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PREFACE

This dissertation consists of two parts, each one standing alone as a 

comprehensive approach to its respective subject. However, when taken together these 

two studies encompass an interesting spectrum of possibilities for helping to solve the 

puzzle of the missing nitrous oxide source in the global budget. The following is a brief 

summary of each part.

Part I - Short-Term Response Of Nitrous Oxide Emissions To Nitrogen 
And Carbon Additions In Two Tropical Volcanic Soils.

This part presents a detailed study of volcanic soils of high natural fertility, 

located at La Selva Biological Station in Costa Rica. Originally the area had a lush 

tropical rainforest cover, which since has been converted to agricultural use. The 

experiments described in this part stress two key approaches to nitrous oxide production, 

namely rainfall-driven episodic short-pulses of emissions, and emission-response to 

different kinds of fertilizers. The monitoring of soil-profile inorganic-nitrogen chemistry 

and soil-moisture, simultaneously with nitrous oxide production and emission over time, 

is, to date, unique to this study.

vi
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Part II - Episodic Nitrous Oxide Soil Emissions In Brazilian Savanna (Cerrado)
Fire-Scars.

The second part reports on a study of savanna ecosystems in tropical South 

America and their conversion to high input agriculture. The natural savanna, locally 

called cerrado, occurs on a highly infertile soil, as opposed to the soils in Costa Rica, 

which suffers periodic fires leaving behind large expanses of fire-scarred savanna. 

Nitrous oxide emissions for these impacted savannas previously were unknown. The first 

segment of this study, covering most of one rainy season, assesses several fire-scars from 

prescribed fires. The second segment of this study describes a series of fertilizations and 

subsequent episodic emissions carried out on a recently burned patch of natural savanna. 

This experiment was similar to the addition experiments in Costa Rica, so results could 

be compared and contrasted. And finally, the third segment of this study consists of 

monitoring episodic nitrous oxide emissions from pasture, and com and soybean 

plantations, the three most common agricultural uses of the savannas.

Vll
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ABSTRACT

NITROUS OXIDE EMISSIONS FROM TROPICAL SOILS

by

Antonio Donato Nobre 
University of New Hampshire, September 1994

Nitrous oxide (N20), the third most important greenhouse trace gas in the 

troposphere and one contributor to ozone destruction in the stratosphere, has its 

concentration in the atmosphere increasing steadily over the last few decades. This study 

measured sources from tropical soils, potentially the highest and least studied N20  

production areas in the world.

For two tropical volcanic soils in Costa Rica the effect of water, nitrate and 

glucose additions on episodic emissions of nitrous oxide were studied. Magnitudes of 

episodic N20  pulses, as well as overall N20  emissions, varied considerably and 

consistently, depending on soil texture, soil moisture, and kind and availability of 

substrates. Emission pulses began within 30 minutes, peaking no later than 8 hours after 

wetting. Production in the soil occurred mainly in the layer between 5 and 20 cm deep, 

but depended directly on the temporal dynamics of the water profile. Soil inorganic 

nitrogen was associated with soil N20  concentration changes. Depending on the 

treatment, one episodic N20  production event driven by one moderate rain could account 

for less than 15% to more than 90 % of the total weekly production. Previous survey 

studies may have underestimated the contribution of gas emissions from tropical soils to

xiii
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the global budget of N20 , and better budgets will demand a detailed knowledge of both 

background emissions, and episodic emissions driven by rain events.

The seasonally burned cerrados of Brazil are the largest savanna-type ecosystem 

of South America and their contribution to the global atmospheric N20  budget is 

unknown. Results showed that N20  consumption/emission for four fire-scarred savanna 

ecosystems, for nitrogen and carbon fertilization and for agriculture/pasture ranged from 

-0.3 to +0.7, 1.8 to 9.1, and 0.5 to 3.7 g N20-N • ha'' • d'1, respectively. During the wet 

season the cerrado biome does not appear to be a major source of N20  to the troposphere, 

even following fire events. However, conversion of the cerrado to high input agriculture, 

with liming and fertilization, can increase N20  emissions more than ten fold.

xiv
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SHORT-TERM RESPONSE OF NITROUS OXIDE EMISSIONS TO 

NITROGEN AND CARBON ADDITIONS IN TWO TROPICAL

VOLCANIC SOILS

Introduction

Before the industrial age, the atmospheric nitrous oxide 

concentration (mixing ratio) appears to have remained constant at around 

285 ± 1 parts per billion by volume (ppbv) for the past 3000 years (Khalil 

and Rasmussen, 1988). However, over the past century the mixing ratio 

has increased about 8%, and during the past decade it has shown a yearly 

increase from 0.2% to 0.3% (Khalil and Rasmussen, 1983; Khalil and 

Rasmussen, 1992; Prinn et al., 1990; Weiss, 1981). There is a very high 

likelihood that the increase in N20  atmospheric mixing ratio is directly 

associated with large scale human interference in the nitrogen cycle 

(IPCC, 1990). The current measured m ixing ratio o f  N20  in the 

troposphere is about 310 ppbv {IPCC, 1990). N itrous oxide is an 

im portant greenhouse gas and is a factor in determ ining the ozone 

concentration in the stratosphere (Cicerone, 1987; Dickinson  and

2
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Cicerone, 1986; Hahn  and Crutzen, 1982; Singh, 1987). The current 

sources o f N20  are poorly known, and inputs to the atm osphere, known 

and estim ated, account for3 only about h a lf  o f the flux required to balance 

the relatively well known destruction rate {Kim and Craig, 1993; 

Robertson, 1993).

O f the presently known sources, soils are estim ated to be the 

largest, contributing approxim ately 66% o f total em issions {Robertson, 

1993 and references therein; Davidson, 1991 and references therein); 50% 

o f the soil em issions are currently thought to be from undisturbed 

ecosystems. Comparative measurements have reported higher rates o f 

denitrification and nitrous oxide release in tropical than in temperate 

forests (e.g. Robertson  and Tiedje, 1986; Seiler  and Conrad, 1987), 

sometimes by a factor o f 20 larger than the global mean o f nitrous oxide 

em issions by soils {Keller et al., 1983). D enitrification in tropical soils 

may account for up to ha lf o f the global production o f N20  {Griffiths et 

al., 1993). The Amazon basin, for instance, appears to be a m ajor source 

o f  trace gases, including N20  {Matson et al., 1987). Tropical biomes 

cycle larger amounts o f total nitrogen than boreal ecosystems {Chapin  et 

al., 1986; Matson  and Vitouse/c, 1987; Vitousek  and Matson, 1988;

Vitousek  and Matson, 1993; Vitousek and Sanford, 1986). Tropospheric 

N 20  mixing ratios over that basin are higher than the global average

3
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(McElroy  and Wofsy, 1986), although specific sources within the region 

have not yet been well quantified. To date, a disproportionate amount o f 

inform ation has come from the developed tem perate regions o f  the 

northern hem isphere {Smith and Arah, 1990; Vitousek and Matson, 1993).

Nitrous oxide production and consum ption in soil have been 

dem onstrated to be a non-continuous process in both time and space (e.g. 

Terry et al., 1981). Its episodic nature, with pulses o f production 

associated with m ajor transient changes in soil m icrosite environm ents, 

has been shown to account for significant surges o f  emissions to the 

atm osphere in relatively short spans of time (e.g. Brumme and Beese, 

1992; Davidson  et al., 1991; Grundmann and Rolston, 1987; Johnsson  et 

al., 1991; Mosier et al., 1991; Sexstone et al., 1985).

Most previous survey studies carried out for tropical soils have 

not used high frequency (e.g. every few hours) sampling based on rain 

events to guide sampling. More commonly, daily sampling is conducted 

for only a short campaign (e.g. Livingston et al., 1988; Goreau and Mello, 

1987; Keller, et a l., 1983; Matson  et al., 1990), or a few complete 

seasonal cycles are studied, sampling approxim ately every week (e.g.

(.Keller et al., 1993; Luizao et al., 1989).

4
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Davidson  et al. (1993) and Garcia-Mendez et al. (1991) studied 

a dry tropical forest and sampled rain-driven episodic events. They 

reported that the magnitude o f the episodic events was a direct function o f 

substrate accum ulation during the dry season, and that the magnitude 

decreased with each successive rainfall until rain associated em issions 

were not distinguishable from the background. This finding m ight be a 

good approxim ation for most o f the relatively arid and infertile 

nitrogen-lim ited natural ecosystems in the tropical and subtropical regions 

(see Part II). However, as these ecosystems are converted to agriculture, 

pasture or silviculture (Fearnside , 1986; Skole  and Tucker, 1993), where 

some form o f nitrogen fertilization is used (Duxbury  et al., 1993; Vitousek 

and Matson, 1993), there is an increasing potential for episodic emissions 

to become significant.

In this paper, we report on a detailed study carried out on two 

tropical soils, converted previously from rainforest cover to agroforestry 

and pasture. The study was designed to respond to a recognized urgent 

need for field studies in which N 20  flux measurements are investigated in 

com bination with processes regulating gas production and their 

environm ental controls (Schimel  et al., 1989). The study also was 

planned in conjunction with the development of a process oriented model,

5
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DNDC {Li et al., 1992a) and {Li et al., 1992b), both efforts seeking to 

assess the unique role of rainfall events in soil denitrification.

Methods

Study Site

La Selva, a 3300 ha biological station o f the Organization for 

Tropical Studies, lies between the confluence o f the rivers Viejo and 

Sarapiqui, province o f Heredia (10° 26' N; 83° 58' W, 40 m approx. 

elevation asl), in the transition zone from the coastal plain to the steep 

foothills o f the Costa Rican Cordillera Central mountain range's north 

facing Caribbean slope. The terrain o f the reserve is developed on 

andesitic lava flows deposited in the Pleistocene, and on alluvium , also 

derived from volcanic rock, overlying lava flows in terraces bordering 

both rivers {Sollins et al., 1993). Annual climatic means are about 26° C 

and 3720 mm precipitation {Instituto Meteorologico Nacional, 1988).

The dry season extends roughly from December to April, and the variation 

in air temperature is minimal throughout the year.

One experimental site, Las Vegas annex, is located on one o f 

those alluvial terraces at the confluence o f  the Viejo and Sarapiqui rivers,

6
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about 15 m above the dry season river w ater level. The area had an 

original vegetation cover classified as wet tropical forest (Hatshorn , 

1983), but had been converted in the 1950's to cacao cultivation, a 

condition in which it remained for many years until abandonment, ca. 

1980 (Griffiths et al., 1993). In 1991 the area was cleared to bare soil for 

the establishm ent o f the Huertos silvicultural experim ental plots. The 

marginal buffer zones among Huertos plots were left to regrow with wild 

pioneer plants. A regrowth strip, localized on the west side o f  the 

Sendero Las Vegas, at approximate position in the La Selva GIS 

coordinates o f -50/-375, was chosen for the experiment. The regrowth 

was prim arily two species o f fast-growing shrubs, forming a dense two 

m eter tall cover that was clear cut to bare soil, without removal o f roots, 

one week prior to the beginning of this experiment.

The second experimental site, Finca  (ranch) Flam inia is located 

on the slope o f a clayey terrain developed possibly from a higher river 

terrace. The finca had been under long term pasture until abandonment 

several months prior to the experiment. An area near and to the south o f 

the new road to San Jose (Rio Frio), approxim ate position in La Selva 

GIS grid o f -350/1250, was chosen for the experiment. The site was 

covered w ith 1 m tall grass that was cut down and the soil left bare. The

7
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Flam inia experim ent site was cleared and established three weeks before 

beginning experim ental work.

The sandy low er-terrace soil in Vegas (Bambu consociation) is 

an andic fluventic Eutropept, rich in exchangeable bases, whereas, the 

clayey pasture soil in F lam inia is an upland with more weathered soil, 

poor in bases, and not classified but possibly a typic Tropohum ult (Sollins 

et al., 1993) or an oxic Hum itropept (Reiners et al., 1993), based in its 

physiographic position. Selected data from the studied soils is presented 

in Table 1.1. Sollins et al. (1993) further describe the soils o f  La Selva 

and the region.

Experimental Design

Each o f the two experim ental sites (except for Event #2 in 

Flaminia) had one 3.2 x 3.2 m square plot subdivided into four 2.56 m2 

sub-plots (treatm ents). Each sub-plot was a 1.6 m square w ith four basic 

components or installations (Figure 1.1): one PVC ring or collar inserted 

approxim ately in the center o f the square; one battery o f stainless steel 

soil-gas-phase probes for sampling at various depths, and installed  to one 

side o f the collar close to the merge o f the four sub-plots, or proximal 

edge, and extending under the collar; one battery o f  tensiom eters also for
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sampling at various depths, and installed on the one distal or outer edge 

o f the sub-plot, pointing to the collar; and one soil sampling soil p it lying 

outside the other distal edge, with the sampler operating towards the 

collar.

The simulated rain events were water and solution additions 

using a backpack sprayer and a garden watering can. All the nitrogen and 

carbon sources (except for dry urea in Flaminia) were dissolved 

immediately before irrigation in pre-stored rain water. The water or 

solutions were sprayed evenly onto the sub-plots over a period o f 30 

m inutes so that they would percolate into the soil without forming 

standing water. The time-step used in the experiments for measurements 

were irregular, but followed a general scheme. For each sim ulated rain 

event, or solution addition, measurements were done at time zero, which 

was immediately preceding the additions, and then 30 minutes, 2, 4, 8 

hours, and one day after additions, and daily thereafter, until the next rain 

event or com pletion of the experiment.

For Event # 1 at both sites (Tables 1.2 & 1.3), there were two 

fertilizer treatm ents and water alone as a control. The fertilizers were 

sodium nitrate (N aN 03) at a level o f 50 kg N • ha'1 as the first fertilizer

9
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treatment, and N aN 03 at 50 kg N • ha'1 plus glucose (dextrose, a-D (+) 

C6H 120 6) at a level of 250 kg C • ha'1 as the second treatment. The 5:1 

C:N ratio used to obtain denitrifying potential was similar to those used 

in soil core incubation studies {Parsons et al., 1993; Schuster  and 

Conrad, 1992). In Vegas there was also one dry control, and in Flaminia 

there was one glucose only treatment, at a level o f  250 kg C • ha'1. 

Events #2 and #3 in Vegas were a continuation of  the observation o f  

treatments from Event #1 with supplemental water additions on the two 

fertilizer treatments and the water control.

Event #2 in Flaminia had a different and simplified treatment 

layout. At a location within ten meters from the main plot (Event #1), 

seven collars were installed in a line, each in the center o f  a 0.5 x 0.5 m 

square plot. All the procedures for adding the solutions onto the plots 

were similar to that described above, except for the dry urea treatment 

where the urea salt (CH4N20 )  was sprinkled over the dry soil one day 

before the irrigation in a manner similar to local agricultural practice. 

Carbon and nitrogen combinations and levels in the seven treatments can 

be seen in Table 1.3. The extract o f  litter constituted an aqueous extract 

o f  forest-floor organic litter (from the rain-forest in the area) that was 

ground into a fine powder, agitated with deionized water for 1 hour, let 

rest for another hour, and then centrifuged at 10,000 rpm for 5 min. The
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supernatant was then refrigerated until use. The resulting dark brown 

solution was used to simulate drainage through a soil litter layer.

Field Sampling

The enclosure technique used to quantify trace-gas exchange 

between soil and atmosphere has been widely used and discussed at length 

by Hutchinson  and Mosier  (1981). In this study, the two-part static 

vented chambers consist o f  a 25 cm internal diameter, 10 cm tall, 

polyvinylchlorine (PVC) ring or collar and a molded 

acrylonitrile-butadiene-styrene (ABS) plastic top 10 cm tall with a gas 

sampling port, a pressure equilibration port, and a lip that fits over the 

PVC ring {Matson et al., 1990). The chamber-top was well aerated 

before the beginning of each N20  flux measurement. The lip was greased 

lightly with silicon grease (Apiezon) and the collar capped tightly with 

chamber-top. Gas samples, withdrawn through an injection port, were 

collected using 20 ml nylon syringes (S.E.S.I., VWR Scientific) fitted 

with butyl rubber o-rings, and polypropylene stopcocks (Baxter 

Scientific), at 1, 7, 14, 21 and 28 minutes after closure. Each five syringe 

sample set constituted one flux measurement, after which the chamber 

closure was opened. Air temperature was taken during the sampling.
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Nitrous oxide flux was calculated by regressing the N20  mixing ratio 

linear change over time in the chamber enclosure (Keller  et al., 1986).

