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ABSTRACT

ANALYSIS AND DESIGN OF AC INDUCTION MOTORS WITH SQUIRREL CAGE ROTORS

by 

Shine Ho
University of New Hampshire, September, 1996

The traditional approach to modelling the AC induction motor revolves around the well-known 

equivalent "T" circuit model. In this approach, the direct connection from geometry to performance is 

suppressed. For better understanding of magnetic, electrical, and thermal behaviors, three lumped models 

based on the actual geometry are developed in this dissertation. Based on these lumped models, an iterative 

design model is also developed.

In order to analyze and design induction motors, the relationships of basic motor variables to 

motor performance must be known. For determining the relationships, three new mathematical lumped 

models are developed. The magnetic model describes flux behavior. The electrical model, which is 

similar to the equivalent circuit model, is used to derive simple closed-form expressions of performance. 

The thermal model describes the effect of heat generation on temperature.

The traditional approach of modelling the induction motor using the finite element analysis (FEA) 

is through the equivalent circuit model. Three new FEA methods are developed in this dissertation to 

calculate motor performance directly from the finite element field solution. The equivalent circuit model 

is no longer needed.

The developed lumped models and FEA methods are applied to two commercial induction motors. 

Calculated performance is shown to closely match experimental results. The developed iterative design 

model is then utilized to design an induction motor for desired requirements. The motor is fabricated and 

calculated performance is also shown to closely match the experimental results.

xv
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CHAPTER I

INTRODUCTION

Having been in existence for over a hundred years, the induction motor is often labelled the 

grandfather of all motors. Many books and technical papers have been published on the design process 

for achieving specific performances. The traditional approach to modelling the induction motor revolves 

around the well-known equivalent "T" circuit model. Originating from a transformer model, the equivalent 

circuit model is presently the most common method of induction motor analysis and design. The traditional 

approach of modelling the induction motor using the finite element analysis (FEA) is through the equivalent 

circuit model. The traditional design approach relies on empirical data from existing motors and the 

equivalent circuit model. Cyril Veinott outlined a design strategy using the model. Accepting much of 

this approach requires faith in the collected empirical data and his experience.

Although the model may sometimes yield good results, the magnetic basis is not clear. The direct 

connection from geometry to performance parameters is suppressed. The model by itself serves more as 

an analysis tool than a design tool.

For better understanding of magnetic, electrical, and thermal behaviors, three new lumped models 

based on actual motor geometry are developed in this dissertation. The magnetic model describes flux 

behavior. The electrical model, which is similar to the equivalent circuit model, is used to derive simple 

closed-form expressions of performance. The thermal model describes the effect of heat generation on 

temperature. Based on these lumped models, an iterative design model is also developed. In addition, 

three new FEA methods are developed to calculate motor performance directly from the finite element field 

solution rather than through the equivalent circuit model. Although the emphasis in this work has been 

placed on the three-phase induction motor with a squirrel cage rotor, the same modelling approaches hold 

for the induction motor of any number of phases and any rotor type.

The developed lumped models and FEA methods are applied to two commercial induction motors. 

Calculated performance is shown to closely match experimental results. The developed iterative design

- 1-
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model is then utilized to design an induction motor for desired requirements. The motor is fabricated and 

calculated performance is also shown to closely match the experimental results.

I. A. Background

Induction motors are mechanically simple devices that operate reliably with little or no 

maintenance. Their inherent robustness allows them to withstand harsh surroundings, even to the point of 

explosive conditions. Furthermore, they have a good capacity to handle infrequent overloading on a short 

duration basis. Material costs are low, availability is wide, and installation is simple.

The origin of the induction motor is in the late nineteenth century. Nikola Tesla (1856-1943) 

invented the polyphase AC induction motor not as a result of intense research, but surprisingly, while on 

vacation. Educated in Hungary, he immigrated to the United States in 1884. On one vacation at the 

seashore he sketched the stator, excitation configuration, rotor, and other drawings in the sand. He proved 

that the rotating field produces torque. In 1888, he was granted a patent, the rights to which were later 

sold to George Westinghouse.

Over a span of fifteen years in the forties and fifties, materials and design techniques advanced 

very quickly. Output power ratings doubled and even tripled for any given motor frame size of integral 

horsepower polyphase induction motors with squirrel cage rotors.1 Beyond the fifteen-year interval, 

progress further accelerated. Around 1950, about fifteen million single-phase induction motors were 

produced annually. In that period, some estimates surpassed thirty million polyphase induction motors 

producing approximately one hundred million horsepower. This corresponds to an annual increase of about 

one percent in all American industry.2 In the late sixties, more than ninety percent of industrial 

application motors were polyphase induction motors.3 The value of induction motors applied to laundry

'Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, p. xv.

2Philip L. Alger, The Nature o f Polyphase Induction Machines, New York: John Wiley & Sons, 
Inc., 1951, p. 95.

3Tom C. Lloyd, Electric Motors and Their Applications, New York: John Wiley & Sons, Inc., 
1969, p. 108.
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equipment alone surpassed an annual amount of fifty million dollars in the United States during that 

period.4 It is easy to see how any slight improvement in manufacturing cost or efficiency would have had, 

and will continue to have, a dramatic effect.

I.B. Description of the Induction Motor

An AC induction motor primarily consists of a stationary member, called the stator, and a rotating 

member, called the rotor. The stator stack resembles a thick donut made of steel with slots cut out along 

the inner perimeter to carry coil windings. Coils of insulated copper wire filling the stator slots are wound 

around the stator teeth, the steel regions between adjacent slots. The rotor fits snugly into the stator 

forming a concentric structure with a small radial air gap between them.

The rotor stack also resembles a thick doughnut made of steel, but with slots cut out along the 

outer perimeter. Rotor slots are filled with conductors composed of coils of copper wire or bars of copper 

or aluminum. When bars are used, they are all short circuited at the axial ends by end rings usually 

constructed of the same material. End rings form closed loops for the bars so currents can have return 

paths. A rotor that contains the conducting bars short circuited by end rings is classified as a squirrel cage 

rotor because of the structural resemblance. The cutaway view of a squirrel cage induction motor is shown 

in Figure 1.1, taken directly from the footnoted reference5. Fans protrude from the end rings to help 

ventilate the motor.

A protective housing frame with end caps encloses the stator but can allow for adequate 

ventilation. A shaft attached to the rotor runs axially through its center for transferring the produced torque 

to the application. Bearings attached to the shaft support the rotor within the stator. The most distinct 

difference between the induction motor and other electric motors lies in the rotor. The induction motor 

rotor can have windings of copper wire or a squirrel cage construction. The former is especially common 

in large horsepower applications due to the wire cost advantage. Unlike most other types of motors, no

4Tom C. Lloyd, Electric Motors and Their Applications, New York: John Wiley & Sons, Inc., 
1969, p. 135.

5A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, p. 158.
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Figure 1.1 Cutaway view of an AC induction motor with squirrel cage rotor, 

permanent magnet exists in the rotor. As a result, material costs are low.

T.C. E neryiziny the Induction Motor 

Single-phase excitation is common for most fractional horsepower induction motor applications, 

and three-phase excitation is common for most integral horsepower applications. Polyphase excitation 

customarily refers to three-phase AC excitation despite the literal definition of the prefix, poly-, intended 

for any number more than one. Single-phase AC excitation requires additional starting mechanism s 

because no inherent starting torque is produced. Induction motors with polyphase excitation, which 

eliminates the necessity of a mechanism for starting, operate more efficiently, but also cost more in general 

than single-phase induction motors. Regardless, three-phase power may not always be readily available 

except in major commercial and industrial establishments.

The stator is usually wound with a balanced winding scheme and energized with a sinusoidal 

balanced polyphase excitation that forces currents in the stator windings. A balanced winding scheme has
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windings that are spatially distributed evenly around the stator. Since spatial phase angles are invariably 

expressed by electrical phase angles which are defined later, this trend is applied herein unless otherwise 

specified. A balanced polyphase excitation has three phases of voltage or current with equal amplitude that 

are evenly phase shifted in time relative to each other.

AC power is used to energize the stator windings. The typical low cost voltage drive feeds a 

sinusoidal excitation at constant voltage amplitude and frequency. The voltage driven motor normally runs 

at relatively low efficiency and generates low levels of heat at rated speed. However, no drive electronics 

are required as long as three-phase power is available for polyphase motors. Until the early seventies, the 

majority of induction motors produced were voltage driven.

The most popular method of controlling variable speed induction motors is called scalar control. 

Both amplitude and frequency of the input sinusoidal voltages or currents are regulated. Steady state, but 

not transient, performance characteristics are tuned effectively. With scalar control, the induction motor 

presently rivals permanent magnet motors in many industrial applications such as pumps, compressors, and 

conveyor belts. Since neither instantaneous speed nor instantaneous torque is precisely monitored, accurate 

position control is difficult. In today’s competitive motion control market more demanding specifications 

require better designs. In response, vector control, briefly described in Appendix B, has been recently 

developed to provide the induction motor with the ability to produce higher torque at variable speeds and 

to attain higher running efficiency.

The Field Orientation Principle, which is the theory behind vector control, was first developed in 

1968 by Hasse6 and then in 1970 by Blaschke7. Due to a deficiency in technology for implementation, 

the idea did not thrive until the eighties. Motors are designed to always operate at optimal torque 

production by monitoring steady state as well as transient performance characteristics. To achieve this, 

both the amplitude and phase angle of the currents from the current supply can be adjusted. With vector

6K. Hasse, "About the Dynamics of Adjustable-Speed Drives with Converter-Fed Squirrel-Cage 
Induction Motors" (in German), Dissertation, Darmstadt Technische Hochschule, 1969.

7F. Blaschke, "The Principle of Field-Orientation as Applied to the New ’Transvektor’ 
Closed-Loop Control System for Rotating-Field Machines," Siemens Review, Vol. 34, No. S, 1972, pp. 
217-220.
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control, the induction motor can provide accurate position control. Vector control ensures optimal output 

even under changing load conditions. Overloading occurs only when the maximum supply current is 

exceeded. Vector control can even provide better dynamic performance than DC drives due to faster 

allowable speeds and shorter motor time constants.

I.D. Magnetic Fields in the Induction Motor 

When electric current flows in a conductor, it produces magnetic flux. The strength and direction 

of the flux describe a magnetic field map. The stator in a motor consists of many conductors in slots, most 

of which may accommodate conductors excited by more than one phase. The vector sum of all the 

individual magnetic fields from the current in individual conductors results in a net magnetic field produced 

by all the stator currents.

In an AC motor, the currents vary sinusoidally with time causing the magnetic field to also vary 

sinusoidally with time. The field of a balanced winding scheme with sinusoidal balanced polyphase 

excitation, in effect, rotates with virtually constant amplitude about the shaft. For single-phase excitation, 

on the other hand, the field grows and decays in strength, but does not rotate. Maintaining a smooth field 

rotation is advantageous because it minimizes torque ripple. It is usually desirable for output torque to 

remain constant over time when operating at constant speed.

When magnetic flux flows through a coil of wire, it "links’ that conductor. Faraday’s law of 

induction states that a changing magnetic field linking a conductor induces in the conductor a voltage 

proportional to the rate of change of the flux linkage. Therefore, as long as the conductors on the rotor 

experience the time varying magnetic field established by the stator currents, voltages are induced across 

the conductors. Thus, the origin of the induction motor name can be readily appreciated. The induced 

voltages force currents to flow in the rotor conductors setting up another magnetic field that also rotates 

about the shaft like the field from stator currents of polyphase excitation. Furthermore, when the 

conductors on the stator experience the time varying magnetic field established by the rotor currents, 

voltages are also induced across the stator windings opposing the input stator excitation.

The stator magnetic field originates from the stator currents, while the rotor magnetic field 

originates from the induced rotor currents. The actual field existing in the motor is the combination of the
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two fields. The strengths of the two magnetic fields in the air gap can be described using two magnetic 

flux vectors. Stator and rotor air gap flux vectors point radially outward from the shaft in the direction 

of highest instantaneous flux levels in the air gap due to respective stator and rotor currents. The 

interaction of the stator and rotor flux vectors produces torque on the shaft.

Single-phase excitation produces stationary air gap flux vectors that pulsate, thus requiring an 

external starting mechanism. Multiple-phase excitation, mostly for high performance applications, produces 

rotating air gap flux vectors. The flux vectors rotate virtually smoothly with constant amplitudes when the 

multiple-phase sinusoidal excitation is balanced in time and space. When relative motion exists between 

the stator flux vector and the conductors on the rotor, voltages are induced across the conductors. 

Furthermore, the relative motion between the rotor flux vector and the conductors on the stator also causes 

voltages to be induced across the stator windings opposing the input stator excitation.

The complexities of modelling the induction motor concern its rotor flux vector. The flux vector 

is purely the result of the induction process, which depends on the difference between the stator excitation 

frequency and the rotor mechanical speed. This causes the strength and direction of the rotor flux vector 

to vary with rotor speed. The rotor flux vector of permanent magnet motors, on the other hand, is attached 

to the rotor. Neither the strength nor direction is a function of rotor speed.

A variable called slip defines the difference between synchronous speed and actual rotor speed. 

Slip is more commonly expressed as a percentage of synchronous speed. Slip frequency specifies the 

frequency at the slip speed. When the rotor is stalled at starting, slip is one hundred percent and slip 

frequency equals the excitation frequency. When the rotor rotates at synchronous speed, slip and slip 

frequency are both zero.

The motor synchronous speed is dictated by the stator winding excitation frequency and the 

number of magnetic poles for which the motor is wound. A pair of poles, which rotate with flux vectors, 

exists where flux flowing in opposite directions merge and emerge8 in the stator back iron, the steel region 

radially away from the stator slots. Without friction, the synchronous speed is the fastest rotor mechanical

sDavid Halliday and Robert Resnick, Fundamentals o f Physics, Second Edition, Extended Version, 
New York: John Wiley & Sons, Inc., 1970, p. 608.
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rotational speed occurring under no load. At this speed, no rotor currents are induced since rotor 

conductors rotate in phase with the stator magnetic field. Therefore, freely operating at the synchronous 

speed is not possible because no torque is produced to sustain rotor rotation.

The induced voltages in the rotor operate at the slip frequency due to the relative motion between 

the stator magnetic field and the rotor conductors. Rotor currents resulting from the induced voltages also 

operate at the slip frequency. A rotor flux vector is produced that rotates at the slip frequency relative to 

the rotor. Unless otherwise specified, the rotational velocity of flux vectors is measured in electrical phase 

angles per unit of time. The flux vectors spatially rotate through one pole pair over a temporal cycle. 

Therefore, the electrical phase angle equals the product of the spatial phase angle and the number of pole 

pairs.

The interaction between the stator magnetic field and the rotor currents that the field induced 

causes a rotor rotation in the direction of the stator flux vector. The two flux vectors and the rotor itself 

all rotate in the same direction. When the rotation of the rotor flux vector is superimposed onto the 

mechanical rotation of the rotor, the vector rotates at the excitation frequency relative to the stator. Since 

the flux vectors rotate at the same frequency when in the same reference frame, a steady torque is 

generated sustaining a constant rotor rotation.

I.E. Leakage Flux in the Induction Motor

If all the flux flows across the air gap to linlc conductors on the other side, then modelling the 

induction motor would be much simpler. However, leakage flux exists across slots, at the axial ends, and 

in other regions. Only air gap flux produces torque, while leakage flux decreases torque production. 

Therefore, it is desirable to minimize leakage flux for maximum torque. In permanent magnet motors, 

leakage flux is not as critical because it is usually small relative to air gap flux and it does not affect rotor 

flux. In the induction motor, leakage flux not only decreases stator currents that induce rotor flux, but also 

decreases rotor currents. Relative to the effective air gaps of permanent magnet motors, induction motors 

therefore have characteristically small air gaps to decrease the effects of leakage flux on torque.

Using steel in the stator and rotor helps to minimize some leakage by directing flux through the 

back iron and teeth and across the air gap. Back iron is the steel region that is not between adjacent slots.
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In the stator, back iron is the regioa radially away from the slots, but in the rotor, back iron is the region 

radially between the shaft and the slots.

A laminated stack construction helps to minimize axial eddy currents that are induced in the steel. 

Many axially thin lamination slices are coated with insulation and pressed together with nonconductive 

adhesive to increase the electrical resistance to current flow in the axial direction. Much of the current is 

confined to conductors running axially in the stack. Some eddy currents may also run in the plane of the 

steel laminations due to currents in the stator end turns and rotor end rings as well as due to rotor skewing. 

Rotor skewing is explained later. Eddy current losses in the steel which are dissipated as heat are 

decreased through a laminated stack, and so efficiency is increased. Also dissipated as heat, hysteresis 

power losses occur when materials experience magnetic cycling.

One type of leakage flux causes skin effects. Due to leakage flux across slots, conductors 

connected in parallel at the radial top and bottom of a slot link different amounts of flux. An induced 

voltage gradient occurs throughout the parallel conductors causing the current distribution in the conductors 

within the slot to be nonuniform. The gradient grows with increasing current frequency and radial slot 

length. Circulating currents form pushing the through currents to the peripheral conductors, thereby 

increasing the effective resistance of the conductors. This phenomenon, called skin effects, occurs 

primarily in squirrel cage rotors. Radially deep bars and end rings cause increased skin effects that boost 

torque and heat generated at stall while maintaining relatively high rated torque and speed. Since most 

motors are serially wound with thin conductors relative to the squirrel cage, skin effects can be neglected 

in the stator and in the wound rotors.

The discovery of skin effects is credited to the inventor of the polyphase induction motor, Nikola 

Tesla, through use of the "Tesla coil". Interestingly, the coil, which has seen almost no use in the 

commercial world, was only utilized in some carnivals where the public could see one million AC volts 

connected to a little lady. One of her hands touched one terminal of the transformer’s secondary coils 

which delivered the high voltage cycling at five hundred thousand hertz. Sparks stemmed from her other 

hand to nearby grounded objects. Skin effects acted as a shield to prevent the high frequency current from 

penetrating deeply enough to make contact with nerve endings. "The little lady felt nothing at all except
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a slight prickling sensation as the spark jumped.*9

I.F. Harmonics in Flux Density Distributions

In the induction motor, a sinusoidal spatial distribution of stator and rotor fluxes across the air gap 

is critical. A nonsinusoidal distribution can be represented by a Fourier series. Unfortunately, only the 

fundamentals of the series produce useful torque. The higher harmonics cause undesirable effects such as 

vibration, noise, and heat. Therefore, many techniques are used to minimize harmonics in the air gap flux 

density distributions.

A popular scheme to decrease harmonics is to use concentric stator windings where tiers of coils 

centering on the same tooth are wound from one wire. The coils of each successive tier span successively 

less teeth and usually contain less winding turns. Two matching sets of tiers are used to wind a pole pair 

with all tiers connected in series for a phase. More tiers lead to a more sinusoidal air gap distribution. 

On the other hand, many tiers require many slots and cause winding difficulties as well as narrow teeth. 

Leakage flux is increased in narrow teeth because some of the flux is forced to seek alternate paths other 

than down the lengths of the teeth. Also, saturation of magnetic flux may result. Saturation is a condition 

where a material has been magnetized to the highest possible degree so that the material can no longer 

carry any more flux. Saturation in the teeth causes harmonics by flattening the peak of the virtually 

sinusoidal air gap flux density distributions.

A solution to the trade-off between the number of winding tiers and the number of stator slots is 

to allow for more than one bundle of coils from more than one phase in each slot. This multiple-layer 

technique reduces the necessary number of.slots by more evenly allocating the amount of coils. Slot are 

used more efficiently. Winding for more than two layers is rare because of overcrowding and winding 

difficulties.

Still another technique that reduces harmonics in the air gap flux density distributions is cutting 

ears at the radial ends of teeth. Steel ears, which tangentially protrude to both sides at the tooth tips, 

extend the steel arc area to better distribute the concentrated flux flowing down the length of the teeth

9Tom C. Lloyd, Electric Motors and Their Applications, New York: John Wiley & Sons, Inc., 
1969, p. 108.
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across the air gap. Longer ears lead to larger arc areas and improved distributions. Unfortunately, 

overextended ears foster heavy flux leakage across the ear tips as well as structural problems.

Ordinarily, the rotor is skewed to further reduce harmonics in the rotor air gap flux density 

distribution. Skewing cancels out some harmonic interactions between the stator and rotor air gap flux 

density distributions despite causing some additional torque disturbance from axial flux. Conceptually, 

rotor skewing is a circumferential twisting of the squirrel cage from the end rings in opposite directions. 

Rotor bars no longer stand axially and no longer run parallel to the shaft. Designing for many rotor bars 

also decreases harmonics in the rotor air gap flux density distribution, but can cause saturation in the rotor 

teeth and can increase rotor heat generation.

Figure 1.2 illustrates a cross section of the basic components of a simple polyphase AC induction 

motor wound for two poles. The three stator phases designated by squares, triangles, and circles sit in only 

twelve stator slots. The windings of each phase consist of one tier per pole with one layer of windings in 

each slot. The air gap has been exaggerated for clarity. Twelve rotor bars are represented by the 

semirectangular darkened areas tangent to the rotor outer diameter. Rotor skewing and rotor end rings are 

not shown. The rotor teeth do not have any ears. The shaft is axially inserted through the rotor inner 

diameter. Except at the tooth tips, the width of the stator teeth is constant throughout the radial length, 

while the width of the rotor teeth is tapered.

I.G. Overview of Chapters 

This dissertation has been divided into eight chapters along with two appendices. Chapter I 

introduced the induction motor and its components. A brief history of the invention of the motor was 

given. A comparison of single-phase excitation versus polyphase excitation was made. Methods of driving 

and controlling the induction motor were provided. The basic theory behind the production of torque in 

the induction motor was presented. Since torque is produced from only the fundamental of the air gap flux 

density distributions, many techniques for decreasing harmonics were explained.

For determining output performance by lumped models, the magnetic, electrical, and thermal 

behaviors of the induction motor are addressed. Chapter II discusses the lumped magnetic model which 

determines the flux behavior in critical parts of the motor from motor geometry and material properties.
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Figure 1.2 Cross section of a simple polyphase AC induction motor wound for two poles.

Stator and rotor air gap fluxes, the interaction of which produces useful torque, are formulated. 

Magnetomotive force (MMF) drops in the steel are included because they are significant due to the 

characteristically small induction motor air gap. Stator and rotor leakage fluxes, which decrease useful 

tangential force and produce harmful radial force, are also formulated. Leakage flux, ordinarily divided 

into five parts commonly referred to as slot, zig-zag, end, belt, and skew leakage fluxes, is briefly 

explored.

Chapter HI discusses the lumped electrical model consisting of resistances and inductances. Stator 

winding resistance is formulated. The complete squirrel cage is modelled to include both the bar and end
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ring resistances. The inductances are used to model the electromotive force (EMF) voltages from the time 

derivative of linkage with stator and rotor air gap and leakage fluxes. Stator and rotor currents are 

expressed in terms of the resistances and inductances. Voltage equations that describe the lumped electrical 

model are compared with those that describe the general equivalent *T* circuit model. Simple closed-form 

expressions of output performance characteristics are derived from input voltages, stator currents, rotor 

currents, resistances, and inductances.

Chapter IV discusses the lumped thermal model which describes the effect of heat generation on 

temperature in terms of motor geometry and material properties. The temperature information is used to 

evaluate resistances. Steady state and transient temperatures are derived from heat sources, thermal 

capacitances, and thermal resistances. Heat sources arise from power losses in the motor. Thermal 

capacitances are used to model materials storing thermal energy. Thermal resistances model heat transfer 

through conduction, convection, and radiation.

Chapter V describes three magnetic FEA methods to determine performance in the induction motor 

from two-dimensional field solvers. Three-dimensional effects estimated from the lumped models are 

included. In the first method, torque is calculated through the method of virtual work directly from the 

steady state and static field solutions. In the second method, torque is derived through the power difference 

method directly from the steady state field solution. For the current driven motor, torque, horsepower, 

and power losses are derived in the two methods. For the voltage driven motor, torque, horsepower, 

power losses, power factor, and efficiency are derived in the two methods. In the third method, 

performance calculations are made direcdy from the transient field solution.

Chapter VI presents the experimental results of two commercial induction motors. The 

experimental configuration is described. The experimental results are compared with current and voltage 

driven torques determined from the lumped models and FEA methods. Also, transient temperature is 

calculated at stall from the lumped thermal model and compared to experimental results. Sources of error 

are explained.

Chapter VII dismisses the iterative design model for the voltage driven induction motor. Necessary 

inputs are explained. The model iterates around main motor dimensions to design for desired flux density
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levels. Performance is determined from the lumped models and compared with desired requirements. The 

model is verified by using two existing motors. It is then utilized to design an induction motor for desired 

requirements.

Chapter Vm, contains concluding ternaries and strategies for future work. Suggestions are made 

on improvements and additions to the developed lumped models, design model, and FEA methods.

Appendix A presents the general equivalent "T* circuit model. Output performance expressions 

derived from the model are discussed. The traditional strategy of FEA modelling the induction motor 

through the equivalent circuit model is briefly described. The traditional design approach which uses the 

equivalent circuit model is introduced.

Lastly, Appendix B briefly describes the classical approach to vector control of the induction motor 

through the rotor flux vector. The flux vector can be detected using direct or indirect rotor flux oriented 

scheme.
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CHAPTER H

LUMPED MAGNETIC MODEL 

H.A. Introduction

In order to analyze and design induction motors, the relationships of basic motor variables to 

motor performance must be known. A set of mathematical equations, derived from the magnetic, 

electrical, and thermal models, are developed in the next chapter to determine the relationships. This 

chapter derives the magnetic model, which uses electromagnetic theory to describe flux behavior from 

motor geometry and material properties.

Developing an accurate magnetic model for the induction motor is much more difficult than for 

permanent magnet motors. In the latter motors, MMF drops in the steel and leakage flux can be neglected. 

However, due to the characteristically small air gap in the induction motor, the MMF drops must be 

considered here because they significantly influence performance. Furthermore, permanent magnet motors 

are often represented by very simple magnetic models that contain only air gap flux. In the induction 

motor, leakage flux must be included as well because it also significantly influences performance.

To obtain the flux behavior in the induction motor, a lumped magnetic model that includes MMF 

drops in the steel and leakage flux is developed. The MMF drops and leakage flux along with MMF 

sources and air gap reluctance in the model are formulated. Flux in critical regions of the motor is then 

derived.

II.B. Development of the Lumped Magnetic Model

In developing flux behavior in the induction motor, a simple lumped magnetic model that contains 

only flux crossing the air gap is first introduced to initially simplify the analysis. MMF drops in the steel 

and leakage flux are neglected for now. Also, the number of stator and rotor teeth is constrained to be 

equivalent. Later, a general lumped magnetic model that includes the MMF drops and leakage flux is 

derived for any combination of stator and rotor tooth counts.
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In a lumped magnetic model approach, the flux density distribution is assumed to be uniform 

throughout a material body that is placed inside a coil of current carrying wire. In theory, however, the 

assumption is not exactly valid. Figure 2.1 shows the cross section of the flux density distribution in a 

block of unsaturated steel. The steel is wrapped around by a wire carrying static current. Flux flows 

inside the coil through the highly permeable steel and around the coil through air. The coil is assumed to 

be axially deep enough so that flux produced by current in the end turns is neglected.

t h e o r y   lumped magnetic model

B

s t e e l

Figure 2.1 Flux density distribution in steel cross section.

The theoretical flux density distribution has a smooth valley in between two sharp peaks. The 

lumped approach uses the magnitude at the valley as the amplitude of the uniform flux density distribution. 

Ignoring the peaks causes an error in the lumped magnetic model. The peaks, however, can be
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dramatically reduced by completely wrapping the steel around the wire with a small air gap. In this case, 

the air gap is of constant length and spreads the whole width inside the coil. The induction motor therefore 

has a small air gap between the stator and rotor and has windings placed in slots surrounded almost 

completely by steel. But, if more accuracy is still necessary in taking the lumped approach, then material 

bodies can be modelled as parallel sections in the direction of flux flow. A uniform flux density 

distribution would be assumed in each section.

Under the assumption of uniform distribution, magnetic behavior is directly analogous to electrical 

behavior. Thus, well-known electrical circuit theory is used to develop the lumped magnetic circuit model. 

A voltage across an electrically conductive material produces a current flowing through the material 

resistance. Similarly, a current called a magnetomotive force, MMF, induces magnetic flux flowing 

through a magnetically conductive material. The voltage is analogous to the MMF, the current is 

analogous to the flux, and the material electrical resistance is analogous to material magnetic reluctance. 

The reluctance resists flux flow just as the resistance resists current flow. Both are material properties. 

Flux flowing through a material is derived from the MMF drop across the reluctance of the material just 

as current flowing through a material is derived from the voltage drop across the resistance of the material.

II.B.l. The Air Gan Lumped Magnetic Model

The lumped magnetic model considers only motor sections that contain significant flux levels. 

Since only flux that crosses the air gap produces torque, a simple magnetic model that contains only air 

gap flux is presented here. Although leakage flux exists along with the air gap flux, it is neglected for 

now. In addition, MMF drops in the steel are also neglected for now.

The simple magnetic model is derived by first drawing the air gap flux path. Figure 2.2 shows 

a cross section of the instantaneous stator air gap flux for a very simple polyphase induction motor wound 

for two poles. The three stator phases designated by squares, triangles, and circles are spatially balanced. 

The air gap has been exaggerated for clarity. Leakage flux and rotor end rings are not shown. A 

differential time slice is taken of the flux path across the air gap through the six stator and six rotor teeth. 

The flux travels tangentially in the back iron and radially in the teeth. The nonpermeable motor shaft at 

the center of the rotor forces flux to flow around it. For a magnetically permeable shaft, the flux would
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flow straight through.

Figure 2.2 Cross section of stator air gap flux for a simple two-pole polyphase motor.

The flux that is drawn arises from the stator currents. The time varying flux links the rotor and 

induces voltages across the six bars. This forces current to flow in the bars establishing rotor flux that also 

crosses the air gap. The interaction of stator and rotor air gap fluxes produces a torque on the rotor.

