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ABSTRACT

REACTIONS OF A DIMOLYBDENUM CAGE COMPLEX WITH 
PHOSPHORUS AND NITROGEN NUCLEOPHILES AND THE SYNTHESIS 

AND REACTIONS OF HETEROBIMETALLIC CAGES

By

Haiying Yang 
University of New Hampshire, May, 1995

The reactions of the dim olybdenum  cage com plex Mo(CO)4- 

PPr2NPO]4Mo(CO)4* w ith  phosphorus and nitrogen nucleophiles were

studied. This dimolybdenum cage complex reacted w ith tertiary phosphines 
of the type PPh2R (R=Ph, Me, H) in refluxing toluene. In each case,

incorporation of a single phosphine led to the loss of three carbonyls to form

orange complexes of the type Mo(CO)3PPr2NPO]4Mo(CO)2PPh2R(2, 3,4). The

X-ray molecular structure of 2 has been determined. This revealed that a cage 
P-O-P bond has been cleaved near the substitution site with the resulting 
phosphinito oxygen replacing a second CO. Additionally, the phosphido 
group generated displaced a third CO at the other Mo center to bridge the two 
metals which are now within bonding distance of each other. Under milder 
conditions, reactions using phosphite yielded both mono- and disubstituted

p ro d u c ts  Mo(CO)4pPr2NPO]4Mo(CO)3P(OMe)3 o r  M o(C O )3P(OMe)3-

PPr2NPO]4Mo(CO)3P(OMe)3 with the original core structure intact. Both 

* See Appendix A for the structure.

xii
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products were mixtures of diastereomers and can be transformed to orange 

Mo(CO)3PPr2NPO]4Mo(CO)2P(OMe)3.

Treatment of the mixed-valent Mo(CO)4pPr2NPO]4Mo(CO)2l2 cage

complex w ith sodium dimethyldithiocarbam ate selectively removed the 
d iv a len t m o lybdenum  vertex  to g ive the m e ta lla -lig an d

Mo(CO)4[iPr2NPO]4 (14) via an orange intermediate Mo(CO)4pPr2NPO]4- 

Mo(CO)2(S2CNMe2)2- The metalla-ligand has been characterized spectrally 

and by X-ray crystallography. It has been used as a precursor to assemble 

novel heterobimetallic cage complexes of the type Mo(CO)4pPr2NPO]4MLn 

where MLn can be Cr(CO)4, Fe(CO)3, Cu(MeCN)2BF4, AgNC>3, PtCl2, NiBr2 

and PdBr2, or the type Mo(CO)3PPr2NPO]5MLn where MLn can be PdCl2, 

PdBr2- All these heterobimetallic cage complexes have been characterized by 

elemental analyses and spectral data. In addition, X-ray structures of the 

heterobimetallic cage complexes Mo(CO)4pPr2NPO]4MBr2 pVI=Ni(21), Pd(25)] 

have been determ ined. Com parison of the well-resolved A i carbonyl 

stretching frequency and the NMR chemical shift of the cis-Mo(CO)4

moiety in Mo(CO)4pPr2NPO]4MLn and also the X-ray structures of 14, 21, 25

suggest a transmission of the increasing electron demand of the second cage 
metal to the molybdenum vertex.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTRODUCTION

Transition metal complexes w ith phosphine ligands have proven to be

useful and versatile catalysts in homogeneous reactions!!]- M ono-phosphine

ligands are used to induce chemistry at metal centers through steric and 

electronic influences. Chelating phosphines are even more successful in this 

role, and the use of polyphosphine ligands (i. e., those w ith several P donor

sites) is increasingly important!?].

Recently, binuclear metal complexes, particularly those w ith bridging 

phosphine ligands, have begun to attract interest because of their potentially 

reactive features. The in terest in binuclear complexes arose because of

anticipation that they can allow for increased versatility in catalyst design PI.

Complexes with two metal atoms can have several advantages over a catalyst 

containing only a single metal. For example, the presence of two metal atoms 

may facilitate multielectron redox reactions which could not be handled by 

only a single metal atom.

The firs t b im etallic  cage com plex of 1,3,5,7-tetraoxa-2 ,4,6,8- 

tetraphosphorinane [RPO]4 w ith the familiar adamantane structure common

to P4O6 and  P4O10 was reported  in 1983141. It contains the novel cyclic

tetramer [RNPO]4 in a boat-boat conformation serving as a  tetradentate ligand 

chelating two metals as shown in Figure 1:

1
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Figure 1. Molecular structure of Cage complex Mo(CO)4pPr2NPO]4Mo(CO)4

Before this work, the coordination chemistry of the polydentate ligand [RPO]n 

was not known. The first report of a cyclic phosphoxane [RPO]3 (where

R=OEt, OBu, and Et2N) appeared in 196715], but the structures of these

compounds were not fully identified. In 1980, N ieck ed  isolated and 

characterized the cyclic trimer [*Pr2NPO]3. In 1986, ChasarPI and co-workers

synthesized and identified both [RPO]3 and [RPO]2 where R is 2, 6-di-tert-

butyl-4-m ethylphenoxy. Com pared to the fam iliar cyclic condensed 

metaphosphates and thiophosphates of phosphorus (V), phosphorus-oxygen 

heterocycles or cyclophosphoxanes of phosphorus (III) are thus relatively 

rare. These trivalent phosphorus heterocycles can provide multiple donor 

sites and should have useful coordination chemistry as polydentate ligands 

leading to polycyclic and cage complexes.

The dimolybdenum cage complex is the first example of a 

cyclotetraphosphoxane ligand that chelates two metals. It contains two 

mutually-orthogonal Mo(CO)4P2 centers which are subjected to considerable

steric buttressing due to the rigid polycyclic s tru c tu red . Complex 1 was

2
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synthesized by the reaction of Mo(CO)6 and (iPr2N)2P(0 )H:

2Mo(CO)6 + 4(iPr2N)2P(0 )H-— >

Mo(CO)4[iPr2NPO]4Mo(CO)4 + 4CO + 4*Pr2NH (eq 1)
(1)

Since the serendipitous synthesis of this M02P4O4 cage complex 1 in

1983, Wong's group has been studying the mechanism of its formation as 

well as coming up with alternate methods of preparing other members of this 

family of compounds. Some reports on the synthesis of phosphoxane 

complexes have appeared and the reactivity studies of complex 1 were also

explored[8-43]. prior to the work reported here, the reactivity studies of the

parent complex have been limited to halogenation and redox investigations. 

The substitution chemistry at Mo(CO)4 with neutral Group V ligands was

unexplored. Only one example of a heterobimetallic cage complex of this type

was knownP],

Phosphine substituents at all four cage phosphorus vertices can 

influence each of the metal sites. For example, the trans CO-Mo-CO angle is

compressed to only 167° [8] due to the diisopropylamino groups on the two

remote P's**. Halogenation reactions have already been shown to produce 16- 

electron trigonal prismatic MoX2(CO)2P2 vertices, possibly as a result of this

unique cage environment PI.

We are interested in the following aspects of cage chemistry: (I) How 

does the presence of a very rigid and relatively bulky cage ligand affect the

inorganic and organometallic chemistry at the MoO(CO)4 centers? (II) Can 

** See page 135.

3
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heterobimetallic cage complexes be synthesized? (ID) Is there any intra-cage 

"communication" or interaction between the metal centers?

Several interesting aspects of cage halogenation chemistry have already 

been discovered for the paren t cage. This is a two-step process, giving

(CO)4Mo[iPr2NPO]4Mo(CO)2X2 and then Mo(CO)2X2liPr2NPO]4Mo(CO)2X2 

products (Scheme I):

The Mo(II) products are six-coordinate rather the usual seven-coordinate 

for non-cage analogues. Seven-coordination  is expected  for the 

m olybdenum -substituted halocarbonyls if we assume that the effective

there are  three possible geom etries w ith  lowest energies for seven 

coordinated complexes: the pentagonal bipyram id, the m ono-capped 

octahedron and the m ono-capped trigonal prism. For M(CO)3(PR3)2X2

complexes, often stereochemically nonrigid seven-coordinated complexes are

R R
! !

M o(CO)4

?  I  1
Mo(CO)2X2

' \ 2 or 
S 02CI2M o(CO)2X2

X2(CO)2Ml
R

Scheme I

atomic num ber rule applies to these complexes. By Kepert's calculations^]

isolated!^]. For example, Mo(CO)3l2(dpm) [dpm=bis(diphenylphosphino)- 

m ethane] has a m ono-capped  trigona l p rism  g e o m e t r y ^ ,  an d

4
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Mo(CO)3l2(Ph2POPPh2) adopted a pentagonal bipyramidal structure!!?]. The

solution and solid state geometries of the cage halogenation products are 

unique. In addition, all halogenated cage products are low-spin d^ and 

diamagnetic.

The new cage chemistry we shall investigate includes substitution 

chem istry at Mo(CO)4 w ith  neu tral G roup V ligands. N ucleophilic

substitutions at this center may also generate unusual coordination chemistry 

due to cage structure constraints. Tertiary phosphines and phosphites can 

substitute for one or m ore of the remaining 4 CO's. The types, geometries, 

distribution of isomeric products, as well as influence of reaction at one cage 

m etal on the other w hen compared to norm al Mo(CO)4(diphosphine)

products will reveal any unique features for the cage reactions. Pyridine, 

acetonitrile and benzonitrile can potentially substitute CO's also.

While attem pted synthesis of heterobimetallic cages from the parent 

cage failed, we reasoned that the M o^ center in the mixed-valent complex

(CO)4Mo[iPr2NPO]4Mo(CO)2l2 may provide a potential demetallation site.

Dithiocarbamate ion has been found to coordinate to a transition metal both 

as a  bidentate or monodentate ligandP-8,19]. it is a potential candidate for use

in removing of the M o^  vertex to give the monometallic cage precursor

complex (CO)4MopPr2NFO]4. We could then  synthesize a series of

heterobimetallic cage complexes from this metallo ligand by inserting the 

second metal into the vacated site.

Since it was know n that cage halogenation is a two-step process,

5
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oxidation at one metal makes oxidation at the other more difficult. A series of 

the heterobimetallic cage complexes with rigidly constrained pairs of metal 

vertices should be especially interesting for the study of intracage metal-metal 

interactions. Comparison of the spectral properties of the conserved Mo(CO)4 

m oiety in these heterobim etallic cage com plexes w ill give valuable 

information concerning such interactions.

The first chapter will describe the substitution reactions of the cage 

complex 1 with phosphine and phosphite ligands, pyridine, acetonitrile and 

benzonitrile, and the characterization of the products. These results revealed 

an u n u su a l in tram o lecu lar P-O-P bond cleavage w ith  extensive 

rearrangement of the core structure and formal oxidative addition to both 

metals, all direct consequences of the replacement of a carbonyl by a single 

phosphorus or nitrogen donor. Furthermore, the electronic and steric effects 

of the phosphine ligands were investigated.

In the second chapter, the dem etallation  of a dim olybdenum  

cyclotetraphosphoxane cage complex (CO)4Mo[iPr2NPO]4Mo(CO)2l2 by

reaction  w ith  d ith io ca rb am a te s  to give the  m eta lla -ligand  

(CO)4Mo[iPr2NPO]4 will be described. The nucleophilic attack by primary

alcohols on the precursor and the characterization of the products will be 

related. The use of this metalla-ligand as a precursor for synthesizing of 

heterob im etallic  cage com plexes will also be described . These 

heterobimetallic cage complexes are among the first examples of a 

cyclotetraphosphoxane ligand that chelates two different metals. Finally, this 

chapter will also present a study of the intracage influence between the cage 

metal sites.

6
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CHAPTER I 

REACTIONS OF A DIMOLYBDENUM 

CYCLO-TETRAPHOSPHOXANE CAGE WITH PHOSPHORUS 

AND NITROGEN NUCLEOPHILES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Nucleophilic substitution reactions at Group VI metal carbonyls have

been extensively studied [20]. por tetracarbonylmetal diphosphine chelate

complexes like Mo(CO)4(diphos), CO substitution reactions with phosphines,

phosphites and amines usually yield either axial-substituted fac - or 

equatorial-substituted mer -Mo(CO)3L products depending on the ligand used

(Scheme II) PI];

C O  CO CO

fac— mer-

Scheme II

Ligand and carbonyl n-bonding effects are evidently of primary importance 

for these type of complexes. Thus, the carbonyl group trans to the more 

strongly n-accepting ligand carbonyl is expected to be more labile and more 

readily replaced, and fac- products are anticipated. When considering steric 

effects, the m er- products should be expected because it reduces crowding at a 

face of the octahedron with the more sterically demanding ligands.

In this chapter, we report the synthesis of the bimetallic cage complexes 

o f th e  f o r m  (CO)4Mo[iPr2NPO]4Mo(CO)3L a n d  (CO)3LMo-

PPr2NPO]4Mo(CO)3L w here L is one of several phosphines and the

complexes (CO)3Mo[iPr2NPO]4Mo(CO)2L' where L' is a phosphine, pyridine 

or carbonyl ligand. Spectroscopic characterization of these complexes is

8
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reported. Crystallographic investigations of the complexes where L = PPh3, 

P(OMe)3 and CO are also described.

RESULTS AND DISCUSSION

1. Synthesis and Characterization of (CO)3Mo[*Pr2NPO]4Mo(CO)2PPh2R 

(R=Ph, Me, H)

Complexes (CO)3Mo[iPr2NPO]4Mo(CO)2PPh2R(R=Ph, Me, H) w ere

synthesized by the reactions of triphenylphosphine, diphenylm ethyl- 

phosphine, and diphenylphosphine with the dimolybdenum cage complex

(CO)4Mo[iPr2NPO]4Mo(CO)4 1 in reflux ing  to luene. The eq u a tio n  

representing the preparations of these complexes is shown below.

(CO)4Mo[iPr2NPO]4Mo(CO)4 + PR3  >

(D

3CO + (CO)3Mo[iPr2NPO]4Mo(CO)2PR3 (eq2)

( PR3 = PPh3(2), PPh2Me(3), PPh2H(4) )

The yields of complexes 2, 3, 4 in the reactions above were 40 (isolated 

yield from 1), 80 and 80 percent, respectively.

The reactions were monitored by TLC . In each case, at the beginning 

there were several spots, but after 24 hours, the starting m aterial was 

completely gone, and only one orange-colored spot showed as product. The 

reaction solutions were clear red. By routine column chromatography and 

recrystallization the pure orange-colored products were isolated. These 

orange com pounds w ere not very soluble in hexane and so w ere

recrystallized from it. Each of the complexes was characterized by 31p, 1h ,

9
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NMR , IR and elemental analyses.

3!p  NMR can serve as an important analytical tool for solution structure

determ ination. In addition , P coupling constants p rovide im portant

Com pounds that contain two or more coupled phosphorus atoms exhibit

very characteristic coupling patterns in the completely proton-decoupled 31p

spectra. When this type of information is used in conjunction w ith other 

NMR data, the structures of polyphosphorus compounds are often readily

elucidated!^ .

Compounds 2 ,3 ,4  have similar 31p NMR, IR spectra. The one- and two-

dimensional 31p and *H NMR spectra of the product showed that only one

attacking phosphine ligand was incorporated even in the presence of excess 

phosphine and prolonged reaction times. The D2d symmetry of the parent 

cage is complexly lost upon formation of the orange complexes, since in each 

case five distinct resonances can be seen(Figure 2):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inform ation on the nature  of bonding and structure in  m o l e c u l e s ^ ] .

3 5

4
1

2

307 157 123 25

Figure 2 .31p{lH} NMR spectrum of complex 2
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Significantly, one phosphorus (PI) has a chemical shift far downfield (305-307 

ppm), and its position is essentially independent of the nature of the entering 

ligand. This chemical shift is not consistent w ith Mo-coordinated tertiary 

phosphines or phosphites, bu t is in the region of phosphenium  cations or

phosphido l i g a n d s [ 2 4 ] .  From literature!^], we know that the two-bond

phosphorus-phosphorus coupling constant betw een the trans phosphorus

atoms, ^(P^trang^ should be m uch greater than Comparing

similar coupling constants, 2j(p,p), ranged 25-53 Hz between the entering 

phosphine ligands and the cage P's in  complexes 2,3, 4 ( Table I ), though it is 

hard to tell whether an equatorial or axial CO has been substituted. Also, 

from the IR spectra, we know that the cis-Mo(CO)4P2 coordination sphere at 

the original cage no longer exists because all of the orange products exhibit 

metal carbonyl stretches below 2000 cm ^, with four or five well-resolved

bands between 1850 and 1980 cm-* that indicate low symmetry of the 

products (Table II):

11
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Table 1:31p{lH} NMR Data for the Complexes

Complex Chemical Shift, ppm ]], Hz]

10

11

AJMNX

AJMNX

AJMNX

ALMNX

AMXY

AMXY

AMNX2

150. l(s)

307.5.156.9.124.3.123.3.24.9 [Jaj 

=  Ja n  = 14.7, Ja m  = 19.1, Ja x  =

49.8, Jjm  = 77.7, Jjn  = 126.0, Jjx =

24.9, Jm n  = 36.7 Hz]

305.5.156.9.129.3.125.4.15.3 [Jaj 

= 14.7, Ja n  = 11.7, Ja m  = 17.6, Ja x  

= 52.8, Jjm  = 79.1, Jjn  = 129.0, Jjx = 

26.4, Jm n  = 38.1 Hz]

305.9.154.9.128.8.127.1.23.3 [Jaj 

=  Ja m  = 14.7, Ja n  = 11.7, Ja x  =

52.8, Jjm  = 90.9, Jjn  = 129.0, Jjx = 

29.3, Jm n  = 38.1 Hz]

306.8156.9.153.7.149.8.123.9 [Jn x  

= 38.1, other J's not obtained]

295.3,150.7,134.7,128.1 [Ja m

= 14.7, Ja x  = 12.2, Ja y  = 17.1, Jm x  

= 125.7, Jm y  = 80.6, Jxy  = 36.6 Hz]

306.3,149.8,131.6,121.4 [Ja m  

= 15.4, Ja x  = 24.2, Ja y  = 11.0, Jm x  

= 101.1, Jm y  = 127.4, Jxy  = 37.4 Hz]

180.0,164.0,155.6,148.2 [Ja m

12
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AM2NX

6 AMX

AMNX2Y

AMNX2Y

AXY

8 A 2M2X

9 A2X

a InCDCl3 solution.

= 187.1, Ja n  = 41.0, Jm n  = 47.5, 

Jm x  = 10.5, Jn x  = 6.7 Hz]

1 6 6 . 9 . 1 5 5 . 0 . 1 5 1 . 2 . 1 4 8 . 2  [J a m

= 45.1, Jm n  = 10.5, Jm x  = 6.7, Jn x =

48.3 Hz]

179.3,159.8,151.6 [Ja m  = 185.5, 

Ja x  = 40.9, Jm x  = 51.1 Hz]

178.6.164.7.158.8, -151.1, =151.1 

[Jan = 187.1 Hz, other J's not

obtained]

178.1.163.8.162.0, =153.5, =153.5 

Uan = 190.0 Hz, other J's not

obtained]

165.8, =151.6, =151.6 [J’s not 

obtained]

157.1,149.6,12.9 [Ja m  = 7.0,

Ja x  = 32.8, Jm x  = 0 Hz]

157.3,13.5 [Ja x  = 34.2 Hz]
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Table II. Selected Infrared Absorptions for the Complexes

Complex CO region, cm 'l POP region, cm’l

1 2015,1923,1906,1887 875,849,809

2 1977,1925,1904,1884,1854 870,849,832,800

3 1975,1917,1896,1853 875,845,805

4 1977,1921,1895,1856 874,856,826,805

7 1979,1925,1889,1856 870,843,834,800

10 1973,1915,1889,1874,1851 875,839,800

11 2011,1983,1944,1921,1917, 

1909,1903,1893

877,847,810

5 2003,1988,1975,1937,1916, 

1900(sh), 1887

866,845

6 1985,1965,1920(sh), 1877(bd), 

1860(sh)

867,846

8 2013,1962,1941,1927,1905, 

1886,1861

864,832

9 1952,1860 864,833

a KBr pellets, Perkin-Elmer 283B Spectrophotometer.

The species ds-Mo(CO)4P2 has C2v symmetry, so four bands are

expected in the CO region of its IR spectrum (Figure 3)t26l. These four bands 

are attributed to the four possible CO vibrations depicted in Figure 4:

1 4
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2000  1 9 00  cm-1
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ca
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C/5
cai—

60

40

20
Figure 3. IR spectrum in the V q o  region for ds-(CO)4Mo[P(OPh)3]2

Ajftrans) B1 A,(ds) B2

Figure 4. CO Stretches for ds-(CO)4MoP2

The band above 2000 cm-1 is due to the Ai(trans) stretch. The bands below 

2000 cm-1 are attributed to the Bi, B2 and A i(d s) modes. Comparing the IR 

spectra of the products 2, 3, 4 with the IR spectrum  of the original cage 1 

(Figure 5), it is dear that the A i band at 2014 cm"l had disappeared:

15
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f i s . m  . m - . . . . . . . . .

!' j; complex 3 • I • complex 4 .•• I- . i 
complex 1 complex 2  ,l::' j

Figure 5. IR spectra in the Deo region for complexes 1 ,2 ,3  and 4

Thus, both the IR and NMR spectra gave us the first hint that the product 

may have a novel structure and that the cage structure was disrupted 

substantially upon CO replacement. Later the X-ray structure of complex 2 

confirmed that the cis-Mo(CO)4P2 coordination spheres at both metal sites

are changed. The elemental analyses are fully consistent with the 

structure ( Figures 6 and 7):

16
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Figure 6. Molecular structure of complex 2 

(with hydrogens omitted for clarity)

P3

C3;
>018

«0l

PS 030

05

Figure 7. Core geometry of complex 2 
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There are extensive alterations in the metal coordination spheres and 

cage geometry. Upon the addition of trimethy lphosphine, there was a P-O-P 

bond cleaved near the substitution site with formation of one p-P-O- and one 

p-P- bridge, three carbonyls were lost. The first carbonyl at Mo(2) was replaced 

by the entering ligand. The phosphinito oxygen (P(4)-0(1B)) replaced a second 

CO while the p-P- (P3) displaced a third CO at the other Mo center to bridge

the two metals. These are now within bonding distance of each other at 

3.186(4) A, a substantial contraction from the Mo-Mo metal separation

(6 .001(1) A) in the original parent cage structure. Mo-Mo single bond 

distances vary depending on ligand constraints, and 3.186(4) A is well within 

the 3.057(6)-3.235(l) A range of weak single bonds reported for the doubly-

bridged molecules Mo2(CO)s(p-PEt2)2^ , Mo2(CO)6(PEt3)2(fi-PMe2)2^28  ̂and

Cp2Mo2(CO)6l29], which all contains direct Mo-Mo bonds. If both Mo(l) and

Mo(2) are assigned +1 formal oxidation states, electron counting requires the 

presence of a single Mo-Mo bond to achieve the noble-gas configuration at 

both metals.

