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ABSTRACT

BIPED DYNAMIC WALKING USING REINFORCEMENT 
LEARNING

By

Hamid Benbrahim 
University of New Hampshire, December 1996

This thesis presents a study of biped dynamic walking using reinforcement learning. A 

hardware biped robot was built. It uses low gear ratio DC motors in order to provide free 

leg movements. The Self Scaling Reinforcement learning algorithm was developed in 

order to deal with the problem of reinforcement learning in continuous action domains. A 

new learning architecture was designed to solve complex control problems. It uses 

different modules that consist of simple controllers and small neural networks. The 

architecture allows for easy incorporation of modules that represent new knowledge, or 

new requirements for the desired task. Control experiments were carried out using a 

simulator and the physical biped. The biped learned dynamic walking on flat surfaces 

without any previous knowledge about its dynamic model.

xi
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CHAPTER ONE

INTRODUCTION

In the pursuit of solving complex control problems, many different approaches have been 

thoroughly investigated. Problem solving methods range from developing a complete 

model of the system and solving its equations to random trial and error. Each one of these 

methods can be successful in particular situations while being completely impractical in 

others. The success or failure of these methods depends on the type of nonlinearity of the 

system, nature of perturbations, change over time of the system characteristics or the 

environment, degree of instability, number and range of relevant inputs, etc. Many 

encountered systems do not fit in any specific category; they contain elements that require 

different problem solving methods in order to find a complete solution. It is thus necessary 

to find ways to integrate these methods and take advantage of each of their particular 

strengths.

Animals provide probably the best example of problem solving using different methods 

and taking advantage of all kinds of knowledge in order to perform a specific task. A 

human driving a car, for example, tries to stay at a constant distance from the next vehicle 

by using a PID control like method, accesses acquired knowledge about the state of the 

brakes to know how soon to use them, uses previous experience with the particular car to 

know how to handle sharp turns, etc. While doing all these control actions the driver is not

I
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necessarily conscious about them and does not always think about what method to use 

every time a new situation is encountered. This is an example of a control system that 

integrates several kinds of problem solving techniques to achieve a particular task.

Walking robots are becoming more and more interesting as computing power is getting 

more accessible and easily used for control. They have always been at the center of 

interest in robotics because of their ability to navigate in rugged terrain where wheeled 

robots cannot move. The research progress, however, has been relatively slow because of 

the complexity of legged robot dynamics. Walking robots are highly unstable, nonlinear, 

and depend on large numbers of parameters. So far most of the successful robots have 

four or more legs because they are inherently more stable than bipeds.

The reason biped locomotion is the center of this research is not because of a pure quest 

for complexity. Bipeds are extremely useful. They are the smallest of all the locomotion 

robots. Easy to carry around and requiring less energy, they can access areas that other 

robots cannot like ladders or very narrow paths, and they do not require change in the 

working environment since they use the same kind of locomotion humans use. They can 

also be used as a prosthetic device to replace human legs or help handicapped people to 

walk.

As a control problem, biped robots are very challenging. They are inherently unstable 

because while lifting one leg the robot is standing on only one leg and the center of gravity 

is not always above the supporting foot. They are also highly nonlinear and the control

2
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system must be very smooth because any sharp movement can throw the robot hopelessly 

out of balance.

Despite all of these difficulties, humans seem to walk with no problem and without even 

noticing their control actions. This at least suggests that there is a very good solution to 

the problem. The fact that walking is most of the time done unconsciously suggests that 

maybe it does not require constant heavy computing in normal walking conditions. As in 

the car driving example humans successfully integrate different problem solving techniques 

in the walking process. This research relies heavily on these assumptions in trying to solve 

the biped dynamic walking problem.

Neural networks and learning methods prove to be very effective in controlling complex 

dynamic systems. They do not always require precise knowledge about the system’s 

dynamics, and can leam solutions that cannot always be predicted by the user. They also 

continuously adapt to system and environment changes over time. Furthermore, it is 

obvious that animals acquire their skills mostly by learning and adaptation. It is thus 

necessary to explore these methods in depth, because of the great qualities they bring to 

control systems. It has been a thrust of this research to do so.

The research presented in this thesis started by applying different reinforcement learning 

algorithms to control a hardware two dimensional ball balancer. Both discrete and 

continuous action algorithms were investigated. A new continuous action reinforcement 

learning algorithm called Self Scaling Reinforcement (SSR) was invented as the result of

3
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these experiments. The particular details of the ball balancer experiments are not described 

in this document, while the resulting algorithms are thoroughly investigated.

A hardware biped robot was built to be the focus of this research, and to serve as the main 

testbed for the learning experiments. Since biped walking is more complex than ball 

balancing a new reinforcement learning architecture was designed for complex dynamic 

system control, and applied to the biped. This architecture succeeds in achieving dynamic 

biped walking without any knowledge of robot dynamics. The biped walks indefinitely on 

flat surfaces at slow speed (.5m/s).

This document consists of seven chapters. The introduction constitutes the first chapter. 

The second chapter presents a quick overview of existing biped walking research, and 

discusses the main issues related to biped dynamic walking. The third chapter introduces 

some relevant neural networks and learning methods. It also describes in detail the 

reinforcement learning algorithms that are used in this research namely the SRV and SSR 

algorithms, as well as the CMAC neural network. The fourth chapter describes the 

hardware biped robot built as a part of this research. The fifth chapter presents the global 

learning architecture used to solve the problem of biped dynamic walking, also developed 

as part of this research. The sixth chapter describes the experiments and presents the 

results. The seventh, and last, chapter is the conclusion.

4
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CHAPTER TWO

BIPED WALKING

1 History

Although biped locomotion has been studied for a long time, it is only in the past twenty 

years, thanks to the fast development of computers, that real robots started to walk on 

two legs. Since then the problem has been tackled from different directions. First, there 

were robots that used static walking [Kato, 74]. The control architecture had to make sure 

that the projection of the center of gravity on the ground was always inside the foot 

support area. This approach was abandoned because only slow walking speeds could be 

achieved, and only on flat surfaces. Then, dynamic walking robots appeared [Takanishi, 

82]. The center of gravity can be outside of the support area, but the zero momentum 

point (ZMP), which is the point where the total angular momentum is zero, cannot. 

Dynamic walkers can achieve faster walking speeds, running [Raibert, 84], stair climbing 

[Takanishi, 90], [Kurematsu, 91], execution of successive flips [Hodgins, 90], and even 

walking with no actuators [McGeer, 90]. Static and dynamic walkers are described in 

more detail in the next two sections.

The first dynamic walkers used the following architecture. First, the user supplies a 

command that represents the desired walking pattern. Then, a dynamic model of the biped, 

which is usually a simplified inverted pendulum model, determines the foot and center of

5
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gravity positions. The desired joint angles are obtained using the biped’s inverse 

kinematics model, and a linear feedback controller makes the robot joints follow the 

desired trajectories (Figure 1). The model used here is referred to as foot model because it 

uses foot positions as control action.

desiredfoot and C.G.
Commands

joint anglespositions
robot

biped
dynamic
model

inverse
kinematics

model

Figure I: Foot model

Later, another architecture that uses a Central Pattern Generator (CPG) appeared [Bay, 

87]. The biped model and the inverse kinematics model in the previous architecture are 

replaced by a CPG that generates periodic signals that represent the desired joint 

trajectories (Figure 2). The model used here is referred to as leg model because it focuses 

on leg movements.

desired
Commands

joint angles
robotCentral Pattern 

Generator (CPG)

Figure 2: Leg model

These descriptions show only the general structure, while the actual implementations 

involve more complex control methods. These methods are examined later in this chapter.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Another major step in biped locomotion was the introduction of neural networks and 

learning [Miller, 90,94],[Zheng, 90]. With these methods, it is not necessary to know the 

robot’s exact dynamic model, the walker can find solutions that the user cannot think of in 

advance, and it can adapt to environment changes. Miller and Zheng’s work is described at 

the end of this chapter. It provides a starting point for this research.

2 Static walking

Static walking assumes that the robot is statically stable. This means that, at any time, if all 

motion is stopped the robot will stay indefinitely in a stable position. It is necessary that 

the projection of the center of gravity of the robot on the ground must be contained within 

the foot support area (Figure 3). The support area is either the foot surface in case of one 

supporting leg or the minimum convex area containing both foot surfaces in case both feet 

are on the ground. These are referred to as single and double support phases, respectively. 

Also, walking speed must be low so that inertial forces are negligible.

This kind of walking requires large feet, strong ankle joints and can achieve only slow 

walking speeds. It has been abandoned by most researchers for dynamic walking, which 

provides more realistic and agile movements.

7
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i i
Single support phase 
Stable position

Double support phase 
Stable position

Unstable position

Figure 3: Static walking

3 Dynamic walking

Biped dynamic walking allows the center of gravity to be outside the support region for 

limited amounts of time. There is no absolute criterion that determines whether the 

dynamic walking is stable or not. Indeed a walker can be designed to recover from 

different kinds of instabilities [Hodgins, 90],[Raibert, 84]. However, if the robot has active 

ankle joints and always keeps at least one foot flat on the ground then the Zero 

Momentum Point (ZMP) can be used as a stability criterion. The ZMP is the point where 

the robot’s total moment at the ground is zero. As long as the ZMP is inside the support 

region the walking is considered dynamically stable because it is the only case where the 

foot can control the robot’s posture. It is clear that for robots that do not continuously 

keep at least one foot on the ground or that do not have active ankle joints (walking on 

stilts), the notion of support area does not exist, therefore the ZMP criterion cannot be 

applied.

8
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Dynamic walking is achieved by ensuring that the robot is always rotating around a point 

in the support region (Figure 4). If the robot rotates around a point outside the support 

region then this means that the supporting foot will tend to get off the ground or get 

pressed against the ground. Both cases lead to instability. To draw an analogy with static
ft

walking, if all motion is stopped then the robot will tend to rotate around the ZMP.

ZMP ZMP

Unstable position Stable position

Figure 4: Dynamic walking

The position of the ZMP is computed by finding the point (X,Y,Z) where the total torque 

is zero. Since we are only interested in the ground plane we assume that Z-0. To avoid 

confusion, torque and moment mean the same thing here. The robot has n links; each link 

is subject to a total force Fj applied at a point determined by the vector R relative to the 

center of gravity of the link. T determines the total motor torque applied to the link. Rz is 

the ZMP vector and T is the robot’s total torque. An example of the forces applied to a 

link is represented inFigure 5.

9
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Figure 5: Forces applied to a link

The force, torque and position vectors have the following coordinates: 

Fj: (Fxi, Fyi, Fn)

Tji (Txi, Tyi, Tn)

Ri: (Xj, yi, Zi)

Rz: (X , Y , Z)

Then the total torque is computed as:

T = I ( R i + R z)xFi + I T i =0  
i=l i=l

where x represents the cross product. Equation ( I) is then expanded as:

10
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n n n ( 2)
K y i  +  Y)Fzi -  I ( Zi +Z)Fyi + £ T xi = 0  
i= l  i=l i=l

S(Z i +  Z)Fxi -  i ( Xi +  X)Fzi + I T y i = 0  
i= l  i=l i=l

i  (Xj +  X)Fyi -  S  (yj + Y)Fxi + £ T zi = 0
i= l  i=I i=l

Making Z-0 and solving these equations for X and Y we obtain the ZMP coordinates:

n n ( 3)
E(ZjFx l - XiFzi) + E T yi

x  = —------------------n
IFzi
i=I

S ( z iFyj — yiFzi) +
Y  =  i = l _________________ i=l

n
IF *

i=I

4 Inverted pendulum model

The inverted pendulum is the most commonly used dynamic model to represent the 

biped’s dynamics. This is only valid if there always is one and only one foot on the ground. 

The robot is represented by a point mass equal to the total mass of the robot and situated 

at the center of gravity, and a massless beam pivoting around the point of foot contact 

with the ground. Notice that for an inverted pendulum, the ZMP is located at the point of 

contact with the ground.

11
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Figure 6: Inverted pendulum

The dynamic equation of the inverted pendulum is:

x(y + g) -yx = 0 (4)

Where x and y are the coordinates of the center of gravity, L is the length of the 

pendulum, 8 is the pendulum’s deviation from the vertical and g is the gravity. This is a 

highly nonlinear equation, it can be simplified by assuming constant height as follows:

where h is the constant body height. This is a commonly used assumption since most 

humans and walking robots keep the body at constant height. This provides large savings 

on energy because since the body is the heaviest part of the biped, body movement can 

dramatically increase kinetic energy expenditure. The length of the pendulum changes 

according to the robot’s knee joint, or whatever mechanism is used to replace the knee 

function.

12
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This is an insufficient model since it does not take into consideration the energy related to 

changing the pendulum’s length. It is however a reasonable approximation at slow walking 

speed.

5 CPG methods

Central Pattern Generators (CPG) have been identified in most animals as being 

responsible for generating periodic signals that excite motion muscles [Grillner, 76]. They 

can be mathematically formed by a set of coupled oscillators, some of which are excitatory 

and others inhibitory. When configured properly these oscillators generate the complete 

walking pattern. They can also generate different types of walking, i.e. jumping, crawling, 

running etc.

Van Der Pol (Pol, 26] generated a set of equations that are now widely used as CPG 

oscillators. The oscillators are defined as follows:

Xj-HiCpf-cf^+gfcj = qi <6>

Cj =  Xj — £  ^-jix j
j*»

where xj are the outputs of the oscillators, pj are called amplitude parameters, q offset 

parameters, g? frequency parameters andXij are called coupling parameters.

6 Quick overview of existing biped robots

This section presents a brief description of some biped locomotion realizations.

