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ABSTRACT

CROSS-TAIL CURRENT CARRIERS IN A 

TWO-DIMENSIONAL EQUILIBRIUM MAGNETOTAIL

by

Douglas Johnston Larson 

University of New Hampshire, May, 1996

The purpose of this study is to gain physical insight into how charged particles, that 

violate the guiding center approximations, contribute to cross-tail current in a self- 

consistent plasma sheet. A technique to generate self-consistent two-dimensional (2D) 

current sheets is described. Groups of monoenergetic protons are followed in a model 

magnetic field. The sample current sheets are characterized by resonant quasiadiabatic and 

stochastic orbits. Several ion and electron groups are combined to produce a plasma sheet 

in which the charged particles carry the currents needed to generate the magnetic field in 

which the orbits are traced. An electric field also is required to maintain charge neutrality. 

Numerous plasma parameters are calculated for the generated current sheets. It was found 

that ions which were trapped near z = 0, ions that magnetically mirrored throughout the 

current sheet, and ions that mirrored near the Earth all were needed in order to produce the 

model current sheets.

Research Advisor: Professor Richard L. Kaufmann



Chapter I

INTRODUCTION

The interaction of the solar wind with the dipole field of the Earth creates a rich lo

cal environment for plasma study due to the many distinct plasma regions. The region of 

space on the nightside of the Earth, comprising the antisunward portion of the magneto

sphere, is called the magnetotail. This name is due to the characteristic elongated shape of 

magnetic field lines traced in the observed fields. When the solar wind plasma connects the 

interplanetary magnetic field (IMF) to the Earth’s magnetic field, the characteristic dipole 

field lines are stretched with some actually disconnecting from their counterpoint in the 

other hemisphere. These open field lines form the northern and southern tail lobes with 

their opposing fields. The region where the lobes separate forms a current sheet. This cur

rent sheet, called the neutral sheet, contains exciting plasma phenomena that directly affect 

the study of magnetospheric substorm triggering mechanisms.

The overall goal of the present study is to obtain a better physical understanding of 

the structure of the neutral sheet. This work introduces the Self Consistent Orbit Tracing 

(SCOT). This technique is similar to that employed by Kaufmann and Lu [1993] and gen

eralizes their results for two-dimensional magnetotail models. The underlying assumptions 

of the SCOT are substantially different from those normally employed in simulations.

Most workers are familiar with plasma simulations which are carried out by inject

ing particles into a fixed spatial region. The simulation technique requires knowledge about

1



the source of the particles and the boundary conditions. An initial magnetic and electric 

field configuration is needed to start the simulation, but detailed knowledge about the fields 

is not required. The electric and magnetic fields generated by the particles are calculated 

self-consistently as the system evolves in time.

In contrast, the SCOT method used here requires that the basic magnetic and elec

tric fields be known throughout the region of interest. However, very little is assumed about 

the particles, their sources, or any boundary conditions. The plasma is constructed from in

dividual particle trajectories with the principal goal of finding a distribution of ions and 

electrons that will as nearly as possible generate the preselected magnetic field. One major 

consequence of this is that we can study only steady state conditions. Since this work does 

not evolve a plasma from initial conditions but constructs it from individual particle trajec

tories, the approach should be considered a particle experiment rather than a simulation. 

The utility of the SCOT technique is demonstrated by the construction of several self-con

sistent models of the magnetotail.

In this chapter a background section is presented on two approaches to plasma phys

ics. Information about the orbital regimes that are used to classify particle orbits will also 

be presented. A review of papers on magnetotail current sheets is also given as well as a 

more detailed description of the SCOT. Results of the original one-dimensional model 

SCOT technique of Lu [1993] will also be discussed.

1.1 Background

A weakly couple plasma is a statistical system of mobile charged and neutral parti

cles where the kinetic energy of the individual particles is large compared to the potential 

energy. If the position and velocity of each individual particle that comprises the system



were known the plasma would be completely described. The Lorentz force law, which is 

the equation of motion for charged particles, in conjunction with Maxwell’s equations, 

which describes the electromagnetic field dynamics, can exactly describe a plasma. As ref

erence we state the Lorentz force law,

F = <?(E + v x B )  , (1.1)

and Maxwell’s equations for a vacuum,

V» E = p / e 0

Y7 17VxE = --zr-
dt . ( 1.2 )

VoB = 0

V7 O  T 9 EVxB = p„J + ]iae 0r ^

In light of the fact that it would be nearly impossible to use these equations to follow 

all of the particles composing a particular plasma, considerable effort is devoted by plasma 

physicists to devising useful approximations to these equations. The two most popular ap

proaches are kinetic theory and fluid theory.

The fluid theory, where particles make up fluid elements analogous to those in or

dinary hydrodynamics, is treated in many excellent texts [Chen, 1990; Krall and Trivel- 

piece, 1986; Nicholson, 1992]. Tajima [1989] discusses the computer simulation 

techniques for solving the magnetohydrodynamic (MHD) equations of the fluid theory. Al

though the MHD approach is used to solve a rich variety of problems it is not the focus of 

this work.

Kinetic theory simulation techniques using particles can be found in [Birdsall and 

Langdon, 1991; Hockney and Eastwood, 1988]. This work does not evolve a plasma from 

initial conditions but does construct a plasma from individual particle trajectories. Particle
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experiments require that the plasma be comprised of only those particles that contribute to 

self consistency. A brief description of kinetic theory as it pertains to this study follows. 

1 2  Kinetic Theory

The kinetic theory uses the Lorentz force law in a six dimensional phase space de

fined by the position and velocity. The number of particles of species s occupying some 

unit of this space at a time t defines the distribution function, / s(x, v, t) . The evolution of 

this distribution function, when particle collisions are unimportant, is the Vlasov equation,

The derivation of the Vlasov equation from the Klimontovich equation can be found in 

Ichimaru [ 1973], The time independent version of the Vlasov equation which is used in this 

study is:

The distribution function is an observable that provides a statistical description of the plas

ma. By taking velocity moments of the distribution function, macroscopic variables such 

as density, bulk velocity, current density, temperature, heat flux, and the pressure tensor 

can be calculated. These quantities are more easily interpreted and are given in Appendix 

A.

The combination of Maxwell’s equations and the Vlasov equation is the Vlasov- 

Maxwell approach. The solution of the Vlasov-Maxwell equations requires that the distri

bution function be expressed in an analytic form, such as a Maxwellian distribution, or be 

constructed from single particle trajectories in a self-consistent fashion. The former ap

proach will be discussed as background to the section on the SCOT as an example of using

(1.3)

V ‘^  + m5(E (x) + V X B ( x ) ) ' l ^ ] / ' (X’ V) = ° ‘
(1.4)



a Vlasov-Poisson method. The latter method will be discussed as it relates to the SCOT 

which is a Vlasov-Ampere method.

1 3  Previous Studies

This review begins with some of the results at the microscopic end of the spatial 

scale devoted to the understanding of single particle orbits in tail-like magnetic fields. The 

work concerning chaotic and resonant particle orbits motivates the choices made in the di

rection taken with this research. Next, the projects which are currently being carried out on 

the Earth’s magnetic field with particular emphasis to the magnetotail will be examined. 

The relative strengths and deficiencies inherent to each of the studies will be discussed. Fi

nally, an overview of the approach taken in this work will be presented.

Orbit Types and Magnetotail Regions

In the course of the many studies of particle orbits in one-dimensional field reversal

regions designed to reflect magnetotail characteristics [Chen, 1992], a nomenclature for la

beling the orbital regimes has come into use. When typical magnetotail parameters are 

used, four distinctive orbital regimes are found; guiding-center, resonant, chaotic, and non

resonant [Kaufmann and Lu, 1993]. In order to quantify these regimes for a simple para

bolic magnetic field reversal, Buchner and Zelenyi [1985; 1989] introduced the K 

parameter

Lq -i' /2
K  =  B zo (1.5)

where q, m, and v are the ion charge, mass, velocity, respectively. The constant parameters 

Bxo and Bzo are representative values of a one-dimensional tail field where L is the char

acteristic thickness of the plasma sheet. This was later generalized while studying a modi



fied Harris equilibrium field [Harris, 1962] to be

k2 = ^ ,  (1 .6)
P max

where Rmin is the minimum magnetic field line radius of curvature for the magnetotail 

model being studied and pmax is the maximum particle Larmor radius [Buchner and Zele- 

nyi, 1989].

The guiding-center regime corresponds to k  > 2 because nonrelativistic ions in this 

kappa range can be adequately described by the guiding center approximations [Northrup, 

1963], A guiding center orbit is analyzed by separating the rapid spiral motion about a field 

line from the slow drift of the cyclotron averaged particle location or guiding center. These 

guiding center particles often are referred to as “adiabatic” because the magnetic moment 

|l = m v \/{ 2 B )  is nearly conserved. Thermal ions and electrons have K > 2 in the radi

ation belts and near-Earth tail. Here the dipole nature of the field dominates due to its large 

radius of curvature and the particles’ relatively small Larmor radius. The particles only 

cross the z = 0 plane once during each current sheet interaction. During this brief period 

of lower B they can experience gradient and curvature guiding center drifts.

At the opposite extreme are particles in the limit of very small K . These particles, 

which we call non-resonant, were originally studied by Speiser [1965]. Speiser orbits are 

characterized by separating their rapid bounce motion in the solar magnetospheric z direc

tion from the slow semicircular cyclotron motion in the x-y plane, about Bz , of the bounce 

averaged particle location. Ions in the distant tail, near a neutral line, and in the very thin 

plasma sheet that is present at the end of a substorm growth phase are of the Speiser type.

Unlike the adiabatic particles, Speiser particles do not conserve their magnetic mo



ment during their many plasma sheet interactions. However, when the particle eventually 

leaves the current sheet, the magnetic moment returns very nearly to the initial value it had 

when it entered the current sheet. This is a consequence of the action integral

> z = 2 'h ^ dZ ° ' 7 )

being nearly conserved [Speiser, 1970; Sonnerup, 1971; Whipple etal., 1986], The feature 

of Speiser orbits most important to remember for magnetotail studies is that they are insen

sitive to the exact value of kappa. Nonresonant ions experience relatively little pitch angle 

scattering while encountering the current sheet. Given certain pitch and phase angles they 

can bounce back and forth between north-south reflection points contributing substantial 

j y(z ) beyond the thickness of the current sheet [Kaufinann et al., 1994], Therefore, in or

der to generate a self-consistent current sheet, the number of non-resonant ions used must 

be low.

Guiding center motion breaks down for most ions when the dipole field no longer 

dominates. This point is usually between 5 RE and 15 RE in the magnetotail [Pulkkinen 

et al., 1992a]. The two intermediate kappa regimes, resonant and chaotic, are typical of the 

midtail region. The ions which have large changes in their magnetic moment upon interact

ing with the current sheet and having comparable bounce and cyclotron periods are chaotic 

[Kaufmann et al., 1993a], These particles can exhibit stochastic orbits for some K values 

[Chen and Palmadesso, 1986; Buchner and Zelenyi, 1987]. Many of these stochastic ions 

eventually leave the current sheet with such a small pitch angle that they can completely 

escape from a one-dimensional model field [Gray and Lee, 1982; Kaufmann et al., 1994],

The resonant orbit class tends to follow very simple predictable orbits. Resonant or

bits are symmetric [Chen and Palmadesso, 1986; Chen et al., 1990], They are similar in



appearance to Speiser orbits that involve small half-integral numbers of small north-south- 

north oscillations through the current sheet. As defined by Buchner and Zelenyi LI989], 

there are N n  radians of the bounce-type oscillations during each current sheet encounter. 

There are (N  + 1) crossings of the z = 0 plane with this definition. The relationship be

tween N  and k  has been found for Harris type models to be approximately

N  = —  - 0 . 5  (1.8)
1C

[Chen, 1992; Ashour-Abdalla etal., 1993; Kaufmann andLu, 1993], Therefore, K = 0.53 

resonant ions have N  = 1 . The smallest k  resonance value for a modified Harris model is 

approximately Kr = B zo/ B xo [Burkhardt and Chen, 1991],

Speiser orbits differ from resonant orbits in that they have enough energy during z 

oscillations to reach or even exceed the current sheet thickness. An example and discussion 

of resonant particle invariant tori is found in Kaufmann and Lu [1993]. A self-consistent 

one-dimensional current sheet using a modified Harris equilibrium model was generated 

using resonant particles and is described in Lu, [1993] and Kaufmann and Lu, [1993], The 

technique used took advantage of the relative predictability of the orbits and their sensitiv

ity to the K parameter.

1.4 Magnetohydrodynamic Simulations

The magnetohydrodynamic (MHD) approach to plasma physics, where the plasma 

can be treated as a fluid, can be derived by taking velocity moments of the Vlasov equa

tion, thereby trading the seven-dimensional phase space of the kinetic approach for the 

three spatial dimensions and time [Nicholson, 1992], This summing operation will destroy 

the details of any beam structures in the velocity space of the distribution function in favor 

of macroscopic plasma processes. The interaction between waves and particles is lost in



MHD so velocity dependent effects such as Landau-damping cannot be studied. Because 

ideal-MHD assumes no electric field parallel to the magnetic field (except in the case of 

discontinuities such as shocks), the assumption of infinite plasma conductivity breaks 

down.

The application of MHD to the magnetotail is covered in a series of papers in Lui 

[1987]. A review of quasi-static MHD processes in the magnetosphere was done by Voigt 

and Wolf [1988] while addressing the problem of whether a “ground state” energy for the 

magnetosphere can be defined.

The global resistive MHD simulations of Ogino et al. [1994] attempt to evolve a 

complete magnetosphere. The use of resistive MHD is the major assumption of the study 

since it incorporates an electric field parallel to the magnetic field. They further assume the 

Earth’s dipole field and the particle input rate of the solar wind into their simulation box. 

The fields are calculated self-consistently and open field lines are permitted. The method 

used to advance their simulation is the leapfrog method combined with a two step Lax- 

Wendroff scheme [Tajima, 1993]. Although they use a solar wind temperature in the sim

ulations roughly an order of magnitude higher than observations, they claim the results are 

temperature insensitive. The interplanetary magnetic field (IMF) is also a parameter in their 

model and permits them to study dayside reconnection as well as substorm growth and ex

pansion phases.

Hesse and Birn [1994] concentrate on simulating the magnetotail region. They use 

the three-dimensional equilibrium configurations of Birn [1987, 1989]. Their simulations 

assume no gravity, no dipole, no IMF, and an isotropic pressure. The resistive MHD equa

tions are integrated by an explicit leapfrog method. A uniform and constant finite resistivity
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was imposed on their system. This work has been able to replicate the larger flank B. rel

ative to a low neutral sheet Bz during quiet times which was reported in the observations 

[Fairfield, 1979],

In contrast, a modified set of single fluid equations, called magnetoplasma dynam

ics (MPD) has been proposed [Winglee, 1994]. Essentially, this method includes electron 

terms from the generalized Ohm’s law equation [see Krall and Trivelpiece, 1986]

E + V x B  = t iJ  + —  ( J x B - V P J . (1.9)
ene

Winglee’s two-dimensional simulation is performed using geocentric solar magnetic 

(GSM) coordinate system. The electric and magnetic fields directly associated with the 

flow of plasma around an object or body are given the subscript b and plasma currents tied 

to the surface of the body are given the subscript s. The new effective resistivity used by 

Winglee, r\eff = ( J s x B b) / ( e n e(Jb) ) , is claimed to spread the dissipation rate more 

uniformly across the current enabling better magnetotail energy storage during substorm 

growth. The author shows that this method can be successfully applied to yield surface cur

rent effects at both the day side magnetopause and the magnetotail. These are two regions 

which are difficult to study using MHD models. However, as with all the fluid methods 

discussed here, the method requires a supercomputer.

1.5 Local Kinetic Simulations

Pritchett [1991, 1992] uses a two-dimensional simulation model based on the 

Darwin approximation to Maxwell’s equations [Birdsall and Langdon, 1985], In this 

approximation the transverse displacement current term is dropped from the Ampere’s 

equation. Electrons are assumed to be a neutralizing background fluid. Protons are loaded 

on a grid consistent with an assumed drifting Maxwellian [Pritchett, 1991]. His initial



magnetic field is a quasi parabolic equilibrium model [Lembege and Pellat, 1982], Upon 

progressing his particles, the new j  current is accumulated on the simulation grid directly

from the canonical momentum using an area weighting scheme. The new B is found by

2
solving Ampere’s equation, V A = - ( 4 j i /c )  j v . The vector potential is found via an 

iterative method that divides A into assumed initial and perturbed components. The

perturbed portion is extrapolated and fed back until the solution converges. This simulation 

method is used to study current sheet equilibria.

Hybrid particle in cell (PIC) codes use a grid. In this method electrons are consid

ered to be a cold, massless fluid. Usually particles are loaded on the grid. All particles are 

then advanced with the same timestep. Charge is assigned to the nearest grid point. The 

fields are recalculated with the resulting current; then the process repeats itself. In the case 

studied by Burkhardt [1992a], a drifting Maxwellian boundary distribution of inflowing 

protons is assumed. Each trajectory is integrated until it leaves the simulation domain. At 

each timestep in the integration the particle contribution is summed to the grid points via 

linear interpolation. The sums are then normalized at each cell to the number at the bound

ary, then the fields are recalculated and the process is iterated. Burkhardt requires that there 

be no trapped particles and he varies the boundary conditions with time.

1.6 Plasma Sheet Studies Using Test Particles

Although the Lorentz equation of motion for a charged particle in an electromag

netic field is straightforward, the numerical labor necessary to follow a statistically useful 

number in a reasonable amount of time has only come about with the advent of computers. 

Even with the guiding center approximations of Northrup [1963] to reduce computation,



workers still did not expend valuable computer resources in computing particle trajectories 

[Speiser, 1965,1967; Cowley, 1971; Eastwood, 1972,1975]. In order to study nonadiabatic 

guiding-center particle pitch angle diffusion in a Harris type model, Gray and Lee [1982] 

began using the rational polynomial extrapolation to integrate the equations of motion. This 

method is faster than Runge-Kutta but it sacrifices the detail of a trajectory with a finer 

timestep.

The wholesale injection of vast numbers of ions in a prescribed magnetic field mod

el at two arbitrary injection locations to study the resulting distributions came into popular

ity with the availability of relatively inexpensive supercomputer time [Ashour-Abdalla et 

al„ 1990], Using 60,000 particles in a test simulation with a reduction of the Tsyganenko 

[1989] model to its noon-midnight plane had become routine by 1993 using a fourth order 

Runge-Kutta method [Ashour-Abdalla et al., 1993]. The study method is not self-consistent 

since it neither addresses electrons in the magnetotail or selects ions that will generate the 

prescribed magnetic field. In addition, the following of ions in the K  = 1 version of T89 

introduces many problems associated with the model’s range o f validity such as excessive 

flaring beyond x sm = -30  R£. ,the unrealistic Bzo depression near x fm = -20  R£ in the 

equatorial plane [Kaufinann etal., 1993], and the model creator’s warning against using it 

beyond x sm = -70  R£ [Stern and Tsyganenko, 1992]. In addition, the use of only the 

y  = 0 noon-midnight slice is not divergence free. Given the complexity of the empirical 

model used it seems difficult to envision what effect a particular component of the model 

may have on an ion orbit. Separating fundamental physical understanding from modeling 

effects could give rise to anomalous results.



1.7 The Self-Consistent Orbit Tracing Method (SCOT)

The SCOT resembles a Bernstein, Green and Kruskal [1957] or BGK study of 

large-amplitude plasma waves more than a plasma simulation or the test particle approach. 

The BGK technique assumes that it is possible to find a self-consistent equilibrium distri

bution of ions and electrons for virtually any preselected electrostatic potential. Subject to 

the boundary conditions of the problem, the electrostatic potential, <h(x) , is produced self- 

consistently by the distribution functions through Poisson’s equation

The method has been used to generate models of nonlinear wave trains, solitons, static spa

tial structures, and shocks. The resulting plasmas often contain groups of trapped and un

trapped particles, with trapping in this context meaning bound in an electrostatic potential

Self-consistency for the SCOT means that, to a good approximation, the final col

lection of ions and electrons carries the electric current that is needed to generate the pre

selected magnetic and electric fields in which the ion orbits were traced.

The first step is to trace many groups of individual ion orbits in the original mag

netic and electric fields. The strength of the SCOT method lies in its capability to calculate 

and save complete ion distribution functions / , ( x ,  v) in the region of interest. These 

/ , ( x ,  v) are generated by binning the timestep of many individual ion trajectories in the 

phase space location of the distribution function. The Lorentz equation of motion,

F = <7,(E(x) + v x B ( x ) )  , is used to calculate the exact position, x, and velocity, v, of 

the individual ions in the preselected electromagnetic field. The ion density and current can

( 1 .10)

well.
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then be calculated as a velocity moment of the distribution function.