Table III. Selected Bond Distances (A) and Angles (deg) for Complex 2

Mo(l)-Mo(2) 3.186(4)
Mo(l)-P(3) 2.464(4) P(1)-C(1A) 1.87(1)
Mo(l)-P(4) 2.502(4) P(1)-C(1B) 1.85(1)
Mo(l)-P(5) 2.455(4) P(1)-C(1C) 1.84(1)
Mo(l)-C(3) 2 .00(1) P(2)-0(2B) 1.635(8)
Mo(l)-C(4) 2.05(1) P(2)-0(3B) 1.671(8)
Mo(l)-C(5) 2.08(2) P(3)-0(4B) 1.672(9)
Mo(2)-P(l) 2.563(4) P(4)-0(1B) 1.540(8)
Mo(2)-P(2) 2.524(4) P(4)-0(2B)

18
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Mo(2)-P(3) 2.362(4)
Mo(2)-0(lB) 2 .222(8)
Mo(2)-C(l) 1.1(1)
Mo(2)-C(2) 1.92(1)
C(3)-0(3) 1.13(2)
C(5KK5) 1.12(2)

P(3)-Mo(l)-P(4) 105.7(1)
P(3)-Mo(l)-P(5) 62.8(1)
P(3)-Mo(l)-C(3) 82.1(4)
P(3)-Mo(l)-C(4) 101.9(4)
P(3)-Mo(l)-C(5) 153.6(4)
P(4)-Mo(l)-P(5) 94.3(1)
P(4)-Mo(l)-C(3) 168.4(5)
P(4)-Mo(l)-C(4) 82.7(4)
P(4)-Mo(l)-C(5) 91.9(4)
P(5)-Mo(l)-C(3) 96.9(5)
P(5)-Mo(l)-C(4) 163.1(3)
P(5)-Mo(l)-C(5) 97.0(4)
C(3)-Mo(l)-C(4) 87.4(6)
C(3)-Mo(l)-C(5) 83.9(6)
C(4)-Mo(l)-C(5) 99.7(6)
Mo(l)-P(3)-0(4B) 97.4(3)
Mo(l)-P(4)-0(lB) 107.6(3)
Mo(l)-P(4)-0(2B) 110.6(3)
Mo(l)-P(3)-Mo(2) 82.6(1)
Mo(l)-P(5)-CK3B) 115.3(3)
Mo(l)-P(5)-0(4B) 97.5(3)
Mo(2)-P(3)-0(4B) 114.5(3)
Mo(2)-0(lB)-P(4) 100.3(4)
0(2B)-P(2)-0(3B) 100.3(4)
0(3B)-P(5)-0(4B) 98.8(4)
P(2)-0(3B)-P(5) 117.8(5)

P(5)-0(3B) 1.624(8)
P(5)-0(4B) 1.677(8)
C(l)-0(1) 1.18(2)
C(2)-0(2) 1.17(1)
C(4)-0(4) 1.10(2)

P(l)-Mo(2)-P(2) 100.2(1)
P(l)-Mo(2)-P(3) 155.4(1)
P(l)-Mo(2)-0(lB) 81.1(2)
P(l)-Mo(2)-C(l) 82.5(4)
P(l)-Mo(2)-C(2) 83.8(4)
P(2)-Mo(2)-P(3) 90.7(1)
P(2)-Mo(2)-0(lB) 78.5(2)
P(2)-Mo(2)-C(l) 172.1(4)
P(2)-Mo(2)-C(2) 94.9(4)
P(3)-Mo(2)-0(lB) 123.0(2)
P(3)-Mo(2)-C(l) 89.8(4)
P(3)-Mo(2)-C(2) 73.2(4)
0(lB)-Mo(2)-C(l) 94.7(5)
0(lB)-Mo(2)-C(2) 162.1(4)
C(l)-Mo(2)-C(2) 92.8(6)
Mo(2)-P(l)-C(lA) 121.6(4)
Mo(2)-P(l)-C(lB) 111.8(4)
Mo(2)-P(l)-C(lC) 113.2(4)
Mo(2)-P(2)-0(2B) 103.3(3)
Mo(2)-P(2)-0(3B) 115.4(3)
C(1A)-P(1)-C(1B) 103.9(6)
C(1A)-P(1)-C(1C) 100.0(6)
C(1B)-P(1)-C(1C) 104.2(3)
0(1B)-P(4)-0(2B) 103.1(4)
P(2)-0(2B)-P(4) 107.1(5)
P(3)-0(4B)-P(5) 99.9(5)
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Complexes containing metals bridged simultaneously by a phosphido 

group as well as a P-chalcogen group are known, though they are usually

formed by insertion of chalcogens into a metal-phosphido bond [30] (Scheme

ffl):

Me Me Y
\  /  M e ^  I

• P \   Ev

E
C5Me5Rh------------ RhC5Me5--   C5Me5Rh------ :------ RhC5Me£

/  p\
Me Me Me Me

(E = S,Se)

Scheme III

Newton and co-workers have reported a P-N-P cleavage reaction in the 

photolysis of CH3N(PF2)2 with {CpFe(CO)2)2^ .  The structure of the product

was found to have a #z-PF2NMePF2 and a (i-PF2 as well as a fi-PNMe 

bridging ligand (Figure 8):
CH,

V N —  PFj

N
Me

Figure 8. Structure of [C5H5Fe(PF2)2NCH3l2 (ref. 39)
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This triple-bridging by three different ligands is similar to that found in 2, 

though there is no accompanying metal-metal bond formation in this case.

A short metal-phosphorus distance of 2.362(4) A is found for Mo(2)-P3 

which is approximately trans to the PPh3 ligand. All other Mo-P bonds are in

the 2.46-2.56 A range, not significantly changed from the value of 2.50 A in 

the parent cage complex. The Mo(2)-0(lB) bond length is 2.222(8) A with the 

cis-Mo(2)-C(l) and trans-Mo(2)-C(2) bond lengths of 1.91(1) and 1.92(1)A 

marginally shorter than all of the other Mo(l)-C bonds (2.00-2.08 A). Except at 

P(4), ring P-O distances range from 1.62 tol.67 A. The two P(4)-0 distances are 

very different with P(4)-0(1B) at 1.540(8) A and P(4)-0(2B) at 1.731(9) A. The 

data reflect the multiple bond character in the former at the expense of the 

latter. Corbridge summarized bond length data for phosphates and found an

average of 1.54 A for the reported P-O d is tan ces^ .

Due to the polycyclic ligand system bridging the two metals, substantial 

deviations from idealized angles are found for both coordination spheres 

though each is approximately an octahedron. At Mo(l), the four-membered 

M-P-O-P chelate ring compresses the P(5)-Mo(l)-P(3) angle to only 62.8(1)°. 

The five-membered Mo(2)-P(3)-Mo(l)-P(4)-0(lB) heterocycle contains a 

narrow Mo(2)-P(3)-Mo(l) angle of 82.6(1)° while the P(3)-Mo(2)-0(lB) angle is 

distended to 123.0(2)°. As a result, the angle closest to linearity at Mo(2) is C(l)- 

Mo(2)-P(2) at 172.1(4)°. The four equatorial ligand atoms P(3), O(IB), P(l), and 

C(2) then subtend very distorted angles at Mo(2); P(3)-Mo(2)-0(lB) is 123.0(2)°, 

0(lB)-Mo(2)-P(l) is 81.1(2)°, P(l)-Mo(2)-C(2) is 83.8(4)°, and C(2)-Mo(2)-P(3) is 

73.2(4)°. These equatorial angles sum up to 361°. At Mo(l), C(3) and P(4) are 

approxim ately axial as C(3)-Mo(l)-P(4) is 168.4(5)°. The corresponding 

equatorial angles deviate widely from orthogonality ranging from 62.8° to
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101.9° but again summing up to 361°.

It is now easy to understand why the 31p NMR spectra of all the orange

complexes show one phosphorus chemical shift so far downfield (305-307 

ppm). The X-ray structure of 2 (and X-ray structure of 7 ,11) explicitly showed 

that the phosphido ligand is indeed present in the orange complexes. Since 

the phosphido chemical shift is known to be quite sensitive to the M-P-M

angle and the extent of metal-metal i n t e r a c t i o n ^ ] ,  the nearly unchanged

chemical shift value at around +306 ppm  implies that the M-P-M angle as 

well as the nature of Mo-Mo bonding rem ain little changed through the 

series of orange complexes. This is also confirmed by the X-ray structure data 

of complexes 2, 7, 11 (see Part 1-5 for a comparison of the structures). The 

highest-field resonance in 2, 3, 4 can be readily assigned to the newly- 

coordinated phosphine ligands by using typical coordination shifts from the

free ligand v a lu e s ^ .  That is, there is a linear relationship between

the coordination chemical shift, A 6 = 6Complex - 6free phosphine, and

the resonance position of the free phosphine. For compound 4, a proton- 

coupled spectrum  clearly identifies the high-field m ultiplet as the PPh2H

resonance with a *Jp-H oi 334 Hz.

In each complex the connectivity between the five resonances can be 

unambiguously established by 31p COSY (Figure 9):
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Figure 9. 2D COSY 31p{lH} NMR spectrum of complex 2

When CO gas was bubbled through the reaction solutions, the orange 

compounds did not revert to the original cage but another orange compound 

11 formed. This new complex has a similar structure to 2 with the difference 

that the attacking phosphine was replaced by CO.
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When compound 2 was first obtained, it was thought that since the 

attacking ligand was bulky (cone angle of PPh3 =145°), it could only substitute

one CO. So the two smaller ligands MeP(C6H s)2 ( 0  = 136°) and

HP(C6H5)2) ( 0  = 126°) were used to react with the cage under the same

conditions. The same type of products (3 and 4) were obtained. It was 

therefore thought that a steric threshold might exist for the formation of 

simple mono- and di- substituted compounds and electronic influences may 

also play a role for both substitution and rearrangement reactions. In order to

verify this, trimethyl phosphite w ith a smaller cone angle (0  = 106°) and

better n-accepting ability was chosen for reaction with the cage.

2. Synthesis and Characterization of

(CO)3(L)Mo[iPr2NPO]4Mo(CO)3P(OMe)3[L=CO,P(OMe)3l

Complexes (CO)3(L)MopPr2NPO]4Mo(CO)3P(OMe)3 [L=CO (5), P(OMe)3

(6)] were synthesized by the reaction of trim ethylphosphite w ith the 

dim olybdenum  cage complex (1) in refluxing toluene. The equation 

representing the preparation of these complexes is shown below.

2(CO)4Mo[iPr2NPO]4Mo(CO)4 + 3P(OMe) 3  >
(1)

3CO + (CO)4Mo[iPr2NPO]4Mo(CO)3P(OMe)3
(5)

+ (CO)3P(OMe)3Mo[iPr2NPO]4Mo(CO)3P(OMe)3
(6) (eq3)
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Thus from this ligand, different results were indeed obtained. After only 6 

hrs, a clear, very light-yellow solution was formed while the cage was totally 

consumed. TLC showed only two colorless product spots. By routine column 

chromatography com pound 5 followed by com pound 6 were eluted and 

isolated. The isolated percent yields after chromatography of complexes 5 and 

6 were 32 and 50%, respectively.

The products were characterized by 31p, ^H, 13c NMR, IR spectra and

elemental analyses. The proton-decoupled 1-D and 2D COSY 31p NMR spectra

of 5 and 6 and elemental analytical data showed that 5 is a monosubstituted 

product and compound 6 is a disubstituted compound with the original cage 

structure intact. Both of these complexes are mixtures of isomers. For 

example, in complex 5 only one CO was substituted, but it could be an 

equatorial or axial CO (Figure 10):

x' \  //?°v/, —mo— ^y°vA ~ m°—
L I ' V \  I SV \

eq ax

Figure 10. Proposed structures for isomers of complex 5

In order to integrate and calculate the ratio of isomers, we used selective

proton decoupling techniques to determine which 31p peaks were phosphite

resonances and which were due to the cage phosphorus atoms. If an 

individual proton resonance is selected and irradiated with sufficient power
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to decouple only that p ro ton  resonance, it simplifies the spectrum  by 

removing all of the couplings to that proton. For example, if we selectively 

decouple the trimethyl phosphite protons, the couplings between P and H 

will disappear. Therefore the decaplets due to the coupling of P with nine 

H's will be gone and only the P-P couplings will be seen. If the decoupler is set 

to the center of the p ro ton  region and then  m odulated using a 'noise 

generator' with a bandw idth  wide enough to cover the complete proton 

region, every proton frequency will be irradiated, resulting in the decoupling

of all protons in the moleculel35].

The composition of complex 5 can be easily assigned as 40% axial- 

substituted and 60% equatorial-substituted (CO)4Mo[iPr2NPO]4Mo(CO)3-

P(OMe)3 by the 2-D COSY 31p NMR spectrum  ( Figure 11 ) and full-

decoupled or selectively-decoupled 1-D 31p NMR spectra ( Figures 12,13,14 ):
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Figure 11. The 2-D COSY ^P^H } NMR spectrum of complex 5
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Figure 12.31p{lH} NMR spectrum of complex 5 
[Selective methine proton ( 6 ® 4.57-4.38 ppm) decoupled, DP 16L]

155.0 150.0160.0180.0 175.0 170.0 165.0

Figure 13.31p{lH} NMR spectrum of complex 5 
[Selective trimethyl phosphite proton ( 5 = 3.61-3.59 ppm) decoupled, DP 24L]

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- J A . - I - T IH  » I M |4 « I \mfj \

' ' ' ' ' 1 ' ' ' ' | ' ' 1 ‘ I 1 1 1 1 | 1 11 ' I J 1 ' 1 | . 'I i ' I I i i i [ i i ■ i | i i t  i p i  i - , i , m  ,-j i t ,  i T n  i ;  j i i n  , , , i ,-

190.0 175.0 170.0 165.0 160.0 155.0 150 0
PPM

Figure 14.31p{lH} NMR spectrum of complex 5

(Full decoupled, DP 12H)

Complex 6 can have four isomers assuming only monosubstitution at each 

metal (Figure 15):
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Figure 15. Proposed structures for isomers of complex 6
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The extremely complex 1-D 31p spectrum of 6 can similarly be satisfactorily

resolved into its four diastereomeric components of equatorial/equatorial, 

equatorial/  axial(trans), equatorial/axial(ds), and axial/axial disubstituted

(CO)3P(OMe)3MoPPr2NFO]4Mo(CO)3P(OMe)3 diastereomers by its 2-D COSY

spectrum and the selectively-decoupled 1-D 31p NMR spectrum (Figures 16, 

17,18):
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Figure 16. The 2-D COSY 31p{lH} NMR spectrum of complex 6
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Figure 17. 31p{lH} NMR spectrum of complex 6 
[Selective methine proton (6 = 4.66-4.53 ppm) decoupled, DP 16L]
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Figure 18.31p{lH} NMR spectrum of complex 6 
(Full decoupled, DP 12H)
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AH of the peaks of these isomers can be assigned. The relative proportions of 

the isomers are approximately 40 : 24 : 18 : 18, again indicating a preference 

for equatorial substitution and mer-  stereochemistry at the Mo atoms. In 

addition, the presence of all diastereom ers in  complexes 5 and 6 was 

confirmed by HPLC (Figure 19):

Retention time (min.):

8
«L>

12 16

iir
4 12 168

Complex 5 Complex6

Figure 19. HPLC traces for complexes 5 and 6 

Hexane/CH2CI2 (75/25), AI2O3 column

Thus, we can see that both complexes 5 and 6 are isomeric mixtures. The 

HPLC of 5 showed 2 peaks and of 6 showed 3 peaks plus one shoulder. Due to 

the sm all capacity of the HPLC column, a ttem pts to separate the 

diastereometric isomers quantitatively failed.

From the 31p NMR spectra of 5 and 6 we can clearly see that the trans 

two-bond P-P coupling constants are larger than the d s  values ( 2j(p, P)trans
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=185 to 189 Hz, 2j(pr p)c|s = 41 to 42 Hz). Both products are white solids with

no chemical shifts around 307 ppm . Thus, the 31p NMR spectra of

compounds 5 and 6 are distinct from those of orange 2, 3, and 4. Here we can 

assign peaks from the phosphorus atoms trans and d s  to the entering ligands. 

The chemical shift differences between these two phosphorus atoms are only 

about 20 ppm.

Similar reaction conditions using the phosphines resulted in negligible 

reaction. Under m ilder conditions, traces of the conventional substitution 

products similar to 5 and 6 can also be observed in the reactions generating 2, 

3, and 4 (See Part 1-4 ). The bulkier triphenyl phosphite also yielded 

conventional substitution products similar to 5 and 6 .

3.Synthesis and Characterization of (CO)3MoPPr2NPO]4Mo(CO)2P(OMe>3 (7)

Another interesting result we obtained from the P(OMe)3 reaction was

that the compounds 5 and 6 could both thermally rearrange to orange-colored 

compounds which did show very low-field peaks at around 307 ppm.

Upon refluxing 5 and 6 in toluene for more than 30 hrs, both of these 

c o lo r le s s  c o m p o u n d s  w e re  t r a n s fo rm e d  in to  o ra n g e - re d

(CO)3Mo[iPr2NPO]4Mo(CO)2P(OMe)3 (7), which is an analog of complexes 2, 

3, and 4. Trace am ounts of (CO)2P(OMe)3Mo[iPr2NPO]4Mo(CO)2P(OMe)3 

were detected by *H NMR.

(CO)4Mo[iPr2NPO]4Mo(CO)3P(OMe)3 — >
(5)

2CO + (CO)3Mo[iPr2NPO]4Mo(CO)2P(OMe)3,
(7) (eq4)
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2(CO)3P(OMe)3Mo[iPr2NPO]4Mo(CO)3P(OMe)3—>
(6)

3C0 + P(OMe)3 + (CO)3Mo[iPr2NPO]4Mo(CO)2P(OMe)3
(7)

+ (CO)2(POMe)3Mo[iPr2NPO]4Mo(CO)2P(OMe)3 (eq 5)

The product complex 7 was characterized by 31p, 1h , NMR, and IR

spectra and by elemental analysis. The X-ray structure of complex 7 has been 

determ ined. One is shown in Figure 20. Selected bond angles and bond 

distances are listed in Table IV.

Figure 20. Molecular structure of complex 7
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Figure 21. Core geometry of complex 7 

Table IV. Selected Bond Distances (A) and Angles (deg) for Complex 7

Mo(l)-Mo(2) 3.173(1)
Mo(l)-P(l) 2.465(2)
Mo(l)-P(3) 2.353(2)
Mo(l)-P(5) 2.532(1)
M o(l)-0(lB) 2.226(3)
Mo(l)-C(l) 1.952(6)
Mo(l)-C(2) 1.969(6)
Mo(2)-P(2) 2.525(2)
Mo(2)-P(3) 2.480(2)
Mo(2)-P(4) 2.486(2)
Mo(2)-C(3) 1.964(6)
Mo(2)-C(4) 2.005(7)
Mo(2)-C(5) 1.993(7)

P(2)-0(1B) 1.537(3)
P(2)-0(4B) 1.730(3)
P(3)-0(3B) 1.654(4)
P(4)-0(2B) 1.626(3)
P(3)-0(3B) 1.662(3)
P(5)-0(2B) 1.670(3)
P(5)-0(4B) 1.604(3)
cd)-o(i) 1.157(6)
C(2)-0(2) 1.159(6)
C(3)-0(3) 1.150(7)
C(4)-0(4) 1.141(7)
C(5)-0(5) 1.151(7)
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Mo(2)-Mo(l)-P(l) 48.83(3)
Mo(2)-Mo(l)-P(3) 50.73(4)
Mo(2)-Mo(l)-P(5) 78.46(3)
P(l)-Mo(l)-P(3) 155.97(5)
P(l)-Mo(l)-P(5) 93.20(5)
P(l)-M o(l)-0(lB) 79.30(9)
P(l)-Mo(l)-C(l) 83.1(2)
P(l)-Mo(l)-C(2) 88.7(2)
P(3)-Mo(l)-P(5) 91.09(5)
P(3)-Mo(l)-0(1B) 124.71(9)
P(3)-Mo(l)-C(l) 72.9(2)
P(3)-Mo(l)-C(2) 91.7(2)
P(5)-Mo(l)-0(lB) 78.28(9)
P(5)-Mo(l)-C(l) 98.6(2)
P(5)-Mo(l)-C(2) 168.7(2)
0(lB)-Mo(l)-C(l) 161.9(2)
0(lB)-Mo(l)-C(2) 91.1(2)
C(l)-Mo(l)-C(2) 92.7(2)
M od)-P (l)-0(ll) 114.2(2)
Mo(l)-P(l)-0(12) 119.7(2)
Mo(l)-P(l)-0(13) 111.8(2)
Mo(l)-P(3)-Mo(2) 82.02(5)
Mo(l)-P(3)-0(3B) 115.1(1)
Mo(l)-P(5)-0(2B) 114.0(1)
Mo(l)-P(5)-0(4B) 102.2(1)
Mo(l)-0(lB)-P(2) 99.6(2)
0(1B)-P(2)-0(4B) 101.9(2)
0(2B)-P(4)-0(3B) 98.7(2)
P(3)-0(3B)-P(4) 101.7(2)

Mo(l)-Mo(2)-P(3) 47.25(3)
Mo(l)-Mo(2)-P(4) 81.01(4)
Mo(2)-Mo(l)-0(lB) 74.01(9)
P(2)-Mo(2)-P(3) 103.10(5)
P(2)-Mo(2)-P(4) 93.95(5)
P(2)-Mo(2)-C(3) 171.0(2)
P(2)-Mo(2)-C(4) 84.3(2)
P(2)-Mo(2)-C(5) 96.0(2)
P(3)-Mo(2)-P(4) 62.33(5)
P(3)-Mo(2)-C(3) 79.1(2)
P(3)-Mo(2)-C(4) 102.6(2)
P(3)-Mo(2)-C(5) 154.1(2)
P(4)-Mo(2)-C(3) 95.1(2)
P(4)-Mo(2)-C(4) 163.9(2)
P(4)-Mo(2)-C(5) 102.0(2)
C(3)-Mo(2)-C(4) 87.0(3)
C(3)-Mo(2)-C(5) 82.2(3)
C(4)-Mo(2)-C(5) 94.1(3)
Mo(2)-P(2)-0(lB) 108.0(1)
Mo(2)-P(2)-0(4B) 110.5(1)
Mo(2)-P(3)-0(3B) 97.0(1)
Mo(2)-P(4)-0(2B) 114.1(1)
Mo(2)-P(4)-0(3B) 96.5(1)
0(11)-P(1)-0(12) 98.5(3)
0(11)-P(1)-0(13) 106.0(3)
0(12)-P(1)-0(13) 105.0(3)
0(2B)-P(5)-0(4B) 100.9(2)
P(4)-0(2B)-P(5) 119.8(2)
P(2)-0(4B)-P(5) 108.9(2)

The structure is similar to that for complex 2. With the replacement of 

PPh3 by P(OMe)3, a few alterations were found in bond angles and lengths.
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The Mo(l)-Mo(2) separation is now 3.173(1) A. A metal-phosphorus distance 

of 2.352(2) A is observed for Mo(l)-P(3) with a P(OMe)3 instead of the P(Ph)3

ligand approximately trans to it. All other Mo-P bonds are in the range 2.46- 

2.53 A. The Mo(l)-0 (lB) bond length is 2.226(3) A and the trans Mo(l)-C(l) 

bond length is 1.952(6) A. All other Mo-C bonds are in the range 1.97-2.00 A. 
Except at P(2), ring P-O distances range from 1.60 to 1.67 A. The two disparate 

P(2 )-0  distances with P(2)-0 (1B) at 1.537 A and P(2)-0(4B) at 1.730 A result 

from the multiple-bond character of the former bond.

Both coordination spheres are similar to those found in 2. At Mo(2), the 

P(3)-Mo(2)-P(4) angle was compressed by the four-membered M-P-O-P chelate 

ring to only 62.33(5)°. The five-membered Mo(l)-P(3)-Mo(2)-P(2)-0(lB) 

heterocycle has a narrow Mo(l)-P(3)-Mo(2) angle of 82.02(5)° while the P(3)- 

Mo(l)-0(lB) angle is distended to 124.7(1)° . The angle closest to linearity at 

Mo(l) is C(2)-Mo(l)-P(5) at only 168.7(2)° . The four equatorial ligand atoms 

P(l), O(IB), P(3), and C(l) subtend very distorted angles at Mo(l): P(3)-Mo(l)- 

O(IB) is 124.7(1), 0(lB)-M o(l)-P(l) is 79.3(1)°, P(l)-Mo(l)-C(l) is 83.1(2)°, and 

C(l)-Mo(l)-P(3) is 72.9(2)° . These equatorial angles do sum up to 360°. At 

Mo(2), the approximately axial angle C(3)-Mo(2)-P(2) is 171.0(2)° . The four 

equatorial angles ranged from 62.3° to 102.6°, summing up to 361°.

Complex 6 can also form another orange compound. From its NMR

spectrum (Figure 22), we can see that there are four P(OMe)3 groups (four

doublets for the trimethyl phosphite protons) and they are in  two sets which 

means that it is a disubstituted compound as well as an isomeric mixture of

(CO)2P(OMe)3MopPr2NPO]4Mo(CO)2P(OMe)3 . U nfortunately, due  to the

trace amount of the sample available, no satisfactory 31p NMR spectrum was 

obtained.
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Figure 22. *H NMR spectrum for 

(CO)2P(OMe)3Mo[iPr2NPO]4Mo(CO)2P(OMe)3

4. Synthesis and Characterization of 

(CO)3(L)Mo[iPr2NPO]4Mo(CO)3PPh2H (L=CO(8), PPh2H(9))

When the compounds 2, 3, and 4 were obtained, it w as thought that only 

the phosphines with large enough cone angles could force the cage structural 

change. Since the trimethyl phosphite ligand with its small cone angle also 

appeared to give this structure as the thermodynamic product, we realized 

that reactions described in eq 1 may have also undergone the same initial
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substitution. These interm ediates may be too unstable w ith the larger 

phosphine ligands to allow isolation as they quickly transformed to the more 

stable Mo-Mo bonded structures. Reactions 1, 2 and 3 were repeated under 

milder conditions (refluxing hexane). At the lower temperature, the reactions

were slow. From the TLC and the 31p NMR spectra of the reaction mixtures

we noted that indeed each of these gave simple substitution compounds. 

Because the reactions w ere far from complete and the products were not 

s tab le , we cou ld  o n ly  iso la te  tw o o f th ese  in te rm e d ia te s :

(CO)3(L)Mo[iPr2NPO]4Mo(CO)3PPh2H (L=CO(8), PPh2H(9)) w ere obtained 

from the reaction mixture by column chromatography.

The complexes (CO)3(L)Mo[iPr2NPO]4Mo(CO)3PPh2H (L=CO (8), PPh2H

(9)) were synthesized by the reaction of d iphenylphosphine w ith the 

dimolybdenum cage complex (CO)4Mo[iPr2NPO]4Mo(CO)4 (1) in  refluxing

hexane. The equation representing the preparation of these complexes is 

shown below:

2(CO)4Mo[iPr2NPO]4Mo(CO)4 + 3PPh2H >
(1)

3CO + (CO)4Mo[iPr2NPO]4Mo(CO)3PPh2H 
(8)

+ (CO)3(PPh2H)Mo[iPr2NPO]4Mo(CO)3PPh2H
(9) (eq6)

After heating the reaction mixture for 72hrs, a clear light-yellow solution 

form ed. TLC showed four products. The second spot was isolated as

3 9
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com pound 8 and the fourth  spot as com pound 9. The products were

characterized by 31p, ^H, NMR, and IR spectra, and in addition, the

structure of compound 8 was confirmed by elemental analysis. The isolated 

yields of complexes 8 and 9 were only 11 and 4%, respectively.