13
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Miller’s biped [Miller, 94] uses a basic Central Pattern Generator (CPG) to generate 

desired joint positions according to user supplied commands. This CPG consists of a set of 

controllers. The CPG’s output is determined by a set of parameters that a CMAC neural 

network (discussed in Chapter 3) leams in order to achieve stable dynamic walking. By 

monitoring the differences between left and right, and front and back foot forces, the 

CMAC can determine whether the walking is stable or not The CPG’s user supplied input 

commands represent the desired walking pattern: step length, step interval, and lift 

magnitude. Another CMAC leams kinematically consistent postures to ensure reasonable 

joint position commands. The biped can successfully walk on flat surfaces relying only on 

very simple dynamics and kinematics models.

Bay and Hemami [Bay, 87] use coupled Van Der Pol oscillators as a CPG. The 

parameters of these oscillators govern the magnitude, frequency, and offset of each 

oscillator. Additional parameters are used to couple the individual oscillators together to 

make them excite or inhibit each other, and work in a synchronized manner. By choosing 

the appropriate set of parameter values (mostly using trial and error), the oscillators 

generate signals that are used as desired joint trajectories for a biped walking robot. 

Different sets of parameter values can achieve different walking patterns.

Zheng [Zheng, 90] uses a knowledge base where a few CPG trajectories are stored. The 

biped detects the floor’s slope using its foot sensors, and looks in the knowledge base for 

a corresponding pattern. If one exists it uses it, otherwise, it chooses the closest pattern 

and uses a neural network to modify it to suit the new terrain. Once the new pattern has

14
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been learned, it is stored in the knowledge base. With this method the robot leams to walk 

on flat and variably slopping surfaces. Zheng distinguishes between two types of behavior. 

When the walker finds a familiar terrain it uses an existing pattern, and does not need 

feedback. This is called voluntary motion. If the terrain, however, is not familiar the 

walker needs feedback in order to adjust its joint positions. This is called reflexive motion. 

Wagner et al. [Wagner, 88] use a slightly different approach. They find a set of optimal 

solutions through simulation and store them in a knowledge base. These solutions are 

invoked during walking and modified according to sensory inputs.

Stitt and Zheng [Stitt, 93] apply distal learning [Jordan 92] to control a biped. This 

method incorporates a forward model of the robot dynamics and uses it to convert 

stability information into information on how to adjust the robot’s joints so as to regain 

stability. In distal supervised learning Figure 7) the correct joint position is unknown. 

However, target values for the outcome of adjusted joint positions are known (i.e. foot 

forces). If the gait is adequate, the feet will provide a stable support. Thus a desired foot 

force trajectory is known. This is called a distal variable. When the robot walks using the 

wrong gait, the unbalanced condition will be sensed by foot force sensors. A neural 

network is trained to learn the relationship between the joint adjustments and the foot 

forces. Miller et al. [Miller 90] use a similar approach to control a robot arm. A CMAC 

neural network leams the inverse model of the robot, and generates the appropriate 

command to track a desired trajectory.

15
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Figure 7: Distal learning

Kajita et al. [Kajita, 92] use the inverted pendulum to model the robot dynamics. By 

assuming constant body height and posture, they obtain a simple differential equation 

representing the position of the center of gravity. They also obtain an energy like 

expression that is constant for each stable walking pattern. By defining the successive 

values of these energies and the appropriate step lengths, the robot can achieve stable 

walking and change patterns. This method assumes that the robot’s model is very close to 

an inverted pendulum.

Wang et al. [Wang, 92] use a modular neural network strategy. They classify the walking 

cycle into five phases, and decouple the dynamics equations in order to get independent 

joint equations. They implement the controller as follows: each joint is controlled by a 

separate supnet, and each supnet consists of five subnets corresponding to the five phases 

of walking. All the networks are integrated into a global net. They use backpropagation 

and supervised learning, based on their dynamics model, to update the parameters of these 

networks. Katie and Vukobratovic [Katie, 92] use a similar method. They decompose the 

dynamics of the robot into several equations and train a network for each equation. They 

increase convergence speed in the neural networks by considering the problem of

16
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adjusting the weights as a problem of estimating parameters. They use the recursive LS 

method and the Extended Kalman Filter.

Takanishi et al. [Takanishi, 90] introduce a new concept, called “Virtual Surface”, to 

consider the ZMP (Zero Moment Point) on an uneven surface. The robot can climb stairs 

and walk on inclined terrain. They control the trunk’s position to deal with the problem of 

stability and the lower limbs to do the path control of dynamic walking independently. The 

virtual surface is represented by the polygon formed by the 2 or 4 support points (heels 

and toes) whether the robot is in single or double support phase. The trajectory of the 

ZMP is then planned within this surface. The lower limbs move according to a predefined 

trajectory and the trunk controls the ZMP to follow the desired trajectory within the 

virtual surface. They linearize the ZMP equations in order to compute the appropriate 

control signals, and use Fast Fourier Transform (FFT) to find periodic solutions.

Kurematsu et al. [Kurematsu, 91] use the inverted pendulum model to generate joint 

trajectories. A neural network leams to compensate for the difference between the biped 

and the model, and another neural network leams the inverse kinematics. The robot leams 

to walk on stairs and flat surfaces. A similar approach is used by Kitamura et al.

[Kitamura, 90].

Raibert [Raibert, 84] built a series of hopping robots. They have telescopic legs with no 

knees and no ankles. The legs contain springs that make the robot bounce when it falls on 

its feet. By changing the length of the springs, the controller adjusts the energy stored in 

the robot, thus controls the hopping height and the running speed. The leg angles are
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chosen according to the desired running speed or other desired behavior like executing 

forward flips [Hodgins, 90],

Shih et al. [Shih 91,92] optimize the walking by minimizing the difference between the 

Zero Momentum Point (ZMP), which is the virtual total ground reaction point, and the 

center of the supporting area. They use a dynamics model and a kinematics model to 

generate the appropriate joint trajectories.

Goddard et al. [Goddard, 92] control their biped by determining the appropriate toe push- 

off forces. They derive the dynamics equations of the biped, determine the nominal motion 

according to the sensed terrain slope, and find the appropriate toe push-off force. They 

use feedforward gait generation and feedback stabilization.

Sano et al. [Sano, 90] use the inverted pendulum model and control the angular 

momentum at the ankle.

Miura and Shimoyama [Miura, 84] built five bipeds BIPER 1, 2,3, 4, 5. The robots are 

not statically stable because they have no ankle joint actuators. They linearize the inverted 

pendulum model and generate the joint trajectories that satisfy the model’s equations, then 

they use linear feedback to control joint positions.

Kawaji et al. [Kawaji, 92] use an inverted pendulum model to generate a trajectory defined 

by the foot position of the free leg, and the position of the waist. They use inverse 

kinematics to determine the desired joint angles.

18
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7 Summary

The previous section shows a number of methods that have been used to solve the 

problem of biped locomotion. It is difficult to detect a specific trend, because most of 

these methods are being used and investigated at the same time. We can however detect 

some major breakthroughs that will definitely set new directions [Miller, 94],[Zheng,

90],[Bay, 87],[Wang, 92],[Stitt, 93].

The introduction of learning and neural networks to biped locomotion has shown better 

results than conventional control methods. Indeed, it is difficult to accurately model the 

dynamics of a biped and to find analytical control rules that will solve stability and 

nonlinearity problems. Furthermore, if one agrees with the concept that trying to mimic 

animal behavior is the most promising direction in robotics, then learning and adaptation, 

central pattern generation, pattern recognition, and modularity are the directions to take.

Miller introduces a method that uses a modular structure and a reflexive behavior, Zheng 

uses the concepts of voluntary and reflexive motion, and Bay and Hemami use a CPG that 

generates periodic joint angle trajectories. All these methods are very elegant and show 

great improvements over conventional methods.

Learning and neural networks methods have a great potential for solving the problem of 

biped locomotion. They have been tested in various linear and nonlinear control problems, 

and have shown great adaptability, immunity to noise, and robustness. Two major 

obstacles that these methods must overcome are the need for a large memory space and

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for computing power. These obstacles are quickly disappearing as fast progress is being 

achieved in computer technology.
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CHAPTER THREE

LEARNING

This chapter describes some of the learning methods that are closely related to this 

research. The methods that are used in the biped learning as well as those that have been 

developed during this research are described in great depth, while the other methods are 

presented briefly.

The first section presents a brief definition of supervised learning. The second section 

presents reinforcement learning. It describes two methods that deal with the credit 

assignment problem, Temporal Differences (TD) learning and Q learning. The problem of 

continuous vs. discrete action domain in reinforcement learning is also presented, as well 

as different methods that try to solve it: Bang-bang, Stochastic Real Valued (SRV), Self 

Scaling Reinforcement (SSR). Eligibility traces are described under reinforcement learning 

even though they can be used in supervised learning too. The third section describes three 

neural network configurations: Boxes, Backpropagation, and CMAC. The fourth section 

discusses a few outstanding learning challenges.

1 Supervised learning

Supervised learning is based on the theory of adaptive control. It is an adaptation 

mechanism where the system leams to perform its designated task with the assistance of a
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teacher. When the system outputs an action, the teacher generates an error signal equal to 

the difference between the desired and actual actions. The system then updates its 

parameters in order to minimize the error. This of course requires that a desired action is 

known and the system is explicit enough to know how to update its parameters in a 

direction that minimizes the error.

When a system is composed of several cascaded modules the desired outputs of each 

module are not all known. It is possible to backpropagate the desired system output 

through all the modules by computing the gradient of the error, when analytically available 

[Rumelhart, 86], or by identifying the inverse of the modules for which a desired output is 

known [Jordan, 92],

2 Reinforcement learning

Reinforcement learning is used when very little knowledge is available about the system to 

be controlled. It is based on the following idea. The controller is assigned a specific task.

If it succeeds in accomplishing it, it receives a reward (or a positive reinforcement), and if 

it fails it receives a punishment (or a negative reinforcement). The controller then leams, 

through experience, to avoid actions that yield punishment and to adopt actions that lead 

to success. It is closely related to the theory and methods of dynamic programming [Sato, 

88], [Barto, 90] and optimal control, and has roots in the psychological study of classical 

conditioning [Barto, 83], [Sutton, 84].
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In many situations the success or failure of the controller is determined not only by one 

action but by a succession of actions. The learning algorithm must thus reward each action 

accordingly. This is referred to as the problem of delayed reward. There are two basic 

methods that are very successful in solving this problem, TD learning, [Sutton, 84] and Q 

learning, [Watkins, 89]. Both methods build a state space value function that determines 

how close each state is to success or failure. Whenever the controller outputs an action, 

the system moves from one state to an other. The controller parameters are then updated 

in the direction that increases the state value function.

When the action space is discrete, the implementation of reinforcement learning is 

straightforward, [Barto, 83], [Franklin, 88], [Benbrahim, 92]. When the system has to pick 

an action from a fixed set, it chooses the one that has obtained success more often than 

any of the others. When the action domain is continuous, the problem is less obvious. 

Statistical gradient following methods, [Williams, 92], [Gullapalli, 90], [Benbrahim, 94] 

have produced some promising results. These methods use a random number generator 

with a Gaussian distribution to generate the action. A neural network controls the mean 

and standard deviation of the Gaussian. The network weights are updated toward the 

direction that yields higher reinforcement. As a result, the mean converges toward an 

optimal action and the standard deviation increases when the system needs to search the 

action space, and converges toward zero once an optimal action policy has been learned.
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2.1 Actor-Critic

In the Actor-Critic learning configuration there are two systems, an actor and a critic. The 

actor generates an action and the critic rewards the actor according to the outcome of that 

action. The critic builds a state evaluation function that predicts the final outcome of the 

system behavior, whether it will be success or failure. Some of the methods that are 

generally used to build these predictions in the Actor-Critic configuration are Temporal 

Differences (TD) learning and Q learning. These methods are described below.

2.2 TD learning

Temporal Differences (TD) learning (Barto, 83], [Sutton, 84] is used to solve the problem 

of delayed rewards in reinforcement learning. It can also be used in a variety of prediction 

tasks [Miller, 94]. Within an Actor-Critic configuration the critic uses TD learning and the 

raw reinforcement r to create a more developed reinforcement signal r as follows:

where p(x) is the prediction of future success when the state is x and 0</<l is a decay 

factor. If the system moves from one state Xu to another state xk that has a higher 

prediction of success, then the action responsible for this move will be rewarded 

accordingly. The prediction is updated as follows:

r = r + yp(x!c, t ) - p (x k_l , t - l ) (7)

p(xk ,t) = p(xk,ti) + Pr ( 8)
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where P is a positive decay factor < 1 and ( is the time where state x* was last visited.

TD learning can be implemented for a continuous input domain by using a neural network 

that leams the predictions as shown in Figure 8. The network can be updated using LMS 

and using pf as the LMS error. Neural networks and LMS are described in more detail in 

Section 3.

—  PX

Prediction

Figure 8: TD Learning in a continuous input domain 

2.3 Q learning

Q learning [Watkins, 89] deals with the problem of delayed rewards by building a state- 

action evaluation function Q(x,a), where x represents the state and a the action. TD 

learning [Sutton, 84] also builds an evaluation function V(x), which does not represent the 

actions explicitly as in Q learning. A very simplistic comparison between the two methods 

would be that V(x) could be considered as a rough approximation of the average of Q(x,a) 

for all possible actions.

If at time t the system moves from state \  to xk+i by executing action a, and receives a 

reinforcement r, then the Q values are updated as follows:
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Q(xk, a, t +1) = AQ(xk,a, t )+ (I -  A.)[r+ y max{Q(xktI ,b ,t)/beA > ] (9)

where A is the set of all possible actions,A is an averaging factor (between 0 and I), and y 

is a time discount factor that determines how far back, in time, the actions should be 

rewarded for the current outcome.

When the Q values converge to their optimal value function C$, then if the controller 

always chooses actions that correspond to maximum Q values, the system will reach an 

optimal goal.