One week prior to the experiment the collar was inserted 

approximately 2 cm in the top soil. Problems reported by Matson et al. 

(1990) associated with increased gas production in rainforest soils due to 

early insertion o f  rings onto the soil should not be a matter o f  concern at 

these sites, because there was no root mat covering the soil and 

preliminary tests in nearby forest sites (Keller and Reiners, 1994) did not 

indicate an insertion effect.

The sampling of soil-gas was carried out using horizontal probes 

made of stainless steel tubing (3.17 mm o d )  formed in an L shape, 

installed adjacent to the PVC collar, at depths o f  2, 5, 10, 20, and 40 cm 

(Figure 1.1). The drawing portion o f  the probe's tubing, approximately 10 

cm long, had 20 small holes drilled in its wall, distributed along its 

length. The upper part o f  the L ( 2 cm) was bonded (epoxy setting glue) 

to a capillary stainless steel tubing (1.59 mm o d )  leading upward outside 

the soil. On top, a cutoff hypodermic needle (also with 1.59 m m O D ) ,  

with a luer slip lock, was hooked to the stainless steel tubing, tip to tip, 

using a short piece o f  polystyrene tubing. On the slip lock end, a plastic
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cap was used to seal the probe from the atmosphere and dirt during the 

intervals between sampling.

To monitor the total soil water potential (matric, pressure, 

gravitational and osmotic), porous-cup tensiometers (1  cm o d  by 1 0  cm 

long sensing porous-cup; 1 bar air entry value) were installed horizontally 

in the soil close to the collars [about 25 cm away]. They were placed at 

the same depths as the gas probes but offset laterally to avoid 

interference. The water tension inside the tensiometers was measured at 

each time step using a calibrated electronic pressure transducer 

(Soilmoisture, CA) hooked to an ammeter. Gravimetric soil moisture was 

measured on all soil samples collected for chemical analysis.

Samples were collected for each time step, each treatment, and 

each depth for monitoring soil chemistry. Soil samples were extracted 

using a 25.40 mm o d  steel tube soil sampler (Soilmoisture,CA). The 

sampling scheme in the immediate vicinity of the experimental plots 

(Figure 1.1), consisted o f  digging one small pit (30 cm wide, 50 cm deep 

and lm  long) for each treatment. The samples were then drawn 

horizontally, within the pit, from under the experiment area at the same 

depths as those used for gas probes and tensiometers. The amount of 

earth collected corresponded to from two to three loads o f  the sampler, or
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about 200g. Soil samples were kept in plastic bags for few hours and 

thereafter frozen in the same bags [-18° C] for variable periods o f  time, 

until extraction could be carried out.

Laboratory Analysis

Nitrous oxide was determined for 2 ml sub-samples o f  the 20 ml 

field samples, using a 8A Shimadzu gas chromatograph fitted with a 

stainless steel (3.2 mm o d  by 2 m) column, packed with 50-80 mesh 

Porapaq Q, and a 63Ni electron capture detector. Operating conditions 

were: column temperature, 63° C; electron capture detector temperature, 

330° C; P5 mixture (95% Ar with 5% CH4) carrier gas with a flow rate of 

30 ml • min'1. N20  and C 0 2 were separated, but only N20  mixing ratios 

were quantified. Oxygen, hydrocarbons, CFC's, etc. were removed from 

the carrier gas with a mol-sieve purifier filter. Water vapor was removed 

from all samples with a pre-column of indicating moisture absorbent 

(Aquasorb™ - Mallinckrodt 6063). Standards (nitrous oxide in 

dinitrogen gas mixture) used in the analysis (343.8, 543.7 and 808.7 ppbv; 

Scott Specialty Gases) were calibrated against NOAA (Nitrous Oxide and 

Halocarbons Division, Climate Monitoring and Diagnostics Laboratory, 

Boulder, Colorado) secondary standards.
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The samples were held in the sampling syringes an average o f  21 

hours before being analyzed. Loss rates for every syringe used in the 

experiments were determined by leak tests and the values for analyzed 

N 20  mixing ratios were corrected for any diffusional leaks (see Appendix 

A for detail in method). Soil nitrate (N 0 3‘) and ammonium (NH4+) 

concentrations were determined colorimetrically in saline soil extract 

(.Keeney  and Nelson, 1982) using an autoanalyzer (Technicon Traacs 800). 

Soil total elemental carbon and nitrogen were determined from oven dried 

and well ground soil sub-samples (Nelson  and Sommers, 1982) through a 

flash dry combustion elemental analyzer (Carlo Erba).

Results and Discussion

Soil Time Series Profiles

Figures 1.2. and 1.3. show time series data on experiment results 

for N20  fluxes and soil-gas-phase N20  mixing ratios, together with soil 

water tension and soil N 0 3' concentration profiles.

Vegas C on tro l T r e a t m e n t . At the sandy Vegas site, control 

treatment N20  fluxes remained close to background levels throughout the 

period (Figure 1.2.A). There was some rainfall three days before the
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beginning of the experiments in Vegas, and the residual effects of that 

moisture in the soil can be seen in the initial days as low soil water tension 

and elevated N20  mixing ratios at depths o f  5, 20 and 40 cm. The small 

oscillation in the background flux at the surface reflects these changes in 

the soil profile. As the soils dried due to dry weather until day 20, the soil 

moisture to depths o f  20 cm decreased progressively to tensions in excess 

o f  1 Bar (the limit o f  the tensiometers). Some low rainfall (3 mm) at the 

end of the experiment resulted in increased profile mixing ratios and 

fluxes. Changes in nitrate concentrations in the soil profile did not 

directly reflect changes in the associated N20  mixing ratios. This could 

indicate that nitrification is the main source for N20  background emissions 

rather than denitrification, or, that nitrous oxide is diffusing up from 

deeper layers where it would have been produced either by denitrification 

or nitrification. Degassing from ground water is also a possible source. 

There is a consistent upward gradient in soil N20  mixing ratios at all 

sampled depths, which supports the hypothesis o f  production at depth (for 

a review of denitrification in subsurface environments see Rice  and 

Rogers, 1993).

Vegas W a te r  T r e a tm e n t . The time series o f  water tension 

profiles, which are averages o f three separate measurement sites, indicate 

clearly the effects o f  each simulated rain event and subsequent drying
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period (Figure I.2.B). The first event quickly lowered water tension to a 

depth o f  10 cm, and after some lag also lowered tension slightly at 20 cm, 

but did not influence deeper layers.

If  water seems so clearly associated with increased gas phase 

N20  mixing-ratios in the upper soil layers, how can be explained, before 

wetting, the proportionally equivalent peaks at depth 20 and 40 cm? 

Griffiths et al. (1993), incubating similar soils to study denitrification 

potential, found that N20  produced by denitrification was highest in 

0 2-free headspace. Considering that water temporarily fills up pore space 

in the upper soil layers, diffusion o f  atmospheric 0 2 into the soil could 

diminish, increasing the probability of a larger anaerobic fractional 

volume developing {Davidson, 1992; Rudaz et al., 1991; Mosier et al., 

1986), therefore allowing denitrification to proceed faster in layers 

beneath the saturated zone. Another possible explanation is that nitrous 

oxide actively produced in upper layers diffuses downward. Gas diffusion 

from below would be inhibited. Corroborating the argument o f  diffusion 

from upper layers and consequently low denitrification at depth, the soil 

nitrate data showed no change at a depth o f  40 cm. The nitrous oxide 

peak for all depths happened around 8h after the simulated rain, 

indicating a simultaneous response (no lag determined by diffusional 

constraints).
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Even though the magnitude of the second simulated rain event 

was the same as the first, the soil was much drier at that time. The 

wetting front percolated quickly to 5 cm, but moisture was soon lost to 

evaporation. The water added to the top 5 cm in this event kept water 

tension low until the third event, when a three-fold larger simulated rain 

percolated quickly to the drier layers underneath, reaching 20 cm, and 

producing strong pulses of N ,0  to that depth. Lower water tensions might 

have induced lower 0 2 partial pressure in the microbial microsites for a 

longer time than in previous events, leading to a further reduction of 

nitrous oxide (already diffused from the liquid into the gas-phase) to N2.

In the "leaky-pipe" model {Firestone and Davidson, 1989) this would 

mean a regulation at the third level, where diffusion and consumption of 

N20  occur prior to escape from soil into the atmosphere. That would 

explain the sharp peaks at depths 5 and 10 cm. From 20 cm downward, 

there could be less consumption after the peak, which would explain the 

skewed tails for those depths. The bigger pulses o f  soil gas-phase N ,0 , 

compared with event 1 and 2, did not translate into bigger emissions at 

the soil surface.

The nitrate data showed consistent patterns, especially the 

patterns associated with water additions and resulting nitrous oxide 

pulses. A progressive increase during interpeak or low flux periods, like
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the one shown at 2 cm, could indicate two main processes: first, 

nitrification occurring during periods where 0 2 is more plentiful, and also 

enhanced by moderate wetness; second, upward movement o f  soil solution 

from deeper layers to the surface by capillarity action, due to surface 

evaporation, would result in accumulation o f  nitrate at the uppermost 

layer and progressive loss o f  nitrate in deeper layers. The N H /  

concentrations showed a remarkable similarity with N 0 3\

There were nitrate oscillations associated with the N20  pulses. 

N 0 3' suddenly decreased in concentration, followed immediately by quick 

increases until N 0 3' stabilized around background levels. This was 

similar to what was observed in tropical dry forest upon wetting 

{Davidson  et al., 1993). This could suggest that with increased moisture, 

microbial communities bloom, consuming and immobilizing nitrate from 

the soil solution, leading to a decrease in nitrate concentration. Then, 

either due to exhaustion o f  substrate or some other regulating factor, the 

recently grown biomass dies, liberating part o f  the nitrogen that was 

immobilized by the microbial mass. The NH4+ data corroborated that 

interpretation, assuming that increased concentrations reflect 

mineralization. The subsequent stabilization in the nitrate concentrations 

during the dry periods suggested that the microbial community had
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reached a quasi-equilibrium. The detailed dynamics o f  the soil 

microbiology was beyond the scope o f  this study.

Vegas N itra te -N  T r e a tm e n t . In this treatment the emissions 

from the soil surface were very consistent with changes in soil gas mixing 

ratios (Figure I.2.C). There was an unexpected increase in nitrous oxide 

and nitrate at 40 cm prior to any change in soil moisture. In this first 

amendment, the top four layers showed a large increase in nitrate with the 

arrival o f  a moisture front. The first peak o f  mixing-ratios associated 

with nitrate additions exceeded the water alone treatment throughout the 

profile. The extra nitrate supplied clearly stimulated higher 

denitrification activity. This is an indication that the soil ecosystem was 

limited in nitrogen, a result corroborated by soil core nitrate addition 

experiments with pasture and forest soils in the same region {Parsons et 

al., 1993), but contradicting results of another study {Keller et al., 1988).

Vegas N itra te -N  + Glucose-C T r e a tm e n t . After addition, the 

profile o f  N20  mixing-ratios (Figure I.2.D) indicated that denitrification 

was enhanced 30 times above levels measured in other treatments. The 

nitrate profile showed nitrate concentrations oscillating abruptly during 

gas peaks, as in other treatments which received water. Most o f  the
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nitrate was consumed during and soon after Event #1 at depths of 5 and 

10 cm, remaining constant in deeper levels. This suggests that microbial 

activity is most intense in those two layers, which increases the likelihood 

that N20  is actively produced there {Firestone and Davidson, 1989), 

diffusing upward and downward. In the surface layer, nitrate remained 

high, possibly due to the addition in the amendment, but also possibly due 

to the progressive loss o f  water by evaporation during the first interpeak 

period. Between events 2 and 3 nitrate progressively dropped to almost 

zero mg • kg'1 o f  dry soil, possibly due to higher soil moisture conditions 

than the first interpeak.

Nitrous oxide mixing-ratios reached in the first event o f  the 

nitrate + glucose additions were 25, 40, 14, 5 times higher in layers 2, 5 

& 10, 20, and 40 cm, respectively, than in equivalent layers during the 

nitrate treatment. The second event had mixing-ratios values only 1.2 to 

1.7 times higher than the corresponding nitrate-only additions. The third 

event had some mixing-ratios concentrations which were even smaller 

than in nitrate addition. This overwhelming response to glucose after an 

initial application, primarily in the layers wetted by the simulated rain, 

indicated the high potential for denitrification in this soil. More 

interesting to this study was the temporary nature o f  the response to 

nitrate + glucose addition suggesting strong carbon limitation.
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Flaminia W ater T reatm ent. Soil gas nitrous oxide 

concentrations in the Flaminia pasture clayey soil (Figure 1.3.A.) showed 

a four-fold faster and 5-10 times larger response than the equivalent 

treatment on the sandy soil at the Vegas site. The quick and 

homogeneous drop o f  soil moisture after a simulated rain event 

throughout the profile indicated higher infiltration, probably due to 

macropores. Except for the uppermost few centimeters which became 

drier, the rest o f  the measured profile behaved the same with respect to 

moisture. Because o f  scattered rainfall during Event #1 at Flaminia, it is 

not possible to compare background production with events 1 and 2 of 

Vegas. Nitrous oxide formed after the first brief peak, accumulated 

progressively at depth. Because the rain events happened during nights, 

peak sampling (30 min., 2, 4, and 8h) was not done. Lack of sampling of 

the N20  peaks makes it hard to evaluate the impact on the soil N20

mixing-ratios o f  different magnitudes of natural rainfalls.

A few observations should be noted about the water treatment 

results. After 19 + mm of rain accumulated in the third day, twice as 

much as the amount o f  the simulated rain in Event #1, there was a drop 

in N20  mixing-ratios at almost all depths, associated with a big increase 

in NOj' concentration. On the fourth day, after more 78 mm of rain, the
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situation reversed, with gas accumulating in the profile, and N 0 3‘ 

substrate diminishing abruptly. The first drop in gas mixing ratios was 

similar to the drop that happens after each episodic pulse peak, with the 

increased nitrate being the result o f  the increased

mineralization-nitrification associated with the enhanced soil moisture. 

The increase in nitrate is associated with the first peak for the three 

uppermost layers, and is relatively proportional to the amount o f  water 

going through the soil. The increase in mixing ratios by the fourth day 

was probably caused by denitrification soon after the natural rain, which 

would also explain the drop in concentration of the nitrate substrate.

F lam in ia  N itra te -N  T r e a tm e n t . The nitrate treatment (Figure

I.3.B) produced a significantly different response compared to the water 

treatment. Mixing ratios o f  N20  are generally higher than those produced 

by water, but the dynamics o f  production and consumption were not 

symmetric as they were at the Vegas site.

After the amendment, nitrate increased immediately in the 

uppermost layer, and showed a progressive time lag for the increase at 

deeper levels. In contrast to the water treatment, nitrate in the three 

intermediate layers that accumulated during the first day began decreasing 

on the second day, reaching its lowest concentration in the third day, and
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recovering by the fourth day. As seen in Vegas, nitrate in the surface soil 

remained high as the soil dried, but in contrast to Vegas, when more water 

was added, nitrate concentrations decreased and did not recover. The 

likely explanation is leaching o f  nitrate from the surface layer into layers 

beneath by the added water. The results o f  this experiment, in spite o f  the 

complicating factor of natural rainfall, strongly support the inference that 

nitrate dynamics in the soil profile, i f  studied in conjunction with soil 

moisture and soil N20  mixing ratios, can be a useful indicator o f  

conditions controlling soil N20  production.