Both products are cage-like compounds. One is the monosubstituted 

isomer with one axial CO replaced by the ligand; the other is the diaxial- 

substituted isomer, (i. e., monosubstitution at each metal, Figure 23):

Another expected result yet to be proved is that both of these white-colored 

complexes, 8 and 9, can also readily transform to the known orange complex 4 

in refluxing toluene.

simple substitution were formed first in each reaction. These compounds 

were not very stable and readily rearranged to novel orange complexes by 

breakage of one P-O bond.

ax diax

Figure 23. Proposed structures for complex 8 and 9

It seems reasonable to postulate that the colorless cage-like products of
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5. Synthesis and Characterization of (CO)3Mo[iPr2NPO]4Mo(CO)2(L) (L=Py

(10), CO (11))

In order to identify w hether it was the electronic or steric factor that 

forced the structural rearrangement, P(OC6Hs)3 was used for comparison

with HP(C6H5)2 since they have similar cone angles ( 128° and 126°) but

different rc-acceptor abilities. By following the reaction of P(OC6H s)3 with

cage 1 by TLC and 31p NMR, a similar result was obtained as for P(OCH3)3.

The intermediate substitution product, however, was more stable than that 

for HP(C6H5)2- This suggests that the electronic influence on the

rearrangement reaction is more important than the steric influence, and that 

the stronger Tt-acceptor ligands can stabilize the simple substitution products.

In order to further verify this observation, a stronger o d o n o r  ligand, 

pyridine, was used to react w ith the cage 1 and to compare with P(OCH3)3.

Pyridine has a cone angle very similar to that of P(OCH3)3 (0=106°). [ Cone

angle for the phenyl group is 105° pyridine should have essentially the

same value. ] The reaction of pyridine with the dimolybdenum cage 1 was 

run in refluxing toluene.

(CO)4Mo[iPr2NPO]4Mo(CO)4 + P y  >
(1)

3CO + (CO)3Mo[iPr2NPO]4Mo(CO)2Py
(10) (eq7)

The yield of complex 10 was 76%.
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Compared to P(OCH3)3 from w hich w e can get the substitution

intermediates, this result was very different. This product was a red-orange 

compound with structure similar to the orange compounds 2,3,4, and 7. No

substitution intermediates showed up at all either on TLC or in the 31p NMR

spectra taken during the reaction.

This again suggests that strong n-acceptor ligands can stabilize simple 

substitution intermediates while good o-donors make the metal electron rich 

and facilitate the P-O oxidative addition process.

From this reaction we also observed that:

(A) The product 10 is not stable in the NMR solvent CDC13, since the *H

and 31p NMR spectra showed that it transformed to another orange complex

11 ( Figiure 23). The *H NMR spectrum showed that there was no pyridine in

the new complex( Figure 25) and its 31p NMR spectrum is similar to that of 

the complex 2 after reaction with C O .
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Figure 24. 31p NMR spectra of complex 10 in CDCI3
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NMR Spectrum of (CC»3Mo[‘Pr2NPO]4Mo(CO)2Py
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Figure 25. NMR spectra of complex 10 and 11
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Thus, liberated CO from decomposition can displace the Py ligand in 10 

to form the new orange complex Mo2PPr2NPO]4(CO)6- In order to prove this,

CO gas was bubbled through a solution of complex 10 at about 60°C. After a

few hours, TLC showed that it was completely transform ed to orange 

compound 11. The new compound showed an orange spot on the top of the

spot of complex 10. *H and 31p NMR spectra clearly showed that this new 

product, (CO)3Mo[iPr2NPO]4Mo(CO)3 (11), is identical to the one obtained 

from a CDQ3 NM R solution of 10. The reaction can be written as:

(CO)3Mo[iPr2NPO]4Mo(CO)2Py + CO ---------- >
(10)

(CO)3Mo[iPr2NPO]4Mo(CO)3 + Py
(11) ( eq8)

(B) Complex 11 is very reactive and easily reacted w ith pyridine to 

reform  10. It can also react w ith maleic anhydride in warm  toluene or 

refluxing hexane to form a yellow cage-olefin complex . Complex 10 can also 

react w ith maleic anhydride in refluxing hexane to form a similar yellow 

cage-olefin complex. This cage-olefin complex was an inseparable mixture. 

When complex 10 reacted with MeP(C6H s)2 in refluxing toluene, complex 3

was reformed.

Complex 11 was very soluble in warm hexane and hexane solutions 

under N 2 gave good quality crystals. The X-ray structure of these crystals was

determined (Figure 26). Selected bond distances and bond angles are listed in 

Table V :

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

I
C 3 6 W ,  W  c3515© 

NI ^ ,C1

Figure 26. Molecular structure of complex 11
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Figure 27. Core geometry of complex 11
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Table V. Selected Bond Distances (A) and Angles (deg) for M>2P Pr2NPO]4(CO)g (11)

Mo(l)-Mo(2) 3.143(1)

Mo(l)-P(l) 2.501(3) P(2)-0(2B) 1.599(7)

Mo(l)-P(3) 2.403(3) P(2)-0(4B) 1.676(7)

M o(l)-0(lB) 2.265(7) P(2)—P(3) 2.544(4)

Mo(l)-C(l) 1.94(1) P(2)-0(3B) 1.694(7)

Mo(l)-C(2) 2.04(1) P(2)-0(4B) 1.621(7)

Mo(l)-C(3) 2.03(1) P(3)-0(3B) 1.639(7)

Mo(2)-P(2) 2.440(3) P(4)-0(1B) 1.526(7)

Mo(2)-P(3) 2.443(3) P(4)-0(2B) 1.742(8)

Mo(2)-P(4) 2.515(3) C(l)-0(1) 1.16(1)

Mo(2)-C(4) 2.11(2) C(2)-0(2) 1.13(1)

Mo(2)-C(5) 2.01(1) C(3)-0(3) 1.13(1)

Mo(2)-C(6) 2.03(1) C(4)-0(4) 1.10(2)

C(5)-0(5) 1.14(1) C(6)-0(6) 1.12(1)

Mo(2)-Mo(l)-P(l) 78.42(7) Mo(l)-Mo(2)-P(2) 81.38(7)

Mo(2)-Mo(l)-P(3) 50.11(7) Mo(l)-Mo(2)-P(3) 49.00(7)

Mo(2)-Mo(l)-P(4) 49.01(6) Mo(l)-Mo(2)-P(4) 60.36(7)

Mo(2)-Mo(l )-0(lB) 73.8(2) Mo(l)-Mo(2)-C(4) 125.2(3)

P(l)-Mo(l)-P(3) 90.6(1) P(2)-Mo(2)-P(3) 62.8(1)

P(l)-Mo(l)-0(lB) 79.2(2) P(2)-Mo(2)-P(4) 93.4(1)

P(l)-Mo(l)-C(l) 97.5(4) P(2)-Mo(2)-C(4) 97.2(1)

P(l)-Mo(l)-C(2) 91.6(4) P(2)-Mo(2)-C(5) 96.5(4)

P(l)-Mo(l)-C(3) 167.7(3) P(2)-Mo(2)-C(6) 164.3(4)
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P(3)-Mo(l)-0(lB) 123.8(2)

P(3)-Mo(l)-C(l) 72.4(3)

P(3)-Mo(l)-C(2) 153.2(4)

P(3)-Mo(l)-C(3) 93.7(3)

0(lB)-Mo(l)-C(l) 163.2(4)

0(lB)-Mo(l)-C(2) 82.7(4)

0(lB)-Mo(l)-C(3) 88.8(4)

C(l)-Mo(l)-C(2) 80.9(5)

C(l)-Mo(l)-C(3) 94.8(5)

C(2)-Mo(l)-C(3) 89.8(5)

Mo(l)-P(l)-0(2B) 103.1(3)

Mo(l)-P(l)-0(4B) 116.0(3)

Mo(l)-P(3)-Mo(2) 80.89(9)

Mo(l)-P(3)-0(3B) 113.1(3)

Mo(l)-0(1B)-P(4) 97.7(4)

0(1B)-P(4)-0(2B) 103.3(4)

0(2B)-P(1)-0(4B) 100.3(4)

P(2)-0(3B)-P(3) 99.5(2)

P(3)-Mo(2)-P(4) 107.0(1)

P(3)-Mo(2)-C(4) 81.5(3)

P(3)-Mo(2)-C(5) 151.8(4)

P(3)-Mo(2)-C(6) 103.7(4)

P(4)-Mo(2)-C(4) 168.7(4)

P(4)-Mo(2)-C(5) 92.4(4)

P(4)-Mo(2)-C(6) 82.6(4)

C(4)-Mo(2)-C(5) 82.5(5)

C(4)-Mo(2)-C(6) 88.2(5)

C(5)-Mo(2)-C(6) 98.8(5)

Mo(2)-P(2)-0(3B) 97.2(3)

Mo(2)-P(2)-0(4B) 116.7(3)

Mo(2)-P(3)-0(3B) 98.6(3)

Mo(2)-P(4)-0(lB) 108.0(3)

Mo(2)-P(4)-0(2B) 110.5(3)

P(1)-0(2B)-P(4) 107.9(4)

P(1)-0(4B)-P(2) 116.5(4)

0(3B)-P(2)-0(4B) 98.0(4)

Complex 11 has a polycyclic structure similar to complexes 2 and 7. 

Replacing a phosphine or phosphite ligand by a CO ligand only generated 

relatively few changes in bonding details. The Mo(l)-Mo(2) bond is now at 

3.143(1) A. The Mo(l)-P(3) bond changed from 2.362(4) in 2 and 2.352(2) in 7 to 

2.403(3) A with a CO instead of the PPh3 or P(OCH3)3 trans to it. That is

because CO ligand is a better rr-acceptor ligand, so the n  back-bonding between 

Mo-CO is stronger and the Mo-P bonding is weakened. The Mo(l)-0(lB) bond 

distance is changed from 2.222(8) in 2 and 2.226(3) in 7 to 2.260(7) A. The
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Mo(l)-C(l) bond distance trans to the M o(l)-0(lB ) bond is 1.94(1) A. It is 

indeed shorter than all of the other Mo-C bonds which are in the range 2 .01-

2.11 A. The two disparate P(4)-0 distances result in a shorter bond P(4)-0(1B) 

at 1.526(7) A and a longer bond P(4)-0(2B) at 1.742(8) A.

Both bond angles and coordination spheres around Mo(2) are similar to 

those in 2 or 7. W ith the replacement of a phosphine or phosphite by a 

carbonyl ligand, the four-membered Mo(2)-P(2)-0(3B)-P(3) chelate ring and 

the five-membered Mo(l)-P(3)-Mo(2)-P(4)-0(1B) heterocycle are essentially 

unchanged. The Mo(2)-P(3)-Mo(l) angle is slightly decreased to 80.9(1)° due to 

the smaller Mo-Mo distance. At Mo(l), the angle closest to linearity is C(3)- 

Mo(l)-P(l) at 167.7(3)° while P(4)-Mo(2)-C(4) is 168.7(4)°. The four equatorial 

ligand atoms P(3), O(IB), C(l), and C(2) have distorted angles at Mo(l); P(3)- 

Mo(l)-0(lB) is 123.8(2)°, 0(lB)-Mo(l)-C(2) is 82.7(4)°, C(l)-Mo(l)-C(2) is 80.9(5)° 

and C(l)-Mo(l)-P(3) is 72.4(3)° . These angles sum  to 359° . At Mo(2), the 

corresponding equatorial angles deviate widely from orthogonality ranging 

from 62.8(1) to 103.7(4)°, summing to 362°. The C(3) at M o(l) now has 

reasonably orthogonal angles with O(IB), P(3), C(l), and C(2) ranging from 

88.9(4) to 94.8(5)° compared to the corresponding angles in 7 ranging from 

79.3(1) to 93.20(5)°.

The overall geometries of the complexes 2, 7, and 11 are thus quite similar. 

As mentioned in Part 1-2, the phosphido chemical shift is very sensitive to 

the M-P-M angle and the extent of metal-metal interaction. For the series of 

orange complexes, the nearly constant phosphido chemical shift at +306 ppm 

suggests that these geometrical details are very similar in these complexes. A 

comparison of selected bond details from the X-ray structure of complexes 2,7, 

11, as depicted in Figure 28, demonstrates that the phosphido angle and Mo-
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Mo bond indeed remain little changed.

P.

11

Mo— —---------------------------Mo
2 3.186(4)
7 3.173(1)

11 3.143(1)

Figure 28. Comparison of the phosphido-bridge 

structural data for complex 2,7 ,1 1

For the cage reactions of CH3CN and C6H5CN, we deduced from the TLC

and the 31p NMR spectra of the reaction solutions that two orange-colored 

products formed. One of these readily rearranged to the other in CDCI3

solvent. By comparing the 31p NMR spectra with that of 10 and 11, it is clear

that one of the products is (CO)3Mo[iPr2NPO]4Mo(CO)2(RCN) and the other

is again complex 11, (CO)3Mo[iPr2NPO]4Mo(CO)3. (We tried very hard but

unsuccessfully to isolate the pure products.) Since CH3CN and C6H5CN are

ligands which have very little rc-bonding ability the substitu tion 

intermediates are not very stable.
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2 82.6(1) 
7 82.02(5) 

11 80.89(9)

2 2.464(21 
1 2.480(2) /  
2.443(3) /

2 2362(4)
7 2353(2) 

\  11 2.403(3)
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For the reaction of pyridine, only one substitution product was formed 

in  a fast reaction, b u t for secondary am ines like p iperid ine and 

diisopropylamine, the reactions were slow and the cage was degraded via P- 

O-P cleavage to give bis (dialkylamino) phosphine oxides:

Mo(CO)4pPr2NPO]4Mo(CO)4 + HNC5H 10 (excess) >

(iPr2N)2P(0)H + (iPr2N)(C5H i0N)P(O)H + 

(C5HioN)2P(0)H + Mo(CO)4(HNC5Hio)2 + etc.

Both transamination and nucleophilic P-O-P cleavage occurred, resulting in 

essentially a reversal of the cage form ation reaction from Mo(CO)6 and

(iPr2N)2P(0)Hl®l. The identities of the products were confirmed by obtaining

the proton-decoupled and proton-coupled 31p NMR spectra of the product 

mixture.

Also, we checked the reactions of the cage com pound w ith tertiary 

amines such as [(CH3)2CH]2NC2H5 and (C2Hs)3N. Because the bonding

between the metal and pure o-donor ligands is very weak, only negligible cage 

reactions resulted.

6. Relationship of Reaction Rate to Steric and Electronic Factors

It has long been hoped th a t the stereoelectronic properties of 

phosphorus(III) ligands can be param eterized into electronic and steric 

components. Yet, steric effects can have important electronic consequences 

and vice versa. Thus, the separation of electronic and steric effects into purely

5 1
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steric or electronic factors is difficult. Tolman introduced the cone a n g l e d

and electronic p a ra m e te r^ ]  ( x values ) of phosphorus (HI) ligands for this

quantification. A measure of steric effects was proposed based on ligand cone

angles (0) of space-filling CPK molecular models and the electronic effect was

based on A i carbonyl stretching frequencies (u ) in Ni(CO)3L complexes. Since

then, it has been shown that many chemical and spectroscopic properties of 

organometallic complexes correlate with the cone angle and the x values, and

reflect the collective electronic donor/acceptor properties of the ligands$6] 

It is a practical and useful separation.

In order to distinguish the im portance of the electronic and  steric 

influences of the phosphorus ligands in these two-step reactions, we 

compared the reactions of cage complex 1 w ith P(C6Hs)3, MeP(C6Hs)2,

HP(C6H5)2/ P(OCH3)3, P(OC6Hs)3 and pyridine under similar conditions.

From the 31p NMR spectra of the reaction mixtures we calculated the percent

of cage reacted and also the percent of the orange phosphido- compound 

formed from the substitution intermediates. The results are listed in Tables 

VI and VII along w ith ligand size and electronic parameters derived by 

Tolman:
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Table VI: Comparison of the Reaction Rates with Ligands Cone Angle

Ligand 0 %Cage Reacted(4 h)

P(C6H5)3 145 44(2)

MeP(C6H5)2 136 56(2)

P(OC6H5)3 128 56(5)

HP(C6H5)2 126 95(3)

P(OCH3)3 106 100(1)

pyridine 105 100(1)

(N. B. % is amount of product relative to the Cage Starting Material)

Table VII: Comparison of the Reaction Rates with the Electronic Parameters 

of the Ligands

Ligand P X 1X 2 X 3 X 1+ X 2 + X 3 % orange product formed(4 h)

P(OC6H5)3 9.7x3=29.1 0(1)

P(OCH3)3 7.7x3=23.1 -10-20(10)*

HP(C6H5)2 4.3x2+8.3=16.9 49(4)

P(C6H5)3 4.3x3=12.9 22(4)

MeP(C6H5)2 4.3x2+2.6=11.2 33(1)

pyridine 100(1)

* Estimated from the spectra.

(N. B. % is based on the amount of cage reacted in the reaction mixture.)
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From the above results, we can see that as the cone angle of the 

phosphine ligand decreased, the percent of cage reacted increased. As the je-

acceptor ability of ligand decreased, the percent of orange phosphido-product 

increased. In addition, as the reaction progressed, the fraction of the orange 

complex to the consumed cage increased. So the ligand steric influence upon 

the initial substitution step is important. For the second rearrangement step, 

the steric factor is less important than the electronic influence. The smaller 

the ligand, the easier it can substitute CO's on the cage, while the stronger the 

Jt-acceptor ability of the ligand, the more stable these intermediates proved to 

be.

Why do strong Ji-acceptor ligands stabilize the cage-structure? It may be 

because they can decrease the electron density on the metal by increasing the 

strength of M->P or M->CO jc-bonding, whereas stronger o-donors will make 

the metal more electron rich and facilitate P-O-P oxidative addition a t the 

metal.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Conclusions and Suggestions for Future Work

T ripheny lphosph ine , d iph en y lm eth y lp h o sp h in e , and  diphenyl- 

phosphine or pyridine reacted with the molybdenum cage complex, which 

resulted in the addition of one ligand and loss of three carbonyls to yield the 

orange products. One P-O-P intercage linkage has been cleaved and

oxidatively added to the two molybdenum vertices to create a n^-PO- and a

fi2-P- bridge. In addition, an intercage metal-metal bond has formed (Scheme 

IV).

Scheme IV

W hen trim ethylphosphite and  triphenylphosphite reacted w ith  the 

molybdenum cage complex, the simple mono- and disubstituted complexes 

were obtained. Upon further heating, these substitution products underwent 

similar P-O-P cleavage and associated transformations to give analogues of 

the phosphine and pyridine adducts.

When these adducts reacted with CO gas, the attached phosphine was

replaced by CO to form complex 11, (CO)3Mo[iPr2NPO]4Mo(CO)3. If the weak-
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bonding ligands acetonitrile or benzonitrile were used to react with the 

molybdenum cage, complex 11 formed as the major product even though no 

CO gas was added to the reaction solution.

The facility for the transformation of simple substitution complexes to 

the orange complexes appeared to depend on the ^-acceptor strength of the 

attacking nucleophile while the initial substitution itself depended on the 

steric size of the ligands. A smaller ligand with stronger Jt-acceptor ability can 

m ore easily substitu te CO's on  the cage and form  the substitu tion  

intermediates, while ligands with more o d o n o r ability can more easily form 

the orange compound. Also, pure of-donor ligands such as amines have only 

weak interactions with the zero-valent metal centers.

Future work in this area might involve studies of the reactivities of 

analogous cage complexes, cage complexes with different substituents on 

phosphorus atoms, or different-sized cage such as M 2(CO)8[DMP-PO]4 (M=Cr,

Mo), Ni2(CO)4[Cy2NPO]4, Cr2(CO)8liPr2NPO]4, and Ci2 (CO)6[DMP-PO]6. The

substitution and oxidation-addition rates, the nature of the products or the 

distribution of the intermediate isomers of these complexes may prove to be 

very different, because the different metal centers and the different 

substituents on the phosphorus atoms and even the polyphosphoxane cage 

size, may all play important roles in these processes.

Strongly nucleophilic species or noncoordinating acids like HBF4 and

HSO3CF3 should be reacted with the cage complex. The former may attack

the cage phosphorus atoms, whereas the latter can protonate the cage by 

attacking the P-N sites.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



EXPERIMENTAL SECTION

General Procedure: All synthetic procedures were carried out using 

standard Schlenck technique under an  atmosphere of prepurified nitrogen. 

Chemical reagents were commercial products and were used without further 

purification. Hexane and methylene chloride were distilled from  CaH2,

Toluene was reagent grade and was dried over Na and freshly distilled before 

use. Triphenylphosphine, diphenylm ethylphosphine, diphenylphosphine, 

trimethyl phosphite were used as purchased from Strem Chemicals. Pyridine, 

diisopropylamine, piperidine, ethyl acetate, acetonitrile and benzonitrile were 

reagent grade obtained from A ldrich Chemical Co. A lum ina (Aldrich 

Chemical Co, Brockmann, I, neutral) was used as received. The cage complex

(CO)4MoOPr2NPO)4Mo(CO)4 was synthesized as described previously $). 1h,

l^C and 31p NMR spectra were recorded on JEOL FX 90Q or Bruker AM360 

FT-NMR Spectrometers. For and (CH3)4Si was used as internal

standard, whereas for 31p, the chemical shifts were reported in ppm  to high

frequency of external 85% H 3FO4. Spectra were obtained in CDCI3  solution

unless otherwise noted. Infrared spectra were recorded on a Perkin-Elmer 

283B Spectrometer. Elemental analyses were performed at the University 

Instrum entation Center using a Perkin-Elmer 240b or Perkin-Elmer Series 

CHNS/O Analyzer 2400 elemental analyzer.

X-ray crystal structures were determined by Dr. Jerry P. Jasinski, Roman V. 

Pozdnizkov, and Richard W oudenberg, Departm ent of Chemistry, Keene
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State College, Keene, New Hampshire.

[(CO)3Mo(iPi2NPO)4Mo(CO)2(P(C6H5)3)] (2). A 25 mL, round-bottomed 

f la sk  w as c h a rg e d  w ith  1.0000 g of th e  cage com plex  

(CO)4Mo(iPr2NPO)4Mo(CO)4 and 0.5222 g P(C6Hs)3/ a magnetic stirbar and

evacuated. Toluene 10.0 mL was added into the flask under nitrogen. The

mixture was stirred and heated to 110°C. After refluxing for 24 hours (cage

completely gone), the clear red-colored reaction solution was evaporated to 

dryness under reduced pressure. Then 15-mL aliquot of hexane was added to 

extract the residue. The extract chromatographed on a 1- x 30-cm column of 

alum ina using 2% ethyl acetate in hexane as eluant. Com pound 2 was 

obtained as an orange-red solid in 40% yield ( 0.4697 g ). When 2 was 

dissolved in hot hexane and the solution cooled, X-ray-quality crystals were 

obtained. Elemental analyses (calculated/observed for C47H71M 02N 4O9P5 ):

C% 47.72/47.79, H% 6.05/6.15, N% 4.74/4.68. *H NMR: 6 7.86 and 7.24 (m, Ph),

3.86 and 3.68 (m, N-CH), 1.33,1.32,1.30,1.20,1.19,1.13,1.02,0.87 (d, Me, J=6.7-

6.8 Hz). 13C NMR: 6 222.7 and 221.7 (m, CO), 218.4 (dd, CO, J=18.8, 54.2 Hz),

137.0-128.1 (m, Ph), 49.1,48.6,46.4,44.8 (d, N-C, J= 12.4,7.5,9.3,8.6 Hz), 23.3 (m, 

Me).

[(CO)3Mo(iPi2NPO)4Mo(CO)2(PR3)] ( R3= MeP(C6H5)2, HP(C6H5)2. 3,

4). A 25 mL, round-bottomed flask was charged with 1.0000 g (1.0000 mmol) of 

the cage complex, a stirbar, 10 mL of toluene and 2.0000 mmol of the 

respective phosphine. Similar reaction procedures as 2 were used. Because 3 

and 4 were not stable on the column, so after running the reactions for 24 

hours (cage completely gone), the clear red-colored reaction solutions were
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stripped of the toluene under reduced pressure. Upon standing for one day, 

the resulting viscous oils afforded red crystals of the products. By washing off 

MeP(C6H5)2 or HP(C6Hs)2) and other impurities w ith small portions of cold

hexane and dried to give 80% yield of 3 or 4. Elem ental analyses ( 

calculated/observed for C42H69Mo2N409P5 3): C% 45.01/45.18, H% 6.20/6.27, 

N% 4 .6 0 /5 .0 0 . E lem en ta l a n a ly se s  (c a lc u la te d /o b s e rv e d  for

C41H67M 02N 4O9P5 4): C% 44.49/44.34, H% 6.10/6.48, N% 5.06/4.72. *H NMR

(for 3): 6 7.75-7.30 (m, Ph), 3.97 and 3.70 (m, N-CH), 2.02, 1.45, 1.36, 1.28, 1.23, 

1.20 (d, Me, J=8.3, 6.7,6.7, 7.7, 6.9, 6.8 Hz). lH  NMR (for 4): 6 7.77-7.32 (m, Ph), 

6.51 (dd, P-H, J=9,332 H z ), 4.0-3.55 (m, N-CH), 1.49,1.32,1.27,1.10,1.00 (d, Me, 

J=6.7- 6.8 Hz). 13c NMR (for 3): 6 224.9 and 221.1 (m, CO), 218.6 (dd, CO, J=14.6, 

36.4 Hz), 138.0-127.9 (m, Ph), 48.43, 48.38, 46.2, 44.8 (d, N-C, J= 7.5,10.0,8.7, 8.7 

Hz), 24.5 (s, Me). 23.3 (m, Me), 15.3 (d, Me, J=19.3 Hz). ^ C  NMR (for 4): 6 223.2 

and 221.2 (m, CO), 218.2 (dd, CO, J=15.2,51.3 Hz), 134.2-128.7 (m, Ph), 48.5,47.9, 

46.5,44.5 (d, N-C, J= 8.4, 9.2,9.2, 8.5 Hz), 24.5 (d, Me, J=7.8 Hz), 22.9 (m, Me).