Q learning is much more powerful than TD learning because it offers a more explicit state- 

action evaluation function. It requires, however, more computing power, and memory 

space, and finding the optimal policy is difficult in the general case. It can be successfully 

used as a replacement to more costly dynamic programming methods [Barto, 90].

The implementation of Q learning in the case of a discrete action domain is straight 

forward. The learning algorithm can scan the action space easily and search for the action 

that has the largest Q value. In a continuous action domain, however, scanning the action 

space is more difficult; this makes Q learning widely used only in discrete action domains.

One way to implement Q learning in a continuous action domain is to use two neural 

networks, one that leams the Q values corresponding to the input state x and action a, and 

another that leams the maximum value Q,„ of Q and the associated action a* for the input
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state x (Figure 9). The action a is in general equal to a*, plus a random component. This 

randomness is used to scan the action domain.

X

— Q
a

Q values

“  Q«r

max. Q and corresponding a 

Figure 9: Q Learning in a continuous action domain

The two networks can be updated using LMS with the error signals 81 and 82, 

respectively.

8\ = ( \ -X)(r  + }Qma-Q (x k,a*,t)) ( 10)

82 =
max <£>(/ +1), <2max (/) >- (2™, (0
a(t +1) -  a * (/) if Q(t +1) > Q__ (/), 0 otherwise

Q learning is probably the most sophisticated reinforcement learning method. However, as 

mentioned earlier, because of its relative complexity, it is more realistic to apply it in 

discrete than in continuous action domains, especially in real-time control. It is possible to 

further optimize it in order to alleviate the computational cost and make it suitable for 

real-time control in continuous action domains.
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2.4 Discrete vs. Continuous action domain

Although most of the learning theory in discrete and continuous action domains is similar, 

there are crucial differences in practice. Consider a stochastic learning system where the 

action is chosen randomly according to a certain probability distribution p(). The learning 

approach is to find a probability distribution that maximizes the likelihood of success. The 

probability that a certain action x will be chosen is equal to p(x). If the generated action 

yields success then its probability will be increased to increase the likelihood that the 

action will occur [Narendra, 74].

In the case of a discrete action domain the action is chosen as follows. Each action is 

assigned an output value

v(x) = p(x) + r(x) (11)

where r(x) is a random number. The random numbers r(x) are independent and have the 

same distribution. The learning algorithm scans the action domain and chooses the action 

that has the highest output value. It is not realistic to apply this method to continuous 

action domains. It takes a long time to scan the domain and compute the output value for 

each individual action.

Instead of trying to learn a probability distribution for a continuous action domain, a 

constant distribution is used, usually a Gaussian. The learning algorithm leams the 

appropriate mean and standard deviation for each input. To make an analogy with the
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discrete action case, the probability of a continuous action is increased by moving the 

mean of the Gaussian closer to it. The standard deviation usually decreases as the system 

leams.

The larger the reinforcement a discrete action gets the more likely it will be chosen in the 

future. We cannot say the same thing about the continuous action case. If the mean of the 

Gaussian is moved toward the action proportionally to the reinforcement then it might 

overshoot if the reinforcement is too large.

The Stochastic Real-valued (SRV) [Gullapalli-90]and Self Scaling Reinforcement (SSR) 

[Benbrahim, 94] algorithms deal with this problem in more detail.

2.5 Bang-bang control

Bang-bang control is an old control method that uses 2 discrete actions. The controller 

usually chooses between a negative and a positive action of equal magnitude. If these 

magnitudes are chosen appropriately then it can be possible to control many systems.

This method is usually appropriate when the system dynamics respond favorably to sharp 

changes in the action and where accuracy is not of major concern. A system that can easily 

oscillate will be very hard to control with a bang-bang controller.

Since it uses discrete actions, a controller that is learning which action to take can learn 

very quickly and the controller can be relatively simple. This makes bang-bang a very 

attractive method in many control applications. It has been tried with success in learning to
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balance an inverted pendulum in simulation, [Barto, 83] and a real-time ball balancer 

[Benbrahim, 92] implemented in hardware.

2.6 The Stochastic Real-valued (SRV) Algorithm

For completeness, we start by examining Williams ̂ Williams, 92] statistical gradient 

following algorithm that uses a stochastic output unit. This unit is a Gaussian random 

number generator with mean p. and standard deviation o. For every input vector x, the 

algorithm generates p(x) and o(x). These are used to generate the action y(x) according to 

the probability distribution:

where the input vector x is omitted for clarity.

The learning algorithm is governed by a weight vector w, that is updated by:

where 0 < a  < 1 is a learning rate, r is the reinforcement andf is a reinforcement base 

line, a prediction of r. The characteristic eligibilitye(w) is a measure of how eligible each 

weight is for updating. Williams defines the characteristic eligibility e(w) by the equation:

w(t +1) = w(t) + a(r -  r)e(w) (13)

( 14)
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To better understand how this algorithm works consider these equations for the case 

where linear units produce p. and o:

Note that if the output yields a reinforcement better than predicted, p  will be updated to 

move toward y. This will increase the probability that y is the action to be chosen next 

time the same input x occurs. And if r is less than predicted,p will move away from y to 

decrease this probability. The standard deviation o increases or decreases to determine the 

extent of action domain exploration. Williams proves the convergence of these types of 

algorithms.

p(x) = wjx, and o(x) = wjx (15)

(16)

(17)

The weight vectors are updated as follows:

w (t + l)=  w (t) + a ( r - r ) ^ - ^ x  
* * O'

(18)

a
(19)
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Even though these methods converge, we found that in practical applications, the learning 

is very slow and it is very hard to find appropriateleamingrates. Notice also that when o 

is very small, the term 1/ o 3 overflows.

Gullapalli’s SRV algorithm presents a significant improvement [Gullapalli, 994]. It 

updates the unit’s parameters as follows:

w (t-f 1) = w (t) + a (r-f)-^ —* a

o = k(max(r) -  r)

where k is a multiplying factor. When the system has learned, the predicted reinforcement 

becomes close to the maximum reinforcement ando becomes very small. This means that 

the action will be essentially equal toji, and thus the search will be stopped.

2.7 The Self Scaling Reinforcement algorithm (SSR)

Williams’ and Gullapalli’s methodsuffer from a major handicap: if the system gets a very 

large reinforcement, let us say infinite, the weights will overshoot and therefore impede 

the system performance. If the reinforcement range of variation is known, the learning rate 

can then be adjusted to prevent overshooting. When this is not the case, however, a very 

small learning rate must be used, and a slow learning process ensues.

SSR [Benbrahim, 94] is a new reinforcement learning algorithm that was developed during 

this research. It is based on the concept that if a certain action yields an infinite
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reinforcement then it should have its probability greatly increased. Moreover, since it is 

not guaranteed that the system will receive the same level of reinforcement for different 

input vectors, the notion of infinite reinforcement should be flexible. The best 

reinforcement the system gets is considered infinite and the worst is considered negatively 

infinite. The algorithm keeps track of the maximum and minimum reinforcement, rmax and 

rmin respectively, and computes a scaled reinforcement as follows:

r = exp(r -  rmax) -  exp(rmin -  r) (22)

Notice that if r * rmax, then, ? = 1 -  exp(rmin -  rmax) = 1 -  e and if r -  rmin, then 

f = exp(rmin -  rmax) -1  = e - 1 ,  e is very small when rmin-rmax «  0; consequently it 

can be ignored for clarity purposes

Figure 10 shows three graphs of the SSR as a function of r for large, medium and small 

rmax-rmin, where e is not ignored. Notice that e increases as rmax-rmin decreases. For 

large values of rmax-rmin, only extreme reinforcement is taken into account. This means 

that the system uses very low resolution for the reinforcement signal in the beginning. As 

rmax-rmin diminishes the SSR function becomes more linear, thus a finer resolution is 

used. As rmax-rmin converges toward zero, the SSR function converges toward the x 

axis. The learning then stops. If a new reinforcement occurs outside the [rmin, rmax] 

segment, then rmax-rmin automatically increases and more learning ensues.
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Figure 10: Self Scaling Reinforcement

rmax and rmin are computed according to:

rmax(t +1) = max<rmax(t),r> (23)

rmin(t +1) = min {rmin(t), r > (24)

rmax(t + l ) “  A.rmax(t + 1) + (1-A)r (25)

rmin(t + l) = A.rmin(t + 1) + (1-A )r (26)

where A. is a positive number < 1. Equations (23)) and ((26) work together as follows, 

rmax increases as the system gets higher reinforcement values (eapation ( 23). rmin
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decreases as the system gets lower reinforcement values (eqiation ( 22)). Equations (25) 

and (26) allow the difference between rmax and rmin to converge, as the system leams, 

toward zero, rmin increases when low reinforcement values are infrequent (elation (

26)). rmax is deliberately decreased in order to filter out large spurious reinforcement 

values (equation ( 25)).

Figure 11 shows graphically the expected behavior of rmax and rmin as the system leams.

Rmax

Rmin

Figure II: SSR convergence

The algorithm’s adaptation equations are

dw(1

(27)

o(t +1) = yo+(1 -  y)(rmax -  rmin) (28)

where y is a positive number < 1. It is used as an averaging factor.
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When r -  rmax, ? = 1. This is equivalent to having anLMS error e-(y-p.). As the system 

leams, (rmax - rmin) converges toward zero, consequently, o converges toward zero. The 

action becomes deterministic then.

SSR was applied with TD learning on a hardware ball balancer figure 12). The balancer 

leams to balance the ball in less than 15 min and keeps on balancing forever. [Benbrahim, 

94].

Figure 12: The Ball Balancer

2.8 Eligibility traces

Eligibility traces [Barto, 83] are used to alleviate the problem of delayed rewards (there is 

no direct relationship between eligibility traces and Williams’ characteristic eligibility). 

They are moving averages of the inputs and provide a decaying history that aids the 

algorithm in learning. The weights are updated using these traces instead of the inputs. 

Eligibility traces are computed as follows:
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e(x,t + l) = Xe(x,t)+(1-A.)a(x)x (29)

where x is the input, t is the time step, a(x) is the output and X is the eligibility decay rate. 

All of the eligibility traces are reset to zero after every failure in order to reward only the 

actions that are responsible for that failure. The decay factor ensures that recent actions 

are rewarded more than older ones.

When using eligibility traces with SSR, equatior( 27) becomes

w ^(t + l) = w^(t) + afe(t) (30)

Where

e(t) = Ae(t -1 ) + (1 -  X)(y -  p) ( 31}
dw n

3 Neural Networks

Neural networks are models for function approximation. They are inspired by the brain’s 

constitution of individual neurons. Each neuron has a specific function and many neurons 

interact with each other in order to execute complex tasks. There are many types of neural 

networks, some of which are more consistent with modem theories of neural circuit 

functions than others. They all are similar in the sense that they all use individual units 

configured according to the type of tasks the network is supposed to learn.
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output unitinternal representationinputs

Figure 13: Artificial neural network

The artificial neural network inFigure 13 represents a generic network that contains an 

input layer, an internal representation (two hidden layers in this case) and an output layer. 

Each unit has a certain number of inputs and one output. The output is computed as 

follows:

n (32)
yj = f i d  WjjXj)

j=i

where i is the index of the unit, are the unit’s inputs, y, is the output, n is the number of 

inputs, Wjj are the unit’s weights, and £() is a function that can be used to introduce 

nonlinearity to the system. The output unit is usually linear.

This is a very interesting architecture because it offers great flexibility in representing 

nonlinear functions. It is possible to represent any continuous function provided the 

network’s organization and the nonlinear functions are chosen appropriately. The weights 

are updated in a direction that increases the system performance.
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One can easily see from equation( 32) that for large systems the number of parameters 

becomes exponentially large. This is a major drawback of neural networks, it makes them 

less practical for large scale systems in general, especially in real-time control applications.

3.1 Boxes

Probably the simplest form of neural networks uses the box configuration [Michie, 68] 

where the internal representation is replaced by “boxes”. The input space is subdivided 

into equal size regions and each region is assigned to a box. The box’s output is equal to 1 

when the input lies within its designated region and is equal to zero otherwise.

i i

inputs J box representation [ output unit

Figure 14: Two layer neural network using boxes

The output of the neural network in Figure 14 is computed as follows:

a= I w j b i
i=l

(33)

where only one h is equal to 1 and the rest are equal to zero. This network is very 

effective when high input resolution is not required [Benbrahim, 92], [Barto, 83]. The
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number of weights is equal to the product of the number of regions of each input. A major 

drawback of this network is that it cannot generalize its knowledge to regions of the input 

space for which it has not been trained.

The number of weights can be extremely large in the case of multidimensional inputs. In 

most applications many boxes never get visited. This results in a great waste of memory 

space. Hashing functions provide a reasonable solution to this problem. They map the 

large input space onto a smaller memory region. The most trivial hashing function maps 

the boxes on the first come, first mapped basis. The inputs that are left with no mapping 

memory space are either disregarded or assigned random box values.

3.2 Backpropagation

Backpropagation [Rumelhart, 86] uses the error signal of the output unit and back- 

propagates it to the units of the hidden layer. A typical backpropagation neural network is 

shown in Figure 15.

inputs hidden layer output unit

x2

xl

Figure 15: Two layer backpropagation artificial neural network
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The output unit is linear and the hidden layer units are nonlinear using a nonlinear 

differentiable function f(). The sigmoid

( 34)

is the most commonly used nonlinear function in backpropagation because of its nice 

properties. It is defined everywhere, its output ranges from 0 to 1 and it is linear around 

zero and nonlinear on the edges. This last property allows for some units to learn linear 

behavior if needed.

The output of the network is

i= l

where m is the number of hidden units, y are the weights of the output unit and f(yO are 

its inputs.

The weights Vj can be updated using Least Mean Squares (LMS) algorithm. The goal is to 

minimize the square of the error between desired and actual outputs a and a respectively. 

