University of New Hampshire

University of New Hampshire Scholars’ Repository

Doctoral Dissertations Student Scholarship

Winter 1995

Distributed cell scheduling and quality of service in
ATM networks

Paul Niel Goransson
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Goransson, Paul Niel, "Distributed cell scheduling and quality of service in ATM networks" (1995). Doctoral Dissertations. 1873.
https://scholars.unh.edu/dissertation/1873

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more

information, please contact nicole hentz@unh.edu.

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F1873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F1873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/1873?utm_source=scholars.unh.edu%2Fdissertation%2F1873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if

. unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. MI 48106-1346 USA
313:761-4700 800:521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DISTRIBUTED CELL SCHEDULING AND
QUALITY OF SERVICE IN ATM NETWORKS

BY

PAUL GORANSSON

B.A., Brandeis University, 1975
M.S., Boston University, 1981

DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfiliment of
the Requirements of the Degree of

Doctor of Philosophy
in

Computer Science

December, 1995

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9617072

Copyright 1996 by
Gorangson, Paul Niel

All rights reserved.

UMI Microform 9617072
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation has been examined and approved.

Skt L) Sl

Dissertation Director, Dr. Robert D. Russell
Associate Professor

Departmye 1t of Corchwncc

Dr. R. Daniel Bergéron, ofessor
Chairman, Department Computer Science

/QMM//Q/{V

Dr. Paul Chung
Computer Consultant /

o /] Bcdpo

Dr. Raymond Greenlaw, Associate Professor
Department of Computer Science

7]]

Dr. Phil#p Hatcher, Associate Professor
Department of Computer Science

LA Ll

Dr. Ernst Linder, Associate Professor
Department of Mathematics

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

I dedicate this work to my father, Ake Gunnar Goransson, who did not live to see me reach the
end of this journey, and to my son, Peter Ake Goransson, whose nightly prayers over the past

seven years that I might succeed in this endeavor have finally been answered.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

First and foremost, I wish to express my most sincere thanks to my thesis advisor, Prof.
Robert. D. Russell. He has been tireless in his efforts to help me develop my ideas into
this dissertation. His criticisms, insights, and patience have been key in the successful

completion of this thesis.

I wish also to thank Dr. Paul Chung, Prof. Emst Linder, Prof. Daniel Bergeron, Prof. Ray-
mond Greenlaw, and Prof. Philip Hatcher for reading my thesis and agreeing to serve on
my thesis defense committee. Iespecially thank Drs. Greenlaw and Hatcher for their extra
efforts in helping me improve the quality of the dissertation.

I have benefitted from the continued support of my employees at Meetinghouse Data
Ccemmunications. They have been tolerant of my frequent absences due to work at the

university and of my eccentricities that have accompanied this effort.

I thank my mother Ethelynne Goransson for giving me the desire and energy to pursue my
dream of the doctoral degree. To my children, Jennifer and Peter, I can only say that I
hope that the pride you feel can make up for the part of me you have given up so that I
could accomplish this goal. I commit that time to you now. To Helen, my wife and
friend, thank you for all the care and help over the last 20 years that has enabled me to
realize this goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Dedication iii
Acknowledgements iv
List of Figures X
List of Tables xii
Abstract xiii
Chapter 1 Introduction 1
1.1 TRESIS GOAIS..ouiuirecrunrariscrinnersssisasssstseenersersassanessesssssssenssnssssssssassssessassasassssonsossssessesasenes 2

1.2 Quality Of SErviCe ParameLErs ...uueciieeisievsrisnernesnssnresnsenssessresersresseressssssassassrensassssssssssneses 3

1.3 Quality Of SEIVICE GUATANIEES ..cceuerererecessossennsrersaereesrassrsserssssassesssersossssssessnsesessses 4

14 Quality of Service PErfOrMAanCe....ceusiueecescsusensessesenerasessansiesmssssesssasssssssssssssssssesseseses 5

1.5 The Role of Call ADMESSION .uvcerreerersannsnsssssosenerenneseesseresseresesssnssassosasssssssesssssssasassensssssessssons 6

1.6 The Role of Network EAge POlICING....ccvrveinmrerenessnsennreensssnmnensrasesssssesssssssssssesssanssessssessas 7

1.7 The Persistent Problemmn 0f Cell LOSS.....eeinnuneriernrsnsressssressssssesssssssessssesssesssssasssssssasessasess 7

1.8 The Quality of Service Problem and Our Solution... w12

19 Dissertation ROAA MAEP c.cccevecrerrerersseneersecceresrsnssesssessssssesessiossiesssassossssssssessassessenssantssssonsass 13

1.10 REFEICICES cvctertrrnrrasesivrenneserssseneesesesssssssensssenssesensassassoseessssossssnsasssensonsosessrssssssnssansossssssons 13
Chapter 2 Related Work 15
2.1 Introduction........e.... reessseet et saebesbaensa s s RS SuaetSb0esSe0eBESR SRS SOR S RSN SO RO SnR S 15

22 Distributing Schedules and Quality of SErvice State....cviurveererreererereerersrserersesersesasasasaens 15

23 Predicting Cell ATTiVALS c....ccviniievirisisinnsnncnnnssssesassensssssnnssemsossessrssensssssssssssssssssssssasensases 17

2.3.1 Burst-wise Reservation Approaches.................. 17

2.3.2 Predictions for a Specific Traffic SOUICE TYPE...cvrrueereererersreessesersersrsnsssnsesseseanas 18

24 SChedule GENETALION ...vcveciirrsrsisesssesssssessossassessssersasessssssserssseressosssasessasenessessassssesassensasases 20

24,1 Optimal DiSCard POLICY vuivivicireerecieinierernsersnsussessisnssnseseeressssessesssesesssssssonsssessansas 20

242 Delay PrOTILY ..cccccinrsnieisininssecsiesssscrsansnssssesniressssssansresesssnsssnsssssssessssasasassses 21

243 SPACE PLIOTILY cvcveverrnrassssssoresscsssnsnsassnssnsenessessonsrsesersssssssssserassesassonsrasesssssassenas 21

244 Virtnal ClOCK ..cccecreneernneesacrnenessessnenesesessessvennones . 22

245 MARS..... resester et e b e e et e st seareshese e sasRe e es seeRs snean st sesaarenerebtsetarases 22

24,6 Selective Packet DISCAIU ..uuiiiereeriveceerarerensecsesseseressaressesessesesesseressessassessssssanssssaos 23

2.5 REFETENCES it uenirisessrmseressisesessssrsrsscsssassesaorssserorssasasaesssssassesssssssessssnssessessssesessssssrensinsasssanasen 23
Chapter 3 Prediction-based Cell Scheduling: A Model 25
3.1 INtEOAUCHION.c..ouesesterssrrsnserssesestsassessnsasassasessasnesessssesserassarsssersassnersasersnsensossassasesssarssserasseseas 25

32 Cyclical Operation and Delay BUfferSccocueeereeesrncerssesssnssnrerssssssesssesssasasssssssssssassssessnses 26

33 TEIMINOIORY 1vtevetererssrrnsnnesarserarnsersssenuensnesersrseseserassarssssessasssesssssessrsssssosssssssssssesssnssessessone 27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
3.5
3.6

3.7

3.8

3.9

3.10

3.11
3.12

Chapter 4

4.}
4.2
4.3

44
4.5
4.6

4.7

Statement of Problem and Goal...
Traffic Types Supported.......eeeeevecreecerenseranns

Fundamental Model Assumptions
3.6.1 Output Queucd Switches

3.6.2 Oniy Arrivals from Neighbors Can Affect Congestion.... 35
Additional ASSUMPLIONS ...ecceereervasnererenrenes . . 35
3.7.1 REGUIATILY wouviiieecrmnnincnnesnsoncensesessassesssssasssssensaens Creeseratbs et et assassesees 35
3.72 Time Cycle Length...cuverecienenceesnernnsenne seesesrsssa b bersses e e senasnsssenannes 36
3.7.3 Computation Time for Scheduling 36
3.74 Variable Bit RAE SOUICES wuuuciurerensentiesisnesnssniressssssssssmsosssssssssenssssassssssssnsesosses 36
3.7.5 Isochronous Service....... rebeseserersaeassre b tes sasae s asstessas e sssean et snses tensnssenes 36
3.7.6 Validity of the Prediction.........cceeervrverennens st sttt asaare saenssen s aesessateee 37
3.7.7 Spatial Extent of the PrediCtion......cccseerieeeceressnesssiasrsssssaressssesesessssssasassrsssesosser 37
3.7.8 Temporal Extent of the Prediction.........ccecvererereene w37
3.7.9 Switch Fabric Delay...... crereesersasassasensnarareresarnes 37
3.7.10 Switch BUffer SPACEcecvereenrererinrrsunsssrsnssersesensiesesssassesssnssensrosesesesasas .38
Distributed Cell Scheduling: A Modelcoceevevvrnene. 38
3.8.1 Distributed Schedules certesenesnessnsas e estsaererasaenasaenerssasastes 41
3.8.2 Predicting Cell Arrivals........ “ sernssnnesesasssssessnossassesnonesid |
3.8.3 Schedule GERETAION....cciecccsrrenserssescseraresssrssscsnsrenssressasssssssassessssasessnererssssesens 42
Realizing an Accurate Cell Arrival Predictor: The Warning Shot........eecerreererrererensessenns 45
3.9.1 CBR SOUICES .eourrursnenncresisnnsrarsssssssesesssrssssssessassssessnssessressssssssssnssssesssssasessssosessses 46
3.9.2 VBR SOUICES ..cvoverirreeaneercrsneenesersassssssssssersssstosssenersssssesesns 46
3.9.3 Determination of the Extent of the Prediction (PredictHOriZon).....eeeveevereersenens 49
3.9.4 Maintaining the Accuracy of the PrediCtion.....cveessisrerirrerscrseessasessesenssnsasnerssaes 49
Relaxation of SOme ASSUMPLIONS ...c.cceimerereeresesereseserassesssesasssssiesmssssssssessssessassssssssssesssens 49
3.10.1 Normalized ATM NEIWOTKS ..ccvccecerrrerersisasessesesmsnssascsesmsssessrersnssnsassessrssesssssssens 49
3.10.2 Determination of the Network Basic Time URIt v.cccrrsnveeeecrersecressesessorereserensenes 50
3.10.3 Realistic Distributed Scheduling: An EXample..........coueurreereerneerersrsrerseecrensaraesaas 51
Extensions t0 the MOUE! ...uiieeiieciininnceneranenesnsmeesesessssessssessssssssssesssensessosssssssnsssssaseses 55
References.. e eseteshaRI eSO R eSO SR IR SH 4S8 SR eSO SESHS e b e e R sann sesaenerarentens 55
Accuracy of Predictions: Formal Proof 56
INtrOAUCHION cuvserernssiriressssssesosissistosessassansasrasssesasessssssassnarsnsses serereseeresassns 56
OVErview Of the ProofScuuiercsinsnncersninsencctsineenssncssassesssssasissssssiessssssssrssasasssssssssnns 57
Network PredictState reresessesssesaesesasenreans 57
4.3.1 Time-Cycle Granularity.......cueessecsssssersssrsssassosssssssasasssssesssnsonasssassensassassressassase 57
4.3.2 Notation eeaeiesbeseaeeutaL et b R e SRR Sas e SR eR LS e SA OSSR e bes s sesansarsarans 58
433 PredictCOMPONENLS wo.eiivesersisensisssssiseasssassssseasasasssssasssssassssassasissssssssssassssssssassssss 59
Assumptions . reresh b s s bR s SRR abs bbb e bbb e bsesasb e 67
The Restricted Prediction THEOTEIMcieisiicreesssiranssssssmsssssasasasssssssssssssssssnsssnssssssersasanssns 68
Relaxed PrediCtHOTIZOM wuiviiiiiiniereessasssssssasssesssssensssssssssesiesssasssssssstsssassssssssasssssnsssnssssesssses 73
4.6.1 Impact ON the PrOOL ...uivecvreiriuiniininnssesensmmsssssissmnesasassssisessssssssssssssassossssssasessasses 73
4.6.2 PredictHorizon re: LINKSChEUIETccvvvecrerrsererescnsusrsnniessasassnsasesanasssssnssnssnsens 75
4.6.3 PredictHorizon re: AALSChEQUIET ..cvovirirvuesenssisssesesssasensesaisssissssssssssssosinnsssnsons 76
4.64 PredictHorizon re: Passive Components and Predict Validityeecvcereereisenscnens 77
The Relaxed Prediction TREOIEIN ...c.cccvrrveerererecrnmensssssarensensnsesssmesssarssssssnsassesesenssssessssssns 79
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter §

5.1
5.2

5.3
54

5.5
5.6

Chapter 6
6.1

6.2
6.3

6.4

6.5

6.6

6.7

Chapter 7

7.1
7.2

7.3
74

7.5

7.6

Complexity of Prediction-based Scheduling 87
INtrOQUCLION .evierecrincesesnssesisesensrssesnsssassessssorsens .v
NP-COMPIELENESS ...coverirriesnrierinsnrisnsrsnserassssesssnosesonssssssess38
5.2.1 Sequencing Within Intervals Problem (SWI).....cvureeeevinennennsnnernenenressssesscossens 89
The Simple Quality of Service Scheduling Problem (SQSP)....cvcvereruernurresisrssnesessenssennne 89
5.3.1 SQSPis NP-complete rereeresrbs st s b e e sas e beb st e et ene e essenesse s ane 90
The Complete Quality of Service Scheduling Problem (CQSP)ccevererurvennnne 91
54.1 CQSP is NP-complete

Summary

References....uimincesorns

Exposition of the Scheduling Algorithms 94
Introduction......ceeerreennee “ teesressetes b sas e ssaesbe e b sare s .94
Baseline LINKSCHEAUICT ...uueeiviiiinniiiininiesiennsaienssinnsnsnsmnsessnssssssesssssssesesssssssessssssosssses 95
Expanded LinkSChEAUICTciieirinmnnniirinsennsnienninessnsensnssesessessasssossssessesssssesesns 96
6.3.1 Allowing for Cell QUEUINE ..ccccvveisnirereeeeresererreersrerearessessnesessssssssssssssesesssssassasases 96
6.3.2 Global Knowledge of QoS Statecceeevrerrevrrcrrerrrenne .99
Heuristic LINKSCREAUIETS ..o iuiiiiiriiniinsnnnetiicrinrinenniesesiosssessessssesssssssssssessassssessssasessaens 101
6.4.1 Predictive FIFO (PFIFO).....c.coociviemrnirerscsnnenssiestsserssssessssssessasssssessasssssassssssas 101
6.4.2 Predictive FIFO with Displacement (PFIFO_D).......ccccecvrevereereesreseceueressesennas 102
64.3 Pseudo-Time Division Multiplexing (PTDM)....ccccveererreerunerverasssnensssesassessesnes 102
6.4.4 Pseudo-Time Division Multiplexing with Displacement (PTDM_D)............... 103
Implementation of the HEUMSHCS....eeeiercrsnanscersesennisessssnsssssesesassssserersassesssssersassessssssnns 104
6.5.1 Virtual Circuit Control BIOCKeccerireereesrsensansanresnsesstenssnersassssseesserassessnsassores 104
6.5.2 Output Link Control Blocks (Neighbor BIOCKS) c..cciereeerrersneressssancnnessssrnensaneas 109
6.5.3 Prediction CeUS ..uimmimiieiiniiesosninisesnisnsnessissesssssssssssssssarasssssansesaeses 114
Distance from Quality of Service Violation MEIICS w.eevcrnrererneireresssneninerssssassssessesesasssns 116
6.6.1 Lo0ss Cushion DEPHN cecveervcusismnsesssessaniorsesesesmsnssasssssresessssssssassssnssassessassoresassssssns 116
6.6.2 Time Since Last Cell DiSCArd....couecruereernsensrerrirncesssrerarssenssssesssesseessessesssaseses 117
6.6.3 Depth of Network Penetration.....cuuesisssiiesismssisssisssssssssssssssssssesassssssssosssssses 117
6.64 Multi-cell Packet PIESEIVALION ...covcviecererersiissnnnrinnnessssererssnrerssessssssssessassasesssnns 117
References....eennenne- ceessebesasat it s b b SR s RS s AT SR SR SE SR bR b SeR s s E s b e e b e S0 e sesbsee 118
Results 119
Introduction reeesteseesesesstsn b E e sE e ot e snsRssnte e eRsenasesOnesesseennetsnnana tesesanse 119
Simulator reetsstessibe s s at bt st sbt b eR s AR s e s e Sbb e e Rte onsenereea s sesee st essssastbntenes eeraseniares 120
7.2.1 Traffic Source TYPES SUPPOTLEQ ..ocuerierrscrrsnnmrncssnserresssssisrssssssssssorssnsnsssnsnasoseress 121
722 LiDK TYPES evvirsrersrsscsnrussrsasssssesissnsssonsesoscsansasssnssssssssasassrsassossossaes . 122
7.2.3 Switch Characteristics wveisisisesines seaeesasatsae it serastsssarssasasots 122
Simulated Neiwork Configurationseeereseersecssnssens resaesnonstersasssansisaenseneasenstes 123
Measuring Quality of Service PErformance........cueimmesmenssnsesssesisssmsesessscrssssssssmsnssnes 125
74.1 Comparing the Heuristics: Ground Rules.......coveererresrsnereenresssssnssearesnsssassessens 125
CBR Jitter GUarantees ONLY c..civcieiiiiiimmeiecsminssoeresmesrmssisssssssssossesssesssssssssessaes 126
7.5.1 Simulation Description and Motivationeecveereene . 126
7.5.2 Jitter ViolationS.....ceeseeeseennae veeensesenstsnsennesnras .128
7.5.3 Upstream Delay DiStribUtiOns ueciceerecssseeeneerressesnessssessssssesssssssssesssssessasesssens 134
CBR Loss Guarantees Only (Local QoS Knowledge)...c.cerereusucrssecrsecssssasnsssssessosssons 138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6.1 Simulation Description and MoOtVALONceeerieiaernsmronssssnessersssesssesssssesesnnsns 138
7.6.2 L 0SS VIOIAUONS .ecrereereraererersrseseranessssnsssssassesessesssnssssesesssssasseasssessassessessnsensasasosnns 138
7.7 CBR Loss Guarantees Only (Global Q0S Knowledge)......cevrvreerrerernresmusrssnssmrsssresnsss 140
7.7.1 Simulation Description and MOUVALONcovvveeremersmnsierersssscrsersrssessessssssssssassssens 140
772 L0SS VIOIAUONS vcvtverrerereersneresssassssensasssaesssasensaesssasssssssssssonssssessersssssesssesssanensonsss 141
78 CBR Loss And Jitter GUarantees TOZENETc.ccccoueereeeverererensaresssenssenserssessasssossamsessressases 144
7.8.1 Simulation Description and Motivation rrresseresssusaansraresssaanans 144
7.8.2 Loss and Jitter Violations crerrsesnensrosssnsenens 144
7.8.3 Jitter Distributions eseeeeressts st ah s s s e R s s e et be R et ae R e sre sb e R sa et neranranere st e e 147
7.84 Observations........... - “ w152
79 CBR/VBR: Loss and Jitter Guarantees Together................ wrressseeseenne 152
7.9.1 Simulation Description and MOtiVAONcvieeeccesseneenssresessessseesessanssessssesssssases 152
79.2 Overall QoS Violations.. cereerenseonensesasasresessaranes 153
7.9.3 Jitter and Loss Violations Individually........c.ceeerevnnreercverevereesernasnnnee woere 155
794 Qbservations eetuesretessestetsasasaesasten e s ntebe e st aesabensbansnante 159
7.10 Link Utilization...... reereseusnesaeseareneasasassesserasessnrents 160
7.11 TRIOUGRPUL. c.cevsritiersirincssssiseessoncsasasssiesesnsasssasssssanssarsersssaesssssersnsresssensrsserssssesarassonssessases 163
7.12 Delay.......... cehehesarssetiseaesee st bt srbr SRRt Soa b SR eSS b SRS SO ket arnensebsaaseens stanastasestrnasnaee 166
7.13 EVAIUALON c1eteeeereierereeraesneseseriosesnesrssssesssasserssssessorossssossssossssassrnssssssnressases sassensasassnssetases 169
7.14 R CTENCES c1etuetererearererreraesesssanssenssnssssesesnssaerssssasessasssassasssesosssssssessasessasssessssasessasasessssessases 171
Chapter 8 Future Work 172
8.1 Intelligent Scheduling without PrediCtionceceeeseccseesnesernssescnsnsenssssnsssessnsssseseessones 172
8.2 Prediction Cell COMPIESSION c.ecuvreeeerernnrraresssssrssonsesesessssessassenesessasnssssessrssesaserssssssssssassases 173
8.3 Higher Level Protocol Packet PrOLECHON. ... ieerierrerensssrsasererescnsssesssnssesssessorerasssnssscanens 173
84 ABR Flow Control Schemes eeeeieeeeae et sas et e s et et et et et e aenre serbe et e b sresesabeneenes 174
8.5 Phased VBR SOUICES ..veeerereerrereerereensnmsuessserarsessinissnssessssessssssssssssassessssssssssssossessonsressonse 175
8.6 Incomplete Predictions ehteaeseeesstesorssesae e et s asaeressaress seersrestenesesrasteres 175
8.7 Multicast . “ teteteresresesrsane e asanestsnerestonesnssesraateatesstsasreenssasans 176
8.8 Packet NEtWOTKS ..cccererrersereeiensereerenseesessessersosaresserecs reeeeernentererneeareane e srenanens 176
8.9 Global QoS Information About Cell Delaycvererrreveeens .176
8.10 Extending the Simulations in This Thesis . crovsressessnreranesaressassaseensasaranssesressanes 176
8.10.1 Comparison to Other Researchers’ Jitter RESUILS......veerererererverserersersersoreensenens 176
8.10.2 Alternative Measures of DistanceFromQoSViolation........eecvereereneencrseesereeseens 177
8.11 RELCIENCES 1u1vvverrorisessastssassesssnssasessssesesannsssansessarsassrsessassrssnsrssssssssssnsassaesssnsssssssassssssnsrasaens 177
Chapter 9 Conclusion 178
Appendix A Simulation Configurations 180

Al
A2 BOtIENECK L 0SS . cuuiruererasserssassasssnentonsasnessesasssssnmanrsesassesessesassesssssssessssssessensasssssesessrssasssens 183
A2l TIAFIC SOUICES..crrrrrecrererserireensesanresssssssssersesessssssesssessssssesesrsassesssesssesessssssonsone 183
A2.2 CommUniCAONS LinKS...ciceserererermsesimerersserssssssresssssssestsnsassessessseseasssessaseons 184
A2.3 QO0S Requirements Of SOUICES. ...ccvriemrermrersessseasssrarsessesssiansissesssassssssesssaresssssenes 184

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Al Cross_Traffic_HOMLINKcccvrereennrinesenrenaenesneesrisessisssssesssessssssssesssassssessssness sesssensens 184

A3l TTALIC SOUICES...eererrerernrerrnrenriersssssesnesesesssscsressssssssesessanensssessssarsronsrssssssesssassassnen 187

A3.2 Communications LiNKS...iveeeereninierssssnessssressesssosessassasssesessssssesssssssnssnessesss 188

A3.3 Quality of Service Requirements 0f SOUICES..ocuurrrrererreerneressriseerssssessssanssonsos 189

Ad Cross_Traffic_HEILINK ...cccveeerereneiennninesnresesersnsersnssessessssessssessssessesssosssssassssossssssssessnsss e 189

Al Traffic SOUMCES..covererierentrrinrersnrneresessessenssesseessssssessssassssssassasssensaes 189

A4.2 Communications LiNKS......ccoceeeervereersernecessaeesesanes 189

A4.3 Quality of Service Requirements of Sources... 189

AS Cross_Traffic_HetTraffic 189

AS.] TTAFIC SOUMCES..cvurrerrerertresnrrenerenrenseesereesernerssssssisrarssessesassesssssessaresresessssessensossose 190

AS5.2 Communications LinKS....cuuemssinmrnsinnrsrsssisssssnssssisssssssssssssassasssssssssssesssss 190

A.5.3 Quality of Service Requirements 0f SOUICES....cvuerreerererceesesereeseerassssssarensansencens 190

A.5.4 Switch BUSTEr SIZES vuwevrrirrrnnnerierrneneesnisiessessessessssssssssssacssersnenes 190

AS5.5 Traffic Loading Level ... iniiiinsiinisinsnsisssesssssnsscissonsssssensessnserenns 191

A.5.6 Overall Jitter Tolerance . 191

Appendix B Detailed Simulation Results 193
B.1 TADIES «.veerrercaenreersecrenervessnsessensressaasssesassssssssesssassessensesessessasssosssosnsssnas 193

B.2 Delay Distributions ...e.eeeeresssssarassossenns 217
Appendix C Glossary of Acronyms 221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.
FIGURE 22.
FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.
FIGURE 32.
FIGURE 33.
FIGURE 34.
FIGURE 35.
FIGURE 36.
FIGURE 37.
FIGURE 38.
FIGURE 39.
FIGURE 40.
FIGURE 41.
FIGURE 42.
FIGURE 43.
FIGURE 44.

LIST OF FIGURES

Network Utilization vs. QoS Violations reteseuennesanesnssnessasrerressranessasaanans .6
NO Congestion SCENATIO w.vvuvirvuresrecrsirisnasssesiasanssssnsessssssessasassrssssssnesssnssases 9
Inevitable Cell LSS SCENATIO «..veuvreesssescssssasssnsssamssnsansasarsessassessensssseserssvassonses 10
Sample Network Topology treseressnerneneenenes 32
Generic ATM Output Buffered SWilCh....vivmrecernnimniinenaiesresssemisrsssessssmssssesssssssssassons 34
Statistical Multiplexing in a Single Switch Output BUffercceorerrersrerereseesreeresesenesens 35
Waves of Knowledge-need Preceding Waves of AITIValSccveerecrnersenneresessssasnsssansssnaes 40
Prediction Analysis Phase areearernenreneenernsanens .- .- 43
Arrival Schedule Repair Phaseveervercenrenreecsneseeens . 45
A PredictHOrIZON Of TWO CYCIES....ccueireermreerenieresnsensriessessrssesesssssssescsssansessaseassssssssassssases 48
Synchronizing Distributed Schedules: time -1 10 + 2 .c.cecveeevrrereccrensrnesnerrensennens 53
Synchronizing Distributed Schedules: time +4 to 45 54
PredictState Network Components 61
PredictState Network Components (detailed).........cvenene.. . .62
PredictHorizon of 3 and Warning Shot (W) BUffers........eeveeveniiensonnernreresesvsseessesssesens 74
Generalized PredictHorizon and Committed SChedules (S)...cveerererereesrerssessssaeessesssessene 75
VciCTL Blocks in the Network

The VciCTL Block

Neighbor Blocks in the Network .

A Schedule for a Cycle .oeinreninecrcnnnncenrinnenns

Neighbor Blocks Detailed........cceverevreveneesenane

Ring of Schedules at Time i for Link K in Node Z.ccceerirmicnssrisennssssrssisisesssassnsareses 112
Ring of Schedules at Time i+l for Link K at Node Z.euivviiiisicnnisnsiincsisecniseane 112
Interrelationship of Structures and Scheduling Components (perspective: link xz)114
A Predicion Cell .o ssnssssnsssessassssassssssonsssassasisssss 116
A 3-octet Prediction Cell DESCIIPLOL ..uuuueereecrereesssssnssesssenesesessssasessssrssasessrssssssessasenes 116
Traffic Flow Patterns for Bottleneck reesestesesssennrens et i rssases s are s serssesasessessnsssasesese 124
Traffic Flow Patterns for Cross_TraffIC....ueerernererereererssnsssresesssersssssssssnsesssssssssesesenses 124
JHtter TOICTANCE c.vvrvirersaesrsarcsensisrsencresasasseresssnsnssessasssensnssaness . 127
CBR Connections Supported vs. Jitter Tolerance (PTDM, constant 10ad)ccceeeeeernene 130
CBR Connections Supported vs. Jitter Tolerance (NORMFIFOQ, constant load) 130
CBR Connections Supported vs. Jitter Tolerance (PTDM, increasing 10ad) ... ueeeeresseens 131
CBR Connections Supported vs, Jitter Tolerance (NORMFIFQ, increasing load) 131
Jitter at HOSt PP22 (PTDIM) .ccuevuerirrrrereresesresnessssessesssessessssssssessessssssssesessessasssersssossassassseses 132
Jitter at Host pp2a (NORMFIFQ)......cccoceveeensrinsnmsnesnrssreenssnsaesssssressercsssssessesessessasssasensen 132
Jitter at HOSt PP2D (PTDM).....ccvvvvicisucncenennsenssssesssssesssssrasssssasnssssssmsssessanssessssssssassassossasss 133
Jitter at Host pp2b (NORMFIFQ).......cccoeeevreeernsreersrensencssesssesnsessrsrssersssssssesssssssssssssaesssacs 133
CBR Time-in-Network Distribution at Link PP3 (PTDM)......covveerveremreesressesossesossosees 135
CBR Time-in-Network Distribution at Link PP3 (NORMFIFO)ccoceenrescrrurcnvesniaens 135
CBR Time-in-Network Distribution at Link PP2a (PTDM).....cc.cceeevreerrsreeresiessuneessssaees 136
CBR Time-in-Network Distribution at Link PP2a (NORMFIFO)ccoerurereernnrensnssonss 136
CBR Time-in-Network Distribution at Link PP2b (PTDM).....cccovuervssruercesrmseessossnsssssane 137
CBR Time-in-Network Distribution at Link PP2b (NORMFIFQ)........c.cosvurersernrcennrnne 137
Loss Violations vs. Loss Tolerance (PFIFO_D_NG, Bottleneck_Lo8S).....cocuurervervresesnee 140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 45.
FIGURE 46.
FIGURE 47.
FIGURE 48.
FIGURE 49.
FIGURE 50.
FIGURE 51.
FIGURE 52.
FIGURE 53.
FIGURE 54.
FIGURE 55.
FIGURE 56.
FIGURE 57.
FIGURE 58.
FIGURE 59.
FIGURE 60.
FIGURE 61.
FIGURE 62.
FIGURE 63.
FIGURE 64.
FIGURE 65.
FIGURE 66.
FIGURE 67.
FIGURE 68.
FIGURE 69.
FIGURE 70.
FIGURE 71.
FIGURE 72.
FIGURE 73.
FIGURE 74.
FIGURE 75.
FIGURE 76.
FIGURE 77.
FIGURE 78.
FIGURE 79.
FIGURE 80.

Loss Violations vs. Loss Tolerance (PFIFO_D, Cross_Traffic_HomLink).......ccereessenns 143
Loss Violations vs. Loss Tolerance (PFIFO_D, Cross_Traffic_HetLink)ccoceevrvenenens 143
Loss Violations, 90 cell buffer, PTDM_D VS. OLhETS ..cocrineescisunssrsnsisessncsssasssesssonsassssanns 146
Jitter Violations, 90 cell buffer, PTDM_D Vs, OthErS ccvciuiereserrssissisessssnsnsisssssssssassesssass 146
Jitter Violations, 9999 cell buffer, PTDM_D vs. Others......ccceereismeececresesnnsisesssessessanse 147
Jitter at Host 2b-1, Small Buffer (PTDM_D)....ccccccnrantermnnssmsicsmssinisissssosessssonssessssssserssess 148
Jitter at Host 2b-1, Small Buffer (PFIFO_D)......ceerniminicssinnisisicssnsimecssssssssscssans 148
Jitter at Host 2b-1, Small Buffer (PTDM)ccccecvrenersessusimisecnsisesesessnsssmssersassissssssssssssns 149
Jitter at Host 2b-1, Small Buffer (NORMFIFQ).....c.coccvireesiinsrirsusansssnsissacss 149
Jitter at Host 2b-1, Large Buffer (PTDM_D)...c.conneeerecssessssesesesssssasssnssssssssssens ..150
Jitter at Host 2b-1, Large Buffer (PFIFO_D)....cccccvivecncccsnnansissssnsesassens150
Jitter at Host 2b-1, Large Buffer (PTDM).....ccvecccrenricvnnerinssnssssnssssesssssessssssssssssssssssssesens 151
Jitter at Host 2b-1, Large Buffer (NORMFIFO) 151
Low Jitter Tolerance Overall Q0S VIOlations.......cecveeeersrereenseesseseeseessssscasssacnnss 154
Medium Jitter Tolerance Overall QoS ViolationS.....ccceererveercrarersasercrsanessecseasssssssaseesssans 154
High Jitter Tolerance Overall QOS VIOlAtionsc.cueeeevistiinnsnsissecissnssissesensnssasiessessersssense 155
Low Jitter Tolerance Jitter Violations Only rrseeassnsrs s asataessatanas .156
Medium Jitter Tolerance Jitter Violations Only.......ccceeevererncnicnianns 156
High Jitter Tolerance Jitter Violations Onlyc.ccviinisoriinisnimnnneincsessnnscsnsnncsesnnene 157
Low Jitter Tolerance Loss Violations Only 157
Medium Jitter Tolerance Loss Violations OnlYcccceviivinsncnsnenssinsnsisenscsnsssenssncssnen 158
High Jitter Tolerance Loss Violations Onlycececsiercssmissinnennnnnsnsnisinsnssssnssnesinene 158
Link Utilization (%), Comparison of 4 policies, small buffer SWitchesc..ceevurvrerencee 162
Link Utilization (%), Comparison of 4 policies, large buffer switchesccocvvcrernrvnunns 162
Throughput, Comparison of 4 policies, small buffer switches........ 165
Throughput, Comparison of 4 policies, large buffer switches. 165
Time-in-system, pp2b-1, large buffer switch (PTDM)ccoourierurvennsensnininnsernsasensnsenenens 168
Time-in-system, pp2b-1, large buffer switch (NORMFIFO).......ccoveurirerescereruserirnsnnienne 168
Bottleneck Simulation TOPOIOZY ...ceevircrsvisisessesennrerensions sesasssasasasassrererasssasasasnrane 181
Cross_Traffic Simulation TOPOIOZYccerusurrisressmssusensiesorassensassersesmssesasssssassessnsassnssessense 186
Time-in-system, pp3b, small buffer switch (PFIFO_D)ccccconiunrirerernncsnsssnsinsernsasensaens 218
Time-in-system, pp2b-1, small buffer switch (PFIFO_D).... ...218
Time-in-system, pp3b, small buffer switch (NORMFIFO)ccvvvuiruirnneeresncniinrnsnnnennens 219
Time-in-system, pp2b-1. small buffer switch (NORMFIFO).........cceeivrnersurennssrernissienene 219
Time-in-system, pp3b, small buffer switch (PTDM)....ccccivevnrrnsnininnennsennsninsinsnnennnens 220
Time-in-system, pp2b-1, small buffer switch (PTDM).. .220

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLE 5.
TABLE 6.
TABLE 7.
TABLE 8.
TABLE 9.

TABLE 10.
TABLE 11.
TABLE 12.
TABLE 13.
TABLE 14.
TABLE 15.
TABLE 16.
TABLE 17.
TABLE 18.
TABLE 19.
TABLE 20.
TABLE 21.
TABLE 22.
TABLE 23.
TABLE 24.
TABLE 25.
TABLE 26.
TABLE 27.
TABLE 28.
TABLE 29.
TABLE 30.
TABLE 31.

LIST OF TABLES

No. of Cells Concurrently Propagating Down a Single ATM Hop......cccorvrervrienrnnerererarenes 11
SCheduler SUMMATY ..ivceeriisnniminmamiomimasmmmmennimssnessssssssssessssssssssesssssssessinesssasesses 102
Loss Tolerance for BoteneCK_LOSS ceievvreirssiseninrsrersnsesserssesssessentnssessenssesesssssssssssorssenes 184
Source Traffic Characteristics for Cross_Traffic_HOMLINK.......ccceevvrvenrerneresresseresserssans 188
Source Traffic Characteristics for Cross_Traffic_HetTrafficcoerureervrrereevereneens 192
Jitter Violations, CONStant I0AU....cicereereecrecsessensrarernesnesansssssseeneassasseessissssssnssensosasenseness 194
Jitter Violations as a Percentage of Offered Traffic, constant 10ad..........ccvvererrerneneennes 195
Jitter Violations, inCreasing l0ad.....ccceeeeveererneriresienansnesesssenssssseseeansaeseess .. 196
Jitter Violations as a Percentage of Offered Traffic, increasing 10ad........cceeveveerernererennnn 197
Loss Violations, Local QoS Knowledge, Bottleneck_LOSS.....coveeerrrerierenrussssaseressereoss 198
Loss Violations, Global QoS Knowledge, Cross_Traffic_HomLink, small buffer 199
Loss Violations, Global QoS Knowledge, Cross_Traffic_Hetlink, small buffer............. 200
Loss Violations, 90 cell buffer, PTDM_D VS. OtHErSccccevureerererrerererssnesesreresesssveseanenens 201
Loss Violations, 9999 cell buffer, PTDM_D V5. OIDEES ..cccoierreereemrersaressinseassssnssesesessesesnes 202
Jitter Violations, 90 cell buffer, PTDM_D VS, OherS....ccceerevrerrecrereensneresenssnssrassessrnsssanes 203
Jitter Violations, 9999 cell buffer, PTDM_D vs. others. «..204
Low Jitter Tolerance Overall QOS VIOLaltionScceereeeceernsseesnraeisarsasessessorsessessessssacsassanses 205
Medium Jitter Tolerance Overall QoS ViolationS......cveeeersssrenssraenes 206
High Jitter Tolerance Overall QoS Violations“ ..207
Low Jitter Tolerance Jitter Violations OnlYccieecrecnseerenneaseressesasnssssssassasssassassensenees 208
Medium Jitter Tolerance Jitter Violations Only......ccccieesmmesssssnssesisessssssescssnarensans 209
High Jitter Tolerance Jitter Violations Onlyuceveneccsiensseriseesasssssnscssossssasses 210
Low Jitter Tolerance Loss Violations Only esssrersesaessbetsrsssasesaessas 211
Medium Jitter Tolerance Loss Violations Onlyccceceeeererennnne w212
High Jitter Tolerance Loss Violations OnlYecuecscnsessissmssnsmsisesssisessssassensascssesessseneaes 213
Link Utilization (%), Comparison of 4 policies, small buffer SWitChesc..ceveerververerunne 214
Link Utilization (%), Comparison of 4 policies, large buffer SWitchesccoovvecereereeracne 214
Throughput, Comparison of 4 policies, small buffer SWitchescceevverevreverrenens 215
Throughput, Comparison of 4 policies, large buffer switches. 215
Raw Cell Loss vs. Cell Loss Violations.........cceeeeenenne. crrsvsesensenssasasssassssssanse 216

Components of Additional Delay Due to Prediction-Based Scheduling (in cell times)..216

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

DISTRIBUTED CELL SCHEDULING AND
QUALITY OF SERVICE IN ATM NETWORKS

by

Paul Goransson
University of New Hampshire, December, 1995

This work investigates the improvement of network jitter and quality of service
(QoS) in ATM networks through the use of more complex scheduling algorithms than
have been heretofore presented. In particular we discuss the measure of QoS Performance
as distinct from traditional measures of network performance. Results of the study demon-
strate that with the judicious introduction of delay at strategic places in an ATM network,
specifically at the network periphery and lesser amounts elsewhere, we can generate and
distribute accurate predictions of cell arrivals to all queues within the entire network. With
the existence of such predictions, we are able to apply more complex scheduling algo-
rithms than would normally be feasible. This approach permits the specification and con-
trol of QoS parameters on a per-connection basis rather than compressing all connections
into a small number of QoS “classes.” We show that more complex scheduling algorithms
can produce significant improvements in QoS performance, especially related to jitter.
These ideas are investigated through simulations, comparing the QoS performance for dif-
ferent implementations of prediction-based cell scheduling with the performance of an

ATM network performing strict FIFO cell scheduling.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1
INTRODUCTION

The world-wide communications infrastructure is undergoing a revolution due to the pro-
liferation of extremely high bandwidth fiber optic communications trunks. The existence
of this high bandwidth is spawning tremendous growth in the variety and volume of com-
munications services. This growth has motivated increasing interest in high-speed hybrid
networks, commonly known as Broadband Integrated Services Digital Networks (B-
ISDN). Associated with the growth of these networks is increased concern about quality
of service, including such factors as data loss and delay. Research has been presented on a
number of approaches to address these concerns. In this thesis, we present a novel
approach to improve B-ISDN performance which attempts to exploit more of the capabil-
ities inherent to these networks than other work presented to date.

One of the transfer modes possible for B-ISDN is the Synchronous Transfer Mode (STM),
which is based on Time Division Multiplexing (TDM) technology. TDM-based networks
can readily support the variety of services demanded in hybrid networks, but with poor
network utilization.

Packet switching technologies like X.25 have traditionally held an advantage over TDM
technologies due to higher network utilization achieved through statistical multiplexing.
Such packet switching techniques, however, are not scalable to high transmission speeds.
Asynchronous Transfer Mode (ATM), using available technology, is thought to offer the
high network utilization of packet switching with the capability to sustain end-to-end net-
work throughput in the gigabit/second range. ATM has been chosen by the ITU (formerly
known as the CCITT) as the transfer mode of choice for B-ISDN.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ATM cannot escape, however, the networking axiom that utilization gains from statistical
multiplexing must always come at the expense of increased delay or loss. It is significant
that the very high bandwidth services which are currently used to justify ATM have partic-
ularly rigid requirements on delay and loss. These rigid requirements, formally expressed
as Quality of Service (QoS) requirements, must therefore be traded off against high net-
work utilization. When a user requests a connection stipulating guarantees related to delay
or loss, the request will be accompanied by specific QoS parameters.

1.1 Thesis Goals

Considerable research has been done in the application of call admission, flow control,
and rate-based policing in pursuit of this dual goal of QoS guarantees and high utilization.
While all of these mechanisms can be effective, it is widely agreed that further improve-
ments in the utilization/QoS violation quotient will require intelligent scheduling of cells
in the network switches themselves. Earlier research on cell scheduling has focussed on
relatively simple scheduling decisions due to the perception that more powerful (and
hence more complex) scheduling decisions are not feasible at B-ISDN speeds.

Our research develops a model that permits more sophisticated scheduling in ATM
switches through the use of predictions about future cell arrivals. We show how this pro-
duces improvements in performance not possible with simpler scheduling techniques. The
scheduling computation relies on the model’s ability to provide accurate short-term pre-
dictions about impending cell arrivals. We show how this foreknowledge of cell arrivals
provides adequate time for individual switches to make decisions that better satisfy QoS
requirements for individual connections while also increasing overall network utilization.

For constant bit rate (CBR) sources, predictions are trivial to produce. For variable bit rate
(VBR) sources, insertion of small delay buffers at the network edge permits “warning
shot” predictions to propagate through the network ahead of the actual data. Our use of
predictions differs sharply from other reported attempts to use prediction, since our pre-
dictions are accurate forecasts and not estimates.

The presence of this foreknowledge provides the opportunity to investigate different
aspects of intelligent cell scheduling. In particular, we wish to derive benefits from the fol-
lowing areas distinguishing the concept of QoS violations from the simpler but less mean-
ingful concepts of cell loss and delay:

[S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. providing global information about the current QoS state to all switches in a con-
nection’s path so that local QoS decisions can have relevance to the end user QoS,

2. examining the benefits of controlled buffering of cells to increase utilization with-
out the loss of tight control of QoS that is normally associated with queueing sys-
tems.

