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ABSTRACT
Orbit-Reflexivity
by

Michael McHugh
University of New Hampshire, May, 1995

Suppose II is a separable, infinite dimensional Hilbert space and T' and .S are bounded
linear transformations on H. Suppose that if Sz € {z,Tz,T?%z,...}” for every x implies
that § € {1,T,7T2,...}7597, then T is orbit-reflexive. Many operators are proven to be
orbit-reflexive, including analytic Toeplitz operators and subnormal operators with cyclic
vectors.

Suppose that if Sz € {\z : =z € H, A € C}~ for every z, implies that § € {AT™ :
n >0, A € C}~50T then T is C-orbit-reflexive. Many operators are shown to be C-orbit-

reflexive. C-orbit-reflexivity is shown to be the same as reflexivity for algebraic operators.
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Chapter 1

Orbit-reflexivity

1.1 Introduction

In what follows H will mean a separable, infinite dimensional Hilbert space unless noted
otherwise. B(H) will be the set of operators from H into H. Here ‘operator’ means a con-
tinuous, and therefore bounded, linear transformation from one Hilbert space into another,
‘subspace’ means a closed linear subset and ‘nontrivial’ means neither {0} nor the whole
space.

The invariant subspace problem is perhaps the most famous unsolved problem in oper-
ator theory. It asks whether every operator has at least one nontrivial invariant subspace.
An operator with no nontrivial invariant subspace, if there is one, is called transitive. At
the other extreme an operator with a lot of invariant subspaces is called reflexive. By ‘a
lot’ we mean that it has so many invariant subspaces that the only other operators that
leave every one invariant are those in the strongly closed algebra generated by 1 and the
operator. There exist many reflexive operators; however there are also many non-reflexive
operators.

An operator with no nontrivial invariant closed set is called orbit-transitive. An operator
T with a lot of invariant closed sets is called orbit-reflexive. Here ‘alot’ means that the only

other operators that leave them all invariant are those in the strong closure of {1, T, T?,...}.
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2
The set {1,T,T2,...} is called the orbit of T and will be denoted by Orb(T). Similarly
Orb(T, z) = {z,Tz,T%z,...}. Thus T is orbit-transitive if Orb(T',z) is dense in H for every
non-zero vector z in H. Also T is orbit-reflexive if Sz € Orb(T, z) for every z in H, implies
that S is in the strong closure of Orb(T).

At this time a wide class of operators is known to be orbit-reflexive. On finite-dimensional
spaces every operator is orbit-reflexive. But, as in the case of transitivity, there are no known
orbit-transitive operators on a Hilbert space. On the other hand, no one has yet constructed
an operator on a Hilbert space that is not orbit-reflexive.

Read [15] constructed an orbit-transitive operator on a Banach space; this operator, of
course, also has no nontrivial invariant subspace.

Beauzamy [1] has studied the orbits of linear operators. Many interesting and important
results on invariant subspaces have been obtained by Brown [2], Lomonosov [12], Pearcy
[13] and Radjavi and Rosenthal [14].

If T is an operator, we define the C-orbit of T, denoted by Corb(T), to be
{AT™ : X € C,n > 0}. Also we define Corb(T,z) = {A\T"z : A € C,n > 0} for each vector z.
We call an operator T C-orbit-reflexive if the only operators § satisfying Sz € Corb(T, z)
for every z in H are operators in the strong closure of Corb(T).

In this paper we will expand the class of operators that are known to be orbit-reflexive
and we will investigate some variations of the definition of orbit-reflexivity. In particular we
give conditions for multipliers on functional Hilbert spaces to be orbit-reflexive. We show
that many subnormal operators, including all cyclic ones, are orbit-reflexive. We give a
characterization of C-orbit-reflexive operators on a finite-dimensional space in terms of the

Jordan canonical form.
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1.2 Preliminaries

As usual, we define the norm on B(H) by ||T|| = sup{||Tz|| : = € H,||z|| < 1}. This norm
defines the norm topology on B(H). We define the strong operator topology (SOT) by
saying a net {T};} of operators converges in (SOT) to T if, for every = in H, ||T;z —Tz|| — 0.
Similarly, we define the weak operator topology (WOT) by saying a net {I;} converges to
T in (WOT) if, for every = and y in H, (Tiz,y) = (Tz,y). The adjoint T* of an operator
T is defined by (T*z,y) = (z,Ty) for all z and y in H. We say an operator T in B(H) is
normal if T*T = TT*. f T € B(H) and M is a closed linear subspace of H, we say M
is an invariant subspace for T if TM C M. Also, the spectrum of an operator T', denoted
by o(T), is the set of all complex numbers A such that 7' — X is not invertible. The point-
spectrum of T, denoted by o,(T) is the set of eigenvalues of T'. The first five results are

due to Hadwin, Nordgren, Radjavi and Rosenthal [10].

Lemma 1 Suppose that S,T,Ts,... € B(H). If the set of vectors x in H for which

Sz € {Tyz,Tyz,...} is of the second category, then S € {T1,T>,...}.

Proposition 1 If S,T € B(H) and the set of vectors z for which Sz € Orb(T, z) is of the

second category, then S € Orb(T) .

Proposition 2 Suppose that N is a commmuting family of normal operators in B(H) and
suppose that S is an operator such that Sz € {Tz : T € N}~ for every z in H. Then

S € N-SOT,

Corollary 1 Every normal operator is orbit-reflexive.

Theorem 1 Suppose that T € B(H). Then T is orbit-reflexive if any one of the following

holds:
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1. Orb(T,z) is closed for every z in some non-empty open subset of H;
2. Orb(T)~597 is countable and strongly compact;

3. there is a non-zero idempotent P in B(H) such that PT = TP and ||[T"z|| — oo for

every non-zero z in ranP;

4. there is a non-zero idempotent P in B(H) such that PT = TP and o(T|ranP) C {z:

|2} > 1}.
5. T is the direct sum of a normal operator A and an operator B such that B™ — 0 in

the weak operator topology;
6. ||IT| < 1;
7. T is algebraic;
8. T is compact;
9. o(T)N{z:|z| =1} = 0;

10. Tis a unilateral (forwards or backwards) or bilateral operator-weighted shift with com-

muting positive operator weights.