F lam in ia  Glucose-C T r e a tm e n t . The Glucose-C treatment 

(Figure I.3.C) was unique to the Flaminia site, and served to separate the 

effect o f  carbon alone from that o f  carbon plus nitrogen. The most 

evident effect o f  carbon alone, besides the brief enhancement o f  N20  in 

the profile following amendment, was the consumption o f  nitrate to the 

lowest concentrations observed in any of our treatments. Similar to 

Nitrate-N + Glucose-C at Vegas, the N20  production was most intense in 

the three upper layers. In these layers, nitrate reached zero at the same 

time N20  mixing-ratios were peaking (at 4 h), indicating a shortage of 

nitrogen substrate for denitrification. If  compared with nitrogen alone, 

the glucose treatment produced 3 to 30 times higher N20  mixing-ratios. 

Glucose is thus clearly the main driver o f  nitrous oxide production
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associated with these amendments. But glucose addition alone will run 

the system out o f  nitrate after only 4 hours of 

immobilization/denitrification.

F lam in ia  N itra te-N  + Glucose-C T r e a tm e n t . The profile 

results for this treatment (Figure I.3.D) confirmed the expectation from 

the results o f  the carbon alone treatment that an additional supply o f  N 

substrate would increase the production and accumulation o f  N20  in the

soil. The peaks in soil mixing-ratios were equivalent in some layers, and 

much bigger in others, compared to those resulting from the Glucose-C 

treatment. The enhanced nitrous oxide peaks lasted much longer than in 

the glucose amendment. But even in this experiment, there seemed to 

have been some nitrate limitation, for at 10 cm, one very low nitrate 

concentration point coincided with a decrease in the nitrous oxide mixing 

ratio (and also coincided with an increase in ammonium concentration).

It seems clear, as in the water treatment, that nitrate was leached out of 

the surface layers into lower ones after an intense rainfall. However, it is 

unclear why, between 2 and 8 h, there was a plateau in the measured 

nitrate for the upper two layers and in the N 20  flux at the surface.
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N20  mixing ratios in the nitrate + glucose treatment are four to 

twenty five times larger than the ratios for the equivalent treatment at 

Vegas (Figure I.2.D). The enhanced peaks also lasted longer than at 

Vegas. In Flaminia, there was more soil moisture and that moisture was 

better distributed in the soil, but nitrate concentrations were similar. The 

key, we believe, were soil textural and structural differences (Table 1.1). 

Larger bulk density (Flaminia pasture) with smaller porosity can influence 

infiltration and percolation rates, and very probably gas diffusivity rates 

(Reiners et al., 1993). The sandy Vegas soil had potentially much less 

space in micropores comparative to the clay soil in Flaminia. 

Consequently, the anaerobic fractional volume of the former could be 

much smaller.

As shown by Burton  and Beauchamp (1994), the measurement of 

mixing-ratios gradients for these soil profiles proved useful in delineating 

the timing and location o f  gas production. The general close relationship 

between patterns o f N20  mixing-ratio dynamics and water infiltration 

with substrate amendment, suggested an overwhelming importance o f  

episodic production in the upper soil layers, over production in deeper 

soil layers, in controlling the measured emissions.
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Episodic Emission and Fluxes to the Atmosphere

The cumulative curves (Figures 1.4 and 1.5), or running totals, 

are integrated summations o f interpolated intervals o f  the minimum 

sampling period (30 min.) for the entire event period. The shape o f  the 

curves allows inferences about the importance o f the irregularities in trace 

gas emission (episodic pulses, for instance) for the temporal accumulation 

of  emissions. A straight line indicates that emissions are uniform over 

time, a condition where background flux monitoring suffices to making 

good estimates o f  real emissions. The higher the departure from a 

straight line, the worse the estimates of emissions based in background 

fluxes. In Vegas Water Event #1 (Figure 1.4 .A), the running total shows 

that the accumulation o f  emitted gas is progressive, and oscillating, well 

in accord with the fluctuation of  the background fluxes. Even though a 

peak pulse can be identified soon after the simulated rain, its contribution 

to the progressive accumulation is small. In other situations, like the 

Vegas Water and Nitrate-N in Event #2 (Figure 1.4.B), the peak is clearly 

distinguishable; but it is followed by a slight depression in the 

background flux making its contribution to the running total 

imperceptible, and consequently less important in the case o f  estimating 

real long term emissions. When the running total curve starts bulging 

upward, like Vegas Nitrate-N, Event #1 (Figure 1.4. A), where 32 % of the 

total N20  emission over 9 days was emitted during 1 day (peak duration),
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or in an extreme example in the same figure with Nitrate-N + Glucose-C 

where 96 % o f  all gas emitted occurs during the first day, then the 

emission regimen is very irregular.

Vegas . The effect o f  irrigation and amendment on the nitrous 

oxide production was most dramatic in the short term episodic peaks that 

followed additions. The simulated rainfall events always produced 

episodic emission pulses, as well as increased overall production o f  N20 .  

The effect o f  water alone could be seen in the water treatment at Vegas 

(Figures 1.4.A to I.4.C). Twenty-five g  N 20-N  • ha'1 (Figure I.4.C and 

Table 1.4 Totals) was emitted [averaging 1.2 g  N20 -N  • ha '1- d'1 ], after 

three simulated rain events over a 22 day period. The dry Vegas control 

treatment emitted 14 g  N20-N  • ha '1 [0.6 g  N20-N  • h a '1- d'1 ] over the same 

period. The episodic pulses o f  N20  associated with water additions 

contributed approximately 20% of the total flux. The approximately 20 g  

N20-N  • ha '1 attributable to background flux is still 1.4 times larger than 

the dry control background flux. This indicates that other nitrous oxide 

producing processes such as nitrification benefited from increased soil 

moisture. The emission pulses in this treatment, 1 g  N 20 -N  • ha '1 for the 

first, and 2 g  N20-N  • ha'1 for the last two were evidence that water 

additions cannot be related to N20  emissions in a linear way.
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The nitrate treatment, with a 50 kg N • ha'1 amendment, emitted 

45 g  N 20 -N  • ha"1 [2.0 g  N20 -N  • ha '1- d'1 ] in Vegas (Figures 1.4.A to

I.4.C) or 1.8 times the gas emitted by the Vegas water-alone treatment, 

after three simulated rain events over a 22 day period. That represented 

approximately 0.1% of the added nitrogen, or 4.7% if  the system emitted 

at the same weekly rate during a full year. Episodic emissions accounted 

for 22% o f  the total flux in this treatment.

The treatment nitrate + glucose (Figures 1.4.A to I.4.C) emitted 

303 g  N20 -N  • ha'1 [13.7 g  N ,0-N  • ha '1 • d '1 ]. These results indicate a 

severe carbon limitation on denitrification in this soil, or, perhaps, that 

glucose can stimulate aerobes to consume most available soil oxygen 

which increases the anaerobic fractional volume in the soil stimulating 

denitrification (Mosier et al., 1986). Stoichiometric calculations showed 

that i f  glucose was totally respired aerobically, the amount added to the 

soil (250 kg of dissolved C • ha'1) would have been enough to consume all 

o f  the atmospheric oxygen from the soil gas-phase down to almost 1 m 

deep, provided there was no diffusive replenishment from the atmosphere. 

The short time frame of intense reducing conditions here is the key to 

understanding why N20  emissions were so enhanced. This treatment 

emitted 0.6 % o f  the added N. In this treatment 91 % of the N20  was
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produced during the episodic pulses, contrasting with the 22 % in 

Nitrate-N treatment (Table 1.4).

Flaminia Event #1 . The water treatment at Flaminia (Figure 

1.5.A) emitted 116 g  N20 -N  • ha'1 in 6 days. This was 17 times more 

N 20 -N  than the observed in the same treatment at Vegas. Considering 

that this kind of soil covers much larger areas and its use as pasture is 

much more common, these high emission numbers assume special 

significance (Reiners et al., 1993; Keller  et al., 1993; Luizao  et al., 1989).

The nitrate treatment (Figure 1.5.A), with a 50 kg N • ha'1 

amendment, emitted 374 g  N20-N  • ha '1 [61 g  N20-N  • ha '1 • d'1 ]; this 

represented 0.7 % o f  the added nitrogen. That emission is proportionally 

30 times higher than the gas emitted at the Vegas nitrate treatment, and 

3.2 times the gas produced at Flaminia water treatment. The level o f  N 

fertilization used in this experiment is relatively low compared to that 

used for agriculture in the area (e.g. banana plantations typically use 300 

kg-N ■ ha'1). Emissions associated with episodic fluxes increased from 15 

% o f  total flux (Table 1.5) in the water treatment, to 36 % in this 

treatment.
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The glucose treatment at Flaminia (Figure 1.5.A), emitted 1,273 

g  N20 -N  • ha'1 [208 g  N20 -N  • ha '1 • d'1 ]. This clay soil response to 

glucose was 11 times larger than the water treatment and 3.4 times larger 

than the nitrate treatment. The nitrate + glucose treatment in Flaminia 

(Figure 1.5.A) emitted 3,336 g  N20 -N  • ha'1 [545 g  N20 -N  • ha'1 • d'1 ]. 

This is 20 % less than would be predicted by a simple multiplication o f 

the individual treatments. The emissions in this treatment were 38 times 

larger than the equivalent treatment in sandy Vegas soil. The episodic 

emission o f  nitrous oxide in the glucose treatment produced 91% of the 

measured emissions, while in the glucose + nitrate treatment the episodic 

emission was 39%.

F lam in ia  Event #2 (Substrate search for N20 -p ro d u c tio n ) . This 

series o f  tests cannot be directly compared with the ones in Event # 1 in 

Flaminia, because in Event #2 the experiments were protected from 

rainfall. These results were useful to show how a succession of simulated 

rain events with controlled drying periods can precisely define the 

temporal emission patterns o f transient nitrous oxide pulses.

Because glucose is not a common amendment in fertilized soils, 

a mix of  organic compounds extracted from decaying forest litter layer
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[litter extract] was used as a source o f carbon for experimentation. The 

results, 121 g  N20 -N  • ha '1 [20 g  N20 -N  • ha'1- d'1 ] (Figure I.5.C), is only 

marginally larger than the water treatment in Event #1 o f  Flaminia. The 

emission dynamics o f  this natural carbon treatment were significantly 

different from the water treatment; 72 % of N20  was emitted during the 

first episodic emission, compared with 15 % during the second episode.

Urea, a commonly used fertilizer, was also used as an 

experimental treatment. Urea produced a depression in emissions 

compared with the water treatment, 101 g  N20 -N  • ha '1 [17 g  N20 -N  • ha '1- 

d '1 ] (Figure I.5.B). The episodic emission o f  nitrous oxide accounted for 

31 % of total emissions.

Litter extract combined with nitrate produced 296 g  N20-N  • ha '1 

[48 g  N 20 -N  • ha'1 • d '1 ] (Figure I.5.C), 2.4 times higher than litter extract 

alone. Litter extract with Urea-N produced 207 g  N20 -N  • ha '1 [34 g  

N20 -N  • ha '1 • d'1 ] (Figure I.5.C), 30 % less N20  than nitrate alone, which 

indicates that urea is not used as readily as nitrate as a substrate for 

denitrification. Urea applied with glucose, produced 5 3 9 g N 20 -N  • ha '1 

[88 g  N 20 -N  • ha '1 • d '1 ] (Figure 1.5.B), 1.8 times more than litter extract + 

nitrate. Dry urea (Figure 1.5.B), sprinkled as a conventional fertilizer
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over the soil, and watered one day after, produced results similar to the 

dissolved urea treatment. Finally, the Nitrate + 1/2 Glucose, could not 

meaningfully be compared with the Nitrate + Glucose o f  the Event #1 in 

Flaminia, due to the various rain events in Event #1. Noteworthy in this 

treatment was the sharp peak without the top plateau which occurred in 

Event #1. If  the pulse was so brief, either soil moisture was diminishing 

quickly after the simulated rain event, or, as was the case for treatment 

Glucose in Event #1, the system was running out o f  nitrogen substrate, 

consequently shutting o ff  denitrification .

Importance of Episodic Nitrous Oxide Production

The events in the experiments for both sites o f  this study lasted 

between 147 to 214 hours, or roughly one week, which is equivalent to 

the time period o f recurrent sampling in typical long term trace gas 

emissions survey studies (e.g. Keller  et al., 1993; Weier et al., 1991; 

Luizao  et al., 1989). The hypothesis was that random or chronological 

periodic sampling might underestimate total N20  fluxes to the atmosphere 

from tropical soils if  they miss the transient pulses associated with rain 

events, liquid amendment or irrigation.
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In order to assess the importance o f  peak magnitude with peak 

duration during the episodic emission o f N20 ,  we calculated a peak 

intensity parameter as follows:

_ , Peakpg Event TPPeak,—  ----------- -
' Eventpg PeakTp

where PeakI>f, and E ven t^xe ,  the gas produced during the peak 

and during the whole event including the peak, respectively; PeakTp and 

Eventlp are the time periods o f the peak and the whole event, respectively. 

Peaks in this study were defined arbitrarily in the N20  flux time series 

as the part where fluxes depart abruptly from the background. This 

definition o f  peak could be made more objective and consistent using 

mathematical concepts o f  threshold and peak width limits borrowed from 

fields like chromatography.

Peak intensity is a dimensionless measure o f  how many times 

trace-gas emissions during the peak period are proportionally larger than 

emissions during the background period. Peak intensity also gives an 

inverse measure of probability for a random periodic sampling to catch 

those brief fluctuations [which in turn can also be random with respect to 

the sampling scheme]. Noting transient bursts of emissions with one, few
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or many flux measurements (inadequate to define pulses), like those in 

the background o f Flaminia's treatments for Event #1 (Figure 1.5.A), 

intermingled with non-monitored rain events, contribute to increase the 

unexplainable scatter [error] in the data.

The higher the value o f  peak intensity, the worse the 

underestimate o f  emissions if  only background non-peak emissions are 

sampled. The closer its value to the unity, the less important will be the 

contribution of  the peak pulse to the average flux, which means closer to 

background, or broader the peak width. The critical realization is that the 

nature of the transient pulse sets apart the time-scale o f  this phenomenon, 

i f  compared with the long term background emissions. Moreover, those 

incompatible time hierarchies cannot be mixed without introducing big 

errors in the estimates.

When the right sampling strategy is devised, however, the flux 

data will reflect closely the real emission behavior of the soil system 

concerned. And as some of the results from this study suggest (Figures

1.4.A, 1.5.A, I.5.B & I.5.C; Tables 1.4 & 1.5), there can be a sizable if  not 

overwhelming participation of transient bursts o f  emissions in the total 

'real' emissions over few weeks. The realization of the importance o f  

episodic emissions associated with rainfall is not new (e.g. Bowman  et al.,
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1993; Davidson  et al., 1993; Schimel et al., 1988). However, to date, few 

long term studies have attempted to quantify the importance o f  episodic 

emissions in the total emissions.

Conclusions

The series of experiments with the two volcanic tropical soils 

reported in this paper indicate that water additions and rainfall set the soil 

system to start emitting N20  in intense pulses. The data in the soil 

profiles brought strong evidence o f  the connection between the movement 

o f  the wetting front into the soil and the change of N20  mixing ratios at 

that level. Background N20  emissions were found to respond differently 

depending on whether the treatment was dry, wet, fertilized, and with 

which kind of fertilizer. Soil extractable inorganic nitrogen showed 

remarkable and somewhat consistent patterns of oscillation associated 

with N20  production and emission in transient pulses. The patterns 

associated with background also remained consistent with the conditions 

o f  the respective soil layer in many situations, even though the 

biogeochemical interpretation could not explain all the patterns observed.
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The fact that both nitrogen and carbon produced intense 

responses suggests that these soils were limited in both substrates. 