Therein lies the primary thrust of this thesis: we intend to provide accurate predictions of
the future sufficiently in advance of the actual arrival of cells to allow for complex compu-
tations that generate a (nearly) optimal schedule. The schedule provides QoS guarantees
on a per-connection basis. In this thesis we illustrate how the predictions can be made, and
propose scheduling heuristics to address the inherent optimization problem.

Additionally, since our goal is to minimize QoS violations, and QoS is defined at the net-
work traffic boundary, it is senseless to make locally optimal decisions about QoS in the
absence of knowledge about cell loss that may be occurring at other nodes. We suggest
that any solution to the QoS problem ultimately include global knowledge of the QoS state
of each connection. Implementation of this global knowledge falls out conveniently from
the transmission of predictions, and thus nicely complements the prediction-based cell
scheduler by providing a means to improve QoS guarantees in ATM networks.

1.2 Quality of Service Parameters

Individual user end-to-end ATM connections are known as virtual circuits. They are vir-
tual circuits in the sense that they provide logical connectivity across the network over
potentially many individual physical circuits aligned in a tandem fashion. We identify the
following QoS parameters on a per-virtual circuit basis:

1. average bandwidth
2. peak bandwidth
3. loss tolerance

4. jitter tolerance

5. delay tolerance

6. measurement interval length

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While these terms or variations of them appear in other research, they have no universally
accepted interpretation. Therefore we now provide the interpretations that we use in this
thesis.

Peak (average) bandwidth describes the maximum (average) number of bits per second
that the user of the virtual circuit may inject at the transmitter network boundary. Loss tol-
erance represents how many lost cells the connection is willing to tolerate over a specified
measurement interval. Delay tolerance stipulates the maximum delay a cell from the vir-
tual circuit can suffer without becoming useless at the receiver network boundary. Jitter
tolerance describes the maximum deviation from a stipulated inter-cell time that may be
tolerated at the receiver network boundary before the cell becomes useless to the receiver.
Note that unlike loss tolerance, the definitions of delay and jitter tolerance do not include a
notion of measurement time interval. We refer the reader to [6] for an expanded exposition
of the basic terminology used in this thesis.

The terms defined above yield a natural classification of user traffic types into the four
major classes: CBR, VBR, ABR and UBR. Constant Bit Rate (CBR) is traffic where peak
bandwidth equals average bandwidth. Variable Bit Rate (VBR) is traffic in which peak
bandwidth exceeds average bandwidth. Both CBR and VBR are usually considered jitter-
sensitive and delay-sensitive, and somewhat loss-tolerant. Available Bit Rate (ABR) traf-
fic is loss-sensitive and delay-tolerant. Unspecified Bit Rate (UBR) traffic is tolerant of
both loss and delay. Peak bandwidth is greater than average bandwidth for both ABR and
UBR types.

1.3 Quality of Service Guarantees

We define providing QoS guarantees as the forwarding of the virtual circuit’s cells from
the transmitter network boundary to the receiver network boundary at a throughput of up
to peak-bandwidth bits per second such that its stipulated loss, jitter or delay tolerances are
not exceeded at the receiver. Although the field of QoS research is new enough so that
there is no widely accepted formal definition of “QoS Guarantees,” the preceding defini-
tion is in accordance with the use of the term in the research literature (see Chapter 2). An
important factor in our research is that QoS guarantees need to be managed on a per-con-
nection basis. For example, one connection may specify that it can tolcrate only a single
loss per 100 ms, but it may have no special requirements related to delay. Another connec-
tion may indicate that it can tolerate no loss whatsoever and end-to-end delay of no more
than 50 ms. A third connection may stipulate that it can tolerate 100 losses per second, but

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the variance in end-to-end delay between successive cells must not exceed 80 ps. For
each of these examples, providing the QoS guarantee has a different manifestation in the
ATM switch. In all three cases, though, it is clear what quantity of loss or delay constitutes
a violation of a QoS guarantee. When the network accepts a connection request, it enters
into a contract with the user that it will, with definable probability, honor the requested
guarantees.

While delay and loss are the basic measures of QoS, a number of other QoS measures may
be derived from them. For more details on the issues related to providing QoS guarantees
in high speed hybrid networks, see [6], [11], and [12].

1.4 Quality of Service Performance

ATM has been chosen as the transfer mode of choice for B-ISDN largely due to the belief
that it will offer a better utilization/QoS violation quotient than either TDM or packet
switching. Even ATM cannot escape the correlation between increased network utilization
and QoS violations. This reality is in fact a characteristic of any queueing system with sto-
chastic traffic sources. Due to the varying load generated by the traffic sources, a queueing
system with finite buffers cannot be run at 100% capacity without a non-zero probability
of queue overflow [13].

This leads us to the frequent characterization of an individual ATM network implementa-
tion with graphs that plot network utilization vs. cell loss violations. Such plots are com-
monly presented in current ATM research papers (e.g., [3], [9], and [7]). We suggest thata
more useful version of this plot is the network utilization vs. QoS violation. Such a plot for
four different hypothetical ATM network implementations is shown in Figure 1. The four
different implementations are depicted as typel, type 2, type 3 and type 4 in the figure.
Figure 1 clearly indicates that implementation type 4 achieves consistently higher utiliza-
tion levels for all the QoS violation levels shown. Note that comparison of two or more
curves on such a plot is only valid when the traffic characteristics and traffic distribution
patterns are consistent for all curves at any point on the utilization axis.

Since an ideal ATM network would permit 100% utilization with zero QoS violations, it is
generally desirable that the QoS performance curve rise as rapidly as possible. This curve
can be improved by a variety of mechanisms. We review some of these in the following
sections. This review shows that while QoS performance can benefit from these mecha-
nisms, further enhancements are necessary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 1. Network Utilization vs. QoS Violations

QoS Performance
per Netwark Strategy

30 ——=+Q N —— — 4+ C

0 1 2 3 4 5 6 7 8 9 10
QS Viddions per Unit Time

—o— Typel - Type2
-©- Type3 = TypAd

1.5 The Role of Call Admission

We assume that cali admission includes the function of allowing or disallowing the estab-
lishment of a given virtual connection as well as the selection of a path through the net-
work for that connection. If all traffic sources were isochronous, then call admission
would be the only factor in providing QoS guarantees and in fact would be a relatively
straightforward accounting problem. Such a network would not really be an ATM network
atall, but a TDM (also known as STM (Synchronous Transfer Mode)) network with its
inherently lower utilization. All traffic sources are not isochronous, though, and support of
VBR traffic is one of the key facets of the ATM network that provide it with an advantage
over its TDM counterpart. VBR sources have a higher peak bit rate than average bit rate.
Perfect QoS guarantees require true peak bit rate resource reservation (4], which ATM
cannot widely apply and still retain an advantage over STM. This forces ATM call admis-
sion into a complex trade-off between network utilization and probability of QoS viola- -
tions. Call admission is forced to overbook network resources to provide acccptable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

utilization levels. By overbook we mean that the call admission process accepts more con-
nections than can be supported if all connections simultaneously transmit at their peak
rate.

In the face of mixed traffic types, the call admission process needs to evaluate how much
it may overbook resources (communications bandwidth and switching) and still meet the
QoS requirements of both the incoming connection request as well as the set of existing
connections. Since call admission cannot see into the future and contemplate the com-
bined traffic loads of all the sources over the durations of all connections, this problem has
no deterministic solution at call admission time. The call admission implementation will
be a heuristic tuned either for low utilization and low cell loss probability or for increased
utilization with increased cell loss probability.

We make the assumption that, in any practical network, call admission will overbook
resources and, therefore, cell loss is inevitable.

1.6 The Role of Network Edge Policing

Another mechanism that can improve the network utilization/QoS violation curve is net-
work edge policing. The best known example of this is the Leaky Bucket policing mecha-
nism. This mechanism forces either the average bandwidth or the peak bandwidth of the
source to stay within some negotiated maximum. While this approach is popular and has
an important role in determining the network utilization/QoS violation curve, it is gener-
ally accepted [5](8][2][1] that it cannot preclude undesirable cell loss within the network.
This loss can result from the aggregation of groups of individually policed sources and
variations in queueing and transmission delays for different virtual connections.

1.7 The Persistent Problem of Cell Loss

Even with a good call admission process and with network edge policing, cell loss internal
to the network still occurs. Figure 2 shows a network of 9 ATM switches (A-]) intercon-
nected by communications links. For simplicity we show all network traffic moving from
top to bottom in the figure. The shaded bars depict a sample distribution of cells on the
upstream links of switch E, according to their respective egress link /7, 12 or /3. While the
cell distribution shown is more coarse-grained than is likely to occur in reality, it serves to
illustrate the point that as these cells arrive at switch E, they do not cause congestion at the
servers for links /1, I2 or [3. This is because they happen to be chronologically ordered so
as to minimize the likelihood of congestion. Only a TDM system, though, can truly guar-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

antee such chronological ordering. Support of variable rate sources precludes an explicit
guarantee of this ordering. Since ATM cannot completely control the chronological order-
ing of arrivals, it is probable that cells will sometimes arrive in a chronologically inconve-
nient fashion, thereby producing congestion.

We depict such an ordering in Figure 3. It is clear that too many cells destined for link 12
arrive during the same time period. The packet switching solution of allowing the excess
bandwidth arrivals to queue at the link 12 server is not directly applicable in ATM. This is
because the cell arrival rate can be so high that the number of cells arriving during a period
of congestion could far exceed any reasonable buffer capacity of the switch. Unlike tradi-
tional packet switching networks, the bandwidth-delay product of ATM is so high as to
prohibit reliance on the end-to-end flow control methods that those networks have used
successfully to control network queue overflow. The notion of bandwidth-delay product is
discussed in detail in [6]. For an intuitive notion of what high bandwidth-delay product
signifies, see Table 1. This table provides a tally of how many ATM cells are propagating
down fiber optic trunks of various lengths for the three proposed ATM link speeds. The
values in Table 1 were calculated assuming a propagation delay of 5085 nanoseconds/
kilometer, which is characteristic of the optical fiber used for the Fiber Distributed Data
Interface (FDDI) standard [14]. Thus, if we assume that the internodal links in Figure 3
are 1000 kilometer fiber optic links clocked at 155 MBps, approximately 2000 cells will
be in transit on each link at any time. The period of congestion for link /2 corresponds
approximately to the last 25% of the cells in transit on the three upstream links. This
implies that during a time interval in which /2 can transmit 500 cells, there are 1500 arriv-
als. This would require a per-link output buffer for 1000 cells, which is quite large. This
problem worsens linearly with an increase in link speeds. Since 156 Mbps is the lowest
link speed proposed for ATM, with alternate speeds of 622 MBps and 2.5 GBps, it is
widely agreed [4] [10] that cell buffering will not be adequate to prevent cell loss during
congestion.

Since some cell loss is inevitable during these brief periods of congestion, the best one can
hope for is to orient cell loss in such a way that no virtual connection’s QoS guarantees are
violated. The intent of this research is to propose and evaluate a means to improve the net-
work’s chances of meeting all QoS guarantees while maintaining high network utilization.
In order to propose how this may be achieved, we first recap the problem in the next sec-
tion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 2. No Congestion Scenario

No Cell Loss

cells destined for 11
]

cells destined for 12
T

cells destined for 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 3. Incvitable Cell Loss Scenario

Congestion
and Loss

estined for 11
R

cells destined for 12
LT
cells destined for I3

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 1. No. of Cells Concurrently Propagating Down a Single ATM Hop

Hop Length 0C-3 0C-12 0C-48
(km) 156 MBps 622 MBps 2.5 GBps
Campus
(10) 18.6 74.6 299
Metropolitan
(100) 187 746 2985
Inter-city
(1000} 1866 7464 29859
Transcontinental
(5000) 9331 37324 149296
L

11

1.8 The Quality of Service Problem and Our Solution

We define the QoS problem in this section and illustrate it using Figure 3. During a period
of congestion such as that evidenced for link /2 in Figure 3, an optimal link schedule is
one that drops cells as necessary and reorders the transmission of the remaining cells so as
to minimize the QoS violations incurred within that congested period. Finding and enforc-
ing this optimal schedule is the focus of this thesis.

While we acknowledge that the optimal schedule may be difficult to achieve in practice,
we postulate that this is merely a problem of computational complexity. Stated simply, if
there were enough time to compute the ideal schedule, then such a schedule could be com-
puted and enforced. One could simply compute all the possible schedules and then enforce
the one with a minimum number of QoS violations.

Earlier work has dealt with a simpler version of the QoS problem, assuming that all con-
nections fall into a small, fixed number of QoS classes. This restriction is placed on how
QoS parameters may be stipulated precisely in order to render the scheduling problem less
computationally intense. The combinations of possible values for the six QoS parameters
are so diverse that we reject as overly restrictive the notion that QoS guarantees can be
managed on the basis of a small number of classes into which each connection must be
placed. Our solution provides these guarantees on a per-connection basis.

This thesis is motivated by the idea that a future transmission schedule can be calculated
by looking upstream at the set of cells flowing towards the link in question. By judiciously
introducing a small delay in the network, we can let information about these upstream
cells precede the arrival of the cells themselves. We refer to the regular propagation of this
information about future arrivals as schedule distribution. An essential side effect of com-
puting a schedule based on predicted input is that this computation can be performed in
parallel with the cell flow. That is, while we are computing a schedule for a future time
period, the cells of the current time period flow through the switch unaffected by the ongo-
ing schedule computation. We demonstrate that such use of the predictions can provide
sufficient time to compute the (nearly) ideal schedule so that it may be enforced when the
cells to which it pertains arrive.

In other words, in this thesis we provide accurate predictions of the future arrival suffi-
ciently in advance of the actual arrival of cells to allow for complex computations that
generate a (nearly) optimal schedule. The schedule provides QoS guarantees on a per-con-
nection basis. We illustrate how the predictions can be made and propose scheduling heu-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ristics to address the inherent optimization problem. We also suggest that any solution to
the QoS problem ultimately include global knowledge of the QoS state of each connec-
tion. Implementation of this global knowledge falls out conveniently from the transmis-
sion of predictions, and thus complements the prediction-based cell scheduler in providing
ameans to improve QoS guarantees in ATM networks.

1.9 Dissertation Road Map

Having provided basic definitions and an introduction to our research, it is now appropri-
ate to give a more detailed outline of the thesis. Chapter 2 provides a review of current
research related to the QoS problem. In Chapter 3 we introduce a prediction-based sched-
uling model that we use throughout the balance of the dissertation. The model provides a
theoretical framework that aids us in defining specific, implementable heuristics address-
ing the QoS problem. Chapter 4 presents a formal proof that the predictions asserted to be
universally correct in the model are indeed always correct. In Chapter 5 we discuss the
computational complexity of our scheduling problem as defined in the model. We show
that this problem is NP-complete. The intractability of the problem leads us to develop
efficient heuristics for it. The approximations are practical and calculate sub-optimal but
good schedules. They are described in Chapter 6. In Chapter 7 we select specific heuristics
from those presented in Chapter 6 and perform extensive simulations of them running in
different ATM network topologies with numerous traffic types under various loads.
Numerical and graphical results of these simulations are compared to those from simula-
tions of a generic ATM network for the purposes of evaluating our heuristics. Chapter 8
discusses several different research avenues that could be pursued by extending the work
in this thesis. In Chapter 9 we conclude with a summary of our results and the implication
that these results have on continuing research in the field of QoS guarantees in ATM net-
works.

1.10 References

[1] J. Amenyo, A. Lazar, and G. Pacifici. Cooperative distributed scheduling for ATS-
based broadband networks. In JEEE INFOCOMM 92, volume 1, pages 333-342,
June 1992.

[2] V. Friesen and J. Wong. The effect of multiplexing, switching and other factors on
the performance of broadband networks. In JEEE INFOCOMM 93, volume 3, pages
1194-1203, March 1993.

{31 G. Gallasi, C. Cappellini, L. Fratta, G. Rigolio, and F. Rossi. Performance

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[4]
5]
[6]

(71

(8]
91

[10]

[11]

[12]
[13]

[14]

evaluation of flow control mechanisms in multi-throughput class networks. In JEEE
Globecom 88, volume 1, pages 511-516, June 1988.

J. Gechter and P. O’Reilly. Standardization of ATM. In IEEE Globecomm 88,
volume 1, pages 107-111, June 1988.

S. Golestani. Congestion-free transmission of real-time traffic in packet networks. In
IEEE INFOCOM 90, volume 1, pages 527-536, June 1990.

P. Goransson. Bandwidth allocation in hybrid networks. Technical Report TR-93-
02, University of New Hampshire, February 1993.

R. Guerin and L. Gun. A unified approach to bandwidth allocation and access
control in fast packet-switched networks. In JEEE INFOCOMM 92, volume 1, pages
1-12, June 1992.

P. Guillemin, P. Boyer, A. Dupuis, and L. Romoeuf. Peak rate enforcement in
ATM networks. In IEEE INFOCOMM 92, volume 2, pages 753-758, June 1992.

J. Le Boudec. About Maximum Transfer Rates for Fast Packet Switching Networks.
In ACM SIGCOMM 91, pages 295-304, September 1991.

L. Trajkovic. Buffer requirements in ATM networks with leaky buckets, FIFOs, and
weighted fair queueing scheduling mechanisms. ATM Forum 94-0077, January
1994.

P. Goransson. ST2 and Resource Reservation. In Proceedings of the First Annual
Conference on Telecommunications R& D in Massachusetts, volume 5, pages 38-49,
October 1994.

P. Goransson. Bandwidth reservation on a commercial router. Computer Networks
and ISDN, volume 28, no. 3, pages 351-370, January 1996.

L. Kleinrock. Queueing Systems Volume II: Computer Applications. Wiley, New
York, 1976.

ANSI X3.148-1987. Fiber Distributed Data Interface (FDDI) - Token Ring Physical
Layer Protocol.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Chapter 2
RELATED WORK

2.1 Introduction

In this chapter we review recent research related to our thesis. Our primary focus is to gen-
erate nearly optimal schedules based on cell predictions received from neighbors. In the
next section of this chapter, we discuss other work related to the interchange of cell pre-
dictions between neighbors. The generation of the cell predictions themselves is a research
topic in its own right, and we provide references and a brief discussion of that work in the
second section. Related research in the area of schedule generation is the focus of the last
section.

2.2 Distributing Schedules and Quality of Service State

The distributed cell scheduling described in this thesis differs fundamentally from the
related work on distributed schedules in a number of ways. Other work in this area has
been based on grouping all connections into a small, fixed number of classes. Each con-
nection in a class is presumed to have identical QoS requirements to other members of that
class. We argue that QoS is a connection specific commitment and, hence, cannot be man-
aged on the basis of a small number of traffic classes. Another fundamental difference is
that the other research ignores the end-to-end aspect of QoS and instead focuses on QoS
issues in a single network queue at a single switch.

The general idea of prediction of node-state and exchange of this information with neigh-
bors in order to deal with congestion in high-speed networks has appeared in recent work
by Amenyo [1] [2] and Ko [10]. Ko provides prediction-based feedback to neighbors to

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

alleviate congestion, but that work only considered a single class of traffic (Poisson) and
ignores the QoS problem [10]. Amenyo extends the prediction-exchange paradigm of Ko
to include three distinct QoS classes [1]. The entire scheduling approach in [1] is tightly
coupled with the definition of the three classes. While providing QoS guarantees in accor-
dance with a small number of classes is consistent with the current literature, and has clear
implementation advantages, we argue that QoS guarantees can only be adequately pro-
vided on a connection-specific basis. Gupta and El-Zarki recognize the problem of over-
generalizing connections’ QoS requirements into too few classes [6]. In [6], they attempt
to determine the minimum set of traffic classes that satisfy the QoS constraints of a set of
connections. Gupta and El-Zarki cite an example that supports the idea that QoS needs to
be specified and enforced on a per-connection basis. The example dispels the intuition that
choosing the tightest QoS guarantees of a set of sources as the QoS guarantees for all
should be sufficient to guarantee the requirements of all of them. They show this to be
false, basically because the cell loss probabilities of individual streams are not necessarily
equal to the overall cell loss probability. In layman’s terms, if you are serving 10 streams,
one of which is extremely bursty, and 9 smooth, the overall loss probability may be within
limits, but the bursty stream will suffer a disproportionate amount of that loss. Despite the
fact that Hyman’s work is limited to three traffic classes, he acknowledges that QoS
should ideally be guaranteed on a connection basis and only discounts this because of its
evident computational complexity [7]. Despite the computational complexity involved,
we argue that since QoS is a connection specific commitment, it cannot be adequately
controlled using only a small number of traffic classes.

Because of the over-simplification of QoS into 3 classes, Amenyo is able to treat cell loss
in a very straightforward manner [1] [2]. Cell loss is either to be avoided atall costs, or
there is no penalty for loss, depending on the particular class. Itis well known that some of
the most important traffic types predicted to use ATM are tolerant of small amounts of loss
[5]. The concentration of this loss is also significant. This thesis incorporates these factors
as well as others into the notion of QoS violations, which is a much more relevant concept
at the user traffic boundary than cell loss.

Similarly, since QoS is defined at the network traffic boundary, it is senseless to make
locally optimal decisions about QoS in the absence of knowledge about cell loss that may
be occurring at other nodes. The incorporation of this knowledge in traffic scheduling
decisions is discussed extensively in Section 6.3.2 , "Global Knowledge of QoS State."
This factor is ignored by Amenyo {1] [2] and Ko [10] and, surprisingly, we have seen no

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other research on QoS optimization that accounts for the need for information about cell
loss that may be occurring elsewhere in the network.

While the preceding points are all significant, the most striking difference between the
prediction and scheduling proposed by Amenyo and that proposed here is the fact that our
predictions are 100% accurate forecasts of the near-term future, whereas Amenyo’s are
probabilistic predictions. Our forecasts are emitted and received on a highly regular basis
as a function of the network topology. The accuracy and timeliness of the information
eliminates the stochastic characteristics exhibited by [1].

2.3 Predicting Cell Arrivals

Cell prediction schemes are usually based on making a probabilistic ‘guess’ about future
performance based on past history. In some cases, attributes of the particular traffic source
can render such guesses more accurate than the general case. The prediction scheme we
propose in this thesis is unusual in that the predictions are completely accurate and work
for any traffic type. This increased accuracy and generality is achieved at the price of
increased network latency. Our predictions are distinguished from network edge-only pre-
dictions in that they are generated by each network hop, and their scope is limited to a sin-
gle network hop. As we do not expect any explicit response or acknowledgment to our
predictions, they do not become obsolete with increasing network size.

In Section 1.5 we described the role of call admission in providing QoS guarantees. One
of the problems encountered in developing effective call admission strategies is that the
granularity of the call parameters is too coarse. That is, as we indicate in [5], it is difficult
to describe accurately the behavior of an entire connection with a few parameters such as
E (average bit rate), S (maximum bit rate), or the standard deviation of the probability
distribution function of such variables. In other words, for most connections, it is impossi-
ble to predict their behavior at connection establishment time. It is possible to describe a
connection as a series of bursts interspersed with periods of relative inactivity. Normally,
traffic behavior will vary less within a surge burst than it does over the course of the entire
connection. Clearly, then, much more accurate traffic descriptions can be made if the traf-
fic being described is just a single burst.

2.3.1 Burst-wise Reservation Approaches

Burst-wise reservation usually induces considerable latency into the traffic stream. This is
because the delay penalty paid for each reservation request, normally restricted to connec-

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion establishment, is now paid for each burst of the connection. One burst-reservation
system, described by Gerla and Tai, addresses the problem of connectionless service over
ATM [4]. Traditional approaches to this connectionless service problem are reviewed,
including the virtual path approach and the connectionless server approach.

Gerla and Tai propose a bandwidth advertisement approach where the non-reserved band-
width is continually advertised to the network edge. The NAL (see [5]) employs this
almost-accurate description of available network bandwidth to time transmissions so that
there is a high probability that the required bandwidth is available on the desired path.
Gerla and Tai describe a bandwidth probing technique to achieve the bandwidth advertise-
ment. Burst reservations precede the data burst to temporarily allocate bandwidth for the
burst. The burst reservations in [4] differ significantly from the predictions in this thesis:

1. They generate reservations at the network edge only; we do so both at the edge
and at each switch.

2. Their reservations are not generated at uniform time intervals; ours are.

3. Inour paradigm the ‘reservations’ are really ‘warnings.” There is no implication
here of any guarantee that the warning must be heeded. In [4] it was implied that it
would be obeyed.

4. Our paradigm does not require that bandwidth advertissments propagate to the
network edge. As the size of the network increases, the bandwidth advertisements
tend to be obsolete as they reach the network boundary.

5. In our approach, predictions about bandwidth usage are only exchanged between
neighbors. Since they can only suffer the latency of a single network hop, our
approach scales better with increases in network size than does [4].

Further analysis would be required to evaluate the recency/overhead trade-off of the infor-
mation gathering/dissemination process that underlies their ideas.

2.3.2 Predictions for a Specific Traffic Source Type

MPEG Example

When the predictions only need to be made for a specific traffic source type, such as
Motion Picture Experts Group (MPEG) video, special source characteristics can facilitate

intelligent predictions. Pancha and El-Zarki use and describe a predictor to estimate the
next MPEG frame’s bandwidth requirements [12]. The predictor is a model where the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of states of that model is determined by the ratio of peak rate to the standard devi-
ation of cell arrivals. They say that while individual MPEG coders differ by their predictor
parameters, N and g, their model normalizes them by their individual standard deviations.
Thus, the model is somewhat universal across MPEG codecs. The value of ¢, the predic-
tion of the cells produced in the n'™ frame, is based on ¢, _ (the cells produced in the
n—1"* frame), | (the mean cell generation rate), and & (the standard deviation for that

codec). It is defined as:
¢, = max(y,c,_,+0)

This type of prediction is tightly coupled with the characteristics of a particular traffic
source type (e.g., MPEG CODECS), whereas the prediction mechanism we use is generic.

Dynamic Leaky Bucket

Tedijanto and Gun propose a Dynamic Leaky Bucket policy mechanism where access-
level, connection-specific leaky buckets monitor presented traffic and request more band-
width of the network when an increase in load is detected [14]. The Dynamic Leaky
Bucket needs to be able to rapidly detect increases in presented load. It does this through
an exponential substitution approximation method. Simply stated, it uses a mathematical
estimate called the equivalent burst length b that is calculated based on recent traffic his-
tory, and that can be compared with current traffic measurements, to determine if the traf-
fic is changing enough to warrant a change in the bandwidth reservation. If such a change
is detected, a request for a bandwidth update is sent to the network. After a delay of a few
seconds, which is presumably the network end to end propagation delay, the network has
either granted or refused the request for an increase in bandwidth. If the request is denied,
the Dynamic Leaky Bucket begins to throttle the arriving traffic to stay within the original
request by dropping cells. The Dynamic Leaky Bucket lets the perceived excess pass dur-
ing the few second delay before the response can return. Tedijanto and Gun present graphs
that show how a traditional leaky bucket can continue to saturate a network queue for a 30
second duration whereas the Dynamic Leaky Bucket already reacts in a matter of two to
three seconds.

Tedijanto and Gun’s work is an interesting mix of prediction and burst-level reservation.
Since it does not rely on any feedback from other network components, the Dynamic
Leaky Bucket does not have problems scaling to large increases in network dimension.
Their work focuses only on the network boundary function and does not investigate how
the network switches themselves collaborate in the burst reservation process. More impor-
tantly, the time scale of the reaction to the bandwidth changes is vast compared to the few

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

milliseconds we propose. While the method proposed in [14] can avoid prolonged over-
load conditions at internal network queues, thousands of QoS violations may be incurred
before the burst-reservation feedback is received.

2.4 Schedule Generation

Different practical cell scheduling policies have been proposed that are designed to
improve the QoS-Utilization product of the network. These include Static Priority Sched-
uling (SPS), Partial Buffer Sharing (PBS), Push-Out, Virtual Clock and Magnet II real -
time scheduling algorithms (MARS). All of these policies assume that traffic may be cate-
gorized according to a small number of QoS classes, and that these classes follow a strict
hierarchy with respect to tolerance of packet loss. These algorithms avoid directly enforc-
ing QoS guarantees on a per-connection basis because it seems too complex a function to
perform at cell-time granularity. Our thesis asserts that by performing the schedule com-
putation at greater than cell-time granularity, we can undertake more complex schedule
generation and thus achieve better QoS performance. We conclude this section with a ref-
erence to a study that demonstrates via simulation that an intelligent cell discard policy
improves ABR QoS in ATM networks.

Even a simple FIFO queue at the ATM switch output link enforces a cell scheduling pol-
icy. This ‘default’ scheduling policy is simply that arriving cells are transmitted in the
order that they are received and when an arriving cell finds the buffer full it is discarded,
regardless of whether less important packets are queued in front of it.

2.4.1 Optimal Discard Policy

There is an often cited work by Petr and Frost that formalizes the idea of an optimal dis-
card policy [13]. This applies to the problem of schedule generation since, if no reordering
of cells is performed by the cell scheduler, then a scheduling policy is fundamentally justa
discard policy. Petr and Frosts’ work is primarily interesting for the formalization of the
comparison of two discard policies. Their method requires knowledge of traffic statistics
and two traffic classes are contemplated. Their work is of theoretical interest; however,
effective application of this idea is unlikely because the optimal discard policy must be re-
derived for every change in the traffic mix, and the derivation itself is computationally
intensive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2 Delay Priority

In SPS, packets of each class enter a separate FIFO. A lower priority FIFO is only served
when all higher priority FIFO’s are empty [7]. According to [7] this algorithm is extremely
efficient and achieves excellent network utilization levels while providing the packet loss
guarantees for the higher priority class ([7] assumed only two classes). One drawback of
the algorithm is that it gives unconditional priority to class 1. This affects not only packet
loss characteristics but also packet delay characteristics. SPS is a delay priority scheduler
in thatclass 2 packets may be dropped due to pending class 1 packets that could actually
tolerate further delay without QoS violations. SPS is identical to Head-of-Line (HOL) pri-
ority queuing as presented in [9]. The unconditional priority afforded class 1 traffic by
HOL priority queueing will service a class 1 arrival without delay, providing that the class
1 FIFO is empty. If class 1 arrivals represent a small percentage of the link’s capacity,
these cells experience very little jitter. As the percentage of arrivals attributable to class 1
traffic grows, however, class 1 cells suffer increased delay and jitter. This is due to the fact
that HOL priority queueing exercises no explicit control over delay.

2.4.3 Space Priority

Both PBS [11]{3]{8] and Push-Out [11] are space priority scheduling methods that, unlike
the SPS, attempt to decouple lower delay service from lower cell loss. PBS and Push-Out
are space-priority schedulers since they allow newly arriving cells to displace cells already
in the buffer. This displacement can result in the displaced cell being dropped. In PBS, a
class 2 buffer threshold is defined as some value less than the maximum buffer size. If the
buffer fills to this threshold level, arriving class 2 cells are discarded. In Push-Out, Kroner
et al. select which class 2 cell to discard when there is a full buffer and a class 1 cell
arrives [11]. The exact nature of the intelligent selection mechanism is not specified in
[11]. Kroner et al. do acknowledge that since cell sequence must be preserved, compli-
cated buffer management logic is necessary, making the push out strategy much more
complicated to implement than partial buffer sharing.

Note that despite the elimination of the tight coupling between loss priority and delay pri-
ority, neither PBS nor Push-Out explicitly schedules cells in accordance with QoS delay
requirements, which is desirable in a general QoS scheduler. As with SPS, both PBS and
Push-Out are characterized by the fact that service is still ultimately FIFO.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.4 Virtual Clock

Virtual Clock differs sharply from the preceding approaches in that the cell service disci-
pline is not fundamentally FIFO [15][16]. Virtual Clock generates schedules by calculat-
ing the ideal time when each arriving cell should be transmitted and sequencing the
transmission of cells in accordance with those times. It is important to note that Virtual
Clock does not enforce the ideal transmission time, but merely the order of cell transmis-
sion. Cell loss and delay QoS guarantees are provided on a connection basis. The limita-
tion of Virtual Clock is that scheduling is done assuming that all traffic is of the CBR type.
Since ATM is justified to a large extent by the presence of VBR traffic with stringent QoS
requirements, Virtual Clock is not sufficiently general for the QoS problem as defined in
this thesis.

24.5 MARS

MARS, proposed by Hyman, is a more complicated and sophisticated scheduling algo-
rithm than any of the approaches cited above [7]. MARS deals with three classes of traffic:
class 1 and class 2 traffic have guaranteed QoS, with class 1 having stricter constraints on
loss and delay than class 2. Class 3 reflects non-guaranteed traffic (e.g., data).

MARS delays class 1 and class 2 cells as much as possible if there is waiting class 3 traf-
fic. This is intended to maximize overall throughput and network utilization while still
maintaining the QoS commitments for classes 1 and 2. Thus, rather than merely being de-
coupled, the cell delay QoS and cell loss QoS parameters of a class each play an active
role in MARS’ schedule computation.

The MARS scheduler makes the determination of which cells to transmit on the basis of
cycles. The maximum length of a cycle is the maximum tolerable delay of class 1 cells,
denoted as H. The actual cycle length is often less than H, and is a function of the number
of cells of the three classes that arrive in the previous cycles. The cycle length is always
selected with the goal of transmitting the maximum number of class 2 and 3 cells without
causing any class 1 cell to miss its deadline or exceeding the loss tolerance of class 2. The
calculation of this maximum is based on a prediction of the class 1 and class 2 arrivals
over a fixed number of future cycles 4. This prediction is based on class 1 and class 2
arrivals during the previous % cycles.

While the attempt to manage delay in MARS is intriguing, the delay is managed using
local information alone. Despite its clever handling of delay, the MARS system does not

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

account for the drift that can result from multiple MARS schedulers in tandem. The algo-
rithm fails to provide QoS at a finer granularity than the three classes. The predictions are
statistical, unlike ours, so the algorithm can ‘guess wrong.’

2.4.6 Selective Packet Discard

Romanow and Floyd demonstrate that selective packet discard policies that take into
account higher layer protocol structures can increase throughput for ABR traffic [17]. This
can be achieved without violating protocol layer boundaries if the ATM header includes a
“continuation flag” that indicates that a cell is part of a multi-cell higher layer protocol
data unit. (The ATM Forum has proposed that a bit be designated for this purpose.)
Romanow and Floyd simulated a single ATM switch connected to a receiver function via a
141 megabit per second link. The switch was fed cells from 10 TCP senders. Two selec-
tive discard policies were evaluated:

1. If a cell must be dropped, discard all remaining cells in the same TCP packet.

2. When the switch reaches a pre-defined threshold, actively begin discarding com-
plete cell-sequences pertaining to a TCP packet.

The authors found that while both policies provided better throughput than no selective
discard, the second was superior to the first. Their discard policy could easily be inte-
grated into the scheduling heuristics we describe in Chapter 6. Although we are unable to
further pursue this line of research here, we include it in Section 8.3 as an interesting area
to pursue.

2.5 References

(1] J. Amenyo. Real-Time Distributed Scheduling and Buffer Management for
Congestion Control in Broadband Networks. Ph.D. thesis, Columbia University, NY
1991.

[2] J. Amenyo, A. Lazar, and G. Pacifici. Cooperative distributed scheduling for ATS-
based broadband networks. In JEEE INFOCOMM 92, volume 1, pages 333-342,
June 1992.

[3] A. B. Bondi. An analysis of finite capacity queues with preemptive and non-
preemptive priority scheduling and common or reserved waiting areas. Computers
and Operations Research, 16(3):217-234, 1989.

[4] M. Gerlaand T. Tai. LAN/MAN interconnection to ATM: A simulation study. In
IEEE INFOCOMM 92, volume 3, pages 2270-2279, June 1992,

[S] P. Goransson. Bandwidth allocation in hybrid networks. Technical Report TR-93-
02, University of New Hampshire, February 1993.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Gupta and M. El-Zarki. Traffic consideration for round-robin scheduling
schemes in ATM networks. In JEEE INFOCOMM 93, volume 2, pages 820-827,
March 1993.

J. Hyman, A. Lazar, and G. Pacifici. Real-time scheduling with quality of service
constraints. IEEE Journal on Selected Areas in Communications, 9:1052-1063,
September 1991.

F. Kamoun and L. Kleinrock. Analysis of finite storage in a computer network node
environment under general traffic conditions. IEEE Transactions on
Communications, COM-28(7):992-1003, 1980.

L. Kleinrock. Queueing Systems Volume 2: Computer Applications. Wiley, New
York, 1976.

K. Ko, P. Mishra, and S. Tripathi. Predictive congestion control in high-speed
wide-area networks. In Proceedings of the Second IFIP WG6.2/WG6.4 International
Workshop on Protocols for High Speed Networks, November 1990.

H. Kroner, G. Hebutemne, P. Boyer, and A. Gravey. Priority management in atm
switching nodes. IEEE Journal on Selected Areas in Communications, 4:418-427,
April 1991.

P. Pancha and M. El-Zarki. Bandwidth requirements of variable bit rate MPEG
sources in ATM networks. In JEEE INFOCOMM 93, volume 3, pages 902-909,
March 1993.

D. Petrand V. Frost. Optimal packet discarding: an ATM-oriented analysis model
and initial results. In JEEE INFOCOM 90, volume 1, pages 537-542, June 1990.

T. Tedijanto and L. Gun. Effectiveness of dynamic bandwidth management
mechanisms in {ATM} networks. In IEEE INFOCOMM 93, volume 1, pages 358-
367, March 1993.

L. Zhang. A New Architecture for Packet Switching Protocols. Ph.D. thesis, MIT,
1989.

L. Zhang. Virtualclock: A new traffic control algorithm for packet switching
networks. In ACM SIGCOMM 90, pages 19-29, September 1990.

A. Romanow and S. Floyd. Dynamics of TCP Traffic over ATM Networks. In ACM
SIGCOMM 94, pages 79-88, October 1994,

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3
PREDICTION-BASED
CELL SCHEDULING:

A MODEL

3.1 Introduction

Our ultimate goal in this research is to derive a means of improving the ATM network’s
ability to provide good QoS performance. It is apparent that the ability to make more com-
plex cell scheduling decisions based on additional information about arriving cells would
lead us to this end. We introduce here the Prediction-based Scheduling model that pro-
vides this capability. This model provides both the means to obtain added information
about arriving cells as well as the time to perform a more complex schedule computation.

The key to a model that generates accurate predictions is to base those predictions not on
probabilistic estimates of the future but on firm knowledge already obtained. Our intuition
is that this firm knowledge does indeed exist at the network periphery in the form of arriv-
ing cells. It is easy to understand that the only really unpredictable traffic in the network is
that entering the network at the periphery. Note that traffic types that lend themselves to
prediction such as CBR and some VBR (e.g., Pancha and El-Zarki [9]) are also accommo-
dated by this model. The challenge, of course, is to predict an inherently unpredictable
source.

If we take a snapshot of cells arriving from an unpredictable traffic source and then hold
the cells in a delay buffer, we may inject that snapshot into the network as an accurate pre-
diction of what will emerge from that delay buffer. We call that snapshot a Warning Shot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the delay buffer the Warning Shot buffer (W). The function that injects that Warning
Shot into the network is called the AALScheduler. The amount of time cells spend in W is
exactly equal to the amount of time the Warning Shot precedes the actual entry of the cells
into the network. This measures how far into the future we are predicting, which we call
PredictHorizon.

When the predictions arrive at a switch, they may be joined by other, equally accurate pre-
dictions emanating from other points on the network periphery. The switch now has at its
disposal a complete picture of what cells will arrive PredictHorizon cells in the future.
Since we wish for each link to be able to be independently scheduled, it is important that
the arriving predictions be shunted into outbound link-specific prediction databases (D).
The shunting process is called PShunt. The process of continuing to propagate accurate
predictions from the switch is the responsibility of the LinkScheduler that controls each
outbound link. The LinkScheduler utilizes the information in its prediction database D to
generate a committed schedule (S) for the cells that it will transmit PredictHorizon in the
future. Two points should be noted here. The first is that LinkScheduler may emit an accu-
rate prediction to its downstream neighbor since, like AALScheduler, it already knows
what it will send PredictHorizon in the future. The second point is that LinkScheduler will
be designed so that the schedule generated from D will minimize QoS Cost. Note that the
LinkScheduler has an Enforcer component assigned the task of actually transmitting cells
in accordance with the schedule S at the appropriate time. LinkScheduler iterates and thus
maintains accurate predictions throughout the operation of the network.

3.2 Cyclical Operation and Delay Buffers

We described above the process of taking a snapshot of arriving cells and injecting a
Warning Shot prediction about them into the network PredictHorizon cells before their
actual entry into the network. The implementation of this concept in an ATM network
requires that the predictions themselves travel as cells and that these fixed-size overhead
cells be packed efficiently. This leads us to the idea that we will predict several user data
cells in a single prediction cell. The number of user data cells predicted in a single predic-
tion cell is dencted as CellsInPrediction. This determines the fundamental cell cluster L of
our network: a single prediction cell followed by CellsInPrediction user cells. All commu-
nication links of our network are densely packed with these celi clusters. Even when no
user data is flowing, the cell clusters flow with prediction cells predicting no arrivals.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The nature of these cell clusters in turn determines our network time cycle. The time inter-
val from the arrival of one cell cluster to the start of the next is the fundamental network
time cycle (7). Since LinkScheduler (and AALScheduler) must emit a prediction cell at
time cycle granularity, it follows that LinkScheduler has one time cycle of computation
time available for each schedule computation. One of the major benefits of this model is
that scheduling decisions need not be made at cell time granularity like traditional sched-
ulers, but, rather, at cycle granularity. Later in this dissertation we describe simulations
where the additional time that this model provides us can be used to make more inelligent
scheduling decisions that improve QoS performance.

There are three other classes of delay buffers that are defined for this model. Their roles
are generally to phase-synchronize the arrival of prediction cells with the cell clusters they
predict. The first of these is the AAL data only delay buffer (B). This is necessary to ensure
that even though we cannot emit the prediction of the full cluster until the arrival of the
final cell of the cluster, the prediction cell itself remains a full PredictHorizon cycles in
front of the first cell of the predicted cluster. The second delay buffer is the round-up delay
buffer, BR. BR is used to normalize the ATM network such that all the communications
links exhibit a propagation delay that is an integral multiple of the network time cycle. The
third is the Switch data only delay buffer, BP. ¥ predicted cells were not delayed for one
cycle in BP during the time taken by LinkScheduler to compute and predict the next down-
stream schedule, they would emerge from a switch one cycle time closer to their predic-
tions than when they entered the switch. The insertion of BP at each switch maintains the
validity of the model’s assumption that predictions refer to cells arriving exactly Predic-
tHorizon cycles in the future. Simulations conducted in this research illustrate that while
the delays produced by these different delay buffers have a negative impact on end-to-end
network delay, overall QoS performance can be significantly improved through applica-
tion of this model.

In the balance of this chapter we formally define the model just introduced in terms of the
general graph topology in Figure 4. We first introduce terminology required to state the
problem formally.

