CHAPTER 1

INTRODUCTION AND OVERVIEW

The Earth’s coupled climate-biogeochemical system is dynamic, exhibiting large scale 

trends and fluctuations that can be seen in observational records of the recent, as well as 

distant, past. Currently, global changes are occurring that are due to the cumulative effects of 

human activity, and that are proceeding at a more rapid rate (with few exceptions) than pre­

historic variability. Global-scale anthropogenic forcings are primarily associated with industrial 

metabolism (e.g., fossil fuel combustion) and the expansion of agriculture (including animal 

husbandry), driven by population growth and changing societal demands. Virtually all large- 

scale human behavior carries with it multiple impacts on the Earth system (Fig. 1.1), but the 

scientific issues are complex, and political decisions that seek to slow or reverse the course of 

change are rare.

Despite the existing controversy, there are some reliable indicators of global change. 

For example, the concentrations of radiatively important trace gases (e.g., C 0 2, CH4, N20 ) are 

steadily rising and causing serious concern about the heat budget of the atmosphere and the 

possible associated climatic effects (such as sea level rise). The magnitude, timing, and spatial 

distribution of any impacts arising from “global warming” can be estimated by models, but 

they are not easily verified. In addition to the issue of climate change, the same human 

activities (mentioned above) are directly responsible for the chemical and physical alteration of 

terrestrial ecosystems. Because the biosphere’s critical role in the Earth system, direct and 

indirect (climate related) changes can cause biologically-mediated feedbacks, both positive and

1
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Global Climate System 
(Atmosphere-Oceans-Land-lce)

TeirestnalllWIs

Global Global

Anthropogenic Activities 
(Fossil Fuel Combustion, 
Land-use/Cover Change)

Figure 1.1 Schematic depicting anthropogenic perturbations to the global climate system via 
direct impacts on overlapping, coupled sub-systems: the carbon cycle, the nitrogen cycle, and 
terrestrial ecosystems, (a) Atmospheric C 02 concentrations; (b) Atmospheric concentrations of 
N20  and 0 3 (affected by NOx chemistry); (c) and (d) Terrestrial uptake, cycling, and losses of 
C and N; (e) Water, energy, and momentum exchange with the atmosphere.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



negative. Understanding the balance of these feedbacks is critical and, in part, the subject of 

this dissertation.

The following chapters (2-5) represent four separate, but related, investigations into the 

central importance of terrestrial ecosystems in regulating the response of global biogeochemical 

cycles to human-induced perturbations. We focus particularly on the interactive cycles of 

carbon and nitrogen. A common theme in all four chapters is the use of system-dynamic or 

physical models in conjunction with global data sets to characterize the changing state of the 

terrestrial biosphere. Each chapter has a somewhat different focus; we begin with a global view 

of the carbon cycle, then proceed to more process-oriented analyses of the terrestrial biosphere, 

and finally develop methods for estimating terrestrial processes using satellite observations. We 

present a brief overview in the remainder of this chapter.

Chapter 2: Atmospheric carbon dioxide and the importance of the terrestrial biosphere. 

We review the issues surrounding the budget of anthropogenically produced C 0 2 and the 

uncertainty associated with the magnitude and distribution of net terrestrial carbon exchange. 

We use a highly aggregated (but relatively sophisticated) model of terrestrial and oceanic 

carbon cycling to investigate the historical evolution of the terrestrial term, and the possible 

significance of direct C 0 2 fertilization of the biosphere. We further step into a somewhat 

controversial arena that is related to enhanced greenhouse warming: characterizing the 

atmospheric lifetime of anthropogenic C 0 2. We show that conventional methods for estimating 

the duration of commitment to C 0 2 forcing are not robust due to the asymptotic and nonlinear 

behavior of carbon cycle dynamics. These complications arise primarily because of ocean 

chemistry and the complexity of terrestrial ecosystems. Thus, we had difficulty arriving at an 

alternative index. Though our original intent was to provide an unequivocal measure for use in 

calculating Greenhouse Warming Potentials, our index (the Single Half-Life) was used to

3
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characterize the importance of terrestrial feedbacks on the short-term (interannual) dynamics of 

atmospheric C 0 2. This chapter is based on work by Moore and Braswell (1994).

Chapter 3: Atmospheric nitrogen deposition and the global carbon cycle. One of the 

issues raised in Chapter 2 was the well-known possibility of terrestrial fertilization by 

deposition of anthropogenically fixed nitrogen. This reactive nitrogen can end up augmenting 

the mineral pool available to plants and microbes (i.e., N 0 3* and NH4+). We present an 

analysis of the terrestrial C sink potential associated with N deposition using existing global 

data plus models of atmospheric chemistry and transport, within a simple dynamic modeling 

framework that we developed. Our goal was to present an estimate of N fertilization that 

accounted for the overlying spatial patterns of deposition and the distribution of ecosystems 

which have varying capacities to utilize the excess N. In addition to this estimate, our 

investigations highlighted uncertainties associated with mechanistic-level terrestrial and 

atmospheric controls. Our framework for analysis is expandable to include more detailed 

parameterization of terrestrial response to chronic deposition of N and other pollutants, as well 

as more refined (and internally consistent) estimates of deposition. This chapter is based on 

work presented by Townsend et al. (1996) and Holland et al. (In press).

Chapter 4: Equilibrium and transient system-level response of terrestrial 

biogeochemical dynamics: models and observations. Variability and trends in climate was 

introduced in Chapter 2 as another possible mechanism for modifying net atmosphere-biosphere 

carbon exchange. We look in detail at the complexity of the terrestrial climate-C02 

relationship, including the importance of internal biogeochemical cycling of nutrients (primarily 

nitrogen) and water. We develop a hypothesis about the relative importance of biotic versus 

abiotic controls over equilibrium carbon exchange by terrestrial ecosystems based on analysis 

of a global process model simulation. A corollary to this hypothesis is related to time scales of

4
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response of terrestrial ecosystems (and net C 0 2 exchange) to perturbations. We evaluate the 

model-based results using the 12-15 year record of global remote sensing data (temperature and 

vegetation index) and measurements of atmospheric C 02 concentrations. Far from providing a 

straightforward answer, we show with some confidence that issues related to interannual 

atmosphere-terrestrial carbon exchange are complex, exhibiting individualistic responses at 

local-to-regional scales. The first part of this chapter is based on work by Schimel et al. (In 

press a), and the second part (related to the analysis of global data) is the subject of a future 

article (Braswell et al. In preparation).

Chapter 5: Integrating remote sensing and physical modeling to estimate the status of 

terrestrial vegetation. Problems interpreting the remotely-sensed vegetation index led us in 

Chapter 4 to attempt to use more indirect statistical methods to investigate interannual changes 

in terrestrial vegetation. In this chapter we take a close look at the information content of 

optical remote sensing data, focusing on the dependence of reflectance on the relative positions 

of sun and sensor (bidirectional effects). We present a method for obtaining biophysical 

information about ecosystems from satellite data that uses physical models of canopy light 

environment in an “inverse-mode”. Factors that obscure the results of other methods actually 

provide useful information in this approach. This chapter is based on work by Braswell et al. 

(1996).

5
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CHAPTER 2

ATMOSPHERIC CARBON D IO XID E AND THE IMPORTANCE OF THE TERRESTRIAL
BIOSPHERE

2.1 Introduction

The pool of carbon in the atmosphere (in the form of C 0 2) has increased from about 

590 to almost 755 Pg (1 Pg =  lxlO 15 g =  1 billion metric tons) during the last 200-250 years. 

Presently, the annual rate of increase is about 2 ppm (parts per million by volume) per year, an 

amount equivalent to roughly 0.6% per year. We have a direct record of this increase since 

1958 (Keeling 1986), and a number of indirect records from ice cores (e.g., Neftel et al. 1985, 

Raynaud and Bamola 1985, Friedli et al. 1986, Siegenthaler and Oeschger 1987) and sediments 

(e.g., White et al. 1994) of the increase over the past two centuries. These records show that 

the concentration of C 02 ([C 02]) has increased by more than 25% since the mid-1700s (Fig. 

2.1). Moreover, from the same data we know that the concentration of carbon dioxide was 

relatively constant from the beginning of the present interglacial period (ca. 10,000 BP) to the 

onset of increases in the 18th century (e.g., Siegenthaler 1989). Thus, it is often assumed that 

carbon fluxes between the major reservoirs (atmosphere, ocean, and terrestrial biosphere) were 

nearly balanced prior to that time, and that the carbon cycle as a whole was in approximate 

steady state. This assumption is central to research that focuses on recent changes in the carbon 

cycle associated with increasing atmospheric [C02]. There is strong evidence that these changes 

are the result of human perturbations to the natural carbon cycle.

The primary human activities contributing to changes in the natural cycling of carbon

6
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Figure 2.1 Historical atmospheric C 0 2 concentrations. The open squares and triangles 
represent data derived from ice core measurements, Siple Station, Antarctica. The open circles 
are the annual averaged atmospheric measurements from Mauna Loa Observatory (Keeling 
1986).
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Figure 2.2 The fossil fuel emissions record (Ffe) (Rotty and Marland 1986, Marland et al. 
1994) is accurate to within about 10%, but the estimate of biotic flux due to land-use change 
(FB) (Houghton 1983b, 1985) is less certain, especially for the less recent numbers, because of a 
lack of a detailed historical accounting of global land-use patterns.
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are fossil fuel combustion and modifications of global vegetation through land-use (e.g., 

biomass burning, conversion to agriculture, abandonment of agriculture). For the period 1980- 

1989, an average of 5.4 Pg C per year as C 0 2 was released to the atmosphere from the burning 

of fossil fuels (Marland et al. 1994), and it is estimated that an average of about 0.6-2.6 Pg C 

per year was emitted due to deforestation and land-use change during the same interval (e.g., 

Houghton and Skole 1990, Watson et al. 1990, Bolin and Fung 1992, Skole and Tucker 1993, 

and Houghton 1993b). Figure 2.2 shows an estimate of these two fluxes of anthropogenic C 0 2 

from the mid-18th century to the present. In addition to fossil emissions and net land-use 

emissions (including uptake due to recovering/regrowing ecosystems), the set of carbon flux 

perturbations includes enhanced atmosphere-ocean exchange due to increased atmospheric 

[COJ and altered net terrestrial exchange due to chemical modification by atmospheric 

pollutants. All the human-derived (or altered) carbon fluxes listed above have in common the 

fact that, for each, the atmosphere is either donor or recipient; thus the atmosphere is literally 

central to understanding the carbon cycle. Finally, there are a number of possible second-order 

anthropogenic effects, including ocean and terrestrial feedbacks arising from anthropogenically- 

derived changes in climate.

With respect to the modem, human-influenced carbon cycle, there are a number of 

classes of issues that should be addressed. These issues typically are defined by one or more of 

the questions listed below.

How have the major pools and fluxes o fC 0 2 changed over the last approximately 200 

years? This problem typically requires the use of simple, aggregated dynamic models and long­

term, but very coarse spatial resolution data sets (e.g., atmospheric data, country-by-country 

land use clearing rates, and sediment/ice core measurements). A globally averaged, but 

somewhat temporally detailed picture of the carbon cycle allows investigation of the dominant
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C 02 exchange mechanisms, how they might change, and how they affect the long-term 

commitment to anthropogenic radiative forcing (Section 2.3).

What are the spatial patterns of global carbon sources and sinks, and how are they 

affected by climate and human intervention? Ecological, physical, and chemical process 

modeling is one approach to this issue. Analysis of atmospheric data (including atmospheric 

transport modeling) is another method that can also be used in concert with process models. 

“Spatial patterns” may refer to latitudinal distributions, geographically referenced (grid cell) 

products, or simply that one region has been distinguished from another. We consider aspects 

of this question in Chapters 3 and 4.

What are the principal terrestrial and oceanic mechanisms that control the global 

carbon cycle's response to the anthropogenic perturbations? This question typically requires 

integrated theoretical and experimental (field) studies. In some cases, the results of such studies 

will feed into parameterizations of carbon cycle models or process models (terrestrial or 

oceanic) that include carbon exchange with atmosphere. In addition, attributes, as well as 

objectives, of observational experiments can be guided by model-based analysis. We consider 

aspects of this question in Chapter 4.

What are the present day exchanges o f C 02 between the atmosphere and the other parts 

of the carbon cycle? The “present day,” in this context, often indicates an averaging of excess 

C 02 fluxes over some period (e.g., 1980-1990), but can refer to a single year. Results from all 

the above types of analyses can be included in order to specify terms in the global budget of 

carbon (Section 2.2).

This chapter focuses on developing a broad but quantitative understanding of the 

contemporary carbon cycle as modified by human activity. In Section 2.2, the issue of closing 

the budget of anthropogenic C 0 2 is discussed, including possible mechanisms for enhanced
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terrestrial uptake, and it is pointed out that there is more to balancing the carbon cycle than 

having a residual mean of zero. In Section 2.3 (also Moore and Braswell 1994), we discuss the 

importance of possible responses of the terrestrial biosphere in determining future levels of 

atmospheric C 02 by taking a system-dynamics approach and looking at characteristic response 

times. This section is the principal contribution of the chapter, and utilizes global-aggregated 

models (mentioned above). Section 2.4 is a follow-up to Moore and Braswell (1994); we 

respond to a commentary on our paper (Gaffin et al. 1995), and discuss implications and 

implementation of Greenhouse Warming Potential (GWP) indices. In the final section, a 

particular policy-related question will be discussed: according to our global carbon cycle 

model, what future changes in anthropogenic activity would be required to stabilize 

atmospheric C 02 at some level? This portion of our work formed a contribution to a recent 

Intergovernmental Panel on Climate Change (IPCC) report. We will also look at the sensitivity 

of those stabilization results to assumptions about the terrestrial biosphere.

2.2 Adding Up The Global Carbon Budget

The vector sum of all fluxes (F,) into and out of the atmosphere must equal the rate of 

increase in the concentration of atmospheric carbon dioxide (d[C 02]/dt =  I,F,). This equation 

is commonly referred to as the global carbon budget, though the number of terms is variable, 

and the uncertainty associated with many of the terms is large. In this section we will discuss 

the issues surrounding an ongoing attempt to balance the global budget of C 02. Such work 

generally treats each term separately, as each is associated with a separate set of processes. The 

principal carbon cycle fluxes (Fig. 2.3) are associated with terrestrial photosynthesis (primary 

production), plant and soil respiration, and C 0 2 exchange at the air-sea interface, all of which 

are modified by climate and human interference. Fluxes that result directly from human activity

11
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THE GLOBAL CARBON CYCLE 
Approximate Reservoirs and Annual Fluxes 1980-1989 (Pg C)
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Figure 2.3 The global carbon cycle (IPCC; Schimel et al. 1995). The values within 
compartments are in units of Pg C, and the fluxes (arrows) are in units of Pg C yr*1.
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are associated with combustion of fossil fuels and land-use/cover change. The importance of 

balancing the carbon budget lies in the fact that an ability to quantify the world’s carbon fluxes 

using disparate techniques would demonstrate a deep understanding at the mechanistic level. 

Given a clear mechanistic picture, models can be constructed and predictions made about future 

levels of C 0 2 in the atmosphere.

The global carbon budget is a well-defined concept, but an imprecise idiom has been 

used in the literature when discussing one aspect of uncertainty in the balance of fluxes of 

carbon: all available flux estimates are treated as known, and the residual difference between 

their sum and the estimated rate of change in [C 02] is an amount of carbon that is said to be 

“missing” . In the absence of a perfectly balanced budget, there is always a residual, and it is a 

missing source or a missing sink. This language is a well-understood shorthand and a 

convenient way to introduce a discussion; however, it tends to mask the considerable 

complexity associated with large uncertainties in many of the flux estimates. In addition, the 

balance of the carbon budget likely changes from year to year, and thus, comparisons of flux 

terms that are averages over one or many years must be made with care.

In this section, we will review the recent history of the community effort to probe the 

carbon budget. The discussion will be centered around a relatively large budget imbalance 

which has caused a great deal of speculation on the “location of a missing sink” for 

atmospheric C 0 2, and its subsequent attribution, in the scientific community’s view, to land 

processes. Here we emphasize the distinction between global net terrestrial biosphere flux, and 

significant localized net terrestrial sinks or sources. The existence of the latter does not 

necessarily constrain the former. For example, some of the evidence for an enhanced terrestrial 

sink is based on the global terrestrial balance of carbon flux, requiring assumptions about the
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magnitude of a Iand-use term. Other results are spatially explicit and independent of such 

assumptions.

The idea o f a missing sink for atmospheric C 0 2 initially arose when direct estimates of 

net C 0 2 release due to Iand-use change first became available (Houghton et al. 1983a,b). These 

estimates were based on theory linking conversion rates and regrowth dynamics to sources and 

sinks of C 02 from vegetation and soils (Moore et al. 1981). Prior to that time, the existence of 

a significant terrestrial term (either source or sink) was doubted (Broecker et al. 1979), and 

discussion was focused primarily upon atmosphere-ocean exchange as predicted by numerical 

models (see Section 2.2). The amount of fossil carbon emissions not sequestered by the oceans 

(the “airborne fraction”) was observed to be slightly less than that predicted by most ocean- 

atmosphere carbon models (Oeschger et al. 1975). Thus, there was a small residual sink, and 

claims of a large (3-6 Pg C yr'1) tropical source (Woodwell 1978) were largely ignored, or 

assumed to be balanced by regrowth (Broecker et al. 1979).

The basic approach was to implicitly calculate a residual flux using a method known as 

“deconvolution”, in which the ocean models calculate, by difference, the amount of 

supplementary carbon required to reproduce the measured rates of atmospheric increase 

(Oeschger et al. 1975, Keeling et al. 1989a). The atmospheric increase was prescribed by ice 

core measurements and the direct record. The residual flux, calculated in this way, revealed a 

period of net emissions prior to ca. 1950 that were attributed to a “pioneer effect” of European 

colonization (and hence forest conversion) of the Western Hemisphere (e.g., Keeling et al. 

1989a). After ca. 1950, the residual is negative-valued, corresponding to the small sink 

mentioned above. This sink was widely believed to be related to direct C 0 2 fertilization of the 

terrestrial biosphere, the magnitude of which was parameterized in models using a formulation 

known as the “P-factor” (Section 2.3.3). This formulation assumed (typically) a logarithmic
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dependence of the fertilization flux multiplied by a constant ((3*0.3). There is a wealth of 

literature on this effect (Amthor 1995), including attempts to characterize (3 at the process level; 

we will discuss this in more detail in the next section.

Subsequent to confirmation of a likely tropical net carbon source as revealed by 

independent biotic flux estimates (Houghton et al. 1985), tallying the carbon budget revealed 

two important facts: ( 1) the temporal pattern of the clearing-rate based estimates of net 

terrestrial flux were very different from the net residual (presumably of biospheric origin) 

deconvolved from the ocean carbon models and atmospheric data; and (2 ) the most reliable 

estimates of global oceanic uptake could not account for the C 0 2 which did not remain in the 

atmosphere; only ocean models that had unrealistically high uptake rates could balance the 

budget. At the same time, it was generally assumed that the undisturbed biosphere was in net 

balance. Thus, it was clear that key processes were being ignored, or incorrectly described, 

and the controversial search for “missing” carbon (~l-3 Pg yr'1) was initiated.

After more than ten years of research, considerable controversy about the global 

carbon cycle remains, but it is now widely believed that the unaccounted-for carbon has been 

(for the most part) stored on land. There are two lines of reasoning for this that have evolved 

somewhat independently, and they will be discussed below. First, evidence from 

atmospheric/oceanic data and models indicate a net flux of C 0 2 into the terrestrial biosphere 

that is unrelated to tropical land-use change. Spatially explicit analyses of the same type (e.g., 

using atmospheric transport models) indicate that the sink resides in the northern high latitudes. 

Second, several physiological and ecological mechanisms for enhanced terrestrial carbon 

uptake have been identified which could potentially account for more than the imbalance. 

Conversely, no additional oceanic biogeochemical or physical carbon sink mechanisms have 

been identified. Indeed, there seems to be a convergence in the oceanographic community on a
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relatively stable value of net oceanic carbon sink (-2  Pg yr'1). Both arguments above are 

consistent with one another because the terrestrial mechanisms in question are likely to be 

operating most significantly in the mid-to-high latitudes of the Northern Hemisphere.

2.2.1 Evidence from atmospheric and oceanic measurements and modeling

Atmospheric data can provide information about the patterns of carbon sources and 

sinks at the lower (land and ocean) boundary. Carbon dioxide in the atmosphere is chemically 

inert. Thus, the dynamics of the state of atmospheric [COJ are governed by surface sources 

and sinks, and three-dimensional transport. In addition, other tracers (e.g., isotopes of carbon, 

or 0 2) are associated with carbon cycle processes, and their transformation amongst major 

reservoirs may be chemically or physically different from C 0 2. These constituents can provide 

additional constraints on the carbon cycle if the differentiation is correctly described. Research 

that accounts for atmospheric transport, and/or composition has led to a better understanding of 

the complexity and importance of regional-scale processes on land in the carbon budget.

Attention was first dramatically focused upon the terrestrial biosphere when Tans et al.

(1990), based on geographically specific observations and modeling, made the provocative 

statement that “a large amount” (2-3 Pg C yr'1) was currently being taken up by continental 

ecosystems in the Northern Hemisphere. This result was surprising because the sink was 

inconsistent both in magnitude and spatial orientation with the small hypothesized direct C 0 2 

fertilization effect predicted by the ocean models. In addition, the result was independent of 

assumptions about a (disputed) net source from the tropical forests. Instead, like most 

calculations of this variety, assumptions about the ocean mechanisms were most critical. Tans 

et al. (1990) combined atmospheric and oceanic measurements o f the partial pressure of C 0 2 

with a model of atmospheric transport and prescribed spatial distribution of fossil carbon

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sources. They used the transport model to calculate the latitudinal gradient of C 0 2 given the 

prescribed boundary conditions (ocean exchange and fossil fuel input). Their analysis resulted 

in a modeled north-south gradient of atmospheric C 0 2 that was steeper than observed. They 

concluded that the observed gradient could be maintained only by a high-latitude sink over land 

because the prescribed oceanic flux in the Northern Hemisphere would not support a high 

enough rate of C 0 2 removal from the atmosphere. Possible mechanisms for enhanced terrestrial 

uptake were not known; various parameter combinations attempted to represent C 0 2 

fertilization, and they produced unrealistic results.

Some concerns were raised about the accuracy of the Tans et al. (1990) calculation 

(e.g., Siegenthaler and Sarmiento 1993) mainly because of problems with their calculation of 

global oceanic C 0 2 flux, which was may have been as much as 1 Pg C yr' 1 too low. 

Siegenthaler and Sarmiento (1993) point out three considerations that would lead to a revision 

of the Tans et al. (1990) ocean flux: (1) skin temperature should be used instead of bulk 

temperature in extrapolating global ocean partial pressure of C 0 2; (2) the fraction of the 

riverine flux (~0.8 Pg C yr'1), not deposited as sediments and balanced by ocean outgassing, 

should be accounted for; and (3) the carbon monoxide that is transported from the northern to 

Southern Hemisphere should be included in the calculation of the interhemispheric gradient. 

This revision, which brings the atmosphere-to-ocean flux into general agreement with model 

estimates (Siegenthaler and Oeschger 1987, Sarmiento and Siegenthaler 1992), does not change 

the general conclusions related to the strength of the interhemispheric gradient. Moreover, a 

more modest-sized enhanced terrestrial sink in the Northern Hemisphere would bring the Tans 

et al. (1990) estimate closer to an earlier prediction by Keeling et al. (1989b) (-0.5 Pg C yr’1) 

which utilized simple terrestrial and ocean box models coupled to a three dimensional 

atmospheric model. In the Keeling et al. (1989b) analysis, model parameters were adjusted
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under various assumptions about terrestrial activity in order to achieve a best fit to the 

latitudinal [COJ distribution. Their results were consistent with a greater “fertilization effect” 

in the high latitudes than in the tropics.

The two analyses above utilized multiple realizations of modeled atmospheric transport, 

and as such were not formal inversions of the model. Work by Enting and Mansbridge 

(1989,1991), however, pioneered the use of formal inversions for the investigation of surface 

source/sink distributions. These calculations utilized two-dimensional atmospheric transport 

models (vertically and latitudinally resolved), parameterized from full 3-D forward simulations. 

Model inversion techniques, in this context, calculate the carbon flux at the lower boundary 

required to produce atmospheric C 0 2 concentrations that are most consistent with the data 

(interpolated in space and time on to the model grid). The results of Enting and Mansbridge

(1991) indicate a rather large net sink (-2  Pg yr'1) for carbon in approximately the 50-70N 

latitudes. A portion of this flux is likely caused by North Atlantic deep-water formation, but 

they argue that “it seems necessary” to attribute some of it to terrestrial biotic processes, based 

on the disproportionate observation of northern and southern oceanic uptake.

The isotopic composition of carbon in atmospheric C 0 2 can aid exploration of the 

global carbon budget. In particular, the heavy isotope 13C is preferentially fractionated against 

in the formation of organic matter (by photosynthesis) but only weakly so by the ocean. Thus, 

combustion of fossil carbon and biospheric destruction lead to dilution of 13C in the 

atmosphere. The amount of 13C in a reservoir is expressed as the ratio of 13C to I2C relative to 

a standard ratio:

5 13 C =
( 13C /I2 C) sample

( ,3C /12C)
- 1

standard

• 1000 . (2. 1)
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Keeling et al. (1989a) used this quantity, taken from direct atmospheric measurements, to add 

one degree of freedom to their model deconvolution (“double deconvolution”) of the residual 

C 0 2 flux. In this way they were able to partition the residual into an oceanic and terrestrial 

component. It was observed that (1) the land biosphere and the oceans exhibit strong 

interannual variability related to natural climate cycles, (2 ) the two flux anomalies are generally 

opposite in sign, and (3) the amplitude of the terrestrial term is somewhat greater. However, it 

is difficult to compare their analysis to budget calculations because of model assumptions about 

the ocean and particularly the terrestrial biosphere, particularly the a priori inclusion of a 

“fertilization” factor.

Based only on atmospheric and oceanic measurements of the change in [C 02] and 5I3C 

from 1970-90, Quay et al. (1992) determined that the terrestrial biosphere as a whole provided 

essentially no net flux of C 02 to/from the atmosphere during that period. Using a mass-balance

13 I**approach, they solved a set of equations that describe the rate of change of C and "C in the 

major reservoirs over the period 1970-90. The ocean data consisted of depth-integrated 

dissolved inorganic carbon at a number of fixed stations, and 513C measured along two Pacific 

transects. This information, combined with specification of fossil fuel emissions over the same 

period, allowed for a determination of the partitioning between terrestrial and oceanic uptake of 

the excess carbon. They found that of the 43% of emissions not remaining in the atmosphere, 

42% was sequestered by the ocean over this period, implying a net-neutral biosphere from 

1970-90. Their result is “model independent”, in the sense that it does not require assumptions 

about ocean or atmosphere transport. This conclusion further supported the idea that if a 

tropical source exists, it must be balanced by some other terrestrial mechanism(s). However,
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another perspective is that (according to this analysis) the existence of a high-latitude sink 

requires a tropical source.

Perhaps the most convincing evidence to date supporting a mid-to-high latitude 

northern hemispheric carbon sink is derived from a combination of isotopic and inversion 

methods. Ciais et al. (1995a) performed a model inversion on atmospheric [COJ and 513C data 

from the Climate Monitoring and Diagnostics Laboratory sampling network (Conway et al.

1994). They accounted for lags in the terrestrial exchange of I3C (the “isotopic disequilibrium”) 

by using ecosystem component turnover rates and isotope discrimination from established 

terrestrial models: Century (Parton et al. 1987) and SiB (Sellers et al. 1986), respectively. They 

observed a net tropical source (~2 Pg C yr'1), but also a large net sink (-3 .5  Pg C y r 1) in the 

northern mid-to-high latitudes. This estimate indicates both a net terrestrial sink, and a localized 

(continental) Northern Hemisphere sink (-1.5  Pg C y r'1) that are on the high end of all 

estimates to date, but the data used for this initial study were from 1992, the anomalously cool 

year following the eruption of Mt. Pinatubo. The authors note in a follow-up report (Ciais et al. 

1995b) that the calculated sink estimate using 1993 data was still present, but substantially less. 

This is consistent with speculation that the Pinatubo anomaly resulted in enhanced net storage 

of C on land in 1992 (Keeling et al. 1995; Chapter 4).

Recently, high-precision measurements of 0 2 concentration in the atmosphere have 

provided an additional constraint on global carbon budget (R. Keeling et al. 1996), analogous 

to that provided by isotopic measurements. Changes in the 0 2/N 2 ratio are stoichiometrically 

linked to C 0 2 fluxes by the formation (via photosynthesis) and destruction (via respiration or 

combustion) of organic matter, with a C 0 2:0 2 ratio of about 1.1. There is no such relationship 

associated with physical oceanic exchange because C 0 2 dissolution in the oceans proceeds via 

carbonate buffering and does not involve oxygen. R. Keeling et al. (1996) used measurements
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of 0 2/N 2 and C 0 2 at a global network of sites, collected from 1991-94, to infer the partitioning 

of global atmospheric C 0 2 exchange between the oceans and the terrestrial biosphere. They 

concluded that the oceans and the biosphere sequestered roughly the same amount over that 

time: 1.7 and 2.0 Pg C yr'1, respectively. The 0 2/N 2-based results are quantitatively similar to 

5I3C-based analyses of Ciais et al. (1995a,b); the two studies are directly comparable because 

the data used by R. Keeling et al. (1996) are from approximately the same time period (1991- 

94).

The Ciais et al. studies (1995a,b) and that of R. Keeling et al. (1996), though they 

generally confirm the notion of an extratropical carbon sink, highlight some aspects of the 

controversy over the carbon budget. This is because both analyses indicate a strong global 

terrestrial net sink in the early 1990s; whereas, the other studies mentioned above (for the 

1980s) calculate, or implicate, a roughly net neutral biosphere. I f  all the results are reliable, 

then there are two possible resolutions to this issue: (1) land-use C 0 2 emissions declined 

markedly from the eighties to the nineties; or (2 ) there is significant interannual variability in 

the terrestrial component of the global carbon cycle. There is evidence for the latter (Keeling et 

al. 1989a, Schimel et al. In press a), but the former should not be discounted (Alves et al. In 

press).

The ostensible temperature dependence revealed by Ciais et al. (1995b) is also 

suggestive of a global feedback mechanism that has bearing on the discussion of the global 

carbon budget as well as climate. I f  it is true that terrestrial uptake processes (whatever their 

cause) operate less strongly during warm years, and if the Earth’s temperature continues to 

rise, then those processes will remove less and less C 0 2 from the atmosphere. The resulting 

increase in atmospheric [C 02] growth rate could further stimulate warming by modifying the 

atmospheric heat balance. This kind of positive feedback has been discussed often in the
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literature, but there are also negative feedbacks with climate that involve terrestrial as well as 

climate mechanisms. In Chapter 4 we will discuss climate-driven variability in the terrestrial 

carbon cycle, but we focus on longer time scale processes in this chapter, under the assumption 

of little or no transient climate impacts on the carbon cycle over the last 2 0 0  years.

2.2.2 Terrestrial mechanisms capable of resulting in a net carbon sink

A number of recent studies have investigated the effects (both direct and indirect) of 

anthropogenic activities on the rate of carbon storage by the terrestrial biosphere. The results of 

these analyses, which include modeling efforts, integrated model simulations with global data, 

and extrapolated field studies, have aroused considerable interest because of the relative 

consistency with which they suggest northern forest ecosystems (predominantly) as a recent 

significant net global sink of carbon. While the potential for these effects to be present is well- 

known, their magnitude, exact spatial distribution, and degree of interaction are highly 

uncertain. This is because the uptake mechanisms operate at the plant or ecosystem level, and 

global estimates are extrapolated, often by using models. Below we briefly discuss the four 

mechanisms thought to be the most significant for storing excess carbon: direct C 0 2 

fertilization, nitrogen fertilization, land-use change, and climate variability.

The effect of increased ambient [C 02] levels on leaf photosynthesis is well-understood 

at the physiological level. There is a positive, hyperbolic (Michalis-Menton) relationship 

between [C02] and net photosynthesis which is primarily due to the kinetics of the enzyme 

ribulose-l,5-bisphosphate carboxylase-oxygenase (rubisco) in the C3 photosynthetic pathway 

(modification of C4 and CAM photosynthetic rates by increased [C 02] is much lower because 

of their “C 0 2-concentrating” modes). The extent to which this physiological manifestation 

translates into whole plant, ecosystem, and especially global scale C 0 2 fertilization (net carbon
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storage) is subject to considerable uncertainty (Amthor 1995). This uncertainty arises primarily 

from ( 1) differences in patterns of resource availability between different native ecosystems, (2 ) 

differences between the observed response of individual leaves, plants, and ecosystems, and (3) 

differences between experimental and natural conditions (Oechel et al. 1994).

Various techniques have been used to study the effect of elevated [COi] on plants. A 

very common approach is to report the relative change in photosynthesis or biomass increment 

in response to a doubling of current ambient [C02] (e.g., 350 ppm vs. 700 ppm). Many carbon 

dioxide fertilization studies have been carried out at the leaf/branch level using chambers.

These studies result in estimates of short-term effects of C 0 2 on photosynthesis. Also, whole 

plant chambers have also been used, typically on plants in the laboratory, grown in pots under 

controlled environmental conditions. In the field, closed chambers (mini-greenhouses), and 

open-top chambers provide somewhat more realistic conditions, but chamber effects can be 

nevertheless quite large, owing to the very different aerodynamic conditions relative to the 

open air. Thus, some “free-air” C 0 2 enrichment studies have been performed, but they are 

difficult to maintain for an extended period, especially for large canopies. It is still true that 

very little is known about the long term ( >  1 year) response of natural systems because of 

experimental difficulties and the potential complexity of ecosystem response (e.g., acclimation). 

Moreover, whole ecosystem studies are rare (Oechel et al. 1994).

Ecosystem level interactions are an important determinant of the expression of C 0 2 

fertilization. Water-limited plants generally experience a greater enhancement because high 

ambient [C 02] results in increased water use efficiency (i.e., water loss is lessened by reduction 

of the stomatal aperture). This moisture dependence is partly responsible for the conflicting 

results mentioned above. Nutrient feedbacks may be more complex, but it is generally true that 

nutrient limitation will lead to little or no growth enhancement; plant stoichiometric
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relationships between nutrient uptake and carbon assimilation are not entirely inflexible, but 

they are constrained. In addition, it may be true that ecosystems tend toward a nutrient-limited 

steady-state because of the coupling of plant production. Iitterfall, soil organic matter 

formation, and nutrient availability (see Chapter 4). Thus an initial positive response will likely 

be mitigated in the long-term. Modeling studies (Pierce et al. 1993, VEMAP 1995) and field 

experiments (e.g., Webber et al. 1994, Oechel et al. 1994; see review by Amthor 1995) have 

supported this view. In addition, allocation of biomass carbon may proceed differently due to 

other environmental factors. For example, Holland et al. (1994) showed that increased 

production in one grassland ecosystem was allocated to roots which turn over rapidly; thus 

there was little or no long term carbon storage. Thus, process models and field experiments 

indicate that a “steady-state” enhancement of ecosystem production due to elevated [C 02] are 

likely to be less than indicated by the initial response of plants.

At the global scale, direct [COJ fertilization was incorporated early-on in global 

carbon cycle modeling as a possible sink mechanism. Indeed, it was often assumed to be 

responsible for all of the residual carbon flux in global models (Bacastow and Keeling 1973, 

Keeling et al. 1989a, Moore and Braswell 1994, Friedlingstein et al. 1995). Discussion has 

centered around the representation of the dependence of enhanced terrestrial carbon storage as 

a function of [COJ, i.e., the [5-factor, mentioned above. Aggregated carbon cycle models that 

are constrained by atmospheric measurements and process-based ecosystem models 

(parameterized with generalized response factors from experiment results) both indicate that 

this phenomenon probably resulted in a sequestration of about 1 Pg C yr' 1 on average during 

the decade of the 1980s (as noted by the IPCC; Schimel et al. 1995).

Because most terrestrial systems are N-limited (Vitousek and Howarth 1991), it is 

possible that increasing N deposition derived from fossil fuel burning and agriculture is
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stimulating terrestrial production. An early estimate of this effect was made by Peterson and 

Melillo (1985); using stoichiometric arguments, they calculated that approximately 0.2 Pg C yr' 

1 was sequestered by forests, rivers, and the coastal ocean in 1980. Townsend et al. (1996; 

Chapter 3) estimate a current net flux of 0.6-1.1 Pg C yr' 1 due to N deposition from fossil fuel 

derived NOy alone, using deposition estimates provided by an atmospheric chemistry/transport 

model. Their estimate takes into account the spatial distribution of vegetation and deposition, as 

well as cumulative effects. The inclusion of other sources of NOx as well as NH X will drive that 

estimate higher (Holland et al, In press), but it is clear that there is a limit to how long 

terrestrial systems will remain N-limited under increasing loads of deposition (Aber et al.

1989). These feedbacks (arising from acidification and high ozone levels) are not well 

understood globally, but it is clear they will mitigate the N-fertilization to some extent. See 

Chapter 3 for a more detailed discussion of the impacts of nitrogen and other pollutant 

emissions on terrestrial carbon.

Another possible sink mechanism is related to changing land-use instead of changing 

plant resource-use efficiencies. It is clear that widespread abandonment of agricultural lands has 

occurred in North America (e.g., Houghton 1993a). These lands were first cultivated prior to 

the industrial revolution (i.e., the “pioneer effect”), and increasing regrowth relative to 

destruction in this region would result in a net storage of carbon, at least for some period of 

time. Two recent studies have used forest survey information in conjunction with assumed 

growth rates to calculate a carbon balance for northern forests. Kauppi et al. (1992) and Sedjo

(1992) estimated, respectively, that 0.85-1.2 Pg yr ' 1 and ~0.7 Pg yr' 1 of carbon has been stored 

by northern temperate and boreal ecosystems. In contrast, it appears that there may be 

substantial deforestation currently underway in the Russian temperate zone (Melillo et al.

1988). Thus, potential carbon storage due to Northern Hemisphere forest regrowth is subject to
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considerable debate, and an evaluation of the available literature suggests that it may currently 

(during the 1980s) account for 0-1 Pg yr ' 1 (Houghton 1995, Schimel 1995b).

Climate variability may affect terrestrial carbon cycling on time scales relevant to the 

global carbon budget calculation. Dai and Fung (1993) used a simple model of net terrestrial 

exchange to suggest that variations in temperature and precipitation (from 1940 to 1989) could 

have accounted for a net sink over those decades. The net storage resulted from a differential 

increase of production versus decomposition for a large number of ecosystems, and in 

particular, northern forests. This effect was due to the combined temperature and moisture 

dependence of the two competing processes. Direct and indirect effects of climate on terrestrial 

biogeochemistry are complex, however, and it has been argued that no systematic relationships 

are apparent at the global scale, at least to the extent that an estimate of climate change induced 

fluxes for the decade of the 1980s can be made (Schimel 1995b). Moreover, it is very difficult 

to separate natural from anthropogenic climate variability at present. Nevertheless, we argue 

that the issue of climate-C02 interaction as mitigated by terrestrial ecosystems, though complex 

and somewhat separate from budget considerations, is a tractable problem, and one that is very 

important for understanding many carbon cycle issues (Chapter 4).

All of the above mechanisms (including C 0 2 fertilization; see Friedlingstein et al.

1995) have in common the fact that they are likely to be distributed most prominently in the 

northern temperate-to-boreal latitudes. Guided by results from the atmospheric 

measurement/modeling community, this pattern has become a virtual prerequisite for proposed 

terrestrial sinks (not associated with tropical land-use). Because both interaction (enhancement) 

and overlap (double counting) between many of the above mechanisms is possible, it is 

probable that they are at least partially additive. Thus they could account for as much as 1.9 Pg 

C yr ' 1 (Schimel 1995b), slightly more than the “missing sink”. While there is no carbon that is
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literally missing, it is still true that none of the terrestrial terms in the budget are well 

quantified. Future work will necessarily involve narrowing the uncertainties and understanding 

possible feedbacks so that reliable projections of future atmospheric [COJ can be made.

Research leading to conclusions about the existence of a net terrestrial sink has not 

resulted in a more precise explication of the carbon budget. Indeed, the total uncertainty has 

increased with the inclusion of new terms, as we will discuss later. The original question of the 

cause of the missing sink, though it has been qualitatively answered, has led to more questions 

about the global carbon cycle and its interaction with climate and other biogeochemical cycles. 

The cumulative advance in understanding has forced a shift in current thinking toward reducing 

uncertainty in the magnitude, spatial patterns, and temporal variability of known carbon cycle 

processes, particularly within the terrestrial biosphere.

2.2.3 Analysis of the uncertainty in the carbon budget

We can describe the anthropogenically perturbed global carbon budget, including all 

the terms presented in the last section, with the following equation:

A A = F + D + 0 + R + C + N + Z i  (2.2)

where AA is the atmospheric increase, F  is the fossil emissions, O is the net oceanic flux, R is 

uptake by Northern Hemisphere forest regrowth, C is direct C 0 2 fertilization, N  is nitrogen 

fertilization, and E! is the residual effect of all other processes. Current estimates for values of 

the terms, taken from the literature, are given in Table 2.1. In this representation, the 

atmosphere is given central importance as an integrator. Indeed, it is the atmospheric 

measurements that have contributed most to our understanding of the carbon cycle, and it acts
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Table 2.1 The average annual budget of anthropogenic C 0 2 (Pg C yr'1) for the period 1980- 
1989, based on Schimel (1995b) and IPCC (1995), but revised to show the ranges as fuzzy 
numbers, given varied levels of confidence. Positive numbers indicate a positive increment in 
the atmosphere. Errors are summed quadratically in the first column; in the remaining 
columns, residuals are represented using fuzzy arithmetic.

Carbon budget term I II III

Storage in the atmosphere (AX) 3 .2+0 .2 [3.0, 3.4] [3.0, 3.4] [3.0, 3.4]

Fossil emissions (F) 5 .5±0 .5 [5.0, 6.0] [5.0, 6.0] [5.0, 6.0]

Net emissions from land-use 1 .6  +  1 .0 [0 .6 , 2 .6 ] [0 .6 , 2 .6 ]
change in the tropics (D )

Oceanic uptake (0 ) -2 .0 ± 0 .8 [-2 .8 , - 1 .2 ] [-2 .8 , - 1.2 ]

Uptake by Northern Hemisphere 
forest regrowth (R)

-0 .5+0 .5 [-1 .0 , 0 .0 ]

C 0 2 fertilization (C) -1 .0± 0 .5 [-1.5, -0.5]

N deposition (AO -0 .6 + 0 .3 [-0.9, -0.3]

Residual (e, 8 !, e2, e3) 0 .2 + 2 .0 [-3.0, -1.6] [-4.4, 0.6] [-3.6, 4.0]

as a hub through which the other components interact. As we have seen, the terms F, D , O, 

and A/1 have received the most careful attention to date, and they do not overlap. Thus they 

may be distinguished (subjectively) from the terms R , C, and N, which likely interact, and 

which are less understood, in principle. Further, we can distinguish the fossil fuel flux and the 

atmospheric increase (Fand A/1), which are known to within approximately 10%. from the 

oceanic and tropical land-use fluxes because the latter are derived using models and data whose 

uncertainty arises primarily from spatial extrapolation. Thus:

A A = F + D + 0 + e2, (2.3)

A X =F+e3. (2.4)
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The distinction made in Equations 2.2-2.4 are convenient for a number of reasons. First, it 

divides the uncertainty into levels of presumption, a concept encountered in the addition of 

“fuzzy” numbers (see Kaufmann and Gupta 1985). Fuzzy arithmetic is based on an extension 

of the confidence interval, and is a way of dealing with quantities that are intrinsically 

uncertain; we will borrow the simple concept of addition and subtraction of fuzzy numbers. 

Second, there is a conceptual separation: Equation 2.3 describes the rate of change in [COJ 

due to the only exogenous anthropogenic flux, fossil fuel combustion, plus all other 

mechanisms, both terrestrial and oceanic. Equation 2.4 includes the relatively well understood 

(but still quite uncertain) deforestation and ocean net exchange. Thus the residuals, in each 

case, represent the balance of fluxes not accounted for that exist below a (loosely defined) 

threshold of confidence.