However, in only one instance one of these substrates (nitrate) was 

observed to have been depleted as a result o f  supply o f  the other substrate 

(glucose). Another hypothesis, somewhat corroborated by the 

extraordinary response o f  these soils to glucose addition, is the limitation 

by environmental conditions on the use o f  these substrates, for example, 

redox potential. In such cases, the system can become limited in both 

substrates, provided the environmental conditions allow their use. In 

some situations, as during glucose addition, the carbon substrate itself 

became a source o f  change in the environment that then triggered further 

carbon usage, as well as use o f  other substrates optimally until 

exhaustion. Soil textures, apparently connected with pore size 

distribution, determined changes up to twenty fold in total gas emitted, 

which could mean that broader generalizations based on a few field 

measurements can be one order o f  magnitude wrong. Pulses o f  production 

can develop quite superficially in the soil, especially between 5 to 20 cm, 

and can develop to a maximum emission strength [which can be several 

orders o f  magnitude greater than the background level] within the range 

o f  30 min. to 8 hours. The episodic part o f  the flux occurring in brief 

transient bursts o f  emissions, usually taking place within a day, can 

account for up to 98 % of total emissions produced in a week with one
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moderate rain event. Those episodic pulses associated with rain, liquid 

amendment or both, varied greatly in intensity and duration among 

treatments.

If the frequency and distribution of rainfall and amendments to 

tropical soils is shown to generate pulses throughout the year as intense as 

the pulses measured in these experiments, then the global estimates o f  

N20  production will have to take into consideration this episodic 

production in order to account for the missing source.
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Table 1.1. Some physical and chemical properties of the studied soils

Site Depth
(cm)

Bulk
density
(g.cm-3)

Textural Analysis (%) 
Sand Silt Clay

PH
(H20)

Mineral N 
(mg N Kg-1 soil) 

N03-N NH4+-N
Total N

(%)
Total C

(%)

1 2 0.7 66.5 26.5 7.0 6.4 19.6 12.6 0.4 3.9
5 0.8 66.5 21.5 12.0 6.5 20.8 7.8 0.2 2.4
10 0.9 69.5 18.5 12.0 6.6 5.8 1.4 0.2 2.0
20 1.0 70.0 15.0 15.0 6.5 1.7 0.9 0.2 2.0
40 1.0 66.5 23.5 10.0 6.4 0.5 0.2 0.1 0.7

2 2 1.4 4.6 12.1 20.3 0.4 3.7
5 1.5 4.7 6.5 3.3 0.3 3.3
10 1.5 4.8 8.1 4.6 0.3 2.8
20 1.5 4.9 1.3 1.3 0.2 1.7
40 1.4 4.9 0.5 1.8 0.1 1.3

1 Vegas
2 Flaminia
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Table 1.2. Vegas Site Treatments

Treatment Event #1 Event #2 Event #3

Plot 22 mar 92 2 apr 92 9 apr 92

Control none none none

Water 10 mm water 10 mm water 30 mm water

Nitrate-N 10 mm water +
50 Kg NaN03-N/ha

10 mm water 30 mm water

Nitrate-N + Glucose-C 10 mm water +
50 Kg NaN03-N/ha + 
250 Kg Glucose-C/ha

10 mm water 30 mm water



Table 1.3. Flaminia Site Treatments

Treatment Event #1 Event #2
Plot 1 may 92 25 may 92

Water 10 mm water

Nitrate-N 10 mm water +
50 Kg NaN03-N/ha

Glucose-C 10 mm water + 
250 Kg Glucose-C/ha

Nitrate-N + Glucose-C 10 mm water +
50 Kg NaN03-N/ha + 
250 Kg Glucose-C/ha

Dry Urea-N 20 mm water + 
100 Kg Urea-N/ha

Urea-N 10 mm water + 
50 Kg Urea-N/ha

Extract ofLitter-C 10 mm Aqueous 
Extract of Litter-C

Nitrate-N + Extract of Litter-C 10 mm Aqueous 
Extract of Litter-C + 
50 Kg NaN03-N/ha

Urea-N + Extract of Litter-C 10 mm Aqueous 
Extract of Litter-C + 

50 Kg Urea-N/ha

Nitrate-N +1/2 Glucose 10 mm water +
50 Kg NaN03-N/ha + 
125 Kg Glucose-C/ha

Urea-N + Glucose 10 mm water +
50 Kg Urea-N/ha + 

250 Kg Glucose-C/ha
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Table 1.4. Vegas episodic versus background N20 emissions

Event Peak Background
Produced 

N20-N (g/ha)
Produced N20-N Produced N20-N

1 TREATMENT Period (hours) Period (hours) Intensity (g/ha) (%) Period (hours) (g/ha) (%)

Event #1 Control 214.8 3.7 214.8 4 100
Water] 214.8 6.6 11.2 2.4 1 13 203.5 6 87

Nitrate-N 214.8 15 30.4 2.3 5 32 184.4 10 68
Nitrate-N + Glucose-C 214.8 280 30.4 6.8 269 96 184.4 11 4

Event #2 Control 168.1 2 168.1 2 100
Water 168.1 13 11.2 2.3 2 14 156.9 11 86

Nitrate-N 168.1 19 11.2 1.7 2 10 156.9 17 90
Nitrate-N + Glucose-C 168.1 13 11.2 4.6 4 27 156.9 9 73

Event #3 Control 148.5 9 148.5 9 100
Water 148.5 8 11.2 3.1 2 24 137.3 6 76

Nitrate-N 148.5 14 11.2 2.3 3 18 137.3 11 82
Nitrate-N + Glucose-C 148.5 12 11.2 2.6 2 20 137.3 10 80

TOTALS Control 531.4 13.9 531.4 13.9 100
Water 531.4 25.3 33.6 3.1 5 19.8 497.7 20.3 80.2

Nitrate-N 531.4 45.2 52.8 2.2 10 22.1 478.6 35.2 77.9
Nitrate-N + Glucose-C 531.4 302.9 52.8 9.2 275 90.8 478.6 27.9 9.2
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Table 1.5. Flaminia episodic versus background N20 emissions

Event #1

^  Event #2

Event Peak Background
Produced 

N20-N (s/ha)
Produced N20-N Produced N20-N

TREATMENT Period (hours) Period (hours) I Intensity (g/ha) ( % ) Period (hours) (g/ha) 1 (%)

Water 146.9 116 10.2 1.9 15 13 136.7 101 87
Nitrate-N 146.9 374 10.2 2.5 64 17 136.7 310 83
Glucose-C 146.9 1273 50.9 2.6 1158 91 96 115 9

Nitrate-N + Glucose-C 146.9 4527 99 1.4 4165 92 47.8 362 8

Dry Urea-N 146.9 193 10.2 10.8 145 75 136.7 48 25
Urea-N 146.9 101 10.2 4.5 31 31 136.7 70 69

Extract of Litter-C 146.9 539 26 5.1 485 90 120.8 54 10
Nitrate-N + Extract of Litter-C 146.9 450 10.2 9.2 288 64 136.7 162 36
Urea-N + Extract of Litter-C 146.9 121 10.2 10.3 87 72 136.7 34 28
Nitrate-N + 1/2 Glucose-C 146.9 296 10.2 7.3 148 50 136.7 146 50

Urea-N + Glucose-C 146.9 207 10.2 9.8 141 68 136.7 66 32
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Figure 1.1. Horizontal layout of the field experiment at Vegas and for Event #1 at
Flaminia. Components were symmetrical for all treatments. Tensiometers and 
soil gas-phase probes were distributed vertically at depths of 2, 5, 10, 20 and 
40 cm. Soil in the soil sampling zone was sampled horizontally from within the 
soil pit. At each time step a set of soil samples was collected at the same depths 
used for tensiomenter and gas sampling. For each subsequent time step, soils 
samples were collected on a vertical line parallel to the preceding samples.
See text for detailed explanations.
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Figure 1.2.A. Vegas soil time-series data for dry Control treatment. N20  exchange flux with 
the atmosphere is shown on top of the soil profile, associated with soil gas-phase N20  
concentrations, soil extractable N 0 3‘ and N H / and soil water tensions. An event refers 
to the addition o f substrate and/or water to the experiment, and includes the subsequent 
drying period until the next event or until the end of the experiment. The summits of 
the N20  peaks are labeled with exact flux or gas concentration values at that point in 
time (counted from the time o f the addition event). Raingauge measured rainfall 
indicates total accumulated precipitation during measured interval.
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Figure 1.2.B. Vegas soil time-series data for Water treatment. Soil water tension represents 
average for all site-treatments which received water. Other features are the same 
as for figure 1.2.A.
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Figure I.2.C. Vegas soil time-series data for Nitrate-N treatment. Other features are the 
same as for figure 1.2.A.
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Figure I.2.D. Vegas soil time-series data for Nitrate-N + Glucose-C treatment. Other 
features are the same as for figure 1.2.A.
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F igure I.3.B. Flaminia soil time-series data for Nitrate-N treatment. Other features are 
the same as for figure 1.2.A.
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Figure I.3.D. Flaminia soil time-series data for Nitrate-N + Glucose-C treatment. Other 
features are the same as for figure 1.2.A.
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EPISODIC NITROUS OXIDE SOIL EMISSIONS IN BRAZILIAN  
SAVANNA (CERRADO) FIRE-SCARS

Introduction

Nitrous oxide (N20), the third most important anthropogenic 

greenhouse trace-gas after carbon dioxide (C 0 2) and methane (CH4), has 

been increasing in the global troposphere at a rate o f  close to 0.3 % per 

year {Khalil and Rasmussen, 1983; Khalil and Rasmussen, 1992; Prinn, 

Cunnold  et al., 1990; Weiss, 1981). Unlike C 0 2 and CH4 , for which 

major global sources are reasonably well known, important atmospheric 

sources o f  N20  are not yet quantified or even identified (Kim and Craig, 

1993; Robertson, 1993). Of the presently known sources, soils are 

estimated to be the largest (e.g.Robertson, 1993 and references therein), 

with tropical soils expected to account for most of the emissions (e.g. 

Griffiths  et al., 1993; Keller  et al., 1983; Matson  and Vitousek, 1987; 

Robertson  and Tiedje, 1986; Seiler  and Conrad, 1987)
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The Brazilian savannas (sensu Huntley  and Walker , 1982), 

known collectively as the cerrado biome, occupy 1.88 million km2 

(Pereira , 1982), second in area only to the Amazonian rainforest in South 

America. These frequently burned tropical expanses have become a 

potentialy important source for greenhouse trace-gas species. On a world 

wide basis, 1.8, 2.4 and 2.6 times more biomass is burned annually in 

savannas than burned in agriculture, forests, and as firewood, respectively 

{Levine, 1991). That volume o f  biomass could produce 3 to 4 times 

greater emissions o f  trace gases from direct fire than burning for 

deforestation in tropical rainforests {Hao et al., 1990).

On burned sites (fire-scars) post-fire soil processes, including 

trace-gas exchange with the atmosphere, can be considerably different 

from unburned sites (e .g .Andreae et al., 1988; Anderson  and Domsch, 

1989; Crutzen, 1985; Delmas, 1982; Fishman  et al., 1986). The potential 

importance o f post-fire change in emissions o f  nitrous oxide and other 

trace-gases was first identified by {Anderson et al., 1988) and {Levine et 

al., 1988), but prior to this work had not yet been studied for the cerrados 

in South America.
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Because o f  good soil aeration, favorable temperatures, and 

comparatively more NH4-N than N 0 3-N availability, nitrification may be 

the most important pathway for N20  production in the cerrado soils, while 

denitrification would be rare due to high acidity and high permeability to 

atmospheric 0 2 (Pereira , 1982; Robertson and Tiedje, 1987). Once 

vegetation is burned, depending on fire intensity, most o f  the nitrogen in 

various forms is released from the biomass (Tamm, 1991).

Meteorological conditions during and after fire determine how much o f 

the ammonia, nitrate and aerosols released by the fire will return to the 

system in dry and wet precipitation, and how much will be subject to 

long-range atmospheric transport (Andreae , 1992). Another important 

effect o f  fire on the ecosystem is the release of other basic nutrients in the 

ashes, which temporarily diminishes aluminum saturation and raises soil 

pH (Coutinho , 1990), consequently changing conditions for the nitrogen 

biogeochemistry in the soil. Additionally, following fire consumption of 

plant aerial parts, the short-term termination of plant nutrient uptake 

contributes to larger transient pools of NH4+ and N 0 3" in the soil. Nitrate, 

however, is quickly leached from the cerrado soils (Suhet  and Ritchey,

1981 cited in Pereira, 1982).

Studies o f  another tropical savanna in South America during the 

dry season suggested that production of N20  would be larger in the wet
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season (Hao et al., 1988). Agricultural soils converted from cerrado 

vegetation are especially important for their significance as one of  the 

most extensive land-use changes occurring on the planet. And the 

potential for increasing episodic emissions to become significant due to 

heavy nitrogen fertilization as these natural ecosystems are converted to 

agriculture or pasture has been widely recognized (e.g.Vitousek and 

Matson, 1993; Duxbury et al., 1993).

In this paper, we report on a study carried out on a range 

o f savanna ecosystems after prescribed fire disturbance. The study was 

designed to measure the N20  emissions in fire-scared cerrado ecosystems 

during the wet season. Additionally, nitrogen and carbon fertilization 

experiments were conducted in fire scars, and N20  emissions were 

measured in three well established agricultural fields o f  corn, soybean and 

pasture. The study was carried out at a site with ongoing long term 

ecological fire disturbance studies (Instituto Brasileiro do Meio Ambiente 

/ Projeto Fogo).

Methods

Study Site

The Roncador reservation, a 1300 ha ecological station o f  the 

Intituto Brasileiro de Geografia e Estatistica (IBGE), lies 35 km to the
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south o f  Brasilia, the Brazilian capital, within the federal district (15° 56' 

41" S; 47° 53' 07" W, from 1048 to 1150 m asl approx. elevation), in the 

core zone of the central Brazilian pre-Cambrian shield. The terrain o f  the 

reserve is mostly developed on Tertiary detritic-lateritic sediments 

{CODEPLAN, 1984). The local climate, as for most o f  central Brazil, is 

seasonal, an Aw  in the Kopen classification. The dry season extends 

roughly from May to September, and the variation in air temperature is 

moderate between seasons. Annual climatic means are: temperature, 

approximately 21°C, 1667 mm precipitation and 1200 mm potential 

evapotranspiration {Pereira et al., 1989).

The N20  flux measurements in the fire-scars (FScars) were 

conducted for four types of savanna vegetation (Table II. 1) which 

encompassed the full range of physiognomic forms (Figure II. 1) for the 

cerrado sensu lato {Coutinho, 1990). In spite o f  the great heterogeneity 

o f  vegetation, local climate and soils occurring over this South American 

biome (e.g., Coutinho, 1990; Dias, 1992; Santos, 1988), the cerrado 

physiognomic forms represented in the four sites chosen for this study can 

be found on approximately 78% of the Brazilian savannas {Dias, 1992). 

All sites except the campo limpo  (savanna grassland) were located on the 

most extensive high plateaus. The dominant soil on these plateaus falls 

within the oxisol order in the USDA classification {USDA, 1975), and is
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classified as a latossolo vermelho-escuro alico, clayey-distrophic, in the 

Brazilian classification (Pereira  et al., 1989). This soil, representative of 

soils covering 43% of the cerrado biome (Adamoli  et al., 1986), is very 

permeable, has low water retaining capacity and is very deep. The 

natural fertility on its superficial layer is very low, with high acidity and 

high exchangeable aluminum levels (Table II.2) {Pereira, 1982). The 

savanna grassland site was located on a lower slope formed from a broad 

alluvial Cenozoic plain. The soil was hydromorphic and not classified 

but possibly a gley humic in the Brazilian classification.

The savanna fertilization experiment (FertEx) was carried out on 

a plot o f  cerrado sensu stricto  (wooded savanna) which had not been 

burned since 1989.