The use of very accurate trajectory tracing permits the inclusion of all non-guiding- 

center effects. In our studies to date, each particle group has consisted of 1000 ions random

ly selected from a monoenergetic energy distribution. Ion orbits are traced from a starting 

point until they have drifted Earthward well beyond the region of interest. Earthward drift 

is produced by a uniform dawn to dusk electric field. The ion trajectories are then traced 

backwards in time from the starting point until they have moved far enough tailward so they 

will not again enter the region of interest. The particle starting points and the specific points 

at which orbit tracing is stopped therefore have little significance. Physically, all current 

sheet particles come in from tailward of our region of interest and drift Earthward com

pletely through the region we wish to study. The starting point and starting distribution are 

used primarily as a way to label a group of particles. No specific boundary conditions are 

imposed at the edges of our region of interest, and no physical boundaries exist in the sys

tem except for the very rare particles that hit the Earth.

The second step is to include the effects of electrons. The electron current is includ

ed by assuming charge neutrality, and by assuming the electrons are isotropically distrib

uted. Additionally it is assumed that the electrons have 1 / 7  the energy of ions in each box 

[Baumjohann et al„ 1989]. The assumed energy, electron mass, and the tail field insure that 

the electrons obey the guiding center approximations. Step three involves adding the ion 

and electron currents together for each group.

Step four involves finding some combination of the ion and electron groups that can 

satisfy Amperes law for the preselected magnetic field,
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k

j *««/(*) = ( l / H 0)VxB(x) = X  J vA s < x> v )^ V + J e.*(x)]- (1-11)
4’ =  1

Here g is the group number, k is the total number of plasma groups, and co is a weight
o

assigned by a least squares fitting routine. The fitting procedure is used to find those groups 

that can best sustain the preselected electric and magnetic fields in which the orbits were 

traced. The selection of weighting factors for each group is done to make the final current 

sheet as nearly self-consistent as possible. One restriction that has been imposed is that a 

group is discarded if its inclusion does not enhance the self-consistency of the final plasma 

at a 95% confidence level. The procedure is iterative in the sense that the electron contri

bution can still be insufficient to achieve self-consistency so a new electric field could re

place the previous electric field and the ion groups could then be retraced. More detail of 

the SCOT implementation is given in chapter three.

The principal difference between our BGK-type analysis and a computer simulation 

is that we assume that magnetometer measurements are adequate to provide a reasonable 

model of the actual tail magnetic field. Our method imposes a fixed magnetic field every

where but no extra explicit conditions at the boundaries. Unlike a simulation, or a test par

ticle method, no assumptions are made about particle sources. Groups of particles are 

randomly started at various locations and with various angular distributions. Groups are 

only retained if they carry a portion of the current required to sustain the magnetic field. 

The similarity to the BGK analysis lies in treating the source of the electric or magnetic 

field, charge or current, through Maxwell’s equations. Since the SCOT uses a prescribed 

magnetic field, the current is determined through Ampere’s law. The BGK method in con

trast assumes a preselected electrostatic potential and determines the potential through



16

Poisson’s equation.

1.8 The SCOT: Harris Model Results

An earlier version of the SCOT technique was used by Lu [1993] to construct an 

approximately self-consistent one-dimensional (1-D) model magnetotail. Although orbits 

are always traced in three dimensions, the model is referred to as a 1 -D magnetotail because 

the modified Harris current sheet magnetic field was used [Harris, 1962]. The modified 

Harris model consists of a constant Bzo and a Bx(z) = B xota n h (z /L )  that varies only in 

the z direction.

The study of Lu [1993] found that k  is a good parameter to use when classifying 

particle orbits. Two intermediate K regimes are common in the midtail region; resonant 

particles, where K = 0.53 ,0.32, or 0.23, and chaotic particles: where K = 0.82 ,0.40, or 

0.27. Three types of orbits which carry different current distributions were identified; ring 

like, mirror, and untrapped. Contributions from all three types were needed in order to gen

erate a typical quiet-time self-consistent current sheet. The generated plasma exhibited 

“firehose” instability in the current sheet. A density of 1 particle/cm3 was required to carry 

the cross tail current. This is about three times larger than is typically observed in the 

Earth’s magnetotail in thex = -1 0  to -3 0 /?£ range. An unrealistically high density is need

ed because there is no net cross tail drift of those charged particles that are trapped in a 1- 

D magnetic field [Stern and Palmadesso, 1975], Trapped particles carry cross tail current 

near the center of the current sheet, but an equal and opposite cross-tail current in the outer 

current sheet. Only untrapped particles carry a net cross-tail current in the 1-D model.

It is well known that streaming or a strong anisotropy, near the firehose instability

2limit p o(P|| -  P ± ) /B  = 1 , is needed at the edge of any 1-D current sheet to produce
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force balance [Rich eta l., 1972; Cowley, 1978]. The problem is that 1-D models have no * 

dependence, so require anisotropies much larger than those observed to balance what is 

usually referred to as the tension force of the sharply curved magnetic field lines. This ef

fect was reflected in the temperature which was not isotropic for |z| > 0 . 1  R£ in this plas

ma. At the edge / T ± = 3 . For these reasons, it was concluded that no 1-D current sheet 

can produce a reasonable model of the middle magnetotail, below approximately 30 RE.

Much of the physics learned in the one-dimensional study has helped in developing 

the two-dimensional fitting methodology. The identification of resonant energies and the 

various types of orbits have seen direct application in analyzing groups of particles. The 

low density and very high energies needed by the modified Harris equilibrium model indi

cated that a more realistic Bz(x) is needed. The results of the Lu [ 1993] study showed that 

the physics that can be observed in the real magnetotail can only be partially understood 

with a one-dimensional model. Equilibrium models of the Harris type seem a natural ad

vance for workers doing particle orbit studies but they must be extended to higher dimen

sions.

A new two-dimensional magnetotail model will be presented in chapter two that 

uses a Harris type equilibrium field for the magnetotail superposed with an Earth centered 

dipole and a ring current field. Chapter three will present the underlying software paradigm 

of this work. Chapter four presents the results from three cases. Chapter five is a discussion 

of the results in terms of force and energy. The final chapter summarizes the results and 

speculates on future directions of the methodology developed.



Chapter II

THE MODEL MAGNETOTAIL

The test particle method employed in this thesis requires that many ions be traced 

in a model magnetotail field that resembles the noon-midnight field with special emphasis 

on the plasma sheet of the midtail region. Since the ion motions cannot be described by the 

guiding center approximations in the neutral sheet region [Kaufmann and Lu, 1993], the 

complete Lorentz equation of motion is used for all particle tracing. The magnetic field 

chosen must therefore be relatively simple in order to minimize computing time.

2.1 Global magnetospheric models

The relative quality of a magnetosphere model can really only be determined by 

how faithfully it can match in situ observations of satellites and whether it is easy to use. 

The most elaborate series of models to date are those developed by N. A. Tsyganenko and 

his collaborators [Tsyganenko and Usmanov, 1982; Tsyganenko, 1987; Tsyganenko, 1989; 

Tsyganenko et al., 1993; Tsyganenko and Peredo, 1994], The most widely accepted version 

of these models is the T89 model [Tsyganenko, 1989], In this model, the ring and tail 

current systems as well as the Earth’s internal field and the magnetopause contributions to 

the total field are each represented by separate mathematical expressions. The resulting 

expressions have 22 polynomial coefficients and 13 parameters with physical meanings 

such as ring current characteristic radius and current sheet half thickness. The coefficients 

are set by a least squares fitting procedure involving an averaged magnetic field dataset of

18
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over 45000 points. The magnetic field datasets come from the IMP and HEOS series of 

satellites. The satellites and the datasets of the T89, as well as its descendent empirical 

models, are described by Fairfield e ta l. [1994],

Although the T89 model makes use of an extensive dataset, it does have limitations 

[Kaufmann et al„ 1993a, 1993&], First, the satellites did not exceed 70 RE, so the model is 

unlikely to be realistic beyond this point. Second, because the model lacks a true magneto

pause, for all K p levels the flank regions, |y| > 20 RE, are unrealistic. Third, strong Birke- 

land currents mapped to the flanks [Kaufmann et al., 1993b]. Fourth, a neutral line and a 

region of very weak B. exist in the K p = 0 version of T89. The T89 model can be con

sidered reliable for higher K p levels in the (-70  R£ < xsm < 10 R E) , (0 < y sm < 20 R£) 

region. The K p index is an indicator of solar wind disturbance ranging from 0 to 9 [Parks, 

1991],

Despite being a reliable empirical model in the midtail region, the T89 model uses 

far too much computer time to be the primary magnetic field in a test particle study. How

ever, since the T89 models the average magnetic field of many satellite measurements, it 

can be considered useful as a guide in developing a simpler model that can represent a lim

ited region of the magnetotail. This is precisely what has been done using the K = 4

model in the noon-midnight plane as the guide. The Bx and Bz magnetic field components

and the current density, j  , for the nightside are shown in figure 2.1. The next sections will

describe the details of the new model.

2.2 A simple magnetotail model

The model magnetotail developed for this work is a superposition of three fields; an 

Earth centered dipole, the magnetic field generated by a ring current [Tsyganenko and



Usmanov, 1982], and an equilibrium tail field [Zwingmann, 1983] plus a uniform B„n . The 

final model configuration is then

B ( x ) =  ®Dipo/t'(X) +  B/?,„g ( x ) +  B 7a;/(X) +  B z« ■ ( 2 - 1 )

Since each of the main components of the model taken individually are divergence free

V®B = 0 , the entire model is also divergence free. It should be noted that if we were to 

force y = 0 everywhere only the equilibrium tail field would be divergence free. The com

plete model would then not be self consistent. The present work uses 3-D versions of the 

dipole and ring current fields so the mirroring of particles at low altitudes is as realistic as 

possible. Two dimensional versions of these modules are more appropriate in other studies.

The components of the models presented here will be expressed in solar magneto- 

spheric coordinates. In this coordinate system the positive x  axis points from the center of 

Earth toward the Sun, the z axis is directed to the north along the geomagnetic dipole axis, 

and the y  axis is perpendicular to the Earth-Sun line and points from dawn to dusk.

The Dipole Field

Since the compass was discovered to be an aid to navigation, interest in the Earth’s 

magnetic field and its secular changes has only increased. A chronology beginning with the 

observation by William Gilbert in 1600 that the Earth is a great magnet through spherical 

harmonic expansion techniques pioneered by Gauss in 1835 and the modern high order 

models based on extensive ground station data are detailed in the book by Akasofu and 

Chapman [ 1972]. As early as 1635 Gellibrand noted that the geomagnetic field of the Earth 

slowly changes. This stems from a number of factors including the slightly squashed shape 

of the planet from an ideal sphere and the resulting complex dynamics of the molten magma 

below the crust. The currents generated by the motion of the magma in the earth’s interior
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account for nearly 99% of the magnetic field observed at ground level. This field can be 

approximated through the use of spherical harmonic expansions [Stern, 1976],

The details of expansion models which include secular variations to the Earth’s 

field are unnecessary to this study of current carriers in the midtail region. In this region the 

geomagnetic field contribution is essentially a dipole and will be treated as such. The vector 

magnetic potential of a dipole is given by

A D i p o l e ( * )  =  “ ( 3 ^ - x g y )  (2 .2 )
r

2 2 2 2where m  is the dipole moment and r  = x  + y  + z . In the case of Earth, the z-axis is 

parallel but opposite to m  and the dipole is at the center of the coordinate system.

m  = -m e z = -31100 ez nT  R £ 3 (2 .3 )

The associated magnetic field is

« w * >  -  ( -  + ( -  + ( -  • (2-4)

There is no net current contributed by the dipole; however the magnetic field components 

are essential to the matching of the kappa parameter in the region of interest.

The Ring Current Field

The westward traveling current encircling the Earth in the inner magnetosphere is

called the ring current. This current is created by protons drifting westward and electrons 

drifting eastward. The ring current tends to decrease the strength of the Earth’s dipole field 

at low altitude. The dipole nature of the Earth’s magnetic field can confine particles over a 

wide range of energies. The Active Magnetospheric Particle Tracer Explorer/Charge Com

position Explorer (AMPTE/CCE) mission of the mid 1980’s was the first to measure the 

composition of the main part of the ring current.
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A simple analytic form for the ring current is needed to couple the model dipole 

field to the model magnetotail field. The ring current of [Tsyganenko and Usmanov, 1982] 

was selected for this task. Tsyganenko and Usmanov base their ring current model on the 

experimentally deduced changes in the magnetic field of the inner magnetosphere done by 

Sugiura [1973], They further assume that the ring current is localized near the equatorial 

plane [Sugiura, 1972], This model of the ring current provides an adequate representation 

of the magnetic field and has been used in other studies [Lui and Hamilton, 1992], The vec

tor potential is the same as the pure dipole except for the addition of 4 p 2 in the denomina

tor which eliminates the singularity at the origin.

A(x) =
-B„

, 3 / 2 (y e - x e v) ( 2 .5 )
(/-2 +  4 p 2 ) “

The B () parameter is a negative number that scales the field depression near the Earth and 

p 0 is the characteristic radius of the ring current. The magnetic field associated with the 

ring current is then

3 B0xz

V(r2 + 4 p 2)
5 /2 e x  +

3 B0yz

V(r2 + 4 p 2)5 /2 ey +
2\\B 0(3z - r 1 + 8 p 2) 

. (r2 + 4 p 2 ) 5 7 2
(2 .6)

The components of the ring current are given by

J W X) = „ ,(* ) = ruRi n g '
-60  BoP\y  \  

,(r2 + 4 p 2 ) 7 / 2
e x +

60 B0plx 
( r 2 + 4 p 2) ,

( 2 .7 )

The current density profile for the ring current as well as the B x and Bz magnetic field 

components for the noon-midnight plane on the nightside are shown in figure 2.2. The scale 

of the field depression near the Earth used throughout the study is B() = -3 0  nT and the 

characteristic radius is p o = 10 R E . The ring current is useful for reducing the Bz compo

nent of the field near the Earth.
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Without the ring current the location of the kappa minimum could not be adjusted to cor

respond to that of the Tsyganenko model.

The Equilibrium Tail Model

The magnetotail of the Earth is the result of the magnetized solar wind particles

interacting with the geomagnetic field. The solar wind compresses the magnetosphere on 

the “upwind” or dayside and elongates on the magnetosphere “downwind” or nightside. 

The balance between the solar wind energy and the Earth’s magnetic field determines the 

size of the magnetosphere. Embedded within the midplane of the magnetotail is the cross

tail current sheet. The cross-tail current sheet arises as a separator between the magnetic 

field of the northern lobe, which is directed towards the earth, and the field of the southern 

lobe, which is directed away from earth. The particles of the plasma sheet must satisfy 

Ampere’s law as well as exert enough pressure to balance the magnetic field pressure of the 

lobes. Understanding how the particles of the plasma sheet accomplish this is complicated 

by the particles which do not obey the guiding center approximation.

A simple model of a plasma sheet formed at the interface of two regions of opposing 

magnetic field would be useful for studying the nonlinear dynamics of single particle or

bits. In the midtail region a two-dimensional equilibrium tail field module would be conve

nient for studying the neutral sheet. The equilibrium models represent magnetic fields that 

are derivable with approximately isotropic particle distributions. The most widely used 

magnetotail models for such studies are variations on the exact solution to the Vlasov-Max- 

well equations by Harris [ 1962], The Harris study of plasma sheet equilibria in one dimen

sional magnetic fields is rooted in the earlier work of Walker. This can be extended to two 

dimensions.



26

The equilibrium distribution of a plasma was explored in a series of papers by Walk

er [1900,1904,1915], In these papers Walker needed to solve a two dimensional Liouville 

equation of the form

d 2A  d 2A  . - 2 A / A .
— -  + —  = Ace . (2 .8 )
dx2 dz

In this work the solar magnetospheric coordinates are used instead of general cartesian co

ordinates. The general solution, attributed to Pockels [1891], is

A = — In 
2

dx)
2 2  ̂

(1  + (j) + \|/ )
(2 .9 )

A more available derivation can be found in Ames [1967], The functions z)

and i|/(x, z) are the real and imaginary parts of an arbitrary analytic function

G (Q  = G (x + iz)=  <j>(*, z) + r'\|/(x, z) (2 .10)

An interesting family of generating functions start with the general form

G(£) = = exp i ( f r(x, z)  + i f i ( x , z ) )  (2 .11)

where a more general complex function £(jc, z) = f r(x, z) + i f , (x,  z) is used. Further ma

nipulation yields

G(£) = exp { i f r( x , z ) - f , ( x , z ) }
- f i x  z)  - f i x  ■>) ( 2 . 1 2 )

= cosi f r(x , z ) ) e  ‘ ’ + i s i n ( f r(x , z ) ) e  '

which results in the assignment of the general functions z) and \j/(x, z) to the first and 

second terms respectively. Taking the partial derivatives of (j)(x, z) with respect to both x  

and z as well as the sum of the squares of (|)(jc, z) and V|/(x, z) gives
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d r l  = ~e r n / ' 3 7 + c o s / ' f c j  

= _ e^<--=»fs in /  ^  + c o s /  I ' j '
(2 .13)

dz \  r dz r 3j

1 + (j)2(x, z) + t|/~(x, z) = 1 + e ( 2 .1 4 )

Substituting into the general solution and simplifying yields

^  0 r 2 3 /* 2
A(x, z) = Ac.ln{C0 Sh(/,.(X, z ) ) } - y l n  ) s i n V r  ( 2 .1 5 )

3 / a 2 / 3 / , \ 2\  ? f d f d f :  d f rd f •

a f )  + f c ) ) cosV' + 2sin /'cos/( ^ ^  + ^ 8 r

The specific case of f r(x, z) = ax  and /,■(*, z) = az  , where a is a constant, is the 

Harris solution, A = (0, Av(z), 0 ) ; Av(z) = A Jn (co sh (az )) -  A Jn a  . The magneticy  y  t- t

field for the Harris model is then

B(z) = B ^ t a n h j j j e , ,  (2 .16)

where Bxo scales the asymptotic magnetic field, and L is a parameter controlling the half

thickness of the central plasma sheet. When a weak uniform normal field, Bzn , is added to

the magnetic field, the new field is called the Modified Harris model. The associated cur

rent is

~ A c , 2  f z V
3 H a r r i s ^ )  =  ------1  s e c h  ( t J v  ( 2 - 1 7 )

k l 2 ^ L)

Two dimensional equilibrium models that try to represent the magnetotail have 

been studied by [Birn etal., 1975; Birn, 1977; Lembege and Pellat, 1982; and Zwingmann, 

1983]. All of these models belong to a class of equilibrium solutions of the form
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A y(x, z)  = j4c.ln
co sh^-F (x )

( f ( x ) )
(2 .1 8 )

where L is a plasma sheet thickness and F(x)  is an arbitrary function of x. The stability of 

these self-consistent taillike equilibrium solutions is extensively discussed in Kiessling and 

Schindler f 1987], In order to generate this solution and exactly satisfy the Cauchy-Riemann 

conditions, the terms of the real and imaginary parts to the analytic generating function 

G (Q  would have to satisfy

z2 dF(x)  1

f , ( x , z ) = j F ( x )
(2 .1 9 )
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An exact solution is not known but a slowly varying function of a- can achieve a

result sufficiently accurate to model the magnetotail plasma sheet. In order to neglect high-

7 2  d2 F ( a )
er order teims, the function F(a) must meet the condition that — — ---------- « 1 The

2F(x)  d x2

function which was found to best complement the dipole and ring current components of 

the new model was studied by Zwingmann, [1983]. This function is

F{ a )  =  1
£A

L v
(2 .20)

As can be seen in figure 2.3 the effect of the higher order terms for the Zwingmann function 

is less than one percent in the plasma sheet region.

The vector potential used for the equilibrium magnetotail is to second order

A 77h/ = (°> a >>(a> z), 0); Ay(x, z) = A cIn

and the associated magnetic field is

cosh^-F(A)

F W
+ 0 ( e 2) (2 .2 1 )

B ( a ,  z) = AcF(x)tanh[F(x)^Jex + [Ac^

where Bztl is a weak uniform normal field. The Bzn can be considered a simple adjustable 

northward IMF generated by infinite current sheets well outside the magnetosphere. The 

current for this case is

dF ( x)
L F k -z,!,nh(F<x>Z + B z \ c A 2 . 2 2 )

Saq{x, z )  = sech F{a ) -  -

( dF(x) ' 2 
V 3 a

zA d F(a)

3a L ffe"Z,anh('rWt

+ j s e c h  ( f (x )j  
F (a) l  v l

( 2 .2 3 )

The parameter values chosen for this study for the Zwingmann tail model are given in table

2.1 along with the values of the uniform normal field. The nomenclature of thin and thick
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are with respect to what is referred to as the standard model. The distinction between the 

different current sheets can also be seen by looking at the relative thicknesses shown in fig

ure 2.9.