The last three columns of Table 2.1 show the estimated values for Equations 2.2-2.4 as 

fuzzy numbers. The residuals in each case yield some insight into the historic progression of 

the understanding of the anthropogenic carbon budget, because (as discussed above) the ocean 

was considered first as the primary mechanism for the removal of fossil C that had not 

remained “airborne”; then the deforestation fluxes began to be incorporated into models of 

varying complexity; finally, other terrestrial mechanisms have been added to the list. We can 

see that the range of uncertainty has increased as the important carbon cycle mechanisms have 

been laid out: from 1.4 Pg C yr'1, to 5.0 Pg C yr'1, and now 7.6 Pg C yr’1. It is clear that the 

numbers and ranges themselves are subject to uncertainty, and other mechanisms, both oceanic 

and terrestrial, may exist that have not been identified.
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2.3 The Lifetime of Excess Atmospheric C 0 2+

2.3.1 Introduction

As we have discussed, the increase in the atmospheric C 0 2 concentrations (as well as 

other radiatively active trace gases) due to human activity has produced serious concern 

regarding the heat balance of the global atmosphere. Specifically, the increasing concentrations 

of these gases will lead to an intensification of the Earth’s natural greenhouse effect (Shine et 

al. 1990, Watson et al. 1990,1992, Isaksen et al. 1992). Shifting this balance will force the 

global climate system in ways which are not well understood, given the complex interactions 

and feedbacks involved, but there is a general consensus that global patterns of temperature and 

precipitation will change, though the magnitude, distribution and timing of these changes are 

far from certain. The results of general circulation models indicate that globally averaged 

surface temperatures could increase by as much a 1.5°-4.5° C (e.g., Mitchell et al. 1990, Gates 

et al. 1992) in a world with an atmospheric concentration of CO2 twice that of the preindustrial 

period (i.e., roughly 550-580 ppm).

The uncertainty of future climate change does not rest solely on issues of physical- 

climate system dynamics and their representation in general circulation models. Understanding 

the carbon cycle (Fig. 2.3) is a key to comprehending the changing terrestrial biosphere and to 

developing a reasonable range of future concentrations of carbon dioxide and other greenhouse 

gases (e.g., Bacastow and Keeling 1973, Bolin et al. 1979, Bjorkstrom 1979, Bolin 1981, 

Moore 1985, Schlesinger 1991, Bolin and Fung 1992). Conversely, predictions about the 

physical-climate system and climate change are confounded by the fact that the carbon cycle is 

still not adequately understood or quantified globally. Some uncertainty remains about the role 

of the oceans in carbon dioxide exchange; they are without question a sink for anthropogenic

fAdapted from the article by Berrien Moore III and B.H. Braswell, Global Biogeochemical Cycles 8:23- 
38, 1994. Copyright by the American Geophysical Union.
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C 0 2, but the strength of this sink is somewhat unclear (e.g.. Keeling et al. 1989a, Tans et al. 

1990, Sarmiento 1991, Siegenthaler and Sarmiento 1993, Sarmiento 1993).

Uncertainty also centers on the role of terrestrial ecosystems (e.g., Section 2.2.2), in 

which at least two factors govern the level of carbon storage. First and most obvious is the 

anthropogenic alteration of the Earth’s surface, such as through the conversion of forest to 

agriculture, which can result in a net release of C 0 2 to the atmosphere. Second, and more 

subtle, are the possible changes in net ecosystem production (and hence carbon storage) 

resulting from changes in atmospheric C 02, other global biogeochemical cycles, and/or the 

physical-climate system. Ultimately, to adequately address such changes will require a much 

clearer understanding of the nitrogen and phosphorus cycles, since they are the limiting 

nutrients in most terrestrial ecosystems, but our knowledge of the way these biogeochemical 

cycles relate to the carbon cycle compares poorly with our general understanding of the 

individual cycles themselves. In sum, these uncertainties are reflected in our uncertainty about 

the atmospheric lifetime of excess C 0 2 (e.g., Watson et al. 1990,1992).

The lifetime of a trace atmospheric constituent may thought of as the amount of time 

required for some significant portion of an excess quantity of the gas to be removed chemically 

or to be redistributed to another part of the Earth system. The uncertainty in the distribution of 

sources and sinks for carbon dioxide (and for other greenhouse gases such as methane) makes a 

determination of atmospheric lifetime difficult and ambiguous. Unfortunately, the lifetime for 

C 0 2 (as well as for the other radiatively important gases) is important to know and particularly 

valuable in the policy context; it is necessary for the calculation of greenhouse warming 

potentials (GWP) (Lashof and Ahuja 1990, Watson et al. 1990, Maier-Reimer and Hasselmann 

1987).
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The GWPs provide an index of the relative climatic impacts (costs) of the various 

greenhouse gases. The index takes into account the instantaneous radiative forcing of a single 

molecule (a/) and the response c(t) of the system (atmospheric concentration as a function of 

time) to an instantaneous injection of gas:

where the subscript r refers to the reference molecule. The curves c,(t) are generally computed 

using geochemical box-models. I f  the reference molecule is C 0 2, and the radiative forcing is 

taken to be equal to one (i.e., all a,'s are relative to C 0 2), then the denominator becomes:

In an idealized context, where the concentration curve decays exponentially, c(/)=<z-exp(-r/x), 

then the integral (2 .6 ) is equal to x, which is simply the length of time required for c(t) to 

decline from any value along its trajectory to 1/e of that value. Hence x is often called the e- 

folding time. Generally, c(f) is not strictly exponential, so the integral itself is called the 

residence time (Tres). Given the convenient assumption that c(r)=a exp(-r/x), one often 

approximates the relaxation of the concentration by a weighted sum of exponentials (cf. Section 

2.3.6).

We will show that calculating the integral (2.6) presents two types of difficulties. First, 

most model-derived estimates of the relaxation of the concentration of CO2 reveal a function

(2.5)

(2.6)
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which is not always well approximated by weighted sums of exponentials, even though these 

are often used to calculated Tra. Second, the function c{t) is quite sensitive to assumptions 

about the terrestrial biosphere and the relaxation experiment. We turn our attention to the latter 

difficulty first.

2.3.2 A simple global carbon cycle model

From the most elementary viewpoint, and focusing solely upon C 0 2, the global carbon 

cycle can be treated as a one box atmosphere linked to a submodel o f terrestrial carbon 

dynamics and to an ocean carbon submodel. This is precisely the representation we employ in 

our experiments.

The ocean carbon sub-models

The net exchange of carbon between the atmosphere and the oceans is determined to a 

great extent by the carbonate chemistry of the upper mixed layer, the convective transport of 

dissolved carbon in sea water, the diffusion of carbon dioxide across the air-sea boundary, and 

the sinking of detrital carbon originating from the biological production of marine organisms 

(Bolin 1981, Broecker and Peng 1982, Moore 1985, Sarmiento 1991). AH of these processes 

govern the exchange of carbon dioxide between the sea surface and the atmosphere, and all 

have been represented in models to varying extents; however, all do not play an essential role 

in the perturbation problem posed by the increase in carbon dioxide (Broecker 1991, Sarmiento 

1991).

We investigate the effect of using different, simple representations of ocean carbon 

dynamics on the atmospheric concentration of C 0 2 using three atmosphere-ocean box models -  

either standing alone or in a global carbon model which includes a terrestrial component. For a
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discussion of more complex models, see Maier-Reimer and Hasselmann (1987), Keeling et al. 

(1989a), and Maier-Reimer (1993). The submodels are:

1. Box-Diffiision Model (BD; Fig. 2.4): the turnover of carbon below 75 meters is 

represented by a diffusion equation. A constant coefficient of diffusivity is estimated to match 

an idealized profile of natural I4C or bomb UC (Oeschger et al. 1975).

2. Outcrop-Diffusion Model (OC; Fig. 2.5): allows direct ventilation of the 

intermediate and deep oceans at high latitudes by incorporating outcrops for all sublayers into 

the box-diffusion formulation (Siegenthaler 1983). It is essentially the box-diffusion model with 

the addition of direct connections between the atmosphere and the deeper ocean layers. In a 

similar manner, a constant coefficient of diffusivity is based on natural I4C or bomb l4C.

3. Twelve-Box Model (12B; Fig. 2.6): the Atlantic and Pacific-Indian Oceans are each 

divided into surface, intermediate, deep and bottom water compartments. The Arctic and 

Antarctic Oceans are divided into surface and deep water compartments. The model is 

calibrated against multiple tracer distributions (Bolin et al. 1983).

The three models have much in common: they are all diagnostic rather than prognostic; 

each uses carbon-14 in the parameterization process (in fact, carbon-14 is the basic clock for all 

of the models and hence controls much of their response); each includes ocean carbon 

chemistry (buffer or Revelle factor); and they all include some form of ocean mixing.

There are, however, some major differences. Ocean biology is explicitly included in 

only one (12B), whereas, it is simply incorporated into the parameterization of the diffusive 

process in both the BD and OC models. As far as transport is concerned, in the box-diffusion 

and outcrop-diffusion models all of the physics is captured by a single constant eddy diffusivity 

term; whereas, the Bolin et al. (1983) model (12B) has both advection and eddy diffusivities. 

Deep water formation (the sinking of cold, C 0 2-rich water at high latitudes) is not explicitly
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Figure 2.4 Box-diffiision model. The turnover of carbon below 75m is represented by a 
diffusion equation. A constant coefficient of diffusivity is estimated to match an idealized 
profile o f 1 C (Oeschger et al. 1975).
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Figure 2.5 Outcrop-diffusion model. Direct ventilation of the intermediate and deep oceans at 
high latitudes is allowed by incorporating outcrops for all sublayers into the box-diffusion 
formulation (Siegenthaler 1983).
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Figure 2.6 Twelve-box model. The Atlantic and Pacific-Indian oceans are each divided into 
surface, intermediate, deep, and bottom water components. The Arctic and Antarctic oceans 
are divided into surface and deep water components. The soft tissue and carbonate formation in 
surface boxes is indicated by B and C, with appropriate subscripts for region, and the fluxes to 
and decomposition in deeper layers are indicated by the vertical dashed line and the branching 
solid arrow, respectively.
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considered in the box-diffusion model. The treatment o f ocean chemistry also varies in 

complexity: the 12B model includes a detailed handling of the carbonate-borate equilibrium 

system; the BD model uses a constant buffer factor; and the OC model employs a quadratic that 

is a fit to measured data. Perhaps most importantly, the spatial configurations are quite 

different, as can be seen in Figs. 2.4-2.6. In addition, there are a host of smaller differences, 

including the specification of ocean volume and surface area, parameterization procedures, and 

carbon-14 profiles.

As a result of these differences, we find a range of responses to the two simplest 

experiments that can be performed with these three atmosphere-ocean submodels: a calculation 

of the perturbation response to a forcing by fossil fuel C 0 2 alone {Ffe ', Fig- 2.7) and to the 

forcing by CO2 from Iand-use change as well as the fossil fuel-derived flux (Fb+ F fe; Fig. 2.8). 

A principal reason why all the models are so similar is the over-arching importance of 14C in 

setting the basic rates within the models (Moore 1992); an interesting discussion of the I4C 

constraints on ocean uptake of CO2 is provided by Broecker and Peng (1993). The OC model 

is the most efficient in taking up CO2 , and this is the result of the instantaneous flux of CO2 to 

deep layers. In general, however, all of the ocean-atmosphere models lie underneath the data 

when forced by Ffe alone and overshoot the record when both Ffe and FB are used. Since there 

is evidence, based on historic reconstructions (Houghton et al. 1983a,b, Houghton and Skole 

1990, Houghton 1991, Houghton et al. 1991, Skole and Tucker 1993), of an anthropogenically 

induced flux from the biosphere to the atmosphere, the discrepancy between model and data in 

Fig. 2.8 has given rise to the notion of a “missing carbon sink” (discussed earlier in Section 

2.2). This is part of the motivation for considering the terrestrial component.
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Figure 2.7 The responses of the ocean-atmosphere models to the historic fossil fuel forcing. All 
models were initialized at the 1744 ice core value for [COJ. Open circles represent the 
atmospheric C 0 2 record (cf. Fig. 2.1).
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The terrestrial carbon sub-model

The net exchange of carbon between terrestrial vegetation and the atmosphere may be 

considered to be the sum of three fluxes: gross photosynthesis, autotrophic plant respiration, 

and heterotrophic (soil microbial) respiration (e.g., Aber and Melillo 1991). In addition, the 

anthropogenic perturbation of land conversion results in a net flux due to combustion minus 

regrowth. The gross fluxes between the terrestrial system and the atmosphere are similar to 

those for the oceans (-100 Pg C per year; Fig. 2.3; see also Bolin et al. 1979, Bolin 1981), but 

the considerably smaller terrestrial pool size leads to a much faster turnover time than for the 

oceans (Bjorkstrom 1979).

Motivated by the issue of a hypothetical missing carbon sink and by plant physiological 

C 0 2 response, it has been suggested (e.g., Bacastow and Keeling 1973) that terrestrial 

vegetation may be “fertilized” by the increasing concentration of C 0 2. Though the issue is 

controversial (Strain and Cure 1985, Bazzaz 1990, Garbutt et al. 1990, Bazzaz and Fajer 1992, 

Diaz et al. 1993; see also Dai and Fung 1993 for a climate-based hypothesis and Houghton 

1993a for a Iand-use-based hypothesis), it is possible that terrestrial ecosystems are responding 

to the rapid increase in atmospheric C 0 2 concentration by producing more biomass and/or 

storing more soil carbon, thereby balancing the global carbon budget (see Section 2.2 for a 

more detailed discussion). Consequently, there is the possibility that higher C 0 2 levels may 

lead to an increase in net primary production and perhaps net ecosystem production (carbon 

storage).

The possible existence of a fertilization effect, the rapid response of the land biota-soil 

system, and the fact that one of the major fluxes to the atmosphere (FB) is actually due to 

alteration of the terrestrial biosphere make it appropriate to include terrestrial dynamics in our 

attempt to address the issue of the lifetime of excess atmospheric C 0 2. Emanuel et al. (1984)
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have developed a highly aggregated model of global carbon cycling which is similar in scope to 

the three simple ocean models presented in the previous section. This model (Fig. 2.9) is 

composed of a set of eight coupled differential equations (Table 2.2; terrestrial components) 

which govern the flow of carbon between reservoirs representing the atmosphere, the surface 

ocean, the deep ocean, nonwoody parts of trees, woody parts of trees, ground vegetation, 

detritus/decomposers, and soils. We have replaced Emanuel’s two-box ocean (Fig. 2.9) with 

the other simple ocean models that we are considering. In the current context, Emanuel’s 

model is of interest, in part, because it is a convenient way to handle terrestrial carbon fluxes 

associated with forest clearing and re-establishment. The model deals with these activities in the 

following way:

1. A specified mass of carbon is released (due to land-use change) from “woody” and 

“nonwoody” parts of trees as a function of time, in a ratio determined by their relative sizes.

2. A fraction of the carbon released is transferred immediately to the atmosphere, and a 

fraction enters the detrims/decomposers pool. The remainder is assumed to be in a very slow- 

tumover pool (e.g., timber products).

3. All vegetation pools experience a Iogistic-growth recovery with a prescribed rate, 

and with a dynamically varying asymptote.

4. Upon clearing, the asymptotic level for “trees” decreases, and the asymptotic level 

for “ground vegetation” increases.

We remark that given a clearing and abandonment time series, the interplay of these 

dynamics determines the flux FB. We also note that the structure of the model allows a simple 

modification to include a fertilization effect, which we later discuss in detail.

Returning to the global carbon cycle, our basic approach is to modify the Emanuel 

global carbon cycle in two ways. First, we replace the two box ocean model by (in turn) the
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Table 2.2 The differential equations governing the terrestrial carbon dynamics in the Emanuel 
et al. (1984) model.

Compartment Equation

Atmosphere dC\/dt = Ffe + §aF b+Foa + a 5IC5 + a 61C6 ~(F\2 + ^i3 + î4 )

Trees-nonwoody dCi/dt = -FgC^ /(C^ + C )̂

Trees-woody dC^/dt = f*[3 — (ctjj + a 36)Cj — FbCj /  (Cj + Cj)

Ground vegetation dCA/dt = / ^ 4 — (cc4j + a 46)C4

Detritus/decomposers dC5/dt = (X25C, + a 35C, + a 45C4 -  (a 56 + a 51 )C5 + <bDF B+ y F B

Soil carbon dC6/dt = a 36Cj + ct^Q  + ctJ6C5 — cc61C6 — y F  B

Assimilation fluxes:

Trees-nonwoody F\i = vrQ  ~PrQ ~

Trees-woody F „ = (F u0/F n0)Fn

Ground vegetation F\4 = VfC} — PyC4

Variable Definition

ct mass of carbon

flux from i to j

a-ij transfer coefficient from i to j

Ffe fossil C 0 2 flux

Fb land-use change C 0 2 flux

Foa net ocean-atmosphere flux

fraction of FB diverted to atmosphere

fraction of FB diverted to detritus/decomposers

T’Fb soil to detritus flux associated with FB

F °u
initial steady-state flux from / to j

V p  t post-disturbance equilibrium for C2

Vy/pv post-disturbance equilibrium for C3

box-diffusion model, the outcrop-diffusion model, and by the 12 -box ocean model; and second, 

we develop a simple treatment of the “fertilization” term. By comparing the resulting hybrid 

models (E-BD, E-OC, and E-12B; both with and without fertilization) with results of the ocean- 

atmosphere models (BD, OC, and 12B), we effectively perform the experiments on the
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Figure 2.9 Globally averaged carbon cycle model (Emanuel et al. 1984). The atmosphere 
exchanges carbon with terrestrial components, and with the oceans. Solid arrows represent 
equilibrium (natural) carbon fluxes; dashed arrows represent fluxes associated with forest 
clearing activities.
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residence time of C 0 2 in the atmosphere with the terrestrial biosphere switched on and off. We 

are thus able to investigate the effects of a fertilization assumption plus forest regrowth or just 

forest regrowth on the residence time of C 0 2 in the atmosphere. The modeled forest regrowth 

develops from a deforestation pattern for the period 1700 to the present, and is constrained to 

produce the net flux in Fig. 2.2.

2.3.3 Characterization of the biotic response

As discussed in Section 2.2, if the ocean-atmosphere models are forced with Ffe ar>d 

Fb as input and the results are compared to [COJ, there is a discrepancy (i.e. an overshoot; see 

Fig. 2.8). This residual R (the difference between the model output, [C 02]'w and the [C02] data) 

can be decomposed as:

^ = ([C 0 2]-[C 0 2]w)= /?b+^£i +R e i+R e3, (2-7)

where RB is caused by some unspecified, hypothetical biological mechanism (e.g., the 

“fertilization factor”), REi results from inaccuracies in the models, R ^  results from uncertainty 

in the [C 0 2] data, and RE3 is due to uncertainty in the Ffe and FB data. We will not attempt to 

characterize the latter three, so let /?£=i?£1+/?£2+/?£3. The expression then becomes:

R =R B+R E. (2.8)

Thus the residual has been reduced to two terms: error associated with some ignored 

physiological or ecological process and error associated with uncertainties in information (data 

or model). Further, we will make the following two assumptions: Rg«RB, and the residual RB
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may be associated with an increment Fr in the net flux of carbon from the atmosphere to the 

terrestrial biota:

Fr= 9 fF Vp, (2-9)

where (cf.. Table 2.2),

F„pp=Fl2+Fl3+Fi4. (2.10)

To parameterize the fertilization factor pr, there are several functional forms suggested in the 

literature, and by other natural systems. We have selected three different empirical 

relationships (logarithmic, logistic, and linear) to describe the fertilization enhancement as a 

function of elevated C 0 2:

pr=a-log(C /Q , (2.11)

pr =a-tanh(6 (C /C ,+c)), (2.12)

p r= a iC !C i)+ b , (2.13)

where C/C, is the ratio o f present to initial C 0 2, and a, b, and c are free parameters. Note that 

this treatment will not only vary the functional dependence, but also the number of free 

parameters. To obtain the values for those parameters, we must compute Fr and Fnpp from the
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carbon models (E-12B, E-OC, and E-BD) and perform a least-squares fit of pr to Fr !Fnpp (see 

Equation 2.9).

In order to compute the missing flux Fr, we specify that the rate of change of the 

atmospheric [COJ that is produced by the models is equivalent to the measured rate of change 

(i.e. R = 0), and is given by:

dC dC} n  . . .
—  = — - + Fr (2.14)
dt dt

where dCJdt is the net flux to the atmosphere calculated by the models, and dC/dt may be 

obtained from the [C 02] record. Thus the residual flux, for each time step, may be calculated 

by a deconvolution procedure:

F M =
dt dt

— ^  Ffe + § aFb + Foa + a 5|Cs + a 6|C6 (Fl2 + Fn + Fu ) , (2.15)

where we have substituted the terms from Table 2.2 on the right hand side. The method is 

straightforward: we add the flux Fr to the right hand side of the derivative (2.15) as the model 

proceeds. This is similar to the way in which deconvolution has been used to determine the 

biotic flux Fb (e.g., Siegenthaler and Oeschger 1987), given the fossil flux, Ffe• Figure 2.10 

shows the deconvolved missing flux Fr for the ocean-atmosphere models and Fig. 2.11 shows 

the graph of Fr /Fnpp vs. C/C, with the fitted curve for the logistic parameterization of pr using
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the E-12B model. We now have the following tools needed for our investigation: three ocean- 

atmosphere models, the corresponding ocean-terrestrial-atmosphere models, an estimate of the 

evolution of the terrestrial component as a result of land-use, and a set of parameterizations for 

dealing with a hypothetical biotic response to increasing [C02].

2.3.4 Single Half-Life

Before investigating the response of these simple coupled carbon cycle models, we 

clarify our concerns about calculating atmospheric residence time of C 0 2 and suggest a simple 

index for model comparisons. The e-folding time characterizes the time it takes for a decaying 

exponential curve will fall to 1/e of its original value. The conventional determination of 

lifetime (Tres) is conceptually not much more substantive, and its calculation may present a 

number o f difficulties which reduce its utility. Thus we introduce a simple indicator of 

atmospheric residence time, the Single Half-Life (Tu2), which is the time required for the 

model atmosphere to relax from its present value (or some future value, though this would alter 

TXn) to one half of its new equilibrium value. This, of course, implies that we will not deal with 

the pulse response of the models, but with a more scenario-based approach: allow the models to 

respond to the historical inputs (e.g., Ffe and FB\ see Fig. 2.2) and then cut the forcing to zero. 

From any cutoff time (in the past, present, or future) onward, we observe the decay of the 

concentration c{t) of atmospheric C 0 2 towards its new equilibrium. We acknowledge that this 

concept or index focuses attention upon the initial response and ignores the mid-term to very 

long term aspects of c(t).

There are only two assumptions involved in these computations which are necessary to 

compare results across models: first, the models are all required to reproduce the historic [C 02] 

record, and second, though not essential, the equilibrium value is approximately the same for
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Figure 2.10 Deconvolved flux (Fr) determined by the ocean-terrestrial-atmosphere models. 
This flux (generally a sink for later years) represents the additional input required for the 
models to reproduce the [C 02] record; it may be associated with the hypothetical response of 
the terrestrial biosphere to increasing ambient C 0 2 concentrations.
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Figure 2.11 A fit of the function pr to the deconvolved flux divided by the net primary 
production flux as a function of relative atmospheric C 0 2 concentration. This graph shows the 
logistic parameterization (Equation 2.12).
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all models. This assumed equilibrium [COJ is a theoretical value based on the partitioning 

between atmosphere and ocean. Because of the carbonate buffer system, the relationship 

between a percentage increase in atmospheric carbon dioxide (ACa/Ca) and a percentage 

increase in oceanic dissolved inorganic carbon (ACo/C0) may be approximated by:

ACa/Ca=10(ACo/Co). (2.16)

This factor of ten is called the Revelle factor. I f  we note that the cumulative release of C 0 2 

from Ffe and FB combined is equal to 377 Pg C, and assume that the initial values for the total 

ocean DIC and atmospheric C are 38200 Pg and 597 Pg respectively, (2.16) yields an 

equilibrium partial pressure of 326 ppm. This number, which we use simply as a reference 

point, is the theoretical asymptote for the atmospheric C 02 decay curves c,(t). I f  we terminate 

the forcing at a present value (e.g., r0=354 ppm), TU1 is defined to be the first year after cutoff 

at which c(f)<326 ppm. We note that small differences could be obtained by varying the 

Revelle value, by using the more complete mathematical description of the carbonate-borate 

chemical system (e.g., Bolin et al. 1979, Bolin 1981), or by assuming different concentrations 

of dissolved inorganic carbon.

2.3.5 Results using the Single Half-Life

In this section, we explore the response of the global carbon cycle models (E-BD, E- 

OC, and E-12B) when the inputs (Ffe and FB) are reduced instantaneously to zero under two 

separate conditions: when we allow Fr to operate for all t, and when there is no Fr. We 

compare these results to a similar calculation of Single Half-Lives involving only the three 

ocean-atmosphere systems (BD, OC, 12B). Finally, to connect to the results reported by the
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IPCC (Watson et al. 1990), we compute in a subsequent section the classical lifetimes of CO2 

using the three ocean-atmosphere models as well as when the terrestrial sink is included.

Tables 2.3 and 2.4 show the Tm  values calculated using the atmosphere-ocean models 

(12B, BD, and OC) standing alone (Table 2.3), using the coupled terrestrial models (E-12B, E- 

BD, and E-OC; the latter two, again, with two parameterizations for the ocean submodels) with 

regrowth alone assumed (Table 2.4, row 1), and assuming both regrowth and fertilization. 

Fertilization is described with the three different schemes discussed in Section 2.3 (Table 2.4, 

rows 2-4). We can see that without the fertilization flux, the models yield Single Half-Lives 

from as high as 116 years (BD, preindustrial I4C calibration) to as low as 37 years (OC, bomb 

l4C calibration); the ranges narrow considerably if the Outcrop-Diffusion (OC) model is 

dropped. It also narrows when the biosphere is included with regrowth alone assumed. This 

simply adds a uniform sink to each system, which aids the ocean-atmosphere systems that have 

an ocean surface “bottleneck” problem in the removal of carbon (i.e. the OC and 12B 

systems). Thus, the Single Half-Lives are obviously reduced; they are even more significantly 

reduced if one includes a fertilization sink (Table 2.4, rows 2-4). In part, this is simply the 

addition of a sink, as was the case in including forest regrowth; however, there is a further 

compensating factor that the sink strength is not uniform. Namely, the model oceans which are 

more efficient at taking up excess C 0 2 require a smaller Fr flux to match the [COJ record, and 

vice-versa. This is also reflected in the regression coefficients for the OC models (see Table

2.5); Fr is close enough to zero that random fluctuations in the residual nearly overwhelm the 

assumed logarithmic trend.

Plots of the relaxation curves associated with the ocean-atmosphere results (Table 2.3), 

for all ocean models, are shown as Fig. 2.12. This should be compared to the somewhat 

steeper initial drop when the terrestrial biosphere is included with regrowth alone and the even
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Table 2.3 Single Half-Life results for the ocean-atmosphere models.

Ocean Model* Tm (yr)
12-Box model (12B) 81

Box-Diffusion (BD) 1 116

Outcrop-Diffusion (OC) 1 42

Box-Diffusion (BD)2 79

Outcrop-Diffusion (OC) 2 37

‘Calibrated with pre-industrial l4C. 
Calibrated with bomb-produced I4C.

Table 2.4 Single Half-Life results (in years) for the ocean-atmosphere-terrestrial models under 
various C 0 2 fertilization assumptions.

Parameterization E-12B E-BD1 E-OC1 E-BD2 E-OC2

None (regrowth only) 3 68 86 37 63 33

Log 22 49 28 40 25

Linear 19 30 20 26 17

Logistic 20 38 23 33 20

1-2As in Table 2.3.
3No fertilization flux in this experiment.

Table 2.5 Coefficient of correlation (R) for the fit of Fr to the calculated residual carbon flux.

Parameterization E-12B E-BD1 E-OC1 E-BD2 E-OC2

Log .896 .914 .804 .869 .746

Linear .953 .956 .895 .931 .717

Logistic .986 .986 .958 .975 .400

1-2As in Table 2.3

steeper slopes when fertilization is assumed (Fig. 2.13); in order to compare Figs. 2.12 and 

2.13, we include in Fig. 2.13 the relaxation dynamics of the Box-Diffusion Model with the 14C 

bomb data used for parameterization. Note that the functional differences for different schemes 

to incorporate fertilization are relatively unimportant; this is a result partly of the deconvolution
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Figure 2.12 Response of the ocean-atmosphere models to a cessation of all emissions at 
t0=  1990. The horizontal arrow represents the [C 02] level halfway between the 1990 value and 
the theoretical equilibrium value.
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Figure 2.13 Response of the E-12B (Emanuel terrestrial submodel plus twelve-box ocean) 
model to the emissions cutoff scenario. Curves are shown which represent the inclusion of 
three possible parameterizations of fertilization flux, as well as the curve for no fertilization. 
For comparison we also include the curve for the ocean-only (12B) case.
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methodology which forces the dynamics to fit the same pattern, namely the ice core record.

In summary, there are small differences in Single Half-Life results associated with the 

model ocean used and with the nature of the parameterization of the missing flux Fr, but the 

principal variation is due predominantly to the inclusion of a terrestrial carbon sink, beyond 

forest regrowth. Thus, the results may be grouped into two categories (with associated average 

values): ( 1) regrowth and fertilization ( 1̂/2 =27 years), (2) regrowth and no fertilization

=57 years), and (3) no biosphere (Tm  =71 years). If  we drop the OC model, which (as

mentioned earlier) mixes atmospheric C 0 2 instantaneously to deep waters and likely 

overestimates the rate of ocean uptake, and calculate averages using the 12B model and two 

versions of the BD model, the Single Half-Lives increase somewhat as follows: (1) regrowth 

and fertilization (Tia =31 years), (2 ) regrowth and no fertilization (Tm =72 years), and (3) no

biosphere (?I,2 =92 years). The question of short-term atmospheric C 0 2 retention is effectively 

bracketed by these values.

2.3.6 Exponential characterizations of lifetime

We now turn to a discussion of the traditional notion of atmospheric lifetime and point 

out some of the difficulties that are inherent in this method when applied to a response which is 

not an exponential decay. For this discussion, we use the definition of Lashof and Ahuja 

(1990). The underlying idea in their definition of atmospheric lifetime is the classical concept of 

exponential decay:

c(r)=exp(-r/t), (2.17)
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where t  is the decay constant (e-folding) time for the material. There is an immediate 

consequence of using this simple expression. Namely, the concentration c{t) goes rapidly to 

zero as t goes to infinity and the integral in Equation 2.17 is t .  To use this basic concept of 

exponential decay, Lashof and Ahuja (1990) (see also Maier-Reimer and Hasselmann 1987) 

must accommodate two facts about (most) models of atmospheric C 0 2. Given a unit pulse of 

carbon dioxide, the decay is neither exponential nor does it go to zero. Their accommodation is 

to fit the response to a weighted sum of exponential decay functions and fix a finite time 

window for the fit, which in effect ignores the atmospheric concentration after a given length of 

time.

The mathematical construct requires the following: the calculated concentration c(f) of 

atmospheric C 0 2 following a pulse at time zero in a given atmosphere-ocean model; a temporal 

interval (the period of consideration, [0, A/,,,]); an upper bound xmax on the time constant; and 

the number of terms N  to be used in the approximation process (the number is not important, 

only the issue of goodness-of-fit really matters). One then finds, by constrained least squares 

fit, non-negative numbers (weights) ax,...,aN, where <3 1 + . . .+ a Ar= l, and numbers (e-folding 

times) Tj,...,ijy such that

By integration of (2.18) the atmospheric lifetime, Tres, is then simply the weighted average of 

the t ’ s (an average e-folding time), i.e..

c(t) *  I ,  <3, exp(-r/x,); (0<t<Nw and 0<t,<xmar) (2.18)

T re s —  2-i (2.19)

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lashof and Ahuja (1990) used Maier-Reimer and Hasselman’s (1987) results and presented a 

C 0 2 residence time value of 230 years.

Using the three atmosphere-ocean submodels, we inject an amount of C 02 into the 

atmosphere component of the models equal to 25% of the amount presently in our atmosphere. 

Each system then relaxes to different steady-state values (Fig. 2.14), with approximately 10- 

2 0 % of the pulse remaining, depending on the specification of equilibrium carbonate chemistry 

in the model. This relaxation curve is approximated by a weighted sum of exponentials (i.e.. 

Equation 2.18) under assumptions of Nw, N, and t mat. The results are summarized in Table 2.6. 

Some of the results are, at first glance, counter-intuitive; the most efficient ocean model (OC) 

can yield a longer calculated atmospheric lifetime than the less efficient ocean models. This is 

an artifact of the relative quickness that the OC-model reaches an asymptotic value. Simply 

stated, the greater the overlap of the fitting window (0<t<Nw) with a period where the change 

(or the derivative) in the simulated atmospheric concentration is near zero, the greater the 

necessity that the fitting term must contain exponentials that are as flat as possible (i.e., very 

large t ’s).

For the purposes of comparison, we used Nw values of 50, 100, 200, 500, and 1000 

years (Table 2.6). In general, increasing the interval (for a given model, and leaving tmar fixed) 

leads to an increase in the value of Tres or a failure of the fitting routine since the larger interval 

includes more of the curve that is relatively flat. This sensitivity is why the choice of a 

reasonable value for Nw is important; unfortunately there is no clear guideline; moreover, this 

sensitivity to Nw is also connected with the sensitivity of Tres to the assumed tmax.

To the extent that c(i) approaches 0 for t—>Nw, then the least-squares routine will 

attempt to return very high t, values (because the function is not decaying rapidly). 

Consequently, one needs to place a size constraint on the t ’ s (i.e. t mttr) .  Unfortunately, for a
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Figure 2.14 Response of the ocean-atmosphere models to an instantaneous pulse of C 0 2 

equivalent to 25% of the present value. The origin of the time axis is r=0  because no historical 
emissions are used.
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Table 2.6 Sensitivity of T ra  for the ocean-atmosphere models.

Numerical parameters T«s for each ocean model (yr) 1

Nw (yr) m̂ax (yr) BD2 OC2 12B

50 500 132.7 114.3 236.8

50 1 0 0 0 262.1 202.9 231.6

50 5000 1133.0 930.1 612.0

1 0 0 500 170.9 123.0 243.4

1 0 0 1 0 0 0 253.8 205.4 -

1 00 5000 667.5 871.0 -

2 0 0 500 204.9 160.3 256.3

2 0 0 1 0 0 0 287.4 271.2 262.8

2 0 0 5000 250.6 567.2 262.8

500 500 230.1 - 259.9

500 1 0 0 0 320.7 - 348.8

500 5000 490.5 1147.0 283.9

1 0 0 0 500 - - -

1 0 0 0 1 0 0 0 - - -

1 0 0 0 5000 1015.0 - 963.7

'Missing values indicate poor fit ( X 2>0.1).
Calibrated with bomb-I4C, as in Table 2.3

Table 2.7 Goodness of fit for selected runs from Table 2.6.

Numerical parameters X 2 of fit for each ocean model

Nw (yr) m̂ax (yf) BD OC 12B

50 500 1.9e-7 1.2e-5 7 . le-8

50 1 0 0 0 1.2e-5 l.le -5 3.8e-8

50 5000 l.le-5 9.7e-6 3.8e-8

1 0 0 0 500 3.92 12.9 1.34

1 0 0 0 1 0 0 0 0 .2 1 0.27 0 .1 0

1 0 0 0 5000 l.le-3 0 .2 0 1.4e-2

given window Nw, the calculated residence time is strongly dependent on this constraint (Table

2.6). This is partly a numerical artifact of the over-determined inversion process, in which
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minimizing error can lead to instabilities (see the A 2 values in Table 2.7). Figure 2.15 shows a 

plot of c(t) for two different values of xmax. The fitted curves are very different beyond the 

window Nw.

It appears that the numerical sensitivity of Tres may not have been sufficiently well 

appreciated; however, Lashof and Ahuja (1990) do note this sensitivity to one aspect of the 

calculation when they discuss changing the constraint t,<1000. In their study, this xmax 

sensitivity was dealt with in a different way. They did not Fit a c(t) term, but rather used 

parameter values (based upon a Green’s function) from a Maier-Reimer and Hasselman (1987) 

study: t,=(1000, 362.9, 73.6, 17.3, 1.9), and a ,=(0.131, 0.201, 0.321, 0.249, 0.098). In 

other words, they took as given a weighted exponential form for c{t). It was noted that the large 

t 0 =1000 value effectively discounts long-term C 0 2 retention. This value was a fitting 

constraint used by Maier-Reimer and Hasselmann (1987). Specifically, changing t0 from 1000 

to 3000 and re-fitting the a, values led to a more than doubling of residence time from 230 to 

500 years. This is consistent with our results.

In an attempt to connect these results with the earlier Single Half-Life calculations, we 

perform the same experiment with the scenario-based relaxation of the BD and the E-BD 

models, with terrestrial biosphere and no fertilization, and with a CO;-fertilized terrestrial 

biosphere (Table 2.8). We find the same problems associated with the calculation of Tres. Often 

the combinations that clearly reduce C 0 2 concentration the fastest, such as including 

fertilization, have longer lifetimes. There was a similar counter-intuitive result mentioned when 

discussing the results of the Atmosphere-Ocean systems (Table 2.6); the most efficient ocean 

model (OC) often yielded a longer calculated atmospheric lifetime than the less efficient ocean 

models.

There are a number of difficulties with the exponential-based method that should be
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Figure 2.15 Response of the box-diffusion model to an instantaneous pulse, and two curves 
fined by the least-squares method to the response c(t). For these curves, Nw= 50, N = 4 , and 
there are two different values of xmat (500 and 5000).

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.8 Sensitivity of Tres for the E-BD ocean-atmosphere-terrestrial model.

Numerical parameters Tres for E-BD model (yr) 1

Nw (yr) Tmar (yr) Biosphere included Fertilized biosphere

50 500 351.8 258.2

50 1 0 0 0 561.6 465.5

50 5000 1591.6 2128.7

1 0 0 500 375.4 273.7

1 0 0 1 0 0 0 391.9 512.6

1 0 0 5000 401.1 2334.8

2 0 0 500 379.9 -

2 0 0 1 0 0 0 560.3 528.2

2 0 0 5000 1354.1 1186.7

500 500 - -

500 1 0 0 0 619.1 -

500 5000 840.6 2135.3

'Missing values indicate poor fit (Ar2>0 .l).

addressed. Based on these results, we may conclude that most of the Tres values are, in some 

sense, determined by the constraints placed on the parameters t (, and by the assumption about 

Nw. In other words, Tres could be considered arbitrary unless there is some otherwise logical 

means for choosing (based on physical considerations) reasonable fitting constraints.

2.3.7 Summary

It is necessary for policy applications to have a consistent method for estimating the 

relative contributions of the anthropogenic, radiatively active trace gases to potential climate 

change. The greenhouse warming potential (GWP) is one method, but we have shown in 

Section 2.3.6 that the estimation of the integral in the denominator of the GWP formula 

(Equation 2.5) is ambiguous. As an interim step, we have introduced a simple indicator of the 

Earth system’s ability to remove excess atmospheric C 0 2, the Single Half-Life (Tv2). This
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indicator is free from the numerous difficulties and numerical instabilities associated with a 

conventional lifetime calculation. Thus, one could envision a modified GWP, in which the 

Single Half-Lives of the radiatively important gases replace the integral in Equation 2.5.

We have found that the inclusion of an active (donor and recipient-controlled) 

terrestrial biosphere considerably alters modeled estimates of the effective lifetime of 

atmospheric C 0 2. Moreover, since this factor is the dominant source of variation, we group the 

results into three categories: biosphere with fertilization flux ( Tj/2 =27 years), and biosphere 

without fertilization flux (71/2 =57 years). Finally, if there is no biosphere (purely an ocean 

atmosphere system; Table 2.3), then Tm  =71 years. I f  we drop the Outcrop-Diffiision Model, 

which is too efficient in taking up C 0 2 from the atmosphere, then these results change in detail 

but not in pattern: biosphere with fertilization flux (Tu2 =31 years), and biosphere without

fertilization flux (71/2 =72 years). Finally, if there is no biosphere (purely an ocean atmosphere 

system; Table 2.3), then 71/2 =92 years.

The inclusion of an active (donor and recipient-controlled) terrestrial biosphere clearly 

and considerably alters our estimates of the effective lifetime of atmospheric C 0 2. Several 

important and difficult scientific questions remain. Does this terrestrial sink exist? Will it 

continue to operate or has it begun to saturate? What is the effect of changes in other 

biogeochemical cycles? What if climate begins to shift; does that increase or decrease the 

terrestrial sink? How will the oceans respond? These questions have generated, and continue to 

drive a great deal of research, and they are relevant to policy decisions surrounding 

understanding and mitigation of possible future global change.
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2.4 Complement: Timescales of Atmospheric C 02 and Radiative Forcing Indices

Following the publication of the above work, a comment was published in the same 

journal (Gaffin et al. 1995) in response. Their note sought to clarify some perceived confusion 

about the meaning of lifetime of excess atmospheric C 0 2, uncertainties in the carbon cycle 

itself, and implications for the calculation of greenhouse warming potentials (GWPs). Their 

comment consists of four main points, which we will review and respond to one by one in this 

section. Following this response, we will discuss how the Intergovernmental Panel on Climate 

Change approached the GWP issue (Albritton et al. 1993), effectively avoiding the problems 

associated with the fact that atmospheric C 0 2 is not well represented by a single lifetime. 

Finally, other characteristic measures of timescale will be presented that may give insight into 

the dynamics of carbon dioxide in the global atmosphere.

The first issue that Gaffin et al. (1995) raised was that “the present short term removal 

rate of atmospheric C 0 2 is strongly constrained simply by requiring models to fit the C 0 2 

data.” The short term removal rate they refer to is the average turnover time of excess C 0 2 

which can be calculated by dividing the concentration C by the input flux F: x(t) =C(t)IF(t). 

Making this calculation using fossil emissions alone yields turnover times that typically range 

between 20-40 yr for the historic record (ca. 1960-1990), though there are a few high values 

(50-70 yr). It is reasonable to assert that if a model is constrained to have the same inputs and 

outputs to the atmosphere as are measured, then the model atmosphere will have approximately 

the same 20-40 yr turnover time. However, the assertion does not particularly bear upon our 

conclusions. We attempted to show how one particular measure of lifetime (Tip) would be 

affected by different assumptions related to the inclusion and activity of the terrestrial 

biosphere. Moreover, our analysis could have focused upon turnover time (t) itself as an 

indicator. Atmospheric C 0 2 turnover time is not a fixed property; indeed, it is multiply defined
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for a system that is not at steady-state (i.e., F  could refer to inputs or outputs), and it is 

sensitive to assumptions about global source/sink dynamics.

The second point raised is the idea that “a strong precedent exists from reservoir theory 

for defining lifetime as the average transit time of matter through the reservoir, and its 

calculation need not be arbitrary.” It is pointed out that there are a number of other 

characteristic timescales that can be used for describing the turnover of reservoirs, e.g., 

adjustment time, mean transit time, and expected lifetime (e.g., O ’Neill et al. 1994). The point 

we make is that these timescales, though theoretically satisfying, all require a knowledge of 

impulse response behavior for r->°o. This can be worked around by a proper choice of an 

asymptote, and by using a “sufficiently long time series”, but there is not a particularly good 

reason to trust very long simulations as much as short ones. Physical and numerical uncertainty 

must begin to dominate at some point. Nevertheless, this technical issue is also irrelevant to our 

point about the biosphere. Further, it was admittedly not the long time scale C 0 2 removal 

processes that were the focus of our discussion.

Third, they point out that “timescales describing the decay of excess C 0 2 mass in the 

atmosphere are not equivalent to those describing the decay o f a single pulse in emissions.” 

They go on to say that it therefore would probably not be reasonable to use Txa in any kind of 

GWP calculation. We used the decay curve of the current load of excess C 0 2 as a metric with 

which to investigate certain dependencies related to model sensitivity and the representation of 

a direct-C02 fertilization flux. In our conclusion, we mentioned that “one could envision” a 

modified GWP that was based on Half-Life values for the radiatively important trace gases. 

There is no reason why this kind of GWP could not be calculated, but it would, we agree, be 

based on a different set of concerns (namely, the short timescales).
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The fourth and final point is that “nonlinearities in the biospheric uptake may make the 

lifetime of C 0 2 even more uncertain than generally assumed, thus complicating the calculation 

of GWPs.” This statement is supported by our work. Specifically because of these 

nonlinearities we avoid unrealistic pulse-based calculations. Further, understanding the 

nonlinear behavior of the terrestrial biosphere’s role in the carbon cycle is an important factor 

in understanding future climate changes related to human activity. For example, if there are 

terrestrial sink mechanisms operating whose strength has been increasing (either due directly to 

increases in [COJ or other factors), and if  those mechanisms begin saturate, then atmospheric 

C 0 2 growth rates could potentially increase anomalously. Indeed, with respect to nitrogen and 

C 0 2 fertilization, it has been suggested that saturation of the suspected terrestrial mechanisms 

could be close to this point at present (see Section 2.2). Explication of these terrestrial 

processes is important for making predictions. In Section 2.5 we will take a closer look at the 

implications of this possible phenomenon.