Since most of the flux is guided radially across the air gap by steel teeth, the tangential and axial 

components of the air gap flux have been neglected. Air gap flux in those directions contributes no useful 

torque anyway. The steel teeth reduce the tangential flux and a laminated stack construction reduces the 

axial flux.
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The spatial distribution of the radial air gap flux can be represented by a Fourier series. The 

interaction from only the fundamentals of stator and rotor air gap fluxes produces useful torque. Higher 

harmonics are undesirable because they cause heating, vibration and noise problems. Therefore, many 

techniques are used to minimize the harmonics. As a result, they can be neglected from the derivation so 

that stator and rotor air gap flux density distributions are modelled only by their fundamentals.

Harmonics in the stator air gap flux density distribution are decreased by concentric windings that 

are spatially balanced and energized by sinusoidal voltages or currents that are temporally balanced. 

Concentric windings consist of many tiers of wire bundles wound in series. The tiers span various tooth 

counts but all center on the same tooth. Under the lumped magnetic model approach, current in each tier 

produces a uniform air gap flux density distribution. Superposition is applied to sum the distributions over 

respective tooth spans. The set of all tiers produces a staircase distribution that resembles a sinusoidal 

function.

The flux density distribution of concentric windings in a rolled-out portion of the stator cross 

section is shown in Figure 2.3. The cross section, which contains rectangular slots, corresponds to a pole. 

Each of the three tiers represented by various shapes can contain a different number of coils. When the 

number of tiers is increased and the coil count is chosen appropriately, the resultant distribution becomes 

more sinusoidal. Concentric windings utilize many tiers to transform the uniform distribution of each tier 

into more of a sinusoidal distribution.

Current in each phase can now be assumed to produce an air gap flux density distribution that is 

sinusoidal. When the sinusoidal balanced excitation is polyphase, a stator air gap flux density distribution 

results that is still sinusoidal but boosted in amplitude. Slotting effects disturb the smooth distribution since 

much more flux flows in the highly permeable steel teeth rather than in the slots. Ears cut at the tooth tips 

dampen the slotting effects by redistributing the flux more evenly across the air gap. Fringing occurs at 

the tooth tips where flux fans out across the air gap.

Some harmonic interactions between the stator and rotor air gap flux density distributions are 

canceled by skewing the rotor. Harmonics in the rotor air gap flux density distribution are further 

decreased by an increase in the number of rotor bars. The transition in current from one bar to the next
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Figure 2.3 Flux density distribution of concentric windings in a rolled-out portion of stator cross
section.

becomes more sinusoidal resulting in a more sinusoidal rotor flux density distribution. In addition, rotor 

slotting effects become less dramatic with an increase in rotor bar count.

When the sinusoidal distribution of flux is applied, the primitive magnetic model of Figure 2.4 

is used to formulate the flux in the simple two-pole polyphase motor of Figure 2.2 where:

■ stator MMF source in k* stator tooth from all stator winding currents
■ rotor MMF source in k* rotor tooth from all rotor bar currents 
m air gap reluctance per pole

Air gap flux travels from the stator back iron down the stator teeth across the air gap down the rotor teeth 

to the rotor back iron. The return path is the same from the rotor back iron to the stator back iron.

All stator MMF sources have the same amplitude but are evenly phase shifted in time and space 

relative to each other. Each source is in temporal phase with current in the windings that are ninety 

degrees away spatially. Similarly, all rotor MMF sources have the same amplitude but are evenly phase 

shifted in time and space relative to each other. Each source is also in temporal phase with current in the 

bar that is ninety degrees away spatially. The temporal phase of the rotor MMF sources relative to the 

stator MMF sources, however, depends on the rotor currents. The currents, which depend on rotor speed, 

will be derived after formation of the lumped magnetic, electrical, and thermal models.

Superposition can be applied to formulate flux through the branches due to all the stator and rotor
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Figure 2.4 Air gap flux model for a simple two-pole polyphase motor.

MMF sources. However, due to symmetry, flux through each of the six air gap branches is equal to the 

sum of the two MMF sources in the branch divided by the reluctance of the branch. Also as a result of 

the symmetry in the stator and rotor MMF sources, the air gap flux density distribution is almost sinusoidal 

except for slotting effects since the air gap reluctance per tooth is constant.

In the lumped magnetic model approach, the reluctance of a material is formulated as the average 

length of flux path through the material divided by the product of its incremental permeability and its 

average cross-sectional area. The permeability is evaluated at the average flux density level. The 

cross-sectional area is evaluated perpendicular to the flux path.
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The air gap reluctance is constant regardless of the time varying air gap flux density because the 

permeability of air is constant. Air gap flux enters the air gap through one pole and exits through its 

counterpart, an adjacent pole. The air gap reluctance over a pole becomes:

where:

1, a  air gap radial length
Fo a  permeability of air
n a  number of magnetic poles
D.i a  stator lamination inner diameter
Dro a  rotor lamination outer diameter
z a  stator and rotor stack average axial heights

A uniform air gap has been assumed, thereby neglecting slotting effects. Later, the Carter’s coefficient 

is used to account for slotting effects. Stator and rotor stack axial heights are usually almost identical so 

that they can be assumed equivalent. <Rg, which is on a per-pole basis, is multiplied by three in Figure 2.4 

because there are three stator and three rotor teeth per pole.

To be more accurate in modelling the air gap flux, MMF drops in the steel can be included since 

the flux also passes through steel in the back iron and teeth. The MMF drops can be incorporated by 

adding steel reluctances in series with the air gap reluctance. The steel reluctances can account for 

magnetic saturation effects since their permeability is dependent on the flux density level in the steel. 

Saturation limits the amount of flux a material can carry. Saturation in the teeth results in an air gap flux 

density distribution that is flattened and near sinusoidal instead of the assumed purely sinusoidal. As a 

result, the fundamental of the distribution is decreased. The steel reluctances model that decrease.

For motors with large effective air gaps, the reluctance of air is more significant than of steel 

because steel is usually at least two thousand times more permeable than air. These motors can be 

modelled without considering steel reluctances if saturation is not serious. Since induction motors have 

characteristically small air gaps, steel reluctances are significant. Although they are neglected in the simple 

model here, they are included in the model of the next section.
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II.B.2. The General Lumned Magnetic Model

The simple magnetic model of Figure 2.4 contains only flux crossing the air gap. MMF drops 

in the steel and leakage flux were neglected. However, they must be included because they significantly 

influence induction motor performance. Also, the number of stator and rotor teeth was constrained to be 

equivalent. A general lumped magnetic model that includes the MMF drops and leakage flux is developed 

for any combination of stator and rotor tooth counts. The MMF drops are incorporated by considering flux 

from all MMF sources. Because superposition applies, the stator and rotor magnetic circuits are separated 

to individually examine their contribution.

The magnetic model is developed to describe stator and rotor air gap and leakage fluxes resulting 

from the MMF sources and reluctances. Reluctances, which depend on material properties and geometry, 

remain virtually constant if saturation is not serious. MMF sources depend on stator and rotor currents. 

The amplitude of the rotor currents is unknown without also developing the thermal and electrical models. 

Stator current amplitude is unknown only in the voltage driven motor. For now, the currents are assumed 

known. They will be derived from input voltages after the development of the other two models.

The complete magnetic model would consist of many stator and rotor magnetic circuits in parallel. 

The number of stator circuits would equal the number of pole pairs multiplied by the number of stator 

phases. All stator circuits would be identical except for the temporal phase shifts in the MMF sources. 

The number of rotor circuits would equal the number of rotor bars pairs. All rotor circuits would also be 

identical except for the temporal phase shifts in the MMF sources. Fortunately, the complete magnetic 

model is unnecessary if symmetry exists.

For excitation that is balanced in time and space, symmetry exists if the rotor bars are evenly 

spaced. Additionally, the rotor bar count must divide evenly into the number of poles. For convenience, 

the number of rotor bars per pole is labelled the number of rotor phases. Each pole then contains current 

from all the stator and rotor phases. Furthermore, each pole pair contains identical flux strength and 

pattern with contribution from current in each of the stator and rotor phases. Due to the symmetry, it is 

only necessary to analyze the magnetic circuits for one set of the stator and rotor phases within a pole pair. 

In effect, the rotor circuit is analyzed on a per-bar-pair basis.
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The rotor magnetic circuit assumes an integral number of rotor phases. When that happens, 

matching bar pairs exist, each containing currents separated in time and space by 180 degrees. When the 

number of rotor phases is not an integer, however, the rotor magnetic circuit is no longer exact but an 

approximation. The approximation becomes better with an increasing number of bars because the transition 

in current from one bar to the next becomes smoother and more sinusoidal. The rotor usually contains a 

large odd number of bars in order to reduce harmonics in the rotor air gap flux density distribution. As 

with skewing the rotor, matching an odd rotor bar count with an even stator slot count cancels some 

harmonic interactions between the stator and rotor air gap flux density distributions.

Figure 2.5 shows the lumped magnetic model for one phase within a pole pair where:

Kd ■ winding distribution constant
N. ■ winding turns per stator phase per pole
4 m stator winding current in k* stator phase
9?.i ■ stator leakage reluctance per pole
Kc ■ Carter’s coefficient
K. ■ steel reluctance constant
K, »  skew constant

*  stator leakage flux per pole from stator winding current in k* stator phase
< ■ stator air gap flux per pole from stator winding current in k* stator phase
Nr *  turns per rotor bar pair
4 ■ rotor bar current in 1th rotor phase

*  rotor leakage reluctance per pole
*  rotor leakage flux per pole from rotor bar current in 1* rotor phase
v  rotor air gap flux per pole from rotor bar current in 1* rotor phase

The stator MMF sources are no longer in series with the rotor MMF sources as in Figure 2.4 because the 

number of stator and rotor teeth is no longer constrained to be equivalent. The contribution from each of 

the stator and rotor phases is separated and leakage flux paths are included. Furthermore, the air gap 

reluctance per pole instead of per tooth is used because the magnetic circuits represent one phase within 

one pole pair.

The stator MMF sources arise from current in the concentric windings. Two stator MMF sources 

are used for the matching sets of tiered wire bundles for each pole pair. Na represents the total number 

of coils in all the tiers of one phase within one pole. For multiple-tiered windings, a steel tooth often 

separates the matching sets of tiered wire bundles between poles. This allows for better utilization of slots 

through more even distribution of coils per slot.

For consistency, two rotor MMF sources are used for a bar pair. Since Nr equals one for the
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Figure 2.5 Lumped magnetic circuit model per phase per pole pair.

squirrel cage rotor, each source can represent current in half of a bar. The squirrel cage rotor can be 

conceptualized as being concentrically wound with one tier per phase per pole. Each rotor slot would hold 

two layers of current from the same phase.

Figure 2.6 shows rotor current in the half-bars for the two-pole motor of Figure 2.2 and 

Figure 2.4. Rotor end rings are excluded from the figure. The dashed lines denote the currents of one 

phase. The current in an entire bar is equivalent to the sum of the current in the adjoining half-bars. The 

half-bar current travels up the axial bar length and across a segment of the end ring corresponding to one 

pole. The current then continues down the axial bar length at the other end of the end ring pole segment 

and back across the pole segment of the second end ring. Two half-bar currents that share a bar travel in 

opposite direction in the end rings. The two currents follow two electrically parallel paths, each of which 

passes serially through half the poles on one side of the rotor. Like stator currents, rotor currents of each
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phase are modelled to flow serially from one pole to the next.

K-o-tor' s"fco.d-<

Figure 2.6 Rotor current in half-bars of a two-pole motor.

In modelling stator and rotor air gap flux density distributions by their fundamentals, only the 

fundamentals of the MMF sources are necessary. Therefore, the stator and rotor MMF sources are scaled 

for the amplitude of their fundamentals. Scaling the rotor MMF sources is easy because the squirrel cage 

is conceptualized as being concentrically wound with only one tier that spans all the teeth in a pole. For
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the stator sources, on the other hand, the different tooth spans of the tiers cause the MMF source associated 

with each tier to span a different tooth count. Consequently, the amplitudes of the fundamental associated 

with the tiers can not be simply summed. The winding distribution constant is used to account for the 

different tooth spans:10

concentric w uiiif tiers Mc /  \£ Mf**
where:

n, a  winding turns per stator phase per pole in k* stator concentric winding tier
S, ■ number of stator steel teeth or stator slots

*  stator coil tooth span in k* concentric winding tier

The winding distribution constant is unnecessary for the rotor because it equals one.

In deriving air gap flux under the lumped magnetic model approach, the series MMF sources are

simply divided by the series air gap reluctances. But, that yields the flux for a uniform air gap flux density

distribution. On the contrary, the air gap flux density distribution is assumed to be sinusoidal. Therefore,

the air gap reluctance is scaled by a constant fraction in order to take the lumped approach for a sinusoidal

flux density distribution. The fraction arises from the difference in area under the curve of a uniform

distribution and a sinusoidal distribution with the same amplitude. Over a pole, a sinusoidal flux density

distribution integrates to a constant fraction, 2 /r, of the flux to which a uniform distribution integrates.

The air gap reluctance is also multiplied by three more constants to improve the accuracy of the

air gap flux. Carter’s coefficient is included to elongate the effective air gap length due to fringing at tooth

tips from slotting effects:11

1
e *  --------------------------------------

I . J l . w*» s .

{5 l t + W * o )

n-3

10Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 267-270.

u Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, p. 304.
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where:

wii>o ** stator slot mouth opening width
Sr »  number of rotor steel teeth or rotor squirrel cage bars
wrbo 31 rotor sl°t mouth opening width

The coefficient is based on a theoretical derivation as well as experimental data, but it may not work well

when operating outside the scope of the data. The steel reluctance constant, explained in the next section,

accounts for MMF drops in the steel along the air gap flux path. The skew constant increases the air gap

reluctance to account for effects of skewing the rotor. All other variables are determined for an unskewed

rotor, then the skew constant is inserted to compensate for the skewing. Further explanation on rotor

skewing is presented in section II.D.5.

Stator currents establish stator air gap flux and stator leakage flux. Similarly, rotor currents

establish rotor air gap flux and rotor leakage flux. While the leakage flux only links conductors on the

same side, the air gap flux crosses the air gap to also link conductors on the other side. Each of the flux

per pole is a function of the MMF source and reluctance:

. * _ 4 2 W *

_ 4 W .‘
It * .

n-4
.( . 4 2

it it 2

H j i  2 » rt

The leakage flux will be explained and the leakage reluctances will be formulated in section II. D. With 

the flux functions known from the lumped magnetic model, the lumped electrical model can be developed 

in the next chapter to determine motor performance using induced voltages due to time derivative of the 

flux linkages.

n.C. The Steel Reluctance Constant 

The inclusion of the steel reluctance constant increases the air gap reluctance to account for the
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steel in the back iron and teeth along the air gap flux path. The constant becomes especially important in 

low pole count, large diameter motors with tiny air gaps, narrow back irons, and long, narrow teeth. The 

constant also incorporates saturation in the steel.

To account for MMF drops in the steel, reluctances can be added in the teeth of Figure 2.4 in 

series with the air gap reluctance and in the back iron regions between the radial air gap flux paths. In 

the lumped magnetic model of Figure 2.5, however, the flux that is within a pole pair instead of within 

a tooth is determined. Therefore, the back iron reluctances over a pole can be placed in that model in 

series with the air gap reluctance and tooth reluctances over a pole. But, because the air gap flux not the 

steel reluctances is of interest, the air gap reluctance used in formulating the flux can be scaled by a steel 

reluctance constant to incorporate the series steel reluctances. However, the steel reluctances are needed 

in calculating the steel reluctance constant

In formulating the steel reluctances for the steel reluctance constant, the permeability of steel, 

which depends on the instantaneous flux density levels, is needed. The flux densities are functions of 

currents evaluated through the lumped electrical model. But the model requires flux information 

formulated from the steel reluctances. Thus, some interdependence exists between the reluctances and the 

currents so that an iterative process is employed at each rotor speed to determine these quantities.

In the iterative process, the steel reluctance constant is initially determined through a conservative 

approximation of maximum steel reluctances. The steel permeability is thereby evaluated at the maximum 

flux density levels determined from the maximum air gap flux. This maximum flux is used only in 

evaluating the initial steel reluctance constant and not used to directly determine motor performance. Initial 

stator and rotor currents are then calculated through the lumped models. After that, the steel reluctance 

constant is iteratively corrected through the calculated currents using an average air gap flux.

The steel reluctance constant is formulated as the ratio of the sum of the air gap reluctance and 

series steel reluctances to the air gap reluctance:12

12Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, p. 306.
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K  = ------- 1_____f _____________?___  n _5

where:

9?,^ «  stator back iron reluctance per pole
$lm  *  stator steel tooth reluctance per pole
9?„b ■ rotor back iron reluctance per pole
Sint *  rotor steel tooth reluctance per pole

The constant t /2 was also applied in Figure 2.S. It scaled the air gap reluctance in order to take the

lumped magnetic model approach of a uniform flux density distribution for a sinusoidal flux density

distribution. Here, the constant applies to the air gap reluctance as well as the tooth reluctances because

the flux density distribution in the teeth is assumed sinusoidal. The distribution in the teeth, like in the air

gap, is also tangentially almost sinusoidal disturbed mainly by slotting effects.

The reluctance in the steel regions is derived from the permeability of steel, length of flux path,

and cross-sectional area of flux path in the regions:

I

n-6

where:

Dm ■ stator lamination outer diameter
wMb ■ stator back iron radial width

m permeability of steel in stator back iron 
lut ■ stator steel tooth radial length

■ permeability of steel in stator teeth 
m stator steel tooth average tangential width
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Dri s  rotor lamination inner diameter 
■ rotor back iron radial width 

(ltd, m permeability of steel in rotor back iron
I,* a  rotor steel tooth radial length
Pnt *  permeability of steel in rotor teeth
wm *  rotor steel tooth average tangential width

The length and cross-sectional area are measured over a pole. The radial distance between outer and inner

diameters for the stator and rotor comprises the back iron width and tooth length:

D„~Dd
— — -  =* w. +l

D - D .
n-7

The basic lamination dimensions for the simple motor of Figure 2.2 and Figure 2.4 have been labelled in 

Figure 2.7.

To initially solve for the steel reluctances, m axim um  air gap flux used to evaluate the maximum 

steel reluctances is derived. For most practical current and voltage driven motors, this maximum flux 

occurs at synchronous speed. At that speed, no rotor currents are induced so that no rotor air gap flux 

exists to counter the stator air gap flux. As rotor speed decreases, rotor currents increase faster than stator 

currents, but in the negative direction. This causes increased rotor air gap flux in countering the stator air 

gap flux and results in reduced overall air gap flux.

For the current driven motor, the maximum air gap flux per pole equals the amplitude of the sum 

of air gap flux per pole from only the stator currents:

£  * x KeXt  ^  m J
US

where:

4>max m maximum air gap flux per pole
m ■ number of stator winding phases

This represents the maximum flux over a temporal cycle. The spatial phase of the individual flux per phase

from relative positions of the windings is accounted for. The flux does not include either the steel

reluctance constant or the skew constant because they are unknown for now. The skew constant is derived
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Figure 2.7 Basic lamination dimensions for a simple two-pole polyphase motor.

later as a function of the steel reluctance constant.

Formulating the maximum air gap flux for the voltage driven motor is more complicated. The 

maximum flux is derived from the input voltages instead of stator currents. The input voltages are assumed 

to be completely applied to producing flux because voltage drops in the stator windings are normally 

relatively small. Hysteresis and eddy current losses in the steel as well as leakage flux are also neglected 

here. Leakage flux is normally small relative to air gap flux anyway.

The relationship between the input voltage amplitude and the maTimum air gap flux per pole is
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derived from Faraday’s law of induction applied to a sinusoidal excitation:13 

where:

s  input stator winding voltage amplitude 
m stator winding excitation frequency

The input voltage equals the sum of all voltages induced in the windings from flux linkage in every pole.

The winding distribution constant, Kj, is used because each tier of the concentric windings spans a different

tooth count. This prevents the flux from completely linking coils of every tier in inducing voltage.

Now that the maximum air gap flux has been derived for the current and voltage driven motors, 

maximum flux density in the steel regions can be determined. The steel permeability evaluated at those 

flux density levels is used in formulating the steel reluctances. The m axim um  air gap flux flows serially 

through the four steel regions consisting of stator and rotor back irons and teeth. Therefore, the maximum 

flux density in the regions can be derived from the m axim um  flux and the steel cross-sectional area.

The flux density distribution in the back iron is radially virtually uniform between teeth because 

the flux path length normally varies only by a small amount. Thus, maximum flux density per pole in the 

back iron is simply 0““  divided by the back iron cross-sectional area. But, flux in Figure 2.2 travelling 

across the air gap and through the teeth splits evenly at each pole. Half of the flux flows through the back 

iron on one side of the pole, and the other half of the flux flows through the opposite side. As a result, 

each segment of the back iron between the poles carries half the flux per pole:

aa b ------
n-io

b T  -
2wn *

where:

B?£ ■ maximum stator back iron flux density per pole
B?£ ■ maximum rotor back iron flux density per pole

13Cyril G. Veinott, Theory and Design o f SmaU Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, p. 306.
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The flux density distribution in the teeth, like in the air gap, has been assumed sinusoidal. 

Therefore, the constant t /2 is also utilized here. It scaled the air gap reluctance in Figure 2.S in order to 

take the lumped magnetic model approach of a uniform flux density distribution for a sinusoidal flux 

density distribution. Maximum tooth flux density is formulated by first dividing <//“** by the steel 

cross-sectional area over a pole to arrive at the amplitude of the uniform flux density distribution. Then, 

that amplitude is scaled by t /2 to arrive at the amplitude of the sinusoidal flux density distribution:

B max -  ^ wfr"**
“  " 2 S,Wm£ n - n

_  it 
“  2 ^

where:

*  maximum stator steel tooth flux density per pole 
■ maximum rotor steel tooth flux density per pole

When tooth width is not constant along the radial length, the flux density along the length deviates. This

may cause localized saturation and result in some error. However, since stator and rotor teeth commonly

have parallel sides, the localized saturation within the teeth are infrequent.

Now that the maximum flux density level in the steel regions is formulated, the steel permeability

in the regions can be evaluated to determine the reluctance in the regions. This incremental permeability

can be graphically represented by the slope of the material magnetization curve at the flux density.

Figure 2.8 shows the typical permeability of steel to be nonlinear where:

B *  magnetic flux density
H *  magnetic field intensity

Although the actual magnetization curve is also multivalued due to hysteresis loops, it is sufficient here to

neglect the loops by using the normal magnetization curve. When saturated, steel presents as much

resistance to flux flow as air because the permeability of steel approaches that of air at high flux density

levels. The absolute, or static, permeability, on the other hand, equals flux density divided by the field

intensity needed to achieve that flux density. When saturation is not serious, the reluctance is more

accurately determined from the incremental, not absolute, permeability. Therefore, it is the one referred
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Figure 2.8 Normal magnetization curve and absolute permeability curve of M-19 Fully Processed 26
Gage USS Nonoriented Electrical Steel Sheets.

to herein unless otherwise specified.

With the maximum steel reluctances and the initial steel reluctance constant derived, a more 

accurate steel reluctance constant is solved iteratively using the average air gap flux. As flux density varies 

with time, the nonlinear steel permeability causes each steel reluctance to likewise vary. Consequently, 

the steel reluctance constant also varies, but at a less pronounced rate. It is unnecessary to iterate for the 

steel reluctance constant at every instant in time. Instead, it is calculated only once at each rotor speed. 

In doing so, the steel constant is determined through the average air gap flux per pole estimated over a 

temporal cycle:

%

-35-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*■" n
2

n -12

_ 2 f  4 2 K /r tf
K

4 2
11 « IKJCfiJk'

where:

0*ve ■ average air gap flux per pole 

The spatial phase of the individual flux per phase from relative positions of the stator windings and rotor 

bars is accounted for. For flux that varies sinusoidally with time, the constant fraction 2/t  serves to obtain 

the average from the amplitude.

From this average flux, the average flux density at which the permeability is evaluated is 

determined in the steel regions. The average flux density is solved from the average flux as the m axim um  

flux density is solved from the maximum flux. After evaluating the permeability in the regions, the steel 

reluctance constant is again calculated. The iterative process continues until the change in the steel constant 

is within an acceptable margin.

Leakage flux must be included in magnetic modelling of the induction motor because it 

significantly influences motor performance. The flux reduces rotor currents as well as the stator currents 

that induce the rotor currents. The interaction of stator air gap flux produced by the stator currents with 

rotor air gap flux produced by the rotor currents generates torque. Therefore, torque estimation errors 

from exclusion of leakage flux are compounded. Leakage flux significantly reduces useful tangential force 

and also produces harmful radial force. Relative to the effective air gaps of permanent magnet motors, 

induction motors therefore have characteristically small air gaps to reduce this destructive flux. Leakage 

flux must be small relative to air gap flux to attain high torque and efficiency levels.

Leakage flux exists across slots, at the axial ends, and in other regions. The leakage flux paths 

offer additional paths for flux to flow besides radially across the air gap. The paths are thus parallel to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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the air gap flux path in the lumped magnetic model. Leakage flux is very difficult to analytically model 

so that commonly applied approximate or empirical techniques are used. The flux is ordinarily divided 

into five parts commonly referred to as slot, zig-zag, end, belt, and skew leakage fluxes.14 Although 

other leakage paths may exist, these five are usually sufficient for good performance estimations. The 

individual flux is explained briefly in the following sections. More detail is given in the footnoted 

reference.

A lumped leakage magnetic model is developed in Figure 2.9 to determine the individual leakage

flux:

9?lh *  stator slot leakage reluctance per pole
9?llz a  stator zig-zag leakage reluctance per pole

*  stator end leakage reluctance per pole 
5RtIb *  stator belt leakage reluctance per pole
9?llw *  stator skew leakage reluctance per pole
3?̂ , *  rotor slot leakage reluctance per pole
SRrtz ■ rotor zig-zag leakage reluctance per pole
IRrie *  rotor end leakage reluctance per pole
StrO, ■ rotor belt leakage reluctance per pole

*  rotor skew leakage reluctance per pole

This model offers more detail to the leakage flux paths that are in Figure 2.S. The stator and rotor leakage 

fluxes and in that model comprise the sum of flux in the five respective parallel paths in this model. 

Similarly, the stator and rotor leakage reluctances 9?.i and 9frt there comprise the five respective parallel 

leakage reluctances here:

it

The stator and rotor MMF sources in the two models are identical.

The leakage flux density distribution, like the air gap flux density distribution, is assumed to be

I4Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 313-314.
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Figure 2.9 Lumped leakage magnetic circuit model per phase per pole.

sinusoidal. But, not all of the individual leakage flux densities form purely sinusoidal distributions. 

However, leakage flux is usually much smaller than air gap flux so that the assumption does not introduce 

much error. With the assumption, the constant t /2 is used to scale the leakage reluctances as it did for 

the air gap reluctance in Figure 2.5 in taking the lumped magnetic model approach for a sinusoidal flux 

density distribution. With the sinusoidal assumption, the MMF sources like those in Figure 2.5 are also 

scaled for the amplitude of their fundamentals.

n.D .l. Slot Leakage Flux

Slot leakage flux tangentially crosses the slot without travelling the entire radial length of the tooth. 

The flux loops back prematurely without crossing the air gap to link conductors on the other side. Slot 

leakage flux increases with tooth saturation and decreases with tangentially wide slots. Saturation in the 

teeth increases the reluctance in the steel and encourages flux to flow across the slots instead of down the 

tooth lengths. Fatter teeth discourage saturation by carrying more flux down the tooth lengths and across 

the air gap, but also take up more space that can otherwise be used for windings. More winding space 

allows for thicker wires that generate less heat. On the other hand, teeth that are too fat necessitate slots

-38-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that are too narrow and result in slot leakage flux that is too high.

To derive the slot leakage reluctance, flux linkage with conductors in a slot is first derived. From 

the flux linkage per slot and the number of coils in each her of the concentric windings, flux linkage is 

derived in a phase. The slot leakage reluctance for a phase is then formulated from that flux linkage per 

phase given the winding excitation and the winding scheme.

To determine the flux linkage per slot, Figure 2.10 presents the flux paths through the cross 

section of a rolled-out rectangular slot where:

■ stator or rotor slot MMF source from ail stator winding or rotor bar currents 
JRy, m stator or rotor slot body leakage reluctance
9? ,̂, m stator or rotor slot mouth leakage reluctance

b o c k  i r o n

t e e t h
s l o t

Figure 2.10 Flux paths through cross section of a rolled-out rectangular slot.

For simplicity here, slots are assumed to be rectangular shaped. In reality, slots resemble trapezoids 

because stator and rotor teeth commonly have constant widths. MMF drops in the steel are neglected 

because the flux paths through air are much longer than through steel. Two reluctances are used to model 

the flux crossing the slot through the body and the mouth. Leakage reluctance per slot consists of the two 

reluctances in parallel. These reluctances in the slot differ from 9?lb and 9?^ in Figure 2.9 which are 

reluctances over a pole for a phase.

Almost all of the flux in the lumped magnetic model is assumed to uniformly link conductors in 

a slot. In other words, all conductors in a slot link the same amount of flux. Stator windings are assumed 

to uniformly fill only the main body of the slot excluding the mouth, and rotor bars are assumed to
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uniformly fill the entire slot. Therefore, flux linkage across the stator slot mouth is uniform. Flux linkage 

in the portion of the slot with conductors, however, is considered linearly proportional to radial depth. 

Each coil in the slot links only the flux that passes through it. Therefore, the deeper a conductor sits in 

a slot, the more flux it links. A simple method to account for that is to adjust the reluctance so that the 

flux linkage can be assumed uniform. The sum of flux linkage in the slot mouth and slot body yields the 

flux linkage in the entire slot.

From the flux linkage per slot and the number of coils in each concentric winding tier, the flux 

linkage in a phase is calculated. Since the leakage flux in one slot is assumed to link only conductors in 

that slot, windings of one phase link only the flux in the slots that they sit in. Flux linkage per phase is 

the sum of the flux linkage in those slots. The linkage in each slot is determined from the number of 

conductors in the slot. The coils of each tier sit in two slots per pole. Rotor bars can be conceptualized 

as concentric windings with one tier containing many thin coils per slot. The bars of one phase, however, 

sit in two half slots per pole.