3.3 Terminology

The definitions provided here refer to Figure 4, “Sample Network Topology,” on page 32.
We assume that the terms switch, node, and link are all familiar to the reader. In Figure 4,
nodes are labeled with capital letter A, B, C,...I, and links with numbers 1, 2, 3,...13.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Constant Bit Rate (CBR) traffic. This is defined in Section 3.5

2. Variable Bit Rate (VBR) traffic. This is defined in Section 3.5.

3. Auvailable Bit Rate (ABIé) traffic. This is defined in Section 3.5.

4 . Unspecified Bit Rate (UBR) traffic. This is defined in Section 3.5.
5. UNI. The User Network Interface.

6. NNI. The Network-Network Interface.

7. ATM Adaptation Layer (AAL). This is implemented at the UNI and is analogous
to the Network Adaptation Layer (NAL) defined in [1].

8. neighbor(X,i).The neighbor of node X reached over link .

9. t, Thestartof the i time interval. These time intervals are aligned at all switches
in the network and are all of length T.

10. T,.The timeinterval (z,¢; ;) (.e. t =5+
11. 0;. The outbound link / at node X.
12. I; The inbound link / at node X.

13. xy. The link connecting X to node Y. Cells flow in the direction from X to Y
From the perspective of node X, and assuming / = xy, this is the same as 0
From the perspective of node Y, and assuming / = xy, this is the same as 1

14. ?y;. The set of all inbound links at node X that may generate cells to be transmit-
ted on link /. These are the links from the upstream neighbors of node X from the
perspective of 0;.

15. yx. Relative to any node X, the set of links coming from
Neighbors (X) — {Y}.

16. Pl (j) . The predicted schedule of cells to be transmitted onOl during T,

17. S () . Committed Schedule, formed by LGkScheduler during T 1~ This is the
actual schedule of cells to be transmitted on 0 during T

18. S . Alternate terminology for S (j) . assuming [= xy.

19. S' ~9(j). That component of S (j) destined for network link . Normally,
network link a is not adjacent to X, but is exactly one network hop downstream
from node X.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20.

21‘

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

P;—’ ? () . Defined similarly to Sf,(_) “ (j) . butis a prediction for period T, rather
i
than a real schedule.

QoS8Cost(Q, T,) . The number of failures to satisfy QoS commitments with
regards to loss, jitter or delay occurring in Q during time period T,. Q may be
either an entire node, X, or an individual output link on a node, 0;. (With regards
to cell loss, it is related to the amount of loss. but is different in a critical way. If
loss of a cell does not violate the QoS guarantee of the connection to which that
cell belongs, then it does not increase the QoSCost function.)

DistanceFromQoSViolation. An instantaneous measure of a connection’s toler-
ance of cell loss, delay or jitter.

ScheduleTimé. The running time of NodeScheduler. For brevity, this is
sometimes denoted as s.

MaxLinkLength. The length, in integral units, of the longest internodal link in
the network.

A,.The geographical link propagation delay of link i expressed in cycles (7).
This is the exact number of basic time units (not necessarily integral) of physical
propagation delay between the nodes at the ends of link i.

3,. The logical (or normalized) link propagation delay of link 7, expressed as an
integral number of cycles (7). This is distinguished from A, in Section 3.10.1, but
may be considered the same as A, in the earlier sections.

MaxPropDly. The 8, of the network link whose length is MaxLinkLength.

PredictHorizon. The number of time units by which predictions precede their
corresponding arrivals.

SkeletonDepth. The number of schedule skeletons, or link prediction data
bases, that LinkScheduler maintains for each link. This depth determines the
maximum queueing delay CBR and VBR cells can experience in a switch.

CellsinPrediction. The number of cell time slots predicted in one prediction
cell which is also one less than the length of the basic cycle time in cell times.

BY. Warning Shot delay buffer, a transmitter network boundary delay intro-
duced by the AAL function to permit generation of accurate schedules. This is
explained in Section 3.9.2 on page 46.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. XBRI. Round-up delay buffer added for 1; This delay is used to normalize the
communication lines in the network as explained in Section 3.10.1.

33. XBD,. Data-only delay buffer added for 1; This delay is used to shunt data tem-
porarily to prevent the data cells from overrunning their prediction. This is
explained in Section 3.10.1.

34. B The data-only delay buffer present in AAL X. Assuming / = xy, thisis
altematlve terminology for XB ,

35. ‘yDi. The Link Prediction Data Base (commonly referred to as schedule skele-
tons in Chapter 6).

36. x'y'L,. . The n'™® cluster of cells on link Xy at time i.

37. x:L: . The first cell in the n™" cluster of cells on link xy attime i. This is always a
prediction cell in our model.

38. NodeScheduler. Given accurate representations of all cells that will arrive at
node X during time perlod T, this process can produce a set of schedules for the
set of outbound servers OB’ B e Neighbors (X) , adjacent to X such that
QoSCost (X, T,) is minimized. NodeScheduler executes once per time cycle.
It consists of executing PShunt in parallel for all links in the switch followed by
executing LinkScheduler in parallel for all links in the switch. During each exe-
cution, NodeScheduler also executes Enforcer in parallel for all links, CellsIn-
Prediction times, at cell-time granularity.

39. PShunt. PShunr . copies all the cells that enter switch X from link xy at time ¢,
into B It provxdes each LinkScheduler with a copy of the first cell entering
each xB f in each time cycle.

40. LmkSchedulerxy (P, T). This process returns a committed schedule § for xy
to be used for the period 7, based on the prediction P provided by
NodeScheduler.

41. AALScheduler. A simple version of LinkScheduler that pertains to AALs and not
to switches. Like LinkScheduler, this emits predictions and produces future trans-
mission schedules that correspond to them. Unlike LinkScheduler, it does not
have to resolve congestion caused by fan-in from multiple input links. It does not
receive predictions at all, but is the initial generator of the predictions at the net-
work edge. The predictions are generated by inspecting new arrivals before
shunting them into a BY delay buffer.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42.

43.

44.

Enforcer. A function that transmits cells in accordance with a committed
schedule S produced by LinkScheduler. It also drops any new arrivals scheduled
for deletion.

<= . This relation, when used with schedules, implies that the schedule on the
left hand side is derived from the schedule(s) on the right hand side. For example,
the expression Sz (r+l1) « Si_) 8 (r) ® 5139_) 8 (r) ® S‘é_’ 8 (r) implies that
the schedule for link 8 atnode E during T, _, is derived from the three schedules
at E’s upstream neighbors (4, B and C) at T,.

@ . This operator, from the preceding definition of the relation <« ,is
used to describe the operation of a LinkScheduler on predictions that have arrived
from upstream LinkSchedulers or AALSchedulers.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 4. Sample Network Topology

o
—
(=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Statement of Problem and Goal

This model is constructed to address the following problem:

Given a set of cells waiting to be transmitted on an output link,
select for deletion zero or more cells from those waiting cells, and
order the transmission of remaining cells in such a way that this
discarding and reordering minimizes the number of QoS violations
resulting from this process.

Using Figure 4 as an example, if the aggregate of the schedules Si (k), Sf; (k) and

Sé (k) is such that congestion occurs during time period T, , m > k, on one or more of the
downstream links 0;3, 7 £i<9, we wish to selectively ‘repair’ the schedules Sj (k),

S‘; (k) and S‘é (k) so as to eliminate that congestion while minimizing QoSCost (E, T,) .
In this context, ‘repair’ signifies ‘to drop cells from.’

Next we present a novel network model offering accurate short-term prediction of conges-
tion. We later utilize this model as the basis for developing cell scheduling methods that
exploit these accurate short term predictions to improve network QoS performance.

3.5 Traffic Types Supported

Our model is intended to support all of the traffic types presently considered for ATM. We
list these four types below. For a further discussion of the differences between these
classes, the reader is referred to [2].
1. CBR: Constant Bit Rate
The bit rate is constant. That is, traffic whose peak bit rate is equal to the average bit

rate. It is intolerant of delay variation and tolerant of loss to within a connection-spe-
cific limit. The service is normally connection-oriented.
2. VBR: Variable Bit Rate

The bit rate is variable, but a time relation exists between the source and the destina-
tion. It is more tolerant of delay variation than CBR, but requires a low upper bound on
delay variation, and is tolerant of loss up to connection specific limits. The service is
normally connection-oriented.

3. ABR: Available Bit Rate

Highly tolerant of variations in delay and highly intolerant of cell loss, the service is
normally connection-oriented. The bit rate is usually variable.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. UBR: Unspecified Bit Rate

Itis highly tolerant of variations in cell delay and loss and the service is normally con-
nectionless. The bit rate is usually variable.
3.6 Fundamental Model Assumptions

The assumptions listed in this section are maintained throughout this work.

3.6.1 Output Queued Switches

The ATM switches are output queued. A conceptual diagram of an output-queued ATM
switch is found in Figure 5. Each of the n output links of an # X n switch thus serves as a
multiplexor (see Figure 6) of cells arriving on n — 1 input links destined for that output.

FIGURE 5. Generic ATM Output Buffered Switch

1

—P-
2

e
N —P- ©->

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 6. Statistical Multiplexing in a Single Switch Output Buffer

N-1 inputs
1 \

3.6.2 Only Arrivals from Neighbors Can Affect Congestion

We assume that the entire traffic load on link 02 during T, is derived from the small set of
possible inbound links between E’s immediate neighbors and itself (?»2). For example, in
Figure 4, when analyzing the short-term load on OZ, we may restrict our analysis to loads
at 7»2, (aka he), displaced temporally by the propagation delay over those links. In

Figure 4 this consists of the links Oi, Oy and Oi.. Thus, we would restrict our analysis to
Sa(T;_5) . S5(T;_5) and Se.(T,_3).

3.7 Additional Assumptions

The assumptions listed next are made to simplify the initial presentation of the problem
and the solution. Some of these assumptions will be relaxed as the details of the solution
are developed. While the remaining non-fundamental assumptions could be relaxed as
well, we have not explored these in this research.

In order to present the concept of distributed cell scheduling, we rely heavily on the fol-
lowing assumptions:

3.7.1 Regularity

We assume that all internodal links in the ATM network are of equal length and that the
propagation delay on those links is an integral multiple of cycle time 7. This implies

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A, = §, forall links /. Unless otherwise specified, the length of these links will be 1000
km, which is typical of intercity links in the United States.

We additionally assume that all packets are of equal size. This is indeed true for ATM, but
this assumption may well be relaxed since, with this one change, the model can be applied
to general high-speed packet switching networks. Many researchers and engineers believe
that ATM will not completely displace such networks and, in particular, that a gigabit dat-
agram-based Internet may soon exist. The ideas outlined here may have applicability in
high-speed routers as the model is not fundamentally tied to the concept of a fixed cell
size. We relax this assumption in Section 3.10.

3.7.2 Time Cycle Length

The basic netwoik time cycle T is equal to the propagation delay of the network links (i.e.
A = 8 = 1). We relax this assumption in Section 3.10.

3.7.3 Computation Time for Scheduling

Any computation related to developing cell schedules is assumed to take zero time. We
relax this assumption in Section 3.9.

3.7.4 Variable Bit Rate Sources

The ideas expressed in this model require that variable bit rate (i.e. VBR, ABR, UBR)
sources announce an impending burst slightly before the burst begins to enter the network.
If it is not desirable to implement such functionality at the source itself, this functionality
may be implemented as a network traffic boundary function (see [1]). Thus, there may be
two types of variable bit rate traffic sources: the traditional sort where the traffic boundary
assumes the task of prediction and the new type where the traffic source uses its own
resources to perform the prediction. This is discussed in Section 3.9.2.

We initially assume that the variable bit rate source assumes responsibility for announcing
the burst. We relax this assumption in Section 3.9.

3.7.5 Isochronous Service

For CBR sources, we assume that the network provides isochronous support, and that the
CBR traffic presented at the transmitter network boundary is indeed isochronous. This

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumption trivializes the problem of predicting cell arrivals for CBR sources. If this
assumption did not hold for a CBR source we would treat it as a VBR source.

3.7.6 Validity of the Prediction

We assume that the predictions are absolutely accurate. It is possible to study the impact of
relaxing this assumption so that a certain amount of deviation from the prediction is con-

templated. It would be of interest to measure how much error is possible in the prediction
without adversely impacting QoS performance.

3.7.7 Spatial Extent of the Prediction

Since we assume above that only arrivals from neighbors can affect congestion, we may
assume that we only need to be able to predict arrivals from our neighbors. We may state a
theorem (to be proven in Chapter 4) that says that:

If accurate predictions about user traffic are available at each net-
work traffic boundary, then accurate predictions may be made
throughout the network.

3.7.8 Temporal Extent of the Prediction

We assume a PredictHorizon of 1.

If the time span of the prediction is short enough, it is possible to predict with high accu-
racy arrivals from an upstream switch. By “short enough,” we contemplate a small multi-
ple of the maximum propagation delay over an intercity link. We suggest that the temporal
extent be as short as possible based on the intuition that the difficulty and/or cost of accu-
rate prediction increases in direct proportion with the temporal extent of the prediction.

3.7.9 Switch Fabric Delay

We assume that there is no delay introduced by the switch fabric of the ATM switch.

We acknowledge that in real switches this delay is non-zero, but, providing that this delay
has a tight upper limit, the existence of this delay does not substantially affect our analyses
and examples. In this dissertation, for the purpose of simplification, this delay is subsumed
by the delay attributed to the delay buffer in our switch architecture. (In fact, such switch
fabric delay can be used to reduce the size of the data-only delay buffer XBDI discussed

later in Section 3.10.1.) It is also conceivable that the switch fabric delay may not be con-

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stant. As long as there is an upper bound to this delay, however, this does not pose a funda-
mental problem for our architecture. When cells are scheduled, the cell scheduler simply
uses the worst-case total switch delay to derive the earliest possible scheduling time. This
total switch delay is comprised of any delay suffered by an arriving cell from the time the
last bit of the cell has entered the switch until the time that the cell could be transmitted on
an output link, assuming no output queue.

3.7.10 Switch Buffer Space

We assume that the switch buffer space is allocated on a per-link basis and that no sharing
of this buffer space between output links is possible. We assume that these buffers are of
equal size for all links in the switch. (These assumptions could be relaxed without impact-
ing our model, but all simulations carried out in this research were performed under this
assumption.)

3.8 Distributed Cell Scheduling: A Medel

In Figure 3 we introduced the idea that overlapping bursts result in downstream queue
overflow. We have suggested that the best we can do in ATM for CBR/VBR traffic is to
orient the inevitable cell loss in such a way as to minimize QoSCost. In order to make such
an optimal decision, it is important to have knowledge of all the cells that arrive at the
queue during the congested time period and to have sufficient time to intelligently develop
cell schedules based on this information. The knowledge must be acquired sufficiently
prior to the cells’ arrival at the downstream queue to allow for this computation time. The
following sections propose a general model for how this knowledge can propagate on time
to the locations where it may be used to minimize QoSCost.

The concept that the information about arrivals is needed prior to the actual arrivals is
illustrated in Figure 7. This figure depicts that the need for knowledge about arrivals pre-
cedes the arrivals themselves. If we assume that we group arrivals into sets of cells that
arrive at a node during a particular time period 7, we need to know about that set of arriv-
als during some earlier time period T _ > Assuming that the size of the time intervals in
the network in Figure 7 is equal to the link propagation delay, the ‘need’ for the knowl-
edge about the arrivals for T; is shown to always arrive during time period 7, _,. This
knowledge-need is satisfied in the model by predictions that precede the actual arrivals by
a fixed temporal displacement of p (p = 1) time periods. Since the displacement is fixed,
the set of predictions that arrive during period T, _ p corresponds exactly to the set of cells

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that arrive in time period T,. How this prior knowledge of arrivals can be applied to
achieve distributed cell scheduling is explained in the following section.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 7. Waves of Knowledge-need Preceding Waves of Arrivals

cell)
wave 1 @

cell

wave é \
wave @

knowle(@ ‘

need

cell
wave 3

/
////////////////////////

N\

/&
wave 2%
knowledgt%//// V—

Yy, ‘ . //// /
need e W////// //////////////////////’/"////l////////////////////

cell
wave 4

/ -
wave 3 ////// " . n . A
knowledge oy Yrmy, ////////
need /////////////////////////////// iy //////////////////
cell
wave 5@
@

knowledge iy, % B
Zigy
need e

\\\‘**

wave 5 ’%///
knowledge

iy,
277
need /////////////////

77

‘“wave” of cell arrivals

WY, moving “wave” of need for knowledge about
the upcoming arrivals

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8.1 Distributed Schedules

This thesis is motivated by the idea that any output queueing (and hence congestion and
loss) that can occur at 0 dunng T, can be anticipated by looking upstream at the set of
cells destined to arrive at 0 during T,. These cells are displaced both spatially and tem-
porally from OX, but the magnitude of these displacements may be small enough to sug-
gest use of this information. Indeed., it is easy to imagine that any queue that may exist at
le exists in a distributed fashion at the set of upstream neighbors of X (spatial displace-
ment) slightly before they arrive at X (temporal displacement).

The difficulty in communicating global information about network queues in high-speed
networks is that the queues are so transient that the queues may change radically many
times during the time it takes for one cell to propagate over a single internodal link. For
this reason, rather than treat distributed queues, we use distributed arrival schedules. This
is reasonable since a network queue can always be determined when one knows the traffic
arrivals to that queue, the initial state of the queue, and the service rate of the queue
(which, in bits per unit time, is constant in ATM).

As we argued above for queues, the arrival schedule for 0;, during T; may be found by
looking upstream at the distributed components of that schedule. The schedule compo-
nents are displaced spatially and temporally as explained above. We state (and later jus-
tify) that the distributed schedule components for 0; during 7 are present at the
upstream neighbors of X during time period T; _j.

Using as an example link 8 in Figure 4, this may be expressed formally as:

28 358 4—>8()

S (r+5)<=S (N®S; " (r) @S

Recall that we remain under the assumption that 8, = 1 for all links /. Thus, for the sake
of clarity, references to the ‘+8’ in expressions like the preceding will be shown as ‘+ 1” in
the balance of Section 3.8. We then rewrite the preceding expression as follows:

S (r+1) s es ® 5% (n)

3.8.2 Predicting Cell Arrivals

Our work assumes that accurate short-term predictions of forthcoming cell arrivals are
feasible. By short-term we mean that the arrivals during time period 7; must be accurately

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predicted during time period T,_ P where p (p 2 1) is the (small) constant PredictHori-
zon. We have already defined the prediction Pf,{ (j) . Since the prediction is accurate,

! . l .
Sx(.]) =Px(./)

The prediction P;((j) is actually composed of smaller predictions specific to the individ-
ual output links of neighbor (X, i) . For example, returning to Figure 4:

PY.(r+1) o T)@P3"8(r) @P“"*S(r)

Substituting this into the earlier relation,

SSr+) =P (e P) 78 nepr”%n

Note that the “+ 1’ in this example is an artifact of the assumption that the propagation
delay of the internodal links is exactly one basic time cycle. It is not related to any
assumption about the size of PredictHorizon.

3.8.3 Schedule Generation

One of the fundamental premises of this model is the fact that the predicted terms in the
above relationship are known during time period 7, _ » We can utilize this fact to send the
predictions downstream p full time periods before the actual arrivals begin. From the per-
spective of dealing with congestion at a single output link Oz, all the information that it
needs to detect local congestlon during 7, is present during 7, _ If congestion will
occur, a scheduler at 0 can proactively determine how many cells must be pruned from
the schedule to eliminate the congestion, and which cells should be pruned to minimize
the occurrence of QoS violations.

3.8.3.1 Prediction Analysis Phase

Attime 7, _, the predictions P2 (z) P3 (r) and P4 (r) are at E and are decomposed
into their components spe01ﬁc to O’ & 0 and 0 ThlS decomposition is depicted in
Figure 8. In the case of OE, the relevant components are P2 -8 n, P3 -8 (r)and

P4 -8 (r) . These three components represent a tentative S (r+1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 8. Prediction Analysis Phase

A(7,G,5001)

Prediction from A

A(5,1,3100)

A@3,G,5001)

A(2,1,8032)

X(W,Y,Z):

Prediction from B

B(8,1,3200)

B(7,1,3200)

B(4,G,5100)

B(3,1,3300)

B(2,G,5200)

B(1,1,3400)

Tentative schedule for output link 8:

Prediction from C

C(8,1,1076)

C(7,G,5300)

C(6,1,3500)

C(2,G,5002)

C(1,G,5400)

QoSCost-minimized, congestion free schedule for output link 8:

A@) | BG)

-

feasible ceil slots

B <P

not feasible

<upstream neighbor>(<arrival time>,<downstream next hop>,<VPI-VCI>)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

3.8.3.2 Minimization of QoSCost and Downstream Prediction Generation

The tentative S; (r+1) is analyzed to determine if it can be served by OZ. during T,
without any cell loss at all. If this is not possible, sufficient cells will be dropped from this
schedule so that all cells remaining in the schedule will be served without loss. The deci-
sion about which cells to drop is made so that the minimum QoS cost is incurred. This is
performed by invoking a LinkScheduler function providing the tentative schedule as
input. The LinkScheduler function produces a committed schedule SZ (r+1) and a cor-
responding downstream prediction PE (r+1). Since we assume that the computation
time for the LinkScheduler is zero, LinkScheduler will have finished generating
PZ(r+ 1) and can forward PZ(r+ 1) from node E at time ¢,.

3.8.3.3 Prediction Pruning

The predicted schedule P; (r+1) is then decomposed into upstream neighbor-specific
components. Each of 0}5, OZ and 02 contribute components for each of the upstream
neighbors, A, B and C. In the case of A, the individual components amount to pruned ver-
sions of the individual components P‘i =1), Pi_) 8 (r)and Pj =9 (r) derived from

PZ1 (r9) during the prediction analysis phase. The thus-pruned Pi_) T(r, P‘i’9 8(r) and
P -
A

for Ii, over the period 7. This reassembly is shown in Figure 9. The cells marked deleted
in Figure 9 will be dropped before they reach the 02, 7<1<9, for which they were origi-

(r) are then reassembled into a committed, congestion-preventing arrival schedule

nally intended. Note that this reassembly may be performed in parallel with the process-
ing of the arrival schedules for 1125 and 112; as there are no memory conflicts and the
decision processes are independent.

In this manner, the cycle of prediction/schedule building occurs continually throughout the
network with a fundamental cycle time of T.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 9. Arrival Schedule Repair Phase

Repaired Schedule from A Repaired Schedule from B Repaired Schedule from C
B(8,1,3200)
A(7,G,5001) B(7,1,3200) C(7,G,5300)

C(6,1,3500)

A{5,1,3100)

B(4,G,5100).

A@3,G,5001) B(3,1,3300)

A(2,1,8032) B(2,G,5200) C(2,G,5002)
B(1,1,3400) C(1,G,5400)

QoSCost-minimized, congestion free schedule for output link 8:

A@4) | B(S)
Th 1is
Thi tion i hese cells are
dov?nl:t):e::: tli l;(;r:fsatll':ied marked for deletion

prediction from E for time r+1

3.9 Realizing an Accurate Cell Arrival Predictor: The Warning Shot

The mechanism for performing distributed cell scheduling presented in Section 3.8 relies
on making accurate predictions about cell arrivals at least one time period in advance of
the actual arrivals. While cell arrival prediction can be a very difficult problem, in this sec-
tion we illustrate how relatively simple operations at the network edge can make accurate
predictions throughout the network a reality.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.9.1 CBR Sources

The definition of a CBR source implies that it is inherently predictable. Since the source
emits cells at a regular rate, it is trivial to predict the arrivals from a CBR source at the
transmitting network boundary. We maintain the assumption made in Section 3.7.5 that a
CBR source is an isochronous source at the transmitting network boundary, and that this
isochronous characteristic is maintained throughout the network.

3.9.2 VBR Sources

VBR sources are characterized by the fact that their cell rate may vary greatly from time
period to time period, and that in general there is no way to predict with 100% accuracy in
T, what the cell arrivals will be in T, ,. The Warning Shot prediction is a means of
escape from this dilemma.

We know precisely what cells the VBR source transmits during T; at 1, _, (since they have
already been transmitted). If, at the traffic boundary, we actually direct the cell stream into
a delay buffer BY, such that |BW] = 2T, we can ‘predict’ (i.e., report faithfully) the arriv-
als during 7, , by immediately forwarding a warning shot at t, _,. The warning shot
fired at ¢, | propagates a wave of knowledge (see Figure 7) about T, _ , that precedes the
actual ‘data wave’ by one time period. If instead we chose to direct the cell stream into a
delay buffer with a delay of 3T, we can ‘predict’ the arrivals during T, , , by immediately
forwarding a warning shot at t; _,. In this second example, the warning shot fired at 7, , ,
propagates a wave of knowledge (see Figure 10) about T, __, that precedes the actual ‘data
wave’ by two time periods. In general, the temporal extent of the prediction can be
increased by increasing the size of the delay buffer. In theory, we could ‘predict’ one hour
in advance by sending the cell stream through a one hour delay buffer. Of course, this is
ridiculous both because the delay buffer would be prohibitively large and because there
are few user traffic types that can tolerate more than a few seconds delay through the net-
work, to say nothing of one hour.

This principle may be put into practice in a manner that is both feasible from a hardware
cost perspective and that increments the end-to-end network delay by a tolerable percent-
age. As an example, assume that our basic time unit is 1 ms and we wish to predict 12 time
units into the future. This implies that we need a delay buffer of 13 ms. This increases the
end-to-end delay for any VBR stream by 13 ms. Even an example involving only three
intercity hops will incur more propagation delay than 13 ms (the delay is 15 ms for three
1000 kilometer hops). To this figure one must add switching, queueing, and segmentation

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and reassembly delays. We thus argue that an artificial increase of 13 ms would be accept-
able, if there is a great improvement in utilization and QoS to be derived from the
increase.

There is also a hardware cost for maintaining a delay buffer of 13 ms. At 150 MBps,
approximately four hundred 53-byte ATM cells can arrive in one millisecond. Thus, a
delay buffer of 13 ms. requires a 275,600 byte (400 x 13 x 53) shift register. This already
reasonable figure is further mitigated by the fact that 1) such large delay lines would only
be required at the UNT interface (i.e. at the network traffic boundary), and 2) that a UNI
interface, unlike NNI interfaces, is highly unlikely to carry by itself a traffic load equal to
the network trunk speeds.

This approach supports generic VBR sources that have no prediction capability. The net-
work architecture could support enhanced VBR sources that have the capability to gener-
ate their own predictions. This could be advantageous for certain types of traffic where the
user indeed does have some foreknowledge of the future time periods, allowing the user to
predict, for example, 13 ms in advance without explicitly delaying the data flow by 13 ms.

Finally, for the VBR source that is absolutely intolerant of even a small increase in delay,
and that has no inherent prediction capabilities, the option of peak bandwidth reservation
can still be provided by the network. This effectively turns the VBR source into a CBR
source from the scheduling perspective. That is, it would require that null cells be gener-
ated whenever the VBR source is emitting below its peak rate. Use of this type of source
would be discouraged, as it has a direct negative impact on network utilization.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 10. A PredictHorizon of Two Cycles

cell ¢
wave 1

cell @
wave 2

cell
wave

wave 17,

7
knowledg,

need

cell
wave 4

%
wave2 7,
knowledge

need

N\
N

%,
wave 3 %

knowledge
need

need

7 2 7

%

ity
iy,
Q o

‘“wave” of cell arrivals

moving “wave” of need for knowledge about
the upcoming arrivals

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.9.3 Determination of the Extent of the Prediction (PredictHorizon)

Since an increase in the temporal extent of the prediction (PredictHorizon) results in an
increase in the end-to-end network delay, we should strive to make this as short as possi-
ble. How near into the future may we predict? The mechanism described in Section 3.10.3
requires that the predictions be able to travel from an upstream node to its downstream
neighbor, and be processed by the time the predicted cells arrive. Thus,

PredictHorizon > ScheduleTime

That is, the predictions only need to precede their corresponding arrivals by the time it
takes to perform the required computations on those predictions. Since, under our current
assumptions, ScheduleTime is zero, PredictHorizon may be as small as one time cycle.
The relationship between PredictHorizon and ScheduleTime is important. In particular,
when we allow non-zero ScheduleTime (Section 3.10), we must remember that longer
scheduling time directly increases the size of PredictHorizon and hence increases network
latency.

3.9.4 Maintaining the Accuracy of the Prediction

As explained above, an accurate prediction, whether from the user or from the traffic
boundary function itself, is available at each traffic boundary in the network. If all predic-
tions at all network traffic boundaries are accurate, then all predictions at every switch in
the network are equally accurate by enforcement of the distributed schedules described
earlier. This is shown in Chapter 4 by a proof by induction.

3.10 Relaxation of Some Assumptions

At this point we can relax the assumptions related to network regularity, time cycle length,
and computation time for scheduling. We may relax the network regularity assumption
(Section 3.7.1) by normalizing a standard ATM network. We define a normalized ATM
network below, and explain how a ‘raw’ ATM network may be normalized without chang-
ing the physical topology in any way. The network time cycle length T is defined in accor-
dance with the definition of the normalized network.

3.10.1 Normalized ATM Networks

In a normalized ATM network, every communications link has a propagation delay that is
an integral multiple of the basic time unit T for that network. Since the actual physical dis-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tances separating two nodes cannot be guaranteed to display such regularity, a delay buffer
BR is added at each input link I; to ‘round up’ the delay to the next higher acceptable
threshold.

Even with the alignment afforded by this delay buffer, when the predictions arrive for ¢,
they are delayed by the processing of NodeScheduler and are not forwarded downstream
until the start of #; _,. In order to prevent the wave of arrivals from gaining ground on the
wave of predictions preceding it, it is necessary to insert an additional data-only delay of s
time units at each input link I;. (This data-only delay is created by shunting data cells into
the XBlDbuffer upon arrival at the switch.) In Section 3.10.2 below we explain that the
minimum allowable length of s is fixed by ScheduleTime. By data-only, we imply that the
cell flow is inspected as it flows past the start of this final delay buffer. If the cell is
marked as a prediction cell, it is immediately detoured from the cell stream by PShunt
which distributes relevant predictions to LinkSchedulers. If it is any other cell, it does not
logically ‘arrive’ at the node for one additional time period. This kind of real time in-line
inspection of a delay buffer is a well-known hardware technique that is used for token
detection and ring cleaning in FDDI [3] [4] networks.

We do, of course, incur a penalty for normalizing the network in this fashion. If we assume
that the basic time unit of a network is 1 ms, insertion of the BX and B? delay buffers
increases the average link’s propagation delay by 1500 pis, and, in the worst case, by 1999
Ws. A virtual path including 5 hops has its end-to-end network delay artificially increased
by an average of 6 ms, and in the worst case 10 ms. In general,

DelayPenalty < ‘BWI +MaxHops X (IBDI + max (’BRl))

3.10.2 Determination of the Network Basic Time Unit

It thus is desirable for us to make the basic time unit of the network (7°) as short as possi-
ble in order to minimize this DelayPenalty. Each 0; in the network must emit one predic-
tion per time unit. Thus,

|7\ = ScheduleTime

Aside: We mentioned in Section 3.9.3 that the PredictHorizon also has to be longer than
ScheduleTime. If we reduce ScheduleTime in order to reduce DelayPenalty, we risk leav-
ing too little computation time to perform the intelligent scheduling we need for improved

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QoS performance. A fundamental trade-off is that increasing the amount of computation
time directly increases network latency.

3.10.3 Realistic Distributed Scheduling: An Example

The example presented in this section is based on the normalized topology depicted in
Figure 11. Note that the geographical topology from which this normalized topology was
derived is one where the following relationships about physical propagation delays 3,.8;.
and 6, hold:

1. 3<8234
2. 0<5351
3. 1<84s2

We also assume that ScheduleTime < 1 (e.g. 0.999 time units). We can thus assign
PredictHorizon = 1.

We originally motivated the distributed schedule concept in terms of Figure 4, with the
following relationship:

8 258
Sp(r+l) <85~

3-8

(r)@SB 4—-8

(N ®5e7 % ()

Based on the explanation of the normalized network in Section 3.10.1 and the example in
Figure 11, this relationship now becomes:

8 2—8
Sy (r+5) <=SA"

4 -8

3-8 .
(r+3) @SC

(ne®s B (r+2)

This is due to the fact that the waves of arrivals that contribute to the load at OZ during
any time period T departed their upstream output links at different times. Specifically, the
cells that load Og during time period 7, , 5 depart node A during T, node B during

T,, 3,and node C during T, _,. We illustrate the overall process in the following time-
line, which relates to Figure 11 and Figure 12:

1. [t,_,] P;(r) deparis O

2. [t,] P%(r+1) departs 02, Py (r+1) deparis O, P& (r+1) departs O, and
P%(r+1) departs O}. The first cell predicted by P2 (r) departs O2.

St

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note: None of the predictions departing at ¢, are depicted in Figure 11 and Figure 12
since none of them are relevant to the particular cycle described in this example. We list
them here to underscore the fact that there are many active overlapping prediction/con-
gestion detection/schedule generation cycles occurring between each pair of neighbors.
For clarity, this time-line does not further document these contemporaneous but irrele-
vant events.

3. [1,,,] Pe(r+2) departs Of.
4. [r,,,] Py(r+3) departs O}. The first cell predicted by P& (r+2) departs O

5. [f,,,] P2(r). Py (r+3) and Pg(r+2) simultancously ‘detour’ their final
delay buffers and enter NodeScheduler. The first cell predicted by P;’, (r+3)
departs OZ.

Note: Despite the differing upstream predicted periods (r, r + 3, r + 2), these three pre-
dictions all refer to cells that arrive at node E during the same time period 7 ,. This is
due to the factthat 8, = 6,+3 = §, +2.

6. [1,,.4] PZ (r+5) departs Og, and the committed arrival schedules for IZ I'Z
and 7, are available to Enforcer (so that any cells marked for deletion can be dis-
carded as they arrive). The first cells predicted by Pj (r). P‘é (r+2),and
PZ (r+3) enter EBDZ. EBD3, and EBD 4+ Tespectively.

7. [t,, 5] The cells corresponding to Pi (r). Pz. (r+2),and PZ (r+3) beginto
emerge from their respective data-only delay buffers and arrive at OZ. The com-
mitted arrival schedules that became available at . 4 are enforced (i.e. cell dis-
card is performed). The cells not thus pruned (by Enforcer) are delivered to 02-.
Because of this intelligent cell pruning, no additional cells from this group of
arrivals are lost at Og.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 11. Synchronizing Distributed Schedules: time -1 to + 2

o———9
Standard units of propagation corresponding
to one standard time period in the normalized
network. This delay is suffered by both schedule

and data colis.

Same as above, but only suffered by data cells
prediction for period 2

departs at time +1

prediction for period 0
departs at time -1

All 3 predictions for period 5
arrive here at tfime +3

prediction for period 3
prediction for period 0 departs at time +2
departs at time -1,

prediction for period 1

departs at time -0,

prediction for period 2

departs at time +1, etc.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 12. Synchronizing Distributed Schedules: time +4 to +5

o—o
Standard units of propagation corresponding
to one standard time period in the normalized
network. This delay is sutfered by both schedule
and data cells.

Same as above, but only suffered by data celis.

All three repaired arrival schedules
for period 5 are available here

at time +4.

Arrivals for period 5
Prediction for period 5 start to emerge from
departs at time +4. delay buffers at time +5,
and repaired arrival
schedulers are enforced.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.11 Extensions to the Model

The model has thus far focussed on scheduling a small number of cell arrivals competing
for access to the same outbound link. We have ignored the possibility that previously pre-
dicted cells may also still be candidates competing for that same bandwidth. In order to
avoid excessive cell loss, some queueing of cells is desirable. To support this, we extend
the concept of prediction pruning so that an unschedulable cell need not be dropped, but
may wait in a prediction database D. When LinkScheduler is invoked, it may schedule pre-
dictions already waiting in the prediction database D in addition to those cells predicted in
the current cycle.

We have specified that LinkScheduler makes scheduling decisions such that QoSCost is
minimized. Making such trade-offs about relative QoSCost between connections entails
maintaining some QoS history for each connection. Quality of Service is perceived at the
receiver traffic boundary and is therefore ultimately an ‘end-to-end’ network concept.
Thus, it is desirable that the QoS history used for the scheduling decisions capture the glo-
bal QoS state of the connection.

Specific details of how these extensions can be implemented are provided in Chapter 6.

3.12 References

[11 P. Goransson. Bandwidth allocation in hybrid networks. Technical Report TR-93-
02, University of New Hampshire, February 1993.

[2]1 R. Vetter. ATM concepts, architectures, and protocols. Communications of the
ACM, Vol. 38 No. 2:31-38, February 1995.

[3] ANSI X3.139-1987. Fiber Distributed Data Interface (FDDI) - Token Ring Media
Access Control.

[4] ANSI X3.148-1987. Fiber Distributed Data Interface (FDDI) - Token Ring Physical
Layer Protocol.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4
ACCURACY OF
PREDICTIONS:

FORMAL PROOF

4.1 Intreduction

This chapter contains two theorems proving that, under the assumptions stated in Section
4.4, all predictions generated by our network model are accurate. The theorems are stated
formally below.

Theorem 1

If accurate predictions about user traffic are available at each network traffic
boundary, and the network PredictHorizon is equal to one, then accurate predic-

tions may be made throughout the network.

Theorem 2

If accurate predictions about user traffic are available at each network traffic
boundary, then accurate predictions may be made throughout the network. This
holds true for all 1 £ P <M, where P is PredictHorizon and M is MaxLinkLength.

Both theorems are proven by induction. Before proceeding with the proofs of the main
results of the chapter, we first provide an intuitive overview of the proofs and then follow
with some definitions necessary for the proofs.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Overview of the Proofs

We assume that the network begins operation empty of all traffic. The Warning Shot buff-
ers and LinkScheduler databases throughout are empty and, thus, by definition, are accu-
rate for an empty network. At this time, since all Warning Shot buffers and LinkScheduler
databases are empty, the initial predictions generated by all AALSchedulers and Link-
Schedulers throughout the network are null. This situation continues until the first user
traffic is presented to a Warning Shot buffer at an AAL. When this first user traffic arrives
at the AAL, an accurate prediction is produced by AALScheduler, in accordance with its
definition. This is repeated cyclically as user traffic enters the network throughout the
operation of the network. Hence, all predictions injected at the network edge are accurate.
We need to show that all predictions injected within the network (i.e. by LinkSchedulers)
are accurate.

We illustrate this by defining a network state PredictValid where all predictions are accu-
rate. Assuming that all prediction databases D and propagating predictions are Pre-
dictValid at t;, the defined operation of LinkScheduler at t;,.; will inject new predictions
into the network at #;,.; and leave all the D databases PredictValid for the operation of the
LinkSchedulers at t; 5. Those predictions injected at #;,.; are PredictValid by the definition
of the LinkSchedulers and by the assumption that they operate on input that is PredictValid
at i;. We prove, via induction on the network time cycle T, that the network is perma-
nently in the PredictValid state. This proof is presented formally in the first half of this
chapter, assuming a PredictHorizon of one, and then is extended in the second half of the
chapter to allow for a generalized PredictHorizon.

4.3 Network PredictState

D ition 4.1
A network’s PredictState is either PredictValid or Predictinvalid. The state is Pre-

dictValid if all the network PredictComponents (Section 4.3.3) are individually
PredictValid.

4.3.1 Time-cycle Granularity

A Network’s PredictState is defined at network time cycle granularity. This is an abstrac-
tion of the physical network since, in this way, we consider that all events that can happen
in the interval {7, ¢, ;} occur instantaneously at t,. For example, all of the P cells that

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are transmitted during {7, ¢, ,} are instantaneously transmitted and undergo all the
propagation that they experience in the actual interval {#,1, ,} atthe instant z,. No Pre-
dictState related activities then occur until ¢; | . This last requirement is necessary or the
cycle-granularity abstraction loses synchronization with the network it represents. The
abstraction transmits P cells per cycle time rather than P cells per P cell times. Exactly the
same number of cells is transmitted per cycle in both cases.

We observe that this kind of abstraction is not at all extraordinary when modelling net-
works. Indeed, while it is quite familiar to deal with the transmission of cells at cell-time
granularity, that is an abstraction of the more realistic view of a cell’s bits transmitted
piecemeal at bit-time granularity. Even this is an abstraction of the fact that a bit on a com-
munications line may involve multiple state changes on the physical medium on which the
bit is represented!

4.3.2 Notation
1. & - The logical (or normalized) link propagation delay of link xy, in integral basic
time units. This is the same as the , defined in Section 3.3.

2. P.The number of cells in a basic network time cycle. Equivalent to one more than
CellsInPrediction defined in Section 3.3.

3. = . Cell-equivalence. For two schedules A and B, A = B means that for each
cell A, in position k, 1 < k< P, the identical cell exists in B (A, = B,). When no
cell is present at position A, then no cell is present in B,. We denote not cell-
equivalent by ~(A=B).

4. = . Schedule-equivalence. For two schedules A and B, A = B means that the
cell (connection) indicated in position A, 2 < k < P, is identical to the cell (con-
nection) indicated in B,. This relationship is distinct from cell-equivalence prima-

rily in that we may use schedule-equivalence to compare 1) prediction cells, 2)
schedules, 3) cell clusters on communications links and 4) the contents of delay
buffers. Each of these four classes of objects denotes an ordered set of YCl indica-
tors. Schedule-equivalence compares these ordered sets rather than the items
themselves. We denote not schedule-equivalent by — (A = B) . (Note that
A=B=A=B).

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.

« . The schedule assignment operator. After execution of LHS < RHS, then
LHS=RHS.

jx’; . A general format of notation to uniquely identify an individual network

component of type X. The A subscript denotes the link to which the component
pertains, and is usually designated in the form pg, where p is the transmitting node
of the link and q is the receiving node of the link. The B subscript denotes the net-
work time cycle to which we refer. The C superscript, when present, refers to the
time cycle-offset on a link, counting from one, and starting at the transmitting
node p of the link pg. The D superscript, when present, refers to a cell slot position
within the set of cells defined by the rest of the expression.

;x. Relative to any node X, the set of links coming from Neighbors (X) — {Y}.
For example, EvB? ¢ signifies all the data-only delay buffers (B) in switch Y at time
i except that buffer receiving traffic from node Z.

K. A scratchpad used by LinkScheduler during schedule computation. It denotes

the cells present in the link prediction database at the time schedule computation
begins at time -1 that should be dropped from that database before schedule com-

putation begins at time i.
s;. A scratchpad used by LinkScheduler during schedule computation. Its use is

explained in Definition 4.3.

10. o;. A scratchpad used by AALScheduler during schedule computation. Its use is

explained in Definition 4.4.

4.3.3 PredictComponents

In this section we define each PredictComponent and discuss how to determine if it is Pre-
dictValid from its contents and the contents of other PredictComponents. There are two
classes of PredictComponents, passive and active.

Figure 13 depicts a small network showing its various passive PredictComponents at time
t;. These PredictComponents are more clearly labeled in the magnified network view in
Figure 14. They include the delay buffers xyWi, \:yﬁi’ and xyBi; Link Prediction Data Bases

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tyD‘.; Committed Schedules yS propagatlng cell clusters L and the prediction cell
carried in each of those clusters, L All of these terms were ongmally introduced in

Section 3.3.

As indicated above, the network PredictState is uniquely determined by the PredictState of
each of these passive PredictComponents. From one time cycle to the next, the Predict-
State of these components is affected only by the effect of the active PredictComponents
on the existing passive components. The active PredictComponents include cell propaga-
tion, the prediction distributor PShunt, the cell scheduling algorithms LinkScheduler and
AALScheduler, and, in the case of xyW,., the arrival of new cells at the network edge.