The agriculture/pasture experiments (APEx) were conducted on 

nearby commercial plantations within a radius o f  36 km from the 

Roncador reservation. All three sites were located on plateau oxisols 

equivalent to those for the upland Roncador reservation, and had been 

under cultivation for at least 10 years.
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Experimental Design

The experimental plots used in this study are part o f  a longer 

term experiment carried out to study the effect o f  prescribed fire on 

diverse aspects o f  the cerrado vegetation and direct-fire emissions to the 

atmosphere (Projeto Fogo). The design has five 500 x 200 m plots for 

each system: tree\shrub savanna (Cs), wooded savanna (Ct) and savanna 

woodland (Cd), (see Table II.3), and two larger irregular plots for savanna 

grassland (Cl). Within one five-plot block the plots were organized as 

follows: one plot unburned for the last 18 years (control), one plot burned 

in 1991 (year) and three plots burned in 1992 (one in the early dry season, 

June, another in the mid dry season, August, and the last in the late dry 

season, September). The two plots for Cl were: one plot burned in 1989 

and one plot burned in 1992 (late dry season, September). Only the plots 

burned in the late dry season of 1992 were chosen for the FScars episodic 

N 20  emission experiments in this study.

Because N20  production and consumption in soil are 

discontinuous over time (e.g.Brumme and Beese, 1992; Davidson  et al., 

1991; Grundmann  and Rolston, 1987; Johnsson  et al., 1991; Mosier  et al., 

1991; Sexstone  et al., 1985; Terry et al., 1981) sampling in this study was 

designed to document episodic processes. For the episodic measurements 

in FScars, in FertEx and in APEx, each o f  the experimental sites had one
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1.6 x 3.2 m plot subdivided into two 2.56 m2 sub-plots (repetitions). Each 

sub-plot was 1.6m-sided square with two basic components or 

installations: one PVC ring or collar inserted approximately in the center 

o f  the square, and one array of stainless steel soil-gas-phase probes 

(except for year and control plots at the Cs site and agriculture/pasture 

sites) for sampling at various depths, installed to one side o f  the collar 

and extending under it.

The simulated rain events were water/solution additions applied 

using a garden watering can. The water or solutions were sprinkled 

evenly onto the sub-plots over a period of 15 minutes so that they would 

percolate into the soil without forming standing water. For each 

simulated rain event, measurements were done at time zero, which 

immediately preceded the additions, and then at 30 minutes, 2, 4, and 8 

hours, one day after the additions, and daily thereafter until completion of 

the experiment. Each series of measurements associated with one 

simulated rain event is called here simply Event #x , x  being jus t  a 

sequence number. Single flux measurements did not have time-steps.

The distribution o f  episodic measurements for each treatment as well as 

additions for FScars, FertEx and APEx during the wet season can be 

found in Tables II.3, II.4 and II.5 respectively.

In FertEx the treatment plots were contiguous and were 

contained within a radius of 10 m. All the nitrogen and carbon sources
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were dissolved immediately before irrigation in local well-water. Event # 

1 (Table II.4) occurred 2 days before the prescribed fire, with the original 

unburned vegetation in place. For this event only water was added and 

only for one plot (two repetitions). Due to frequent rain, the prescribed 

fire could occur only after the experimental area had been protected from 

rain for three weeks. The fire was set at noon time and burned quickly 

and well (white ash). The collars set up for Event # 1 (control) were 

removed before the fire, and reinstalled after the fire in the same 

positions. For Event # 2 (Table II.4), there were three fertilizer 

treatments and a control with water alone. The fertilizers were sodium 

nitrate (N aN 03) at a level o f  50 kg N • ha'1 as the first fertilizer treatment, 

glucose (dextrose, a-D(+) C6H l20 6) at a level o f  250 kg C • ha'1 as the 

second treatment, and nitrate at 50 kg N • ha'1 plus glucose at 250 kg C • 

ha '1 as the third treatment. The 5:1 C:N ratio used to obtain denitrifying 

potential was similar to that used in soil core incubation studies (Parsons  

et al., 1993; Schuster and Conrad, 1992).

For APEx, all fields had received lime (CaC03), corn had 

received nitrogen fertilizer prior to the experiment, and soybean seeds had 

been inoculated with Rhizobium japonicum  nitrogen-fixing bacteria. At 

each agricultural site one collar was positioned between plants within a 

row, and the repetition was placed between rows. At the pasture site, one
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collar went on the soil between grass clumps, and the other directly on a 

grass clump. The history o f  previous cropping and fertilization was not 

available, however, these sites represented well established agribusiness 

enterprises. The scope for each agriculture experiment was limited to two 

episodic measurements, the first done approximately one month after 

planting, and the second near harvest, approximately 100 days after 

planting (Table II.5). The scope for the pasture experiment was limited to 

one episodic measurement done at the beginning o f the wet season, and 

then one single flux measurement done 100 days later (Table II.5).

Field Sampling

The chamber enclosure technique used to quantify trace-gas 

exchange between soil and atmosphere has been widely used and is 

discussed at length by {Hutchinson and Livingston, 1993). The technique 

used was identical to the one used for the study discussed in Chapter 1.

In this study, the two-part static vented-chambers consisted o f a 25 cm 

internal diameter, 10 cm tall, polyvinylchloride (PVC) ring or collar and a 

molded acrylonitrile-butadiene-styrene (ABS) plastic top, 10 cm tall, with 

a gas sampling port, a pressure equilibration port, and a lip that fit over 

the PVC ring {Matson et al., 1990). The chamber top was well aerated 

before the beginning o f each N20  flux measurement. The lip o f  the top 

was greased lightly with silicon grease (Apiezon) and the collar capped
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tightly with it. Gas samples, withdrawn through an injection port at 1, 7, 

14, 21 and 28 minutes after closure, were collected using 20 ml nylon 

syringes (S.E.S.I., VWR Scientific), each fitted with two butyl rubber 

o-rings (greased with Apiezon), and polypropylene stopcocks (Baxter 

Scientific). Each flux measurement consisted o f  a five syringe sample set 

(see Appendix A for detail in method), after which the chamber closure 

was opened. Air temperature was taken during the sampling. Nitrous 

oxide flux was calculated by regressing the linear change over time o f the 

N 20  mixing ratio in the chamber enclosure {Keller et al., 1986).

One week prior to the experiment the collar was inserted 

approximately 2 cm into the top soil. The reduced root mat coverage in 

the cerrado, compared with the Amazonian ecosystems, was similar to the 

La Selva sites, in that enhanced gas emissions with early insertion of 

rings into the soil was not a problem (see Part I and Matson  et al., 1990). 

The sampling o f soil-gas was carried out, similarly to the procedure used 

in La Selva, using horizontal probes made of stainless steel tubing (3.17 

mm o d )  formed into an L shape, installed adjacent to the PVC collar, at 

depths o f  2, 5, 10, 20, and 40 cm (similar to those in Figure 1.1). The 

drawing portion o f  the probe tubing, approximately 10 cm long, had 20 

small holes drilled through the wall, distributed along its length. The 

upper part o f  the L ( 2 cm) was bonded (epoxy setting glue) to a capillary
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stainless steel tubing (1.59 mm o d )  leading upward outside the soil. On 

top, a cut-off hypodermic needle (1.59 m m O D )  with a luer slip lock was 

hooked to the stainless steel tubing, tip to tip, using a short piece o f 

polystyrene tubing. During the intervals between sampling, a plastic cap 

was used on the slip lock end to seal the probe from the atmosphere and 

from dirt.

Laboratory Analysis

Nitrous oxide was determined for one 2 ml sub-sample for each 

20 ml field sample, using a Mini2 Shimadzu gas chromatograph fitted 

with stainless steel columns (3.2 mm o d  by 2 m), packed with 50-80 mesh 

HaySep (backflush column) and 50-80 mesh Porapaq Q (main column), 

and a 63Ni electron capture detector. Operating conditions were: column 

temperature, 70° C; electron capture detector temperature, 300° C; P5 

mixture (95% Ar with 5% CH4) carrier gas with a flow rate o f  30 ml • 

m in '1. The gases N20  and C 02 were separated, but only N20  mixing 

ratios were quantified. Oxygen was removed from the carrier gas using 

an oxygen trap (Altech Oxy-Trap™), and hydrocarbons, CFC's, etc. were 

removed with a mol-sieve purifier filter. Water vapor was removed from 

all samples with a pre-column of moisture absorbent (CaS04 - Dryrite™). 

The standards used in the analysis were nitrous oxide in dinitrogen gas 

mixtures, at 338, 513 and 971 ppbv (Scott Specialty Gases), with the
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lowest (338 ppbv) calibrated against NOAA (Nitrous Oxide and 

Halocarbons Division, Climate Monitoring and Diagnostics Laboratory, 

Boulder, Colorado) secondary standards. The precision o f  this instrument 

was 1.9 % (standard deviation /  mean). The minimum flux of N20  that 

could be detected with this system over a 28-min period at 25°C was 0.3 g 

N20-N  • h a 1 • d'1.

Results and Discussion

Savanna Fire-Sear Experiments (FScars)

Figures II.2 and II.3 show time series data on experimental 

results for soil-gas-phase N20  mixing ratios profiles and N20  fluxes.

Savanna  G rass land  (Cl) . At the Cl site, N20  averaged fluxes 

were either negative or remained close to background levels throughout the 

measured period after fire (Figure II.2.A) . The single measurements made 

15/Nov/92, 55 days after fire (d.a.f.), and 18/Feb/93, 150 d.a.f., showed that 

the N20  mixing ratios to depths of 20 cm were either lower or 

indistinguishable from atmospheric mixing ratios (ambient, 310 ppb). The 

apparent difference between the two dates in the gas profile can be directly 

tied to soil moisture. The water table was very close to the surface, 

oscillating between 20 to 30 cm. In November, well into the wet season, the
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soil column above the water table was so saturated that the sampling o f  

soil-gas could not be done without unintentionally collecting soil water into 

the syringes. The mixing ratios reported here are those o f  the syringe 

headspace. There seemed to be a sink for N20  at this date, given the 

somewhat strong downward gradient in the soil. Waterlogging induces 

anaerobiosis, which in turn promotes N20  reduction to N2 (for a review o f  

denitrification in subsurface environments see Rice and Rogers, 1993). In 

February o f  1993 there had been a veranico  (short dry spell in the wet season) 

during the time o f the second measurement. On the second date, the soil 

sampling showed no N20  mixing ratio gradients in the profile, indicating 

neither production nor consumption with depth. Most likely this was due to 

the dryer conditions, but also due to vigorous growth o f  grass on the surface, 

indicating low nitrogen substrate availability for denitrification. The water 

addition two days after the second measurement of the flux and the gas profile 

made fluxes slightly negative. However, the magnitude of  this change was 

not meaningful because it was below detection limit (BDL) for this study.

If  one assumes that these few measurements are representative of 

fire-scar emission behavior, it is possible that during the wet season 

burned Cl savannas may be a net sink for tropospheric N20 .  But with the 

highest measured sink-flux only 1 g N20-N  • ha'1 • d '1 it is unlikely that
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this kind o f  savanna, which covers only 5.5 % of the cerrado (Table II. 1), 

is o f  major importance in the overall cerrado N20  budget.

T ree /sh ru b  sav an n a  (Cs) . Forty three days after fire 

(29/Oct/92) the N20  soil mixing ratio profile for Cs (Figure II.2 .B) 

showed a consistent episodic pulse production after 20 mm o f  simulated 

rainfall. However, the N20  pulse is best expressed at 5 cm depth and 

does not translate into higher fluxes at the surface; with the exception o f 

the flux which occurred two hours after simulated rain, all other fluxes 

for Event #1 fell below detection level. At time 0, immediately before the 

simulated rainfall, a weak gradient o f  N20  mixing ratios existed with 

depth, which could indicate increased background production with 

increasing depth. During pulse progression, a time lag occurred with 

greater mixing ratios with increasing depth (10, 20 and 40 cm), which 

indicated that the pulse for those depths resulted mostly from downward 

diffusion o f  N20 .  That can be a corroboration on the inference that N20  

is being produced primarily in the layer from 2 to 5 cm deep. Eight hours 

after simulated rainfall, the episodic pulse was over, and the mixing ratio 

gradient was reduced to virtually zero, a condition which remained 

unchanged until the end o f  the episodic measurement at 24h. An 

estimated integrated production of 0.2 g N ,0-N  • ha'1 (-24h '') fell BDL 

(Figure II.3.A; Table II.6).
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For Event #2, 150 days after fire, there was a small background 

emission of 1 g N20 -N  • ha'1 • d'1 before the simulated rainfall (Figure

II.3.A). After 20 mm water addition most other flux measurements fell 

BDL. The soil N20  mixing ratio showed a much less intense pulse 

throughout the profile than observed during the pulse in Event #1, but 

indicated some brief disturbance associated with the water addition 

(Figure II.2.B). The Event #2 disturbance could be ascribed to physical 

displacement o f  soil atmosphere by percolating water, and to some 

momentary gas build up due to waterlogging of diffusional pathways from 

production microsites (or production in deeper layers) to the atmosphere. 

The estimated integrated production o f  0.1 g N20-N  ■ ha'1 • d'1 in a one 

day episodic flux fell BDL (Table II.6).

The two other treatments with single measurements in the 

tree/shrub savanna, which is the control plot burned 18 years before the 

experiments, and the year plot burned in 1991(one year before the 92 

prescribed fires), showed similar flux behavior (Figure II.3.A).

In conclusion, during the wet season the Cs savanna showed very 

weak or undetectable N20  fluxes to the atmosphere, be it quasi-climax, 18
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years after fire (a.f.), an imperceptible fire-scar (1 year + a.f.), or a still 

fresh fire-scar (less than two to more than five months a.f.). If  this kind 

o f vegetation, which occupies nearly 12 % o f the cerrado biome (Table 

II. 1), were to become of any potential importance as a net source o f  N20 ,  

it very likely would not be from emissions occurring during the main part 

o f  the wet season.

Wooded Savanna (Ct) . The N20  soil gas profiles for Ct 

(Figure II.2.C) for 9/Nov and in 8/Dec/92, showed no episodic pulse 

associated with simulated rainfall for additions. For Event #1, the water 

addition lead to a progressive decrease in mixing ratios for up to 8 h from 

simulated rainfall. For Event #2, the water addition lead to a progressive 

increase in mixing ratios up to 4 h after the simulated rainfall.

Throughout the profile time series for both events, a slight upward mixing 

ratio gradient was noticed, which should translate into some flux to the 

atmosphere on the surface. However, from the six flux measurements 

over the course o f  each event, only three in Event #1 and only two in 

Event #2 were slightly above detection limit.

The single measurement for 28/Feb/93, 166 d.a.f. (Figure II.2.C), shows a 

close similarity with the undisturbed condition in Event #2, 84 d.a.f.. The integrated 

gas production for both events showed that over one day the amount of gas
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emitted/consumed fell BDL or slightly above, with 0.6 g N20-N • ha'1 in Event #2 

(Figure II.3.B; Table II.6).

During the wet season, a fire-scared Ct savanna (less than two, three and 

more than five months a.f.) showed very weak or undetectable N20  episodic or 

background fluxes to the atmosphere. Thus, emissions during the main part of the 

wet season for this vegetation, which occupies 53 % of cerrado biome (Table II. 1), 

probably will not become important as a net source of N20.

S avanna  W oodland (Cd) . From the two events in the Cd 

savanna, only the second, 70 d.a.f., produced an episodic pulse, most 

intense at 2 h after simulated rainfall (Figure II.2.D). In the first event, 

l/Nov/92, 40 d.a.f., water addition seemed to have slightly depressed soil 

N 20  mixing ratios. Nevertheless, for both events and for almost all 

time-steps, there was a weak upward gradient in soil-gas N20  mixing 

ratios. Noteworthy here was the sizable difference in fluxes between 

repetitions, indicating a strong spatial heterogeneity. The integrated 

fluxes for both events showed either a non-detectable or a very low N20  

emission (Figure II.3.C; Table II.6).

The savanna woodland showed that despite weak upward soil 

N 20  gradients, and a detectable pulse in soil N20  mixing ratios, fluxes at
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the soil surface were less than 0.3 g N20-N  • ha '1 • d '1. With 8.3 % cover 

for the cerrado biome (Table II. 1), during the wet season this kind of 

savanna is not likely to be of key importance for overall ecosystem N20  

emissions.