LMS tends to minimize the following expression

m (35)
a=  X vif(yi)

(36)

8 = a - a
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The output unit weights are updated as follows

V i ( t + I ) , Vl ( t ) .  ^  
OVj

Vj (t + 1) = Vj (t) — a5f(yj) 

where t represents the time step and a  is a learning rate (0 < a  < 1).

The outputs y* of the hidden layer units are computed as follows:

n (38)
Yi = I  w ijXj 

j=i

where n is the number of inputs and Wj are the weights of unit number i. 

Using the LMS rule we obtain

w ij(t +  l) = w ij( t ) - P ^ -  ( 3 9 )

Wjj(t+1)  = Wjj(t) +  ( ivj f  (y i )Sx j

Where P is a learning rate and f () is the derivative of f(). The expression Vjf (y{ )8 is 

the back-propagated error.

The weights are updated according to the gradient of the LMS error; this is usually 

referred to as gradient descent.
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3.3 CMAC

The Cerebellar Model Arithmetic Computer (CMAC) [Albus, 75] is an associative neural 

network that tries to mimic the biological sensory neurons in the brain’s cerebellum. There 

are large numbers of sensors where each sensor is activated only when the input lies within 

a particular region. By using overlapping instead of distinct regions, the CMAC can 

generalize what it has learned about a certain region to its neighborhood.

A CMAC can be configured in several ways [Miller, 90]. The simplest form of CMAC is 

achieved by using several “boxes” configuration [Michie, 6 8 ] neural networks in parallel 

and averaging their outputs. The regions in each network must be shifted by a constant 

distance from each other. This provides the CMAC with overlapping regions and allows 

for generalization of the learning from one region to another. The individual networks can 

be called layers for simplicity.

i i i
,  V I I I
(a) i i i

i i i
i i i

layer 1 
layer 2

xl x2 x3 x

" t  ij J ~Ll i
X

Figure 16: CMAC neural network input/output representation
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The example of Figure 16(a) shows the state space partition in a three layer CMAC of a 

one dimensional input. The boxes of each layer contain the values of the learned actions 3 

where j is the box number and i is the layer number. The output of the CMAC is equal to 

the average of the learned actions from each layer. The outputs corresponding to the 

inputs xl, x2, and x3 are as follows:

a 0 2  + a 12 + a 21 (40)a(xl) = — J ----

a(x3) =  a« + a u + a »

Suppose that we start with all of the weights set to zero. Then we present the CMAC with 

the input x2 exclusively and make it learn the optimum action a(x2). We then present the 

CMAC with the inputs xl and x3 without performing any learning. The actions related to 

xl and x3 will not be zero because of the boxes that they share with the input x2.Figure 

16(b) shows the output curve of the CMAC in the case where aoj-a1.2-a 2.2- l  and the rest 

of the weights are equal to zero. This example shows how the learned behavior from one 

region is generalized to neighboring regions even if they have never been visited.

The regions in the elementary CMAC configuration are of equal size S and each layer is 

shifted by S/N, where N is the number of layers. Using different size regions and irregular 

shifting distances can dramatically increase the CMAC’s performance if done properly. 

Indeed, some regions in the input space being of more interest than others, may require
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particularly high resolution for instance. The human eye, for example, uses high resolution 

at the center and very low resolution on the sides.

The CMAC’s performance can also be increased by using the position of the input within 

the box in order to determine the importance of that box. In the example of Figure 16(a), 

x2 is located in the center of box number 2 of layer 2 while it is on the side of the other 

boxes. This might suggest that the output of layer 2 should be given more importance than 

the other layers. This can be achieved by using a weighted average of the outputs as 

follows:

N (41)

a(x) = ^ —
Xwj

i= 0

W: = — - d ( — , ( x - — i) Modulus S)
1 2 2 N

where a; is the output of layer number i and d() is the distance between the input and the 

center of the region where it lies in layer i. The weights ware at maximum if x is in the 

center of the region and zero if it is on the edge. The choice of the distance d() determines 

the shape of the output curve. A linear distance, for example can lead to a trapezoid shape 

and a quadratic distance will lead to a smoother shape.

This analysis can be easily applied to the case of multidimensional inputs. Special 

consideration, however, should be given to the generation of output weights. If a 

quadratic distance is used for example, the weights become too small near the edges and
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slow learning occurs. One way to alleviate this problem is to compute the weights for each 

dimension as described above and choose the smallest one as the final weight, [Miller, 90].

4 Outstanding challenges

Even though learning methods have been more successful than conventional control 

methods in solving many problems, there are still some serious outstanding challenges. 

This does not mean that conventional control methods are adequate enough to deal with 

these challenges either. Two of the challenges that if overcome can greatly improve 

learning capability are sensor input range and resolution adaptation, and learning from 

analogies. Most learning methods can partially deal with these issues, but there has not 

been any significant breakthrough yet.

4.1 Sensor adaptation

The issue of input selection is very crucial. If a learning system, such as a neural network 

for example, can learn to identify the relevant input regions, then it can concentrate all of 

its resources on those regions. Furthermore there are many input regions that require 

higher resolution that others. In balancing a broom stick, for example, it is not necessary 

to accurately measure the angles that are far away from the vertical. The angles near the 

vertical, however, are very important for stability. When using multi-dimensional input 

vectors, there can be many combinations of inputs that never happen. Using the same 

balancing example, it is hard to conceive of the stick moving at high positive angular 

velocity if it is at a large negative angle from the vertical.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Humans have a very good sensor adaptation system. A person can by experience develop 

a sense for things in which there is a special interest. There are many examples of such 

things: music, food and wine tasting, perfume, pool, etc. The brain also develops special 

cells that deal with these senses as needed: a child exposed to music will have extra sound 

sensing capability.

Genetic algorithms and hashing functions have shown promising results in dealing with 

these issues. Hashing functions can be used to select relevant inputs, and genetic 

algorithms can generate sensing capability as needed.

4.2 Learning from analogies

Learning from analogies is one of the most important features that allow animals to learn 

complex tasks. In order to solve a problem, a wise person breaks the problem up into 

small parts and solves each one individually by using analogies. A trivial example is using a 

stairway to go up to a higher floor. Another example is proving a theorem.

If a learning system can grasp the notion of analogies then it can learn to identify subtasks 

that are analogous to what it has learned previously. It can then build a modular 

architecture that can solve many problems and that can learn new tasks quickly.
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CHAPTER FOUR

THE BIPED

Figure 17: Biped views

1 Mechanical structure

The biped (Figure 17, Figure 18) is an aluminum six joint, seven link biped robot. It has 

two accessory arms with no elbows; the shoulder and hand joints are free, and not 

powered. The robot is restrained to the sagittal plane by pushing a baby walker-like cart. 

The only contact between the robot and the cart is at the hands. The six leg joint actuators 

are powered with DC motors, and joint angles are measured using optical encoders. All 

joint axes of rotation are orthogonal to the sagittal plane.
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Figure 18: The Biped

Each leg joint is powered by a DC motor with low gear ratios, 1:17 for the ankle, 1:27 for 

the knee, and 1:50 for the hip. Using low gear ratios has several advantages that 

dramatically increase the robot’s performance and make it closer to animal walking than 

when using high gear ratios.

DC motors cannot control speed and force independently as well as biological muscles do. 

High gear ratios have a constant stiffness that seriously limits force controllability. Many 

of the natural movements that humans perform during walking can be achieved by using 

low gear ratios. Indeed, low gear ratios allow free swinging of the legs and taking 

advantage of gravity, thus giving smooth and natural looking movements. They also allow 

for the joints to act as springs. The springiness can be easily controlled using PID 

controllers. The problem of backlash inherent to all gear heads is reduced when using low 

gear ratios. The advantage to using gears at all is that they increase the torque at the joint.
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A major disadvantage of using low gear ratios is that the torque is very low. The torque 

grows proportionally with the gear ratio. In order to obtain the necessary torque larger 

thus heavier motors need to be used. A compromise must then be found between the 

motor’s weight and torque. This seriously hinders the biped’s controllability, and forces 

the walking to be very conservative in energy. Iron-less DC motors (Escap 35NT2R-R32 

by Portescap), which have a high torque to weight ratio, were used, in order to make up 

for this loss of torque.

Joint positions are measured with optical encoders, with a resolution of 2000 counts per 

revolution (HEDS-5540 by Hewlett Packard). Each optical encoder is directly attached to 

the joint axle instead of the motor’s axle. This eliminates the error that is generally 

introduced by gear heads.

Each joint contains ball bearings to minimize friction and sideways movement. This is 

done because it is critical to have accurate and reliable measurement of joint positions.

Any sideways movement can seriously hinder the biped’s stability, especially since it is, by 

design, incapable of doing any movement to correct sideways imbalanceFigure 19 shows 

a disassembled view of a joint.
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Figure 19: Joint structure

The feet are padded with rubber pads (computer mouse pads) in order to maximize foot 

adhesion to the floor, and dampen foot impact on the floor. Pressure sensors are placed 

between the foot and the pad, on the front and on the back of each foot. These sensors can 

be used to determine the front/back balance. The most appropriate sensors, we found, for 

this application are flat flexible sensors each of which is composed of a resistive and a 

conductive surface put together in parallel (FSR by Interlink Electronics). Once the 

conductive surface is pressed against the resistive surface, the resistance measured 

between the extremities of the two surfaces is proportional to the applied pressure.

The body of the biped consists of a stack of PID controllers and a local processor board. 

Extra weight is added to the body in order to stabilize the walking. Indeed, because of the 

moment conservation law, leg movements induce body movement. These movements are 

inversely proportional to the respective weights. A biped with a heavy body and light legs 

is thus more likely to be stable than a biped with a light body.
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The walking cart is made of a light aluminum rectangular structure, a handle, and four 

wheels. The main purpose of the cart is to keep the robot from falling sideways. Adding 

extra weight on the comers of the cart’s base increases the cart’s moment of inertia, thus 

prevents it from rotating.

The robot’s hands can rotate freely around the cart’s handle, and the shoulders can also 

rotate freely. Because these joints are free and passive, the cart does not help the robot 

keep its front/back balance. Since the cart’s handle is always at a constant height, and the 

wheels are on the floor, the robot’s height and posture can be determined using optical 

encoders that measure the hand and shoulder joint angles.

2 Mechanical specifications

The robot is 1 m high, weighs about 9 kg, and the foot area is 15.2x7.6 cm. The arms 

weigh 0.4 kg each and the cart weighs 4 kg, where most of the weight is concentrated on 

the comers of the base. The cart’s handle is 0.76 m high and the dimensions of the base 

are 1.2x0.6 m.
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Figure 20: Mechanical specifications

Figure 20 shows some of the biped’s mechanical specifications. The centers of gravity and

weights are represented by the dark dots. The motors that actuate the hip, knee and ankle 

joints are mounted on the body, the thighs, and the feet, respectively.

3 Kinematics

A major advantage of using the cart is that it allows us to determine the position of every 

joint and every point in the robot relative to the cart’s position. These measurements are 

only significant as long as the cart keeps its four wheels on the ground.

Some of the variables that are most important in controlling the robot’s walking are: body 

posture, body height (hip height), and foot positions. Using the notation ofFigure 21 we 

compute the posture p, the body height y and the foot position Xf and yf as follows:
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P  = W + S  — J t ( 42)

y = L + bsin(w) + csin(w + s)
xf  = fccos(w) + ccos(w + s) + d  cos(w + s + h) + £cos(w + s + h + k) 
yf =b sin(w) + csin(w + j) + d sin(w + s + h) + esin(w+s + h + k ) -  FH

Where FH represents the foot height Since the feet are supposed to always be flat, the 

angles associated with the term FH are equal to rt/2. Notice that all of the variables are 

absolute except for the foot x position. There are no sensors that measure the cart’s 

horizontal motion. This is not a problem because as far as the walking is concerned, only 

the position relative to the body is of interest. However, it is easy to compute an absolute 

x position since there is always at least one foot on the ground, and there is no foot 

slippage. The cart’s horizontal movement can be determined relative to the supporting 

foot position. The x offset can then be incremented by the step length every time a new 

step is taken.

Figure 21: Biped kinematics
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4 Control structure

The biped uses six PID controller boards to control joint positions; and a local processor 

to communicate with a remote PC (486-66Mhz), and perform low level processing, 

(Figure 22). The PC communicates with the local processor using RS232 at 38.8 kbps. It 

reads sensor readings and sends the new desired joint positions. These desired positions 

are generated by the learning algorithm that runs on the PC.

Remote PC Power

local processor 
Siemens RMB-166

Biped

N PID board 
no. 1
— nzz

— Ikfc niotor -"fc encoder

Figure 22: Control structure

The PID control boards Figure 23 use the LM628 PID controller chip. Each board 

contains an address decoder, an LM628 PID chip, an 8 bit digital to analog converter, a 

high power operational amplifier (LM12), an 8 Mhz oscillator, and +/- 5 V voltage 

regulators. AH of the boards have their data and address buses connected to the local 

processor board in parallel.
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Figure 23: PID controller board

There is also a buffer and a transceiver that are used by data and address busses between 

the PID and the processor boards.

The PID boards are completely independent from each other. This alleviates the problem 

of electrical noise, and makes it easy to upgrade the biped and increase the number of 

joints.

The LM628 chip offers great flexibility in performing PED control by using many 

programmable parameters. There are filter parameters and trajectory parameters. Filter 

parameters are the PID gains, the maximum allowable value of the error integral sum, and 

the sampling rate used to compute the derivative error. Trajectory parameters are the 

acceleration and speed used to reach the target position. These parameters mainly affect 

the shape of a joint trajectory. Using a low acceleration, for example, generates smooth 

trajectories. Once all of the parameters are set the chip continuously performs PID
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control. Any of the control parameters as well as the desired position can be changed in 

real-time. The control sampling period is 256ps.