Table 2.1: Zwingmann Model Parameters

Current
Sheet
Type

A c £ L n B zn

Thin 160 0 . 0 1 0 0.05 1.25 2 . 0 0

Standard 300 0.018 0.05 1.25 0.75

Thick 415 0.018 0.05 1.50 0 . 0 0

Tail Model Design C riteria

Ampere’s law for steady conditions, VxB = p.0j  , shows that selection of a mag

netic field model for the magnetotail is equivalent to the selection of a model for j  through

out the current sheet. For this reason, certain key features of the T89 model were relied 

upon to act as a proxy for the magnetotail while setting the parameters in the new model. 

These features include the individual magnetic field components, the current density j  ,

the integrated sheet current K , and the kappa parameter.

Since B, is critical to energization processes resulting from nonadiabatic particle 

effects, careful attention must be taken when choosing the magnitude of Bz in the magne

totail neutral sheet. Although the T89 model will be used as a guide, the question of how 

well it represents Bz at midnight in the neutral sheet is subject to what data were used in 

determination of the model parameters. In a study by Fairfield [ 1986], IMP 6 ,7 , and 8  data 

were selected for substorm-free periods where the spacecraft were within ±3 R £ of the es-
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timated location of the neutral sheet. Fairfield found that the average B, was between 2 and 

3 nT  for the -2 0  < x  < -10  R £ range and less than 2 nT  on average for x  < -2 0  . These

results agree with the Sergeev et al. [1993] study that looked at only a single day of ISEE 

data. These ISEE results are contradicted by a more extensive study using the ISEE dataset 

[Huang and Frank, 1994], Huang and Frank find the average B_ in the magnetotail neutral

sheet to vary from 5 to 8  nT in the range -2 2  < x  < -1 0  R£ and -10  < y < 10 R £ . Another 

study performed by Rostoker and Skone [1993] fit a combined ISEE and IMP 8  dataset 

where ISEE was used for the -2 2  < x  <  -1 0  R £ range and IMP 8  for the -38  < jc < -2 2  R £ 

region. Their results reflect the choice of satellite to represent each range. Near the Earth 

they have the higher B values of the ISEE dataset and down tail the lower IMP 8  values

dominate their functional fit. The seemingly contradictory results could reflect differences 

in magnetometer design or possibly differences in the solar wind and interplanetary mag

netic field (IMF) during the different periods of satellite operation. Because of the contro

versy surrounding measurements of B„, the new model allows for an additional constant

Bz . In this study Bz is higher than Fairfield’s values but lower than the Huang and Frank 

values.

The magnetic field lines for the T89 model and the three versions of the new model 

are shown in figure 2.4. The top panel shows the T89 model for Kp = 4 with no dipole tilt. 

This moderately disturbed version of the model has much more flaring in the region |z| > 2
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than the standard (Figure 2.4c) or thick (Figure 2.4d) models, but is similar to the thin 

model (Figure 2.4b) for this region. In the current sheet region, |z| < 2 , the thin and 

standard model field lines most closely resemble the T89. However, beyond x  < -25  R£ , 

all three models begin to match the T89 in this region.

T89, Kp=4 

Thin

Standard1 .5 -

Thick
CO
Q .Q.
CO

0.5
-40 -35 -30 -25 -20 -15 -10

X, r e

Figure 2.8: Kappa parameter K =  J R C/ p  , where Rc is the magnetic field line radius of 

curvature and p is the particle gyroradius radius at z = 0 for a 1 keV proton.

The Bx , B ; , and j  field components for the T89, thin standard, and thick models 

are shown in figures 2.5-2.7. The top panel of each figure is the Bx component of the mod

el. Within the midtail region, -2 0  < x < - 1 0  Re , this component closely resembles the 

T89. The middle panel, for all four sets of figures, is the component. Within



x  > -15  R£ the new models and the T89 agree mostly due to the dominance of the dipole 

field. Beyond * < -1 5  R£ the T89 has a shape comparable to a drop of water just after 

dripping from a faucet. The new model does not have the low B y separation zone of 

-2 5  < x  < -1 5  R£ , but does have a moderate wineglass stem shape of similar magnitude 

to the T89 beyond * < -25  R£ .
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Figure 2.9: The Full Width at Half Maximum (FWHM) of j  for each current sheet.

The Bz is key to the adjustment of the magnitude of kappa. In order to match the 

kappa profile of the T89 model seen in figure 2.8, an additional Bzn was added to both the 

thin and the standard models. This is because kappa is proportional to the radius of curva

ture of the magnetic field lines (see Equation (1.6 )). These values are given in Table 2.1. 

The thick model did not require any additional B ,n .



Any empirical magnetotail model tends to have a thicker current sheet than is 

present in the actual magnetotail. This is because the actual magnetotail moves up and 

down in the z direction. Tail flapping broadens the apparent observed thickness obtained 

by averaging or binning satellite data. McComas etal., [1986] and Sanny etal., [1994], us

ing the ISEE 1 and 2 satellite pair, concluded that the instantaneous scale size of the prin

cipal current sheet is on the order of 1 RE. Because of these observations, we generated 

versions of the tail with current sheets that are thinner than the one in T89. We also selected 

the Kp = 4 version of T89 to model quiet time current sheets because this version is thinner 

and has a larger equatorial Bz than the quiet time versions of T89.

The relative thicknesses between the different current sheets can be seen in figure 

2.9. The full width at half maximum (FWHM) of j y for the T89 sheet is a factor of 3.1 

greater than the thin sheet. The thick sheet is 2.5 times greater than the thin sheet and the 

standard sheet is about 1.9 times as great as the thin current sheet. These features show that 

the model current sheets are more well defined than the selected Tsyganenko model. Al

though the model current sheets we have developed drop off more rapidly than the T89 

model, the integrated cross tail current is still able to match that of the T89 in the midtail 

region.

The A c parameter scales the magnetic field, and consequently the current density 

j y . The total cross sheet current density, K , given in figure 2.10, is also adjusted by Ac . 

It is calculated by integrating j y(x, y, z ) through the plasma sheet from -2 R £ to 2R £ , or 

in the case of the T89 model, ±2D {x, y) . Using the T89 Ky as a guide, the A c parameter 

for each of the three models was set to best match in the midtail -20  < x < -1 4  R £ region. 

The Kx and Ky cross sheet current densities for the Kp = 5 T89 model in the equatorial



plane, for 0 < y < 20 R£ and -7 0  < x < 10 R E are presented in Kauftnann et al. [1993b]. 

The K  of the new models reasonably matches the T89 model for the range x < - 5  R£ and 

|y| < 10 R£ . The new model Kx are the same shape but an order of magnitude lower than 

the comparable T89 Kx for all three parameter sets and for the same range as the K val

ues. Outside of this range the new model and T89 significantly diverge. This is understand

able since the magnetotail component of the model is two-dimensional.
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Figure 2.10: The total cross-tail current sheet density. These are found by integrating 
j y(x)  between z sm = ±2D(x,  y) in the T89 model and z sm = ±2 R£ for the new mod
el.

The integrated cross tail current is an important criteria for fixing the model param

eters. This is because Ky was found to be nearly independent of y  [Kaufinann etal., 1993b], 

The implication of this is that j  E , the energization rate, varies across the width of the
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magnetotail in the same way that Ey varies. Kaufmann et al. [1993b] mapped the Heppner 

and Maynard [1987] or HM87 electric field model, which was based on an average Kp of 

three, from the ionosphere to the equatorial plane using the T89 model. This study found 

that using 50 RE as the distance between dawn and dusk flanks yields an average E y that 

varies from 0.06 mV/m when Kp = 0 to 0.3 mV/m when Kp = 5 . A confirmation of this 

result using the Kp = 4 model has been performed by Maynard et al. [1995]. The cross 

tail field used for all the particle tracing done in this study is set at the higher 

E y = 0.3 mV/m value.

The inclusion of the dipole was essential to creating realistic field lines. Unlike one

dimensional models used for particle studies, the particles are now free to mirror. This elim

inates the need to distinguish between trapped and untrapped particles as was done with the 

Modified Harris model used by Lu [1993], The ring current lowers Br within x > -10  R£

which improves the K  and the Kappa in this range. However, as can be seen in figures 2.8

and 2 .1 0 , the model is not reliable enough for particle studies of the inner edge to the cur

rent sheet.

The magnetotail model generated for this particle study fulfills the objective of pro

viding a reasonable proxy for the more complicated T89 model. The magnetic field com

ponents, kappa, and the currents have been plotted for three sheets of differing thicknesses. 

The kappa profiles, which determine the orbit regimes that particles will follow are all sim

ilar to that of the T89. The cross sheet current Ky is similar to the T89 model for all three 

versions of the model, and the magnetic fields do not exhibit any unwanted features in the 

current sheet region that would cast doubt on our results.



Chapter III

SOFTWARE

3.1 Introduction

Computer software is the implementation of abstract ideas expressed as an ordered 

collection of simple mathematical and logical computer operations that must be sequential

ly executed. Physicists express their ideas with the symbolic language of math. When an 

analytic expression cannot be achieved, the gap between the symbolic representation of 

physical laws and computer language is bridged by the techniques of numerical methods. 

There are many books devoted to the details of carrying out numerical integration, differ

entiation, matrix inversion, etc. Some of these are [Hildebrand, 1962; Ames, 1977; Koonin 

and Meredith, 1990; and Press et al., 1993],

The software design for this study of current sheet formation depends heavily on 

the algorithms chosen for solving systems of differential equations, differentiation, curve 

fitting, matrix operations, and other mathematical operations. However, the programs de

veloped for this project also have to handle large amounts of output. This presents a set of 

problems primarily associated with the work of computer scientists such as graphical pre

sentation (scientific visualization) and the management of large and numerous output files.

In order for the programs to be easily understood and maintained, as well as devel

oped and debugged, a significant amount of time and thought must be applied to the com

puter science as well as the physics of the problem. The two primary constraints, fast and

41
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relatively compact code that can run acceptably on a computer of workstation performance, 

had to be met in order to fulfill the science objective.

The goal of this project was to determine the types of ion orbits that are necessary 

to sustain the cross-tail current distribution of a preselected magnetic field. As discussed in 

Chapter 1, particles undergo chaotic motion in the neutral sheet as well as gyrotropic mo

tion. Because of the chaotic nature of the particle orbits in the region of interest, a fully 

evolving MHD or Hybrid code will not be able to extract the kinetic processes relevant to 

sustaining a cross tail current. This is actually beneficial from a hardware standpoint since 

MHD codes still require supercomputers [Tajima, 1989]. This project has been implement

ed entirely on desktop workstations (e.g., an RS/6000 Model 320 and Silicon Graphics 

Indigo2).

This chapter outlines the design choices that were made in developing the software 

that implements the Self Consistent Orbit Tracing (SCOT) technique. Details of the physics 

abstraction necessary to implement data structures, subroutine hierarchies, and other details 

will be presented.

3 2  Software design criteria

The study of plasma physics can be distilled down to looking at the collective be

havior of a system of charged particles in an electromagnetic environment. The particle 

system is the collection of all particles evolving over time according to the same boundary 

conditions and laws of motion. The attributes of the individual particles, such as velocity, 

can change over time as a direct result of particle-particle interactions and particle-field in

teractions. In the case of the collisionless plasma of the Earth’s magnetotail, where interac-

—3tions between particles can be ignored, the number density is of the order of 1 0 6 m with
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a spatial range over tens of Earth radii. The number of particles that comprise this plasma 

would be staggering and unrealizable on a computer if it were required to follow each par

ticle individually.

The limited number of particles that a computer can follow for a given time must 

accurately reflect the physical phenomena being explored. The orbit tracing method is one 

way to accomplish this and it is the basis of the technique used in this thesis. The idea of 

tracing individual orbits is based on the assumption that a small collection of particles can 

be found that will model the statistical behavior of a significantly larger ensemble. In order 

to design software centered on this idea we will first look at an abstraction of the data struc

tures necessary rather than commit to a detailed description of the implementation. Funda

mental to the abstraction is how particles are defined.

A particle is an object that occupies a point in space at a given instant of time. Par

ticles evolve through time by acting and reacting to the properties of the environment with

in which they exist and based on their own specific characteristics. A particle cannot 

express multiple attributes of a given characteristic at one time. A particle may interact and 

alter attributes of other particles but it cannot occupy the same space at the same time. The 

state of a particle is the expression of it’s attributes at a given moment.

This open definition of a particle can be applied to a broad range of particle types. 

A particle type further defines the parameters of a particle’s existence. For example, a bi

ologist seeking to model the interplay between organisms in an ecosystem might consider 

the individual organisms as particles and their type as the species to which they belong. Ad

ditional subclasses to the type of species could include gender, age, and size. The state of 

an individual organism is given by it’s position, health, age, and other attributes. The state



of an organism can change according to factors in the environment such as food availability 

and predators as well as individual attributes such as health and age. To a software engineer 

seeking to implement the SCOT method or any other particle type code, the definition of 

“particle” is at the core of implementing the software objects and data structures .Thus the 

standard definition of a particle for a physicist can have different meanings to workers in 

other disciplines who wish to follow the SCOT paradigm.

Plasma properties Velocity moments of a distribution function. Plasma prop
erties such as number density, current density, pressure, 
temperature, bulk velocity, and heat flux can all be calcu
lated from moments.

Distribution function An ensemble of trajectories binned over position and 
velocity / ( x ,  v) . A single Group or multiple Groups 
selected for certain characteristics are used to generate a 
distribution function.

Library of Groups A collection of Groups used to form the distribution func
tion.

Group An ensemble of trajectories with similar initial parame
ters. (i.e. energy, pitch and phase angles, position, etc.)

Trajectory A time ordered set of position and velocity evolved 
according to its laws of motion. In the case of charged 
particles, the electric and magnetic fields are needed by 
the Lorentz force law.

Particle Type Uncharged neutrals

Charged electrons

Ions Species

State Position, velocity, energy, elapsed time.

Static
Attributes

Mass (nonrelativistic), charge.

Figure 3.1: Data hierarchy for the orbit tracing methodology
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The type of particles making up the current sheet of the Earth’s magnetotail are 

charged particles. This type of particle can be further broken down into additional subclass

es such as electrons and ions. The ions can be differentiated further by their species. The 

charged particle class also has attributes such as mass, charge, and energy associated with 

each member of the class. The state of any member of the charged particle class is defined 

by the position, velocity, energy, and time. In order to change the state of a particle, the time 

attribute must be incremented and the position and velocity advanced according to the laws 

of motion governing charged particles.

In the case of charged particles, the Lorentz force law governs the motion of test 

charges in the presence of electric and magnetic fields. As a consequence, the attributes of 

position, velocity, and energy can be altered. The fields in the equation of motion can also 

be broken down into subclasses associated with the specific field models to be used. The 

model types are discussed in detail in Chapter Two.

The set of time ordered states associated with an individual particle is a trajectory. 

Many different trajectories of the same species may be combined into distribution func

tions. These individual distribution functions can be further combined to form the distribu

tion function describing the system as a whole. The physical effects of the ensemble of all 

the trajectories acting in concert, such as number density, mass density, charge density, 

bulk velocity, current density, and pressure tensors, can be calculated from moments of the 

combined distribution function.

The environment within which particles interact encompasses many subclasses 

which can inherit attributes that overlap with other subclasses. This is not necessarily a di

rect feedback mechanism but more of a global knowledge of common attributes. The envi



46

ronment superclass has two major subclasses, one which details the physical properties of 

the environment and another subclass that handles the computational model.

Examples of physical environments to which a charged particle could belong in

clude vacuum tubes, semiconductors, stars, and the magnetotail of the Earth. Each of these 

examples has some boundary. Within the boundary, the density of matter, field strength 

variations, possibility of interparticle interactions, all must be accounted for when model

ing the physical processes the particles undergo. In the specific case of current carriers in 

the Earth’s magnetotail, particles are not allowed beyond the virtual confines of a region of 

space near the Earth; -6 0  < x  < -1  R£ , |y| < 25 R E , and |z| < 5  R£ . Particle tracing termi

nates when a trajectory exceeds these limits, these particles are considered complete and 

are designated as being untrapped. The electromagnetic variations are given by the field 

model discussed previously in chapter two. Unlike magnetohydrodynamics, it is assumed 

that there are no interparticle interactions so that the plasma is collisionless.

The computational model must attempt to reflect the reality of the physical world 

with a virtual world shaped by software and constrained by hardware. It is at this level 

where machine speed, memory, storage, and graphics, directly limit the scope of any mod

el . The fundamental constraint of all particle approaches is the number of particles that can 

reasonably be handled with the available hardware. As an example from biology, the num

ber of individual locusts of an actual hoard ravaging some geographic region could number 

in the hundreds of millions; a computer could not model that many individual locusts due 

to hardware limitations on memory and storage. This same problem occurs with particle 

models of magnetotail plasmas since the actual particle density can be very high. In the cen

tral plasma sheet where particle densities as high as 0.3 -  0.4 cm -3  have been observed
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25[Franketal., 1984; Baumjohann et al., 1989], this would mean about 8  x 10 particles in

a 1 R |  volume .This is an overlap between the physical and computational classes over the

attribute of particle number. The amount of memory needed to store the attributes of an in

dividual particle and the superclasses to which it belongs on the target machine determine 

the limit on how many particles may be followed. This number will be many orders of mag

nitude less than what occurs naturally.

It was found that an individual group of particles can be adequately characterized 

by as few as 1000 particles. This was determined by the rather unsophisticated method of 

tracing groups of particles in ever larger sizes until the plasma characteristics no longer 

changed significantly. A single 1000 particle group can typically take twenty four hours on 

a dedicated IBM/RS6000 Model 320, or five hours on a newer Silicon Graphics Indigo2. 

The number of groups that are necessary to complete an example current sheet can be as 

high as twenty groups. So the total running time with all postprocessing and analyses can 

be on the order of a month.

3 3  Numerical Experiment Software Framework

The technique of using individual particle orbits traced in a fixed magnetic field

model to study the plasma sheet is useful for understanding the contribution of different 

types of particle orbits to the overall current density. When groups of particles with similar 

orbital characteristics are combined they have a corresponding current density. These 

groups can themselves be combined to form an ensemble current density distribution. Since 

we are assuming a fixed magnetic field B(x) and neglecting the displacement current, we 

can use Ampere’s law, j(x )  = (1 / | i 0 )VxB(x) , to specify the desired current density 

of the model current sheet.
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Initialization

Select E and B field models;
Setup spatial grid;
Determine particle cutoff conditions;
Select particle species and injection method; 
Select data products to calculate and save;

Main Loop

Do until the number of orbits desired is exhausted

Setup the particle’s starting attributes and reset all flags 
Generate the orbit using a Lorentz force integrator 
Do While(finish=FALSE)

Integrate F(r,t) once with respect to time;
If (simulation grid line(s) traversed)

Integrate F(r,t) with respect to the coordinate of the 
plane just crossed by backtracking from the current- 
position to the plane;
Update (r,v,t) array with the edge crossing position; 

end if
Update (r,v,t) array with the new position; 
if (The trajectory completion criteria are satisfied) 

finish=TRUE; 
if ((The buffer is full) OR (finish=TRUE))

Update the distribution function;

end do
Update the initial/final data file;
Update any of the selected data products which rely upon an 

individual particle orbit;

end do

Wrap up

Calculate plasma parameters from the distribution function f(x,v); 
Write all data products selected to disk;

Figure 3.2: Main Program Overview
The first step in creating an ensemble of particles capable of forming the goal cur

rent density is to trace groups of ions in the specified electromagnetic field and generate the 

associated distribution functions. These steps are carried out in software by the program 

partrj.f. An overview of this program is given as Figure 3.2. A summary of the different
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data files that partrj can produce is given in Appendix A. The subroutines that are used as 

building blocks for this program and other support codes are given in Appendix F.

The effect that the chosen model B(x) has on particles of different species, energy, 

injection location, and initial pitch angle must be studied. This process provides the physi

cal understanding necessary to categorize particle orbits into families of like properties. A 

code capable of moving charged particles in prescribed electric and magnetic fields is 

needed. The program [partrj f \  was developed to trace M  groups of particles

Gm(x, v, /) = {0 ,(x ,y ,z ,vx,vy,vz,t); i= 1 ...N } , (3 .1)

where 0 (x ,y ,z ,v x,vy,vz,t) represents an entire particle orbit and N  is the number of par

ticles. The individual orbits are used to calculate the ion current within each grid box. The 

following table states the global parameters used by the tracing program for this study.

Particle trajectory 
cutoff ranges

-60  < x < 1 0 , R £ 

-25  < y < 25, R £ 

-4  < z  < 4 , R £

1.1 < r <  1 0 0 , R£

Particle trajectory 
gridding ranges

-2 0  < x  < -1 4 , R£ 

-25  < y < 25, R £ 

-2  < z  < 2, R£

Number of Boxes Xboxes = 6 ; Yboxes= 1 
Zboxes = 40

Maximum allowed 
particle tracing time

15000 seconds

Particle species protons

Number of particles 1 0 0 0  per group

Figure 3.3: Global program parameters
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Although the program is capable of following particle species such as e", H+, He+, He++, 

and 0 +, we follow protons since they are the dominant current carriers in the magnetotail. 