We assert that there is a difference in perspective, rather than opinion, with respect to 

the issues raised by Gaffm et al. (1995). In the political discussion surrounding the calculation 

of GWPs, it is commonly thought that low values for lifetimes of excess [COJ mean that 

carbon emissions are “not important” , and conversely, high values mean that there is a longer 

commitment to an enhanced greenhouse effect, and thus they are “important” . This concern 

has been cast more formally by the statement that measures such as Tm only capture the short 

term dynamics of an intrinsically long timescale phenomenon (Caldeira and Kasting 1993). Our 

discussion (Moore and Braswell 1994) was somewhat orthogonal to the issue of the absolute 

magnitude of the indicator. We sought to make two points: (1) understanding the present and 

future behavior of the terrestrial biosphere is important for understanding the global carbon 

cycle and climate; and (2) the calculation of the lifetime of excess atmospheric C 0 2 (e.g.,
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Lashof and Ahuja 1990, Shine et al. 1990) is somewhat arbitrary, subject to numerical 

difficulties associated with the multiple time scales of carbon cycle reservoirs.

The 1994 IPCC assessment (Albritton et al. 1995) contained some significant changes 

in the presentation of GWP indices from the earlier assessment (Shine et al. 1990). Carbon 

dioxide remained the reference gas in the calculation (Equation 2.5), but its lifetime was based 

on an integration of a balanced carbon cycle model instead of a three-parameter fit to an 

unbalanced ocean-atmosphere model. By balanced, we mean that the model reproduced the 

historic atmospheric CO; trajectory, which is accomplished by including a mechanism for 

removing “missing” carbon. For example, the E-12B model (Section 2.3) is balanced with the 

inclusion of a fertilization flux parameterization. The inclusion of a terrestrial component, and 

the direct integration avoids the problems discussed by Moore and Braswell (1994). As in the 

previous assessment the GWPs depend upon the user-defined “integration time horizon”. The 

changes also included improved estimates of the lifetimes of other trace gases. Many of the 

GWPs were higher, primarily because of the change in representation of the CO; impulse 

response function. For example, the GWPs for nitrous oxide at 20, 100, and 500 years changed 

from 270, 290, and 190, respectively, to 290, 320. and 180, respectively.

2.5 Stabilization Scenarios and Model Sensitivity 

In the first IPCC assessment, a number of scenario-based calculations were made using 

an ocean-atmosphere carbon cycle model, under the common assumption (at that time) of a net 

neutral biosphere in the extra-tropics. These scenarios reflected a commonly asked question: 

given estimates of future levels of industrial activity as predicted by econometric models, what 

will be the likely increase in the atmospheric concentration of CO; and other trace gases? And, 

given that trajectory, what will be the associated change in radiative forcing of climate? Not
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surprisingly, the “business-as-usual” scenario (relatively modest or nonexistent controls on 

emissions, and heavy deforestation in the tropics) yielded a significant global warming of about 

4° C. The most “optimistic” scenario (shifting to renewable and nuclear energy, with tougher 

controls on emissions and less deforestation) still resulted in increasing C 0 2 concentrations and 

a warming of about 2.5° C. It was clearly demonstrated that stabilizing emissions is a very 

different issue than stabilizing concentrations in the atmosphere (the former is related to the 

derivative of the latter), and that in the absence of stable concentrations, the world is likely 

committed to unpredictable and uncontrollable changes in the climate system.

In the second IPCC assessment, the community reported on an effort that was designed 

to look at the question of stabilizing atmospheric concentrations of C 0 2 (Enting et al. 1994. 

Schimel et al. 1995). A number of different models were exercised that included oceanic and 

terrestrial processes, but in varying degrees, and with varying complexity. The following 

constraints were applied to all participating model simulations: ( 1) they must approximately 

reproduce the atmospheric record (a spline fit to ice core and direct measurements) of C 0 2 

change since the late 18th Century; (2) they must follow a prescribed trajectory to stabilization 

of [COJ (Fig. 2.16); (3) additional terrestrial sink mechanisms must be linked to atmospheric 

C 0 2 (i.e., direct fertilization); and (4) net biotic emissions due to Iand-use change in the tropics 

are prescribed, and fall linearly to zero from 1990 to 2100. The task was to calculate by 

inversion (or “deconvolution”) the future fossil fuel C 0 2 flux that would be required to 

stabilize [C02] at 450 ppm, and at 650 ppm (Fig. 2.16).

Figure 2.17 shows the fossil fuel emissions predicted by the Moore and Braswell 

(1994) model (E-12B) that were used in the intercomparison. The overall shape of the curve is 

very similar to that predicted by the other models (not shown). It is apparent that, according to 

the model, stabilization at either 450 ppm or 650 ppm would require a substantial decrease in
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fossil COi emissions. In fact, this trajectory lies below even the most “optimistic” scenario 

mentioned above. This fact is cause for concern because that scenario requires a substantial set 

of controls operating against free market pressures, as well as a large shift toward nuclear 

energy, which some would argue carries its own set of environmental problems.

In this deconvolution, we used the logistic representation of the direct C 0 2 fertilization 

effect (Fig. 2.17), and allowed it to operate for the entire time. Consequently, it can be seen 

that the allowed emissions eventually stabilize at 1980 and 1950 levels for S650 and S450, 

respectively, when the fertilization flux balances the fossil flux. It is widely believed that 

terrestrial mechanisms which give rise to enhanced production or storage of carbon will not 

persist indefinitely because the ecosystems will acclimate, or perhaps decline. This is a very 

uncertain area that is the subject of a great deal of research at present. To explore the 

consequences of this effect or effects, we ran another simulation in which the fertilization term 

was linearly decreased from its value in 1990 to zero in the final year. 2300 (Fig. 2.18). It can 

be seen that the required fossil flux continues to approach a value of approximately 1 Pg C yr'1. 

This was meant only as an analysis of the sensitivity, but the requirement of very low emissions 

is the trivial result of approaching a net neutral biosphere.

Figure 2.19 shows the implications of the previous two calculations for the pool of 

carbon in terrestrial vegetation. In both cases, the carbon lost through deforestation-related 

activities is recovered within -100 years. In the case of continuing enhanced sequestration 

(fertilization flux of about 1.5 Pg C yr'1), the size of the terrestrial vegetation stock increases 

by about 500 Pg C during the final two hundred years, an amount roughly equal to estimates of 

the growth of the biosphere (including soils) from the last glacial maximum (10,000 BP) to the 

present (Bird et al. 1994). The continuing storage in living plant tissue to the extent shown is 

probably unrealistic. With a fertilization effect that is mitigated by (unspecified) negative
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Figure 2.16 IPCC scenarios for prescribed stabilization of atmospheric C 0 2 concentrations at 
450 and 650 ppm. Triangles represent the ice core and direct measurements.
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Figure 2.17 Deconvolved fossil fuel flux, using the Moore and Braswell (1994) model, 
required to achieve stabilization shown in Fig. 2.16 under the assumption that deforestation 
emissions decline linearly to zero from 1990 to 2300 (a requirement of the IPCC 
intercomparison), and that enhanced terrestrial sink mechanisms continue into the future. The 
enhanced sink stabilizes because of the asymptotic dependence of the fertilization flux.
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Figure 2.18 The same as Fig. 2.17, except that the fertilization flux is reduced to zero linearly 
from 1990 to 2300. This tests the sensitivity to the notion that negative feedbacks are mitigating 
the fertilization of the biosphere.
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feedbacks, a more modest regrowth is realized (about 100 Pg C). This result, combined with 

ecological evidence that the feedbacks exist (see Section 2.2) suggests that the lower fossil flux 

projections (Fig. 2.18) may be a more realistic (but more difficult) path to stabilization of 

atmospheric [COJ.

The importance of assumptions about the terrestrial biosphere can be expressed in 

another way. We applied the deconvolved fossil flux in the case of continuing fertilization (Fig. 

2.17) to a forward simulation (S650) of the E-12B model. Without changing any model 

parameters the forward simulation would simply reproduce the S650 atmospheric C 0 2 

concentrations (Fig. 2.20, dashed line). Eliminating the fertilization flux, however, results in 

concentrations at the end of the simulation that are about 1 0 0  ppm greater and that drift slowly 

upward (Fig. 2.20, solid line).

Finally, it has been pointed out that since the capacity for the oceans to remove excess 

C 0 2 is reduced at higher [COJ, characteristic time scales (Section 2.4) should be calculated 

using the decay of a pulse of C 0 2 added to a scenario-based simulation such as S650 (Caldeira 

1993). Figure 2.21a shows the resulting trajectory for 500 years following a 10 Pg C 

instantaneous addition of C 0 2 to the atmosphere at t=  1990. The lower panel (Fig. 2.21b) is a 

closer view of the first 100 years. As discussed earlier (Section 2.2), multiple time scales for 

the removal of C 0 2 are apparent, resulting from the turnover of the surface oceans, terrestrial 

vegetation, and soils. In contrast to the previous sensitivity exercises (Figs. 2.17-2.20), this 

particular diagnostic is invariant with respect to an active biosphere because in our model, the 

“donor-control” response of terrestrial productivity is relatively insensitive to small (e.g., 10 

Pg C) changes in [C 02] at current levels and higher because of the asymptotic nature of the 

assumed sink processes (Fig. 2.11). This difference highlights the potential for confusion in 

projecting the future of the carbon cycle, and suggests that care must be taken in constructing
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Figure 2.20 The effect of the inclusion of C 0 2 fertilization in modeling the stabilization. The 
lower line is the same as Fig. 2.16. The upper line shows the results of a forward integration of 
the model using as input the deconvolved flux shown in Fig. 2.17. except with fertilization 
deactivated.
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Figure 2.21 The decay of a 10 Pg C pulse of COi added to the model atmosphere in the year 
1990 for an S650 stabilization simulation. The curve is obtained by subtracting the perturbed 
model output from the S650 concentrations (Fig. 2.16).
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and assessing indicators of the lifetime of excess atmospheric C02.

2.6 Summary

The global carbon cycle is an interactive component of the Earth’s climate system, and 

anthropogenic alteration of the patterns of global C 0 2 fluxes (and other trace gases) will likely 

result, and perhaps has already resulted, in systematic changes in air temperature, precipitation, 

and sea level. The magnitude, timing, and distribution of these changes is highly uncertain. The 

state and behavior of terrestrial ecosystems are, in turn, a complex and important part of the 

global carbon cycle. Indeed, a great deal of the uncertainty in future concentrations of 

atmospheric C 0 2 rests on uncertainty of the aggregate behavior of vegetation-soil-atmosphere 

systems worldwide. Thus, one of the great challenges to understanding the carbon cycle is 

integrating mechanistic knowledge of physical, chemical, and ecological processes at the local 

scale with global atmospheric measurements.

Numerical modeling is a tool that is at the forefront of carbon cycle research. Highly 

aggregated models of the carbon cycle (e.g., Bolin et al. 1983, Emanuel et al. 1984, Moore 

and Braswell 1994) are useful because they incorporate simple rules for the transformation of 

inorganic and organic carbon throughout the Earth system, allowing integration over long time 

scales. The observed distribution of tracers (principally l4C) forms the basis for the calibration 

of turnover rates of various ocean and soils compartments, while vegetation turnover is linked 

to plant lifespan. Analyses using these dynamic models provide, at least, a consistency check 

on our understanding of the terms in the carbon budget and, at most, a means of generating 

realistic predictions and policy-relevant inquiries that are driven by models of sociological and 

economic activity.
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Atmospheric measurements have also played a central role in the understanding of the 

carbon cycle, beginning with the observation that [COJ was in fact increasing in the 

atmosphere (Keeling et al. 1976). Direct [COJ assays and the well known patterns of fossil 

fuel emissions have been the most powerful constraints on the construction of global carbon 

budgets. Other measurements of atmospheric composition, including both carbon isotopes and 

oxygen, have added further detail to carbon cycle calculations. Both carbon-13 and oxygen

I-*
(associated with C 0 2 and organic matter) have different exchange ratios (relative to 'C ) for the 

oceans and terrestrial biosphere. These “signatures” allow for estimates of partitioning of net 

carbon flux between these two reservoirs. In addition, attempts to understand interannual 

variability in atmospheric C 0 2 levels (which can be large, on the order of 1-2 Pg C) can lead to 

a better understanding of the carbon cycle at the mechanistic level. This understanding 

translates into a more clear picture of the anthropogenically altered carbon budget.

The major terms (fluxes) in the global carbon budget are qualitatively well-known 

(Table 2.1): the net atmospheric increase, fossil fuel emissions, net ocean atmosphere 

exchange, and net terrestrial-atmosphere exchange. O f these, the terrestrial term is most 

uncertain, and consists of a number of potentially interacting processes, including carbon 

emissions from land-use change (primarily in the tropics), carbon sequestration due to regrowth 

of abandoned agricultural land (in the tropics, but also likely in the northern temperate 

latitudes), enhanced carbon assimilation and storage by vegetation and soils “fertilized” by 

industrial sources of nutrients and/or increased [C 02], and perhaps, altered patterns of 

terrestrial carbon storage arising from changes in climate. The high degree of spatial 

heterogeneity and temporal variability of the terrestrial terms arise from both natural and 

human factors. Improved knowledge of these mechanisms has resulted in a more correct, but 

more uncertain picture of the balance of global C 0 2 fluxes (Table 2.1).
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We have demonstrated in this chapter that terrestrial processes, both natural and 

anthropogenic, greatly influence the behavior of C 0 2 in the atmosphere, and thus the 

commitment to enhanced greenhouse warming. The complexity of the terrestrial biosphere as a 

whole (in terms of carbon) arises from spatial heterogeneity in the distribution of plants, soils, 

and climate, dynamics at the local scale that are highly interactive with other biogeochemical 

cycles, and the possibility of multiple direct and indirect effects of human intervention. In later 

chapters we will present analyses incorporating models and data that highlight possible 

directions for improvement of estimates of the spatial-temporal patterns of terrestrial net 

ecosystem production. These areas include a focus on interaction with atmospheric chemistry 

(e.g., ecosystem effects of pollutant deposition; Chapter 3). internal ecosystem regulation 

(Chapter 4), and integration with satellite remote sensing measurements (Chapter 4 and Chapter 

5). The motivation for these studies is derived from questions raised about the interactive role 

of the global carbon cycle in the global climate system.
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CHAPTER 3

ATMOSPHERIC NITROGEN DEPOSITION AND THE GLOBAL CARBON CYCLE

3.1 Introduction

The global cycles of carbon and nitrogen are coupled by the biosphere. This connection 

is one of the most important of all global biogeochemical phenomena, linking atmospheric 

chemistry with terrestrial and aquatic processes (Schlesinger 1991, Prinn 1994. Asner et al. In 

press). On both land and ocean, assimilation of carbon by photosynthesis is associated with 

uptake of mineral nitrogen, and decomposition of dead organic matter results in the release of 

nitrogen to the soil environment. Conversely, inputs (e.g., fixation and deposition) and losses 

(e.g., leaching and denitrification) of nitrogen to/from ecosystems impact net production and 

carbon storage because of the widespread limitation of ecosystems by the availability of 

nitrogen (Vitousek and Howarth 1991). The exogenous fluxes of N (e.g., atmospheric 

deposition) are typically small compared to the amount of N that is internally recycled and they 

can be highly variable in space and time, but they play a significant role in determining site 

nutrient status over annual to millennial time scales. This is because most terrestrial nitrogen is 

tied up in organic matter rather than in mineral form available to plants (Sprent 1987).

Human activities associated with industrialization and expansion of urban/agricultural 

centers are resulting in an increased input of chemically reactive nitrogen species into the 

atmosphere. These compounds represent a perturbation to the natural nitrogen cycle and 

originate primarily as: ( 1) nitrogen oxides from fossil fuel combustion, biomass burning, and 

disturbed soils; and (2) volatilization of ammonia from livestock wastes and fertilizer N (fixed
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from N2 using the Haber-Bosch process). Recent estimates indicate that anthropogenic fixation 

of nitrogen now exceeds natural fixation (Galloway et al. 1995). These short-lived “excess” 

nitrogen compounds participate in complex atmospheric chemistry and transport, and are 

deposited downwind from their source in particulate or ionic forms that are readily available 

for plant and microbial uptake.

The disruption of the pre-industrial N cycle is analogous to the anthropogenic alteration 

of the carbon cycle. For example, the atmospheric concentration of nitrous oxide (N 20 ), a 

long-lived radiatively active trace gas that has significant biogenic sources, though it has been 

rising steadily over the last ~ 2 0 0  years, remained approximately constant for at least 2 0 0 0  years 

prior to the onset of increases (Khalil and Rasmussen 1988, Watson et al. 1990). Thus, we use 

the same assumption for N as in Chapter 2 (for carbon) that the pre-industrial cycling of 

nitrogen between the major reservoirs was in approximate balance. This assumption is the basis 

for using a perturbation model to study the fate of excess fixed carbon resulting from N 

deposition.

In this chapter we explore one aspect of the coupling of the carbon and nitrogen cycles 

and their perturbation by human activities: fertilization of the terrestrial biosphere by 

anthropogenic nitrogen deposition. In Section 3.2 (based on Townsend et al. 1996) we estimate 

the extent to which deposition of nitrogen on terrestrial ecosystems (primarily Northern 

Hemisphere forests) has resulted in a significant sink for atmospheric carbon dioxide in recent 

decades (see also Chapter 2). This estimate is derived using a simple, dynamic, and 

geographically referenced model of terrestrial C and N cycling. We include a sensitivity test of 

the estimate to assumptions about C:N ratios and the allocation of excess carbon to tissues of 

various lifetimes. In Section 3.3 (based on Holland et al. In press), we look at the sensitivity of 

our model estimate to the spatial patterns of deposition and to assumptions related to the portion
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of biotic emissions that result from anthropogenically-driven changes. Further, because chronic 

nitrogen deposition is associated with other factors (e.g., high ozone levels and acidification) 

which lead to removal o f N-limitation, or possibly ecosystem decline, we explore model 

sensitivity to the “N-saturation” effect using a simple parametric framework (Section 3.4).

3.2 Spatial And Temporal Patterns in Terrestrial Carbon Storage due to Deposition of
Fossil Fuel Nitrogen+

3.2.1 Introduction

Recent model calculations which balance C 0 2 accumulation in the atmosphere against 

fossil fuel release, the effects of changing land-use, and oceanic uptake, calculate a substantial 

residual term, sometimes referred to as a “missing sink” (Tans et al. 1990, Siegenthaler and 

Sarmiento 1993; see also Chapter 2). Carbon uptake by the terrestrial biosphere is likely a 

major component of the calculated residual flux. Possible mechanisms behind this increased 

uptake include: (1) elevated C 0 2 stimulating photosynthesis (e.g., Bazzaz 1990), (2) climate 

variability (e.g., Dai and Fung 1993), and (3) the issue addressed here: increased carbon 

fixation resulting from widespread deposition of nitrogen (e.g., Peterson and Melillo 1985).

Industrial and agricultural activity in recent decades has caused a considerable increase 

in emissions of reactive N to the atmosphere (Galloway et al. 1995). The primary sources of 

this excess N are the combustion of fossil fuels, the manufacture and use of fertilizers, 

livestock, and burning of biomass as a result of changing land use practices. The primary forms 

are either nitrogen oxides (NOx =  NO +  N 0 2) or ammonia (NH3). Both forms are reactive in 

the lower atmosphere (Logan et al. 1981), and all NOx and NH3 emitted will be deposited back 

onto land or sea, with the ratio of deposited to emitted N decreasing rapidly with distance from

tAdapted from the article by A.R. Townsend, B.H. Braswell, E.A. Holland, and J.E. Penner, Ecological 
Applications 6:806-814, 1996. Copyright by the Ecological Society of America.
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the source of emissions (Penner et al. 1991). Both families of N species are highly reactive in 

the troposphere. Thus, emitted NOx can be deposited in a variety of forms, collectively termed 

NOy (NOx +  H N 02 +  H N 0 3 +  H 0 2N 02 +  N 0 3 +  2N20 5 +  peroxyacetyl nitrate {PAN} +  

particulate nitrates). Similarly, total ammonium deposition is as NHX (NH4+ +  NH 3 +  

NH4SO4').

Several authors have pointed out that enhanced N deposition could stimulate a 

significant increase in terrestrial carbon uptake (Peterson and Melillo 1985, Schindler and 

Bayley 1993). The basis o f this hypothesis is twofold: terrestrial productivity is typically N- 

limited (Vitousek and Howarth 1991), and carbon to nitrogen ratios in terrestrial vegetation are 

high, so that large amounts of C may be fixed for every unit of N. There is considerable 

uncertainty, however, with respect to both the magnitude and persistence of any N-derived 

carbon sink. Peterson and Melillo (1985) estimated a total terrestrial sink of only 0.1 Pg C yr'1, 

while Schindler and Bayley (1993) suggested that annual storage may be in excess of 1 Pg C. 

Excess carbon uptake due to N deposition in any given year will be the net flux, equal to the 

net primary production stimulated by the current year’s deposition minus the respiration from 

excess carbon fixed in that and previous years. In other words, to estimate the current year’s 

carbon uptake, one must know the amount of respiration from carbon pools formed due to N 

inputs in the past.

It is also important to consider strong spatial gradients in the factors that influence 

terrestrial carbon uptake. N deposition to terrestrial systems can vary from less than 1 to 

greater than 80 kg N ha'1 yr'1 (Berendse et al. 1993, Galloway et al. 1995). Furthermore, 

different ecosystem types vary greatly in their potential for carbon sequestration. Woody tissue 

can have C:N ratios in excess of 300 and lifetimes greater than 100 years (Vitousek et al. 1988, 

Schimel et al. 1994), therefore any excess N which stimulates wood production will cause a
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relatively large and long-term removal of C from the atmosphere. In contrast, foliar biomass in 

forests and grasslands in general have much narrower C:N ratios (30-80) and shorter tissue 

lifetimes, and therefore have a more limited capacity for carbon storage. Soil organic matter 

(SOM) also contains fractions that turn over slowly (e.g., Schimel et al. 1994), but with C:N  

ratios that are somewhat narrower than foliage. Thus, the extent to which soils can represent a 

C sink due to N-fertilization will depend in part on how much excess N is deposited on 

ecosystems that form SOM rapidly (e.g., temperate grasslands), but also on the fraction of 

additional C that ends up in the “slow” SOM pools.

Deposition onto cultivated areas is not likely to contribute to a terrestrial sink, for a 

number of reasons. First, most cultivation practices cause soil carbon stocks to decline with 

time (Baur and Black 1983, Burke et al. 1989, Davidson and Ackerman 1993). Second, crops 

tend to have relatively narrow C:N ratios, and will also be harvested and consumed, therefore 

they cannot be a long-term reservoir. Finally, most agricultural lands already receive high 

inputs of N from fertilizer and cultivated legumes, thus additional inputs from deposition are 

not likely to stimulate further C uptake.

The objective of this study was to estimate a likely range for terrestrial carbon storage 

resulting from deposition of fossil fuel NOx emissions, including its spatial and temporal 

distribution. Our estimate is based on a simple perturbation model of terrestrial 

biogeochemistry (NDEP: Nitrogen Deposition / Ecosystem Production), and has three 

important features which distinguish it from other calculations of this type. First, we accounted 

for spatial variability in potential carbon storage by using simulated N deposition rates from an 

atmospheric transport model together with a map of vegetation types and land-use distributions. 

Second, the model allocates carbon and nitrogen to vegetation and soil pools of different
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turnover times and C:N ratios. Finally, NDEP estimates the effects of prior N deposition on the 

current year’s carbon exchange.

We initially restricted our analysis to fossil fuel N for several reasons and, as such, this 

analysis provides possibly a conservative estimate. Fossil NOx is the only source of deposition 

for which we can obtain a reasonable estimate of temporal trends. Also, fossil fuels are the 

largest source of oxidized N to the atmosphere; our estimate for fossil fuel deposition to land is 

17 Tg N yr'1 (1990 value); Levy et al.’s (In press b) estimate for NOy deposition from all 

sources is 28 Tg N yr'1. The difference between these two numbers is predominantly due to 

biomass burning (~8 Tg N yr'1), which is concentrated in tropical areas where N limitation of 

plant growth is not as widespread (Vitousek and Sanford 1986). Thus, deposition of this 

additional oxidized N is less likely to stimulate carbon uptake and storage (but see Section 3.3).

The one potentially significant source of excess N not included in our analysis is 

ammonium (N H J deposition. Galloway et al. (1995) estimate anthropogenic sources of NHX 

deposition on land to be 38 Tg N yr'1, therefore it appears to be the largest source of excess N 

deposition, and may stimulate significant carbon uptake. We deal with issues related to NHX 

deposition as well as NOy from other sources in Section 3.3.

3.2.2 Methods and model description

NDEP is a perturbation model, is based on the Century soil organic matter model 

(Parton et al. 1987, Schimel et al. 1994), and is designed to run at an annual time step and 

l ° x l°  spatial resolution. Inputs for each cell are nitrogen deposition, the fraction of available N 

lost from the ecosystem, mean annual temperature (°C), soil texture (% clay), allocation of 

carbon fixed between woody and non-woody vegetation, and C to N ratios for vegetation, 

detritus, microbial biomass, and soil organic matter. Allocation and C:N ratios were specific
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for each vegetation type (Table 3.1), and vegetation distributions were based on the map 

derived by Matthews (1983). Cultivation in the Matthews (1983) database ranges from 0-100% 

intensity in 25% increments; for example, a grid cell with 50% intensity is represented as half 

cultivated land and half natural vegetation. The fraction of area under cultivation in any cell 

was excluded from our calculations. The model does not account for changes in vegetation 

distribution, allocation, or C:N ratios with time.

Spatial distributions in NOy deposition were estimated using values from an annual run 

of the GRANTOUR atmospheric transport model (Penner et al. 1991; see also Section 3.3) 

interpolated from 4.4°x7.5° resolution to l ° x l ° .  Temporal changes in NOy deposition were 

based on a simulation of fossil fuel NOy deposition for 1980 (Nevison 1994). For each grid 

cell, deposition was calculated over the period from 1845-1990 by scaling the mapped value of 

N deposition to the global fossil fuel emissions time series.

A summary of the pools and fluxes in the NDEP model is shown in Fig. 3.1. Carbon 

and nitrogen pools in this perturbation model are those due to nitrogen deposition only, 

therefore they were set initially to zero. Changes in woody and non-woody carbon pools (C„. 

Cmi.) depend on the flux of available nitrogen (/Vav), an allocation term (/*) which specifies the 

fraction of carbon going to woody biomass, the C:N ratio of each pool, and the residence time 

of carbon in the pools:

~ I *  ' CNW ■ Nax. -  a w • C„., (3.1)
at

—  = ( 1 - A )  • CNnw • Nav -  a mv • Cnw, (3.2)
dt
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Table 3.1 Biome-specific parameters used in the baseline estimate of N deposition effects on carbon storage. Parameters are defined in the 
text and shown in Fig. 3.1. Parameter values are estimates taken from the literature:/,, (Nadelhoffer et al. 1985, Aber and Melillo 1991); 
CNmv, CNW (Cole and Rapp 1981, Vitousek et al. 1988); CNmic, CNslaw (Schimel et al. 1994); a,,,, a mv (Esser et al. 1993). The area 
for each biome is in millions of km2 (Matthews 1983).

Vegetation class Area / , CN'~irnw CNW CNmjC CN„e, CNstow a w a nw

Trop. ev. forest 12.29 0.5 50 150 14 120 25 0.005 0.83

Trop./sub. ev. seas. brl. for. 3.29 0.5 50 150 14 120 25 0.007 1

Sub. ev. rainfor. 0.19 0.5 50 150 14 120 25 0.005 0.83

Temp./subpolar ev. rainfor. 0.39 0.5 65 250 14 120 25 0.007 0.5

Temp. ev. seas. brl. for., sum. rain 0.81 0.5 55 250 14 120 25 0.008 1

Ev. brl. scler. for., winter rain 0.47 0.5 55 250 14 120 25 0.008 1

Trop./sub. ev. needle forest 0.49 0.5 60 150 14 120 25 0.007 0.67

Temp./subpolar ev. needle forest 9.29 0.5 70 300 14 120 25 0.01 0.5

Trop./sub. drought decid. for. 2.88 0.5 50 150 14 120 25 0.007 1

Cold-decid. for., with evergreens 5.18 0.5 65 275 14 120 25 0.008 0.83

Cold-decid. for., w/o evergreens 3.99 0.5 55 250 14 120 25 0.007 1

Xeromorphic for./woodland 2.68 0.5 55 250 14 120 25 0.01 1

Ev. brl. scler. woodland 1.71 0.5 55 250 14 120 25 0.01 0.83

Ev. needle woodland 2.51 0.5 65 250 14 120 25 0.01 0.67

Trop./sub. drought-decid. woodland 3.7 0.5 50 150 14 120 25 0.01 1

Cold-decid. woodland 2.5 0.5 55 250 14 120 25 0.01 1

Ev. brl. shrub/thicket, ev. dwarf shrub 1.3 0.5 55 180 14 120 25 0.05 0.83
Ev. needle/microphyllous shr./thick. 0.67 0.5 65 180 14 120 25 0.05 0.67

Continued on next page
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Table 3.1 Continued
Drought-decid. shrub/thicket 0.83 0.5

Cold-decid. subalp./subpolar shrub 0.46 0.5

Xeromorph. shrubland 8.86 0.5

Arctic alpine tundra, mossy bog 7.34 0.1

Tall/med./short grass; 10-40% tree 6.46 0.1

Tall/med./short grass; <  10% tree 3.66 0

Tall/nied./short grass; w/ shrub cov. 9.34 0

Tall grass; no woody cover 0.81 0

Med. grass; no woody cover 0.78 0

Meadow, short grass; no woody cov. 6.1 0

Forb formations 0.28 0

Cultivation 17.56 _

60 180 14 120 25 0.05 1

60 180 14 120 25 0.05 1

60 180 14 120 25 0.05 1

50 250 12 80 50 0.01 0.5

60 250 11 60 20 0.01 0.33

55 - 10 60 20 - 0.33

55 - 10 60 20 - 0.33

50 - 10 60 20 - 0.33

50 - 10 60 20 - 0.5

50 - 10 60 20 - 1

50 - 10 60 20 - 1

- - - - - - -
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Figure 3.1 Carbon and nitrogen pools and fluxes in the NDEP model. Refer to text for 
description of symbols.
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where a w and a,w represent yearly litterfall fractions from woody and non-woody vegetation, 

respectively, and are equal to the inverse of the residence time. Litterfall from each pool enters 

the detrital C pool (Q ), which changes according to:

= a *  • Q  + a nw • Cnw - (a da + a dm+ a ds)-C d , (3.3)
at

where a dm, a *  and a </a- are transfer coefficients from the detrital pool to the microbial pool, the 

slow pool, and to the atmosphere (respiration). The values depend on lignin content and mean 

annual temperature, and are taken from a global analysis of soil organic matter turnover times 

(Schimel et al. 1994). Changes in microbial (C,„) and slow ( Q  carbon pools are calculated 

from:

dC
dt

-  = a rfm -Cd - ( a ^  + a ms)-C m (3.4)

dCs
— 1  =  a w •i *  ■ Cd + a,,, ■ Cm -  ctsa ■ Cs, (3.5)
dt

where again the a  values are from Schimel et al. (1994).

Changes in woody {Nw), non-woody (Nnw), microbial (Nm) and slow (Ay nitrogen pools 

are the same as those for carbon, divided by the C:N ratios of the pool:

dN‘ -  dC‘ ld t n  fii
~dF C N ~ ' (36)
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but changes in detrital nitrogen (Nd) depend on the C:N ratios of both vegetation and detrital 

pools:

dNd _ (a H. • C J  t (a nw • CnJ  (a da + a dm + ct^)
dt CN„ CNm CM,

(3-7)

Net nitrogen mineralization ( N m j „ )  depends on the carbon transfer and the C:N ratios of all 

three soil pools. Enough N to satisfy the C:N ratio of each pool is “immobilized” during each 

transfer, with the remainder contributing to net Nmin:

Nmm =
(<**, + “ llm + a dJ) - Q  . ( 0 .  + 0 J - C ,  . a JO • Cs    +   -----------

c n h CNm CNS

CNm CN. CNS

(3.8)

and available nitrogen for plant uptake (Nav) is then calculated as the current year’s deposition 

plus net N mineralization minus the rate of N loss:

Nav Ndep +  N,mn -  N(oss . (3.9)

N/oss was set at 20% of Ndep+N mm for most of the simulations; this value is an approximate 

mean from a number of nitrogen budget studies in temperate systems (e.g., Likens et al. 1981, 

Johnson et al. 1991). The sensitivity of the overall results to variations in Nloss is discussed in 

the following section.
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Finally, the total carbon sink (Cslnk) due to N deposition at any time t is equal to the 

sum of the changes in each of the five carbon pools:

^ r  = 4 : ( c ~ + c ». + c < + c „  + c , ) ,  (310)
at at

because the accumulation of carbon in each pool (set initially to zero) is associated with a 

perturbation flux of anthropogenic N deposition.

3.2.3 Results and discussion

Each simulation of this perturbation model was run for 145 years (1845-1990). Our 

initial “best estimate” assumed 20% of available N was lost from the system and that 50% of C 

fixed in forested regions was allocated to woody tissue, giving a 1990 estimate for carbon 

uptake of 0.64 Pg yr'1, and a cumulative storage of 23.7 Pg. This simulation also showed that 

carbon storage in wood dominated the total sink (Fig. 3.2) due to high C:N ratios in woody 

biomass coupled with turnover times that can exceed 100 years (Table 3.1). Despite long 

turnover times and high carbon contents for soil organic matter, our estimates of C storage in 

soils were relatively small (Fig. 3.2). This is not only because of narrower C:N  ratios in soils 

than in wood, but also because only a small fraction of the photosynthetically fixed carbon 

enters the large, more recalcitrant pools of soil organic matter (Townsend et al. 1995).

Our results support the existence of a sizable biospheric sink in northern temperate 

regions of the globe. Figure 3.3 shows that nearly all of the 1990 global sink occurs between 

about 25° and 55° north, and its latitudinal pattern is very similar to those shown by several 

inverse model estimates of carbon exchange driven by data on both C 02 and 13C 0 2 (Tans et al.
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Figure 3.2 Stored carbon resulting from deposition of fossil fuel derived N as a function of 
time for woody, non-woody, detrital, microbial, and slow carbon pools. Simulation assumed 
that 50% of C fixed in forested regions was allocated to wood (fw= 0.5), and that 20% of soil 
inorganic N was lost from the system each year (N/oss=Q.2).
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Figure 3.3 Latitudinal distribution of the net carbon flux between land and atmosphere for 
1990 in Tg yr'1. The solid line is from the simulation w ith /(v,=0.5 and Nloss= 0 .2 , where 1990 
global C uptake was 0.64 Pg; the dotted line is for the scenario in which Nioss increases with 
cumulative Ndep, where 1990 uptake was 0.39 Pg yr'1. Negative flux values indicate a terrestrial 
sink, and negative values for the sine of latitude are the Southern Hemisphere.
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1989, Enting and Mansbridge 1991, Ciais et al. 1995a). The l ° x l°  patterns of C uptake show 

that the strongest sinks are in three distinct mid-latitude regions: the eastern US, Europe, and 

eastern Asia (Fig. 3.4a). Not surprisingly, these regions also have high NOy deposition (Fig. 

3.4b). However, vegetation type has a profound effect on the amount of C stored per unit N. 

The largest sinks are in the forested regions, where significant amounts of N are incorporated 

into woody tissue at high C:N ratios, but much of the area experiencing high N deposition is 

covered by grasslands or cultivated areas. The lack of wood in grassland biomes severely limits 

the ability of N to stimulate carbon sequestration, and we have assumed that no storage occurs 

in cultivated regions.

Because storage as wood dominates the total sink, the fraction of excess C uptake 

which is allocated to woody biomass has a substantial effect on total carbon storage in our 

analysis. We note that allocation can vary with vegetation and soil type, nutrient status, and 

stand age, but in most forests, sizable fractions of photosynthate appear to be allocated to both 

woody and non-woody components (Aber and Melillo 1991). To evaluate the importance of 

allocation to our estimates, we ran a series simulations in which the percent of fixed C which 

was allocated to wood was varied from 10 to 100%. Corresponding estimates of net global C 

uptake for 1990 varied from 0.23 to 1.15 Pg yr'1, respectively, and the cumulative sink varied 

from 8.7 to 41.8 Pg (Fig. 3.5).

Allocation may also change over time as the availability of N changes, as may the C:N  

ratios of the plant tissue (Boring et al. 1988, Vitousek et al. 1988). These simulations suggest 

that net C uptake is likely to be more sensitive to any changes in allocation than to C :N  ratio 

changes within each tissue type. This is because a change in allocation represents a substantial 

change in both the amount of C fixed per unit N and in the overall terrestrial lifetime of the 

carbon fixed. Changes in C:N ratio within a tissue type due to increasing N availability will
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never be as large as the difference in C:N ratios between woody and foliar components. 

Furthermore, while changes in C:N ratio can affect the rate at which the corresponding litter is 

decomposed, such changes are small relative to the difference in turnover times of woody 

versus foliar litter (Schimel et al. 1994).

Our 1990 C sink estimate of 0.64 Pg yr'1 assumed that only 20% of N inputs were lost 

from all biomes. This value is an approximate mean of values reported from several studies in 

temperate forested watersheds such as Hubbard Brook and Walker Branch (Likens et al. 1981, 

Johnson et al. 1991). It is also consistent with a large scale analysis of regional N inputs and 

river losses in the major river basins draining into the North Atlantic Ocean (Howarth et al. In 

press). If, as is generally assumed, the temperate regions of the globe are primarily N limited, 

it makes sense that retention of N inputs should be high. However, retention of deposited N is 

known to vary with vegetation type, forest age, the form of deposition (wet vs. dry), the cation 

exchange capacity of the soil, and the amount of sulfur as well as N deposition (Vitousek et al. 

1988, Schulze et al. 1989, Johnson 1992). In areas of chronically high deposition, N losses 

may actually exceed inputs (Schulze et al. 1989), and in general, a steady increase in N loading 

should cause a decrease in overall retention as the systems become “nitrogen saturated” (Aber 

et al. 1989).

We explored how sensitive our calculated sink is to the fraction of N lost by scaling N 

losses to total NOy deposited. This has the effect of increasing N,oss with time, and is a simple 

way to incorporate gradual N saturation of high deposition areas into the model. By assuming a 

linear increase in losses (Nloss) from 20% of deposition inputs at the lowest deposition value in 

the entire simulation to 100% at the highest, we cut the “best” estimate for 1990 by about 40%, 

giving a global sink of 0.39 Pg C yr'1, and cut the cumulative C uptake from 23.7 Pg to 18.5 

Pg (Fig. 3.5). Because the effect of increasing Ntoss is greatest in the highest deposition regions.
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Figure 3.4 (a) Spatial distribution of the 1990 carbon sink resulting from fossil fuel N 
deposition between 1845 and 1990. Values are in g C m'2; the simulation used f w=0.5  and 
Nioss= 0-2, where total global C uptake was 0.64 Pg. (a) Fossil fuel nitrogen deposition on land 
(kg km'2) for 1990 as estimated by the GRANTOUR atmospheric transport model (Penner et al. 
1991). (c) Same as (a) except that for this simulation, Ntoss increases with N deposition.
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Figure 3.5 Sensitivity of the estimated carbon sink to the fraction of carbon allocated to wood 
(fw), and to the amount of N lost from the system: (a )fw=0.5, Ntoss= 0.2; (b )/*.=0.1,
Nfotf= 0-2; (c)/ * =  1.0, Nt0SS=Q.2; (d)/„,=0.5, Nloss varies from 20% of deposition at the lowest 
deposition value to 100% at the highest.
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the spatial distribution of 1990 C uptake also changed dramatically (Fig. 3.4c). Forests in the 

highest deposition regions no longer completely dominate the sink, and the spatial variability in 

lower deposition regions is more easily seen.

We believe 0.39-0.64 Pg yr'1 (for 1990) and 18.5-27.3 Pg (cumulatively since 1845) 

are the most reasonable ranges for the global carbon sink resulting from deposition of fossil 

fuel-derived nitrogen. By accounting for net uptake of C along with spatial variation in biome 

types and N deposition, we arrived at an estimate that is between those of Schindler and Bayley

(1993) and Peterson and Melillo (1985). Recent estimates for the total “missing carbon sink” 

are around 1.5-2 Pg yr’1 for the 1980s and between 50-125 Pg cumulatively since the late 18th 

century (Moore and Braswell 1994. Schimel et al. 1995; Chapter 2). Our estimate therefore 

represents about 25% of this sink, either for the single year of 1990 or cumulatively since 

1845. It should be remembered, however, that significant additional C uptake may occur from 

deposition of NHX (see Section 3.3), and that the magnitude of our estimates are also dependent 

on the veracity of the Matthews (1983) data base for vegetation distribution. Finally, it is worth 

noting that while analyses of the residual sink often focus upon a single factor, three of the 

most commonly proposed mechanisms for terrestrial storage of excess C 02 (N deposition, C 0 2 

fertilization, and forest regrowth) are not independent. For example, N deposition may 

accelerate rates of forest regrowth, and may enhance the effects of C 0 2 fertilization, as nutrient 

limitation appears to constrain plant response to elevated C 0 2 (Comins and McMurtrie 1993).

Fossil-fuel N may stimulate biospheric storage of fossil-fuel C 0 2, but N deposition 

should not be viewed as a purely “beneficial” phenomenon. The potentially harmful effects of 

acid rain due to emissions of nitrogen and sulfur oxides are well documented (Schulze 1989, 

Johnson et al. 1991). Chameides et al. (1994) estimate that increasing NOx emissions will cause 

a threefold increase in plant exposure to tropospheric ozone by early next century in some mid-
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latitude regions. Finally, deposition of fossil-fuel N is likely to double in less than thirty years 

(Galloway et al. 1994), but continued exposure to increasing nitrogen inputs should increase 

nitrogen losses, and may prove harmful, resulting in ecosystem decline and an overall 

reduction in net carbon uptake (Aber et al. 1989; see Section 3.4). Even if the excess N does 

not cause ecosystem decline, the global increase in available N must be causing a decrease in N 

limitation of terrestrial ecosystems, which would decrease responses to additional N. The 

persistence of an N-derived carbon sink will depend on the balance between a probable 

decrease in excess carbon uptake in many temperate forests that have experienced substantial N 

loading, and the response of previously low deposition regions that will experience rapid 

increases in N inputs over the next few decades. The latter changes will be primarily tropical, 

therefore global carbon storage due to N deposition may be saturating now.

The response of terrestrial ecosystems to any perturbation will depend on their nutrient 

status and stand age, which in turn are dependent on the history of both natural and 

anthropogenic disturbance (Aber et al. In press; Chapter 4). For this reason, the assumption of 

ecosystem steady-state perturbed only by N deposition (in the NDEP formalism) is not globally 

applicable, but the extent to which this is the case is not known. The highly variable patterns of 

land use/cover have been mapped at various scales, but are difficult to project either backward 

or forward in time because they are driven by complex local-to-global scale social and 

economic pressures. As a first step, we have used a static map of land use/cover for this 

analysis, but future studies will benefit from a simplified representation of historical regional- 

scale land conversion (e.g., Esser 1989) and natural regeneration processes (e.g., fire) (Aber 

and Melillo 1991) combined with rules relating allocation and the degree of N-limitation to 

ecosystem type and age. These rules likely can be developed from field observations (e.g..
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Stoddard 1994, Schulze et al. 1989) and process-based models such as Century (Parton et al. 

1987) and PnET (Aber and Federer 1992, Aber et al. In press).

3.3 The Spatial Distribution of Atmospheric Nitrogen Deposition and its Impact on 
Carbon Uptake by Terrestrial Ecosystems1

3.3.1 Introduction

In a previous study we used NDEP, a perturbation model, to quantify the terrestrial 

carbon storage due to human-induced nitrogen deposition (Townsend et al. 1996; Section 3.2). 

We showed that enhanced carbon uptake is sensitive to (1) the details of biogeochemical 

cycling, (2) the spatial distribution of land and vegetation cover, and (3) the spatial distribution 

and quantity of deposited nitrogen. In this section, we examine the importance of the latter, 

focusing on the role of atmospheric chemistry and transport models (CTMs). The 

representation of physical and chemical processes, and thus the simulation of deposition, can 

differ significantly among the extant models. These differences propagate into uncertainties in 

the estimated N-induced C sink. Further, atmospheric pollutants that tend to relieve ecosystem 

N-Iimitation and eliminate the carbon sink potential of ecosystems (most notably ozone) are 

also simulated by CTMs. Thus, accurate representation of the chemistry, transport, and 

deposition of NOy, N H X, and 0 3 is important for understanding the bio-atmospheric coupling of 

the carbon and nitrogen cycles.

The deposited nitrogen that is of interest in this study is that N derived from both 

industrialization and the expansion of urban and agricultural complexes (Chameides et al.