The calculated stator and rotor flux linkages per phase are used to derive the slot reluctances over 

a pole for a phase, SRl(l and 9? ,̂. Slot leakage flux linkages formulated by the lumped electrical model in 

the next chapter are in terms of these reluctances, the winding excitation, and the winding scheme. To 

solve for the reluctances, the flux linkages of the lumped electrical model are set equal to the calculated 

flux linkages. The stator and rotor slot leakage reluctances, explained in detail in the footnoted reference, 

have been formulated for concentric windings:15

15Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 314-318.
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where:

^iiib “  adjusted stator slot main body leakage reluctance 
SRlUo *  stator slot mouth opening leakage reluctance 
3?,^ *  adjusted rotor slot main body leakage reluctance
9?rIao m  adjusted rotor slot mouth opening leakage reluctance

The reluctances for other practical slot shapes, such as round bottom slots and closed slots, have been

derived in similar manner.16

n.D.2. Zig-Zag Leakage Flux

Zig-zag leakage flux crosses the air gap like air gap flux, but reverses direction to travel back 

across the air gap before linking coils on the other side. After crossing the air gap, the flux travels 

tangentially across tooth tips instead of radially down tooth lengths. Narrow tooth tips reduce zig-zag 

leakage flux, but also disrupt a sinusoidal air gap flux density distribution. A large air gap reduces the 

leakage flux, but also reduces air gap flux that produces torque.

In deriving the zig-zag leakage reluctance, flux linkage in a slot is first determined with the 

average number of conductors per slot. Average flux linkage in a phase is the product of the average flux 

linkage per slot and average slot count per phase. The average zig-zag leakage reluctance for a phase is 

formulated from the flux linkage per phase, the winding excitation, and the winding scheme.

To determine the flux linkage per slot, Figure 2.11 presents the flux paths through the cross 

section of a rolled-out section of a motor with rectangular slots where:

16Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 328-330.
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*  stator zig-zag MMF source from all stator winding currents
*  average zig-zag leakage reluctance per slot
*  rotor zig-zag MMF source from all rotor bar currents

s t a t o r

windings

- ^ s lSi z t

/ ~ \ \

b a c k  i r o n

t e e t h

a i r  g a p  ^ * l z

 7  T  r \ ~ 7 ^

b a r s

r o t o r

t e e t h

b a c k  i r o n

Figure 2.11 Zig-zag flux paths through cross section of a rolled-out portion of motor.

MMF drops in the steel are neglected because the flux paths through air are much longer than through 

steel. Zig-zag leakage flux can originate in the stator and loop back to the stator, or in the rotor and loop 

back to the rotor. Stator and rotor zig-zag leakage fluxes around slots facing each other share their paths 

across the air gap.

Zig-zag leakage reluctance varies depending on the relative stator and rotor tooth pitches as well 

as the relative positions of stator and rotor tooth faces. To eliminate the dependencies, an average 

reluctance in a slot, is derived over the average of the tooth pitches. 9?b is on a per-slot basis because 

two of them are in series per slot and the overlapping tooth faces are shared between the paths around 

facing slots. Although the stator and rotor tooth pitches are assumed to be equal to the average tooth pitch, 

assumptions of equal tooth and slot widths are not made.

The average reluctance is explained in detail in the footnoted reference with some approximation
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for flinging of flux at tooth tips due to slotting effects.17 This approximation for fringing differs from 

Carter’s coefficient which elongates the effective air gap length. Here, the effective overlapping tooth faces 

are widened to account for extra flux flowing around the tooth sides.

The average reluctance in a slot, 9?b, differs from 9ftll and 3?^ in Figure 2.9 which are 

reluctances over a pole for a phase. Though, with 3?b known, the other reluctances can be derived. The 

average flux linkage in a slot is calculated from 3?b and average number of conductors in a slot. Then, 

the average flux linkage per slot is scaled by the average number of slots in a phase to yield the average 

flux linkage in a phase. These calculated stator and rotor flux linkages per phase are set equal to zig-zag 

leakage flux linkages formulated by the lumped electrical model in the next chapter. The zig-zag flux 

linkages are formulated in terms of 3?l t  and 9?^, the winding excitation, and the winding scheme. The 

average zig-zag leakage reluctances are then solved:

2 5 * .

* "  n - is
2 5 * .

* .  -  — r—±
*

n.D.3. End Leakage Flux

End leakage flux arises from current in the stator winding end turns and the rotor squirrel cage

end rings. This flux produces a harmful radial force instead of tangential force. As a result, useful torque

is reduced and unfavorable torque disturbance is generated.

Figure 2.12 presents the end leakage flux paths around the stator winding end turns and the rotor

squirrel cage end rings for a radial cross section of a motor where:

■ stator end turn MMF source from all stator winding currents
3?tlel ■ parallel stator end leakage reluctance per pole
9?.,.? ■ parallel stator end leakage reluctance per pole

*  rotor end ring MMF source from all rotor bar currents

l7Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 318-321.
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Figure 2.12 Flux paths in stator end turns and rotor end rings of motor radial cross section.

Stator end leakage flux is modelled by two parallel paths. One path flows in air between the winding end 

turns and the axial edge of the stator stack. The other path flows through the stator stack. Rotor end 

leakage flux is modelled to flow only through the rotor stack. Although some stator end leakage flux links 

part of the rotor end rings and some rotor end leakage flux links part of the stator end turns, these flux 

paths are not shown. MMF drops in the steel are neglected because the flux paths through air are much 

longer than through steel.

Analytically modelling end leakage flux is very difficult because flux from current of every stator 

phase and rotor phase all interlink in the end turns and end rings. Therefore, approximate expressions for 

end leakage reluctances are empirically derived in the footnoted reference:18

lgCyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 321-322.
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where:

t^j, ■ stator coil average tooth span 

The average tooth span is the sum of the tooth span of each concentric winding tier weighted by the 

fraction of the total number of winding turns in that tier.

n.D.4. Belt Leakage Flux

Belt leakage flux arises from the difference in the air gap flux density distribution generated by 

the stator and rotor currents. This leakage flux dim inishes to zero as the slot counts become equal, as the 

winding distributions become identical, and as the slots exactly face each other. Belt leakage flux is 

commonly insignificant in motors with a squirrel cage rotor, but is significant in ones with a wound rotor. 

Approximate expressions for the belt leakage reluctances are empirically derived in the footnoted 

reference:19

2032 r F .
•  _ »  _ 1.18* *

*  “ *  " T65 0-17.739 +
S +S 
• r -  1
2n

When stator and rotor slot counts are low, belt leakage flux is significant and highly sensitive to them.

II.D.S. Skew Leakage Flux

Skew leakage flux arises from rotor skewing. Rotor skewing is a circumferential twisting of the

19Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 322-323.
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squirrel cage from the end rings in opposite directions. Although skewing can be performed on the stator 

instead of the rotor, the latter is commonly more convenient to twist. With skewing, rotor bars no longer 

stand parallel to the shaft and rotor currents no longer flow purely axially.

Despite some slight torque disturbance that is produced, skewing is done to reduce harmonics in 

the rotor air gap flux density distribution that are detrimental to motor performance. Skewing cancels out 

some harmonic interactions between the stator and rotor air gap flux density distributions. Undesirable 

harmonics cause heating, vibration and noise problems.

In deriving the skew leakage reluctance, an average voltage induced in a skewed rotor bar is first 

determined. Equations describing the voltages experienced by stator windings and rotor bars are then 

written to include skew. After some equation rearrangements, rotor skewing can be easily incorporated 

in the lumped magnetic model.

For an unskewed rotor, the amount of air gap flux from one stator phase linking a matching pair 

of rotor bars is maximum when the bars are directly facing the windings in that phase. Skewing the rotor 

causes the flux linkage to be less than the maximum and to be a function of the skew. Including skew 

leakage flux accounts for the reduction in flux linkage.

Conceptually, if the rotor is sectioned into differential slices in the axial direction, then the voltage 

induced in a bar has the same amplitude in every slice, but is phase shifted in time relative to adjacent 

slices. The average of the voltage induced in the slices occurs at the axial center. Of course, the average 

induced voltage in a skewed rotor is less than that of an unskewed rotor.

To account for the reduction in induced voltage, the air gap reluctance is increased by the skew 

constant. However, only the stator flux linking rotor conductors and the rotor flux linking stator 

conductors are affected by skewing. Therefore, only the air gap reluctance related to these flux linkages 

are increased. The air gap reluctance related to the stator flux linking stator conductors and the rotor flux 

linking rotor conductors is undisturbed.

Equations formulating voltages experienced by stator windings and rotor bars are then written. 

The skew constant is attached only to the air gap reluctances related to flux linking conductors on the other 

side of the air gap. The equations can be rearranged so that every air gap reluctance is scaled by the skew
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constant. However, two extra terms appear that are labelled stator and rotor induced voltages due to time 

derivative of skew leakage flux linkage. To incorporate these terms, skew leakage flux is included in the 

lumped leakage magnetic model. With the skew constant attached to every air gap reluctance to 

compensate for skewing, all other variables in the lumped magnetic model can be determined for an 

unskewed rotor.

To determine the skew leakage reluctances, the calculated stator and rotor skew induced voltages 

are set equal to the skew induced voltages formulated by the lumped electrical model in the next chapter. 

The latter induced voltages are formulated in terms of 9?ltw and 3?^, the winding excitation, and the 

winding scheme. The reluctances are then solved.

The stator and rotor skew leakage reluctances, explained in detail in the footnoted reference, are 

formulated as a function of the skew constant and the air gap reluctance:20

^ j |

* * r  =  - - - - - - - - - - - - - -

1 - —

4

x W w * ,
2

n-i8

1 - —  

4

2

where:

dfa ■ rotor skew tangential arc angle 

The coefficients in the numerator of the first two equations contain 9?al and 9irt. These reluctances are 

unknown until the skew leakage reluctances are calculated. However, since the steel reluctance constant

20CyrilG. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 323-327.
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which is also in the numerator is solved iteratively, an initial guess can be made. The entire ratio of air 

gap reluctance to leakage reluctance can usually be approximated initially between two and nine percent.

The skew constant is the ratio of skew arc angle to its chord length. Skew angle is a spatial phase 

angle measured in radians with respect to the center of the shaft. Increasing the angle decreases skew 

leakage reluctance and increases skew leakage flux. An ideal skew angle based on stator slot count and 

pole count has been theorized to dramatically reduce harmonics.21 Although skewing the rotor also 

introduces slightly more slot and zig-zag leakage fluxes, the additional refinements are not made.

TT.F- Summary

Accurate lumped magnetic modelling of the induction motor is difficult. The characteristically 

small air gap causes MMF drops in the steel to be significant in formulating the air gap flux which 

produces useful torque. Leakage flux is also significant in determining motor performance. Since the rotor 

magnetic field is induced by the stator magnetic field, any errors in modelling the stator compound any 

errors in modelling the rotor.

A lumped magnetic model that includes the MMF drops and leakage flux has been developed to 

describe flux behavior in the motor. Parameters of the model are functions of basic motor geometry and 

material properties. MMF drops in the steel are incorporated through the steel reluctance constant. Due 

to the interdependence of the steel constant and currents, an iterative process is used to determine these 

quantities. After the flux behavior in the motor is known, induced voltages from time derivative of the 

flux linkages can be derived in the lumped electrical model of the next chapter to calculate motor 

performance.

Permanent magnet motors are often represented by very simple magnetic models in which only 

the air gap flux producing useful torque is considered. Leakage flux is neglected because it is relatively 

small. In the induction motor, leakage flux must be included. A lumped leakage magnetic model has been 

developed to formulate the flux. Due to the difficulties of analytically modelling leakage flux, commonly 

applied approximate or empirical techniques are used.

21 "The Effect of Harmonics on Induction Motor Performance," Eastern Air Devices, Incorporated, 
Dover, New Hampshire, Internal Report.
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Leakage flux is ordinarily divided into slot, zig-zag, end, belt, and skew leakage fluxes. Slot 

leakage reluctances have been derived for concentric windings. Average zig-zag leakage reluctances that 

do not depend on the rotor position have been derived. Because of the complex interlinking of end leakage 

flux, end leakage reluctances have been empirically derived. Approximate expressions for belt leakage 

reluctances have also been empirically derived. The belt leakage flux is commonly insignificant in motors 

with a squirrel cage rotor, but is significant in ones with a wound rotor. In motors with low stator and 

rotor slot counts, belt leakage flux is significant and highly sensitive to them. Skew leakage reluctances 

and the skew constant are formulated to incorporate rotor skewing so that all other lumped magnetic model 

parameters can be determined for an unskewed rotor.
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CHAPTER HI

LUMPED ELECTRICAL MODEL

m.A. Introduction

In the previous chapter, the lumped magnetic model was developed to describe the flux behavior 

in the motor. An electrical model is developed in this chapter that uses the flux information to derive 

simple closed-form expressions of performance characteristics. The electrical model also uses temperature 

information that is formulated from the thermal model in the next chapter. The models give a simplistic 

yet accurate description of motor performance in terms of motor geometry and material properties.

Developing an accurate electrical model for the induction motor is much more difficult than for 

permanent magnet motors. In the latter motors, rotor resistance is unimportant, EMF from linkage with 

leakage flux can be neglected, and rotor flux is always known. Determining rotor resistance in the 

induction motor, is necessary and complicated by end rings that require the complete squirrel cage to be 

modelled. Also, permanent magnet motors are often represented by very simple electrical models that 

contain EMF voltages from linkage with only the air gap flux. In the induction motor, however, EMF 

voltages from linkage with the leakage flux must be included as well because they significantly influence 

performance. Furthermore, the rotor flux of permanent magnet rotors is always known given geometry 

and material composition. EMF from linkage with the flux is induced only in the stator windings and is 

easily determined. Rotor flux in the induction motor results exclusively from induced rotor currents. EMF 

from linkage with the flux is induced in the stator windings and rotor bars. The magnitude of the flux is 

dependent on geometry and material composition as well as the rotor speed.

To determine performance in the induction motor, a lumped electrical model is developed that 

consists of resistances and EMF voltages from flux linkages. The resistances and voltages are derived then 

used to relate input voltages to stator and rotor currents. Output performance expressions are formulated 

in terms of these voltages, currents, resistances, and flux linkages. The developed electrical model is 

compared to the well-known equivalent "T* circuit model, which has been the traditional approach to
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induction motor analysis.

m.B. Development of the Lumped Electrical Model

The lumped electrical model consists of voltage drops across stator and rotor resistances as well 

as EMF voltages. The EMF voltages arise due to linkages with stator and rotor air gap and leakage fluxes. 

Due to symmetry, the model is developed only on a per-phase basis, though linkages with flux from the 

current in other phases are incorporated.

Just as the lumped magnetic model only considered motor sections carrying significant levels of 

flux, the lumped electrical model only considers motor sections with significant current flow. Most of the 

current in the induction motor flows in the highly conductive material of the stator windings and rotor bars. 

Eddy currents in the steel tend to be relatively small and are commonly neglected from the lumped 

electrical model. The eddy currents are not, however, neglected in performance calculations.

The lumped electrical model is developed to describe the stator and rotor currents. The currents 

are induced by input voltages and EMF voltages in the conductors. The EMF voltages arise from the time 

derivative of flux linkages. A time varying magnetic field induces a voltage called an electromotive force, 

EMF. The flux linkage occurs when the current in one conductor produces flux that links various 

conductors. Self coupling is when flux from the current in one phase completely links the conductors of 

that phase. Mutual coupling is when the flux partially links other conductors that it passes through.

The complete electrical model would consist of many stator and rotor electrical circuits in parallel. 

The number of stator circuits would equal the number of stator phases. All these circuits would be 

identical except for the temporal phase shifts in voltages and currents as well as the spatial phase shifts in 

flux linkages. The spatial phase shifts arise due to the spatial positions of the phases. The number of rotor 

circuits would equal the number of rotor phases. Likewise, all these circuits would also be identical except 

for the temporal and spatial phase shifts. Fortunately, the complete electrical model is unnecessary if 

symmetry exists.

The symmetry is identical to the one that simplified the lumped magnetic model. Excitation is 

balanced in time and space, rotor bars are evenly spaced, and rotor bar count divides evenly into the pole 

count. Even when the number of rotor phases is not an integer or the rotor bar count does not divide

-51-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



evenly into the pole count, the number of rotor bars is usually large enough so that it does not introduce 

much error. Also, harmonics from imbalanced excitation and imbalanced windings are neglected. Since 

the temporal and spatial harmonics degrade motor performance, measures are almost invariably taken to 

keep them small.

Due to the symmetry, it is only necessary to analyze the electrical circuits for one set of the stator

and rotor phases, though linkages with flux from current in other phases must be considered. The lumped

electrical model of Figure 3.1 shows the input voltage and the EMF voltages for a set of phases where:22

vfB ■ input stator winding voltage in k* stator phase
R, *  stator winding resistance per stator phase
v*( *  EMF in k* stator phase from stator leakage flux linkage
v*f a  EMF in k* stator phase from stator air gap flux linkage
v*. »  EMF in k* stator phase from rotor air gap flux linkage
R, m rotor squirrel cage resistance per rotor phase
vlri m EMF in 1th rotor phase from rotor leakage flux linkage
vjj ■ EMF in 1th rotor phase from rotor air gap flux linkage
vj, *  EMF in 1th rotor phase from stator air gap flux linkage

v s l vrl

s t a t o r r o t o r

Figure 3.1 Lumped electrical circuit model per phase showing voltage drops.

The crossed arrows represent EMF voltages from flux crossing the air gap to link conductors on the other

“ A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, pp. 61-63.
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side. For the circuits of any other set of phases, the voltages and currents are evenly phase shifted in time.

From the stator circuit, stator windings experience the input voltage and the EMF voltages due 

to linkage with stator air gap flux, stator leakage flux, and rotor air gap flux. The voltages force stator 

current to flow in the windings. Stator leakage flux links just the stator windings, while stator air gap flux 

links rotor bars as well by crossing the air gap to travel between the them.

From the rotor circuit, rotor bars experience EMF voltages due to linkage with stator air gap flux, 

rotor air gap flux, and rotor leakage flux. Similar to the stator flux, rotor leakage flux links just rotor 

bars, while rotor air gap flux links stator windings as well. The EMF voltages force rotor current to flow 

in the bars. The current actually flows in the opposite direction as defined in Figure 3.1 according to the 

polarities that are defined in the EMF voltages. The rotor current is defined in that direction to 

demonstrate Lenz’s law, which states that an induced current opposes the change in flux that produced it.

The stator air gap flux links rotor bars at the slip frequency. This is because the stator magnetic 

flux vector rotates in the same direction as the rotor, but at the excitation frequency. The slip frequency 

is the difference between the excitation frequency and the electrical rotational frequency of the rotor. As 

a result, all rotor voltages and currents oscillate at the slip frequency.

The rotor air gap flux links stator windings at the excitation frequency. The EMF induced by this 

opposes the input voltage. When the rotation of the rotor flux vector is superimposed onto that of the 

rotor, the vector rotates at the excitation frequency relative to the stator. All flux oscillates at the slip 

frequency with respect to the rotating reference frame of the rotor, but at the excitation frequency with 

respect to the stationary reference frame of the stator. All stator voltages and currents oscillate at the 

excitation frequency.

Hysteresis and eddy current losses in the steel have been neglected from the lumped electrical 

model. Interdependence exists between the losses and the stator and rotor currents. The losses affect the 

currents, which determine the flux density levels in the steel that influence both the hysteresis losses and 

eddy currents. An iterative process can be used to determine these quantities.

However, an approximate method can be used to incorporate hysteresis and eddy current losses
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in the stator and rotor steel. A resistor can be added in the lumped electrical model parallel to v̂ ( and 

vj^23 The average power lost across the resistor at no load would approximately simulate the average 

hysteresis and eddy current losses per phase. No-load current can be measured experimentally in setting 

the resistance. In any event, the resistor is not included because the losses are commonly neglected. These 

losses tend to be small relative to the losses in much more conductive materials of the stator windings and 

rotor bars. Laminations are coated with insulation anyway to decrease axial eddy currents in the steel that 

oppose useful torque. Though, the hysteresis and eddy current losses can still be relatively significant for 

high excitation frequency when operating near synchronous speed.

n T C . Resistances

Stator and rotor resistances are formulated in order to derive currents from input voltages using 

the lumped electrical model. Resistance is a function of temperature, which depends on the heat generated 

by current. But, the current is dependent on the resistance. Therefore, resistances, currents, and heat 

generation are all interdependent. To determine these quantities, an iterative process is used where the 

steady state temperature at each rotor speed is determined from the thermal model in the next chapter.

m.C.l. S tator W inding Resistance

Stator resistance does not influence the torque generated by the current driven motor. In the 

voltage driven motor, however, an increase in the resistance reduces stator current and torque. Stator 

winding resistance is a function of motor geometry and material properties. The resistance per phase is 

calculated by first evaluating the resistance per length at the stator temperature at the operating speed. 

Then that resistance is multiplied by the length of wire used to wind one phase.

The resistance for an incremental length of wire can be determined from the wire resistivity and 

cross-sectional area. To evaluate the resistance at the temperature of the operating speed, the mean 

temperature coefficient is used. The resistance increases linearly with temperature over a wide range of 

temperatures.

^Cyril G. Veinott, Theory and Design o f SmaU Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 19S9, pp. 169-170.
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Once the resistance per length is known, the length of wire used to wind one phase is derived to 

determine the stator resistance per phase from the product of the two:

The resistance of each phase is identical due to the assumption of balanced windings. Skin effects are 

neglected since most stators are wound with thin wires.

Figure 3.2 shows the concentric windings in the stator for one phase of the simple two-pole

by 120 degrees. The concentric windings consist of just one tier. Each slot holds two layers of windings 

of the same phase from matching poles.

The coils of one phase are wound in series over every pole. For a balanced winding scheme, the 

wire length is identical for every pole, which contains concentric windings of every tier. The concentric 

windings are separated into an axial section and an end turn section. The axial section is the part that runs 

axially in the slots. This section equals the product of the number of winding turns per pole in all of the 

tiers and twice the stator stack height. The doubling arises because coils of each tier sit in two slots.

The end turn section is the part of the windings that extend beyond the end of the stack and runs 

tangentially in the end turns. The extension arises due to the curvature of the wire bundle. The length of 

extension depends on many factors such as winding method, length of end turns, wire thickness, wire count 

in the bundles, and tier count, instead of accounting for all the factors, a simple multiplier that is 

dependent on the pole count is used without much error. In the end turns, coils of each tier follow an arc 

approximately at the radial center of the slots corresponding to the tooth span of that tier. The end turn 

length of all tiers equals the sum of twice the arc length of each tier scaled by the coil count in that tier. 

The doubling arises because coils of each tier follow the arc at both ends of the stator stack.

where:

K,x ■ stator winding wire mean temperature coefficient of resistivity
T, *  stator winding wire steady state temperature at operating speed
T,r ■ stator winding wire reference temperature

■ stator winding wire resistance per length at reference temperature
■ stator end turn extension axial height constant

polyphase motor of Figure 2.2 and Figure 2.4. The other phases are identical but spatially phase shifted
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Figure 3.2 One-tier concentric windings of one phase in a two-pole stator with six teeth.

m.C.2. Rotor Squirrel Cage Resistance

Without skin effects as well as hysteresis and eddy current losses in the steel, rotor resistance is 

independent of the maximum torque in current and voltage driven motors. Figure 3.3 shows that an 

increase in the resistance effectively linearly stretches the torque-speed curve away from synchronous speed 

while keeping fixed the torque-speed point at that speed where:24

T »  steady state output torque
dt m rotor squirrel cage mechanical rotational frequency 

Consequently, torque decreases at low slip frequency and increases at high slip frequency.

Formulating resistance of the wound rotor is very similar to that of the wound stator. Skin effects 

are also omitted because winding wires are usually thin. Formulating resistance of the squirrel cage rotor,

24A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, p. 341.
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Figure 3.3 Effect of increasing rotor resistance on the torque-speed curve.

on the other hand, is more difficult because skin effects and end rings must be included. The resistance 

is a function of both the bar and end ring resistances. Determining the resistance per phase in the bar is 

simple because each bar contains current from only one phase. Determining the resistance associated with 

a phase in the end ring is complex because segments of the end rings between bars are shared by current 

from all phases flowing in various directions. As a result, the complete squirrel cage is modelled.

To derive the rotor resistance, a squirrel cage model is developed that contains EMF voltages, bar 

resistances, and end ring resistances. KirchhofPs current law is used in the model to determine the current 

in the end rings as a function of current in the bars. Temperature effects and skin effects are excluded until 

after formulating the rotor resistance. KirchhofPs voltage law is then used to sum the voltages around a 

loop in the squirrel cage model. The rotor resistance per phase is determined by expressing the voltage 

per phase in terms of the current per phase. Due to the assumption of evenly spaced rotor bars, the 

resistance of each phase is identical.

Figure 3.4 shows a planar squirrel cage resistance model for the six-bar rotor of the simple
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two-pole motor of Figure 2.2 and Figure 2.4 where:25

v* m sum of EMF voltages in It* rotor phase
i,e *  rotor end ring segment current between k* and (k+ 1)* or first rotor phases
Rrt, ■ rotor bar resistance

m rotor end ring resistance

r o t o r

Figure 3.4 Planar squirrel cage resistance model for a six-bar rotor of a two-pole motor.

The model physically resembles the rotor when viewing from the axial direction. The end ring at the 

bottom is shown concentric to the one at the top, but with a smaller diameter. The heavy lines indicate

25Thomas A. Lipo, Electromagnetic Design o f AC Machines, College of Engineering, Department 
of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, Course 
Notes for ECE 713, 1990, Chapter 4, pp. 45-47.
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the rotor outer diameter of the top end ring and the rotor bars connected to it. The rotor inner diameter 

for the motor shaft is not shown. According to the polarities that are defined in the EMF voltages, the 

current actually flows in the opposite direction as defined to be consistent with the rotor circuit of 

Figure 3.1. Resistances exist in the bars between the end rings. The end ring resistance is divided into 

segments between the bars. Temperature effects and skin effects on the resistances are not included for 

now, but will be incorporated after formulating the rotor resistance.

i* and are associated with an entire bar not two half-bars. But, the current in Figure 2.6 

follows two parallel paths through two half-bars. The current and resistance in the two paths can be 

combined into one path through the bar section of the path. In that one path, current through an entire bar 

is presented with resistance from that entire bar.

From Figure 3.1, the rotor current in each phase is induced by the sum of EMF voltages in that 

phase due to linkages with stator air gap flux, rotor air gap flux, and rotor leakage flux:

v* -  v£+v4 +vrf ni-2

For each phase, v* is in phase with the rotor current in the bar, i*:

v* = K

*r * l r

where:

Vr ■ amplitude of sum of EMF voltages in rotor phase
oj, m rotor bar slip frequency
t ■ time
a  m phase angle lag from input stator winding voltage to stator winding current
yf/ ■ phase angle lag from stator winding current to rotor bar current
^  ■ rotor bar current amplitude

The two phase angles a  and serve to relate the phase angle of voltages and currents in the rotor to that

in the stator after a common spatial reference is selected. The phase angles, which are derived later, do

not serve any purpose here except to be consistent with later notations. When the flux density distribution

across the air gap is assumed to be sinusoidal in space and time, v* and i* of every phase have identical
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respective amplitudes but are phase shifted relative to other phases. The phase shifts stem from relative 

positions of the bars.

Currents in the end ring segments also have identical amplitude but are phase shifted relative to 

other segments due to relative positions of the segments:

m-4

where:

y
rotor end ring segment current amplitude
phase angle lag from rotor bar current to rotor end ring segment current

But, i£. is not in phase with i* because the end ring segments are shared among all the latter currents. The 

amplitude of the rotor currents and EMF voltages is not required here in deriving the rotor resistance and 

so will be determined in a later section.

However, the current in the end ring segments as a function of the current in the bars is needed. 

KirchhofFs current law is used to sum the currents in Figure 3.4 at a node:

A A .-1 m -5

After substitutions from Equation III-3 and Equation m -4, the relative amplitude and phase angle lag 

become:

/  * r t

Y * tan

' ■ “ ( f )

*SL
Hf)

m-6

When many rotor phases exist, the end ring segments carry much more current than the bars. A large 

number of rotor phases is necessary to reduce harmonics in the rotor air gap flux density distribution.

Now that current in the end ring segments as a function of current in the bars is known, rotor
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resistance is derived by formulating v^as a function of i*. KirchhofPs voltage law is used to sum the 

voltages in Figure 3.4 around two adjacent bars and the end ring segments in between:

ffl-7

This general equation holds for any pole count and bar count since the EMF is divided into the number of 

poles and the end ring resistance is divided into the number of rotor bars. To convert to be on a per-bar 

basis, it is divided by the pole count. The difference of the EMF in two adjacent bars is a function of the 

current in the bars and in the end ring segments in between.

Since i^ relative to i* is known, v* in any phase can be written in terms of the current through 

that phase and the resistances associated with that phase. Through trigonometric identities and substitutions 

from Equation HI-3, Equation m-4, and Equation HI-6, v* equals:

vr  = -  n .k
m-8

The negative sign associated with the rotor bar current arises because the actual direction of flow is 

opposite as defined in Figure 3.1 and Figure 3.4.

When temperature effects and skin effects are included, the rotor squirrel cage resistance per phase 

becomes:

where:

K R
f t  f t

m-9

Kjf ■ rotor squirrel cage mean temperature coefficient of resistivity
Tr ■ rotor squirrel cage steady state temperature at operating speed
T„. ■ rotor squirrel cage reference temperature
Krf, ■ rotor bar skin effects constant

m rotor end ring skin effects constant

Heating affects rotor resistance in the same manner as the stator resistance of Equation HI-1. and R„

are calculated at their reference temperatures, then scaled to the temperature at the operating speed. The
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temperature of the bars is usually very close to that of the end rings. If not, then the two resistances can 

be evaluated at different temperatures. The bars are usually constructed of the same material as the end 

rings. But, if different materials are used, another temperature coefficient can easily be applied. In motors 

with many rotor phases and a high end ring resistance, the end rings can be significant in the squirrel cage 

resistance.