1.3 Improvements

In this section we improve some parts of Theorem 1. We first improve parts (3) and (4) by

weakening the hypotheses. Our first result is:

Theorem 2 Suppose T € B(H). Then T is orbit-reflexive if either of the following cases

holds:

1. there is a non-zero operator P in B(H) such that PT = TP and ||T"z|| — oo for every

non-zero z in ranP.
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2. there is a non-zero operator P in B(H) such that PT = TP, ranP is closed and

o(T| ranP) C {z: |z| > 1}.

Proof: Let G = (ker P)°, the complement of the kernel of P. Since P is nonzero, G is
non-empty. Since ker P is closed, G is open. If y € G, then Py # 0 so ||T™Py|| — oo. But
(T Py|| = ||PT"y|| < ||P||||T"y|l. Consequently, ||T"y|| — oo. This proves that Orb(T,y)
is closed. Therefore T is orbit-reflexive by part (1) of Theorem 1. This concludes the proof
of part (1).

Let Ty = T|ranP. By hypothesis 0 ¢ o(T}); i.e., Ty is invertible. Now, ||T{z[| >
(ﬁﬁ)n“fc“ If T < 1, then T is orbit-reflexive by part (1).

If |A| > 1, then T; — 1/) has an inverse. If we multiply that inverse by (—1/A)T1, we
get an inverse for Ty ' — A. Therefore, elements of the spectrum of Ty ! have absolute value
less than 1. Since the spectrum is always closed, this implies that the spectral radius of
Ty ! is less than 1. ( The spectral radius is the sup of the set of absolute values of elements

of the spectrum.) Consequently ||T;"|| is less than 1. This completes the proof of part (2).

There is another result that is similar to parts (3) and (4) of Theorem 1.

Theorem 3 Suppose T € B(H). Then T is orbit-reflezive if either of the following cases

holds:

1. there is a non-zero operator P in B(H) such that PT = PTP and |PT"z|| — oo for

every non-zero  in ranP.

2. there is a non-zero operator P in B(H) such that PT = PTP, ranP is closed and

o(PT|ranP) C {z:|2] > 1}.
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Proof: Let G = (ker P)°. Since ker P is a closed set, G' is open, and since P is non-zero,
G is nonempty. Again we will use part (1) of Theorem 1. So, suppose y € G. We need to
show that Orb(T,y) is closed. To do that we need to show that the sequence {IT"y||} is
unbounded. The norm ||PT"Py|| is unbounded by hypothesis, and ||PT"Py|| = ||PT"y||.

Since |[PT™y|| < ||P|I'IT"y|| and P is non-zero, we get the desired conclusion. O
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1.4 Functional Hilbert Spaces

Definition 1 A functional Hilbert space on a nonempty set X is a Hilbert space H of

complez valued functions on X such that:

1. if f and g are in H and if o and B are scalars, then (af + Bg)(z) = af(z) + Bg(z)

for all x in X, i.e. the evaluation functionals are linear on H,

2. to each z in X there corresponds a scalar v, such that |f(z)| < 7vz||f|] for all f in

H, i.e., the evaluation functionals on H are bounded,

3. for each z in X there is at least one f in H such that f(z) # 0, i.e., X has no null

points. [8]

Definition 2 If H is a functional Hilbert space on X, then the linear functional & that
maps f — f(z) on H is bounded for each z in X. By the Riesz Representation Theorem,
there is an element Ky of H such that f(z) =< f,K; > for all f. Here <,> represents the

inner product in H. The vector K, is the kernel function for z.

If p: X » Cand pH C H, where oH = {¢f : f € H}, then we call ¢ a multiplier of
H, and we can define amap M, : H — H by M,(f) = ¢f. We define ||¢]lco = sup{|¢p(z)| :

z€ X}

Theorem 4 Suppose X is a set and H is a functional Hilbert space on X, and ¢ is a

multiplier of H. Then M, is bounded and |||l < || M,||.

Proof: We will use the Closed Graph Theorem. Suppose f; — f and M,f; — g . To
show: M, f = g.
For every linear functional &, 2(f;) — #(f) and £(M,f;) — &(g). This implies that for

every z, fi(z) — f(z) and ¢(z)fi(z) — g(z).
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Multiplication is continuous in C, so f;(z) — f(z) implies that p(z)fi(z) — ¢(z)f(z).
Hence for every z, g(z) = () f(z). Therefore g = M, f.
For every z in X, there exists a k; in H such that < f,k; >= f(z). Now, < @kz,kz >=

o(z)kz(z) = p(2) < kg, kz >. So,

le(@)]| < kayke >| = | < kg, kz > |
= | < Mykzg, kz > |
< I Mpke||]|Ez|l
< 1Mk

For every @ in X, [p(@)ll[kall? < 1M lllks2. As long as [[ks]] # 0, we get [lell < (M-
In fact, for every z, ||kz||? # 0. Suppose to the contrary that < kz, k; >= 0 for some z.
Then k; = 0, and < f,ky >= 0 for every f in H . This implies that f(z) = 0 for every f

in H. This contradicts the fact that there are no null points. O

Theorem 5 Suppose X is a nonempty set and H is a functional Hilbert space on X and ¢

is a multiplier of H. If | M| = |l¢|l, then M,, is orbit-reflexive.

Proof: Casel for every z, |p(z)| € 1. By Theorem 1, M, is orbit-reflexive because

1Mol = liell < 1.