[(CO)4Mo(iPi2NPO)4Mo(CO)3(HP(C6H5)2)](8) 

[(HP(C6H5)2)(CO)3Mo(iPi2NPO)4Mo(CO)3(HP(C6H5)2)] (9). A 25 mL, 

round-bottomed flask was charged with a stirbar, 0.2000 g (0.2000 mmol) of the 

cage complex, 10.0 mL hexane, and 2.000 mmol of the diphenylphosphine. 

The mixture was stirred and allowed to heat to reflux. After refluxing for 

three days, TLC gave four spots. The light-yellow reaction solution was 

evaporated under reduced pressure and the residue chromatographed on an 

alumina column as described for 2. The second complex to elute was complex 

8, isolated in 11% yield ( 0.025 g ) ,  and the fourth was complex 9, in 4% yield
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(0.010 g ). Elemental analyses (calculated/observed for C43H67M02N 4O11P5

8): C% 44.42/44.19, H% 5.81/5.83, N% 4.82/4.53. Elemental analyses 

(calculated/observed for C54H 78M 02N 4O10P6 9 ): C% 49.10/47.36, H%

5.95/6.38, N% 4.38/4.24. Due to the very low yield of 9, repeated efforts failed

to improve on these elemental data. *H NMR (for 8 in C6D6): 6 7.60 and 7.05

(m, Ph), 6.39 (d of t, P-H, J=4.2,309.7 H z ), 4.78 (septet, N-CH, J=6.4 Hz), 4.55 and

4.11 (m, N-CH), 1.36 (m, Me), 1.04 (d, Me, J=7.0 Hz). 13C NMR (for 8 in C6D6):

6 217.7, 217.1,214.9 (m, CO), 135.0-128.8 (m, Ph), 47.4 (m, N-C), 25.6, 24.3, 23.9

(m, Me). *H NMR (for 9 in C6D6): 6 7.70 and 7.05 (m, Ph), 6.43 (d, P-H, J= 304.9

Hz ), 4.93 and 4.54 (m, N-CH), 1.46, 1.45, 1.15, 1.07 (d, Me, J=6.9, 7.0, 7.1, 6.9 

Hz). 13C NMR (for 9 in C 6D6): 6 218.0 (m, CO), 136.1-128.8 (m, Ph), 47.5 (m, N-

C), 25.7-24.2 (m, Me).

KCO)4Mo(iPi2NPO)4Mo(CO)3(P(OMe)3)](5)

KP(OMe)3)(CO)3Mo(iPr2NPO)4Mo(CO)3(P(OMe)3)](6). A 25 mL round-

bottomed flask was charged with 1.0000 g ( 1.00 mmol) of the cage complex, a 

stirbar , 0.25 mL (2.10 mmol) of P(OMe)3 and 10.0 mL of toluene. The

mixture was stirred and allowed to heat to reflux. After refluxing for six 

hours, a light-yellow solution formed and two colorless spots due to the 

products showed on the TLC. The solution was evaporated under reduced 

pressure and the light-yellow residue chrom atographed on an alum ina 

column as for 2. Complex 5 ( 0.34 g, 0.32 mmol, 32% yield based on the cage) 

was obtained followed by 0.60 g of complex 6 ( 0.50 mmol, 50% yield based on 

the cage). Elemental analyses ( calculated/observed for C34H65Mo2N4014P5 5 

): C% 37.10 /36.99, H% 5.95 /6.08, N% 5.09 /4.96. Elemental analyses
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(calculated/observed for C36H74M 02N 4O16P6 6 ): C% 36.13/36.11, H%

6.23/6.12, N% 4.68/4.72. *H NMR (for 5 ): 6 4.57 and 4.38 (unresolved

multiplets, N-CH), 3.61 and 3.59 (d, OMe, J=11.2,10.4 Hz), 1.3-1.5 (overlapping

doublets, Me). 13C NMR (for 5 ): 6 217.4, 213.6, 210.3, 206.6 (unresolved

multiplets, CO), 50.2, 46.0 (unresolved multiplets, N-C and OMe), 23.5

(unresolved multiplets, Me). *H NMR (for 6 ): 6 4.66 and 4.53 (unresolved

multiplets, N-CH), ~3.6 ( unresolved multiplets OMe Hz), ~1.35 (overlapping

doublets, Me). 13C NMR (for 6 ): 6 219.3, 217.8, 214.3, 211.7 (unresolved

multiplets, CO), 51.2 and 46.7 (unresolved multiplets, N-C and OMe), 24.7 

(unresolved multiplets, Me).

[(CO)3Mo(iPi2NPO)4Mo(CO)2(P(OMe)3)](7). The same procedure used

for the syntheses of complexes as 5 and 6 was followed except that the reaction 

solution was refluxed for 34 hours. After chromatography, 0.720 g ( 0.69 

mmol, 69% yield) of 7 was obtained. X-ray-quality crystals were obtained by 

slow  ev ap o ra tio n  from  a hexane so lu tion . E lem ental analyses 

(calculated/observed for C32H65M 02N 4O12P5 7): C% 36.79 /36.71, H%

6.27/6.58, N% 5.36 /5.00. *H NMR (in C6D6): 6 4.02,3.80,3.65 (m, N-CH), 3.60

(d, OMe, J=10.6 Hz), 1.47 and 1.32 (d, Me, J=6.7 and 6.8 Hz), 1.39 and 1.21 (m, 

Me). 13c NMR (in C6D6): 6 223.2, 221.8, 220.2 (m, CO), 218.6 (dd, J=15.6, 50.6

Hz), 52.2, 48.4, 48.1, 46.5, 44.6 (d, N-C or OMe, J=5.2, 8.4,10.6, 9.4, 8.4 Hz), 23.0, 

22.7,22.6, 22.3 (m, Me).

[(CO)3Mo(iPr2NPO)4Mo(CO)2(NC5H5)](10). A 25 mL round-bottom ed 

flask was charged with 2.0000 g of the cage complex, 2.00 mL pyridine, a
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stirbar, 18.0 mL toluene. The mixture was stirred and allowed to heat to 

reflux, The reaction was followed by TLC. Only one orange-colored spot 

appeared as the product on the TLC during the reaction. After 9 hours, the 

cage complex was gone and the reaction mixture was deep red, some brown 

precipitate formed. A clear deep red solution was obtained after filtering the 

reaction mixture. The filtrate was evaporated to dryness under reduced 

pressure and the residue was washed with several portions of hexane to give 

1.522 g red com pound 10 (1.52 mmol, 76% yield). Elemental analyses 

(calculated/observed for C34H61M 02N 5O9P4 10): C% 40.85/40.87, H%

6.15/6.21, N% 7.01 /6.75. *H NMR: 6 9.11-7.29 (m, Py), 4.03, 3.85, 3.71, 3.44

(septets, N-CH, J=6.6, 6.8, 6.9, 6.7 Hz), 1.51,1.47,1.41,1.38,1.29,1.26,1.19 (d, Me,

J=6.7, 6.7,6.8, 6.8, 6.9, 6.9, 6.8 Hz), 1.39 and 1.21 (m, Me). 13c NMR: 6 228.1 (dd,

CO, J=12.1,44.0 Hz), 221.4 218.2 (m, CO), 153.4-124.2 (m, Py), 48.4,47.5,46.5,45.2 

(d, N-C, J= 8.4,10.4,9.6,9.2 Hz), 23.5-22.4 (m, Me).

[(CO)3Mo(iPi2NPO)4Mo(CO)3l(ll). Complex 10 (0.6565 g) was dissolved

in 20 mL toluene at 60 °C, and CO gas was bubbled through it for 6 hours.

Complex 10 was gone, and  a new orange-red solution was obtained. The 

orange red clear solution w as evaporated to dryness and an orange residue 

was obtained. The residue was chromatographed to give 0.3095 g (0.33 mmol, 

50% yield) of orange compound 11. X-ray-quality crystals were obtained by 

slow  evapo ra tion  from  a hexane so lu tio n . E lem ental analyses 

(calculated/observed for C30H56M 02N 4O10P4 11): C% 37.99/37.57, H%

5.95/6.13, N% 5.91/5.71. lH  NMR: 6 3.92,3.72 (m, N-CH), 1.50 and 1.35 (d, Me,

J=6.7, 3.0 Hz), 1.31 (m, Me). 13c NMR: 6 220.8, 217.6,215.6,208.0 (m, CO), 48.9, 

48.2,47.4,45.3 (d, N-C, J= 8.9,10.3,10.4,8.6 Hz), 23.0 (m, Me).
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X-ray Structural Determination of Complex 2. A summary of crystal 

data, data collection, and structural refinement details is presented in  Table 

Vm. The intensities of a 0.6- x 0.2- x 0.8-mm crystal were collected on a Rigaku 

AFC6S diffractometer. A total of 11267 unique reflections were measured of

which 6097 were considered significant at the 3o level. The structure was

solved using direct methods, and the hydrogens were included at calculated

p o s i t i o n s ^ ] .  Final least squares were perform ed varying 6 0 5  param eters.

Final RF=0.074 and Rw=0.120 with a goodness-of-fit (GOF) of 3.81. Selected 

bond distances and bond angles are listed in Table III.

X-ray Structural Determination of Complex 7. A summary of crystal 

data, data collection, and structural refinement details is presented in Table 

Vm. The intensities of a 0.6- x 0.4- x 0.7-mm crystal were collected to yield a 

total of 11384 unique reflections w ere m easured of which 6070 were 

considered significant at the 3o level. The structure was solved using direct

methods, and hydrogens were included at calculated positions. Final least 

squares w ere perform ed varying 497 param eters. Final RF=0.042 and 

Rw=0.044 w ith a goodness-of-fit (GOF) of 1.32. Selected bond distances and 

bond angles are listed in Table IV.
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Table VIII. Crystal Data for Complexes 2, 7 and 11

2 7 11

f o r m u l a M02P5O9N4C47H71 M02P5O12N4C32H65 M02P4O10N4C30H56

f w 1182.85 1044.63 948.57

s p a c e  g r o u p P 2 i/c P2i/w C2i/c

m o n o c l i n i c m o n o c l i n i c m o n o c l i n i c

a ,  A 12.684(1) 13.026(3) 36.523(7)

b, A 13.383(3) 21.054(3) 13.287(5)

c ,  A 37.109(4) 18.118(3) 20.348(3)

C , d e g 103.46(2) 109.48(1)

Z 4 4 8

dcalc, g  C i n ' l 1.247 1.436 1.353

H, m m - i 5.58 7.22 7.07

cryst dimens, mm 0.6x0.2x0.8 0.6x0.4x0.7 l.Oxl.Oxl.O

A(Mo K  radiation), A 0.71069 0.71069 0.71069

d a t a  c o l l e d 0° < 20 < 55.0° 0° < 20 < 55.0° 0° < 20 < 55.0°

s c a n to to 0D

no. of unique reflens 11267 11384 11325

no. of obsd reflens 6097 6070 4770

F (000) 2448 2160 3904

R f 0.074 0.042 0.054

R W F 0.121 0.044 0.074

GOF 3.81 1.32 2.00
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X-ray Structural Determ ination of Complex 11. A summary of crystal 

data, data collection, and structural refinement details is presented in Table 

Vin. The intensities of a 1.0- x 1.0- x 1.0-mm crystal were collected to yield a 

total of 11150 unique reflections were m easured of w hich 4723 were 

considered significant at the 3a level. The structure was solved using direct 

methods, and the hydrogens were included at calculated positions. Final least 

squares were performed varying 452 parameters. Final Rf=0.054 and Rw=0.074 

with a goodness-of-fit (GOF) of 2.00. Selected bond distances and bond angles 

are listed in Table V.

Com parison of the substitu tion  reactions of the cage w ith different 

ligands: Each of the six 25 mL round-bottomed Schlenk flasks was charged 

with the same amount of the cage complex (0.5000 g) and evacuated, and the 

ligand in toluene was added into the proper flask to make the molar ratio of 

cage to ligand to be 1 : 2. Then toluene was added to the flasks to make the 

total volume of solution 5.0 mL. The resulting mixtures were stirred and 

warmed to dissolve the cage complex. Then 0.5 mL of solution from each of 

the colorless reaction solutions was removed and added to 0.3 mL of C6D6.

The 31p NMR spectrum was obtained. From the integration of the 31p NMR

resonances, the beginning molar ratio of the cage to ligand could be calculated 

. The starting colorless solutions were stirred at reflux for 4 hours. A volume 

of 3.0 mL reaction solution was removed from each reaction mixture and

added to 0.50 mL of C6D6 and the 31p NMR spectrum was obtained again.

From the 31p NMR spectra we calculated the % of cage reacted and also the % 

of the orange compound formed from the intermediates.
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CHAPTER II

DEMETALLATION OF A DIMOLYBDENUM CYCLO- 

TETRAPHOSPHOXANE CAGE COMPLEX AND THE SYNTHESIS OF 

HETEROBIMETALLIC CAGES AND THEIR CHEMICAL REACTIONS
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The synthesis and study of heterobimetallic complexes has been the 

subject of active research over the past decade. Initially studies of complexes 

containing two different metal atoms from the same or neighboring groups

were done [42]. Later, interest developed in complexes that contained widely

divergent transition m etals [431. Heterobimetallic complexes are of interest 

because of the potential to promote unique or sequential interactions.

Bifunctional ligands such as l-(diphenylphosphino)cyclopentadieneM

and 2-(diphenylphosphino)pyridinel4$l have proven to be particularly useful

in constructing heterobimetallic species. Mixed-metal complexes have also 

b e en  sy n th e s ize d  by  u sin g  b id e n ta te  d ip h o sp h in e s  such  as

bis(diphenylphosphino)methane[46], as well as phosphido ligands ffll. A

substan tia l num ber of heterobim etallic  com plexes have now  been 

synthesized. Several typical complexes are shown below:

PhoP-

(CO )4 M n  M o (C O )3

c!
/  s'P P h 2

R u ~  Rh
H *"  I \  / I  \  

I Cl 1 
PPh2

" c r  
h2

PPh2

Ph2P --------
I

CI2RhCO  

,N .

£ )N '
I

PdCI2
I
PPh2

P h ^  ^ P h  
P

(CO)4Ru •C o(C O )3
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Wong and coworkers have reported results from our laboratory on the 

synthesis of several bimetallic cage complexes and mixed-valent bimetallic

cage complexes as shown below [8,9,13].

0

R fR - p .

1
(CO)4M'

R
I
P-I M(CO)4 

\
0  V  P - > *  R

I ’ 0  I
p - 0

R

O'

R- I 
R ^ P -

1
L2(CO)2Mo '

R'r
- R^-M o(CO)212 

/  1

• i ' °  /  R
P - 0

R*

(R=iPr2N, Ph 
M=Mo, Cr)

(R'=iPr2N 
X=C1, Br, I. L=CO, Cl, Br, I)

Before this work, no heterobimetallic cage complexes had been synthesized 

except (CO)4Cr[PhFO]4Mo(CO)4 w hich had been detected by 31p NMR

spectroscopy of a reaction mixture^®]. Recently, Xiaoyong et a l i ^ l  reported 

the synthesis of two novel heterobimetallic complexes of the types:

V  ^  NiBr2

/  r

\ /
(CO)4Mo=-----

(R=Cy2N)

(CO)4Mo-
i \

R \  / °  °
(CO)3F e < £ . P R.

1 /
R’

R*=iPr2N
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and a P5O5 heterobimetallic cage complex (CO) 3Mo[Cy2NPO]sPdCl2. This 

MoO/Pd^ P5O5 cage complex was synthesized as shown in eq 9 and eq 10:

PdCl2(C6H5CN)2 + 5/3[Cy2NPO]3---------->

PdCl2[Cy2NPO]5 + 2 C6H5CN (eq 9)

PdCl2[Cy2NPO]5 + (CO)4Mo(NBD)--------->

(CO)4Mo[Cy2NPO]5PdCl2 + NBD (eq 10)

Our research goal was also to study the intracage m etal-m etal 

interactions in a series of structurally-related heterobimetallic cage complexes.

The parent (CO)4Mo[iPr2NPO]4Mo(CO)4 cage has been shown to exhibit

m ixed-valent and  intracage oxidative-addition reactions. A series of 

heterobimetallic complexes of this type with rigidly-constrained pairs of metal 

vertices should be especially interesting for the study of intracage metal-metal 

interactions. Substituted cages of this type, however, have been elusive due to 

lack of rational synthetic routes. Although attem pted demetallation of the 

parent cage complex failed, we note that its mixed-valent derivative

(CO)4Mo[iPr2NPO]4Mo(CO)2l2 contains one Mo(II) center which does present

a potential decomplexation site. Successful demetallation should give the 

precursor complex (CO)4Mo[^Pr2NPO]4^ L

In this chapter, we describe the synthesis, characterization and chemistry 

of this monometallic cage precursor and its use as a metalla-ligand for the 

synthesis of a series of heterobim etallic cage complexes of the form

(CO)4Mo[iPr2NPO]4MLn . Possible intracage metal-metal interactions have
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been investigated. In addition, some reactions of both the precursor and 

heterobimetallic cage complexes are reported.

RESULTS AND DISCUSSION

l.S yn thesis and Characterization of the  M onom etallic Cage Precursor 

(CO)4MoliPr2NPO]4 (14)

Complex (CO)4Mo[iPr2NPO)4 (14) was synthesized by the reaction of

(CO)4MopPr2NPO]4Mo(CO)2l2 (12) with two equivalents of sodium  

dimethyldithiocarbamate in CH2CI2 at room temperature via an orange 

intermediate (CO)4MopPr2NPO]4Mo(CO)2(S2CNMe2)2 (13). The reaction 

sequence representing the preparation of 14 is as follows:

(CO)4Mo[iPr2NPO]4Mo(CO)2l2 +2NaS2CNMe2 >
(12)

2NaI + (CO)4MopPr2NPO]4Mo(CO)2(S2CNMe2)2 (eq 11)
(13)

13 ------- > (CO)4Mo[iPr2NPO]4 + Mo(CO)2(S2CNMe2)2 (eq 12)
(14) (15)

Complex 12 was synthesized by literature m ethods^]. At first, a 2:1

CH2Cl2/MeOH mixture was chosen as the solvent since 12 is very soluble in

CH2CI2 while sodium dimethyldithiocarbamate easily dissolves in MeOH.

The following reaction was obtained by using this solvent system at room 

temperature:
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(CO)4Mo[iPr2NPO]4Mo(CO)2l2 +2NaS2CNMe2 + MeOH >
(12)

2NaI + (CO)4Mo[iPr2NPO]2(iPr2NPOMe){iPr2NP(0)H}
(28)

+ Mo(CO)2(S2CNMe2)2 (eq 13)
(15)

Thus methanol-decomposed 14 was obtained. Details of this reaction will be 

discussed in Part II. 5.

W hen  12 and  NaS2CNMe2 w ere m ixed w ith  CH2CI2 a t room

temperature, a suspension was formed. The white solid, NaS2CNMe2, was

suspended in the deep-red mixture of complex 12. After stirring for 3 hours, a 

red suspension was obtained. The red suspension contained complex 15

which could be isolated by filtration of the mixture. Complex 15 gave no 31p

NMR signal. Its formula was confirmed by lH , 13c NMR, IR and elemental 

analyses. The two major IR carbonyl bands indicated a cis -configuration of 

the carbonyl groups. The band at 1517cm-1 was due to the C-N stretching

modeflB]. A iH  NMR spectrum of 15 showed two methyl resonances of

unequal intensities. It is likely that this arose from two of isomers [31], ( one 

with an octahedral structure and one w ith a trigonal prismatic structure 

similar to that found in the solid state for Mo(S2CNlPr2)2(CO)2^1-

Dithiocarbamate ligands can act as a bidentate or as a m onodentate 

ligand when coordinated to a transition metallic] [19];
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In eq 11, the dithiocarbamate ligand first acted as a monodentate ligand to 

replace the iodide to give orange 13. This then rearranged to a bidentate mode 

and replaced the phosphorus donor atoms, removing the molybdenum from 

the rest of the cage (eq 12).

TLC and the 31p NMR spectrum of the reaction mixture showed that the

orange complex 13 is the major product. Complex 14 gave a colorless TLC spot 

w ith a high Rf value. By routine column chromatography, complex 13 was

isolated in about 30% yield. This complex was very unstable and it 

decomposed to white complex 14 and red-purple 15 in solution or in the 

so lid  state w hen left at room  tem peratu re  for several days. The

decom position products w ere exam ined by ^H, 31p NMR and  IR

spectroscopy. White solid compound 14 was isolated in 59% yield by column 

chromatography of the decomposition product after one week. Complex 14

has been characterized by ^H, l^C, 31p NMR, IR spectra, elemental analyses

and X-ray crystallography. It is an air-stable white solid with four IR carbonyl

absorptions at 2010, 1925, 1908, and 1882 cm_l  which is consistent with a cis-

Mo(CO)4P2 of C2v symmetry. Its proton-decoupled 31p NMR spectrum

exhibited the expected A2X2 pattern with one sharp (150.6 ppm, coordinating 

P's) and one broad (126.0 ppm, uncoordinating P's) triplet w ith a coupling
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constant of about 2 H z (Figure 29). The 13c NMR spectrum showed two 

triplets for carbonyl resonances at 215.8 ppm  (2Jpc=14 Hz) and at 209.5 ppm  

(2Jpc=12Hz).

Figure 29.31p(lH} NMR spectrum of 14

The X-ray structure of 14 is shown in Figure 30 and selected bond distances 

and bond angles are listed in Table IX:
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Figure 30. Molecular Structure of 14
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Table IX. Selected Bond Distances (A) and Angles(deg) for (CO)4Mol‘Pr2NPO]4

Mo-P(2) = Mo-P(2A) 2.512(2)

Mo-C(2) = Mo-C(2A) 2.027(10)

Mo-C(l) = Mo-C(IA) 1.978(9)

P(l)-0(3) = P(1)-0(3A) = P(1 A)-0(3B) = P(1A)-0(3C) 1.671(4)

P(2)-0(3) = P(2)-0(3B) = P(2A)-0(3A) = P(2A)-0(3C) 1.623(4)

P(l)-N(l) = P(1A)-N(1A) 1.655(6)

P(2)-N(2) = P(2A)-N(2A) 1.642(7)

P(2)-Mo-P(2A) 75.1(1)

C(l)-Mo-C(lA) 87.5(5)

C(2)-Mo-C(2A) 169.8(5)

P(2)-Mo-C(l) = P(2A)-Mo-C(lA) 98.7(3)

P(l)-0(3)-P(2) = P(1)-0(3A)-P(2A) 131.6(2)

P(1A)-0(3B)-P(2) = P(lA)-0(3)-P(2A) 131.6(2)

Mo-P(2)-0(3) = Mo-P(2)-0(3B) 112.1(1)

Mo-P(2A)-0(3A) -  Mo-P(2A)-0(3C) 112.1(1)

0(3)-P(l)-CK3A) = 0(3B)-P(1A)-0(3C) 97.6(3)

0(3)-P(2)-0(3B) = CX3A)-P(2A)-0(3C) 102.1(3)

The molecule has perfect C2v symmetry w ith the expected vacant metal

vertex. Complex 14 retains the parent P4O4 boat-boat ring conformation with

significant modifications in the phosphorus-oxygen bond lengths. Comparing 

to the average of 1.646(4) A found in complex 1, the four coordinated (Mo)-P-
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O bonds are shortened to 1.623(4) while the uncoordinated phosphorus-oxgen 

bonds are lengthened to 1.671(4) A. These data indicate that the P-O -bonding 

at the coordinated sites are enhanced at the expense of the uncoordinated P-O

bondsP^l. This structure represents the third configurational isomer (boat-

boat) of the M0P4O4 moiety to be structurally characterized. Previously,

chair-boat and chair-chair forms were described but this third geometry has

not been accessible by direct synthesis 1*31. These three conformations are

showed in Figure 31:

M 4 - p.  . . J  J  m 4 - p\
o

\  ^  r  *  ivi — t—
\  P \
.0  o A  '

1
C>

p/ X  0 > P

Chair-Chair Chair-Boat Boat-Boat

Figure 31. Three Conformations for the M0P4O4 Core

By the temperature-independent NMR spectral behavior of complex 14 

up to 110°C and from previous workD^l, it can be seen that a substantial 

barrier to phosphorus inversion exists.

Unlike the M0P4O4 complex w ith chair-chair or chair-boat forms,

complex 14 in the boat-boat form has convergent phosphorus lone pairs that 

make it a promising metalla-ligand for the formation of novel bimetallic cage 

complexes.
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2. Synthesis and Characterization of Heterobimetallic Complexes

In this section, the synthesis and characterization of heterobimetallic 

cage complexes from complex 14 are described.