We do not need to prove that the active PredictComponents operate correctly. Those active
PredictComponents that are algorithms are assumed to operate in accordance with their
definitions. Since cell propagation and cell arrivals are merely descriptions of physical
occurrences, they are correct by definition.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 13. PredictState Network Components

3L 2 1
)\ ki el
d P =R =11 T=
(IEININ IR I
. T
deLi deLi
s
1 By o
m|B L.
ea i] ae 1
(™o
l=
2 |
L. |Hi L
ea 1 1 ae 1
(™
-
3 o
O | L
ea i 1 ae 1
[~
ml |
4 v:" 1
eaLi E: aeLz
2 1
abLi abLi %

< NETT = N L= T <
C=TTTRO - TR0 11178 % a

1 2 >

baLi baLi ba"i

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 14. PredictState Network Components (detailed)

-~ o~
< 3
c| SN <
- -

& m ~
NN o ~
3 =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PShunt

Definition 4.2

PShunt « copies all the cells that enter switch X from link xy at time t, into ,yB‘.. Thus,
the followmg relationship is preserved by PShuntyx.

_ 9
i xy i1

Additionally, at time ¢,, PShuntxy shunts pertinent predictions from xyB: into the appro-
priate i DH . link prediction databases. If the cell is not a prediction cell, then a null pre-
diction cell is passed to NodeScheduler. Note that it is always a prediction cell according
to our model except during network ramp-up following ,. We express this formally as

follows:
1
;xAi+ 1 = PShuntxy(;xBi)

We introduce the term A for notational convenience only. It is not a separate PredictCom-
ponent. It simply allows us to rcference subsets of the - B prediction cells that are rele-
vant to a specific output link. The B cells are part of our network PredictComponents.

LinkScheduler

LinkScheduler is run independently for each output link once per time cycle. The descrip-
tion of LinkScheduler here is limited to how it receives and forwards predictions and cells
such that the network state remains PredictValid. The actual decision regarding which
cells to schedule is deferred to an arbitrary function f. While this research emphasizes
study of the scheduler policies presented in Section 6.4, the function fis free to make any
scheduling decisions as long as it only schedules cells that reside in D at the time of the
schedule computation. When it decides that a cell should be dropped, it reports this infor-
mation. The function fis defined as follows:

{811 K13 < D)

i+1

K is not a network PredictComponent. K represents those cells that fhas designated should
be dropped. It is merely a scratchpad used for communication between fand LinkSched-
uler.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 4.3

For each output link xy LinkScheduler performs the following steps at ¢, using the scratch-

pad s:

1. 5. .« S
xy i+1 xy i

2. {xySi+l’.tyKi+l} <_f(.tyDi)

1 1
3. populates o i1 such that o i+l zxySi+1

4. D, isderived from D, by adding any pertinent new predictions (;_A,.) received

i+1
from PShunt and by deleting any predictions that have just been scheduled (S, ;)

as well as any explicit deletion requests (K) from f. That is,

D. <-—xyD‘.+ {;xA.H} - {xySi+1 v K. .}

xy i+1 : xy i+1

1

5. xy i+1 (_-xysi+l

The effect of the A, S and K terms above is that they ensure that only valid predictions are
added to the data base (i.e. A) and that any predictions no longer eligible for scheduling
(i.e., S, K) are removed. Although we show step 5 as the responsibility of LinkScheduler
for the purposes of this proof, step 5 is actually performed at cell-time granularity by
Enforcer. Since this proof is conducted at cycle-time granularity, it is convenient to sub-
sume the function of Enforcer into LinkScheduler.

AALScheduler
Definition 4.4
AALScheduler performs the following steps at ; using the scratchpad o

1. o© <-—Bi

xy i+1 xy

7

2. xyBi+l<—xy i

1 1
3. populates 50 it such that 50 i1 ~xyﬁ’.+l

1
xy i+1 é—xyoli+1

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. W. {c, ¢y ..., cp} . where ¢, is the user cell that arrives at AAL X during
Xy i

the k™ cell time slot of {t;,_, t;} and c, is null if no cell arrived during that slot.

Propagation Delay

Definition 4.5

We define the propagation delay function as follows: given the current location of a cell
and a number 7 of time cycles, propagation delay determines the location of that cell after
that number of time cycles. We define this formally for three cases:

1. case 1 <k+t<d+1:
k+t _k
Xy i+t xy i

2. case k+t =06+1

k
B. = L
Xy t+1t Xxy 1

3. case k+t>3+1ork+t<1
The propagation delay function is not defined.

External Input

The only external input that can influence the network PredictState is the arrival of cells
from a traffic source into a W-class buffer. That is, we assume that no cells are injected
into the network except by passing through a Warning Shot buffer monitored by an
AALScheduler. Other than these cells, all other influence on network PredictState is the
result of the action of a network PredictComponent.

Passive Components and PredictValidity

In this section we define PredictValidity for each of the passive network PredictCompo-
nents. Each of these were introduced in Section 3.3. Section explains how the contents of

W.and _P. are derived.
xy i xy' i

Definition 4.6
A Warning Shot buffer xyWi is PredictValid if _tyW‘. = {c,, ¢y ..., Ccp} . Where ¢,

is the user cell that arrives at AAL X during the k'™ cell time slot of {t.

i-1°

t,} and
65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢, is null if no cell arrived during that slot. (Note that tyW’. is always PredictValid

by Definition 4.4.)

Definition 4.7

A delay buffer . is PredictValidif B.= W.
sl xytio xy

X i-1

That is, a delay buffer B should contain those cells that resided in the correspond-

ing warning shot buffer W in the preceding time cycle.

Definition 4.
A link prediction database xyDH_ is PredictValid if

1
xyDi+1 E.’cyDi-*. {;xAH'l} - {xySi+1 +xyKi+l} :

That is, a link’s prediction database D should consist of those predictions that were
present in the database in the preceding time cycle plus any predictions that arrived

from PShunt in the preceding time cycle less any cells scheduled or deleted in the

current time cycle.

Definition 4.9

A committed schedule xySi is PredictValid if xyD‘. _, is PredictValid. A null ‘ySi is

1 X

always PredictValid.

Stated simply, if LinkScheduler operates on a PredictValid database, then its output
schedule § is PredictValid.

Definition 4.10

The prediction cell carried in the first cell position of every cell group L is Pre-
dictValid if it accurately predicts the cells in the cell group immediately following

it. We state this formally in three separate cases as follows:

casel(n = 1,Xisaswitch): Lis PredictValidif L'~ S,

case2 (n = 1,XisaAAL): L is PredictValid if tylLli ~ B

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case3 (1<n<3,): 'L is PredictValidif 'L ~"" L .

Definition 4.11

A cell group L is PredictValid if an accurate prediction of the cells in L is contained
in the prediction cell in the first cell position in the preceding cell group. We state
this formally in two separate cases as follows:

casel(1<n<®) "L is Predictvalidit "L ="*'L}.
Xy’ xy i xy i Xy i

case2 (n = 8_): °L.is PredictValidif °L.~ B'.
Xy' xy i Xy i xy i

In light of Definition 4.10, this implies that PredictValidity of cell group L is logi-
cally equivalent to PredictValidity of the prediction cell in the preceding cell
group.
Definition 4.12
A delay buffer _B. is PredictValidif B.= B .
Xy ¢ xy i xy i-1

That is, the delay buffer B should contain those cells predicted by the prediction

cell residing in B in the preceding time cycle.

4.4 Assumptions

Assumption 4.1
All network hardware is synchronized to a global clock and is synchronously ini-

tialized as follows at ty:

i) All communication links are assumed to carry null cells in all cell slots.

ii) All delay buffers 3, and B, throughout the network are initialized to null cells.

iii) All Warning Shot buffers (type W,)) are initialized to null cells.
iv) All Link Prediction Databases D, are initialized to empty.

v) All Committed Schedules S, are initialized to empty.
67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Assumption 4.2
In all cases, lack of a prediction cell in a slot time reserved for a prediction cell is
processed equivalently to an empty prediction cell. This assumption is necessary to
conveniently handle the fact that network links of different lengths require different

amounts of ramp-up time.

Assumption 4.3
As stated above, the only external event that can influence the network Predict-
State is the arrival of cells from a user source into a W buffer. This specifically
excludes the possibility of hardware failures and bit errors on communication links
from this proof.

Assumption 4.4
Reference to the contents of a predict component at a time earlier than ¢, automat-
ically assumes that it was empty (or full of null cells, as appropriate) at that time.

Thus, xyW_l or xyB_ are assumed to be empty. This assumption is necessary for

1
the start-up conditions of the proof and is consisient with our assumptions about
how the network buffers will be initialized. That is, there can be no history of non-
null cells prior to #, anywhere in the network as no cells arrived prior to 7,,.

Assumption 4.5

PredictHorizon is assumed to be equal to 1.

4.5 The Restricted Prediction Theorem

In this section we prove Theorem 1, stated earlier in Section 4.1.
Base Case of the Induction

We need to prove that the composite network PredictState is PredictValid at t, by demon-
strating that the individual passive PredictComponents are all PredictValid:

1. xyWO‘

xyWO is empty at 7, (Assumption 4.1(iii)).

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since no user cell can have arrived in {-1, 0}, this is PredictValid (Definition 4.6).

2. B,

xy
wﬂo is empty at ¢, (Assumption 4.1(ii)). xyW_l is empty (Assumption 4.4). Thus,

since xyBO = chW_l , xyBO is PredictValid (Definition 4.7).

3. xyDo.

x_vDO and xyKO are empty at ¢, (Assumption 4.1(iv)). xySO is empty at ¢, (Assump-
tion 4.1(v)). ;on is empty at #, (Assumption 4.1(ii), Definition 4.2). Since t)’D_]
is empty (Assumption 4.4), then xyDO = xyD_l + {;xAO} - {xyS0+.\'yK0} = ¢.

Thus, xyDO is PredictValid (Definition 4.8).

4. Sy

xySo is empty at Iy (Assumption 4.1(v)). Thus, xyS 0 is PredictValid (Definition

4.9).
n,1
5. 0"
1
casel (n = 1, X is a switch): Since xylL 0~ .t_vSO = ¢ (Assumption 4.1(i,v)), x;L(l)
is PredictValid (Definition 4.10).
1
case2 (n = 1, X is an AAL): Since xylL 0= 1,Bo = & (Assumption 4.1(iih), x’y‘L(’)
is PredictValid (Definition 4.10).
. 1 n-1 . . 1.
case3 (l<ns 5xy): Since x:LO =" xyLO = ¢ (Assumption 4.1(i)), x;LO is Pre-
dictValid (Definition 4.10).
6. 'L

xy 0°
x:LO is empty at ¢, by the initialization assumption.

casel (1<n< Sxy): Since x:L 0= ”-: ;L(I) = ¢ (Assumption 4.1(i)), x:LO is Pre-

dictValid (Definition 4.11).

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case2 (n = 8_): Since _tiLo ~ ,B'o= ¢ (Assumption 4.16:i), xiLO is Pre-

dictValid (Definition 4.11).

7. xyBo.

. 1
Since xyBO = xyB 4= ¢ (Assumption 4.1(ii) and Assumption 4.4), xyBO is Pre-

dictValid (Definition 4.12).
This concludes the base case.
Inductive Hypothesis
The network PredictState is PredictValid at t, 0<k<i.

Attime ¢, , the three active PredictComponents, PShunt, LinkScheduler and AALSched-
uler operate and perform the steps in Definition 4.2 , Definition 4.3, and Definition 4.4,
respectively. We need to show that the composite network PredictState is PredictValid at
t; ,, by demonstrating that the individual passive PredictComponents are all PredictValid
Inductive Step

1. xyWi +1°

By the action of the AALScheduler (Definition 4.4, step 5), xyWi+ | 18 PredictVulid
by Definition 4.6.

I3i+1'

2.
xy

By Definition 4.4 (step 2), « xyW‘.. xyﬂi+ , is therefore PredictValid (Defi-

yBi +1

nition 4.7).

xySi +1°

xyD‘. is PredictValid by the inductive hypothesis. Therefore, by Definition 4.9,
S. . is PredictValid.

xy i+1

4.

D. ..
xy i+1

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A;,;and K, are automatically PredictValid as part of our assumption that the
LinkScheduler operates according to its Definition 4.3 at time #;. D; is PredictValid
by assumption, and S;,.; was shown to be PredictValid in step 3 above. The action
of LinkScheduler operating at time ¢; (Definition 4.3, step 4) ensures that

D, =D+ { A Koo} Thus, .tyDH-l is PredictValid, by Defini-

xy i+1 xy 1+l} {xv x+l

tion 4.8.

1 . . .
5. t;LH ;- This part of the proof is broken into five cases.

casel (n = 1, X is switch): Assume 1L; is not PredictValid. By Definition

+1

4.10 (case 1), this means that —|() . By Definition 4.3 (step 5),

xy z+l ty i+1

1 . . . 1,1 1 .
xyLH L€ 5541 directly implying that xyL,.+ 1= St From Definition 4.3
1 _—
(step 3), we know that s . = S§. . Therefore, by substitution, we have
xy i+1 xy i+1

1.1 . . . n 1 . . .
obie1™ xny. Y contradicting our assumption. xyL‘.+ |18 therefore PredictValid by

contradiction.
case2 (n = 1,X is an AAL): Assume x;L’.l . is not PredictValid. By Definition

4.10 (case 2), this means that —:(B..) - By Definition 4.4 (step 3),

xy i+ l Xy
1 _
50 1= xyB‘._'_ , and (step 4) xyL'.+ LS o0t Therefore, by substitution, we
. . n,1 .
have L‘ ‘1 xyBi+ |» contradicting our assumption. xyL’. +1 1 therefore Pre-

dictValid, by contradiction.

is not PredictValid. By Definition

. . 2.1
case 3 (n = 2, X is a switch): Assume xyL‘. 1

2 2
4.10 (case 3), this means that —-:(x Ll. = lL.) Since Ll.
y i+1 xy i+1 xy

11 ..
L . (Defini-
+1 xy i

tion 4.5) and 'L ... =S (Definition 4.3), by substitution we have
xy i+1 xyi

—|(1Ll. = S.), which means that 1Ll. was not PredictValid (Definition 4.3).
xy i xyi Xy 1

. 2.1 ., . .
This contradicts the inductive hypothesis, so xyLi+ |18 PredictValid.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cased (n = 2,X is an AAL): Assume \;L:+ | is not PredictValid. This means that

2 2 1
—1(‘ : Iy)Since ’' = 'L (Definition4.5),and 'L = B
xy i+l xy i xy i

.xy i+1 +1 xy'i

(Definition 4.3), by substitution we have — (;-;Lli = ty[}i), which means that t;Ll,.

was not PredictValid (Definition 4.3). This contradicts the inductive hypothesis, so

2.1 . . .
L. . is PredictValid.
xy i+1

| S . . .
caseS5 (2<n< Bxy): Assume t:L’. 41 isnot PredictValid. This means that

" n-t 1 n-1 n—-2
and L = vyL ; (Defini-

L. = L.
xy i+l xy i Xy i+1

1 -1]
—-.("L o ="TL).Smce
Wy i+1 xy i+1
n—-1_.1 n—2 n=1 1
tion 4.5), by substitution we have — .xyL = tyLi , which means that wL ;

was not PredictValid. This contradicts the inductive hypothesis, so ';L’.+ | is Pre-

dictValid.

n . .
6. WLH_ . We prove this result via four cases.

case 1 (n = 1, X is switch): Assume that IL. is not PredictValid. This implies

that —.(). Then, by Definition 4.3 and Definition 4.5,

Xy z+1 xy I+l
1
1 1.
—.(L'~ §) This contradicts the inductive hypothesis that _L . is Pre-
Xy & Xy i Xy i

dictValid, so x;LH | is therefore PredictValid.

case 2 (n = 1,Xis an AAL): Assume that 1L. . is not PredictValid. This

implies that — (2L? =) . Then, by Definition 4.4 and Definition 4.5,
xy i+1 xy i+1

1
[1 1.
- ;L = xyﬁi). This contradicts the inductive hypothesis that wL ; is Pre-

dictValid, so 'L. must be PredictValid.
xy i+1

case3 (1<n<8§,): Assume that L, . is not PredictValid. Therefore,

n+l

ﬁ("‘L. ~ L').Then, by Definition 4.5, ﬂ("“L.z ,"L‘.).This last
y i+1 xy i+1 xy i xy i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. -1, . . .
expression contradicts the inductive hypothesis that " vyL ;18 PredictValid, sc

"L. _is PredictValid.
xy i+1

cased (n = Sxy): Assume that xiLH . is not PredictValid. This means that

b B'). This implies that — (8 L= ;Lli) (Definition 4.5), which

'“(xy ir 1 xyoiel

o]

. . . . 1. .) 8
contradicts the inductive hypothesis that tyL ; is PredictValid. Therefore, xyLi+l

must be PredictValid.

7. _B. ..Assume _B. . isnotPredictValid.
xy i+1 xy i+1

e 1 . _ 3
This implies that — (xyB‘. = xyB ;) - By Definition 4.5, xyB‘,+ | = xyLi, and, thus,
by substitution, — (xiLi = xyBl’.) . This implies that xiLl. is not PredictValid, contra-

dicting the inductive hypothesis. Thus, xyBi+ , is PredictValid.

This completes the induction proof and hence Theorem 1 holds.

4.6 Relaxed PredictHorizon

For simplicity, the proof of Theorem 1 assumed a PredictHorizon value of 1 (Assumption
4.5). In this section we discuss those modifications to the proof that are required when we
relax this assumption. Figures 15 and 16 show how extending Predict-Horizon to three
extends the W and S buffers to three time cycles each. In general, a PredictHorizon of n
requires an n-period warning shot buffer W and an n-period set S of committed schedules.

4.6.1 Impact on the Proof

From a high-level perspective, the generalized proof proceeds similarly to the restricted
version. The complications arise from the fact that the S and W structures each consist of
multiple instances of their earlier, simple versions. These instances are organized much
like a shift register. Conceptually speaking, if we imagine that the simpler proof had a
loader of S that reinitialized S each time cycle and a carry out from the contents of S each
time cycle, the loading and carry out now occurs into and out of the first and last elements
of the shift register. The shift register analogy is convenient as each element of S is shifted

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

left one position with each time cycle. The shift register analogy holds for W as well. The
definitions of LinkScheduler and AALScheduler are extended to account for the more
complex § and W. The proof in Section 4.7 is conducted similarly to the earlier proof, but
is based on these more complex definitions.

FIGURE 15. PredictHorizon of 3 and Warning Shot (W) Buffers

il
1
sal
3 2 1
L. L. L.
ab™ i ab® i ab¥ i W, b:wi
- T TR TR T =il I
\ \ j
w
ILp,- 1

.‘,@@ “is predicted by”

The other significant difference is the definition of PredictValidity for the "L and B com-
ponents. Since PredictValidity of an "L component is defined in terms of its relationship to
a component P slots distant, this complicates boundary cases. For example, PredictValidity
of xiL is determined by the prediction cell that entered the prediction database xyD P-1
time cycles earlier In order to avoid the complexities associated with formalizing this rela-
tionship, we alter our definition of PredictValidity of the "L and B components so that it is
defined in terms of its relationship to a cell spatially collocated, but temporally displaced
by P time units. (See Definition 4.11, case 2.)

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 16. Generalized PredictHorizon and Committed Schedules (S)

,@ﬁ “is predicted by”

4.6.2 PredictHorizon re: LinkScheduler

The generalized LinkScheduler remains largely the same as the one described in Section .
The important differences are isolated to steps 1 and 2 below which constitute a “shift left
one position, carry into 1L,” with respect to the set of committed schedules S.

Definition 4.13

For each output link xy LinkScheduler performs the following steps at ¢, using the scratch-

pad G:

P

1. 5ia € S;

n+1

2. S .« "S,1<n<P
xy i+1 xy i

1
xy i+Pxy i

3. {§ }—ﬂD)

1 1
4. populates NP such that o i1 Si+1

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. D, isderived from D, by adding any pertinent new predictions (;xA‘. +1)

received from PShunt and by deleting any predictions that have just been sched-

uled (ISi+ !) as well as any explicit deletion requests (X, ,) from f. That is,

1
Doy WPt ALY =S, Y K,)

xy i+1 { xy i+1 ~xy i+1

1
.tyLi-i- 1 < .\:ysi+ 1°

The effect of the A, S and K terms above is to ensure that only valid predictions are added
to the data base (A) and that any predictions no longer eligible for scheduling (S, K) are
removed.

4.6.3 PredictHorizon re: AALScheduler

Like the LinkScheduler, the difference between the generalized AALScheduler and the one
described in Section 4.3.3 is the set of Warning Shot Buffers (W) which is “shifted one
position to the left, carrying in to the B buffer.”

Definition 4.14

AALScheduler performs the following steps at ¢, using the scratchpad o

1. c.H(—xyBi

xy i
P
2. xyBi+1<_—xy i
3 lates o' hthat o =~ 'W
* popuaesxy i+ SUC axy i+1 xy i
+1 n
4. "W, o« "W,1<n<P
xy i+1 xy i

1

5. L ¢« o
xy i+1 xy i+1

1 . . .
6. tle. &~ {cl, Cop oves cP} , Where C, 18 the user cell that arrives at AAL X during

the k™ cell time slot of {t;_,>t;} and ¢, is null if no cell arrived during that slot.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.4 PredictHorizon re: Passive Components and PredictValidity

In this section we define PredictValidity for each of the passive network PredictCompo-
nents. Each of these are introduced in Section 3.3. Section 4.3.3 explains how the contents
of _W.and _[. are derived.

xy i xy'i

Note that certain caveats are required for the ranges expressed in the following definitions
for the special cases of extremely short communications links or very large PredictHori-
zon (e.g., 8.:y < P). The following definitions and arguments have not attempted to explic-
itly detail every possible combination of these. When we have not explicitly broken out a
case for separate consideration we consider that it should be obvious from the context how
that case should be treated. For example, in the case of Definition 4.11, when we stipulate
two separate cases (1 <n< (Sxy —P))and ((Sxy — P) <n<0) we expect that it is clear
from the context that if Sxy < P then there is only one case to consider, 1 £n< 8_“,.

Definition 4.15

casel (n = 1):x;W,. is PredictValid if x;Wi = {c}, ¢y ..., Cp} , Where ¢, is the
user cell that arrives at AAL X during the K" cell time slot of {r,_,,t;} and ¢ is

null if no cell arrived during that slot. (This case is essentially unchanged from
Definition 4.6.)
case2(1<n<P): 'W,is PredictValid if W, =

-1 . .
" 1:yW'._ ,- Thatis, the warning

shot buffer W functions as a shift register, with each element shifting one position

to the left with each time cycle.
Definition 4.1
A delay buffer xyﬁ‘. is PredictValid if xyBi = xI;W‘._ - This definition closely resem-

bles Definition 4.7, with the significant difference that since there are multiple ele-

ments of the W component, the definition stipulates that the relationship is only
with the P component.
Definition 4.1
A link prediction database xyDl.+ . is PredictValid if
xyDi+1 = xyDi+ {;xAi} - {x_:’si+l nyKi}'

(This definition is essentially unchanged from Definition 4.8.)

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 4.18
casel (n = 1): The committed schedule x;SI. is PredictValid if tyD,._ 18 Pre-

dictValid. A null ;S‘. is always PredictValid.

X

(This case is essentially unchanged from Definition 4.9.)

case 2 (1 <n <P): The committed schedule _:Si is PredictValid if

X

n, _ n-1

xy i xy i—-1"

That is, the set S of schedule skeletons functions like a shift register, with each ele-

ment shifting one position to the left with each time cycle.

Definition 4.19

case 1 (1 <n<P,Xisaswitch): The prediction cell :Lll is PredictValid if

X

n.1 n

xy i xyi

This means that the first P prediction cells on the communications link predict

cells are currently scheduled in schedule skeletons still active in the switch.

case2 (1 <n<P,Xisan AAL): The prediction cell t;L: is PredictValid if
n Ll = n+1 .

xy i xy i

This means that the first P-1 prediction cells on the communications link predict

cells currently scheduled in warning shot buffers still active in the AAL.

case3 (n = P, X is an AAL): The prediction cell x’; L is PredictVaiid if
1
P

xy i~xy

B,

That is, the P prediction cell predicts those cells currently scheduled in the AAL
delay buffer .

case 4 (P <n<8,): The prediction cell L, is PredictValid if "Li ~"" L.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A prediction cell that has propagated at least P cycles from the switch predicts
cells that are currently on that same communications link, located P cell groups
closer to the switch. (Note: If P > 5xy. then cases 3 and 4 do not exist. Addition-

ally, the range of cases 1 and 2 would then be restricted to 1 <n < va.)

Definition 4.20
n, . . cgep N n+P 1
casel (1<n< (8” -~ P)). Acell group xyLl. is PredictValid if xyLl. = L

xy i’

A currently propagating cell group that is at least P cycles away from arrival at the
next switch is predicted by the prediction cell located on the same communications

link, located P cell groups closer to that remote switch.

case 2 ((3,,~P) <n<8): Acell group 'L is PredictValid if L, ~ "L, .

A currently propagating cell group that is P or fewer cycles away from arrival at
the next switch is predicted by the prediction cell in the cell group located in the

same position on the communications link P cycles earlier.

Definition 4.21

1

A delay buffer _B. is PredictValidif B.=~ B . .
xy i xy [x» (-P

That is, the contents of a switch delay buffer B are predicted by the prediction cell
that entered the delay buffer P cycles earlier.

4.7 The Relaxed Prediction Theorem

In this section we prove Theorem 2, which we stated in Section 4.1.
Base Case

We prove that the composite network PredictState is PredictValid at t, by demonstrating
that the individual passive PredictComponents are all PredictValid:

n

1. W,

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

casel(n = 1): "W

LA is empty at , (Assumption 4.1(iii)). Since no user cell can

have arrived in {r;_, 1}, this is PredictValid (Definition 4.15).

_n-1

case2 (1<n<P): W, s

W_, =0 (Assumption 4.1(ji. iv)). Thus, ;W is
PredictValid (Definition 4.15).

2. xyBO'

Both [3 and PW_ are empty at ’o (Assumption 4.1(ii) and Assumption 4.4,

respectively). Thus, since B =9, B is PredictValid (Definition 4.16).

xy —~1

3. xyDO. (argument unchanged from Section)

D is empty at ¢, (Assumption 4.1(iv)). Smce D A 1 tySO’ and K , are

empty (Assumption 4.4), xyDOExyD-l + {;er} - {tyS0 v K 1=6¢ .Thus,

xy 0
xyDO is PredictValid (Definition 4.17).

n
xySO :

casel (n = 1): x;SO is empty at ¢, (Assumption 4.1(v)). Thus,);So is Pre-
dictValid (Definition 4.18).

case2(l<n<P):x:SO = ";;S_l = ¢ (Assumption 4.1(v), Assumption 4.4). Thus,
t:SO is PredictValid (Definition 4.18).

n.1

5. oLy

casel (1 £n<P,Xisaswitch): Since xy"L1 0= x:SO = ¢ (Assumption 4.1(i,v)),

Ly is PredictValid (Definition 4.19).

n 1 n+l

case2 (1<n<P,Xisan AAL): Since % L,= xy W, = ¢ (Assumption 4.1(i,

iii)), x:L(]) is PredictValid (Definition 4.19).

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
case3 (n = P, X isan AAL): Since ty” L'y~ By~ (Assumption 4.1(ii)). L,

is PredictValid (Definition 4.19).

n

cased (P<n <3): Since "L ="""L =~ ¢ (Assumption 4.10)), 'L, is Pre-

dictValid (Definition 4.19).

n

6 - xyLO .

case1(1<n< (8,,—P)): Since x’y’LO =" *fy’ L(l) ~ ¢ (Assumption 4.1(i)), _v';LO is

PredictValid (Definition 4.20).

. n n.1 . .
case 2 ((Sxy -~ P) £n<39): Since xyLO =~ xyL_P = ¢ (Assumption 4.1(i), Assump-
tion 4.4), x;LO is PredictValid (Definition 4.20).

7. xyBO'

. 1
Since .xyBO = xyB = ¢ (Assumption 4.1(ii) and Assumption 4.4), xyBO is Pre-
dictValid (Definition 4.21).

This concludes the base case.
Inductive Hypothesis
The network PredictState is PredictValid at t,0<k<i.

Attime 1, _,, the three active PredictComponents, PShunt, LinkScheduler and AALSched-
uler, operate and perform the steps given in Definition 4.2, Definition 4.13 and Definition
4.14, respectively. We need to show that the composite network PredictState is Pre-
dictValidat t; | by demonstrating that the individual passive PredictComponents are all

PredictValid at P

Inductive Step

n
1. .
xy i+1

case 1 (n = 1): By the action of the AALScheduler (Definition 4.14, step 6),
‘W, is PredictValid (Definition 4.15).

xy

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* xy

. D,
xy i+1

case 2 (1 <n <P): By the action of the AALScheduler (Definition 4.14, step 4),

"W._ s PredictValid (Definition 4.15).
xy i+1

Bi +1°
By the action of the AALScheduler (Definition 4.4, step 2), xyBH_ , 18 PredictValid
(Definition 4.16).

n
xySi+ 1°

casel (n = 1): _D.is PredictValid by the inductive hypothesis. Therefore, by
xy i

Definition 4.18, "S. . is PredictValid.
xy i+1

case2(1<n<P) Bythe action of the LinkScheduler (Definition 4.13, step 2),

"S.+ | is PredictValid (Definition 4.18).

xy i

. (argument unchanged from Section)

Aj,1and K, ; are automatically PredictValid as part of our assumption that the
LinkScheduler operates according to its Definition 4.13 at time #;. D; is Pre-
dictValid by assumption, and S;, ; is shown to be PredictValid in step 3 above. The

action of LinkScheduler operating at time #; (Definition 4.13, step 4) ensures that

1
oPier = 5Pt LAY~ LS Vit Thus, .tyl)i+1 is PredictValid, by Defini-

tion 4.17.

n.1 o e s
L We prove this via eight cases.

S oxy i+1”

. . 1,1
casel (n = 1, Xis a switch): Assume xyL‘.+ | is not PredictValid. This means that

sEis 1™ aySis 1) - This explicitly contradicts the action of LinkScheduler (Def-

= (

I . L A .
inition 4.13, step 4,6) at time #;. Therefore, \,yL‘. 1 18 PredictValid, by contradic-

tion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case2 (n = 1,Xisan AAL): Assume x;L:+) is not PredictValid. This means that

1.1 2

= (xy e J‘yWi+ l) . By the action of AALScheduler at time #;, however, we
know both that L. = 'W. (Definition 4.14, step 3) and that “W. = 'W.
xy i+1 xy i xy i+1 xy i

- - L 1,1 2 -
(Definition 4.14, step 4). Substituting, this yields xyL‘.)r = xyWH ,» contradicting

. 1.1 . . .
our assumption. Thus, xyL,.+ is PredictValid.

case 3 (1 <n <P, X isswitch): Assume t:Lil+ is not PredictValid. By Definition

1

4.19 (case 1), this means that — (;:L:+ =S). Propagation delay over

1 xy i+1
r oy n—1 1
{r,1,,,} causes L, = L, (Definition 4.5) and, by the definition of the
n n—1
LinkScheduler, xyS i+ = xyS ; (Definition 4.13, step 2). Therefore, by substitu-

n—1

n-1 n—1
. 1 . 1 . .
tion, we have -u(L. .= S .), which means that L. was not PredictValid
xy i xy i xy i

(Definition 4.19). This contradicts the inductive hypothesis, so ;Ll.l+ : is Pre-

dictValid.

cased (1<n<P,Xisan AAL): Assume L. is not PredictValid. By Defini-

1

n n—1
. . n 1 n+1 . 1 = 1
tion 4.19 (case 2), this means that ~(L, , =" W,). Since oF 1= ol
n+1 n
(Definition 4.5) and xyW 141 ExyW ; (Definition 4.14, step 4), by substitution

n-1

n-—1 n
we have -n(tyLll. = xyW i), which means that vyLl'. was not PredictValid (Def-

inition 4.19). This contradicts the inductive hypothesis, so X;L‘. o118 PredictValid.

case 5 (n = P, X is an AAL): Assume x’; L., is not PredictValid. By Definition

1
1

4.19 (case 3), this means that —("L

olie1™ xyBi+ ,) - Propagation delay over

P 1 P-11

{t,t,,,} causes xyL iv1°= xyL ; (Definition 4.5) and the action of the

P
AALScheduler causes xyB‘.+ | = xyW ; (Definition 4.14, step 2). Therefore, by sub-

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P rP-1

) 1
w) which means that L . was not Pre-
xy i xy i

i

P-1
e 1
stitution we have —.(ryL ;

dictValid (Definition 4.19, case 2). This contradicts the inductive hypothesis. so

PLY s Predictvalid.
xy i+1

case 6 (n = P+1,X isa Switch): Assume " * L, _ is not PredictValid. By Defi

P+1
nition 4.19 (case 4), this means that ﬁ(A) . We know that the
xy i+l xy i+1

action of the LinkScheduler (Definition 4.13, steps 1, 6) at time #; causes

x; 1= x’;Si. The repeated actions of the LinkScheduler (Definition 4.13, step 2)

1

over the period {z,_p,f;,_,} cause x:S’. = . Propagation delay (Defi-

xy i-P+1
. Pl 1 _ 11
nition4.5)over {t;_p,t;} cauwses 5, (=, L, p,.Therefore, by sub-

o 1.1 1 .
stitution, we have —-.(WL el xyS‘._ P 1). We know by the action of
1

P+l z.tySi-»P-i-l’Con-

LinkScheduler at t;_p (Definition 4.13, steps 4, 6) that x;Lli_

1

- . P+1
tradicting our assumption that tyL.

il is not PredictValid.

case 7 (n = P+ 1, X is AAL): Assume PTLI is not PredictValid. By Defini-

y i+1

+1 1 i

. . p .
tion 4.19 (case 4), this means that —1(xyL 1= b 1). Propagation delay

P+1.1 _ 1.1

(Definition 4.5) over {r; _p,1;} cauwses L, = L, p, . Weknow

that the action of the AALScheduler (Definition 4.14, steps 1, 5) at time #; causes

1 . P .
...=_PB.,and attime t,_, causes _[.= W. . The repeated actions of the
xy i+1 xy'i i-1 xytiooxy i-1

AALScheduler (Definition 4.14, step 4) over the period {f,_p,f,_,} cause

i

P 1

- 1.1 1
._,=_W. _.Therefore, by substitution, we have —u(L. W)
xy i-1 xy i-P

xy i—-P+1 zxy i-P
We know by the action of AALScheduler at t;_p (Definition 4.14, steps 3, 5) that

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1,1 1 - . P+i,1
. = W. _,contradicting our assumption that L. isnot Pre-
xy i-P+1 «xy i-P Xy i+1

dictValid.

is not PredictValid. By Definition 4.19

case8 (P+1<n< S.W): Assume .::-L:+ |

. ‘ " -P
(case 4), this means that —-:(L. ="
xy i+1

xyLH 1). Propagation delay (Definition

n n—1
1 _ 1
4.5) over {r,t,, } implies thatboth L = L' and
n—P n-P-1
L &= L .. Therefore, by substitution we have
xy i+1 Xy i

n—1

n-1_1 -P-1 . 1 . s Ve fiis
-:(tyL .= " tyLi), which means that wL ; was not PredictValid (Definition

4.19, case 4). This contradicts the inductive hypothesis, so .\-:L;-n is PredictValid.

n . .
L. .. We prove this via four cases.
xy i+1

case 1 (n = 1, X is a switch): Assume that _\;LI.+ is not PredictValid. By Defini-

I

1+P 1 1

tion 4.20 (case 1), this means that — (xyL L, .).We know that by Defi-

el xyiel

P+1 1 P_1

nition 4.5 xyL i+l ExyL ; - By the action of the LinkScheduler (Definition

4.13, step 6), t;L‘.H = tI;S‘.. Thus, by substitution, —'(Pl < PS.). This contra-

\NYY D oxy i
dicts the inductive hypothesis that :;Ll‘, is PredictValid (Definition 4.19), so

1 . . . -
tyL,.+ | Is PredictValid by contradiction.

case2 (n = 1, X is an AAL): Assume that xlyLi+ | is not PredictValid. By Defini-

1+P 1 1

tion 4.20 (case 1), this means that — (xyLH_ = xyL‘.+]) . We know that by Defi-

P+1 P
nition 4.5 ' L'oo=rt . Also, by the action of the AALScheduler

xy i+1 xy i

(Definition 4.14, steps 3, 5), x;L” = xyBi. Thus, by substitution, this means that

1 1,
- (:;L = tyBJ. This contradicts the inductive hypothesis that _iL ; is Pre-

dictValid (Definition 4.19),s0 L, must be PredictValid.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cased(l<n< (8.ry — P)): Assume that _\,:L,. ol is not PredictValid. Therefore, by

n+P

Definition 4.20 (case 1), —1(L .= Lli . 1)‘ Then, due to the effect of propa-

n
Xy i+1 Xy

n+P-1 1
L) This last

xy i

gation delay over {z,t,,,} (Definition 4.5), = (" —._;L‘, -

n—1
expression contradicts the inductive hypothesis that tyL ;18 PredictValid, so

"L. . is PredictValid.

xy i+1

is not PredictValid. Therefore, by

case 4 ((Sxy — P) <£n £39): Assume that x:LH_ |

- | .
Definition 4.20 (case 2), — (x:LI.+ = x;LH y_p) - Itthen follows that propagation
delay over {,¢, ,} (Definition 4.5) means that — " ;;Li =" —x;L,.l_ p) - which
n—1

contradicts the inductive hypothesis that stated that L . is PredictValid. There-

xy i

fore, x:L:'-f- , must be PredictValid, by contradiction.

B. ..Assume B. _ isnot PredictValid.
xy i+1 xy i+1

Therefore, by Definition 4.21, this implies that =(_B. .~ B'
xy i+1 xy i+1-

P) . Propaga-
tion delay over {71, I} (Definition 4.5) from link xy into the delay buffer _tyB

. 5 . .
results in xyBH | = _tyLi . Propagation delay over {¢#,t,, ,} resultsin
Bl _8Ll Substituti 8L~8L1 This impli thtsL' ¢
oBie1-p = myki-pSU stltutmg,ﬂ(xy P = oy ._ p) - This implies tha oyl 1810
PredictValid (Definition 4.20, case 2), contradicting the inductive hypothesis.

Thus, B. _ is PredictValid.
xy i+1

This concludes the proof of Theorem 2.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5
COMPLEXITY OF
PREDICTION-BASED
SCHEDULING

5.1 Introduction

Throughout this dissertation we have described scheduling as the problem of determining
a feasible cell schedule that incurs the minimum QoSCost. The problem is formally stated
as a decision problem in the next section. We call this general problem the Complete QoS
Scheduling Problem (CQSP). Our goal in this chapter is to study the computational com-
plexity of CQSP. We do so by first illustrating that the Simple QoS Scheduling Problem
(SQSP) is NP-complete. We then reduce SQSP to CQSP. Since CQSP is also in NP, this
shows CQSP is NP-complete. In summary, this chapter contains two main theorems. They
are stated below.

Theorem 3

The Simple QoS Scheduling Problem is NP-complete.

Theorem 4
The Complete QoS Scheduling Problem is NP-complete.

The fact that the scheduling problem is intractable forces us to use heuristics that achieve
good, but sub-optimal schedules. Several prediction-based scheduling heuristics that seem
fruitful are introduced in Chapter 6 and tested in Chapter 7.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 NP-completeness

One of the most common forms of NP-completeness proofs utilizes local replacement. A
detailed discussion on NP-completeness proofs by local replacement can be found in
Garey and Johnson [1]. The basic strategy of these proofs is to define a reduction from a
known NP-complete problem to the target problem. The reduction demonstrates that the
target problem is also intractable, that is, it is not in the class of polynomial time solvable
problems (P). This is because one can solve the original problem using a subroutine, the
reduction, for the target problem. This says that the target problem is at least as hard as the
original one. Thus, if the original problem was NP-complete, the target problem would be
NP-hard. Further, if the target problem were also in NP, it would be NP-complete.

Certain rules must be followed in this kind of proof. They are illustrated below.
1. The reduction must be from the general case of the known NP-complete problem.

2. The reduction must be performed in polynomial time (in the size of the input to
the original problem).

3. While the transformation must be from the general case of the known NP-com-
plete problem, the transformation may be to a sub-problem of the target problem.

The rationale behind this is that if a polynomial-time solution exists to the target problem,
this solution must necessarily include the sub-problem that emerges from the translation.
Therefore, a polynomial-time solution for the target problem implies a polynomial-time
solution for the general case of the known NP-complete problem. Thus, unless P=NP the
target problem is NP-hard and again, if it is in NP then it is NP-complete.

Another form of NP-completeness proof is proof by restriction [1]. In this style of proof
one shows that the target problem contains an instance that itself is identical to a known
NP-complete problem.

Many different scheduling problems have been proven NP-complete. Garey and Johnson
provide a brief review of over 22 different NP-complete scheduling problems [1]. The
problem we choose to transform to the SQSP problem is called Sequencing Within Inter-
vals (SWI). It should become clear below that we have selected this problem since it dis-
plays many of the characteristics of our problem, making the transformation
straightforward. As with many NP-completeness results, choosing the correct problem to
reduce to is key to the overall proof.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.1 Sequencing Within Intervals Problem (SWI)

Garey and Johnson [1] define SWI as follows:

Input

The input consists of 1) a finite set T of “tasks,” 2) foreach 7 € T, an integer “release
time,” r(¢) 20, 3) a “deadline” d(f) € Z*, and 4) a “length” I() € Z™.
Question
Does there exist a feasible schedule ¢ for T, such that each task r is “executed” from time
o(?) to time o(f) + I(¢), cannot begin execution until time r(#), must be completed by time
d(r), and its execution cannot overlap the execution of any other task #'?
That is, does there exist a function 6: T — Z*, such that:

1. foreachte T, o(t) 2 r(t), o(®) +1(t) £d@®)

2. if t'e T- {t},theneither o(t') + I(t') < o(t) or o(t') = (1) + I(2).

5.3 The Simple Quality of Service Scheduling Problem (SQSP)

We define SQSP formally as follows:

Input

The input consists of a finite set C of schedulable cells. These input cells are partitioned
into a finite number P of subsets called “Connections”. For each connectioni, 1 <i< P,
there is a finite subset of schedulable cells C, < C and, for each i€ C.lsj< |C,.| ,an
integer “release time,” r(jc‘.) 20, and a “deadline” d(jci) e Z*. For each connection i,
there is also a maximum intercell time j(C}) 2 0.