In addition, for this study, the temperature of injected ions is isotropic, T„ = T± , and the 

ion pitch and phase angles are isotropic.

3.4 Lorentz force integrator

The equation of motion for a particle of mass m is described by Newton’s law as

^  = F  (3 .2 )
dt

where F is the force which acts on the particle to change its momentum p . The force 

which a particle of charge q experiences in a given electric field E(x, t) and magnetic 

field B(x, t) is described by the Lorentz force

F  = g[E(x, t) + v x B(x, 0 ]  • ( 3 .3 )

Substituting the Lorentz force into Newton’s law then gives the equation of motion for a

nonrelativistic charged particle in an electromagnetic field

^  = 9 [E(x, f )  + v x B ( x , 0 ] .  (3.4)dt

The linear momentum p can be eliminated from this equation by substituting p = mv . 

The resulting pair of coupled first-order ordinary differential equations is

^  = —[E(x, f) + v x B (x , 0 ]  
dt m

(3.5)
d x
I t  ~ V

This first-order representation can then be numerically integrated both forward and back

ward in time to get a particle’s trajectory for specified initial conditions. The implementa

tion allows for the use of either the fourth-order Runge-Kutta method or the Bulirsch-
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Stoer method which incorporates rational function extrapolation [Press et al., 1993], The 

general program flow is illustrated in Figure 3.4.Unless otherwise stated, all of the particle 

trajectories calculated for this study use the Bulirsch-Stoer method.

Lorentz Force IntegrationCycle

C ut tim estep  down 
to  avoid special 

.  conditions ^

T ru e

In tegrate  with resp ec t 
to  position 

^(backtracking!^

Specia l Conditions \ _ _ _ _
(m ultivalue function e tc . ] /  p a |s e

In teg ra te  in time 
(forw ard tracing)
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^  S a v e  (r,v,t) d a ta  
F lush buffer if n eed ed  
.C heck  for com pletion,

C alcu la te  th e  grid 
location of th e  particle

H as th e  particle en te red  
- a  new  grid box ?  ,

Figure 3.4: Lorentz Force Integration Cycle for a spatially gridded simulation volume.

Concurrent with the integration process, the spatial box numbers are calculated 

from the position and saved to an array. These box numbers help determine when a box 

edge has been crossed. In addition, the position, velocity, and elapsed time of each step are 

saved to a buffer. When the buffer is exhausted, the program suspends integration in order 

to process the trajectory segment. This entails computing velocity bin numbers for each in

tegration step. Then, with the aid of the previously computed box numbers, binning half of 

the timestep in the current phase space location of the distribution function / (x, v) and 

the other half in the current position but previous velocity bins. This technique smoothes
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gyrovelocity effects. At the completion of the buffer flushing; the last position, velocity, 

elapsed time, and velocity bin numbers are saved for use by the first point of the next buffer. 

The pointers into the buffer arrays are then reset and orbit tracing resumes.

Integrating the distribution function / ( x ,  v) over various velocity moments to get 

plasma parameters is elegant but consequently requires more elaborate software. If the 

number and current densities within a box are all that is desired, it is not necessary to cal

culate the distribution function. By keeping track of the total time spent and the total dis

tance traveled by a particle in the x , y , and z directions within the box, it can be shown 

that density is proportional to this total time and jj(x ) is proportional to distance. This 

method is described by Eastwood [ 1972] and Kaufinann andLu  [1993], The previous study 

by Lu [1993] computed these parameters with

n v qAx,. o o^ k
J<V  = Az

(3-6)
n v At,, N o o k

" (V  = — * r

where Az is the height of each box, q is the charge, na is a density normalization factor 

based on an assumed number density outside the current sheet, v0 is the size of the distri

bution function velocity bins, and A x^  is the distance traveled while located in the k ’th 

box, and At^  is the time a particle spent in the k ’th box. This method should give the 

same answers as distribution function integration so it can be used as a simple check.

Both methods depend on knowing precisely the position and time of the entry and 

exit points of a particle trajectory as it crosses a box edge. One way to find the point where 

a particle leaves one box and enters an adjacent box is to recast the two first order equations 

of motion in terms of the independent variable associated with the plane that was traversed.
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These equations are subsequently integrated from the current position backward to the 

plane just crossed. For example, if a particle starts at point ( x 0, y 0, za, t()} and moves after 

time step At  to position {x, y, z, t0 + Ar} into an adjacent box in the z direction, the time 

and point at which the box edge located at zeclge must be found. Following the method of 

Koonin and Meredith [Section 2.5, 1992], a new independent variable s is introduced:

dv  _  d \d s  _ d \ y  _  F
dt d s d t  ds m ^  ^
dx  _ dxds  _ chty
dt d s d t  ds

where V = d s / d t . Solving for the differential with respect to the independent variable s 

we get:

41 = _ L

j 5 = m V . (3 .8 )
dx _  v
ds V

If the force F is electromagnetic, then the sign on the charge q and the electric

field E  must be changed so the particle will spiral in the correct sense when v is reversed.

The particle can then accurately backtrack along its orbit. Conversely one can change the 

sign of the magnetic field B. This is the form actually implemented by the derivative tak

ing subroutine:

^  = - i - [ E ( x , f )  + v x ( - B ( x , 0 ) ]  = - 2 - [ E ( x , 0  + B ( x , 0 x v ]  ds m V  mV
dx _  v 
ds ~ V

The velocity at the starting point of the edge-finding, v , must be passed to the 

driver subroutine odeint as -v  so that the backtracking can occur. The actual independent 

variable s = {x, y, or z} is signaled by an integer flag variable, where a zero value indi-
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cates time as the independent variable, one the x coordinate, two the y  coordinate, and 

three the z coordinate.

3.5 Generating the Desired Current Sheet

The fundamental taxonomy of different types of particles was discussed by Lu

[1993]. Details of single particle orbits for this work will be further discussed in the next 

chapter. In general, some particle orbits were observed to carry current that strongly peaks 

near the center of the current sheet. These particles are mirroring. The current carried by 

groups of particles with figure eight type orbits is negative in the central region and peaks 

further out. Still other particle orbits exhibit no discernible pattern. The collection of parti

cle families form the library of orbit populations that have predictable plasma properties. 

This takes us to the second step where the goal current density

• W /W  = ’ (3 -10)

is used to test and reject ion orbit families in the library that can aid in constructing the final 

ensemble. Ideally,

k

J i w W  = X  ° V M X)> (3.11)
* = i

where k is the total number of plasma groups and cog is a weight assigned by the fitting 

procedure to each group. The total electric current for each ion-electron group is the sum 

of the ion and electron contributions and is given as,

jrg(x) = j e(x) + jj(x ) . (3 .12)

This total current is used by the fitting procedure for group selection. The manner in which

the electron current contribution is calculated is described in the next section.

Two programs which implement the Levenberg-Marquardt method are available to
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perform the fitting procedure, driver.f developed using routines from [Press et al., 1993], 

and an older program with statistics concerning the quality of the fit, g lsw s f  [Daniels, 

1966]. The families which can best represent the desired current density are then summed 

to generate full distribution functions. The velocity space is split into 30 x 30 x 30 boxes 

in the vx , v , and v, directions. The result is a 27,000-point velocity distribution function 

for each of the spatial boxes. Depending on the number of ‘x-slabs’ used, the distribution 

functions can pose a significant storage problem. These individual distribution functions 

are combined in a weighted sum, using the previously calculated weights, and the constit

uent parts are backed up to tape or deleted. At this point the number density, mass density, 

charge density, bulk velocity, current density, and the pressure and temperature tensors can 

be calculated from moments of the combined distribution function (see Appendix A).

3.6 Electron Current Contribution

Electrons are introduced by assuming charge neutrality, that they have an isotropic

distribution function at the equator, and by using the guiding center approximation. The 

principal condition that is imposed to generate an approximately self-consistent current 

sheet is that the ion-plus-electron groups must be combined so that the final collection of 

particles carries the electric current that is needed to generate the preselected magnetic field 

in which the orbits were traced. This section describes our method.

Starting from the guiding center approximation [Parker, 1957] for a species s;

B
J , = — x v p . L +

( p p >.?ll r .?±
J (B • V)B E x B  + nsqs , (3 .13)

B I B2 J B2

which includes the effects of both guiding center drifts v and the drifts associated with 

the magnetization currents j ms = nsqsv ms, a calculation of the electron current, j e(x) ,
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accompanying each ion group can be made. This requires that not only the magnetization 

current, the curvature drift current, the gradient drift current, and the E x B drift current, 

be added together, but also a parallel current in opposition to that produced by the ions is 

added. These operations are performed by program \jelectron.f\. The implemented equa

tions are given as follows. For conditions where a constant zeroth order cross-tail electric 

field is imposed on the system, it is assumed that the electrons are isotropic PN -  Pj_ = 0 

and that n^x, z) = nc(x, z) = n ( x , z ) so

E x BB
j e = —z X [ T e( x , z ) V n ( x , z )  + n ( x , z ) V T ( x , z ) ]  + qen( x , z )  

B — r  + v/nB
( 3 .1 4 )

where n(x, z) is set equal to a polynomial fit of n((x, z) using the fitting program 

[g/svvs./]. Additionally, Te(x, z) is set to one-seventh the polynomial fit of Tf(x, z) . The 

scale factor is set based on observations [Baumjohann et al., 1989].

Calculations made with the constant zeroth order uniform Ey are not charge neu

tral and give rise to perturbations to the electric field. In practice the electric potential is 

only about 100 V/R£ for a 5 keV particle. Corrections for perturbed fields assume that the

total kinetic energy density for electrons is ( VP±) + ( W||) = W = ^ and that

( VPj) = 2 ( W,|> when 0 (* , z) < 0 .I f  this were always true there never would be a 

Pii -  P± term. However when the electric potential <£(*, z) > 0 a different expression 

could be used since PN -  Pj_ ^  0 . The guiding center electron current would then become
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j e = - ^ x  Te(x, z)Vn(x, z) + n(x, z )V T e(x, z) +
B

p n - p ±l  1( B . V)B +
B (3.15)

Px  = n ( x , z ) ( W ±) 

P„ =  2 n (* ,z )< W ll>
(3 .1 6 )

One restriction that has been imposed on all ion-electron groups that are run is that 

a group is discarded if  its inclusion does not significantly enhance the self-consistency o f  

the final plasma. The total electric current for each ion-electron group,

is calculated with the program [combine.f\. The resulting j T output files are then used by 

the program [bigfilter.f] to generate input files for the two fitting programs [g /jw s/] and 

[driver.f]. In practice only j y(x ,z )  is considered when selecting final groups o f particles. 

This simplifies the fitting procedure and concentrates on those ion-electron groups which 

are the primary contributors to the cross-tail current. The fitting programs find coefficients, 

to , that will be used to weight all the other plasma parameters.

When a reasonable combination o f  plasma groups is found that matches the 

desired current, the distribution functions associated with each plasma group are com 

bined using the weights cog with the program [dfcombine f]. This final combined distri

bution function can then be integrated to calculate new combined number density, current 

density, and bulk velocities:

j T(jc,z ) =  j e(jc, z) + jj(x , z ) , (3 .1 7 )

k
j c (x, z ) =  £  (O gj^ X ^z) (3 .1 8 )
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k

nc (.x, z) = £  z ) ( 3 .1 9 )

8 = i

where k is the total number o f  plasma groups. The drift velocity o f  the individual ion and 

electron groups can be calculated by:

, J.?, #(■*’ z ) m
V, / ,( * ,£ )  = ----- ----------r .  ( 3 .2 0 )

qsnSig(x ,z )

3.7 Electric Field

Particles are initially followed in a system with a constant cross-tail electric field. 

This zeroth order field does not guarantee that the final plasma will be neutral everywhere. 

To be as nearly self-consistent as possible, ion orbits can be retraced using an electric field 

modified to accomodate certain assumptions. First o f which is the assumption o f electron 

isotropy at the equator. Second, the electron number density ne(x, z) is set equal to the 

polynomial fit o f nt(x, z) so the resulting plasma is approximately neutral. By establish

ing these conditions the new electric field w ill have a component parallel to B. This first 

order parallel electric field is is added to the zeroth order uniform E  . The Boltzmann  

relation is used to calculate the electric potential difference O  between each ( jc ,  z )  box 

and a reference point (xa, z0) on the same field line. The electric field is then calculated 

from E =  - V O . The procedure is implemented as follows.

Electrons are decelerated when nc < n0 so the potential 0 ( x ,  z ) < 0  can then be 

calculated using the Boltzmann relation

= e . ( 3 .2 1 )

where the constant n0 is the density on the field line at the equator. The potential 0 ( x ,  z)  

associated with the polynomial fit o f nc (x, z) , is calculated using [ntophi2d.f\. Electrons
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are accelerated as they move away from the equator when nc > n0 and the potential 

<£>(.*, z) > 0 . This situation can be handled by the calculation derived by Lu [1993], 

where equation (3.21) becomes

A polynomial fit of the electric potential, 0 (;t, z) , using the fitting program 

glsws.f, is then calculated. The coefficients are saved to a file for later use by the particle 

tracing program. Letting x  = x -  x a , where x 0 is the inner edge of the modeling region, 

permits the fitting programs to converge faster. The scalar potential is

The particle groups are then retraced in the same B (x) with the new E (x) .The 

electric field calculation, performed by subroutine [do_efield.f], is then a simple gradient 

of the scalar potential polynomial, E  = - V O . The process of calculating ion ensembles, 

determining the electron current contribution and the new electric field is performed until 

the new E (x) has converged to the previous E (x ) .

Using the final weighting from [g/svvs./], the final combined ion distribution func

tion is generated by adding together the individual distribution functions [dfcombine f \

The final plasma parameters can then be calculated by using velocity moments of 

the combined ion distribution functions (see Appendix A). The parallel and perpendicular 

components of temperature and pressure with respect to the magnetic field B can then be

( 3 .2 2 )

(3.23)

k

fc (x,v,t) = ]T cogfg(x ,v ,t) . (3 .2 4 )
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calculated by rotating the Py,(*, z ) tensor through 0 B and (|>B , the polar and azimuthal an

gles between the z axis and B . For a gyrotropic distribution the o ff  diagonal values are zero 

and Pj_ = P j j = P22 , and PN = P33 . These plasma parameters will be presented for the 

model current sheets in the next chapter.

3.8 Software Implementation

Aside from the physics behind the project, the software implementation has in

volved thousands of hours o f work to translate the needs o f the project into intelligible com 

puter codes. In this section an overview o f the software will be given while leaving details 

o f the actual code to appendices. The computer hardware configuration used in the software 

development process is given in Appendix B . The internet site where the entire software 

package is available is given in Appendix C. Subsequent appendices provide short descrip

tions o f the primary programs and their subroutines.

Shareable
Code

Field Slicer 
B, J, K, V.J, k  

slices.f

Orbit Tracing Code 
partrj.f

Field Line Plotter 
magfld.f

Postprocessing Codes 
bigfilter.f 

dfcombine.f 
jelectron.f

Figure 3.5: Relationship between primary codes 

The steps involved in running the particle tracing code and the associated post pro

cessing codes have been described from the viewpoint o f the physics. Many o f  these steps
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can be automated with shell scripts under the Unix operating system. The advantage being 

that all interactive inputs can be preset by the shell program so that the user need only 

change a handful of parameters when highly repetitive operations are performed.

3.9 Sources of Error

Sources of error can be considered as either algorithmic or computational. The al

gorithmic errors result from the method of discretizing and solving the equation of motion. 

The computational problems occur due to issues associated with machine word size and 

roundoff during floating point operations.

As an example of machine errors, consider an ion traced with the same adaptive 

stepsize driver but with the fourth-order Runge-Kutta and the Bulirsch-Stoer formulas. The 

Runge-Kutta method generates three orders of magnitude more points for the same trajec

tory as the Bulirsch-Stoer method. It is considered very stable. This method can be used for 

discovery of what the appropriate word size for the position, velocity, and time variables 

should be for any trajectory. This is accomplished by following a particle using the Runge- 

Kutta method for a time long enough to establish a benchmark. Then, using the endpoint of 

this particle as a new starting postion, tracing back in the reverse time. Assuming the inte

grator is working correctly, the new path should return to the benchmark starting position. 

Given a test particle that is chaotic, it can be seen that roundoff errors resulting from single 

precision variables will yield different answers from run to run and between different types 

of computer. These errors are much smaller with double precision variables. The process 

can then be repeated with the faster Bulirsch-Stoer method.

3.10 Software Limitations

The usefulness of the software is hampered by the tools available to analyze the out

put. Quality scientific visualization tools that are easy to use and taiior to the output formats
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o f  the particle code would help in discerning meaningful physical effects in the data.

3.11 Future Enhancements

The physics capabilities o f the software can always be improved. Looking at the

particle injection methods implemented thus far, several new methods could be added. A 

streaming M axwellian injection would be a enhancement for beam studies. Another meth

od to add would be to allow particles to be injected over spatial ranges or volum es, this 

would m inimize any effects associated with single point injection. An easier upgrade would 

be to accommodate the magnetic field model code package distributed by the Goddard 

Space Flight Center (GSFC) which includes many versions o f global magnetospheric mod

els created by Tsyganenko. This would entail changing the do_bfield subroutine. A more 

difficult challenge lies in the proper handling o f  electrons.

The software, irregardless o f  the physics, can be improved to take greater advantage 

o f reusable functions and subroutines as well as a more user friendly graphical user inter

face. The Tool Command Language (Tel) and the Tk toolkit could provide a rapid devel

opment path to a graphical X  window interface to some o f  the programs [Gladden and 

Dubois, 1995], Conversion to a language such as C could be done but does not provide a 

new level o f  functionality. Using an object oriented language like C++ should be done only 

as a ground up rewrite to better take advantage o f the paradigm. All o f the software pro

cesses involved in this numerical experiment framework should use generic cross process 

variable names that have the same meaning to facilitate readability.



Chapter IV

CROSS-TAIL CURRENT SHEET RESULTS

4.1 Introduction

This chapter presents results from the SCOT technique using the thin, standard, and 

thick magnetotail models discussed in chapter two. Monoenergetic ion groups with 1.5,5, 

and 15 keV starting energies were used. Fixed starting energies rather than Maxwellian dis

tributions are used for these calculations because the identification of the orbital classes that 

are most important to generating self-consistent current sheets is a main goal. Most ions in 

a group with a given energy tend to follow a specific type of trajectory. Since the ion ener

gies change as particles drift in the uniform Ey = 0.3 mV/m or 1.9 kV/RE field imposed on 

the magnetotail models, a spread of energies in the final distribution functions results. 

However, ions injected at any one location are concentrated in a relatively small energy 

band, so that a specific orbit type tends to dominate on a given field line.

4.2 Orbit Types

Ion orbits in the magnetotail usually are classified according to the particle’s dy

namical characteristics, e.g. a chaotic, resonant, or guiding center orbit. Particle dynamics 

are strongly dependent upon K. However it was found that the cross-tail current pattern 

j y(x, z) depends primarily upon the particle’s mirror point location rather than upon the 

dynamic orbital characteristic. Since the primary goal was to generate a self-consistent cur

rent sheet, this work categorizes orbits into 3 groups according to mirror points. These three

63
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groups are labeled as inner, central, and outer mirroring particles. Defining the character

istic distance a proton that starts at z = 0 will move before being deflected by 90° with the 

transcendental equation,za = m v /[ q B x(za)] , these labels can be quantified. Particles that 

are trapped within a distance 2  za of z = 0  are considered inner mirroring, particles that mag

netically mirror beyond 2  za but within the principal current sheet are central mirroring, and 

particles that mirror closer to the Earth are outer mirroring. The following section will show 

that a contribution from each of the above three orbit categories was needed to create a self- 

consistent current sheet that realistically approximated the Earth’s magnetotail.

Orbit categories and tracing
Figures 4.1 to 4.3 show sample orbits in the standard tail model. These examples 

illustrate most of the important features of non-guiding-center trajectories. All the basic or

bit types that were previously identified in 1-D tail models [e.g. Kaufmann et al., 1994] are 

seen somewhere in the 2-D tail model. Orbits shown in the present section also illustrate 

the physical manner in which particles carry cross-tail current, and the importance of mag

netization currents.