In calculating and R^, the current density distribution is assumed to be uniform. However, 

skin effects cause the distribution in bars and end rings to be nonuniform. Conceptually, if the rotor bar 

is sectioned into differential slices in the radial direction all connected in parallel, then slices at the radial 

top and bottom link different amounts of flux. This difference arises because leakage flux exists across 

the slot. Further description on this leakage flux is presented in section Q.D.l. An induced voltage 

gradient occurs throughout the parallel slices of rotor bar causing the current distribution to be nonuniform. 

Circulating currents form pushing the through currents to the peripheral slices, thereby increasing the 

effective resistance of the bar. This phenomenon, called skin effects, occurs predominately in rotor bars 

and end rings.

The skin effects constants, which have been theoretically derived, simulate this phenomenon by 

increasing the effective bar and end ring resistances:26

26Thomas A. Lipo, Electromagnetic Design o f AC Machines, College of Engineering, Department 
of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, Course 
Notes for ECE 713, 1990, Chapter S, pp. 2-8.
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2—  l+sin
n»

2—

r  -  Z>"  
24

m-io

where:

wr
Pr
Mr

rotor squirrel cage slrin effects depth
rotor squirrel cage resistivity at reference temperature
rotor squirrel cage permeability

Permeability of the squirrel cage material is almost invariably equivalent to that of air for most practical 

rotors. Skin effects, which increase with slip frequency as well as radially deep bars and end rings, cause 

the rotor resistance to vary with rotor speed. An increase in skin effects boosts torque and heat generated 

at stall. Performance at high rotor speeds, however, remains almost undisturbed.

m.D. EMF Voltages

The lumped electrical model is used to determine induction motor performance. With stator and 

rotor resistances in the model already formulated, EMF voltages are derived in the following sections. 

From Faraday’s law of induction, EMF voltages are induced in stator windings due to the linkage with 

stator air gap flux, stator leakage flux, and rotor air gap flux. EMF voltages are induced in rotor bars due 

to the linkage with rotor air gap flux, rotor leakage flux, and stator air gap flux.

The lumped magnetic model has derived the flux in a pole pair due to current of each stator and 

rotor phase. Superposition is applied to sum the linkage contribution from flux produced by current in each 

phase. Since flux in each pole pair behaves the same, identical EMF voltages are induced in each pole 

pair. The EMF voltages per pole pair summed over all pole pairs in series yield the EMF voltages per
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phase.

Due to sinusoidal excitation that is balanced in time and space, the EMF per phase is independent 

of the spatial phase shift of flux linkages. Also, the EMF induced in each phase is in phase with the 

current in that phase. Therefore, the EMF can be modelled as a voltage drop across an inductance. The 

EMF is identical for all phases except for the phase shifts which account for the relative positions of the 

phases.

m .D .l. Time Derivative of Stator Air Gan Flux Linkage

Stator air gap flux links all stator windings as well as all rotor bars. The EMF voltages from the 

flux linkages are derived. A stator air gap inductance is defined and the EMF voltages are expressed as 

voltage drops across it.

When linking the stator, stator air gap flux produced by the current of each phase links the coils 

of each phase. The linkage must account for the spatial phase of the flux relative to the coils. 

Superposition is applied to sum the linkages in a pole pair. The linkage per pole pair is multiplied by the 

number of pole pairs to yield the linkage per phase.

The EMF in the k* stator phase from linkage with the stator air gap flux is:

« * j* - —(t- 0

v* = 1  A ,
*  2  dt

[  sin(0 ) dO
2 k  -

(•1
s +2k

f  sin(0 ) dB 
2%

m -i i

where:

$ ■ spatial phase angle

The concentric windings consist of a matching set of tiered wire bundles for each pole pair. Although the 

flux links both sets of the wire bundles, it does not completely link the coils of each tier due to the different 

tooth spans. K,, accounts for the different spans of the tiers in linking flux. The last term of the 

summation originates from self coupling while all other terms originate from mutual coupling.

Stator air gap flux has been derived in Equation II-4 by the lumped magnetic model:
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v i - f -
HI-12

The stator currents, like rotor currents, have identical amplitude but are also phase shifted relative to other 

phases due to their relative positions:

where:

I, ■ stator winding current amplitude 

As stated before, the phase angle a , which is derived later, does not serve any purpose now except to be 

consistent with later notations. It relates the phase angle of the stator currents to that of the input voltages.

After substituting for the stator currents in Equation IH-12, the summation is simplified through 

the use of a trigonometric identity:

n dv* = K ±  -  
*  2  dt

= K-

2 K /i ——— K^ ‘ su /o S -a * — ) 
*  *2 n n K J i £ J 8 t t  \  *  m )

4  n rnK tf
C08(«.f- 0+^ ) m-14

1 , m i  2

2  , m ■ 1

where:

■ stator EMF trigonometric identity constant 

The constraint of the identity necessitates a scaling constant for the single-phase motor. For the two-phase 

motor, ninety degrees spatially separate the stator windings and temporally separate their currents. 

Otherwise, if 180 degrees separate the windings and currents according to Equation m-13, the motor would 

perform like the single-phase motor with pulsating, not rotating, air gap flux vectors.

The EMF from stator air gap flux linkage can be expressed in the frequency domain as the voltage 

drop across an inductance:
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v4  = / “ « V *

4
m i s

where:

L,r a  stator air gap inductance per stator phase 

The EMF in any stator phase is dependent on current in only that phase. Phase shifts in time and space 

all cancel.

Stator air gap flux also links rotor bars. The EMF in the k* rotor phase from linkage with the

flux is:

s, ■
j  sin(6 ) dB

a 2k - —

n  5 V  ^
mJc. 2*1 
S. a

{•1
k*2x
/  sin(0) dB
2s

m -i6

, S

The spatial phase of the flux relative to the bars is accounted for. The last stator phase is selected to be 

spatially aligned with the last rotor phase so that all stator and rotor phases relate to the same spatial 

reference. If the phases are not aligned or they do not exactly face each other across the air gap, then the 

phase angle of misalignment can be attached to the limits of the integrals. However, any misalignment is 

usually small because the squirrel cage is commonly designed with many bars to reduce harmonics in the 

rotor air gap flux density distribution. All terms of the summation originate from mutual coupling. The 

stator air gap flux oscillates at the slip frequency with respect to the rotor bars.

The EMF can be expressed in the frequency domain as a function of the stator air gap inductance:

N.
ja * * 2K /rt l‘

m-17

The stator current here oscillates at the slip frequency with a phase shift of the rotor phase. Although
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this stator current does not actually exist, the EMF is proportional to a stator current that is evaluated in 

the rotating reference frame relative to the rotor phase. When the rotor rotates at synchronous speed, no 

EMF is induced. At stall, the EMF is proportional to the excitation frequency. The EMF causes current 

that oscillates at the slip frequency to flow in the rotor bars, thereby producing rotor flux.

m.D.2. Time Derivative of Stator Leakage Flux Linkage

Stator leakage flux links only the stator windings and not the rotor bars. The EMF in the k* stator 

phase from linkage with the flux is:

* 2 dir

« * j* -

j  sm(0 ) dO

£ < tv
2 k  -  — (*-Q

/-I k »2k

j* sin(0 ) dB
2 k

2  rm X ffi 2 it k)= K    o l  coa u  t-a+ -----
11 ** A m )

m -i8

The flux has been derived in Equation II-4 by the lumped magnetic model. The EMF can be expressed 

in the frequency domain as a function of the stator leakage inductance:

ra-i9
Ld = K„

*

where:

stator leakage inductance per stator phase

III.D.3. Time Derivative of Rotor Air Gao Flux Linkage

Like the stator air gap flux, rotor air gap flux links all rotor bars as well as all stator windings. 

The EMF in the k* rotor phase from linkage with the flux is:
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m-20

i , — > i n
K

S
2 , -1  = .5,1 

n

where:

Kp, “  rotor EMF trigonometric identity constant 

The flux has been derived in Equation II-4 by the lumped magnetic model. After substituting for the rotor 

currents through Equation HI-3, the summation is simplified through the use of another trigonometric 

identity. This identity for the rotor is similar to the one for the stator in Equation HI-14 except the number 

of stator phases is replaced by twice the number of rotor bars per pole. The EMF can be expressed in the 

frequency domain as a function of the rotor air gap inductance:

m -2i
Ln  = K '  r-----

" 2W w * ,

where:

L,, ■ rotor air gap inductance per rotor phase

Rotor air gap flux also links stator windings. The EMF in the k* stator phase from linkage with 

the flux is:
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Kn—  a j  c o sL r -« -* + — \

The rotor air gap flux oscillates at the excitation frequency with respect to the stator windings. The EMF 

can be expressed in the frequency domain as a function of the rotor air gap inductance:

v«r = A» A
2 £ A .

r  N .  '

in-23

The rotor current here oscillates at the excitation frequency with a phase shift of the k* stator phase. 

Although this rotor current does not actually exist, the EMF is proportional to a rotor current that is 

evaluated in the stationary reference frame relative to the stator phase.

m.D.4. Time Derivative of Rotor Leakage Flux Linkage

Rotor leakage flux links only the rotor bars and not the stator windings. The EMF in the k5* rotor 

phase from linkage with the flux is:

2  dt

*  ♦ 2«  -

fr
II

I* sin(8 ) dB
2.  - ^ - 0

« * 2«

j  sin(0) dB
2k

m-24

The flux has been derived in Equation II-4 by the lumped magnetic model. The EMF can be expressed 

in the frequency domain as a function of the rotor leakage inductance:
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vrt 3
rn-25

where:

Lrf ■ rotor leakage inductance per rotor phase

m.E. Stator and Rotor Currents from the Input Voltage

With the resistances and EMF voltages in the lumped electrical model derived, the currents are 

now solved. The defined inductances are used to replace the EMF voltages in Figure 3.1. Voltage 

equations are then written for the electrical circuits. By solving the simultaneous voltage equations, stator 

and rotor currents are formulated at any slip frequency from input voltages.

The lumped electrical model of Figure 3.5 consists of resistances and inductances, which have 

replaced the EMF voltages. KirchhofFs voltage law is used to sum the voltages around the stator and rotor 

electrical circuits in the frequency domain:

vt, = + + v*

vl  = ~ R/ r  ~ f a l L li+Lr$ ,r

m-26

vjfr and vj, are substituted from Equation m-23 and Equation HI-17:

m-27

By solving the simultaneous equations, stator and rotor currents in the k* phase are derived as 

functions of the input voltage in the k* phase:
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Figure 3.5 Lumped electrical circuit model per phase.
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m-28

■t
t «■», Nr k

CD C|> 
1 -  ‘ ‘ T ( LS L*) + T i Ln+Lrt)

A transformation from the excitation frequency to the slip frequency is necessary for the rotor current. 

Current in only the rotor bars spatially aligned with stator windings is represented. For current in the 

misaligned bars, the phase angle is shifted in time. The negative sign in the rotor current equation 

indicates the rotor current actually flows in the opposite direction as defined in Figure 3.1 and Figure 3.5.

To translate the currents to the time domain, the temporal reference for all voltages and currents 

is first chosen to be the phase angle of the input voltage in the last phase. The input stator voltage in the 

k* stator phase is:

v t  -  V„ m-29
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Stator and rotor currents are then expressed in the form of Equation m-13 and Equation m-3:

1

X . \
1 ♦

2

2 
► ♦

•p

a = -tan-i + tan*
7j r ( V ^ )  * j i ^ )

<|) Q # S\

1 " -  V t ] m -30

o» Nl  r *’ r

/  =
Q 0) w« *1

1 " -  v - , ]

♦  -  f  + tan'1)

For the current driven motor, the rotor current amplitude can be defined in terms of the stator current 

amplitude:

to N.— L  r— i
Rr * 2 K / f ,  '

\

in -31

l  +

All other stator and rotor currents are extracted by phase shifting in time to account for the relative 

positions of the stator windings and rotor bars.

The trends in the stator and rotor currents are determined with eddy currents in the steel and skin 

effects neglected. Skin effects are usually small at low slip frequency where the induction motor typically 

operates. Stator current amplitude increases as rotor speed decreases except near synchronous speed. The 

phase angle of the stator current lags that of the input voltage from zero to ninety degrees over all slip 

frequencies. The phase lag increases as rotor speed decreases except near synchronous speed. Rotor 

current amplitude increases as rotor speed decreases in both current and voltage driven motors. When

-72-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



operating near synchronous speed, induced rotor currents are small. Also, a phase lag of almost ninety 

degrees separates the rotor current from the stator current that is directly across the air gap. As slip 

frequency increases, the phase lag approaches 180 degrees where the rotor air gap flux completely cancels 

the stator air gap flux if rotor leakage flux is ignored.

III.F. Comparison with the General Equivalent *T* Circuit Model 

The developed lumped electrical model of Figure 3.5 resembles the general equivalent'T* circuit 

model of Figure A.1, which has been the traditional approach to induction motor analysis. In fact, 

identical voltage equations describe both models. However, the developed electrical model allows for 

better physical representations through the physical separation of the stator and rotor as in the actual 

induction motor. The equivalent circuit model expresses all rotor parameters on a per-stator-phase, not 

per-rotor-phase, basis. Physical meaning is lost without using multipliers to convert the parameters back. 

The rotor parameters that are on a per-rotor-phase basis are not required in analyzing the induction motor, 

but are required in designing the motor.

Through transformations and substitutions, the equations describing the two models are identical. 

From the voltage equations of Equation m-27 describing the developed lumped model, the rotor air gap 

inductance is expressed in terms of the stator air gap inductance through Equation HI-15 and Equation

The stator air gap inductance terms are grouped together. The rotor voltage equation is divided by slip

HI-21:

and multiplied by twice the ratio of the number of stator to rotor turns. Slip defines the slip frequency as

a percentage of the excitation frequency:

I m -33
t
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where:

s ■ slip

The rotor parameters are transformed from the rotating to the stationary reference frame. Therefore, the 

rotor currents oscillate at the excitation frequency. In addition, the rotor parameters are transformed to 

be on a per-stator-phase basis. The parameters are described, in effect, as referred to the stator.

After some substitutions are made, Equation m-32 is identical to Equation A-l which describes 

the equivalent circuit model:

•* _ Kn  Nr t-t 
K „ n m 2 K /f,r

r JwWB4jAv?
** = cn-34

r N*r

A.

where:

i | *  referred rotor bar current in k* rotor phase to k* stator phase 
Rj “  referred rotor squirrel cage resistance per rotor phase to per stator phase 
Lgi *  referred rotor leakage inductance per rotor phase to per stator phase

Only the current in rotor bars spatially aligned with stator windings is referred. The current in misaligned

bars is referred with a phase shift in time. In the equivalent circuit model, the rotor circuit is connected

to the stator circuit through the stator air gap inductance, which is contained in both circuits. In order to

make the connection, all rotor variables are referred to the stator.

m.G. Output Performance Characteristics 

With all the parameters in the lumped electrical model formulated, induction motor performance 

is derived. Input voltages, stator currents, rotor currents, resistances and inductances in the model are used 

to formulate steady state output performance expressions in closed form. Since the model parameters are 

derived from motor geometry and material properties, performance calculations can be related to them. 

Understanding these relationships is required for induction motor analysis and design. The performance 

characteristics comprise voltage and current driven torques, power factor, power losses, horsepower, and
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efficiency.

The derivation of steady state torque begins with the conservation of in s tan tan eo u s energy. By 

taking the time derivative of all the terms, the conservation of instantaneous power is derived. Steady state 

torque is then formulated.

The first law of thermodynamics is applied to electromechanical systems. The law states that the 

change in internal energy of a system equals the sum of heat absorbed by the system and work done by 

the system. 27  In the absence of friction, the energy input from the electrical source must equal the sum 

of the increase in energy stored in the magnetic field, the energy converted into heat, and the output 

mechanical energy. Friction can be incorporated by subtracting from the output torque.

Stored energy for motors with more than one stator phase and one rotor phase is constant when 

symmetry exists with no saturation. The symmetry is identical to the one that simplified the lumped 

magnetic and electrical models. Excitation is balanced in time and space, rotor bars are evenly spaced, 

and rotor bar count divides evenly into the pole count. The flux density distribution in the back iron has 

been assumed uniform between teeth but sinusoidal from tooth to tooth. Also, the flux density distribution 

in the teeth, like in the air gap, has been assumed sinusoidal.

By taking the time derivative of all terms in the conservation of in s tan tan eous energy for an 

infinitesimal change, the conservation of instantaneous power is derived. Thus, input electrical power 

provides stored magnetic power, stator heat loss, rotor heat loss, hysteresis and eddy current losses in the 

steel, and output mechanical power

sr

where:

Ph ■ hysteresis and eddy current power losses in stator and rotor steel 

Stored power designates the magnetic power reserved in the material for inducing currents. Stored power

2 7A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, p. 101.
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equals zero for motors with multiple stator and rotor phases since stored energy is constant. Though, local 

stored power in various steel regions may exist. Heat losses take the form of resistive power drops. 

Hysteresis and eddy current losses are formulated later from an empirical model. Output power arises 

from torque generated at a rotor speed.

Trigonometric manipulations are performed on the power balance after substituting for the voltages 

and currents from Equation HI-29, Equation HI-13, and Equation m-3:

Input power is the product of half the number of stator phases, the input voltage amplitude, the stator 

current amplitude, and the power factor which is defined later. Stator heat loss is the product of the 

number of stator phases and the average power per phase dissipated across the stator winding resistance.

across the rotor squirrel cage resistance. Voltage and current harmonics, in reality, coexist with the 

fundamentals causing heating, vibration, and noise problems. However, many techniques are used to 

minimize these harmful harmonics.

To simplify the power balance even more, two identities are used. The first identity can be 

verified through Equation m-30:

Torque is then numerically equivalent to the rotor heat loss scaled by the number of pole pairs 

divided by slip frequency when hysteresis and eddy current losses in the steel are ignored:

f v ,  cos(a) = * Ph * 0rr m-36

Rotor heat loss is the product of the number of rotor phases and the average power per phase dissipated

m-37

The second identity relates the excitation frequency to the slip frequency and the rotor speed. Excitation

frequency equals the sum of slip frequency and rotor electrical rotational frequency, which is the product

of number of pole pairs and rotor mechanical rotational frequency:

m-38
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T  = ra-39
4 u , 0 r

Although rotor heat loss produces no torque, the torque is related to the rotor heat loss. Hysteresis and 

eddy current losses are not included at synchronous speed because torque is zero and at stall because they 

can not divide by zero. The torque equation is consistent with the classical form derived from the general 

equivalent "T* circuit model of Figure A. 1. With multiple stator and rotor phases, steady state torque at 

a rotor speed is independent of time. Torque produced by single-phase excitations, however, pulsates 

except at stall where no torque is produced. 28

Since the rotor current amplitude and hysteresis and eddy current losses can be related to either 

input voltage amplitude or stator current amplitude, the torque can also be related to either amplitude. The 

torque expressed in terms of input voltage is used for the voltage driven motor. Motors driven by scalar 

control and vector control use the torque expressed in terms of stator current. The current driven torque 

is dependent on slip frequency and independent of excitation frequency when hysteresis and eddy current 

losses in the steel are ignored.

As slip frequency increases, voltage driven torque increases from zero at synchronous speed until 

a maximum, referred to as the breakdown torque. When a load on the induction motor operating in this 

stable region varies slightly, the rotor speed varies slightly inversely. In response, the output torque varies 

slightly in successfully countering the load change. The induction motor normally stalls if the load exceeds 

breakdown torque. Beyond breakdown torque, output torque decreases as slip frequency increases until 

stall. The motor normally stalls for an increase in load when operating in this unstable region. Therefore, 

the voltage driven motor is normally loaded slowly or loaded after the rotor attains synchronous speed to 

operate in the stable region. When the rotor rotates slower than at breakdown torque, it normally 

accelerates beyond the breakdown torque to operate in the stable region for a decrease in load.

Current driven torque follows the same trend, but maximum torque occurs much closer to 

synchronous speed. The torque decreases as slip frequency increases except near synchronous speed. With

28Cyril G. Veinott, Theory and Design o f SmaU. Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 191-195.
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scalar control and vector control, the induction motor can be loaded from stall because the current delivered 

by the supply adjusts to accommodate the load and variations in the load.

Current driven torque can be represented in the frequency domain with hysteresis and eddy current 

losses neglected. The logarithm is taken after torque is scaled:

log
, w )

= log^u,) -  log' 1  + m-40

Figure 3.6 displays the lumped model response with a solid line and the asymptotic response with a dashed 

line. The arrows denote that the lines continue endlessly. Rotor resistance is kept constant so that 

temperature effects and skin effects are constant. The asymptote rises with unity slope from synchronous 

speed and descends with negative unity slope toward stall. At low slip frequency, the middle logarithmic 

term dominates the response. The last term becomes significant near the m axim um  torque. At high slip 

frequency, the last term dominates the response and the middle term is insignificant.

 lumped models  asymptotic

0 CJS

Figure 3.6 Frequency response of current driven torque on log-log plot.

All the other performance characteristics are also formulated from the input voltages, stator 

currents, rotor currents, resistances, and inductances. Power factor is expressed as cosine of the phase 

angle between the input voltage and the stator current of the same phase:
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power factor = cos(a) HI-41

Power factor defines in the frequency domain the percentage portion of the stator current that is temporally 

in phase with the input voltage, or the percentage portion of the input impedance that is resistive. Power 

factor gives an indication of the economic efficiency of a motor. Power factor decreases as slip frequency 

increases except near synchronous speed.

Power losses comprise resistive losses as well as hysteresis and eddy current losses. Although 

hysteresis and eddy current losses have been ignored in the lumped electrical model, they are included in 

determining performance. Resistive power loss is formulated as the product of the resistance and the 

square of instantaneous current summed over all phases. The expression of stator and rotor resistive power 

losses is simplified for motors with multiple stator and rotor phases:

resistive power losses = Q r£+ -^-R J* HI-42

The losses increase as slip frequency increases except near synchronous speed for the voltage driven motor. 

For hysteresis and eddy current losses in the steel, an empirical model has been published:29

Ph = K0{Bm* f ' f 1pv ro -43

where:

K„ “  lamination steel loss coefficient
K, *  lamination steel loss flux density exponential coefficient
Kj ■ lamination steel loss frequency exponential coefficient
Rmax m lamination steel maximum flux density
f ■ lamination steel eddy current frequency
p m  lamination steel density
v ■ lamination steel volume

The data range for flux density extends from a tenth to one tesla and for frequency extends from a hundred

to ten thousand hertz. K,,, Kt, and K2  are fixed for a lamination material and thickness. Since flux density

and volume differ in the various regions, losses in the stator and rotor back irons and teeth are calculated

separately, then summed. The maximum flux density at a rotor speed can be determined from Equation

^Steven R. Prina, "Considerations in the Design of Brushless DC Motors," Proceedings From 
Twenty-First Annual Symposium o f Incremental Motion Control Systems and Devices, June, 1992, p. 8 .
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11-10 and Equation 11-11 by using:

4>"

c o s f i^ ]  -  £ l l  c o s fe *
tx  *  1* KJC/^9tg A  m  J  &  i t i t ’lK'KJKJk' \  5 ,

m-44

Eddy currents in the stator oscillate at the excitation frequency, while eddy currents in the rotor oscillate 

at the slip frequency.

The last two performance characteristics are horsepower and efficiency. Steady state output 

horsepower is the product of rotor speed and steady state torque:

horsepower -  QrT HI-45

Steady state efficiency is defined as output horsepower divided by input power. Since hysteresis and eddy 

current losses in the steel are neglected in the lumped electrical model, they are included in the 

denominator

efficiency
e,r

m m-46
f r j , « ( « )  ♦

When Ph is neglected, efficiency decreases as slip frequency increases except near synchronous speed.

Induction motors normally operate near synchronous speed for high current driven torque, power 

factor, and efficiency. The rotor speeds at which maximum current driven torque, maximum power factor, 

and maximum efficiency occur bunch together near synchronous speed when excitation frequency is high 

and efficiency excludes hysteresis and eddy current losses. The difference among the three speeds is 

typically less than twenty percent of synchronous speed. The speed at maximum efficiency is the fastest, 

followed by the speed at maximum current driven torque, then the speed at m axim um  power factor. These 

speeds are independent of input voltage amplitude and stator current amplitude. Induction motors typically 

operate near synchronous speed for these characteristics as well as low resistive power losses. Rotor speed
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at breakdown torque is even slower than that at maximum power factor. Voltage driven motors operate 

near synchronous speed to also avoid the risk of stalling when running close to breakdown torque.

ITT.H- Summary

In the analysis and design of induction motors, it is imperative to understand the direct 

relationships between physical parameters and motor performance. A lumped electrical model has been 

developed to determine the relationships in terms of motor geometry and material properties. The model 

uses flux information from the lumped magnetic model in the previous chapter and temperature information 

from the lumped thermal model in the next chapter. Performance calculations derived from the lumped 

models are compared to experimental results in Chapter VI. Errors are shown to be within fifteen percent 

over the practical region of the torque-speed curve. Equations describing the developed lumped electrical 

model have been shown to be identical to those describing the general equivalent circuit model.

The lumped electrical model formulates the relationship from input voltages to stator and rotor 

currents through resistances and EMF voltages. Deriving the stator resistance is relatively simple. The 

rotor resistance accounts for the bar resistance as well as the end ring resistance. The end ring resistance, 

though seemingly relatively small, significantly affects motor performance. Also, skin effects, which cause 

the rotor resistance to vary with rotor speed, are especially important in radially deep bars and end rings. 

Skin effects boost torque and heat generated at low rotor speeds, but performance at high rotor speeds 

remains almost undisturbed. The EMF voltages are induced by linkages with stator and rotor air gap and 

leakage fluxes. The voltages can be modelled as voltage drops across inductances. Stator and rotor 

currents are induced across the stator and rotor resistances from the input voltages and EMF voltages.

Output performance characteristics are expressed by input voltages along with stator and rotor 

currents, resistances, air gap inductances, and leakage inductances. The performance characteristics 

comprise voltage and current driven torques, power factor, power losses, horsepower, and efficiency. 

Induction motors are usually rated at low slips for high current driven torque, high power factor, low 

resistive heat losses, and high efficiency. Voltage driven motors operate at low slips to also avoid stalling. 

The effect of specific motor parameters on performance can be quantitatively determined. Induction motors 

of different geometric dimensions and material properties can be compared.
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CHAPTER IV

LUMPED THERMAL MODEL

IV.A. Introduction

la the previous chapter, the hunped electrical model was developed to derive expressions of motor 

performance. The model used steady state temperature information from the thermal model that is 

formulated in this chapter. The thermal model uses heat transfer theory to describe the effect of heat 

generation on temperature in terms of motor geometry and material properties. Steady state and transient 

temperatures are derived.

The transient temperature information can be used to derive transient motor performance. 

Transient motor performance is especially important in analyzing short duration overloading capabilities 

and for motors driven by scalar control and vector control. In these motors, the current delivered by the 

supply adjusts to accommodate the load and variations in the load.

A simple four-lump thermal model is developed to obtain temperature information.30 Heat 

sources, thermal capacitances, and thermal resistances in the model are formulated. The temperature in 

critical regions of the motor is then derived.

IV.B. Development of the Lumped Thermal Model

The thermal model consists of heat sources, thermal capacitances, and thermal resistances. Heat 

sources arise due to the power losses in the motor. Thermal capacitances and resistances are used to relate 

temperature to heat generation. Thermal capacitances arise as a result of materials storing thermal energy. 

Thermal resistances are a measure of materials’ capability to transfer heat. From the thermal model, the 

temperature is solved in critical regions of the motor. The temperature in the stator windings and rotor 

bars is necessary to evaluate their resistance in the lumped electrical model of the previous chapter.

30C. K. Taft, R. G. Gauthier, T. J. Harned, S. R. Huard, and B. K. Fussell, Brush less Motor 
System Design and Analysis, Tenth Edition, College of Engineering & Physical Sciences, University of 
New Hampshire, Durham, New Hampshire, 1996, pp. 13-27 - 13-30.
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Developing the thermal model is very complex. Heat flows in all directions through all bodies. 

Analytically determining the thermal resistances is difficult because properties of materials as well as their 

surroundings are needed. Commonly, empirical data are required.

Parameters of the lumped electrical and thermal models are interdependent. Heat generation is 

a function of resistance and current, both of which depend on temperature. But, the temperature is 

dependent on the heat generation. To determine the steady state quantities, an iterative process is used. 

The resistances and currents are determined from the lumped electrical model in the previous chapter. The 

steady state temperature is determined from the thermal model here.

Just as the lumped magnetic model only considered motor sections carrying significant levels of 

flux and the lumped electrical model only considered sections with significant current flow, the lumped 

thermal model, likewise, only considers sections with significant flow of heat. Most of the heat, which 

is generated by currents, flows to ambient through the housing, stator winding end turns, and rotor end 

rings. Heat is generated primarily from the stator and rotor currents. Heat from eddy currents in the steel 

is also considered although they tend to be relatively small because of the laminated stack construction.

Heat transfer exists through three processes known as conduction, convection, and radiation. 

Conduction occurs when a temperature gradient exists in a solid body. Convection occurs when a 

temperature difference in a liquid or gas exists. Radiation refers to the electromagnetic energy that is 

emitted by all objects. The amount of radiation is determined by the temperature difference. 31

The rate of conduction heat transfer in a material is proportional to the temperature gradient in 

the material in the direction of heat flow. It is proportional through a thermal conductivity of the 

material. 3 2  Although this conductivity is dependent on temperature, it can be assumed constant if the 

temperature gradient is not too large. Otherwise, the material can be modelled as sections with smaller 

temperature gradients connected in series perpendicular to the direction of heat flow. Each section would 

contain its own constant thermal conductivity.

31David Halliday and Robert Resnick, Fundamentals o f Physics, Second Edition, Extended 
Version, New York: John Wiley & Sons, Inc., 1970, pp. 360-361.