Question

Does there exist a feasible schedule ¢ for C, such that the cell i is scheduled for trans-
mission at time G(jc‘.), cannot begin transmission until time ;'(jci) , and must be completed
by time d(jc,.)? Two cells may not be scheduled for the same slot and cells from a given
connection must be scheduled in sequence. Each cell occupies exactly one time slot in the

schedule. If a cell is not the first cell in a burst, then it must be scheduled within J(C) time
slots of the earlier cell.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

That is, does there exist a function 6:C — Z*, such that:
1. foreach i€ C.1gj< IC,.I, 1<i<P, r(jci) < o(jci) Sd(jc‘.);
2. if ¢'e C- {c}, theneither o(c') < o(c) or o(c') > o(c);

3. if m>n,then c(mc‘,) > c("ci);

4. if r(jc'.) - r(j_ 1c,.) >j(C). S is designated the first cell of a burst; when i is not
the first cell of a burst, c(jci) < o(j_]cl.) +j(C)s j(Ci) = () is equivalent to

J(C) = wo)?

To explicitly derive all possible schedules to accurately answer this question using a
straightforward approach requires O(2") time where n = |C|. This computation is clearly
not feasible as a real-time ATM cell scheduler. We now prove that it is unlikely that a
polynomial time algorithm for SQSP will be found.

5.3.1 SQSP is NP-complete

We transform SWI to SQSP. For notational convenience, we refer to the original tasks of
the SWI problem as 1, 1 <i <|T].

1. Foreach task ¢, we create a corresponding set of cells for connection i. This set of
cells is called C;.We define C,; to act as a block of cells that must be scheduled in
contiguous slots in order to resemble #;. To this end, we define exactly I(z,) cells
for connection i. We refer to the individual input cells as
o 1 <i<|T,1<j<Ue).

2. We also require that the block C; obey similar scheduling constraints to the origi-
nal task ;. Specifically, we wish for the block C, to enjoy (suffer) precisely the
same scheduling freedom (restrictions) as the task ;. In other words, the first cell
of C, should be able to be scheduled no earlier than slot r(t), the final cell of C,
must be scheduled no later than d(t)), and the cells must be scheduled contigu-
ously. Specifically, this implies that r(jc‘.) = rt)+j-1,
d(jci) = d(t;)— () —Jj) ,and that j(C) = 1.

This reduction can be performed in polynomial time in the input size |1} of the original
problem. Suppose the original instance 7 of SWI had size a. Assuming M equal o
max(d(z) - r(t,)), 1 St <|T}, the reduction requires the creation of at most M SQSP input
cells for each task T'in /. These increase the size by no more than the constant factor M, so

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the instance I' of SQSP has size O(a), a polynomial in the size of /. There is a small con-
stant computational cost K associated with the creation of each input to our instance of
SQSP. The computational cost of the translation is bounded by |T| x M x K, which is
clearly a polynomial in the size of the original problem.

All aspects of the original SWI problem are embodied in the translation. Therefore, a solu-
tion to the translated SQSP problem exists if and only if there exists a feasible schedule for
the SWI problem. Since our translation encompasses the general case of the SWI problem,
this suffices to show that SQSP is NP-hard. It is also easy to see that SQSP is in NP. One
can guess a schedule in polynomial time and then verify that it is feasible using polyno-
mial time. Thus, SQSP is NP-complete.

]

5.4 The Complete Quality of Service Scheduling Problem (CQSP)

The CQSP problem is defined to reflect the computational complexity of the scheduling
problem presented to each LinkScheduler at the start of each network cycle. We define
CQSP formally as follows:

Input

The input consists of a finite set C of schedulable cells and a constant K. These input cells
are partitioned into a finite number P of subsets called “Connections”. For each connec-
tion i, 1 <i< P, there is a finite subset of schedulable cells C; = C and, for each i€ C,
1<j< |Ci| , an integer “release time,” r(jc,.) 20, and a “deadline” d(jc'.) e Z*. For each
connection i, there is also a maximum intercell time j(C)) 2 0.

Question

A skeleton schedule ¢ for C is an assignment of cells to time slots such that the cell i is
scheduled for transmission at time O'(jc‘.), cannot begin transmission until time r(jci). and
must be completed by time d(jc,.). Two cells may not be scheduled for the same slot and
cells from a given connection must be scheduled in sequence. Each cell occupies exactly
one time slot in the schedule. If a cell is not the first cell in a burst, then it must be sched-

uled within j(C,) time slots of the earlier cell. Any cell not thus scheduled belongs to the
set L. Does there exist a skeleton schedule o for C such that |L| < K for some arbitrary K?

That is, does there exist a function 6:C — Z™, such that:

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. foreach € Cc,1 SjS|C,.|, 1<i<P, r(jc‘.) Sc(jc,.) Sd(jci);
2. if ¢'e C— {c}, then either o(c') < o(c) or o(c') > o(c);

3. if m>n,then o‘(mc‘.) > G(nci);

4, if r(jc',) - r(j_ 1ci) >j(C), £ is designated the first cell of a burst; when i is not
the first cell of a burst, G(jc,.) < G(j_ 1c’.) +j(C)); J(C)) = 0 is equivalent to
JC) =);

5. |L| <K for arbitrary K?

We now prove that it is unlikely that a polynomial time algorithm for this problem will be
found.

5.4.1 CQSP is NP-complete

We prove that CQSP is NP-complete via a proof by restriction. Specifically, we show that
CQSP contains the NP-complete problem SQSP as a special case where K = 0.

The input to CQSP and SQSP are the same. Upon inspection CQSP differs from SQSP in
only one fundamental way: rather than asking for the minimum cost schedule, we simply
ask if there exists a schedule whose cost is zero (i.e. |L| = 0). The fact that CQSP is
harder is explained by the following argument: if we know the cost of a minimum cost
feasible schedule, then we can easily (i.e. in polynomial time) know whether that mini-
mum cost is zero. The fact that a polynomial-time solution to CQSP implies a polynomial-
time solution to SQSP means that if SQSP is NP-complete, then CQSP is also NP-com-
plete.

5.5 Summary

This chapter has demonstrated that it is unlikely that we will find an algorithm to effi-
ciently solve a simplified version of the QoS scheduling problem, SQSP. This fact pro-
vides strong evidence of the unlikelihood of the existence of an efficient algorithm for the
generation of a QoS-optimal cell schedule in the general case of CQSP. While the time
available for calculation of cell transmission schedules is greater in our model than in the
generic ATM model, the fact that schedule computation is still very time constrained ren-
ders the computational complexity of the problem even more significant. The difficulty of

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the general problem and the limited computation time available lead us to restrict the
problem in order to develop efficient heuristics that can compute good, but sub-optimal
schedules.

In Section 3.11 we extended the basic model so that unschedulable cells need not be
dropped but can be buffered in the prediction data base D. The proof of correctness in
Chapter 4 and the proof of complexity argued here assume that LinkScheduler has the lati-
tude to schedule any cell still in D. In the terminology of CQSP, this means that the set of
schedulable cells C includes all cells present in D. The proofs also assume that LinkSched-
uler can consider all candidate slots for scheduling a cell, subject to that cell’s particular
constraints. One of the key elements in the heuristics discussed in Chapter 6 is that we
restrict the scheduling problem so that the number of new cells that have to be scheduled
is limited to the number of cells that can arrive in one cycle. While the actual number of
cells available for scheduling could include all the cells in the prediction database D, we
generally freeze cells into a tentative schedule after their initial scheduling. This restriction
restricts the input and problem of CQSP in two fundamental ways: 1) the set of schedula-
ble cells C is limited to the new arrivals, and 2) once a cell is placed in the tentative sched-
ule it is not considered again for rescheduling (it may, however, be removed from the
tentative schedule). Depending on the heuristics and a particular cell’s scheduling con-
straints, the heuristics may also restrict the candidate slots considered to a small subset of
the possible candidates. (Note that the heuristics work under the constraint that the thus-
restricted scheduling problem needs to be solved within one cycle time.)

While this method does not necessarily discover the optimal schedule, it does greatly
reduce the number of possible schedules considered by the algorithm. The simulation
results in Chapter 7 demonstrate that while the different heuristics based on this key
assumption do not guarantee a QoS-optimal schedule, they do provide QoS-sensitive
schedules that out-perform a generic cell-scheduler.

5.6 References

[1] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman and Company, San Francisco, 1979.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6
EXPOSITION OF THE
SCHEDULING
ALGORITHMS

6.1 Introduction

Thus far we have introduced and developed a general network model that provides accu-
rate, distributed predictions of cell arrivals. This model creates the opportunity to investi-
gate an entire family of cell scheduling techniques that exploit these predictions. In this
chapter, we detail the specific scheduling heuristics that we formalized and evaluated as
part of this research. Since these ideas are necessarily a small subset of the family of
schedulers based on our model, it is our hope that other researchers may use the model as
a springboard for investigation of other schedulers in this prediction-based family.

LinkScheduler, y(P, T.) isafunction operating on node X which takes a tentative cell
transmission schedule P from the set of contributing PSh unt- for link xy targeted for
time period T; and returns a committed transmission schedule S. These committed sched-
ules S are guaranteed to be enforceable on link xy for time period T;. Enforceable means
that all scheduled cells will be available for transmission when they are due and that no
two cells are scheduled for the same cell time slot. In order to achieve this enforceability,
some cells may have to be dropped. It is the task of LinkScheduler to select cells to be
dropped from the arrival schedule so that the number of resulting QoS violations is mini-
mized. LinkScheduler operates at cycle-time granularity, in parallel, for all links in the
switch.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Enforcery, operates at cell-time granularity, in parallel, for all links xy in the switch. At
each cell time, Enforcer,y transmits the cell indicated in § onto link xy. In the same cell
time Enforcery, checks the cell that emerges from By, to see if it was marked for deletion.
If so, Enforcery,, discards the cell.

LinkScheduler, y(P, T,) does not normally drop celis from P to cause xy to be starved
during T,. As LinkScheduler decides which cells to drop, each such decision is made by
dropping a cell from the connection that has the maximum Distance FromQoSViolation of
the connections contributing cells to P. In this thesis, DistanceFromQoSViolation is an
instantaneous measure of tolerance of cell loss, delay or jitter. For example, a connection

~ that can definitely afford to lose a cell during T, would have a large DistanceFromQoSVi-

olation value whereas a connection that would incur a QoS violation if a single cell is lost
during T; would have a small DistanceFi romQoSViolation. As explained earlier in Section
2.4, loss and delay should both receive consideration by the scheduling algorithm. Jitter
must also be considered, despite the fact that much of the research has skirted jitter man-
agement as too difficult. Simultaneously providing for loss, delay and jitter guarantees
while striving for high network utilization seems very complex. The quality of connec-
tion-specific loss. delay, and jitter guarantees as well as the computational complexity of
providing them depends largely on how we define the DistanceFromQoSViolation metric.
In Section 6.6 we propose different DistanceFromQoSViolation metrics that we believe
can be feasibly implemented. Chapter 7 provides experimental results from simulations of
a selection of these metrics.

In Section 6.3 we extend the simple definition of the LinkScheduler function so that it
takes as an additional input a list of tentative schedules that will be buffered from time
periods preceding 7; and may contend for link xy during 7. These tentative schedules are
called schedule skeletons. LinkScheduler would be permitted to delete cells from those
skeletons either by scheduling the cell for time period T; or by deciding that further buff-
ering of the cell was pointless due to it having caused a QoS violation.

6.2 Baseline LinkScheduler

The baseline LinkScheduler is a simple greedy algorithm. It consists of the following
steps:
1. Determine how many cells .(n) need to be pruned from P to render it congestioil-
free.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Ifany cells are found that belong to VC’s without a guarantee of maximum loss,
delete up to n of those cells. If further deletions are necessary, continue.

3. Sort all VC’s of member celis by their current DistanceFromQosViolation value.
Delete a cell from the VC with the current maximum DistanceFromQosViolation
value, recomputing the affected VC’s Distance FromQoSViolation after the dele-
tion, and resorting the list. Continue deleting from the VC at the head of the list
until the required »n cells have been deleted.

Step 3 above stipulates that waiting cells should be sorted. The heuristics we describe in
this chapter (Section 6.4) do not actually sort. Instead, they use a dynamic programming
approach where each step only modifies the existing solution (schedule) as is required to
avoid QoS violations. When cell loss is inevitable, they search for a minimal cost cell to
discard.

We can expand the information available to the baseline scheduler both by 1) extending
the set of eligible cells to include some cells predicted in earlier cycles and also by 2)
incorporating QoS information from other switches in the network. We discuss these two
extensions to simple scheduling in the next section.

6.3 Expanded LinkScheduler

6.3.1 Allowing for Cell Queuing

In practical ATM networks, some cell buffering must be allowed if the network is to oper-
ate without high cell loss. This is due to the fact that when more arrivals converge on an
output link than can be served in one time interval, those that are not immediately sched-
uled must wait or be dropped. Since ATM switches will have some amount of buffer space
to hold these cells, they queue. We discuss two methods of cell queueing in this section.
The first, Future Time Slot Assignment (FTSA) is intended for delay and jitter sensitive
traffic (CBR and jitter-sensitive VBR). The second, Deferred Queue (Defer_Q) is intended
for delay and jitter tolerant traffic (ABR, UBR and jitter-tolerant VBR).

6.3.1.1 Future Time Slot Assignment (FTSA)

FTSA is built upon the notion of schedule skeletons mentioned in the introduction to this
chapter. FTSA uses the skeletons much like an arithmetic ‘carry’ in the sense that they are
the result of an earlier calculation of LinkScheduler yet contribute to the current calcula-
tion.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With FTSA, a prediction is immediately scheduled by assigning it a time slot if possible in
one of the available schedule skeletons. We denote the it skeleton as

K;, 1 Si<SkeletonDepth. The value of SkeletonDepth and the cell buffer space avail-
able jointly determine the maximum number of cells that may queue via this method. The
value of SkeletonDepth should therefore be related to the buffer space available on the
swiich. If the scheduler takes care to not fully populate the skeletons, then
SkeletonDepth is not directly limited by buffer space and is only limited by how far into
the future it desires to schedule cells.

We thus extend the definition of LinkScheduler to be the function

LinkScheduler, y(P, T, C) . This function is defined as in the introduction to this chapter
with the additional argument C denoting a list of the preceding SkeletonDepth schedule
skeletons for link xy. These skeletons are the result of previous invocations of
LinkSchedulegcy(P, T, C) . The modified LinkScheduler has the following steps:

1. Pismergedinto K, 1 <i<SkeletonDepth.

2. If the merge from the previous step required dropping any cells, schedule those
cells to be deleted upon arrival. (Enforcer is responsible for this deletion.) The

predictions of the dropped cells are removed from «.

3. ¥ becoines a committed schedule (5).

4. K, <K, 1 <i< SkeletonDepth

KsketetonDepth < @

Allowing for some cell queueing should increase network utilization with no increase in
QoS violations. This increase is a benefit of the statistical multiplexing performed within
the framework of our QoS-based scheduler. The aggregate of the predictions in the skele-
tons can be thought of as a hypothetical future queue of cells. Decisions relating to buffer
occupancy have to be based on this future queue. (This requires the simulation of the
future queue that we describe in Section 6.5.2.2.)

The baseline scheduler can generate a schedule for time T; that is guaranteed to be optimal
based on the limited information available. This “optimality” is misleading, however,
since there is a strong argument to allow more scheduling freedom than does the baseline
scheduler. The baseline scheduler is simple precisely because, as we illustrated in Figure 8
on page 43, it allows no queueing across cycle boundaries and since it allows no such

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

queueing, overall cell loss is higher. That simplicity erodes when FTSA queueing is
allowed, where both the scheduling options and the amount of available information can
make computation of the truly optimal schedule computationally prohibitive (see Chapter
5). We believe that this added complexity is justified by the reduced cell loss.

In addition to adding complexity, allowing FTSA queueing exhibits a stochastic aspect not
present in our baseline scheduler. For example, if the scheduler trades off transmission of a
delay-tolerant cell for transmission of a delay-intolerant cell, there is a non-deterministic
‘guess’ about the likelihood of having a free cell slot for this cell within a few time peri-
ods. It should be obvious such a decision involves simultaneous comparison of delay toler-
ance and loss tolerance, and represents a real challenge to the computation of our
Distance FromQoSViolation metric.

If LinkScheduler never displaces an already-scheduled cell from a skeleton other than to
discard it, we can establish an absolute upper bound on the queueing delay experienced by
a cell in any switch as SkeleronDepth time units. (If SkeletonDepth is one, FTSA
decomposes into the simple scheduling introduced in Section 3.8.3 on page 42. Since the
strength of FTSA is control over cell delay, it is more appropriate for CBR and jitter-sensi-
tive VBR traffic than for other classes.)

While the presence of the carried cells complicates the computation, the manner in which
our proposed Prediction/Scheduling cycle decouples schedule generation from cell service
can provide the freedom to perform these more complex computations. This has an advan-
tage over other schedulers appearing in the literature (e.g., Push-Out, MARS) that make
scheduling decisions only about currently buffered cells. Such schedulers can afford very
little time for the scheduling decision without potentially starving the communications
resource.

If only FTSA queueing is in effect, all predictions in the prediction database D reside
exclusively in the schedule skeletons.

6.3.1.2 Deferred FIFO Queueing

The reality of ABR traffic is that while it is nominally loss tolerant, the transport layer pro-
tocols that recover from cell loss exhibit very poor end-to-end throughput when cell loss

occurs in the network [1] [6]. To address this, a whole new sub-field of ATM research has
surfaced. This research generally presumes that ATM switches with very large cell buffers
will be available. In this section we augment F7SA with Defer_Q to allow exploitation of

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

large-buffer switches for jitter-tolerant traffic like ABR while still benefitting from the
strengths of FTSA for jitter-sensitive traffic.

While FTSA is an effective means of maintaining tight control over queueing delay, it has
drawbacks when applied to a traffic class that does not require delay guarantees. This is
illustrated by the example of a large burst of jitter-tolerant cells arriving just before a burst
of delay-sensitive cells. Strict FTSA will try to commit the jitter-tolerant cells to specific
time slots upon receipt of their predictions. There is no way that this scheduling activity
can anticipate whether it is better to schedule the jitter-tolerant cells as densely as possible
or whether to leave ‘holes’ for possible future delay-sensitive arrivals. It is clearly wrong
to leave scheduling ‘holes’ if there is no overlapping delay-sensitive traffic, since this pro-
duces useless network delay for the other cells. On the other hand, if the jitter-tolerant
cells are prematurely and densely scheduled, and subsequent delay-sensitive arrivals force
displacement of those jitter-tolerant cells, this displacement is computationally costly. For
this reason we define Defer_Q scheduling that applies only to delay-tolerant traffic.

When Defer_Q queueing is used, yet-unscheduled predictions of delay-tolerant cells are
scheduled in prediction slots that would otherwise go unused by FTSA. These Defer_Q-
scheduled cells are thus actually predicted and scheduled in fixed schedules as are the
FTSA-scheduled cells and, thus, still fit nicely into our scheduling paradigm. Defer_Q-
style predictions will only be scheduled in a prediction cycle for which the FTSA-style
scheduling has completed. Once predicted, their actual transmission is controlled by
Enforcer just like FTSA-queued cells. Defer_Q does not afford control of queueing delay
as does FTSA and is thus inappropriate for jitter-sensitive traffic. (Note that augmenting
FTSA with Defer_Q queueing does not alter the computational complexity of LinkSched-
uler.)

When both FTSA and Defer_Q are in effect, the prediction data base D is the composite of
K and those cells waiting on the Defer_Q output link-based queue.

6.3.2 Global Knowledge of QoS State

None of the available research on QoS guarantees appears to address the fact that the qual-
ity of service provided by the network is really only perceived at the network traffic
boundary. Work has focussed on providing the desired loss and delay characteristics at a
single link on the Virtual Path of the connection. In this section we argue that it is unrea-
sonable to base decisions about minimizing QoS Cost ou local information alone.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When an upstream node drops a cell, downstream nodes must be aware of this loss in
order to maintain their local DistanceFromQoSViolation measure for the affected virtual
connection. If this is not done, a downstream node minimizes QoSCost in ignorance of
upstream clipping which clearly leads to inaccuracies. For this reason, the local knowl-
edge about DistanceFromQoSViolation needs to be downstream-global. We define down-
stream-global as the following: any knowledge about a QoS violation for VC; attime ¢, at
node U must also reside in all downstream (with respect to U) hops of VC; by the time
any predictions of subsequent cells of VC, arrive at those hops. ‘Subsequent cells’ means
any cells belonging to VC, that arrive at U after r,. We now explain an efficient means of
maintaining downstream globality with respect to knowledge about cell loss.

A VC is not a candidate for the QoS Cost trade-offs that LinkScheduler makes unless at
least one cell in the predictions being analyzed belongs to that VC. In general, the candi-
date VC’s for the scheduler represent a small subset of the set of active VC’s over the 0;
being scheduled. Thus, an upstream QoS violation on VC; cannot possibly influence a
downstream LinkScheduler for 0; until VC, becomes a candidate at X, and that does
not occur until the prediction for some cell of Oé{ arrives at X.

Each VC, on a node U tallies any outstanding QoS violations on that VC as those viola-
tions occur. This number is propagated downstream in the next prediction that includes a
cell of VC,. Thus, assuming that a QoS violation occurs in OIU at t,, if the next cell pre-
diction from OtU on VC, occurs at #, ., no downstream LinkScheduler will be informed
of that QoS violation until the prediction for that cell arrives at that scheduler. While the
downstream LinkScheduler could potentially benefit from earlier knowledge of the QoS
violation(s), we deem that benefit to be slight in comparison to the implementation ele-
gance of piggybacking the upstream QoS knowledge in the downstream-flowing predic-
tions. We feel that it is therefore reasonable to withhold notification of QoS violation at
OIU on VC; until VC, is predicted to forward a cell on OIU.

Upstream globality cannot be defined and implemented symmetrically to downstream glo-
bality. Since we cannot rely on reverse direction traffic to permit propagation of outstand-
ing QoS violations upstream, we define upstream globality as a best-effort globality; if
there is an unused prediction slot in a prediction cell, it may be used to propagate loss
information. We acknowledge that in a simplex VCI (i.e. a VCI where the user cells flow
in one direction only), waiting for such unused slots to propagate information upstream
may well be the only way to distribute global information upstream, and that we cannot
place any bound on how long it may take for this information to percolate upstream. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

discuss specifics of our downstream/upstream globality implementation in Section 6.5.3.
Propagation of QoS violation information in upstream-bound prediction cells presumes
that prediction cells employ unique VC identifiers between any neighboring pair of
switches, regardless of the direction of flow of the virtual circuit. (The notion of Global
QoS State described above does not contemplate global knowledge of a cell’s cumulative
delay. This seems to be a very difficult problem and we currently offer no ideas in this
area.)

Since our Global QoS State knowledge implementation may compete with Defer_Q
scheduling for the use of empty prediction slots to propagate downstream or upstream loss
information, the scheduling policy needs to determine whether an unused prediction slot
should be used for loss propagation or waiting ABR traffic. It is not obvious which of
these should receive priority. (The schedulers implemented in this research give priority to
waiting traffic when such contention exists.)

6.4 Heuristic LinkSchedulers

Table 2 provides a summary of the LinkScheduler heuristics that we studied in the course
of this research. We describe each of these individually in the following sections. Table 2
includes two non-prediction-based schedulers, NORMFIFO and HOLDISP, that are used
later for purposes of comparison. NORMFIFO is a simple single-FIFO scheduler. The
HOLDISP scheduler implements HOL priority queue service as described in Section
2.4.2, and additionally allows an arriving high priority cell to displace a waiting low prior-
ity cell in the case of a buffer full condition. In our application of HOLDISP, jitter sensi-
tive cells are high priority cells and all other cells are low priority cells.

6.4.1 Predictive FIFO (PFIFO)

PFIFO is a prediction-based FIFO scheduler based exclusively on FTSA queueing. Pre-
dictions are processed and the corresponding cells are transmitted in strict first-in-first-out
order. When an arrival encounters a buffer full condition, that arrival is dropped without
regard to QoSCost.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 2. Scheduler Summary

Heuristic Prediction- Loss- Jitter- Global Intelligent
Name Based Sensitive | Sensitive | Knowledge | Displacement
PFIFO yes no no no no

PFIFO_D_NG yes yes no no yes

PFIFO_D yes yes no yes yes
PTDM yes no yes no no

PTDM_D yes yes yes yes yes

NORMFIFO no no no no no

HOLDISP I no yes yes no no

6.4.2 Predictive FIFO with Displacement (PFIFO_D)

PFIFO_D is a prediction-based FIFO scheduler based exclusively on FTSA queueing.
Displacement here implies that when a cell cannot be scheduled due to a buffer full condi-
tion, a QoSCost minimization function is used to determine which, if any, existing cell
may be dropped at lower QoSCost than the cell in question. If a lower cost candidate is
identified, the predicted cell is scheduled in its stead, and that lower cost cell is deleted
when it arrives at the switch. If no lower cost cell is found, the predicted cell is scheduled
for deletion.

PFIFO_D_NG is identical to PFIFO_D with the exception that no use is made of global
QoS knowledge.

6.4.3 Pseudo-Time Division Multiplexing (PTDM)

In Pseudo-Time Division Multiplexing (PTDM) scheduling, cells are scheduled on a best-
effort basis as closely as possible to their nominal interarrival time. That is, it attempts to
schedule arriving predictions such that each cell is transmitted at precisely the nominal
interarrival interval after the previous cell on that VCI. If that ideal slot is occupied, the
search expands on either side of that ideal time until either a free slot is found or the cell
cannot be scheduled within the defined jitter tolerance. We refer to this search as jitter-
bracketing.

Successfully scheduled cells will queue according to the F7SA model. When jitter-sensi-
tive traffic cannot be scheduled within its defined jitter tolerance, it is dropped. Unsuc-
cessfully scheduled jitter-tolerant traffic, on the other hand, will be queued by PTDM in

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accordance with the Defer_Q model. When any arriving cell cannot be buffered due to
lack of space, it is summarily dropped without considering displacement of an existing
cell.

The manner in which PTDM can artificially delay a cell is called cell-spacing. Results
reported in [4] indicate that rate-based policing alone is inadequate to guarantee no net-
work buffer overflow and that cell spacing can significantly mitigate the overflow prob-
lem. Both [4] and [2] emphasize that cell spacing is essential for precise jitter control.
PTDM implements a simpler cell spacing algorithm than the one offered in [4].

PTDM presumes that all connections will be characterized by a nominal interarrival time.
Nominal interarrival time may assume values between the minimum intercell spacing of a
VBR burst to the average cell rate averaged over the long term. It is obvious that for CBR
traffic these two extremes are one in the same.

6.4.4 Pseudo-Time Division Multiplexing with Displacement (PTDM_D)

Pseudo-Time Division Multiplexing with Displacement (PTDM_D), which is based on
PTDM, attempts to combine the loss-robustness of PFIFO_D and the jitter robustness of
PTDM. 1t differs from PTDM in that when an arrival cannot be buffered due to lack of
space, PTDM_D will displace an existing cell whose loss incurs lower QoSCost. Unlike
PTDM, only the initial attempt at FTSA scheduling is made. If this attempt fails, there is
no Defer_Q fall-back as in the case of PTDM. The displacement strategy is explained
below.

During the jitter-bracketing portion of the scan, two conditions can require cell displace-
ment. The first is that no free slot is found at all within the jitter bracket. The second is
that, although a free time slot is identified, scheduling the cell would result in one more
cell being buffered than the switch buffer can hold. Thus, even in the latter case, the jitter-
bracket scan proceeds to the jitter-bracket boundary. In this scan, the minimum-cost cell is
identified and displaced (dropped). PTDM_D uses the same cost function as PFIFO_D.
Note that PTDM_D assumes that if any connection in the jitter bracket can tolerate one
more loss without incurring a loss violation, it is preferable to drop that cell than to cause
a jitter violation.

We also considered the idea that if no cell within the bracket range can be dropped without
a violation, that we ‘grow’ the bracket size dynamically just for this one prediction. The
motivation is that we can exceed jitter violations upstream at a highly congested node and

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

still have the opportunity to bring them back within their jitter tolerance limits at a less
congested downstream scheduler. In our simulator implementation of PTDM_D, we opted
for a compromise approach where the actual bracket size used was a fixed ‘forgiveness’
constant added to the connection’s tolerance. This was much easier to implement and
achieved the goal of surviving the transit of the highly congested node.

6.5 Implementation of the Heuristics

In this section we present a high-level review of the composition and use of the principal
data structures we used to implement prediction-based cell scheduling. These structures
include the Virtual Circuit Control Block (VciCTL), Output Link Control Blocks (Neigh-
bor Blocks), committed schedules (S), schedule skeletons (k) and Prediction Cells. The
VciCTL structures provide an anchor for the connection-specific control that we have
argued is essential for good QoS performance. The Neighbor Blocks are the repositories
of the prediction data bases xyD,- used by the LinkSchedulers. Neighbor Blocks also con-
tain S and K. Prediction cells, of course, define the format of the prediction information
transmitted between neighbors on which our entire model is based.

6.5.1 Virtual Circuit Control Block

The Virtual Circuit Control Block (VciCTL) as we propose it here is actually not a new
requirement of prediction-based scheduling, but rather an extension to a data structure that
is arguably an integral part of any functional ATM switch’s data base. Such a structure is
necessary for most call admission schemes. (1t is possibie, however, for call admission to
be done on a VPI basis rather than a VCI basis.) These structures form the ‘glue’ that
joins the separate pieces of a virtual circuit. For example, in Figure 17 the VciCTL blocks
for virtual circuit ‘b’ present in SW1 and SW2 embody the virtual circuit’s path from L1
to L3 to L4.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 17. VciCTL Blocks in the Network

AAL1

VciCTL Block

Virtual Circuit b

While there is definitely a generic need for a virtual circuit control structure, prediction-
based cell scheduling imposes special requirements. Figure 18 provides a high-level,
graphical description of the VciCTL block we use, emphasizing those components that are
specific to prediction scheduling itself, or to the QoS guarantees that the prediction-based
cell scheduler attempts to provide. We discuss the individual components of the VciCTL
structure below.

1. cellg. Upon arrival at the switch, cells enter the delay buffer B described earlier.
Upon emerging from the delay buffer, cells wait on their VCI-specific cellg until
their scheduled time of transmission arrives. The scheduled time is maintained in
the schedule skeletons or in a committed schedule S, if the cell can be transmitted
without queueing. (See Figures 20-22.) When no queueing is occurring on the out-
put link, the cell is removed from cellg immediately. This is accomplished by the
Enforcer component of LinkScheduler enforcing a schedule S.

2. await_schedq. (Used only by LinkScheduler for Defer_Q scheduling.) Under
Defer_Q scheduling, predictions that cannot be scheduled immediately are placed
on the output link await_schedg. When a prediction cell is about to be sent with
unused time slots, Defer_Q scheduling fills these slots with cells waiting on these

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VCl-specific await_schedgs. This type of scheduling is particularly suited to ABR
and UBR traffic classes. The simulations conducted in this research serve in a
fixed priority order the many eligible VCI await_schedgs which are possible.

await_deletg.When the scheduler determines that a cell has to be dropped. it is, of
course, making that decision on a prediction of that cell’s arrival. Thus, it actually
has to schedule the deletion. This deletion scheduling is accomplished by entering
a deletion request on that VCI's await_deletq, noting the predicted arrival time of
the cell. This queue must be maintained in sorted order, using arrival time as the
sort key. When cells emerge from a switch delay buffer By,. Enforcery, checks
that cell’s await_deletq. If the current time is equal to or greater than the time in
the head of the await_deletq, then that cell is dropped and the queue entry deleted.

cell_losses_this_interval. This statistic measures how many cell drops have
occurred in the current measurement interval. The current measurement interval is
defined to begin at the current value of last_mi_start and continues for gos_loss._-
par2 microseconds. At the end of each such interval, last_mi_start is set to the
current time. This statistic is part of the QoS maintenance function.

gos_loss_parl. This parameter determines the loss tolerance of the connection.
Specifically, if more than gos_loss_parl cell drops occur per gos_loss_par2
microseconds, the switch considers this a loss violation and increments tot_loss_-
violations for that VCI.

gos_loss_par2. This statistic is part of the QoS maintenance function. (See
cell_losses_this_interval and qos_loss_parl for details.) A value of zero indicates
that no loss guarantee is requested.

gos_dly_parl. This statistic represents the nominal cell interarrival time for this
connection. For jitter sensitive CBR and VBR traffic, this statistic is assumed to
be the desired interarrival time. Such jitter sensitive traffic expresses this by pro-
viding a non-zero jitter-tolerance parameter, gos_dly_par2. For the PTDM-family
LinkSchedulers, any cell whose interarrival time differs from gos_dly_parl by
more than gos_dly_par2 microseconds is considered a jitter violation and tor_d-
ly_violations is incremented for that VCI.

gos_dly_par2. This statistic is part of the QoS maintenance function. (See gos_d-
ly_parl for details.) A value of zero indicates that no jitter guarantee is requested.

tot_loss_violations. (See cell_losses_this_interval and gos_loss_parl for details.)
Note that each switch and AAL function maintains the for_loss_violation and
tot_dly_violation statistics locally. Since we are primarily concerned with end-to-

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end QoS, tot_dly_violation resulits provided in this thesis are taken from the desti-
nation AAL function (unless stated otherwise). These statistics provide a measure
of end-to-end QoS performance.

10. tot_dly_violations. This statistic is part of the QoS maintenance function. (See
qos_dly_parl for details.)

11. last_cell_arrival. This records the arrival time of the most recent arrival on this
connection. It is used to calculate cell interarrival time.

12. nxt_cell_eta. This represents the estimated arrival time of the next cell on this
connection. It is derived from last_cell_arrival and gos_dly_par2.

13. last_mi_start. This statistic is part of the QoS maintenance function. (See
cell_losses_this_interval for details.)

14. tot_gbl_losses. This statistics counts all cell drops for this connection, including
those losses obtained from upstream and downstream neighbors.

15. tot_loc_losses. This statistic counts only those cell drops performed locally.

16. tor_pending_loss_up. This statistic is used to maintain Global Knowledge of
QoS State. This represents the number of local and downstream-learned cell drops
that have yet to be propagated upstream.

17. tot_pending_loss_dn. This statistic is used to maintain Global Knowledge of
QoS State. This represents the number of local and upstream-learned cell drops
that have yet to be propagated downstream.

The following VciCTL block components are used only by AALScheduler and have no
relevance for the switch:

1. unsched_cellg. This queue is used to schedule cells that may be delayed arbitrarily
long in AAL buffers. The principle applied here is that if a burst of ABR cells
arrives at the transmitter network boundary we do not want to schedule them
immediately since this would occupy prediction slots that may be better used by
yet unknown VBR arrivals. (CBR arrivals could theoretically be accurately fore-
cast, but our simulator currently does not distinguish between VBR and CBR
classes in generating predictions). Thus, rather than occupy prediction slots pre-
maturely, ABR cells are only scheduled by the AAL when a “sparse” prediction
cell is about to be sent. Any unused time slots in such a prediction may be used for
ABR cells waiting on VciCTL unsched_cellgs. The simulations conducted in this
research serve the many possible VCI unsched_cellgs in a fixed priority order.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 18. The VciCTL Block

await_sched_q

await_delete_q

cell_losses_this_interval

qos_loss_parl

qos_loss_par2

qos_dly_parl

qos_dly_par2

tot_loss_violations

tot_dly_violations

last_cell_arrival

nxt_cell_eta

last_mi_start

tot_gbl_losses

tot_loc_losses

tot_pending_loss_up

tot_pending_loss_dn

unsched_celig

Legend:
cells

predictions

field unrelated to
prediction-based
scheduling

X
R

S A LRt
,.
e

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5.2 Output Link Control Blocks (Neighbor Blocks)

Just as some kind of VCI control structure is a likely part of any ATM switch database, the
switch architecture is likely to include some control structure for each communications
link to a neighbor. A generic switch would use this structure to encode such link-specific
characteristics as bit rate, neighbor switch identification, etc. Subsequent references to this
structure use the term NeighborBlock. Figure 19 depicts how these structures would map
to the links connecting SW1 and SW2 to their neighbors.

FIGURE 19. Neighbor Blocks in the Network

AAL1

AAL3

] Neighbor Block

6.5.2.1 Schedules

The prediction-based cell scheduling switch augments NeighborBlock to include informa-
tion about the predictions and schedules specific to the link described by that structure. In
our implementation of the prediction-based cell scheduler, a schedule for a cycle is imple-
mented as an array of VCI identifiers. We depict such a schedule in Figure 20. The index
of each element in the array determines a specific cell slot time within the cycle being
scheduled. Each NeighborBlock (Figure 21) contains a collection of these schedules rang-
ing from the schedule for the time cycle currently being transmitted up to PredictHorizon
+ SkeletonDepth cycles into the future. Figures 22 and 23 show that we have chosen to
implement this collection of cycles as a ring of schedules indexed by cycle number. In par-

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ticular, the difference between Figures 22 and 23 illustrates how the portion of that ring
that represents fixed schedules advances as the current time cycle advances from T.to

T, , - The portions of the ring that are not fixed are comprised of those schedules that are
still candidates for scheduling arrival predictions.

FIGURE 20. A Schedule for a Cycle

prediction prediction prediction
1 2 n
=vei -vei -vei
-earliest| -earliest -earliest
sched sched oo sched
time time time

R R 0 —&""’, e
cells_in_prediction slots

Figure 24, "Interrelationship of Structures and Scheduling Components (perspective: link
xz)," depicts the relationship between a Neighbor Block for a link xy, its schedule skele-
tons K, its committed schedule S, LinkScheduler,y and PShuntyy,

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 21. Neighbor Blocks Detailed

L1

nng of schedules
forng

future g count

await sched q

L3

rlngl(gschedules
forks 1S, IS |...]Sk

future q count
Jawait sched q

L2

ning of schedules
forgl.,z

future q count
await sched q

Swi1

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 22. Ring of Schedules at Time i for Link K in Node Z.

PredictHorizon

skeleton depth

Ts T2 Ta T T Tez Taa Tag

committed ‘ schedule skeletons
e
schedules
T T4/" This schedule will be converted
to prediction format and sent as a
prediction at the start of T;,4
S~—~—ou— Cells being transmitted Note that PredictHorizon = 3.

during cycle T; .

FIGURE 23. Ring of Schedules at Time i+ for Link K at Node Z.

PredictHorizon skeleton depth

T3 T2 Ta T T Tz Tua T

committed
T schedules schedule skeletons -
oo

4+ This schedule will be converted
to prediction format and sent as a
prediction at the start of T;,»

T~———— Cells being transmitted
during cycle Ty, .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5.2.2 Future Queue Count

The NeighborBlock is also expanded to include a future queue count. When the predic-
tion-based scheduler decides to drop a cell, it is actually making a decision to drop a future
arrival. The decision to drop the cell is usuaily motivated by having exhausted the buffer
space available for queueing cells. We assume that this buffer space is allocated on a per-
link basis and that no sharing of buffer space between output links is possible. When Link-
Scheduler determines whether or not there is room to buffer an arriving cell, that decision
must be based on a future queue count, not on the current number of queued cells. The
maintenance of this NeighborBlock-based future queue count requires emulation of the
arrivals and service for this future queue and is performed as part of scheduling the future
cell arrivals described by arriving predictions. This emulation can be performed at low
computational cost by embedding it directly into the processing of the set of prediction
cells received for each cycle.

6.5.2.3 Cell Deletion

When faced with the need to drop a cell, the challenging problem of determining the opti-
mal cell to drop is one of the areas explored in this research. We present specific ideas in
this area in Section 6.4. In this section we discuss the implementation challenges faced by
our prediction-based system when confronted with the need to drop a cell. We commence
with a brief review of why it may be necessary to drop a cell in the first place.

r i 2

If a jitter-sensitive cell would violate its QoS delay variation parameter or force another
VCI to violate its QoS contract, that cell should be dropped. If any cell arrives and there is
(or will be) insufficient buffer space to hold the cell, either that cell or another “less
costly” cell should be dropped. Note that a CBR cell should never need to be dropped due
to lack of buffer space if the call admission function works properly.

is involved?

Our prediction-based scheduling paradigm is complicated by the fact that the decision to
drop the cell takes place when the prediction for that cell arrives, and, hence, before the
actual cell arrival. In order to preserve the deletion request, we implement the await_-
delete_g (see Figure 18). When a predicted cell is to be deleted, the prediction of that cell
is queued to the await_delete_g. When each cell arrives at the switch, the corresponding
VciCTL is inspected by Enforcer to see if there is a pending deletion request that can

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

match that cell. As long as the actual arrival time of the cell is greater than the earliest
arrival time in the prediction at the head of the await_delete_g, the cell is dropped and the
deletion request is removed.

FIGURE 24. Interrelationship of Structures and Scheduling Components (perspective: link xz)

—_Z'—_'» Enforcer

await delet q j

nng of schedules
forz »1S1 [S2 | ..

future q count
await sched q
Y ‘ cellq

awalt delet q LinkScheduler,,
ning of schedules A
forxy M8, 1S5 | ... | Sk A
future q count
B PShunt,,|
|await sched q ZX
cell g w
await delet q
LinkScheduler,, |/ [ingof schedules| g, 15, | s,
future q count
await sched q LinkScheduler,,,
cell q

Node X

6.5.3 Prediction Cells

Figure 25 describes the format of a prediction cell in our implementation. A prediction cell
contains the same number of cell descriptors as the schedules shown earlier in Figure 20.
As with schedules, the position of the cell descriptor (see Figure 26) within the prediction
denotes the specific cell time slot being predicted for that VCI. That cell descriptor, how-
ever, differs somewhat from the cell descriptor in a schedule. We emphasize that while the
two are similar, schedules are data structures internal to a switch and predictions are con-

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trol cells that flow between neighboring switches. First, the prediction cell is constrained
by the ATM cell payload size of 48 octets, so CellsInPrediction x |CellDescriptor]
must be less than or equal to that payload size. If, for example, we assume that cells_in_-
prediction equals 16, then the CellDescriptor can occupy no more than 24 bits. As shown
in Figure 25, the prediction cell contains both a VCI identifier and global QoS informa-
tion. We assume the existence of a hash function that reduces the 32 bit VPI-VCI cell
identifier to some value less than 24 bits. To the extent that the hash function can reduce
the VPI-VCI cell identifier to less than 24 bits, the amount of global QoS information that
may be piggybacked with each predicted cell increases. In our implementation, the Global
QoS information field reports new cell losses on that VCI that have occurred upstream of
the direction of flow of the prediction celi. In order to allow use of an otherwise empty
prediction cell to report Global QoS information, we use an Information-only Flag (see
Figure 26) so that the scheduling logic can distinguish such a prediction cell descriptor
from one actually predicting a future arrival on that VC. If the Information-only Flag is
clear and there is Global QoS information piggybacked with the prediction, then that pre-
diction cell slot is serving the dual purpose of communicating a prediction and Global
QoS information. Continuing with the example of the 16-cell prediction, if the hash func-
tion encodes the VPI-VCI identifier with 20 bits, the information flag bit would leave us
with 3 bits permitting communication of up to 7 cell drops for a single VCI in one descrip-
tor. When more than 7 cell drops need to be communicated at one instant, the tot_pendin-
g_loss_up (tot_pending_loss_dn) shown earlier in Figure 18 can store unreported
downstream (upstream) losses until a cell descriptor for that VC can be sent.