The x-z and x-y projections of the proton trajectory in Figures 4.1a and 4.1b show 

several characteristic patterns. This proton began with 5 keV of energy at (x, y , z) = (-18.5, 

0,0.5) Re when tracing started. The ion mirrored once in the northern hemisphere as it drift

ed Earthward from the starting point, became briefly trapped near x  = -1 6  to -18  RE, and 

then mirrored three times in the southern hemisphere. The first of these 3 southern hemi

sphere mirror points was within the principal current sheet. The orbit then was traced back

wards in time from the starting point, showing that this proton also had been trapped at Izl 

< 2  z0 between x  = -29  and x  = -20  RE. This alternation between periods of being trapped 

near z = 0  and periods of magnetically mirroring at various points is typical of chaotic or-
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bits. For this ion energy and magnetic field, trapped protons do not get beyond approxi

mately Izl = 0.5 RE before returning to z = 0. The approximate dividing line between the 

central mirroring particles and outer mirroring particles is that the former protons do not 

move beyond approximately Izl - 2  RE before returning to z = 0 for the models used here.

Since the -2 0  RE < x < -1 4  RE, 0 < Izl < 2 RE region was being modeled, orbit trac

ing was stopped on the Earthward side when the ion crossed z = 0 at a point at least 2 gy- 

roradii Earthward of x  = —14 RE. Similarly, tracing backwards in time was stopped when 

the ion crossed x  = -20  RE at least 2 gyroradii beyond Izl = 2 RE. An equatorial crossing 

tailward of the field line that connects to x  = -2 0  RE, z = 2 RE plus 2 gyroradii also can be 

used to stop back tracing. It is evident from Figure 4.1 that no specific particle boundary 

conditions were imposed at the edges of the region of interest, and that nothing physically 

important took place at the point at which orbit tracing started. Starting points were selected 

to get groups of ions that were dominated by a particular trajectory type. For example, start

ing the ions with an isotropic distribution at z = 0  gives a group that has many trapped ions 

near the starting location, while no ions that start at large Izl are initially trapped.

Cross-tail drift and current
Figure 4.1b illustrates the physical manner by which the total net cross-tail drift be

comes relatively independent of the details of a trajectory and of deviations from guiding 

center motion. This figure also illustrates differences between orbits in ID and 2D models. 

Note that for orbit segments with mirror points near the Earth, particles follow almost the 

same field line as they move down to and back from a mirror point. Protons mirroring near 

the Earth with energies of about 5 keV in this magnetic field appear to simply bounce off 

the current sheet when they reach the equator (Figure 4.1a).



66

DC

N

2.5

1.5 

0.5 

-0.5 

-1.5

- a)

! j ' H ^i ; i ■ / s/ *. ■
i I.1

t

- I  ! I I I I I I I - - 1  -1- I -  I 1 I I I I

-25 -20 -15 -10 -5
2.5

LU

DC

>"
tMVv/VvVi

V/wVi'j
-0.5

-30 -25 -20 -15 -10
X, Re

LU

40 35 -30 -15 -10-20

Figure 4.1: Projections of a Standard model/5 keV proton orbit where a) and b) are started 
at (-18.5,0,0.5) and c) is started at (-16.5,0,1.5). The arrows indicate starting position. The 
box in plot a) indicates the spatial region studied.
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Figure 4.2: Projections of a Standard/15 keV proton orbit . Panels a), b), and c) are differ
ent projections of the proton started at (x,y,z)=(-15.5,0,1.0) RE. This ion passes through 
both the N=1 and N=2 resonances. The arrows indicate starting position. The box in plot a) 
indicates the spatial region studied.
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Figure 4.3: Example of a long-lasting simple figure 8  drift pattern. Panels a), b), and c) are 
different projections of a Standard model/15 keV proton started at (x,;y,z)=(-14.5,0,0) RE. 
The arrows indicate starting position.



Mirror points on the orbits immediately before and after a given current sheet in

teraction are nearly the same if the particle’s k parameter is close to a resonant value. The 

mirror points of chaotic.particles generally are different after each current sheet interaction. 

However, we grouped all resonant and chaotic particles that mirror near the Earth into the 

same category because j y(x, z ) in our region of interest is almost the same for these two 

dynamically different trajectory classes. Whenever the mirror point is near Earth, the total 

cross-tail displacement achieved in one full bounce is approximately equal to 2  gyroradii 

based on Bzo. Note that different scales are used for the x,y, and z axes in Figure 4.1, so that 

circular motion near z = 0 appears to be stretched in the y  direction. The motion of particles 

that mirror at low altitudes in 2D and 3D models is similar to the motion of untrapped par

ticles in a ID model. In all these cases, j  (x, z) is concentrated in a sheet near z = 0 that is 

much thinner than that required to self-consistently generate the standard model magneto

tail.

Figure 4.1b shows that this ion drifted part way back in the negative y  direction 

when it mirrored within the current sheet, near z = -1.5 RE,x  = -1 0 /?£ and near z = 0.7 RE, 

x  = -15  Re . In both cases, there was a substantial net cross-tail drift during the full period 

between two adjacent current sheet interactions. This is one of the most important differ

ences between ID and either 2D or 3D models. Field gradients in the x  direction result in a 

net cross-tail drift for particles that mirror in the current sheet. In the ID models, all mir

roring particles drift equal distances in the +y direction near z = 0  and in the —y  direction as 

they mirror. Self-consistent 2D and 3D models can be constructed with lower total plasma 

densities than ID models because inner mirroring particles carry a net cross-tail current in 

x dependent models.
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Figure 4.1b also shows that there was some net cross-tail drift per current sheet in

teraction during the periods when the ion was trapped at Izl <0.5  RE, beyond x  = -2 0  RE. 

This helps to explain why the bounce-averaged drift velocity is relatively weakly depen

dent on orbit type. Trapped particles make many current sheet interactions, but have a net 

cross-tail displacement per interaction that is much less than 2 gyroradii. Particles mirror

ing near the Earth have few current sheet interactions, but have a net displacement of nearly 

2  full gyroradii during each interaction.

Figure 4.1c shows another important characteristic of magnetotail current carriers. 

This trajectory is characterized by a series of events in which the ion mirrors and then es

sentially bounces off the current sheet. The cross-tail motion tends to increase modestly for 

each current sheet interaction as the ion moves into the inner tail because the ion is gaining 

energy. However, it is more important that the Earthward drift speed is decreasing at low 

altitudes. The ion moves Earthward by as much as 10 RE during the time required to mirror 

when its equatorial crossing point is near x  = -3 0  to -4 0  RE. Earthward motion is only 

about 1 Re per mirror cycle near x  = -1 0  RE. This decrease in Earthward drift is the primary 

reason that the displacement between adjacent equatorial crossing points is primarily in the 

x  direction in the distant tail and primarily in the y  direction in the near-Earth tail.

Figure 4.2a, b, and c show x-z,x-y, and y-z plots of a proton that started at (-15.5, 

0, 1.0) Re with 15 keV of energy. This high energy proton passed through both the N  = 1 

and N=  2 resonances. Resonances are characterized by symmetric orbits that involve little 

net change in magnetic moment. A resonant ion crosses the z = 0 plane N + 1 times during 

each current sheet interaction [Buchner and Zelenyi, 1989]. The K parameter of the particle 

in Figure 4.2 decreased from a little more than 0.5 at the x  = -3 2  RE crossing, which lies



71

near the N = 1 resonance, to about 0.3 at -15  RE, which is near the N = 2 resonance. Note 

that the ion crossed z = 0  twice during each of the 2  most distant neutral sheet interactions 

before it became briefly trapped, and then crossed z = 0 three times during each of the 4 

most Earthward interactions. The magnetic moment and the mirror magnetic field changed 

substantially during the crossings at -25  RE< x<  -20  RE when k  was near 0.4. This behav

ior is typical of chaotic motion. The magnetic moment happened to change relatively little 

during each of the other crossings, even though not all were very close to a resonant k .

Figure 4.3a, b, and c show x-z,x-y, and y-z trajectory projections for a proton that 

started with 15 keV of energy at (-14 .5 ,0 ,0 ). Although it is unusual to last nearly this long, 

the orbit shows that it is possible for a proton to remain trapped in a very simple pattern as 

it drifts Earthward all the way from x  = -3 0  RE to jc = -15  RE. The k  parameter changed 

substantially in this interval. This orbit is referred to as a figure 8  pattern because of its ap

pearance in the y-z projection. Figure 8  ions and other ions that are trapped near z = 0 carry 

current in the positive y  direction when they are farthest from z = 0 (at Izl >0.3 RE in Figure 

4.3c) and in the negative y  direction at smaller Izl.

4 3  The model 2-D current sheets
All of the cases considered here used 40 z boxes in the range -2  < z < 2 R£ . The

model is symmetric about z = 0  , so orbital information at equal distances above and be

low z = 0 can be combined into 20 boxes that are 0.1 -R£ thick. The folding of boxes in the 

z dimension only applies to models symmetric in z- This software feature is also available 

for models symmetric in the jc and y  dimensions but is not utilized in this study. The midtail 

region -20  < x < -14  R£ , is divided into six 1 -RE wide x  boxes yielding a total of 120 spa

tial boxes.

The velocity space of the distribution functions are split into 30 x 30 x 30 boxes in
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the yv, vy, and vz directions. The result is a 27,000-point velocity distribution function for 

each of the 120 spatial boxes. As discussed in chapter 3, the distribution functions were 

evaluated by adding the time spent for each step along a trajectory into two of the velocity- 

spatial boxes, where half of the timestep goes into the initial velocity bin and the latter half 

into the new velocity bin of the current step.

Integrating the distribution functions for each box gives the current j f(jc, z) as well 

as other plasma parameters. Adding electron and ion contributions gives the total j(x, z) 

in each box. The resulting j includes all drift and magnetization currents. In practice, the 

SCOT method uses j y(x, z) as the sole parameter in the least squares fit that selects the 

final groups of particles. The final combination therefore carries a cross-tail current which 

approximately equals that needed to generate the preselected magnetic field. In a 2-D mod

el with By = 0 and d /d y  = 0 , the required j = ( l / p o) V x B  is all in they direction. With 

the imposed Ey, both ions and electrons E x B drift in the x-z plane. Ions and electrons 

E x B drift at the same speeds in the guiding center approximation, so they are not associ

ated with a net current in regions where the guiding center equations are valid.

Figure 4.4 is an example of the library of orbit populations that are generated for a 

typical case. The figure is composed of 30 individual plots. The number of plots is based 

on there being 6  x  and 5 z starting points for the particle groups. The 6  x  starting points for 

the particle groups were x = -14 .5 , -15.5, -16.5, -17.5, -18.5, and -19.5 R£ .The 5 z start

ing points used for the different groups were z -  0 ,0 .5 ,1 .0 , and 1.5 R £ at the center of 

each of the six x-boxes, plus at z = 2 .0  R£ on field lines that cross the equator at the cen

ters of each x box. Each particle group has 1000 ion orbits with the same (x, z) starting 

position. The 30 panels in the figure portray the velocity moment of the j y(x, z) current at



all the spatial box locations. Since there are 6 jc boxes and 20 z  boxes, there are 120 points 

in each panel. The format of the individual plots will also be used in other plots. The abcissa 

is subdivided by 6 tickmarks associated with the 6 x boxes where the leftmost jc box is the 

-2 0  < x < -19  Rg range and the rightmost x  box is the -15 < x < -1 4  R£ . Within each jc 

box are the 20 points corresponding to the 20 z boxes, 0 < |z| < 2 R£ . Why was a contour 

plot not employed? The answer is twofold; one, a contour plot would smooth away features 

associated with the orbit types; and two, the plots show what features the fitting regime se

lects and rejects. Subsequent uses of the format will not be as compressed and so will be 

easier to visualize. As a further example of this scheme, the third column of Figure 4.5f is 

similar in style to the panels of Figure 4.4 and is itself rescaled to a much larger size in the 

last row of Figure 4.9.
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Selected Groups for Thick Sheet, 5 keV 
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Figure 4.5: Fitting procedure example where plots a-e are the individual ion and electron 

current groups which are combined in a weighted sum to generate the goal current sheet 

shown in plot (f)- All scales are in [nA/m ]. The injection locations are a) x  = -15.5 , 

z = 0 ; b) x  = -15.5 , z = 0.5 ; c) x  = -17.5 , z = 0 ; d) x  = -17.5 , z = 0.5 ; e) field 

aligned particles started at x=-8.837402, z = 2.0 pass through jc = -1 9 .5 , z = 0 ; f )The  

final weighted combination of the individual ion plus electron groups where the third col

umn has the goal in solid black and the fit is the jagged line.
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An example of the fitting procedure
As an example of the fitting procedure, the five groups used to generate the thick 

model/5 keV current sheet are presented in Figure 4.5. The first column of plots in Figure

4.5 show the current carried by the protons that were initially started at 5 keV. The second 

column, Figures 4.5a-4.5e, are the associated electrons for the ion groups.

The third column, Figures 4.5a-4.5e, is the combination of the ion and electron 

groups that were used to generate the best fit. Figure 4.5f is the final weighted sum of these 

groups that comprise the final current sheet. Current distributions produced by the individ

ual ion groups in the ion j y column of Figure 4.5 show the patterns described qualitatively 

in the discussion of individual orbits (Figures 4.1 to 4.3). For example, many figure 8  and 

other trapped orbits appear in the group of particles shown in Figure 4.5a, which started at 

z = 0 a tx  = -15.5 Re . This is the second of the six x-blocks from the right. The resulting 

ion current shows the characteristic negative j y at z = 0  and positive jy beyond z0, which is 

near or below 0.3 RE for 5 keV protons in the region of interest. The above current pattern 

is dominant in the starting and adjacent x  boxes (three rightmost blocks in the panel) be

cause many particles remain trapped for only a few current sheet interactions. Similarly, the 

ion j Y panel in Figure 4.5c shows currents carried by ions that started at z = 0, jc = -17.5 R E. 

The characteristic trapped particle j y(x, z) pattern here appears in the more distant x-box- 

es (blocks on the left side).

There is a net drift of all trapped ions in the positive y  direction, as shown previously 

in Figures 4.1 to 4.3. The net positive current appears in Figures 4.5a and 4.5c because the 

area under the positive j v spikes is a little larger than the area under the negative spikes. 

However, the structure of j y(x, z) clearly is dominated by the sharp positive and negative 

peaks, which are associated with magnetization currents, rather than by a small relatively
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uniform positive j y at Izl < 0.5 RE as would be predicted by the simple guiding center drift 

equation. Figures 5a to 5e are typical of the groups studied. For example, essentially any 

group of ions that is randomly selected from a generally isotropic distribution at z = 0  has 

a j Y structure that is qualitatively similar to those shown if Figures 4.5a and 4.5c.

Ions in Figure 4.5e were started at z = 2 RE on a field line that crosses the equator 

at jc  = -19.5 Re . These ions with low mirror points carry cross-tail current that is strongly 

confined near z = 0  when they first bounce off the current sheet, in x  boxes near the left side 

of the ion j y panel in Figure 4.5e. The current is less well confined during succeeding 

bounces at lower altitudes because some ions mirror closer to z = 0  or became trapped dur

ing these later interactions. Again, this j y(x, z) structure is typical of any group of particles 

that is selected to be generally isotropic far from z = 0 , regardless of the particle’s k  or dy

namical characteristics. The principal difference between particles on chaotic and resonant 

orbits is that resonant particles would maintain low mirror points for several bounces, so 

the pattern of narrow regions with strong positive j y would be maintained for a larger region 

in thex  direction. Chaotic particles become more nearly isotropic each time z = 0 is reached, 

so the group would not continue to be dominated by particles with low mirror points after 

one or two current sheet interactions.

Rows b and d in Figure 4.5 show currents carried by ions that started with an iso

tropic distribution at z = 0.5 RE, with x  = -15.5 and -17.5 RE respectively. These groups 

are dominated by outer mirroring ions beyond z = 0.5 RE. The associated j v patterns tend to 

be complex, but reproducible in all details. Trapped ions with mirror points throughout the 

current sheet are needed to broaden the current carried by 5 keV protons so they can pro

duce a sheet with a characteristic scale length of 0.5 RE or larger.
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None of the individual ion groups has a j Y structure that is similar to the goal, which 

is needed in a self-consistent model, as shown by the solid curve in the group j Y panel of 

Figure 4.5f and in the 5 keV row of Figure 4.9. The low mirror point group (Figure 4.5e) 

produces much too thin a current sheet. However, if some of the trapped particle group cur

rent (Figures 4.5a and 4.5c) is added, it will decrease the positive current very close to z = 

0 and add some positive current at larger Izl. This is the least square fitting procedure used 

in the SCOT technique, and described previously [Kaujmann and Lu , 1993]

A linear combination using all 30 particle groups that were traced for each of the 9 

cases studied would yield the best least squares fit to the j  (jc, z ) that is needed to generate 

the tail magnetic field. However, a principal goal of this study was to see which orbit types 

were essential for the production of a self-consistent current sheet. For this reason, only 

those groups that improved the fit at a 95% confidence level were retained. Of the 30 start

ing groups, only 5 to 9 were kept after imposing this requirement. The thick-5 keV case 

shown in 4.5 is used to illustrate that matching the goal current density can be done with a 

minimal number of groups.

The quality of this fit is typical of the set of 9 cases studied. Figure 4.4 shows 

j Y( x,  z ) carried by each of the 30 groups of 1000 ions that were traced for this thick model/ 

5 keV case. All ions were started so they would yield an isotropic distribution if they had 

been injected in a uniform B. The actual distribution functions are not isotropic even in the 

starting box because ions can return to this box with different pitch angles after passing 

through z = 0. Each small panel in Figure 4.4 uses the same format as Figure 4.5. It is evi

dent that no single group of particles carries a current distribution that is similar to the cur

rent needed for self-consistency, as shown by the dashed line in Figure 4.5f and the
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Table 4.1: Groups selected to make final goal j v, W =1.5 keV

X=-19.5 X=-18.5 X =-17.5 X=-16.5 X=-15.5 X=-14.5

Z=2/FA NSK K K

Z=1.5 S N N N N

Z=1.0 N NSK

Z=0.5 SK SK SK

Z=0.0 SK N SK NS

Key: Thin (N), Standard (S), and Thick (K), Field Aligned (FA)

Table 4.2: Groups selected to make final goal j  , W= 5.0 keV

X=-19.5 X=-18.5 X=-17.5 X=-16.5 X=-15.5 X=-14.5

Z=2/FA SK N N

Z=1.5 S NS NS

Z=1.0 N N NS NS

Z=0.5 K K

Z=0.0 NK SK

Table 4.3: Groups selected to make final goal j  , W= 15.0 keV

X=-19.5 X=-18.5 X=-17.5 X=-16.5 X=-15.5 X=-14.5

Z=2/FA N S NSK

Z=1.5 S N NK

Z=1.0 K N K

Z=0.5 K K SK

Z=0.0 S K N S
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larger version of Figure 4.9. The final current density obtained by combining the groups, 

as shown by the solid line in Figure 4.5f, is much closer to the required self-consistent cur

rent distribution than is j v(x, z) for any individual group. Only these five groups were re

tained in the final fit. The thick/5keV groups selected are also indicated in Table 4.3. The 

fit is significantly poorer, at a 95% confidence level, if any one of these five groups is omit

ted.

Sample cases
The final j y{x, z) fits for the thin, standard, and thick models at 1.5,5, and 15 keV 

starting energies are the dashed lines in Figures 4 .7,4.8, and 4.9 respectively. The solid 

lines are j = ( l / | l 0 )VxBmorfe/. These plots show that the j v( x , z ) which is needed to 

generate B is largest at z = 0 in each x-box, and drops monotonically as z increases to 2 RE. 

Larger currents also are needed in x-boxes closer to Earth. All of the generated current 

sheets exhibit shortfalls in total current in the further x-boxes and for |z| > 1 R E . The 

groups that were selected to make the final goal current sheets are given in tables 4 .1 ,4.2, 

and 4.3. Groups that were selected are indicated by a letter in the table cell corresponding 

to the injection location where (N) indicates the thin model, (S) the standard model, and (K) 

the thick model. The (FA) designation indicates that ions were started z = 2 R£ at an x 

location along a field line that would intersect the x box location at z = 0 R£ . These tables 

show that each of the 9 cases required at least one trapped (z = 0 R £ ), one central mirror

ing (z = 0.5, 1.0, or 1.5 R£ ) group, and one outer mirroring (z = 2 R£ ) group.

Figures 4.6 and 4.10 are the j x and j r current densities for all the cases studied. 

Although they are not used in the fitting procedure, the results are important for any discus

sion of force balance and continuity. These topics are left to the next chapter. It can be noted 

now though that these current density components all give results that track in magnitude
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and general shape within their respective starting energy groups. This is not unexpected 

since the kappa values, which are proportional to the energy, are close within each group.

An individual particle in the tail is accelerated as it drifts Earthward. Acceleration 

tends to increase p zo and reduce K for the particle. As a particle reaches the more dipolar 

field lines of the inner tail the radius of curvature of the magnetic field increases which in 

turn increases K . These two competing effects, when combined with other variations in 

Bzo and R c , lead to a minimum K somewhere in the midtail region. As inferred by the T89 

model, the minimum K of the principal current-carrying ions usually appears to be located 

near geocentric solar magnetospheric x = -20  R£ in the quiet time current sheet. This 

middle tail region thins during substorm growth phase and often becomes thinner shortly 

after substorm onset. Under extreme circumstances, the k  of even thermal electrons may 

occasionally decrease to unity.

