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Foreword

Suppose U„c is the unital C *-algebra generated by the elements u,j, 1 < i , j  < n subject to 

the condition that the matrix (u,j) be unitary. McClanahan has shown that this C*—algebra 

has no non-trivial projections.

We prove a more general result for which the above is a special case. Our result applies to 

a wide class of C*—algebras.

In Chapter 1, we discuss some of the background material we shall need in our discussions 

later. We define decomposable functions and give a brief outline of some of their properties. 

We define decomposable functions of several variables in the second section of this chapter. 

Completions of the space of decomposable functions are given in Chapter 2 and we show 

that some of these completions are in fact equivalent.

We use decomposable functions to compute the A"—groups of some C*—algebras generated 

by elements satisfying certain relations in the first section of Chapter 3. In Section 3.2 we 

prove some results involving spaces with non-trivial projections.
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A BSTRACT

DECOMPOSABLE FUNCTIONS AND UNIVERSAL C*-ALGEBRAS

by

Llolsten K aonga 
University of New Hampshire, May, 1994

This paper deals with universal C*—algebras generated by matricial relations on the gen

erators, for example, the universal C ' —algebra with generators a,j, 1 < i , j  < n, subject to 

the condition that the matrix (a ,j) be normal and have spectrum in a designated compact 

subset K, of the complex plane.

The main thrust of the paper is to compute the A —groups of some of these C *-algebras 

and to determine when they contain non-trivial projections. In the above example, we show 

that the A '-groups of the algebra coincide with the topological A —groups of the set 1C. 

We show, in general, that if the algebra has a multiplicative linear functional, then the K -  

theory is independent of n, when the matricial constraints are fixed.

It is also shown that if the constraints are fixed and A n is the algebra with n2 generators, 

then the tensor product of A n with the algebra M„ of complex n X n matrices is isomorphic 

to the free product of A \  with M n.

Also in the example above, the algebra contains no non-trivial projections when n is not 

less than the number of connected components of K.  These results have also been extended 

to include the case in which the constraints are in several variables.



C hapter 1

P relim inaries

Throughout our discussion, H  denotes a complex Hilbert space and B(H)  denotes the set 

of bounded linear operators on H. The set of all real numbers will be denoted by R and 

the positive real numbers will be denoted by R + . We shall denote the set of all complex 

numbers by CD. The notation M  < H  means A t  is a subspace of H. Also A C B  will mean 

A is a subset of B. The notation a ~  b will mean a is unitarily equivalent to b. We shall call 

a complex polynomial p { x i , x i , . . . , x n) in the non-commutative variables n , X 2 , ■.. , x n a 

non-commutative polynomial.

1
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1.1 D eco m p o sa b le  F unctions o f  on e  variab le

Decomposable functions were created by D. Hadwin and introduced in [BFH]. They were 

studied in [H i], [H2], [H3] and [H4]. In this section, we present the basic theory of these 

functions.

D efin ition  1.1.1 Let H be a separable infinite dimensional Hilbert space. A decomposable 

function on U{#(Af) : M  < H ) is a function such that

i) ip(B(M)) C B (M )  V M  < H;

ii) i f T £  B(H) and M  is a reducing subspace of T , then M  reduces <p(T) and

<p(T\M) = v (T ) \M ;

iiij if M , N  < H, S  (E B (M )  and U : M  —* M  is unitary, then

ip(U'SU) = U‘<p(S)U.

A decomposable function is continuous if ip\B(M) is continuous for all M  < H.

D efin ition  1.1.2 A decomposable function is null-bounded in case it is continuous and

sup{||7’|| : <p(T) — 0 and T  e B (t2)) < oo.

The collection of all decomposable functions is a ^-algebra tha t is closed under composition 

and under limits that converge point-wise in the weak operator topology [H i, BFH].

It was shown in [HI] that a decomposable function <poa H  can be unambiguously defined at 

any operator T  on any Hilbert space We outline how this is done. First, suppose Hi is
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separable and infinite dimensional. Then choose a unitary operator U such that U : H\ —* H  

is one-to-one and onto. Since T  G B(Hi),  it follows that VTU*  G B(H). Define

<p(T) = Um<p(UTU*)U.

This defines a decomposable function on H\ and in fact the definition is independent of U. 

Indeed if V  : H  -* Hi is unitary, then

V m<p[(UV*)mT U V ] V  = < p(V V U *TU V 'V )  by iii) of Definition 1.1.1 

=  <p(U*TU).

If dimTfi < oo, consider T^°°^ G B ( H ^ )  and define <p{T) by

y,(T )( oo) =

To handle the case in which "H\ is not separable, we need the following two lemmas.

L em m a 1.1.3 Let E  C H  and suppose T (E )  C E. T h en T (E )  C E  andT(spanE)  C spanE.

P ro o f  Suppose h G E.  Then there exists a net hn in E  converging to  h. But T  G B(H) 

implies that T h n —* Th.  Since Th„ G E,  we have limn 77in G E. Therefore

T (E )  C E.