We cannot place an upper bound on how long it can take to propagate Global QoS Knowl-
edge throughout a network. If a network is running at 100% capacity, there may be no
unused cells available to propagate cell drop information in the reverse direction of the
cell flow on a VC. For this reason, downstream-globality may be easier to achieve in
practice than upstream-globality. (See Section 6.3.2.) We believe that under realistic net-
work loading levels, this implementation of Global QoS knowledge will serve to improve
end-to-end QoS guarantees. The results shown in Section 7.7, "CBR Loss Guarantees
Only (Global QoS Knowledge)" support this thesis.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 25. A Prediction Cell

-vci
-global
QoS

info

-vei
-global
QoS

info

-vei
-global
QoS

info

cells_in_prediction slots
M\"@y R R T R R L S R S R

FIGURE 26. A 3-octet Prediction Cell Descriptor

20 bits

VC Identifier

6.6 Distance from Quality of Service Violation Metrics

In this section we propose four different criteria that could either stand alone or be used in
conjunction with one another to form DistanceFromQoSViolation metrics. Each of these

Info-only Flag

propagated losses count

can be computed with at most a few arithmetic operations. The results published in this
thesis that are derived from the application of a Distance FromQoSViolation metric are

obtained using Loss Cushion Depth only.

6.6.1 Loss Cushion Depth

A simple DistanceFromQoSViolation value for any VCI may be computed as the differ-

ence:

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QoSLossParl - Cell_Losses_This_Interval

This is perhaps the most direct measure of Distance FromQoSViolation in that it directly
reflects how many additional losses may be tolerated in the current interval before a loss
violation occurs.

6.6.2 Time Since Last Cell Discard

A straightforward extension of this simple metric is to compute the weighted quotient of
the number of time units since the last cell was dropped times the loss cushion depth
described above. That is,

((QoSLossParl - Cell_Losses_This_Interval) X K) / (Time Since Last Cell Loss)

If the constant X is chosen properly, this metric might provide early detection of the start
of a burst of cell loss by revealing that the losses are occurring in a comparatively shorter
time interval compared to another connection.

6.6.3 Depth of Network Penetration

Another extension to the metric described in Section 6.6.1 is to weight the Distance From-
QoSViolation metric according to the cells’ penetration into the network. This idea stems
from the intuition that it is more costly in terms of network bandwidth loss to drop a cell
that has already traversed 10 network hops than to drop a cell that is comparatively close
to the transmitter network boundary. Preliminary results on the benefits of this metric in a
traditional (non-prediction) ATM switch environment are available in [7].

6.6.4 Multi-cell Packet Preservation

When user traffic is presented to the transmitter traffic boundary, it is usually presented as
packets or frames of data that are much larger than the ATM cell. The ATM segmentation
and reassembly function (SAR) segments these user frames into ATM cells and reassem-
ble these cells into frames at the receiver traffic boundary. Generally, if one cell of the
packet or frame is dropped, the entire frame is discarded in the reassembly function. In the
ATM switches, these frames appear as multi-cell bursts. Thus, once LinkScheduler
drops one cell from such a burst, all remaining cells of that burst are doomed and may be
dropped without incurring additional QoS violations. Implementation of this strategy
requires that LinkScheduler violate the convention that the SAR header only be

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inspected at the network edge. Romanow and Floyd study the application of this metric in
a standard ATM switch environment in [8].

6.7 References

(1]

(2]

[3]

[4]

[3]
(6]

[7]

(8]

C. Fang, H. Chen, and J. Hutchins. Simulation analysis of TCP performance in
congested ATM LAN using DEC’s flow control scheme and two selective cell-drop
schemes. ATM Forum 94-0119, January 1994.

A. Fichou and P. Foriel. Spacing/policing function on a VP/VC basis. ATM Forum
94-1075, January 1994.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman and Company, San Francisco, 1979.

P. Guillemin, P. Boyer, A. Dupuis, and L. Romoeuf. Peak rate enforcement in
ATM networks. In JEEE INFOCOMM 92, volume 2, pages 753-758, June 1992.

Udi Manber. Introduction to Algorithms. Addison-Wesley, 1989.

Keung S., H. Tzeng, K. Siu, C. Fang, H. Chen, and J. Hutchins. IPX performance
with flow control in congested ATM LANS. ATM Forum 94-0272, March 1994,

R. Chauhan and R. Russell. Simulation of ATM networks. Technical Report TR-94-
19, University of New Hampshire, December 1994.

A. Romanow and S. Fioyd. Dynamics of TCP Traffic over ATM Networks. In ACM
SIGCOMM 94, pages 79-88, October 1994.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7
RESULTS

7.1 Introduction

We have theorized that the model presented in Chapter 3 will allow us to use more sophis-
ticated scheduling methods and that such methods will lead to improved QoS perfor-
mance. In order to validate this theory, we have conducted numerous simulations of a
prediction-based ATM network. Note that we have attempted neither analytical work nor
implementations of this model. We deem the former infeasible due to a lack of established
methodology for representing such a complex network mathematically. The implementa-
tion is only infeasible due to time and financial constraints.

We obtained simulation results varying the following parameters:

1. network topology. Specifically, our simulations varied the number of switches and
links, and the length of the communications links.

2. switch class. We uniformly simulated both small-buffered switches and large-
buffered switches. We did not simulate input-buffered switches as our model was
restricted to output buffered switches.

3. rtraffic characteristics. We simulated both CBR and VBR traffic with different cell
generation rates. We simulated combinations of different numbers of traffic
sources and sinks with different traffic patterns between the sources and sinks.
The traffic exhibited varied QoS tolerances for loss and jitter.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. scheduling policy. Our simulations were conducted for the scheduling policies
listed in Table 2, “Scheduler Summary,” on page 102. This included two non-pre-
diction-based schedulers used for baseline comparisons.

The most impressive simulation results are revealed in the traffic scenarios where there is
a demand for relatively high network utilization and there are mixed QoS requirements.
By mixed QoS requirements we mean that the loss-tolerance and jitter-tolerance as well as
the degrees of those tolerances vary between the connections in the simulation. The simu-
lations demonstrate that the application of a scheduling policy (PTDM_D) that combines
both displacement and cell-spacing can indeed address both loss and delay, and can yield
overall QoS performance significantly better than the generic schedulers. This perfor-
mance improvement was most striking with respect to jitter.

We begin this chapter in Section 7.2 with a brief discussion of the simulator used to pro-
duce the results and provide an overview of the configurations used for the simulations in
Section 7.3. Section 7.4 describes our definition of how QoS performance should be eval-
vated. The following three Sections 7.5, 7.6 and 7.7 provide results focussing on very spe-
cific QoS performance characteristics of our heuristics to illustrate how the fundamental
scheduling trait of QoS-sensitive cell displacement improves loss performance while
pseudo-TDM scheduling enhances jitter performance. Section 7.8 illustrates how the
PTDM_D scheduler which combines these two fundamental traits, can produce results
that are superior overall to all other scheduling methods studied here. In Section 7.9 we
extend the simulations to measure QoS performance of both CBR and VBR connections.
The connections studied in these extended results are characterized by more diverse QoS
requirements than those used in the earlier tests. We then examine how these schedulers
fare when evaluated by the more traditional network metrics of link utilization, throughput
and delay in Section 7.10, 7.11, and 7.12, respectively. We conclude the chapter with an
analysis of the observed performance of all the schedulers studied.

7.2 Simulator

Our simulation tool is based on the MIT network simulator (Netsim), and includes ATM
enhancements implemented by Sandia National Laboratory and independent work con-
ducted at the University of New Hampshire (UNH). The Sandia additions include an ATM
switch module, an AAL module for segmentation and reassembly, and optional ABR
credit-based flow control [2] (which was not used in these tests). The UNH additions
include implementation of CBR and on-off VBR traffic sources [3], and on-line calcula-

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion of delay distributions [1], thereby eliminating the need for time-consuming post-pro-
cessing of Netsim log files.

To this basic tool we have added the optional capability of running in prediction mode. In
prediction mode we actually simulate the operation of the network’s active predict compo-
nents including AALScheduler, LinkScheduler, PShunt, and Enforcer, as well as the pas-
sive components including W, B, B, D, and S. Prediction cells are emitted on all network
links in accordance with the descriptions provided in Chapter 6. Results labeled PTDM,
PTDM_D, PFIFO, PFIFO_D, and PFIFO_D_NG are produced with our simulator run-
ning in prediction mode. Results labeled NORMFIFO and HOLDISP are from the same
simulator running in “generic ATM” mode.

The simulations were run on a Sun Sparc IPX processor. Since the execution times of the
simulations are quite long, the simulation runs were for 50 milliseconds of simulated time.
In all tests the observations were drawn from the 50 milliseconds starting after 10 millisec-
onds of simulated network operation. The period between 10 and 60 milliseconds was pre-
ferred since transient conditions present during network start-up should have stabilized
after 10 milliseconds of operation.

7.2.1 Traffic Source Types Supported

Our simulator has been developed with the capability to simulate CBR, VBR (both jitter-
sensitive and jitter-tolerant), ABR, and UBR traffic classes. We provide details below on
the simulated CBR and VBR sources. As no results for ABR or UBR traffic classes are
provided here, we do not describe these further.

7.2.1.1 Constant Bit Rate (CBR)

The Constant Bit Rate (CBR) source is a cell-based source that emits cells to a Host AAL
function at a constant rate. The source specifies loss tolerance in terms of a measurement
interval and the number of cell losses that may be tolerated within that measurement inter-
val before a loss is considered a QoS violation. Similarly, the source specifies jitter toler-
ance in terms of a nominal cell interarrival time and a variance from that nominal time that
may be tolerated before the variance constitutes a QoS jitter violation. The loss tolerance
used in our tests ranged from 0 to 100 losses per measurement interval. For jitter-sensitive
traffic, the jitter tolerance used in our tests ranged from 2.11 cell times (6000 ns) to 11.3
cell times (32000 ns). Measurement intervals ranged from 1766 cell times (5000 Ls) to
8830 cell times (25000 us).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2.1.2 Variable Bit Rate (VBR)

The Variable Bit Rate (VBR) source is a cell-based source that emits cells at a rate that
may vary according to a number of parameters. First the source is defined to have a busy
period and a silent period. The length of each of these periods is defined to have a mean
value specified by an independent parameter. The actual lengths of the interval may be
configured as constant, equal to the épeciﬁed mean, or exponentially distributed around
that mean. The length of the silent period may be ignored, leaving the source in a perma-
nently busy state. While in this busy state, cells are emitted at a configured average rate.
The interarrival time between cells can be configured to be constant or exponentially dis-
tributed. (Selection of the latter turns the VBR source into a Poisson source.) Loss toler-
ances for the VBR traffic used in our tests ranged over values similar to those specified
above for CBR.

7.2.2 Link Types

All communications links in our simulations are OC-3 SONET [4] links. The effective
bandwidth available for cell transmission is 149.760 Megabits/second. We have assumed a
propagation delay of 5085 ns/km, which is typical of optical fiber. Link lengths vary in our
tests. For further details on the communication links used in these simulations, see Appen-
dix A.

7.2.3 Switch Characteristics

The following switch characteristics apply to all the tests conducted here:
1. No switch fabric delay.

2. There are two different switch buffer sizes used in these simulations. The small
buffer switches can buffer up to 90 cells per output link. The large buffer switches
may buffer up to 9999 cells per output link. For the source parameters used in
these tests, queue depths never approach 9999. Thus, for all practical purposes,
the large buffer switches function as infinite buffer switches here.

3. The cell scheduling policy is test-dependent. The policies tested include predic-
tion scheduling policies PFIFO, PFIFO_D_NG, PFIFO_D, PTDM, and
PTDM_D. The single FIFO default policy is universally tested to provide a basis
for comparison. It is called the NORMFIFO policy in the results. In the tests in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 7.9 we introduce a second generic scheduler, HOLDISP, for comparison
purposes. This dual priority queue scheduler was introduced in Section 6.4 on
page 101.

4. PredictHorizon =3.

5. A basic prediction cycle of 16 cell times is used, which meets the requirement
stated in Section 3.10.1 that the link propagation delay be an integral number of
basic time cycles.

7.3 Simulated Network Configurations

The Bottleneck traffic flow pattern shown in Figure 27 is the basis for both Bottleneck_Jit-
ter and Bottleneck_Loss configurations. We utilize these configurations in Section 7.5 and
Section 7.6 to provide a simple scenario for studying loss or jitter QoS guarantees. These
configurations intentionally exclude cross traffic and multiple network hops as part of the
simplification. The Bottleneck_Jitter and Bottleneck_Loss configurations are described in
detail in Appendix A.

The Cross_Traffic traffic flow pattern depicted in Figure 28 allows cross traffic, multiple
hops and varied-length communication links. This topology is the standard GFC2 topol-
ogy used for simulations by the ATM Forum, and is used here as the basis for the
Cross_Traffic_HomLink, Cross_Traffic_HetLink and Cross_Traffic_HetTraffic configura-
tions. These configurations are used in Section 7.7, Section 7.8 and Section 7.9 to evaluate
scheduling methods in a more realistic network scenario than that provided by the Bottle-
neck topology. The details of the differences between the Cross_Traffic_HomLink,
Cross_Traffic_HetLink and Cross_Traffic_HetTraffic configurations are provided in
Appendix A.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 27. Traffic Flow Patterns for Bottleneck

neasured connections

FIGURE 28. Traffic Flow Patterns for Cross_Traffic

neasured connections

Reproduced with permission of the copyright owner.

124

Further reproduction prohibited without permission.

7.4 Measuring Quality of Service Performance

Since the focus of this research is end-to-end QoS performance, unless otherwise stated,
we only report loss results from the point of view of the receiver AAL function. We gener-
ally report loss statistics expressed as loss violations. Loss violations are distinguished
from straightforward cell loss in that sources in our study can express their QoS tolerance
to cell loss as a number of cell losses tolerable in a specified amount of time. Only losses
greater than the specified tolerances are considered loss violations.

We provide a somewhat more diverse set of measures of jitter performance. We show
“raw” jitter in cell delay distributions measured at a variety of links through the network
topologies. We also provide distributions of jitter as perceived by the receiver AAL func-
tion (the receiver network boundary). Jitter is measured as the difference between a cell’s
expected arrival time and its actual arrival time. The expected arrival time of a cell is
established from the previous cell’s arrival time plus a connection-specific nominal inter-
arrival time. Like cell loss, though, the most telling measure of QoS jitter performance is a
count of end-to-end jitter violations perceived at the receiver AAL function. A jitter viola-
tion occurs whenever a cell’s jitter is greater than a connection-specific parameter (gos_d-
ly_par2). In order to contemplate the possibility of jitter-sensitive VBR traffic, if the cell’s
jitter is greater than 5 times the connection’s nominal interarrival time, this excessive vari-
ance from the expected arrival time is interpreted as the start of a new VBR burst rather
than inter-cell jitter.

Our reporting of end-to-end delay is based on the delay distributions shown in Figures 38
through 43 in this chapter, and 75 through 80 in Appendix B. For example, the difference
in the x-axis origin between Figures 38 and 39 underscores the end-to-end delay penalty
incurred by using prediction-based cell scheduling. We discuss this delay further in Sec-
tions 7.5.2 and 7.12.

7.4.1 Comparing the Heuristics: Ground Rules

If we are to compare one scheduling method to another, we need a quantitative means of
measuring schedulers. We introduce the following ground rules for comparison of the
LinkScheduler heuristics.

1. A formal comparison between two schedulers must be made for a well defined set
of input. The comparison is defined over a particular time period {T,.T,_ ,} of
operation. The input description defines traffic present in the network at the start

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the time period and traffic introduced into the network during the time period
used for the evaluation. The input describes the QoS guarantees requested by each
of the connections defined in the input.

2. We count end-to-end QoS violations only. Since individual connections may
request cell loss QoS guarantees, cell jitter guarantees, both loss and jitter guaran-
tees, or neither, the definition of what constitutes the QoS violations for a given
comparison is a function of the input. QoS violations are counted as the sum of all
the end-to-end QoS violations incurred in the interval {Ti’Ti + k} for all of the con-

nections defined in the input.

3. Scheduler S is considered better than Scheduler T if the number of QoS violations
produced by S’s schedule is less than that produced by T’s schedule during the
period {T,T; ,}. While this definition does not apparently account for differ-

ences in throughput, it does indeed consider throughputif all connections require
both loss and delay guarantees. Provided that the duration of the test is very long
compared to the delay allowed, lower throughput would surface as either loss or

delay QoS violations.

4. We have frequently referred to jitter as a measure of deviation from the nominal or
expected time of arrival (ETA) of a cell. In Appendix A we stipulate a nominal
cell spacing for each connection. We derive the ETA for the next arrival by adding

the nominal cell spacing to the time of the last arrival.

7.5 CBR Jitter Guarantees Only

7.5.1 Simulation Description and Motivation

The simulation results reported in this section were performed using the Bottleneck_Jitter
configuration. As we explained in Section 7.3, Bottleneck_litter is designed to allow eval-
uation of QoS jitter performance of different scheduling algorithms without considering
the complications of cross-traffic and the cumulative effects of multiple network hops.

In this test we are interested in observing the effects that a set of bursty sources can have
on the jitter characteristics of CBR streams. These tests were conducted for large buffer
switches only since we do not wish to induce cell loss in these tests.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We only observe jitter at Host 2a and Host 2b (Figure 73 on page 181), as all the CBR
streams terminate in these AAL functions. We measure cell delay distributions both at link
pp3 and the final link before the destination function to observe whether upstream-induced
Jitter improves, remains unchanged, or worsens as it approaches the destination network
boundary.

The tests were conducted for the generic no-prediction scheduler and for the prediction
based scheduler using PTDM. PTDM (Section 6.4.3) attempts to provide jitter guarantees
while ignoring any QoS requirements related to cell loss. Considering that the Bottle-
neck_Jitter configuration is contrived to avoid cell loss, PFIFO policies (Section 6.4.2)
and PTDM_D (Section 6.4.4) are not considered in this test.

We varied three parameters in these tests: 1) the number of active CBR connections, 2)
whether the total load on the bottleneck increases with the number of active CBR connec-
tions or is held constant, and 3) the amount a cell may deviate from its nominal arrival
time before that deviation makes that cell useless at the receiver traffic boundary. When a
cell becomes useless in this manner we call this a jitter violation. The amount of deviation
that is tolerable without incurring a jitter violation is called jitter tolerance and is
expressed here in units of cell times. Figure 29 graphically shows the acceptable arrival
interval for a cell from a connection with a 10-cell jitter tolerance. The zero on the X-axis
indicates the nominal arrival time (i.e. the ETA).

FIGURE 29. Jitter Tolerance

Jiiter Plot

100007

10001

- 02

1001

-0

vw——00
o

50 40 30 20 -10 0 0 20 30 40 50
Devidtion fromNorrind (n cell fimes)

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Assuming other factors remain constant, increasing jitter tolerance reduces the number of
jitter violations.

The first parameter, the number of CBR network connections, controls how many CBR
sources of the six configured in Bortleneck_Loss are enabled. Again referring to Figure 73,
the sources are enabled in the following order: 1) gsourcelbb, 2) gsourcelba, 3) gsour-
celb, 4) gsourcelab, 5) gsourcelaa, and 6) gsourcela. Thus, a 4-connection test would
use gsourcelbb, gsourcelba, gsourcelb, and gsourcelab.

We expect that as we increase the total network load (through parameters 1 and 2), we will
increase the maximum queue length at the bottleneck link pp3a. This directly correlates
with an increase in the maximum queue waiting time. We expect that an increase in the
maximum waiting time will exacerbate jitter and lead to more jitter violations.

7.5.2 Jitter Violations

Figures 30 and 31 show the number of jitter violations for prediction-based PTDM and the
NORMFIFO cell scheduler, respectively. In these graphs the total CBR traffic load is held
constant while the number of active CBR connections varies. (Thus, with n» connections,
each connection contributes 1/n™ of the total.) Figures 32 and 33 depict results for the case
where the CBR traffic load increases linearly with the number of active CBR connections.
The expected correlation between jitter tolerance and jitter violations is evidenced in all
four figures. The expectation that increasing the number of active connections will exacer-
bate jitter is also manifested in all four figures, though some interesting results surface,
which we discuss below.

When we compare the number of jitter violations shown in Figures 30 and 32 for PTDM
to those shown in Figures 31 and 33 for NORMFIFO, the performance for the prediction
cases is significantly better. In Figures 31 and 33 NORMFIFO jitter violations remain at
high levels even as jitter tolerance increases. As shown in Figures 30 and 32, the jitter con-
trol capabilities of PTDM seem relatively consistent whether the offered load is constant
or increasing. Such consistency is not observed for NORMFIFO where jitter control is
considerably worse in Figure 33 (increasing load) than in Figure 31 (constant load). It is
significant that in Figure 33 the NORMFIFO scheduler shows a pronounced weakness in
the area of jitter control even at low traffic load (1-2 connections). These results under-
score the fundamental weakness of default scheduling in supporting jitter guarantees, even
at low utilization levels.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Appendix B, Tables 6 and 7 provide the detailed results illustrating this improved jitter
performance of PTDM scheduling for the constant load case. Tables 8 and 9 provide the
detailed results illustrating this improved jitter performance of PTDM scheduling for the
increasing load case.

Figures 34 through 37 show the CBR cell delay distribution for a 4-connection load with a
4-cell time jitter tolerance. The VBR loading level was the same as explained in the intro-
duction to this test above. These figures illustrate that PTDM provides significantly better
jitter performance than the generic FIFO scheduler. Note that there are two network traffic
boundaries depicted in these figures, Host 2a (Figures 34 and 35) and Host 2b (Figures 36
and 37). The four active connections are gsourcelab, gsourcelb, gsourcelba and gsour-
celbb. Note that this produces an asymmetrical load on Host 2a and Host 2b, with Host 2b
receiving the cells of 3 connections and Host 2a of only one. Specifically, of the 4 CBR
connections loading the network in this test, three of them are routed to Host 2b (i.e.
sink2b, sink2ba and sinkbb). This produces three times the load on Host 2b as on Host 24
which only carries a single VC routed to sink2ab. This is manifested by the fact that three
times the number of cell samples appear in Figures 36 and 37 compared with Figures 34
and 35.

The bimodal characteristic of the NORMFIFO scheduler shown in Figures 35 and 37 is
explained by the cyclical nature of the VBR bursts. During the VBR active periods in Bor-
tleneck_Jitier there are 6 VBR sources emitting cells at approximately 10 times the rate of
the CBR sources. The time between 2 arrivals on the same CBR connection is 12 cell
times. During this time there will be around 60 VBR arrivals of which at most 12 will be
served. Thus, when the second CBR cell arrives after 12 cell times it must queue behind
48 waiting VBR cells. This second cell will appear to arrive 48 cell-times later than its
ETA. Before the third CBR cell arrives, another 60 VBR cells will have arrived, once
again increasing the inter-cell spacing between the second and third cell by about 40 cell
times. It is the repeated occurrence of this phenomenon during VBR active periods that
results in the small modes around +50 cell times in Figures 35 and 37. PTDM avoids this
by advancing the CBR cells in front of the VBR cells in order to schedule those jitter sen-
sitive CBR cells as closely as possible to their nominal transmission time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 30. CBR Connections Supported vs. Jitter Tolerance (PTDM, constant load)

Jitter Violdtions (constant load)
VayingNo. CBR Gornectiors PTDM)
1001
% 9O
w.
v m
o &r
!
a 504
t
i
o
n 2
S 10
< . * y * »
1 2 3 4 5 6 7 8 Q 10
Jitter Tderancein Cdl fimes
- JBRCGmM - 2@BRGmM 4 3BROmM
- 4BR CGm - 5BRGmM &= 6(BRCGm

FIGURE 31. CBR Connections Supported vs. Jitter Tolerance (NORMFIF O, constant load)

Jitter Viddtions (constont locdd)
VayingNa BR Crnedlias (NCRMAFQ

a2

©“30—=+0Q—0—<

Jitter Tdaanoein Gl tines

<+ T@RCGM * 2BRGAM ~+ 3@RAmM
-+ 4BRAM ~&- 5BRAM -8 6@BRCGM

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 32. CBR Connections Supported vs. Jitter Tolerance (PTDM, increasing load)

Jitter Violdtions (Increasing locx)
VayingNa GBR Camedlias PTDM
1007
% ooF
v &
I
o &t
! |
a 801
t
i
o}
n 20
s 1 ’
0 . & » * ° 8- *
1 2 3 4 5 6 7 8 9 10
Jitter Tdaacein (Al tires
-~ 1@BRGm -+ 2BRGM -~ 3BRGM
-+ 4@BRCGm <= 5BRCGM B 6BRGM

FIGURE 33. CBR Connections Supported vs. Jitter Tolerance (NORMFIF O, increasing load)

Jitter Violdtions (increcsing loadd)
VayingNo. (BR Gornecticrs (NCRMFIFO)

®230—+0—0—<

Jtter T dercncein Cdl fimres

- 1BRGmM = 2BRGmM - 3BRGrn
- 4BR Qmn ~&- 5BR CGom = 6BRCGM

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 34. Jitter at Host pp2a (PTDM)

Class 1 Jitter Plot
Host pr2a, buff=9999 PT DM
100001
N
° 000t
o]
f
C
e
: 1001
s
50 -30 20 -10 0 10 20 30 40 50
Devidion fromNorvind (n cell tirres)

FIGURE 35. Jitter at Host pp2a (NORMFIFO)

100001

N 1000t
(o]
(o]

£ oot
C
e
|
|

[101

1

Class 1 Jitter Plot
Hest prlo, buff=9999 NCRMVFIFO

--

Devidlion fremNarrind (n ¢l firres)

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 36. Jitter at Host pp2b (PTDM)

Cless 1 Jitter Plot
Host b, buff=0999 PTDM
100007
N
o}
, 1000+
(o]
f
C
e
: 100t
§
10 AR e
0 2 -10 0 10 20 30 QL 0
Devidicn framNerrind (n cdll firves)

FIGURE 37. Jitter at Host pp2b (NORMFIFO)

10000
N 1000t
(o]
(o]
f ool
c
e
|
|
. 1o
]

Class 1 Jitter Plot
Hest prb, buff=9999 NCRIVRFO

20 0 0

...

0 40

i |H“”| ||““II”
10 20 3 50

Devidiion fremMarrind (n ol firres)

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.5.3 Upstream Delay Distributions

Figures 38 through 43 represent the raw cell delay distributions experienced by CBR cells
on the two links upstream of Host 2a and Host 2b. These figures plot the time-in-network
experienced by each CBR cell as it transits the link described by the figure. These delay
distributions are related to the jitter distributions just presented in Figures 34 through 37 as
both reflect variance in delay. This is particularly evident when comparing Figure 34 with
Figure 40, Figure 35 with Figure 41, Figure 36 with Figure 42, and Figure 37 with
Figure 43. The delay introduced by the prediction-based scheduling is evidenced in the
much larger minimum delay for PTDM as compared to NORMFIFO. In Figures 38 and 39
this minimum delay “penalty” at link pp3 is 79 cells times (110-31=79). The penalty
increases to 102 cell times in Figures 40 and 41 due to the additional delay introduced by
the switch downstream from pp3. We discuss this delay penalty further in Section 7.12.

One particularly interesting phenomenon is how the jitter observed upstream at link pp3
(Figure 38) is actually ameliorated by PTDM by the time those cells emerge from pp2a
and pp2b (Figures 40 and 42). This is because PTDM is able to judiciously schedule cells
in the relatively idle links pp2a and pp2b. In particular, it inserts delay in order to
approach a uniform interarrival time for a connection’s cells. This contrasts sharply with
generic FIFO scheduling, which would never take advantage of the freedom to delay a cell
and always transmits it at the earliest possible time, even when this induces unnecessary
jitter.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 38. CBR Time-in-Network Distribution at Link PP3 (PTDM)

o2

100007

10007

CBR Delay o
link 8, PTDM

4 SRR RR - N
105106107108109110111112113114115116117118119120121 122123124 125126127 128 129

Deloyin Gell firves

FIGURE 39. CBR Time-in-Network Distribution at Link PP3 (NORMFIF O)

-0

w—==00

100007

107

CBR Delay o
A8, NCRMFIFO

2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

DelayIn Gl firves

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 40. CBR Time-in-Network Distribution at Link PP2a (PTD3)

CBR Delay o
irk P2 PTDM
100007
N
o 1000F
o]
oo
c
=]
I
| 10f
S
LD e e e o B St o o ST S S S S S S S S S S S —
140141142143144145146147148149150151152153154155156 157 158159160161 162163164 165166
Ddayin Gol firres

FIGURE 41. CBR Time-in-Network Distribution at Link PP2a (NORMFIFO0)

CBR Delay of
pRa NCRMFIFO
100007
N
© 1000+
(o]
L
C
e
|
] 101
S
e, i
L4 &2 43 44 45 465 47 48 49 50 51 52 53 54 55 56 57 58 59 &0 61 62 &3 &4
Delay in Gl firves
136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 42. CBR Time-in-Network Distribution at Link PP2b (PTDM)

CBR Delay ot
link el PTDM
10000;
N
o 1000t
[}
f oot
C
e
|
I 10t
S
]:...-:::;' : S A o S T T T T
140141142143144145146147148149150151 152153154155156 157158159 140161162163164165166
Delayin Gl firres

FIGURE 43. CBR Time-in-Network Distribution at Link PP2b (NORMFIF0)

CBR Delcy ot
FPNCRMVFIFO
100007
N
o 1ooot
[o]
f oot
c
(=]
]
! 101
S
| N WA KR RN CNCGHECNCE:EN-RER
40 4 2243 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 &0 61 &2 63 &4
Delayin Gl firres
137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6 CBR Loss Guarantees Only (Local QoS Knowledge)

7.6.1 Simulation Description and Motivation

In this section we provide simulation results based on a simulator implementation of the
ideas proposed in Section 6.6.1, "Loss Cushion Depth," and Section 6.4.2, "Predictive
FIFO with Displacement (PFIFO_D)." These simulations are designed to run with a small
fixed buffer size (90 cells) and sufficient load to produce traffic loss within the switches.
The intent of these tests is to compare what advantages or disadvantages the more sophis-
ticated scheduling strategies exhibit when compared to generic scheduling and to more
simple forms of prediction-based scheduling. Like the tests conducted in Section 7.5, we
still wish to restrict this comparison to a very simple environment, free of potentially con-
fusing side effects. For this reason, we use the Bottleneck_Loss configuration here as it is
our most simple loss-producing scenario. In later sections those policies which appear
most useful in these simple tests are evaluated in more complicated test scenarios.

PFIFO-style scheduling makes no attempt to provide QoS guarantees about jitter. As
such, we only report loss results in this section. We compare two variants of PFIFO to the
generic scheduler. Baseline PFIFO simply discards a predicted arrival if the predicted link
buffer is full. The second variant (PFIFO_D_NG) drops the least-cost candidate cell.
(Candidate cells are those cells that have been predicted but not yet committed and that
may be displaced by the new arrival without requiring reordering of other cells.) This
decision involves a calculation of QoSCost for each eligible cell and the computation of a
minimum of those costs. If a lesser cost candidate is found, it is displaced by the new
arrival.

We varied two parameters in these tests: 1) the length of the measurement interval, and 2)
the loss tolerance of the user traffic stream during one measurement interval at the receiver
traffic boundary. Each missing cell in excess of the loss tolerance during a single measure-
ment interval is called a loss violation. Note that in our simulations measurement intervals
do not overlap. That is, measurement interval;, ; starts at the moment measurement inter-
val; ends.

7.6.2 Loss Violations

Figure 44 provides a graphical representation of the loss violation performance of the
three schedulers tested in this section. The data depicted in Figure 44 is extracted from
Table 10 in Appendix B where a more complete set of results for this section can be found.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Figure 44 the dotted lines reflect results for the least tolerant measurement interval of
25000 microseconds whereas the dashed lines show resuits for the “average” tolerance
corresponding to a measurement interval of 15000 microseconds. The same absolute loss
tolerance is maintained for all reported measurement intervals. Since the length of the
measurement interval increases in each column of Table 10, this effectively represents a
net decrease in the loss tolerance. Since we are interested in observing the effects that a set
of bursty sources has on the loss characteristics of CBR streams, Table 10 only reports loss
violations at Host 2a and Host 2b, as all the CBR streams terminate in these AAL func-
tions.

Figure 44 and Table 10 show that PFIFO_D_NG (PFIFOQ with displacement) is superior
to the other schedulers shown. The number of loss violations is universally less than either
PFIFO or NORMFIFQ. This is true for each combination of the test parameters, measure-
ment interval and loss tolerance.

It is obvious from Figure 44 and Table 10 that PFTFO enjoys a slight but consistent advan-
tage with respect to NORMFIFO. The reason for this is not immediately apparent as both
PFIFO and NORMFIFO are fundamentally FIFO schedulers, and both ignore QoS issues.
We must recall that the AAL hosts in our prediction tests use AALSchedulers and, there-
fore, emit a prediction cell once every time cycle. While the prediction cell bandwidth
overhead slows the effective queue service rate at pp3, the same overhead is experienced
on all the links feeding our pp3 bottleneck. The presence of the prediction cell overhead
on these input links reduces the maximum effective arrival rate by 1/ CellsInPrediction
+1). This slight reduction in the maximum arrival rate occurs on all the input links, and the
multiplied effect of these reductions mitigates the congestion at pp3 because the buffer
size at the switch is not correspondingly reduced by 1/ CellsInPrediction + 1). Therefore,
when comparing prediction results to non-prediction results in this chapter, the reader
should remember that a small portion of the prediction advantage can be explained by this
side-effect rather than by the prediction scheduler itself.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 44. Loss Violations vs. Loss Tolerance (PFIFO_D_NG, Bottleneck_Loss)

Loss Violations vs. Loss T olerance
By Policy & Moasuromont intorval
—_ T 6 --. -
_____ e Tt e el -
Lo e T ~e~ NIRRT
o — T~ < - - .
i N R T .
: e ~ Tt -) ~
= ~ . T
‘|’ ________ ® . . R T e
______ R “ °
t Tt - e NS s .
a SN
t RS s
i X .
° _——— EN
° —_ — " -
s =~ \‘ -
~ - B
S~
~e—
T — S
2 ¢ 8
Loss Tolorancoin Cells
& PFIFO_D_NG{ 15000) - PFIFO(15000) €~ NORFIFO(15000)
-® PFIFO_D_NG(25000) - PFIFO(25000) -0 NORFIFO(25000)

7.7 CBR Loss Guarantees Only (Global QoS Knowledge)

7.7.1 Simulation Description and Motivation

In this section we provide simulation results based on a simulator implementation of the
ideas proposed in Section 6.3.2, "Global Knowledge of QoS State." These tests expand
upon the tests conducted in Section 7.6 and make use of global knowledge about cell loss.
Our intent is that by maintaining knowledge regarding upstream and downstream cell
losses we can better meet individual connections’ QoS loss requirements.

Since the primary goal of the tests in this section is to determine whether global QoS
knowledge can improve QoS performance (this term was introduced in Chapter 1), we
need to extend the simple test scenarios of the earlier sections to include multiple network
hops. For this reason, the results in this section include tests using the Cross_Traffic_Hom-
Link configuration shown in Figure 74 and discussed in Appendix A, Section A.3.

A secondary goal of these tests is to illustrate differences in the algorithms’ performance
when some of the NNI links are significantly longer than others. The Cross_Traf-
Jfic_HetLink configuration discussed in Appendix A, Section A.5 includes some NNI links
that are several times longer than (and thus produce several times the propagation delay
of) other links in the topology. Thus, this section also includes results based on
Cross_Traffic_HetLink. We do not expect QoS performance to vary significantly for a

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

given algorithm between Cross_Traffic_HomLink and Cross_Traffic_HetLink. This is
because the additional propagation delay present in Cross_Traffic_HetLink will only
increase delay and not affect the other metrics of QoS performance. Since this increase in
delay will be felt equally by all the algorithms tested, little relative difference in QoS per-
formance should be expected. Cross_Traffic_HetLink is introduced primarily to illustrate
the use of prediction-based scheduling in the more realistic case of a network with varied
length network links. Since the longer communications links add latency to the propaga-
tion of global knowledge, it is possible that global knowledge may appear somewhat less
effective in Cross_Traffic_HetLink than in Cross_Traffic_HomLink.

The results reported in this section are for level loss tolerance across all reported measure-
ment intervals. Since none of the prediction-based schedulers evaluated in this section pay
attention to jitter guarantees, the jitter requirements for Cross_Traffic_HomLink and
Cross_Traffic_HetLink (stipulated in Table 4 on page 188) are ignored here. Hence, results
are only shown for the small-buffer switch case. We consider these jitter requirements as
well as the loss requirements in Section 7.8. We defer reporting throughput and link utili-
zation results until Sections 7.10 and 7.11, respectively.

7.7.2 Loss Violations

As in Section 7.6, we are interested only in loss results in this section. Figures 45 and 46
provide graphical representations of the loss violation performance of the three schedulers
tested in this section. The figures are based on data in Tables 11 and 12 in Appendix B and
their interpretation is similar to that of Figure 44 in Section 7.6.2. Tables 11 and 12 report
total loss violations for sources 1b-1, 1b-2 and 1b-3. These connections are reported
because they are the CBR sources that transit the most network hops and, hence, are most
subject to network-induced problems. Note that the loss tolerance is varied from one to
eight cells per measurement interval for sources 1b-1, 1b-2, and 1b-3 only. The loss vioia-
tions reported here are the sum of the violations suffered by these three connections.

Tables 11 and 12 illustrate that use of global knowledge about QoS state by PFIFO_D
does provide a significant advantage over PFIFO_D_NG which uses only local knowl-
edge about QoS state. Loss violation performance of NORMFIFO is worse than that of
both PFIFO_D and PFIFO_D_NG. Also, the difference in measurement interval between
15,000 and 25,000 has essentially no effect on these results. (This is due to the level loss
tolerance across measurement intervals explained above.)

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figures 45 and 46 reveal an unexpected relationship between increased loss tolerance and
increased loss violations for PFIFO_D and PFIFO_D_NG. While NORMFIFO displays
the expected drop in violations, PFIFO_D and PFIFO_D_NG actually show a slight
increase in violations in spite of the increased loss tolerance. This is due to the fact that the
increasing loss tolerance allows these two schedulers to drop additional cells and still stay
within their perceived loss tolerance. The problem with perceived loss tolerance at a given
switch is that it is not well synchronized with loss tolerance as actually measured at the
network egress point. With PFIFO_D this lack of synchronization exists because 1) mea-
surement interval boundaries are not coordinated across the different network elements
that utilize measurement intervals, and 2) there is delay in propagating global loss infor-
mation between network elements. The affect of these is compounded in PFIFO_D_NG
since each switch, unaware of upstream and downstream loss, independently assumes that
during each measurement interval it may drop a number of cells equal to the loss toler-
ance. The PFIFO_D_NG schedulers operating in successive switches along the path of a
connection can unknowingly cause violations by independently dropping their full loss
tolerance of cells. The sum of these losses over a single measurement interval at the net-
work egress point determines loss violations. Because the cell dropping decisions are per-
formed independently, this sum can exceed the loss tolerance at the network edge despite
no individual switch having perceived excessive losses. For this reason, the slight increase
in loss violations observed for PFIFO_D is more pronounced for PFIFO_D_NG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 45. Loss Violations vs. Loss Tolerance (PFIFO_D, Cress_Traffic_HomLink)

Loss Violations, Global Knowledge
By Policy & Moasuromont Intorval
6007
P T e e _—
soo] N T e e e e o
L - — -
(-
L]
. <oof
v
i
o 3004
| ——
a e,
t —_—
| 2004 _-__,___.,_f_--“':l’-'
o Tl e ee= == » - - s
n — — Cae® o e— — — ——
L]
1001
—_—— —_— —— — — — —
G — e v v e T TR T T T AT . . T T T T T T M
¢ 2 4 8
Loas Tolorance in Calls
@ PFIFO_D(15000) - PFIFO_D_NG(15000) -6~ NORFIFO(15000)
“® PFIFO_D(25000) % PFIFO_D_NG(25000) -0 NORFIFO(25000)
FIGURE 46. Loss Violations vs. Loss Tolerance (PFIFO_D, Cross_Traffic_HetLink)
Loss Violations, Global Knowledge
By Policy & Measurement Intervel
6004
S
—— e e e ey e
5001 I e L °
L T — -
L]
8
8 4001
v
I
o 300§ . -2
1 o
a o — e —
t P sl I
i 200 e e o s Y T
° —
n
8
1004
e et —— —— — —®
'h—‘MHGI—.----F’--I.—lH-_---—--—--_-~--.-_-‘-—- ------------- ®
1 2 4 8
Loss Tolerancein Cells
& PFIFO_D(15000) & PFIFO_D_NG(15000) -©- NORFIFO(15000)
“® PFIFO_D(25000) - PFIFO_D_NG(25000) -0 NORFIFO{25000)
143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.8 CBR Loss And Jitter Guarantees Together

7.8.1 Simulation Description and Motivation

We have shown that PTDM can be effective at improving jitter performance and that
PFIFO_D improves cell loss QoS performance. The jitter tests, however, were conducted
in the absence of cell loss (i.e. with large buffer switches) and the loss tests were con-
ducted without any sources requesting jitter guarantees. In this section we examine how
different cell scheduling policies perform when both loss and jitter guarantees are
required. This is the first section that provides results for scheduler PTDM_D, which is
described in Section 6.4.4.

The test configuration used is Cross_Traffic_HetLink (see Appendix A, Section A.3). We
select this configuration as the basis for evaluating loss and jitter guarantees together since
it represents the most variety of the test configurations used thus far. Both loss and jitter
violations are produced with this test configuration. The multiple hops and varied link
lengths allow the Global Knowledge propagation feature to be exercised. It is probably the
most realistic example of all of the test configurations used up to this point and therefore
provides a convenient vehicle to perform a general comparison of the scheduling algo-
rithms that we have thus far studied individually. In this section, as in Section 7.7, loss tol-
erance is level across the different measurement intervals tested.