This chip offers many data reporting commands that allow the user to monitor closely the 

control process. The data that are of most interest to the learning algorithm are joint 

position and joint velocity. Thanks to the optical encoders and high speed clock, the data 

are very accurate and reliable.

5 Communications interface

The local processor board is the intermediary between the PC and the rest of the biped. To 

minimize the communication time with the PC, it waits until it receives the new desired 

joint positions. It then sends sensor data it had previously collected, mainly joint positions, 

joint velocities, and foot pressures. When not communicating with the PC, it transmits the 

new desired trajectory data to the PID boards using the low level protocol required by the 

LM628 chip, and reads sensor data.

This interface provides great time saving for the main PC, especially in serial 

communication time. It can also handle some simple walking control tasks, like keeping 

the feet always flat and determining the biped’s posture and body height. It also makes the 

robot control more robust because the control timing is more tightly managed this way.
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CHAPTER FIVE

THE LEARNING ARCHITECTURE

This chapter describes the learning architecture that was developed as part of this 

research. Section 1 describes the general approach of this architecture as well as the 

different issues that it tries to deal with. Sections 2 and 3 describe the different modules 

that constitute the architecture. Section 4 describes the reinforcement learning that takes 

place within the architecture and shows some of the learning equations. A thorough 

description of the learning algorithms used in this architecture is presented in Chapter 3.

1 General approach

The ultimate tangible goal of this research is to achieve dynamic walking with a high level 

of adaptation and with minimum knowledge about the robot’s dynamics. There are two 

major motivations behind this choice. First, it is too complicated to find precise knowledge 

about the robot, and we do not know how to use this knowledge accurately in order to 

achieve desired walking patterns. Second, we know that humans acquire great walking 

ability partly because they keep constantly on learning how to optimize their walking 

behavior, and they always adapt to new terrain. It is then a great incentive to try to go in 

this direction for the biped robot. Learning and adaptation methods have been tried on real 

biped robots and showed promising results [Miller, 94],[Zheng, 90].
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A powerful learning architecture should be able to take advantage of any available 

knowledge [Franklin, 89]. Indeed, there are some situations where a simple rule ora 

simple linear controller can achieve the desired task. One method is to use different 

controllers in parallel, and a switching mechanism that activates the appropriate controller 

[Jacobs, 91], [Narendra, 94], [Sklansky, 66], [Widrow, 60], Franklin [Franklin, 88] uses a 

hybrid method where a learning controller refines the control of a fixed controller.

Controller switching is a very powerful method, yet, it has a major disadvantage. Once a 

controller is activated, the system does not always benefit from the other controllers’ 

experience. Some switching mechanisms avoid completely excluding the other controllers 

by using a weighted average of all outputs. Determining the appropriate weights, however, 

requires a complex switching mechanism, especially if those weights are functions of the 

inputs.

In this study, instead of a complex switching mechanism, a “melting pot” is used. The 

melting pot is a central controller that uses the experience of other controllers in order to 

learn an average control policy. This centralizes the common knowledge of all controllers 

in one, thus alleviating their burden. The central controller controls the robot in nominal 

situations, and the peripheral controllers intervene only when they consider that the central 

controller’s action contradicts their individual control policies figure 24). The action is 

generated by computing the average of the outputs of all controllers that intervene 

including the central controller. Each peripheral controller’s role is to correct the central 

controller’s mistakes and issue an evaluation of the general behavior. The central

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



controller then uses the average of all evaluations to learn a control policy that 

accommodates the requirements of as many peripheral controllers as possible.

body
heightibstaclel (posture

Central
Controller Joint angles

Figure 24: Architecture

The learning architecture used here is based on the assumption that there exists a nominal 

behavior governed by a minimal number of inputs. The deviations from this behavior are 

supposed to be small and caused by perturbations. Peripheral controllers individually act 

according to these perturbations. This is similar to decoupling a multi-variable function, 

except that the decoupling occurs around an operation point instead of over the whole 

input space.

This architecture is also inspired by the Taylor expansion of a multi-variable function 

around an operation point. Equation (43) shows a first order approximation of a Taylor 

expansion of a function f(x,y). If the deviations dx and dy are small, then this equation can 

be sufficiently used to represent the function f(x,y). The first term can be loosely 

considered as the central controller and the derivative terms as the peripheral controllers.

A rigorous use of this equation by the learning architecture would definitely achieve a
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powerful controller. However, this would require complex central and peripheral 

controllers. This equation is then used just as an inspiration model.

f(x0 +dx,y0 +dy) * f(x0,y0) + f ~ ^ -y-
(*o,yo)

dy
( 43)

The controllers proposed here can be achieved by using different kinds of control systems. 

The central controller as well as some of the peripheral controllers in this study use 

adaptive CMAC neural networks. Other peripheral controllers for which the desired 

control policy is known in advance are fixed.

Most complex controllers here use CMAC neural networks,. The peripheral controllers 

can use learning and adaptation methods, or can be fixed.

1.1 Modular architecture

It is in theory possible to conceive a single neural network that can use as inputs all the 

variables that determine the state of the biped’s walking and learn an optimal control 

policy. When the number of inputs is very large, as is the case with biped robots, the 

neural network becomes exponentially large. Large neural networks learn very slowly, 

they use large amounts of memory, and they cannot be effectively used in real-time 

applications because they are very slow.

Guided by the same idea used in decoupling complex dynamic equations, it is beneficial to 

use several neural networks with smaller numbers of inputs, instead of one large neural 

network, whenever it is possible. A “boxes” configuration neural network that has three
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inputs subdivided in ten regions each, for example, contains id weights. If it is possible to 

use three neural networks with one input each instead, then the total number of weights 

would be only 30.

Unfortunately it is not always possible to decouple the robot’s control as described above. 

Indeed the biped’s state variables are tightly dependent on each other. However, using the 

assumption that there is a nominal behavior and that the deviations from it can be small, 

then it can be reasonable to assume that when dealing exclusively with these deviations, 

the inputs are independent and can be controlled separately. If the robot’s posture deviates 

from the normal value by a small amount, correcting it would not affect the body height 

for example.

1.2 Knowledge incorporation

Humans use different types of knowledge in order to walk and keep their balance. They 

use visual information, acceleration measurements, foot pressures, special knowledge 

about the terrain condition, etc. Not all of this information is necessary, but each type of 

information adds a great contribution to the walking process: try to walk with your eyes 

closed.

The learning architecture used here tries to incorporate as much information as possible in 

one homogenous structure. The information need not be all of the same kind. Each piece 

of information can be used as a peripheral controller. The central controller constantly 

learns from that information, and uses it as necessary.
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There are two ways information can be incorporated. First, it can be used to affect the 

control action by adding its contribution to the total output. The central controller, then, 

learns from that example. Second, a peripheral controller can issue an evaluation of the 

action. If the action causes a deviation in the posture, for example, the posture controller 

will then issue a bad evaluation. The central controller updates its weights in a direction 

that improves the evaluations. Peripheral controllers can intervene either at the action or 

evaluation levels, or both.

1.3 Task definition

Task definition is a very important question in learning and control. Before controlling a 

system it is necessary to know what is expected from it. A DC motor’s task, for instance, 

is to turn at a certain speed or go to a certain position. This task can be efficiently 

performed using a PID controller. Biped walking, however, is much harder to define.

Most of the actual research tries to solve the problem of biped locomotion by answering 

two main questions: which variables best reflect the biped’s behavior, and how can these 

variables be controlled in order to achieve desired walking patterns. This approach can be 

effective if the walking pattern is well defined according to these variables, and if it is 

possible to control them efficiently. Because of the complexity of biped dynamics, only a 

few of these variables are used, therefore, the walking behavior is only partially defined. 

This forces the biped controller to choose solutions that are not necessarily optimal.

Partial constraint satisfaction is a very powerful method that is widely used in artificial 

intelligence [Freuder, 92], [Jordan, 92]. The desired walking pattern can be defined by a
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set of constraints. The robot leams to execute movements that respect all of these 

constraints. If, for instance, we want the robot to walk in an upright position, not to drag 

its feet and to have elegant walking, then it must respect the following constraints: keep 

the body height and posture within a predefined range, keep the free leg above a certain 

height, have periodic movements, and put a cap on energy spending. By respecting these 

constraints, the walking robot tend to walk as desired.

These constraints do not completely specify the walking pattern. They specify only the 

boundaries that cannot be crossed. The biped controller is free to choose any solution 

within these boundaries. It is then given a chance of finding an optimal solution. The free 

area can be further reduced as more task defining constraints are used.

Special care should be given to the choice of constraints. They should not be too 

restrictive in order to avoid conflicting interests. The robot constantly tries to find a 

compromise between all of the constraints. Some constraints can be given priority over 

other constraints as long as this can improve the walking or resolve conflicts.

2 Central Controller

The central controller (Figure 25) is represented by a Central Pattern Generator (CPG). 

The CPG continuously generates joint positions according to the desired walking pattern. 

The CPG uses a CMAC neural network to learn optimal joint positions. The inputs to the 

CMAC are time t, step length S, and walking period T. Assuming that an appropriate CPG 

has been learned and that there are no perturbations, this should be sufficient to achieve
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the desired walking. It is equivalent to an open-loop controller or voluntary motion 

[Zheng, 90]. The small number of inputs allows the use of a small CMAC thus speeding 

up the learning and execution time for action generation.

Peripheral
controllers’
evaluations

Peripheral
controllers’

actions

time 

step period 

step length

Central Pattern 
Generator 

CMAC
6 joint angles

Figure 25: Central controller

It is, of course, inconceivable to imagine a world with no perturbations. However, even 

though the CPG is not designed to react to individual perturbations, because of its small 

number of inputs, it is forced to learn the most robust solution. An example of such a 

solution is locking the knee joint of the supporting leg. This in general provides stable 

walking and keeps the robot within a certain height.

The CPG uses reinforcement learning in order to learn an optimal policy. The CMAC 

weights are updated using the reinforcement signals received from the constraint 

guardians, also referred to as peripheral controllers. The CMAC also learns from the 

corrective actions that these controllers generate when their respective constraints are 

violated. Learning from these actions can be achieved using supervised learning where the
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peripheral controllers act as teachers, or incorporate the action in the reinforcement 

learning algorithm. The choice between the two approaches is determined by the reliability 

and accuracy of each peripheral controller. The learning equations are presented in Section

3 Peripheral controllers

3.1 Body posture

Posture is the most critical controller in biped walking. Indeed, small deviations from the 

vertical can lead to very large torque on the supporting foot. Usually when the posture is 

beyond a certain limit or changing at large speed the robot becomes hopelessly unstable. 

Furthermore, correcting the posture abruptly can also be fatal. The posture controller 

(Figure 26) acts on both hip and ankle joints.

4.

Posture critic 
evaluation

Other
peripheral

controllers’
actions

supporting ankle
P(D —  

body posture p(t-l)—  
p(t-2)— CMAC left hip

body posture right hip

CPG action 6 joint angles

Figure 26: Body posture peripheral controller
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Ankle joint torque can sufficiently control the posture only when the projection on the 

ground of the center of gravity of the biped is on, or very close to, the center of the 

support area, and when the posture is changing slowly. Notice that in theory if the ZMP 

lies outside the support area, then the ankle torque has no effect on stability. In order to 

better see how well the ankles can control posture, put your feet together and see how far 

you can lean forward before falling over. Usually one cannot lean too far, relying only on 

the ankles to ensure stability.

In order to recover from large posture deviations, humans usually use the free foot to stop 

the fall. By choosing the appropriate foot position, the robot can efficiently recover from 

large deviations. Controlling both hip joints can be a reasonable substitution to this 

behavior. Indeed, there is a direct relationship between hip joints and foot positions. Foot 

height is not of major concern here because it is individually controlled by other 

controllers.

Choosing joint instead of foot position control relieves the extra computational burden of 

using inverse kinematics to determine the appropriate joint positions. Furthermore since 

the CPG generates joint positions, adding posture control can be straightforward.

The posture controller uses a CMAC neural network. It uses the posture values at the 

current and two previous control cycles as input to generate three outputs: supporting 

ankle joint, and two hip joints. Using the same input, a similar CMAC forms part of the 

CPG critic (Figure 31). Both CMACs use reinforcement learning with TD learning as 

described in Section 4.
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3.2 Body height

The body height controller (Figure 27) determines the knee joint angle of the supporting 

leg. Because of the biped’s heavy weight and high damping factors, the height changes are 

relatively small. A simple proportional controller can be sufficient, in general.

Other
peripheral

Height critic controllers’
evaluation actions

supporting kneebody height —  body height 
step length —  CMAC

6 joint anglesCPG action

Figure 27: Body height peripheral controller

The CMAC’s inputs are step length and body height. The weights are updated using 

reinforcement learning. Since the right body height is unknown in advance, the learning 

algorithm uses the biped’s global reinforcement, the one used by the CPG. The optimal 

body height is a function of the global walking performance. It is also indirectly related to 

the power of the DC motor. There are many situations where the motor is not strong 

enough to change the body height.

There is an overlap between the body height controller and CPG functions, since the CPG 

is supposed to learn an optimal body height on its own. The body height controller is used
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here mainly to speed the learning up and set some absolute height limits. These limits can 

be predetermined based on reasonable walking patterns.

The body height controller also uses a CMAC to generate a critic for the CPG and body 

height action CMACs. The inputs are the same as for the action CMAC. The weights of 

the critic are updated using TD Learning as described in Section4.

3.3 Step constraint

To make the robot move forward and prevent it from dragging its feet, imaginary 

obstacles are put on the ground (Figure 28). The distance between these obstacles is equal 

to the desired step length minus the obstacle length. The obstacles also move at a speed 

equal to the desired walking speed, functioning as a tread-mill. The height of the obstacles 

is a predefined constant with a reasonable value. The length is a simple linear function of 

the desired step length.