32J. P. Holman, Heat Transfer, Fifth Edition, New York: McGraw-Hill, Inc., 1981, p. 2.
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The rate of convection heat transfer at the surface between a solid body and a liquid or gas is 

proportional to the temperature difference of the bodies. It is proportional through a convection heat 

transfer coefficient. 33 The coefficient can be analytically determined in some simple systems, but more 

complex ones require empirical models. Natural, or free, convection occurs when no external source of 

motion is used. Otherwise, forced convection utilizes external sources such as ventilating fans that protrude 

from the rotor end rings.

The rate of radiation heat transfer is proportional to the difference in temperature to the fourth 

power. It is proportional through the Stefan-Boltzmann proportionality constant. 34 Since the constant 

applies only to blackbodies, correction for any other material surface is made through its emissivity.

Thermal behavior, like magnetic behavior, is directly analogous to electrical behavior. Thus, 

well-known electrical circuit theory is used to develop the lumped thermal circuit model. A voltage across 

an electrically conductive material produces a current flowing through the material electrical resistance. 

Similarly, a temperature difference within a material causes thermal heat flow through the material. The 

voltage is analogous to the temperature, the current is analogous to the heat flow, and the material electrical 

resistance is analogous to material thermal resistance. The thermal resistance resists heat flow just as the 

electrical resistance resists current flow. Heat flow through a material is derived from the temperature 

difference across the material divided by the thermal resistance.

Figure 4.1 shows the lumped thermal model for the entire motor where:

Th *  motor housing steady state temperature at operating speed
Ch *  motor housing thermal capacitance
R£nv ■ housing to ambient convection thermal resistance
Rfa" 1 m housing to ambient radiation thermal resistance

*  stator stack to housing conduction thermal resistance 
T„ ■ stator stack steady state temperature at operating speed
q* *  stator hysteresis and eddy current heat source
Cm m stator stack thermal capacitance
RJ5** ■ stator windings to stator stack conduction thermal resistance
q, *  stator winding heat source
C, ■ stator winding thermal capacitance
R££jj ■ stator end turns to housing conduction thermal resistance
R^ 4  ■ air gap conduction thermal resistance

33J. P. Holman, Heat Transfer, Fifth Edition, New York: McGraw-Hill, Inc., 1981, p. 12. 

MJ. P. Holman, Heat Transfer, Fifth Edition, New York: McGraw-Hill, Inc., 1981, p. 14.
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“  rotor hysteresis and eddy current heat source 
q, *  rotor squirrel cage heat source
Cn a  rotor stack thermal capacitance
Cr m rotor squirrel cage thermal capacitance
R^jj m rotor end rings to housing conduction thermal resistance
T .  *  ambient temperature

Figure 4.1 Lumped thermal circuit model for the entire motor.

Although other thermal paths may exist, these are usually sufficient for good temperature estimations. The 

housing and stator stack are at different temperatures because they do not have perfect contact. Usually 

they are either welded together or pressed together with adhesive so that heat does not easily flow between 

them. Stator windings are insulated from the stator stack so that the two bodies are also at different 

temperatures. Slot liners pad the stator slots to protect the windings and the winding wires are coated with 

insulation. Rotor bars, on the other hand, are assumed to have perfect contact with the rotor stack so that 

the two bodies are at the same temperature.

The temperature in the characteristically small air gap of the induction motor is not at ambient 

because heat trapped in there can not easily dissipate out to ambient. As a result, heat in the air gap is 

assumed to flow only between the stator and rotor. The ambient temperature is the temperature of the 

surrounding environment.

When the resistance of a material body to conduction heat transfer is much smaller than the 

resistance to convection heat transfer at the surface, it can be neglected. The body is then considered a 

perfect heat conductor and a uniform temperature distribution in the body results. 35  Because of this, the

35J. P. Holman, Heat Transfer, Fifth Edition, New York: McGraw-Hill, Inc., 1981, pp. 109-114.
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conduction thermal resistance is neglected in the stator windings and rotor bars as well as the stator and 

rotor steel stacks. Consequently, temperatures are assumed uniform in these regions.

The lumped thermal model shows many thermal paths. Heat flows from housing to ambient 

through convection and radiation. Radiation heat transfer is usually small for small temperature differences 

and smooth metals. It is therefore omitted in the lumped thermal model except from housing to ambient. 

For the large temperature difference from housing to ambient, the radiation heat transfer can even be larger 

than the convection heat transfer.

A conduction thermal resistance is used to model heat transfer from the stator windings to stator 

stack. This thermal path is complicated by the presence of slot liners, wire insulation, and trapped air in 

the wire bundles. Simply using the thermal conductivity of the slot liners or the windings alone would 

cause large errors. Instead, empirical data has been used to determine an effective thermal conductivity 

of the inhomogeneous mixture.

Conduction thermal resistances are also used to model heat transfer through the other thermal 

paths. The housing and stator stack do not have perfect contact and the thermal path through the stagnant 

air trapped in between is short, so a conduction thermal resistance is used. The convection thermal 

resistance is neglected here. Due to the characteristically small air gap in the induction motor, conduction 

is also used from the air gap to the stator and rotor stacks. This thermal resistance is small so that not 

much error is introduced even when the rotor rotates. Air enclosed by the end caps in the stator end turns 

and rotor end rings is also somewhat trapped despite fans protruding from the end rings causing some air 

flow when the rotor rotates. Therefore, conduction is also used in these two places.

From the lumped thermal model, heat transfer equations are written:
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Numerical integration is then applied to solve for the temperatures at each time step from the previous step. 

Heat in the stator windings flows to ambient through end turns and to the stator stack. Heat in the stator 

stack flows to ambient through the housing and to the rotor across the air gap. Because of end turns, heat 

can not easily flow from the stator stack to ambient through the axial ends. Heat in the rotor flows to 

ambient through end rings and to the stator across the air gap.

Heat sources in the lumped thermal model arise from heat generated by the power losses 

formulated in the previous chapter. The losses comprise stator and rotor resistive losses in Equation 111-42 

as well as hysteresis and eddy current losses in Equation m-43:

rv-2

where:

Ph. ■ hysteresis and eddy current power losses in stator steel
Phr *  hysteresis and eddy current power losses in rotor steel

Ph is the sum of the losses in the stator and rotor.

Thermal capacitances are used to model materials storing thermal energy:
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C k  *  Cp k P u V k

Cu = CpmPaiV„

C,  -  ‘*P«IV,

~ ^pnPnFn

Cr -  V P « lVr

where:

cph ■ motor housing specific heat
Phd ■ motor housing density
vh ■ motor housing volume
S . ■ stator winding specific heat
P*I m stator winding density
v. ■ stator winding volume
CP« ■ stator lam ination steel specific heat
Pmi ■ stator lam ination steel density
V« ■ stator stack volume
V *  rotor squirrel cage specific heat
lid m rotor squirrel cage density
vr *  rotor squirrel cage volume
cpn m rotor lam ination steel specific heat
Pnd •  rotor lam ination steel density

m rotor stack volume

The motor housing thermal capacitance, Ch, can be composed of two parts, housing body and end caps, 

if they are constructed of different materials. Although the stacks consist of laminations coated with 

insulation, they can be assumed to be solid steel because the coating is thin. In addition, heat transfer 

through the stack is mostly in the radial not axial direction so that the insulation does not cause much error. 

Ch, CM, C„ Cn, and Cr can all be set to zero to determine the steady state temperatures Th> T»> T„ and 

Tr  However, the capacitances are included to solve for the transient temperatures.

Material volume is needed in calculating the thermal capacitances. For simplicity, the stator and 

rotor stacks in C„ and C„ are calculated without including steel ears. Rotor ears are added to the squirrel 

cage instead. Not much error is introduced from this. Volume in the stator windings includes end turns. 

Wire insulation is also included despite having different material properties than  the wire. Volume in the 

rotor squirrel cage includes end rings.

Thermal resistances are used to model heat flow:
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where:

h), *  housing to ambient convection heat transfer coefficient
\  m motor housing surface area
£ *  emissivity of nonblackbody material surface
a m Stefan-Boltzmann radiation heat transfer proportionality constant
tj, *  motor housing radial thickness
kj, *  effective thermal conductivity of housing body
t,| *  slot liner thickness
k„ m effective thermal conductivity of slot liner

*  end turns to end cap axial height 
k ^  *  thermal conductivity of air

■ end ring to end cap axial height

For the convection heat transfer coefficient h,, from housing to ambient, an empirical model for free 

convection is used based on the Grashof, Nusselt, and Prandtl numbers. 36 Properties of air for the 

coefficient are evaluated at the approximate average temperature of the housing. The thermal conductivity 

of the housing body kj, is also evaluated at this temperature. For the radiation thermal resistance heat 

transfer from housing to ambient is assumed to be in a large room. The thermal resistance can be 

composed of two parts, housing body and end caps, if they are constructed of different materials because

36J. P. Holman, Heat Transfer, Fifth Edition, New York: McGraw-Hill, Inc., 1981, pp. 270-275.
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the emissivity for them is different.

In calculating RJf1, k„ is determined from empirical data. Although only the thermal path through 

the slot liners is used in calculating the thermal resistance, the paths through the windings, wire insulation, 

and trapped air in the wire bundles are all incorporated in the empirical data. Stator windings are assumed 

to fill the entire slot so that contact is made with all four sides.

Heat from stator end turns and rotor end rings flows to end caps at both axial ends so that R£!jj 

and are half the thermal resistance per end. The thermal conductivity of air, k^, in these thermal 

resistances is evaluated at the approximate average temperature of the stator windings and rotor squirrel 

cage. R£!j} also includes the cross-sectional area of the shaft, but does not include the surface area from 

the protrusion of the shaft from the rotor back iron. Heat transfer from the protrusion by itself is usually 

small relative to the housing. However, the shaft is connected when the motor is applied to an application, 

thereby creating a significant thermal path. In this case, heat dissipated out from the rotor through the 

shaft may be significant.

IV .C. Summary

A lumped thermal model has been developed to describe the effect of heat generation on 

temperature in terms of motor geometry and material properties. Steady state and transient temperatures 

are derived. The steady state temperature information is used by the lumped electrical model in the 

previous chapter to evaluate resistances. Since the temperatures vary with rotor speed, the resistances are 

evaluated at every operating speed.

The transient temperature information can be used to derive transient motor performance. 

Transient motor performance is especially important in analyzing short duration overloading capabilities 

and for motors driven by scalar control and vector control. Calculated transient temperatures at stall are 

compared to experimental results in Chapter VI. Errors in estimating the steady state temperatures used 

to evaluate the resistances are shown to be within ten percent.

The lumped thermal model consists of heat sources, thermal capacitances, and thermal resistances. 

Heat sources arise from heat generated by power losses in the motor. Thermal capacitances are used to 

model materials storing thermal energy. Thermal resistances are a measure of materials' capability to
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transfer heat through conduction, convection, and radiation.

The developed lumped thermal model is a basis upon which other application dependent models 

can be developed. For motors with an external source of cooling, forced instead of free convection heat 

transfer can be utilized.
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CHAPTER V

METHODS USING TWO-DIMENSIONAL MAGNETIC FEA

V.A. Introduction

Magnetic finite element analysis, FEA, is another important tool beside the lumped models for 

analyzing and designing electric motors. While the lumped magnetic, electrical, and thermal models 

incorporate only bodies carrying significant levels of flux, current, and heat, the FEA considers magnetic 

behavior of the entire motor. Through a numerical process, FEA can model complicated motors with more 

detail. Understandably, much longer computing time is required, but more precise results are attained.

A two-dimensional static FEA field solver is commonly sufficient to accurately model permanent 

magnet motors. The magnetic field is assumed to be temporally static. Also, induced currents are ignored. 

The instantaneous field is determined given the excitation.

Using two-dimensional FEA to accurately model the induction motor is more difficult due to 

induced rotor currents and three-dimensional effects. Induced currents require either a steady state 

harmonic field solver or a transient field solver. A steady state solver yields magnetic field solutions that 

vary sinusoidally with time so that nonlinear magnetic effects from saturation are ignored. A transient field 

solver, on the other hand, can include nonlinear magnetic effects as well as temporal harmonics in the field. 

However, solution time is much longer than that of the steady state solver.

In modelling the induction motor through the two-dimensional FEA, three-dimensional effects that 

are commonly ignored in permanent magnet motors must be included. These effects arise due to rotor end 

rings and three-dimensional leakage flux. End rings, which are nonexistent in permanent magnet motors, 

must be included in modelling the induction motor because they significantly affect motor performance. 

When modelling permanent magnet motors using a two-dimensional solver, three-dimensional leakage flux 

is often neglected since it produces no torque. The leakage flux is usually very s m all relative to the air 

gap flux. In the voltage driven induction motor, three-dimensional leakage flux must be incorporated 

because it also significantly influences performance.
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The traditional strategy of modelling the induction motor through the FEA is briefly described in 

Appendix A. The equivalent "T" circuit model parameters are first extracted from the field solutions. 

Then, performance is evaluated from the equivalent circuit model. The model loses some physical 

interpretation because rotor parameters are referred to the stator.

Three methods have been developed in this chapter to evaluate performance in current and voltage 

driven induction motors directly from the FEA field solutions. The equivalent circuit model is not needed. 

Three-dimensional effects are externally incorporated in all three methods. The Erst FEA method uses a 

steady state solver followed by a static solver in calculating torque from the method of virtual work. The 

second FEA method, which requires much less computing time, uses only a steady state solver to calculate 

torque from the conservation of instantaneous energy. The third FEA method uses a transient solver.

V.B. Inclusion of Three-Dimensional Effects

Three-dimensional FEA packages that are commercially available are capable of accurately 

modelling the induction motor. Flux flowing in all directions is considered. Unfortunately, these FEA 

packages are still not very practical because they are expensive, mesh development is tedious, and solution 

time is long.

Two-dimensional FEA packages, in contrast, cost much less and require dramatically reduced 

mesh development time and solution time. But, currents are confined to travel only in the axial direction 

producing flux flowing only in the radial and tangential directions. In reality, flux also flows in the axial 

direction because of rotor skewing as well as currents in the stator end turns and rotor end rings. These 

three-dimensional effects significantly affect motor performance and must be considered.

A two-dimensional steady state field solver is used in the first two FEA methods and a 

two-dimensional transient field solver is used in the third method. To include three-dimensional effects, 

the rotor resistance is increased in all three methods to account for skewing and end rings. In the first two 

methods, the input impedance is also increased to account for linkages with three-dimensional leakage flux. 

In the third method, linkages with three-dimensional leakage flux are used to calculate stator currents from 

the input voltages.

-93-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V .B .l. Rotor End Ring Resistance

The two-dimensional steady state solver accounts for rotor resistance from only bars that run 

axially. Rotor end rings are not included. However, the end ring resistance can be significant relative to 

the bar resistance as shown in Equation tH-9. Also, skewing slightly increases the resistance even more.

To account for these effects, the rotor bar resistivity is adjusted in the FEA so that its effective 

rotor resistance per phase equals the resistance in Equation HI-9 of the lumped electrical model:

Pr2D ~ *» V-l

where:

0 , 2 0  "  rotor bar resistivity in the two-dimensional FEA
a^ ■ rotor bar cross-sectional area

The resistivity is adjusted at each rotor speed because the skin effects constants in R,. vary with slip

frequency. Skin effects in the rotor bars are inherently incorporated in the FEA when meshes are drawn

with enough resolution. Therefore, the rotor bar skin effects constant, K^, appears in the above equation.

Skin effects in the end rings, on the other hand, are not inherently incorporated in the FEA, but are

accounted for through the resistivity adjustment.

V.B.2. End and Skew Leakage Fluxes

In the voltage driven induction motor, three-dimensional leakage flux not only reduces stator 

currents that induce rotor currents, but also directly reduces the rotor currents. The leakage flux influences 

torque through both stator flux produced by stator currents and rotor flux produced by rotor currents. 

Thus, torque estimation errors from exclusion of the leakage flux are compounded.

Performance in the current driven motor, however, is not significantly affected by 

three-dimensional leakage flux. Therefore, the leakage flux is neglected there when determining 

performance. As a result, FEA calculations are slightly overestimated.

Performance in the voltage driven motor, on the other hand, is dependent on three-dimensional 

leakage flux. In the first two FEA methods, the leakage flux is considered when calculating input 

impedance from the two-dimensional FEA. The impedance is used to determine stator currents from the
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input voltages. Despite three-dimensional leakage flux incorporated in the stator currents, some 

performance calculations in the voltage driven motor are still slightly overestimated. This is because those 

calculations are scaled from the slightly overestimated current driven performance calculations. In the third 

FEA method, the inductance from linkages with three-dimensional leakage flux is used to directly determine 

instantaneous stator and rotor currents. Explanation on this is presented in section V.E.

To include stator three-dimensional leakage flux in the first two FEA methods, the portion of the 

input impedance attributed to linkages with the flux is simply added to the two-dimensional input impedance 

calculated by the FEA. The flux linkages are estimated from the lumped models. When excitation is 

balanced in time and space, rotor bars are evenly spaced, and an integral number of rotor phases exists, 

the input impedance of each stator phase is identical.

Including rotor three-dimensional leakage flux is not as easy. The portion of the input impedance 

attributed to linkages with this flux is dependent on rotor currents which are affected by the flux. To 

incorporate the three-dimensional leakage flux in the rotor currents, rotor leakage flux can be increased 

in the FEA. But, it is difficult to increase the rotor leakage flux by an appropriate amount. When a 

simplifying assumption is made, however, three-dimensional leakage flux in the rotor can be included in 

a simple manner similar to that in the stator.

In the assumption, the EMF from linkages with the rotor leakage flux and the voltage drop across 

the rotor resistance are neglected because their sum is much smaller than the EMF in each rotor phase from 

linkages with the rotor air gap flux. The assumption is reasonable because to attain high torque and 

efficiency levels, the air gap flux is normally much larger than the leakage flux. The assumption fails only 

near synchronous speed where the EMF voltages are small relative to the voltage drop across the resistance 

due to the low slip frequency. In that narrow speed region, the input impedance is slightly overestimated, 

which may cause performance in the voltage driven motor to be slightly underestimated.

With the assumption, the impedance of each stator phase attributed to linkages with 

three-dimensional leakage flux in the stator and rotor can be included together
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3̂ D  =

where:

Z3 D ■ stator and rotor three-dimensional end and skew leakage impedance per stator phase
L}0 *  stator and rotor three-dimensional end and skew leakage inductance per stator phase

The three-dimensional leakage flux comprises stator and rotor end and skew leakage fluxes. The stator 

and rotor end and skew leakage inductances have been estimated by Equation m-19 and Equation HI-25 

of the lumped electrical model. The reluctances are formulated by Equation 11-16 and Equation 11-18 of 

the lumped magnetic model. The rotor leakage inductances are transformed from the rotating to the 

stationary reference frame then referred to the stator before being included in Lj0. These inductances are 

referred to the stator through Equation m-34. Zjq is simply added to the two-dimensional input impedance 

calculated by the FEA to include three-dimensional leakage flux.

V.C. Method of Virtual Work

In the first FEA method, torque is determined from the method of virtual work37. The 

equivalent "T" circuit model is not needed because torque38 and all other performance characteristics are 

directly evaluated from the FEA field solution. The lumped magnetic and electrical models are used only 

to incorporate stator resistance and three-dimensional effects.

Instantaneous torque can be approximated through the method of virtual work:

awc AH'!T  = — - » ------ V-3
30, A8r

where:

9t m rotor squirrel cage spatial phase angle

37A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, pp. 114-117.

38J. L. Coulomb and G. Meunier, "Finite Element Implementation of Virtual Work Principle for 
Magnetic or Electric Force and Torque Computation," IEEE Transactions on Magnetics, Vol. MAG-20, 
No. 5, September, 1984, pp. 1894-1896.
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Wc *  coenergy

The approximation of torque is valid for coenergy39 evaluated at two slightly different rotor positions. 

All currents must be held constant over the two positions. Friction can be incorporated by subtracting from 

the calculated output torque. The following two sections describe the implementation of the method of 

virtual work in calculating performance in current and voltage driven motors.

V.C.l. Calculating Performance in the Current Driven Induction Motor

Torque in the current driven motor is directly determined from the FEA field solution through the 

method of virtual work. A steady state solver is first used to calculate induced rotor currents from 

specified input stator currents. Then, the rotor currents are used as additional inputs to two static field 

meshes along with the original stator currents. A static solver is used to determine torque from the meshes 

by the method of virtual work. Expressions for horsepower and power losses are also derived. 

Horsepower is determined from the torque. Power losses are calculated directly from the steady state field 

solution after the rotor currents are determined.

To calculate performance, rotor currents are first determined by a steady state solver. The solver 

yields complex solutions in one step for each rotor speed. By evaluating the solution at various phase 

angles, field quantities are determined at any instant in time. However, symmetry must exist, nonlinear 

effects are ignored, and the rotor is always considered stalled.

The symmetry is required in order for the field quantities to vary sinusoidally with time as 

assumed by the steady state solver. The symmetry exists from excitation that is balanced in time and 

space, evenly spaced rotor bars, and an integral number of rotor phases. Even when the number of rotor 

phases is not an integer, the number of rotor bars is usually large enough so that it does not introduce much 

error. Any nonsymmetry causes errors in estimating performance.

The steady state solver ignores nonlinear magnetic effects, including hysteresis, because its 

solutions are based on field quantities that vary sinusoidally with time. In magnetically linear materials, 

the permeability is constant so flux density is proportional to field intensity. But, the magnetization curve

39A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, pp. 107-109.
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for steel in Figure 2.8 is nonlinear. To compensate for that, new materials can be defined where their 

permeabilities would be assigned using averages estimated over a temporal cycle. When operating at low 

flux density levels in the steel where the magnetization curve can be assumed linear, only one material is 

needed. At high flux density levels, saturation can be artificially included by defining new regions with 

materials of different permeabilities. However, temporal harmonics generated by effects of saturation are 

lost.

The steady state solver also can not account for rotor rotation. The rotor is always considered 

stalled. Fortunately, rotor currents are induced at the slip frequency instead of the excitation frequency. 

Therefore, the magnetic field can be modelled as varying at the slip frequency with the rotor stalled. 

Effectively, the rotating reference frame of the rotor is selected. Voltages and currents induced in the 

stator at the excitation frequency are instead modelled as being induced at the slip frequency. However, 

given the assumption of linear materials, those voltages and currents can be transformed to the stationary 

reference frame of the stator through scaling. The scaling constant of the ratio of excitation frequency to 

slip frequency arises due to Faraday’s law of induction.

To determine induced rotor currents by the steady state solver, the known stator current amplitude 

and phase angles are specified as inputs into a mesh. Currents rather than voltages are inputs because 

performance in the current driven motor is a function of the stator currents. If necessary, EMF voltages 

can always be extracted from the solution by the time derivative of flux linkages. The phase angle of the 

currents is chosen as the temporal reference in the steady state field solution. This differs from the lumped 

electrical model where the phase angle of the input voltages was chosen as the reference.

Since performance in the current driven motor is a function of the stator currents, it is desirable 

to keep them constant with respect to rotor speed. Unfortunately, EMF voltages induced in the stator 

windings change the currents at every speed. However, by assigning infinite resistivity to the stator 

windings, the currents are kept directly regulated. The windings experience no additional currents beside 

the input stator currents despite the existence of EMF voltages. Current driven torque is not affected by 

stator resistance anyway. In calculating power losses, however, the stator resistance is externally included.

With stator currents as inputs and stator windings assigned infinite resistivity, induced rotor
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currents are determined. After the rotor bar resistivity is adjusted in the FEA for skewing and end ring 

resistance, the steady state solver reveals the magnetic field. The field varies at the slip frequency since 

the stator currents are energized at that frequency. From the field solution, rotor currents are computed 

using the time derivative of flux linkages. A transformation to the stationary reference frame is 

unnecessary because rotor currents are indeed induced at the slip frequency.

With the rotor currents known, motor performance is then determined. Performance calculations 

are repeated for every desired rotor speed. Because three-dimensional leakage flux does not significantly 

affect performance in the current driven motor, it is not included here.

Torque is derived from the method of virtual work using the static solver. Two new meshes are 

created with the same motor geometry but with instantaneous stator and rotor currents evaluated at a 

desired instant in time specified as inputs. The phase angle of the currents then becomes meaningless. 

The two meshes have only one difference, a small change in rotor position. All currents, including eddy 

currents in the steel, must be identical.

When eddy currents are small, the simplest way to ensure they are identical in the two static field 

meshes is to set them to zero. Because of the laminated stack construction, eddy currents tend to be small 

relative to the currents in much more conductive materials of the stator windings and rotor bars. However, 

the eddy currents can be relatively significant in the stator for high excitation frequency when operating 

near synchronous speed. Therefore, hysteresis and eddy current losses in the steel are externally included 

in calculating performance. Although eddy current losses in the steel can be inherently incorporated in the 

steady state solver, it is not done here.

For the eddy currents to be nonexistent in the two static field meshes, steel in the stator and rotor 

of the steady state field mesh is assigned infinite resistivity. Induced currents are then confined to only 

the rotor bars because stator windings have also been assigned infinite resistivity. With no eddy currents 

induced in the steel, they do not need to be considered in the two static field meshes. Otherwise, 

instantaneous eddy currents evaluated at the desired instant in time would need to be specified as additional 

inputs.

Torque is evaluated from the two meshes with their instantaneous currents by using a
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two-dimensional static solver. Even though this solver can incorporate nonlinear magnetic effects, the 

steady state solver can not. Thus, the two static field meshes also contain only linear materials to be 

consistent with the steady state field mesh. From the static field solution of the two meshes, coenergy is 

calculated. Current driven torque is approximated in Equation V-3 as the coenergy difference divided by 

the rotor spatial phase angle difference between the two meshes. The torque multiplied by rotor speed 

yields the horsepower in the current driven motor.

Hysteresis and eddy current losses are included by dividing the losses by rotor speed and 

subtracting from the output torque. As in the lumped electrical model, the losses are not included at 

synchronous speed because torque is zero and at stall because they can not divide by zero. Hysteresis and 

eddy current losses, which are empirically derived in Equation m-43, are extracted directly from the steady 

state field solution. The losses are summed over all steel elements in the stator and rotor.

Power losses in the current driven motor have contributions from both the stator and rotor as well 

as the hysteresis and eddy current losses:

power losses = £  R j i f f  * £  ^ - ^ { d ' j c o s ^  + J  + Pk V_4

where:

ak m cross-sectional area in k* element
Ak ■ magnetic vector potential in k* element

Since stator windings have been assigned infinite resistivity, the stator resistive power loss must be 

externally added. The stator resistance is used from Equation HI-1 of the lumped electrical model. 

Because steel in the stator and rotor has also been assigned infinite resistivity and the steady state solver 

ignores nonlinear effects, hysteresis and eddy current losses must be externally added. All three power 

loss terms remain constant over time at any given rotor speed because excitation is balanced in time and 

space, rotor bars are evenly spaced, and an integral number of rotor phases exists.

The rotor resistive power loss is the sum over all rotor bar elements of the resistance multiplied 

by the square of the real component of induced current The resistance equals axial height multiplied by 

resistivity and divided by cross-sectional area. All mesh elements are constrained to the same axial height.
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The induced rotor current in the rotor resistive power loss equals the cross-sectional area divided by 

resistivity and multiplied by the negative partial derivative with respect to time of vector potential.40 

Since vector potentials from the steady state solution are complex variables, they can be represented by 

phasors. The vector potentials can then be evaluated at any desired phase angle because the solution is 

based on field quantities that vary sinusoidally with time.

In determining power losses, the vector potential in an element is needed to compute the induced 

rotor currents. But, the chosen two-dimensional steady state solver determines the vector potential at a 

node. Since the solver uses first-order triangular elements, the vector potential along any elemental side 

between two nodes is the linear interpolation of the two nodal vector potentials 41 As a result, the vector 

potential in an element is approximated by averaging its surrounding nodal vector potentials.

A steady state field mesh is drawn for the simple two-pole polyphase motor of Figure 2.2 and 

Figure 2.4. Figure S. 1 shows the outline of the complete motor cross section, while Figure 5.2 shows the 

mesh for a quarter of the motor cross section. Within each element of the mesh is defined a material with 

an associated resistivity and constant permeability. After input currents are specified in the stator winding 

elements, the steady state solver determines the vector potential at each node of the mesh. The magnetic 

field is plotted in Figure 5.3. The highest flux density levels, occurring at the highest concentration of flux 

lines, are in the stator tooth ears around the stator slots at the top and bottom of the figure.

V.C.2. Calculating Performance in the Voltage Driven Induction Motor

Calculating performance in the voltage driven motor is more difficult than in the current driven 

motor. Stator currents that are needed as mesh inputs are unknown. The currents are calculated from the 

input voltages only after the input impedance is determined from the field solution. The impedance is 

determined at every desired rotor speed since it varies with the speed. In addition, it is also necessary to 

consider three-dimensional leakage flux.

40P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, Second Edition, 
Cambridge: Cambridge University Press, 1990, pp. 195-197.

4IP. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, Second Edition, 
Cambridge: Cambridge University Press, 1990, p. 29.
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Figure 5.1 FEA mesh outline of cross section for a simple two-pole polyphase motor.

Figure 5.2 FEA mesh of quarter cross section for a simple two-pole polyphase motor.
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Figure 5.3 FEA magnetic field of cross section for a simple two-pole polyphase motor.

Torque in the voltage driven motor, as in the current driven motor, is directly determined from 

the FEA field solution through the method of virtual work. Arbitrarily small stator currents are first 

specified as inputs and a steady state solver is used to determine the induced rotor currents and input 

impedance. Then, the rotor currents are used as additional inputs along with the original arbitrary stator 

currents to two static field meshes. From these meshes, a static solver is used to determine torque at the 

arbitrary stator currents by the method of virtual work. The actual stator currents at the input voltages are 

solved from the input impedance extracted from the steady state solution. Once these stator currents are 

known, performance at these currents is evaluated by scaling. Expressions for horsepower, power losses, 

power factor, and efficiency are also derived, like torque, directly from the FEA field solution.

As in determining performance in the current driven motor, eddy currents in the steel are 

neglected by assigning infinite resistivity to steel in the stator and rotor of the steady state mesh. 