Figure 4.11 shows the average K as a function of x  for each of the nine cases run. 

All cases have a minimum around x  = -17  R£ which was seen in Figure 2.8 where the 

model K was calculated. These minima are all close to or lower than the K = 0.52 reso

nance ranging from 0.3 for the 15 keV starting energy cases to about 0.4 for the 5 keV start

ing energy particles and up to the resonance region for the 1.5 keV cases. All three energy 

groups have the same 50% drop off in kappa from the outer tail to the minimum. This is 

slightly more rapid than the 40% drop of Figure 2.8 where constant IkeV energy ions were 

assumed.

Since the ion energies change as particles drift in the uniform Ey = 0.3 mV/m or 1.9 

kV//?£ field imposed on the magnetotail models, the more rapid drop in K can be attributed 

more to the ions increasing in energy as they drift in the y  direction. At x  = -40  R £- the
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low energy starting cases are around 0.72 keV and increase to an average of 1. 6  keV at the 

minimum. The 5 keV starting energy cases are about 2.1 keV at x -  -40  R£ and increase 

to 6.5 keV at the minimum. The 15 keV starting energy cases are about 7 keV at 

x = -40  R£ and increase to 17.5 keV at the minimum. This means that the ions do not 

travel more than a few Earth radii in the y  direction in the midtail region.

Current Distributions
The dominant j  current distributions seen in Figures 4.7-4.9 can be understood by 

referring to the orbit types shown in Figures 4.1-4.3. For example, an ion following the fig

ure 8  pattern in Figure 4.3c moves in the negative y  direction each time it crosses z = 0 

and in the positive y  direction at the tops and bottoms of the figure 8  pattern. The dividing 

point at which vy and j y are zero is near za = m v /[ q B x(z0)] [Kaufmann and Lu, 1993]. 

Many figure 8  orbits appear in a group of particles that starts with an isotropic distribution 

at z = 0 . Most particles remain trapped for only a few current sheet interactions, so the 

figure 8  orbit pattern is dominant only near the starting field line. Groups in the left hand 

column of Figure 4.4 show the characteristic negative j y at z = 0 and positive j y beyond za, 

which is near or below 1/2 RE for the 5 keV protons in this -20  < x  < -1 4  R£ region of 

interest. The above current pattern is dominant in the starting and adjacent* boxes.

The right hand column of plots in Figure 4.4 is labeled differently from the other 

columns. These ions started at z = 2 RE on field lines that reached the equator at the indi

cated * = -1 4 .5  to -19.5 Re * It is clear that no ions that start this far from z = 0 can initially 

be trapped inside the principal current sheet. Owing to the mirror effect, all these ions have 

relatively small pitch angles when they first approach the neutral sheet. Such ions with en

ergies of 5 keV in the region of interest usually were reflected somewhat like the ions at * 

= -13  and -15  RE in Figures 4.1a and b, and at -29  and -32  RE in Figure 4.2. These ions
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carry strong positive j y in a thin sheet at Izl < za. The right column in Figure 4.4 shows the 

most intense thin current distribution peaked near z = 0 near the starting field line. If the 

ions continue to follow such orbits, they tend to drift substantially between current sheet 

interactions, so the current pattern is often not seen in an * box several earth radii away.

Trapped ions that mirror at z = 1.5 RE, for example, tend to carry positive current 

near z = 1.5 RE and negative current one or two gyroradii closer to the neutral sheet, near z 

= 1.0 Re . A substantial number of such trapped ions are found in a group that is started iso- 

tropically at z = 1.5 RE. A number of the panels in the central 3 columns in Figure 4.4 ex

hibit positive j Y near the starting Izl and negative j Y closer to z = 0. The j v patterns tend to be 

complex, but very reproducible in all details, for groups of particles that start with isotropic 

distributions at z = 0.5, 1.0, and 1.5 RE. Trapped ions with mirror points inside the current 

sheet are needed to broaden the current carried by 5 keV protons so they can produce a 

sheet with a thickness of 1 RE or larger, as is often observed. The first and last columns in 

Figure 4.4 show that it would not be possible to broaden the current sheet beyond approx

imately z = ±0.5 Re with just reflected and figure 8  type 5 keV ions. We therefore conclude 

that ions that mirror well away from the neutral sheet, ions that mirror in the current sheet, 

and figure 8  ions all are needed to self-consistently generate our standard model tail using 

5 keV protons.

Uniqueness
One feature that the SCOT solutions have in common with electrostatic BGK solu

tions is that neither method generates a unique distribution function. Several properties of 

the electron and ion distributions can be picked arbitrarily when generating a self-consis

tent current sheet. For example, the original Harris model and most of its later modifica

tions assume a uniform ion cross-tail drift velocity vIV and a uniform electron cross-tail drift
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velocity vev throughout the current sheet. There is much less freedom in the more complex 

2D current sheet because the same ions and electrons must carry the preselected current dis

tribution as they drift and are accelerated throughout the region of interest. Nevertheless, 

the SCOT technique does not provide a unique plasma sheet.

As noted earlier, the SCOT procedure was constrained by introducing satellite data. 

Both the 1-D and 2-D models used a preselected magnetic field. This choice is based on the 

assumption that the magnetic field has been globally modeled more accurately than any 

other magnetotail property. Electron and ion starting energies and the cross-tail electric 

field also are preselected based on observations. Solutions have been generated for a range 

of energies and electric fields that spans the range observed in the middle magnetotail. Al

though current sheets can be generated using energies above and below the average ener

gies observed, such unrealistic choices require particle densities that disagree with 

observations.

Once the above basic selections have been made the overall structure of the final 

distribution functions is reasonably well defined. There is, naturally, no need to select the 

specific 30 starting positions that are shown in Figure 4.4. However, it is necessary to in

clude some groups of particles that mirror far from z — 0  and some groups that are trapped 

within the current sheet if we are to generate a sheet with a characteristic thickness of 1 RE. 

Groups with starting points at z = 2 Rt: are dominated by particles that mirror far from the 

current sheet, and carry their principal j y in a very narrow sheet near z = 0 . Much poorer 

least squares fits are obtained if either of these orbit types is not included. All groups that 

are retained in the final model must improve the fit with a 95% confidence level. This is to 

be sure that a group with similar properties is essential. Better fits can be obtained by just



adding more and more monoenergetically starting groups or to use particles started with 

maxwellian distributions. However, the goal here is to understand the basic requirements 

that are necessary to generate a realistic magnetotail current sheet rather than to produce 

the smoothest possible model.



Chapter V

FLUID PARAMETERS AND FORCES

5.1 Introduction

This chapter presents the parameters that are most easily compared with published 

satellite measurements for the -2 0  < x  < -1 4  R£ region as well as an examination of 

whether the SCOT method can achieve force balance and energy conservation in the model 

region. Sample results from nine runs of the SCOT technique using the thin, standard, and 

thick magnetotail models and 1.5,5, and 15 keV starting energies are shown. The standard 

5 keV set is used as a general representative case throughout this chapter to provide more 

detail of some parameters and forces.

5.2 Fluid Parameters 

The plasma number density

The solid lines in Figure 5.1 are contours of constant n ;(x, z) obtained by integrat

ing the distribution functions of the final combination of particle groups. The dashed gray 

lines are magnetic field lines of the standard model. As discussed in Chapter 3, the density 

is fit to a polynomial for subsequent use in electron current calculations, an example of 

which is given by Figure 5.2. The density is for the most part constant along field lines near 

the neutral sheet within |z| < 0.75 R£ so the resulting polynomial readily achieves the same 

curvature as the more jagged actual data. Any problems near the neutral sheet attributable 

to a poor fit of n-t{x, z ) directly affect the electron current. However, since the electron cur

rent contributes a fraction to the final current sheet groups, little impact is seen.
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Baumjohann et al. [1989] binned AMPTE/IRM data according to satellite location 

and the AE index. The two spatial bins that are most relevant to our model of the current

sheet were together referred to as the inner CPS. The region closest to the neutral sheet was

2 2 2defined by Bxy <7.5 nT, where Bxy = Bx + By , and will be referred to as the inner current 

sheet. The portion of the inner CPS farther from z = 0 is defined by 7.5 < Bxy < 15 nT, 

and will be referred to as the outer current sheet. The AMPTE/IRM satellite did not make 

measurements at the statistically averaged location of the neutral sheet [Fairfield, 1980] in 

our region of interest during the 1986 magnetotail data collection periods. However, many 

neutral sheet crossings were observed when the neutral sheet was displaced from this aver

age location. The entire plasma sheet is known to undergo substantial motion in the z direc

tion. No obvious dependence of plasma parameters on the neutral sheet displacement from 

its average location was noted in a brief comparison with 1985 data, which had better or

bital coverage. The inner CPS data show an average density of about 0.3 cm ' 3 with little z 

dependence.

Kistler et al. [1993] sorted AMPTE/IRM data taken at radial distances beyond 15 

Re according to substorm phase and to distance from the neutral sheet. This study used a 

more complex method to estimate distance from the neutral sheet. The plasma beta, or ratio 

of particle to magnetic field pressures was determined for each data point. The highest P 

is expected near z = 0, and the lowest P in the lobes. Points were binned into 3 equal groups, 

labeled inner, middle, and outer plasma sheet. With respect to sorting by substorm phase, 

it is most reasonable to compare our quiet time model to data taken before substorm onset. 

Densities were about 0.4 cm- 3  in the inner and middle third, and about 0.2 cm- 3  in the outer 

third of the plasma sheet [Kistler, private communication].
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Huang and Frank [ 1994] sorted ISEE 1 data according to distance from the Gosling 

et al. [1986] average neutral sheet location. The satellite orbit provided good coverage of 

this average location. The average observed density was approximately 0.25 cm- 3  during 

both quiet and disturbed times, with little consistent 2 dependence.

The above measurements involved statistical averages over a number of orbits. An 

absolute distance scale was not determined in these statistical treatments. For example, it 

usually was not known when the satellite was 0.5 RE, 1 RE, 1.5 RE, or any other specific 

distance from the center of the neutral sheet. Only a few analyses have been carried out 

which determined the instantaneous structure of the current sheet during quiet conditions 

in our region of interest. These studies measured the current sheet structure using both ISEE 

1 and 2 spacecraft. Of these, we could find only two that also described plasma density and 

temperature variations within the current sheet. McComas et al. [1986] studied 3 crossings 

that were associated with the passage of a strong interplanetary shock front. It was conclud

ed that the plasma density, temperature, and pressure changes were consistent with approx

imate plasma plus magnetic field pressure balance. However, temporal changes in the 

current sheet structure and orientation were so large during this orbit that it was not possible 

to determine a consistent density or temperature profile. Zhou et al. [1995] found two pe

riods during which a number of current sheet crossings took place with the spacecraft well 

positioned to measure density and temperature gradients. They concluded that both density 

and temperature decrease by a factor of two as the spacecraft moved 1.5 current sheet thick

ness scale lengths from z = 0. The average half thicknesses on this orbit were 2 RE when 

the IMF pointed northward and 0.5 RE when the IMF pointed southward.

The SCOT model number densities nearest the neutral sheet (Figure 5.3) are close



97

to or slightly below the observed values. The dropoff of n(x, z ) with increasing z is similar 

to that measured by Zhou et al. [1995] but more rapid than the dropoff suggested by the 

statistical studies. The model density depends on the starting ion energies used. Densities 

for the standard model were 3 to 4 times larger when 1.5 keV protons were used instead of 

5 keV protons (column 1 of Figure 5.3), and about half as large when 15 keV protons were 

used (column 3 of Figure 5.3). Since low energy particles carry little current for a given 

density, filling in the low energy portion of the model distribution function to make it more 

realistic will only slightly increase the plasma density that is needed to carry the necessary 

j Y. The density in the thick model with 5 keV protons was similar to that of the standard 5 

keV model, while densities near z = 0 were about 50% larger in the thin-5 keV model. The 

earlier self-consistent ID model with 3 keV protons [Kaufmann and Lu, 1993] required 

particle densities as high as the 2D model with 1.5 keV protons.

Figure 5.1 shows that the model density is nearly constant along magnetic field lines 

near z = 0. However, field lines cross several contours of constant density in the 1< z < 1.5 

Re region. As described previously, a variation of density along a field line required the 

introduction of a parallel electric field if isotropic guiding center electrons were to main

tain charge neutrality with the non-guiding-center ions.The density changes seen along 

field lines at z < 1 RE and at z > 1.5 RE in Figure 5.1 were typical of the changes seen 

throughout the region of interest for the other 8  cases studied. No other case showed as 

large a field-aligned density drop as that seen at 1< z < 1.5 RE in Figure 5.1.

Density variations are important because non-guiding-center ions and guiding cen

ter electrons generally are not distributed in the same manner along a magnetic field line. 

The electron density is constant along a field line if the equatorial pitch angle distribution 

is isotropic. This tendency for different variations of ion and electron densities along a field
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line results in the generation of a parallel electric field to maintain charge neutrality. Note

that the largest ion density variations along field lines in the SCOT results are found at

|z| > 1 R£ , and are caused by density variations in the x  direction. Both AMPTE/IRM and

ISEE 1 data showed density increasing closer to the Earth.

Electron considerations 
A number of assumptions were made to calculate the current carried by Maxwellian

electrons. Most of these assumptions have already been described because they were used 

in the ID calculations [Kaufmann and Lu, 1993]. A polynomial fit was made to both 

n,(x, z) and the ion temperature Tt(x, z ) for each group traced. The electron number 

density ne(x, z) was set equal to the polynomial fit to «•(x, z) so the resulting plasma 

would be approximately neutral. Since ne would be constant along field lines if electrons 

were isotropic at the equator, a first order parallel electric field was added to the zeroth 

order uniform Ev. The Boltzmann relation

ne(x, z) = ne( x 0, z0)£yzp[-qe§ / T e] (5 .1 )

was used to calculate the electric potential difference (j) between each (x, z) box and a ref

erence point (xa, za) on the same field line. The electron temperature Te in keV was taken 

to be 1/7 of a polynomial fit to the group ion temperature [Baumjohann et al., 1989]. Since 

electrons are much less energetic than ions, electrons were influenced much more strongly 

by the parallel electric field than were ions. Equation (1) only gives the distribution of <|) 

along a field line, so only determines the parallel electric field. Since E\\ is distributed dif

ferently along adjacent field lines, some E± in the x-z plane must also be present. We used

a variational approach to determine this E± . It was assumed that EL will develop so that
2

the energy density eaE  is minimized. This assumption completes the definition of E. The 

total potential drop between z = 0 and z = 2 R E was only about 200 V or less. This potential 

difference is similar to the values obtained in our previous ID model. To be self-consistent
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ion orbits must be traced again in the magnetic field with this added . As was found in 

the ID case, a 200 V potential drop had little effect on 5 keV protons.

The k  for such a group of electrons is 11 times the k  for the associated proton group, 

so all electron motion is well approximated by the guiding center assumptions in the mod

els studied here. The electron cross-field drift was calculated from

based on the polynomial fits to ne(x, z ) and the isotropic Pe = ngT e(x, z) . This proce

dure yielded the electron j y(x, z ) for each group, as shown in the middle column of Fig

ure 4.5. The addition of electron and ion currents gave the total j y(x, z) for each group, as 

shown in the right column of Figure 4.5.

The above procedure, which assumes isotropy and the presence of £ M , is not the only 

one that could be used to include electrons. Instead, it is possible to produce charge neu

trality along field lines with E M = 0  by adjusting the angular distribution of electrons at the 

equator. Substantial electron anisotropies involving 7j| > T± have been observed in the 

central plasma sheet [Hada, et al., 1981; Paterson et al., 1995], though most observations 

have reported approximate isotropy at z = 0. As an example, a biMaxwellian distribution at 

the equator yields a density variation along a field line of

where na and Ba are the particle density and IBI at the equator. When Eu = 0 or (j) = 0 

everywhere, the density varies by a factor of Ti/ T 1 as one moves from the equator to the 

ionosphere. Therefore, T ^ / T  L = 2 would produce a density at the edge of the current 

sheet that is nearly twice the density at the equator.

V7\r> E x B(B ■ V)B + neqe— — (5.2)

(B s _  ________nQ1_II________
nK ) -  T± + (T h- T ±)(B 0/ B )

e x p [-9 (j) /rM] (5.3)
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An electron distribution with very abrupt pitch angle variations would be needed to 

However, it is difficult to find the necessary equatorial angular distribution that is needed to 

produce charge neutrality everywhere along a field line when an arbitrary ion density vari

ation n(B) is specified, maintain charge neutrality in this case if £ || = 0. The method used 

in the present analysis is much easier to implement and results in reasonable distribution 

functions for all cases studied. Since electron cross-tail currents are small in sheets of the 

thicknesses used here, this simple method should be adequate.

Temperatures

The first and second columns of Figures 5.6-5 . 8 show the average parallel and per

pendicular temperatures. Column three shows the T ^ /T L ratio and column four the total 

temperature. Unlike the earlier ID application of the SCOT method [Lu, 1993] which had 

a large anisotropy at the edge of the current sheet, the new 2 D models are much more iso

tropic with a range of 1.0 < T ^ /T ± < 1.4. Since strong ion streaming or large anisotropies 

at the edge of the current sheet are not an observed feature, the 2D models more closely 

resemble the actual magnetotail.

The standard 5 keV model most closely resembles the published observations for 

the pre-substorm onset time period. However this says more about the actual thickness of 

the midtail during the observation time rather than anything about the validity of the other 

models and starting energies. These other models may be applicable at different phases of 

a substorm. Specifically, Baumjohann et al. [ 1989] observed an average inner plasma sheet 

temperature of 4 keV in our region of interest, with slightly lower values during quiet times. 

Kistler [private communication, 1995] found temperatures dropping from 4 keV in the in

ner plasma sheet to 2 keV in the outer plasma sheet before substorms. Zhou et al. [1995]
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found approximately a factor of two drop in temperature when moving 1.5 thickness scale 

lengths from z = 0 . The calculated T = ( 7 ’1 , + TL2 + T^)/3> averaged over the region of 

interest drops from about 5.0 keV to about 2.75 keV, which is close to the observed tem

perature decreases. Since the starting ion energy is one of the preselected parameters, the 

absolute ion temperature in the model can easily be changed. As noted above, lower tem

peratures will increase the required density, so a small reduction in starting energy would 

slightly improve the agreement with both the calculated n(x, z) and T(x, z) . Thus it 

could be possible to select a set of particle groups to fit a specific observation.

Figure 5.9 is the model pressure, which is given by p  = nkT. Both the standard and 

thick cases exhibit similar magnitudes in their pressure profiles, in contrast the thin cases 

are all higher than the other two sets of cases. Consequently the plasma p of the thin cases 

is seen to drop more rapidly. Figure 5.10 shows the plasma beta or particle/field energy 

density ratio. The observed P [Baumjohann et al., 1989] dropped from approximately 20 in 

the neutral sheet region to 3 in the outer current sheet, and 0.3 in the outer plasma sheet. 

Results from all 9 of the cases studied here showed similar decreases with P = 20 to 100 

at z = 0 and P = 0.1 to 0.5 at z = 2 R£ .

Both the model and quiet time observations showed that the ion distribution functions are 

nearly spherically symmetric. The u, is produced by a small shift of several-keV ions. The 

contours of constant / , ( v )  remain nearly spherical. However, these contours are displaced 

slightly, relative to the thermal speed, in the bulk flow direction. Electrons drift slowly in

Bulk flow

The model ion bulk flow velocity is shown in Figure 5.11 and is given by

(5 .4 )
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the negative y  direction, so they make a small addition to the ion current.

Detailed examination of / , ( r ,  v) shows two features that result in a bulk flow. The 

principal cause of ion Vv is an asymmetry in the nearly monoenergetic spherical shell of 

ions in our model. Ions going east and west have the same energies, but there are more go

ing east. This behavior is associated with the large eastward displacement of ions, especial

ly near z = 0, that is evident in Figures 4.2 and 4.3. This net positive ion Vy produces most 

of the cross-tail current, with eastward electron drift causing the rest.

The nature of Vx shown in Figure 5.1 la  is substantially different. This component 

is primarily field aligned except very near z = 0, where E  x B drift dominates. The model 

distribution function away from z = 0  shows that the entire spherical shell experiences a net 

shift in the positive V,. direction, so that ions moving Earthward are slightly more energetic 

than are those moving tailward. A less important angular asymmetry also is sometimes seen 

in the opposite direction, with a larger number of ions moving tailward than Earthward. 