Case2 There is an o in X such that [¢(zo)| > 1. Since X has no null points, zo is not

a null point. So,

(ker &0)°¢ # 0.
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Since ker # is closed, its complement, (ker £¢)°, is open. Let f € (kerzp)° .

Orb(M‘th): {f’¢f7902f,"'}'

Take any subsequence {¢*" f} in Orb(M,, f).

Zo(¢™ f) = ' (z0) f(20) — 00.

Any convergent sequence of Orb(M,,, f) must be eventually constant. Therefore Orb(My, f)
is closed and M,, is orbit-reflexive by part (1) of Theorem 1. O

Let C denote the unit circle {z : |2| = 1}. Let L2 denote £L(C, i), where 1 is normalized
Lebesgue measure on the circle; (i.e., p(C) = 1). For each integer n let e, denote the
function e,(z) = 2". Then {e,}2_, is an orthonnormal basis for £2.

We next show how the preceding theorem can be applied. The space ‘H? is the subspace
of £? generated by {e, : 0 < n < 0o}. If we let L> denote the set of all multiplication opera-
tors on £2; then the space H is the subspace of £L°(C, p) defined by H>® = L>=(C, u)NH2.
If ¢ € H™, then My(H?) C H?, since ¢e,, € H? for n > 0. It is well known that the functions
in H* are precisely the multipliers of the functional Hilbert space H2.

An operator T on H? is an an analytic Toeplitz operator if there exists a ¢ € H* such
that T = My|H?. If € H*°, then the norm of the analytic Toeplitz operator corresponding

to ¢ is ||@||. These facts can be found in Douglas [7]
Corollary 2 ( To Theorem 5 ) Every analytic Toeplitz operator is orbit-reflexive.

Proof: The corollary now follows immediately from the theorem. O
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1.5 Direct Sums

In this section we prove some partial results about direct sums and orbit-reflexivity.

Theorem 6 Suppose T, A € B(H). IfT is orbit-reflexive and invertible and A is nilpotent,

then T ® A is orbit-reflezive.
51 52 z T 0

Proof: Let § = , T = andTHA = . Suppose for every
S3 S84 Y 0 A

zin H, ST € Orb(T @ A, 7).
Since A is nilpotent there exists k > 1 such that A*~! # 0 and A*¥ = 0. By letting
y = 0, we get S3 = 0; by letting z = 0, we get S2 = 0. Consequently, for every = in H,

Sz z Tz T2z Tk-1g Tkg

Say y Ay AZy Ak=ly 0

By letting y = 0, we get that for every z in H,
Sz € {z,Tz,T%,...}".

Since T is orbit-reflexive, S; € Orb(T)~.

By letting z = 0 we get for every y in H,
Say € {y, Ay, A%y,..., A¥ 1y, 0}
Now Lemma 1 and the fact that the closure of any finite set in H is itself imply

S € {0,1,4,4%,..., 451}
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11
Case 1: S4 = 0. Then for every 7,

ST z Tz Tk-1g Tkg

0 Y Ay AF-1y 0

k=14 are zero. Hence for

Since A¥—1 +#£ 0, there is a y such that none of y, Ay,..., A
every z in H, Siz € {T*z,TFz,...}~. Applying T-*% to S1z says that for every z in
H, T-*Sz € {z,Tz,T%z,...}~. The orbit-reflexivity of T puts T-*S; in Orb(T). Now
applying T* gives

8y e {TF, TH T2 | .

Hence,

S5190e{T*®0,T*' 0,..}".

Case 2: §4 = 1. For every z and y in H,

y Y Ay AF-ly 0

The nilpotency of A implies that there is some non-zero y such that no two of the first k¥ —1
powers of A applied to y are equal. So for every z, §1¢ = z. Therefore §; = 1. Clearly
11 €0rb(To A)".

Case 3: For some 7g, 1 < ig < k, S4 = A%. So for every T,

Sz T Tx Tk-1g Tky

Ay Y Ay Ak-1y 0

Again no two of the A*y can be equal. So §; = T AdT @ A € Orb(T® A)~. O
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Definition 3 Let H(™ be the direct sum of n copies of H and S and T(®) be the direct

sums of n copies of S and T respectively.

The following is a generalization of a result in Radjavi and Rosenthal [14] .

Theorem 7 Suppose for every n and every T in H", Sz ¢ Orbd(TM,T), then

S € Orb(T).

Proof: If ¢ > 0 and {z1,...,7x}, then we need an m such that 7™ € Orb(T) and
|IT™z; — Szi|| < € for every i, 1 < ¢ < k. Let T = (21,...,2) be an element of H®, So
S®z € Orb(T™),T). This implies that there is an m such that TNz — SFF|| < e. O

The following result shows, for certain operators, it is enough to check if 0 € Orb(T) in

order to prove that T is orbit-reflexive.

Theorem 8 Assume (3, ranI™ = {0}. Suppose that for all x, Sx € Orb(T,z). Then
S € Orb(T)U{0}. In particular, if either 0 € Orb(T) or 0 € Orb(T,z) for some x € H,

then T is orbit-reflexive.

Proof: If Sz € Orb(T,z), then either Sz € Orb(T,z) or there is a sequence {n;} such that
T™ — Sz, where ny < ng < n3 < .... If Tz — Sz, then for every n, there is a sequence
in ranT™ that converges to Sz ( the part of the sequence {T™} such that #; > n). So for
every n, Sz € ranT™. So Sz € N, ranT™. Therefore Sz = 0.
In either case Sz € {0,z,Tz,T?z,T3z,...}. Thatis, for every z, Sz € {0z,1z,Tz,T%z,T?z,.. .}.