7.8.2 Loss and Jitter Violations

Figures 47 through 49 summarize the loss and jitter violations for both the small buffer as
well as the large buffer case. (The detailed tabular data supporting these figures is pro-
vided in Tables 13 through 16 in Appendix B. We do not provide surface plots for the large
buffer loss violations shown in Table 14 since there is essentially no loss in that case.) As
in Section 7.7.2, the figures depict QoS violations for sources 1b-1, 1b-2 and 1b-3 com-
bined. It is apparent that PFIFO_D fares far better than PTDM in providing loss guaran-
tees. It is also obvious that PTDM is superior to PFIFO_D in providing jitter guarantees.
Neither of these results should be surprising as PTDM ignores QoS loss requirements and
PFIFO_D ignores QoS jitter requirements. PTDM_D, however, does attempt to provide
loss and jitter guarantees simultaneously. The fact that PTDM_D provides loss guarantees
favorably affects its jitter performance compared to that of PTDM, as illustrated in
Figure 49. This is due to the fact that an additional loss will also be reported as a jitter vio-
lation.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that in some cases a policy that performs very well in providing one type of QoS
guarantee performs abysmally with another type of guarantee. For example, the results in
Figure 47 show that while PFIFO_D out-performs PTDM_D with respect to cell loss,
PFIFO_D is so much worse (Figures 48 and 49) in providing jitter guarantees to the jitter
sensitive traffic in the same test, where PTDM_D is clearly preferable. From this we con-
clude that PTDM_D is the best choice as a general all-purpose scheduler for loss and jitter.
PTDM_D clearly out-performs PTDM and NORMFIFO in all three figures.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 47. Loss Violations, 96 cell buffer, PTDM_D vs. others

PFIFO_D
1,000 1,000 4 1,000

800

600
400
200
250380?2 A
09 % ~ 8 Loss
Measurement 000 Tolerance

interval

NORMFIFQ

Loss

00
Measurement %a00 Tolerance
Interval
NORMFIFQ ————
1,400 1,400 s 1,400
1,200 1.200 SR e et | 1,200
1,000 1,000 i 1,000
800 800 800
600 600
600
400 200 400
200 200 200
25 >
o8o0g,
000 8
146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 49. Jitter Violations, 9999 cell buffer, PTDM _D vs. others

PTDM_D PFIFO_D
1,800 1,800

1500 1,500 1,500
1,200 1,200 1,200
000 200 S00
600 600
300 i 8 300
S
25% .
‘Pg 8 4 | oss
Measurement 5000 Tolerance
Interval
NORMFIFO
1,800 1,800 1,800
1,500 1,500 1,500
1,200 1,200 1,200
900 900
600 600
200 300

7.8.3 Jitter Distributions

Figures 50-57 show jitter plots for connection b-1 for the four scheduling policies and two
switch buffer sizes covered by Tables 13 through 16 in Appendix B. The test parameters
for these plots were a loss tolerance of 2 cells per measurement interval and a measure-
ment interval length of 15000 microseconds. It is clear that the jitter control of PTDM_D
is superior to that of NORMFIFO and PFIFO_D. The results also show that the jitter con-
trol of policies PTDM and PTDM_D is much more visible in the large buffer case than in
the small buffer case. This is because the cell losses that occur in the small buffer case are
also interpreted as jitter violations whereas there are no losses in the large buffer case.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 50. Jitter at Host 2b-1, Small Buffer (PTDM_D)

Cless 1 Jitter Plot
Hest 201, buft=00 PTDML.D
100001
N o00r
o)
o}
o}
C
e
|
|
s]0" l
1 M - |.|r..l...|...mJ
50 40 30 2 -10 0 10 20 30 4 80
Devidion romNamind (n odl tires)

FIGURE 51. Jitter at Host 2b-1, Small Buffer (PFIFO_D)

Class 1 Jitter Plot
Host 201, ELff=00 PFIFQ.D
10000
N 1000+
o]
[e]
ol
c
(=]
!
] “” “
| 1 (AL “ ,,,,,,,,, 'll,l,l,ll,l, w1
&0 40 w20 40 0 10 20 3 4 50
Devidlion franniNemind (n ol tirmes)
148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 52, Jitter at Host 2b-1, Small Buffer (PTDM)

Class 1Jitter Pict
Host o], bLA=S0PTDM
100007
N 000t
o
o
f oo}
c
(=]
|
|
[“
Lol “.|..|J...l.| Ll
D S S S T D S A)
Deviction fiamiNerind! Gn ol irres)

FIGURE §3. Jitter at Host 2b-1, Small Buffer (NORMFIFO)

Class 1 Jitter Pict
Host b, buff=90 NCRIVFIFO
100001
N 1000¢
o]
o)
f oot
C
e
I
l 10t :
S
N 11111 1 |.,,|,,|,|.|,u,.|,,|,',,,I,I.I,J ,,,,,,,,,,,
&0 A0 30 2 -10 0 10 20 30 2 80
Devidlicn fromiNeanind (n o€l firres)
149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 54, Jitter at Host 2b-1, Large Buffer (PTDM_D)

10000y

1000¢

Ciess 1 Jitter Pict
Host 2o, buff=0999 PTEMLD

MARMLMAILALE I R N L IR S Bt 00 N I R R R R R B EEEE e as ey

DaddicnframiNamind (n ol firves)

FIGURE 58, Jitter at Host 2b-1, Large Buffer (PFIFO_D)

Clcss 1 Jitter Plct
Host2o1, LS99 PRFQ D
Jo0mr
N
o 100
o
foo
c
(=]
| |
] “l l‘
I A R R AR R L A | | ...l..l..IJ.JHIHHH}HHJ:...I
& H X D 0 0 O P2V 0 HO 0
Deidion fiariNavind (ned tnes)
150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 56. Jitter at Host 2b-1, Large Buffer (PTDM)

Ccss Vditter Pict
Hest 201, b9 FTDM
10000r
N
o 10O
(o]
fom
c
e
|
B
S
] At Y -u.lnulllnlnltl
& o o 2 a0 B " S-S
wdmtambmqnoam)

FIGURE 57. Jitter at Host 2b-1, Large Buffer (NORMFIFO)

Cicss 1 Jitter Plot
Host 201, B.A=9999 NCRMVEIFO
100007
N
[o] 10001
o
f
c
©
I
l | ”” “““
5 ‘ ‘
]J.ﬁ:hh“:HHHHHHHHHH::“::; VAR A R R L A ' --------- ||l ----- IlIJllllllllllllllllvl I...
80 40 -0 2 -10
Ibﬁdimfrmi\bﬁri@tdlh&)
151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.8.4 Observations

PTDM_D is superior to policies PFIFO_D, PTDM and NORMFIFO in an environment
that requires both jitter and loss guarantees. Jitter control is easier to demonstrate in large
buffer switches than in the high-loss environment of small-buffer switches under overload
conditions because losses are also interpreted as jitter violations.

The preceding comparisons focussed on jitter and loss for selected CBR connections only.
In the following section we will extend the simulations to measure QoS performance for
all active CBR and VBR connections in the network and introduce greater diversity into
the QoS requirements of the connections.

7.9 CBR/VBR: Loss and Jitter Guarantees Together

7.9.1 Simulation Description and Motivation

The connections studied in this section are characterized by more diverse QoS require-
ments than those used in the results presented thus far. By “more diverse” we mean that
the jitter tolerances and loss toleranices vary more noticeably between the different con-
nections than in the first series of tests. Another significant difference is that in this section
we measure the overall QoS performance of all the active CBR and VBR connections in
the network, rather than focussing on the QoS performance of a selected subset of CBR
connections.

The schedulers evaluated in this section include PTDM_D, NORMFIFO, and HOLDISP.
We choose to report prediction-based results for PTDM_D alone here as we concluded in
Section 7.8.4 that PTDM_D is superior to policies PFIFO_D and PTDM in an environ-
ment where overall QoS performance was paramount. In addition to NORMFIFQ, we now
compare results with the dual priority queue scheduler HOLDISP, introduced in

Section 6.4 on page 101. We include the HOLDISP algorithm in order to evaluate PTD-
M_D’s performance against a non-prediction cell scheduler that is well known to provide
better QoS performance than the NORMFIFO scheduler we have used for comparison
thus far.

The test configuration used is that described as Cross_Traffic_HetTraffic (see Appendix
A, Section A.5). This configuration is identical to Cross_Traffic_HetLink except for the
source traffic characteristics. The connections include 9 jitter and loss-sensitive connec-
tions and 14 loss-sensitive connections. Within the 9 that are both jitter and loss sensitive,
there is a wide range of jitter tolerances. Similarly, within the 14 loss-sensitive connec-

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tions, Cross_Traffic_HetTraffic provides a variety of loss tolerances. The loss-sensitive set
includes both CBR and VBR connections. The jitter-sensitive connections include 8§ CBR
connections and 1 VBR connection. We provide details of these 23 connections in Table 5
on page 192. The Cross_Traffic_HetTraffic configuration allows us to vary three impor-
tant parameters: 1) buffer size of the switches, 2) traffic loading level, and 3) overall jitter
tolerance. The ranges and definitions of these three parameters are provided in Sections
A.5.4, A5.5 and A.5.6, respectively.

7.9.2 Overall QoS Violations

Figures 58 through 60 depict the overall (loss and jitter) violations for the full range of
buffer sizes, loading levels and jitter tolerances tested. (The detailed tabular data support-
ing these figures is provided in Tables 17 through 19 in Appendix B.) The figures depict
the combined QoS violations for all active connections in the network. The clear superior-
ity of PTDM_D is evident in all three sets of data shown in these figures.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 58. Low Jitter Tolerance Overall QoS Violations

HOLDISP

14,000
12,000
10,000

FIGURE 59. Medium Jitter Tolerance Overall QoS Violations

14,000
PTDM_D

12,000
10,000

14,000
12,000
10,000

HOLDISP

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

FIGURE 60. High Jitter Tolerance Overall QoS Violations

PTDM_D

HOLDISP

7.9.3 Jitter and Loss Violations Individually

Figures 61 through 63 summarize the jitter violations for all buffer sizes, loading levels
and jitter tolerances tested. Tables 20 through 22 in Appendix B contain the detailed data
from which these figures were derived. The loss violation component of e results is pro-
vided in Figures 64 through 66, and the tables corresponding to those plots are Tables 23,
24 and 25 in Appendix B. The sum of the jitter and loss violation counts provided in this
section yield the overall violation count provided in the preceding section.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 61. Low Jitter Tolerance Jitter Violations Only

PTDM_D 6000 6,000
5,000 5,000
4,000 4,000
3,000 3,000
2,000 2,000
1,000 1,000
Logdg,
: Tedg 2 a00' Buffer Size
HOLDISP oad 1 NORMFIFO
6,000 6,000 6,000 6,000
5,000 5,000 5,000 5,000
4,000 4,000 4,000 4,000
3,000 3,000 3,000 g 3.000
2,000 2,000 2,000 2,000
1,000 1,000 1,000 1,000
Logd 1% Logd 8 20

PTDM_D 6,000
5,000
4,000
3,000
2,000
1,000
Logd,

HOLDISP NORMFIFO
6,000 6,000
5,000 5,000
4,000 4,000
3,000 3,000
2,000 2,000
1,000 1,000
Logd

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 63. High Jitter Tolerance Jitter Violations Only

PT DM_D 6,000 6,000
5,000 5,000
4,000 4,000
3,000 3,000
2,000 2,000
1,000 1,000
90
Loqd3a 4
o Buffer Size
HOLDISP NORMFIFO

6,000
5,000
4,000
3,000
2,000
1,000

PTDM_D

HOLDISP

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 65. Medium Jitter Tolerance Loss Violations Only

PTDM_D 12,000

10,000
8,000
6,000
4,000
2,000
Loi%

HOLDISP NORMFIFO
12,000 ’ 12,000 12,000
10,000 10,000 10,000

8,000 8,000 8,000

6,000 6,000 6,000

4,000 4,000 4,000

2,000 2,000 2,000

N

Ny
Loi%g?o‘t 3 < 4
anozad 1 200

FIGURE 66. High Jitter Tolerance Loss Violations Only

PTDM_D 12000

10,000
8,000
6,000
4,000
2,000

HOLDISP

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.9.4 Observations

A number of important trends are observed in Figures 58 through 66. PTDM_D exhibits
superior overall QoS performance relative to HOLDISP and NORMFIFO under all condi-
tions tested. All three algorithms show lower QoS violations as load decreases and buffer
size increases. This is a direct result of the lower overall cell loss that results under these
conditions. HOLDISP and NORMFIFO’s overall QoS violations are significantly higher
than PTDM_D’s in the case of lower overall jitter tolerance. This is attributable to the fact
that even moderate amounts of jitter are considered violations in the low jitter tolerance
case, and, unlike PTDM_D, neither algorithm exercises precise control over jitter.

HOLDISP’s overall QoS violations diminish, however, to levels comparable with
PTDM_D in the case of high overall jitter tolerance, light loads and larger buffers. This is
due to the fact that HOLDISP prioritizes jitter sensitive traffic, and the lower delay this
prioritized traffic suffers directly correlates with lower jitter. While this lower jitter still
exhibits too much variance to avoid violations in a low jitter tolerance scenario, it is suffi-
ciently low to avoid violations when there is high jitter tolerance.

Under heavier loads or small buffer conditions, HOLDISP’s overall QoS violations remain
worse than those of PTDM_D. Inspection of the jitter and loss components of QoS viola-
tions (Figures 61 through 66), shows that HOLDISP’s overall violations originate prima-

rily from loss violations. HOLDISP’s exclusive prioritization of jitter-sensitive traffic has
the negative consequence of increased loss violations for the non-jitter sensitive traffic. It
is noteworthy that this bias against non-jitter sensitive traffic results in HOLDISP having

far higher QoS loss violations than the QoS-ignorant NORMFIFO.

The merit of enforcing QoS guarantees at the connection level is most evident in compar-
ing not only the overall QoS performance, but particularly the jitter (Figures 61 through
63) and loss (Figures 64 through 66) components individually. By attending to each con-
nection’s requirements individually, PTDM_D is able to control each class of violation
effectively. HOLDISP's strengths in jitter control lead to exaggerated weaknesses in loss
control. NORMFIFO’s advantage over HOLDISP in loss violations reverses when jitter
performance is considered. The observation that PTDM_D has a strong showing simulta-
neously in loss and jitter QoS performance in a diverse traffic mix is a direct result of con-
nection-level control of QoS guarantees.

Up to this point, our evaluation of scheduler performance has focussed on jitter and loss.
In the following sections we evaluate the prediction-based scheduling heuristics according

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to other commonly used metrics of network performance. These include link utilization,
throughput, and delay.

7.10 Link Utilization

Figure 67 compares the link utilization achieved for the prediction-based policies
PTDM_D, PFIFO_D, PTDM and no-prediction default scheduling NORMFIFO for the
small buffer switch case. Figure 68 provides analogous results for the large buffer switch
case. Detailed data for Figures 67 and 68 is found in Tables 26 and 27 in Appendix B.
These utilization results are derived from the same tests discussed in Section 7.8. The
links’ utilization remains constant for the 2 parameters varied in the test (rneasurement
interval length and loss tolerance). For this reason we do not show the utilization figures
for all the combinations of measurement interval and cell loss tolerance shown in

Tables 13 through 16. Also, since these utilization results support the loss and jitter results
in Tables 13 through 16, we report only those links traversed by the connections reflected
in these tables. That is, since the tests in Section 7.8 focus on connections b-1, b-2 and b-3,
Figures 67 and 68 show only the NNI links traversed by those connections (i.e. pp3a.
pp3b, pp3c and pp3d) and the UNI links reaching each of the connections’ receiver net-
work boundaries (i.e. pp2b-1, pp2b-2, and pp2b-3, respectively). We refer the reader to
Figure 74 on page 186 for an illustration of where these links are located within the test
topology.

We draw attention to the upstream link utilization shown in Tables 26 and 27 for the no
prediction results as compared to the three prediction-based schedulers. As there is no
upstream user traffic, the upstream utilization is zero for the generic scheduler. The con-
stant six percent utilization shown for the prediction-based schedulers is entirely attribut-
able to the transmission of prediction cells. This overhead of six percent is a function of
how many predictions are made in a single 48-byte ATM cell payload. (Note that in our
tests one network cycle includes sixteen cells, one of which is a prediction cell and fifteen
are data. Therefore, 6.25% (1/16) of the link is always utilized for prediction cells, even
when all fifteen data cells are empty.) We discuss strategies to improve on this in Section
6.5.3.

For a given scheduler, downstream utilization levels vary greatly between different NNI
links due to the different cross traffic patterns of Cross_Traffic_HetLink. For example, in
Figure 67, the fact that we see NORMFIFO utilization levels of 76%, 66%, 81% and 42%
is explained by this. Also, for a given link, utilization levels vary much more between dif-

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ferent schedulers on the NNI trunks since those links carry considerable other traffic in
addition to our selected three connections. For example, in Figure 67, utilization levels for
pp3d are 40%, 50%. 40% and 43%. The additional traffic includes connections with
higher loss tolerance than our studied connections. The prediction-based policies actively
delete some of these cells as they strive to maintain other connections’ more stringent QoS
commitments. These deletions explain the lower utilization levels of some of the predic-
tion policies on the NNI links.

For the UNI links pp2b-1, pp2b-2 and pp2b-3, Figures 67 and 68 show that the utilization
levels for the three prediction-based policies are 7% higher than the no prediction case.
(The difference between this and the 6% reported above for upstream traffic is due to
rounding.) The fact that the utilization levels reported for the prediction-based schedulers
exceed the generic scheduler is due to the bandwidth consumed by the prediction over-
head. Utilizing unused bandwidth is itself not a problem until it begins to constrain
throughput. In our tests, throughput was not thus constrained. (Section 7.11 explains that
throughput remained high for our tests even with the prediction overhead.) In theory, as
the offered load approaches 100% utilization of network bandwidth, the prediction over-
head would have a definite negative impact on throughput. We believe that such high lev-
els of utilization are not useful to study, however, as we suspect that acceptable levels of
QoS performance will not be achievable with extremely high (e.g., over 90%) loading lev-
els with any ATM scheduling policy.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Srvdl| Buffer, 4Pdiides

Link Utilization Omparison

oD
B NRMVFFO

PFIF

Lirk Nerres

PTDMD
B pioM

N\
P

o

FIGURE 67. Link Utilization (%), Comparison of 4 policies, small buffer switches

QOa0-0O0C-~0DDDO

FIGURE 68. Link Utikization (%), Comparison of 4 policies, large buffer switches

Link Utilization Compcarison
LargeBufer, 4Pdides

NCRMFIFO

PFIFOD

162

8 8 8 R @ 8 9

Oa0~-00C~-~DDDO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.11 Throughput

Figures 69 and 70 graph the cell throughput achieved for the three CBR sources studied in
this section. Detailed data for Figures 69 and 70 is found in Tables 28 and 29 in Appendix
B. Since there is generally little or no cell loss in the large buffer switches, the throughputs
shown in Figure 70 are higher than those shown in Figure 69. Because of limited space in
the figures, the results are reported here only for loss tolerance of 2 and measurement
interval length of 15000 microseconds. Since this pairing of the parameter values is used
uniformly throughout Figures 69 and 70, the throughputs for the different policies may be
freely compared. The throughput figures shown in Tables 28 and 29 are expressed in cells
per second. Because the measured duration of our simulations is only 50000 microsec-
onds, the per second throughput is extrapolated from the number of cells received in the
50000 microseconds of the test.

It is clear that for the large buffer switch case (Figure 70), policies PTDM_D and
PFIFO_D have virtually identical throughput to that of the default scheduler. This is not
true for the small buffer results in Figure 69, where PTDM_D, PTDM and NORMFIFO
show throughputs relative to PFIFO_D of 93%, 83% and 93%, respectively. The small
buffer switches produce cell loss for all the scheduling policies in this test. The different
throughputs shown are the result of the different amounts of cell loss incurred by the four
algorithms. We discuss the relationship of raw cell loss vs. cell loss violations in the fol-
lowing paragraph.

Table 30 on page 216 compares the raw cell loss experienced on the three connections
measured in Figure 69 with the total cell loss violations that occurred on those connec-
tions. (The loss violations are extracted from Table 13.) The most revealing statistic in
Table 30 is the last column, “violations as a percentage of raw loss.” This statistic mea-
sures how successful the algorithm is in orienting loss so as to minimize loss violations.
Clearly, the most successful algorithm is PFIFO_D. This is because this algorithm gives
exclusive priority to QoS loss guarantees. The second best performer in this regard is
PTDM_D, which is consistent with our observations that PTDM_D is the best all-around
QoS-performer of the algorithms we studied.

While enforcing cell drop policies may increase cell loss, we find that, in spite of this loss,
the appropriate scheduler can in fact decrease the loss violations. Unfortunately, there is
no easy way to incorporate this nuance into the traditional throughput metric. The fact that
the throughput metric does not capture the improved QoS suggests the need for a new

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

metric. This metric could be called Effective-Throughput or QoS-Throughput, and would
reflect no penalty from the loss of a cell that causes no QoS violation.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ut, Comparison of 4

FIGURE 69. Throughp

T @
am 3
W 'S

e =

a a Gt

=]
=] g

pyright owner. Furtherr

7.12 Delay

We have stated that a key component of our prediction-based model is the insertion of
some delay in order to generate and exploit accurate predictions. In this section we mea-
sure that increased delay. Using Bottleneck_Jitter as an example, we see that Figure 42 on
page 137 depicts a minimum cell delay of 150 cell times for PTDM scheduling, whereas
Figure 43 shows a minimum of 47 cell times for NORMFIFO scheduling. The delay of 47
is just the serialization and propagation delay over the three links (16 cell times each). The
reason for the greater delay in the prediction case is the accumulation of the delays
incurred as the cells pass through the different delay buffers of our model. Specifically, the
additional 103 (150-47) cell times of delay in Figure 42 is attributable to the components
of delay shown in Table 31 on page 216 for a PredictHorizon of 3. (Note that as Table 31
indicates, the 103 cell time delay penalty would be reduced to 71 cell times if we were to
use a PredictHorizon of 1 instead of 3. Reducing the PredictHorizon to 1 would not have
negatively affected any of the other results presented earlier in this chapter.)

The prediction/no prediction delay differential is even more pronounced in the tests using
configurations with more network hops, such as Cross_Traffic_HetLink. For example, we
contrast the 115 cell-time earliest arrival in Figure 72 on page 168 (NORMFIFO) with the
260 cell-time earliest arrival in Figure 71 (PTDM). These delay distributions are drawn
from the tests described in Section 7.8.

We have included a number of additional delay distributions that correspond to the results
for PFIFO_D, PTDM and NORMFIFO that were presented in Tables 13 through 16 in
Appendix B. These delay distributions appear in Appendix B, Section B.2. We encourage
the reader to examine them in support of the following points related to delay:

1. We expect increased delay variance to correlate with increased jitter. This correla-
tion can be observed by comparing the jitter depicted in Figures 53 and 52 on page
149 to the corresponding delay distributions in Figures 78 and 80 on page 220,
respectively. The greater delay variance evidenced in Figure 78 for NORMFIFQO
correlates with the comparatively high jitter seen in Figure 53. We contrast this
with the smaller delay variance shown in Figure 80 for PTDM and the correspond-
ingly less jitter in Figure 52.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. The increased delay variance of NORMFIFO may completely negate the advan-
tage that NORMFIFO holds with respect to minimum end-to-end delay. The worst
case delay for PTDM in Figure 80 on page 220 is 266 cell times whereas the worst
case delay for NORMFIFO in Figure 78 is in excess of 275 cell times.

3. Delay variance is significantly worse for PFIFO_D (Figure 76 on page 218) than
for PTDM (Figure 80 on page 220). This is to be expected since only PTDM

applies any explicit jitter control.

4. PTDM-style schedulers exhibit good jitter control not only at the network egress
point but at intermediate network links as well. This is illustrated in the dual
modes in Figure 79 on page 220. This bimodal trait is due to different sets of con-
nections multiplexed over the same hop and scheduled by PTDM. The set that
experiences less delay traversed fewer network hops (or shorter links) than the
other and, thus, experienced less delay. Note that the delay distributions of the two
modes have a similar shape and that this bimodal trait, though less obvious,
appears in Figure 75 for PFIFO_D and in Figure 77 for NORMFIFO. In these fig-
ures, however, the sharp bimodal characteristic maintained by PTDM’s tight con-
trol of jitter is blunted by the lack of jitter control of PFIFO_D and NORMFIFO.

We summarize by listing the following key points regarding delay:

1. The prediction-based schedulers pay a penalty of higher minimum end-to-end
delay.

2. Delay variance is strongly correlated with jitter.

3. Improved control over delay variance is not inherent in all prediction-based
schedulers. While the PTDM family exhibits superb jitter control, PFIFO_D
shows the same weakness in jitter control as NORMFIFO.

4. Despite having a lower minimum end-to-end delay than the prediction policies,
NORMFIFO produces a worst-case delay significantly higher than PTDM. The
benefits of the lower minimum delay are nullified for most delay-sensitive traffic

by the worst-case delay scenario.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 71. Time-in-system, pp2b-1, large buffer switch (PTDM)

CBR Deley o
o1, 0999, PTDM
100007
N
o 10
(e}
L
C
e
I
I 10
S
T i /
170 180 190 200 210 220 230 240 250 240 270 280 290 300 310 30 330 340 350 340 370
DeayinCd fimes

FIGURE 72. Time-in-system, pp2b-1, large buffer switch (NORMFIFO)

CBR Deloy ot
T, 5599, NCRMAFO
10000y
N
(o] o0+
o]
f o
c
2]
|
i 10; .
S
il
'I A A 1 A A -l I A
80 S0 100 110 120 130 140 150 160 170 180 150 200 210 220 20 240 250 260 270 280
Delayin Gl fimes

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.13 Evaluation

Through a progressive series of tests we have demonstrated that prediction-based schedul-
ing algorithms can provide better QoS performance than the non-prediction-based sched-
ulers evaluated. In particular, PTDM_D simultaneously provides better QoS loss and jitter
performance. The improvement is particularly striking for QoS jitter performance. While
NORMFIFO shows inferior jitter performance in all tests conducted, HOLDISP exhibits
good control over jitter violations similar to that of PTDM_D under certain operating
parameters. HOLDISP was shown to be inferior to PTDM_D in two significant ways,
however. First, since HOLDISP gives exclusive and uniform priority to all jitter sensitive
traffic, it performs poorly in providing loss guarantees to other, non-jitter sensitive traffic.
Secondly, as jitter tolerances become tighter, HOLDISP is unable to provide the near-
TDM levels of jitter control of PTDM_D. This superior jitter control of PTDM_D is due in
part to the fact that network-induced jitter can actually be mitigated by downstream
PTDM_D schedulers. Such proactive amelioration of jitter is not performed by HOLDISP.

Our results show that the link utilization achievable by the prediction scheduler is compa-
rable to the default scheduler NORMFIFO when the prediction cell overhead is dis-
counted. We have also shown that throughput for the prediction-based schedulers is
similar to that of a generic scheduler. If QoS guarantees are considered, the useful
throughput of the prediction-based schedulers surpasses that of the default scheduler.

At the outset of this thesis we asserted that the single most significant weakness of the pre-
diction-based schedulers is in the area of network latency. The results shown in this chap-
ter corroborate this assertion. The predictions that form the basis of this new scheduling
paradigm come at the cost of increased network delay. While the extent of this delay can
be reduced for readily predictable traffic, such as CBR, prediction-based scheduling will
always increase end to end delay. Thus, in an environment where minimizing delay takes
absolute precedence over QoS loss and jitter performance, it would be difficult to argue in
favor of prediction-based cell scheduling. We believe that while this increase in delay is
real, the penalty is usually justified by the greatly enhanced control over QoS loss and jit-
ter performance that is afforded by prediction-based scheduling.

Most significantly, these results demonstrate the feasibility and benefits of providing con-
nection-specific QoS control. In the diverse traffic mix we described in Section 7.9, nei-
ther NORMFIFO nor HOLDISP approaches the overall level of QoS performance of
PTDM_D for the wide range of operating parameters and traffic tested. This diverse traffic
mix represents a more realistic range of QoS requirements such as those likely to be

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exhibited in ATM networks. We suggested at the beginning of this thesis that as the diver-
sity of network traffic grows, QoS guarantees must ultimately be enforced at the connec-
tion-level. The results in this chapter support that notion and provide explicit examples of
how connection-specific QoS control can improve overall QoS performance.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.14 References

(1]

(2]

(3]

(4]

[5]

R. Chauhan and R. Russell. Simulation of ATM networks. Technical Report TR-94-
19, University of New Hampshire, December 1994,

C. Fang, H. Chen, and J. Hutchins. Simulation analysis of TCP performance in
congested ATM LAN using DEC’s flow control scheme and two selective cell-drop
schemes. ATM Forum 94-0119, January 1994.

P. Goransson. Bandwidth reservation on a commercial router. Computer Networks
and ISDN, volume 28, no. 3, pages 351-370, January 1996.

Rony Holter. SONET - A Network Management Viewpoint. In JEEE INFOCOMM
91, volume 1, pages 131136, June 1991.

V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM 88, pages 314—
329, September 1988.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8
FUTURE WORK

8.1 Intelligent Scheduling without Prediction

We have shown that we can use predictions of cell arrivals as input to scheduling algo-
rithms that produce improved QoS performance. The most striking results regarding jitter
(Section 7.5.2, Section 7.8.3, Section 7.9.3) are only evident when there is considerable
cell queueing taking place. While the predictions certainly allow us to see farther into the
future, the large numbers of queued cells provide a database on which similar scheduling
decisions could be performed without the costs of prediction. Since these cells are already
waiting for service, one can argue that complex schedule computation can be performed

* on some of the waiting cells while the cells closest to receiving service represent “commit-

ted cells” which are not subject to reordering or discard. This would allow a relatively
complex out-of-band schedule computation to be performed on the “uncommitted queue.”
The justification as to why this computation can be more complex is similar to that which
we have provided for the prediction-based schedulers: the computation does not introduce
any delay between the transmission of individual cells and thus does not adversely impact
throughput.

A drawback of this approach is that it does not work uniformly when there are few or no
queued cells. This is because there is no “waiting cell database” on which to compute
schedules, and the implementation would have to elect between the alternatives of dynam-
ically introducing delay just to provide computation time or dynamically abandoning
intelligent scheduling when queues are small. While some would argue that there is less
need for enforcement of QoS guarantees when there is no queueing, we demonstrated that

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the presence of the intelligent queueing on a lightly loaded link downstream from the
point of congestion markedly reduced the upstream-induced jitter. The fact that the system
would have to dynamically switch between the normal intelligent-scheduling mode and
either of these two alternatives probably poses implementation challenges.

Despite this drawback, we believe that the advantage of eliminating predictions make this
a worthwhile area to investigate.

8.2 Prediction Cell Compression

In order to achieve high network utilization, it is imperative that in exchanging predictions
and schedules, distributed cell scheduling not impose a large bandwidth overhead on the
communications links. It is possible to use compression techniques used by predictive
CODEC's to reduce this bandwidth consumption (e.g.. [9]). Neighboring switches can
simultaneously compute a prediction using available history only. If the neighboring
switches use the same prediction algorithm and base their prediction on histories that are
old enough to coincide, these predictions are guaranteed to be identical. The upstream
switch then compares its computed prediction to the schedule S that LinkScheduler derives
from arriving prediction cells (which are still guaranteed 100% accurate, similar to those
without compression). The upstream switch need only communicate the differences
between the computed prediction and S. In many cases there may be no difference and
nothing need be communicated. In particular, as the percentage of CBR traffic increases
the accuracy of the computed predictions will increase. In general, this can achieve a sig-
nificant compression while still propagating 100% accurate predictions throughout the
network. While we have not implemented these ideas, they represent possible avenues for
reducing the bandwidth overhead attributable to prediction cells.

8.3 Higher Level Protocol Packet Protection

Other researchers have already recognized that very high penalties are paid within the
ATM network if the cell discard policy discards cells indiscriminately of their role in a
multi-cell higher level protocol packet. For example, if a 1470 byte TCP buffer is trans-
mitted over ATM, this is segmented into approximately 30 AALS5-encapsulated ATM
cells. If any of these 30 cells is dropped, the entire packet is discarded upon delivery at the
receiver traffic boundary. Clearly, it is unwise to drop only one of the cells in such a packet
and continue to transmit the remainder, which are doomed. Different discard policies
related to cell groups have been studied in [10].

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It would be interesting to continue the research conducted in this thesis by extending the
cell discard policies suggested in [10]. In particular, all of those policies try to deal with a
cell sequence after it has begun to arrive. Unfortunately, frequently the congestion that
torces a cell scheduler to drop one or more of the cells in a packet is only detected after
some cells of that packet have already been forwarded. For example, LinkScheduler might
foresee a muiti-cell packet in the input horizon and, although the initial cells can be trans-
mitted, some of the later cells will arrive during a period of congestion and will have to be
dropped. By taking advantage of the predictions available in our model, we can anticipate
loss-producing congestion and begin discarding the cells of a cell sequence starting at the
first cell. Discarding all of the cells of the sequence in this way not only limits the loss to a
single packet, but additionally reduces network load by not forwarding (as many) doomed
cells as the non-prediction methods.

8.4 ABR Flow Contro! Schemes

A significant body of research has been performed by the ATM Forum’s members to eval-
uate different schemes for flow control of ABR traffic within ATM networks. These
schemes can be divided into two classes, closed-loop rate-based control schemes [4] and
hop-by-hop credit based control schemes [8]. Several papers have appeared describing the
performance of ABR transport protocols such as TCP over ATM networks with different
flow control schemes [3]. A comparison of the trade-offs between the two classes can be
found in [7].

Under the rate-based control model, control information indicating the maximum rate the
source can transmit is provided by the network to the source. In the credit-based paradigm,
a sender initially holds a predefined number of credits that is some function of the buffer
space in his receiver-peer. He may only send cells while he has credit, and he decrements
his credit count for each cell sent. The receiver-peer reissues credit back to the sender at a
rate that is a function both of the cells received from that sender and competition for his
buffer space from other senders. Both models can incur bandwidth overhead for the com-
munication of control information.

Since the focus of this research is to evaluate a mechanism to improve the QoS guarantees
that an ATM network can provide, we have concentrated our work on the CBR and VBR
traffic classes. We believe that it would be fruitful to investigate the interaction of predic-
tion-based scheduling with ABR flow control schemes. There are two areas of particular
interest. The first is to study whether the prediction-based scheduler adversely affects the

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance of ABR traffic, and whether or not the QoS guarantees provided to the CBR/
VBR traffic suffer in the presence of the flow control scheme. The second area for study
would include investigating a possible marriage of the predictions with the ABR flow con-
trol schemes to see if benefits can be derived. One benefit would be a possible bandwidth
savings by piggybacking control information for the flow control scheme onto the predic-
tion cells. Another benefit might be that knowing about the arrival of an ABR cell before it
arrives might allow for returning the credit for that cell earlier than would normally be
possible.

The Defer_Q queueing method discussed in Chapter 6 has already been used to success-
fully simulate ABR connections (TCP) in our simulator. While we have not had sufficient
time to investigate the behavior we observed, the fact that we have laid this groundwork
may yield results in further research using our simulator in the ABR area.

8.5 Phased VBR Sources

Frequently, the cause of congestion and cell loss in an ATM network is the simultaneous
arrival of bursts of traffic from VBR sources. Presumably, the call admission process
accepted these connections with the expectation that statistical multiplexing would nor-
mally keep such overlapping of bursts at low levels. Nevertheless, it is not possible to pre-
clude this possibility and simultaneously strive for high network utilization.

It is noted in [2] that if VBR bursts can be conveniently phased so that their arrivals at net-
work nodes do not overlap, high network utilization can be achieved with virtually no
queueing in the network switches. Several burst reservation schemes have been proposed
to dynamically reserve network bandwidth on a burstwise basis [1].

It may be possible to exploit the fact that we already induce delay in our AAL functions
and to tune this network edge delay on a burstwise basis to align with the phase boundaries
established at connection set up time. This presumes a call admission function that assigns
phases to VBR sources in such a way as to minimize the likelihood of overlapping bursts.
In this way, we may be able to achieve the same goals sought by burst reservation schemes
without the latency inherent in waiting for a reservation acknowledgment for each burst.

8.6 Incomplete Predictions

This research would explore a hybrid cell scheduler capable of transmitting cells that are
not predicted at all, which we describe as incomplete predictions. We denote this type as

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type C scheduling, contrasted with the scheduling classes discussed in Section 6.3.1.1,
"Future Time Slot Assignment (FT'SA)." and in Section 6.3.1.2, "Deferred FIFO Queue-
ing." While type B scheduling waits for an otherwise unused prediction slot to predict a
cell awaiting scheduling, type C scheduling utilizes an otherwise unused cell time to send
a waiting type C cell without first predicting it. Type C scheduling has the advantage that
delay-tolerant cells suffer less queueing delay in the switch than under type B scheduling,
but has the disadvantage of violating the principle that a downstream switch always has
complete foreknowledge of arriving traffic. It would be of interest to determine if there is
any value to having the complete foreknowledge for cells that have no strict requirements
on cell delay variation. If such foreknowledge is of no benefit, then class C scheduling
might be appropriate for ABR and UBR services.

8.7 Multicast

This research has not specifically addressed how prediction-based cell scheduling would
deal with multicast VCIs. This area merits further study.

8.8 Packet Networks

There is an existing base of experience for providing a level of QoS guarantees in tradi-
tional packet networks such as the Internet [5] [6]. While this thesis focuses on how pre-
diction-based scheduling can be used to improve the ATM network’s capability to provide
QoS guarantees, it would be of interest to investigate if the idea of prediction-based sched-
uling could be applied in packet-based networks.

8.9 Global QoS Information About Cell Delay

The notion of Global QoS State described in Section 6.3.2 does not contemplate global
knowledge of a cell’s cumulative delay. This seems to be a very difficult problem. To have
such information available would significantly buttress the Global QoS state that we have
implemented in our work.

8.10 Extending the Simulations in This Thesis

8.10.1 Comparison to Other Researchers’ Jitter Results

It would be interesting to compare already-published jitter results from simulations of Par-
tial Buffer Sharing or HOL priority queueing that provide concrete sets of results to those

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presented in this thesis. One of the drawbacks here is that other researchers have tended to

diffuse the computational problems related to connection-specific QoS parameters and

only study a small number of traffic classes. This makes comparison difficult.

8.10.2 Alternative Measures of DistanceFromQoSViolation

This would experiment with ideas proposed in Section 6.6, "Distance from Quality of Ser-
vice Violation Metrics." This would examine QoS loss performance for alternate measures

of DistanceFromQoSViolation.

8.11 References

(1]

(2]

3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

P. Boyeret al. A reservation principle with applications to the ATM traffic control.
Computer Networks and ISDN, 24:321-334, 1992.

R. Chauhan and R. Russell. Simulation of ATM networks. Technical Report TR-94-
19, University of New Hampshire, December 1994.

C. Fang, H. Chen, and J. Hutchins. Simulation analysis of TCP performance in
congested ATM LAN using DEC’s flow control scheme and two selective cell-drop
schemes. ATM Forum 94-0119, January 1994.

ATM Forum. ATM user-network interface specification ver. 3.0. September 1993.

P. Goransson. ST2 and resource reservation. In First Annual Conference on
Telecommunications R&D in Massachusetts, volume 5, pages 38—49, October 1994,

P. Goransson. Bandwidth reservation on a commercial router. Computer Networks
and ISDN, volume 28, no. 3, pages 351-370, January 1996.

A. Iwata,I. Mori, H. Suzuki, and M. Ott. ATM connection and traffic management
schemes. Communications of the ACM, Vol. 38, No. 2:72-89, February 1995.

H. Kung and T. Blackwell. Adaptive credit allocation for flow-controlled VCs.
ATM Forum 94-0282, March 1994.

P. Pancha and M. El-Zarki. Bandwidth requirements of variable bit rate MPEG
sources in atm networks. In [EEE INFOCOMM 93, volume 3, pages 902-909, March
1993,

A. Romanow and S. Floyd. Dynamics of TCP Traffic over ATM Networks. In ACM
SIGCOMM 94, pages 79-88, October 1994.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9
CONCLUSION

The problem of trading off high network utilization versus QoS guarantees is a challeng-
ing one confronted during recent years by researchers worldwide. Our research explored
some novel insights into the problem in hopes of identifying ways that the ATM network
of the future can realize its promise of good QoS performance. Novel insights we have
made in the course of our research include:

* Judicious insertion of a small delay at key points in the network can normalize the net-
work and remove a large stochastic component from the network behavior.

» We developed a mechanism to generate accurate short-term predictions about cell arriv-
als based on the insertion of a small delay.

e The normalized network permits easy distribution of these predictions to the locations
where they are needed.

 The added network regularity and the predictions can be used as the basis for heuristic
cell schedulers that improve QoS performance.

* QoS guarantees should be provided on a per-connection basis. Forcing connections to
conform to one of a small number of QoS classes is just an implementation conve-
nience that artificially restricts the QoS options available to the user.

* QoS loss violations must be distinguished from cell loss. A lost cell does not always
constitute a QoS violation.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o We developed the PTDM_D scheduler and showed that it can concurrently provide loss
and jitter QoS guarantees on a per-connection basis.

o Our jitter results demonstrate that use of predictions allows a scheduler to decide to
send a jitter-sensitive cell earlier than its ideal transmission time to avoid impending
competition for that ideal time slot. Without the anticipation of the future enabled by
the predictions, jitter-sensitive scheduling can actually add to congestion in attempting
to provide good jitter control. In general, it is impossible to know when it is wise to
artificially delay a cell without this anticipation.

We have shown that we can produce accurate predictions about future network traffic, and
that these predictions can ultimately produce improvements in QoS performance. These
improvements are most notable in the area of jitter control, where other scheduling tech-
niques have exhibited considerable weakness. Although penalties paid are increased aver-
age delay and added scheduling complexity, these did not adversely affect the overail
network performance and, in fact, improved QoS performance. This is an original
approach to scheduling in those cases where a significant percentage of the presented load
is jitter sensitive traffic, and that jitter sensitive traffic is itself comprised of traffic with
distinct degrees of jitter and loss tolerance. Actual test simulations performed in the course
of this research support the capability of this scheduling method to improve QoS perfor-
mance under this type of traffic scenario, and probably others as well.

These insights can yield an improvement in the utilization/QoS violation quotient for
future networks. In short, we hope this work will be of great value as researchers and engi-
neers continue to refine ATM as the hybrid network of the future.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A
SIMULATION
CONFIGURATIONS

In this chapter we provide details about the four simulation configurations used to produce
the results presented in Chapter 7.

As the topology shown in Figure 73, "Bottleneck Simulation Topology," is intended to
provide a simple scenario for studying loss or jitter QoS guarantees, we have intentionally
excluded cross traffic and multiple network hops as part of the simplification. This topol-
ogy is used for both configuration Bottleneck_Jitter as well as Bottleneck Loss.

We include cross traffic, multiple hops and varied-length communication links in the
topology depicted in Figure 74, "Cross_Traffic Simulation Topology." We use this topol-
ogy as the basis for the Cross_Traffic_HomLink, Cross_Traffic_HetLink and Cross_Traf-
fic_HetTraffic configurations. These configurations are used in Chapter 7 for a series of
tests to evaluate scheduling methods in a more realistic network scenario than that pro-
vided by the Bottleneck topology.

A.1 Bottleneck_Jitter

The traffic, link and switch configurations for Bottleneck_Jitter provide a simple vehicle
for the evaluation of the ability of different scheduling algorithms to control jitter. In this
configuration we have selected VBR traffic patterns so as to perturb the CBR traffic flow.
These bursts fan in towards the bottleneck link pp3. Large buffer switches (9,999 cells per
output link) are used to prevent packet loss during these periods of excess arrivals. These

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

large buffers prevent loss by allowing packets to queue. This is accompanied by the side
effect that the amount of time a packet spends buffered may vary greatly from one packet
to another. This variability is perceived at the receiver network boundary as jitter.

FIGURE 73. Bottleneck Simulation Topology

A.1.1 Traffic Sources

CBR Sources

Figure 73 depicts six identical CBR sources, gsource la, gsourcelaa, gsourcelab, gsour-
celb, gsourcelba, and gsource1bb. These sources have virtual circuits established to the
traffic sinks, sink2a, sink2aa, sink2ab, sink2b, sink2ba, and sink2bb, respectively. Each

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source generates ATM cells at a constant rate of 0.030000 cells per microsecond, or
30,000 cells/second.