2.1. (CO)4Mo[iPr2NPO]4Cr(CO)4(16):

Complex 16 was synthesized by the reaction of complex 14 w ith 

Cr(CO)4NBD (NBD = norbom adiene) in refluxing heptane:

(CO)4Mo[iPr2NPO]4 + Cr(CO)4N B D  >
(14)

NBD + (CO)4MopPr2NPO]4Cr(CO)4
(16) (eq 14)

This reaction was monitored by 31p NMR spectroscopy. After one day,

the reaction mixture showed that only 32% of complex 16 had formed. When 

the reaction was run for an additional 3 days, 84% Mo-Cr cage 16 and 9% Mo- 

Mo cage 1 were found. Because the reaction was slow, some of the precursor 

decom posed, and  some com plex 1 form ed. By ro u tin e  colum n 

chromatography, pure complex 16 was isolated. The isolated yield of complex

16 was around 35%. This product was identified by ^H, 31p NMR, IR

spectra and elemental analyses. Its proton-decoupled 31p NMR spectrum

exhibits the expected A2X2 pattern with two triplets at 175.0 ppm  and at 147.9

ppm. The coupling constant is equal to 6 Hz. Both the resonances of the 

coordinated P's and uncoordinated P's of complex 14 are shifted downfield 

upon bonding of the chromium. These downfield shifts can be rationalized by 

the decrease in electron density around the phosphorus atoms coordinated to 

the chromium.
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The NMR spectrum of 16 showed four carbonyl resonances with the 

Cr(CO)4P2 group at 224.5 ppm (Jpc=9 Hz) and 218 ppm (Jpc=18 Hz) and the 

Mo(CO)4P2 moiety at 214.0 ppm (Jpc=16 Hz) and 207.2 ppm (Jp c = 1 3 H z ). The 

IR spectrum in the carbonyl stretch region was slightly different from that of 

complex 14. Here the ds-Cr(CO)4 group shows a sharp A i mode at 2023 cm"l.

The higher energy absorption at 2009 cm"l is assigned to the A i mode of cis- 

Mo(CO)4, because the (Cr)C-O bond is typically stronger than the (Mo)C-O 

bondP4].

22. (CO)4Mo[iPr2NPO]4Fe(CO)3(17):

Complex 17 was synthesized by the reaction of complex 14 with Fe2(CO)9 

in refluxing hexane as shown below:

(CO)4Mo[iPr2NPO]4 + Fe2(CO)9 >
(14)

Fe(CO)5 + CO + (CO)4Mo[iPr2NPO]4Fe(CO)3
(17) (eql5)

This reaction was monitored by 31p NMR spectroscopy. After one day, 31p

NMR spectroscopy of the reaction mixture showed that only 51% of complex 

17 had formed while 13% Mo-Mo cage had formed as a side product. When

the reaction was allowed to run for an additional 15 hours, 31p NMR

spectroscopy showed that 68% of complex 17 had formed. In order to decrease 

the percentage of the undesired Mo-Mo cage, the reaction was stopped after 39
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hours. The product was not easy to purify, because both the Mo-Mo cage and 

green Fe3(CO)i2 were hard to remove. By routine column chromatography, a

28% yield of complex 17 was isolated. The product was identified by ^H, l^C,

31p NMR, and ER spectra and by elemental analyses. ^ h e 31p NMR spectrum 

of the complex showed a familiar A2X2 pattern with two triplets at 165.2 ppm

and 152.1 ppm (2j = 14 Hz). In the 13c NMR spectrum , the Fe(CO)3 group

shows only one resonance, a triplet at 217.3 ppm  w ith  the P-C coupling 

constant equal to 7 Hz. This is consistent w ith the well-known fluxional

property of the P2Fe(CO)3 moiety [35]. Carbonyl ligands in a wide variety of

ligand-substituted iron pentacarbonyls have been observed with this property, 

as stereochemical nonrigidity is a very common phenomenon in molecules 

with five coordination. We also tried the reaction of 14 with Fe(CO)5, but after

5 days in refluxing hexane, only some Mo-Mo cage formed.

2.3(CO)4Mo[iPr2NPOl4Cu(CH3CN)2BF4(18):

Complex 18 was synthesized by the reaction of complex 14 w ith  

Cu(CH3CN)4BF4 in  hexane /C H 2CI2 (2:1 v:v) so lu tion . The equation

representing the preparation of the complex is shown below.

(CO)4Mo[iPr2NPO]4 + Cu(CH3CN)4BF4  >
(14).

2CH3CN + (CO)4Mo[iPr2NPO]4Cu(CH3CN)2BF4
(18) (eq 16)

The percent yield of complex 18 in the reaction above was more than
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95%. This reaction was very fast, being complete after refluxing for one hour. 

After evaporating the CH2CI2, a white suspension was obtained. After

filtration, a few portions of hexane were used to wash the product, and pure 

complex 18 was obtained. The product was not stable due to the ready loss of 

CH3CN ligands. When the product was dried under reduced pressure, it

changed color from white to light yellow. A *H NMR spectrum of the sample

confirmed that some CH3CN ligand was lost from the sample. Hence, the

reaction was run  using excess 14 and all of the NMR, IR spectra and CHN 

analyses had to been done within 24 hours after isolating the pure sample.

Complex 18 was identified by *H, ^ C ,  31p NMR, and IR spectra and by

elemental analyses. Its 31p NMR spectrum  showed a sharp triplet at 155.6

ppm and a broad triplet at 90.0 ppm  with a coupling constant of 10 Hz. The 

broad resonance was assigned to phosphorus atoms coordinated to copper.

Since 63cu and 65cu both have spin 1=3/2, the nuclear charge distribution

around the metal is not symmetrical, thus giving rise to broad peaks due to

quadrupolar r e l a x a t i o n ^ .  The 13c NMR spectrum  show ed a singlet

resonance at 120.4 for CH3CN and a singlet at 2.2 for CH3CN. The *H NMR

spectrum show ed a singlet at 2.35 ppm  for the CH3CN group. The IR 

spectrum showed the usual C2V symmetry in the carbonyl region with one 

sharp peak at 2019 cm 'l and a broad peak at 1905 cm"l. In addition, it also 

showed peaks in the CN region at 2303 and 2273 cm~l [57],
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2.4. (CO)4Mo[iPr2NPO]4AgN03(19):

Complex 19 was synthesized by the reaction of complex 14 w ith  

NBD(AgN03)2 in hexane at room temperature:

(CO)4Mo[iPr2NPO]4 + NBD(AgNC>3)2 >
(14)

NBDAgN0 3  + (CO)4Mo[ipr2NPO]4AgN0 3
(19) (eq 17)

The percent yield of complex 19 in the reaction above was 54%. White solid 

NBD(AgNC>3)2 was suspended in hexane. When the reaction was run  at

room tem perature for one hour, the 31p NMR spectrum  of the mixture

showed that the reaction was already complete. A white suspension was 

obtained, and after filtration, a white solid resulted. A few portions of hexane 

were used to wash this product to give pure white solid complex 19. This 

product is not stable due to the decomposition of Ag (I). The reaction was 

therefore run  using excess 14 and all of the NMR and IR spectra and CHN 

analyses were done within a few hours after obtaining a pure sample.

When complex 14 reacted with (AgN0 3 )2NBD, no m atter whether the

ratio of Mo to Ag was 1:1, 2:1 or 1:2, the same product resulted. Integration of

the 31p NMR peaks of starting material and the product reaction mixtures

from the different reagent ratios confirmed the 1:1 complex. This cage 

compound was not stable and changed color to brown even under nitrogen

and in the absence of light. It was characterized by 31 p, 1h , NMR and IR

spectroscopy, but no satisfactory CHN data were obtained even after repeated
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attempts.

The 31p NMR spectrum for complex 19 exhibited a unique pattern due to

the coupling between phosphorus and silver nuclei. Silver exists as a

combination of two isotopes, h^A g  and Both isotopes are NMR-active

and have nuclear spins of one half with natural abundances of 51.82% and 

48.18%, respectively. In contrast to the quadrupolar copper nuclei discussed

for complex 18, the 31p NMR spectrum  of 19 clearly displayed Ag-P

couplings. It showed a triplet at 154.3 ppm, and a doublet of triplets at both

103.6 ppm  and 103.5 ppm  [2Jpp = 13 Hz, ĵAgP = 568,492 Hz] (Figure 32).

Figure 32.31p{lH} NMR spectrum for 19 

One-bond coupling between 31p and silver isotopes range from about 210 to 

m ore than 1100 Hz[56], Several groups have reported  IjPAg values for

Ag(L2)N0 3  complexes of about 500 Hzl58!. The IjpAg of complex 19 is

consistent with these literature values. The IR spectrum  of complex 19 

indicated the expected C2 V symmetry in the carbonyl region.
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2.5. (CO)4Mo[iPr2NPO]4PtCl2(20):

Complex 20 was synthesized by the reaction of complex 14 w ith 

PtCl2(NBD) in toluene at 60°C:

(CO)4Mo[iPr2NPO]4 + PtCl2 (N B D ) >
(14)

NBD + (CO)4Mo[iPr2NPO]4PtCl2
(20) (eq 18)

The yield of complex 20 was quantitative. Since PtCl2(NBD) is not very

soluble in hot toluene, the white reaction suspension was stirred at 60 °C and 

monitored by TLC. After 4 hours, this showed that no starting 14 was left.

This reaction was fast and clean, and the product (CO)4Mo[iPr2NPO]4PtCl2

was easily isolated pure by filtration of the suspension to give a white solid. 

After washing this product w ith toluene, pure complex 20 was obtained.

Complex 20 was identified by ^H, ^ C ,  31p NMR and IR spectroscopy and

elemental analyses. The 195pj isotope is NMR-active and has a nuclear spin

of one half and a natural abundance of 33.8%. Thus the 31p NMR spectrum of 

this product showed an A2X2 pattern with a triplet at 147.4 ppm and a triplet

at 56.6 ppm (Jpp=10 Hz) together with a doublet of triplets of 195Pt satellites 

(Figure33). The value of the coupling betw een phosphorus and platinum

(Ji95ptP=5520 Hz) is typical of phosphorus trans to halogen l ig a n d s ^ .

Complex 20 shows a similar IR carbonyl spectrum as for complex 14 and 19.
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Figure 33. 31p{lH} NMR spectrum for 20

2.6. (CO)4Mo[»Pr2NPO]4NiBr2 (21):

Complex 21 was synthesized by the reaction of complex 14 w ith 

NiBr2(DME) in refluxing hexane for 5 hours:

(CO)4Mo[iPr2NPO]4 + NiBr2(DM E) >
(14)

DME + (CO)4Mo[iPr2NPO]4NiBr2

The yield of complex 21 in the reaction above was around 80%. When 

com pound 14 reacted with NiBr2(DME), the deep-red Mo-NiBr2 cage formed.

This product has no NMR signal and its formulation has been confirmed by 

X-ray study and IR spectroscopy. The pseudo-tetrahedral coordination 

geometry around the nickel is consistent with its paramagnetic behavior. The 

X-ray structure of this complex is shown in Figure 34 and the selected bond

(21) (eql9)
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distances and angles are listed in Table X:

BHD

BH2)

C(23)

cud

CC26)P(2)
N(2) 0(7)

0(8)0(5)
C(17)C(14) 0(6)

X> Pm N(3)P(3)
C(8)

0(4) ,C(20)

0(3)

0(2) 0(D

Figure 34. Molecular Structure of 21

Comparing the X-ray structure of 21 with the precursor 14, the data 

clearly show that the eight cage phosphorus-oxygen bonds have readjusted to

the new  coordination mode: the four (Ni^)P-O distances now average

1.633(8)A while the four (Mo^)-P-O lengths average to a marginally longer

1.650(9) A. Again, this shows intracage communication between the two 

metals. In Part H 3 this structure will be discussed further.
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This cage compound is not very stable in refluxing hexane, and some of 

it transformed to a Mo-Ni(CO)2 cage compound by the reduction of Ni(II)

and the replacement of B r  by CO from the decomposition of the parent cage.

This was verified by its facilitation by adding a CO source as well as a reducing 

reagent, Fe(CO)5. (See Part II 2.7 for detail).

Table X. Selected Bond Distances (A) and Angles(deg) for 21

Mo-P(l) 2.493(4) Mo-P(3) 2.493(4)
Mo-C(l) 2.004(15) Mo-C(2) 1.987(17)
Mo-C(3) 2.047(17) Mo-C(4) 2.019(17)
Ni-Br(l) 2.320(3) Ni-Br(2) 2.318(3)
Ni-P(2) 2.254(4) Ni-P(4) 2.266(4)
P(l)-0(5) 1.639(9) P(l)-0(7) 1.661(9)
P(l)-N(l) 1.587(11) P(2)-Q(5) 1.654(9)
P(2)-0(6) 1.627(8) P(2)-N(2) 1.614(12)
P(3)-0(6) 1.659(9) P0)-O(8) 1.649(9)
P(3)-N(3) 1.660(11) P(4)-0(7) 1.623(9)
P(4)-0(8) 1.631(8) P(4)-N(4) 1.609(12)
0(1)-C(1) 1.125(19) 0(2)-C(2) 1.162(21)
0(3)-C(3) 1.140(21) 0(4)-C(4) 1.130(21)

P(l)-Mo-P(3) 77.9(1) P(l)-Mo-C(l) 171.9(4)
P(3)-Mo-C(l) 96.4(4) P(l)-Mo-C(2) 100.8(5)
P(3)-Mo-C(2) 177.7(4) C(l)-Mo-C(2) 85.2(6)
P(l)-Mo-C(3) 94.3(4) P(3)-Mo-C(3) 92.2(5)
C(l)-Mo-C(3) 91.6(6) C(2)-Mo-C(3) 85.9(6)
P(l)-Mo-C(4) 89.0(4) P(3)-Mo-C(4) 94.9(5)
C(l)-Mo-C(4) 85.7(6) C(2)-Mo-C(4) 87.0(6)
C(3)-Mo-C(4) 172.7(6) Br(l)-Ni-Br(2) 128.9(1)
Br(l)-Ni-P(2) 110.6(1) Br(2)-Ni-P(2) 111.3(1)
Br(l)-Ni-P(4) 106.4(1) Br(2)-Ni-P(4) 104.4(1)
P(2)-Ni-P(4) 85.7(1) Mo-P(l)-0(5) 112.7(3)
Mo-P(l)-0(7) 108.8(3) 0(5)-P(l)-0(7) 98.9(4)
Ni-P(2)-0(5) 109.3(3) 0(5)-P(2)-0(6) 100.6(4)
Ni-P(2)-0(6) 106.7(3) 0(6)-P(3)-0(8) 98.4(4)
Ni-P(4)-0(7) 110.0(3) 0(7)-P(4)-0(8) 100.7(4)
Ni-P(4)-0(8) 111.3(3) P(l)-0(5)-P(2) 131.7(5)
Mo-P(3)-0(6) 112.8(3) P(l)-0(7)-P(4) 132.1(5)
Mo-P(3)-0(8) 111.8(3) P(2)-0(6)-P(3) 133.6(5)
P(3)-0(8)-P(4) 127.8(5)
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2.7. (CO)4Mo[iPr2NPO]4Ni(CO)2 (22):

Complex 22 was synthesized by the reaction of complex 21 with Fe(CO)5 

in refluxing hexane for 1 hour:

(CO)4Mo[iPr2NPO]4NiBr2 + Fe(CO)5 >

(21)

3CO + FeBr2 + (CO)4Mo[iPr2NPO]4Ni(CO)2

(22) (eq 20)

The yield of complex 22 in the reaction above was 85%. When the red 

reaction suspension was refluxed for one hour, the color disappeared and a 

yellow suspension formed. By routine column chromatography, pure white 

complex 22 was isolated. The formulation of complex 22 has been confirmed 

by NMR and IR spectroscopy and by elemental analyses. A large crystal of 22 

was obtained by recrystallization from hot hexane but unfortunately, this 

crystal was twined. It will be very interesting to obtain an X-ray structure of 22 

for comparing with the structure of 21.

The NMR spectrum of 22 exhibits a triplet (198.4 ppm, 2Jpc=4 H z )

resonance associated with the two equivalent carbonyls. This can be compared 

with the chemical shift of carbonyl carbons in typical Ni(CO)2P2 complexes at

197.9 ppm  for P=P(OMe)3, 198.3 ppm  for P=P(OEt)3, and 198.9 ppm  for 

P=P(OiPr)3[60]. 2jp c s p in - s p in  c o u p lin g s  a re  n e g lig ib le  in  

Ni(CO)2[(P(OCH2)3CMe]2[61i  and only a few Hz in (PR3)2Ni(CO)2 (R=Ph, 

Bu, OMe, OPh)(62]. The 31p NMR spectrum of 22 shows an A 2X2 pattern
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with a triplet at 154.5 ppm  and a triplet a t 128.0 ppm. The P-P coupling 

constant is 3 Hz. This small value is consistent with the literature v a l u e s [62],

2.8. (CO)4Mo[»Pr2NPO]4NiX2 (X=C1 (23), X=I (24)):

Substituted nickel carbonyl complex 22 was oxidized by halogens to give 

the corresponding nickel dihalide derivatives. Complexes 23 and 24 were 

isolated from the reactions of complex 22 with SO2CI2 in hexane at -78 °C or

with I2 in CH2CI2 at room temperature, respectively.

(CO)4Mo[iPr2NPO]4Ni(CO)2 + SO2CI2 >
(22)

SO2 + 2CO + (CO)4Mo[iPr2NPO]4NiCl2
(23) (eq 21)

(CO)4Mo[iPr2NPO]4Ni(CO)2 +12-------->
(22)

2CO + (CO)4Mo[iPr2NPO]4Nil2
(24) (eq 22)

The yields of complexes 23 and 24 in the reactions above were 84% and 76%, 

respectively.

When a SO2CI2 solution in CH2CI2 was added to a hexane solution of

(CO)4Mo[iPr2NPO]4Ni(CO)2 , this colorless solution immediately changed to

yellow. After 5 minutes, it became an orange suspension. The TLC of this 

solution showed that no complex 21 remained. An orange solid complex 23 

was obtained after work up. This product was identified by its IR spectrum 

and elemental analyses. Its IR spectrum showed four carbonyl absorptions 

consistent with a C2v symmetry for the ds-Mo(CO)4P2 moiety.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



When a CH2CI2 solution of I2 was added to the colorless solution of

complex 22 and stirred at room temperature for 2 hours, a deep-red solution 

formed. TLC of this solution showed no starting material 22. The deep-red 

solution was allowed to dry  under reduced pressure to give a deep-red 

residue. This solid was washed with CH3CN and vacuum dried, to give

complex (CO)4Mo[iPr2NPOk)Nil2. It was identified by IR spectroscopy which

gave spectra similar to those of complexes 21 and 23. For the reaction of 22 

w ith I2, if the excess I2 was used, the product showed two major carbonyl

bands in the IR spectrum, indicating that (CO)2l2Mo[iPr2NPO]4)Nil2 had

formed. The carbonyl regions of the IR spectra for these M o/N i compounds 

are shown in Figure 35:

(CO)4Mo/NiCl2 (CO)4Mo/NiBr2 (CO)4Mo/Nil2 (CO)2l2M o/N il2

-1---------- 1-------- — 1-----------1------- —1---------- 1-------  —1---------- 1---
2200 1750 2200 1750 2200 1750 2200 1750

* peak of (CO)4Mo/Nil2

Figure 35. The carbonyl regions of the IR spectra for M o/N i complexes
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Both complexes 23 and 24 were found to react w ith Fe(CO)5 to produce 

complex 22 in 80% yield.

2.9. (CO)4MoliPr2NPO]4PdBi2(25):

Complex 25 was synthesized by the reaction of complex 14 w ith 

PdBr2(C6H5CN)2 in toluene at 70 °C for 16 hours:

(CO)4Mo[iPr2NPO]4 + PdBr2(C6H5CN)2 >
(14)

2C6H5CN + (CO)4Mo[iPr2NPO]4PdBr2
(25) (eq 23)

The yield of complex 25 in the reaction above was 83%. 31p NMR 

spectroscopy was used to monitor the reaction. After 16 hours, there was 95% 

Mo0P4O4PdBr2  cage and m inute am ounts of M0 OP4O4M 0O cage and

MoOP5C>5PdBr2 cage, but no starting material. W orkup by filtration and

purification yielded a yellow solid (CO)4Mo[iPr2NPO]4PdCl2. Small crystals

were form ed by recrystallization from hot toluene. This product was

identified by lH , 13c, 31p NMR, and IR spectroscopy and by elemental

analyses. In addition, an X-ray crystal structure determination was completed. 

The IR spectrum  again confirms C2v symmetry for cis-Mo(CO)2P2 in the

carbonyl region with four absorptions at 2045.8 c irri, 1961.0 cm‘1 ,1943.0 cm"l,

and 1921.8 cm_l. The 31p NMR spectrum of 25 showed a triplet at 147.6 ppm

and a triplet at 82.6 ppm (2jpp= 6 Hz). The 13q  NMR spectrum in the carbonyl
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region shows a multiplet at 211.8 ppm and a triplet at 205.1 ppm(Jpc=13Hz) in 

the carbonyl region.

We observed some interesting phosphorus chemical shift changes. For 

the precursor complex 14, the coordinated phosphorus atoms resonate at

150.6 ppm and the uncoordinated phosphorus atoms at 126.0 ppm. When the 

uncoordinated phosphorus atoms coordinated to the second m etal in  

complexes 16,17, 18,19, 20, 22 and 25, large chemical shifts of +26.1 to -69.5

resulted, While the chemical shifts for the phosphorus atoms bound to Mo^

shifted by +24.4 to -3.2 ppm. Cr(0), Fe(0), Ni(0) moved the phosphorus shifts to

lower field in the order: Cr°>Fe°>Ni° while Cu(I), Ag(I), Pt(II) Pd(II) metals

shifted the resonances upheld in the order: Pt(II)>Pd(II)>Cu(I)>Ag(I). These 

large changes can be explained by the differences between the metals and the 

ancillary ligands on the metals. The upheld shifts for Cu(I), Ag(I), Pt(II) and 

Pd(II) metals are consistent with the typical coordination shifts in the

phosphine complexes [63]. For example, 31p chemical shifts for free ligands

PMe3 and PPh3 are a t +62 ppm and +6ppm, while in complexes cis-

PtCl2(PMe3)2, ds-PdBr2(PMe3)2, AgClPPh3 and Cp*Cu(PMe3)3, 31p chemical

shifts are at -24, -17, +3 and -49 ppm[63].

The structure of complex 25 is shown in Figure 36 and selected bond 

distances and angles are listed in Table XI:
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Figure 36. Molecular structure of 25

In complex 25, a square-planar geometry has been adopted by the Pd(jQ ) 

vertex. The energy ordering of the d orbitals in a square-planar ligand field is 

d x 2 _ y 2 > d x y >  d x z /d y 2 > d z 2 . Since the pairing energy is less than the difference

between the energy of the d x 2 -y 2  and the dxy orbitals, the eight 4d-electrons in

P d ( I I )  completely fill the four lowest energy orbitals, leaving the d x 2 -y 2

empty. Thus complex 25 is diamagnetic and gives useful NMR spectra.

From the x-ray structural data, we can see that similar to complex 21, the 

eight cage P-O bonds are readjusted to the new coordination mode: the four

(PdE)P-O distances now average 1.599(12) (comparing to 1.633(8) A in 21)

while the four (Moty-P-O lengths average to 1.672(13) (even longer than that

of 1 .6 5 0 ( 9 )  A in complex 21). Once again this suggests intracage transmission 

of electron density.
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Table XI. Selected Bond Distances (A) and Angles(deg) for 25

Mo-P(l) 2.475(5) Mo-P(2) 2.495(5)
Mo-C(l) 2.026(25) Mo-C(2) 1.996(26)
Mo-C(3) 2.027(26) Mo-C(4) 1.970(25)
Pd-Br(l) 2.456(3) Pd-Br(2) 2.474(5)
Pd-P(3) 2.233(5) Pd-P(4) 2.233(5)
P(l)-0(2) 1.660(13) P(l)-0(3) 1.694(12)
P(l)-N(l) 1.631(15) P(2)-0(l) 1.654(12)
P(2)-0(4) 1.679(12) P(2)-N(2) 1.642(14)
P(3)-0(3) 1.616(12) P(3)-0(4) 1.575(11)
P(3)-N(3) 1.625(15) P(4)-0(l) 1.616(12)
P(4)-0(2) 1.594(12) P(4)-N(4) 1.627(17)
0(11)-C(1) 1.183(30) 0(22)-C(2) 1.189(31)
0(33)-C(3) 1.152(32) 0(44)-C(4) 1.178(31)
Br(l)-Pd-Br(2) 87.8(1)
P(l)-Mo-P(2) 80.0(2) P(l)-Mo*C(l) 89.8(7)
P(2)-Mo-C(l) 92.3(7) P(l)-Mo-C(2) 99.3(7)
P(2)-Mo-C(2) 178.5(7) C(l)-Mo-C(2) 89.0(10)
P(l)-Mo-C(3) 92.9(7) P(2)-Mo-C(3) 90.3(7)
C(l)-Mo-C(3) 176.6(10) C(2)-Mo-C(3) 88.4(10)
P(l)-Mo-C(4) 177.7(7) P(2)-Mo-C(4) 100.5(7)
C(l)-Mo-C(4) 87.9(10) C(2)-Mo-C(4) 80.2(10)
C(3)-Mo-C(4) 89.4(10) P(3)-Pd-P(4) 85.0(2)
Br(l)-Pd-P(3) 178.5(2) Br(2)-Pd-P(3) 93.5(2)
Br(l)-Pd-F(4) 93.7(2) Br(2)-Pd-P(4) 177.4(2)
Mo-P(l)-0(3) 110.2(4) 0(2)-P(l)-0(3) 96.2(6)
Mo-P(2)-0(4) 110.1(4) 0(l)-P(2)-0(4) 98.5(6)
Pd-P(3)-CX3) 109.8(5) 0(3)-P(3)-0(4) 104.7(6)
Pd-P(3)-0(4) 109.5(5) 0(l)-P(4)-0(2) 104.6(6)
Pd-P(4)-0{1) 107.1(3) P(2)-0(l)-P(4) 132.1(7)
Pd-P(4KK2) 110.4(5) P(l)-0(2)-P(4) 129.7(8)
Mo-P(l)-0(2) 113.7(4) P(l)-0(3)-P(3) 129.8(7)
Mo-P(2)-0(l) 109.3(5) P(2)-0(4)-P(3) 129.6(7)
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2.10. (CO)3Mo[iPr2NPO]5PdCl2 (26):

Complex 26 was synthesized by the reaction of complex 14 w ith  

PdCl2(C6H5CN)2 in toluene at 70 °C for 66 hours.