So, by Lemma 1, § € {0,1,7,T%,73,...}. O

0 r 0
0
Corollary 3 Suppose |r| > 1, then T = ®|l o o r | ®-... isorbit reflezive.
0 0
0 00
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Proof: Suppose Sz € Orb(T,z) for all z. Since T is a direct sum of nilpotents we know

that if {T™z} converges, it converges to 0. Therefore Sz € {0,z,T=z,T%z,...} for all z. By

0
0
0 0
Lemma 1, S € {0,1,7,7%, ...} . Let 2o = ® 0 D @.... Then
1/r 0
1/r?
1/r3
1
lzoll2 = 32, (1/7)" = T—E:‘; = 5 . This implies ||zol| = ;2—1:1- # 0. Hence Tzg =
()
0
1 0
® 1/7‘ @ GB L]
0 1/r
0
\ 0/
)
1
0 1/r -
T?zg = ®@|lo |® ®.... For every n, ||T"zo|| > 1. So 0 & Orb(T', o).
0 0
0

\ 0

Therefore S # 0. This means § € {1,T,T?,...}; which implies that § € Orb(T). Therefore

T is orbit reflexive. O

Theorem 9 If T is an orbit-reflexive operator, then T @ 1 is orbit-reflexive.

T 51 52 T T
Proof: Suppose § = €eOorb| T, for every
Y 53 54 Y Y
z
. Let y = 0. We get S3 = 0 and S1z € Orb(T,z)~. Since T is orbit-reflexive
Y
S1 S
S1 € Orb(T)". Let £ = 0. Then S, =0 and §4=1. So § = =561 So
S3 S
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Seorn(Tol). O

a 9
Lemma 2 Suppose T € B(H), T=A® B and A = . Also suppose that either

0 B
a or B has norm larger than 1. Then T is orbit-reflexive.
00
Proof: Case 1: |B| > 1. Let R = & (0).
01
z
TEkerR=>T = ® (2),
0
for some z and z.
z
(ker R)® = ®(z):y#0
()

Note: (ker R)° is open and nonempty.

Claim: Orb(T,%) is closed.

Note that ||T"Z|| > |8™y| because 8"y is the second component of the first summand of
T™%. The sequence |3"y| approaches infinity, so the only convergent sequences in Orb(T, )

are the eventually constant ones. Therefore T is orbit-reflexive by Theorem 1.

a 0
Case 2: |a] > 1. If @ = [ then we are back in case 1. If y = 0, then A = and

B

0
1 1
we can use virtuallly the same argument as in case 1. If 4 # 0, then let §; =
0 B==
¥
Fa

0

and §7! =

Now let

W=86I1
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a 0
W-ITW = ® B.
0 B

Now we have the case where ¥ = 0. The operator W~!TW is orbit-reflexive and by

similarity T is also. O

a B
Lemma 3 Suppose T = A® B, A = , la| = 1 and B # 0. Then T is orbit-
0 «
reflezive.
Proof: The powers of A look like this:
a® na™1p
A" =
0 a™
z
Let T = ® (2). The set G = {T € H : y # 0} is a nonempty open subset of H.
)

oz + na™" 1By
Suppose T € G. Then AT =

ay

The sequence of norms, |T"%||, approaches infinity because the first component of || A"zl

does. So, by Theorem 1, T is orbit-reflexive. O
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1.6 Purely Subnormal Operators

In section 1.2 we cited the result that all normal operators are orbit-reflexive. Subnormal
operators constitute a somewhat larger class of operators. Our attempts to prove that all
subnormal operators are orbit-reflexive have not completely succeeded. Below we will show
that not only are all purely subnormal operators with a cyclic vector orbit-reflexive, but

any analytic function of such an operator is orbit-reflexive.

Definition 4 An operator A on a Hilbert space H is subnormal if there exists a normal
operator B on a Hilbert space K such that H is a subspace of K, the subspace H is invariant

under the operator B, and the restriction of B to H coincides with A.

Definition 5 A subnormal operator is purely subnormal if it has no normal direct sum-

mands.

Definition 8 An operator T on a Hilbert space H has a cyclic vector z if the set of all

vectors of the form p(T')z, where p varies over all polynomials, is dense in H.

Definition 7 If T is an operator then the point spectrum o,(T'), is defined by

0p(T) = {\ € C: Tz = Az for some non-zero vector x}.

Le., the point spectrum of T is the set of eigenvalues of T'.

The main tool in our results is a powerful theorem of J. Thomson [4] .

Theorem 10 If T is a pure subnormal operator with a cyclic vector, then

sup{[A| : A € op(T")} = |IT|-

Definition 8 If A € C and T € B(H), then X is a bounded point evaluation for T if

X € a,(T).
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Lemma 4 (Conway [5]) If T € B(H), T is subnormal and T has a cyclic vector, then the

bounded point evaluations are dense in the spectrum of T

Definition 9 If T is an operator, then the spectral radius of T', is defined by

r(T)= sup |\l
A€o (T)

Theorem 11 Suppose T is a subnormal operator with a cyclic vector and the function f

is analytic in a neighborhood of o(T). Then f(T') is orbit-reflexive.

Proof. If || f(T)|| € 1, then f(T) is orbit-reflexive by Theorem 1.

Suppose || f(T)|| > 1. The spectral radius of f(T)is equal to || f(T')||. Using the spectral
mapping theorem (twice) and the previous lemma, we can show there is some element, 2o,
of op(f(T)*), with absolute value greater than one. The closed linear subspace generated
by Ao is invariant for f(T'). Using the projection onto that subspace as P, the result follows

from Theorem 3. O
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1.7 Some Power Bounded Operators

If M is a subspace of H, then Py denotes the projection onto M.

Theorem 12 Suppose T is an operator on a Hilbert space H and My C M, C M3 C ...
are invariant subspaces for T. Suppose also that UMy = H and that sup ||T"|| < oo (i.e.,

T is power bounded). If for every k, T|pg, is orbit-reflexive, then T is orbit-reflexive.

Proof: Tirst a quick fact. For each z in H, Pyz — . If it did not , then no sequence
in H could converge to = because, by definition, P,z is the element of M; that is closest
to z.