There is no peripheral controller that handles this task in particular because it is relatively 

complex. It is mostly the CPG’s responsibility. However, when the robot hits an obstacle,

minimum body height

obstacle

Figure 28: Step constraint
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the step height guardian generates a failure signal that the CPG incorporates in its 

learning. There is no particular critic either because it is hard to find a variable that 

quantifies how well this constraint is respected without being too restrictive.

3.4 Total energy

Energy spending is not a necessary control variable in achieving dynamic walking. 

However, a biped that uses minimum energy is bound to keep constant height and posture, 

and uses smooth movements. Such a walker is more likely to be dynamically stable than a 

walker that spends unnecessary energy.

As is the case with the step height constraint there is no simple action that can be taken to 

minimize energy spending. This constraint guardian generates a reinforcement of the 

CPG’s action based on the amount of energy spent.

4 Reinforcement learning

Since the walking task is defined only by a set of constraints, there can be many possible 

walking patterns. Most of these solutions, however, are not optimal. It is thus necessary to 

be able to explore the action domain and choose an optimal solution that is a compromise 

between all of the constraint requirements. This approach provides great flexibility in 

shaping the walking pattern.

Reinforcement learning is well suited for this kind of application. The system can try 

random actions and choose those that yield good reinforcement. While searching the
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action space, the system updates its weights in order to find a compromise between all 

constraints.

The learning algorithm searches the action space using a Stochastic Real Valued (SRV) 

unit at the output [Gullapalli, 90]. The unit’s action uses a Gaussian random number 

generator. The mean of the Gaussian is determined by the controllers’ outputs, and the 

standard deviation is determined by the Self Scaling Reinforcement algorithm (SSR), 

[Benbrahim, 94]. The reinforcement signal is generated using TD Learning [Sutton, 84,

88] and the SSR algorithm. These learning algorithms are thoroughly described in Chapter 

3.

4.1 The actor

The actor’s action is a vector of six joint positions that are directly sent to the robot. The 

action is generated by a Gaussian random unit. The mean of the unit is determined using 

the average of the outputs from all controllers. Peripheral controller contributions are 

zero, and are not taken into consideration while computing the average, unless their 

respective constraints are violated. The performance can in general be improved using a 

weighted average, provided the relative importance of each controller is known.

When none of the constraints are violated only the CPG’s output is taken into 

consideration. Once the system has learned an optimal policy, the standard deviation of the 

Gaussian converges toward zero, thus eliminating the randomness of the output.
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Figure 29 shows the actor’s configuration. Note that the inputs and outputs of the linear 

and Gaussian units are six dimensional joint vectors. The outputs of the controllers are all 

joint angles.

p(t) ■
body posture p(t-l)- 

p(t-2)-

body heigh t-----
step length

time — 

step period — 

step length —

Central Pattern 
Generator 
CMAC

body posture 
CMAC

supporting ankle 
right hip
left hip

body height 
CMAC

supporting knee

6 joint angles

linear
output

unit

action

Gaussian 
unit

Figure 29: The actor

The CMAC weights of all of the controllers including the CPG are updated using the same 

equations (equations:( 44,(45). Figure 30 shows the actor configuration of Figure 29 with 

focus on only one CMAC.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



other
controllers’

actions
SSR

f  linear 
output 

\  unit

H *  ka + (l-k)baction a .output y
CMACinput x

Gaussian 
. unit .

Figure 30: General actor configuration 

The weights w of the CMAC and the standard deviation are updated as follows:

da (44)
w(t +1) = w(t) + a?(y -  a)—

ow

o(t +1) = yo + (1 -  y)(rmax -  rmin) (45)

These are the same equations as the SSR equations of Chapter 3.

The weights are updated in a direction that moves the action a towards the output y if the

reinforcement is positive, and away from y if the reinforcement is negative. Since the

output y combines all the controllers’ outputs, the CMAC learns by taking example from 

their actions as well as from the reinforcement signal. This combines at the same time 

supervised learning with reinforcement learning. A teaching peripheral controller can thus 

be easily included here.
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This behavior can be better understood by considering the following case. Let us suppose 

that there is only one extra controller and that the standard deviation as well as the factor 

k of Figure 30 are zero. Equation (44) becomes then

w(t +1)= w(t) + ccf(b — a)~ ~
dw

This equation shows that the CMAC learns directly from the other controller. If this latter 

is a perfect controller, then the reinforcement is always equal to 1. This then becomes a 

simple case of supervised learning using LMS.

It is possible to make the CMACs learn independently from each other by using separate 

random output units and separate reinforcement signals. This means that there should be a 

Gaussian unit after each controller and no Gaussian unit after the linear output unit. Each 

controller would be updated using the difference between its action and the output of its 

Gaussian unit.

4.2 The critic

The critic is the most important factor used to reconcile different constraints. Each 

constraint guardian issues a critique of the robot’s action when that action has a direct 

effect on the constraint’s control variable. The energy constraint, for instance, monitors 

only the total energy.

The critic used to train the CPG is equal to the average of the constraint guardian critics. 

The maximum value of the CPG critic can only be reached if the system performs well
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according to all or most constraint guardians. The CPG critic is thus a global performance 

measure. As in the case of the action, a weighted average could be used to enhance the 

performance.

While in the learning process, the CPG tries random actions and updates its weights in a 

direction that increases the CPG critic’s evaluation. The CPG’s learning, thus, takes into 

consideration all of the constraint control variables.

total energy —
energy

constraint

free foot position __ step
constraint

p(t) ■
body posture p(t-l)* 

p(t-2)-

body height • 
step length •

body posture 
critic CMAC

body height 
critic CMAC

linear
output

unit
cntic

Figure 31: The CPG critic

Figure 31 shows the CPG critic configuration. The posture and height critics use CMAC 

neural networks. These networks are trained using TD learning as described in chapter 3. 

Each critic generates a reinforcement signal as follows:

r = r + Yp(xk , t ) - p ( x k_ 1, t - l ) (47)

where r is the raw reinforcement and p(x,t) are the outputs of the CMACs (Figure 8).
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Energy and foot step critics are predefined. The energy critic generates a reinforcement 

value that is simply proportional to the negative of the energy and the foot step critic 

generates a simple failure/success reinforcement This reinforcement is equal to -1 if the 

free foot hits the obstacle and zero otherwise.

The total critic is generated through a linear output unit that computes a weighted average 

of the individual critics. Total energy and step constraint critics are assigned very low 

weights because they do not provide a prediction of success and do have state evaluation 

information. Their contribution to the total critic is chosen to be less than 5%.
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CHAPTER SIX

EXPERIMENTS & RESULTS 

1 Implementation issues

Even though reinforcement learning methods have proven to be able to control complex 

systems using minimum knowledge about their dynamics, they are impractical in real-time 

applications because of the long time it takes them to learn. Also many systems cannot 

sustain the stress caused by multiple failures (i.e. a beginner trying to learn ice skating). It 

is thus necessary to speed the learning up by pre-training the neural networks and 

providing safeguards.

The CMAC neural networks used in the biped’s learning are pre-trained using a biped 

walking robot simulator [Latham, 92] and predefined simple walking gates. The 

simulator’s parameters have been modified in order to fit the hardware robot as closely as 

possible.

The learning architecture used here allows for the use of parallel controllers. These 

controllers function both as safeguards and as teachers. The biped also starts in a standing 

position and takes small steps ensuring that the assumption of nominal behavior and small 

perturbations, on which the learning architecture is based, remains valid.
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The biped is a highly unstable system. Using high magnitude random actions can throw it 

out of balance. Action generation is thus a very important issue. It is dealt with by using a 

low pass filter at the robot joint level, and generating relative actions instead of absolute 

actions, assuming that the nominal action is a continuous function. This issue is described 

in more detail in Section3.

At the motor control level, special care is taken to ensure smooth movements. The PID 

controller boards ensure that the joints follow the desired trajectories. It is not desirable to 

follow the trajectory closely because this results in stiff movements and walking instability. 

The PID controller boards are programmed to ensure that the motors reach the desired 

joint position using small acceleration and high speed. This generates smooth and springy 

movements.

2 Identification of effective control variables

Before starting any learning it is crucial to identify the effective control variables as well as 

their reasonable ranges. Inappropriate control variables can prevent the robot from 

learning. Many of these variables can have conflicting effects and since there is no precise 

knowledge about their interaction, it is necessary to minimize their use, as much as 

possible, in order to avoid conflict. In the case of biped walking, supporting ankle joint 

and foot positions are the most important control variables.
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2.1 Ankle joint control

Supporting ankle joints are most effective when the robot’s center of gravity is above the 

joint axis. Ankle torque cannot effectively resist the overwhelming momentum caused by 

the body’s deviation from the vertical. When the robot is in a vertical position then very 

small deviations of the ankle can have a significant effect on stability.

A reasonable range of variation of ankle joint position can be identified by putting the 

robot in a standing posture and slowly changing the joint position. A position magnitude 

that has a clear visual effect on the posture should be used as the maximum allowable 

value. A reasonable joint rate of change can be identified in the same manner.

Once the range of variation has been established, then the robot should always keep the 

desired joint position of the supporting ankle within the defined range, relative to the 

horizontal. Keeping joint actions within a reasonable range provides proper control for 

vertical positions while it cannot harm stability otherwise. Notice, however, that if ankle 

joint position functions as a positive feedback then even small variations can throw the 

robot out of balance regardless of the posture.

2.2 Hip joint control

Foot step position is the most effective control variable to correct large posture 

deviations. The biped can stop a fall by putting the free foot appropriately on the ground 

at the right time. This would be the only posture control variable for a robot that walks on 

stilts, or one that has free passive ankle joints.
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Using foot positions requires computing the inverse kinematics of the biped in order to 

issue the appropriate joint position commands. In order to save computation time, hip 

joint positions are used instead. This substitution is valid in this application because foot 

positions are also determined by other constraints, namely obstacle and body height 

constraints. It is not an equivalent solution but it works reasonably well.

2.3 Knee joint control

The knee joint of the supporting leg is used to control the body height. Since the body 

height is closely related to step length, walking speed and total energy, it is difficult to 

determine an optimal target for the controller. This target is thus learned by the robot.

Knee joint control in not always effective because there are many situations where the 

motor is not strong enough to keep the body at a desired height. The controller must then 

learn to take this into account, and set reasonable knee joint targets.

3 Action generation

The learning architecture used here is heavily based on using random actions. Each action 

is rewarded according to the outcome it yields. The biped, however, does not only react to 

each individual action separately, but because of its complex dynamics it reacts to most of 

the frequency components of the action signal: a series of successive actions. These 

frequency components are not explicitly taken into consideration in the learning process. 

The individual actions are thus rewarded for a biped behavior for which they are not
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totally responsible. Despite the fact that ID  learning can, in many situations, deal with this 

problem, the learning can be extremely slow if not impossible.

The frequency component problem is dealt with here by using low pass filters and small 

standard deviations. This seriously restricts the system’s ability to search the action 

domain. By being able to search only narrow areas, the system becomes vulnerable to local 

minimum problems. Furthermore because of the small magnitude of the actions, the 

learning system will be unable to learn because no action can restore the biped’s stability.

This problem can be solved by using relative random actions instead of absolute actions. 

Relative actions are generated by the learning system and have small magnitude. The 

action that is issued to the biped, however, is generated as follows:

t- l (48)
a(t) = Xa(t -1 ) + (1 - 1) I  n(i) + n(t)

i=o

where a(t) is the action at time t, n(t) is the random relative action and A. is a decay factor. 

Assuming that the control signal is relatively smooth, the difference between successive 

actions is then very small. This assumption is valid in the case of biped walking because 

fast changing action signals easily lead to instability. This action generation method allows 

the learning system to use small random relative actions while providing the biped with the 

necessary action magnitude. There are still many undesired frequency components in the 

action signal, but they have a very small magnitude and they do not contribute to the
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absolute action. This dramatically reduces their effect on the biped’s dynamics. The decay 

factor allows the system to slowly forget past actions.

The learning algorithm still has a reward problem because the biped reacts to the absolute 

action while it learns from the relative actions. This can be easily solved with TD learning, 

because it is strictly a problem of delayed rewards. The difference between this problem 

and the problem of frequency components is that in this case the system’s action is directly 

related to past individual actions.

3.1 Bang-Bang control

The action generation method described previously can also be used to apply bang-bang 

control to the case of continuous action. Using a small sampling period, and small bang- 

bang action magnitude as well as a low pass filter, can generate a continuous action signal. 

Figure 32 shows an example where the desired action is a sine wave. The graph shows the 

bang-bang action without low pass filtering.

0.5 . .

O O-0.5 ..

Figure 32: Continuous action using bang-bang control
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Notice that if the sampling period is much higher than the rate of change of the optimal 

continuous action, and if the bang-bang relative action is randomly generated using an 

optimal probability distribution, then in theory and with appropriate low pass filtering, we 

can obtain an exact fit to the optimal continuous action. The bang-bang action acts then as 

a stochastic pulse width modulation signal.

This action generation method is used here only on the case of large perturbation where 

accuracy is not a major concern, and where the input space can have very low resolution. 

This is especially used when the body posture deviation from the vertical is very large. 

Because this method uses discrete action and low resolution inputs the learning is very 

fast. This method is not accurate enough to use with small perturbations or on nominal 

behavior.

4 CMAC pre-training

4.1 CPG CMAC pre-training

The CPG actor CMAC is pre-trained before using either the simulator or the biped. It is 

pie-trained using reasonable walking patterns. These walking patterns assume constant 

body height and constant walking speed. Desired joint positions are generated using 

simple foot positions. The x position of each foot changes linearly back and forth, and the 

y position is zero during half of the walking period and goes up then down during the 

other half. Right and left feet positions are always in quadrature.
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Figure 33 shows desired foot positions where T is the walking period, S is the step length 

and H is the step height.