Cerrado FScars Emissions in Comparison with Emissions in other Similar 

Ecosystems

Hao et al. (1988) measuring N20  emissions during the dry 

season from soils in Gran Sabana ecosystems, Venezuela, found a mean 

flux from undisturbed plots to be 0.5 g N20 -N  • ha '1 • d '1. The fluxes 

were not significantly affected by burning the grass layer, but increased 5 

fold upon water addition. Matson  et al. (1991) studying sagebrush steppe 

ecosystems in Wyoming, USA, found annual mean N20  fluxes varying 

from 0.03 to 1 g N20-N  • ha'1 • d'1 with an area-average o f  0.6 g NzO-N • 

h a '1 • d’1. M o siere t  al. (1991) studying two native grasslands in North 

America found fluxes o f  1.8 and 3 g N20-N • ha '1 • d'1.

The range of values found for N20  emissions in the 

present study were similar. The fluxes for the Gran Sabana were the 

closest to the ones measured for the Brazilian cerrados (FScars), despite 

measurements in different seasons, suggesting that the nitrogen
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biogeochemistry for all tropical savannas in South America may be 

similar. The increase in flux after simulated rainfall in the dry season 

(Hao et al., 1988), and the lack of comparatively increased fluxes during 

the wet season, suggests that in the tropical savannas the main N20  

episodic emission should occur in the transition from the dry to the wet 

season, similarly to what was reported for a tropical deciduous forest in 

Mexico (Garcia-Mendez et al., 1991).

The Savanna Fertilization Experiment (FertEx)

In FertEx there are three important aspects that complement the 

information from FScars. The first is that the measurements made 

immediately before the fire event for Event #1 were made at the same 

site. The second aspect is water was added immediately following the 

fire. All the simulated rainfalls for FScars happened more than one 

month after fire, which missed the loss/gain o f  nitrogen substrates due to 

the fire itself, the immediate impact o f  ash input to the soil, and the 

temporary cessation of  vegetative absorption of  substrate from the soil. 

The third aspect of FerEx that complements FScars is that 

substrate/fertilizers were added in the former so that the differentiated 

N 20  emission response could provide clues to the biogeochemical 

limitations in the soil.
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Control T reatm ent . For the control treatment, measurements 

taken both before and after the fire event showed clear responses to water 

addition (Figure II.4. A). The effect o f  fire on the water stimulated pulses 

was clear throughout the profile, but was most intense at depths o f 5 and 

10 cm. The briefness of these pulses indicated an intermediate transient 

pool of N20  during nitrate reduction to N2. The absence o f lags in the 

pulses throughout the profile corroborates this interpretation, because 

N20  was reduced before it had time to diffuse up and down.

In the pre-fire Event #1, the small episodic pulse was reflected 

on the soil surface with a small flux peak, which did not translate into 

positive emissions into the atmosphere (Figure II.5.A). For both events 

there were weak upward mixing ratio gradients. Integrated fluxes showed 

that Event #1, with plants present, produced no N20  in 24 h, while Event 

#2, with the ashes from the fire, produced 1.8 g N20-N  • ha'1 in 96 h 

(0.45 g N20-N  • ha'1 • d'1) (Figure II.5.A). This latter flux is only 

slightly above detection limit (Table II.7).

This control treatment in FertEx showed that immediately after 

fire, the behavior o f  N20  episodic gas emission in a wooded savanna 

during the wet season is not substantially different than that o f  other 

similar systems, at one, two and five+ months after fire. However, these
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experiments do not represent the soil biogeochemical state at the end of 

the dry season when substrate for denitrification has accumulated from 

decomposition and mineralization/nitrification. Most fires occur at the 

end o f the dry season (August/September). So the prescribed fire in 

January for FertEx did not represent the soil conditions at the end o f the 

dry season because a considerable volume of rain had percolated through 

the soil by that time, leaching substrates and stimulating biogeochemical 

processes to consume them. This prescribed fire was interesting insofar 

as it produced a sudden release o f  ashes on the previously protected and 

dry soil, and because it destroyed plants, ceasing plant nutrient absorption 

temporarily.

N itra te -N  T r e a tm e n t . The Nitrate-N treatment clearly showed 

that nitrate is the most limiting substrate for N20  production in this soil 

(Figure II.4 .B). First, the pulses for Event #2 were broader, indicating 

that the nitrous oxide formed into a transient pool was not quickly 

consumed, and had time to diffuse out into the atmosphere. The fluxes 

measured on the soil surface showed a clearly distinguishable pulse 

associated with the pulse inside the soil profile. Second, the overall 

production of 4.3 g N20 -N  • ha"1 in 96 h (1.1 g N20-N  • ha'1 • d'1) was 

more than twice that o f  the control and glucose treatments (Figure II.5.B; 

Table II.7). However, this emission response was less than ha lf  o f  that
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for the equivalent treatment in a Costa Rican volcanic sandy soil (Vegas 

Nitrate-N, Part I), and one order o f  magnitude smaller than that for a 

volcanic clayey soil (Flaminia Nitrate-N, Part I).

G lucose-C T r e a t m e n t . The profile results for Event #2 in the 

Glucose-C treatment showed a lack of extra response to water + glucose, 

i f  compared with water alone (Figure II.4 .C). For comparison, the data 

plotted for Event #1 is the same as that for the control treatment. As in 

the control treatment, there were weak upward mixing ratio gradients, and 

the integrated production showed the same production as with water 

alone, that is 1.8 g N20 -N  • ha'1 in 96 h (0.45 g N20 -N  • ha'1 • d'1) 

(Figure II.5.C; Table II.7). The fact that glucose did not produce 

enhanced emissions here, as opposed to the increments in emissions 

observed in Costa Rica (Part I), is an indication that there are other 

limitations to denitrification in the Brazilian savanna, most likely a very 

low level o f  nitrate availability in the soil.

N itra te-N  + G lucose-C  T r e a tm e n t . A surprising result o f  this 

treatment was enhancements in N20  mixing ratios for Event #2 throughout 

the period o f observation, most intense at depths 10 and 20 cm (Figure

II.4 .D). Also striking were the differences between the two repetitions
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and the temporal extent o f  the enhancement. The gas production in the 

soil began with the addition of water + substrates, but it did not come 

back to the background level after the few hours as was common for most 

peaks in the other treatments. A synergistic effect between nitrate and 

glucose was evident. Glucose alone did not produce an effect, nitrate 

alone doubled emissions, and nitrate plus glucose quadrupled emissions; 

thus, compared with nitrate alone glucose helped the system to use up 

nitrate with doubled efficiency.

Total emission o f 9.1 g N20-N  • ha'1 in 96 h (2.3 g N20 -N  • ha'1 

• d 1) was about twenty times less than that o f  the equivalent treatment in 

the Costa Rican sandy Vegas soil, and one order of magnitude less than 

that o f  the equivalent treatment in clayey Flaminia soil (Part I) (Figure

II .5 .D; Table II.7).

Agriculture/Pasture Experiments (APEx)

C orn  (Zea mav7^ . In the Corn field, the emissions o f  Event #1 

were the most striking and consistent o f  all APEx episodic measurements 

(Figure II.6.A). The highest emissions were found between rows, 

precisely where nitrogen fertilizer ((NH4)2S 0 4 ) was spread prior to the 

crop planting. Emissions within rows, where plant roots developed and 

supposedly absorbed most nutrients, were minimal. The total averaged
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emission o f  3.7 g N20-N  • ha'1 in 24 h is equivalent to that o f  the 

Nitrate-N treatment o f  FertEx (Tables II.7 & II.8).

More than three months later, near the harvest, the emissions for 

Event #2 were minimal, with little difference between inter- or intra-row 

measurements. The total averaged emission of 0.6 g N20-N  • ha"1 in 24 h 

was six times smaller than the emissions in Event #1 and slightly above 

detection limit, indicating the possibility that the system was depleted of 

nitrogen substrate due to plant absorption, leaching and/or 

nitrification/denitrification gaseous losses (Table II.8).

In a review of N20  emissions from fertilized soils, Eichner 

(1990) listed four studies in temperate corn fields for which results 

ranged from 0.0 to 25.9 g N20-N  • ha"1 • d"1, and averaged o f 12 g N20 -N  

• ha"1 • d '1. Mosier and Hutchinson, (1981) studying N20  emissions for 

the whole cycle o f  an irrigated corn plantation in northern Colorado,

USA, found that on the average the system emitted 35.8 g N20-N  • ha '1 • 

d"1 . They also found that approximately 30 % of the N20  was emitted 

during the first two weeks following fertilization, while NH3 was being 

rapidly nitrified, and 59 % was emitted during the week following the 

first irrigation of the field, when restricted oxygen diffusion favored
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denitrification. These facts suggest that the two episodic measurements 

in the present study might have missed the main emission periods soon 

after fertilization and soon after the first rainfalls.

In another similar study of N20  plus N2 loss from denitrification 

on corn and barley fields in northern Colorado, Mosier  et al. (1986) 

showed, that in the corn field, about 70 % of the total N gas emitted was 

N 20 .  Based on this result, it was concluded that denitrification might 

play a smaller role in agricultural gaseous nitrogen loss than was 

traditionally believed. The present study agrees with that conclusion; the 

lack o f  episodic pulses following simulated rainfall suggests that 

denitrification is not a major pathway for N20  production in this soil.

Soybean (Glvcinea max) . Unlike the corn field, emissions from 

the soybean field increased with time (Figure II.6.B), which can be an 

indication that Rhizobium  fixed nitrogen was being liberated into the soil. 

With 1.29 g  N20-N  • ha '1 in 24 h, 2.6 times more N20  was emitted, on 

average, for Event #2 than for Event #1 (Table II.8).

Here, similar to the corn field, water addition depressed 

emissions strongly. So in dry weather it is likely that emissions would be
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many times larger than the totals registered in the two events here, as the 

flux measurements made before water additions indicate. Because 

atmospheric N2 fixed by Rhizobium  first becomes NH4, nitrification must 

proceed before nitrogen substrate is available for denitrification. The fact 

that water addition depressed N20  emission, instead of enhancing it as in 

systems where denitrification is strong, suggests that nitrification is the 

main pathway for N20  production in this agroecosystem.

Annual average N20  emissions measured by Bremner  et al. 

(1980), from soybeans fields on six different temperate soils, ranged from 

0.9 to 5.4 g N20 -N  • ha'1 • d '1. More than ten years ago, Pereira  (1982) 

estimated that the approximate nitrogen input to the Brazilian cerrados 

via fixation in soybean crop fields would be 0.15 • 109 Kg N • yr'1 , for a 

soybean production of about 3 • 109 Kg • yr'1 . Eichner (1990) estimated 

total world wide N20  emissions from fields o f  cultivated legumes to be 23 

to 315 Gg N20-N  in 1986. Soybean is one of the most important cash 

crops in the cerrado biome. Because soybean does not require nitrogen 

fertilization, it is generally planted in infertile soils, and after several 

growing seasons the harvest debris is turned under until the incorporated 

plant biomass renders the soils more fertile for other more demanding 

crops, like corn or wheat.
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P a s tu re  (Paspalum  grass) . Water addition in the pasture site 

strongly depressed emissions for a short while. The total production over 

Event #1 o f  0.5 g  N 20-N  ■ ha'1 in 24 h (Figure II.6.C) was equivalent to 

Event #1 in the soybean field and Event #2 in the corn field (Table II.8). 

This production was also marginally larger than the minimum flux 

detection limit for the system used to measure it, and did not differ 

substantially from most events in the experiments of FScars upland 

plateaus. The differences in emissions from a grass clump to the sample 

between grass clumps indicated an effect o f  plant absorption on the 

overall availability of substrate for nitrification. Production in dry 

weather appeared to be greater than that with rain events. The single 

measurement made two months after the episodic measurement also did 

not show any extraordinary production. Pastures might be a relevant 

source o f N20  only in those areas fertilized directly by animal urine and 

feces.

The magnitude o f  N20  emissions found for this pasture was 5 to 

almost 300 times smaller than that found for pastures o f  varying ages 

after deforestation o f  Costa Rican rainforests {Keller et al., 1993), or 10 

to 50 times smaller than a fertilized pasture in the Amazon (Luizao et al., 

1989). Compared with emissions in temperate grasslands on sandy loam 

soils, for this study N20  emissions still were 5 times smaller than the
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unfertilized pasture and 12 times smaller than the fertilized pasture 

(Mosier et al., 1991).

Pastures are one o f  the most characteristic uses of the savannas 

o f  central Brazil because they somewhat resemble the original system. 

Extensive areas o f  savanna grassland and tree/shrub savanna are 

historically used for low intensity cattle ranching. Some areas are totally 

disturbed, with substitution o f original grasses by exotic species and by 

liming and fertilization, in addition to cultural practices like the use of 

fire and decompaction (plowing) to periodically renew the grass. The 

pasture studied here was one under intensive management.

Importance of the Conversion of Cerrado to High Input Agriculture

Large scale human interference in the nitrogen cycle is 

recognized as one of the most likely causes o f  the increasing N20  

atmospheric mixing ratio (1PCC, 1990). The land-use conversion rate for 

the last twenty years in the Brazilian cerrado has been alarming (Dias, 

1992). By 1982, the area permanently cleared in savannas each year 

world-wide was half the area cleared in forests (Lanly , 1982).
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Despite edaphic and hydric limitations o f  the cerrado natural 

soils, factors like their excellent topography and texture for mechanized 

agriculture; together with liming, fertilization and irrigation techniques; 

low labor and land acquisition costs; extensive network of roads and 

proximity to major export corridors and consumer centers have rendered 

these ecosystems very attractive for high input cash-crop agribusiness 

enterprises, which are rapidly transforming this region into one o f  the 

largest grain belts in the world {Dias, 1992; Pereira, 1982).

Besides the attractions for agricultural frontier expansion, there 

are no provisions in the new Brazilian Constitution for the protection o f  

savanna ecosystems {Dias, 1992) as there are for the Amazonian and 

Atlantic rainforests, and for other less extensive biomes under attack by 

encroaching development. Unless external factors change the dynamics 

o f  the present explosive frontier expansion, like fluctuations in cash-crop 

market prices, in time a total conversion o f the Brazilian cerrados into 

high input agroecosystems will be almost unavoidable. Given this 

scenario, it is of paramount importance that the impact o f  this continental 

conversion of savanna ecosystems be better studied for its role as a 

potential additional source for radiatively active trace-gases.
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Conclusions

The series o f  experiments with fire scared savanna soils, 

fertilization and fire effects and agriculture/pasture emissions o f  N20  

reported in this paper indicate that water additions do not stimulate 

intense pulses o f  N20  emissions in this soil system.

The data in the N20  mixing ratios profiles showed strong 

temporal coherence among the several layers, although the 

biogeochemical interpretation could not explain disagreement between the 

patterns observed in the soil and some o f  the associated patterns o f  

emissions on the soil surface.

In the fertilization experiments, N20  emissions were found to 

respond differently depending on which kind o f  fertilizer was used. The 

fact that nitrogen (but not carbon) produced a response, and that carbon 

could only enhance N20  response when both substrates were applied 

together suggests that these soils were critically limited in nitrogen 

substrate. Small pulses o f  production could develop quite superficially in 

the soil, especially between 5 to 10 cm, and can develop to a maximum
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strength within the range of 30 min. to 2 hours. The episodic part o f  the 

flux occurring in brief transient oscillations in the background flux after a 

rain event could not differentiate the emission regimen. Those episodic 

faint pulses associated with liquid amendment varied slightly in intensity 

and duration among treatments. For the Fire-Scars and for the 

Agriculture/Pasture the depression in fluxes promoted by water addition 

suggested a lack o f  denitrification for these soils. The higher emission 

rate on dryer soil suggested that nitrification is the main biogeochemical 

N20  production pathway.