Suppose for every = in H, Sz € OTI)(—ﬂ—j To prove that T is orbit-reflexive we must
show that § € —O—TE(T)SOT. To do that we must show that every strong neighborhood of S
intersects Orb(T). So, suppose that £ > 0 and {z1,...,2,} C H. There is an 7o such that
foreach 1 < j < m,

llz; — Pa, 251l < e

The subspace M;, will play an important role in this proof. To ease the notation a little let
Mo = M;,.

NN N7 S . . . ——S0T

If z € My, then S|p,z € Orb(T|r,, z)- Since T|a, is orbit-reflexive Sns € Orb(T) .

So for the set {z1,...,Zn}, there is a N such that for every j
I TV |mo (Prto5) = Sluo(Pasozs) Il < e

Using the fact that T is power bounded and writing z; as z; + Pag, =; — Pa, €; We can show
that ||Sz; — TNz;|| < . Actually we need to go back and use bounds smaller than the

given ¢. The computations are straight forward. O
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1.8 Direct Integrals

Direct integrals can be viewed as ”continuous direct sums.” So it is natural to try to prove
that direct integrals analogous to the direct sums in section 1.4 are orbit-reflexive. Suppose

(2, ) is a finite measure space and H is a separable Hilbert space.

Definition 10 Define
L*p,HY={f| f:Q — H, f is norm measurable, and /Q | f()|? du(w) < 0o}
and
L®(u, B(H)) = {¢: Q@ — B(H) | ¢ is SOT-measurable and the function [w  [|¢(w)||]] € L=(p)}.

The elements of L>(u, B(H)) are called direct integrals.

Theorem 13 Suppose H = C? and (,p) is a measure space. Suppose also that

a(w) bw)
T € L®(u,B(H)) and T = . If d(w) has absolute value greater than

0 d(w)
1 on a set of positive measure, then T is orbit-reflezive.
Proof. Suppose that ¢ > 1 and |d(w)| > t for all w € S where § C Q and u(5) > 0.
Define a new function from  into B(H) by

0 0 0 wgs
R(w) = where f(w) =

0 f(w) 1 wes
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p1(w)
Notice that R € L*®(p, B(H)). Let p(w) = be an arbitrary element of

p2(w)
L*(u, H). Then kerR = {p € L%*(u,H) | p2(w) = 0 ae.on S} The set kerR is

closed, so (ker R)° is open and nonempty.

If ¢ € (ker R)°, then Orb(T, ) is closed. This is true because

IT" (@I 2 [ t*lpale) P

and the second quantity approaches infinity. So T is orbit-reflexive by Theorem 1. O

Theorem 14 Suppose T € L>®(p, B(H)) and A C Q with p(A) > 0. Suppose that a.e. on

T(w) = a(w) Bw) ,

0 aw)

where |a(w)| = 1 and B(w) # 0. Then T is orbit-reflezive.

Proof: Define R € L*(u, B(H)) by

0 o
R(w) =
0 f(w)
Where
0 : A
=1 T E
1 if wed
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(ker R(w))¢ is a nonempty open set.

¢ € L, H), pw)= #)

pa(w)

@ € (ker R(w))° & p2(w) #0 a.e. on A.

Suppose ¢ € (ker R(w))°. Look at Orb(T, ).

a*(w) na™ Y w
N ECRE Ol

0 a™(w)

o (@)pr(w) + na™1 (1) B(w)epa(w)
T (w)p(w) =
o™ (w)p2(w)
For almost all w in A, the first component approaches infinity (n — oo, |a" !(w)| =

1, B(w) # 0, wa(w) # 0). So Orb(T,ep) is closed for all ¢ € (ker R(w))°. So by Theorem 1,

T is orbit-reflexive. O
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Chapter 2

C-Orbit-reflexivity

2.1 Preliminaries

In this chapter we define and investigate C-orbit-reflexive operators. If T' is an operator in

B(H) and z € H, we define
Corb(T) = {AT": n >0, A € C} and

Corb(T,z) = {A\["z:n >0, A € C}.

Definition 11 An operator T is C-orbit-reflexive if the only operators S such that

Sz € Corb(T,z) for every vector x are the operators in Corb(T)SOT.

Theorem 15 Suppose that A, B and T are operators and T is invertible. If A is C-orbit-

reflexive and B = T~ AT, then B is C-orbit-reflezive.

Proof: Suppose z € H and Sz € Corb(B,z) . Then Sz € Corb(T—'AT,z). By

continuity and linearity

TSz € {AM"Tz:n >0, Ae C}~.

22
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For every vector z in H,

TST 'z € {A"TT 'z: n>0, AeC}".

So for every z, TST 1z € Corb(A,z). Since A is C-orbit-reflexive, TST~! € (Corb(A)SOT.
This implies that § € Corb(T‘lAT)SOT, equivalently S € Corb(B)SOT. Therefore B is

C-orbit-reflexive. O
Theorem 16 Any normal operator is C-orbit-reflezive.

Proof: If T is a normal operator, then Corb(T') is a commuting family of normal opera-
tors. Suppose Sz € Corb(T,z) for every z. By Proposition 2, S € Corb(T)SOT. Therefore

T is C-orbit-reflexive. O

2.2 Finite Dimensional Operators

The following theorem due to Deddens and Fillmore [6] will be very useful in the rest of

this chapter.

Theorem 17 Let Q be a nilpotent linear transformation in a finite-dimensional vector
space V, and let @ = Zf“:l ®Q; be a decomposition into cyclic parts on subspaces of dimen-
sionsmy > ng > ... > ng. Then Q is reflexive if and only if ny = ng, or ny = nz + 1, or

dimV = 1.