S/2 Right foot

H ■ Time

T/2

Left footS/2

H ■

T/2

Figure 33: Pre-training foot positions

These foot positions are generated as follows:

forO<t<T/2: forT/2<t<T:

2 S . T. S 2S S (49)xr =  ( t  ) + — xr = — t —
r T 2 2 T 2

yr =0  H, . Jtyr = —(sm(— t - - )  + l)
x, = - x r 2 T 2

H . A n ,  T n x l " ' xr
y| = T (s'n( T ( t ‘ l ) - 2 ) + 1 ) y, = o

The constant body height is chosen so that the leg is completely extended at the end of 

each step. This can be easily determined knowing the step length and the extended leg
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total length. Desired joint positions can be determined using inverse kinematics. The step 

maximum height H can be either constant or proportional to the step length.

The CPG CMAC is trained with these joint positions using different step length and 

walking period values. Simple LMS supervised learning is used in this case. The walking 

period T ranges from 0 to 2 seconds, the step length S ranges from -.lm to .3 m. The time 

t is periodic with period T.

The CMAC has 4 generalization layers and a resolution of 10 for each of the three input 

variables, time, walking period, and step length. An input resolution of 10 means that the 

CMAC can read 10 distinct values for that input.

4.2 Body height CMAC pre-training

The body height CMAC is trained using a constant target height. The actual height value 

is generated in the same manner as in the case of CPG training. If L is the total length of 

the extended leg and S is the step length, then the body height h is computed as follows:

The body height CMAC uses four generalization layers and uses two inputs: step length 

and body height. The input resolution is 10 for each input. The body height input is not 

taken into consideration during the pre-training phase. It is more relevant during real 

walking experiments where the CMAC has to learn globally efficient body height 

trajectories.

(50)
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The leg length L here does not include the foot because the latter is usually horizontal. In 

this case the computed body height should be incremented by the foot height

4.3 Posture CMAC pre-training

The posture control CMAC is pre-trained by two parallel posture teaching controllers 

using the biped simulator. Each teaching controller monitors the posture and issues a PD 

control action. The first controller’s action is added to the Posture CMAC ankle joint 

output. The second controller’s action is added to the CPG’s step length command thus 

controlling foot positions.

posture

Aankle
PD

Posture CMAC ankle

PD

linear
output

unit

jointCPG CMAC
Gaussian J  command 
. unit /

Figure 34: Posture CMAC pre-training

The posture CMAC learns from the PD controller because the random action generated by 

the Gaussian unit is directly related to the teaching controllers’ actions. The PD 

controllers can effectively control the posture only when the biped has a linear behavior. 

The role of this teacher is to bring the CMAC’s weights to the neighborhood of an optimal 

solution.
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Figure 34 shows the posture CMAC teaching architecture. The second PD controller 

seems to be used in series rather than in parallel, but in effect it is used in parallel. The 

figure can be modified by splitting the CPG into two parallel controllers; one would 

generate joint position regardless of the posture, and the other would be in series with the 

PD controller.

The posture CMAC inputs are three successive posture readings: p(t), p(t-l), and p(t-2).

It uses four generalization layers. The input resolution is 20 for p(t), 20 for p(t-l) and 5 

for p(t-2). The inputs are truncated at +/-ji/5 because it is very difficult for the robot to 

recover its stability after such a large deviation from the vertical.

The standard deviation of the Gaussian is zero during the pre-training period.

4.4 Critic pre*training

The critics are pre-trained by using a non-zero standard deviation. This allows them to 

learn general evaluations of each state, and locate failure zones and danger areas. The 

standard deviation starts at 0, then it changes at a random time in order to be able to scan 

as many states as possible.

5 The Simulator

The simulator is mainly used to pre-train all of the CMAC neural networks in order to 

speed up learning. Even though the simulator is supposed to be equivalent to the hardware 

robot, there are many differences that cannot be reconciled. A simulator solution works
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reasonably well in normal walking conditions. In case of large perturbations, however, the 

differences become predominant and the solution is not sufficient anymore.

Simulator experiments consist of different phases of pre-training. Some of the CMACs are 

trained in individual experiments and some are pre-trained during normal walking 

experiments where the whole learning architecture is involved.

Each walking experiment starts with zero step length and increases until it reaches the 

desired value. Before stopping, the step length decreases continuously until it reaches 

zero. Figure 35 shows a typical example of step length command over time. This is 

necessary because the learning architecture is strongly dependent on continuity. Any 

abrupt change in the step length can cause instability.

Step length, 
meters

•2 t  *■

70 80 Time.
seconds

Figure 35: Step length command

One of the most important reasons why the simulator is used is the ability to recover from 

failures. When the robot fails it is reset to its starting position and the learning continues. 

The robot always starts standing up in a straight posture. This is a stable position from
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which the biped can move continuously towards walking. Standing up can be considered 

as a walking pattern with zero step length.

A failure signal is generated every time the posture exceeds +/-n/5, or the body height 

gets below ,6m. There is no failure related to the step or energy constraints because a 

significant violation of these constraints usually leads to a failure in posture or height. A 

negative reinforcement is, however, always generated for every constraint that gets 

violated.

The posture CMAC is activated when the posture exceeds +/- rt/20, and the height CMAC 

is activated when the difference between the body height and the target height exceeds +/- 

2cm. The target height is determined by computing the running average of the height. An 

optimum height is reached once the CPG has learned.

The energy constraint continuously issues a reinforcement proportional to the negative of 

the total energy. The obstacle constraint issues a reinforcement equal to -1 when the biped 

hits an obstacle and 0 otherwise.

Individual controller action magnitudes are limited in range in order to minimize conflict 

between different controllers. Also joint position commands are continuously checked to 

ensure that they are reasonable.

Sometimes the simulator can have abnormal behavior because it uses a discrete time, while 

system dynamics are a function of continuous time in reality. In order to minimize this kind
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of problems, smooth trajectories should be used and only reasonable joint and foot 

positions can be allowed.

6 The Biped

6.1 stability issues

In order to conduct learning experiments on the hardware biped, it is necessary to improve 

mechanical stability. Due to mechanical instability the biped may never learn, because its 

dynamics will be extremely complex, if not chaotic. Smooth movements alone are not 

sufficient to ensure this stability, an appropriate weight distribution can dramatically 

increase mechanical stability.

The walking cart must be as light as possible in order to minimize its interference with the 

biped’s dynamics. It must however be hard to turn and lift off the ground, otherwise it will 

not perform its primary function which is to keep the robot within the sagittal plane. 

Placing weights at the extremities of the cart increases the moment necessary to lift its 

wheels off the ground or rotate around the biped. Fortunately these weights do not need 

to be large thus the total cart weight is kept relatively low.

The body moment of inertia must be large compared to the legs. Indeed, because of the 

moment conservation law, the body must rotate as the legs move. This movement 

magnitude is inversely proportional to the inertia. In the extreme case where the body has 

very small inertia compared to the legs, the leg will be still while the body will be
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oscillating following the hip joint movements. The desired behavior is the other way 

around. An ideal biped will have mass-less legs and a heavy body.

A compromise must be found between having a body heavy enough to oppose leg 

movements, and light enough so that the motors can hold it. A judicious placement of 

weights on the body can substantially improve stability. Placing the weights near the hip 

joints and on the sides increases the moments that oppose rotation around both vertical 

and horizontal axes.

Joint level control uses PD controllers. As mentioned earlier a stiff control is undesirable 

because it can introduce instability. A smooth and springy control is much more suitable 

for stability and produces natural looking movements. Integral control can also be very 

detrimental to stability. It generates abrupt movements, because it keeps on accumulating 

position error until it reaches a level strong enough to drive the motor, then the motor 

speed suddenly increases and causes a major perturbation.

The PD controllers used on the biped can be programmed to control the maximum 

acceleration and speed that the motor uses to reach the desired position. Using small 

acceleration ensures smooth movements and large speed ensures trajectory following. 

Figure 36 shows a typical step response curve. Notice that the response time is almost 

proportional to the step magnitude. Since the PD controllers are given step commands of 

small magnitude, the response time is reasonably small.
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Figure 36: Step response

It is possible to obtain smooth trajectories using small PD gains instead of limiting 

acceleration and speed. This, however, would seriously diminish motor torque and limit 

biped controllability.

When the biped is subject to too many perturbations, it cannot deal with them efficiently 

while keeping its stability. To help it recover, the desired walking speed diminishes as the 

perturbations accumulate. At low walking speed the biped has a much better chance to 

regain stability than at high speed. The walking speed command diminishes proportionally 

to the running average of the absolute value of the posture as follows:

AS(t) = ke(t) (51)
e(t) = Xe(t -1) + (1 -  X)|p(t)|

where e(t) is reset to 0 after each failure.
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6.2 Falling safeguard

The biped has no real safeguard against falling over. The only control used to delay the fall 

and minimize its impact is to extend both legs as in a standing position. This control 

succeeds many times in stabilizing the robot especially when the perturbations are not too 

large.

This safeguard has no effect on learning, it is only used to protect the biped’s health.

6.3 Extra learning with bang-bang control

Because of the differences between the simulator and the biped, simulator walking 

solutions do not work efficiently on the biped. They are sufficient in many cases but 

cannot be considered optimal for the hardware biped. It is thus necessary to use learning 

on the biped in order to optimize these solutions. In the case of small perturbations, 

simulator solutions achieved reasonable walking. With large perturbation, however, the 

biped could not keep its balance.

It would take a long time to train the CMACs using continuous action in real-time.

Discrete action can learn much faster and it is appropriate for large perturbation control.

As described previously a bang-bang relative action is used to generate continuous 

absolute actions. This bang-bang controller has the same inputs and outputs as the posture 

CMAC and is used in parallel. It uses a one-layer CMAC with low resolution inputs (5 for 

each input). The bang-bang action is activated only when the posture deviation exceeds 

+/- 71/10.
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This extra controller helps achieving stable dynamic walking on the biped, and in the long 

term, it increases learning speed for the other CMACs by working as a teacher.

7 Results

7.1 Simulator learning curve

The learning curve inFigure 37 shows the average successful walking time. The walker 

learns to walk after 5 hours approximately. The experiment is then stopped after a walk of 

80 seconds, but the walker can in general walk indefinitely without falling over. Since the 

simulator does not run in real time, the experiment’s computation time using a 486/66Mhz 

PC is less than 3 hours. If such an experiment were to be conducted on the hardware 

biped, it would take more than 15 hours because of the time it takes to restart the biped 

after each failure.

Successful walking time, 
seconds

80 t

6 0 - -

4 0 - -

2 0 - -

Leaming 
time, hours

Figure 37: CPG learning curve

Before this experiment only the CPG is pre-trained with reasonable joint positions. The 

pre-training time is very small (15 min.) because it is a simple supervised learning problem.
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7.2 Hardware biped learning curve

The hardware biped cannot walk successfully using the simulator pre-trained CMACs 

only. The average walk time is less than 3 seconds. However, it has the right kind of joint 

movements, and with slight intervention from the user when the posture is too large, it can 

walk reasonably well. Extra learning is thus necessary and promising.

The extra learning is mostly done by adding a posture controller that uses bang-bang 

control. This controller intervenes at the hip joint level and provides the extra help that the 

robot needs in order to walk. Since this controller is only needed for large perturbations it 

does not require high input resolution. It learns much faster than a continuous action 

controller with high input resolution.

The CPG quickly adapts to the hardware biped because it learns from the bang-bang 

controller’s actions. Because the latter also provides a safeguard, it gives the CPG the 

chance to learn without constantly failing.

Figure 38 shows the hardware biped learning curve. It learns after approximately 3 hours 

of walking time. The dead time caused by failure adds about 3 more hours to the 

experiment.
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Figure 38: Extra learning curve

7.3 Foot positions

The following foot position figures show a typical walk of the hardware biped. The step 

length is about 10 cm and the walking period is about 1.2 seconds. The maximum step 

height is about 3 cm.

Figure 39 and Figure 40 show the right and left foot positions. These are similar to the 

pre-training foot positions shown in Figure 33. Notice that the x foot trajectory averages 

are less than zero. This means that the robot walks with its feet slightly lagging behind. 

This behavior can be explained by the cart that the biped is pushing. Since the cart is 

relatively heavy, the biped needs to lean forward in order to increase its pushing force. 

Humans behave the same way when they need to push something too heavy.

Notice also that when the biped lifts a leg, it does not immediately move it forward. When 

it puts the leg on the ground, however, it immediately moves it backwards. The latter 

behavior is obvious because moving the supporting leg forward would cause instability.
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One plausible explanation of the first behavior is that the robot uses the free leg as a 

counter-balance to prevent it from falling over forward, and to absorb the energy caused 

by the foot impact on the floor.

0.06 r

0.03 • ■ Time.
seconds

0.4 0.6
-0.03 ■ •

-0.06 E

Figure 39: Real foot positions: x r, yr

0.06

0.03 . .

120.80.4 0.6
-0.03 . .

Time.
seconds

-0.06 1

Figure 40: Real foot positions: xi, yi

Figure 41 shows the right and left foot x trajectories. Forward movement corresponds to 

the rising portion of the trajectory and backward movement corresponds to the falling 

portion. Notice that the biped moves the legs forward much faster than backwards. One 

reason for this behavior is that the supporting leg is subject to large pressure, thus it
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cannot move as fast as the free leg. Another plausible reason is that quick movements of 

the supporting leg can cause large instability.

Notice that at the beginning of every step, both feet move backwards. This is probably a 

safe way to deal with the problem of double support phase. Indeed if there is a double 

support phase and the feet try to move in opposite directions, then the biped will become 

unstable as soon as one foot gets off the ground.