During the wet season the cerrado biome does not appear to be a 

major source of N20  to the troposphere, even following fire events. 

However, the results o f  this study suggest that conversion of the cerrado 

to high input agriculture, with liming and fertilization, can increase N20  

emissions more than ten fold.

The cerrado biome as such, and during the wet season does not 

seem to be a major source of N20  to the troposphere, not even after fire 

events. However, the results o f  this study have suggested that its 

conversion to high input agriculture, with liming and fertilization, can 

increase N20  emissions more than ten times.
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Table II.1. Vegetation types and general properties for the savannas in central Brazil*

A b b r e v i a t i o n  -  T y p e
(P o r t u g u e s e  n a m e )

A r e a  in 1000 km'
( 8 of  to tal for the bionie)

D e n s i t y
trees/ha

T r e e  c a n o p y  c o v e r
%

C l -  Savanna grassland
(campo l im p o )

1 1 2  ( 5 . 5 ) 0 0

C S  - Tree and/or shrub savanna
(campo s u j o )

2 3 6  ( n . e ) 5 0 0 <  2

C t  - Hooded savanna
( c e r r a d o  s e n s u  s t r i c c o )

1 0 8 0  ( 5 3 . 0 ) 1 0 0 0 2 - 1 5

C d  - Savanna woodland
( c e r r a d o  d e n s o  o u  C e r r a d a o )

1 6 9  ( 8 . 3 ) 3 0 0 0 1 5  -  4 0

* from S a r m i e n t o  (1983) and A z e v e d o  & A d a m o l i (1988)
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Table II.2. Main superficial soil properties for the savannas in central Brazil*
Soil Vegetation Type (Portuguese name)

Parameter ct - Savanna grassland
(campo limpo)

C S  - Tree/shrub savanna Ct - Wooded savanna
(campo sujo) (cerrado sensu stricto)

Cd - Savanna woodland
(cerrado denso)

Clay (%> 33 36 34 32
Silt (%> 20 16 15 16
Sand («> 46 18 51 53
pH (HjO) 4.9 4.9 5.0 5.1
Organic C (%) 2.2 2.3 2.4 2.3
CEC (raeq%) 1.1 1.2 1.4 1.8
Al3+ (meq%) 0.7 0.6 0.7 0.6
Al3+ Sat. (%) 66 58 54 44
Ca (meq%) 0.2 0.3 0.5 0.7
Mg (meq%) 0.7 0.1 0.2 0.4
K (meq%) 0.1 0.1 0.1 0.1
P (ppm) 0.5 0.5 0.9 2.1
Zn (ppm) 0.6 0.6 0.7 0.7
Cu (ppm) 0.6 0.8 0.9 1.3
Mn (ppm) 5.4 10.3 15.9 22.9

* data from Lopes(1975, cited in Santos, 1988); average of 520 samples
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T a b l e  I I . 3. Vegetation types and treatments for Savanna Fire-Scars Experiment (FScars)

'-o■to.

Abbreviation - Type
( P o r t u g u e s e  name)

Site's Last 
Fire in

Episodic 
Event#1

Episodic 
Event#2

Single
Measurements

Cl- Savanna grassland
(campo l im p o )

Sept/21/92 none 20mm water 
Feb/18/93 
[150 d.a.f]

Nov/15/92 
[55 d.a.f]

Ct - Wooded savanna
( c e r r a d o  s e n s u  s t r i c t o )

Sept/16/92 20mm water 
Nov/9/92 
[55 d.a.f]

20mm water 
Dec/8/92 
[84 d.a.f]

Feb/28/93 
[166 d.a.f]

Cd - Savanna woodland
( c e r r a d o  d e n s o  ou C e r r a d a o )

Sept/23/92 20mm water 
Nov/1/92 
[40 d.a.f]

2 0mm water 
Dec/1/92 
[70 d.a.f]

Feb/28/93 
[158 d.a.f]

CS - Tree and/or shrub savanna
(cam po  s u j o )

Sept/15/92 2 0mm water 
Oct/29/92 
[44 d.a.f]

2 0mm water 
Feb/11/93 
[150 d.a.f]

none

CS - Tree and/or shrub savanna
( campo s u j o )

[ P r o j . F o g o ’s  Y e a r  t r e a t m e n t ]

1991 none none Oct/29/92 
& Feb/11/93 
[1 year a.f]

C S  - Tree and/or shrub savanna
(campo s u j o )

[ P r o j . F o g o ' s  C o n t r o l  t r e a t m e n t ]

1974 none none Oct/29/92 
& Feb/11/93 

[18 years a.f.]

d . a . f . =  d a y s  a f t e r  f i r e ;  P r o j . F o g o j o i n t  I B A M A / U S F o r e s t - S e r v i c e  P r o j e c t  F i r e
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T a b l e  I I . 4 .  Treatments* for the Savanna Fertilization Experiment (FertEx)
Treatment

Plot
Event#l**
Jan/10/93

Prescribed Fire
Jan/12/93

Event#2
Jan/12/93

C o n t r o l 20mm water burned well 20mm water

N i t r a t e - N none burned well 2 0mm water +
50 kg NaN03-N/ha

G lu c o s e - C none burned well 2 0mm water +
250 kg Glucose-C/ha

G lu c o s e - C  + t r a t e - N none burned well 20mm water +
50 kg NaN03-N/ha + 
250 kg Glucose-C/ha

* F e r t i l i z a t i o n  e x p e r i m e n t c a r r i e d  o u t  on  C t -  Wooded S a v a n n a ;  * * L a s t b u r n e d  b e f o r e  E v e n t S l  i n  1989
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Table II.5. Crop and treatments for the Agriculture/Pasture Experiment (APEx)

Crop
Site Planted 

in
Episodic 
Event#1

Episodic 
Event#2

Single
Measurement

Coin (Zea mayz) Nov/14/92 20mm water 
Dec/13/92 
[29 d.a.p]

2 0mm water 
Feb/20/93 
[98 d.a.p]

none

Soybean (Glycinea max) Nov/14/92 20mm water 
Dec/20/92 
[36 d.a.p]

20mm water 
Feb/21/93 
[99 d.a.p]

none

Pasture (Paepalum grass) Old 2 0mm water 
Dec/26/92 none Feb/23/93

d . a . p . =  d a y s  a f t e r  p l a n t i n g
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Table II.6. Mean N20 Flux Measurements (in g N-ha'1-d"1) for FScars
Type

(P o r t u g u e s e  name)
Episodic 
Event#1

Episodic 
Event#2

Single
Measurements

Cl — Savanna grassland
( campo l im p o )

none none
date
date

1
2

0 . ? (BDL) 

0 . ? (BDL)

Ct - Wooded savanna
( c e r r a d o  s e n s u  s t r i c t o ) -0.3 0.6 0 . ? (BDL)

Cd - Savanna woodland(c e r r a d o  d e n s o  ou  C e r r a d a o)
0.7 0.3 0 . ? (BDL)

CS - Tree and/or shrub savanna(campo s u j o)
0  . 2  (BDL) 0  . 1  (BDL) none

Cs -
[ P r o j . F o g o ' s  Y e a r  t r e a t m e n t ] none none

date 1 
date 2

0  . ? (BDL) 

0  . ? (BDL)

Cs -
[ P r o j . F o g o ' s  C o n t r o l  t r e a t m e n t ] none none

date 1 
date 2

0 . ? (BDL) 

0 . ? (BDL)

BDL = b e lo w  f l u x  d e t e c t i o n  l i m i t  o f  a n a l y t i c a l  s y s t e m  a n d  m e a s u r e m e n t  t e c h n i q u e ,  

w h i c h  w as  0 . 3  g  N30 - N - h a ‘1- d ' !
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Table II.7. Mean N20 Flux Measurements (in g N-ha^-d'1) for FertEx

Treatment
Plot

Episodic 
Event#1(Before Fire)

Episodic 
Event#2(After Fire)

C o n t r o l 0 . ?  (BDL) 00

N i t r a t e - N n o n e 4.3
G lu c o s e - C n o n e f-» 00

G lu c o s e - C  + t r a t e - N n o n e 9.1
BDL = b e l o w  f l u x  d e t e c t i o n  l i m i t  o f  a n a l y t i c a l  s y s t e m  a n d  m e a s u r e m e n t  

t e c h n i q u e ,  w h i c h  was 0 . 3  g  NaO - N - h a ' : -d  1
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T a b l e  I I . 8 .  Mean N20 Flux Measurements (in g N-ha^-cT1) for APEx

'ovo

C r o p

Episodic 
Event#1

Episodic 
Event#2

Single
Measurement

Corn (Zea m a y z ) 3.7 0.6 none

Soybean ( G l y c i n e a max) 0.5 1.3 none

Pasture (P aB pa lum  grass) 0.5 n o n e 0 . ?  (BDL)

BDL = b e l o w  f l u x  d e t e c t i o n  l i m i t  o f  a n a l y t i c a l  s y s t e m  a n d  m e a s u r e m e n t  

t e c h n i q u e ,  w h i c h  w as 0 . 3  g  N j O - N - h a ^ - d '1
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Figure II.l. The forest-savanna-grassland ecocline in central Brazil. Modified from Countinho (1990).
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Figure II.2.A. FScars soil time-series data for savanna grassland (Cl) site. N20  exchange 
flux with the atmosphere is shown on top o f the soil profile, associated with soil 
gas-phase N20  concentrations. An event refers to the addition o f water to the 
experiment, and includes the subsequent drying period until the next event or until 
the end of the experiment. The atm. lines indicate ambient N20  mixing ratio (310 
ppbv). There are two repetitions for each point/time (dashes). Averages are also 
shown (circles). Dates shown on the graph correspond to the beggining o f the events. 
Points not connected by lines indicate single measurements for the given date.
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Figure II.2.B. FScars soil time-series data for tree/shrub savanna (Cs) site. Other features 
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Figure II.2.C . FScars soil time-series data for wooded savanna (Ct) site. Other features are 
the same as for Figure II.2. A.
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Figure II.3. A. FScars N20  emissions for tree/shrub savanna (Cs) site. The cumulative curves, or running totals, are integrated 
summations o f interpolated intervals o f the minimum sampling period (30 min.) for the entire event period. For a 
comparisson in this site, N20  fluxes from a control plot not burned since 18 years and other plot burned 1 year before are 
shown on the upper left corner. E.P.G. means event produced gas. Other features of the flux plots are the same as for Figure 
II.2.A.
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F igure II.3.B. FScars N20  emissions for wooded savanna (Ct) site. Other features are the same as for Figure II.3. A.
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Figure II .3 .C. FScars N20  emissions for savanna woodland (Cd) site. Other features are the same as for Figure II.3. A.
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(P ft)
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F igure II.4.A. FertEx soil time-series data for Control treatment. N20  exchange flux with 
the atmosphere is shown on top o f the soil profile, associated with soil gas-phase 
NjO concentrations. An event refers to the addition o f water to the experiment, and 
includes the subsequent drying period until the end o f the experiment. The 
atmospheric lines indicate ambient N20  mixing ratio (310 ppbv). There are two 
repetitions for each point/time (dashes). Averages are also shown (circles). Event #1 
was carried out on vegetation covered soil, and only for the control treatment.
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Figure II.4.B. FertEx soil time-series data for Nitrate-N treatment. Other features are the 
same as for Figure II.4.A.
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Figure II.4.C . FertEx soil time-series data for Glucose-C treatment. Other features are the 
same as for Figure II.4.A.
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Figure II.4.D. FertEx soil time-series data for Nitrate-N + Glucose-C treatment. Other 
features are the same as for Figure II.4. A.
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Figure II.5.A. FertExNjO emissions for Control treatment. The cumulative curves, or
running totals, are integrated summations of interpolated intervals o f the minimum 
sampling period (30 min.) for the entire event period. E.P.G. means event produced 
gas. Other features o f the flux plots are the same as for Figure 11.4. A.
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Figure II.5.B. FertEx N20  emissions for Nitrate-N treatment. Other features are the same 
as for Figure II.5. A.
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F igure  I I .5.C. FertEx N20  emissions for Glucose-C treatment. Other features are the same 
as for Figure II.5. A.
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Figure II.5.D. FertEx N20  emissions for Nitrate-N + Glucose-C treatment. Other features 
are the same as for Figure II.5. A.
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Figure II .6. A. APEx N20  emissions for Corn ( Z e a  m a y z )  plantation. The cumulative curves, or running totals, are integrated
summations o f interpolated intervals o f the minimum sampling period (30 min.) for the entire event period. E.P.G. means 
event produced gas. Other features o f the flux plots are the same as for Figure II.4. A.
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F igure II.6.B. APEx N20  emissions for Soybean ( G l y c i n e a  m a x ) plantation. Other features are the same as for Figure II.6. A.
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Figure II.6.C. A PExN20  emissions for Pasture ( P a s p a l u m  grass). Other features are the same as for Figure II.6. A.
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CORRECTIONS FOR GAS LEAKS IN THE SAMPLING SYRINGES

The body of the syringes used for sampling of gas, either for flux or for 

soil-gas-phase profile measurements, were made of nylon with butyl rubber O-ring seal 

on the working piston. Due to wear and scratching of the inner walls, mostly due to dust 

and other abrasive particles collecting there during field work, some diffusional leak of 

the samples stored in those syringes occurred in the Costa Rican study, from the time of 

sampling to the time of analysis. In order to correct the analyzed N20  concentrations to 

the original sampled concentration values, the diffusional leaks had to be assessed. The 

procedure described below was utilized to correct for this problem.

A complete series of leak tests was conducted on every syringe used in the 

experiments. The passive leak test consisted of washing the syringes three times with the 

known standard (800 ppbv N20  in Nitrogen) before filling with the same standard and 

closing shut the syringe stopcock valve. These were then left on the bench for 

approximately 48h, a span twice as long as the average residence time for the real 

experiment samples, and then analyzed against the same standard. A first order 

exponential decay constant (A) for each syringe was then computed from the amount of 

N20  lost over the period.
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The exponential diffusive leak function is

( C i  C a l m )  ~  ( C q -C  ^  C a l m )

Where

C0 is the analyzed mixing ratio 
C, is the corrected mixing ratio 
k  is the first order exponential decay constant 
t is the time between sampling (or filling in the leak tests) and 

analyzing
Catm is the background mixing ratio of N20  in the troposphere in ppbv 

(310)

Once the time t was known, and k  was determined for each syringe, C, 

could be determined. Because for most samples the N20  mixing ratio differential to the 

atmosphere was high (C0 the amount lost through diffusive leak (C, - C0) in the

time before analysis (t) wasn't high enough to lose the signal (when C0 becomes = or 

indistinguishable from Calm; see Figures A.l through A.4).

After diffusional leak corrections were made it turned out to be relatively 

easy to flag data points where the original sampled signal had been lost. This may be 

attributed to the nature of the data which had to fall on a linear fit for flux samples and 

also because there were many repetitions in spatial proximity for the soil-gas-phase 

samples. The syringes also had diverse k  values and were used randomly in the sampling. 

Those points were then considered outliers and were cast out. For the study of the 

savannas in Brazil, all syringes were retrofitted with a second O-ring and greased (see 

Methods, Part II) so that no detectable diffusive leak occurred.
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Figure A.I. Scatterplot showing distribution of diffusional syringe leaks for Vegas samples 
collected for flux measurement.
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Figure A.3. Scatterplot showing distribution of diffusional syringe leaks for Flaminia samples 
collected for flux measurement.



-O
o _
CL

CD 
cn 
o

T" OQ.
X

00
o
cn

"O
_  a> 00
111 o

O
c

E
o

Ll

CM

O 1-
LU

CM
LU

CO
LULU

in
LU LU

( A q d d )  j Uf lOLUD p a p S J J O Q  0] 90lJ9J9JjlQ

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

A.
4.

 
Sc

at
te

rp
lo

t 
sh

ow
in

g 
di

str
ib

ut
io

n 
of 

di
ff

us
io

na
l 

sy
rin

ge
 

lea
ks

 f
or 

Fl
am

in
ia

 
so

il-
ga

s-
ph

as
e 

sa
m

pl
es

.