1994), essentially the additional N which represents a perturbation to the pre-industrial nitrogen 

cycle. Patterns of N deposition are not extremely well-known because there is no globally-

ad ap ted  from the article by E.A. Holland, B.H. Braswell, J.-F. Lamarque, J. Sulzman, J.-F. Muller,
F. Dentener, G. Brasseur, H. Levy II, J.E. Penner, and G.-J. Roelofs, Journal o f Geophysical Research, 
In press. Copyright by the American Geophysical Union.
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distributed sampling of either wet or dry nitrogen deposition. Measurements of precipitation 

inputs of many cations and anions (including NH4+ and N 03") have been made in country-by- 

country networks established to quantify acid precipitation, but these measurements provide 

partial coverage of the globe, and generally do not include all the nitrogen compounds 

deposited. Measurements of dry deposition are particularly sparse (US Environmental 

Protection Agency). Thus, three dimensional chemical transport models provide the only 

globally distributed information on the deposition of nitrogen, allowing the separation of the 

nitrogen into that attributable to background processes and to the intensification of human 

activity. Such information can be used as input into our perturbation model (NDEP).

3.3.2 Approach

We use the simulated deposition of five different CTMs to represent variation in the 

spatial distribution of deposited nitrogen: ECHAM (Roelofs and Lelieveld 1995); GCTM  (Levy 

et al. In press b); GRANTOUR (Penner et al. 1991,1994); IMAGES (Muller 1992, Muller and 

Brasseur 1995); and M OG UNTIA (Crutzen and Zimmerman 1991, Dentener and Crutzen 

1993,1994, Zimmerman et al. 1989). The models differ in the source magnitudes and 

distributions of NOx used, in their chemical transformation schemes, and in the way compounds 

are transported. An abbreviated summary of the differences amongst the models is provided in 

the text below (for an exhaustive comparison, see Holland et al. In press). AH the models 

include NO* emissions, chemistry, and transport. However, only one model, M OGUNTIA, 

represents NHX emissions and their subsequent fate. Thus model-to-model comparisons of NOy 

deposition consider only the fate of emitted NOx, which likely underestimates total N deposition 

by more than 100% because NOy comprises ~Vi of total wet and dry N deposition (Dentener
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and Crutzen 1994). Therefore, our most comprehensive estimate of increased carbon storage 

due to N deposition is made using both N H X and NOy deposition estimates.

The influence of nitrogen deposition cannot be accurately described by examining only 

the N that is deposited in a single year (e.g., Peterson and Melillo 1985, Schindler and Bayley 

1993) because N is continually recycled in terrestrial ecosystems by the release or 

mineralization of N during decomposition and subsequent plant and microbial uptake of that N. 

Therefore, in the NDEP model, we calculate the cumulative effect of N deposition by 

estimating the amount deposited over the last century, beginning with I860. The nitrogen and 

fixed carbon as a result of that deposition then cycles and the nitrogen is recirculated within the 

ecosystem allowing for losses due to leaching and gaseous emissions. All estimates of carbon 

storage are thus the cumulative result of nitrogen deposition and differ substantially from other 

“instantaneous” estimates.

3.3.3 Description and comparison of 3-D chemical transport models

All the CTMs included in this study incorporate the same basic elements: sources of 

NOx (or NHJ are released on a latitude by longitude grid and transported. The compounds 

undergo chemical transformation, are deposited back to the surface, or are released to the 

stratosphere. The primary mechanisms for removal are by precipitation and dry deposition. The 

details of how the processes are represented, the space and time resolution used, and the 

emphasis placed on different components differ substantially amongst the models; some of the 

major differences, and the resultant differences in their predictions of N deposition will be 

discussed below.

The spatial and temporal resolution of the five models differ from one another. GCTM  

has the finest horizontal resolution (though still coarse by ecological standards) with 2.4°x2.4°
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grid cells and MOGUNTIA has the coarsest horizontal resolution with I0 °x l0 ° grid cells. The 

height of the atmosphere represented varies between 16 and 32 km, and the number of vertical 

layers in the model atmosphere varies between 10 and 25. IMAGES uses the most highly 

resolved vertical layering and M O G UNTIA the coarsest. Each model is elaborate in a different 

aspect: for example, GCTM has the most refined horizontal and temporal resolution, while 

IMAGES has the most complex representation of chemistry.

The transport schemes used by the various models differ in the climatologies which 

drive them and in their transport schemes. ECHAM is a general circulation model implemented 

such that chemistry and transport are interactive (i.e., the chemistry model is run “on-line”). 

The transport time of the models ranges from 26 minutes for GCTM to 1 day for IMAGES. 

Two of the models, IMAGES and M O G UNTIA, use global climatologies of wind and 

precipitation. All of the models represent diffusion. They differ in the amount of sub-grid 

mixing, the convective schemes used, and exchanges with the planetary boundary layer. 

ECHAM has the most sophisticated convective scheme with penetrative, shallow, and mid-level 

convection.

The complexity of the chemical schemes used also differs amongst the five models. 

IMAGES has the most sophisticated chemistry with 125 reactions (including 2 photolytic 

reactions) and 41 species (including 7 different hydrocarbons, oxygenated organics, PAN, 

MPAN, and N20 5 reactions on aerosols). GRANTOUR uses a simple chemical scheme 

including H N 0 3, NO, and N 0 2, but no reactions with PAN or other organic species.

The spatial distribution of the deposited nitrogen depends on interactions of the 

transport and chemical schemes with both wet and dry deposition. Two of the models, ECHAM  

and GCTM, use the same dry deposition scheme, which includes effective wind speed. The 

other three models use essentially the same equation for dry deposition:
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F  =  Vd - n ■ Y, (3 . 11)

where Vd is the deposition velocity (cm s’1), n is the particle density (mole cm’3), and Y is the 

mixing ratio of the gas (cm3 cm'3). Each model differs in the assigned deposition velocities and 

whether diurnal variations in deposition velocity are included. Dry deposition velocities for 

N 0 2 are consistent amongst the models but vary substantially for NO and H N 0 3. Dry 

deposition velocities over land are specific to vegetation type for IMAGES, but independent of 

vegetation type in the other models. Wet deposition depends on the rate of precipitation, but the 

details of the formulations vary, particularly the different types of precipitation represented and 

the solubility coefficients implemented for the different chemical species.

3.3.4 Sources of NOx

Total NOx sources for the five models range from 35 to 48.8 Tg N yr'1 (Table 3.2). 

Variations in fossil fuel emissions are smaller (approximately 10%) and primarily driven by the 

choice of reference year. The lowest fossil fuel emissions are from GCTM, which uses a 

reference year of 1985 (Benkovitz et al. In press); GRANTOUR, which has the highest 

emissions, uses 1990 as the reference year. The remainder of the variation amongst the NOx 

emission estimates are driven by differences in the natural sources: lightning, biomass burning, 

and soils. The variability in the soil source and part of the biomass burning source are largely 

due to differing representations of biological controls over NOx production, particularly the 

inclusion of canopy scavenging of NOx emitted at the soil surface. Transport and oxidation of 

N20  from the stratosphere and aircraft emissions (reported aircraft emissions ranged from 0.23 

to 0.89 Tg N yr'1) were small proportional contributions to the total budget. While the
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Table 3.2 N 0X sources in Tg N yr'1 for five 3-D chemical transport models.

NOx Emissions ECHAM 1 GCTM2 GRANTOUR3 IMAGES4 M OG UNTIA5

Fossil fuel 20.0 21.0 22.4 21.9 20.0

Lightning 4.0 3.0 10.0 8.0 5.0

Soils 10.0 5.5 5.0 6.7 4.0

Aircraft - 0.45 0.23 0.44 0.6

Biomass
burning

6.0 8.5 10.0 4.4 6.0

Stratosphere - 0.64 0.2 0.2 -

Total 40.0 38.6 48.8 42.6 35.0

'Roelofs and Lelieveld 1995.
2KasibhatIa et al. 1991,1993, Levy et al. 1991, Yienger and Levy 1995, Benkovitz et al. In
press, Levy et al. In press a,b. 
3Penneretal. 1991,1994.
4MulIer 1992, Muller and Brasseur 1995. 
5Dentener and Crutzen 1993.

estimates of lightning production vary widely, lightning production of NOx is independent of 

human activity and so is not relevant to this perturbation study.

A large proportion of both the soil and biomass burning fluxes can be attributed to 

human activity. Among these five models, assumed biomass burning release of NOx varies by 

as much as 100% (ranging from 4.7-10 Tg N yr’1), reflecting the high degree of uncertainty. 

Assumed total soil emissions of NOx also varied by more than 100% with roughly the same 

range (4.0-10 Tg N  yr'1). A higher estimate of the global flux of NOx from soils, 20 Tg N yr'1, 

was made by Davidson (1991) based on a compilation o f available estimates, while the 1994 

IPCC estimate is 12 Tg N yr'1 (Prather et al. 1995). Fertilizer application also substantially 

increases NOx fluxes from soils because as much as 10-20% of fertilizer N applied to tropical 

agricultural soils can be returned within one year. Thus fertilizer N could contribute 

substantially to global soil NOx emissions but only the IPCC (and GCTM) estimates incorporate 

this additional flux (Shepard et al. 1991, Yienger and Levy 1995). In GCTM, a much smaller
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percentage (2.5%) o f applied fertilizer is returned to the atmosphere as NO,. The GCTM  

formulation is based on analysis of measurements made in mostly temperate ecosystems, and 

thus may be an underestimate of the fertilizer-induced NO, flux (Yienger and Levy 1995). 

IMAGES incorporates the influence of fertilizers indirectly by tripling the emissions associated 

with crops in developed countries (Muller 1992). It is possible that the total global soil flux 

may be underestimated in these models and that a substantial proportion of the global soil flux 

may be driven by human perturbation.

Vegetation scavenging of NO, may further contribute to some of the uncertainty 

amongst the estimates of soil NO, fluxes because vegetation can scavenge as much as 60-75% 

of the NO, emitted at the soil (Bakwin et al. 1990a,b, Jacob and Bakwin 1991, Yienger and 

Levy 1995). This effect is represented in M OGUNTIA and GCTM but not in ECHAM or 

GRANTOUR. A more simplistic vegetation scavenging of NO, is included in the dry 

deposition scheme for IMAGES. Much of the overall variation in sources between the models 

results from variations in the representation of the non-industrial sources of NO, (lightning, 

biomass burning, and soil emissions), many of which are influenced by human activity and so 

are reflected in each model’s estimate of the carbon sink.

Because of the sensitivity of the carbon sink calculation to the quantity of N deposited 

as well as its spatial distribution (Townsend et al. 1996; Section 3.2), we first considered only 

fossil fuel-derived NOy (from stationary and aircraft sources) which is clearly a perturbation to 

the Earth system, and then considered a range of proportions of non-fossil fuel derived NOy 

and N H , as nitrogen perturbations for the carbon sink calculation. To derive a fossil fuel base 

for all the models, we used the proportion of N deposition derived from fossil fuel combustion 

predicted by IMAGES, which tracks each of the N O , sources separately (Lamarque et al. In 

press), and applied that spatially-distributed proportion to the total NOy fields predicted by each
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of the five models. Lightning and stratospheric transport of N20 . the only two sources which 

are clearly not influenced by human activity, are between 8 and 20% of the total NO* sources 

and between 17 and 39% of the non-fossil NO* sources (Table 3.2).

We next considered total anthropogenic NOy by addition of 50 and 90% of the total 

non-fossil fuel sources in our calculation of the carbon sink, which provide roughly an 

additional 10-18 Tg N annually. As discussed above, estimates of important non-fossil fuel 

emissions of NO* that contribute substantially to enhanced NOy deposition are highly variable. 

We understand that 90% may be an overestimate but it reflects possible upward revisions of the 

global soil NO* inventories as new measurements from agricultural sources described above are 

incorporated. For NH*, where the proportion of deposition that should be considered a 

perturbation is even less clear than it is for NOy, we included 50, 60. 70, and 80% of the total 

NH* deposition to bracket the ratio of pre-industrial to industrial NH* emissions of 68% 

calculated by Dentener and Crutzen (1994). The calculated carbon storage (described in more 

detail below) increased linearly as the proportion of NH* or NOy deposition increased, except 

when “N saturation” was addressed.

We examined the influence of increasing nitrogen deposition over the last century by 

deriving a time series for both NO* and NH* emissions. For both cases, we scaled the N 

emissions to a time series of global fossil fuel emissions for the last 130 years (Keeling 1994, 

Marland et al. 1994). For 1860 to 1950, C 0 2 emissions from each of the four fuel categories, 

coal, lignite, crude petroleum, and natural gas, were converted to NO* emissions by applying 

the conversion factors given by Muller (1992). The four categories were then summed for each 

year to provide the total annual estimate. For 1950-1990, the NO* emissions were derived 

using the Muller (1992) emission factors and the country-by-country fossil fuel statistics for that 

reporting period. We then calculated a 0-1 scalar for each year to convert the “current”
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emissions provided by each model. The resulting time series, a vector representing an 

approximately exponential increase in emissions over the last 130 years, was multiplied by the 

scalar deposition value available for each grid cell. We attempted to scale NHX deposition to 

livestock populations based on a Food and Agriculture Organization (FAO) database, but, 

because the increase in NHX emissions were driven in varying proportions by the livestock 

contributions, we used the same roughly exponential increase in deposition that we used for 

NOy.

3.3.5 Wet deposition validation

As a first step to determine whether the spatial patterns and quantities in the 

observations and simulations were comparable, IMAGES simulations of nitrate deposition in 

precipitation were compared to the average wet nitrate deposition measured at over 200 sites 

between 1978 and 1994 as part of the US National Atmospheric Deposition Program 

(NADP/NTN 1995). Neither the spatial distribution nor the magnitude of wet nitrate deposition 

were adequately captured by IMAGES. First, IMAGES simulated peak deposition over the 

southeastern US rather than the northeastern region, suggesting problems with transport and 

rainout parameterization. Second, on a site-to-grid cell comparison, IMAGES consistently 

underpredicted the amount of nitrate deposited which is best demonstrated by the clear offset in 

Fig. 3.6 and the R1 of 0.55 for the linear correlation. A systematic bias could have been 

introduced into the comparison by aggregating observations that are skewed toward lower 

deposition values up to the large grid cells of the simulations, as deposition generally follows a 

log-normal distribution over large regions (Haas 1990). It is likely that the hot-spots of 

deposition which cover a limited area can not be represented by such a coarse-grid model. 

Some inaccuracies in the data (NADP/NTN 1995) resulting from contamination and instrument
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Figure 3.6 A comparison of N 0 3‘ deposition in precipitation simulated by IMAGES, and 
measured at 200 sites within the US by the NADP network (NADP/NTN 1995). All 
measurements within a 5°x5° grid were averaged over the available time period (1978-1994 in 
most cases). Thus the bars represent the standard deviation including the spatial and temporal 
variance. Note the different axes scales.
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problems could also contribute to the poor model-data comparison.

The IMAGES-NADP comparison (Fig. 3.6) suggests that transport and rainout portions 

of the model could be improved, and such improvements are underway (Muller, personal 

communication). The poor agreement is not a particularly new result, and follows many calls 

for better parameterization of rainout, particularly of H N 03, and its coupling to transport.

These improvements are needed to ensure realistic simulations of atmospheric concentrations of 

NOx, as well as NOy deposition (Levy and Moxim I989a,b, Roelofs and Lelieveld 1995, 

Brasseur et al. In press).

The comparison was a first step towards a more systematic evaluation, and illustrates 

the problems associated with validation of chemical transport models. Note that the rainout of 

H N 0 3 in at least one of the five models (GCTM) was parameterized using NADP data. The 

observation/model comparison suggests that global NOy deposition in precipitation may be 

higher than simulated. Wet deposition constitutes only 40-60% of total N deposition, thereby 

adding more uncertainty to the model-data relationship (Asman and Jaarsveld 1992, Dentener 

and Crutzen 1994). The results below should be interpreted knowing that, in at least one case, 

the details of N deposition at the spatial scales of ecosystems are simulated poorly.

3.3.6 Spatial patterns of NOv deposition

All the models simulated different spatial distributions and quantities of NOy deposition 

when all sources of NOx were considered (Figs. 3.7, 3.8, and 3.9). Differences amongst the 

models were significantly reduced when only the fossil fuel sources of NOy were considered 

(Table 3.3). Global N deposition generated by fossil fuel combustion varied by 10%. in parallel 

with the variation amongst the magnitude of the assumed fossil fuel sources. The amount of 

NOy deposition derived from fossil fuel combustion differs slightly from the sources because
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Figure 3.7 The latitudinal distribution of total NOy distribution on oceans, land, and natural 
vegetation for each of the five models used.
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Figure 3.8 Global distribution of total NOy deposition simulated by IMAGES in kg N km''
yr'1.
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Figure 3.9 Global distributions of the difference between total NOy deposition simulated by 
IMAGES and each of the other models: (a) ECHAM; (b) GCTM; '(c) GRANTOUR; (d) 
MOGUNTIA. All the differences were calculated based on a coregistered l ° x l °  map of the 
deposition fields. Warm colors indicate areas where IMAGES deposition was greater than the 
other model, and cool colors indicate where the other model predicted greater deposition.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.3 NOy deposition on the Earth’s surface resulting from fossil fuel combustion (Tg N  
yr'1) simulated by five 3-D chemical transport models and the resulting C sink (Pg yr'1) 
calculated by NDEP (Townsend et al. 1996).

EC H A M 1 GCTM 2 GRANTOUR3 IMAGES4 M OGUNTIA5

Total fossil fuel 
NOy deposited

19.4 2 1 .8 2 1 .6 2 0 .1 2 2 .8

On oceans6 8 .8 9.9 9.8 9.1 10.3

On land6 1 0 .6 11.9 1 1 .8 1 1 .0 12.4

On ice or 
deserts7

0 .8 0.9 0.9 0.9 1 .0

On agriculture7 5.5 6 .2 6 .1 5.7 6.5

On natural 
vegetation7

4.3 4.8 4.7 4.4 5.0

On forests8 1 .0 1.1 1.1 1 .0 1 .0

On unforested 
land8

3.3 3.7 3.6 3.4 3.8

1990 C sink 0.52 0.59 0.58 0.54 0.61

1990 C sink 
with N- 
saturation

0.37 0.40 0.39 0.38 0.40

1-5As in Table 3.2
6Total fossil NOy deposition =  Land +  Oceans
7Land deposition =  Ice/desert -I- Agriculture +  Natural vegetation
8Natural vegetation deposition =  Forests +  Unforested land

the proportional contributions of each source were calculated using IMAGES and applied to the 

individual grid cells of all the other models. This technique provided a consistent mechanism 

with which to deduce the fossil contribution of all the other models. Fossil fuel-derived NOy is 

deposited mainly in the Northern Hemisphere, where it was released, with small amounts 

transported to the Southern Hemisphere (Galloway et al. 1994, Lamarque et al. In press).

When all the sources of NOx were considered, the variation in deposition increased 

considerably: N deposition ranged between 35.3 (IMAGES) and 41.2 (GRANTOUR) Tg yr" 1 

(Fig. 3.7, Table 3.3). In all cases, NOy deposition was greatest between 20° and 60° N
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latitude, but a secondary peak of varying height occurred between 10° N and 30° S latitude 

(Fig. 3.7). IMAGES and GRANTOUR both deposited less N on land in the Southern 

Hemisphere than the other three models. A strong interhemispheric gradient of NOy deposition 

was simulated by all the models, with ECHAM and GCTM  simulating the greatest N deposition 

in the eastern US, Europe, and Asia (particularly along the northeast coast of China). 

Differences amongst the models are greatest in these three regions, followed by portions of 

Africa and South America (Fig. 3.9). Interestingly, some of the difference in deposition was 

driven by uncertainties in the biological sources. For all models, the sum of the sources did not 

equal total global deposition (with differences ranging from -7.6 to +4 .9  Tg N yr'1) indicating 

that N mass was not completely conserved.

For all five models, about 22% of NOy deposition from fossil fuel combustion fell on 

natural vegetation, and only 5% of NOy deposition fell on forests (Table 3.3). The amount of 

fossil NOy deposited on natural vegetation varied by 17%, slightly more than the variation in 

fossil fuel sources. Once expanded to include all sources of NOx, the variability in the spatial 

deposition increased. Absolute quantities of N deposition on forests ranged from 2.2 to 4.0 Tg 

yr' 1 (Table 3.4). The proportion of total global N deposition received by forests, which store 

large amounts of carbon in wood varied between 5.3% (GRANTOUR) and 10% (ECHAM ), 

with IMAGES (6 .6 %), MOGUNTIA (8.9%), and GCTM (9%) in between. The ratio of forest 

to non-forest deposition ranged between 0.37 (IMAGES) and 0.42 (GCTM and M O G UNTIA) 

with GRANTOUR (0.41) and ECHAM (0.40) in between. This variation in the spatial 

distribution of N deposition was a primary factor in determining the size and range of the 

resulting carbon sink when sources other than fossil fuel were considered (Fig. 3.10).
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Table 3.4 Total NOy deposition on the Earth’s surface considering all NOx sources (Tg N yr'1) 
simulated by five 3-D chemical transport models.

ECHAM 1 GCTM 2 GRANTOUR3 IMAGES4 M O G UNTIA 5

Global NOy 
deposition

38.9 40.2 41.2 35.3 39.9

On oceans6 11.7 1 2 .6 25.8 16.2 14.9

On land6 27.2 27.6 15.4 19.1 25.0

On ice or 
deserts7

1 .2 1 .2 1 .2 1.4 1.4

On agriculture7 1 2 .2 14.1 6 .6 8.9 11.4

On natural 
vegetation7

13.8 12.3 7.7 8 .8 1 2 .1

On forests8 4.0 3.6 2 .2 2.3 3.6

On unforested 
land8

9.8 8 .6 5.4 6.5 8.5

Deposition
minus

.  • 9emissions

- 1.1 +  1 .6 -7.6 -7.3 +4.9

1-5As in Table 3.2 
6-8As in Table 3.3
’ Difference between total NOy deposition (Row 1) and emissions (Table 3.2).

3.3.7 Carbon storage from NOv deposition

Considering only fossil fuel-derived NOy deposition, the globally integrated annual 

carbon sink for all the models ranged from 0.43-0.61 Pg yr' 1 (Table 3.3). These values 

represent approximately 25-33% of the “missing sink” (Schimel et al. 1995, Schimel 1995b). 

When additional sources of NOx were considered, the variation in the size of the estimated 

carbon sink grew more than threefold, and partially depended on the proportion of non-fossil 

sources of NOx considered (Table 3.4; Fig. 3.10a). When fossil fuel sources of NOx plus 50% 

of non-fossil sources were considered, the calculated carbon sink ranged from 0.65 Pg yr ' 1 for 

GRANTOUR to 0.97 Pg yr’ 1 for ECHAM (Fig. 3.10a). When 90% of non-fossil sources were 

considered, the calculated carbon sink ranged from 0.72 Pg yr ' 1 for GRANTOUR to 1.34 Pg
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Figure 3.10 Globally integrated carbon storage calculated by NDEP from NOy deposition 
considering NOx emissions from fossil fuel combustion plus 50 and 90% of non-fossil sources 
for each of the five models, (a) A'taIr=0.2-iVav. i.e., 80% of available N is assimilated. The 
remaining 20% is assumed to be transferred back to the atmosphere NO, N; . N20 ,  or in 
hydrologic systems, (b) N[0SS= a + b -N av, where <3 = 0 . 2  and 6=0.8/1000. Modeled ecosystems 
utilized an increasingly smaller proportion of the deposited N (the “N saturation” case).
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yr' 1 for ECHAM. The size of the C sink was proportional to the amount of N deposited on 

natural vegetation and was closely linked to the relatively small amount of N  deposited on 

forests ( <  1 0 %) because carbon storage in wood dominates all other storage compartments 

(Tables 3.3 and 3.4; Townsend et al. 1996).

To consider how nitrogen saturation might influence enhanced terrestrial carbon 

uptake, we followed the same procedure outlined in Townsend et al. (1996). We conducted a 

set of NDEP simulations that included a simple parameterization of a reduction in ecosystem 

nitrogen use efficiency in response to chronic deposition. The fraction of N retained was 

decreased linearly as a function of deposition down to a critical threshold where inputs equal 

outputs and none of the additional deposited N was retained by the ecosystem (see Section 3.4). 

The result was to effectively place a cap on the N-induced carbon sink to between 0.5 and 0.6 

Pg yr' 1 (Fig. 3.10b).

3.3.8 Effects of NHx deposition

Emissions of ammonia represent at least as large a flux of N to the atmosphere as NO* 

(Dentener and Crutzen 1994). As pointed out in Table 3.2, global NOx emissions to the 

atmosphere are estimated to be 35 to 49 Tg N yr ' 1 for the five models, and N H X emissions are 

estimated to be 45 Tg N yr ' 1 (Dentener and Crutzen 1994). The only three-dimensional 

chemical model to date that considers ammonia is an updated version of M O G UNTIA  

developed by Dentener and Crutzen (1994); we used this version to estimate the size of the 

carbon sink due to N H X. Total NH X deposition in this model was 41 Tg N yr'1. As with NOy 

deposition, NHX deposition was greater on land (22.5 Tg N yr'1) than on oceans (18 Tg N yr'1) 

(Fig. 3.11a).

The partitioning of NHX deposition between the various land categories was (in Tg N
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Figure 3.11 (a) Latitudinal distribution of total NHX deposition on the Earth’s surface, 
including oceans, land, and natural vegetation, (b) Globally-integrated carbon storage 
calculated by NDEP considering 50-80% of the NHX deposition simulated by MOGUNTIA  
(Dentener and Crutzen 1994). The C sink calculations assumed no N saturation (80% 
ecosystem nitrogen retention).
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yr'1): 1 .2  on ice or deserts, 1 1 .0  on agriculture, and 1 0 .1  on natural vegetation, which could 

further be partitioned into 7.3 on forested land and 2.9 on forests. Thus, only 7% of the total 

NHX deposited fell on forests. The partitioning of NHX deposition was likely to have been 

influenced by specific attributes of MOGUNTIA and its parameterization. First, MOGUNTIA  

applies a dry deposition factor of 25% to anthropogenic emissions to account for sub-grid 

deposition within the rather large 10°xl0° grid cells. While this may result in overestimation of 

NHX deposition in some non-agricuitural areas, the uncertainties associated with the actual NHX 

emission estimates are likely to override any bias in deposition introduced by the anthropogenic 

deposition parameterization. For example, Schlesinger and Hartley (1992) estimate global NH3 

emissions to 75 Tg N yr'1, substantially greater than the 45 Tg N yr ' 1 used here. Galloway et 

al. (1995) estimated NHX emissions to be 6 8  Tg N yr'1. Also, in some areas of the world and 

particularly in the tropics, domestic animals eat an unknown proportion of natural vegetation 

(their emissions would not be considered an anthropogenic perturbation). Despite these 

concerns, M OGUNTIA has examined the consistency of estimated emissions with measured 

deposition to produce an internally consistent look at the global N H X cycle.

The size of the carbon sink induced by the deposition of N H X ranged from 0.52 to 0.84 

Pg yr'1, depending on the proportion of the deposition assumed to be anthropogenic (50% and 

80%, respectively) (Fig. 3.11b). Ammonia emissions have risen exponentially over the last 

century (Nevison et al. 1996) and clearly some fraction of the emissions, which are largely 

derived from agricultural and animal husbandry practices, represent an increase over pre­

industrial times when the Earth supported a much smaller population of humans. However, the 

exact proportion attributable to human activity is extremely difficult to assess. Dentener and 

Crutzen (1994) estimated anthropogenic emissions to be 30.6 out of the 45 Tg N yr'1, or 6 8 %, 

and Galloway et al. (1995) arrived at an estimate of 69%.
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Figure 3.12 Map of the global distribution of carbon storage calculated by NDEP considering 
both the NOy and NHX simulated by MOGUNTIA. (a) considering fossil fuel NOy plus 50% 
non-fossil NOy plus 50% of N from NH 3 emissions, (b) Considers fossil fuel NOy plus 90% 
non-fossil NOy plus 95% of N from NH3 emissions. For both simulations, we assumed no N 
saturation. Globally integrated C storage ranged from 1.2-1.6  Pg yr'1.
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The spatial distribution of NHX deposition and the resulting sink are different than those 

generated for NOy deposition (Fig. 3.12). The most striking difference was the enhanced N 

deposition (and C sink) in the tropics, particularly India, China, Central America, and northern 

South America. The consideration of N H X emissions also resulted in increased N deposition 

between 30° and 45° N latitude compared with NOy deposition alone. As a result, N deposition 

intensified for the low latitudes of the Northern Hemisphere for NHX relative to NOy deposition 

which, not surprisingly, mimics the animal distributions. North of 40° N the pattern of NHX 

deposition was very similar to that of NOy deposition due to a mix of agriculture and industry 

in the northern temperate zone (Fig. 3.1 la) (Chameides et al. 1994). Estimates of the annual 

global flux of N H X are uncertain and the larger estimates could generate a still larger carbon 

sink depending on its spatial distribution.

When both NOy and NHX were included in the NDEP simulations, the range for our C 

uptake estimates grew to 1.42-1.97 Pg yr'1. The NOy perturbation included fossil fuel sources 

of NOx and 50 and 90% of the non-fossil sources, respectively, and the NHX perturbation 

included 50 and 80% of the total NHX sources, respectively. In addition, we assumed that C 

fixation was not hampered due to N saturation in regions of high chronic deposition. The 

inclusion of negative feedbacks on N retention associated with N saturation severely 

constrained modeled C 0 2 uptake, reducing the sink to 1.08-1.35 Pg C yr'1.

3.3.9 Relation of this study to other analyses

This study is only the second (after Townsend et al. 1996) to explicitly consider the 

spatial distribution of N deposition on ecosystems. In 1985, Peterson and Melillo presented an 

estimate of carbon uptake by forest vegetation and soils due to N fertilization of 0.1 Pg yr'1, a 

relatively small sink and less than one-fifth our current estimate for either NOy or NHX
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deposition and less than one-tenth our total carbon sink estimate. They assumed that a total of 6 

Tg out of 20 Tg N released by fossil fuel combustion was deposited on natural vegetation, an 

amount slightly higher than our estimate of 4.3-5.0 Tg N (Table 3.3). The present study is 

distinguished by: (1) simulation of the N cycling of specific land cover types; (2) derivation of 

the spatial distribution of N deposition using chemical transport models; (3) evaluation of the 

cumulative effect o f rising N deposition and recycling of deposited N; (4) an assumption that 

80% of the deposited N is retained, compared with 60% (Peterson and Melillo 1985); and (5) 

the incorporation of C:N ratios for different pools, which reflect the intervening decade of 

measurements and subsequent understanding.

More recent estimates of the carbon sink caused by anthropogenic N deposition range 

from 0.50 to 1.50 Pg yr'1 (Kohlmaier et al. 1988, Hudson et al. 1994, Schindler and Bayley 

1993, Townsend et al. 1996). Hudson et al. (1994) simulated a carbon sink of 1.4 Pg yr’1 with 

N deposition on temperate and boreal forests of 18 Tg yr'1. The five chemical transport models 

studied here simulate between 2.2 and 4.0 Tg N yr'1 as NOy and 2 Tg N yr'1 as N H X on all 

forests, including temperate, boreal, and tropical forests (fossil fuel plus all other sources; 

Table 3.4). Schindler and Bayley (1993) estimated a carbon sink of 0.65-1.95 Pg yr'1 on land, 

depending on the assigned C:N of the terrestrial biosphere, and assuming global N deposition 

on land of 13 Tg y r'1, which is similar to our fossil fuel NOy estimate of 10.6-12.4 Tg N yr’1 

deposited on land globally. The estimates of Schindler and Bayley (1993) and Hudson et al.

(1994) differ from ours in the assignment of C:N  ratios, assumptions about the geography of N 

deposition and ecosystems, and (lack of) consideration of N recycling.

The analysis of atmospheric C 0 2 and 5 ,3C has provided another perspective on the 

global carbon cycle and has allowed a more robust determination of the latitudinal distribution 

of net terrestrial CO; exchange (e.g.. Ciais et al. 1995a; see also Section 2.2). The latitudinal
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distribution of the carbon sink derived from N deposition is similar to the latitudinal distribution 

derived from isotopic/concentration measurements coupled to an inverse modeling framework 

(Fig. 3.13; Ciais et al. 1995a). The inverse model estimates suggest a Northern Hemisphere 

mid-latitude terrestrial sink, which all of our estimates also show (Table 3.5). When we include 

the non-fossil NOx and NHX sources, southern subtropical carbon uptake is similar to that 

estimated by Ciais et al. (1995a). The intensity of both the Northern Hemisphere and 

subtropical carbon sinks varies amongst the models with GCTM, ECHAM, and MOGUNTIA  

showing the strongest Northern Hemisphere sink and ECHAM and M O G UNTIA  showing the 

strongest subtropical sink. The nitrogen deposition-induced sink is not inconsistent with the 

data-based inverse estimates, suggesting that the role of N deposition in the carbon cycle should 

be investigated further, using empirical as well as more mechanistic modeling approaches.

Our estimates of the N-induced terrestrial carbon sink reflect our current understanding 

of both atmospheric chemistry and ecological function. Likewise, the causes of uncertainty in 

these estimates indicate specific areas that require further and more detailed investigation. 

Outstanding examples of factors that can substantially influence the size and distribution of the 

C sink include the mapping of vegetation types, the amount of carbon assimilation allocated to 

woody biomass, and the issue of nitrogen saturation and potential chemical feedbacks (Section 

3.4). All of these factors are likely to be spatially and temporally variable. Sensitivity analysis 

of these factors generate large ranges in the size of the C sink estimate, but it is almost certain 

that the N-fertilization phenomenon is an important one in the carbon budget. Whether it will 

remain significant in the face of chronic deposition is unclear. Improved estimates and 

predictions will be available only through increased understanding of both atmospheric 

chemistry and ecosystem biogeochemistry.
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Figure 3.13 Latitudinal distribution of the carbon sink considering N 0 y deposition derived 
from fossil fuel combustion and considering N 0 y deposition derived from fossil fuel 
combustion plus 50% of non-fossil sources for each of the five models. For MOGUNTIA we 
consider deposition derived from fossil fuel combustion plus 50% of non-fossil sources plus 
50% of NHV A constant N retention of 80% was assumed.
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Table 3.5 Comparison of terrestrial net C 0 2 flux (Pg C yr'1) estimated by inverse modeling 
and our perturbation estimate of terrestrial net C 0 2 (Pg C yr'1) uptake due to anthropogenic N 
deposition. We include NOy deposition from fossil fuel combustion plus 50% of non-fossil 
sources, except for MOGUNTIA NOy+ N H x where we include 50% of NHX deposition.

90°S-16°S Equatorial 16°N-90°N Global

Keeling et al. 1989b1 -0.1 +0.3 -0.6 -0.5

Tans et al. I9941 -0.1 +0 .5 -2.3 -1.9

Ciais et al. 1995a2 -0.2 +0 .8 -2.2 -1.5

This work:3

With N-saturation

IMAGES 0.04 0.11 0.38 0.53

ECHAM 0.05 0.16 0.41 0.61

GCTM 0.06 0.13 0.37 0.56

GRANTOUR 0.04 0.11 0.36 0.51

M OGUNTIA 0.05 0.16 0.40 0.61

M OGUNTIA NH x +  NOy 0.10 0.26 0.73 1.09

Without N-saturation

IMAGES 0.04 0.12 0.57 0.73

ECHAM 0.05 0.19 0.73 0.98

GCTM 0.07 0.15 0.73 0.95

GRANTOUR 0.04 0.12 0.50 0.66

M OGUNTIA 0.06 0.20 0.64 0.90

M OGUNTIA NHx+ N O y 0.11 0.29 1.02 1.42

1 Based on C 02 concentrations 
2Based on 513C and C 0 2 concentrations 

3All values are negative (net sinks).

3.4 Factors Limiting Ecosystem Response to N Additions

The carbon uptake of ecosystems receiving large and chronic amounts of nitrogen from 

the atmosphere has the potential to gradually become unresponsive to N deposition, thus 

breaking the link between the C and N cycles (Asner et al. In press). Further, some ecosystems 

will even begin to lose stored carbon. This removal of ecosystem N-limitation, though a
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cumulative effect, can manifest itself relatively suddenly and be associated initially with losses 

of nitrogen from the system via leaching and denitrification (Aber et al. 1989, Stoddard 1994). 

Eventually, ecosystem productivity will decline and, in the worst cases, will be devastated. This 

process is often referred to as nitrogen saturation (Aber et al. 1989, Schulze 1989), though 

other pollutant species are usually involved, and interactions leading to this state are complex 

and highly dependent on local conditions (Malkonen 1990, Zottl 1990, Gundersen 1991). In 

this section, we examine the factors leading to mitigation or removal of nitrogen fertilization 

and their parameterization in a simple model like NDEP.

3.4.1 Deleterious effects associated with chronic nitrogen deposition

It is well known that nitrogen deposition is not only a fertilizing agent for terrestrial 

vegetation but. depending on the source, will be associated with atmospheric pollutants, and 

can itself be damaging in large quantities. The atmospheric pollutants associated with industrial 

and agricultural activities that have the potential to damage ecosystems are heavy metals, 

gaseous oxidant species (particularly ozone), and acid species (Aber et al. 1989, McLaughlin 

and Downing 1995, Reich 1987). Impacts on ecosystem function due to pollutant deposition, 

though chronic in time, are an acute spatial phenomenon. They have been most notably 

observed in forests nearby and downwind of major urban-agricultural complexes (Chameides et 

al. 1994). In the northeastern US, and in parts of Europe, deposition of nitrogen and sulfur 

may be as much, or more than 100 times greater than “natural” levels. Generally, the 

deposition is due to a combination of agricultural and industrial sources of NOy and NHX, 

except in some highly impacted regions of the Netherlands where ecosystems proximate to very 

large feedlots receive mostly ammonium.
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Acidification

Oxidation of the primary pollutants NOx and S02 by OH lead to the production of 

H2S04 and H N 0 3 in the atmosphere which are eventually deposited in precipitation or as 

aerosols. These acids tend to dissociate fully so that they are associated with the introduction of 

S042\  N 03' and H + into ecosystems, thus contributing to a lower pH in the soil environment. 

Another toxifying mechanism is associated with the release of ammonia (NH3) from 

agricultural and livestock-bearing lands. Nitrification of subsequently deposited NHX can lead 

to increased acidity in soils because of the high mobility of nitrate relative to ammonium. 

Further, there exist mechanisms through which ecosystem health is affected by nutrient 

imbalances that result from increased availability of mineral nitrogen; these problems 

potentially interact with acidification and other pollutant effects.

The toxic effects of acidification are primarily related to altered soil chemistry. Inputs 

of H + increase the rate of weathering of soil minerals, and mobilize cations (most notably 

Al3+) from exchange sites into the soil solution. In some forest soils, gibbsite is weathered 

more rapidly, releasing A13 t, which is known to inhibit plant growth at high levels. In addition, 

important base cations may be lost from the soil due to their increased mobility (lower cation 

exchange capacity) at low pH. Depending on the parent rock material, the lost cations will 

usually be one of the following essential nutrients: K +, Ca2+, or Mg2+. These two effects 

together are especially detrimental because plant uptake of cation nutrients may be suppressed 

by excess soil aluminum. Godbold et al. (1988) found that aluminum toxicity in German forests 

receiving high deposition was related to interference with root elongation and uptake of Ca and 

Mg. They speculated that this mechanism leads to leaf imbalances and is the primary mode of 

damage from acidification.
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Nitrogen saturation

Another deleterious effect that is associated with pollutant deposition is the literal 

saturation of ecosystems with respect to nitrogen (Aber et al. 1989). Nitrogen saturation refers 

to ecosystem decline resulting from mineral N availability that is in chronic and extreme excess 

of plant and microbial demand. There are three hypothetical stages in this process (Aber et al. 

1989): Initially the N-limited ecosystem responds by increasing plant and microbial uptake, 

reflected by increases in NPP and N mineralization (stage 1). In the second stage (saturation), 

excess NH4~ is rapidly nitrified, followed by losses due to denitrification and nitrate leaching. 

By the end of this stage, inputs to the ecosystem will roughly equal outputs (N20  and N2 from 

denitrification plus N 0 3' leaching). Meanwhile, the plant community is faced with a unique and 

non-adaptive stress: excess soil N will lead to increased uptake and losses of fine root mass and 

mycorrhizal infection, which in turn will cause insufficient levels of other nutrients or nutrient 

imbalances within the plant. It is also possible that foliage NH4+ may reach levels that are toxic 

to metabolic functions. Both these factors will signal the onset of forest decline (stage 3).

Ozone exposure

Tropospheric ozone is probably the most harmful pollutant to terrestrial vegetation, 

interfering with many physiological processes including photosynthesis, respiration, and 

allocation (Chameides et al. 1994, Reich 1987). The net effect is a reduction in growth.

Because nitrogen oxides are precursors to tropospheric ozone formation, surface ozone 

concentrations are correlated with NOy deposition, as demonstrated using results from the 

IMAGES model (Fig. 3.14; Section 3.3). Thus 0 3 can limit the carbon storage to N 

fertilization at high levels of deposition. Both surface 0 3 mixing ratios and NOy deposition (in 

Fig. 3.14) are annual averages over large grids and are underestimated with respect to intensely
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deposition of N. The comparison was limited to those grid cells containing natural vegetation.
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localized spatial and temporal exposure, which is most common (Muller and Brasseur 1995, 

Reich 1987). This results in few 0 3 concentrations above the critical threshold for plant damage 

of 50-70 ppbv (Reich 1987).

Though both spatial and temporal averaging may contribute to the underestimation of 

impacts, the correlation between 0 3 concentration and NOy deposition (Fig. 3.14) suggests that 

the chemical feedbacks represented by the individual and interactive mechanisms of acid 

deposition, ozone damage, and alleviation of N-limitation have the potential to be represented 

collectively. Nevertheless, the underlying mechanisms deserve further attention, with respect to 

both atmospheric and ecosystem processes. For example, a more realistic parameterization 

might involve specifying the partitioning of N deposition with respect to NHX and NOy as these 

are utilized somewhat differently by ecosystems. Also, model-generated 0 3 concentration might 

be useful (given fine enough spatial and temporal resolution) because its effect is only important 

at relatively high levels of exposure. In the NDEP model, we implemented a rudimentary 

parameterization of the net effect of these mechanisms (Section 3.2 and below).

3.4.2 Representing the approach to saturation in NDEP

In our previous estimates of global terrestrial fertilization by anthropogenic N 

deposition (Townsend et al. 1996, Holland et al. In press; Section 3.2 and 3.3), we recognized 

that the most highly impacted regions (downwind from urban, industrial, or agricultural 

centers) eventually cease being net C sinks, and could actually become C sources as excess 

carbon stored in soils and wood is gradually released. Thus we compared our baseline estimates 

which assume continuing N-Iimitation to simulations that include a linearly declining ecosystem 

N retention function (Fig. 3.15). Loss of N varied from 20% of the available N flux 

(Nmm+N dep; see Equation 3.9) to 100% at a threshold value of total N deposition (Ncnt) of 2000
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Figure 3.15 Schematic representing the parameterization of nitrogen saturation in the NDEP 
model. Ecosystem retention of available N is assumed to be a function of deposition. Curve a 
represents the base case where there are no feedbacks affecting N/oss (/o=0.8 in all 
calculations); curve b represents a linearly declining ecosystem use efficiency up to the point 
where the system is unresponsive; curve c represents the extreme case of a sudden onset of 
saturation which was not implemented in Section 3.2 (Townsend et al. 1996) or Section 3.3 
(Holland et al. In press), but is discussed in Section 3.4.
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kg N km'2 yr*1 at which inputs equal losses. Deposition rates higher than Ncrit (which did not 

occur in either study) would be associated with net loss of excess carbon accumulated during 

the period of fertilization. When considering the sink due to NOy or NHX alone, we set the 

threshold to be 1000 kg N km’2 yr'1 under the assumption that each contributes roughly one half 

of total N deposited.

It is interesting to note how the ecosystem “excess” N and C fluxes and cumulative 

storage change in time for an individual grid cell. Figs. 3.16 and 3.17 show the time 

trajectories of flux and storage, respectively, for the single MOGUNTIA (Dentener and 

Crutzen 1994; Section 3.3) grid cell, located in northern Europe, that received the most total 

nitrogen input. For this and the few similarly impacted grid cells, ecosystem-recycled nitrogen 

is not very important; the sink is driven almost entirely by deposition. Globally, however, 

recycled N is responsible for -10% of the C sink estimate, and the inclusion of multiple 

dynamic compartments yields an estimate that is ’ 30% higher than without recycling primarily 

because of the narrow C:N ratios of stored SOM pools relative to vegetation.