0.06

0.03 ■ •

Time,
seconds

120.4 0.6
-0.03 • •

-0.06 -T

Figure 41: Real foot positions: x„ xi

Figure 42 shows the right and left y trajectories. They do not have the same magnitude 

because the biped is not perfectly symmetrical. The asymmetry may also be due to the 

composition of the walking cart: it is made of very thin aluminum bars that bend easily. 

Because of this the biped seems to be slightly limping in its walk.

The overlap between the right and left foot trajectories is minimal. This alleviates the 

problem of closed chain kinematics and simplifies robot dynamics.
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Figure 42: Real foot positions: yn yi

7.4 Real joint positions

Figure 43 shows the right and left hip joint trajectories. The increasing portion of the 

curve corresponds to moving the leg forward, and the decreasing portion corresponds to 

moving the leg backwards. Notice that the averages of these trajectories are greater than 

zero. This means that the biped is slightly leaning forward. The reason for this behavior 

can be the same as for the case of lagging foot positions: the robot needs to lean forward 

in order to be able to push the walking cart.

Rad

0.471

0.314 ••

0.157 • •

12
Time,
seconds

0.60.2 0.80.4

Figure 43: Real joint positions: hips 
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Figure 44 shows the right and left knee joint trajectories. The supporting leg knee joint is 

most of the time equal to zero, because the knee joint is mechanically restricted. This 

provides an energy efficient walking pattern. The biped’s weight is supported by the 

mechanical stops of the knee joint instead of the DC motor torque.

Actually there is no other alternative to locking the supporting knee because the DC 

motor is not strong enough to hold the biped’s weight.

Rad
0.157 Time,

seconds

0.80.4
-0.157 ■ ■

-0.314 • ■

-0.471 ••

-0.628

Figure 44: Real joint positions: knees

Figure 45 shows the right and left ankle joint trajectories. The ankles make sure the feet 

are constantly flat while slightly resisting to posture disturbances. Notice that the averages 

of these trajectories are greater than zero. This is due to the biped slightly leaning forward.
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Figure 45: Real joint positions: ankles

7.5 CPG CMAC learning

The following graphs show the ideal joint trajectories that were used to pre-train the CPG 

CMAC, versus the CPG learned trajectories. The learned trajectories are much smoother 

than the ideal ones. This is due to the CMAC’s relatively low input resolution. Another 

reason is that the CPG learns a solution that satisfies most of the constraints. This yields 

an averaging behavior, thus smooth trajectories.

The CPG learned trajectories shown here are the final CPG actions which were learned 

after the walking experiment. They are not the CMAC trajectories that were learned 

before the experiment. They are issued as commands to the DC motor PD controllers.

Only right leg joints are shown because left leg joints are similar.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rad

0.471

0.314 ■ •
ideal

0.157 ■ ■
CMAC

0.6 0.802 0.4-0.157 ■ •
Time,
seconds-0.314

Figure 46: Ideal vs CPG joint positions: hip

Figure 46 shows the hip joint ideal versus learned trajectories. Notice that the learned 

trajectory is much smoother than the ideal one.

Figure 47 shows the knee joint ideal versus learned trajectories. Notice that in the learned 

trajectory the knee joint command becomes positive during the support phase (between 

.6sec. and 1.2sec.). Because of the mechanical stop on the knees the real joint position can 

never be positive. Issuing a positive command ensures that the knee is tightly locked.

The large difference between the two curves in the support phase can be explained by the 

fact that ideal joint positions are generated assuming constant height. By locking the 

knees, the biped cannot keep constant height.
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Figure 47: Ideal vs CPG joint positions: knees

Figure 48 shows the ankle joint ideal versus learned trajectories. In the ideal case the foot 

is supposed to stay flat at all times. This is equivalent to having a free passive ankle or 

walking on stilts. In the learned trajectory the foot is supposed to stay flat, while exerting 

slight pressures to attenuate posture perturbations. It is also supposed to change smoothly.

Rad

0.628 

0.471 ■ • 

0.314 • • 

0.157 > ^

ideal

CMAC

0.4 0.8-0.157 I -
Time,
seconds-0.314

Figure 48: Ideal vs CPG joint positions: ankles
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7.6 Joint level control graphs

The following graphs show PD control command versus real joint trajectories. Only right 

leg trajectories are shown.

Figure 49 shows hip joint command and real trajectories. The real trajectory is lagging 

behind the command because of the smoothing that was programmed in the PD controller. 

As discussed earlier, a tight control would induce instability and rough movements.

Rad

0.471 T
command

0.314 ■ •

actual trajectory
0.157 ■ •

1.2
Time,
seconds

0.80.60.4
-0.157

Figure 49: Hip joint control

Figure 50 shows knee joint command and real trajectories. Notice that the real joint 

cannot be positive because of the mechanical knee stop. The real trajectory is lagging in 

the same manner as the hip trajectory.
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Figure 50: Knee joint control

Figure 51 shows ankle joint command and real trajectories. In this case the delay is not 

caused only by the PD controller programming. It is mostly due to the DC motor which is 

not powerful enough to follow the desired trajectory.

Rad

0.471 r

command0.314 • ■
Time,
seconds

actual
trajectory

120.60.4
-0.157 J .

Figure 51: Ankle joint control

From a pure control point of view, these trajectories show very poor performance. In this 

case, however, they show great learning performance because this means that the learning 

algorithm could find a solution that takes into account the limitations of the DC motors
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and PD controllers. The delays and smoothing processes are considered by the learning 

algorithm as part of the system’s dynamics.

7.7 Body height

Figure 52 and Figure 53 show the biped’s body height over an 18 second walk. The body 

height is not constant because the supporting knee is constantly locked. The variation is, 

however, not significant (Figure 53). Notice the slow start due to the step length 

command which starts at zero, and increases until it reaches the desired step. This usually 

takes about 2 seconds.

•VWVWvaAA/v/V
Time, seconds

Figure 52: Body height

0.8

0.4

Time, seconds

Figure 53: Body height
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7.8 Body posture

Figure 54 shows the biped’s body posture over an 18 second walk. Notice that the posture 

is slightly negative. This means that the biped is leaning forward, for the reasons stated 

previously. The -rc/20 line indicates the threshold when the posture peripheral controller 

intervenes.

Fn j
lad an s  Time, seconds

-0 157 «u •  A  ^
-0.314 ■

Figure 54: Body posture

7.9 Posture intervention

Figure 55 shows the frequency at which the posture constraint is violated during the 

learning experiment. Before the CPG has learned an appropriate pattern, the posture 

controller intervenes almost 100% of the time. Once most of the learning has been 

achieved, the posture constraint is violated only about 15% of the time. This intervention 

ratio cannot be null in reality, because this would mean that an open loop solution to biped 

dynamic walking has been found, which is very unlikely.
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Figure 55: Posture constraint intervention frequency

7.10 Foot patterns on the floor

Figure 56 shows a typical foot placement pattern. The biped starts and ends the walking 

with zero step length. Notice that the step slightly length changes many times during a 

walk. This is mainly caused by the posture controller which moves the hip joints in a 

direction that opposes posture deviations. When the biped is falling forward, for instance, 

the step length increases in order to stop the fall, and if it is falling backwards, then the 

step length shortens in order to allow the biped to take advantage of its inertia that 

generally pushes it forward.

left foot m  a  □  □  □  □  cxn
right foot i i CD i_ J  l—l CD 11 * 1

start stop

Figure 56: Typical foot placements
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7.11 Biped movie frames

Figure 57 shows a frame by frame movie of the biped taking two steps, a right foot step 

then a left foot step. It starts by lifting the right leg, moving it forward, and putting the 

right foot on the ground. During this step the left foot is on the ground and moving 

backwards. During the second step the biped lifts the left leg, moves it forward, and puts 

the left foot on the ground; while the right foot is on the ground and moving backwards.
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Figure I: Biped movie frames
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CHAPTER SEVEN

CONCLUSION

During this study a hardware biped robot was built and a new reinforcement learning 

algorithm (SSR) as well as a new learning architecture were developed. The biped learned 

dynamic walking without any previous knowledge about its dynamic model. The learning 

and control were done using relatively small computing power.

The biped contains all of the necessary motor control electronics, as well as a local 

processor that communicates with the main computer using RS232. This design allows the 

main computer to deal only with the high level commands, does not require any extra 

hardware, and can work with different platforms and different operating systems. The 

biped uses low gear ratio DC motors in order to provide smooth and flexible movements. 

One of the implications of this is that the legs can move freely when no power is supplied. 

This was done in order to achieve movements as close to human movements as possible.

The Self Scaling Reinforcement learning algorithm (SSR) was developed to deal with the 

problem of reinforcement learning in continuous action domains. It allows fast learning 

and avoids overshooting, which is a typical problem in continuous action domains. It also 

adjusts the range of action domain search according to the actual performance. The better 

the performance the less the system needs to explore the action domain.
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The learning architecture succeeded in dealing with the problems of large numbers of 

inputs, knowledge integration and task definition. It consists of a central controller and 

several peripheral controllers. Because of its modular nature, it is possible to use several 

neural networks with small numbers of inputs instead of one large neural network. This 

dramatically increases the learning speed and reduces the demand on memory and 

computing power. The architecture also allows easy incorporation of any knowledge by 

adding a peripheral controller that represents that knowledge. The walking performance 

immediately benefits from this extra knowledge and the other controllers learn from it. The 

walking task can also be shaped by adding extra peripheral controllers that constrain the 

walking to respect the new requirements, i.e. desired posture, body height, etc.

Some of the CMAC neural networks used to control the biped have been pre-trained in 

order to increase the learning speed. After the pre-training, the system was free to learn 

new solutions. These solutions were not in any way constrained by the initial knowledge. 

Indeed, the results show that the learned trajectories can be in many cases very different 

from those obtained with pre-training. In many cases learning methods can not be used in 

real-time applications because of the long learning time they require and because many 

systems can not allow for major failures. Pre-training can thus make learning methods 

more practical for real-time control. There are, however, situations where pre-training can 

be harmful. One can imagine a pre-training process that leads the system to a local 

minimum that does not represent a viable solution. The system might not be able to get 

out of that local minimum, thus never learn.
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The learning algorithm uses many parameters that have significant effects on learning and 

adaptation speed, immunity to noise, etc. Unfortunately there is no explicit way of 

determining the optimal values of these parameters. Most of the values are determined by 

trial and error.

Learning rates are in general chosen to have a value of .9 approximately. The SSR 

algorithm is designed to work best with a learning rate equal to 1. The learning rate has a 

direct effect on learning speed and immunity to noise. A large learning rate would make 

the system vulnerable to overshooting and to noise. A small learning rate provides 

excellent immunity to noise, however it seriously decreases the learning speed.

Decay factors determine the amount of past history that has a direct effect on the system’s 

future performance. A decay rate that is too small would prevent the system from learning 

because it would deprive it from valuable past information. A decay rate that is too large 

would provide the system with too much information. The learning algorithm would then 

waste time filtering out the unnecessary information.

One more factor that has a critical impact on learning is the SSR factor that controls the 

action domain search. The size of the search domain is determined by the standard 

deviation of the Gaussian unit. If the standard deviation is too small, the system will have a 

very small search domain. This decreases the learning speed and increases the system’s 

vulnerability to the local minima problem. If the factor is too large, the system’s 

performance will not reach its maximum because there will always be a randomness even if
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the system has learned an optimal solution. It is in general safer to use a large factor than a 

small one.

Even though the learning algorithms and architecture used here have successfully solved 

the problem of dynamic biped walking, there are many improvements that can be added to 

increase learning speed, robustness, and versatility. One major improvement would be to 

intelligently determine the extent of the contributions of each peripheral controller based 

on their individual performance and expertise. Another improvement is to find a way of 

determining optimal values for different learning parameters as described above. Actually 

most learning methods are in dire need of such an improvement. The performance may 

also be improved by dynamically setting the PED gains to deal with each specific situation.

The learning architecture can also be improved by adding a special controller that ensures 

that the biped is always in a state where the deviations from the nominal behavior are not 

too great. This controller does not need to be accurate since the learning architecture can 

control the biped near nominal states. The peripheral controllers currently do achieve 

some of this functionality, however, it would be possible to increase the range of allowed 

perturbations.

While these improvements can be beneficial, it is very important to achieve them using 

systems of realistic sizes and complexity. One of the main objectives of this research is to 

solve the problem of biped walking using the simplest means possible. Indeed all of the 

computing power used here can reside within the body of the actual biped. In the near
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future, it will be easier to get fast and large computing systems of very small physical size. 

Some of the compromises made in this research will then not be necessary.

There are many things that can be learned about dynamic biped walking from the solutions 

provided by the learning system. Joint trajectories especially show a certain behavior that 

reflects many interesting characteristics of biped walking. Some of these characteristics are 

the choice of locking the knee of the supporting leg, and moving both feet backwards to 

avoid double support phase problems. A thorough observation of the biped’s behavior 

may reveal many more things that can be taken advantage of in a more sophisticated 

controller, or implemented as peripheral controllers in the present architecture. More 

things can also be learned by subjecting the biped to different situations and observing 

how it deals with them. Evidently some of these learned things represent optimal behavior, 

and others are there because of the nature of the biped and the learning architecture. A 

careful selection is thus necessary in order to avoid forcing the biped to choose a behavior 

that is not necessarily optimal.

This research has achieved one of its most important goals which is to solve the problem 

of biped dynamic walking with no prior knowledge of the biped’s dynamic model. This 

was achieved using reinforcement learning and a modular learning architecture. This is 

another proof that learning methods are able to solve complex problems, even if there is 

no absolute proof of convergence or stability for many learning algorithms.

Learning methods will become more powerful as a solid theory is developed to support 

them, and a deeper understanding of animal learning is reached. Hopefully it will be
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possible to mimic the brain and use the theory to make it perfect After all, if science gave 

man actuators stronger than his own muscles, made him fly, and see in the dark; then it is 

time it made him think a little more.
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