VER Sources

Figure 73 depicts six identical VBR sources, gsourceIc, gsourceld, gsourcele, gsource If,
gsourcelg, and gsourcelh. These sources have virtual circuits established to the traffic
sinks, sink2c, sink2d, sink2e, sink2f, sink2g, and sink2h, respectively. Each source is an
On-Off source. The active period lasts exactly 105 microseconds, and the silent period
lasts exactly 3,895 microseconds. During its active period, each source generates ATM
cells at an active rate of 0.353000 cells per microsecond, or 353,000 cells/second. Since
cells are only emitted at this rate during the source’s active phase, the average number of
cells per second is:

—————105 x 353000 = 9266.25

105 + 3895

A.1.2 Communications Links

The communications links are all assumed to be 8.351 kilometers in length, so the link
propagation delay (assuming 5085 ns/km propagation in the optical fiber) is 42465 nano-
seconds, which is exactly 15 cell times (one cell takes 2831 nanoseconds to transmit at
OC-3 rates). Note that the effective propagation delay must additionally include the one
cell time attributable to cell serialization, so the effective propagation delay is 16 cell
times.

A.1.3 Quality of Service Requirements of Sources

The CBR sources in this configuration stipulate a target cell interarrival time (gos_dly -
parl) of 33,332 nanoseconds, with a jitter tolerance (qos_dly_par2) of 28,310 nanosec-
onds (10 cell times at OC-3 rates). The VBR sources in this configuration impose no
requirements related to jitter. The interarrival time of 33,332 ns is the direct result of the
CBR emission rate of 30,000 cells per second (i.e. 1/30000 = 33332 x 10™°). The jitter
tolerance equals 10 cell times at OC-3 rates. We found that selection of much lower jitter
tolerance (e.g., 2-3 cell times) invariably resulted in huge numbers of jitter violations due
to the presence of the bursty traffic used in this configuration. This was true regardless of
the cell scheduling discipline used.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The CBR and VBR sources in this configuration have no loss tolerance at all. That is, any
cell loss constitutes a QoS violation. This is done to create an environment where jitter can
be studied independently of side effects related to cell loss.

A.2 Bottleneck Loss

In this configuration we modify the traffic and switch characteristics used in Bottleneck -
Jitter to provide an environment for the study of QoS loss guarantees in a simple environ-
ment. The topology is the same as Bottleneck Jitter (Figure 73), but two of the VBR
sources are disabled and transmit no cells (gsourcelg, gsourcelh). The ATM switches
used here have limited buffer space (90 cells per output link). As in Bottleneck_Jitter, the
VBR bursts fan in towards a single link (pp3) and cause it to enter periods of congestion.
Unlike the large buffer switches of Bottleneck_Jitter, this periodic high cell arrival/service
ratio cannot be absorbed by queueing and instead results in cell loss due to lack of buffer
space. For those cells that are not dropped, little difference in the queueing delay is experi-
enced. Thus, this configuration does not provide an interesting scenario for the study of
jitter and is used only for studies related to cell loss.

A.2.1 Traffic Sources

CBR Sources

Figure 73 depicts six identical CBR sources, gsource la, gsource laa, gsourcelab, gsour-
celb, gsourcelba and gsourcelbb. These sources have virtual circuits established to the
traffic sinks, sink2a, sink2aa, sink2ab, sink2b, sink2ba, and sink2bb, respectively. Each
source generates ATM cells at a constant rate of 0.030000 cells per microsecond, or
30,000 cells/second. These sources are identical to those described in Section A.1.1.

VBR Sources

Figure 73 depicts four identical VBR sources, gsourcelc, gsourceld gsourcele, and
gsourcelf. These sources have virtual circuits established to the traffic sinks, sink2c,
sink2d, sink2e, and sink2f, respectively. Each source is an On-Off source. The active
period lasts 105 microseconds, and the silent period lasts 3895 microseconds. During its
active period, each source generates ATM cells at an active rate of 0.353000 cells per
microsecond, or 353,000 cells/second. This is identical to the VBR sources described in
Section A.1.1, generating 9,266.25 cells per second on the average.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2.2 Communications Links

The communications links are identical to those described in Section A.1.2 for Bottle-
neck_Jitter.

A.2.3 QoS Requirements of Sources

The sources in this configuration stipulate their loss tolerance in accordance with Table 3.
Neither the CBR sources nor the VBR sources in this configuration impose any require-
ments related to jitter.

TABLE 3. Loss Tolerance for Bottleneck_Loss
MO

Losses Interval
Tolerated per Length in
Source Interval Microseconds

gsourcela 2 10000
gsourcelaa 2 10000
gsourcelab 40 10000
gsourcelb 2 10000
gsourcelba 2 10000
gsourcelbb 40 10000
gsourcelc 40 10000
gsourceld 40 16000
gsourcele 2 10000
gsourcelf 40 10000

Table 3 reveals that we have selected non-zero loss tolerance for all 10 connections active
in this configuration. The loss tolerance falls into two categories: 1) 40 cells per 10000
microseconds (very loss tolerant) and 2) 2 cells per 10,000 microseconds (not very loss
tolerant). Since we believe that loss tolerance is not strictly related to a connection’s burst-
iness, we have designated both loss tolerant and loss intolerant connections for both CBR
and VBR classes. The selection of the measurement interval length of 10,000 microsec-
onds was arbitrary.

A3 Cross_Traffic HomLink

The topology and traffic patterns of Cross_Traffic_HomLink (see Figure 74) are copied
from the GFC2 standard simulation configuration currently in use within the ATM Forum
research community. This configuration is designed to facilitate the study of congestion

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dynamics of VC’s transiting a number of tandem switches. Cross-traffic at intermediate
switches competes for link bandwidth and switch buffer space. We illustrate these traffic
flows in Figure 28 on page 124. These traffic flows and the source traffic characteristics
are designed to produce buffer overflow in the intermediate switches. This topology is
used to evaluate how well different cell scheduling paradigms succeed at preserving QoS
guarantees in this overload setting,

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 74. Cross_Traffic Simulation Topology

Igsrqldfll Igs_ml_d--?l [ﬂnk 2d-3| |sink 2d-6i

sink 2b-3

pp2b-3

[sink 2E| | sink 2a-l|

pp2bf2

sink 2p-1

261 PR
pp2d-6 °* pp2a
2¢-3 pp2b-
sw2 sw3 swd swS
pp3b pp3c ppid
pie- p2e-6
ple-6
host 1c-2 host 2e-6
host 1e-6

R

plc1t .-/:p c3

pplhél /pplb-3

host 1c-1} | host 1¢-3 e-5 2e-5
ripr] | | Lotied] [hettes] w ¥
host 1e-5| pp2k-1 pp4e-d
' hest 2e-5
pplp-3 pple-2
41 \ppif-2 pple-1 / pple-2 [pple-4 pple-3
- host 2e-2
[host 1a-2| * [hest 1b-2| host 1f-1 host 1e-1 host 1e-4

host 2e-1

host 1b-3 Ihoﬁt 112 | Ihost le-ZI i host 1e-3|

host 2¢-3

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.3.1 Traffic Sources

The traffic source characteristics are summarized below in Table 4. The peak rate for the
VBR sources (353,000 cells/second) represents the rate if the source were to continually
emit cells in on mode. This is clearly not the average cell emission rate as the relative
durations of the on and off periods must be taken into consideration. The column Nominal
Cell Spacing captures this in that the nominal cell interarrival time is calculated for these
sources as if the VBR bursts were smoothed. Thus, if the cell spacing is divided into one
second (1,000,000,000 ns), the quotient provides the average cells/second emission rate of
the source. These rates are 55,875 cells/second for a cell spacing of 17,897 ns, 47,987
cells/second for a cell spacing of 20,839 ns, and 9,266 cells/second for a cell spacing of
105,090 ns. (The rates of 55,875, 17,897, and 47,987 cells/second do not appear in Table 4
and are only presented here to explain the apparent discrepancy between the Peak Rate
and Nominal Cell Spacing columns in that table.)

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 4. Source Traffic Characteristics for Cross_Traffic_HomLink
_

Losses Nominal
Peak On Off Tolerated | Interval Cell Jitter
Rate Duration { Duration per Length | Spacing | Tolerated
Source || Sink | cells/sec Hs us Interval in us in ns in ns
la-1 2a-1 30000 n/a n/a 5 25000 33333 20000
I la-2 2a-2 30000 n/a n/a S 25000 33333 20000 §
la-3 2a-3 30000 n/a n/a 5 25000 33333 20000
1b-1 2b-1 30000 n/a n/a test-dep. | test-dep. 33333 18000
1b-2 2b-2 30000 na n/a “ «“ 33333 22000
1b-3 2b-3 30000 n/a n/a “ “ 33333 26000
1c-1 2c¢-1 353000 205 1395 40 10000 17897 0
| 1c-2 2¢c-2 353000 205 1395 40 10000 17897 0
Ic-3 2¢-3 353000 205 1395 40 10000 17897 0
1d-1 2d-1 30000 n/a n/a 5 25000 33333 20000
1d-2 2d-2 30000 n/a n/a 5 25000 33333 20000
1d-3 24-3 30000 n/a n/a 5 25000 33333 20000
1d-4 2d-4 30000 n/a n/a 5 25000 33333 20000
1d-5 2d-5 30000 n/a n/a 5 25000 33333 20000
1d-6 2d-6 30000 n/a n/a 5 25000 33333 20000
le-1 2e-1 353000 305 2500 40 10000 20389 0
le-2 2e-2 353000 105 3895 40 10000 105090 0
le-3 2e-3 353000 105 3895 40 10000 105090 0
le-4 2e-4 353000 105 3895, 40 10000 105090 0
le-5 2¢-5 353000 105 3895 40 10000 105090 0
le-6 2e-6 353000 105 3895 40 10000 105090 0
1£-1 2f-1 353000 305 2295 40 10000 20389 0
1£-2 2f-2 353000 305 2295 40 10000 20389 0

A.3.2 Communications Links

The communications links are identical to those described in Section A.1.2 for Bottle-

neck_Jitter.

188

A.3.3 Quality of Service Requirements of Sources

The QoS requirements of the sources are summarized above in Table 4.

A.4 Cross_Traffic_HetLink

This configuration is identical to Cross_Traffic HomLink except that the propagation
delay of some of the communications links is increased. We use this configuration to study
the effects of mixed-length communications links on the prediction-based cell scheduler.

A4.1 Traffic Sources

The traffic source characteristics are summarized in Table 4. These are identical to those
in Cross_Traffic_ HomLink.

A.4.2 Communications Links

Links pp3a and pp3b are extended from 8.351 to 25.053 kilometers in length, so the link
propagation delay on these links is increased from 42,465 nanoseconds to 133,057 nano-
seconds, which is exactly 47 cell times (one cells takes 2,831 nanoseconds to transmit at
OC-3 rates). Note that the effective propagation delay must additionally include the one
cell time attributable to cell serialization, so the effective propagation delay is 48 cell
times, or 3 basic time cycles.

All remaining communications links are identical to those described in Section A.1.2 for
Bottleneck_Jitter.

A.4.3 Quality of Service Requirements of Sources

The QoS requirements of the sources are summarized in Table 4. These are identical to
those in Cross_Traffic HomLink.

A.5 Cross_Traffic_HetTraffic

Except for the source traffic characteristics, Cross_Traffic_HetTraffic is identical to
Cross_Traffic_HetLink. The source traffic is very different, however, from the source traf-
fic in Cross_Traffic_HetLink. We utilize Cross_Traffic_HetTraffic to provide a heteroge-
neous traffic mix that more realistically reflects the traffic that would be present in an
ATM network serving multiple types of CBR and VBR traffic.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.5.1 Traffic Sources

The traffic source characteristics are summarized in Table 5. The format of Table 5
requires some explanation as it includes four new columns. The first of these is the column
entitled “Enabled at Load Level, explained in Section A.5.5 below. The remaining three
additions are entitled “Jitter Tolerance in ns.”, at three levels (low, med, high). These three
columns are discussed in Section A.5.6.

A5.2 Communications Links

All communications links are identical to those described in Section A.4.2 for Cross_Traf-
fic_HetLink.

A5.3 Quality of Service Requirements of Sources

The connections may be divided into two sets. The first set consists of connections that are
both jitter-sensitive and loss-sensitive. The second set is comprised of connections that are
only loss-sensitive. Both sets include both CBR and VBR connections. Cross_Traf-
fic_HetTraffic is the only configuration of those tested in this research to include a jitter-
sensitive VBR connection. Cross_Traffic_HetTraffic provides a wide variety of loss toler-
ances within the set of loss-sensitive connections. Similarly, among the connections that
are both jitter and loss sensitive, there is a wide range of jitter tolerances. (We maintain
this diversity of jitter tolerances within each of the three classes of overall jitter tolerance
described below in Section A.5.6.) Further details on the QoS requirements of the sources
can be found in Table 5.

A.5.4 Switch Buffer Sizes

The ATM switches used in Cross_Traffic_HetTraffic are configured to have a uniform out-
put link buffer size of 90, 130, 170 or 200 celis. The buffer size is uniform in that for a
given simulation run, all switches will be configured to have one of these four values. The
switches’ buffer size is varied across different simulation runs in order to observe the
effect of this parameter.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A55 Traffic Loading Level

The column labeled “Enabled at Load Level” in Table 5 specifies at which loading level
the indicated traffic source becomes active. A source is active at all levels numbered
greater than or equal to the level at which it becomes active. For example, at loading level
three, active sources include all those that are enabled at levels one, two and three. At
loading level five, all the sources in Table 5 are active. This parameter is varied across dif-
ferent simulation runs in order to observe the affect of loading level on QoS performance.

A.5.6 Overal! Jitter Tolerance

In order to measure different schedulers’ overall performance relative to jitter, we use
three sub-variants of Cross_Traffic_HetTraffic with a low, medium, and high overall jiﬁer
tolerance, respectively. The difference between the overall levels of jitter tolerance is that
each jitter-sensitive connection’s tolerance is relaxed by an additional 6000 ns with each
incremental increase in the overall degree of tolerance. This increase is evident in Table 5
by comparing the jitter tolerance for any jitter-sensitive connection in the three columns
entitled “Jitter Tolerance in ns (low)”, “Jitter Tolerance in ns (med)” and “Jitter Tolerance
in ns (hi)”. Note that in the presentation of the simulation data, the overall jitter tolerance
is held constant for all tested combinations of traffic loading level and buffer size. For this
reason, three completely separate sets of results are presented, one for the low, one for the
medium, and one for the high overall jitter tolerance.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE S. Source Traffic Characteristics for Cross_Traffic_HetTraffic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L
Cn Off | Losses Nominal | Jitter | Jitter | Jitter
Enabled Peak Dur- | Dur- | Toler | Imterval Cell Toler. | Toler. | Toler.
at Load Rate ation | ation per Length | Spacing | inps | inns | inns
Source Level | cells/sec us ps | Interval | in US inns (ow) | (med) | (hi)
la-1 1 30000 n/a w/a 2 25000 33333 0 0 0
la-2 1 30000 wa n/a 40 25000 33333 0 0 0
1a-3 1 30000 n/a n/a 100 25000 33333 0 0 0
1b-1 1 30000 n/a n/a 0 25000 33333 6000 | 12000 | 18000
1b-2 1 30000 na n/a 0 25000 33333 9000 | 15000 | 21000
1b-3 1 30000 w/a n/a 30 2500 33333 0 0 0
lc-1 4 353000 | 205 | 1395 40 10000 17897 0 0 0
lc-2 3 353000 | 205 | 1395 40 10000 17897 0 0 0
1c-3 2 353000 | 205 | 1395 40 10000 17897 0 0 0
1d-1 1 30000 n/a n/a 0 25000 33333 6000 | 12000 | 18000
1d-2 1 30000 n/a n/a 0 25000 33333 6000 | 12000 | 18000
1d-3 1 30000 n/a n/a 0 25000 33333 12000 | 18000 | 24000
1d-4 1 30000 n/a n/a 0 25000 33333 12000 | 18000 | 24000 I
1d-5 1 30000 n/a n/a 0 25000 33333 20000 | 26000 | 32000 I
1d-6 1 30000 n/a n/a 0 25000 33333 20000 | 26000 | 32000 I
le-1 3 353000 105 | 3895 2 100060 16666 0 0 0 I
le-2 4 353000 105 | 3895 40 10000 16666 0 0 0
le-3 1 353000 105 | 3895 2 16000 16666 0 0 0 I
le-4 5 353000 105 | 3895 80 10000 16666 0 0 0
le-5 1 353000 105 | 3895 2 1000 16666 0 0 0
le-6 1 60000 105 | 3895 0 10000 16666 18000 | 24000 | 30000
1f-1 3 353000 | 305 | 2295 40 10000 20389 0 0 0
1f-2 2 353000 | 305 | 2295 40 10000 20389 0 0 0
192

Appendix B
DETAILED
SIMULATION

RESULTS

B.1 Tables

In this section we provide the detailed tabular data which support the planar and surface
plots presented in Chapter 7.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 6. Jitter Violations, constant load

Number of CBR Connections 1 2 3 4 5 6
Prediction PTDM
Jitter Tolerance
1 cell time 521 | 2777 | 4425 | 3259 | 3555 | 3849
2 cell times 0 | 275 | 1460 | 985 | 916 | 1283
3 cell times 0 1 236 | 146 | 125 | 181
4 cell times 0 0 0 0 0 0
5 cell times 0 0 0 0 0 0
6 cell times 0 0 0 0 0 0
7 cell times 0| o | o 0 | o o |
8 cell times o | o[o[o o] o}
9 cell times 0 0 0 0 0 o i
10 cell times 0 0| o 0 | o o |
Link Utilization (pp3) 2% | 72% | 72% | 72% | 72% | 72% }
No Prediction NORMFIFO X
Jitter Tolerance
1 cell time 505 | 3429 | 5501 | 5569 | 6713 | 7264
2 cell times 260 | 1205 | 3140 | 3490 | 5345 | 5656
3 cell times 240 | 256 | 1201 | 2173 | 3914 | 4157 I
4 cell times 240 | 255 | 440 | 1166 | 2434 | 2795 }
5 cell times 239 | 253 | 261 | 699 | 1286 | 1812 |
6 cell times 231 | 249 | 258 | 422 | 824 | 1329 §
7 cell times 214 | 245 | 255 | 272 | 563 | 992
8 cell times 202 | 243 | 251 | 2711 | 361 | 724
9 cell times 181 | 241 | 249 | 268 | 278 | 512
10 cell times 158 | 238 | 248 | 136 | 276 | 356
Link Utilization (pp3) 2% | 72% | 72% | 72% | 2% | 72% !

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 7. Jitter Violations as a Percentage of Offered Traffic, constant load

 E———— R
Number of CBR Connections 1 2 3 4 5 6 I
Prediction PTDM
Jitter Tolerance
1 cell time 6 31 49 36 40 43
2 cell times 0 3 16 11 10 14
3 cell times 0 0 3 2 1 2
4 cell times 0 0 0 0 0 0
5 cell times 0 0 0 0 0 0
6 cell times 0 0 0 0 0 0
7 cell times 0 0 0 0 0 0
8 cell times 0 0 0 0 0 0
9 cell times 0 0 0 0 0 0
10 cell times 0 0 0 0 0 i}
Link Utilization (pp3) 2% | 72% | 72% | 72% | 72% | 72%
No Prediction NORMFIFO |
Jister Tolerance J
1 cell time 6 38 61 62 75 81
2 cell times 3 13 35 39 58 63
3 cell times 3 3 13 24 43 46
4 cell times 3 3 5 13 27 31
5 cell times 3 3 3 8 14 20
6 cell times 3 3 3 5 9 15
7 cell times 2 3 3 3 6 11
8 cell times 2 3 3 3 4 8
9 cell times 2 3 3 3 3 6
10 cell times 2 3 3 3 3 4
Link Utilization (pp3) 2% | 72% | 72% | 72% | 72% | 72%

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 8. Jitter Violations, increasing load

.
Number of CBR Connections 1 2 3 4 5
Prediction PTDM
Jitter Tolerance
1 cell time 93 | 712 | 1771 | 1712 | 2305
2 cell times I 73 596 492 572
3 cell times 1 1 88 76 88
4 cell times 0 0 0 0 3
S cell times 0 0 0 0 1
6 cell times 0 0 0 0 1
7 cell times 0 0 0 0 1
8 cell times 0 0 0 0 0
9 cell times 0 0 0 0 0
10 cell times 0 0 0 0 0
Link Utilization (pp3) 31% | 40% | 48% | 56% | 64%
No Prediction NORMFIFO
Jitter Tolerance _
1 cell time 316 | 1731 | 3007 | 3648 | 5408
2 cell times 292 1134 | 2102 | 2322 | 3995
3 cell times 291 635 1254 | 1769 | 2913
4 cell times 287 630 1060 | 1875 | 2212
5 cell times 285 627 1049 | 1539 | 1820
6 cell times 284 624 | 1041 | 1427 | 1482
7 cell times 282 622 950 | 1150 | 968
8 cell times 280 | 616 | 774 | 620 | 687
9 cell times 278 503 414 334 462
10 cell times 275 211 224 224 313
Link Utilization (pp3) 29% Il37% 45% | 54% | 62%
196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 9. Jitter Violations as a Percentage of Offered Traffic, increasing load
- L

Number of CBR Connections 1 2 3 4 5 6
Prediction PTDM
Jitter Tolerance

1 cell time 6 24 40 29 31 37
2 cell times 0 2 13 8 8 12

3 cell times 0 0 2 1 1 2

4 cell times 0 0 0 0 0 0

5 cell times 0 0 0 0 0 0

6 cell times 0 0 0 0 0 0

7 cell times 0 0 0 0 0 0

8 cell times 0 0 0 0 0 0

9 cell times 0 0 0 0 0 0

10 cell times 0 0 0 0 0 0

Link Utilization (pp3) 31% | 40% | 48% | 56% | 64% | 2%
No Prediction NORMFIFO
Jitter Tolerance

1 cell time 21 58 67 61 72 81

2 cell times 20 38 47 39 52 64

3 cell times 19 21 28 29 39 48

4 cell times 19 21 24 26 30 33

5 cell times 19 21 23 26 24 22

6 cell times 19 21 23 24 20 16

7 cell times 19 21 21 19 13 12

8 cell times 19 21 17 10 9 9

9 cell times 19 17 9 6 6 6

10 cell times 18 7 5 7 4 4

Link Utilization (pp3) 29% | 37% | 45% | 54% | 62% | 2%

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 10. Loss Violations, Local QoS Knowledge, Bottleneck_Loss
L

MR T
Length of Measurement Interval (L15) || S000 | 10000 | 15000 | 20002 | 25000
Prediction w/ Displacement
(PFIFO_D_NG)
Loss Tolerance per meas. int.
1 cell 10 23 30 36 52
2 cells 4 15 28 38 56
4 cells 0 3 8 24 44
8 cells 0 0 0 i 21
Prediction w/o Displacement (PFIFO)
Loss Tolerance per meas. int. .
" lcell 69 | 713 | 77 79 | 8l
2 cells 51 59 67 71 75
4 cells 15 | 31 47 55 66 {
8 celis 0 0 11 14 35 |
No Prediction (NORMFIFO) i
Loss Tolerance per meas. int.
1cell 80 86 90 94 94
2 cells 58 70 78 86 86
4 cells 12 38 54 70 77
8 cells 0 1 11 30 53 |

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 11. Loss Violations, Global QoS Knowledge, Cross_Traffic_HomLink, small buffer

SO
Length of Measurement Interval (1) || 5000 | 10000 | 15000 | 20000 | 25000 §
Prediction w/ Global Knowledge with |
Displacement (PFIFO_D)
Loss Tolerance per 5000 us
1 cell 70 66 62 63 59 |
2 cells 76 71 69 67 - 65
I 4 cells 87 85 79 68 66
8 cells 113 89 84 73 66
Prediction w/o Global Knowledge with |
Displacement (PFIFO_D_NG)
Loss Tolerance per 5000 s
T cell 176 | 173 169 | 163 168 |
2 cells 198 | 19 187 183 188
4 cells 226 | 225 221 21% 209
8 cells 256 | 272 276 290 277
No Prediction (NGRMFIFO)
Loss Tolerance per 5000 pis
1 cell 531 | 531 532 533 531
2 cells 521 | 521 | 523 | 525 | 521 |
4 cells 501 | 501 505 509 501§
8 cells 461 | 461 469 477 497J_|

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 12. Loss Violations, Global QoS Knowledge, Cross_Traffic_Hetlink, small buffer

Length of Measurement Interval (LLS) || 5000 | 10000 | 15000 | 20000 | 25000
Prediction w/ Global Knovwledge with T
Displacement (PFIFO_D)

Loss Tolerance per 5000 |\.s
1 cell 66 64 57 56 54
2 cells 72 69 62 61 58
4 cells 88 76 72 62 60
8 celis 110 82 85 68 61

Prediction w/o Global Knowledge with
Displacement (PFIFO_D_NG)

Loss Tolerance per 5000 1S
1 cell 192 | 184 179 178 179
2 cells 211 201 200 192 196
4 cells 241 232 226 225 221
8 cells 268 289 288 304 296
No Prediction (NORMFIFO)
Loss Tolerance per 5000 \.s
1 cell 527 527 528 529 527
2 cells 517 517 519 521 517
4 cells 497 497 501 505 497
Bcells 458 457 465 473 491

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 13. Loss Violations, 90 cell buffer, PTDM_D vs. others

p— >
Length of Measurement Interval (Us) || 5600 | 10000 | 15000
PTDM_D Results
Loss Tolerance per meas. int.
1cell
2 cells
4 cells
8 cells
PFIFO_D Results
Loss Tolerance per meas. int.
1 cell
2 cells
4 cells
8 cells
PTDM Results
Loss Tolerance per meas. int.
1cell
2 cells
4 cells
8 cells
NORMFIFO Results
Loss Tolerance per meas. int.
1cell
2 cells
4 cells
8 cells

20000 | 25000 |

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 14. Loss Violations, 9999 celi buffer, PTDM_D vs. others

. ———— -
Length of Measurement Interval (J15) || 5000 | 10000 | 15000 | 20000 | 25000 I
PTDM_D Resulis i
Loss Tolerance per meas. int. I
1 cell 0 | 0 0 | 0 o |
2 cells 0 0 0 0 0o §
4 cells 0 0 0 0 0
8 cells 0 0 0 0 0 I
PFIFO_D Results
Loss Tolerance per meas. int.
1cell 0 0 0 0 0
2 cells 0 0 0 0 0
4 cells 0 0 0 0 0 l
8 cells 0 0 0 0 o |
PTDM Results
Loss Tolerance per meas. int.
1cell 163 161 162 163 161
| 2cells 155 151 153 155 151
I 4 cells 139 131 135 139 131
I 8 cells 108 | 95 99 | 104 | 120
NORMFIFO Results
Loss Tolerance per meas. int.
1 cell 0 0 0 0 0
2 cells 0 0 0 0 0
4 cells 0 0 0 0 0
8 cells 0 0 0 0 0

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 185. Jitter Violations, 90 cell buffer, PTDM_D vs. others

Length of Measurement Interval (l15) || 5000 | 10000 | 15000 | 20000
PTDM_D Results
Loss Tolerance per meas. int.
Toell M98 | 9 | 9 | o4
2 cells 108 98 94 96
4 cells 110 § 102 95 91
8 cells 112 96 102 104
PFIFO_D Results
Loss Tolerance per meas. int.
1cell (1430 | 1435 | 1437 1439
2 cells 1423 | 1427 | 1434 | 1429
l 4 cells 1408 | 1411 | 1421 | 1408
8 cells 1380 | 1376 | 1395 | 1405
PTDM Results
Loss Tolerance per meas. int. u
1 cell 229 | 229 229 229
| 2 cells 229 | 229 | 229 | 229
4 cells 229 | 229 229 229
8 cells 229 | 229 229 229
NORMFIFQ Results
Loss Tolerance per meas. int. fl
1 cell 1247 | 1247 | 1247 | 1247
2 cells 1247 | 1247 | 1247 | 1247
4 cells 1247 | 1247 | 1247 | 1247
‘ 8 cells I 1247 | 1247 | 1247 | 1247
B R VT S

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 16, Jitter Violations, 9999 cell buffer, PTDM_D vs. others

———ra
Length of Measurement Interval (LLS) || 5000 | 10000 | 15000 | 20000 | 25000
PTDM_D Results
Loss Tolerance per meas. int.
Toell 0 0 0 0 o 1
2 cells 0 0 0 0 0
4 cells 0 0 0 0 0
8 cells 0 0 6 12 16
PFIFO_D Results
Loss Tolerance per meas. int.
1cell 1538 | 1538 | 1538 | 1538 | 1538 |
2 cells 1538 | 1538 | 1538 | 1538 | 1538
4 cells 1538 | 1538 | 1538 } 1538 | 1538
8 cells 1538 | 1538 | 1538 | 1538 | 1538
PTDM Results
Loss Tolerance per meas. int.
Tcell 53 | 53 | 53 | 53 | 53 |
2 cells 53 53 53 53 53 i
4 cells 53 53 53 53 53
8 cells 53 53 53 53 53 I
NORMFIFO Results i
Loss Tolerance per meas. int.
1cell 1661 | 1661 | 1661 | 1661 | 1661
2 cells 1661 | 1661 | 1661 | 1661 | 1661
4 cells 1661 | 1661 | 1661 | 1661 | 1661 I
8 cells 1661 | 1661 | 1661 | 1661 | 1661
204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 17. Low Jitter Tolerance Overall QoS Violations

| Loading Level lr 1 2 3 4 5
PTDM_D
Buffer Size
90 cells 0 0 2783 5376 5669
130 cells 0 1 1159 2122 2512
170 cells 0 1 140 192 289
200 cells 0 1 3 14 65
HOLDISP
Buffer Size
90 cells 1684 | 1592 8358 | 12955 | 13532
130 cells 1684 | 1592 6433 7637 7745
170 cells 1684 | 1592 1562 1466 1580
200 cells 1684 | 1592 1562 1532 1504
NORMFIFO
Buffer Size
90 cells 3235 | 4337 6267 7977 8275
130 cells 3235 | 4337 5432 6084 6275
170 cells 3235 | 4337 5089 5507 5454
200 cells 3235 | 4337 5089 5506 5497
__-—-n-—————ﬂ_ﬁn___—-_

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 18. Medium Jitter Tolerance Overall QoS Violations

Loading Level 1 2 3 4 5
PTDM D
Buffer Size
90 cells 0 0 2782 5371 5659
130 cells 0 0 1158 2113 2516
170 cells 0 0 138 179 280
200 cells 0 0 0 7 19
HOLDISP
Buffer Size
90 cells 197 191 6994 | 11597 | 12245
130 cells 197 191 5094 6309 6398
170 cells 197 191 203 190 228
200 cells 197 191 203 183 199
NORMFIFO
Buffer Size
90 cells 1224 | 2083 3987 5765 6140
130 cells 1224 | 2083 3073 3841 4070
170 cells 1224 | 2083 2846 3279 3252
200 cells 1224 | 2083 2846 3220 3253

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 19. High Jitter Tolerance Overall QoS Violatiens

Loading Level 1 2 3 4 5 I
PTDM D 1
Buffer Size l
90 cells 0 0 2782 | 5369 | 5654
130 cells 0 0 1157 | 2114 | 2529
170 cells 0 0 138 | 178 | 295
200 cells 0 0 0 5 10
HOLDISP
Buffer Size l
90 cells 0 0 | 6772 | 11430 | 12040
130 cells 0 0 4907 | 6112 | 6197 |
170 cells 0 0 0 6 25§
200 cells 0 0 0 2 0
NORMFIFO 1
Buffer Size l
90 cells 425 | 722 | 2509 | 4255 | 4580
130 cells 425 | 722 | 1545 | 2138 | 2459 1
170 cells 425 | 722 | 1220 | 1503 | 1535
200 cells 425 | 722 | 1220 | 1461 | 1530

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 20. Low Jitter Tolerance Jitter Violations Gnly

Loading Level 1 2 3 4 5

PTDM D

Buffer Size
90 cells 0 0 1 9 22
130 cells 0 1 1 7 17
170 cells 0 1 2 8 32
200 cells 0 1 3 8 20

HOLDISP

Buffer Size
90 cells 1684 | 1592 2114 2041 2008
130 cells 1684 | 1592 1881 1869 1849
170 cells . 1684 | 1592 1562 1460 1555
200 cells 1684 | 1592 1562 1530 1504

NORMFIFO

Buffer Size
90 cells 3235 | 4337 4769 4828 4827
130 cells 3235 | 4337 4955 5294 5182
170 cells 3235 | 4337 5089 5479 5412
200 cells 3235 | 4337 5089 5505 5494

T AR

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 21. Medium Jitter Tolerance Jitter Violations Only

Loading Level T 1 2 3 4 5
PTDM D
Buffer Size
| 90 cells 0 0 0 3 10
i 130 cells 0 0 0 1 8
l 170 cells 0 0 0 3 14
200 cells 0 0 0 2 8
HOLDISP
Buffer Size
90 cells 197 | 191 750 683 721
130 cells 197 | 191 542 541 502
I 170 cells 197 | 191 203 184 203
200 cells 197 | 191 203 181 199
NORMFIFO
Buffer Size
90 cells 1224 | 2083 | 2489 | 2616 | 2692
130 cells 1224 | 2083 | 2596 | 3051 | 2977
170 cells 1224 | 2083 | 2846 | 3251 | 3210
i 200 cells 1224 | 2083 | 2846 | 3218 | 3250
e

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 22. High Jitter Tolerance Jitter Violations Only

T L
Loading Level 1 2 3 4 5
PIDM D
Buffer Size
90 cells 0 0 0 1 8
130 cells 0 0 0 2 4
170 cells 0 0 0 4 7
200 cells 0 0 0 4 5
HOLDISP
Buffer Size
90 cells o 0 528 | 516 | 516
130 cells 0 0 355 344 301
170 cells 0 0 0 0 0
200 cells 0 0 0 0 0
NORMFIFO
Buffer Size
90 cells 425 722 1011 1106 i132
130 cells 425 722 1068 1348 1366
170 cells 425 722 1220 1475 1493
200 cells 425 722 1220 1459 1527

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 23. Low Jitter Tolerance Loss Violations Only
=

Loading Level 1 2 3 4 5

PTIDM D

Buffer Size
90 cells 0 ¢ 2782 5367 5647
130 cells 0 0 1158 2115 2495
70 celis 0 0 138 184 257
200 cells 0 90 0 6 45

HOLDISP

Buffer Size
90 cells ¢ 0 6244 | 10914 | 11524
130 cells 0 0 4552 5768 5896
170 cells 0 0 0 6 25
200 celis 0 0 0 2 0

NORMFIFO

Buffer Size
90 cells 0 0 1498 3149 3448
130 cells 0 0 477 790 1093
170 cells 0 0 0 28 42
200 cells 0 0 0 2 3

e e s e

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 24. Medium Jitter Tolerance Loss Violations Only

Loading Level 1 2 3 4 5
PTDM D
Buffer Size
90 cells 0 0 2782 5368 5649
130 cells 0 0 1158 2112 2505
170 cells 0 0 138 176 266
200 cells 0 /] 0 5 11
HOLDiSP
Buffer Size
90 celis 0 0 6244 | 10914 | 11524
130 cells 0 0 4552 5768 5896
170 cells 9 0 0 6 25
200 celis 0 0 0 Z 0
NGRMFIFO
Buffer Size
90 cells 0 0 1498 3149 3448
130 cells 0 0 477 790 1093
170 cells 0 0 0 28 42
200 cells 0 0 0 2 3

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 25. High Jitter Tolerance Loss Violations Only

Loading Level 1 2 3 4 5
PTDM D
Buffer Size
90 cells 0 0 2782 368 5646
130 cells 0 0 1157 2112 2525
170 cells 0 0 138 174 288
200 cells 0 0 0 1 5
HOLDISP
Buffer Size
| 90 cells 0 0 6244 | 10914 | 11524
130 cells 0 0 4562 5768 5796
170 cells 0 0 0 6 25
200 celis 0 0 0 2 0
NORMFIFO
Buffer Size
90 cells 0 0 1498 3149 3448
130 cells 0 0 477 790 1093
170 cells] 0 0 28 42
I 200 ceils 0 0 0 2 3 |

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 26. Link Utilization (%), Comparison of 4 policies, small buffer switches

Link Name pp3a | pp3b | pp3c | pp3d | pp2b-1 | pp2b-2 | pp2b-3 I
PTDM_D Results J
downstream 82 67 79 40 14 14 14
upstream 6 6 6 6 6 6 6
PFIFO_D Results
downstream 82 72 88 50 15 15 14
upstream 6 6 6 6 6 6 6
PTDM Results
downstream 82 67 77 40 13 13 13
upstream 6 6 6 6 6 6 6
NORMFIFO Results
downstream 76 66 81 43 8 8 8
upstream 0 0 0 0 0 0 0
W——m——

TABLE 27. Link Utilization (%), Comparison of 4 policies, large buffer switches

Link Name pp3a | pp3b | pp3c | pp3d | pp2b-1 | pp2b-2 | pp2b-3
PTDM_D Results
downstream 82 80 96 56 15 15 15
upstream 6 6 6 6 6 6 6
PFIFO_D Results
downstream 82 80 97 57 15 15 15
upsiream 6 6 6 6 6 6 6
PTDM Results
downstream 82 | 81 | 96 | 55 14 15 15
upsiream 6 6 6 6 6 6 6
NORMFIFO Results
downstream 76 75 o1 51 8 8 8
upstream 0 0 0 0 0 0 0

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 28. Throughput, Comparison of 4 policies, small buffer switches
) . e

I Source/Sink Name sink 1b-1 | sink 1b-2 | sink 1b-3
i PTDM_D Results
| cell received 1353 1353 1382
per second throughput 27060 27060 27640
PFIFO_D Results
cells received 1478 1478 1446
per second throughput 29560 29560 28920
PTDM Results
i cells received || 1214 1214 1216
i per second throughput I[24280 24280 24320
NORMFIFO Results I
cells received H 1373 1373 1364
per second throughput " 27460 27460 27280

TABLE 29. Throughput, Comparison of 4 policies, large buffer switches
[y

| Source/Sink Name sink1b-1 | sink 1b-2 | sinkib-3
i PTDM_D Results
cell received 1500 1500 1500
per second throughput 30000 30000 30000
PFIFO_D Resylts If
cells received I 1505 1505 1504
per second throughput 30100 30100 30080
PTDM Resuits
cells received 1408 1408 1500
per second throughput i 28160 28160 30000
NORMFIFO Results
cells received 1496 1496 1495
per secomi throughput 29920 29922_ 29900

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

TABLE 30. Raw Cell Loss vs. Cell Loss Violations

Raw Cell | Raw Cell | Raw Cell | Total Raw | Total Loss | Violations as I

Loss 1b-2 | Loss 1b-2 | Loss 1b-3 | Cell Loss | Violations | % of raw loss
PTDM D 192 147 155 494 406 82% i
PFIFQ D 23 20 72 115 62 53%
PTDM 358 361 358 1077 9299 93%
NORMFIFOC 199 195 203 597 519 86%

TABLE 31. Components of Additional Delay Due to Prediction-Based Scheduling (in cell times)

gnrb
Cell Total
AAL AéL gnra gorb Spacing | Additienal
PredictHorizon | BY B BB BB Delay | Delay

1 16 16 16 16 7 71

2 32 16 16 16 7 87 |

3 48 16 16 16 7 103

N, AT A

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Delay Distributions

In this section we supplement the delay distribution data that was provided in Chapter 7.
The delay distributions provided here were all obtained from the tests described in Section
7.8. The results presented here were discussed in Section 7.12.

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 75. Time-in-system, pp3b, small buffer switch (PFIFO_D)

-+ 0

w—-——=00

CBR Deloy ot
et 750, PAIFQ D
10000y
1000
1007
10

140 150 160 170 180 150 200 210 220 280 240 250 240 270 280 250 300 310 0 330 30
Deoyin G fimes

FIGURE 76. Time-in-system, pp2b-1, smail buffer switch (PFIFO_D)

-0 - 02

o —-—00

CBR Delay
b, buff=50, PRIFQ D
10000r
1000r
1007
1* . ; i A HHHHHHHHHH
240 270 280 250 300 310 320 330 340 350 340 370 380 30 400 410 420 430 440 450 40

Deloyin G fives

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 77. Time-in-system, pp3b, small buffer switch (NORMFIFO)

CBR Delay ot
[0 BLff=50, NCRVFIFO
100y
N
° 10m
(o]
L0
c
e
R
' | l !
S
D DO D D O 0 100 120 190 140 150 160 170 180 150 A0 210 20
DelcyinG fimes

FIGURE 78. Time-in-system, pp2b-1. small buffer switch (NORMFIF 0)

CBR Deiay ot
o1, =50, NCRMAFO

10000r
N
(o] 1000+
o)
o
C
e
|
| 10r
s [y

80 S0 100 1710 120 130 140 190 140 170 180 190 200 210 220
DeayinGdl tirres

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 79. Time-in-system, pp3b, small buffer switch (PTDM)

CBR Deloy b
G =50, PTOM
10000y
N
o 1o
o
oo
C
e
|
| 10
S
1 i H Y v HEHHHFHHEHH SR
140 180 160 170 180 150 200 210 220 230 240 250 260 270 280 290 -3 310 320 330 30
Dea/nGd fives

FIGURE 80. Time-in-system, pp2b-1, small buffer switch (PTDM)

CBR Delav
a2, =50, PTDM
10000y
N
(o] 100+
(o]
o
C
e
|
i 101
S
i HHHEHHHHHHHH
170 180 190 200 210 220 230 240 250 240 270 280 290 0 310 320 330 340 350 340 370
Deyin G fimes

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AAL
ABR
AT™M
B-ISDN
CBR
CCITT

CODEC
CQSP

ETA

FDDI

FIFO

FTSA

HOL
HOLDISP
ITU

MARS
MPEG

NAL

NNI
NORMFIFO
PBS
PFIFO_D
PFIFO_D_NG

Appendix C
GLOSSARY OF
ACRONYMS

Asynchronous Transfer Mode Adaptation Layer
Available Bit Rate

Asynchronous Transfer Mode

Broadband Integrated Services Digital Network
Constant Bit Rate

International Consuitative Committee for Telecommunications
and Telegraphy

Coder-Decoder

Complete Quality of Service Scheduling Problem
Expected Time of Arrival

Fiber Distributed Data Interface

First In First Out

Future Time Slot Assignment

Head of Line

Head of Line with Displacement

International Telecommunications Union
Magnet II Algorithms for Real-time Scheduling
Motion Picture Experts Group

Network Adaptation Layer

Network-Network Interface

Normal First In First Out queueing

Partial Buffer Sharing

Predictive First In First Out with Displacement
Predictive First In First Out with Displacement,
No Global knowledge

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PTDM Pseudo-Time Division Multiplexing

PTDM_D Pseudo-Time Division Multiplexing with Displacement
QoS Quality of Service

SAR Segmentation and Reassembly

SONET Synchronous Optical Network

SPS Static Priority Scheduling

SQSP Simple Quality of Service Scheduling Problem
Swi Scheduling Within Intervals

TCP Transmission Control Protocol

TDM Time Division Multiplexing

UBR Unspecified Bit Rate

UNI User Network Interface

VBR Variable Bit Rate

VvC Virtual Circuit

VCI Virtual Circuit Indicator

VciCTL Virtual Circuit Control Block

VPI Virtual Path Indicator

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 1995

	Distributed cell scheduling and quality of service in ATM networks
	Paul Niel Goransson
	Recommended Citation

	tmp.1523556367.pdf.dJmHC