We looked closer at the N-saturation parameterization by including two new 

simulations (Table 3.6) based on the high and low M OGUNTIA estimates of total 

anthropogenic N deposition (Section 3.3). First, we tested the sensitivity to the threshold value 

Ncrit for saturation by lowering it from 2000 kg N km'2 yr’1 to 1000 kg N km’2 yr'1 and using 

the linear function (Figs. 3.16c and 3.17c). The N deposition load at which inputs equal 

outputs, being a convenient parameter for our model, is highly variable and the result of 

complex interactions. Schulze et al. (1989) indicate that the “critical load” (defined similarly as 

Ncrit) for N deposition on ecosystems can vary from 300-4800 kg km'2 yr'1, depending on the 

parent soil material and the quantity of deposition of accompanying anions (e.g., S042'). Our 

reason for selecting a lower value was to test the realism of the model when Ndep >  Ncnt; the
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Table 3.6 Summary results of NDEP simulations using high and low estimates of total 
anthropogenic N deposition from M O G UNTIA  for various parameterizations of N saturation 
feedbacks. The high and low estimates incorporate various proportions of the N H X and non­
fossil NOy emissions (see text).

N saturation parameterization Low C sink estimate 
(Pg y r 1)

High C sink estimate 
(Pg yr'1)

Constant Ntoss 1.42 1.97

Linear Nloss;
Afcw=2000 kg km'2 yr'1

1.09 1.35

Linear Nioss;
Ncrit=  1000 kg km'2 yr'1

0.75 0.73

Step N[0SS;
Wfn,=  1000 kg km'2 yr'1

1.30 1.59

highest M O G UNTIA  total N deposition is approximately 2000 kg N km'2 yr'1.

Interestingly, the “low” deposition case (Table 3.6) resulted in a slightly greater sink 

than the “high” deposition case because of the massive loss of C due to over-saturated grid 

cells (Fig. 3.16c). The most heavily impacted systems lose back all of the enhanced storage of 

carbon accumulated over more than one hundred years in just about thirty years. This dynamic, 

while it may be representative of the “decline” phase of N-saturation (Aber et al. 1989), is 

difficult to validate because of the distinction made here with respect to natural vs. 

anthropogenic nitrogen. Nevertheless, whole-watershed nitrogen budgets for ecosystems 

receiving heavy loads of atmospheric deposition would be helpful for understanding the net, 

large scale effects of saturation before and after the time when Ndep= N crit.

The final simulation utilized a different function: a near-instantaneous step from 20% 

yr'1 losses to N,oss equal to 100% of Ndep (Fig. 3.15; Figs. 3.16d and 3.17d). The step function 

parameterization was designed to test the extreme case of the sudden onset of saturation.

Studies of watersheds in the US that receive high N deposition (Stoddard 1994), and modeling 

studies (e.g., Aber et al. In press) indicate that ecosystem N losses do not increase (and
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Figure 3.16 Time series of N and C fluxes for one forest grid cell under various assumptions 
about changing ecosystem N-limitation. (a) The base case, corresponding to curve a in Fig. 
3.15; (b) Linear approach to N saturation (curve b in Fig. 3.15), with a critical value Ncnl= 2 .0  
g m'2 yr’1; (c) Linear function, as in (b), but with a critical threshold of 1.0 g m'2 yr'1; (d) A  
sudden onset of N saturation, corresponding to curve c in Fig. 3.15, with Ncnt=  1.0 g m’2 yr'1.
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presumably vegetation productivity does not decline) immediately with enhanced deposition, as 

modeled by our linear function. Rather, the onset of massive leakage of N to the environment 

can be somewhat sudden and associated with increased nitrification (leading to losses of N 0 3' in 

streamflow) and denitrification (leading to losses of N2 and N20 ). Thus the linear and step 

functions effectively bracket the problem, except to the extent that the actual N[oss fraction 

might be highly variable at the ecosystem scale. Considering the uncertainty of Ncnl and the 

timing of N saturation as parameterized in these four simulations (Table 3.6), our estimate of 

the total current C sink due to anthropogenic nitrogen emissions is thus revised to the range 

0.73-1.97 Pgyr’1.

3.5 Summary

Because the global cycles of carbon and nitrogen are linked by the biosphere, 

understanding the present and future exchange of carbon between the terrestrial land surface 

and the atmosphere requires understanding critical interactions involving nitrogen. We 

described in Section 3.2 (also Townsend et al. 1996) an estimate of terrestrial carbon storage 

arising from deposition of fossil fuel derived nitrogen that accounts for spatial distributions in 

deposition and vegetation types, turnover of plant and soil carbon pools, and the cumulative 

effects of deposition. The overlying templates of deposition and vegetation type have a 

pronounced effect on carbon uptake; the combination of high C:N ratios and long lifetimes in 

wood may create a significant sink in forests, but much of the nitrogen falls on cultivated areas 

and grasslands, where there is limited capacity for long-term carbon storage. Because of this 

potential for strong spatial dependence, we further examined the sensitivity of the carbon sink 

to spatial patterns of deposition as predicted by various chemistry-transport models (Holland et 

al. In press; Section 3.3).
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Unlike carbon dioxide, most anthropogenically produced nitrogen species are reactive 

in the atmosphere and undergo complex transformations before they are deposited or converted 

to unreactive forms (e.g., N2 and N20 ). Thus, physical and chemical processes that govern the 

spatial distribution of deposition must be adequately represented. We found that differences in 

the structure and parameterization of the atmospheric chemistry and transport models led to 

significantly different patterns of predicted NOy deposition on land. These contrasting 

predictions propagated into differences in enhanced net terrestrial carbon exchange modeled by 

NDEP (as much as 0.32 Pg yr'1 without N-saturation, and 0.08 Pg yr'1 with N-saturation). The 

differences in deposition were small, however, compared to the discrepancy between modeled 

and observed NOy deposition at the continental scale (inferred from NADP/NTN wet NOy 

observations for the US; Fig. 3.6). Further, the importance of ammonia chemistry, transport, 

and deposition were not insignificant as we initially asserted (Townsend et al. 1996; Section 

3.2). Therefore, for the purposes of studying the impacts of atmospheric N on terrestrial 

ecosystems, inclusion of NHX is critical. Further, careful attention must be paid to dry 

deposition and rainout parameterizations which determine in large part the regional patterns of 

deposition (Fig. 3.6).

Closing the global N cycle is important for clearly depicting the relationship between 

global biogeochemistry and climate. Terrestrial ecosystems are a source of reactive N species 

to the atmosphere, as well as a sink. A portion of terrestrial N sources are due to anthropogenic 

activity (i.e., those arising from land-use/cover change) that is highly variable in space and 

time. Thus, land use practices, which impact trace gas emissions as well as the details of 

terrestrial biogeochemical cycling are important factors in the bio-atmospheric cycling of 

nitrogen. A  better understanding of the global interactive C and N cycles will result from more 

realistic models of atmospheric chemistry and transport, validation of terrestrial processes that
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govern the assimilation, allocation, and turnover of C and N in ecosystems, emissions of 

gaseous N species, and the interaction of mechanisms that control net exchange (e.g., climate 

and atmospheric [COJ).

We calculated a carbon sink due to total anthropogenic N emissions (0.73-1.97 Pg yr'1) 

that is significant on the scale of the global carbon budget (Schimel et al. 1994, Schimel 1995b; 

Chapter 2), and potentially accounts for as much as half of the residual in the “high- 

confidence” carbon budget (Table 2.1, column 1). The near-convergence of C sink estimates 

when any parameterization of saturation is used (with any CTM deposition prediction) suggests 

that one key to providing accurate estimates of enhanced C uptake will be knowledge of the 

dependence of Ncrit (Section 3.4) on land cover type, land-use history (Aber et al. In press), 

deposition rate, and perhaps 0 3 concentrations. It is clear that there are interactions with other 

atmospheric pollutants (primarily ozone and sulfate) and internal N cycling dynamics that can 

lead to the mitigation of this sink over large areas.

Whatever the magnitude of the sink due to human-derived nitrogen fluxes, we expect it 

will not continue to increase steadily. Interannual variability in net terrestrial-atmosphere C 0 2 

fluxes are on the order of 1-2 Pg C yr'1 (Keeling et al. 1989a; Chapter 4). Superimposed on this 

signal is a net terrestrial sink of approximately the same magnitude (Ciais et al. 1995,a,b 

Keeling et al. 1995) arising from a number of mechanisms, including N-fertilization (see also 

Chapter 2). Many of these mechanisms (C 02 and N fertilization, and temperate forest 

regrowth) are intrinsically limited with respect to the amount of carbon they can continue to 

sequester in the future because of negative feedbacks operating at various scales (e.g., N 

saturation; Section 3.4). It is therefore reasonable to assert that as these mechanisms approach 

an asymptote, the growth rate of atmospheric C 0 2 concentrations will experience a 

corresponding increase.
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CHAPTER 4

EQUILIBRIUM AND TRANSIENT SYSTEM-LEVEL RESPONSE OF TERRESTRIAL 
BIOGEOCHEMICAL DYNAMICS: MODELS AND OBSERVATIONS

4.1 Introduction

Understanding how ecosystems respond to climate over large spatial scales is important 

for improving our ability to predict patterns of biosphere-atmosphere exchange of carbon, 

energy, and water. Similarly, it is important to know how ecosystem processes (e.g., plant 

production and soil organic matter decomposition) respond dynamically to multiple resource 

limitation. This chapter explores issues surrounding the interactive and competing influences of 

abiotic (climatic and edaphic) and biotic forces that act to determine ecosystem behavior. In 

particular, we focus on the factors that influence terrestrial net primary productivity (NPP) and 

net ecosystem production (NEP), i.e. gross and net carbon exchange with the atmosphere.

Two principal resources that can be limiting to plants and microbes are mineral 

nutrients and water. For the terrestrial biosphere, the most common limiting nutrient is nitrogen 

(Vitousek and Howarth 1991). Though external inputs of nitrogen (through wet and dry 

deposition) can be important (Chapter 3), the primary fluxes of usable N are biologically 

mediated and internally recycled. Water is a resource that is associated with the physical 

environment (precipitation), but the amount of available water in an ecosystem is regulated in 

part by vegetation (transpiration). Variability, in both space and time, of plant and microbial 

response to limiting water and nutrients is controlled by patterns of biological resource-use 

efficiencies and patterns of climate.
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Ambient temperature is an important climatic variable, unique in that it is relatively 

decoupled from (i.e., not strongly mediated by) biological activity. In this chapter we use 

temperature as a primary independent variable with which to probe the behavior of ecosystem 

biogeochemistry, both in the approach to “steady-state” and in a transient mode. While it is 

clear that changing climate (e.g., temperature) influences biogeographic patterns of ecosystems, 

we focus in this chapter on biogeochemical effects both within and between biome types, for 

the current distribution of potential vegetation (i.e., land use is neglected). Adjustment of 

biome boundaries associated with changing climate, and redistribution of vegetation by 

anthropogenic land-use/cover change potentially alter conclusions about terrestrial biosphere- 

atmosphere interactions. However, we wish to first study the activity of natural vegetation 

before looking at other anthropogenic interactions.

Spatially resolved terrestrial biogeochemical models provide a means to link theory 

describing soil organic matter dynamics, litter decomposition, and plant growth and turnover to 

geographically referenced databases of soil and vegetation properties and climate. These 

models typically describe rates of change in carbon, water, and nutrient stocks as a function 

environmental conditions, and the state of the components themselves (McGuire et al. 1992, 

Parton et al. 1993, Running and Hunt 1993). Symbolically this can be expressed as:

^ ^  = f(S;C(x,f);P1,(x );P ,(x ))t (4.1)
at

where S =(S lt S2,..., Sn) is the vector of all state variables, f  is the set of rules for 

transformation of S, C(x,t) is the field of meteorological input variables, and Pv(x) and P^x) 

are the spatial templates of vegetation and soil-specific parameters. Most biogeochemical
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models are not strictly implemented as an integration of a set of coupled differential equations 

because of the use of discontinuous functions (“if  - then” rules), but in principal they can be 

represented by (4.1).

Models have the potential to be used to make predictions where no ecological data are 

available (i.e., knowledge-based interpolation), and to investigate the importance of multiple 

processes in determining large-scale ecosystem fluxes. Validation of continental-to-global scale 

model simulations is difficult, however, because of the great deal of heterogeneity of ecological 

patterns and boundary conditions at the local scale where the bulk o f observations are made. 

Thus, model intercomparison is the first step toward checking the realism of the simulations 

(e.g., VEMAP 1995). To the extent that conclusions are made about large-scale terrestrial 

biogeochemistry using models, the observations that are most directly comparable (having 

commensurate spatial resolution) are atmospheric measurements of C 0 2 and its isotopes (see 

Chapter 2) and moderate resolution remote sensing (see Chapter 5). We employ both types of 

observations in this chapter.

In the following section (4.2) we use the Century terrestrial ecosystem model (Parton et 

al. 1987,1993) to evaluate the relative roles of water and nitrogen limitation of net primary 

productivity, both spatially and in response to climate variability. We focused on the three 

principal fluxes of carbon, water, and nitrogen, respectively: NPP, evapotranspiration (ET), 

and nitrogen mineralization (NM IN). We performed/analyzed three model experiments. First, 

we studied the spatial relationship between NPP, ET, and NM IN  for a global quasi-steady state 

simulation using dynamic maps of current climate and an assumed distribution of potential 

vegetation (Cramer et al. 1995). Second, we investigated the effect of temperature on these 

relationships by performing a temperature perturbation experiment for a network of model
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validation sites. Third, we used decadal-scale temperature records (estimated from satellite) for 

the same sites and observed the modeled transient response of ecosystems to climate.

Observational data from satellites and an atmospheric monitoring network were also 

used (Section 4.3) to check for consistency with the interpretation of the Century model 

experiments. We performed simple statistical analyses on globally and hemispherically 

averaged atmospheric C 0 2 concentrations, temperature, and vegetation “greenness” (a 

remotely sensed vegetation index; see Chapter 5). Additionally, more detailed statistical 

analyses were performed on the spatial-temporal satellite data (temperature and vegetation 

index) because of the likelihood that individualistic ecosystem responses and spatially localized 

interactions complicate the signal at the global or hemispheric level. We introduce a unique and 

indirect way to compare modeling and observational evidence regarding characteristic response 

times of terrestrial systems to climate perturbations, and the implications for atmospheric C 0 2.

4.2 Climate and Nitrogen Controls on the Geography and Time Scales of Terrestrial
Biogeochemical Cycling*

4.2.1 Introduction

Terrestrial ecosystem models have progressed from early, highly aggregated models to 

include mechanistic or parametric representations of the ecological, hydrological, and 

biogeochemical processes that dynamically control carbon storage and net primary productivity 

(NPP) (Melillo et al. 1993, Potter et al. 1993, Schimel et al. 1994). Process-based models for 

terrestrial biogeochemistry are important for furthering ecosystem science because they allow 

the extrapolation of fluxes to large spatial scales, as well as the comparison of model 

predictions to the growing body of global observations. Whereas most extant ecological data

Adapted from the article by D. S. Schimel, B. H. Braswell, R. McKeown, D. S. Ojima, W. J. Parton, 
and W. Pulliam, Global Biogeochemical Cycles, In press. Copyright by the American Geophysical 
Union.
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are site- or system-specific (in contrast to the standardized sectional or global sampling widely 

used in meteorology and oceanography for seawater [COJ, atmospheric C 02, 13C 0 2, and 

physical variables), collaborative activities such as the International Geosphere-Biosphere 

Program (IGBP) and new satellite techniques are resulting in improved global ecosystem data. 

Spatially-resolved process models provide insights into large-scale controls and provide a 

consistent framework for comparisons with existing observations.

Spatial ecosystem models are derived from theory linking climate, soil properties, and 

species- or growth form-specific traits to biogeochemical responses of plants and 

microorganisms (Farquhar et al. 1980, Melillo et al. 1984, Bloom et al. 1985, Chapin et al. 

1987, Nobel 1991, Running and Nemani 1991). As discussed in Chapter 3, many studies have 

demonstrated nutrient limitation of terrestrial primary productivity (i.e., added nutrients lead to 

additional plant growth and carbon storage) (Vitousek and Howarth 1991, Schimel 1995b); 

however, large-scale patterns in terrestrial primary productivity, soil carbon, and soil 

metabolism can often be explained from simple equations using climate parameters 

(precipitation, actual evapotranspiration, solar radiation) (Leith 1975, Post et al. 1985,

Uchijima and Seino 1985, Sala et al. 1988, Potter et al. 1993, Gifford 1994, Zak et al. 1994). 

Within grasslands, empirical climate or soil-based models and process-based models have 

similar predictive power (Sala et al. 1988 or Burke et al. 1991 vs. Parton et al. 1987,1994). 

Intercepted solar radiation has also been suggested as a major control over NPP, although Field 

(1991) pointed out the circularity inherent in observed correlations between intercepted 

radiation and plant growth.

The climatic versus nutrient limitation views inherent in modem ecology (discussed in 

Schulze et al. 1989 and Schimel et al. 1991) have important implications for predictions of 

future environmental changes, and for the application of models in land management. Keeling

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



et al. (1995) argued that on the decadal time scale, the observational record suggests that 

warming causes increased C 0 2 uptake by the biosphere, but with a two year lag. This 

phenomenon, if true, is inconsistent with direct biophysical effects, which are nearly 

instantaneous, but is consistent with responses to a warming-induced release of nutrients and 

subsequent increases in NPP, as is suggested by models of long-term effects (VEMAP 1995).

In a recent study, response of modeled carbon storage to increasing C 0 2 was reduced 

by increasing nutrient limitation (VEMAP 1995). Other work suggests temperature responses 

will decrease as well (Schimel et al. 1994). The temperature response occurs because warming 

increases microbial respiration, thereby causing reductions in soil carbon; but warming releases 

nutrients, which, in forests, can lead to increases in carbon storage in wood that are larger than 

the carbon losses from soils (VEMAP 1995). Because of this, the short-term effect of warming 

(carbon losses from soils) may be opposite in sign to the long-term effect (carbon gains in 

wood). However, if nutrient cycling equilibrates rapidly with climate and C 0 2 determinants of 

carbon storage (on annual to decadal time scales, e.g., through nitrogen fixation; Gifford 1994. 

Schimel 1995a, Schimel et al. 1995), then nutrient feedbacks may be neglected in the big 

picture, and attention focused on C 0 2 and biophysical constraints. If  nutrient cycling is 

uncoupled from climate and C 0 2 changes (e.g., controlled more by long-term pedogenic and 

geomorphic processes; Cole and Heil 1981, Schimel et al. 1985), then modeling nutrient cycles 

is essential to simulating future changes to ecosystems.

4.2.2 Model description and methods

Over the past decade, the Century terrestrial ecosystem model has been developed, 

which now includes parameterization of the major pathways for carbon and nitrogen exchange, 

including atmospheric and biological N inputs, and gaseous, biomass combustion-related, and
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hydrological N losses (Parton et al. 1987,1988,1994, Schimel et al. 1990,1991,1994, Ojima et 

al. 1994). Examination of the controls over carbon and nitrogen dynamics in the Century 

ecosystem model suggests a mechanism through which biophysical (water and temperature) and 

biogeochemical controls may become correlated. The distinguishing features of Century are, 

first, the explicit partitioning of living biomass and dead organic matter into compartments 

defined by differing turnover times, and second, the high degree of integration between 

biophysical and biogeochemical processes. For the living components, the model explicitly 

considers leaves, fine roots, coarse roots, branches, and stems, and for dead organic matter the 

model is based on isotopic and other evidence for multiple turnover times in detritus and soil 

organic matter (Trumbore 1993, Parton et al. 1994,1995). The structure of the litter/soil carbon 

submodel is shown in Fig. 4.1. Full descriptions of Century are found in Parton et al. 

(1987,1993,1995): below we describe features of the model and its global implementation that 

are new and/or impact the results described in this paper.

The gridded version of the model requires three types of information, including inputs 

that are grid cell-specific and time varying (largely those related to the atmosphere), inputs that 

are grid cell-specific and fixed (mostly soil properties), and variables that describe 

physiological attributes of vegetation types that apply to all grid cells within a vegetation type. 

The model is integrated using monthly maximum and minimum temperatures and precipitation. 

Climate data used in this study are as described in Cramer et al. (1995).

The algorithm for NPP in Century is key to understanding the results presented in this 

section. In Century, a “potential NPP” (NPPp) is computed using the following equation:

NPPp =  NPPmar - T M - S , (4.2)
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where NPPmax is a biophysically defined maximum NPP, T  is the effect of temperature on NPP, 

M  the effect of soil water, and S the effect of self-shading. The functional forms for T, M  and S 

are given in Parton et al. (1993). This climatically-limited NPP is then constrained by nutrient 

availability. The nutrient-limited NPP equation estimates the fraction of NPPp that can be 

achieved while maintaining appropriate tissue C:N stoichiometry:

where NPPn is the nutrient-limited NPP, Navoil is the available mineral N in soil solution (Nso/) 

plus N in plant storage pools (plant storage results from N that is resorbed from senescent 

foliage and is available for new growth in the spring, or following drought in perennial 

vegetation). In turn, Nsol is the sum of fixation plus atmospheric deposition. The root impact 

factor wrool weights plant nutrient uptake based on root biomass (if  root biomass is zero, wrool is 

zero; at an upper threshold of root biomass, wrool is one). F, and CNt are the fraction of total 

potential plant N uptake {NavaU ■ wroo[ +  Nj-a) allocated to plant part i, and the C:N ratio of plant 

part i, respectively. These are indexed over the m plant parts (roots, leaves, fine and coarse 

wood). The C:N ratios of plant parts float between tissue type-specific upper and lower critical 

levels (CNiMin and CNi max) and are scaled by function of supply divided by demand D:

where D  is equal to Z, (F, ■ NPPp/CNimm). The scalar function / i s  defined such that CN, equals 

CNi ma( when supply equals demand, and approaches CNi nun when supply is limiting. That is.

(4.3)

Cty = f { ( N avail ■ wrool +  Nrix)ID }, (4.4)

C:N ratios are scaled by the ratio of N available for plant uptake divided by the amount of N
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that a plant would use if it could get all the nitrogen needed to grow at the climate-limited rate. 

Thus the higher NPPp is relative to NPPn, the wider the plant C:N ratios. Then, in effect, 

actual NPP (NPPa) is defined by:

NPPa =  min(NPPn> NPPp). (4.5)

Although NPP„ is nearly always less than NPPp, if NPPp goes up. NPPa will generally 

follow, due to Equation 4.4, which allows C:N ratios to float based on the N supply/demand 

equation (unless the lower critical C:N ratio threshold is reached). Experimental evidence 

supports floating C:N ratios between years (Schimel et al. 1991). I f  N availability goes up 

(e.g., if N mineralization increases due to warmer or wetter soils; Schimel et al. 1994), NPP 

will increase as NPP„ more nearly approaches NPPp. Conditions that modify NPPp (changes to 

temperature or precipitation) will also affect soil processes (and hence Navalt) that are also 

influenced by T  and M  (see Schimel et al. 1994 and Parton et al. 1995).

The model requires estimates of nitrogen fluxes into the system. As discussed below, 

budgetary nitrogen fluxes are critical to the model. Nitrogen enters ecosystems via several 

mechanisms including wet and dry deposition. We assume, based on extensive data analysis, 

that deposition is correlated with precipitation, and we use this correlation to produce a general 

field of N deposition mimicking observations (Parton et al. 1987, Schimel et al. 1990). This 

relationship does not supply sufficient nitrogen in tropical regions to support observed NPP; 

assuming that this difference is due to greater biological fixation in the tropics, a second 

equation relates N input due to fixation to actual evapotranspiration (ETa):

Nfu =  0.008 • (ETa - 40). (4.6)
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I f  Nja is less than zero (ETa< 40 cm yr'1), then it is set to zero. This parameterization has no 

mechanistic basis but captures phenomenologically the fact that most observations of high rates 

of biological nitrogen fixation are from humid settings with high evapotranspiration, and that 

these systems (tropical and temperate rainforests) have large N stocks and high losses 

(requiring high inputs) of N (e.g., Matson and Vitousek 1987). In Century, this provides a 

constant flux, tuned to provide sufficient N to sustain observed NPP. In reality, biological 

nitrogen fluxes may occur at certain successional or climatic stages, rather than as a constant 

background process. The requirement to use this empirical and tuned parameterization reflects 

our ignorance of the biogeography and biogeochemistry of nitrogen fixation in natural 

ecosystems over long time scales (Eisele et al. 1989, Vitousek and Howarth 1991, Schimel 

1995a).

Soil properties required by Century include soil texture and depth. Texture is defined 

by the continuous distribution of soil in terms of size classes (percentage of sand, silt, and 

clay). These may be derived via a look-up table from maps in which texture is defined 

categorically; in this case the mid-point percentages of size classes are used for each category. 

For the simulations presented in this paper, soil textures were prescribed according to Zobler’s 

(1986) analysis of the FAO Soil Map of the World (see also Schimel et al. 1994).

Century also requires some vegetation type-specific parameterizations (VEMAP 1995, 

Schimel et al. In press b). These include carbon-to-nutrient ratios by tissue type and nitrogen 

allocation between tissue types for each ecosystem type. Lacking a comprehensive theory of 

allocation, fundamental allocation relationships (fraction of NPP allocated to wood vs. foliage 

vs. roots) are defined as a function of ecosystem type, and as a function of plant size via 

allometric equations, designed to reproduce observations at calibration sites. This approach is
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based on a large data base, reproduces observed allocation patterns at calibration and validation 

sites, and allows some changes in allocation proportions as trees or large shrubs become larger. 

It does not reproduce changes in allocation resulting from changes in resource availability, 

which have been observed and which may be significant (Ingestadt and Lund 1986, Running 

and Hunt 1993). We adopted the more conservative approach of using parametric allocation 

equations because of the lack of general and proven theory for a resource-based approach 

(Running and Hunt 1993), and the lack o f parameters for a resource-based approach for many 

biomes.

Three model experiments are reported in this paper. First, we carried out a global 

steady state simulation, in which Century was integrated using global climatology, soils, and 

vegetation descriptions as described above. That simulation was carried out according to the 

protocols of the Potsdam Intercomparison of the IGBP Global Analysis, Interpretation, and 

Modeling (GAIM) Task Force (see Cramer et al. 1995).

Second, we carried out a temperature anomaly experiment on a globally-distributed 

subset of grid cells in which we modified the temperatures based on the deviations from long­

term averages that occurred over the period 1981-1994. The deviations (anomalies) were based 

on satellite measurements using the Microwave Sounding Unit (MSU) aboard NO AA’s polar 

orbiting spacecraft (Spencer et al. 1990). The long-term monthly means were subtracted from 

each monthly value to create an anomaly time series with zero mean. The deviations were 

added to or subtracted from the climatological values. The MSU temperatures are for the lower 

troposphere, and so are not precisely the same as surface temperatures, although the anomalies 

are usually highly correlated. Monthly precipitation was held constant at climatological values 

in this simulation. Because surface observations in high latitudes are very sparse, the satellite- 

based approach has significant advantages. The satellite temperatures are global measurements
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and avoid the problems of interpolation from station data. As will be seen, temperature 

anomalies in the Northern Hemisphere high latitudes are quite significant.

Third, we carried out a temperature perturbation experiment. At a subset of sites, we 

integrated the model to quasi-steady state and then perturbed the model by increasing monthly 

temperatures by three standard deviations over a period of either 1 or 5 years, and then 

returned temperatures to their long-term mean. The model integration was then continued for 

three additional decades. This experiment was carried out to determine the time scales of 

response to physical forcing, and to aid in the interpretation of the temperature anomaly 

experiment described above.

4.2.3 Results and discussion

Nutrient and water limitation equilibration at steady state

The water-carbon-nutrient relationships in Century emerge from its basic logic (see 

Equations 4.2-4.5, above); wherein the modeled fluxes of nitrogen through ecosystems are 

strongly influenced by the hydrological cycle. Inputs of N are either directly linked to 

precipitation (wet deposition) or assumed to be correlated with annual evapotranspiration 

(nitrogen fixation). Losses of nitrogen are similarly controlled by water. Leaching losses of 

N 0 3' and dissolved organic N (DON) are directly controlled by the product of water flux and 

N 0 3'/D 0N  concentrations (Parton et al. 1994). Losses of N trace gases are linked to 

mineralization of NH4+ and N 0 3‘ from organic matter. The rate of loss is controlled by an 

abiotic decomposition factor that increases as temperature, rainfall, and soil moisture increase 

(Parton et al. 1994, Holland et al. 1995). Losses of gaseous N from inorganic N (proportional 

as well as absolute) also increase with increasing soil moisture (Parton et al. 1988). Thus the 

flux of N through ecosystems will in general increase as precipitation increases. Critical
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controls over soil moisture and water flux through the soil include the atmospheric demand for 

water in evapotranspiration, and the water holding capacity of soils. Thus, although we argue 

that the hydrological cycle is a major control over N cycling, implicitly both energy (as a 

driving force for ET) and soil hydrological properties substantially modify the operation of the 

hydrological cycle from grid cell-to-grid cell.

Potential primary production increases as evapotranspiration increases in Century 

because the model includes an equation that constrains primary production by linking the sum 

of rainfall and previously stored water (divided by potential evapotranspiration) to production 

(Equation 4.1) (Parton et al. 1994). This equation integrates the precipitation, energy, and soil 

hydrological constraints over the evapotranspiration flux. Additionally, primary production 

requires nitrogen to form organic matter meeting critical C:N ratios for wood, foliage, and 

roots (Equations 4.2 and 4.3).

N is derived from precipitation and N fixation on centennial time scales, but on an 

annual time scale most plant-available N is derived from nitrogen mineralization, which arises 

from the turnover of dead organic matter (decomposition). To illustrate the time scales of the N 

cycle, consider that nitrogen inputs range from 10-30% of N mineralization. N mineralization, 

in turn, averages <5%  of soil organic N. Nitrogen mineralization is derived from the turnover 

of compartments with turnover times from 1-8 years (~80%) and 30-90 years (~20%) (Schimel 

et al. 1994). Typically, nitrogen losses very nearly equal inputs. Nitrogen losses due to trace 

gas emission and leaching range from 5 to 40% of inputs. Episodic losses due to fire and tree 

mortality, averaged over the modeled disturbance cycle, bring losses to near-equality with 

inputs. Because N inputs range from 0.4-1.5 g m'2 yr'1, and soil nitrogen levels typically 

exceed 500 g m'2, nitrogen storage can only increase at a fraction of a percent per year even if 

losses are zero.
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The structure of the model results in cyclic coupling of production and decomposition 

during the approach to steady state (Fig. 4.2). Forest NPP in Century approaches a constant 

value as the nitrogen budget approaches balance (inputs equal to outputs). However, when NPP 

stabilizes, net ecosystem production (NEP) may still be small and positive in forests, because of 

the continuing accumulation of carbon in wood with minimal requirements for additional 

nitrogen, which are met by small changes in storage or nitrogen use efficiency. Thus for 

forests. Century simulates a quasi-steady state.

As water flux increases, N flux increases, and likewise, the potential for carbon 

fixation increases. As carbon fixation increases, the amount of the N flux that can be captured 

in organic matter increases. As more nitrogen is captured in organic matter, its subsequent 

turnover also contributes to plant-available N, allowing more plant productivity. These 

processes contribute to accumulation of living and nonliving organic matter reflecting the water 

budget. Figure 4.3 shows the global distribution of modeled NPP, ET, and nitrogen 

mineralization. Strong correlations between ET, nitrogen availability, and net primary 

productivity appear in global steady state simulations (Fig. 4.4a-c). The relationships amongst 

ET, N mineralization, and NPP are modulated on a grid cell-to-grid cell basis by other factors 

that influence turnover times, such as temperature, ecosystem type-specific factors that control 

resource use efficiencies (effectively the carbon-to-nutrient stoichiometry of plants and 

microorganisms), and water use efficiency (organic matter produced per unit water transpired). 

ET itself is also modified by physical soil and energy budget variables that influence the 

partitioning of precipitation to transpiration, evaporation, and runoff, with consequent effects 

on water use efficiency.

Whereas large-scale patterns in NPP-resource relationships arise from system-level 

interactions of the biogeochemical and hydrological cycles, substantial variation is induced by
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Figure 4.2 The cyclic coupling of carbon, water flux, and nitrogen cycle processes, idealized 
from Century. Critical points include the control of the nitrogen budget by the hydrological 
cycle, the feedbacks between carbon and water dynamics, and the effect of carbon flux on the 
capture of nitrogen into organic forms.
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Figure 4.3 (a) Mapped annual evapotranspiration from a global steady state integration of 
Century, (b) Mapped nitrogen mineralization (the net production of N 0 3' plus N H 4+ from 
organic matter), (c) Mapped net primary production.
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species- and growth form-specific traits. The correlation of variables in Fig. 4.4a-c indicates 

the extent to which NPP and nitrogen cycling are controlled by system-level dynamics: the 

scatter and variability of slopes indicates roughly the extent to which system-specific ecological 

traits influence NPP and nitrogen cycling.

The relationships in Fig. 4.4 appear as trends, with different slopes and/or intercepts 

for different ecosystem types, rather than as unitary relationships. Although each of the biome 

types used in parameterizing global Century have specific resource use efficiencies, it is 

apparent that some large scale patterns exists between forests, grasslands, and mixed ecosystem 

types, such as savannas. Systems with woody components have higher N use efficiencies (NPP 

vs. NMIN) (e.g.. Fig. 4.4b), as do C4 compared to C3 photosynthetic pathway grasslands. 

Savannas that have both woody and herbaceous components show N mineralization-NPP 

relationships similar to but slightly higher than grasslands. Within savannas, a similar 

bifurcation is observed, reflecting the differentiation between savannas with C3 vs. C4 grass 

understories. A C3-C4 effect is also observed in the N mineralization-ET relationship. In this 

case, differences in nitrogen use efficiency between C3 and C4 grasses result in changes to 

detrital C:N ratios, that in turn influence N mineralization.

Water use efficiency (NPP per unit ET) increases as the fraction of woody biomass 

increases (Fig. 4.4). This pattern reflects the use of ET, rather than transpiration in these Figs.. 

The modeled ratio of evaporation to transpiration generally increases from forests to grasslands 

in Century, and produces part of this pattern. Also, although grasses (especially C4 grasses) 

have high photosynthetic water use efficiency, Century predicts that the fraction of 

photosynthate translated into NPP increases as the nitrogen demand of new tissue decreases. 

Thus systems dominated by woody tissue have higher effective water use efficiencies at the 

annual time scale than grasslands because of N constraints on the production of high-N foliar
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tissue in grasslands. This is amplified by higher absolute rates of N cycling in humid forest 

ecosystems compared to grasslands (Fig. 4.3b). The interaction of water and nitrogen use 

efficiencies in Century is consistent with the biogeochemical orientation of the model (VEMAP 

1995, Schimel et al. In press b) and suggests that model comparisons with annual time scale 

observations of water and nitrogen use efficiencies between grasslands, savannas, and forests 

(as can be derived from flux experiments; Wofsy et al. 1993) are crucial for model testing.

There are limited observations to support the hypothesis of tripartite correlation 

amongst N, water flux, and NPP, but Zak et al. (1994) report correlations amongst an index of 

nitrogen availability, aboveground NPP, and ET. The model results are also consistent with 

observations of large-scale correlations of NPP with direct or derived climate variables, and 

also with experimental evidence of nutrient limitation. This result is consistent with the 

argument of Pastor and Post (1993) that the Rosenzweig (1968) relationship of NPP to actual 

evapotranspiration (AET) was a “steady state consequence of the interactions between species 

and soil nitrogen and light availabilities as constrained by temperature and soil water deficits,” 

and not a “direct relationship between actual evapotranspiration and productivity.” The 

modulation of the water-carbon-nitrogen system by species- and/or growth form-specific traits 

implies that large-scale dynamics are influenced by population dynamics on time scales longer 

than the life-spans of individual plants (years to centuries).

Because of the sensitivity of Century to resource use efficiency and allocation patterns, 

a knowledge of the spatial and temporal distributions of physiological traits (either for species 

or functional plant types) is critical for modeling biogeochemistry. Knowledge of how these 

traits might change with adaptation, evolution, or migration is critical in the long run for 

predictive or retrospective analyses on time scales commensurate with ecosystem type change 

(Bolker et al. 1995).
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Temperature anomalies

Temperature variability (Fig. 4.5) causes biogeochemical responses in the Century 

model. In the temperature anomaly experiment, highly variable correlations over time between 

NPP, respiration, and NEP with temperature were observed (Fig. 4.6). The correlations with 

temperature tended to be higher as precipitation increased. In systems where water is strongly 

limiting to NPP, interannual variations in temperature have comparatively little effect. 

Conversely, we would expect such systems to be very responsive to interannual variations in 

precipitation (Parton et al. 1995). The lack of response to temperature is surprising; 

temperature is a direct driver of biogeochemical processes in Century, and one would expect a 

fairly direct correlation between temperature anomalies and resulting biogeochemical 

anomalies. In fact, the correlations are not always high (only a small number of the correlations 

in Fig. 4.6 are significantly different from zero at a 95% level), and the proportionality 

between changing temperature and changing biogeochemical response was highly variable.

This occurs because of lagged effects of temperature via water budget and biogeochemical 

mechanisms, explored in the next section (on temperature perturbations and time scales).

One of the dramatic carbon cycle phenomena during the 1990s was the reduction in the 

growth rate of C 0 2 in 1992, following the eruption of Mt. Pinatubo in the Philippines and the 

consequent cooling due to stratospheric aerosols (Hansen et al. 1992, Ciais et al. 1995b, 

Francey et al. 1995, Keeling et al. 1995, Schimel 1995b). The effect of the Pinatubo eruption 

was a reduction in the growth rate o f C 0 2 corresponding to an anomalous additional C 02 

uptake of about 2 Pg C, and isotopic evidence suggested a terrestrial rather than marine sink 

(Keeling et al. 1995, Ciais et al. 1995b). The MSU temperatures capture the Pinatubo cooling 

clearly (Fig. 4.5) and show it to have significant spatial structure, concentrated in the Northern 

Hemisphere. Cooling during the boreal growing season of up to 3°C is evident (Fig. 4.5b).
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Figure 4.5 (a) Temperature anomalies from the MSU, showing the global average, the average 
over land, and the average over land during the Northern Hemisphere summer (using 
biotemperature), (b) The spatial distribution of the Boreal growing season temperature 
anomalies following Pinatubo (JJAigg2-JJAave).
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Figure 4.6 Correlations for 52 grid cells: (a) between temperature and NPP anomalies, plotted 
against precipitation; (b) between temperature and heterotrophic (microbial) respiration 
anomalies, plotted against precipitation; (c) between temperature and NEP anomalies, plotted 
against precipitation. Horizontal lines show 95% confidence intervals for R significantly 
different from zero. Squares represent grassland sites and triangles represent forest sites.
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Despite the complexity of the temperature response of Century, the model predicts significant 

increases in per-unit-area NEP in mid-latitudes (30-60°N). Whereas the model predicts release 

of C 02 from high latitude regions (negative NEP), there is comparatively little biologically 

active land area in that latitude band. If  the predicted average NEP of +30 g m'2 was 

representative of the 30-60°N region (Fig. 4.7), that could easily amount to 1-3 Pg C globally. 

Thus the Century model results are consistent with a Pinatubo-related anomalous increase in 

NEP (arising mostly from reduced respiration rather than increased NPP) of magnitude 

comparable to the additional sinks deduced from observations. I f  the modeled responses to the 

cooling are correct, an overshoot in atmospheric C 0 2 should occur as the short-lived carbon 

pools, whose size increased during the cooling, relax back to equilibrium with warmer 

temperatures. However, because of the low and variable direct correlations between 

temperature and ecosystem processes, we propose a more complex hypothesis for the observed 

and simulated Pinatubo effect.

Temperature perturbations and time scales

Although biophysical and nutrient limitations of NPP tend to equilibrate with each other 

(Fig. 4.4; Schimel et al. In press b), the equilibration will not be instantaneous. The response 

times of the different carbon-water-nitrogen components of ecosystems are not identical, and 

some are long. It requires years for soil water turnover, decomposition, and nitrogen cycling to 

return to steady state after a perturbation because of inherent lags in the system. We carried out 

a simple simulation experiment in which we increased air temperatures each month by three 

standard deviations for the duration of either 1 or 5 years to probe the lagged responses 

suggested by the temperature anomaly experiment. Figure 4.8a shows the response for a 

northern boreal forest. NPP increases during the year of the perturbation because of a longer
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Figure 4.7 The effects of the Pinatubo temperature anomaly on net ecosystem production for 
52 grid cells, averaged zonally. Error bars indicate mean ±  one standard error.
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growing season and reduced temperature stress. Respiration (decomposition) decreases because 

warmer winter temperatures lead to reduced soil water (more evaporation from snow), 

reducing ET. N mineralization decreases, reducing NPP in the year following the perturbation. 

This occurs because of increased litterfall (from the enhanced NPP), and thus more microbial 

competition for N, and because of dryer soils. Soil water is affected by the perturbation both 

directly and through the increased water demand associated with the initial increase in NPP, 

and returns to steady state after 3 years. The additional detritus resulting from the initial rise in 

NPP increases respiration beginning in year 2, and also leads to increases in both N 

mineralization and respiration that persist for years.

Figure 4.8b shows an alpine tundra site in which wanning increases N mineralization. 

NPP, and ET. Increased NPP leads to increased respiration that persists for >  15 years 

(because of slow decomposition in this cold, short growing season site), affecting net ecosystem 

production (NEP =  NPP - heterotrophic respiration) for decades. Tropical sites (Fig. 4.9a) 

show similar lags, modulated by the water cycle. Respiration equilibrates rapidly because of 

high decomposition rates due to warm temperatures. When the temperature perturbation lasts 

for 5 years, complex behavior occurs as the system responds to the initial perturbation, 

equilibrates to the changed temperatures, and then responds again in a transient manner to the 

cessation of the temperature perturbation (Fig. 4.9b). The sites examined in Figs. 4.8? and 4.9? 

show NPP responses of opposite sign in the year of and following the perturbation; this is a 

frequent but not invariable behavior of the model. Other sites show large initial responses with 

monotonic returns to steady state, on time scales linked to component response times (Schimel 

et al. 1994).

The above responses were controlled by iterative feedbacks between the water, carbon, 

and nitrogen cycles, leading to complex responses on annual-to-decadal time scales. The
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responses were system-specific and were influenced by the initial steady state. In particular, 

systems in which precipitation often exceeds ET and in which stored soil moisture is 

significant, are sensitive to perturbations and may have multi-year responses to perturbations 

through the water cycle. The temperature perturbation experiment helps explain why the 

instantaneous correlations shown in Fig. 4.6 between temperature and ecosystem processes are 

low.

The experiments reported in this paper, taken together, suggest the hypothesis that the 

Pinatubo effect resulted from both the instantaneous effect of cooling on metabolism and the 

water and nutrient status of ecosystems prior to the cooling. For each site simulated, water and 

nutrient limitation at each time step reflected the preceding pattern of temperature anomalies 

and the lags specific to the ecosystem type being simulated. Thus, the Pinatubo anomaly 

reflected the history of temperature anomalies over the previous decade, as well as the 

instantaneous effect of the cooling. Global simulations with climate perturbations based on 

observed anomalies are now in progress to determine the broad-scale patterns that emerge from 

the complex site-specific responses (Braswell et al. 1995).

The modeled NEP perturbations from the temperature perturbation experiments range 

from 5-20% of steady state NPP. If  spatially-coherent anomalies in climate produced responses 

of this magnitude, then global anomalies in the terrestrial carbon balance resulting from 

interannual climate variability could easily be of order several Pg C (assuming that global NPP 

is 40-60 Pg C; Schimel et al. 1995). Carbon anomalies in the 1-3 years following a climate 

anomaly could be as large as, or larger, and of opposite sign from the initial response, leading 

to the low time series correlations of temperature and biogeochemical anomalies observed in 

the temperature anomaly experiment. Changes of 5-20% of NPP are, however, extremely
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difficult to detect given sampling variability using conventional techniques, and so 

observational detection will require care with methodology (Parton et al. 1995).

The role o f lagged effects in the global carbon cycle

Several groups have attempted to quantify the effects of climate anomalies on terrestrial 

carbon storage using models compared to global C 0 2 observations. These efforts have often 

included the assumption that the effects of anomalous temperature and precipitation are 

instantaneous and have no lagged effects (e.g., Dai and Fung 1993). Other approaches cannot 

diagnose the mechanisms underlying any lagged effects because they use satellite observations 

(modified by climate data) to estimate NPP (Potter et al. 1993, Thompson et al. 1995), 

although lags may be present in the satellite observations. In Section 4.3, we explore the 

potential for remote sensing measurements to provide information about the characteristic time 

scales of ecosystem response to temperature.