APPENDIX B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

F IL E : T H E D A T A .W B 1

U)00

v | CONTROL 3  |[ no  w oter cdded
E 
G 
A 
S

|[ no  fertilizer om m endm ent
Nominal Real time NITRATE mq N/kq soil AMMONIUM mq N/kq soil GAS PROFILES DDbv FLUX SOIL WATER TENSION m Bars

Time days 2cm 5cm 10 cm 20cm 40cm 2cm 5cm 10cm [ 20cm 40cm 2cm 5cm 10cm 20cm 40cm gNAa.d 2cm  I 5cm  I 10cm 120cm I 4 0 cm
Oh 0.0 16.68 44.14 4.06 2.11 0.45 6.98 17.45 1.13 1.06 0.20 371 375 401 423 468 2.10
30 mln 0.1
2 h 0.2
4 h 0.3
8 h 0.5
24 h 1.3 14.11 10.75 5.34 1.73 0.96 19.40 2.91 0.79 -0.26 0.45 340 421 405 512 573 5.70
60 h 3.0 2.28 11.20 6.55 1.66 0.51 0.89 5.16 1.92 3.11 0.29 326 364 391 439 473 4.00
144 h 5.9 322 343 358 395 442 •2.10
2 - 0 h 8.9 25.51 36.66 3.14 0.94 0.85 27.70 5.65 1.56 1.36 0.37 324 339 349 372 398 -0.90
2 -3 0  min 9.1
2 • 2 h 9.1
2 • 4 h 9.2
2 - 8 h 9.4
2 - 2 4 h 10.2 5.24 5.65 1.79 0.96 5.93 3.62 0.68 0.17 314 342 360 362 400 0.30
3 - 0 h 16.0 15.20 9.33 41.55 2.76 14.16 3.96 4.42 0.51 348 350 359 349 409 2.20
3 -3 0  min 16.1
3 - 2 h 16.2
3 - 4 h 16.2
3 - 8 h 16.4
3 - 2 4 h 17.1 0.48 26.47 7.07 4.10 19.25 0.41 26.02 1.66 2.68 12.93 323 331 344 374 387 0.60
3 • 48 h 18.2 310 328 329 323 384 1.20
3 - 7 2 h 19.2 329 320 335 339 346 8.30
3 - 9 6 h 20.2 382 370 382 399 407 8.20
3 -144 h 22.1 21.79 12.44 4.63 1.73 0.14 29.66 2.39 1.60 0.33 0.05 359 368 391 351 423 1.40

WATER FJI |[ IQ /lO /3Q rn m  w cter cd ded  3 0  fn=n b efo re tim es 0 .5 / 2 - 0 .5 / 3 - Q .5  h. |[ no  fertilizer om m endm ent
Nominal

Time
Real time 

days
NITRATE mq N/ka soil AMMONIUM mq N/kq soil GAS PROFILES ppbv FLUX

aNAta.d
SOIL WATER TENSION m Bars (average)

2cm 5cm 10cm 20cm 40cm 2cm I 5cm I 10 cm I 20cm 40cm 2cm I 5cm 10cm 20cm 40cm 2cm 5cm I 1 0 cm 20 cm 40 cm
Oh 0.0 14.04 10.50 6.66 1.11 0.47 16.13 1.51 2.05 0.50 0.23 331 346 376 402 429 3.93 149 161 181 149 107
30 min 0.1 29.47 10.65 11.03 1.04 0.85 7.21 2.29 0.61 0.60 0.03 337 371 389 420 431 4.62 3 4 53 148 106
2 h 0.2 22.66 12.33 7.60 3.01 0.66 13.17 2.34 1.70 0.59 0.32 336 379 405 407 413 8.74 15 8 32 138 108
4 h 0.3 27.86 0.76 5.20 2.77 0.55 22.16 0.77 0.69 0.40 3.58 333 384 427 470 437 6.36 23 23 35 128 105
8 h 0.5 0.94 8.19 6.16 3.11 0.00 0.86 12.57 2.25 1.28 ERR 347 387 457 493 532 4.29 31 35 39 117 105
24 h 1.3 2.02 6.96 8.06 13.45 1.51 2.34 3.36 1.56 15.01 0.63 317 335 390 473 500 3.56 202 105 77 71 107
60 h 3.0 12.33 16.05 15.32 2.88 1.18 6.25 9.95 8.48 1.18 2.39 325 356 394 464 475 -2.78 188 227 180 129 104
144h 5.9 332 347 349 416 429 5.80 604 711 403 209 105
2 - 0 h 8.9 17.78 11.84 9.62 11.78 1.28 11.70 4.04 2.27 3.39 0.77 320 336 370 391 0.72 322 590 437 216 96
2 -3 0  min 9.1 9.41 11.39 6.61 3.98 3.74 6.20 7.66 1.60 363 368 363 396 400 9.70 13 15 364 244 95
2 - 2 h 9.1 7.71 4.98 13.23 1.63 3.17 1.44 5.99 -1.03 356 362 389 418 406 9.06 45 47 334 231 112
2 - 4 h 9.2 29.46 14.27 6.96 2.60 8.01 1.07 3.46 2.29 340 349 358 396 409 4.80 77 86 288 241 116
2 - 8 h 9.4 28.54 17.92 13.19 5.24 10.84 11.46 4.09 1.18 311 324 349 389 398 3.51 91 130 293 245 119
2 • 24 h 10.2 17.94 28.35 14.75 1.88 16.77 31.47 4.05 0.88 316 333 346 354 417 6.63 164 141 183 98 13
3 - 0 h 16.0 28.32 21.33 13.05 2.10 0.89 32.27 11.07 1.57 2.32 0.34 337 336 358 378 390 3.85 153 108 367 328 103
3 -3 0  mln 16.1 9.93 2.96 3.27 1.59 11.32 1.89 1.27 -0.09 356 382 388 423 379 6.86 7 6 245 161 93
3 - 2 h 16.2 12.39 11.96 6.84 1.59 10.03 6.10 3.46 1.38 384 421 491 313 379 11.82 14 14 6 14 74
3 • 4 h 16.2 26.42 9.98 5.23 1.86 7.39 6.79 1.93 1.93 359 506 592 520 456 5.49 37 34 19 19 71
3 - 8 h 16.4 14.22 16.04 3.84 0.93 26.49 6.75 0.27 •0.14 323 351 386 466 458 2.50 49 41 27 26 67
3 - 24 h 17.1 1.59 1.69 7.97 23.79 0.19 0.96 7.76 35.20 325 338 376 424 422 0.89 124 60 37 37 54
3 • 48 h 16.2 319 330 353 364 396 3.35 210 97 109 54 53
3 - 7 2 h 19.2 327 328 362 316 411 7.60 187 89 117 65 56
3 - 9 6 h 20.2 333 347 366 403 402 1.94 136 134 110 74 25
3 -  144h 22.1 17.30 7.55 2.32 33.98 0.34 41.04 4.02 1.46 2922 1.11 338 368 388 371 465 3.58 34 32 40 68 23
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FILE: THEDATA.WB1

WATER F L 1 [[ n o  fe rti l iz e r  a m m e n d m e n t

Nominal
Time

Real time 
days

NITRATE m a N/kq soil AMMONIUM mg N/kq soil GAS PROFILES DPbv FLUX
gN/ha.d

SOIL WATER TENSION mBars (average)
2cm | 5cm 20cm 40cm 2cm | 5cm rlO cm 20cm 40cm 2cm ! 5cm 10cm 20cm I 40cm 2 c m  I 5 cm I 10cm 20 cm 40 cm

0 0.0 15.81 8.85 1.14 44.90 2.51 8.56 5.21 682 947 1073 1526 1533 219.34 37.9 30.5 32.0 32.7 36.0
0.5 0.1 16.56 11.60 16.69 2.21 1.83 1194 1758 1806 2288 2005 570.89 8.3 6.7 3.0 1.2 13.3
2 0.2 18.58 9.65 15.22 3.23 2.65 1664 2683 3188 5607 3337 446.30 16.3 13.0 12.3 3.5 12.1
4 0.2 24.68 8.22 35.02 2.04 2.42 1208 1879 3053 4937 3184 399.83 22.9 24.2 23.0 11.8 9.8
8 0.4 11.38 4.96 44.39 3.06 2.47 747 1878 2269 3801 3051 142.84 32.5 31.1 27.0 16.6 16.5

24 1.1 17.03 15.69 1.97 29.14 2.21 2.64 1.09 1256 3626 4152 7312 7034 330.98 78.4 48.6 39.8 28.9 28.5
48 2.1 15.17 9.27 5.52 41.52 3.73 1.54 1.11 1154 3032 4007 7382 8414 138.11 150.6 66.7 52.7 38.1 36.5
72 3.2 49.01 46.03 12.67 8.50 2.17 3.95 1.11 1303 2583 2972 4802 4796 •205.10
96 4.1 3.58 6.84 4.28 21.53 1.81 1.60 1.13 1253 3966 4636 6928 6832 250.17 19.4 20.8 19.5 7.9 8.1
144 6.1 5.06 8.62 3.31 36.97 2.18 2.01 0.87 791 2171 2605 5271 6207 373.14 57.5 36.7 33.3 20.8 25.6

NITROGEN F L 2 |[ d iss o lv e d  fe rti l iz e r  a m m e n d m e n t :  5 0 K q / h o  N itro g en  e q u iv a le n t N aN 0 3 ).
Nominal

Time
Real time 

days
NITRATE mg N/kq soil AMMONIUM mg N/kg soil GAS PROFILES ppbv FLUX

QN/ha.d
SOIL WATER TENSION mBars (average)

2cm I 5cm 20cm 40cm 2cm | 5cm 110 cm 20cm I 40cm 2cm I 5cm I 10 cm 20cm I 40cm 2 c m  I 5 cm I 10 cm 20 cm 40 cm
0 0.0 6.74 2.97 0.52 0.05 8.66 4.95 2.04 0.80 0.63 344 459 519 667 764 1269.62 37.9 30.5 32.0 32.7 36.0

0.5 0.1 49.43 22.82 11.94 4.41 3.41 1688 1766 1546 1097 1629 622.47 8.3 6.7 3.0 1.2 13.3
2 0.2 46.95 30.56 11.75 4.45 2.26 477 2079 2384 3401 39B2 871.80 16.3 13.0 12.3 3.5 12.1
4 0.2 40.66 10.71 14.74 2.85 2.38 458 750 1281 1492 3228.81 22.9 24.2 23.0 11.8 9.8
8 0.4 47.71 29.22 9.07 2.92 1.82 1421 1924 3274 7951 9984 463.53 32.5 31.1 27.0 16.6 16.5

24 1.1 33.63 46.50 23.18 3.33 7.24 34.46 1.28 441 702 949 1225 1296 4359.80 78.4 48.6 39.8 28.9 28.5
48 2.1 47.36 29.52 11.97 15.17 3.80 2.41 1.00 1345 1777 2125 8813 10168 372.81 150.6 66.7 52.7 38.1 36.5
72 3.2 11.41 16.05 0.80 46.65 3.06 1.49 0.93 1971 2399 2566 8331 9685 342.22
96 4.1 11.92 46.96 12.91 26.43 4.49 3.75 1.80 3662 4560 7473 16896 14663 817.22 19.4 20.8 19.5 7.9 8.1
144 6.1 10.04 50.01 2.32 4.07 3.04 1.84 2.66 1465 3317 5416 6755 8522 653.10 57.5 36.7 33.3 20.8 25.6
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CARBON FL3 || dissolved fertilizer ommendment: 250Kq/ho Corbon equrvolent glucose).
Nominal

Time
Real time 

days
NITRATE mq N/kq soil AMMONIUM mg N/kg soil GAS PROFILES ppbv FLUX

gN/ha.d
SOIL WATER TENSION mBars (average)

2cm I 5cm I 20cm 40cm 2cm | 5cm 10cm 20cm I 40cm 2cm I 5cm I 10cm 20cm | 40cm 2  cm 1 5cm I 10 cm 20 cm 40 cm
0 0.0 12.22 10.06 1.52 0.16 12.46 2.63 3.30 1.42 0.57 1263 1471 1891 2416 108.57 37.9 30.5 32.0 32.7 36.0

0.5 0.1 8.40 4.59 2.36 3.07 2.43 20767 14591 11381 3881 2470 13416.61 8.3 6.7 3.0 1.2 13.3
2 0.2 4.00 3.53 12.26 4.60 2.29 13021 49882 48782 31986 4728 30797.29 16.3 13.0 12.3 3.5 12.1
4 0.2 0.84 1.28 8.00 2.62 1.29 58895 69611 84593 57762 15545 15126.69 22.9 24.2 23.0 11.8 9.8
8 0.4 3.55 4.04 25.56 4.04 2.15 22404 32606 43100 35778 22174 6266.03 32.5 31.1 27.0 16.6 16.5

24 1.1 1.90 1.93 0.41 2.90 4.19 1.90 1.17 4644 11043 18642 26052 27608 0.00 78.4 48.6 39.8 28.9 28.5
46 2.1 5.92 9.37 8.69 5.74 3.53 1.42 0.98 1486 3382 6234 10728 14775 371.01 150.6 66.7 52.7 38.1 36.5
72 3.2 0.89 7.34 6.35 8.04 6.66 2.03 0.76 1590 3355 7035 9324 10360 209.67
96 4.1 2.07 4.85 1.88 40.51 6.09 2.66 1.09 2380 5875 8886 10850 10747 238.43 19.4 20.8 19.5 7.9 8.1
144 6.1 17.17 4.89 4.00 0.63 2.45 1.33 0.83 1024 1438 3104 1817 10819 401.47 57.5 36.7 33.3 20.8 25.6

a.

C +  N FL4 ([dissolved fertilizer ammendment: 250Kq/ho Carbon equivalent (glucose) + 50Kq/ho Nitrogen equrvolent (NoN03)
Nominal

Time
Real time 

days
NITRATE mq N/kq soil AMMONIUM mq N/kq soil GAS PROFILES ppbv FLUX

gN/ha.d
SOIL WATER TENSION mBars (average)

2cm I 5cm 20cm 40cm 2cm I 5cm 110 cm 20cm 40cm 2cm 5cm 10 cm 20cm | 40cm 2 c m  I 5cm I 10 cm 20 cm 40 cm
0 0.0 13.76 4.15 1.78 0.74 15.15 3.11 4.52 1.79 0.78 1106 2028 1181 3271 315.62 37.9 30.5 32.0 32.7 36.0

0.5 0.1 51.52 25.72 12.34 3.50 4.08 14349 13181 7241 4018 3557 3904.64 8.3 6.7 3.0 1.2 13.3
2 0.2 8.78 42.48 5.75 7.29 1.80 34579 37519 32491 15115 4619 19249.85 16.3 13.0 12.3 3.5 12.1
4 0.2 41.27 29.28 18.18 7.39 1.99 72914 77678 55373 15709 19282.06 22.9 24.2 23.0 11.8 9.8
8 0.4 49.63 24.91 10.31 3.02 2.74 42144 76565 105449 44894 30943 19380.46 32.5 31.1 27.0 16.6 16.5

24 1.1 47.83 29.75 7.13 12.81 2.83 2.62 1.45 4038 22601 40506 55705 69408 1534.64 78.4 48.6 39.8 28.9 28.5
48 2.1 47.92 24.97 1.17 7.85 5.77 1.86 1.50 32090 40808 15379 39952 39291 9676.62 150.6 66.7 52.7 38.1 36.5
72 3.2 52.76 52.15 1.98 25.94 2.84 2.34 1.01 13821 26164 35520 31296 22345 4545.42
96 4.1 3.30 10.00 9.76 47.01 4.47 3.23 1.08 8093 28914 73779 69663 32367 2423.18 19.4 20.8 19.5 7.9 8.1
144 6.1 20.14 43.55 12.20 9.08 2.95 1.21 0.77 2134 6547 8064 22054 23879 1226.09 57.5 36.7 33.3 20.8 25.6
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