Furthermore, stator windings are also assigned infinite resistivity. Thus, the stator resistance must be 

externally included similar to the previous section in calculating input impedance, power losses, and
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efficiency. The resistance affects voltage driven torque only indirectly through the input impedance. Also, 

hysteresis and eddy current losses must be externally included in calculating torque, horsepower, power 

losses, and efficiency.

After assigning infinite resistivity to the stator windings and steel in the stator and rotor, the steady 

state solver calculates the held solution. From the solution, rotor currents, hysteresis and eddy current 

losses, and input impedance are computed at the same time. The first two are used to determine current 

driven torque from the method of virtual work just like in the previous section. The input impedance is 

used to determine the stator currents at the input voltages. Voltage driven torque is simply the current 

driven torque scaled for the stator currents. From Equation 111-31 and Equation m-39 of the lumped 

electrical model, current driven torque is proportional to the square of stator current amplitude since Ph 

is also proportional to the square of the current amplitude.

It is unnecessary to generate new held solutions for the stator currents at the input voltages. Since 

the steady state solver assumes linear materials, torque, horsepower, and power losses can be scaled for 

any stator current amplitude. Also, input impedance remains constant regardless of the stator current 

amplitude. Therefore, performance is calculated initially at the arbitrary input stator current amplitude, 

then scaled once the stator currents are determined from the input impedance. Unfortunately, if saturation 

occurs, scaling performance would suffer in accuracy without defining new materials in the saturated 

regions.

The input impedance used to determine the stator currents comprises the stator resistance of

Equation IH-1, the two-dimensional input impedance from the held solution, and the three-dimensional

leakage impedance of Equation V-2:

Z* » V*5

where:

Zm m input impedance per stator phase
Z2D ■ input impedance per stator phase in the two-dimensional FEA

Since the input voltages and corresponding stator currents are not temporally aligned, the input impedance 

is a complex variable with an imaginary component called the reactance. Input voltages divided by the
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input impedance yield the stator currents.

The two-dimensional input impedance equals the EMF in the stator windings of one phase divided 

by the input stator current of that phase:

The impedance is identical for every phase because excitation is balanced in time and space, rotor bars are 

evenly spaced, and an integral number of rotor phases exists.

The EMF in the numerator is derived from Faraday’s law of induction in terms of vector

EMF voltages in stator windings are with respect to the stationary reference frame. Therefore, a 

transformation to the excitation frequency is necessary. In calculating flux linkages for the EMF, the 

number of winding turns is used. This number equals the cross-sectional area multiplied by the input stator 

current density amplitude and divided by the input stator current amplitude.

The stator currents in the denominator, like the vector potentials, are also complex variables in 

the field solution represented by phasors. Thus, the currents can likewise be evaluated at any phase angle. 

The currents are consistent with the form taken in Equation IH-13 when expressed in the complex plane. 

The temporal phase lag angle a  is omitted here because it is already incorporated in the vector potentials. 

Since the input stator currents have been chosen as the temporal reference in the steady state field solution, 

the vector potentials are solved relative to them. Also, a temporal phase lag of ninety degrees is added 

here to be consistent with the convention taken by the FEA solver.

From the input impedance, the stator currents are solved at the input voltages. Motor performance 

is then calculated. Voltage driven torque is simply the current driven torque scaled for the currents by the

42P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, Second Edition, 
Cambridge: Cambridge University Press, 1990, p. 188.

where:

j] m  input stator current density amplitude in 1th element

potential42. Vector potentials in the field solution are with respect to the rotating reference frame, while
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square of their amplitude. Horsepower in the voltage driven motor is the product of rotor speed and the 

voltage driven torque. Similar to the torque, power losses can also be scaled for the stator currents. From 

Equation HI-31 and Equation m-42 of the lumped electrical model, the losses are also proportional to the 

square of stator current amplitude. Power factor equals the real component divided by the magnitude of 

the input impedance.

Efficiency equals output horsepower divided by input power:

e f f i c i e n c y  *

_____________________________________________________  V-7

+ E a^ \ + £“(««#)+ pk

where:

k1 *  k* stator phase in 1th element 

Input power comprises stator resistive power loss, input power from flux linkages, and hysteresis and eddy 

current losses. Input power from flux linkages is extracted from the field solution as the sum over all 

stator winding elements of the real component of input stator current multiplied by the real component of 

EMF. Vector potentials are transformed to the excitation frequency because EMF voltages in stator 

windings are with respect to the stationary reference frame.

The input power from flux linkages in the denominator can also be formulated using Equation V-6 

as the product of the input stator current in the denominator and the EMF in the numerator. Only the real 

components of the two are multiplied here. The product is summed over stator winding elements of all 

phases instead of just over one phase. In addition, an appropriate phase shift is made for the stator current 

in the k* phase.

V.D. Power Difference Method

Another method has been developed to calculate induction motor torque through the FEA. In this 

second FEA method, the power difference method, the static solver and the two static field meshes become 

unnecessary. Merely one mesh and the steady state solver are required for all rotor speeds. Torque and 

all other performance characteristics at each speed are directly evaluated in one step from the steady state
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field solution. As a result, computing time is dramatically reduced. Torque calculations are also more 

accurate relative to the first FEA method because finite approximations of the partial derivative of coenergy 

with respect to rotor position are not made.

Torque is derived from the conservation of instantaneous energy. The equivalent "T" circuit 

model is not needed. The lumped magnetic and electrical models are used only to incorporate stator 

resistance and three-dimensional effects. In deriving torque, terms in the conservation of instantaneous 

energy are first formulated in terms of field quantities in the steady state solution. Then, torque is solved.

The derivation of torque in this FEA method, as in the lumped electrical model, begins with the 

conservation of instantaneous energy. The time derivative of all terms in the conservation of instantaneous 

energy is taken for an infinitesimal change to yield the conservation of instantaneous power. Thus, input 

electrical power provides stored magnetic power, stator heat loss, rotor heat loss, hysteresis and eddy 

current losses in the steel, and output mechanical power:

£r

i w  - %  • i*& f • i* iff  * * * *? y*t» 1 «* *»t *«t

where:

W( ■ magnetic stored energy 

Although friction is neglected, it can be incorporated by subtracting from the calculated output torque. 

Hysteresis and eddy current losses are also included by subtracting from the torque. The losses are 

empirically derived in Equation m-43.

Except for the addition of the stored power term, the above equation is identical to the 

conservation of instantaneous power in Equation 111-35 of the lumped electrical model. In that model, 

when no saturation exists stored power was zero for motors with more than one stator phase and one rotor 

phase. Since the number of phases is not restricted here, stored power is included.

Torque is solved after relating all other terms in Equation V-8 to field quantities extracted from

the solution. The first term was already formulated in the denominator of Equation V-7:
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E 4  -i-I
V-9

+ E flV? /fc^{d{cos(o>€J) + /sin(u<r)]}j

The input power comprises stator resistive power loss and input power from flux linkages. Hysteresis and 

eddy current losses are not included here because they are subtracted from the torque.

The second term in Equation V-8 is stored power, which arises due to the increase in energy 

stored in the magnetic field. For linear materials used exclusively by the steady state solver, stored energy 

can be formulated in terms of a volume integral of flux density and material permeability.43 The flux 

density is constant throughout the volume of each of the first-order triangular elements used by the 

two-dimensional steady state solver. As a result, stored energy becomes the volume multiplied by half of 

the square of flux density and divided by the material permeability. The sum over all mesh elements of 

the time derivative of stored energy yields stored power:

^  = d 
dt dt

£
dt\

V-10

where:

material permeability in k* element

In deriving the stored power, the relationship of flux density with vector potential must first be 

known. Through Maxwell’s fourth equation, the curl of vector potential defines flux density.44 Since 

the field solution contains only nodal vector potentials, the flux density is approximated through them and 

the nodal positions by using linear interpolation for the first-order triangular elements. Due to the nature

43A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, p. 105.

^P. P. Silvester and R. L. Ferrari, Finite Elements fo r Electrical Engineers, Second Edition, 
Cambridge: Cambridge University Press, 1990, p. 61.
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of the two-dimensional steady state solver, the vector potential only has a component in the axial direction 

causing the flux density to only have components in the radial and tangential directions.

Stored power is now derived in terms of the real component of vector potential extracted from the 

field solution. The vector potentials can be evaluated at any desired phase angle because the steady state 

solution is based on field quantities that vary sinusoidally with time. Since stored power extracted from 

the field solution is always in the rotating reference frame, a transformation to the stationary reference 

frame is necessary for all but the rotor elements.

The last term in Equation V-8 that needs to be solved before torque can be formulated is the rotor 

resistive power loss. This loss is derived by applying the conservation of instantaneous power to the FEA 

system. No output mechanical power exists in this system since the steady state solver can not account for 

rotor rotation. Therefore, input power from flux linkages provides only stored magnetic power and rotor 

heat loss:

All terms here are in the rotating reference frame because the steady state solver models the magnetic field 

in that reference frame.

Except for the stator resistive power loss, the hysteresis and eddy current losses, and the reference

V-9 and Equation V-10. Without a transformation to the stationary reference frame, the input power and 

stored power in the FEA system can not estimate the actual power in the induction motor. Regardless, the 

two terms in the rotating reference frame serve solely in formulating the rotor resistive power loss.

Stator resistive power loss is omitted from the FEA system because stator windings are assigned 

infinite resistivity in the mesh like in the first FEA method. This keeps stator currents directly regulated. 

Consequently, stator resistance is externally included in power losses, input impedance, and efficiency. 

Hysteresis and eddy current losses are also omitted from the FEA system because steel in the stator and

£  a lzJl,  ^cos(«^) * j s n ^ } )

V -ll

frame, this equation is identical to Equation V-8 without output power after substitutions from Equation
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rotor is assigned infinite resistivity like in the first FEA method. Consequently, these losses are externally 

included in torque, horsepower, power losses, and efficiency.

In the FEA system of Equation V-ll, heat loss comprises only the rotor resistive power loss since 

stator resistive heat loss and eddy current losses in the steel are zero. Induced currents are confined to only 

rotor bars because steel in the stator and rotor is assigned infinite resistivity like the stator windings. 

However, the eddy currents can be easily included if necessary. An appropriate resistivity would be 

assigned to the steel in the stator and rotor. Also, an extra term for the eddy current losses would be 

added to the conservation of instantaneous power of Equation V -ll.

Torque can now be solved since all other terms in Equation V-8 have been related to field 

quantities in the steady state solution:

T  =

d_
dt\

r  (Vx*e{4cos(ott) ♦
h 6, 2p‘

V-12

d_
dt

y *  cos(<*/) » yan(<a/)1})2 _ £»
w  dr 2p*  6r

Substitutions are made for the input power from Equation V-9, the stored power from Equation V-10, and 

the rotor power loss from Equation V-ll. Like in the previous section, Ph is not included at synchronous 

speed because torque is zero and at stall because it can not divide by zero. When hysteresis and eddy 

current losses are neglected, torque is the difference of the input power in the two reference frames 

subtracted by the difference of the stored power in the same two reference frames.

The torque expression can be simplified for motors with multiple stator and rotor phases. The 

input power from flux linkages becomes constant over time at a given rotor speed. As a result, the input 

power in the stationary and rotating reference frames is related:
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Also, the stored power becomes zero in both reference frames.

Torque is then simplified after substitutions from the above equation and Equation m-38, which 

relates rotor speed to the excitation and slip frequencies. Torque becomes the input power from flux 

linkages in the rotating reference frame scaled by the number of pole pairs divided by slip frequency when 

hysteresis and eddy current losses are neglected:

r =  x T * *  + -  j  V14

Field quantities in the input power term are summed only over the stator winding elements, which 

dramatically reduces computing time relative to the first FEA method. At the same time, estimation 

accuracy is not sacrificed. The following two sections describe the implementation of the power difference 

method in calculating performance.

Except for torque, calculating performance in current and voltage driven motors through this 

second FEA method is the same as through the first FEA method. Expressions for horsepower, power 

losses, power factor, and efficiency are identical in the two methods. Performance calculations are 

repeated for every desired rotor speed. Torque, on the other hand, is determined instead by the power 

difference method directly from the steady state field solution through the conservation of in s tan taneous 

energy.

The traditional method of determining torque in the induction motor by FEA is through the 

equivalent "T" circuit model. Torque is formulated like in Equation m-39 of the lumped electrical model. 

Without hysteresis and eddy current losses, torque equals the rotor resistive power loss derived in the
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middle term of Equation V-4 scaled by the number of pole pairs and divided by slip frequency.45 The 

steady state torque is based on symmetry from excitation that is balanced in time and space, evenly spaced 

rotor bars, and an integral number of rotor phases. Also, motors are assumed to have multiple stator and 

rotor phases.

The implementation of the traditional method for calculating torque differs from that of the power 

difference method. Without hysteresis and eddy current losses, the former sums resistive power loss over 

all rotor bar elements. For motors with multiple stator and rotor phases, the latter sums input power from 

flux linkages over all stator winding elements when hysteresis and eddy current losses are neglected. 

Though, Equation V-l 1 establishes that the rotor resistive power loss equals the input power in the rotating 

reference frame when stator power loss, eddy current losses, and stored power are neglected. Stator power 

loss and eddy current losses are zero due to the assignment of infinite resistivity to the applicable materials. 

Stored power is zero due to the symmetry. Consequently, the two methods yield the same result despite 

different implementations. However, the traditional method requires motors to have multiple stator and 

rotor phases. The power difference method, on the other hand, does not require this.

V.D.l. Calculating Performance in the Current Driven Induction Motor

In calculating performance in the current driven motor, the known stator currents energized at the 

slip frequency are specified as inputs into the mesh. After the rotor bar resistivity is adjusted in the FEA 

for skewing and end ring resistance, the solver reveals the magnetic field. Current driven torque is then 

determined from Equation V-12 or Equation V-14 depending on whether the motor has multiple stator and 

rotor phases. Horsepower in the current driven motor is the product of rotor speed and current driven 

torque. Power losses in the current driven motor is calculated from Equation V-4.

V.D.2. Calculating Performance in the Voltage Driven Induction Motor

In calculating performance in the voltage driven motor, an arbitrary input stator current amplitude 

is initially assumed in the mesh. After the rotor bar resistivity is adjusted in the FEA for skewing and end

45R. Belmans, D. Verdyck, T. B. Johansson, W. Geysen, andR. D. Findlay, 'Calculation of the 
No-Load and Torque Speed Characteristic of Induction Motors Using Finite Elements," International 
Conference on Electrical Machines, August 13-15, 1990, pp. 724-729.
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ring resistance, the solver reveals the magnetic field. Input impedance is then determined from Equation 

V-5 with stator resistance and three-dimensional leakage flux externally included.

From the input impedance, the stator currents are solved at the input voltages. Performance is 

then evaluated. Voltage driven torque is the current driven torque scaled for the stator currents by the 

square of their amplitude. Input impedance and current driven torque are calculated at the same time so 

that voltage driven torque is computed quickly. Horsepower in the voltage driven motor is the product of 

rotor speed and the voltage driven torque. Power losses, similar to the torque, are also scaled for the stator 

currents by the square of their amplitude. Power factor equals the real component divided by the 

magnitude of the input impedance. Efficiency from Equation V-7 is the output horsepower divided by input 

power.

V.E. Transient FEA Method 

The third method to calculate induction motor performance through the FEA uses a transient 

solver. This solver determines the instantaneous magnetic field like the static solver, but also determines 

the induced currents. Therefore, eddy current losses in the steel can be inherently incorporated. But, in 

order to obtain steady state response at a rotor speed, enough solutions must be determined to time step 

beyond the transient response. Computing time becomes extremely long. However, with rapid 

development of faster microprocessors, transient FEA is becoming more feasible.

To determine performance from the two-dimensional transient solver, three-dimensional effects 

are incorporated. Rotor bar resistivity is adjusted for skewing and end ring resistance just like in the first 

two FEA methods. Also, stator and rotor currents are adjusted at each time step for three-dimensional 

leakage flux. Torque can then be solved directly from the field solution by either using a static solver like 

in the first FEA method or through the conservation of instantaneous power applied to transient FEA.

Using the steady state solver is a relatively simple approach to modelling electric motors. Field 

solutions vary sinusoidally with time and materials are magnetically linear. Saturation is typically avoided 

in the induction motor because it causes unfavorable harmonics. Also, in order for the field quantities to 

vary sinusoidally with time, symmetry is required. The symmetry exists from excitation that is balanced 

in time and space, evenly spaced rotor bars, and an integral number of rotor phases. Since the induction
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motor is typically designed with this symmetry, performance estimations are then accurate. But, 

nonsymmetry and saturation cause errors in the estimations.

In this case, a transient solver can be utilized. Much longer solution time is required to reveal 

the magnetic field at every instant in time. But, instantaneous performance can be evaluated without 

assuming symmetry and linear materials. However, similar to the steady state solver, hysteresis is ignored 

and rotor rotation is not account for. Therefore, the rotating reference frame of the rotor is selected.

When modelling with the transient solver, performance can no longer be scaled for the stator 

currents like in the first two FEA methods because materials are not assumed to be linear. Instantaneous 

stator currents are first specified as inputs into the mesh. For the current driven motor, the stator currents 

are known. But, for the voltage driven motor, the stator currents are determined by incorporating 

three-dimensional leakage flux in the two-dimensional transient solver. Torque can then be solved directly 

from the field solution by either a static solver or through the conservation of instantaneous power applied 

to the transient solution. Using the static solver is laborious because it is necessary to specify rotor 

currents as inputs to two additional meshes. In contrast, torque through the conservation of instantaneous 

power is determined directly from the transient solution.

Many similarities exist between determining performance through the transient solver in this third 

FEA method and through the steady state solver in the first two methods. Currents rather than voltages 

are specified as inputs into the mesh. Also, infinite resistivity is assigned to the stator windings to keep 

the input stator currents directly regulated. Thus, stator resistance must be externally included in 

calculating stator currents, power losses, and efficiency. The stator resistance does not affect current 

driven torque and affects voltage driven torque only indirectly through the stator currents. In addition, 

three-dimensional effects are incorporated in all three methods.

To include three-dimensional effects, the rotor bar resistivity is adjusted at each rotor speed for 

skewing and end ring resistance just like in the first two FEA methods. Also, three-dimensional leakage 

flux is accounted for. Instantaneous stator currents at the input voltages are adjusted for linkages with 

stator three-dimensional leakage flux. Instantaneous rotor currents are adjusted for linkages with rotor 

three-dimensional leakage flux. The assumption made in the first two FEA methods to include this flux
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in the rotor is not needed here because the flux is included in the rotor currents not stator currents.

Linkages with three-dimensional leakage flux in the stator and rotor are included through 

inductances similar to LjD in the first two FEA methods:

Lgp *  stator three-dimensional end and skew leakage inductance per stator phase 
Lr3D a  rotor three-dimensional end and skew leakage inductance per rotor phase

When materials are linear and symmetry exists, these inductances are constant. However, even if the

inductances are not, they can be assumed constant. This is because the three-dimensional leakage flux is

normally much smaller than the air gap flux to attain high torque and efficiency levels.

Stator three-dimensional leakage flux does not affect performance in the current driven motor

because stator currents are known. In the voltage driven motor, however, the flux is used to determine

the stator currents from the input voltages. The input voltage per phase equals the sum of stator resistive

voltage drop, stator EMF from the two-dimensional transient solver, and voltage drop across the stator

three-dimensional inductance:

^•2D *  stator winding flux linkage in k* stator phase in the two-dimensional FEA

Numerical integration is applied to adjust the currents at each time step, n + 1, from the previous steps, n 

and n-1:

V-15

where:

V-16

where:
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Since the rotating reference frame is selected in the FEA, the time derivatives are transformed to the 

stationary reference frame by considering rotor speed. The time increment must be chosen small enough 

so that the change in currents does not go unstable. Also, L^q can not be zero.

From the stator currents, induced rotor currents are calculated. Rotor currents are corrected for 

rotor three-dimensional leakage flux by specifying additional current as input in the bars:

*r =  *r3D+*r2D

.1
fy rS D  ^ r3D~dt

V-18

where:

i^D m rotor bar current in 1th rotor phase from rotor three-dimensional leakage flux linkage 
i*2 D m rotor bar current in 1th rotor phase in the two-dimensional FEA

iJjD is defined in the same direction as i ^ .  The resistive voltage drop due to this additional current

accounts for the voltage drop from linkages with the rotor three-dimensional leakage flux. Numerical

integration is then applied to adjust the currents at each time step, n + 1, from the previous steps, n and n-1:

I ~
f 1 -#ll

1 -  Rr * *rM)l -
L*d , *

V-19

The time increment must again be chosen small enough so that the change in currents do not go unstable. 

Also, LrjQ can not be zero.

When the stator and rotor current corrections were implemented, solution convergence problems 

were encountered. More research is necessary to solve these problems before performance can be 

calculated by this method.

V.F. Summary
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Magnetic FEA is a powerful tool for analyzing and designing electric motors. A two-dimensional 

static solver is commonly sufficient to accurately model permanent magnet motors. Modelling the 

induction motor purely from two-dimensional FEA yields poor results until three-dimensional effects 

estimated by the lumped models are included. Any errors in deriving these effects from the lumped models 

cause errors in estimating performance from the FEA.

Three FEA methods have been developed to d ete rm ine  performance in current and voltage driven 

induction motors directly from the two-dimensional field solutions. The equivalent *T* circuit model is 

not needed. The first method uses a steady state harmonic field solver followed by a static field solver in 

calculating torque from the method of virtual work. The second method, which requires much less 

computing time, uses only a steady state solver to calculate torque from the conservation of instantaneous 

energy. The third method uses a transient field solver.

To include three-dimensional effects, the rotor bar resistivity is adjusted to account for skewing 

and end rings. In the first two FEA methods, the input impedance is also increased to account for linkages 

with three-dimensional leakage flux. The impedance is used to dete rm in e  stator currents from the input 

voltages in calculating performance in the voltage driven motor. Three-dimensional leakage flux does not 

significantly affect performance in the current driven motor. Three-dimensional effects are included 

through the same process in the first two methods. In the third FEA method, linkages with 

three-dimensional leakage flux are used to directly determine instantaneous stator and rotor currents.

After including three-dimensional effects in the first two FEA methods, expressions for torque, 

horsepower, and power losses are derived for the current driven motor. For magnetically linear materials, 

these performance characteristics can be scaled for any stator currents by the square of their amplitude. 

Accurate performance estimations in current driven induction motors, such as in motors driven by scalar 

control and vector control, are possible when saturation levels are low. For the voltage driven motor, 

expressions for power factor and efficiency are also derived.

Performance calculations from the two FEA methods for both current and voltage driven induction 

motors are compared to experimental results in the next chapter. Calculations are almost identical for the 

two methods. Errors are shown to be within fifteen percent over the practical region of the torque-speed
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curve. Performance calculations from the third FEA method are not compared because solution 

convergence problems were encountered.

The traditional method of modelling the induction motor using the FEA is through the equivalent 

"T" circuit model. The model loses some physical interpretation because rotor parameters are referred to 

the stator. Torque in this method is derived based on symmetry. Torque from this traditional method is 

equivalent to torque from the second FEA method when based on the same symmetry. However, the 

implementation of the two differs. Also, the power difference method does not require motors to have 

multiple stator and rotor phases.
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CHAPTER VI

EXPERIMENTAL VERIFICATIONS

VI.A. Introduction

The lumped magnetic, electrical, and thermal models have been developed to determine the 

relationships of motor geometry and material properties to motor performance. In addition, three FEA 

methods have been developed to evaluate performance in current and voltage driven induction motors 

directly from the field solutions. The third FEA method is not used here because of solution convergence 

problems. The lumped models and the first two FEA methods are now applied to two commercial 

induction motors. Current and voltage driven torques are calculated at numerous rotor speeds and 

compared with experimental results. Also, transient temperature is determined at stall for one of the 

motors from the lumped thermal model and compared to experimental results.

VLB. Description of the Experimental Configuration

Calculations of torque and temperature from the lumped models are individually compared to 

experimental results to independently verify the accuracy of the models. Sources of error are then isolated. 

The lumped magnetic and electrical models are used to determine torque at a known temperature instead 

of using the steady state temperature estimated from the lumped thermal model. Near stall, the stator 

windings may not be able to withstand operating at the steady state temperature anyway. The torque is 

then compared to experimental results. In addition, the lumped thermal model is used to determine the 

temperature at stall with known heat sources. The temperature is also compared to experimental results.

Experimentally measuring torque in permanent magnet motors is relatively simple. Hysteresis 

brakes can be used since there are no unstable regions in the torque-speed curve. For the voltage driven 

induction motor, the brake can only be used in the stable region of the torque-speed curve where the rotor 

speed is faster than at breakdown torque. For any other speed, the brake would normally cause the motor 

to stall. Therefore, another process is used where a more powerful second motor, a permanent magnet
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motor, controls the speed of the induction motor. Torque can now be measured at any rotor speed.

To experimentally measure torque, the shaft of the induction motor is solidly coupled to that of 

a brushless permanent magnet DC motor with a torquemeter in between as shown in Figure 6.1. The 

permanent magnet motor must generate more torque at every rotor speed. The speed of the system is 

thereby controlled. The induction motor no longer stalls unintentionally even when operating in the 

unstable region. Torque produced by the induction motor acts as a load on the permanent magnet motor.

i n d u c t i o n
n o t o r
d r i v e

t r a n s d u c e r
a m p l i f i e r

c o u p l i n g s  -i

i n d u c t i o n
m o t o r = $ = t o r q u e m e t e r

p e r m a n e n t
m a g n e t

m o t o r d r i v e

p e r m a n e n t
m a g n e t
m o t o r

Figure 6.1 Experimental configuration for measuring torque and rotor speed.

Input voltage, excitation frequency, stator current, and torque are measured at each desired rotor 

speed. The first two are measured with an oscilloscope and a current probe manufactured by 

TEKTRONIX. Instantaneous torque and rotor speed are measured with a non-contact strain gage 

torquemeter manufactured by S. Himmelstein and Company. The torquemeter has a torque range of 160 

ounce-inches and a maximum speed of fifty thousand revolutions per minute. Measurements have a 

nonlinearity tolerance of one tenth of a percent of full scale and a nonrepeatability tolerance of five 

hundredth of a percent of full scale.

Experimental results were collected for two commercial polyphase induction motors. Both voltage 

driven motors were purchased from Eastern Air Devices, Incorporated (EAD). One motor is wound for 

two poles and has twenty-four stator slots and seventeen skewed a lu m in u m  rotor bars. It produces 

approximately a fifteenth horsepower when supplied with 120 volts per phase at sixty hertz. The other
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motor is wound for eight poles and has twenty-four stator slots and nineteen skewed brass rotor bars. It 

produces approximately a twentieth horsepower when supplied with 120 volts per phase at four hundred 

hertz. However, the power supply of this motor actually produces 122 volts per phase at 420 hertz.

VI. C. Comparison of Voltage Driven Toroue

After experimental results are collected for the two motors, they are compared with calculations 

from the lumped models and FEA methods. Also, stator resistance which affects voltage driven torque 

is determined from the lumped electrical model and compared with measurements. Sources of error are 

explained.

In comparing calculated torque from the lumped models and FEA methods with experimental 

results, known stator and rotor temperatures are used. Experimental measurements were taken at these 

temperatures instead of at steady state temperatures to isolate sources of error. For simplicity, the known 

temperatures were kept constant over the entire torque-speed curve.

The temperature of the stator is monitored easily by placing a thermocouple wire of type J 

manufactured by Omega in the stator slot against the windings. The wire has a temperature range of zero 

to 7S0 degrees Celsius and a limit of error at 1.1 degrees Celsius for temperatures up to 275 degrees 

Celsius. However, the temperature of the rotor can not be monitored without an expensive wireless 

temperature sensing instrument except at stall. As an approximation, the temperature of the rotor is 

assumed to be equal to that of the stator. At rated speed near synchronous speed where heat losses are 

low, not much error is introduced. But, near stall where heat losses are usually the highest, slightly more 

error may result.

Voltage driven torque is affected by stator resistance which can be experimentally measured. 

From the lumped models, the resistance is calculated using Equation HI-1 and the torque is calculated using 

Equation DI-39. This resistance is also used in the FEA methods. The calculated resistance is compared 

with measured resistance.

Stator resistance for all three phases was measured with a four-wire digital multimeter 

manufactured by Fluke and the average is used. Accuracy is within four thousandths for the range of two 

hundred ohms. Measurements were taken at room temperature and scaled to the known experimental
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temperature. The calculations are low by ten percent for the sixty-hertz motor and a quarter percent for 

the four-hundred-hertz motor. The error is due to the approximated length of wire in the end turns. 

Although current driven torque is unaffected, the error causes voltage driven torque to be slightly high.

Torque is also affected by rotor resistance. Unfortunately, this resistance can not be measured 

over a phase because of end rings. Therefore, R, in the lumped electrical model that is also used in the 

FEA methods is not verified.

Voltage driven torque versus rotor speed for the two EAD motors is plotted in Figure 6.2 and 

Figure 6.3. The measured torque remained constant over time at any rotor speed even though symmetry 

from an integral number of rotor phases does not exist. Because enough rotor bars exist in both motors, 

any torque ripple from the nonsymmetry is small. A jump occurs in the measured torque at stall in 

Figure 6.2 because of the high heat losses.

O  E x o i r  I n m  t l  I °  L u n o t d  M o d » l »

A FEA Ma t h o d l

7 5

50

2 5

0
R o t o r  S o t * d  R P n

Figure 6.2 Comparison of voltage driven torque versus rotor speed for the sixty-hertz motor.

Figure 6.4 through Figure 6.7 show the outline and mesh of the two motors used in the FEA 

methods. Elements in the mesh are small enough so that flux density can be assumed constant throughout
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Figure 6.3 Comparison of voltage driven torque versus rotor speed for the four-hundred-hertz motor.

their volume. Torque from the two FEA methods described in sections V.C and V.D differs by less than 

two percent at every rotor speed. The difference arises from the finite approximations made in the first 

FEA method of the partial derivative of coenergy with respect to rotor position. Due to the small error, 

results from only the second method, the power difference method, is plotted for the sixty-hertz motor. 

Also, only the faster second FEA method is used for the four-hundred-hertz motor. Torque from that 

method is calculated from Equation V-14 for the two motors with multiple stator and rotor phases.