Observational time series studies suggest lagged effects. For example, the M t. Pinatubo 

eruption appears to have caused an anomalous increase in terrestrial carbon uptake, apparent as 

a decrease in the growth rate of atmospheric C 0 2 (Braswell et al. 1995, Ciais et al. 1995a,b, 

Keeling et al. 1995, Schimel 1995b). This decrease in the growth rate, however, began before 

the eruption. Keeling et al. (1995) have speculated this may be a rebound from the warm years 

of the late 1980s, possibly reinforced by the Pinatubo cooling. This behavior is qualitatively 

consistent with some site-specific Century simulations. The direct post-Pinatubo effect may 

have occurred because of reductions in respiration with cooler temperatures that were larger 

than the decreases in NPP (Braswell et al. 1995). Keeling and colleagues have also suggested 

that, on decadal time scales, warming causes increases in terrestrial carbon uptake, but with a 

2-year lag (Keeling et al. 1995,1996). This is a response consistent with a nutrient release-
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controlled response but not obviously with a Dai and Fung (1993) type of instantaneous 

physiological response of plants and decomposers. Because of the individualistic responses of 

the sites simulated in this study, we cannot yet determine whether Century’s response is 

qualitatively consistent with Keeling et al.’s (1995) analyses, but the existence of significant 

lags in the model is a precondition for more comprehensive agreement.

Investigation of mechanisms leading to long-term equilibration and perturbation 

responses will increase understanding of processes tied to the biogeochemically “slow” 

components o f ecosystems (woody biomass, detritus, and soil organic matter), processes that 

are difficult to study with experimental techniques. Such investigation will provide a crucial 

window into the components of terrestrial ecosystems that may govern long-term responses to 

changing climate, C 0 2, and other perturbations (e.g., nitrogen deposition) (Townsend et al. 

1996; Chapter 3). For example, Hedin et al. (1995) suggest profound and long-lived effects of 

anthropogenic perturbations to nitrogen deposition. Ecosystem N inputs (deposition and 

biological fixation) are not well-known for much of the world (Holland et al. In press,

Galloway et al. 1995), nor are they understood mechanistically. Nitrogen outputs are likewise 

not well-quantified globally (Hedin et al. 1995).

4.2.4 Summary

We hypothesize that water and nitrogen limitations of NPP are correlated at steady state 

because of the equilibration of water and nitrogen limitation of NPP that occurs through the 

control of carbon and nitrogen fluxes by the water budget. We further hypothesize that these 

correlations arise because of the structure of interactions amongst the water, carbon, and 

nitrogen cycles: they are a system-level property. As a corollary, ecological differences in 

resource use efficiencies, soil properties, and temperature should induce substantial quantitative
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variability in the water-nitrogen-carbon relationships, requiring that eventually, community and 

biogeographic processes be integrated into biogeochemical models. Many of the steady state 

patterns in Century arise through simulation of the nitrogen budget, rather than as a result of 

internal cycling. This is a unique feature of Century, and allows the mechanisms underlying 

resource interactions to be diagnosed explicitly. Most other current ecosystem models initialize 

N stocks based on observations (Potter et al. 1993), or iteratively, to force consistency with 

observed or assumed fluxes (Melillo et al. 1993).

These hypotheses and corollary are consistent with recent regional (Schimel et al. In 

press b) and global model results and some data, but require additional testing. Further, 

because the water, nitrogen, and carbon budgets respond to perturbations on different time 

scales, the responses of ET, nitrogen availability, and NPP during transient climate changes are 

not necessarily tightly correlated. Interannual variability in the terrestrial carbon cycle, as 

inferred from C 0 2 observations, may arise from complex multi-year interactions, and this 

complex behavior may become more evident as the spatial resolution and continental focus of 

atmospheric C 0 2 observations increases. Although Century suggests that the Mt. Pinatubo 

cooling could have caused a significant shift in terrestrial carbon exchange (consistent with 

observations), it also suggests that this effect was manifest through temperature effects on water 

relations, leaf area changes, and nutrient cycling, rather than via a simple effect of temperature 

on metabolism. The model further suggests that through lagged effects the magnitude of 

interannual changes in biogeochemistry should reflect climate patterns over several preceding 

years.

To detect either systematic (C 0 2-caused: Friedlingstein et al. 1995, Fung et al. 1995; 

or N-caused: Townsend et al. 1996) or interannual changes, one must consider the possibility 

of lagged effects, and sampling designs and associated process studies should take into account
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both signal and noise arising from lagged changes to hydrological and biogeochemical 

processes (Fung et al. 1995). Detection of patterns and processes associated with water budget 

and biogeochemical lags will provide a window on the slower processes in ecosystem 

metabolism that may dominate global change effects on ecosystems in the future.

Finally, experimental evaluation of global ecosystem models is difficult (Schimel et al. 

In press b). Because the changes predicted for NPP, NEP, and respiration by the Century 

model are modest relative to local spatial sampling variability, observational validation will be 

difficult and may require careful multi-year monitoring with techniques insensitive to small- 

scale variability, such as flux measurements using aerodynamic techniques (Wofsy et al. 1993, 

Lenschow 1995), or will require inverse estimates from concentration fields (e.g., Ciais et al. 

1995a,b). Experimental studies that directly probe the relevant mechanisms (i.e., by directly or 

indirectly changing transpiration, nitrogen availability, or carbon inputs via manipulative 

experiments) are critical; re-examination of existing studies of fertilization by N or C 0 2 may 

prove highly useful. Attribution of variation to specific mechanisms operating on multiple time 

scales will also require innovative measurements of nitrogen inputs, outputs, and internal 

cycling at large spatial scales.

Models with a wide range of formulations have all been able to reproduce observed 

variations in atmospheric C 0 2 or limited site-specific observations of NPP (e.g., Fung et al. 

1987, Bonan 1993, Potter et al. 1993, Schimel et al. In press b) approximately equally well. 

Because site-specific measurements (e.g., of NPP) have high uncertainty resulting from local 

heterogeneity, it is difficult to reject ecosystem models using such data. However, global-scale 

process models make some very specific predictions about ecosystem-type differences in 

resource use efficiency and other robust measures of ecosystem physiology. These may be 

tested at large spatial scales using flux measurement techniques supplemented by critical
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nitrogen measurements. Resource use efficiency diagnostics of model performance are less 

subject to tuning than is NPP and also provides insight into model behavior under altered 

environmental forcing (VEMAP 1995). This study suggests that data sets providing, at an 

annual time scale, measures of NPP and water and nitrogen use efficiencies o f ecosystems 

ranging from grasslands through savannas to forests could be extremely powerful in testing 

ecosystem models.

In the next section, we evaluate global observational evidence suggesting a significant 

role for lagged effects in the interannual response of the carbon cycle to climate consistent with 

results from theoretical and simulation studies presented above (also, Schimel et al. In press a). 

We emphasize global data sets because 1-2 Pg anomalies in atmosphere-terrestrial C exchange 

(e.g., Ciais et al. 1995b) represent small perturbations to the balance of global net primary 

productivity (NPP) and respiration fluxes of approximately 45-60 Pg C yr’1 each. At the small 

spatial scales of ecological dynamics, interannual variations of less than 25% (e.g., in NPP) are 

generally not detectable against local spatial variability (Parton et al. 1993). Moreover, few 

appropriate, long-term time series data exist for these variables (Parton et al. 1993, Goulden et 

al. 1996).

4.3 Characteristic Responses of Global Terrestrial Ecosystems to Temperature Inferred
from Satellite and Surface Data

4.3.1 Introduction

A number of recent analyses using global observations of the concentration of 

atmospheric C 02, its isotopes, and 0 2 have demonstrated the importance of terrestrial processes 

in the global carbon cycle (Ciais et al. 1995a, Francey et al. 1995, Keeling et al. 1995,1996). 

This importance has been shown to extend to the issue of interannual variability (Keeling et al. 

1995, Ciais et al. 1995b). A provocative model-based analysis suggests that interannual patterns
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of climate could have contributed to a net global terrestrial sink for C 0 2 (Dai and Fung 1993). 

Nevertheless, the mechanisms for interannual variability in terrestrial carbon exchange at the 

global scale are not clear.

A number of authors have speculated on causation, generally relying upon assumed 

effects of temperature on photosynthesis or respiration. This speculation is based on the well- 

known physiological responses of plant and microbial processes to temperature (Farquhar et al. 

1980, Panon et al. 1987. Holland et al. 1995), and has led to discussions of a scenario in which 

warming leads to an decrease in terrestrial carbon storage by increasing microbial respiration 

more than photosynthesis. This argument is based on the sort of responses implemented in, for 

example, the model of Sellers et al. (1996). but which imply near-instantaneous equilibration of 

physiological responses to environmental changes. “Instantaneous” , in this context, implies 

time scales from minutes to less than a month; we will also use this term to refer to phenomena 

that appear in the data during the same averaging period, e.g.. one month. However, if 

processes at the ecosystem scale, such as feedbacks through soil water storage, plant 

phenology, or nutrient cycling (Rastetter et al. 1992, Shaver et al. 1993. Schimel 1995a) 

influence the response, we might expect the response of the biosphere to be lagged relative to 

environmental forcing (Keeling et al. 1995, Schimel et al. In press).

There has been considerable debate amongst ecologists over the relative roles of 

biophysical controls versus internal biogeochemical dynamics in governing productivity and 

carbon storage. The confusion arises from the fact that while broad spatial patterns of 

productivity are well-predicted from climatic variables (Rosenzweig 1968, Uchijima and Seino 

1985), many (if  not most) ecosystems respond to added nutrients (usually nitrogen) with 

increased productivity and carbon storage (Vitousek and Howarth 1991, Schimel 1995b). 

Distinguishing between these two paradigms is critical to establishing the credibility of models
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used in interpreting the observational record (Friedlingstein et al. 1995) and for evaluating 

scenarios of potential future changes (VEMAP 1995). I f  mechanisms acting through nutrient 

cycling are significant, it could add an additional set of time-scales of response to studies such 

as those of Sellers et al. (1996) and others (Bonan 1995, Henderson-Sellers 1995), and possibly 

alter conclusions relative to models based solely on rapidly-equilibrating processes.

4.3.2 The observational record. 1982-1993

We have assembled three extant data sets in order to independently evaluate the 

hypothesis (Schimel et al. In press a; Section 4.2) that the terrestrial carbon cycle exhibits 

complex behavior on interannual time scales in response to climatic perturbations. These 

measurements include two global remote sensing products and one set of site-network data: 

lower tropospheric temperature anomaly data from the Microwave Sounding Unit (MSU) 

(Spencer et al. 1990); Normalized difference vegetation index (N D VI) (Kidwell 1991) from the 

Advanced Very High Resolution Radiometer (AVHRR): and atmospheric COz concentration 

data from flask samples collected by the Climate Monitoring and Diagnostics Laboratory 

(CMDL) (Conway et al. 1994). In the following paragraphs we describe the characteristics of 

each data set, as well as the processing we applied to the data sets before the analysis.

The MSU temperature anomaly data are derived from passive microwave 

measurements (53.74 GHz) of lower tropospheric brightness temperatures (Spencer et al. 1990) 

which are based on the thermal emissivity of molecular oxygen. Global mean values are precise 

to within 0.01°C, and individual gridpoint values to within 0.07°C in the tropics, and 0.15°C 

elsewhere. The MSU instrument is on board the NOAA polar orbiting satellites and it samples 

most of the earth twice per day, with a nominal footprint size of approximately 110 km. The 

processed temperature anomaly (seasonal cycle removed) product is available on a monthly
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basis, registered to global 2.5 degree grid. The gridded data have been compared to surface 

thermometer-measured temperatures for various climate zones, and FT values are generally in 

the 0.94-0.98 range (Spencer and Christy 1992).

The NDVI data are produced from optical reflectance measurements by the AVHRR  

instrument which also resides on the NOAA polar orbiting satellites. The instrument measures 

outgoing radiance in five channels: red (0.58-0.68 pm), near-infrared (0.73-1.10 pm), and 

three thermal infrared bands. The Pathfinder AVHRR Land (PAL) product (Agbu and James 

1995) is a global data set, with 8x8 km spatial resolution and a 10-day compositing interval.

The Pathfinder reflectances are derived from the “global area coverage” data that are spatially 

resampled on board the satellite. The data were co-registered to the MSU temperature fields by 

recompositing to one month and reprojecting the data onto a 2.5° grid. We have also 

deseasonalized the data to create monthly anomalies by subtracting the mean annual cycle at 

each gridpoint (as is done with the MSU data).

The normalized difference vegetation index is equal to the difference between the 

reflectance measured in the red and near-infrared channels divided by their sum. Though N D V I 

is not a fundamental land surface or ecophysiological variable, there is a theoretical and 

experimental basis for the relationship between N D V I and a number of ecosystem parameters, 

including canopy photosynthetic efficiency, absorbed photosynthetically active radiation, 

stomatal conductance, and leaf area index (Tucker and Sellers 1986, Sellers 1987, Myneni et 

al. 1992b). In turn, these biophysical quantities are significantly associated with regional net 

primary productivity. The fundamental variables controlling N D VI are foliage density and 

chlorophyll content of leaves. Chlorophyll content is itself related to foliar nitrogen 

concentrations, and as such is an important link to nutrient cycling (Wessman et al. 1988).
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A number of factors not associated with land surface state can contribute to the signal, 

primarily atmospheric (Kaufman 1989) and bidirectional (Cihlar et al. 1994) effects (see also 

Chapter 5). Though the PAL data were corrected for ozone and Rayleigh scattering, the effects 

of aerosols remain. In addition, there are orbital drift effects and the related problem of 

instrument changeover. In large pan, these numerous effects (except the latter two) are greatly 

reduced by recompositing and averaging the data (Singh and Saull 1988), as we have done in 

this study.

The CM D L C 0 2 flask sample measurements are taken from a globally distributed 

network of sites. We used monthly averaged C 02 concentration data from 1979-1994 for two 

stations, Mauna Loa, Hawaii (M LO), and the South Pole (SPO) to represent Northern and 

Southern Hemisphere mean [C 02], respectively. The concentration data for both stations were 

converted to growth rates by first-differencing the monthly signal, then removing the seasonal 

component. We deseasonaiized the data in a similar fashion to Keeling et al. (1989a) by fitting 

a 4th order harmonic function. Higher frequency components contribute little to the signal, and 

are accounted for by smoothing with a 3-month moving window. Removing the seasonal 

component of this data requires Fourier decomposition because the annual cycle of the point 

C 0 2 measurements represent a superposition of amplitude and phase for all the vegetation on 

the hemispheric land surface. We produced a global mean monthly growth rate time series by 

averaging the MLO and SPO curves.

Time series of global and hemispheric monthly mean temperature and N D V I anomalies 

were calculated from the satellite data (weighted by grid cell area). They are shown, along with 

the C 0 2 data, in Fig. 4.10. All three time series are approximately stationary, with zero mean, 

and relatively constant variance. A major exception, however, could be seen in the original 

N D V I time series. A period in the late 80’s to early 90’s is sharply delineated by two events:

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MSU lower tropospheric temperature anomaly

0.5

0.0

> -  - 0.5

-1.0
1985 19951980 1990

AVHRR—NDVI anomaly
0.06 c
0.04

0.02

5  0.00
a
z  -0 .0 2

- 0.04

- 0.06

- 0 .081
1985 19951980 1990

C02 growth rate anomaly from CMDL

6

4
a.a.

2

0

2

1980 1985 19951990

Figure 4.10 Global mean (solid), northern hemispheric mean (dotted), and southern 
hemispheric mean (dashed) anomaly time series of (a) lower tropospheric air temperature 
derived from the MSU; (b) normalized difference vegetation index from the AVHRR; and (c) 
atmospheric [C 02] growth rate from flask measurements at Mauna Loa, Hawaii, and at the 
South Pole.
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the transition from NOAA-9 to NOAA-11 in November 1989, and the massive release of 

aerosols in June 1991 from the explosion of Mt. Pinatubo. The interval is less well defined for 

the MSU data because the processing incorporates nighttime temperature measurements (from 

even numbered NOAA satellite overpasses), and because the MSU is less sensitive to aerosols. 

It is likely that both temperature and vegetation experienced real changes after Pinatubo that are 

difficult to separate from aerosol artifacts. However, we have applied a simple correction: the 

period following the NOAA 9-11 changeover (excluding the year following Pinatubo) was 

shifted uniformly such that its mean anomaly was zero. This correction has the effect of 

reducing the magnitude of the discontinuity which is very apparent in the first difference of the 

data, while respecting the duration of the large Pinatubo aerosol effect (Dutton and Christy 

1992).

4.3.3 Methods 

Correlation analyses

With the three data sets, we calculated autocorrelograms and pairwise cross- 

correlograms of global and hemispheric mean temperature, NDVI, and C 0 2 growth rate, 

defining the lags such that temperature always leads the other variables, and such that ND VI 

leads C 02 growth rate. In principle, all the variables could have non-zero correlations for both 

positive and negative lags. However, the effects we consider shall be larger and more direct on 

the time scales considered here. We will focus the discussion on time scales over which 

ecosystems can realistically produce lagged effects (1-4 years, as suggested by the Century 

model).

The autocorrelations (Fig. 4.11) are monotonically decreasing without periodicities for 

lags less than four years for the C 0 2 data, for the temperature anomaly, and for the northern
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hemispheric N D V I anomaly. Beyond these time scales, there exists emerging oscillatory 

behavior which likely originates from internal climate cycles. For example, both temperature 

and C 0 2 growth rate appear to have a 7-8 year cycle. The southern hemispheric N D V I shows a 

significant 4-5 year periodicity which is probably associated with the El Nino-Southern 

Oscillation (ENSO). Myneni et al. (1996) have demonstrated the existence of an ENSO signal 

in N D V I data, arising from precipitation-driven changes in vegetation productivity in 

predominately semi-arid regions of the Southern Hemisphere.

In Fig. 4.12a, a significant relationship between C 0 2 growth rate and temperature can 

be seen, centered around a two-year lag. Keeling et al. (1995) suggested that such a delayed 

response could have been responsible for a low [COJ anomaly that began before the Pinatubo 

eruption, and continued downward until late 1993. We suggest that complex terrestrial 

responses, stimulated by temperature changes, result in either enhanced plant production, 

reduced heterotrophic respiration, or both, such that global integral net ecosystem production is 

positive approximately two years after a warm anomaly. Conversely, a cool anomaly should 

lead to enhanced terrestrial uptake.

Turning to the relationship between temperamre and NDVI (Fig. 4.12b), there is no 

immediate (0-1 year lag) global or southern hemispheric response to temperature anomalies, 

and only a weakly significant correlation for the Northern Hemisphere at lags of less than six 

months. Hence, it may be true that if temperamre changes produce immediate effects, then they 

are invisible to optical remote sensing, i.e., they do not result in increased foliage amount or 

nitrogen content. There is also, however, no evidence in the global or hemispheric means of 

any biogeochemical “memory” of past temperamre changes for lags less than 3-4 years. It is 

likely that temperamre effects on ecosystems are highly localized and that there are spatially- 

explicit lagged and instantaneous effects that offset one another in the hemispheric or global
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Figure 4.11 Autocorrelation function of the time series in (4.10): (a) temperature; (b) NDVI; 
and (c) [C 02] growth rate. The shaded region indicates autocorrelations that are not 
significantly different from zero (P<0.05).

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.5c
o

\ Vo0)
I .0 u1
in
ino

0.0

«  -0.5

- 1.0
862 40

Log (y r)

0.5c
o
a
v

0 0 0
1
in
inO
U -0.5

- 1.0
862 40

Log (y r)

0.5C
o
o
0)ww0 u1
to
too

0.0

°  -0.5

820 64
Log (y r)

Figure 4.12 Cross-correlation functions: (a) lagged temperature vs. [C 02] growth rate; (b) 
lagged temperature vs. N D V I; (c) lagged N D V I vs. [COJ growth rate.
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mean. We will investigate this possibility below.

We see very little significant interaction between lagged ND VI and C 0 2 growth rate, 

particularly for lags less than 4 years, and particularly for the Northern Hemisphere record. 

There is only the weak anti-correlation at lags of approximately two years. I f  warming causes a 

delayed terrestrial response that is causally related to a delayed decline in C 0 2 growth rate, 

then why is there no instantaneous positive correlation? We suggest two possibilities: first, 

internal terrestrial mechanisms (i.e., those related to dead organic matter dynamics) are the 

primary factors related to the interactions seen in Figs. 4.1 la and 4.1 lb: second, as mentioned 

above, zero-lag correlations exist, but are balanced by anticorrelations that occur elsewhere. 

The latter possibility can not be investigated given the data at hand, but the former is entirely 

consistent with the Century results of Schimel et al. (In press a), in which respiration anomalies 

dominated the net ecosystem C 0 2 flux anomalies.

Because the mean global and hemispheric patterns seen in Figs. 4.10-4.12 arise from 

complex interactions at the local and regional scale, we have calculated NDVI-temperature 

correlograms (cf. Fig. 4 .12b) for each gridpoint. Figure 4 .13a shows the lag time at which the 

correlation has the largest positive value. Similarly, the time at which the anticorrelation is 

greatest is shown in Fig. 4 .13b. For both these maps we have restricted the analysis to 

timescales of less than four years. Taken together. Figs. 4.13a and 4.13b allow partial 

visualization of the correlograms at each gridpoint. The ecosystems that likely give rise to the 

global and hemispheric mean response (Fig. 4.12b) can be seen to lie in the low-to-mid 

latitudes. It is apparent that instantaneous cross-correlations exist, but that they cancel in 

computing the global mean. Many arid systems have an instantaneous negative vegetation- 

temperature relationship, and that high-Iatitude systems tend to have longer delay times for 

anticorrelations. Both maps show features that strongly resemble biome distribution boundaries.
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Time o f  M a x im u m  C r o s s - c o r r e la t i o n  Between
NDVI and Lagged le m p e r a tu r e

Time of  M in im um  Cross —c o r re la t io n  Between
vIDVI and Lagged T e m p e ra tu re

Figure 4.13 (a) Spatial distribution of the lag time at which lagged temperature is most 
positively correlated with N D VI. (b) Same as (a) except showing the lag time at which the two 
variables are most negatively correlated. This analysis considers lag times less than four years 
to avoid picking up variability due to natural climate cycles.
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This suggests coherent terrestrial responses and further emphasizes the importance of biome- 

and species-specific plant and soil properties (Schimel et al. In press b).

Up to this point we have used simple analyses of time-series (averaged over space or 

grid cell-by-grid cell) to extract correlation information from the global data. It is likely, 

however, that there are time-dependent effects in the satellite measurements (especially with the 

AVHRR) which confound interpretation of the interannual signal. While spatial and temporal 

averaging reduces errors associated with small scales of spatial and temporal variability, low 

frequency contamination remains, and is principally associated with large-scale atmospheric 

composition (e.g., aerosols and water vapor) and orbital drift (mentioned above). Though we 

have applied a defensible (C.J. Tucker, Personal communication) bias correction to correct for 

the NOAA 9-11 changeover, there is no way to independently evaluate the veracity of year-to- 

year changes in N D V I that are typically 0.01-0.06 N D VI units (less than 10% of the possible 

range).

An alternative method: inferring temporal dynamics from lagged spatial correlations

A different, and somewhat more detailed, statistical analysis was performed on the 

geographically referenced temperature and N D V I data. In addition to the question of the 

existence of a reliable interannual signal in the AVHRR data (discussed above), the highly 

localized behavior apparent in both data sets produces difficulty in interpreting the temperature- 

greenness cross correlations at the global/hemispheric scale (i.e.. Fig. 4.12b vs. Fig. 4.13). 

Thus, we examined their correlations spatially. The data were aggregated into global land 

cover classes according to the map of DeFries et al. (1995); within each class, and for each 

year, multiple linear regressions of NDVI anomaly against temperature anomaly were
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performed. The dependent variable in the regression is “current” N D VI, and the independent 

variables are temperature in the current year, temperature in the last year, and so on, i.e..

Y  =  Xb +  e, (4.7)

where X is a matrix constructed from the temperature anomalies in year t, M ,  t-2, etc., and Y 

is the dependent variable, N D V I. We assume that within-class pixels are essentially replicate 

measurements, reasoning that across-biome variability tends to be greater than interannual 

variability so errors due to low signal-to-noise are minimized. In this manner, regression 

coefficients bt (slopes) are retrieved for each biome and for each year that are related to current 

and lagged ecosystem response to temperature, but are not affected by year-to-year changes in 

the mean. This technique is an alternative to traditional time-series analysis (above), facilitated 

by the assumption that spatially adjacent ecosystems, which are also morphologically and 

physiologically similar, manifest similar responses to temperature.

The pooled within-biome data, which we treat as multiple samples, are not independent 

because of their proximity to one another. Therefore, we accounted for the spatial correlation 

in the data by estimating regression coefficients using the method of generalized least squares:

where Q  is the variance covariance matrix of the residuals e, in (4.7) taken from estimated 

semivariograms of s for each biome class. In addition to spatial correlations, there potentially 

exists autocorrelation between the independent (lagged) temperature variables, so we performed 

a “test to remove n variables” on the significance of the b, coefficients. Thus, the resultant

b = (XtQ-,X r 1XtQ-1Y , (4.8)
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regression model contains the combination of terms (if any) corresponding to significant 

(P <0.05) 0-year, 1-year, or 2-year lags. Finally, the coefficients were standardized to path 

coefficients p by the transformation p, = 6,5, / 5 Y (for (=0,1,2), where 5, denotes the 

standard deviation of the (th lagged independent variable Xh and 5y is the standard deviation of 

the vegetation index values Y. Thus we present coefficients (Fig. 4.14) that are a 

“commensurate measure of response” (Selvin 1995).

Global and hemispheric means of the standardized regression coefficients are shown in 

Fig. 4.15. This calculation was performed on annual-mean data, so we present one plot each 

for 0, 1, and 2 year lagged responses. The monthly data were integrated in such a way as to 

significantly weight growing season anomalies: negative absolute N D V I values were truncated 

to zero to eliminate ice, snow, and bare ground; and negative temperature values were 

truncated to zero (biotemperature). There is considerable temporal variability in the magnitude 

and sign of the temperature response that could not have been observed in the time-series 

analyses (above). This is consistent with the complexity observed by Schimel et al. (In press a). 

The zero-lag coefficients correspond to global warming and cooling associated with El Nino, 

but appear to be dominated by the Pinatubo effect (in 1992). It is not clear if the Pinatubo 

signal is an artifact, especially because there does not appear to be a similar pattern associated 

with the 1982 eruption of El Chichon, which had a greater effect on aerosol optical depth 

(Dutton and Christy 1992). The 1991-1993 period also corresponds to a sustained ENSO event, 

and it is possible that there were significant interactions between these two unusual climatic 

events. Nevertheless, the zero-lag (immediate effect) coefficients contain the bulk of the effects 

which contaminate the Iand-surface signal: interannual variability in the atmosphere, instrument 

calibration, and satellite orbital drift. These effects are likely to not be present in the lagged 

coefficients.
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Figure 4.14 Standardized regression coefficients of a multiple linear regression of current 
N D VI on present (zero lag) and past (one and two year lags) temperature. The regressions 
were performed spatially, and within biome, for each year using annual mean data. The means 
were corrected to exclude snow cover and below-freezing temperatures. There is one 
regression coefficient for each lag time (Nlag), and they are globally averaged, keeping only the 
significant correlations, (a) Zero lag; (b) One year lag; (c) Two year lag. The coefficients 
represent the percent change in greenness associated with a percent change in temperature that 
occurred Ntag years ago.
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Figs. 4 .15b and 4 .15c show the results of the spatial-temporal analysis for one-year 

lagged effects and two-year lagged effects. These results are consistent with the above cross­

correlation calculation (Fig. 4.12), and with the notion that terrestrial mechanisms give rise to 

delayed C 0 2 response to climate. The magnitudes of the two-year lagged responses are not less 

than the zero or one year lagged response. Patterns emerge that are likely related to large-scale 

climate variability (e.g., El Nino), modulated by the spatial distribution of the temperature 

anomaly. For example, 1985 was an anomalously cool year for most of the globe (for most 

ecosystems it is second only to the Pinatubo cooling), and there is a corresponding dip in the 2- 

year response coefficient in 1987 (Fig. 4.15b). In contrast, 1989 was a very warm year, and 

there is a corresponding peak in the coefficient in 1991, but the tropics experienced unusually 

cool temperatures during half of that year because of Pinatubo.

4.3.4 Discussion

The correlations of temperature and C 02 growth rate on time-scales less than one year 

are likely direct effects of temperature on respiration, as suggested in Schimel et al. (In press 

a). Warm anomalies lead to increased terrestrial C 02 uptake and high N DVI with 1.5-3.0 year 

lags. Nutrient release during warm years lead to increased carbon uptake with 1.5-3.0 year 

lags, and conversely, cool anomalies lead to reduced nutrient release and lagged reductions in 

carbon uptake. Further, the turnover time for deep soil moisture that is accessible to microbes 

and plants can be long (J. Famiglietti, personal communication). An anomalously warm year 

will have increased evapotranspiration, and thus a deficit in soil water can be carried over from 

the end of one growing season to the beginning of the next.

The coordinated lags in N D VI suggest that increased plant productivity removes 

additional C 0 2 from the atmosphere 1.5 to 3 years after warm anomalies, while absorbing
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Iower-than-average amounts after cold anomalies. In addition, it is possible that effects of 

changing heterotrophic respiration are significant, and not invisible to remote sensing (for lags 

>1 year) because they can propagate into changes in foliage quality and amount. These 

observational analyses, together with recent theoretical and simulation studies (Pastor and Post 

1993, Schimel et al. In press a) suggest that biogeochemical mechanisms are key components 

of the dynamic response of the terrestrial biosphere to climate variability and, likely, change. 

The changes in the C 02 growth rate reflect changes to global NEP. Since temperature affects 

both plant and microbial physiology similarly, a change in NEP with temperature reflects the 

small asymmetry in the temperature responses of autotrophs and heterotrophs. Release of 

nutrients leading to delayed responses in NPP can have a large effect on NEP as the lagged 

NPP responses would not be accompanied by a simultaneous increase in microbial respiration.

While the available global biogeochemical and ecological data do not directly implicate 

nutrient cycling, the lags in the temperature, C 02, and ND VI correlations are consistent with 

the time-scales of biogeochemical regulation and inconsistent with the time-scales of 

instantaneous physiological adjustment. The spatial patterns of temperature-NDVI correlations 

indicate that, although global correlations exist, they are a composite signal from individualistic 

responses at different locations. As suggested in modeling studies (Bolker et al. 1995), 

mechanistic understanding must account for the differing sensitivities and time-scales of 

response in different ecosystems and by different plant species (Canham et al. 1995).

4.4 Summary

Within ecology, there has been considerable confusion and controversy over the large- 

scale significance of limitation of net primary production (NPP) by nutrients vs. biophysical 

quantities (e.g., heat, water, sunlight) with considerable evidence supporting both views. The
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Century model, run to a quasi-steady state condition, predicts “equilibration” of water with 

nutrient limitation, because carbon fixation and nitrogen fluxes (inputs and losses) are 

controlled by water fluxes, and because the capture o f nitrogen into organic matter is governed 

by carbon fixation. Patterns in the coupled water, nitrogen, and carbon cycles are modified 

substantially by ecosystem type or species-specific controls over resource use efficiency (water 

and nitrogen used per unit NPP), detrital chemistry, and soil water holding capacity.

We examined the coupling between water and nutrients during several temperature 

perturbation experiments. Model experiments forced by satellite-observed temperatures suggest 

that climate anomalies can result in significant changes to terrestrial carbon dynamics. The 

cooling associated with the Mt. Pinatubo eruption aerosol injection may have transiently 

increased terrestrial carbon storage. However, because processes in the water, carbon, and 

nitrogen cycles have different response times, model behavior during the return to steady state 

following perturbation was complex and extended for decades after 1- to 5-year perturbations. 

Thus consequences of climate anomalies are influenced by the climatic conditions of the 

preceding years, and climate-carbon correlations may not be simple to interpret.

Finally, we evaluated our model-based hypothesis with global data. Direct atmospheric 

measurements of C 02 concentrations are available over a period commensurate with coarse 

resolution satellite observations of lower tropospheric temperature anomaly and vegetation 

index (the past 12-15 years). We computed simple cross-correlations as well as a more detailed 

transfer-function model based on within-biome patterns of temperature response. Results from 

the analysis of these three global data sets suggests that interannual net biosphere-atmosphere 

exchange of carbon dioxide is determined by terrestrial biogeochemical mechanisms which 

operate at local-to-regional scales, and which yield significant temporally lagged responses to 

climate variability.
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Based on the observed dynamical behavior of the Century model and analysis of global 

data, we conclude that internal ecosystem dynamics lead to climate-C02 relationships that are 

not “instantaneous”. This result is inconsistent with the view that terrestrial carbon exchange is 

dominated by direct biophysical controls. Coupled climate system models are being developed, 

with a particular emphasis on the relationship between climate and C 0 2 variability (e.g., 

http://www.cgd.ucar.edu/csm). We make the case that in order to predict annual- to decadal- 

scale changes in atmospheric C 02 concentrations, the dynamics of terrestrial processes such as 

net primary production and heterotrophic respiration must be represented, particularly with 

respect to water and nutrient storage and interactions that can cause complex and multi-year 

responses to climate.
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CHAPTER 5

INTEGRATING REMOTE SENSING AND PHYSICAL M O DELING  TO ESTIMATE THE  
STATUS OF TERRESTRIAL VEGETATION

5.1 Introduction

Moderate resolution satellite remote sensing provides the only means of directly 

observing the entire surface of the Earth at regular spatial and temporal intervals. In the context 

of this work, moderate resolution refers to measurements where the smallest unit of landscape 

is on the order of approximately one square kilometer, and the temporal interval is 

approximately daily-to-weekly. Optical measurements of reflectance in the solar spectrum are 

particularly useful for estimating the status and level of activity of terrestrial ecosystems. There 

are existing and proposed satellite instruments that provide this type of data. These 

measurements yield information about the behavior of the land biosphere as an important 

component of global biogeochemical cycles and about its interactions with the physical climate 

system. Satellite-derived information about the land surface can be used to make predictions 

about the changing composition of the atmosphere (using biogeochemical models) and about 

changing climate (using general circulation models).

The quantities that can be estimated using remote sensing measurements include bulk 

biophysical parameters (e.g., albedo), which are important for characterizing the balance of 

energy and water fluxes; morphological parameters (e.g., leaf area), which are important 

determinants of atmospheric momentum transfer; and optical parameters (e.g., leaf 

reflectance), which are related to vegetation health and site quality (water and nutrient status).
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Perhaps the most important biophysical quantity for ecological modeling is the amount of 

photosynthetically active radiation absorbed by plant canopies (APAR). which we will focus on 

in this chapter. All the retrievable characteristics mentioned above are related to terrestrial 

productivity, and as such can be used to constrain estimates of net photosynthesis and other 

biogeochemical fluxes.

Three of the principal goals of biogeochemical remote sensing science as presented by 

the EOS Science and Mission Requirements Working Group (NASA 1984) are to: “(1) 

Understand the biogeochemical cycling of carbon, nitrogen, phosphorus, sulfur, and trace 

elements; (2) Determine the global distribution o f biomass and what controls both its 

heterogeneous distribution in space and its change over time; and (3) Determine the global 

distribution of gross primary production and respiration by autotrophic and heterotrophic 

organisms and the annual cycle and year-to-year variation of these processes." With respect to 

the terrestrial biosphere, progress on any of these goals will benefit from the remote 

observation of vegetation type, amount, or status. Thus, an improved understanding of how 

terrestrial ecosystems are coupled to climate and global biogeochemistry -  the common subject 

of the preceding chapters -  can result from improved algorithms for retrieval of land surface 

characteristics.

In this chapter we discuss methods for extracting biophysical parameters from satellite 

optical remote sensing measurements. We focus on the information contained in the spatial and 

temporal patterns of continental-to-global scale optical reflectance data. There are essentially 

two broad categories of methods for interpreting coarse spectral and spatial data for terrestrial 

biophysical applications. First, the multi-channel reflectance measurements can be mapped into 

a scalar function called a vegetation index (V I), the values of which are empirically related in 

turn to a land surface variable, usually via Field observations. In this approach, it is first
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necessary to have a V I that is insensitive to factors unrelated to the state of the land surface, 

and then to have an understanding of causes of variability in the Vl-biophysics relationships. In 

the second approach, a physical model of canopy reflectance is inverted, either analytically or 

numerically, to estimate vegetation canopy (input) parameters. This method also requires 

consideration of factors which contaminate the land signal, and it is generally more 

computationally intensive. There are a number of unique advantages to inverse modeling, 

however, which will be discussed later.

In the next section (5.2), concepts relating to empirical approaches (using correlations 

between ecosystem variables and Vis) are discussed. There have been various assumptions 

made in the literature about the meaning and applicability of these relationships, but a number 

of theoretical and intuitive interpretations of vegetation indices are available. Qualitatively, 

higher values of a V I indicate more vegetation activity which is usually due to a greater density 

of foliage, or more productive plants within an ecosystem. Thus, the value of a vegetation 

index is often called “greenness” . The most sensible framework for using vegetation indices to 

address ecological problems includes consideration of the physical meaning of the V I at the 

spatial and temporal scales of interest. This consideration should extend to accounting for the 

influence of biome-specific characteristics, including soil type, plant architecture, and the state 

of the canopy itself.

The principal contribution of this chapter is the inversion of a physical radiative 

transfer model with optical reflectance (from a global data set) to estimate land surface 

characteristics (Section 5.3). In particular, we emphasize the importance and usefulness of the 

dependence of reflectance on the geometrical configuration of source and sensor. The spectral 

information is also used, but in a different manner than with Vis. This is because, in model 

inversion, the reflectance measured in each channel (in a particular wavelength band) does not
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have to be combined into a single number. Instead, all measurements, sampled at unique 

wavelengths or with unique geometries, can be used as dependent variables. Thus, the 

information content of the data is exploited in an efficient manner. Difficulty arises in model 

inversion as a result o f the weighing the balance between the number of parameters that are 

desired, and the dimensionality of the data (a function of the number of measurements and their 

degree of independence). The latter is never precisely known, but can be addressed within the 

modeling framework (e.g., Privette et al. In press).

The utility and feasibility of vegetation reflectance model inversions was introduced by 

Goel and Streibel (1983). Since that time, successful radiative transfer model inversions have 

been performed using various types of field and laboratory radiometer data. These experiments 

have typically utilized a large number of sampling geometries under controlled conditions. 

Perhaps because of sparse of sampling, difficulties with atmospheric contamination, and issues 

related to balancing model complexity with invertability, real satellite data has rarely been used 

in this context. Two studies have successfully used satellite observations of one area for a 

limited period (Flasse et al. 1993, Privette et al. In press). Section 5.3 is an extension of work 

by Privette et al. (In press) who demonstrated the importance of ancillary biophysical 

information about the target to the accuracy of parameter retrieval.

Radiometric Calibration

Interpreting remote sensing data begins with an understanding of the physical quantities 

that are involved. There is a great deal of literature pertaining to radiometric calibration, i.e., 

relating the “signal” of a detector to variables (e.g., reflectance) that are meaningful for 

inferring characteristics of the surface. We will follow the notation of Wyatt (1978), and 

present the most basic concepts. All the terms we introduce are a function of wavelength but it
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is assumed they are defined over some finite wavelength interval and we avoid explicit spectral 

dependence in the notation for convenience.

Satellite optical remote sensing instruments measure radiation in the visible and near- 

infrared (NIR) wavelengths that originates at the sun, interacts with the atmosphere and the 

Earth’s surface, and is transmitted back through the atmosphere to be detected by the sensor 

(Fig. 5.1). The flux of solar radiation, or irradiance (W m'2), at the surface can be expressed 

as:

Es( r ' ) =  Es 0 xA ( f  cos(0) , (5.1)

where Es0 is the mean exoatmospheric irradiance, xA is the atmospheric transmissivity, d1 is the 

squared ratio of the Sun-Earth distance to the mean distance, and 0 is the solar zenith angle.

Use of Equation 5.1 requires knowledge of the day of year, the coordinates on the Earth, the 

atmospheric conditions, and the time of day.

The fundamental physical quantity useful for describing reflected radiation is radiance 

L (W m'2 sr"1). Radiance is defined as the flux of radiant energy <t> (W m'2) per unit solid angle 

co (of the sensor) per unit area A projected in the viewing direction (at the source), i.e.,

d 2<t>
L (r,r ') = ----- - ----------- . (5.2)

dA cos(0)dco

This quantity corresponds to “brightness”; the energy flux (and thus the number of photons) 

collected by a sensor integrates over the field of view and solid angle subtended by the 

detector. Sensors are designed to produce an output in digital number (DN; photon counts) that
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Figure 5.1 Schematic depicting the configuration of sun and sensor in the observation of 
bidirectional reflectance of a target (at the origin) from a satellite.
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is directly proportional to the radiance: L0s:(DN-p)/y, where P is the offset (count), and y is the 

gain (count W l m2 sr).

The quantity that is usually contained in calibrated optical remote sensing data is the 

bidirectional reflectance factor (BRF) R(r , r ) ,  though it is commonly referred to as reflectance. 

The BRF is the ratio of measured radiance to that of a hypothetical perfect diffusing panel Lp at 

the surface.

R( r ,r ')  = ^  = ^ ,  (5.3)
L P E s

where Es is given by Equation 5.1; it appears in the expression because of Lambert’s cosine 

law and the fact that Lp has no solid angle dependence:

Es = E p = j L p cos(0)</co = itLp . (5.4)

Combining Equations 5.1 and 5.4, we arrive at a simplified expression for the 

calibration of the BRF, i.e.,

rcL A(r,r')
* ' ( r ’r ') = 7  V  (5 5 )Es0 x xAd-  cos(0)

where we have noted explicitly the quantities that represent integral values over a wavelength 

band A defined by the interval A =[X , A.+AA.]. The BRF takes on possible values from zero to 

infinity, but for the Earth’s surface it is nearly always less than one because of the absorbing
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Figure 5.2 Typical leaf (green line) and soil (red line) reflectance spectra, the AVHRR visible 
and NIR sensor response curves (gray regions), and the solar spectrum (black line).
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properties of most terrestrial and oceanic surfaces. An exception would be associated with 

specular reflection (sun glint) of a smooth water body in the exact forwardscatter direction 

(0 = 0 ’ and v|/=n; see Fig. 5.1).

The BRF is sometimes inaccurately referred to as the bidirectional reflectance 

distribution function (BRDF). The BRDF is a differential quantity equal to dLJdEs (sr l) (Wyatt 

1978). While the BRDF theoretically describes the reflectance properties of a surface, it is not 

useful in practice, primarily because of the non-infinitesimal solid angle subtended by the 

source Es. Thus the derivative above is not directly transformable into an actual remote sensing 

quantity.

Because of its usefulness for the types of large-scale problems we wish to address, data 

from the Advanced Very High Resolution Radiometer (AVHRR) will be central to the work in 

this chapter. The two wavelength bands in the optical region for this instrument are in the 

visible (A, % 0.58-0.68 pm) and in the N IR  (A2 *  0.73-1.1 pm). A more detailed picture of the 

AVHRR sensor response (bandwidth) is shown in Fig. 5.2. In the next section we will discuss 

the usefulness of the spectral dependence of the BRF and, in the following section (on inverse 

modeling), the combined spectral and geometrical (i.e., the directions of the vectors r  and r  ) 

dependence will be explored.

5.2 Empirical Approaches: Vegetation Indices

5.2.1 Background

A vegetation index (VI) is a scalar function of the discrete values Rx of the BRF. The 

most common of these indices is the normalized difference vegetation index (N D VI). The 

NDVI is defined as a combination of visible (VIS) and near-infrared reflectance factors:
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NDVI = V r .f y s ,
^N IR  +  ^VIS

(5.6)

and is most frequently used with the two-channel AVHRR optical data. Other important indices 

include the global environmental monitoring index (GEMI; Pinty and Verstraete 1992) and the 

soil adjusted vegetation index (SAVI; Huete 1988). These indices also are defined for use with 

visible and NIR wavelength bands, and have very similar properties as NDVI; the following 

discussion in this section is generally applicable to all three. The GEM I and SAVI are designed 

to reduce the effects of the atmosphere and soils, respectively, and contain adjustable 

parameters.

The fact that these indices are correlated with vegetation status (and not just structure) 

is owed to the unique spectral character of potentially active leaves. In turn, this spectral 

signature is due primarily to the presence of chlorophyll A and B which absorb strongly in the 

blue and red wavelengths. Though there is generally a small peak in the green region, the 

primary leaf spectral feature that makes N D V I useful for terrestrial applications is the “red 

edge”: a sharp increase in reflectance and decrease in absorption from the red into the near- 

infrared wavelengths that occurs at about 0.7 pm (Fig. 5.2). The relatively high reflectance to 

the right of 0.7 pm is a function of leaf optical thickness, controlled primarily by water content 

and mesophyll structure.

A number of ecological variables have been shown to be correlated with vegetation 

indices, particularly NDVI (e.g., Asrar et al. 1984, Running et al. 1989, Wiegand et al. 1991, 

Myneni et al. 1992b, Sellers et al. 1992). We briefly introduce some of these quantities below.