6(CO)4Mo[iPr2NPO]4 + 4PdCl2(C6H5CN)2 >
(14)

8C6H5CN + 4(CO)3Mo[iPr2NPO]5PdCl2 +1 (eq 21)
(26)

31p NMR spectra were used to monitor the reaction. When the reaction was

run for 66 hours, a red-brown suspension formed. Its 31p NMR spectrum

showed a mixture of complexes 1 and  26 in about a 1: 2 ratio while the 

spectrum of the suspended gray yellow solid showed that it was the Mo-PdCl2

P5O5 cage complex. Work-up of the solid by recrystallization from chloroform

gave pure yellow needle crystals of complex 26. Evaporating the solution 

followed by washing the residue with acetone and hexane gave more pure 26. 

Acetone rem oved the brown color and hexane removed complex 1 since 

complex 26 is not very soluble in either solvent. The combined yield of 

complex 26 was 52%.

Complex 26 was identified by its ^H, ^ C ,  NMR, and IR spectra and by 

elemental analyses. Its spectra are very different from those of complex 25. 

The 31p NMR spectrum shows an AM2X2 pattern with the three phosphorus

atoms coordinated to Mo° giving two resonances: a triplet of triplet at 1 5 4 . 7  

ppm, and a doublet at 1 3 4 . 9  ppm. The two phosphorus atoms bonded to Pd(II) 

gave rise to a doublet at 8 6 . 0  ppm ( J a m = 3 1  H z , J a x = 1 1  H z , J m x = 0  H z ) .  The IR 

spectrum showed three absorptions in the carbonyl region at 1 9 8 1 . 6  cm-1,
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1910.4 cm-1 and 1880.1 cm"l consistent with the fac-Mo(CO)3P3 group. The

NMR spectrum in the carbonyl region showed two sets of doublets of 

triplets at 218.1 ppm (Jpc=39, 14 Hz) and 216.1 ppm (J=41,10 Hz). These data 

are  consistent w ith  the  p rev iously -reported  spectra  of P5O5 cage

complexes!^].

No trace of the expected Mo-Pd P4O4 cage was detected.

2.11. (CO)3Mo[iPr2NPO]5PdBi2 (27):

Complex 27 was synthesized by the reaction of complex 14 w ith 

PdBr2(C6H5CN)2 in toluene at 70 °C for 72 hours.

8(CO)4Mo[iPr2NPO]4 + 6PdBr2(C6HsCN )2 >
(14)

12C6H5CN + 4(CO)3Mo[iPr2NPO]5PdBr2 + 1
(27)

+ 2(CO)4Mo[iPr2NPO]4PdBr2 (eq 22)
(25)

Again, 31p NMR spectroscopy was used to m onitor the reaction. To

optim ize the synthesis of the P5O5 cage complex 27, we used starting

materials in a 5 :1 ratio of P to Pd. When the reaction was rim for 72 hours, a

brown yellow suspension formed. Whose 31p NMR spectrum showed it to

be a mixture of complexes 1, 25 and 27 in about a 1 : 2 : 4 ratio. The spectrum 

of the solid (gray yellow color) showed only the Mo-PdBr2P505 cage complex.

W orkup of the solid by recrystallization from chloroform gave yellow
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crystalline solid 27. Work-up of the solution mixture by vacuum drying and 

washing the residue w ith acetone followed by hexane yielded more pure 

complex 27. The combined yield of complex 27 was 48%. Complex 25 is 

soluble in acetone. Small amounts of complex 1 can be removed by hexane 

since complex 27 is not very soluble in either solvent.

The product was identified by ^H, ^ C , 31p NMR, and IR spectroscopy

and by elemental analyses. The spectra of complex 27 are very similar to those 

of complex 26. These data are listed in Tables XII, XDI, XIV and XV. Selected 

spectra for 25,26, and 27 are shown in Figures 37,38 and 39 for comparison:

25 26 27

v*

z z o o . o  i 7 5 o . o Z P .O O  .0  .1750 . O Z Z O O . O  17^0 .0

Figure 37. IR spectra of the carbonyl region for 25,26 and 27
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Complex 26
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Li o  0 2 1 7 . 0  216 . 0  5 0 . 0  49 .0  40 .0  2 5 . 0  24 . 0  23 . 0
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Complex 25

2 1 0 . 0
P PH

2 05 . 0
■ pr n ■11 ■ r ■"11
4 9 . 0  4 8 . 0

P P H

11. • I , r r r v  j r 111 j . • .  1111. . 11. ■. | i i  ■ 111

2 5 . 0  2 4 . 0  23 .0
PPH

Figure 38. 13c {^HJNMR spectra for 25,26 
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Complex 26

150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0
ppm

Complex 25
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Figure 39.31P{1H} NMR spectra for 25,26 
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From the similarity of the spectral data between 26 and 27, we can see 

that the influence of the halide ligands is negligible.

The reaction shown by equation 22 is very different from that shown by 

equation 21. For the reaction of complex 14 with PdBr2(C6H5CN)2, both P4O4

and P5O5 cage complexes formed. When complex 25 and phosphine oxide

(ipr2N)2P(0)H were heated in 70 °C toluene for one day, a 31p NMR spectrum

of the reaction mixture showed that the P4O4 cage had totally disappeared 

while the P5O5 cage and some complex 14 had formed in about a 4:1 ratio. 

When only complex 25, or complex 25 with PdBr2(C6HsCN)2, or complex 14 

w ith phosphine oxide were heated in toluene, no complex 27 formed. This 

expansion of a P4O4 cage to a P5O5 cage was discussed in detail in Part II-7.

3. Structure of (CO)4Mo[*Pr2NPO]4MBr2 (M=Ni, Pd).

The X-ray crystal structures of complexes (CO)4Mo[iPr2NPO]4NiBr2 (21)

and (CO)4Mo[iPr2NPO]4PdBr2 (25) are shown in Figures 34 and 36, and the

bond data listed in Tables IX and X. By comparing the data for these two 

structures, it can be seen that even though both Ni(II) and Pd(II) are formally

of d® electronic configuration and both are four-coordinate, there are m ajor

differences betw een their coordination modes. In complex 21, the four- 

coordinate nickel(II) center adopts a pseudo-tetrahedral geometry. This

geometry is consistent with its paramagnetic b eh av io ra l. In complex 25, the

Pd(EI) center adopts a square-planar geometry which is consistent w ith its

diamagnetism. W ith few exceptions^!, four-coordinate d^ Pd(II) complexes
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form square-planar complexes while four-coordinate Ni(II) complexes can 

form either tetrahedral T>2d, or square-planar complexes. Generally, weak-

field ligands such as the halides and bulky ligands tend to form tetrahedral 

complexes, while strong-field ligands such as phosphines favor the square- 

planar geometry. In the latter geometry, the metal to phosphorus drc-dTi back 

bonding exists and the alignment of the participating orbitals is better, 

making the dTi-drt back bonding more efficient.

X-ray analysis of complex 21 showed tha deviations from idealized 

angles are found in both  metal coordination spheres though there is 

approxim ately a tetrahedral geometry around the Ni vertex and an 

octahedral geometry at the Mo center. At Mo, the angle closest to linearity is 

P(3)-Mo-C(2) at 177.7(4)°. The four equatorial ligand atoms P(l), C(l), C(3), and 

C(4) have angles at Mo from 85.7(6)° to 94.3(4)° which sum up to 361°. The 

P(l)-Mo-P(3) bond angle is compressed by the chelate ring to 77.9(1)°. The 

two Mo-P bond distances are similar at 2.493(3) A which is within the bonding

range of the P-Mo(CO)n b o n d s^ l. The Mo-C bond distance of the equatorial

carbonyls are now at 1.987(17) and 2.004(15) A, shorter than the Mo-C bond 

length of the axial carbonyls at 2.019(17) and 2.047(17) A. This is because the

carbonyls trans to the phosphorus (good o-donor compared to CO) can form

better ft back-bonding.

The bond angles around nickel deviate widely from 109.5°: the P-Ni-P 

angle is compressed to only 85.7(1)°. The Br(l)-Ni-Br(2) angle is distorted to 

128.9(1)°, and the other angles are in the range of 104.4(1) to 111.3(1)°. The Ni- 

P bond distances at 2.254 A and 2.266 A are consistent with the literature 

values[66][67]#
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Replacing NiBr2 by PdBr2 in complex 25 generated relatively few

C(2) at 178.5(7)° and in 21 it is at 177.7(4)°. The four equatorial angles range 

from 87.9(10) to 92.9(7), but sum to 360°. In complex 21 these angles are in the 

range of 85.7(6)° to 94.3(4)°. The chelate ring compresses the P(l)-Mo-P(2) 

angle to 80.0(2)° compared with 77.9(1)° in 21, the Mo-P bond distances are 

changed from 2.493(3) A in complex 21 to 2.475(5) A and 2.495(5) A. The Mo- 

C bond distances of the equatorial carbonyls are 1.996(26) and 1.970(25) A, 

again, smaller than the Mo-C bond length of the axial carbonyls at 2.026(25) 

and 2.027(26) A. The four bond angles around palladium  deviate from 

orthogonality; the P-Pd-P angle is the most distorted one at 85.0°, Br(l)-Pd- 

Br(2), 87.8(1)°; Br(2)-Pd-P(3), 93.5(2)°; Br(l)-Pd-P(4), 93.7(2)°. These orthogonal 

angles sum to 360°. The P-Pd bond distances at 2.233 A are consistent with

literature values^].

The P-O distances of complex 14,21 and 25 are compared in Figure 40:

The eight cage P-O bond distances in 14, 21,25 are different; in each case, 

they are adjusted to the respective coordination needs.

changes in bonding data at Mo where the angle closest to linearity is P(2)-Mo-

141.671(4)
.  21 1.634(9)

251.600(12)

141.623(4) 
21 1.650(4) 

25 1.672(13 ) >

Figure 40. Selected Structural Data for 14,21 and 25
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4. Reactions of (CO)4Mo['Pr2NPO]4  (14) with Alcohols:

In Part I I 1, we mentioned the reaction of complex 14 with MeOH; in this 

section, we will discuss details of this reaction. The reactions of complex 14 

with MeOH and EtOH can be written as follows:

(CO)4Mo[iPr2NPO]4 + ROH- >
(14)

(CO)4Mo[iPr2NPO]2(iPr2NPOR){iPr2NP(0)H)
(R=Me (28), R=Et (29)) (eq 24)

The respective yields of complexes 28 and 29 in these reactions were 75 and 

72%, respectively. Complex 28 was synthesized by the reaction in refluxing 

M eO H /hexane solution, and complex 29 was synthesized in refluxing 

EtOH/hexane solution.

Nucleophilic attack by primary alcohols such as MeOH and EtOH on 

complex 14 led to cleavage of a single P-O-P bond to give complexes 28 and 29,

(CO)4Mo[iPr2NPO]2(iPr2NPOR){iPr2NP(0)H}. Both 28 and  29 have been

identified by ^H, and 31p NMR and IR spectroscopy and by elemental 

analyses. In addition, the postulated monocyclic structure of complex 28 has 

been confirmed by X-ray crystallography. From ^H, l^C, and 31p NMR and IR 

spectra of compound 28, we deduced that it was a monomolybdenum 

compound. The IR spectrum showed a P=0 stretching band at 1241 cm 'l. The

^H-decoupled 31p NMR spectrum  showed an ABMX pattern and the *H

NMR and proton-coupled 31p NMR spectra showed that one phosphorus was 

bonded directly to a proton to give a -P(H)0 group (Chemical shift of P=-1.5
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ppm, chemical shift of H = 7.56 ppm , Jph = 635.2 Hz) The coupling 

relationships among the four phosphorus atoms also indicated that one P-OP 

bond was broken. The lH  NMR showed a P-OCH3 group (3.41 ppm, Jph = 12

Hz). Proton-coupled and decoupled l^C NMR spectra confirmed this, since

POCH3 showed a l^C singlet in the proton-decoupled spectrum changing to

a quartet in the proton-coupled spectrum (Jch = 145 Hz, the coupling constant 

between phosphorus and carbon in -POCH3 was not detected). Selected 

spectra are shown in Figures 41,42 and 43.
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Figure 41. Proton-coupled and decoupled 31p NMR spectrum for 28
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Figure 42. NMR spectrum for 28
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Figure 43. Proton-coupled and decoupled i3C NMR spectrum for 28
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The bonding relationship of atoms in complex 28 can be deduced by an 

analysis of all of the spectra. Complex 28 may form following this mechanism 

(Scheme V):

o
o .  n  :q =-

p " ~ " p  . X k

(CO><M<   ► (c o )4mo/ P \  bo . CL

(CO)4M o^ \
(

o  A o - p
H -O -CH , C H 3 °

A n ^ p (CO)4Mck o -
c h 3o  u  

c h 3o

Scheme V

Later, the structure of 28 was determined by X-ray crystallography which 

confirmed the proposed structure. This X-ray structure is shown in Figure 44 

whth the relevant structural data listed in Table XII.
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Figure 44. Molecular structure of 28
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Table XII. Selected Bond Distances (A) and Angles(deg) for 28

Mo(l)-P(l) 2.521(2) Mo(l)-P(4) 2.501(2)
Mo(l)-C(l) 2.029(5) Mo(l)-C(2) 2.030(5)
Mo(l)-C(3) 1.998(5) Mo(l)-C(4) 1.992(6)
P(1KX5) 1.668(3) P(1)-CK8) 1.616(3)
P(l)-N(l) 1.644(4) P(2)-0(5) 1.604(3)
P(2K>(6) 1.452(5) P(2)-N(2) 1.609(4)
P(3)-0(8) 1.679(3) P(3)-0(9) 1.649(3)
P(3)-N(4) 1.648(4) P(4)-0(7) 1.602(3)
P(4)-0(9) 1.644(3) P(4)-N(3) 1.655(4)
CX1)-C(1) 1.144(7) 0(2)-C(2) 1.145(6)
0(3)-C(3) 1.142(7) 0(4)-C(4) 1.142(7)
0(7)-C(17) 1.422(6)

P(l)-Mo(l)-P(4) 89.1(1) P(l)-Mo(l)-C(l) 98.3(2)
P(4)-Mo(l)-C(l) 87.1(2) P(l)-Mo(l)-C(2) 88.7(1)
P(4)-Mo(l)-C(2) 92.2(1) C(l)-Mo(l)-C(2) 172.9(2)
P(l)-Mo(l)-C(3) 92.3(2) P(4)-Mo(l)-C(3) 175.5(1)
C(l)-Mo(l)-C(3) 88.4(2) C(2)-Mo(l)-C(3) 92.1(2)
P(l)-Mo(l)-C(4) 177.8(2) P(4)-Mo(l)-C(4) 91.0(2)
C(l)-Mo(l)-C(4) 83.9(2) C(2)-Mo(l)-C(4) 89.1(2)
C(3)-Mo(l)-C(4) 87.8(2) Mo(l)-P(l)-0(5) 113.4(1)
Mo(l)-P(l)-0(8) 114.2(1) 0(5)-P(l)-0(8) 95.6(2)
Mo(l)-P(4)-0(7) 115.4(2) 0(5)-P(2)-0(6) 113.5(2)
Mo(l)-P(4)-0(9) 113.9(1) 0(8)-P(3)-0(9) 96.5(2)
P(l)-0(5)-P(2) 131.5(2) 0(7)-P(4KX9) 99.0(2)
P(l)-0(8)-P(3) 121.8(2) P(3)-0(9)-P(4) 125.1(2)
P(4)-0(7)-C(17) 120.7(3)

This shows that indeed a P-O-P was cleaved. One phosphorus, P(2), has a
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new P = 0  double bond, and the other phosphorus, P(4), has a new P-OCH3

bond. The lone rem aining chelate ring shows a boat conformation w ith 

changes in ring angles and bond distances upon P-O-P cleavage. The P-Mo-P 

angle opened to 89.1(1)° from 75.1° in 14. The P-O-P angles in the ring are 

compressed to 121.8(2)° and 125.1(2))° compared to 131.0° in 14. This may be 

due to the repulsion of the two lone pairs flattening the P-O-P bond angles. 

The O-P-O angle in the ring is 96.5(2)°, similar to the O-P-O angles in 14 

(97.7°). The geometry around molybdenum is unexceptional. It is pseudo- 

octahedral with a compressed axial C-Mo-C angle of 172.9(2) with the axial 

carbonyls bent away from  the bidentate phosphorus ligand. The four 

equatorial angles are 87.8(2)°, 91.0(2)°, 89.1 (1)° and 92.3(2)°, summing nicely to 

360°. The C(3)-Mo-P(4) [175.5(1)°] and C(4)-Mo-P(l) [ 177.8(2)° ] angles are close 

to orthogonal values. The bonds distances of Mo-P ( 2.521 and 2.501 A), P=0

(1.452 A) and P-O ( 1.602-1.668 A ) are typical literature values[69] [69] p h e

Mo-C bond distances of the two equatorial carbonyls ( trans to the phosphorus 

) are 1.99 A, shorter than the Mo-C bond lengths of the two axial carbonyls ( 

cis to the phosphorus ) at 2.03 A for the previously-discussed reasons ( part n. 

3).

Complex 29 has ^H, 13q  and 31p NMR and IR spectra very similar to

those of 28. These spectra data are listed in the TablesXIII, XIV, XV and XVI. 

Therefore complexes 29 should has a structure similar to that of complex 28 

also.
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Table Xffi. 31p{*H} NMR Data for Cage Complexes

Dmplex Chemical Shift, ppm [J, Hz]

13 ABXY 201.1(d), 180.52(d) [2j = 146Hz] 

154.9(d), 151.0(d) [2j = 39 Hz]

14 A2X2 150.6(t), 126.0(t, bd) [2j = 2 Hz]

16 A2X2 175.0(t), 147.9(t) [2j = 6 Hz]

17 A2X2 165.2(f), 152.1(f) [2j= 14 Hz]

18 A2X2 155.6(t), 90.9(t, bd) [2j = 10 Hz]

19 A2X2 154.3(t), 103.6 and 103.5(d of t)

(2j = 13 Hz, l jAgp = 568 and 492Hz]

20 A2X2 147.4(f), 132.6(f), 56.5(f) -19.4(f) 

[2j = 10 Hz, Ijptp = 5,520Hz]

21 paramagnetic

22 A2X2 154.5(f), 128.0(f) [2j = 3 Hz]

23 paramagnetic
24 paramagnetic

25 A2X2 147.6(f), 82.6(f) [2j = 6 Hz]

26 AM2X2 154.7(t of t), 134.9(d), 86.0(d) 

[2Jam = 3 0 H z , 2 ja x  =  h H z]

27 AM2X2 154.0(t of t), 134.7(d), 85.4(d) 

[2Jam = 30 Hz, 2jAX = 10 Hz]

28 ABMX 169.1(d of d)

|2jAB = 34H z,2jAM = 92Hz]

154.4(d of d  of d) [2jgX = 32 Hz,

2Jba = 34 H z, 2Jbm =  i n  Hz] 

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131.3(dof d)

pjMA = 92 Hz, 2Jmb = 111 Hz]

-1.50(d) [2jBX = 32 Hz]

29 ABMX 164.4(d of d)

PjAB = 34H z,2jAM = 98Hz]

153.1(d of d  of d) [2jBX = 29 Hz,

2Jba = 34 Hz, 2Jbm  = 115 Hz]

131.2(d of d)

PjMA = 98 Hz, 2j mb = 115 Hz] 

-2.86(d) [2jBX = 29 Hz]

a Spectra were run in CDCI3 solutions ( d = doublet, t = triplet, bd = broad).
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Table XIV. NMR Data for Cage Complexes

Complex Chemical Shift (assignment, J)

13 241.1 (m, S2CNMe2), 215.0 (s, CO), 210.0,209.1,
207.2 (bs, CO), 48.3,47.8,46.9 ( bs, N C ), 39.4 
(bs, S2CN(CH3)3), 24.2 (bs, Me)

14 215.8 (t, CO, 2JpC = 14 Hz), 209.5 (t, CO, 2JPC = 
12 Hz), 48.0 (t, NC, 2jPC = 7 Hz), 44.3(t, NC, 
2 J P C  = 8 Hz), 24.2(s, Me), 23.2 (s, Me)

16 224.5(t, CO, 2JPC = 9 Hz), 218.0 (t, CO, 2JPC =
18 Hz), 214.0 (t, CO, 2JPC = 16 Hz), 207.2 (t, CO, 
2JpC = 13 Hz), 47.0 (t, NC, 2JPC = 7 Hz), 46.8(t, 
NC, 2JPC = 5 Hz), 24.3(s, Me), 24.0 (s, Me)

17 217.3(t, CO, 2JPC = 7 Hz), 214.5 (t, CO, 2JPC =
15 Hz), 207.6 (t, CO, 2JPC = 13 Hz), 48.1,47.7 (t, 
NC, 2JpC = 6, 7 Hz), 24.1(s, Me), 24.0 (s, Me)

18 213.3(t, CO, 2JpC = 16 Hz), 207.2 (t, CO, 2JPC =
12 Hz), 120.4 (s, CN), 48.3 (t, NC, 2JPC = 6 Hz),
45.3(t, NC, 2JpC = 6 Hz), 23.6 and 23.1 (s,
Me's), 2.2 (s, CH3CN)

19 213.2 (t, CO, 2JPC = 16 Hz), 207.5 (t, CO, 2JPC =
12 Hz), 48.6,45.4 (t, NC, 2JPC = 6,7 Hz), 
23.9(s, Me), 23.1 (s, Me)

20 212.1 (t, CO, 2JpC = 17 Hz), 205.1 (t, CO, 2JPC =
12 Hz), 48.2,47.3 (t, NC, 2JPC = 6,3 Hz), 
23.9(s, Me), 23.6 (s, Me)

21 paramagnetic

1 1 3
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22 215.0 (t, CO, 2JPC = 15 Hz), 208.0 (t, CO, 2JPC = 
12 Hz), 198.4 (t, CO, 2Jpc -  4 Hz), 48.0,46.3 (t, 
NC, 2JpC = 6 Hz), 23.7(s, Me), 23.6 (s, Me)

23 paramagnetic

24 paramagnetic

25 211.8 (m, CO), 205.1 (t, CO, 2JPC = 13 Hz),
48.0,48.2 (t, NC, 2Jr c  = 6,3 Hz), 24.0(s, Me)

26 218.1 (d of t, CO, 2 J p c  = 39,14 Hz), 216.1 (d of t,
CO, 2JPC = 41,10 Hz), 50.2 (t, NC, 2 Jp c  = 6 Hz),
48.8,48.5 (d, NC, 2JPC = 15,12 Hz), 25.1 (d,
Me, J = 4 Hz), 24.8 (s, Me), 24,0 (d, J = 7 Hz),
23.3 (t, J = 3Hz), 23.2 (s, Me)

27 218.2 (d of t, CO, 2J p c  = 39,14 Hz), 216.3 (d of t,

CO, 2JpC = 41,10 Hz), 50.2 (t, NC, 2Jrc  = 5 Hz),
48.7.48.3 (d, NC, 2JPC = 15,12 Hz), 25.3 (d,
Me, J = 4 Hz), 25.0 (s, Me), 24,0 (d ,J = 7 Hz),
23.2 (s, Me), 23.0 (t, J = 3Hz),

28 214.7 (d of d, CO, 2JPC = 12,18 Hz), 214.3 (t,
CO, 2JPC = 14 Hz), 209.4 (m, CO), 208.7 (t,
CO, 2JPC = 12 Hz), 51.3( s, POCH3), 49.0 (d,
NC, 2JPC =14 Hz), 48.2,45.5,44.6 (d, NC, 2JPC =
14,11,6,15 Hz), 24.3-22.9 (m, Me)

29 214.1 (d of d, CO, 2JPC = 7,11  Hz), 213.6 (t,
CO, 2JpC = 11 Hz), 208.8 (m, CO), 207.9 (t, CO,
2JpC = 12 Hz), 60.4 ( s, POCH2CH3), 48.7 (d,
NC, 2JPC =14 Hz), 47.9,45.1,44.3 (d, NC, 2JPC =
14,11,6,14 Hz), 24.1-22.8 (m, Me), 15.7 (d, 
POCH2CH3, J = 9Hz)

a All spectra were run in CDCI3 solution (t = triplet, d  = doublet, s = singlet, bs 
= broad singlet)