Errors in the lumped models are within fifteen percent for both motors except near synchronous 

speed, less than five percent slip, and near stall, more than ninety percent slip. Errors in the FEA methods 

for the sixty-hertz motor are within ten percent except at synchronous speed. For the four-hundred-hertz 

motor, errors in the FEA method are within fifteen percent except near stall, more than seventy-six percent 

slip.

When operating near synchronous speed, output torque is extremely sensitive to excitation 

frequency. In this region, torque varies dramatically with rotor speed. Therefore, any slight error in
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Figure 6.4 FEA mesh outline of cross section for the sixty-hertz motor.

Figure 6.5 FEA mesh of quarter cross section for the sixty-hertz motor..
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Figure 6.6 FEA mesh outline of cross section for the four-hundred-hertz motor.

w w m m .

Figure 6.7 FEA mesh of quarter cross section for the four-hundred-hertz motor.
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determining the excitation frequency causes magnified errors in estimating torque.

Near stall, hysteresis and eddy current losses in the steel for the lumped models and FEA methods 

seem to be overestimated by the empirical model of Equation m-43. The losses are not included at stall 

and synchronous speed causing the calculated torque-speed curves to be discontinuous there. The 

overestimation of the losses may be due to extrapolation from operating outside the range of the empirical 

data. The error is more dramatic in the four-hundred-hertz motor. When this motor operates at three 

hundred revolutions per minute, torque estimation is reduced by twenty-six percent when the calculated 

hysteresis and eddy current losses are included. Torque estimation error at this speed increases from nine 

to thirty-two percent.

Torque estimation error is also introduced because harmonics are neglected. Since the 

temperatures are not at steady state, some slight error results from harmonics that arise in the stator and 

rotor currents. Any error in the stator currents causes error in the voltage driven torque that is squared. 

This is because voltage driven torque is calculated from current driven torque scaled for the square of stator 

currents. The concentric windings of the four-hundred-hertz motor contain just one tier causing harmonics 

in the flux density distribution. Enough rotor bars exist in both motors so that only some slight error 

results from harmonics due to the nonintegral rotor phases. Any saturation also causes harmonics. 

However, the error from this is small because flux density levels are low.

Additional error in the FEA methods is due to three-dimensional effects. Any error in deriving 

these effects from the lumped models causes error in not only the lumped models but the FEA methods 

as well. Also, the assumption made to include rotor three-dimensional leakage flux in only the stator 

currents and not the rotor currents results in some error.

Error results also from equipment sensitivity and friction. Experimental error due to measurement 

tolerances is small. Friction is negligible at around a quarter ounce-inch. The measurement was taken 

with a torque watch gauge manufactured by Waters that has a range from one to twenty ounce-inches and 

an accuracy of two percent of full scale.

VI. D. Comparison of Current Driven Torque

Current driven torque determined from the lumped models and FEA methods is also compared

-126-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with experimental results. The torque versus rotor speed is plotted in Figure 6.8 and Figure 6.9 for the 

two EAD motors. At each rotor speed, the experimental current driven torque is the measured voltage 

driven torque scaled for stator currents of one rms ampere by dividing by half the square of the measured 

current amplitude. Because of the scaling, any saturation still results in error.

O  E x o a r l r a n t a l  

a  F E n  n i t h o d a

□  L u a p t d  M o d a l *
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R o  t o r  S o a a d  RPM

Figure 6.8 Comparison of current driven torque versus rotor speed for the sixty-hertz motor.

Errors in the lumped models and FEA methods are within fifteen percent for the sixty-hertz motor 

except near synchronous speed, five percent slip or less, where excitation frequency is critical and near 

stall, ninety-five percent slip or more, due to extrapolation. For the four-hundred-hertz motor, the errors 

in the lumped models are within fifteen percent except near synchronous speed, less than five percent slip, 

and near stall, more than fifty-seven percent slip. Errors in the FEA method for this motor are extremely 

large because of the difficulty in modelling three-dimensional leakage flux. Also, the windings in the mesh 

may need to be better distributed in the slots. In addition, elements in the mesh may not be small enough 

so that flux density can not be assumed constant throughout their volume.

-127-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



O E x o i r l n t n t a l  

A F E B  n # t h o d

□ L u n o s d  t l o d t l  •

30

0

R o t o r  S o s s d  R P n

Figure 6.9 Comparison of current driven torque versus rotor speed for the four-hundred-hertz motor.

VI. E. Comparison of Temperatures 

The lumped thermal model is applied to the sixty-hertz motor. Transient temperature in the 

housing, stator stack, stator windings, and rotor bars are calculated at stall and compared to experimental 

results. Sources of error are explained.

To experimentally measure transient temperature at stall, the induction motor was energized with 

the shaft clamped still. Thermocouple wires were placed in the housing body, in the stator stack, in a 

stator slot against the windings, and in the rotor end ring. With the motor initially at room temperature, 

measurements were taken for two hours until steady state temperatures were attained. The ambient 

temperature was also recorded.

In calculating temperatures from the lumped thermal model of Figure 4.1, the heat sources, 

thermal capacitances, and thermal resistances were first determined. Then, numerical integration was 

applied to solve for the transient temperatures. The heat sources were kept constant at their steady state 

values despite currents and resistances, which determine heat generation, varying with temperature. For
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the conduction thermal resistance in Equation IV-4, the housing and stator stack were assumed to have 

perfect contact so that Iq, is the actual thermal conductivity of the housing body.

Transient temperature at stall versus time for the sixty-hertz motor is plotted in Figure 6.10 with 

the comparison of only the stator winding and rotor temperatures in Figure 6.11. In order to attain steady 

state results at this speed without exceeding the maximum temperature that the stator windings can 

withstand, the input voltages were reduced by about sixty-five percent. The temperature in the stator 

windings and rotor differs only slightly. The approximation of equal stator and rotor temperatures made 

in the voltage and current driven torque calculations using the lumped models and FEA methods is thereby 

validated.
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Figure 6.10 Comparison of transient temperature at stall versus time for the sixty-hertz motor.

The calculated temperatures are compared with experimental results. Errors at steady state are 

within ten percent for the stator winding, stator stack, and rotor temperatures. For the housing 

temperature, error at steady state is about fifteen percent. Estimation errors of transient temperatures are 

larger.
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Figure 6.11 Comparison of transient temperature at stall versus time for the sixty-hertz motor.

Temperature estimation error is primarily due to the convection heat transfer coefficient and the 

shaft protrusion. Determining the convection heat transfer coefficient is difficult because it requires an 

empirical model. The shaft protruding from the rotor back iron and fans protruding from rotor end rings 

allow for more heat flow. Additional error is introduced from heat sources in the lumped thermal model 

that are kept constant at their steady state values. Also, the lumped thermal model may not be complete 

in analyzing all the significant processes of heat transfer in all the critical regions of the motor.

Heat transfer from the shaft protrusion by itself is usually small relative to the housing. However, 

in the experimental configuration of Figure 6.1, the induction motor shaft is coupled to the torquemeter, 

thereby creating a significant thermal path. In this case, heat dissipated out from the rotor through the 

shaft may be significant, resulting in dramatically reduced rotor temperature and smaller errors.

VI. F . Summary

Despite the complex models required to attain acceptable errors, induction motor torque and
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temperature have been estimated with reasonable accuracy from the lumped models and FEA methods. 

Torque is calculated and compared with experimental results for two commercial polyphase induction 

motors. Temperature is calculated at stall for one of the motors and compared to experimental results.

Over the practical region of the torque-speed curve, errors in voltage and current driven torques 

from the lumped models and FEA methods are w ith in  fifteen percent for both motors. For the 

four-hundred-hertz motor, current driven torque errors in the FEA method are much larger than fifteen 

percent because of the difficulty in modelling three-dimensional leakage flux. Also, the windings in the 

mesh may need to be better distributed in the slots. Since voltage driven torque has been calculated from 

the FEA method to within fifteen percent for this motor, the calculated input impedance must be low 

resulting in large stator currents.

Torque estimation error is primarily due to harmonics in the flux density distribution. The 

concentric windings of the four-hundred-hertz motor contain just one tier causing harmonics. Additional 

error in the FEA methods is due to three-dimensional effects. Any error in deriving these effects from the 

lumped models causes error in not only the lumped models but the FEA methods as well. Also, the 

assumption made to include rotor three-dimensional leakage flux in only the stator currents and not the 

rotor currents results in some error.

Stator resistance, which affects only the voltage driven torque, is calculated from the lumped 

electrical model and compared with measurements. Any error in estimating stator currents, which are 

affected by the resistance, causes error in the voltage driven torque that is squared. The resistance is low 

by ten percent for the sixty-hertz motor and a quarter percent for the four-hundred-hertz motor. The error 

is due to the approximated length of wire in the end turns. This error causes the torque from the lumped 

models and FEA methods to be slightly high.

The transient temperature is determined at stall for one of the motors from the lumped thermal 

model and compared to experimental results. Errors at steady state are within ten percent for the stator 

winding, stator stack, and rotor temperatures. For the housing temperature, error at steady state is about 

fifteen percent. Estimation errors of transient temperatures are larger. Error is primarily due to the 

difficulty in determining the convection heat transfer coefficient, and not considering heat dissipated out
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from the rotor through the shaft. The shaft is coupled to the torquemeter, thereby creating a significant 

thermal path.
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CHAPTER V n

DESIGN MODEL 

VILA. Introduction

In the analysis of the induction motor, the relationships from basic motor variables to motor 

performance are derived from the lumped magnetic, electrical, and thermal models. In the design of the 

induction motor, the motor geometry and winding scheme that result in the required performance are 

determined. The design model incorporates the lumped magnetic and electrical models.

To design the voltage driven induction motor, an iterative model is developed. Alter necessary 

inputs are provided, the design model iterates around specified ranges of main motor dimensions. In each 

permutation, slot dimensions are designed. For feasible designs, performance is determined and compared 

with desired requirements.

To verify the design model, two motors with known performance are used. Calculated 

performance is compared with experimental results. The model is then utilized to design an induction 

motor for desired requirements. The motor is fabricated and calculated performance is again compared 

with experimental results.

VII.B. Development of the Design Model

Designing the induction motor is an underconstrained process. Dependent variables such as motor 

geometry and material properties severely outnumber the independent variables such as performance 

requirements. Therefore, an iterative design model is developed for the voltage driven induction motor 

with a squirrel cage rotor. The model for the current driven motor is just a simplified version of this 

model. The model includes magnetic, electrical, thermal, and mechanical considerations.

The traditional design approach, briefly described in Appendix A, relies on empirical data from 

existing motors and the equivalent circuit model. However, designing motors outside the range of 

empirical data through extrapolation may cause large errors. The iterative design model is based on the
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analytically derived lumped models which are reliable over a wide range of parameters.

Figure 7.1 presents the flow diagram of the iterative design model. Computer software was 

written to automate this process. Necessary inputs such as power supply specifications, design 

requirements, iteration variables, and performance requirements are first provided. The model iterates 

around specified ranges of the iteration variables. In each permutation, motor dimensions are designed to 

attain desired flux density levels in critical regions of the motor. For magnetically feasible designs, 

performance is determined from the lumped magnetic and electrical models. Designs that meet desired 

mechanical and physical limitations as well as satisfy performance requirements are compared for the 

optimal solution of a given application.

Vn.C. Design Model Inputs 

In the design model, inputs which remain constant throughout the iterations are first provided. 

The design inputs are arranged into seven categories labelled power supply specifications, excitation 

scheme, rotor configuration, design requirements, iteration variables, flux density levels, and performance 

requirements. The individual categories are explained in the following sections. The described effects of 

the inputs on performance are approximated using the lumped models and neglecting magnetic saturation 

as well as hysteresis and eddy current losses. From these design inputs, motor dimensions are designed 

and motor performance is evaluated.

VII.C.1. Power Supply Specifications

Power supply specifications describe the available voltage supply used to energize the designed 

motor. They comprise input voltage amplitude, excitation frequency, and number of stator phases. To 

reduce harmful harmonics in the air gap flux density distributions, the sinusoidal excitation is balanced in 

time and space.

Input voltage dramatically affects performance. Torque, resistive power losses, and horsepower 

are proportional to the square of the input voltage amplitude. But, power factor and efficiency are 

independent of the amplitude. Also, increasing the number of stator phases increases both torque and 

efficiency.
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Figure 7.1 Flow diagTam of iterative design model.
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Induction motors typically operate from either single-phase excitation or polyphase excitation. The 

former is common for most fractional horsepower applications, while the latter is common for most integral 

horsepower applications. With single-phase excitation, additional starting mechanisms are required because 

no inherent starting torque is produced. With polyphase excitation, no starting mechanisms are necessary 

and operation is more efficient, but cost is generally higher. Also, polyphase excitation, whose windings 

demand more patience to insert, requires more slots for windings or larger slot fill percentage.

VII.C.2. Excitation Scheme

Excitation scheme describes the strategy by which the input voltage is applied to energize the 

designed motor. These inputs comprise number of poles, m axim um  fill factor, number of stator slots, and 

winding configuration. The pole count is usually selected to yield the slowest synchronous speed that still 

exceeds the desired operating speed. Synchronous speed equals excitation frequency divided by the number 

of pole pairs. It is generally desired for the induction motor to operate near synchronous speed because 

heat generation typically increases as slip frequency increases. Most voltage driven motors operate near 

synchronous speed also for high power factor and efficiency as well as to avoid stalling.

In the voltage driven motor, winding the stator with small wire sizes, or large diameter wires, for 

a fixed number of winding turns, boosts torque and efficiency even more while usually generating even 

less heat. But, fill factor increases. Fill factor designates the fill percentage of wire in the slot that carries 

the most number of wires. It equals the ratio of total wire cross-sectional area including insulation to slot 

cross-sectional area excluding slot liners. Slot liners usually of standard thicknesses pad the stator slots 

to protect the windings. Winding difficulties may accompany fill factors greater than fifty percent. 

Therefore, designs are wound with the thickest possible wire determined from the number of winding turns, 

maximum fill factor, and slot geometry.

With fill factor specified, specifying wire size becomes unnecessary. Otherwise, another iteration 

variable can be created for the wire size. Motors wound with various wire sizes would be designed, but 

at the expense of dramatically increased computing time. The additional iterations are not needed because 

fill is always set at the largest practical value for the most efficient use of stator slots.

The highest wire count per slot that is used to determine fill depends on the winding configuration.

-136-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Concentric windings are commonly used to decrease harmonics in the air gap flux density distributions. 

Only the fundamental produces useful torque, while harmonics cause vibration, noise, and heat. Long 

tooth ears, corresponding to narrow slot mouths, also improve the flux density distributions, but mouth 

openings must be adequate for winding insertion. Steel ears that tangentially protrude at the tooth tips 

dampen slotting effects by redistributing flux more evenly across the air gap.

To support a sufficient number of concentric winding tiers, enough stator slots must exist. 

Utilizing many tiers leads to flux density distributions that are more sinusoidal, but also requires many 

slots. The ideal percentage allocation of winding turns in each tier has been theorized to minimize 

harmonics in the air gap flux density distributions.46 Coils of each tier are inserted into two slots per 

pole. Having many slots causes high slot leakage flux and low torque at rated speed. It is also more 

burdensome to wind many tiers. To reduce the slot count, slots can be shared between outer tiers of 

adjacent poles or among tiers of different phases. However, this multi-layer technique sacrifices wire 

thickness since fill factor is kept constant.

Using many wide slots to support thick wires causes narrow teeth and saturation in the teeth from 

high flux density levels. To avoid this while keeping fill factor constant, thinner wires can be used in 

smaller slots. But, torque and efficiency decrease and heat generation usually increases.

Vn.C.3. Rotor Configuration

The induction motor rotor is either wound with copper wires like the stator or has a squirrel cage 

construction. Wound rotors are normally for large horsepower applications because of the wire cost 

advantage. Small motors utilize the squirrel cage rotors. The squirrel cage contains bars and end rings 

that are customarily composed of the same material.

The design model considers only the squirrel cage rotor, although designing the wound rotor is 

similar. Rotor configuration inputs comprise rotor squirrel cage material, number of rotor slots, and rotor 

skew. Selecting rotor slot count presents the same d ilem m a as selecting the stator slot count. A high slot 

count allows for air gap flux density distributions that are more sinusoidal, but decreases torque at rated

46W. R. Appleman, ’The Cause and Elimination of Noise in Small Motors,’ Electrical 
Engineering, November, 1937, pp. 1359-1367.
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speed from higher slot leakage flux and more skin effects. In addition, some combinations of stator and 

rotor slot counts produce exceptionally large harmonics. General rules of thumb for favorable slot count 

combinations are published.47

The rotor is ordinarily skewed to further reduce harmonics in the rotor air gap flux density 

distribution despite causing some slight torque disturbance and increase in leakage flux. Skewing is 

performed before rotor bars are inserted or cast in a mold. An ideal skew is formulated that theoretically 

diminishes the third harmonic which is usually the worst offender.48

VII.C.4. Design Requirements

Design requirements dictate conditions under which, and parameters within which, motors are 

designed. The requirements comprise temperature at desired rotor speeds and stall in addition to dimension 

ratio limits. The temperature in the stator windings and rotor bars is used to evaluate resistances. The 

temperatures are specified instead of calculated from the lumped thermal model because they are commonly 

known. The stator temperature can be specified as the maTimum temperature that the stator windings can 

withstand. The rotor temperature at stall is necessary to design for end ring thickness. If desired, the 

lumped thermal model can be included to determine the steady state temperatures in calculating 

performance.

Two different dimension ratio limits help to ensure robustness of the motor designs for practical 

considerations. One ratio pertains to the motor overall dimensions and the other pertains to the stator tooth 

dimensions. The ratio of stack height to stator outer diameter must fall within a specified range to reject 

motors that are abnormally fat and short or thin and long. In the latter, balance complications and 

vibration problems may arise.

For the other dimension limit, the length to width ratio of stator teeth must not exceed a specified 

maximum to reduce structural weaknesses and manufacturing hardships. Winding around teeth that are

47Cyril G. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, p. 391.

48"The Effect ofHarmonics on Induction Motor Performance, * Eastern Air Devices, Incorporated, 
Dover, New Hampshire, Internal Report.
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long and narrow is difficult because they may bend. A maximum dimension ratio for rotor teeth is 

unnecessary due to the squirrel cage construction. The teeth are supported on both sides by bars and are 

sandwiched at the axial ends by end rings.

Vn.C.S. Iteration Variables

The design model ranges through four iteration variables in search of valid designs. The variables 

consist of stack height, stator outer diameter, stator inner diameter, and air gap length. Their maximum 

and minimum values along with their step increments are specified. These inputs represent the main motor 

geometry from which slot dimensions are designed.

Due to the iterative nature of the design model, significant computing time may be required. The 

total number of permutations taken is equal to the product of the four step increment counts. In order to 

gain just ten times the resolution, the permutation count increases ten thousand times. To conserve time, 

large iteration increments can initially be taken followed by smaller ones around the better designs. This 

can be repeated until iteration increments are satisfactorily small.

It is unnecessary to iterate around the rotor inner diameter. Since a small diameter leads to lower 

rotor back iron flux density and lower heat generation, it is set to the motor shaft diameter. The shaft must 

exceed a minimum diameter to withstand the mechanical sheering force at breakdown torque.

Stator and rotor stack heights are usually almost identical for low end leakage flux and high air 

gap flux. Air gap flux produces useful torque from tangential force, while end leakage flux produces a 

harmful radial force. Unequal stack heights provide no advantage anyway.

The iteration variables do affect performance. Motors with a large stator outer diameter dissipate 

more heat because of the large outer surface area, but also weigh more and take up more volume. A small 

stator inner diameter supports more copper in the slots by allowing for larger diameter wires or more 

winding turns at a constant fill factor. However, stator tooth length is extended causing increased structural 

stress.

A large air gap reduces flux across it resulting in reduced current driven torque. But for the 

voltage driven motor, stator currents increase resulting in increased torque. However, efficiency decreases 

due to high heat generation. A small air gap, on the other hand, leads to reduced heat generation, but
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demands tighter manufacturing tolerances.

Vn.C.6. Flux Density Levels

The iteration variables are used to design for specified maximum flux density levels in the stator 

and rotor back irons and teeth. Designs with low flux density, due to low flux, produce low torques, while 

designs with low flux density due to large cross-sectional area in the steel are oversized. High flux density, 

on the other hand, results in high torque per motor volume, but also high eddy current losses in the steel. 

However, saturation must be avoided because it causes harmonics in the air gap flux density distributions. 

For large torque from a small motor volume without significant harmonics, flux density levels in the steel 

are generally designed just shy of saturation.

To design for flux density levels in the steel, the number of stator winding turns is needed. The 

number of turns is determined by specifying the maximum air gap flux density. For low horsepower 

applications, this flux density can be set between a quarter and one tesla. Increasing winding turns of a 

fixed wire size leads to higher input impedance and lower stator currents. Torque decreases as well as heat 

generation, but efficiency increases. Efficiency increases even when stator slot copper cross-sectional area 

is kept constant by increasing the number of turns with a decrease in the cross-sectional area per wire. 

The percentage decline in input power surpasses the percentage decline in torque.

vn.C.7. Performance Requirements

Designs of all the permutations that meet performance requirements are saved. The requirements 

can be specified as minimum horsepower or torque, maximum allowed heat generation, minimum 

efficiency, and minimum power factor at the operating speed. In addition, minimum stall torque is 

specified. A large stall torque for starting a loaded motor results in higher heat generation. The maximum 

allowable heat generation is related to the ability of a motor to dissipate heat. Motors with a high 

minimum efficiency and power factor operate more economically. When the m inim um power factor is 

unattainable, however, external capacitors can be used for power factor correction. But, the capacitors may 

physically be quite large in order to withstand the input power.

VII.D. Design of the Induction Motor 
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With ail the design inputs specified, the design software searches through all permutations. For 

each permutation, the number of stator winding turns along with stator and rotor slot dimensions are 

designed to meet specified flux density levels. Also, the stator winding wire thickness is designed for the 

specified fill factor and the end ring thickness is designed from the specified minimum stall torque. 

Designs that are magnetically feasible as well as meet design dimension ratio limits and satisfy performance 

requirements are stored.

To design for flux density levels at the operating speed, flux from the stator and rotor currents 

must first be known. The rotor currents result purely from induction and are a function of the stator 

currents as well as geometric dimensions, material properties, and slip frequency. Material properties and 

desired rotor speed are usually known. But, without geometric dimensions which are designed from the 

flux density, rotor currents are unknown.

An iterative process can be used where the rotor currents at the operating speed are first 

determined from initial geometric dimensions. Then, the dimensions are adjusted using the flux density 

calculated from the rotor currents. The iterative process continues until the change in the dimensions is 

within an acceptable margin. Computing time is extremely long.

With a conservative approximation, the iterative process becomes unnecessary and computing time 

is reduced. The geometric dimensions are instead designed at the m axim um  flux density levels determined 

from the maximum air gap flux. For most practical current and voltage driven motors, this m axim um  flux 

occurs at synchronous speed where no rotor currents are induced. Since the operating speed is typically 

near synchronous speed, this approximation does not introduce much error.

Before the maximum air gap flux can be calculated, the number of stator winding turns must first 

be solved. The number of turns is designed from the specified maximum flux density in the air gap. The 

maximum flux is then used to design stator and rotor tooth dimensions for specified maximum flux density 

in the steel regions.

The number of stator winding turns is designed by formulating the maximum air gap flux density 

from the maximum flux:
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where:

B^“  *  maximum air gap flux density per pole

Since the flux density distribution has been assumed sinusoidal, the constant r/2  is utilized. It was used

to scale the air gap reluctance in Figure 2.5 in order to take the lumped magnetic model approach for a

sinusoidal flux density distribution instead of a uniform distribution. Maximum air gap flux density is 

formulated by first dividing <£m*x by the air gap cross-sectional area over a pole to arrive at the amplitude 

of the uniform distribution. Then, that amplitude is scaled by t/2 to arrive at the amplitude of the 

sinusoidal distribution.

With the cross-sectional area in the air gap known, the number of winding turns is designed to 

yield the flux that results in the specified air gap flux density. The necessary number of turns for the 

current driven motor is solved after substituting for 0mu from Equation D-8:

Since the winding distribution constant, K ,̂ and Carter’s coefficient, Kc, are unknown for now, they are 

set to one. The necessary number of turns for the voltage driven motor is solved after substituting for ̂ max 

from Equation II-9:

Because the number of winding turns is an integer, N( is rounded to the nearest integer. With the 

approximation from rounding, the actual air gap flux density may differ slightly from the specified value.

For simplicity, N, remains constant throughout the permutations. Therefore, it is calculated from 

the average stack height, stator inner diameter, and air gap length over of all permutations. Since these 

quantities vary from one permutation to the next, the actual air gap flux density fluctuates around the
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specified value. However, as the iteration ranges become smaller around the better designs, the fluctuation 

becomes smaller.

With the number of stator winding turns solved, the winding distribution constant is calculated. 

The maximum air gap flux per pole is then determined for the current driven motor from Equation 11-8 

and for the voltage driven motor from Equation H-9. Since the Carter’s coefficient is still unknown at the 

moment, it is still set to one. This maximum flux is used only in designing for geometric dimensions and 

not used to directly calculate motor performance. In reality, the air gap flux at the operating speed is 

slightly less than this maximum flux because of rotor flux from induced rotor currents, leakage flux, Kj, 

and Kc- Also, stator resistive voltage drops along with hysteresis and eddy current losses in the steel 

absorb a fraction of the input voltages.

With the maximum air gap flux determined, stator and rotor back iron and tooth widths are 

designed for specified maximum flux density levels in the steel regions. The necessary stator and rotor 

back iron widths are determined by solving Equation 11-10:

* — ----
2z B T

vn-4

2

The necessary stator and rotor steel tooth average widths are determined by solving Equation 11-11:

xw
z SJzB ~

v n -5

2 SfZfl«

The teeth are designed for parallel sides to avoid localized saturation within the teeth.

The effects of some design inputs on performance at the operating speed near synchronous speed

are shown in Table 7.1 where:

X ■ independent relationship
t  ■ increasing relationship
I  ■ decreasing relationship
? ■ relationship is highly sensitive to rated speed
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Table 7.1 Effects of Increasing Some Design Inputs on Performance Near Synchronous Speed

u T power factor resistive power losses Pa horsepower efficiency

Via I X X X X X X

V t t 7 t I t 1
B«« f t t t t f 1

t t 1 ? t f f

BTS f t 7 7 t t t

B?S 1 1 1 1 t » 7

B?S t t t t 7 f 7

These are general trends for feasible designs as one input increases while holding all others constant. For 

example, as air gap length varies, the number of winding turns and slot dimensions also vary while input 

voltages, flux density levels, and main motor dimensions remain constant.

The trends help in specifying the design inputs. It may seem contrary that the input voltage 

amplitude does not affect performance except for the stator current amplitude. But, the number of winding 

turns varies with the input voltage causing stator resistance and flux linkages to also vary. Increasing air 

gap flux density increases currents, torque, and resistive heat losses, but decreases efficiency. Overall, 

it is beneficial to increase flux density in the stator back iron and tooth to support bigger slots and thicker 

wires if the increased eddy current losses in the steel are acceptable. Though, operating in saturation 

should be avoided. Overall, it is also beneficial to decrease flux density in the rotor back iron and increase 

it in the rotor tooth if the increased resistive heat losses are acceptable.

Before calculating performance, stator and rotor resistances are determined. The stator resistance 

is dependent on winding wire thickness. With the highest wire count per slot, slot dimensions, and 

standard slot liner thickness known, the wire thickness is designed for the specified fill factor and wire 

insulation thickness. The highest wire count is determined from the allocation of winding turns in each 

tier of the concentric windings.
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The rotor resistance is dependent on end ring thickness. The end rings are designed from the 

specified minimum  stall torque. A range of rotor resistances can be derived to obtain the specified stall 

torque. However, since Figure 3.3 shows that increasing rotor resistance reduces torque at the operating 

speed near synchronous speed, the smallest resistance is used to design for the end rings. As a result, the 

thickest end ring that meets the minimum stall torque is selected. The outer diameter of the end ring is 

commonly designed just slightly smaller than that of the rotor. The inner diameter can be designed just 

slightly larger than the shaft diameter.

Determining end ring thickness from the rotor resistance is complicated due to skin effects. The 

resistance is a function of these effects, and is not a simple function of the end ring thickness. An iterative 

process can be used. But, because skin effects are small unless excitation frequency is abnormally high 

and rotor bars and end rings are abnormally radially deep, they are neglected without much error in 

designing end ring thickness. These effects are included, however, in performance calculations. 

Consequently, the calculated stall torque may be slightly larger than the specified minimum stall torque 

because skin effects increase the rotor resistance.

VILE. Analysis of the Induction Motor 

With the excitation scheme, motor geometry, and material properties known for each permutation, 

performance for various magnetically feasible designs is calculated from the lumped magnetic and electrical 

models formulated in Chapter m. Designs that meet dimension ratio limits and satisfy performance 

requirements are saved for finer iteration increments. Performance characteristics such as torque, power 

factor, power losses, horsepower, and efficiency are calculated at many rotor speeds.

Some meaningful rotor speeds at which performance is determined include speeds at maximum 

current driven torque, breakdown torque, maximum power factor, and m axim um  efficiency. These speeds 

are found by setting the derivative of Equation m-39, Equation HI-41, and Equation HI-46 with respect 

to slip frequency equal to zero and solving. For maximum current driven torque, the stator current of 

Equation HI-31 is substituted before taking the derivative. For breakdown torque, the input voltage of 

Equation HI-30 is substituted before taking the derivative.

Performance is also calculated at stall and synchronous speed as well as speeds at specified
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continuous and maximum torque or horsepower. Designs whose maximum torque or horsepower do not 

exceed the specified amount are discarded. Designs that generate more heat at the operating speed of 

continuous torque or horsepower than the specified maximum are also discarded.