If e G span£ , then

e = ^  o,ei t G / ,  /  a finite set. 
e,eE

Since Te; G E,  we have Te = 'jTaiTei G span£.



This proves the lemma.

□

Lemma 1.1.4 I f  Hi is a non-separable Hilbert space and S  is a norm-separable subset of 

B(H i), then there is an orthogonal family {Hi, : i € /}  of subspaces of Hi such that 

I) Hi, reduces S  Vi £ I;

8 ) T * n Xl= H i ;

3) Hi, is separable.

P ro o f  Let T  £ S .  Let Q be a collection of subspaces of Hi  such that if Ad,A f € 6 ,  Ad ^  AT, 

then AdLAf  and Ad £ Q implies that Ad is separable and reduces T.  Let Z  be the set of 

all such Q's.

Since 0 £ Z ,  Z  is not empty. Order Z  by set inclusion. Let C be a chain in Z  and let AC 

be the union of all elements in C. If Ad £ K, then there exists Ko 6 C such that Ad £ Kq. 

Let Af £ K, A f Ad. Then there exists Ki £ C such that AT £ ACj. Since C is a chain, 

Ad,Af £ max(£o,ACi). Thus K £ Z  and clearly K, is an upper bound for Z .  So by Zorn’s 

lemma, Z  has a maximal element AC, say.

We claim that

spanAC =  H x.

Suppose the claim is not true. Then the span of the orthogonal space, span/C-1, of AC is 

nontrivial. Let e £ (spanAC)1 , ||e|| = 1. Let

Ade = {p (T ,T ’ )e : p (x ,y )  non-commutative polynomial }.
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Then < 'H|.  If h E M e. then

h = limpn( 7 \ r > .fl

Th = Iim T Pn(T ,T ')e  = lim Pm{T ,T ') .
ti m

So Th E M c- Similarly, T*h E A i r.

Since both Tp(T ,T ")  and 7’*p(T, T*) arc polynomials in T  and T*, applying the preceding 

lemma to M c we conclude that is a reducing subspacc for T.

Also the set of polynomials p(T, T*) with complex-rational coefficients, that is, with coef

ficients from Q + iQ  is dense in A fe. Thus A i e is separable. Since M e C (sp an ^ )1 , 

it is orthogonal to spanAC. So spanAC U {Afe} gives us an element that is larger than the 

maximal element in 2 ,  a contradiction. Therefore

spanAC = H\.

This means that we can write

W. = £  M .
M eic

a direct sum of separable Hilbert spaces. Thus T  = I'm  and we can thus uniquely

extend the definition of <p to any Hilbert space Hi.

□

The following results are proved in [H I, H2], and will play an important role in our dis

cussion.

Theorem  1.1.5 A function <p is decomposable on H  if  and only if  there exists a net 

< p \(x ,y )  > of non-commutative polynomials such that for all T  E B(H),  p \ ( T ,T m) —* <p(T)
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in the strong operator topology.

T heorem  1.1.0 I f T  G B(H), then W*(T) = {tp(T) : tp is a decomposable function on H}.

Proposition  1.1.7 Let tp be a decomposable function on H. Then the following are equiv

alent.

(i) tp is continuous;

(ii) tp(T) G C*(T) for every T  G B(H);

(iii) <p(w(T)) = n(tp(T)) for every T  G B(H) and every representation ir of C*(T,tp(T));

(iv) there is a sequence < p„(z, y) > of non-commutative polynomials such that ||pn(T, T") -  tp(T)\\ — 0 

uniformly (in T )  on bounded subsets of B(H).

The next result is a continuous analog of Theorem 1.1.6 (see [HI]).

T heorem  1.1.8 I f T  G B(H), then

C '(T )  = {tp(T) : p  is a continuous decomposable function on H}.

Thus if tp  is continuous, then <p(a) makes sense on an arbitrary C*— algebra, C*(a).

We apply these results to  prove the following

Theorem  1.1.9 Let A =  Yl%i ^« > T  = Ti where I  is an indexing set. Then A G C*(T) 

if  and only if  for all countable Iq C I ,  Y% .i0 G

P ro o f First suppose A G C ‘(T).  By [HI, Proposition 1.5],

C*(T) = {p(T ,T *): p(z, y) is a non-commutative polynomial }.

Thus since A G C*(T), we can find a net < p„(T,T*) > of polynomials in C*(T)  converging 

to • Now

p„(7\n = f > n(r,,7;).
*€/
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Taking pn( T , T *) to be zero except possibly for countably many », that is taking i 6 Iq or 

what is the same thing, repeating the sequence of pn’s> we get the right hand side.

Now assume the right hand side. T  = and we may take each 71,- to be defined on a

separable space. Suppose A C '(T) .  Then there exists c > 0 such that

c < d (A ,C m(T))

= inf M - p ( 7 \ n | |
p(*,v)

= inf sup ||>4,' -  pn(Ti,T')\ \  
n i

where {pn(x ,y )  : n > 0} is the set of non-commutative polynomials with complex-rational 

coefficients.