This small angular asymmetry reduces the net Earthward Vx , particularly near z = 1 RE in 

Figure 5.1 la. A positive ion Vx is commonly seen in our region of interest in both AMPTE/ 

IRM [Baumjohann et al., 1989] and ISEE 1 [Huang and Frank, 1994b] data.

In a ID model, Ev is transformed to zero in the deHoffman Teller reference frame 

which moves Earthward at a speed Ey/Bz0 based on Bz at z = 0. There is no reference frame 

in which Ey is zero everywhere in a 2D model. However, as seen in Figure 5.12, the nine 

cases examined trend like the deHoffman-Teller velocity but with lower magnitudes. The 

low energy particles do well with the thin model, differing from the E / B zo speed by an 

average of 20 percent, but deviate by more than 30 percent in the thick model case. In con

trast the 15 keV particles do better with the thick model with an average 15 percent devia-
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tion and worse with the thin model with an average 30 percent deviation. The particles of 

the 5 keV models have the least difference in tracking the Earthward drift for all three mod

els, although at about a 15 percent deficit from the Ey/ B zo speed. In all nine cases the cor

relation improves Earthward of x=-17 RE. It can be concluded that Ey/ B zo produces a 

rough estimate of Vx dependent upon the dominant particle population of the specific 2D or 

3D current sheet model.

Figure 5.14 shows that the average v. is similar for all nine cases. The effect of the 

gradient and curvature drifts can be seen in Figure 5.13 which shows that the average v 

correlates with the starting energy.

The single particle orbits show the physical origin of the strong field-aligned drift. 

The effect is produced by ions that mirror within the current sheet. For example, the ion in 

Figure 4.1a moved approximately 5 RE Earthward, primarily along B as it went from x = -  

19 Re , z  = 0.5 Re to a mirror point at x  = -1 4  RE. The ion then moved only about 2.5 RE 

tailward from the mirror point, primarily along B, until it returned to z = 0.5 RE. The net 

2.5 Re Earthward motion at z > 0.5 RE contributes to a generally field-aligned bulk flow.

A small net drift toward z = 0 averaging about 20 km/s also is seen in the model Vz. 

This is primarily E x B drift. The model Ey = 0.3 mV/m electric field produces a 20 km/s 

drift toward z = 0 in a region with Bx = 15 nT. Electrons and ions E x B  drift in the same 

direction, so these contributions to the current tend to cancel in the outer current sheet, 

where the guiding center approximations are valid.

Although it does not affect the SCOT analysis, which is based only on j v, electrons 

were assumed to drift along field lines at the same speed as ions. This assumption was re

quired to make V • j = 0 for electrons, and also so there would be no Birkeland current.
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No field aligned current is expected in the present steady state model with essentially no y 

dependence in the region of interest.

5 3  Force Balance

Stress and pressure tensors

This section presents the tensors that were calculated and the conclusions that were

drawn for the standard / 5 keV model. These tensors are needed to determine how nearly 

pressure balance was attained by the SCOT calculations. The ion stress tensor or kinetic 

pressure tensor is

T i, ap =  '” / J v<xv p / ; ( v M 3V =  ap +  P / “ / , a “ /.p ( 5 ‘5 >

where

“ «,a = ^ J va / / ( v )rf3v (5 -6 )

p . \ap =  m « j K c - “ « , « ] [ v p - “ «,p] f j ( y ) d 3 v  ( 5 . 7 )

In the above, va is a Cartesian component of the particle velocity, ui a is a com

ponent of the ion bulk or convection velocity, m , is the ion mass, n, = ne = n is the density 

of ions and of electrons, and p, = is the ion mass density. The stress tensor T? a p for 

particle species s is separated into portions associated with bulk flow p ?ws a n? p and with 

pressure as seen when moving with the bulk velocity P s a p so the importance of these 

physically distinct terms can be compared. The ion stress tensor depends only upon the cal

culated distribution function / , ( v ) .
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Figure 5.15: Electromagnetic forces versus the JxB forces, standard/5 keV case.
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Figure 5.17: Inertial versus total pressure, standard/5 keV case.
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The electromagnetic stress tensor depends only upon the model electric and mag

netic fields [Jackson, 1975, p 239]

r ™  = e „ V %  + ; f Ba Bp - 51*0
e„E E + — B B 

Vo
5„p (5-8)

A comparison of forces associated with the electromagnetic and particle stress ten

sors provides a check on the self-consistency of the model calculations.

Ideal steady-state self-consistent current sheet and the Vlasov equation

We first show that a model current sheet which is generated by the SCOT technique

will ideally result in force balance, i.e., the forces associated with the ion plus electron

F Mstress tensor 7 ^  should equal the forces associated with Ta^ if self-consistency has been 

attained.

The Vlasov equation is based on the assumption that each particle follows an un

perturbed orbit in the average field produced by all other ions and electrons. The SCOT 

technique explicitly follows the unperturbed orbits. This method therefore provides a way 

to solve the Vlasov equation provided the final plasma sheet is self-consistent in the sense 

described previously. The MHD force balance or momentum equation has been shown to 

be consistent with the Vlasov equation by taking its first velocity moment [e.g. Spitzer, 

1962 p 155]. For particles with charge qs this gives

3 3
^us, a  v 1 ^  s> Pa ^us ,a  , v 1 PHn m  — — + > - — K = n m .-rr— + n m u ■ V)m. „ + > =— ^

dt  p = 1 d t  p = , 3*P (5-9)

= nA £ a + ( j.vx B )a 

Ion and electron equations are added to get the total plasma momentum equation. 

When adding ion and electron terms it is assumed that the magnetotail is charge neutral and 

that terms of order m e/m j  can be neglected relative to unity, e.g. the mass density is
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p = m ini + mene = n ijfi. Electrons in the tail have only about 1/7 the energy of ions, so 

that the bulk drift velocities satisfy u e < u ; in a quiet time 1 RE thick tail even though the 

total particle velocities satisfy \ e » v ( . Electron drift currents can become more important 

in much thinner tails, but such models will not be considered here. As a result, electron ef

fects are retained only in the P a p and j terms of (5.9) yielding

p“«>+ i  3 °  = p 3 “ + p<“ - v >“« + i  § “ = ( j x B , “ ( 5 -10)(3= 1 P p= 1 P

where pu = + m eneu e = p u ;-; j = j e + j,; and P a(3 = Pe ap + P- a p . The electric

field forces cancel if the plasma is exactly neutral, and the continuity equation has been

used to derive (5.10). If a truly self-consistent model was obtained, then (1 / p o)VxB -

eod E /d t  can be substituted for j and the magnetic field cross product can be expanded

yielding the usual magnetic field pressure and tension forces. The present work involves

only steady state current sheets, so from here on it is assumed that d /d t  = 0 . Therefore,

in the ideal steady state case the SCOT method results in balance between the calculated

particle terms on the left side of (5.10)

3

P ( U V )M(X+ £
3P Pa

p= 1 p
j —V P 2 - — (B ■ V)B 

■2 H0 Vo
( 5 . 1 1 )

and the preselected magnetic field forces on the right side.

It sometimes is preferable to consider each species separately because we treat ions 

through orbit tracing and electrons through the guiding center approximation. It was noted 

above that the electron and ion nqE forces cancel through charge neutrality and that ion 

and electron guiding center E x B drift currents also cancel. To examine ions and electrons 

separately, it is useful to note that these statements are equivalent to the observation that
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the portion of the j  x B force attributable to E x B drift for either species exactly cancels 

the nqJL force for that species, provided E • B = 0 . The above comments suggest a series 

of comparisons that can be used to check how well force balance is achieved in our approx

imately self-consistent model.

Overall force balance. All quantities on the left sides of (5.10) and (5.11) are direct

ly calculated for ions, including the magnetization current effects of complex non-guiding- 

center orbits. Electrons are assumed to be isotropic. The average ion pressure

P iU .z )  -  \ l P u „  + + (5-12)

is evaluated for each box, and a polynomial fit is made to the resulting array. The polyno

mial fit is used in Pe(x, z) = (1 / l ) P f x ,  z)  to calculate the electron pressure [Baumjo- 

hann et al., 1989], The usual guiding center drift equation [e.g. equation (7) of Kaufmann 

and Lu, 1993], with E x B  drift included, is used to evaluate j e(x, z) and therefore the 

convection speed u e = j e/n q e . This provides all the electron parameters needed to eval

uate the left sides of (5.10) and (5.11).

The electromagnetic force can be written either as

3 E M

F r = l 3 - f  (5 . .  3)
P= 1  P

or, for the 2-D model, as the right side of (5.11). By Ampere’s law, this force should equal 

j  x B if electrons and ions in the model have been selected so they self-consistently gener

ate the preselected field. However, we use only j y(x, z) to select the ion and electron 

groups that compose the final distribution, and the fits are only approximate. The model 

also has noy  dependence. Several potentially important terms such as dT s a p /5 y  therefore 

are not present in the analysis. For example, it is not possible to study the diversion of cross
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tail current to the ionosphere in this model. By symmetry, it is most likely that there is little 

y  dependence in the magnetotail near midnight, suggesting comparisons with observations 

in this region. However, even at midnight it is possible to have some y  dependence, in the 

average ion and electron energies for example. The above considerations suggest a number 

of tests that should be made to determine whether the model is realistic.

The first test is to compare all components of (5.12) or the right side of (5.10) with 

the right side of (5.11). This comparison will test whether it is adequate to ignore the sub

stantial x and z components of ion and electron currents because they are primarily associ

ated with E x B drifts, and therefore should nearly cancel. The solid lines in Figure 5.15 

show the three components of the required F EM calculated using (5.8). The dashed lines 

are components of j  x B calculated using currents carried by the ions and electrons. Results 

are shown as a function of z for the six x-boxes. Derivatives calculated using finite differ

ences do not tend to be smooth, as is evident near z = 0  for all the force plots.

The y  component of j(x , z) contributes to the x  and z components in Figure 5.15. 

The electron current has large x  and z components primarily as a result of E x B drift, and 

a general Earthward drift also is evident in the complex ion trajectories. These currents pro

duce most of the y component of F EM . The y  component represents the difference between 

a positive contribution from electron drift current, which is based on the smooth polynomi

al fit to pressures, and an unsmoothed negative contribution from ion currents. Since the 

magnitude of the y  component is much smaller than the other two components it is plotted 

at a different scale giving it the appearance of being more jagged. Figure 5.18 explicitly 

shows electron and ion contributions to the j  x B force. In general, it is encouraging to find 

that the goodness of fits to all components of F EM are comparable to the accuracy with
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which the model j y(x, z) agrees with the desired j Y in the original fitting procedure.

E MAnother test involves comparing F with the left side of (5.11). This provides a

direct comparison between electromagnetic forces and particle forces. The solid lines in

E MFigure 5.16 again are F , and the dashed lines are the ion plus electron components of 

all particle stress tensor forces. The agreement of each component again is comparable to 

the quality of the fit in our original selection of j y(x, z) .

Finally, Figure 5.17 separately shows the convection and pressure tensor compo

nents of the ion stress tensor force. The electron convection term is negligible and the elec

tron pressure term is approximately 1/7 of the ion term. It is evident that the modest steady- 

state bulk flow associated with an 0.3 mV/m cross tail electric field is unimportant to a 

study of force balance. Much more rapid flow is observed during bursty bulk flow events 

[Angelopoulos et al., 1994], so the convection term is likely to be important at times.

5.4 Energy Flow

Energy transfer

The total energy density of the fields U , is given by equation (5.14). The Poynting 

vector, denoted by S in equation (5.15), represents the rate of electromagnetic energy flow

U = e0E2 + —  B2 ( 5 . 1 4 )
K

S = — E x B  ( 5 . 1 5 )

Poynting’s theorem is

^  + V S  = - J E  ( 5 . 1 6 )
at

The net electromagnetic energy flux flowing into a unit volume, -V  • S , is calcu



lated using the preselected fields. At steady state, this should equal - J  • E , the rate at which 

all particles in the unit volume gain energy. This latter quantity depends on currents carried 

by ions and electrons in the model magnetotail. Figure 5.19 is representative of the results 

found for all nine cases and it shows that the comparison is comparable to the accuracy 

found in the force balance tests.

Energy distribution

The kinetic energy gained by ions and electrons is distributed between flow and in

ternal energies. In order to make a clear distinction between the flow and internal energies, 

it is common to separate the particle stress tensor into the ideal or “dry fluid” component

T^ a p = m snus a » s p + F s8 a p and the remaining anisotropic and off diagonal or viscous

component 7^ a p = Ps a p -  P ?8 a p . This separation of ideal and viscous pressure elements

also is useful because the tail magnetic field model used is one of a class that is referred to 

as “equilibrium models” . This term means that it should be possible to create approximate 

force balance using isotropic distribution functions.

Energy balance in the magnetotail for each species is given by considering the flow 

and thermal energy densities [Fetter and Walecka, 1980]

is the internal or thermal energy. Thermal diffusivity has been omitted for the collisionless

( 5 . 1 7 )

a, p = 1 a

where

( 5 . 1 8 )



126

model used here. The rate of change of the total energy density, given by the left side of 

(5.17), is zero in the steady state model. The six terms on the right side of (5.17) are, re

spectively, the net flux of bulk flow energy associated with plasma flow into and out of a 

fixed unit volume, the similar flux of internal energy, the rate at which work is done by iso

tropic pressure forces on plasma flowing into and out of the volume, the total work done 

by off diagonal or viscous forces on plasma flowing into and out of the volume, heat con

duction , and the transfer of electromagnetic energy to particles. The off diagonal or viscous 

electron terms are all zero in our model.
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Figure 5.20: Contributions by term to the energy balance equation where; a) is the net flux 
of the bulk flow energy; b) flux of the internal energy; c) work done by pressure forces; d) 
heat flux; e) sum of the contributions of a)-d); and f) the transfer of electromagnetic energy 
to the particles. This data is from the standard/5 keV case.
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Flow energy and internal energy in a fixed box must separately be constant in the 

steady state model. This separation permits a study of the importance of non-guiding-center 

aspects of energy dissipation. In a guiding center model, all terms on the right side of (5.17) 

except the second add to the flow energy density. Two additional terms

p , ( V - „ , ) +  £  K a in h *  ( 5 - 1 9 )
a , p = I a

are needed to separately study flow and internal energy conservation. These two terms in

volve the conversion between thermal and flow energy within the unit volume, but involve 

no net work done on all particles in the volume taken as a whole.

The first term in equation (5.19) is the work associated with compression. The sec

ond term in (5.19) is the energy dissipated or converted from flow to thermal energies with

in the volume by viscous forces. The second term on the right of (5.17) minus the two terms 

in (5.19) equal the rate of change of internal energy density, so must add to zero in the 

steady state model. Similarly, the remaining 5 terms on the right of (5.17) plus the two 

terms in (5.19) must add to zero to produce steady bulk flow. This can be seen in Figure 

5.20.

Figure 5.20 shows all the terms of equation (5.17) that can be calculated directly. 

Given the coarseness of the 6  xbox grid and the effects of finite differencing, the results for 

each x box were smoothed once and then averaged together to create one representation of 

the terms of the energy balance equation. The curves in Figures 5.20a-5.20c show the first 

three terms on the right of (5.17); a) is the net flux of the bulk flow energy; b) flux of the 

internal energy; and c) the work done by pressure forces. The flow of energy associated 

with plasma flow into and out of a fixed unit volume is negligible in relation to all the other
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terms. Figure 5.20d shows the heat flux term on the right of equation (5.17). Figure 5.20e 

is the sum of the first four terms. The fifth term was zero as previously stated and so is not 

plotted. Energy balance requires that Figure 5.20f, the j • E term of equation (5.17),should 

be the same as Figure 5.20e. Despite the noisy nature of the calculations, energy balance is 

seen to be satisfied.

5.5 Thermodynamic Considerations of the Model Current Sheets

Convecting plasma obeys the equation of state

P Vy = a  (5 .20)

where p  is the plasma pressure, y is the ratio of specific heats C / C v, V is the volume of

the flux tube, and a  is a constant. The volume of a flux tube of unit magnetic flux is defined

to be

y  = j |  (5 .21)

where the integral is taken along the full length of a closed magnetic field line and B is the 

magnitude of the field. Taking the logarithm of equation (5.20) gives

log/? = -y lo g V  + log a  (5 .22)

The value of y is determined by doing a linear regression [Press et al., 1993] of the

logarithmic values of the pressure and the flux tube volume. The regression coefficients for 

the nine cases are summarized in Table 5.1.

No coherent trend in y over the entire set of nine cases presented in Table 5.1 can 

really be seen. The two cases which had the worst current sheet fits, thin and thick 1.5 keV, 

also have the worst error in the y fits. The standard/1.5 keV was also not a very good cur

rent sheet fit yet it and the thin/1.5 keV case have y values closer to the adiabatic ideal of 

y = 5 /3  . The current sheet fits for all three 15 keV cases were quite good yet no apparent
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pattern can be seen in y other than that they are lower than the other cases. Results of cases 

with particles started at 5 keV exhibit y values close to the adiabatic ideal of y = 5 /3  . 

Although this is encouraging we can cannot make any definitive conclusions about the ef

ficacy of using the SCOT method to overcome the pressure balance inconsistency (PBI).

Table 5.1: Ratio of specific heats y for the nine cases

Current
Sheet
Type

1.5 keV 5.0 keV 15.0 keV

Thin 1.788910.1135 1.699610.0580 1.249410.0763

Standard 1.5886+0.0340 1.649310.0937 0.986510.0273

Thick 1.177310.1413 1.688810.0753 1.157610.0868

Table 5.2: Polytropic Index n  for the nine cases

Current
Sheet
Type

1.5 keV 5.0 keV 15.0 keV

Thin 1.447510.0794 1.671010.0312 2.029510.1537

Standard 1.488710.0535 1.525110.0797 2.358010.1099

Thick 1.416510.5236 1.629410.0696 1.992610.1852

Baumjohann and Paschmann [1989] calculate the polytropic index in the plasma 

sheet for ions using IRM data using the equation of state

p p n = a ,  (5.23)

where p is the plasma pressure, n is the polytropic index, p is the number density, and a  

is a constant. The polytropic index is calculated in a similar fashion to that of y by doing a 

linear regression analysis of the logp and logp values. As can be seen when comparing 

Table 5.1 with the results of Table 5.2, the polytropic index is generally not equal to the
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ratio of specific heats y. The exception is the 5 keV cases which tend to agree with 

n = y = 5 /3  , implying an isentropic process. The cases that started with low energy ions 

consistently give polytropic indices less than 5/3 of around 1.45. The cases with ions started 

at 15 keV have polytropic indices of around 2, regardless of the magnetotail model used.

The results presented here agree with that of Baumjohann and Paschmann [1989]. 

They observed that the plasma sheet ion population, on average, behaves adiabatically in 

both the central plasma sheet (CPS) and the plasma sheet boundary layer (PSBL). We show 

that regardless of the model magnetotail thickness, the low ion energy particle current sheet 

is non-adiabatic with an average polytropic index of 1.45. Thus if any of these systems were 

used as the initial state of a time dependent simulation heat would be lost at the outset un

less a supply of higher energy particles were provided to the system. Current sheets formed 

with higher starting energies appear to be adiabatic in their behavior. An average polytropic 

index of 1.4 was observed by Baumjohann and Paschmann [1989] for quiet time plasma 

sheets. Although this study assumes protons as we do here, they only state their results for 

the total energy range of their instrument (20 eV/e to 40 keV/e). This prohibits comparisons 

based on energy ranges with our results. So we are left with the possibility that a steady 

state, d / d t  = 0  , plasma sheet may be constructed from appropriate particle populations.



Chapter VI

CONCLUSIONS

The two-dimensional approximation of an inherently three-dimensional electro

magnetic structure like the Earth’s magnetotail runs the risk of disregarding important three 

dimensional effects. However if the model is developed to mimic a specific cross section 

of the tail and carefully applied to specific magnetotail problems, useful physics can still 

be learned. This has been the case in this study.

A simple equilibrium type magnetotail model that approximates the noon-midnight 

cross section of the much more complicated Tsyganenko 1989 model was presented in 

chapter two. The model magnetotail developed for this work is a superposition of three 

fields; an Earth centered dipole, the magnetic field generated by a ring current, and an equi

librium tail field plus a uniform Bzo. The entire model is divergence free owing to the use 

of three-dimensional dipole and ring current terms. The complete model is self consistent. 

Selection of three sets of parameters allowed the generation of current sheets that varied in 

thickness where the total cross-field currents and K were adjusted to approximate the T89 

model in the midtail -20  < x  < -14  R £ region. The lack of By in the model does affect 

force balance results. This should not be taken as a failure of the model since by eliminating 

strong B y from the midtail region we can see the importance of the cross-tail field for 

maintaining force balance. One feature of the new model that should not be overlooked is 

the fact that it is both simple and fast to implement on a computer as compared to the full

131
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T89 model. The order of magnitude speed improvement over a T89 model with y  = 0 that 

is commonly employed by other workers and run on multimillion dollar supercomputers 

means that more economical desktop workstations can be used to extract the same results. 