Theorem 18 Suppose zo € H, S C B(H), and the evaluation map from S to Szo is a
SOT homeomorphism. Also suppose that [Vz € H, Tz € Sz} = T € S=50T, IfS, C S,

then [Vz € H, Tz € Soz) = T € S55°7.
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Proof: Suppose So C § and Tz € Soz, Vz. Then Tz € Soz. So Tzo € Sozo. So there
exists a sequence {So;} in Sp such that Sp;zo — Tzo. Therefore, since the evaluation map

is a homeomorphism, So; — T (SOT). So T € S[)‘SOT. a

Theorem 19 Suppose T is a nilpotent operator on a finite dimensional space. Then T is

C-orbit-reflexive if and only if T is reflexive.

Proof:

Assume that T is a nilpotent operator on a finite dimensional space and that T is
reflexive. Let S be the set of polynomials in T. Suppose Rz € Sz, Vz. Then R leaves
invariant every T invariant subspace. (Suppose TM C M. If z € M, then Rz € Sz and
Sz is a subset of M.) Since T is reflexive, R € S™5°7. Since T is nilpotent there is an n
such that 7" = 0 and T™~! # 0. Choose zo € H such that 7"~! # 0. The evaluation map
at zo from S to Sz is clearly onto. It is also one-to-one because T is linear and nilpotent.
If $; — § (SOT) in 8, then certainly Sizg — Szo. Suppose Sizo — Szo. By using the
linearity and nilpotency of T it can be shown that each sequence of coeflicients converges
to the corresponding coefficient of §. Thus S; — § (SOT). This proves that the evaluation
map at zg is a SOT homeomorphism. Now let So = Corb(T'). The previous lemma implies
that T is in Corb(T).

To prove the other direction suppose T is not reflexive. Let T' = Zf___l @T; be a de-

composition of T into cyclic parts on subspaces of dimensions n; > ng 2 ... 2 ng. By
0 ... 0 1 1
0 0 ... 0 0

Theorem 17,71 > n2+2. Let § = &®(0), where the first component

\0 0)
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Tny -1 + zy,
Ty

acts on the same space as Ty. Let T = : ®(0). Then ST = @ (0).

Tn,

\ 0

If z,, # 0, then §7 € C{T™"'7}. If z,, = 0, then §T € C{T™ ~?z}.
In either case Sz € Corb(T,z). Clearly S ¢ Corb(T). Therefore T is not C-orbit-

reflexive. O

Theorem 20 Suppose H is a finite dimensional Hilbert space and T' € B(H). Let é§ =
max{|A| : A is an eigenvalue for T}. Consider all the Jordan blocks that correspond to
eigenvalues with absolute value equal to 6. Let Ty be the largest of these blocks and let T be
the second largest. Then T is C-orbit-reflexive.if and only if the size of Ty is at most one
greater than the size of To. ( If T has just one block Ty, then T' is C-orbit-reflezive if and

onlyif Ty is 1 by 1. )

Proof: Suppose T is C-orbit-reflexive and T} and T’ differ in size by at least 2. Suppose Ty
is a k by k matrix. Let § = C @ D be an element of B(H). Let C be the k by k matrix
with zeroes everywhere except in the last two spots of the first row, where there are ones.
Specifically, C' = (¢ij) where cig—1 = 1, ¢1x = 1 and ¢;; = 0 for all other choices of ¢ and j.
Let D = 0.

Since we are trying to show that T' is not C-orbit-reflexive, it is sufficient to consider
the case where Ty is the k by k matrix with ones on the main diagonal and the first super

diagonal and zeroes everywhere else and all the other blocks have a main diagonal element
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with absolute value less than or equal to one. So,

( (o))

n n n
1 n
2 k-2 >k—1<
n n
=01 =n :
2 \k—2
\0 0 1
n n!
T ml(n—m)!’

The diagonals of T are constant. The second to the last super diagonal of C' is not

constant. So, C' ¢ Corb(T1). Therefore S ¢ Corb(T).

To prove that T' is not C-orbit-reflexive, we must now show that
ST € Corb(T,7) foreveryT € H.

Let

()

1

T2

8|
Il

I3 GB Y.

\ =/
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Tk-1+ Tk

0

/

® (0).

Case 1: z = 0. As n approaches infinity each element of

(k - 2)!

k-2

T

27

will approach 0, except for the first element which will approach zx_;. The last statement

is true because for any constant k,

n!

(n — k + 2)!nk-2

will approach 1.

Case 2: zp, # 0.

By a similar argument %EIBT"E will approach S%.

Either way ST € Cord(T,T).

To prove the other direction suppose Sz € Corb(T,z) for all T € H. To show that T

is C-orbit-reflexive we must show that S € Corb(T)SOT. Let T =Ty @ Ty @ T3 where T is

the m by m matrix described in the proof of the other direction and T3 is the following p

by p matrix, where p=morp=m -1,

/iB

e

0

0

1

e'f

0

0

1

0

0

0

0

0

eif

and T3 consists

of the remaining Jordan blocks. Let § = A@® B @ C where A is a m by m matrix and B is
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a p by p matrix. Our immediate goal is to show that each of the diagonals of § is constant.

1 n 1 &m0 peind
2 >m—l< p—-1<
n n
T"=]101 = Plo 1 €& P13.
m—2/ p—2)
\0 0 0 1 ) \0 0 0 1

Here p = m or p = m — 1. Since ST € Corb(T,z) for all z, it is fairly easy to show that
all the elements of § that are below the main diagonal are 0. So all the subdiagonals are
constant.

Let A = (a;;) and B = (b;;).

case 1: a1 # 0.

Claim 1: In A the main diagonal is constant.
We will show that for every | € N, ay = a1;. The proof is by induction. Suppose
arr = a11. We need to show that ag4+1 k41 = a11.