1 1 4
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Table XV. *H NMR Data for the Cage Complexes

Complex Chemical Shift (multiplicity, assignment, J)

13 4.50 (bd, NCH), 4.30(septet, NCH, J = 7 Hz), 3.40, 
3.30 (bd, S2CN(CH3)3), 1.30 (bd, Me)

14 4.01 (septet, NCH), 3.77 (bd, NCH), 1.30 and 
1.12 (d, Me, J = 6.8 Hz)

16 4.47 and 4.14 (septets, NCH), 1.29(t,M e,J =
7.0 Hz)

17 4.38 and 4.27 (septets, NCH, J = 7Hz), 1.30 (m, 
Me)

18 4.03 and 3.83 (septets, NCH), 2.35 (s, MeCN)
1.29 (d, Me, J = 7.1 Hz)

19 3.99 and 3.83 (septets, NCH), 1.28 (d, Me, J =
6.8 Hz)

20 4.30 and 3.69 (septets, NCH), 1.46 and 1.40 (d,
Me, J = 6.9 Hz)

21 paramagnetic

22 4.04 and 3.97 (septets, NCH), 1.30,1.27 (d, Me,
J = 7.0 Hz)

23 paramagnetic

24 paramagnetic
1 1 5
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25 4.29 and 3.79 (septets, NCH, J = 7.3,6.8 Hz), 
1.48 and 1.45 (d, Me, J = 7.2 and 6.8 Hz)

26 4.64,4.17 and 4.14 (septets, NCH, J = 6.9,7.2 
and 7.1 Hz), 1.43--1.38 (m, Me), 1.32 (d, Me,J =
6.9 Hz)

27 4.68,4.18 and 4.14 (septets, NCH, J = 6.7,7.1 
and 6.7 Hz), 1.42-1.38 (m, Me), 1.33 (d, Me,J =
6.9 Hz)

28 7.56 (d, P(0)H, JPH = 635.2 Hz), 4.34,3.96 and

3.47 ( septets, NCH, J = 6.8,7.1 and 6.4 Hz),
3.41 (d, POCH3, J p o c h 3 = 12.36 Hz), 336 and

3.32 (septets, NCH, J = 6.7 Hz), 1.51 (d, Me, J =
6.8 Hz), 1.27-1.12 (m, Me)

29 7.58 (d, P(0)H, JPH = 634.9 Hz), 4.35 (septet,

NCH, J = 6.9 Hz), 3.97 (m, NCH and 
POCH2CH3), 3.54,3.35 and 3.34 (septets, NCH,

J = 5.9,6.8 and 6.7 Hz), 1.45 (d, Me, J = 6.8 Hz), 
1.27 (m, Me and POCH2CH3)
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Table XVI. Infrared Absorptions for the Complexes

Complex CO region, cm 'l POP region, cm-*

1 2025.8,1945.0,1905.3,1886.5 880.4,858.5,820.6b
2015,1923,1906,1887 875,849,809c

12 2035.1,1979.3,1916.2 898.5,857.7,824.7b
13 2013,1912 871,843,792c
14 2022.8,1925.1,1908.1,1982.5 891.5,873.5,860.2,838.4b

2010,1925,1908,1882 879,861,847,828c
15 2000,1932,1869,1843,1837 1517(C-N)C
16 2035.3,2020.8,1930.5,1900.6 879.0,854.4,805.3b

2023,2009,1925,1901 869,843,786c
17 2021,2014,2000,1937,1907 867,847,795c
18 2031.3,1908.0 885.9,860.0,814.1b

2019,1905 874,850,795c
19 2029.7,1936.2,1908.2 887.3,861.5,834.6,815.0b

2015,1931,1910 870,852,822,804c
20 2045.1,1958.7,1948.1,1917.6 894.1,873.0,847.1,831.0b

2033,1950,1940,1914 879,861,835,818c
21 2036.7,1946.9,1936.9,1899.8 861.0,830. l b

2024,1949,1937,1899 852,813c
22 2022.9 ,1968 .8 ,1931 .3 ,1919.5 ,1905 .6 881.3,854.6,797.7b

2010,1968,1928,1915,1903 869,842,792c
23 2035.7,1947.4,1936.3,1900.0 862.1,831.8b

2025,1928, 874,855c
24 2037.4,1950.5,1932.2,1921.0 886.5,859.7,823.0b

2025,1925 875,850,815c
25 2045.8,1961.0,1943.0,1921.8 871.7,845.2,820.9b
26 1981.6,1910.4,1880.1 888.3,867.6,858.9,834.8b
27 1981.2,1910.9,1880.1 887.1,866.5,858.2,833.3b
28 2027.2,1928.0,1909.8,1895.8 895.6,881.7,859.4,845.5b

2014,1923,1907,1895 884,871,850,834c
29 2027.5,1942.9,1919.3,1903.6 896.9,883.2,859.6,839.9b

a KBr pellets, b FT-IR: Nicolet MX-1, c IR: Perkin-Elmer 283B
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5. Miscellaneous Reactions:

5.1. Reaction of (CO)4Mo[iPr2NPO]4 with Mel

Compound (CO)4Mo[iPr2NPO]4 has two uncoordinated phosphorus

atoms each w ith an available lone pair. We studied its reaction w ith the 

alkylating reagent Mel to see if it could be mono-alkylated which might lead 

to the form ation of a bond between these two phosphorus atoms. Di- 

alkylation products might also form. However, no reaction occurred. At first, 

we used hexane as a solvent with Mel in large excess. We expected that the 

alkylation product salt would precipitate easily in this nonpolar solvent.

After running the reaction at room temperature for 3 days , the ^H, and 31p

NMR spectra of the reaction mixture showed that no reaction had occurred. 

Next, we tried the more polar solvent THF. In THF, even after three days,

again no alkylated products had formed. The NMR spectrum  of the 

reaction mixture showed that some (CO)4Mo[iPr2NPO]4 had reacted with the

THF to form unidentified products. This was confirmed by comparing the ^H

NMR spectrum of the control reaction of (CO)4Mo[iPr2NPO]4 with THF. We

also checked the reaction in a 1 : 1 CH3CN/CH2CI2 solvent m ixture (the 

precursor complex is insoluble in neat CH3CN); again no reaction resulted.

Tertiary phosphines generally react with alkyl halides by an S n 2  process 

to form a phosphonium salt. Displacement at a chiral carbon center occurs 

w ith inversion of configuration, consistent w ith a bimolecular transition

state, as shown in the following equation^];
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We think the unsuccessful alkylation of these phosphorus atoms may 

be due to the special structure of the com pound (Scheme VI). The two 

electron lone pairs on the phosphorus atoms are convergent, and can not 

approach the carbon center to form the appropriate transition state; therefore,

no alkylation products formed. Also, by its tem perature-independent 31p

NMR spectral behavior up to 110 °C, we know that the inversion barrier at 

the phosphorus center is quite high, which prevents the lone pair from 

becoming accessible in the exo conformation.

Scheme VI

From this reaction, we recognized that the precursor may only act as a 

bidentate donor. Thus, only the 1 : 1 Mo-Ag heterobimetallic cage product

(CO)4Mo > C  X ------- ► N.R.

( P=‘Pr2N P )

1 1 9
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(CO)4Mo[iPr2NPO]4AgN03 formed (Scheme VII) regardless of excess Ag+ 

( See Part II 2.4).

5.2. The Reaction of (CO)4Mo[iPr2NPO]4 with Ni(COD>2

W e attempted to use (CO) 4Mo[iPr2NPO]4Cu(CH3CN)2B F4 to react with

(CO)4Mo[ipr2NPO]4 in order to make a trimetallic 2 : 1 (2Mo : Cu) complex.

Unfortunately, the reaction was not clean, and it was hard to tell whether the 

m a jo r p r o d u c t  w as (CO)4Mo[iPr2NPO]4CuBF4 or (CO)4Mo-

pPr2NPO]4Cu[iPr2NPO]4Mo(CO)4BF4, since no pure product was isolated. We

also a ttem p ted  the reaction  of (CO)4Mo[iPr2NPO]4Ni(CO)2 w ith

(CO)4Mo[iPr2NPO]4, but also failed to produce the desired tri-metallic

complex. It may be because the bonds between the carbonyls and Ni are too 

strong to be replaced. Hence we synthesized Ni(COD)2 from Ni(py)4Cl2 and

used it as a starting material to react with the Mo precursor, but this reaction 

also failed. As the bonding between Ni and COD may be too weak and at the

(C O )4M o + (AgNQ3)2NBD (CO)4M o

p — ►AgN03

( P='Pr2N P )

Scheme VII
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same time the substitution reaction was very slow, after three hours the

NMR spectrum of the reaction mixture showed no desired product and the 

Ni(COD)2 had decomposed. If the reaction was run  in refluxing CH2CI2, a

black m urky m ixture form ed in  only 20 m inutes as the Ni(COD)2

decomposed. Since Ni(COD)2 is very reactive with oxygen and is pyrophoric,

we need to find a better nickel compound to use as the starting material.

5.3. Other Reactions of (CO>4Mo[*Pr2NPO]4

Boron trifluoride is a strong Lewis acid and the Mo precursor (14) has 

several sites (O, N, P) with lone pairs that can act as donors. Thus, we ran the 

reaction of (CO)4Mo[iPr2NPO]4 w ith (CH3CH2)2 0 BF3 in  CH2CI2 at room

temperature. After 1 hour, and 31p NMR spectra of the reaction mixture

showed that the starting complex had decomposed. We also attem pted the

reaction of 14 with sulfur. 31p NMR spectra showed that the products were

mixtures, as one or both of the uncoordinated phosphorus atoms had reacted 

with S to form mono-P=S or di-P=S compounds. No pure  products were 

obtained.

The reactions of complex 14 w ith nucleophiles such as iPrOH, ArCHO, 

CPr2N)2P(0 )H, PCI3 or electrophiles such as SnCl2, SnCl4, SnMeCl3 were also 

attempted; either no reaction was observed or no products were isolated.

N um erous attempts were m ade to synthesize M o/R h and M o/Ru 

heterobimetallic cage compounds which would be possible catalysts. For 

exam ple , Ru(DMSO)4Cl2, [(N B D )R hC l]2, [R h(N B D )(C H 3CN)2]Cl,
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[Rh(NBD)(PPh3)2]PF6 were all tried, but no desired products were obtained.

6. Evidence for Intracage Influences Due to the Heterometal

The rigidly conserved structures of the heterobimetallic cage complexes 

provided a useful setting for the study of intracage metal-metal interactions.

By examining the variation of the Mo carbonyl NMR shift values and the

IR stretching frequencies of the carbonyls of the cis-Mo(CO)4 group in a series

of bimetallic cage complexes of the type (CO)4Mo[iPr2NPO]4MLn (M=Cr(0),

Fe(0), Mo(0), Ni(0), Ag(I), Cu(I), Pt(II), Pd(II) and Ni(II)), it has been found that 

there are two trends. One is the correlation between the well-resolved A i

carbonyl stretching frequencies of the cis-Mo(CO)4 group and the formal

charge on the second cage metal M. As the charge of the second metal 

increases, the A i carbonyl stretching frequencies for the cis-Mo(CO)4P2

moiety increases. Such a shifting of this carbonyl stretching frequency is in 

accord with decreasing electron donation to cis-Mo(CO)4.

A second correlation is that the NMR chemical shift of the Mo

carbonyl carbon in the heterobimetallic cage compounds moves to higher 

field with increasing charge on the second cage metal. These observations 

suggest a transm ission of intracage influence from the heterom etal. 

Examination of the X-ray data of several bimetallic cage complexes further 

supports this conclusion (see Part II 6.3).

6.1. Comparison of the FT-IR Spectral Data of the Mo(CO)4 Moiety.

The infrared stretching frequencies for the carbonyl A i mode are given 

in Table XVII and Scheme VIII.
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T able XVII. The C arbonyl S tre tch ing  Frequencies (A i m ode) in  

(CO)4Mo[iPr2NPO]4MLn Heterobimetallic Cage Complexes

compounds ^CO(cm-l)
(ER)

^CCKcm-l)
(FT-ER)

metals

14 2010 2022.8 Mo/

22 2010 2022.9 Mo/Ni(0)

1 2015 2025.8 Mo/Mo(0)

16 2009 2020.8 Mo/Cr(0)

19 2015 2029.7 Mo/Ag(D

18 2019 2031.3 Mo/Cu(I)

12 2025 2035.1 Mo/Mo(n)

23 2025 2035.7 Mo/Ni(II)

21 2024 2036.7 Mo/Ni(II)

24 2025 2037.4 Mo/Ni(II)

20 2033 2045.1 Mo/Pt(II)

25 2034 2045.8 Mo/Pd(II)

IR: Perkin-Elmer 283B (KBr pellet). FT-IR: Nicolet MX-1 (KBr pellet).

The data in Table XVII suggest that there is indeed a correlation between 

the carbonyl stretching frequency of the cis-Mo(CO)4P2 group and the charge

of the second metal in Mo-M cage complexes.

Mo(0)/M(l) Mo(0)/M(ll)

Mo(0)/M(0)

i---------1----------1--------- 1----------1--------- 1--------- 1
2020 2025 2030 2035 2040 2045 2050

v  CO(cm-l)
Scheme VIII 
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In metal carbonyl complexes, the carbonyl ligand donates its sigma 

electron density to an empty metal orbital while the metal returns its d 

electron density to the empty t t *  orbital of the carbonyl by t t  back-bonding

(Figure 45)^1.

According to molecular orbital theory, the highest-occupied molecular 

orbital of CO, which acts as the electron-pair donor to a metal, is slightly 

antibonding between C and O, donating electron density from this orbital to 

the metal. This should make the C-O bond slightly stronger and raise 'Uco-

However, the back rr-bonding by donation of metal d electron density into the

CO antibonding t t *  orbital should significantly weaken the C-O b o n d ^L

Thus, the most electron-deficient carbonyl has the strongest C-O bond and 

gives the highest stretching frequency.

The listed infrared frequencies of these complexes indicate an intracage 

influence between the two metals: As the second metal increases its electron 

demand by increasing its formal charge, electron density flows along the

(a) ligand-to-mctal 
e-bonding

(6) Metal to ligand t*  back bonding 
lone of a mutually perpendicular 
set shown)

Figure 45. Orbital overlap in M-CO bonding

1 2 4
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(Mo)P-O-P(M) bonds. This makes the phosphorus atoms bonded to Mo® less 

basic, so the P —> Mo donation decreases, decreasing electron density at the 

metal Mo®. As a result, the Mo --> carbonyl n  back-donation is also decreased; 

therefore, the C-O bonds are stronger, and the 'Uco's are raised.

6.2. Comparison of the l^C NMR Chemical Shifts of the Mo(CO>4 Moiety

The 13c NMR chemical shift data for the cis -Mo(CO)4P2 moiety of the

complexes are presented in Table XVIII and Scheme IX. The 13c NMR spectra 

of all of these compounds were ru n  in chloroform. The general trend 

observed is that 13c resonances of the carbonyl carbons are shifted to a higher 

field with increasing formal charge at the second cage metal.

Table XVIII. 13c NMR Chemical Shifts for the Carbonyl Resonances 
of the Complexes

Compounds 8cO(ppm)
(average)

metals

14 212.7 Mo/
22 211.7 Mo/Ni(0)

17 211.2 Mo/Fe(0)

1 210.7 Mo/Mo(0)

16 210.6 Mo/Cr(0)

19 210.4 Mo/Ag(I)

18 210.3 Mo/Cu(D

12 209.6 Mo/Mo(H)

20 208.6 Mo/Pt(ID

25 208.5 Mo/Pd(H)
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Mo(0)/M(l) Mo(0)/M(ll)

fUMo(0)/M(0)

I---------------- 1-----------------1---------------- 1---------------- 1
-2 1 2  -211 -2 1 0  -2 0 9  -2 0 8

8i3c(PPm)

Scheme IX

Examination of the data trend in Table XVIII again suggests that there is a 

transmission of intracage influence between the heterometals. BodnerP^I

and B ra term a n l7 4 ] have attributed these shieldings of the carbonyl resonance

to a decreasing of electron density at the metal center. They suggest that the 

variations in  the M-CO n  back bonding are chiefly responsible for the 

observed changes. Their hypothesis is supported by Bodner's observation that

the carbonyl resonance in  (t]5-C5H5)M(CO)3 complexes (M =Cr, Mn^, Fe+) is 

shielded with increasing positive charged ].

Not surprisingly, the NMR chemical shifts of these carbonyl carbons

go to higher field as their CO stretching frequencies increase. A plot of

NMR carbonyl chemical shifts in  ppm  dow nfield from  TMS versus 

corresponding infrared stretching frequencies is shown in Figure 46 for 8 of 

the 12 know n bim etallic complexes ( complexes 21, 23 and  24 are 

paramagnetic, and the Vco value for (CO)4Mo group in complex 17 is

obscured by the Fe(CO)3 group.).
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-2 0 8 -i
y = -468.4 + 0.12707x R= 0.98378

- 2 0 9 -

a,
3 ? - 210 -

- 211 -

-212
2 0 2 0  2 0 2 5  2 0 3 0  2 0 3 5  2 0 4 0  2 0 4 5  2 0 5 0

Deo (cm '1)

Figure 46. A correlation of the l^C NMR chemical shifts vs the IR
frequencies (Ai mode) for the carbonyl groups in ds-(CO)4MoP2

Similar correlations betw een NMR chemical shifts of carbonyl 

carbon atoms and their infrared stretching frequencies have been found for 

LW(CO)5 and Ti-CpFe(CO)2X derivatives by Gansow and coworkers [75], and

for LNi(CO)3, LM(CO)5, M=Cr, and Mo and (C6HsX)Cr(CO)3 by Bodner and 

coworkers[76].

Although suppositive of intracage effects, the NMR and IR shifts we 

observe are relatively small and may well be sensitive to steric as well as 

electronic influences. A broader range of structural and spectral data are still 

needed to affirm this premise.

6.3. Comparison of the X-ray Structural Data of the Complexes

From the comparison of l^C NMR chemical shifts and the IR stretching

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



frequencies of the cis -Mo(CO)4P2 vertices in the bimetallic cage complexes in

Part II 6.1 and 6.2, it appears that there are interactions between the two 

metals within the cage.

The same conclusion can be reached from a com parison of X-ray 

crystallographic bond data of the representative complexes. In Table XVIII

the average bond distances of Mo-P, (Mo^)P-O and (M) P-0  bonds are listed:

Table XIX. Selected Bond Lengths (A) for Several Complexes

compounds Mo-P(O) (MoO)P-O (M)P-O

14 (Mo/) 2.512(2) 1.623(4) 1.671(1)

1 (Mo/Mo(0)) 2.501(1) 1.646(4) 1.646(4)

21(Mo/Ni(II» 2.493(4) 1.650(9) 1.633(8)

12(M o /M o(II)) 2.486(5) 1.66(1) 1.63(1)

25(Mo/Pd(II)) 2.485(5) 1.672(13) 1.600(12)

The most interesting differences among the complexes 14,1, 21,12 and 25 are 

the P-O bond lengths. When there is only one metal (molybdenum) in 

complex 14, the four coordinated P-O bond are much shorter at 1.623(4) A 
than the uncoordinated P-O bonds at 1.671(4) A. This suggests that the P-O 

bonding at the coordinated sites is enhanced at the expense of the latter. 

When a second metal is introduced into the cage, the (M)P-O bonds are 

significantly modified. For example, the four formerly uncoordinated P-O 

bonds readjust and decrease from 1.671(4) A in 14 to 1.646(4) A, 1.633(8) A,
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1.63(1) A, and 1.600(12) A in Mo0-Mo°> M o°-Nin, MoO-MoU and Mo°-Pdn

cages, respectively. The four P-O bonds that are bonded to the original metal

MoO are lengthened at the same time. This changing of bond lengths

correlates with the electron demand of the new metals introduced. These data 

once again support the conclusion that there is a transmission of intracage 

influence from the heterometal to the Mo center.

7. Expansion of the P4O4 Cage to a P5O5 Cage

While attempting to synthesize M o/Pd heterobimetallic cage complexes 

from (CO) 4Mo[iPr2NPO]4 (14) and PdX2(C6HsCN)2 (X=C1, Br), it was found

that not only the P4O4 cage complex, but also the P 5O5 cage complex, formed 

depending on the halide ligand of the starting PdX2(C6H5CN)2- Reaction of 

PdQ 2(C6H5CN)2 w ith  com plex 14 on ly  gave a P5O5 cage, bu t 

PdBr2(C6H5CN)2 formed both P4O4 and P5O5 cage complexes. The M o/PdBr2 

P5O5 cage could be obtained by either thermal reaction of 14 w ith 

PdBr2(C6H5CN)2 or by heating the M o/Pd P4O4 cage with phosphine oxide

(iPr2N)2P(0)H. It was also found that the M o/Pd P5O5 cage always formed in

the company of some M o/M o P4O4 cage. In addition, when pure M o/PdBr2

P4O4 cage was heated alone, no P5O5 cage formed. Furthermore, pure 14 did

not react with excess phosphine oxide. By the distribution of the product 

complexes 1 and 26, or 1 and 27, it can be noted that their ratios were about 

1:4. This number may hint at the mechanism of this cage expansion reaction. 

The expansion requirs an extra P-O unit, which may come from the added 

phosphine oxide or come from the decomposition of the M0P4O4 precursor.
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Clearly, the PdX2 unit plays an important role: it provided the second metal

vertex for form ing the P5O5 cage and  it m ight also assist in the

decomposition of the precursor to generate new P-O units.

Three mechanisms may be involved in  this expansion reaction:

Mechanism 1

(CO )4Mo

O

14
PdBr,(CH3CN)2

(CO )4Mo

27
PdBr2(CH3CN)2 ^pj* D /r» \u

-2CH3CN .  Cq ,

PdB r2

25
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Mechanism 3

( C O U M O - ^  ^ N,I(CO )4Mo

0 ° V

14

Mechanism 2

P ' p 7 '
2(CO)4Mô P —f̂

O
° < N

14

. I
1 + 4['Pr2NPO]

4X14 -4CO

f - o ? *
c E - p  

0 - ° ^ p

> d B r 5

25

[’Pr2NPO]
-CO

, 0

4 (CO)aMo-PyP

Vo;R

p ^ o - p

/ \  \  
(CO)3M O - P y °  ,PdB r2

p . ° ; p

27

P. o

4PdX2(CH3CN)2 
 ►

- 8CH3CN

/  \ \f ri n  I
4 (C O )3M o - P y °  ,P dX 2

> '  r»- P 
P ^ q ^  X = Cl, Br

P = ‘Pr2NP
26, 27

Scheme X 

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Mechanism 1 involves the direct therm al expansion of the M o/PdBr2 

P4O4 cage to a P5O5 cage by incorporation of a phosphine oxide unit. Addition

of (iPr2N)2NP(0)H to the MoP404Pd cage and loss of a CO from the cis-

Mo(CO)4 moiety and loss of 1Pr2NH from phosphine oxide can lead to a 

Mo/PdBr2 P5O5 cage complex. M echanism  2 requ ires the therm al 

decomposition of (CO)4Mo[iPr2NPO]4 and  the form ation of a transient

pPr2NPOJ unit along with the Mo-Mo P 4O4 cage. Addition of the [ipr2NPO]

unit to 14 and CO loss from (CO)4Mo can generate a monometallic P 5O5

intermediate, (CO)3Mo[iPr2NPO]5. This intermediate can be a ligand and react

with PdX2(C6H5CN)2 to form the bimetallic M o/Pd P 5O5 cage complex. The 

P5O5 cage may also form from mechanism 3 by reaction of preform ed

Mo/PdBr2 P4O4 cage w ith the similarly-liberated [iPr2NPO] unit. W hich of

these is the likely mechanism remains to be determined.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Conclusions and Suggestions for Future Work

The m etalla-ligand  com plex (CO)4Mo[*Pr2NPO]4(14) has b een

synthesized by the reaction of the mixed-valent, adamantanoid cage complex 

(CO)4Mo[iPr2NPO]4Mo(CO)2l2 with sodium dimethyldithiocarbamate. X-ray

structural data as well as solution NMR spectra of 14 showed that the 

pPr2NPO]4 ring in this monometallic cage precursor remains in the boat-boat

conformation.

This precursor behaved as a bidentate ligand, reacting with suitable 

metal complexes with labile ligands to provide heterobimetallic cages of the

type (CO)4Mo[iPr2NPO]4MLn (MLn = Cr(CO)4, Fe(CO)3, Cu(CH3CN)2BF4,

AgN0 3 , PtCl2/ NiBr2, PdBr2), and the type (CO)3Mo[iPr2NPO]5PdX2 (X = Cl,

Br). These heterobimetallic products were obtained in moderate to high yields 

and have been characterized by elemental analyses and spectral data. In

addition, the  s t ru c tu re s  of (CO) 4Mo[iPr2NPO]4NiB r2 (21) a n d

(CO)4Mo[iPr2NPO]4-PdBr2 (25) have been determined by X-ray.

X-ray structural data from 14,21,25 and complexes 1 and 12 showed that 

the P 4O4 core readjusted to the electronic demands of the new metal centers,

and comparison of the FT-IR and NMR spectral properties of the conserved 

ds-Mo(CO)4P2 moiety also suggested a transmission of intracage influence

between the heterometals.