Leaf area index (LAI) is a dimensionless measure of the total leaf surface area per unit 

area of landscape. The terrestrial modeling community (in particular) has identified LAI as key
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variable in determining ecosystem-level exchange of water, energy, momentum and C 0 2 

because it is a measure of both the physical extent of the canopy as well as its activity (i.e., 

photosynthesis/transpiration). LAI is also used as a measure of canopy depth, analogous to 

atmospheric pressure in meteorology. Light attenuation is an approximately exponential 

function of LAI. Thus, for heterogeneous landscapes or large areas, its meaning (an average 

LAI) is problematic for some applications.

Absorbed photosynthetically active radiation (APAR) is the absolute amount of PAR 

(photosynthetically active radiation) that is absorbed by the plant canopy. This quantity can be 

defined over multiple time scales, but generally it refers to either a daily integral value, or an 

instantaneous value. A related measure is the fraction of incident PAR that is absorbed 

(fAPAR). Canopy net photosynthesis Pc(g m'2) may be described by the following time-integral 

relationship (Asrar et al. 1984):

Pc = £ [e , • Ae fAPAR • PAR]d t , (5.7)

where zp is the photochemical conversion efficiency (g MJ‘l), which is thought to be species- 

specific; and Ae is a dimensionless environmental stress multiplier (accounting for light, water, 

or nutrient limitation), such that when Ae=  1, Pc is equal to potential net photosynthesis, or 

potential productivity. This relationship (which also has a theoretical basis) is the principal that 

underlies remote sensing of fAPAR.

Canopy photosynthetic efficiency is similar to fAPAR: it is the ratio of instantaneous 

canopy net photosynthesis to incident PAR, or (sp-Ae fAPAR). So, assuming constant 

environmental limitation and vegetation status over the period T, then it is equivalent to a 

constant times fAPAR. However, to the extent that Ae changes over time, this quantity is not the
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same as fAPAR. Further, it has been suggested that correlations between plant growth and 

intercepted radiation are circular (Field 1991; see Section 5.4).

Stomatal resistance is best defined at the leaf level. C 0 2 (and water) exchange can be 

described as a Fick’s Law process, obeying F=AcIR ; where F  is the gas flux, Ac is the C 0 2 

concentration gradient, and R is the sum of aerodynamic resistance between the atmosphere and 

the leaf interior plus the resistance associated with the aperture of leaf pores (called stomata). 

Stomatal resistance is governed by the plant itself and represents a set of complex plant 

mechanisms which act to maximize carbon gain while minimizing water loss. It follows that the 

inverse, stomatal conductance, is linearly related to photosynthesis and transpiration. In the 

remote sensing literature, its canopy integral is considered, which is often just assumed to be 

inversely related to canopy photosynthesis and transpiration.

5.2.2 Empirical basis for vegetation indices

In practice, NDVI is usually related to macro-scale quantities like LAI, fractional 

absorbed (or intercepted) PAR, and fractional plant canopy cover using empirical relationships. 

Though there is a theoretical basis for most of these relationships (e.g.. Sellers 1987), it is 

rarely invoked. Field measurements are typically used to build regressions which in turn are 

applied across the landscape, under the assumption that the relationships are uniformly 

applicable. To the extent that all the above applications work, they do so because they are 

correlated with one another. They all have a common basis: at the canopy scale, an increase in 

either of the above structural quantities (LA I, percent cover) is essentially an increase in the 

density of green leaves which absorb differentially in visible and NIR wavelengths, so there is a 

resulting increase in NDVI. Likewise, increased fAPAR is the biophysical consequence of 

higher green leaf density. Of course, these dependencies arise because of the fundamental
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physico-chemical interactions at the leaf level, and variability in leaf optics will induce 

uncertainty in any of these interpretations. In fact, Myneni et al. (1995) present a unified theory 

that combines the three classes of dependencies, concluding that the broad-band vegetation 

indices are essentially an integrated measure of chlorophyll abundance. The principal factors 

that confound this interpretation are bidirectional effects (dependent on the angular distribution 

of leaves as well as the positions r  and r  ) and the reflecting properties of soil/background 

material.

Plant canopy reflectance (and thus N D V I) is sensitive to a number of ecosystem 

parameters. Privette et al. (1994) illustrated this sensitivity through the use of a canopy 

radiative transfer model that accounts for scattering processes using the discrete ordinates 

method. Sensitivity was expressed in terms of the differential change in reflectance per unit 

value of each parameter in the model (averaged over a number of base parameter 

configurations). They found that at low LAI (less that 1.5), visible reflectance was most 

sensitive to changes in LA I and soil reflectance to an equal degree, but NIR reflectance was 

most sensitive to soil reflectance, with LAI having secondary importance. At high LAI (greater 

than 2), the reflectance sensitivity was dominated by leaf reflectance for both wavelength 

bands, and in the NIR, leaf transmittance was almost equally important.

The implication for N D VI is intuitive: when LAI is low, either because the vegetation 

is sparse or because it is seasonal (deciduous), then variation in NDVI will result primarily 

from variation in soil color and LAI itself. In contrast, for relatively dense or closed-canopy 

ecosystems, variation in N D V I will result primarily from changes in leaf optics, either in the 

visible (because of changing chlorophyll concentration), or in the NIR (because of structural 

changes). Interestingly, however, many canopy radiative transfer models represent vegetation 

as a distributed “cloud” of leaves (turbid medium), so the effects due to non-photosynthetically
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active vegetation (NPV) are not included in the analysis just described. In practice, NPV 

components in the canopy, predominately stems, branches, and senescent foliage, are 

radiatively significant. The amount of NPV present in the canopy varies somewhat 

unpredictably in time and space, and particularly across ecosystem types. The model of Qin 

(1993) and the SAIL model as implemented by Braswell et al. (1996) both simulate a mixed 

canopy, so a full sensitivity could be performed with these models that includes the effect of 

NPV.

It is worthwhile to consider the qualitative meaning of N D V I in various ecosystems that 

have unique morphological and phenological characteristics. For example, in a typical short- 

grass prairie, the N D V I will be highly seasonal, and the linear relationship with fAPAR will be 

strongly affected by the mixture of live and standing dead vegetation, particularly near the 

beginning and end of the growing season. The relationship between N D V I and LAI will be less 

well-behaved; at the height of the growing season, changes in N D VI can be induced by water 

stress, which affects leaf optics as well as architecture (wilting). Interpreting N D V I in sparse 

communities (e.g., a shrubland) is the most problematic. Soil color and wetness will exert a 

strong influence over the NDVI signal. The seasonal amplitude will be very low, so LAI is 

practically impossible to determine accurately. In this case, it is likely that fractional vegetation 

cover is the dominant factor, and the most likely to be retrieved using NDVI. Similarly, in 

areas with mixed vegetation (i.e., partially evergreen) the observed reflectance will be strongly 

affected by a time-varying mixture of light scattered from soil, standing dead, or stems.

Finally, in a deciduous forest, the interpretation for ND VI is similar to that of a seasonal 

grassland. The difference is that in the deciduous forest, soil/litter color influences are the 

strongest when LA I is low. The importance of leaf optical properties will dominate after
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canopy closure to a greater extent than in the short grassland by virtue of a (typically) greater 

LAI.

5.2.3 Theoretical basis for vegetation indices
✓

Plant canopy radiative transfer theory is not singular; there are many models that range 

in complexity from semi-empiricism (Walthall et al. 1985) to full three dimensional calculations 

(Myneni et al. 1992a). Nevertheless, all the models (if they are correct) will reveal the same 

general relationships between N D VI and biophysical variables (e.g., LAI, biomass, component 

optical properties, and fAPAR) as are observed in the field. In general the more complex 

models contain fewer approximations, and are in principle more accurate, but only the most 

simple models are capable of producing closed-form analytic solutions. Models that are solved 

numerically are far more common.

The theoretical meaning of vegetation indices can be demonstrated in two ways: (1) 

through manipulation of equations that coarsely describe light interaction in plant canopies; or 

(2) by integration of a numerical canopy radiative transfer model and inspection of the results 

for various parameter combinations. In the following sections we will give a brief overview of 

one analytical argument from the literature, and finally, we will present some SAIL model 

results that show how the relationships may depend on location-specific factors.

Analytical relationships

Sellers (1987) presented one of the few available analytical foundations for the 

relationship between Vis and canopy variables. They based their discussion on the two-stream 

approximation (Ross 1975, Dickinson 1983) which describe canopy light interaction in terms of 

two fluxes: downwelling diffuse radiation (E.) and upwelling diffuse radiation (£+). Further, it

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is assumed that these fluxes exist in a plane parallel medium that is composed of isotropic 

scattering elements distributed uniformly in horizontal space. The scattering elements (leaves) 

are angularly distributed in an arbitrary manner according to G(p), where p=cos(0). In the 

two-stream approximation, the divergence of scattered radiation within the canopy is given by:

d E
p —  + [I -  (1 -  P)co]£+ -  cop£_ = oofTATpo e '*1 

dL

(5.8)

_  dE _  ivp—f- + [l-(l-P)a>]£_ -coP£  ̂ = copAT(l ~P0)e" 
dL

where,

K =  G(p)/p, the source attenuation coefficient or optical depth per unit LAI,

L =  the cumulative leaf area index (LAI),

P = |j[pVG(p')]^|j.' = (1 /  h) , the average inverse diffuse optical depth per LAI,

to =  a +  t , reflectance plus transmittance, the scattering coefficient, 

p, Po =  upscatter parameters for diffuse and direct beams, respectively. 

p=cos(0), where 0 is the direction of incident solar radiation.

Note that co and p depend on wavelength, so two sets of equations are applicable when 

considering NDVI (one for visible and the other for near-infrared wavelengths). Equation 5.8 is 

a special case of the diffuse turbid medium formalism (Equation A .3), where the scattering 

coefficient a  is equal to (cop/p) and the absorption coefficient k  is equal to ((1-coP)/ p ). Both 

these coefficients from (A .3) are weighted by 1/p to allow for a generalized leaf angle
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distribution, however, p. is equal to unity for the case of spherically or horizontally distributed 

leaves, and is approximately equal to unity for other distributions. Though the definition of p. 

is “somewhat arbitrary” (Dickinson. 1983) it can be derived directly from the plane-parallel 

radiative transfer equation (Choudury 1987); it requires, however, the approximation that £+  

and E. are isotropic.

The terms in Equation 5.8 have a physical interpretation: (l-(l-(3)co) is the amount of 

radiation transmitted by a single element dL in the medium, to (3 is the reflected radiation, and 

an exponentially declining source term is on the right hand side. The factor P is a function of 

the mean leaf inclination angle and accounts for the overlap between the upper (lower) 

hemisphere of the leaf and the upper (lower) hemisphere relative to the local normal (Ross 

1975). The solution to (5.8) can be obtained using standard methods, and under appropriate 

boundary conditions, is a lengthy expression containing terms proportional to exp(-AL) and 

exp(-/zL), where h, the diffuse attenuation coefficient, is a function of the leaf scattering 

coefficient co.

Canopy hemispherical (as opposed to bidirectional) reflectance, or albedo, is then given 

by a(|i.)=E+(0). Now the simple ratio (SR) spectral vegetation index can be defined:

SR = £ "«  , (5.9)
avis

The quantity SR behaves very much like N D V I over the possible values of N D VI (they are 

nearly proportional, which can be shown by expanding both quantities in a Taylor series). 

Further, the SR is much easier to deal with analytically, so conclusions can be made using SR 

and then extended to NDVI.
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In order to investigate the relationships between SR and biophysical variables, die 

approach is to evaluate the derivative of (5.9) with respect to total LAI and then compare to the 

representation of APAR, canopy photosynthesis, and canopy resistance implied by the solution 

to (5.8). The resulting equations are worked out in detail by Sellers (1987), and we will outline 

the results below. Inclusion of canopy physiology is by way of theory relating photosynthesis 

and transpiration to light intensity and other environmental variables introduced by Farquar and 

Sharkey (1982), which essentially describes the exponential decrease in photosynthesis per unit 

leaf area as a function of LAI. Another useful relationship is the expression for absorbed PAR:

where LT is the total canopy LA I, which assumes that PAR wavelengths are equivalent to 

visible wavelengths.

A few simplifications are introduced by Sellers (1987). First, it is assumed that the 

derivative of av with respect to Lr  is much smaller than the derivative of aN with respect to LT, 

and that av itself is much smaller than aN. Both of these assumptions are generally supported by 

laboratory and field measurements. Further, it is assumed that soil reflectance in the visible 

wavelengths is approximately equal to leaf reflectance in the same region. This is often true, 

particularly over dark soils, but does not hold in general. The following statements of 

proportionality can then be obtained:

APAR = 1 -  av -  (1 -  p, ) [ t K*Lr + I d (L r )], (5.10)

d(SR) d(aN) ^  g-2/i.vtr
dLT ' 8Lt

(5.11)

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



d(APAR) 50Pgl d(Vrc) ^  KvLf 
dLj ' dLT ' dLj-

(5.12)

where hN is the extinction coefficient for diffuse near infrared light, and Kv is the extinction 

coefficient for incident visible light. The left-hand terms are all linearly related to one another 

and all exhibit exponentially decreasing sensitivity to LAI.

Finally, if Ih ^ K y ,  then the terms on the left side of (5.11) and (5.12) will be 

proportional to one another. This last assumption that the optical depth in a canopy is twice as 

large for NIR than visible solar radiation, which is not intuitive, also turns out to be 

approximately true (over a wide variety of canopy architectures) because of the differential 

absorptance of leaves, but it depends on the exact meaning of “visible” and “near-infrared” . 

Remote sensing instruments differ in spectral band widths, and Sellers (1987) notes that in 

order to best infer APAR or the other quantities from N DVI or SR, then the sensor bands (that 

are associated with a v and aN) should be chosen such that last assumption is as generally 

applicable as possible.

Model results

The requirement of many simplifying assumptions in above analytical discussion 

reveals the advantage of using a numerical model to investigate the functional relationships 

between Vis and the biophysical/ecological parameters of interest. Though the functions 

themselves may differ with varying model complexity, in general the functional forms are 

robust from the simplest representations to the most complex. We present a few brief examples 

using a canopy radiative model that is intermediate in complexity: the SAIL (Scattering by 

Arbitrarily Inclined Leaves) model (Verhoef 1984). which uses the following parameter set:
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LAI, leaf reflectance, leaf transmittance, soil/litter reflectance, and mean leaf inclination angle 

(assuming an elliptical distribution). The version used by Braswell et al. (1996) also includes 

non-photosynthetic vegetation (NPV) scattering elements, a hot-spot parameterization for both 

leaves and NPV, and variable fractional vegetation canopy cover (for details see Section 5.3 

and Appendix A).

For a typical parameter set, Fig. 5.3a shows the visible and NIR reflectance predicted 

by SAIL as a function of LAI. In the lower panel (Fig. 5.3b), the NDVI and fAPAR for the 

same model canopy are shown. This figure illustrates the most conceptual explanation of the 

powerful and near-linear relationship between N D V I and fAPAR: ( I )  light attenuates 

exponentially with depth in a plant canopy because leaves absorb more radiation than they 

reflect, so as LAI increases, fAPAR increases, but the differential change in the canopy light 

environment decreases; (2) leaves absorb much more in the visible than in the NIR (-90% vs. 

-20% ), so N D VI increases with LAI, but because of the saturating effect at higher LAI values, 

both NDVI and fAPAR approach an asymptotic value. Given that NDVI and fAPAR are 

approximately described by A (I-e'^-) and that A and k for both quantities are nearly equal, then 

they are approximately linearly correlated. We present this plausibility argument as a 

complement to the theoretical presentation of Sellers (1987) and to the wealth of experimental 

evidence for such relationships.

Figure 5.4 shows the results of two other SAIL model runs. The parameter set used 

was derived from a model inversion at two locations along a transect in central Africa (see 

Braswell et al. 1996; Section 5.3): one near the northern end (dashed line), dominated by 

grasses; and one near the southern end (solid line), dominated by closed-canopy forest. The 

exponential decrease in the sensitivity of both N D V I and fAPAR can be seen clearly, with some 

differences due to the optical and (primarily) the structural differences in the two canopy types.
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Figure 5.3 (a) Visible (solid line) and N IR  (dashed line) reflectance simulated by the SAIL 
canopy radiative transfer model as a function of leaf area index, (b) Fractional PAR absorbed 
(solid line) and N D V I (dashed line) for the same model canopy as in (a). Typical parameter 
values are: Leaf vis. reflectance =  leaf vis. transmittance =  0.1, Leaf NIR reflectance =  leaf 
NIR transmittance =  0.3, Soil vis. reflectance =  Soil N IR  reflectance =  0.2, Stem area index 
=  1.0, Stem vis. reflectance =  stem NIR reflectance =  0.2, Stem vis. transmittance =  stem 
NIR transmittance =  0.0, Mean leaf inclination =  45°, Mean stem inclination =  60°, Leaf hot 
spot parameter =  0.2, Stem hot spot parameter =  0.5, Fractional vegetation cover =  0.8, 
horizontal visibility =  50 km.
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The N D V I and SR relationships, however are remarkably stable with respect to those 

parameters, which is consistent with the idea that NDVI is fundamentally related to chlorophyll 

density (Tucker 1979, Myneni et al. 1995). It is important to note, however, that we have 

plotted values for the green-leaf LAI and fAPAR only. Field and remote sensing measurements 

will contain an effect of absorption of visible light by NPV, which can be large. The bottom 

panels of Fig. 5.4 do not necessarily support the blind use of N D V I for fAPAR for two other 

reasons: (1) plotting daily integrated fAPAR (the quantity of interest with respect to canopy 

photosynthesis calculations) would cause the lines to diverge further because of solar zenith 

angle effects; and (2) the two sites have similar retrieved soil and leaf optical properties which 

were estimated through inversion and which would in general need to be accounted for in order 

to exploit the linear relationship.

Summary

The use of remotely-sensed vegetation indices as a direct proxy for surface variables 

ignores some major dependencies, even when atmospheric corrections have been applied to the 

reflectance data. Predominately, these are the effects of solar and viewing geometry and the 

effects of variable background reflectance. Moreover, because of its asymptotic dependence, 

N D V I can be used to infer LAI only over a limited range of LAI. Although the relationship 

between N DVI and fAPAR is generally linear, it is well-known to be sensitive to the status of 

many soil-vegetation-atmosphere system parameters that exhibit high spatial and/or temporal 

variability (Goward and Huemmrich 1992). Thus, a one-to-one relationship between a V I and a 

biophysical variable may not be generally applicable, except through careful consideration of 

complicating factors; by inventing indices that are less sensitive to atmospheric or soil 

influences (Huete 1988, Pinty and Verstraete 1992), by normalizing the index (Roujean and
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Breon 1995), or by selecting pixels with preferred view angles (Cihlar et al. 1994). Such 

considerations (especially the latter two) potentially involve the iterative use of radiative 

transfer (RT) models which is similar, in principle, to the method of inversion.

5.3 Extracting Ecological and Biophysical Information from AVHRR Optical Data: An 
Integrated Algorithm Based on Inverse Modelingt

5.3.1 Introduction

To obtain information about vegetation structure and function from remote sensing, a 

model is needed to convert the signal measured by the satellite sensor (reflected solar radiation) 

into variables that are meaningful at the stand or ecosystem level. The inverse modeling 

approach uses physical models of the radiation regime within a plant canopy to retrieve 

information about the surface. Specifically, models are required that simulate the plant canopy 

reflectance given a unique parameterization of the structural and optical characteristics of the 

vegetated surface. In this approach, an optimization scheme is used to calculate the parameter 

set that yields modeled reflectance most consistent with the observed reflectance data.

There are a number of distinct advantages to radiative transfer model inversion: it is 

physically-based so that the relationship between measured reflectance and surface biophysics is 

self-adjusting instead of empirically calibrated, it deals with mechanisms that would otherwise 

contaminate the signal, and it allows the incorporation of ecological knowledge and field 

measurements in a consistent way. The degree to which the model physics (assuming they are 

adequately represented) adjust to novel environments depends on the quality of the ancillary 

ecological information provided, but the retrieved parameters should not be less accurate those 

derived from methods that do not incorporate such data. The main disadvantage of inversion is

Adapted from the article by B.H. Braswell, D.S. Schimel, J.L. Privette, B. Moore III, W.J. Emery, 
E.W. Sulzman, and A.T. Hudak, Journal o f Geophysical Research (Atmospheres) 101:23335-23348,
1996. Copyright by the American Geophysical Union.
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that it is computationally more intensive. The requirement of multiple measurements may be 

considered a disadvantage but, in this section, we will demonstrate a practical solution to that 

problem.

The objectives of this section are (1) to present an integrated algorithm for the retrieval 

of fractional APAR (fAPAR), albedo, and phenology from AVHRR reflectance measurements 

by inverting a modified version of the SAIL canopy radiative transfer model, and (2) to present 

successful inversion results that demonstrate the potential for this algorithm to be used 

operationally. Past radiative transfer model inversions have been limited to point analyses. We 

extend these efforts by developing a technique that facilitates inversions at regional to global 

scales, and that explicitly incorporates a priori knowledge in the choice of parameter values 

and constraints. Our method works with the AVHRR Pathfinder product, which is readily 

available, and the only current global reflectance data set suitable for this use.

5.3.2 The AVHRR Pathfinder data product

Since 1981, optical reflectance data has been gathered from the AVHRR on board the 

NOAA-7 through 11 polar orbiting platforms. This instrument measures exiting radiance in five 

channels: red (VIS; 0.58-0.68 pm), near-infrared (NIR; 0.73-1.10 pm), and three thermal 

infrared bands. The satellite approximately covers the globe each day, and the highest spatial 

resolution possible is about 1. lx l . l  km. The Pathfinder AVHRR Land (PAL) product (Agbu 

and James 1995) is a global data set, with 8x8 km spatial resolution and a 10-day compositing 

interval. The data are projected onto a Goode’s Homolosine equal-area map base. There are 

twelve data layers; each pixel contains the two optical reflectances (/?*Vis and / ? * n i r ) ,  

temperatures from the three thermal bands, sun and sensor zenith angles (0 and 0 ), the relative 

azimuth angle (\j/), and the day/hour of observation. Also included is a quality control (QC)
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flag, an estimate of the extent of cloud contamination calculated using the thermal bands, and 

NDVI. The QC and cloud flag layers are described in detail in Agbu and James (1995) and are 

used in our algorithm to filter pixels that potentially contain errors or extensive cloud 

contamination.

The Pathfinder reflectances are derived from the “global area coverage" (GAC) data 

that are produced on board the satellite. Because of on-board data storage limitations, the 

nominal 1.1 km “local area coverage” (LAC) spatial resolution of AVHRR is not automatically 

retained for the entire globe. Instead, measurements are aggregated by averaging four adjacent 

samples out of every five in a scan line, then skipping the next two scan lines (Kidwell 1991). 

The resulting GAC spatial resolution is approximately 1x4 km at nadir. In the Pathfinder data 

set, pixels are mapped onto a global grid from the raw GAC data. Global area coverage data 

has coarser resolution and potentially poorer quality than the 1.1 km LAC data because of 

reduced spatial sampling, but logistical issues associated with recovering LAC measurements 

are being addressed by an IGBP core project (Townshend et al. 1994) and global “ 1 km 

AVHRR” data will soon be available for a limited time domain, including the ancillary 

information (described above) that is necessary for our analysis.

The data are temporally composited (during Pathfinder processing) by choosing the 

GAC reflectances and the associated ancillary information from the observation that yielded the 

highest N D V I in the 10-day window, a common practice because almost all factors 

(particularly aerosols) that contaminate the signal from the land surface tend to reduce NDVI 

(Holben 1986). Bidirectional effects on N D V I are a complex function of sun-sensor geometry 

and land surface conditions and thus they will not be selected out of the data by this 

compositing technique. Moreover, the compositing process has the effect of increasing the 

sampling of sun-sensor geometry from pixel to pixel because the uncorrected atmospheric
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effects that lead to decreased N D V I tend to be spatially and temporally heterogeneous, and 

because each consecutive overpass will have a unique (random) scan angle. It is therefore very 

likely that nearby pixels in the final product are derived from different overpasses. This effect 

of compositing on the local distribution of sun-sensor angles facilitates the application of the 

method introduced in this paper.

The PAL global data product currently covers 1981-1994 (see W W W  site 

http://xtreme.gsfc.nasa.gov). In our analysis we have used two subsets of the data for two 

related applications. First, an initial large-scale stratification and geostatistical description was 

performed using all of the 10-day composited data for the African continent for the years 1986- 

1988. Second, for the set of inversion experiments, we extracted clusters of pixels (cells) along 

a transect in central Africa (19.7°E, 8.1°N to 22.3°E, 4.3°N) for all twelve months of 1986.

5.3.3 Theoretical background

Spacebome radiometers (e.g., AVHRR) measure solar radiation that has been 

transmitted through the atmosphere, interacted with the surface (including vegetation, soil, 

water, etc.), and then transmitted back through the atmosphere to the satellite. A radiometer 

measures the photon energy flux received within fixed intervals of wavelength and solid angle. 

This information can be translated into reflectance, a physical variable that is independent of 

instrument characteristics and solar flux, through radiometric calibration (Brown et al. 1985). 

The variation of reflectance with respect to wavelength and sun-sensor geometry is called the 

bidirectional reflectance factor (BRF) and is given by

<513)
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where Es is the solar irradiance (W nr2) incident from the r  direction, and L is the outgoing

radiance (W  n r2 s r l) measured at r  (see Section 5.1). This is an approximate expression 

because there is usually a small flux of radiation incident from all directions (“skylight”) in 

addition to the direct solar beam.

Canopy radiative transfer models simulate the BRF for a given wavelength band as a 

function of sun-sensor geometry, and a set of parameters P describing the architectural and 

optical characteristics of the components for the vegetated surface, i.e., R=RP(r ,r  ,k). In this 

study, we used the SAIL model (Verhoef 1984,1985) because it is intermediate in complexity, 

and represents a compromise between physical realism and the number of input parameters. 

Parameters of the SAIL model include leaf area index (LAI), leaf optical properties, and leaf 

angle distribution. The SAIL model calculates RP by solving the radiative transfer equations for 

scattering of (diffuse and direct) sunlight by a distribution of small flat elements (leaves) in a 

semi-infinite medium, while allowing for a linear mixing of bare soil reflectance.

We have modified SAIL to simulate the reflectance of two-component canopies (cf., 

Qin 1993), including a hot-spot parameterization (Kuusk 1991) for both components. Table 5.1 

shows the full set of parameters used in this implementation of the model (SAIL-2). It is 

important to represent non-photosynthetic vegetation (NPV) components in a radiative transfer 

model because almost all plant canopies contain stems, standing dead, or senescent leaves that 

interact with radiation and affect estimates of physical parameters. For example, fully senescent 

grasslands in the dry season can absorb a significant amount o f radiation in the PAR 

wavelengths that is not associated with biological activity. The hot-spot parameterization allows
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Table 5.1 The SAIL-2 model parameters, and their bounds or default values for 3 inversion experiments.

Configuration G1 Configuration G2 Configuration F

i Parameter (P,) Mode Value Mode Value Mode Value

1 Plant area index free 0.5-10.0 free 0.5-10.0 free 0.5-10.0

2 Stem fraction free 0.0-0.5 free 0.5-1.0 free 0.1-0.9

3 Leaf red reflectance range 0.05-0.17 free 0.05-0.17 free 0.05-0.17

4 Leaf NIR reflectance linked linked APi) linked APi)
5 Leaf Red transmittance linked i) linked APi) linked APi)
6 Leaf NIR transmittance linked fiP i) linked APi) linked APi)
7 Stem red reflectance free 0.1-0.4 range 0.1-0.4 range 0.1-0.4
8 Stem NIR reflectance linked AP7) linked APi) linked APi)
9 Mean leaf angle linked APi) linked APi) fixed 0.0

10 Stem NIR transmittance linked APi) linked A pi) fixed 0.0

11 Mean leaf angle fixed 50° fixed 50° fixed 50°

12 Mean stem angle fixed 50° fixed 50° fixed 60°

13 Leaf hot spot parameter fixed 0.4 fixed 0.4 fixed 0.1

14 Stem hot spot parameter fixed 0.4 fixed 0.4 fixed 0.5

15 Soil red reflectance range 0.06-0.4 range 0.06-0.4 range 0.06-0.4

16 Soil NIR reflectance linked A p\s) linked APis) linked APx 5)
17 Horizontal visibility fixed 50 km fixed 50 km fixed 50 km

18 Cover fraction range 0.5-0.8 range 0.8-1.0 fixed 0.99

The mode indicates how each parameter was treated in the inversion process: “free” means optimization was performed to retrieve these 
parameters, “fixed” means these parameters were specified prior to inversion and held constant, “range” means these parameters were fixed 
for each optimization in an ensemble, and “linked” mean these parameters were determined as a function of some other parameter (based on 
field data).



for the treatment of self-shading effects of both components; when the observer is looking from 

the back-scatter direction, fewer shadows are seen than from the forward-scatter direction, 

leading to greater observed radiance (a reflectance peak at r = r ) .  The width of this peak is 

related to the shape and size of canopy elements, thus the hot-spot parameter is representative 

of the ratio of leaf (or stem) size to canopy height and varies from 0 to 1 (Kuusk 1991).

The most common method of inverting a radiative transfer model is to use an iterative 

optimization procedure that attempts to find the global minimum of a least-squares measure of 

error, the merit function:

£2(P> = I  S w >j • ) ~  <©,-.*■> )]2 • <5-14)
* J

where E 1 is the sum-squared error, 0 f= (0 , 0' u/̂ ) represents the set of sun-sensor geometries 

( r r  f), R* is the measured reflectance, and the summation is over the total number of

measurements at hand: the unique geometrical configurations (/ =  1 N) times the number of

spectral bands per measurement. Goel and Thompson (1984) have shown that the SAIL model 

is mathematically invertable in this manner. In the case of AVHRR, j  is either 1 (visible) or 2 

(near-infrared). In addition, a set of weighting coefficients wy may be applied to reflect the 

relative importance of directions and wavelengths with respect to the slope of the merit function 

and thus improve the convergence of the optimization. We have left all wy~  1 in this study, but 

the usefulness of non-unit weights has been demonstrated by Privette et al. (In press). Equation 

(5.14) assumes that there is a multiple sampling of geometry, which is not strictly possible with 

AVHRR for a single target and satellite overpass, but we present one method for approximating 

this sampling in the next section.
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Given that the principal independent variables are 0  and K  the “shape” of the BRF 

with respect to the sun-sensor orientation and to wavelength is the fundamental profile used to 

characterize the land surface. A basic fact of remote sensing is that in order to retrieve some 

quantity P,-, the BRF must be sensitive to small changes in that parameter, i.e..

dR (Q ,k; P)
— -— —— ~ >  £ (5 151

i

where e represents some measure of the noise threshold in the data. As an example, reflectance 

in both the red and N IR  bands saturates with increasing LAI. This implies (as mentioned 

earlier) that the derivative in (5.15) approaches zero, and thus it is increasingly difficult to 

determine LAI at high values of LAI. An additional directional measurement (i.e., incremental 

sampling of 0 )  is useful for determining P when the derivative with respect to some parameter 

Pi at the new measurement geometry 0  is not equal to the derivative at any other available 0 /. 

The measurement is then said to be independent (or unique) and it contains new information. 

The number of independent measurements needed depends on the quality of model and data, 

the nature of the target, and the desired number of retrieved parameters.

I f  there are M  parameters and 2N  measurements, and if one attempts to retrieve m < M  

free parameters, then an obvious requirement is that 2N>ni. However, due to the existence of 

noise in the data and inaccuracy in the model it is desirable to have N  as large as possible and 

m as small as possible. Because reducing the number of free parameters m in the inversion 

increases the likelihood of a successful optimization (retrieval), those with less sensitivity can 

be held fixed at little cost to accuracy (Privette et al. In press). In addition, if  functional 

relationships can be found between parameters, it will reduce the dimensionality of the
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parameter space. Finally, it may also be useful to apply an ensemble of Fixed parameters and 

average the resulting retrieved parameters. All of these techniques have been used in this study.

When an acceptable parameter set P of the RT model has been recovered from the 

data, i.e., a minimum of ̂ (P )  has been found, daily total fAPAR (FI) (e.g., Goward and 

Huemmrich 1992) is obtained by diurnal integration:

where T  is the number of daylight hours (dependent on latitude and time of year), l K is the 

photosynthetically active radiation (PAR) portion of the spectrum, and/P is the instantaneous 

fractional PAR absorbed by the canopy. Albedo (a) is computed by hemispheric integration 

(Ross 1981):

where A is the entire solar spectrum (-0.03-1.2 pm) and Q] is the upper hemisphere.

5.3.4 Methods

The basis of our approach is the simulation of a geometrical sampling of the BRF by 

aggregating the reflectance data into cells that contain many individual 8 km pixels, retaining 

the associated location-specific values of reflectance, sun-sensor geometry, and quality-control 

indicators. Because of the Pathfinder compositing, spatially-adjacent pixels are often obtained

frft[cos(9'(r)) • f P(r'(r),k J  • Es(k)] 

J^r[cos(6'(f ))-£ ,( A.)]
(5.16)

a  =
dQ'[cos(0) • cos(O') • RP(r,r ' ,k)  ■ £,(>.)]

(5.17)
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with significantly different sun-sensor angles. Thus, within regions and 10-day composites, 

significant angular information exists, although each pixel is at a single angle. We reasoned that 

most relatively undisturbed systems, which are heterogeneous at sub-km scales, may represent 

reasonably homogeneous mixtures at 1-km scales and larger, and that pixels within a region 

may each contain consistent mixtures of the same types (e.g., x% trees, y% shrubs and z% 

grasses). Thus, multiple pixels within some grid cell could be used to produce a synthetic BRF 

for that grid cell, simulating multiple measurements of a (cell-sized) target. Appendix B 

contains supplementary information on most of the methods presented in this section.

Stratification of the Continental-Scale Data Using a Vegetation Index

We chose a region in central Africa for initial testing. The region was chosen because it 

is the site of an ongoing interdisciplinary investigation and because it contains extensive 

continuous mixtures of natural vegetation. The first step was to perform a series of large-scale 

analyses with AVHRR data using a vegetation index in order to assess: (1) the appropriate cell 

size and shape, and (2) a basis for excluding pixels from a cell that are outliers. We took N D V I 

from the Pathfinder data for the African continent and created a V I climatology by 

recompositing to maximum monthly N D V I, cloud and QC filtering, then averaging over the 

three years for each month, i.e.,

NDVI, = -  
3

£filt(m ax(NDVI(:/))
L i

/ =(Jan.. .Dec); y'=( 1986... 1988) (5.18)

We then performed a principal components (PC) rotation on the NDVI t- to define a set of new, 

orthogonal variables. The first three PCs explain 96 percent of the total variance. As the
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principal components of a stationary time series are equivalent to Fourier components, the first 

three PCs roughly correspond to the mean greenness, and the amplitude and phase of the 

seasonal cycle. Higher-order components are significant only for some isolated areas, 

amounting to a very small percentage of all pixels in Africa. The images in Fig. 5.5a,b show 

the first three PCs as a mixture of red(l), green(2), and blue(3). Functional ecotypes can be 

identified as having approximately the same color; this mapping may be thought of as a 

continuous, unlabeled vegetation characterization. A discrete characterization can also be 

obtained by clustering the PCs into a number of unique, idealized classes. Similar multi- 

temporal characterizations of spatial data have been presented in the literature (Andres et al. 

1994, Running et al. 1995).

We initially classified African vegetation using the first three PCs of the N D VI into 

forest, savanna and grassland, and desert, using the K-means method (Spath 1980). We then 

computed the semivariance of the NDVI in the N-S and E-W directions within types, focusing 

on the directional semivariance because of the strong anisotropy of vegetation density (at the 

continental scale) in Africa. Sills for the semivariance were typically higher E-W than N-S 

because of the influence of the strong N-S precipitation gradient in the Sahel. We set as a 

maximum threshold for grid cell radius the scale length (typically less than 200 km) of the E-W 

semivariance, and we set as a minimum the grid cell size sufficient to obtain an adequate 

sampling of the BRF as determined by the number of unique geometrical configurations. 

Empirical evaluation of these joint constraints for this region resulted in grid cell sizes of 50 km 

radius. At this resolution, the spatial continuity is approximately isotropic, so the choice of 

circular grid cells is appropriate. Figure 5.5b shows the transect of overlapping grid cells used 

in this analysis. We adopted the convention of numbering the cells from 1-15 starting at the 

northernmost cell. The discrete classification (for the entire continent) mentioned above
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Figure 5.5 Phenological characterization of Africa, (a) Principal components 1,2, and 3 as a 
mixture of red, green, and blue. Inset is 2b, showing the transect line, (b) The transect of 15 
“cells” from grassland (blue pixels) to evergreen forest (orange pixels). Also shown are field 
sites where soil/litter reflectance was measured.
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resulted in this transect being broken into two classes, with the between-class line falling very 

close to cell 11. We thus refer to cells 1-10 as being a savanna/grassland mosaic, cells 12-15 as 

being evergreen/deciduous forest, and cell 11 as “transitional” .

Leaf and Soil Optical Measurements

It is useful to obtain relationships between model parameters in order to reduce the 

number of free parameters in the inversion. This can be accomplished for a dependent variable 

by specifying a functional relationship between it and an independent variable, thus each time 

that variable is referenced during the optimization, it is assigned a value according to the 

prescribed function. We identified the leaf and soil/background optics variables as being most 

appropriate for data reduction because of the typically strong spectral autocorrelation in their 

reflectance/transmittance spectra.

An integrating sphere was used to measure the leaf optical properties of a set of 

savanna plants that were grown in a greenhouse. The leaves were of varying age and 

morphology. The measured reflectance and transmittance spectra were convolved with the 

AVHRR sensor bandwidths and the solar spectrum to produce visible (channel 1) and NIR  

(channel 2) values for reflectance and transmittance. Each point on Fig. 5.6 represents one of 

these reduced-spectral measurements. The existence of a large amount of correlation in these 

data led us to search for a way to represent the four leaf optical parameters with a single 

variable. Using the pairwise lines of best fit (solid lines in Fig. 5.6) is not a self-consistent 

approach. Principal components analysis yielded a 60 percent explanation of variance by the 

first PC. Thus, we used the first PC of these data to express visible leaf transmittance and NIR 

leaf reflectance and transmittance as a linear function of visible leaf reflectance. The resulting 

relationships are shown as dashed lines in Fig. 5.6 and represent the best way (in the least
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Figure 5.6 Leaf reflectance and transmittance data, convolved to the four leaf optical variables 
used in SAIL-2 and plotted against one another. The solid line is the line of best fit and the 
dashed line is the relationship obtained by writing all four variables in terms of the first PC of 
the leaf data (Appendix B).
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squares sense) to represent all the leaf optical parameters with one free variable.

The same technique was used for soil/litter reflectance. In January-February, 1995, 

we(co-authors EWS and ATH) visited a series of sites in the Central African Republic (C.A.R.) 

spanning the forest-savanna-grassland transition (Fig. 5.5b). LAI and soil/litter reflectance were 

measured at each site, including background spectra from areas that were recently burned. 

Wet-soil reflectance was also measured at each site. The combined soil and litter reflectance 

data were transformed into AVHRR-equivalent values using the same convolution method as 

for leaves. Using the transformed data, we developed a relationship between soil reflectance in 

the visible and NIR wavelength regions (Fig. 5.7). The soil line function, together with the leaf 

optics function, effectively reduce six of the model parameters (four for leaves, two for soil) 

down to two model parameters.

Inversion Methodology

We then extracted synthetic BRFs from a transect of grid cells in the C.A.R. (Fig. 

5.5a,b) for all months of 1986. The transect is 800 km long and consists of 15 cells; each cell is 

approximately 50 km in radius and consists of 121 Pathfinder (8x8 km) pixels. This focused 

study region represents an ecological gradient from grassland in the north to evergreen tropical 

forest in the south, with mixtures of grassland, savanna, and woodland in between.

Multiple, geometrically unique observations of a target are required in order to use the 

bidirectional information to retrieve parameters, so this technique has operational value only if 

each cell contains pixels with significantly different sun-sensor geometry, and if the degree of 

sampling is consistent over time. This is true for the cells on our transect, as demonstrated in 

Fig. 5.8a for cell number 1. Sun-sensor phase angle a  is a proxy for the full geometrical
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configuration* (Fig. 5.8b shows the September geometries), so we have color-coded all points 

in Fig. 5.8a-d by the phase angle. Figure 5.8c is the realization of an actual BRF; pixels with 

similar geometry have similar reflectance values. In fact, this is a fairly typical profile, showing 

high backscatter reflectance, and lower reflectance in the forward scatter directions and at 

nadir.

Outlier pixels within grid cells were rejected on the basis of a similarity criterion, 

following the PC characterization of Africa. This effectively excluded lakes, villages, some 

river corridors, and vegetated areas that differ greatly from the dominant local structural- 

phenological type. The first three PCs of the N D VI data were used to apply a consistent 

requirement of similarity to each cell. Any pixel that differed from the modal PC/ value (for 

i=  1,2,3) by more that 10 percent of the approximate total range of PC/ values for Africa was 

excluded. No more than half of the pixels were excluded from any given cell. On average, 70 

percent of pixels were retained. Figure 5.9 shows the PCI-3 values and the rejected pixels for a 

typical cell (number 1).

A number of free-parameter retrievals were performed on the transect of AVHRR data 

for 1986. We used three fixed-parameter sets, shown in Table 5.1 as G l, G2, and F.

Parameters in each configuration could be free and bounded, fixed at different values in an 

ensemble, constant, or functionally-linked to another variable. The three parameter 

configurations in this experiment correspond to an idealized grassland in the dry season (G l; 

more dead grass than live grass), a grassland in the wet season (G2; mostly green grass), and 

an ideal forest (F). For the grassland sets, stems were assumed to be senescent leaves and thus 

the relationship between NPV optical variables is the same as for leaves. Also, having the same 

shape as green leaves, they are assigned the same leaf hot-spot parameter. The main difference

cos(a) =  cos(0) cos(Q') + sin(0) sin(0') cos(v}/)
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Figure 5.8 (a) Sun-sensor phase angle for a typical site as a function of time, (b) The full sun­
sensor geometry for September, (c) Measured visible and NIR reflectances for the same data as 
in (b). (d) Measured versus modeled reflectance after inversion on the data from (b) and (c).
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Figure 5.9 A typical cell characterized by a PC analysis of multi-temporal N D VI data. 
Individual pixels are rejected if they differ from the modal cell value for any PC by more than 
10% of the continental range of values for that PC.
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between G l and G2 is that the optical properties of NPV are free in the G l inversion, and fixed 

in the G2 inversion (Table 5.1). This is because the relative abundance of NPV versus active 

leaves dictates, in part, the sensitivity of the optical parameters (Equation 5.15). In the “forest” 

set, stems are assumed to be tall (large hot-spot effect) and the green leaves small with respect 

to canopy height. Tree stems are also assumed to have zero transmittance.

For all the retrievals we inverted the SAIL-2 model on three free parameters: plant area 

index, stem fraction, and component (leaf or stem) reflectance in the visible. We used the 

optimization routine E04JAF (a quasi-Newton algorithm with simple bounds) from the 

Numerical Algorithm Group*, to perform the inversions. Nearly all attempts at inverting with 

four free parameters failed, as did attempts where one of the three parameters above was fixed 

and any other parameter (e.g., soil reflectance) was free. By failure we mean that the 

optimization routine could not find a minimum of the merit function (Equation 5.14) given the 

parameter defaults and constraints. It is a convenient and important fact that when a parameter 

set is so unrealistic as not to allow a solution, the inversion returns with a null result. Our 

subsequent inference that the three “key” parameters above have the greatest BRF sensitivity 

(Equation 5.15) over the range of canopy conditions encountered in this study is consistent with 

the analysis of Privette et al. (1994).

A successful inversion, by definition, yields reflectances that agree as closely as 

possible, in the aggregate, with the measured AVHRR reflectance values. Figure 5.8d shows a 

typical (described above) set of modeled vs. measured reflectances, corresponding to RP and R' 

in Equation 5.14. The two clumps correspond to channel 1 (circles) and channel 2 (triangles). 

The 1:1 relationship in this figure is indicative of the success of the optimization, and the 

scatter reflects the magnitude of the merit function E1 in Equation 5.14. This pattern indicates
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that the inversion has succeeded, and that the relationship between measured and modeled 

reflectances are well-behaved with respect to geometry.

5.3.5 Results

The SAIL-2 model was then inverted on the harvested AVHRR data to obtain P for 

each cell and for each month of 1986, using parameter configurations G l, G2, and F. Given 

the retrieved canopy structural and optical parameters, forward integrations (Equations 5.16 

and 5.17) yielded daily total fAPAR (Goward and Huemmrich 1992) and broad-band albedo. 