Furthermore, the limitations of the one-dimensional Harris model can also be overcome 

with a relatively simple implementation.

The procedures followed during an Self Consistent Orbit Tracing were described. 

The principal steps were: select a number of proton groups; trace orbits of the protons in 

each group; evaluate the cross-tail current carried by each group of ions plus their associ

ated electrons; combine these groups so that they generate a nearly self-consistent current 

sheet model. In a self-consistent current sheet, the ions and electrons carry the current need

ed to generate the magnetic field in which the orbits were traced.

A set of 9 SCOT analyses were carried out using 3 proton energies (1.5, 5, and 15 

keV) for each of 3 magnetic field models. Characteristic current sheet thickness scale 

lengths varied from 0.3 RE to 1 RE in the models used. Selection of these thicknesses was 

guided by the few available observations of the instantaneous structure of a steady magne

totail current sheet. A uniform zeroth order cross-tail electric field was present in all calcu

lations. A first order parallel electric field was added to maintain charge neutrality.

A previous study using a ID or modified Harris magnetic field model was unable 

to generate a current sheet that agreed with observations in the -20  RE < x  < -1 4  RE region 

of interest. The introduction of the set of 2D models, which have both x  and z dependence, 

removed the inconsistencies found in the earlier ID analysis. It was possible to generate 

nearly self-consistent current sheets for 6  of the 9 magnetic field model and particle energy 

combinations. Adequate solutions were not found when attempting to combine the thicker
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model current sheets with the lower energy particles.

One of the goals was to investigate individual particle orbits in order to gain a better 

physical understanding of current sheet structure. All ions in each group were started with 

the same energy so that the group would be dominated by a particular type of orbit. Particle 

orbits previously have been classified according to the dynamical properties of the parti

cles. Guiding center, chaotic, and resonant orbits are examples. Instead, orbits in this work 

were classified according to the characteristic spatial distribution of cross-tail current car

ried by the particles in the region of interest. This resulted in the 3 orbit categories described 

in chapter four; inner mirroring, central mirroring, and outer mirroring. As supported by 

Tables 4.1 to 4.3, self-consistent current sheets could not be created in any of the 9 cases 

studied without using all 3 orbit categories.

An investigation of single ion orbits showed the orbital features that resulted in the 

characteristic j y(x, z ) pattern carried by particles in each orbit category. It was primarily 

magnetization currents that produced the structure and characteristic scale of the magneto

tail current sheet, though separating drift from magnetization currents may not be meaning

ful near z = 0. A number of assumptions were introduced in order to include electrons. 

Some of these assumptions were needed to satisfy basic requirements of the steady state 

model, such as charge neutrality and conservation. Other assumptions, such as the ratio of 

electron to ion energy, were based on observations. Electrons with the energies used here 

obeyed the guiding center approximations throughout the region of interest in the 3 mag

netic field models.

Cross-tail electron currents were relatively small in the model current sheets studied 

here. However, electron current can be much more important in a thinner current sheet. Ex
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tremely thin current sheets have been observed just before and more commonly just after 

substorm onsets. The present work did not attempt to model such situations.

The SCOT analysis produced an ion distribution function for each of the 120 spatial 

boxes used in this study. The distribution functions were integrated to evaluate fluid param

eters. Three of the simplest parameters: the ion density, temperature, and bulk flow veloc

ity, were in good agreement with observations.

The results of this analysis support the postulate that the current in sheet-like struc

tures usually is carried by particles with K a little less than one. The magnetic field in a cur

rent sheet must be carried by charged particles within the sheet. In contrast, particles 

trapped in the ring current or other belt-like structures carry little of the current that is need

ed to create the local magnetic field. In the present work we found it difficult to create a 

current sheet with particles with K > 1. The previous ID analysis showed that it is difficult 

to create a self-consistent current sheet using particles with k  < 0.1. Particles with such 

small K values bounce many times back and forth across z = 0 during each current sheet 

interaction [Speiser, 1965]. The problem is that most such particles have za > L, where L is 

the characteristic current sheet thickness. Such particles bounce, and therefore carry strong 

currents well beyond the current sheet. Self-consistent models require all current to be con

fined inside the current sheet.

Space weather efforts need local as well as global observations to fulfill the objec

tive of protecting satellites and terrestrial power grids from major substorm events and help 

in terrestrial climate modeling. Understanding of the microscopic plasma effects of the 

midtail neutral sheet will help explain conditions during the critical pre-onset time before
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major substorm events. This work resolves some of the problems in understanding the cur

rent sheet as well as developing tools for future studies.
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Appendix A: MACROSCOPIC VARIABLES OF A PLASMA

The subscript s designates particle species. The subscripts a  and (3 are coordinate 

indices. The derivation of these quantities can be found in [Ichimaru, 1973; Krai I and Triv- 

elpiece, 1986; Nicholson, 1992; Parks, 1991],

Number Density

Mass Density

S

Charge Density

p.*(x ) = q j A M d 3 v

Bulk Velocity (convection velocity)

Bulk Flow Tensor

f / * , « p ( x )  =  m s n s l t s, a u s, p

Current Density

Heat Flux Vector

P= '
Pressure Tensor

Momentum Tensor, where fl

P s, a p ( x ) =  ™ J ( V, '*.a)(Vi , p - “ J,p) / s(v )rf3 v

! n ,  a p — p Si a p + US' a p
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Computing Environment of the UNH Sp ace Plasm a P hysics Group

SGI Indiao2
(1)128 MB Memory
(1) 2.0 & 9.0 GB HDs’
(1)21 MB Floptical 
Drive
20” Color monitor

RS/6000 Model 320 CD ROM RS/6000 Model 320
(1) 32 MB Memory- 
Board
(1) 16 MB Memory 
Board
(1) 1.6 GB HD
19” Color Monitor 
sppibm.unh.edu

----- ►>■
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Board
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----- ►
1/4” Tape 
Drive <s-----
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CD ROM
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400 MB HD 
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sppm ac.unh.edu

Apple 
CD ROM

LaCie 
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DAT - Digital Audio Tape 
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Appendix C: SOFTWARE AVAILABILITY

Internet Location 

Machine - sppibm.unh.edu 

World Wide Web Location:

• Open the following URL using Mosaic, Netscape, or any other browser: 
http://sppibm .unh .edu: 1963AV elcome .html

In the event that no direct computer access is available please write to:

University of New Hampshire 
Department of Physics 
College of Engineering and Physical Science 
DeMerritt Hall
Durham, New Hampshire 03824-3568

Physics Department Phone: (603) 862-1950 
Professor Richard Kaufmann: (603) 862-2759 
EMAIL: Dick.Kaufmann@unh.edu 
Space Plasma Physics Lab: (603) 862-2780

This information was valid as of May, 1996.

153

http://sppibm
mailto:Dick.Kaufmann@unh.edu


L /l

Test Particle Numerical Experiment Framework

partrj.f magfld.f slices.f bigfilter.f Assorted Postpro
Particle Tracing Field Line Maker cessin g  co d es

PARCOM.FOR EWBCOM.FOR PROCOM.FOR BIGCOM.FOR PARCOM.FOR &
MAGCOM.FOR BIGCOM.FOR

Shared subroutines in sh arejib .a

CONSTS.FOR
(Radius of Earth, n, 2n, fundamental charge, proton rest m ass, Boltzmann’s  constant, etc.)

Field A ccess  Subroutines: do_bfield(x,y,z), do_efield(x,y,z), and do_afield(x,y,z)
Where (x,y,z) is in either Earth radii (Re) or meters

BEVALS.FOR
Provides unified a c c e ss  to all field m odels
Bx, By, Bz are in Both Tesla and nanoTesla

Ex, Ey, Ez are in millivolts/meter and Volts/meter
Ax, Ay, Az are in Webers/meter

ALLCOM.FOR

T89COM.FOR HARPOL.FOR BRDCOM.FOR SHEETC.FOR BASICS.FOR

Tsyganenko 1989 Harris Type Beard’s  Model Simple Sheet M iscellaneous
Model model (Dipole, Ring)

A
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A
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Appendix E: SUMMARY OF DATA FILE TYPES

File suffixes are in bold , programs and subroutines are italicized, 

if; The “Initial Final” file summarizes the particles’ injection, forward and backward time 

integration final step as well as some magnetic field model information. This datafile is 

generated by subroutine write_if which is called by partrj.

JLRE ERRMAX This is the datafile 
header. The ‘o ’ sub
script indicates a 
constant quantity.

Bxo Byo Bzo [nT]

Exo Eyo Ezo [mV/m]

xo yo zo [RE]

Begin:: W PA Phase These nine lines 
summarize a single 
particle. For every 
particle traced an 
entry similar to this is 
appened to the ‘if ’ 
datafile.

xbegin ybegin zbegin

Vx Vy Vz

Inject:: w PA Phase

Vx Vy Vz

End:: W PA Phase

Xend Yend Zend

Vx Vy Vz

CPU Tparticle Kappa (Un)Trapped

rvt; Saves the position, velocity, and time for an entire particle trajectory.

x,Re y,RE z,R e vx, m/s vy, m/s vz, m/s time, sec

sos; Saves information needed to generate surface of section plots for specified planes

x,Re y>RE z,R e vx, m/s vy, m/s vz, m/s time, sec
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rk t; Saves the (x,y, z=0) position, energy, kappa, and time for an entire particle trajectory.

x,R e Y>Re Energy, keV
^  J  ̂ m i n ^  P  m a x

time, sec

run; During runtime this data is output to the terminal at the beginning of each new particle 

tracing and can be dumped to a datafile.

Energy, keV Particle Pitch Angle Particle Phase Angle

nj; Saves j x , j , , and number density for trapped and untrapped particles. This is an older 

format that maintains backward compatibility with Lu [1993]. It is useful for 1-D models 

and for comparison with the results of the integration of / ( v) method, 

njp; All moments of the distribution function are saved in this file.

Datafile Header (Done once at the top of the datafile)

Winject Wminimum Wmaximum charge species mass

Bx, nT By, nT Bz,nT Ex, mV/m Ey, mV/m Ez, mV/m

# of particles # trapped # untrapped n0 ,m 3 vmax, m/sec afact, l r r V 1

x gridmin x gridmax y gridmin y gridmax z gridmin z gridmax

# of xboxes, x foldflag, dx # of yboxes, y foldflag, dy # of zboxes, z foldflag, dz

Xbox number Ybox number Zbox number

x, Re y. Re z, Re boxave 3n, m 0b <t»b

Qx Qy Qz J m 'V

ux, m/s uy, m/s uz, m/s j x, A/m2 jy, A/m2 j z, A/m2

n xx n xy n xz n yy n yz f̂ ZZ

Pxx Pxy Pxz Pyy Pyz Pzz



fvc; This file contains all the distribution functions, / ( v )  , for each cell in the simulation 

grid. The c in the filename suffix indicates that cartesian coordinates were used. The distri

bution functions are generated by the partrj program and the subroutine write_df writes this 

data as well as fv ( / ( vM, v±) ) and fap ( / ( a, (p)) datafiles.

Datafile Header (done once at the top of the datafile), same as njp header.

Do for all X boxes

Do for all Y boxes

X box Y
1 box ^ b o x nvcube nvcube nvcube

na natr naut btusav charge mass dz velmax

Do for all Z boxes

x, Re y> Re z, Re 0 b

-©-

end do

Do for all Vx, Vy, Vz boxes

Do for all Z boxes

/ ( v )

end do

end do

end do

end do

nvcube - Number of velocity boxes for each side of the velocity cube 

na - Total number of particles traced na = naut + natr  

natr - Number of trapped particles, 

naut - Number of untrapped particles.

0b & c))b - The polar and azimuthal angles between the z axis and B (in radians).



ntp_o; Parallel and perpendicular temperatures and pressures computed by program bigfil

ter and subroutine filter_njp  from njp datafiles. The temperature is calculated using 

P  -  n T  where temperature is in eV.

x,R e y> R e z, Re 3n, m T„,eV Tj_,eV T, eV PN,Pa P±,Pa P, Pa

njp_o; Number and current density extracted from njp datafile by bigfilter and filter_njp.

x,Re y>RE z ,R e 3n, m j x,A/m2 jy, A/m2 jz, A/m2

pten_o; Extracted from njp datafile by subroutine filte r jn jp . Note that 0b and (f>b are in de

grees and all Pjj are in Pascals.

x , R e y.  R e z, Re 6b P Pr xx r xy P P1 x z  1 yy T?
N N N

qflux_o; Heat flux, extracted from njp datafile by bigfilter and subroutine filter_njp.

x , R e y-RE z ,R e Qx, Jm '2s"' Qy, J m 'V Qz, Jm"2s"’ IQ U m 'V 1

vbulk_o; Convection velocity extracted from njp datafile by subroutine filter_njp.

x,Re y,RE z ,R e ux, m/s uy, m/s uz , m/s lul, m/s

betafire; Computed using njp data by subroutine filter_n jp .

x,Re y^RE z ,R e Plasma Beta firehose P||/P± T||/Tjl

f_*, where is a wildcard and could be em, inertial, JexB, JixB, mom, p a rt, etc.. These 

files represent the various forces that can be calculated for the plasma.
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x, Re y> z, Re m fx fy f lix f | |y f|lz l f Nl below on same line

f i x fly f l z I f J f ± 2 x f ± 2 y f 1 2 z lf2i

_ n ,_ t,_ p ,_ p o t; Datafiles containing the coefficients of polynomial fits to density, temper

ature, pressure, and electric potential. These coefficients are generated by b_glsin_gen 

which calls the program glsws, an implementation of the Levenberg-Marquardt method.

f ( x , y , z \ p )  = [Poqo + P oq\Z + Po02z 2 + Pool*3 + P qo4Z4 + Poos*5]

+ [PlOO + PlO\Z + P\Q2Z2 + P \ w Z i  + P W4Z4 + P i05Z5]x

+ \-P20Q + P20\Z + P202Z2 + P203Z3 + P2Q4Z4 + P 205Z5 ] * 2

The datafile header is the polynomial degree in the x ,  y ,  and z  directions. For example the

above equation would have a header file with 2 0 5 and eighteen lines of polynomial coef

ficients pjjf. since ( 2 + l ) x ( 0 + l ) x ( 5 + l ) = 1 8  .

j e ;  The _je datafiles are the electron currents calculated by jelectron using the method de

scribed in chapter three. Note that the _je datafiles cannot be calculated without the _n, _t, 

and _p coefficient files since n, T, and are calculated from the polynomials.

x,Re Y>Re z ,R e n, m3 T <b j x, A/m2 jy, A/m2 jz, A/m2

_js; These datafiles are the sum of the ion and electron currents. The ion currents can be 

retrieved from the njp_o files.

x,RE y,RE z ,Re j x, A/m2 jy, A/m2 jz, A/m2



Appendix F: PROGRAM SUBROUTINE SUMMARY

Main Program:
partrj.f: Trace charged particles in complex B and E fields.

Non-specific plotting routine:
get_pflag.f: Ask user if particles are to be plotted or run as batch
plotxyz.f: Plot the new step if this is the nplot'th point

General program Initialization:
filemenu.f: 
filehelp.f: 
partrj_io.f: 
vinject_menu.f: 
inject_mdm.f: 
injhelp.f: 
scatopt.f: 
get_evans.f: 
get_hemisp.f: 
get_method.f: 
get_pflag: 
pinitial.f: 
pinject_menu.f: 
xyzstart.f: 
getvelmx.f: 
set_foldflag.f: 
set_hvnarr.f: 
set_pcount.f:

Grid and Cutoff:
getboxes.f: 
gcflags.f: 
gcflags.f: 
gcvals.f: 
gridinit.f:

Set flags signaling what files will be needed.
Describes relative data file sizes for user 
Open all output data files for program partrj.f 
Menu of the different particle injection methods 
Randomizes the injection point: see pinject_menu 
Describes the different injection methods that can be used 
Ask user about activating random scattering option.
Ask user for type of particle injection.
Pitch angle preference for particle injection
Choose numerical method (Runge-Kutta or Bulirsch-Stoer)
Ask user if particles are to be plotted or run as batch
Determine numerous initial parameters before tracing begins
Set up the randomizer option in injection position
Get injection point in [Re]. Values converted to [meters].
Establish a maximum velocity for all f(v) calculations
Get flags signaling what grid direction should be folded
Set the preferred normal coordinate
Ask user for the number of particles to be plotted or run.

Get the number of boxes for each lattice direction.
Get flags signaling what range cutoff/gridding will occur. 
Orient user to gridding and cutoff method 
Queries for Cutoff & Gridding ranges (Returned in [Meters]) 
Set up all the gridding of coordinate space for tracing.

Particle calculations:
parinp.f:
calcvepa:
pitcha.f:
calang.f:
change .f:
epaphi.f:
vxvyvz.f:
f_pitch.f:

This subroutine is called before starting EACH trajectory. 
Select and calculate velocity, energy, pitch & phase angles 
Given (Tpar,Tperp), randomly select pitch & phase angles 
Calculate (Vx,Vy,Vz) given (x,y,z) and (Pitch,Phase) & Vo 
Get parameters needed to determine the initial velocity vector. 
Calculate Energy and Pitch & Phase angles at (x,y,z)
Evaluate (vx,vy,vz) given vmag, pitchr, phaser, thetab 
Calculate angle between particle and field vectors (radians)
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Forward tracing & Backtracking:
forward.f: Setup ODE driver based on user choice of RK or BS method,
backtrack.f: Backtrack to last edge crossed.
backtrold.f: Interpolate pitch and phase angles to get box edge crossing
tracer.f: See "Numerical Recipes" for details

odeint(ystart,nvar,x 1 ,x2,eps,hl ,hmin,nok,nbad, 
rkqc(y ,dydx ,n ,x ,htry ,eps ,y seal ,hdid ,hnext ,deri vs) 
rk4(y ,dydx ,n ,x ,h ,y out ,derivs) 
bsstep(y ,dydx ,n v ,x ,htry ,eps ,y seal ,hdid ,hnext ,deri vs) 
mmid(y,dydx,nvar,xs,htot,nstep,yout,derivs) 
rzextr(iest,xest,yest,yz,dy,nv,nuse) 
pzextr(iest,xest,yest,yz,dy,nv,nuse) 

derivs.f: Calculates derivatives for F = q(E + V x B) and dr/ds & dV/ds
sortorder.f: Sort the BACKRVT key ORDER by the time field
scatter: Scatter a particle using Gaussian distribution

Box crossing:
kcalc.f:
kfold.f:
boxexitcheck.f:
boxselect.f:
incnjdata.f:
multivalue.f:
stepcutter.f:
finishcheck.f:

Calculate box and edge numbers for the given position 
Fold box edge numbers to increase statistics 
Determine if backtracing is necessary and/or cut stepsize 
Get the box numbers for output files.
Update time and net distance traveled in the current box 
Determine IF the stepsize should be reduced 
Determine HOW the stepsize should be reduced 
Signal end of tracing if simulation boundary exceeded

Buffer Stuff:
buffer .f:
dflush.f:
fbeupdate.f:
rvtupdate.f:
timeupdate.f:

Flush buffer since buffer full or trajectory completed. 
Use buffer values to update f(x,y,z), n(z), and J(x,y,z). 
Update beginning and endpoint of trajectory 
Update (r,V,t) trajectory array with new position 
Update the elapsed time for forward & backward tracing

Distribution function:
incdfap.f: Increment the distribution function f(pitch,phase),
incdfvc.f: Increment the distribution function f(Vx,Vy,Vz).
incdfvpp.f: Increment the distribution function f(Vpar,Vperp).
fluid_fvc.f: Calculate macroscopic plasma quantities using f(Vx,Vy,Vz).
setup_df.f: Initialize the distribution function arrays to zero.
setup_nj.f: Initialize n(z), Jx, Jy, and Jz for a single particle orbit.

Plasma Parameters from Box Crossing Method:
dencur.f: Calculate the particle and current density for an orbit
nj_ave.f: Calculate the average number and current densities.



Single Trajectory data products:
pcanonical.f: Calculate the canonical momentum, given the parameters,
moment.f: Calculate the magnetic moment and canonical momentum Py
jzinvr.f: Calculate Jx and Jz invariants at (x,y,z)
f_kappa.f: Calculate Buchner & Zelenyi Kappa parameter

Generate Output Files:
rw_header.f: READ or WRITE data file header with grid & model info
write_cp.f: Write out the Circle Plot data file.
write_df.f: Write f(alpha,phi) or f(Vpar,Vperp) distribution function.
write_if.f: Output initial and final trajectory data to a file.
write_nj.f: Write out the Current Density/Number Density data.
write_rkt.f: Write a file with (x,y,z,kappa,t)
write_rvt.f: Write a file with (x,y,z,Vx,Vy,Vz,t)

Debugging subroutines: All are in printout.f
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