Solving for the rotor speed at the specified torque or horsepower is complicated because of skin 

effects as well as hysteresis and eddy current losses in the steel. However, an iterative process is 

unnecessary because these effects and losses can be neglected in determining the speed. The skin effects 

are small unless slip frequency is abnormally high and rotor bars and end rings are abnormally radially 

deep. Hysteresis and eddy current losses tend to be small unless excitation frequency is high and operation 

is near synchronous speed. Laminations are coated with insulation anyway to decrease the eddy currents 

in the steel. Therefore, the speed at the specified torque or horsepower may be slightly in error, but 

performance calculations there incorporate skin effects as well as hysteresis and eddy current losses.

Performance is determined from the lumped magnetic and electrical models using Equation 111-39 

and Equation HI-41 through Equation HI-46. The stator and rotor resistances are evaluated at the specified 

temperatures. Also, friction is ignored because it is usually sm all.

Vn.F. Design Model Verification

To verify performance calculations in the design model, the two EAD motors whose experimental 

results are shown in the previous chapter are used. Design inputs that result in the actual excitation scheme 

and motor dimensions are provided. Torque is determined and compared with experimental results.

Most of the design inputs are directly retrieved from the existing motors. Others require some 

calculations. Air gap flux density is specified by using Equation VH-3 for the voltage driven motors with 

known Na. The maximum flux density levels in the steel regions are specified by using Equation VH-4 

and Equation VH-5 with known lamination dimensions and stack height. FiU factor is specified with known 

slot dimensions, wire thickness, wire insulation, and the highest wire count per slot. Stall torque is 

specified to result in the actual end ring thickness.

After all the design inputs are provided, performance is determined. One iteration is made for 

each motor around the actual axial height, stator outer diameter, stator inner diameter, and air gap length. 

The temperature in the stator windings and rotor bars are specified by the temperature at which the
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experimental results were collected. Torque calculated by the design model is identical to that by the 

lumped models in Figure 6.2 and Figure 6.3.

Vn.G. The Prototype Design

With the performance calculations verified, the model is applied to design an induction motor, 

given the necessary requirements. The motor is designed to have performance characteristics for vector 

control. The motor was fabricated and experimental results were collected with a current supply. The 

results are compared with the calculated performance from the design model and FEA method.

Motors driven by vector control, briefly described in Appendix B, have a high maximum torque 

and low stall torque. The latter is achieved by a low rotor resistance which results in a high torque at the 

operating speed near synchronous speed. These motors are designed to always operate at the maximum 

torque. It is unnecessary to avoid the unstable region of the torque-speed curve because vector control 

ensures optimal output even under changing load conditions. Overloading occurs only when the maximum 

supply current is exceeded.

Although the motor is designed for vector control, the input voltage is limited. Enough voltage 

must be available to provide the necessary stator currents especially near synchronous speed where input 

impedance is usually the highest. Therefore, the design model that is developed for the voltage driven 

motor can be used here to design for performance at the operating speed near synchronous speed with the 

maximum input voltage.

After all the design inputs are specified, the iterative design software searches through all 

permutations of the stack height, stator outer diameter, stator inner diameter, and air gap length. For each 

permutation, the number of stator winding turns, slot dimensions, stator winding wire thickness, and the 

end ring thickness is designed. From all the feasible designs that satisfy the performance requirements, 

the one with the smallest volume that can still withstand the heat it generates is selected. Figure 7.2 shows 

the design inputs for the selected prototype motor. Figure 7.3 shows the motor dimensions of the design 

and performance estimations. After the motor was fabricated, experimental results were collected.

The experimental configuration for measuring torque and rotor speed is identical to the one used 

for the two EAD motors in Figure 6.1. However, the motor is driven from a current supply rather than
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S RUN DESIGN

(L)umped model, (A)nalyiu, or (D)e*ign o f  inductioo motors =  D
Unit o f  measure in English o r Metric System using (F)oot, (I)och, (M)eter, or (Qentimeter =  I 
Minimum stall torque (oz-in) =  250
Continuous and peak output (T)orque (oz-in) o r (H)orsepower (hp) -  400 450 T  
Maximum amount o f heat dissipation (W) =■ 250

At stall the motor is assumed to be at half the hot temperature rise.
Ambient and maximum rated temperatures (degrees Celsius) =  120 120 
Input voltage (V rms), frequency (Hz), and number o f phases =  108. 7I_5 3 
Number o f magnetic poles *  2
Suck length minimum, maximum, and increment (in) ”  4.2 4.2 .001
Sutor OD minimum, maximum, and increment (in) =  5. 5. .001
Stator ID minimum, maximum, and increment (in) «  2.5 2.5 .001
Air gap length minimum, maximum, and increment (in) =  .035 .035 .0005
Rotor magnetic ID (in) =  .625
Rotor end-ring ID or shaft OD (in) =“ .67
Number o f su tor and rotor sloU “  18 23
Input total su tor winding turns per phase per pole ( I )  or magnetic flux density in air gap (B) =« B

Magnetic flux density in air gap, calculated from average suck  length, su tor ID, and air gap length, 
is approximated due to discretization in number o f  su tor winding turns.

Peak magnetic flux density level (kilolines/in**2) in su tor core, su to r tooth, 
rotor core, rotor tooth, and air gap =

109.8141956 109.6484517 116.9449875 116.7692648 46.91250127 
Number o f  su tor concentric winding tiers “  3 
Use standard ideal winding distributions (Y/N) *• N

Total su to r winding turns per phase per pole is 35 
Number o f  su tor winding turns per phase o f  tier 1 “  14 
Number o f  su tor winding turns per phase o f  tier 2 *  12 
(S)ingle o r (H)eavy su tor winding wire insulation build =  H

Fill factor is the cross-sectional ratio o f  copper area including insulation to slot area less slot liner.
Sutor slot fill factor =  .516702451
Maximum sutor tooth length to width ratio •  8
(A)luminum, (B)rass, o r (C)opper rotor squirrel-cage *  C
Use standard ideal amount o f  circumferential rotor skew (Y/N) =  N
Amount o f  circumferential rotor skew (in) =  .4018
Also print designs with lower stator core density (Y/N) =  Y
Print impractical design error messages (Y/N) =  Y
Print impractical performance error messages (Y/N) =  Y
Print (H)ighlight o r (G)raph dau  *» H

Figure 7.2 Inputs of iterative design software for the prototype motor.

a voltage supply. Also, since the torque produced here is much higher, a torquemeter that has a range of 

1600 ounce-inches and a maximum speed of fifteen thousand revolutions per minute is used instead. This 

torquemeter, however, has the same nonlinearity and nonrepeatability percentage tolerances as the 160 

ounce-inches torquemeter.

The current supply for the induction motor was set at 9.12 rms amperes. Unfortunately, 

measurements in the current amplitude of the three phases differed by ten percent from the average of the 

phases. This imbalanced excitation causes unfavorable harmonics. To compensate for this, three torques
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speed
(rpm)

h.p. torque
(oz-in)

eff. p.f. lost
(W)

Ri**2
(W)

i_in 
(A rms)

Rated_c = 4241.93 1.558 372.75 0.9004 0.4744 109.86 092.15 9.12
Rated_m = 4217.84 1.871 447.28 0.9126 0.6240 116.76 102.35 9.12
Synch = 4290.00 0.000 000.00 0.0000 0.0267 100.80 079.28 9.12
E ftjn a x X 4228.41 1.734 413.42 0.9082 0.5587 113.03 097.51 9.12
T_I_m*x = 4210.29 1.890 452.63 0.9130 0.6573 118.35 105.05 9.12
P F jn ax = 4016.92 0.980 246.05 0.8439 0.8484 129.59 126.99 9.12
T_V_max 3 3514.14 0.325 093.23 0.6434 0.7299 131.10 130 S I 9.12
sun = 0000.00 0.000 019.67 0.0000 0.4034 139.18 138.99 9.12

Volume, Z, O «o, D_fi, g ip  =  82.466807 4.200000 S.000000 2.500000 0.035000
d_M> w_it, d _ n , w_rt =  0.635000 0.215000 0.325000 0.158000
D_w, tiTend ring, R_*. R r (dc) =  0.067900 0.800000 O J 17715 2.541E-04
L_», L_»g, L_r, L_tg -  2.844E-02 4.510E-04 3.045E4J5 1.729E-03
d/w_i,d/w_r,g»p_ieak«ge «  2.953488 2.056962 1.052366 1.055486
Peak magnetic flux density level (kilolinea/in**2) in stator core, stator tooth,

rotor core, rotor tooth, and air gap =  96.404879 96.259374 99.866282 99.716222 46.815723

Figure 7.3 Outputs of iterative design software for the prototype motor, 

are measured by individually setting the stator current in each phase to 9.12 rms amperes and the average 

is used to approximate the torque produced from balanced excitation.

Current driven torque versus rotor speed for the motor is plotted in Figure 7 .4  with an exploded 

view near synchronous speed in Figure 7 .5 . Torque measured experimentally is depicted by the line with 

circles, torque from the design model is depicted by the line with squares, and torque from the FEA is 

depicted by the line with triangles. The measured torque remained constant over time at any rotor speed 

even though symmetry from an integral number of rotor phases does not exist. Because enough rotor bars 

exist, any torque ripple from the nonsymmetry is small. Friction is negligible at one ounce-inch.

Only the faster second FEA method, the power difference method, is used for the prototype motor 

because the two FEA methods described in sections V.C and V.D yield almost identical results. Figure 7.6 

and Figure 7 .7  show the outline and mesh used in the FEA method. The magnetic field at the maximum 

torque is plotted in Figure 7 .8 . At this high operating speed of less than two percent slip, the highest flux 

density levels occur in the ears of the stator and rotor teeth where flux flowing in opposite directions merge 

and emerge. Flux density levels in critical regions of the motor are expectedly slightly less than the 

specified maximum levels for the design. This is because rotor flux, leakage flux, stator resistive voltage 

drops, and hysteresis and eddy current losses in the steel were neglected in designing for the flux density 

levels.
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A f e a  n t t h a d

o
0 5 0 0 0

Figure 7.4 Comparison of current driven torque versus rotor speed for the prototype motor.

Errors in the design model are within fifteen percent except near synchronous speed, less than 

seven percent slip, where excitation frequency is critical and near stall, more than seventy-seven percent 

slip, due to extrapolation of hysteresis and eddy current losses by the empirical model. Errors in the FEA 

method are within fifteen percent except near synchronous speed, less than seven percent slip. However, 

the error in the maximum torque from the design model and FEA method is only around seven percent. 

Therefore, if the excitation frequency from the current supply can be measured more accurately, die torque 

errors may be even smaller over the entire torque-speed curve.

VTT.H. Summary

In the design of the induction motor, the motor geometry and winding scheme that result in the 

required motor performance are determined. An iterative design model is developed for the voltage driven 

induction motor with a squirrel cage rotor. Magnetic, electrical, thermal, and mechanical considerations 

are all included. The traditional design approach relies on empirical data from existing motors and the
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Figure 7.5 Comparison of current driven torque versus rotor speed for the prototype motor.

equivalent circuit model. However, designing motors outside the range of empirical data through 

extrapolation may cause large errors. The iterative design model is based on the analytically derived 

lumped models that are reliable over a wide range of parameters.

In the design model, necessary inputs are first provided. The model iterates around specified 

ranges of main motor dimensions. In each permutation, slot dimensions are designed to attain desired flux 

density levels. For magnetically feasible designs, performance is determined. Designs that satisfy desired 

requirements are compared for the optimal solution of a given application. To conserve computing time, 

large iteration increments can initially be taken followed by smaller ones around the better designs. 

Computer software that automates the design process was written to quickly obtain feasible designs. The 

FEA methods can then be used to gain more accuracy in performance estimations and to refine designs.

Design inputs are arranged into the following seven categories. Power supply specifications 

describe the available voltage supply. The excitation scheme describes the strategy by which input voltage 

is applied. Rotor configuration characterizes the squirrel cage. Design requirements comprise temperature
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Figure 7.6 FEA mesh, outline of cross section for the prototype motor.

Figure 7.7 FEA mesh of quarter cross section for the prototype motor. :
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M a g n e t i c  v e c t o r  P o t e n t i a l  
C o n t o u r s .  (F lu x )

C o lo r :  F l u x  d e n s i t y

Mesh l i m i t s :
F lu x  mx: 4 . 9 4  T e s l a
A mx/mn: 2 0 . 83m. - 2 0 .8 7 m

F r e q u e n c y :  7 . 5 4  Hz
AC a n g l e :  0 . 0 0 <  Oeg

A A/MMF: 8 3 4  . 15u. 
C o n t o u r s :  5 0 . 0 0

0.00

2 . 0 0

1 .6 0

1.20

8 0 0 .00m

4 0 0 . 00m

0.00

Figure 7.8 FEA magnetic field of cross section for the prototype motor.

at desired rotor speeds and stall in addition to dimension ratio limits. Four iteration variables consisting 

of main motor dimensions are ranged through. Specified flux density levels in critical regions are designed 

for. Performance requirements can be specified as m inim um  and maximum performance characteristics 

at the operating speed as well as minimum  stall torque.

Performance characteristics comprising torque, power factor, power losses, horsepower, and 

efficiency are determined from the lumped magnetic and electrical models at many rotor speeds. Some 

meaningful speeds include those at some of the maximum performance characteristics, at stall, and at 

synchronous speed. Also, the speed at specified continuous and maximum torque or horsepower is 

included.

To verify the performance calculations in the design model, two motors with known performance 

are used. Torque calculated by the design model is identical to that by the lumped models. The model 

is then applied to design an induction motor for vector control, given the necessary requirements. The 

motor is fabricated and experimental results are collected with a current supply. The experimental results
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are compared with performance estimations from the design model and FEA method. Torque estimation 

errors are within fifteen percent.

The iterative design model for the voltage driven motor is a basis upon which other application 

dependent models can be developed. Three major types of the induction motor are voltage driven, variable 

frequency motors, and current driven. For variable speed motors driven from the constant voltage and 

variable frequency supply, another iteration can be added around the excitation frequency. For motors 

driven by vector control, slight modifications are possible to design slot dimensions from stator currents 

instead of input voltages.
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CHAPTER V m

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

Vm.A. Conclusions

In order to analyze and design AC induction motors, the relationships of basic motor variables to 

motor performance must be known. In the traditional approach, a set of mathematical equations derived 

from the well-known equivalent "T" circuit model is developed to determine the relationships. The 

traditional design approach relies on empirical data and the equivalent circuit model. The traditional 

approach of modelling the induction motor using the FEA is through the equivalent circuit model. In these 

traditional approaches, however, the direct connection from geometry to performance is suppressed.

For better understanding of magnetic, electrical, and thermal behaviors, three new models based 

on actual motor geometry were developed that is similar to the equivalent circuit model. The lumped 

magnetic model describes flux behavior. The lumped electrical model is used to derive simple closed-form 

expressions of performance. The lumped thermal model describes the effect of heat generation on 

temperature in critical regions of the motor. Based on these lumped models, an iterative design model was 

developed to design motor geometry and winding scheme to meet given required performance. In addition, 

three new FEA methods were developed to calculate motor performance directly from the finite element 

field solution instead of through the equivalent circuit model.

The developed lumped models and FEA methods were applied to two commercial induction 

motors. Calculated performance was shown to closely match experimental results. The developed iterative 

design model was then utilized to design an induction motor for desired requirements. The motor was 

fabricated and calculated performance was also shown to closely match the experimental results.

The lumped magnetic model describes flux behavior in critical regions of the motor. Accurate 

magnetic modelling of the induction motor is more difficult than the permanent magnet motors. The latter 

is often represented by very simple magnetic models that contain only air gap flux. Leakage flux is 

neglected because it is relatively small. In the induction motor, the characteristically small air gap causes
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M M F  drops in the steel to be significant. Leakage flux is also significant in determ in ing motor 

performance. Due to the difficulties of analytically modelling leakage flux, commonly applied approximate 

or empirical techniques were used.

The lumped electrical model is used to formulate performance characteristics from resistances and 

EMF voltages. The resistances are evaluated using the temperature information from the lumped thermal 

model. The rotor resistance must account for end ring resistance, which though seemingly relatively small, 

significantly affects motor performance. The EMF voltages in the lumped electrical model are induced 

by linkages with flux derived from the lumped magnetic model. Equations describing the developed 

lumped electrical model were shown to be identical to those describing the general equivalent circuit model.

Output performance characteristics derived from the lumped electrical model comprise voltage and 

current driven torques, power factor, power losses, horsepower, and efficiency. Induction motors are 

usually rated at low slips for high current driven torque, high power factor, low resistive heat losses, and 

high efficiency. Voltage driven motors operate at low slips to also avoid stalling.

Magnetic FEA is another important tool beside the lumped models for analyzing and designing 

electric motors. A two-dimensional static FEA solver is commonly sufficient to accurately model 

permanent magnet motors. For the induction motor, three-dimensional effects must be included. Three 

FEA methods were developed to calculate performance in the induction motor directly from the field 

solutions. These methods differ from the traditional approach of using a combination of the FEA and the 

equivalent circuit model.

The three developed FEA methods use two-dimensional FEA to calculate performance after 

incorporating three-dimensional effects. The first method uses a steady state harmonic solver followed by 

a static solver in calculating torque from the method of virtual work. The second method uses only a 

steady state solver to calculate torque from the conservation of instantaneous energy. The third method 

uses a transient solver. Performance calculations from the first two methods are almost identical. In the 

third method, solution convergence problems were encountered.

Voltage and current driven torques calculated from the lumped models and FEA methods were 

compared with experimental results for two commercial polyphase induction motors. Over the practical
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region of the torque-speed curve, errors were within fifteen percent. For the four-hundred-hertz motor, 

current driven torque errors in the FEA method are much larger than fifteen percent. Torque estimation 

error is primarily due to harmonics in the flux density distribution. Additional error is due to the difficulty 

in modelling three-dimensional leakage flux. Also, the lumped magnetic and electrical models only 

consider motor sections carrying significant levels of flux and with significant current flow. It may be 

necessary to include additional flux paths and sources of current.

Transient temperature was also determined at stall for one of the motors from the lumped thermal 

model and compared to experimental results. Estimation errors at steady state were fifteen percent or less. 

The error is primarily due to the difficulty in determining the convection heat transfer coefficient, and not 

considering heat dissipated out from the rotor through the shaft. The shaft was coupled to the torquemeter, 

thereby creating a significant thermal path.

Despite the complex models required to attain acceptable errors, induction motor performance has 

been estimated with reasonable accuracy from the lumped models and FEA methods. The effect of specific 

motor parameters on performance can be quantitatively determined from the lumped models. Induction 

motors of different geometric dimensions and material properties can be compared.

An iterative design model was developed for the voltage driven induction motor. Magnetic, 

electrical, thermal, and mechanical considerations are all included. The traditional design approach relies 

on empirical data from existing motors and the equivalent circuit model. However, designing motors 

outside the range of empirical data through extrapolation may cause large errors. The iterative design 

model is based on the analytically derived lumped models that are reliable over a wide range of parameters.

The developed design model iterates around specified ranges of main motor dimensions to design 

slot dimensions for desired flux density levels. Designs that satisfy the given requirements are compared 

for the optimal solution of a given application. Computer software was written to automate the design 

process. The FEA methods can then be used to gain more accuracy in performance estimations and to 

refine designs.

To verify the performance calculations in the design model, two commercial motors with known 

performance were used. Torque calculated by the design model was identical to that by the lumped

-157-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



models. The design model was then applied to design an induction motor for vector control, given the 

necessary requirements. The motor was fabricated and experimental results were collected with a current 

supply. The experimental results were compared with performance estimations from the design model and 

FEA method. Torque estimation errors were within fifteen percent.

Vin.B . Suggestions for Future Work 

Improvements and additions can still be made in the developed lumped models, design model, and 

FEA methods. These modifications are left for future work. The foundation has been built.

The simplistic lumped models establish a framework around which more complex models may be 

developed. To model transient motor performance, rotor speed can be allowed to vary in the lumped 

models by incorporating mechanical considerations such as moment of inertia and damping. The transient 

performance is especially important in analyzing short duration overloading capabilities and for motors 

driven by scalar control and vector control. Also, a better method needs to be developed near stall to 

include hysteresis and eddy current losses in calculating torque. Furthermore, three-dimensional leakage 

flux in the four-hundred-hertz motor needs to be modelled better in order to reduce the extremely large 

current driven torque estimation errors in the FEA method.

Transient performance can be estimated from the lumped models by including temporal and spatial 

harmonics. Imbalanced excitation, which causes temporal harmonics, can be incorporated by adding 

harmonics in the voltages and currents. Imbalanced windings and slotting effects, which cause spatial 

harmonics, can be incorporated by adding harmonics in the air gap flux density distributions. Temporal 

harmonics in input voltages cause temporal harmonics in the stator currents, which produce temporal 

harmonics in the stator flux. Temporal harmonics in the stator flux in conjunction with spatial harmonics 

in the air gap produce harmonics in the stator air gap flux density distribution. As a result, temporal 

harmonics in the rotor currents are induced, producing temporal harmonics in the rotor flux.

The interaction from only the fundamentals of stator and rotor air gap fluxes produces useful 

torque. The interaction from harmonics is undesirable because it causes heating, vibration and noise 

problems. For transient performance, the lumped magnetic and electrical models can be used to analyze 

the interaction of these harmonics. In deriving the transient performance, transient temperatures obtained
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from the lumped thermal model can also be used.

Although closed-form expressions of transient performance characteristics may not be possible, 

more general applications and more accurate solutions may be attained. If a numerical solution process 

is used, however, the additional harmonics can be easily included. But, the direct relationships of 

geometry to performance from the approximate closed-form expressions are usually more practical to 

designers than more precise numerical solutions.

The iterative design model developed for the voltage driven induction motor is a basis upon which 

other application dependent models can be developed. For variable speed motors, another iteration can 

be added around the excitation frequency. For motors driven by vector control, slight modifications are 

possible to design from stator currents instead of input voltages.

Improvements can be also made in the FEA methods which use tw o-d im ensional field solvers. 

Three-dimensional FEA can be used so that approximations of three-dimensional effects are not needed. 

Unfortunately, these FEA packages are still not very practical because they are expensive, mesh 

development is tedious, and solution time is long. Also, the solution convergence problems in the transient 

FEA method need to be solved to calculate transient performance.
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APPENDIX A

EQUIVALENT "T" CIRCUIT MODEL

A.I. Introduction

The traditional approach to modelling the induction motor revolves around the well-known 

equivalent ”7 ” circuit model. The model is presently the most common method of induction motor analysis 

and design. To model the induction motor, the general equivalent circuit model is presented. Output 

performance expressions derived from the model are discussed. The traditional strategy of modelling the 

induction motor by FEA through the equivalent circuit model is briefly described. The traditional design 

approach which uses the equivalent circuit model is introduced.

A.2. Description of the Equivalent "T" Circuit Model

The equivalent circuit model is derived from the transformer model. The induction motor is often 

modelled through the analysis of the transformer. Rotor bar currents are induced in the induction motor 

as currents in the secondary coils are induced in the transformer. In the former, however, leakage flux 

is much more significant and the rotor rotates.

Figure A. 1 shows the general equivalent "T" circuit model49 for one stator phase. Hysteresis 

and eddy current losses in the steel are commonly neglected from the model because they tend to be small. 

Kirchhoffs voltage law is used to write voltage equations describing the model:

v£ = R j !  * h j - / ,  ♦ f a z - j g + i f )

o  A-1
0  3 -7*2 + /«A *‘ * /«»/ J M )

All actual rotor parameters are hidden because they are referred to the stator. Some physical interpretation 

is lost in the process. The rotor parameters are expressed on a per-stator-phase, not per-rotor-phase, basis

49A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, pp. 328-334.
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and transformed from the rotating to the stationary reference frame. Therefore, referred rotor currents

oscillate at the excitation frequency.

L-21

Figure A.1 General equivalent *T* circuit model per stator phase.

A. 3. Output Performance Characteristics 

To calculate induction motor performance, P. H. Trickey implemented the equivalent circuit model 

in a Fortran computer program. Hysteresis and eddy current losses, which have been ignored in the 

equivalent circuit model, are included in determining performance as in the developed lumped electrical 

model of Chapter III. From a known set of motor geometry and material properties, output performance 

characteristics50 are calculated. Performance equations are consistent with those from the developed 

lumped electrical model, although the implementation of the two approaches differs.

A.4. Extracting Parameters from Magnetic FEA 

The equivalent circuit model is also used in the traditional strategy of modelling the induction 

motor by FEA. The model parameters are first extracted from the field solutions. Then, performance is

S0A. E. Fitzgerald, Charles Jr. Kingsley, and Stephen D. Umans, Electric Machinery, Fifth 
Edition, New York: McGraw-Hill, Inc., 1990, pp. 332-336.
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evaluated from the equivalent circuit model.

Torque equals the rotor resistive power loss scaled by the number of pole pairs and divided by 

slip frequency when hysteresis and eddy current losses are neglected.51 The steady state torque is based 

on symmetry from excitation that is balanced in time and space, evenly spaced rotor bars, and an integral 

number of rotor phases. Also, motors are assumed to have multiple stator and rotor phases.

A.S. Design Model

The traditional design approach relies on empirical data from existing motors and the equivalent 

circuit model.52 However, designing motors outside the range of empirical data through extrapolation 

may cause large errors.

The design strategy begins with desired output power and number of poles. From this, a m inim um 

motor volume is determined using empirical data of existing motors. A good combination of stator outer 

diameter and stack height is chosen to avoid lopsided proportions causing twisting and vibration problems. 

The stator inner diameter, air gap length, and stator and rotor slot dimensions are designed from empirical 

data of existing motors. General rules of thumb for favorable combinations of stator and rotor slot counts 

are published that produce small harmonics. Number of stator winding turns is selected from a desired 

maximum stator tooth flux density level through maximum air gap flux. The thickest stator winding wire 

is used for the highest practical fill factor. Rotor end ring thickness is designed from the m inim um stall 

torque requirement.

A-fi- Summary

The traditional approach to modelling the induction motor revolves around the well-known 

equivalent *T* circuit model. The model is presently the most common method of induction motor analysis 

and design. But, all actual rotor parameters in the model are hidden because they are referred to the stator.

5lR. Belmans, D. Verdyck, T. B. Johansson, W. Geysen, and R. D. Findlay, "Calculation of the 
No-Load and Torque Speed Characteristic of Induction Motors Using Finite Elements," International 
Conference on Electrical Machines, August 13-15, 1990, pp. 724-729.

52CyrilG. Veinott, Theory and Design o f Small Induction Motors, New York: McGraw-Hill Book 
Company, Inc., 1959, pp. 371-467.
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Some physical interpretation is lost in the process.

To calculate induction motor performance, P. H. Trickey implemented the equivalent circuit model 

in a Fortran computer program. Performance equations are consistent with those from the developed 

lumped electrical model, although the implementation of the two approaches differs.

The equivalent circuit model is also used in the traditional strategy of modelling the induction 

motor by FEA. Torque equals the rotor resistive power loss scaled by the number of pole pairs and 

divided by slip frequency when hysteresis and eddy current losses are neglected. The steady state torque 

is based on symmetry and motors are assumed to have multiple stator and rotor phases.

The traditional design approach relies on empirical data from existing motors and the equivalent 

circuit model. However, designing motors outside the range of empirical data through extrapolation may 

cause large errors. The design strategy begins with desired output power and number of poles. Then, 

stator outer and inner diameters, stack height, air gap length, stator and rotor slot dimensions, stator and 

rotor slot counts, number of stator winding turns, stator winding wire size, and rotor end ring thickness 

are all designed.
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APPENDIX B

VECTOR CONTROL

B.l. Introduction

In today’s competitive motion control market more demanding specifications require better designs. 

In response, vector control has been recently developed to provide the induction motor with the ability to 

produce higher torque at variable speeds and to attain higher running efficiency. Motors are designed to 

always operate at optimal torque production by monitoring steady state as well as transient performance 

characteristics. With vector control, the induction motor can provide accurate position control. Vector 

control ensures optimal output even under changing load conditions. Overloading occurs only when the 

maximum supply current is exceeded. Vector control can even provide better dynamic performance than 

DC drives due to faster allowable speeds and shorter motor time constants.53

B.2. Description of Vector Control

The classical approach to vector control of the induction motor is through the rotor flux vector. 

With rotor speed and output torque monitored, vector control adjusts both the amplitude and phase angle 

of the currents from the current supply to achieve desired performance. The adjustments are based on the 

rotor flux vector.

A significant amount of research led by Thomas A. Lipo and Donald W. Novotny has been done 

in the Department of Engineering Professional Development at the University of Wisconsin-Madison. A 

thorough discussion of vector control and its application is in the footnoted reference.54

Ideally, optimal torque is produced when stator and rotor flux vectors are orthogonal. Although

53 Andrzej M. Trzynadlowski, The Field Orientation Principle in Control o f Induction Motors, 
Boston: Kluwer Academic Publishers, 1994, p. xvi.

^Deepakraj M. Divan, Thomas A. Lipo, Robert D. Lorenz, Donald W. Novotny, Allan B. 
Plunkett, and Joseph T. Waraemuende, "Dynamics and Control of AC Drives," Department of Engineering 
Professional Development, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 
Short Course Notes, August 12-15, 1991.
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the stator flux vector is easily controlled, independent control of the rotor flux vector is not simple. This 

is because the rotor flux vector in the induction motor is purely the result of the induction process and 

depends on the stator currents and rotor speed.

However, optimal torque production can be achieved through decoupling of the stator currents into 

two components, flux producing and torque producing. In the decoupling, motor parameters are 

transformed to any one of several reference frames. In the stationary reference frame, which is fixed on 

the stator, all rotor parameters are referred to the stator. The excitation reference frame rotates at the 

excitation frequency. In the rotating reference frame, which is fixed on the rotor, Park’s transformation 

is used to refer all stator parameters to the rotor.

Many methods of implementation exist for vector control. Two classical approaches are 

commonly used to detect the rotor flux vector which varies with rotor speed. Direct rotor flux oriented 

scheme uses flux feedback control from direct measurements through flux observers such as Hall-effect 

sensors. Indirect rotor flux oriented scheme uses flux feedforward control from the monitored stator 

currents and rotor speed.55

ssPeter Vas, Vector Control o f AC Machines, Oxford: Oxford University Press, 1990, pp.
124-125.
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