The p a ram ag n e tic  he te rob im eta llic  cage com plex (CO)4Mo-
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PPr2NPO]4NiBr2 reacted with Fe(CO)5, leading to reduction of Ni(II) to Ni(0)

and the carbonylation of the nickel vertex to form a diamagnetic cage complex 

(CO)4Mo[iPr2NPO]4Ni(CO)2 (22). Chlorination and iodination of complex 22

resulted in preferential halogenation at the nickel site.

Primary alcohols reacted with (CO)4Mo[1Pr2NPO]4 by nucleophilic

attack, leading to cleavage of a single P-O-P bond and form ation of a 

monocyclic product.

Use of the metallo-ligand (CO)4Mo[iPr2NPO]4 as a nucleophile towards

m ain group electrophiles like S, SnCl2, SnCl4 have been stud ied  in  

preliminary work. Although the products could not been isolated at this time, 

the results were encouraging. Reactions of (CO)4Mo[1Pr2NPO]4 w ith main

group reagents such as SiCl4, MeSiCl3 may also give very interesting results.

Triphenylphosphine and aluminum chlorides reacting together w ith 

phosphorus chloride can form a chlorophosphonium and a triphosphenium 

ionPT];

PCI3 + 3Ph3P + 2AICI3  > [Ph3P-P-PPh3+]AlCl3- + Ph3PCl+AlCl4'

It may be possible to bond the two uncoordinated phosphorus atoms of 

com plex 14 together the same way to form  the analogous cage 

triphosphonium cation. This reaction was tried using anhydrous SnCl2 with

PCI3 . Though no product was isolated, the spectral results were encouraging.

Heterobimetallic cage products can be used in CO substitution and redox

1 3 4
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reactions. Reduction using NaBH4/MeOH may give hydride complexes; 

halogenation of (CO)4Mo[iPr2NPO]4NiX2 and (CO) nMo[iPr2NPO]m PdX2 

(n=3,4; m=4, 5) cages may give Mo(II)/M(II) cage products.

** It is of interest to compare the P-Mo-P chelate bite angles of the cage 

complexes with other known diphosphine complexes. The bond angles for 

several cis-Mo(CO)4L2 complexes are presented in the following table:

cage complexes P-Mo-P (°) six-membered ring complexes P-Mo-P (°)

cis-Mo(CO)8 [*Pr2NPO |4

cis-Mo(CO)8 lPhPO |4

76.0 a 

77.7 a

cis-Mo(CO)4 | (Pli2P0)2P(0)M e|

cis-Mo(CO)4|(Ph2PO)2P(0)R|
( R=C6H4-P-OMe)

91.5 b 

91.3 b

bis(diphosphino) Complexes P-Mo-P (°) Five-membered ring complexes P-Mo-P (°)

cis-Mo(CO)4(PMe3)2 

cis- Mo(CO)4 ( PBu3)2

97.5 c 

99.3 c

cis-Mo(CO)4|Me2PCHFCF2PMe2l

cis-Mo(CO)4(Ph2P-P(0)Ph-OPPh2)

82.0 d 

82.3 e

As shown in the table, the P-Mo-P bond angles of the cage complexes are 

constained to be substantially less than the "normal" value of 90°. The angles 

are significantly smaller than for the monocyclic six-membered chelate ring 

complexes. They are even smaller than those for the five-membered chelate 

ring compounds. The effect of the polycyclic cage structure is therefore clearly 

observed.

a) Wong, E. IT.; Turnbull, M. M.; Hutchinson, K. D.; Valdez, C.; Gabe, E. J.; Lee,

F.L.; LePage, Y. f. Am. Chem. Soc. 1988, 110, 8422.

b) Gray, G. M.; Zhang, Y. J. Crystallogr. Spectrosc. Res. 1993,23,909.

c) Cotton, F. A.; Darensbourg, D. J.; Klein, S. Inorg. Chem. 1982,21,2661.

d) Nowell, I. W.; Rettig, S.; Trotter, J. J.Chem. Soc. Dalton Trans. 1972,2381.

e) Wong, E. H.; Bradley, F. C.; Gabe, E. J. J. Organomet. Chem. 1983,244,235.
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Experimental section

General Procedure: All manipulations were carried out using standard 

Schlenck techniques under an atmosphere of prepurified nitrogen. Chemical 

reagents were commercial products and w ere used w ithout further 

purification. Hexane and methylene chloride w ere distilled from CaH2,

Reagent grade toluene was dried over Na and freshly distilled before use. 

Norbornadiene, diisopropylam ine, ethyl acetate, CHCI3, MeOH, EtOH,

NaS2CN(Me)2, and acetonitrile were purchased from Aldrich Chemical Co.

and used without further purification. Alumina (Aldrich Chemical Co., 

Brockm ann, I, neu tral) w as used  as received. The cage complex

(CO)4Mo(iPr2NPO)4Mo(CO)4t8l (1) and (C O )4Mo(iPr2NPO)4Mo(CO)2l2^ (12) 

were prepared according to previously reported methods. C r(C O )4(N B D )[78], 

(AgN03)2(NBD)[79l, N  i B r2(DM E)[80] , P d C l2(C6H5CN)2l81^

PdBr2(C6H5CN)2(82l' PtCl2(NBD)[g3] and Cu(CH3CN)4BF4l84] Ni(COD)2t85l 

were prepared according to the literature. *H, 13c and 31p NMR spectra were 

recorded on JEOL FX 90Q or Bruker AM360 FT-NMR spectrometers. lH  and

13C shifts were referenced to internal TMS, 31p shifts were referenced to

external 85% H3PO4. Spectra were obtained in CDCI3 solution unless

otherwise noted. Infrared spectra were recorded on a Perkin-Elmer 283B or 

Nicolet MX-1 FT-IR Spectrometer using KBr disks. Elemental analyses were 

perform ed at the University Instrum entation Center using a Perkin-Elmer 

240b or Perkin-Elmer 2400 elemental analyzer.
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X-ray crystal structures were determined by Dr. Arnold L. Rheingold and 

Beth E. Ow ens-W alterm ire, D epartm ent of Chem istry, U niversity of 

Delaware, Newark, Delaware.

(CO)4Mo[iPi2NPO]4 (14) and (CO)4Mo[iPr2NPO]4Mo(CO)2(SCNMe2)2 

(13): A 250 mL round bottomed flask with a magnetic stirbar was charged

with 5.000 g of complex 12 (4.158 mM) and 1.252 g (8.400 mM) of sodium 

dimethyl-dithiocarbamate. A 100 mL amount of CH 2CI2 was added to

dissolve the mixed-valent complex, resulting in a burgundy red suspension. 

After the mixture had been stirred for three hours at room temperature, a red 

suspension solution had formed. TLC ( 15% ethyl acetate in hexane, neutral 

alumina) revealed a colorless and a yellow component. Filtering yielded a 

red-purple solid identified as [(CO)2Mo(S2CNMe3)2l (ER, CHN analysis) and a

red solution. Evaporation of the filtrate gave a red solid which was allowed to 

stand at room temperature for one week. This residue was then extracted 

three times with hexane to give an orange-yellow extract solution. After 

evaporation, the residue was chromatographed on an alumina column using 

15% ethyl acetate in hexane as the eluant. The colorless complex 14 was the 

first to elute and isolated in 60% yield (1.950 g). Next to elute was the unstable 

orange complex 13 (0.870 g). Elemental analyses (calculated/observed for

C28H56M 0 N4O8P4 14): C% 42.21/42.00 , H% 7.10/7.10, N% 7.03/6.91.

Elemental analyses (calculated/observed for C34H68M 02N 6O8P4S2 13): C% 

36.36/36.37, H% 5.76/6.20, N% 7.10/6.73.

(CO)4Mo[iPr2NPO]4Ci(CO)4 (16): A 100 mL round bottomed flask with a 

magnetic stirbar was charged with 1.5210 g of compound 14 (1.9091 mM) and
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0.9176 g (3.8182 mM) Cr(CO)4(NBD). Hepatane (40 mL) was added to the

mixture resulting in a golden-yellow solution. The m ixture was refluxed for 

three days; a yellow suspension was obtained. After evaporation of the 

volatiles under reduced pressure, a bright yellow residue was obtained. The 

residue was washed three times with 10 mL hexane to give a light yellow 

solid. This was chrom atographed on alumina using 5% ethyl acetate in 

hexane as the eluant to give a colorless solution. This solution was 

evaporated to dryness to give a white solid complex 16 (0.5755 g, 35%). 

Elemental analyses (calculated/observed for C32H56MoN40i2P4Cr 16): C%

40.01/40.31, H% 5.88/6.06, N% 5.83/5.74.

(CO)4Mo[*Pr2NPO]4Fe(CO)3(17): A 100 mL round bottomed flask with a

magnetic stirbar was charged with 2.83 g of compound 14 (3.55 mM) and 1.75 g 

(9.59 mM) Fe2(CO)9. Hexane (60 mL) was added and the mixture was stirred

under N2 in reflux for 39 hours. A black green residue was obtained when the

m ix tu re  w as d ried  u n d e r  red u ced  p ressu re . The res id u e  was 

chromatographed on an alum ina column using 2% ethyl acetate in hexane 

eluant to give 0.9510 g ( 28%) of 17 as a white solid . Elemental analyses 

(calculated/observed for C3iH56M oN40iiP4Fe C3): C% 39.76/39.50 , H% 

6.03/6.30, N% 5.98/6.04.

(CO)4Mo[*Pr2NPOl4Cu(CH3CN)2(BF4) (18): A 50 mL round bottomed

flask with a magnetic stirbar was charged with 0.1170 g of compound 14 

(0.1468 mM) and 0.0231 g (0.0734 mM) Cu(CH3CN)4(BF4). Hexane (8 mL) and

CH2CI2 (4 mL) were added to the mixture resulting in a colorless solution.

The mixture was stirred under N 2 in refluxing solvent for one hour. After
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evaporation of most of the CH2CI2, the reaction suspension was refluxed for

another 3 hours. Filtration gave a white solid, which was washed with 

hexane and dried to give 0.0720 g (95.3% based on Cu) of 18. Elemental 

analyses (calculated/observed for C32H62M0N6O8P4CU C2): C% 37.35/37.10 ,

H% 6.07/6.16, N% 8.16/7.55.

(CO)4MoPPr2NPO]4AgN0 3  (19): A 50 mL round bottomed flask with a

magnetic stirbar was charged with 0.4400 g of compound 14 (0. 5522 mM) and 

0.0592 g NBD(AgNC>3)2 (0.276 mM Ag) and 20 mL hexane. The white

suspension solution was stirred at room temperature in the absence of light. 

After one hour, the white suspension was filtered and the solid washed with 

hexane and dried to give 0.143 g (54%) of complex 19. Due to the instability of 

the product, no satisfactory elemental analyses were obtained.

(CO)4Mo[iPr2NPO]4PtCl2(20): A 50 mL round bottom ed flask with a

stirbar was charged with 0.3059 g of compound 14 (0.3839 mM) and 0.1375 g 

(0.3839 mM) PtCl2(NBD). Toluene (10 mL) was added to the mixture resulting

in a suspension [PtCl2(NBD) w as not very soluble in  toluene]. The

suspension was stirred at 60 °C  for 4 hours. After cooling and filtration, a

white solid and a clear light yellow filtrate were obtained. The solid was 

washed with toluene, then with hexane, and dried to give 0.3585 g (88%) of 

complex 20. W orkup of the light yellow solution gave m ore complex 20 ( 

0.0490 g, 12%). Elemental analyses (calculated/observed for C28H56M0 -

N408P4PtCl2): C% 31.65/31.94, H% 5.31/5.45, N% 5.27/5.36.

(CO)4MoPPr2NPO]4NiBi2(21): A 50 mL round bottom ed flask with a
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magnetic stirbar was charged with 1.20 g of compound 14 (1.51 mM) and 0.40 g 

(1.51 mM) NiBr2(DME). Hexane (10 mL) was added to the mixture. The

mixture was refluxed for 5 hours to give a brown-red suspension. This was 

concentrated to about 5 mL, and the red crystalline precipitate was filtered, 

washed twice with 5 mL of cold hexane, and dried to give 1.23 g. (80% ) of 

complex 21. X-ray-quality crystals were grown from a hot hexane solution. 

E lem ental analy ses [c a lc u la te d /o b se rv e d  for C28H56M 0 N4O8P4-

NiBr2-0.7(hexane)]: C% 35.95/35.92, H% 6.17/6.24, N% 5.21/5.31.

(CO)4Mo[iPr2NPO]4Ni(CO)2 (22): A 50 mL round bottomed flask with a

magnetic stirbar was charged with 0.64 g of compound 21 (0.63 mM); 10 mL 

hexane and 0.5 mL of Fe(CO)5 were added to give a red suspension. This

mixture was stirred in refluxing hexane for one hour to give a yellow 

suspension. Upon cooling the suspension to room  tem perature, a light 

yellow clear solution w ith a yellow precipitate was formed. The top clear 

solution was removed by pipette to another flask and evaporated to dryness 

to give a light yellow residue. The residue was chromatographed on alumina 

using 5% ethyl acetate in hexane to afford a clear colorless solution from 

which a white complex 22 was obtained (0.49 g, 85%). Elemental analyses 

(calculated/observed for C3oH56MoN40ioP4Ni ): C% 39.53/39.40 , H% 

6.19/6.23, N% 6.15/6.05.

(CO)4Mo[ipi2NPO]4NiCl2(23): A 50 mL round bottom ed flask with a

stirbar was charged with 0.320 g of complex 22 (0.3511 mM) and 20.0 mL of 

hexane. The solution was cooled to -78 °C, and a solution of 0.50 mL of 

SO2CI2 in 40.0 mL of CH2CI2 was made; 3.18 mL of this was added drop wise
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to the hexane solution of 22 ( Ni : Cl2 = 1 : 1.1 ). The colorless solution

immediately changed to yellow, and within 5 minutes, an orange suspension 

then formed. The reaction mixture was concentrated to half its volume. The 

top clear yellow solution was removed by a pipet, and dried to give 0.2730 g 

(84%) of com plex 23 as an  orange solid. E lem ental Analyses 

(calculated/observed for C28H56N4P4MoNi08Cl2): C% 36.31/36.54, H% 

6.09/6.50, N% 6.05/5.54.

Synthesis of (CO)4Mo[iPr2NPO]4Ni(CO)2 from (CO)4Mo[iPr2NPO]4-

NiCl2: A 50 mL round bottom ed flask w ith a magnetic stirbar was charged

with 0.2040 g of complex 23, 20.0 mL of hexane and 0.5 mL of Fe(CO)5. The

solution was refluxed for 1 hour to give a yellow suspension. After filtration 

and evaporation  of the volatiles from  the filtrate, the residue was 

chrom atographed on alumina using 5% ethyl acetate in hexane to give a 

colorless solution from which white solid complex 22 was obtained (0.1650 g, 

80%).

(CO)4Mo[iPr2NPO]4Nil2(24) : A 25 mL round bottom ed flask w ith a

magnetic stirbar was charged w ith 0.1542 g of complex 22 (0.1691 mM) and 5 

mL of CH 2CI2 . A solution of 0.472 g (0.186 mM) of iodine in 2.0 mL of

CH2CI2 was added and the mixture was stirred at room temperature for 2

hours to give a deep red solution. This was evaporated to dryness under 

reduced pressure to give a dark  red residue. The solid was washed with 

2xlmL of CH3QSI and dried to give 0.1425 g (76%) of complex 24. Satisfactory

elemental analyses were not obtained due to its instability.
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Synthesis of (CO)4Mo[*Pr2NPO]4Ni(CO)2 (22) from (CO)4 Mo-

PPr2NPO]4N il2 (24): A 25 mL round bottomed flask with a magnetic stirbar

was charged with 0.1425 g of complex 24, 8.0 mL of hexane and 0.5 mL of 

Fe(CO)5. The mixture was stirred at room tem perature for 2 hour to give a

yellow suspension. A yellow residue was obtained after filtration and 

evaporation of the volatiles from the filtrate. The solid was chromatographed 

on alumina using 5% ethyl acetate in hexane to give a colorless solution 

from which white solid complex 22 was obtained (0.0935 g, 80%).

(CO)4Mo[*Pr2NPO]4PdBr2 (25): A 50 mL round bottomed flask w ith a

magnetic stirbar was charged with 0.4270 g of complex 14 (0.5359 mM) and 

0.2513 g PdBr2(C6H 5CN)2 (0.4872 mM, P's : Pd = 4.4 : 1). Toluene (20 mL) was

added to the mixture and the resulting solution was stirred at 70°C for 16

hour. After cooling and removal of the volatiles, a yellow-brown residue 

solid was obtained. This was washed three times with 5 mL hexane to give 

0.4490 g of a greenish yellow solid. The solid was dissolve in 5ml of CHCI3 ,

the solution filtered, and the clear yellow filtrate evaporated to give 0.4320 g 

of complex 25 (83% based on Pd). X-ray-quality crystals were obtained upon 

cooling and slow evaporation of a hot toluene solution. Elemental Analyses 

(calculated/observed for C28H56N4P4MoPdOsBr2): C% 31.64/31.71, H% 

5.31/5.32, N% 5.27/5.18.

(CO)3Mo[iPi2NPO]5PdCl2 (26): A 50 mL round bottomed flask w ith a

stirbar was charged with 0.7120 g of complex 14 (0.8936 mM) and 0.2741 g 

PdG2(C6H5CN)2 (P's : Pd = 5 :1). Toluene (20 mL) was added to the mixture

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and the resulting solution was stirred at 70 °C for 66 hour. The red-brown 

suspension was cooled to room tem perature and filtered to give a gray 

yellow solid (0.4210 g) and a red-brown solution. The solid was dissolved in 8 

mL of CHC13, the solution filtered, and the clear yellow filtrate allowed to 

evaporate slowly. A yellow needle crystalline solid was obtained. The solid 

was collected by filtration and dried to give 0.3452 g of complex 26. The red- 

brown solution was evaporated to dryness and the residue washed three 

times with 2 mL of acetone to give a yellow solid which was a 2:1 mixture of 

26 and complex 1 according to the 31P NMR spectrum. This mixture was 

washed three times with 1 mL portions of hexane to give additional 26, for a 

combined yield of 0.504 g ( 52% based on Pd). Elemental Analyses 

(calculated/observed for C33H70N5P5MoPdOsCl2): C% 36.26/36.27, H%

6.41/6.48, N% 6.46/6.10.

(CO)3Mo[iPi2NPO]sPdBr2 (27): A 50 mL round bottomed flask with a

magnetic stirbar was charged with 0.6840 g of complex 14 (0.8585 mM) and 

0.3239 g PdBr2(C6H 5CN)2 (P's : Pd = 5 : 1). Toluene (20 mL) was added to the

mixture and the resulting solution was stirred at 70 °C for 72 hour. The 

yellow-brown suspension was cooled to room temperature and filtered to 

give a graynish yellow solid and a clear brown solution. The solid was 

dissolve in 4 mL of CHC13, the solution filtered, and the filtrate allowed to

evaporate slowly. A yellow crystalline complex 27 form ed which was 

collected and dried (0.3598 g). The brown solution was evaporated to give a 

brown residue, which was found to be a 1 : 2 : 4 mixture of complexes

(CO)4Mo[iPr2NPO]4MO(CO)4, 25, and 27 according to the 31p NMR. The 

residue was washed twice with 5 mL of a 1:1 mixture of acetone and hexane,
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followed by 2x2 mL hexane to give 0.1244 g of 27. The combined yield was 

48% based  on  Pd. E lem ental A nalyses (ca lcu la ted /o b serv ed  for 

C33H70N5P5MoPdO8Br2): C% 33.53/33.88, H% 5.97/6.33, N% 5.93/5.83.

(CO)4Mo[(iPr2NPO)2(iPi2NPOMe){iPr2NP(0)H}l(28):

Method A [From complex 12 (CO)4Mo[iPr2NPO]4Mo(CO)2l21 A 50 mL round

bottomed flask with a stirbar was charged with 0.4025 g of complex 12 (0.3347 

mM) and 0.0959 g (0.669 mM) sodium dimerhyldithiocarbamate. CH2CI2 (20

mL) was added to dissolve 12; the ligand was suspended in the burgundy red 

mixture. Addition of 10 mL of MeOH gave a clear red solution, which was 

stirred for three hours. The resulted red suspention was filtered to remove 

(CO)2Mo(S2CNMe2)2 (0.0834 g) and the filtrate was evaporated to give a

brown red residue. This was extracted with 20 mL of hexane, and the extract 

was evaporated to give a white solid complex 28 (0.2104 g, 70%).

Method B [ From complex 14 (CO)4Mo[iPr2NPO]4 ]: A 50 mL round bottomed 

flask with a magnetic stirbar was charged with 0.3390 g of complex 14 (0.4255 

mM). MeOH (6 mL) and 4 mL of hexane were added into the flask to give a 

clear colorless solution. Which was stirred under refluxing for 9 hours to give 

a clear light yellow solution. After evaporation of the solution to dryness, a 

very light yellow solid was obtained. A white suspension was formed after 

adding 5 mL of MeOH to the filtrate, which was filtered to give a white solid. 

This was washed twice with 1 mL portions of cold hexane and dried to yield 

0.2644 g (75%) of complex 28. X-ray quality flake crystals were obtained by 

recrystallization from hot hexane. Elemental analysis (calculated/observed 

for C29H6OO9P4N 4M0 ): C% 42.02/41.74, H% 7.31/7.62, N% 6.76/6.77.
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(CO)4Mo[(iPi2NPO)2(iPi2NPOEt){iPi2NP(0)H}] (29): A 25 mL round

bottomed flask w ith a magnetic stirbar was charged with 0.6950 g of complex 

14 (0.8723 mM), 10.0 mL of absolute EtOH and 4.0 mL of hexane. After being 

refluxed for 24 hours, the light orange solution was cooled and concentrated 

to about 5 mL to give a suspension which was filtered to give a white solid 

(0.100 g, identified as unreacted 14) and a light orange filtrate. Addition of 4 

mL of EtOH to the light orange filtrate led to the precipitation of a white solid 

which was filtered, washed twice with 2 mL portions of EtOH and dried to 

give 0.4521 g (72% based on reacted 14 ) of complex 29. Elemental Analyses 

(calculated/observed for C30H62N 4P4M0O9): C% 42.75/42.59, H% 7.41/7.64,

N% 6.65/6.51.
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A. COMPOUND NUMBER ASSIGNMENTS

1 (CO)4Mo[iPr2NPO]4Mo(CO)4

v  p — O. |
5 (CO)4Mo[1Pr2NPO]4Mo(CO)3P(OMe)3 N /  v O \  I

—  M o—  P-y — M o ^

6 (CO)3P(OMe)3Mo[iPr2NPO]4Mo(CO)3P(OMe)3 /  ^ p ^ c / p  I

8 (CO)4Mo[‘Pr2NPO]4Mo(CO)3(PPh2H)

9 (CO)3(PPh2H)Mo[iPr2NPO]4Mo(CO)3(PPh2H)

2 (CO)3Mo[‘Pr2NPO]4Mo(CO)2PPh3

3 (CO)3Mo[‘Pr2NPO]4Mo(CO)2PPh2Me B̂ P V .

V pi / f \  /
4 (CO)3Mo[‘Pr2NPO]4Mo(CO)3PPh2H ^ M° - ---- Mo-

7 (CO)3Mo[‘Pr2NPO]4Mo(CO)2P(OMe)3

10 (CO)3Mo[‘Pr2NPO]4Mo(CO)2Py

11 (CO)3Mo[iPr2NPO]4Mo(CO)3

/\,° / \  
/  P  O >

1 5 3
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12 (CO)4Mo[iPr2NPO]4Mo(CO)2I2 |  Pn / ^ \  /

. M ° v  /  - M o -
13 (CO)4Mo['Pr2NPO]4Mo(CO)2(S2CNMe)2 <  |  S p ^

14 (CO)4Mo['Pr2NPO]4
/ - “P

•yl'Y
16 (CO )4M o [

17 (CO)4Mo
18 (CO )4M o

19 (CO)4Mo
20  (CO)4M o

21 (CO )4M o |

22  (CO )4M o [

23 (CO )4M o [

24 (CO )4M o [

25 (CO )4M o [

Pr2NPO]4Cr(CO)4
[,Pr2NPO]4Fe(CO)3
[iPr2NPO]4Cu(CH3CN)2BF4
[iPr2NP0]4AgN03
[iPr2NPO]4PtCl2
[iPr2NPO]4NiBr2
Pr2NPO]4Ni(CO)2
Pr2NPO]4NiCl2
Pr2NPO]4NiI2
Pr2NPO]4PdBr2

\ p C p ' 
\  '

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o
P ' O - i p

26 (CO)3Mo[iPr2NPO]5PdCI2 /  \  \
(CO)3Mo'-Pn/°  /

27 (CO)3Mo['Pr2NPO]5PdBr2 \  / h ~ P

28 (CO)4Mo[iPr2NPO]2(iPr2NPOMe){iPr2NP(0)H}

29 (CO)4Mo[‘Pr2NPO]2(iPr2NPOEt){iPr2NP(0)H}

R

° X ?  P - R

(CO)4Mo^

r ' A
° ^ R ,

R=‘Pr2N, R'=Me, Et
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B. SELECTED SPECTRA
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