Let e be the m-tuple (or p-tuple) with a 1 in the kth component and zeroes everywhere

else.
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ayk

ask 0

Ckk
A® B(ex®er) = ®

N0 U0y

> k-1 < ( end )
n 0
\ k-2
(T T2)"(ex Der) = : @
1
0

\ 0

N0

Since S(er ® e1 ® 0) € Cord(T, e, @ €1 @ 0), there is a sequence {a,} in C, such that

ar — ag; and o,€e™? — by, where each n, is an integer greater than or equal to 0.

Therefore |by1] = |akk|-
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Now,

A® Blery1 D er) =

and

(T ®T2)"(ex+1 D e1) =

\

A1k+41

A2k+1

Qkk41

Qk41k41

0

Since (A @ B)(ex4+1 @ €1) € Corb((T1 & T2), ex+1 & €1), there is a sequence @, in C

that @, — ap41k41, and @rn, — agg41 and a,e™? — byy. Consequently,

[b11] = |ak41,i+1]-
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0
0
o
0
L 0

/
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such



31

Note that o, # 0. If it did b;; = 0 and so axx = 0, which it is not.
Also,

Qkk+1 = V1Qk+1k41,

where 7, is an integer greater than or equal to zero.

Now we look at the image of ex + €41 under A and T7.

n n
+
a1k + G141 k-1 k
n n
+
k-1 + Qk—1k41 k-2 k-1
ik + Gkt .
Alertert1) = and TT'(extex+1) =
Qr41k+1 n+1
0 1
0
\ 0 /

Now we get a sequence {a;,} in C, such that a, — @x1k41 and o (n,+1) = arr +akr41-
Since @g41k41 is not equal to zero and {a,} does not converge to zero, the sequence {n,+1}
must converge. Using some of the previous identities and the fact that any convergent

sequence of natural numbers is eventually constant, we get

(no + 1)ak41k+1 = @kk + V1@k41k4+1

ark = (no+ 1 —m).
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Hence agy is an integer multiple of ar41x+1. Since they both have the same absolute value,
either @xi1x41 = @kk OT Gky1k41 = —akk. The second equation is impossible.

Assume apqyp41 = —Qkk-

2akk + 3akk+1 24+3n
3ak41k41 3
A(2e + 3epy1) = and T7'(2ex + 3ex+1) =
0 0

There is a sequence {a,} in C such that 3a, — 3ary1k41 and (2 + 3n,) — 2ax +

3(71ak+1k+1). Now,

—ark(3ny + 2) = 2axx + 371(—akk).

-—-3n1 —-2=2—3‘)’1.

ny =71 —4/3.

But n; is an integer and 7v; is a natural number. This contradicts the last equation. The
proof of claim 1 is now complete.
Claim 2: All the other diagonals of A are constant.

Proof: The proof is by induction. Assume the first ¢ — 1 diagonals are constant. To

show: ag g1t = @g41,+¢41 for all q.
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n
g+t—1
( a1,9+t \
n
t
Qq,q+t
n
Qg+1,9+t
Aegyr = and Tt'eq4t = t—1
0
n
1
LI .
0

This implies there is a seqence {a,} in C such that

Gy — Q11,

(n

a; — @qq4¢ and

Qr ™ Qg+1,g+t-
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n
q+i
n
{ \ q+i— 1
a1,q+t+1
n
Qq,g+t+1
t41
Qg+1,q9+t+1
. n
Aegytr1 = : yand Ti'egqp41 =
t
Qg4t41,g+t+1
n
0
t—1
0 /
\ 1
0
\ 0

There must be a sequence {a,} in C such that,

Qg — Q11

ns
s = Ggq41,g+t+1 a0d
t
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Qs =+ Qg42,q+t+1-

Ny
The sequence must converge because ay; is not zero. The sequence {n.}

t

must be eventually constant. Consequently,

Ny
Qg,q+t = Q11
A
and
Trg
Gg41,94t = Q11
t—-1
. e Mso Mg
Similarly ag41,9+¢t41 = @11 and ag42,94+t41 = @11 . Now ag.1,q4¢ and
t t—1

@g4+2,4+t+1 are on the ¢t — 1 diagonal and are therefore equal. So nr, = ns and agg4¢ =
@g+1,9+t+1- This finishes the proof of claim 2.

Claim 3: The diagonals of B are all constant. The proof is by induction. The main
diagonal of B is constant. Assume that the first ¢ — 1 diagonals are constant and that b; ;
and b;41,j+1 are on the t diagonal. To show: b;; = biy1,j41for all ¢ and j. Evaluate A® B
and (T} ® T2)" at e; @ e; and at e; @ ej41. An argument very similar to that in the proof
of claim 2 implies that b; ; = biy1,j4+1-

Claim 4: The diagonals of the matrices that comprise C are all constant. The proof is
virtually identical to the proof of claim 3.

case 2: a;; = 0. As in the proof of claim 1, we can show that b;; = 0 and agx = 0.

Therefore the main diagonal of A consists of zeroes. It is not hard to show the main diagonal
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of B consists of zeroes. Now we can treat the first super diagonals of A and B as the main
diagonals and argue as in case 1. To prove that the first non-zero diagonal of A is constant
we need to use the first non-zero element of the first row of B. If m = p — 1, we may run
out of non-zero elements of B. That would only happen if A has only one non-zero element:
Apm. In that case the diagonal has only one element and is therefore constant.

Therefore all diagonals of the all the matrices of the Jordan canonical form of S are
constant. So S commutes with T. So § € AlgLat(T) N (TY = {p(T) : p is a polynomial }.
From this we can prove that § € Corb(T). O

An algebraic operator 7' is an operator for which there is a nonzero polynomial p such
that p(T) = 0. Every algebraic linear transformation on a complex vector space has a
Jordan cononical form, with possibly inﬁnitely many Jordan blocks. We can extend our

finite-dimensional result to arbitrary algebraic operators.

Theorem 21 Suppose T is an algebraic operator. Then T is C-orbit-refleive if and only if

T is reflexive.