These secondary products are assumed to be more robust than the elements of P (e.g., LAI) 

because they integrate all of the model canopy properties and because they are radiative 

quantities. Our field measured LAI (sites shown in Fig. 5.5b) data are not directly comparable 

to the SAIL-2 retrievals of LA I (P^il-P^)), primarily because of the 9-year time difference, but 

they can provide a check on the results. In Jan. 1995, forest site LAIs were observed, ranging 

from 5 .5+0.6  in the evergreen tropical forests to 3.0+0.4 in disturbed, upland sites. By 

comparison, retrieved forest LAI ranged from 4.6±2.0  (cell 11) to 2 .8±0 .5  (cell 14).

We merged the fAPAR results for the three parameter configurations (G l, G2, and F) 

using the classification discussed above. The “grassland” parameterizations Gl and G2 were 

assumed to represent cells 1-10, results for cells 12-15 were taken from the “forest” F 

inversions, and cell 11 was assigned the mean of the G1/G2 and F results (Fig. 5.10a-b). 

Figures 5.10a and 5.10c also demonstrate the important success/failure phenomenon of the 

inversion. An unrealistic parameterization does not generally allow for a solution, so the “dry 

grass” G l inversions fail during the peak growing season months, and the “green grass” G2 

inversions are successful only during this period. The merged fAPAR results for all sites for one 

year are shown in Fig. 5.11. The spatial-temporal patterns of daily total fAPAR seen in Fig.
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Figure 5.10 (a) Retrieved fAPAR along the transect in the dry season (February). The solid line 
connects the points with parameterizations that are appropriate for the vegetation type. 
Gl=triangles, G2=squares, F=circles (see text), (b) The same as (a) except for September.
(c) An fAPAR time series for the northernmost cell (1), using the G l and G2 parameterizations.
(d) The same as (c) except for the southernmost cell.
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Figure 5.11 Retrieved fAPAR values along the transect as a function of time.
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description discussed above). A slight bimodal seasonality can also be seen at the southern 5.10 

and in Fig. 5.11 are a realistic depiction of the vegetation canopy dynamics in this region.

The amplitude and timing of the seasonality decreases from north to south, producing a sharper 

N-S gradient in the dry season than in the wet season (consistent with the geostatisticai points, 

in agreement with analyses of Olsson and Eklund (1994).

We compared our fAPAR results to those calculated using the Vi-based method of 

Sellers et al. (1994) for the Simple Biosphere model (SiB). There is roughly a 1:1 agreement 

(Fig. 5.12a-b) between the two approaches, but with a moderate amount of scatter (R2=0.88). 

Error bars for the Sellers et al. fAPAR result from within-cell variation of N D V I while error 

bars on our estimates reflect the uncertainty propagated from the parameter ranges that were 

applied as part of an ensemble (Table 5.1). The forest N D VI was transformed into fAPAR using 

the equations for the SiB tropical evergreen class, and for the remaining cells, we used the SiB 

savanna equations (Fig. 5.12a) and the SiB grassland equations (Fig. 5.12b). A clear offset can 

be seen between the SAIL-2 and the Sellers et al. (1994) determination of fAPAR, as well as a 

strong dependence on which V I transformation was used to get the savanna/grassland points. 

Also, the difference becomes amplified at high fAPAR values. The existence of a good 

relationship is possibly due to the fact that averaging V I values over a 50 km radius cell 

reduces the effects of variable sun-sensor geometry and background reflectance. Less 

correspondence would likely be observed if data from a multi-angle like MISR (Diner et al. 

1989) was used, because less spatial averaging would be required in the inversion.

Finally, we evaluated our estimated land surface albedo for the transect against the SiB 

model-derived estimates of Dorman and Sellers (1989) and an approximation using 

METEOSAT (a narrow-band visible weather monitoring instrument) data (Becker et al. 1988) 

along a transect at 20° E. Table 5.2 shows the albedo comparison for both ends of the transect
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Figure 5.12 (a) A comparison of fAPAR derived from the SAIL-2 inversion and fAPAR using 
the vegetation index-based method of Sellers et al. (1994) for SiB forest (circles) and savanna 
(squares) types, (b) The same as (a) except using SiB forest (circles) and grassland (squares) 
types.
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Table 5.2 Broad-band albedo estimates from the SAIL-2 inversions compared to the SiB model 
(Dorman and Sellers 1989), and METEOSAT (Becker et al. 1988). Cell 1 is centered at 8° N, 
and cell 15 is centered at 4° N.

Location/Time SAIL-2 SiB METEOSAT

Cell 1, January (dry) 0.10 0.15-0.20 0.09

Cell 1, September (wet) 0.15 0.10-0.15 0.16-0.18

Cell 15, January 0.11 0.15-0.20 0.10

Cell 15, September 0.12 0.10-0.15 0.16-0.17

at two times of the year. Compared to SiB, our values are of comparable magnitude but they do 

not co-vary with respect to vegetation type and seasonality. However, the METEOSAT-derived 

albedo appears to show good agreement in magnitude and seasonality at both latitudes. Future 

efforts to compare our results to Earth Radiation Budget Experiment data will provide more 

insight into the accuracy of these estimates.

The two comparisons with SiB formulations do not constitute validation of our inverse 

modeling results. At this time, Vi-based algorithms are the only other way to estimate 

biophysical parameters at regional-to-global scales. The comparison demonstrates that our 

results (using unconventional methods) are comparable to other estimates, but it reveals some 

intriguing differences. Further, though it is likely that the fAPAR values derived from inverse 

modeling are more accurate than those using V i’s because of their greater information content, 

the two techniques are suited for somewhat different applications. A Vi-based approach is 

computationally fast, and more applicable for coarse resolution (e.g., GCM-scale) analyses. 

Inverse modeling applications are more computationally intensive, but are based on physical 

and ecological theory, and thus are more appropriate for finer-scale studies. Moreover, inverse 

modeling may feed back into the development of better V I algorithms, as is currently planned 

for the NASA-EOS MODIS instrument (S. Running, personal communication).
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5.3.6 Discussion

Satellite remote sensing allows for direct observation of the status of global vegetation 

at regular spatial and temporal intervals. This density of observation is important for 

monitoring terrestrial ecosystems because of the high spatial and temporal variability in climate 

forcing and because of the nonlinear response of terrestrial biogeochemistry -  particularly 

factors relating to water and nutrient status. We have presented an algorithm for extraction of 

land surface biophysical information (LA I, fAPAR, and albedo) that is relevant for 

biogeochemical, ecological, and biophysical modeling, and that has the following unique 

characteristics:

1. It uses real satellite data and a physically-based model to retrieve parameters over 

large spatial areas. The SAIL-2 parameter set consists of physically meaningful quantities 

(Table 5.1) and leads to estimates offAPAR(\,t) and a!bedo(x,f).

2. It simulates a multi-directional sampling of the BRF by gathering a spatial-temporal 

neighborhood of pixels with an assumed spatial continuity. This assumption is enforced by a 

principal components (or Fourier) decomposition analysis of a vegetation index climatology.

3. It allows for the incorporation of a priori ecological knowledge in the choice of 

parameter constraints and of the inversion mode (i.e., which parameters are held fixed, and 

which are free). This method highlights the importance of data describing soil and leaf optical 

properties keyed to global soils and vegetation databases. These data are readily but rarely 

measured.

4. It allows for direct incorporation of field measurements of plant canopy and surface 

soil/litter (background) characteristics, which typically reduce the number of free parameters in 

the inversion and may be applied over large areas, as in this study.
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There are major differences between our approach and Vi-based, empirical approaches 

(Potter et al. 1993, Sellers et al. 1994, Ruimy et al. 1994). First, we use both optical channels 

simultaneously instead of combining them into one index. Second, we retrieve parameters for a 

cluster of pixels (one cell) instead of for each pixel, effectively trading lower resolution for 

increased accuracy. Third, we explicitly account for the two factors that are most responsible 

for the distortion of the vegetation signal: background spectral variation and bidirectional 

effects. Fourth, we account for PAR interception by non-photosynthetic vegetation which 

allows estimation of fAPAR for leaves. Finally, with inverse modeling, the uncertainty 

associated with lack of knowledge of some surface characteristics (parameters) and the validity 

of ecologically-based assumptions may be quantified using fixed-parameter ensembles.

Our conclusion, based on these preliminary results, is that it is possible to retrieve land 

surface parameters from remotely-sensed data using RT model inversions. Although we used a 

relatively simple RT model (SAIL), this method could easily be adapted to more sophisticated 

ones (Privette et al. In press). However, more complex models generally have more 

parameters; thus they may not be advantageous unless (1) the remote sensing data contains 

more BRF information per unit area and less atmospheric noise (e.g., MISR), or (2) more 

ecological constraints are available. Because our method is based on radiative transfer theory, it 

is probably more accurate than those achieved using Vi-based algorithms (except those that are 

highly tuned), but this has yet to be established experimentally. Our method requires no 

empirical calibration between reflectance (or a V I) and any of the estimated variables: fAPAR, 

albedo, or LAI. Field validation is essential, but difficult, because of scaling issues associated 

with the estimation of LAI, albedo, or fAPAR over an areas as large as 2500 km2. One way to 

attack the problem of verification is by using spectral unmixing techniques and data from other, 

higher resolution sensors to bridge the gap between field measurements and continental scale
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(e.g., AVHRR) data. These methods could also feed back to the large scale parameter 

estimation by providing better quantification of canopy component properties. Indeed, the 

combination of inversion and unmixing techniques has been proposed as a “paradigm shift” in 

the remote sensing of vegetation biophysics (Hall et al. 1995).

Although the AVHRR Pathfinder data set is carefully processed, there are two “minor” 

problems with the first release of the data (Prince and Goward 1996): (1) the incident solar 

radiation was not adjusted for solar zenith angle; and (2) there was an error in the correction 

for atmospheric Rayleigh and ozone scattering. These translate into RMS reflectance errors for 

a typical composite of as much as 1-3% (M . James, official communication). Moreover, the 

data have not been corrected for the effects of scattering by atmospheric aerosols, which can be 

large. Further processing of Pathfinder data is currently being planned to correct these 

problems, which could lead to improved accuracy of our analysis. We feel that the successful 

inversions presented in this study, using imperfect data, represent an extreme test of our 

algorithm.

This inverse modeling method can easily be used in the EOS framework, particularly 

with the MODIS and MISR sensors. Data from both sensors will be atmospherically corrected 

and calibrated with state-of-the-art techniques, and sampling rates of MODIS are comparable to 

those of AVHRR (Sellers and Schimel 1993). While MISR repeat samples are up to nine days 

apart, that sensor’s ability to measure a target at nine angles per satellite pass will likely result 

in smaller (and less heterogeneous) aggregation cells. Both sensors have spatial resolutions of 

less than one kilometer at nadir over several visible and NIR bands. The higher resolution 

sampling of solar and PAR spectral wavelengths by MODIS should allow for better estimation 

of land surface properties such as fAPAR and albedo.
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With algorithms such as the one presented in this section, inversion methods could soon 

be mature enough for large-scale applications. Automation of some decisions that are based on 

geography, climate, or time of year, will be possible in conjunction with consideration of 

ecological factors. Because they are easily incorporated into inversion methods, advances in the 

knowledge of ecosystems, radiative transfer, or numerical methods as well as refinement of 

global ecological and soils databases, will translate directly into a more accurate retrieval of 

biophysical parameters and may lead to a better understanding of the role of the terrestrial 

biosphere in the Earth system.

5.4 Toward Remote Sensing Data Assimilation for Terrestrial Modeling

Optical remote sensing data are beginning to be used in concert with models of land 

surface biophysics and biogeochemistry. Because of the observation that N D V I and SR 

(Equations 5.6 and 5.9) are correlated with fAPAR, this is the primary relationship that is 

exploited. Vegetation indices, however, may be more powerful as a validation tool than as a 

predictor because uncertainties in the data, uncertainties in the transformation to fAPAR, and 

circularity inherent in the logic of the relationship between fAPAR and net canopy 

photosynthesis (see Section 4.2 and Field 1991). Further, inverse radiative transfer modeling 

provides a framework for estimating parameters in a way that is compatible with terrestrial 

process model parameters, and one that does not override the model’s representation of reality. 

We will briefly review in this section two examples of using AVHRR-VI data to drive 

terrestrial models, and one example of an inverse technique (using field BRF data) that suggests 

the possible role of remote sensing data assimilation in terrestrial modeling.

Potter et al. (1993) developed a model of terrestrial cycling of carbon and nitrogen 

among vegetation and soil components. The model is similar in structure to the Century model
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(Parton et al. 1987). and in fact the soil organic matter transformation rates are based on 

Century. The model simulates net primary productivity NPP in the following way:

NPP =  s-APAR , (5.19)

where s is a total conversion efficiency that incorporates biochemical rates of light utilization, 

and stress factors (water, nutrients, and temperature), and APAR is the total PAR absorbed 

which is equal to EsfAPAR (see Equation 5.7). The fractional PAR absorbed is based on work 

by Sellers et al. (1992), and is given by

where the lower bound for the simple ratio SRmm is value at which it is assumed no PAR is 

absorbed and is based on the observation of unvegetated land surfaces. Conversely, SRmax is 

ecosystem type dependent and reflects the value at which all incident PAR is absorbed. 

Equation 5.20 represents the link to remote sensing for a model that is otherwise based on 

ecosystem carbon and nitrogen dynamics.

In a similar effort, Ruimy et al. (1994) developed a model that was more oriented 

toward flux calculations (i.e., stocks of carbon were not emphasized). Their study explored the 

sensitivity of net ecosystem exchange to various representations for the relationship between 

N D VI and fAPAR, as well as values for the conversion efficiency e. Their best estimate of 

global integral NPP (~60 Pg C yr'1) agrees closely with other values from the literature, but the 

mean values per biome do not correspond as well with other published estimates. Ruimy et al.

fAPAR = min (5.20)
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(1994) argue that their estimate is more accurate that those that do not use N D V I to predict 

NPP, but there is considerable variability in their results associated with different assumptions 

about s and the NDVI-J/4P/U? relationship. In a subsequent study (Maisongrande et al. 1995) 

using the same model, interannual variability in NPP (and NEP) was inferred from a multi-year 

AVHRR-NDVI data set. The authors claim that effects of climate cycles (e.g., El Nino- 

Southern Oscillation) can be seen in the resulting flux estimates. If  this is true, then it 

represents a powerful application of remote sensing data (but see Chapter 4).

Using remote sensing derived estimates of fAPAR to drive ecosystem models may not 

be the most effective way to incorporate such data into process studies. This is primarily 

because there is well-developed theory linking climate and biome-based potential NPP to derive 

the dynamics of whole ecosystem carbon fluxes. Also, observations of bulk canopy radiative 

properties reflect both actual and potential photosynthesis because both LA I and leaf optics 

contribute to the remotely sensed signal. Leaf area index is related to potential photosynthesis, 

but stresses during the growing season can result in lower LAI. Leaf optical properties 

(governed in part by chlorophyll content) also change in response to stresses that would be 

“double-counted” upon application of Equation 5.19.

Schimel et al. (In press b) discussed issues related to validating spatial patterns of 

model prediction using remote sensing. They examined model predictions by the 

Vegetation/Ecosystem Modeling and Analysis Project of net primary productivity. One goal 

was to check the realism of the spatial variability of the model estimates using long-term 

monthly mean N D V I (N D V I; Equation 5.18) for each 0.5°x0.5° grid cell, under the 

assumption that NPP and NDVI are related by Equations 5.19 and 5.20. They found that within 

biomes, NPP and NDVI are uncorrelated. This comparison was made using the mean deviates 

of both quantities (with each grid cell value corrected by the mean of values from all the grid
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cells in an ecosystem type). Correlations with the original, uncorrected data were relatively 

high (ft2=0.6-0.7). Thus the models appeared to be representing across-biome patterns of NPP, 

but no conclusion could be made about within-biome variability.

In the numerical weather prediction (NWP) community, there is an established 

paradigm for using a priori knowledge of processes (embodied by 2 model) to interpret data. 

This is accomplished by a set of techniques called data assimilation- Da*a assimilation may also 

be thought of as a formal methodology for constraining a model siitfutetion to be as consistent 

as possible with observations. The basis for the constraint is the calculation by the model of the 

observed parameters at the same location and time. Though there are various techniques 

differing in mathematical detail, typically the time-evolution of state variables is specified by 

the model equations, and model parameter values are adjusted iteratively until satisfactory 

degree of agreement is achieved. This process is conceptually equivalent to the methods used in 

inverse radiative transfer modeling (Section 5.3).

Bouman (1992) has used field-measured optical reflectance and microwave backscatter 

of an agricultural canopy in a quasi-assimilative mode to calculate crop growth and yield. 

Physical models o f radiative transfer (for optical and microwave signals) were linked to a crop 

growth model via canopy structural variables (e.g., LAI). Appropriate meteorological data 

were prescribed. An optimization procedure was used to find the parameter set that yielded the 

lowest absolute error in reflectance/backscatter averaged over the growing season. They found 

that using either the microwave or optical data resulted in more accurate predictions of crop 

yield, and using both types of data together significantly further improved the estimates.

Considering the success of Bouman (1992) and the arguments above, we propose that 

coupling a radiative transfer model like SAIL-2 to a biophysical or biogeochemical model could 

enable assimilation of optical data (e.g., from AVHRR) for calculation of landscape C 0 2
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fluxes. It is likely there is not enough information in the satellite data to completely determine 

the patterns of terrestrial NPP (e.g., Ruimy et al. 1994), especially because of uncertainty in 

the application of rules like Equations 5.19 and 5.20, and because of the complex interactions 

between vegetation, soils, and climate. Many of these effects are not manifest in canopy 

architecture or optics in an immediate or straightforward way (Chapter 4).

5.5 Summary

Key Earth system variables can be obtained from satellite data by integrating 

appropriate processing, interpretation, and analysis. In order to interpret the wealth of 

information about the terrestrial biosphere contained in satellite data, there are three major 

considerations, all of which can require considerable effort. First, a model is needed (either 

empirically or physically based) to relate the measurements made at the satellite to biophysical 

or ecological quantities at the land surface. Second, factors that are unrelated to the land 

surface, which contaminate the signal, must be accounted for. Third, though it is not widely 

regarded in the literature, it is likely that a priori knowledge of land surface characteristics 

(e.g., terrain, species composition, canopy architecture, degree of heterogeneity, phenology, 

soil type) is necessary for accurate retrieval of the desired parameters.

Vegetation indices can be used with any data that contain multi-spectral information, 

and geometrical dependence can be exploited with any data that contain significant angular 

variation. AVHRR data is applicable to both categories. The difference between these two 

variables is that the spectral sampling is a predetermined property of the instrument, while 

instruments with systematic geometrical sampling are only proposed, e.g., MISR (Diner et al. 

1989). Thus, in principle, one could envision the use of geometrical and spectral indices. 

Analogously, inverse modeling simply requires multiple measurements that contain variability
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in any independent variable in concert with a model that can produce reflectance estimates as a 

function of those variables. In the primary work o f this chapter (Section 5.3), we have 

demonstrated a method for using AVHRR optical reflectance as a function of both independent 

variables to estimate ecosystem biophysical properties.

One of the important uses for satellite-estimated land surface parameters is to assist 

process modeling of terrestrial biogeochemistry (i.e., prediction of large-scale fluxes of carbon, 

nutrients, and water). An established technique is to assume that the optical measurements, by 

way of a VI or inversion-derived fAPAR can be used to fix the value of potential photosynthesis 

in such calculations. However, models are already conceptually equivalent to schemes for 

integrating and interpolating ecological and meteorological data. Thus the framework for 

biogeochemical modeling is adaptable to including remote sensing data in a more 

complementary way. For reasons discussed above, we propose that remote sensing “data 

assimilation” techniques (which require consistency between model and data) be used for 

assessment of intra- and interannual carbon (and other trace gas) fluxes between the terrestrial 

biosphere and the atmosphere.
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CHAPTER 6

CONCLUSIONS

6.1 Review of chapter contributions

In this dissertation, we presented original work from ongoing collaborative and 

interdisciplinary research. We discussed methods for studying the nature of global terrestrial 

biogeochemical dynamics as perturbed by human activity, focusing on annual-to-centennial 

time scales. Our primary methods involved using global models and observations. Spatial 

resolution was also an important factor in this work; we considered global scale analyses that 

were both spatially explicit (e.g.. Chapters 3 and 4), and averaged over space (e.g.. Chapter 

2). The finest spatial resolution considered in this work was in Chapter 5, where extracted 

information from 8x8 kilometer grid cells (which were re-aggregated to approximately 0.5 

degree resolution). In the course of this work, a number of conclusions relating to the 

terrestrial biosphere and global change were put forth. We briefly review these below.

1. Enhanced terrestrial uptake over the last two hundred years can be inferred from 

aggregated models of the global carbon cycle. This sink is significant (perhaps as large or 

larger than the oceanic sink) and can be explained, in part, by direct effects of increasing 

concentrations of atmospheric C 0 2. Further, timescales for the persistence of anthropogenic 

C 02 in the atmosphere are very sensitive to the activity of the terrestrial biosphere, including 

the nature and controls over mechanisms which comprise the so-called “missing sink.”

2. Terrestrial fertilization by anthropogenic nitrogen deposition is (and has been) likely 

a significant component of the global carbon budget of “excess” C 0 2, and has important effects
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on the coupling between global carbon and nitrogen cycles. Uncertainties are associated 

principally with the spatial patterns of deposition and details of terrestrial biogeochemical 

response to exposure to chronic N and other pollutants. The persistence of nitrogen fertilization 

(like direct C 0 2 fertilization) is constrained by negative feedbacks involving pollutant exposure 

and “N-saturation."

3. The response of net terrestrial carbon exchange to climate variability (and likely 

other perturbations) occurs over multiple years and is governed by internal biogeochemical 

regulation, which depends on the prior state of the ecosystem and the characteristic turnover 

times of soil and vegetation components. Because terrestrial ecosystems are heterogeneous at 

all spatial scales, climate-C02 relationships are the result of the superposition of local responses 

to transient climate anomalies. In addition, these responses are highly affected by land-use 

because of its impact on ecosystem biogeochemistry and the distribution of vegetation types 

with specific resource use efficiencies.

4. It is possible to retrieve land-surface biophysical parameters over large regions from 

satellite data using radiative transfer models in concert with site data and geographically 

referenced vegetation and soils databases. This method accounts for factors (i.e ., bidirectional 

and background effects) which confound more simplistic analyses of reflectance data, and it 

provides a framework for incorporating extensive and readily available a priori ecological 

knowledge. The algorithm we present has the potential to provide more accurate constraints on 

terrestrial process models which produce estimates of the spatial and temporal patterns of net 

carbon exchange.

6.2 Future work

The studies presented in the previous chapters generally raised more questions than 

they answered. Thus, they all represent continuing projects that, though presently separate,
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have been converging, and will likely continue to converge in many respects. Below we outline 

some prospects for future work that are based on the continuation of the developments 

discussed in this dissertation.

Aggregated global carbon cycle models (Chapter 2) continue to be useful despite their 

simplicity, as demonstrated in the most recent IPCC (1995) report. We plan to bring the Moore 

and Braswell (1994) model up to date by including temperature-dependent component turnover 

times, by allowing for a sink mechanism that is not controlled directly by atmospheric C 02 

concentrations, and by re-investigating the 13C and I4C constraints on the partitioning of excess 

carbon amongst reservoirs. Further, we plan to make the model more readily available as an 

educational tool; it will be used in an upcoming IGBP/GAIM workshop to be held in Mombasa. 

Kenya in 1997.

The global nitrogen cycle is gaining wide recognition for its importance in both global 

biogeochemistry and climate change. The work in Chapter 3 represents some of the initial 

results (first and second publications) of a collaborative project with E.A. Holland, A.R. 

Townsend, and other investigators. The third phase of the project involves producing a gridded 

data set (0.5x0.5 degree resolution) of wet and dry NOy and NHX deposition for the continental 

US. This data set will be used for validation of the modeled deposition fields and as input for 

another modeling study. We plan to use the Century model to validate (and likely modify) the 

simplistic parameterizations in NDEP.

Many questions were raised in Chapter 3 about the nature of the interannual response 

of terrestrial ecosystems (and carbon exchange) to climate perturbations. While the 

observational data qualitatively supported the modeling analyses, we necessarily stopped short 

of presenting a unified theory. We plan to take a closer look at the spatial and temporal 

structure of the data, expanding our analysis to the less precisely known precipitation record.
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This work will benefit from continued collaboration with E. Linder (University of New 

Hampshire). Further, we plan to perform model-based analyses (using Century) that are more 

directly compatible with the data. This will involve a global climate perturbation study (we 

have studied site responses only up to this point) and the consideration of implications for plant 

canopy conversion efficiencies (for comparison to satellite optical measurements).

We have argued that land-surface information retrieved using radiative transfer model 

inversion are potentially more accurate because of the way they use spectral and bidirectional 

information, and because they facilitate use of generalizable knowledge of optical and structural 

properties of ecosystems. This assertion has not been formally tested. We are proposing to 

perform an end-to-end validation of the algorithm presented in Chapter 5 by linking field data 

to coincident bidirectional observations made by an airborne spectroradiometer. This work will 

be done in collaboration with G. Asner (University of Colorado). D. Schimel, and B. Moore. 

Further, we will explore in detail the prospects of using MODIS, and especially MISR data in 

the inversion algorithm.

255

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

THE SAIL MODEL EQUATIONS

The SAIL model formulation treats plant canopy components as a “turbid medium”, 

i.e., an idealized distribution of scattering elements. As such, it has a rather distinct lineage in 

the theory of radiative transfer. We will outline the progression of the theory (essentially a 

series of small modifications) leading to the SAIL version implemented by Braswell et al.

(1996; Section 5.3). We will use the notation of Verhoef (1984) as much as possible 

throughout. The fundamental notions underlying the SAIL model can be traced back to work 

by Schuster (1905), who described the spatial dependence (in one dimension) of radiant energy 

in a “foggy” medium as being composed of two diffuse fluxes of light moving in opposite 

directions. He based the description on the scattering and absorption of light by an infinitesimal 

layer dx of the medium (in this case, a stellar atmosphere), thus the forward £_ and backward 

E ,. fluxes are given by:

= kJ  -  kE  +  — v£\ -  — v£  
dx ' 2 2 '

(A .l)

— L = - ( kJ  -  kE^ -  — v£_ + — v £  ) ,  
dx 2 2

where k is the absorption coefficient, v is the scattering coefficient, and J is the total radiative 

energy (temperature and wavelength dependent) of the layer. The placement of the minus sign
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indicates that E. is defined as traveling in the positive dx direction (this will be useful when 

considering plant canopies, where the origin is the top of the canopy and downward fluxes are 

positive). The assumption is that one half of the scattered radiation travels forward, and one 

half is scattered backward. However, this symmetry only occurs when the particles composing 

the medium are small compared to the wavelength of the radiation (Rayleigh 1914).

Silberstein (1927) applied the formulation to the case of a non-radiating medium 

illuminated by an external source. Thus 7 = 0 , and the divergence of the “primary beam” is 

described by

where p.. s, and s' are the absorption, forward-scattering, and backward-scattering coefficients 

for the incident light, respectively. Ryde (1931) improved the formulation by noting that the 

scattering coefficients are generally different for incoming light than for the internally scattered 

diffuse light.

Duntley (1942) collected these improvements, and added the generalization that 

incident and diffuse radiation will have different absorption coefficients. Now the divergence of 

the diffuse fluxes for the “three-stream” formulation are:

dx
(A .2)

dx

(A .3)

dE.
— = ~{s'Es -  kE^ -  a'E^ + o £ . ) ,

dx
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where a  and a ' are the scattering coefficients for downward (i.e., forward) and upward 

fluxes, respectively. Thus, all incident specular light not absorbed, (s+s ')E s, is assumed to be 

converted into a diffuse radiation source. This is essentially the formalism (Equations A.2 and

A .3) used by Allen et al. (1970), who first applied the turbid medium concept to a plant 

canopy. They solved this equation for the outgoing diffuse flux £L(0) using the intuitive 

boundary conditions £ .(0 )=0 , Es(0) =  1. and E^(x[) = p sEXxl) .  where p5 is equal to the soil 

background reflectance. Further, the soil background is assumed to be Lambertian (reflecting 

all the incident radiation as upward diffuse flux). Allen et al. (1970) performed a quasi­

validation of the model solution with data of NIR transmittance at three different heights in a 

com canopy. In one case, they assumed that k =  |o.=0, and that o = a ' , but determined the other 

two parameters (a, s, and s ' ) from a three-parameter fit to the data; in another, they used 

laboratory leaf measurements of absorption and scattering to estimate k and o. They found 

< 4%  error in both cases, and the measured parameters were within experimental error of their 

fitted counterparts.

The next improvement was made by Suits (1972), who considered a fourth flux 

associated with the outgoing radiance L0 in an arbitrary direction of observation. This 

modification was a critical step toward simulating the BRDF. Suits (1972) accounted for 

anisotropic diffuse radiance by dividing the canopy conceptually into a number of layers, each 

with its own set of coefficients. The coefficients were decomposed into horizontal and vertical 

components which allowed for the coefficients to be expressed in terms of the optical properties 

of leaves. This obviously required as an input parameter the relative projected vertical and 

horizontal area of leaves in each layer. A unit thickness layer of the canopy (which is assumed 

Lambertian and so E=nL) contributes to the modeled directional radiance as follows;
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dL0 = - —(«£„ + vE_ + wEs -  KE0)dx ,
71

(A.4)

where u, v, iv and K  are coefficients that depend on the relative horizontal and vertical 

projected leaf area of the layer, the angle of observation, and (in the case of w) the angle of 

incidence.

A more general and concise formalism was introduced by Verhoef (1984). It allowed 

for an arbitrary angular distribution of leaf inclination angles within a canopy layer by 

calculating iteratively the coefficients for Equations A.2-A.4 given a fixed inclination angle for 

a representative sample of angles in the distribution. The resulting radiative flow fields are 

superposed according to the relative abundance of the leaves at the given angle. Prior to this 

work, the geometry of source and sensor was accounted for (i.e.. Suits 1972), but not the 

geometric character of the scattering elements, which is required for accurate representation of 

reflectance anisotropy. Further, Verhoef (1985) presented the model equations in a matrix 

form:

— (E) = M E ,
dt

(A.5)

where E=(£^, E„ E+, E0)r  and M  is a transformation given by
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M =

f -k 0 0 0>

s a a 0

-s ' - a -a 0
<.-w - V -u Kj

(A.6)

where k = p .+ s + s ' and <2 = k + c t' . The solution to this set of equations is straightforward. Let 

Y  be a transformation of E such that Y M V 1 diagonalizes M . Then Equation A .5 can be written 

as dF/dr=A, where A is a diagonal matrix containing the eigenvalues of M . The standard form 

for the solution F can then be easily found. Applying the inverse transformation E = Y *'F  will 

then yield the final form of the fluxes. Application of boundary conditions can also follow the 

vector-matrix format. The major contribution of Verhoef (1984,1985) was not the solution, but 

the definition of the coefficients My in terms of the three primary angles (leaf inclination, solar 

zenith, and sensor zenith) and the leaf optical properties (reflectance and transmittance). So the 

set of model parameters P, along with the sun-sensor configuration 0  (see Section 5.3.3) are 

mapped into the coefficients My such that the reflectance is given by R =R P(k, 0 ) . This allows 

field/laboratory-determined values of leaf optics and canopy architecture (LAI and leaf angle 

distribution) to be used in the simulation of canopy reflectance. Conversely, we can invert the 

model to obtain physically meaningful canopy parameters.

The version of the model used by Braswell et al. (1996) was modified to include non­

photosynthetic (NPV) scattering components. Qin (1993) demonstrated the importance of 

representing NPV in a canopy radiative transfer model, and showed that accurate bidirectional 

reflectance profiles can be obtained for mixed canopies. His method was to simply assume a 

linear superposition of the two sets of coefficients for a layer. This ignores interaction between 

the two components and assumes that an element of canopy thickness is described by a set of 

bulk canopy coefficients. Qin (1993), using a more complex model (based on geometric optics)
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than SAIL, found good agreement with bidirectional reflectance measurements of a wheat 

canopy, and a significant improvement over the original single component model. We 

performed the same test using the 2-component SAIL model (SAIL-2), with input parameters 

based on the Qin (1993) parameter set. Qualitatively, our results (unpublished) appear to agree 

about as well with the data in Qin (1993), though the degenerate case (zero NPV fraction) is 

somewhat different than their model.

Finally, the SAIL-2 model (Braswell et al. 1996) includes a parameterization of the hot­

spot effect. The model does not specifically deal with mechanisms that can give rise to the hot­

spot phenomenon, namely, self shading by leaves stems, trunks, and other plants. Thus, a 

modification of the flux E0 must be made. We used an implementation of a hot-spot 

parameterization for the SAIL model made by Kuusk (1991). Because the attenuation of the E0 

flux (as a function of depth) is related to the probability of a line of sight observation of a layer 

at depth, the K  parameter (Equations A.4 and A.6) can be adjusted parametrically such that 

reflectance increases sharply where the observation and illumination angles are nearly equal 

(see Fig. 5.8). There is one parameter controlling the magnitude of the effect that can be 

related to the ratio of component (leaf) size to canopy height.
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APPENDIX B

DETAILS OF THE INTEGRATED INVERSION ALGORITHM

In this appendix, we will discuss some of the procedural details of the Braswell et al. 

(1996; Section 5.3) algorithm that were not fully presented in the article. Primarily these have 

to do with the initial analysis of the reflectance data leading to the choice of “cell” size and 

shape, the processing and application of ancillary information (e.g., field spectra), the 

gathering and filtering of data within a cell, the inversion method, and the calculation of albedo 

and fAPAR. Figure B .l is a flow chart showing the steps in the process, which is essentially 

two-tiered. The upper tier, inside the box, is the main processing stream, and the lower tier is a 

supporting set of operations (both will be described below). What this diagram does not show is 

the considerable amount of exploratory data analysis required beforehand in order to verify the 

basic assumptions and requirements inherent in the method (related to exploiting the 

bidirectional information).

B .l Defining the neighborhood for pixel aggregation

The basis of the approach is the creation of an “synthetic” bidirectional profile for unit 

of landscape (a cell) that is represented by an amalgam of pixels that are assumed to contain 

approximately the same vegetation mixture. Recall that each PAL pixel is 8x8 km so the 

smallest unit is already mixed to some extent. Thus there are two competing requirements that 

need to be balanced: (1) the cell must be small enough so that the assumption of spatial 

continuity is not violated to a large degree (i.e., uncertainty in the true parameter set P
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increases with ceil size); and (2) the cell must be large enough to include significant variability 

in sun-sensor geometry (i.e., bidirectional information increases with cell size). The principal 

goal of the exploratory analysis mentioned above was to determine if a satisfactory compromise 

between these two considerations existed for the PAL data. Attempts to arrive at an objective, 

rule-based determination of cell size, shape, and orientation that could be applied on a 

continental scale all led either to some subjectivity (e.g., the specification of thresholds for 

variance) or an inconvenient degree of computational intensity. We settled on the uniform 

application of circular, 50 km radius cells based on a simple geostatistical Analysis followed by 

a closer look at the variability of sun-sensor geometry for a few locations.

The work leading to the choice of cell specifications, though not pan of the algorithm 

as shown in Fig. B .l, utilized two of the intermediate products: the N D VI climatology and the 

gross stratification (see Section 5.3.4). Figure B.2 shows the stratified data (Fig. 5.5) grouped 

into four distinct classes. We are particularly interested in the boundary between the Sahelian 

grassland/savanna region and the tropical evergreen forest region. We performed the 

semivariogram analysis on the monthly NDVI (Equation 5.18) for all pixels in a class, using 

the formula (Cressie 1991):

where Ar(h )= {(/,/): s, - s; =  h}. Further, because the data is gridded, we defined h such that y 

was calculated for all possible spatial lags on a square grid ( | h | <150  km) in order to check 

for anisotropy. Our thinking at this point was that the cell shape used in the algorithm could be 

determined by the shape of the semivariogram surface for each class and for each month.

£  ( ND VI(s,) -  NDVI(s j )) (B .l)
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Figure B.2 A discrete classification of the first three principal components shown in Fig. 5.5. 
The area of focus for this study (white crosses) is divided into savanna/grassland and forest.
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Figure B.3 shows a typical set of the NDVI semivariograms (for November). Though 

differences can be observed between classes related to different degrees of climate-driven 

gradients in vegetation productivity and (obviously) different degrees of heterogeneity 

associated with biome type, the anisotropy was oriented roughly along the north-south and east- 

west axes. Thus we sought to define elliptical cells, whose size and semi-major axis lengths 

would be determined by length scales of constant semivariance in those directions. We based 

this analysis on the N-S/E-W semivariograms for two different months (May and November) 

and for the two classes that exist in our study region (class 2 =  grassland/savanna; class 4 =  

evergreen forest).

To evaluate the number of geometrically unique observations present in the data for a 

given cell size, we aggregated data for elliptical cells of varying size, centered on the crosses in 

Fig. B.2. The size was determined by the lag distance corresponding to an arbitrary 

semivariance. The polar plots in Fig. B.4 show the sampling of view zenith and relative 

azimuth for one of the cells, and for axes lengths corresponding to four values of y (0.001, 

0.0015, 0.002, and 0.0025 squared-NDVI units), while constraining the cells to be smaller than 

I05 km. We found that the number of unique geometries continued to increase with larger cells, 

but at length scales greater than [h|«50 km (the range is generally >  100 km) the differences 

were associated with pixel-to-pixel variability, which is considerably less than variability 

associated with the day/time of observation (there are a maximum of ten days worth of 

observations). At these relatively small spatial scales, there were typically more than two 

unique observations; in addition, the semivariograms were approximately isotropic and constant 

with respect to class and month. Thus, we opted for a circular cell of radius 50 km.
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Figure B.3 Semivariogram contours of N D V I for the month of November for the four 
coarsely defined classes shown in (B.2). Class I is Desert, Class 2 is the northern seasonal 
savanna/grassland, Class 3 is the southern savanna/grassland, and Class 4 is the evergreen 
forest. Classes 2 and 3 are kept separate so that monthly analyses would not be confounded by 
opposing seasonality.
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B.2 Incorporating Held measurements

We used high-spectral resolution data gathered for a variety of leaves and soil/litter 

backgrounds as a constraint on the inversion process. The data consisted of reflectance (for 

leaves and soil/litter) and transmittance (for leaves only) as a function of wavelength at 1.4 nm 

intervals measured by a field spectroradiometer. Two typical reflectance spectra are shown in 

Fig. 5.2. Each spectrum was converted to effective AVHRR visible and NIR band values, i.e., 

one point on Fig. 5.6 or 5.7, by a simple convolution:

P a =

f p ( X ) - / , ( 7 i ) - f lA(?i) dX 

\ l s(k) Bx{X) dX
(B.2)

where flA is the sensor response curve, A is either AVHRR band 1 or band 2 (see Fig. 5.2), ls 

is the solar spectrum, and the integral is over all wavelengths (but truncated by the finite width 

of fiA.

For the soil/litter spectra, we assumed the line in Fig. 5.7 to approximately describe the 

relationship between visible and NIR background reflectance, thus the two parameters (P15 and 

P16) are reduced to one by the linear curve fit. Because the leaf optical parameters (and 

measurements) include transmittance as well as reflectance, a slightly more complicated 

procedure was used. We wished to reduce the four leaf optical parameters to one because they 

are correlated with one another (Fig. 5.6), and because it is necessary to have as few free 

parameters as possible. The principal component rotation of the leaf data is a linear 

transformation:
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= ctuPvis' +  a ,2pNiR' +  a 13xvis' +  a 14xNiR'

x 2 ~  a 2 lPvis ' +  a 22PNIR' +  a 23xvis' +  a 24x N IR '

X j  —  a 31pvis' +  a 32PNiR' +  cc33xvis' +  a 34t NIR' (B.3)

,r4 — a 4Ipvis' +  a 42PNiR' +  ct43xvis' +  cc^x^r '

where the original data space is made up of the mean deviates of the four leaf optical 

parameters (e.g., pvis' =  pvis - pvis) and x contains the transformed coordinates or principal 

components (PCs). The coefficients a y form a matrix A  whose rows are the eigenvectors of the 

covariance matrix, i.e., the eigenvector corresponding to the first PC is v ^ a - n ,  a 2l, a 31, 

a 4i)T. We wish to write the other variables in terms of pVjs. This can be done using the first PC, 

which corresponds to a line oriented in the direction of maximum variance (60 % of the total 

variance in the data). First note that Equations B.2 can be inverted and that A 'l = A T. Thus, 

neglecting the second, third, and fourth PCs, we can substitute for .tv

which, given the numerical values for the a I; values and the data means, are in slope-intercept 

form and shown as the dashed lines on Fig. 5.6.

Pnir -  a l2 .X[ +  p NIR

(B.4)
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B.3 Harvesting the data 

Prior to each inversion performed on a cell, a number of tests were applied to further 

enforce the requirement o f spatial continuity, to reduce the effects of atmospheric 

contamination, and to eliminate pixels that were outliers for some other reason. Further, we 

aggregated pixels within cells that had nearly identical sun-sensor vectors. This regrouping 

substantially increased the computational efficiency of the inversion at essentially no cost to 

accuracy.

First, if one of the Pathfinder quality control flags was set. the pixel was thrown out. 

This condition could be due to a number of factors, including instrument malfunction, or an 

uncorrectable error in one of the processing steps (Agbu and James 1995). Second, if  the 

Pathfinder cloud detection algorithm indicated any degree of cloudiness, the pixel was likewise 

rejected. Third, we applied the spatial continuity requirement using the mapped first three

principal components of N D V I (PC,; Section 5.3). The basic idea is to retain pixels that, on 

average, have a very similar time trajectory of N DVI. Thus, a strict requirement is that if a 

pixel has a PC, value that is different by an amount d from the mean, it is rejected. In other 

words, for the &th pixel out of N  pixels in a cell, the criterion for acceptance is:

1 N
p c ik - — i p c ik 

*  N &  ,k
< d , . (B.5)

where dj is defined (arbitrarily) as 10% of the 3ct width of the continental distribution of values 

of the /th PC. Thus if any one pixel has a different NDVI(r) from the others (where “different” 

is defined relative to the possible range of values in the PC-transformed data), then it is not 

used.
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B.4 The inversion technique

Numerical inversion of the SAIL-2 model involved finding the minimum of the merit 

function E^iP ;A ,0) (Equation 5.14), where P is a subset of the model parameters (the free 

parameters), and (A ,0 ) is the set of wavelength bands and geometries for all the measurements 

of a target at a fixed time. Often, when inverting a set of equations using an optimization 

routine, a solution will be found that is a local minimum of the merit function, as opposed to a 

global minimum. The NaG E04JAF quasi-Newton algorithm attempts to verify that the 

minimum found is the desired solution, but it is still possible that a given starting point in 

parameter space will lead to a poor solution. We took two measures to ensure that either the 

most realistic and accurate solution will be found, or the routine will return with no solution. 

First, we applied simple bounds to the free parameters. This is equivalent to saying that E2 

as Pj approaches some critical value. See Table 5.1 for examples of parameter constraints. If 

the data and model will not allow for a physically realistic result, then the optimization routine 

returns with a “solution is outside domain” error condition. The second step was to perform the 

optimization a number of times with different (randomly initialized) starting points. The 

solution was retained that had the lowest sum-of-squares error.

B.5 The calculation of albedo and fAPAR  

The calculation of albedo and fAPAR required forward simulation of the model with the 

full solution set P (including the fixed and free parameters) determined in the inversion. We 

reported bihemispheric albedo (e.g., Ross 1975), which required integration by quadrature of 

Equation 5.17 using the forward-modeled reflectances. The wavelength-dependent parameters 

(e.g., leaf optics) were assumed to apply broadly over discrete intervals. In other words, the 

visible region parameters were used for X < 0 .7  pm, and the NIR parameters for k >0 .1  pm.
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This is approximately true, but a more accurate estimate could be obtained by using a leaf 

model (Jacquemoud and Baret 1990), or an average spectral shape from the data.

Estimates of instantaneous fraction of absorbed photosynthetically active radiation 

(fAPARi) required a further extension of the SAIL model. In order to calculate the absorbed 

radiation, one needs to know the upward and downward fluxes at the top and bottom of the 

canopy, i.e.,

fAPAR, -  < * , & + * ■ * »  - (B.6,
Es(0) +  £  (0)

We added the calculation of the fluxes Es( l )  and £+(1), which follow from the discussion of 

Verhoef (1984) under the assumption of a Lambertian background. Further, we reported values 

of “daily total fAPAR” (Equation 5.16; Goward and Huemmrich 1992). This requires forward 

model calculations at a number of solar zenith angles corresponding to a diurnal cycle. The 

incident solar flux was modeled as a function of latitude and time of day (e.g., Dingman 1994).
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