Proof: Suppose T is an algebraic operator and T is reflexive. Suppose for every z € H,
Sz € Corb(T,z). Let P(T) = {q(T): qis a polynomial }.

Since T is algebraic, H is an algebraic direct sum of subspaces that are invariant under
T. More precisely, there exist eigenvalues e; € H such that H = Z?’E 1 Hi, where H; =
{P(T)e;}. Also T = Y2 | T; where T; = T|g,.

To show that S € W(T—)SOT, we must prove that every strong neighborhood of §
intersects Corb(T). Suppose {fi,...,fm} C H and € > 0. Let M = P(T)fi + P(T)f2 +
weot P(T)fm + Hy + Ha. The subspace M is finite dimensional, therefore M is closed.
Clearly M is invariant for T. For every z, Sz € P(T)z; so § € AlgLat T. Therefore

S(M) C M. Now for every z € M, (S|a)z € Corb((T|am),z). The eigenvalues of T'|ps are
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all eigenvalues of T, so the decomposition of T'|ps is part of the decomposition of 7. Since
Hy, H, C M, the two largest blocks of T|as differ by at most 1. By the previous result T|m
is C-orbit-reflexive. Therefore S|y € WSOT. Since fi,...,fm € M, there exist
A€ Cand k > 0 such that [|S|arfi = MTIm)Ffill <efor 1 <i<m. So ||Sfi— AT*fi]| < ¢
forl1 << m.

To prove the opposite direction we can use the same argument as in the finite dimensional

case. O
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Chapter 3

Hereditarily Orbit-reflexive

Operators

Suppose S C B(H) and S is a multiplicative semigroup. We define S to be orbit-reflezive

if the following implication is true:

Szre3z, forallze H = 5e8°7.

Definition 12 S is hereditarily-orbit-reflexive if every subsemigroup Sp of S is orbit-

reflexive.

Definition 13 An operator T is hereditarily-orbit-reflexive if Orb(T') is hereditarily-orbit-

reflezive.
Theorem 22 Any normal operator T is hereditarily-orbit-reflexive.

Proof: It must be shown that Orb(T) is hereditarily-orbit-reflexive. So suppose Sp is a
subsemigroup of Orb(T). Suppose Sz € Spz for all z. Sp is a commuting family of normal

operators. So, by proposition 2, S € S&'SOT. (m]

Theorem 23 IfOrb(T,z) is closed for every x in a nonempty open set, then T is hereditarily-

orbit-reflezive.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

Proof: Suppose Sz € Sz for every z. For every z, Sz C Orb(T,z) and for every z in the

given non-empty open set Sz C Orb(T,z). So by Lemma 1 § € 3%°T o

Theorem 24 If Orb(T)SOT is countable and strongly compact, then T is hereditarily-orbit-

reflezive.

Proof: Suppose S is a subsemigroup of Orb(T). Suppose Rz € Sz, for every z. For
any particular z¢ there is a sequence {S;} in S such that S;z9g — Rzo. The sequence

{Si}isin Orb(T)SOT which is strongly compact, so there is a subsequence {S;;} such that

SOT SOT

Sij — So (SOT). Since each §;; is also in S,5% €S So for every z, Rz € §

Since Orb(T)SOT is countable, so is 3% By Proposition 1, R € 3°9T o

Theorem 25 Suppose T € B(H) and there is a nonzero operator p € B(H) such that

TP = PT and ||T"z|| — oo for every nonzero z in the range of P.

Proof: Suppose z € (ker P)¢, then Pz # 0 and Px € ranP. So,

|PT™(z)ll = |IT"P(z)|| = oo,

and so

[|T™z|| — oo.

So Orb(T,z) is closed for a non-empty open subset, (ker P)°. So by Theorem 23, T is

hereditarily-orbit-reflexive. O
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Theorem 26 Suppose T™ — A (SOT), then T is hereditarily-orbit-reflexive.

Proof: Suppose S is a subsemigroup of Orb(T). Note that 3T

= S U {A}. Suppose that
Sz € Sz, for every z.

Sz = Sz U {Az},

<=SoT

which is a countable set. By Proposition 1, $ € SU {A}. Hence § € §" "~ . Therefore T is

herditarily-orbit-reflexive. O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-
Holland, 1988.

[2] S. W. Brown, ‘Some Invariant Subspaces for Subnormal Operators’, Integral Equations
Operator Theory 1 (1978) 310-333.

[3] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1985.

[4] J. B. Conway, The Theory of Subnormal Operators, American Mathematical Society,
1991.

[5] J. B. Conway, personal communication.

[6] J. A. Deddens & P. A. Fillmore, ‘Reflexive Linear Transformations’, Linear Algebra
and Appl. 10 (1975), 89-93.

[7] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, 1972.
[8] P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, 1982.

[9] D. Hadwin & E. Nordgren, ‘Subalgebras of Reflexive Algebras’, J. Operator Theory,
7(1982). 3-23.

[10] D. Hadwin, E. Nordgren, H. Radjavi & P. Rosenthal, ‘Orbit- reflexive Operators’, J.
London Math. Soc., (2) 34 (1986) 111-119.

[11] S. Lang, Linear Algebra, Springer-Verlag, 1987.

[12] V. Lomonosov, ‘Invariant Subspaces for Operators Commuting with Compact Opera-
tors’, Funct. Anal. Appl. 7 (1973) 213-214.

[13] C. Pearcy, ‘Invariant Subspaces, Dilation Theory and Dual Algebras’, NSF/CBMS
Conference at Arizona State University, Lecture Notes 1984.

[14] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, 1970.

[15] C. J. Read, ‘A Solution to the Invariant Subspace Problem’, Bull. London Math. Soc.,
16 (1984), 337-401.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 1995

	Orbit-reflexivity
	Michael James McHugh
	Recommended Citation


	tmp.1523556367.pdf.HVs7M