This means that for each non-commutative polynomial pn(x ,y )  over the complex-rationals, 

we can find an index i„ such that

f <  l l * „ - P n ( r , n,7 7 j | | .

Let 7o = {*n}- Then I q is countable and Ai <£ /0 Tf), a contradiction.

□

Corollary 1.1.10 I f  dimW = No and <p(T) € C*(T) for all T  6 B(H), then <p(S) 6 C*(5) 

for all S  on every Hilbert space.

P roof First, write S  = Yl%[ Si  where S,- is defined on a separable subspace for till i £ I. 

From the theorem,
© ©

^ (5 )  e  c* (5 )  o  < ?(£  Si) e C - ( J 2  Si)
i€ /o  *€ Io
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for all countable /o C /• But the right hand side follows by hypothesis since 5, is defined 

on a separable space and Yl%i0 Si is thus defined on a separable space since Iq is countable. 

Note that if K  is another Hilbert space with dimAC = No, then there exists a unitary 

operator U : K -* H. If S E B(K),  then U SU * E H. Let * : B(fC) -  B(H)  be defined by 

rr(S )  = U SU '.  Then tr is a ^-isomorphism and

T(v>(S)) = U<fi{S)V 

= <f{USU*)

e c'(usu').

But

C '( U S U ')  = C * (t(5 ))

= »(C -(5)).

So < p (S )e c m(S).

If dimAC — n < oc and S  G B(K),  write

S  = 5, © S2 ®  • • • © Sn © Si  ® • • • ©  S n ®  • • • 

and apply what we have just shown for dim £ = No-

□

In [H2], Hadwin proves the following theorem:

T h eo rem  1.1.11 (A sy m p to tic  D o u b le  C o m m u ta n t)  Let S  C B(T-{), S  countable or 

norm separable. Let T  E B{H) and dimW = Nq. Then the following are equivalent.



9

,) T  G C m(S);

ii) ||UnT  — TUn|| —*0 whenever < Un > is a sequence of unitary operators such that for all 

S  G 5 , ||f/„S -  S tfn|| -  0;

Hi) \\PnT  — TP n \\ —► 0 whenever < Pn > is a sequence o f  projections such that for all S  G S,  

||P„S -  SP„|| -  0;

iv) ||T /tn — >lnT|| —» 0 whenever < A n > is a bounded sequence in BCH.) such that for all 

5  G tS U S ' , ||Si4n -  i4„5|| — 0.

We conclude this section with the following theorems which we state without proof. First, 

some definitions (see [BFH, H I]).

D efin ition  1.1.12 Let S  C U {B (M ) : A i < H}. Then S  is a part class in case it is closed 

under unitary equivalence and every operator T  G B(7i) can be uniquely decomposed into 

the direct sum of an operator in S  (the S-part) and an operator with no suboperator in S  

(the non-S-part).

D efin ition  1.1.13 Two operators S  and T  are said to be approximately equivalent, denoted 

S  ~ a T  if  there is a sequence < Un > of unitary operators such that

\\u;sun -  r|| -  o.

T h eo rem  1.1.14 [H I, Theorem 5.1] Suppose S  C U {B (M ) : M  < H}, S  is a part class, 

and S  D B(H) is norm bounded. Then the following are equivalent:

i) there is a family T  of continuous decomposable functions such that 

S  = {S  : ip(S) = 0 v? G F };

ii) there is a continuous decomposable function rj) such that S  = { S  : ip(S) = 0};

iii) S  D B(H) is norm closed;
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iv) S  H B('H) is *-strongly closed;

v) there is a T  £ B(H) such that S  = ]Cmax(^)> where £ m a x (^ )  ,s fnaximal reducing 

operator spectrum of T  and is given by

y :  (T ) = U{y^(ff(T)) : x : C ’ (T)  —* B(H)  is a faithful representation}, 
max

The following versions of the above result will be very im portant in our discussion.

T heorem  1.1.15 Let S  be a part class and suppose that S u B ( H )  is norm bounded. Then 

the following are equivalent.

(i) S  is closed under norm limits;

(ii) S  is closed under ~ „;

(Hi) S  is closed under * —strong operator topology limits;

(iv) there exists a continuous decomposable function such that i f T  6 S, then <p(T) = 0.

T heorem  1.1.16 (C '-p r o p e r ty ) Let V  be a property of elements of unital C'-algebras  

that is closed under direct sums. Let m  £ R, and suppose that T  £ V  implies that ||T|| < m. 

Suppose that for each a E P  and each unital representation x o f  C m(a), we have x (a) £ V .  

Then there exists a decomposable function <p such that a £ V  if  and only if  <p(a) = 0.

Thus if A  is the universal C '—algebra generated by a, subject to a family of relations, 

then there exists a continuous decomposable function <p such that the family of relations is 

equivalent to  tp(a) = 0.
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1.2 D eco m p o sa b le  F un ctions o f  Several V ariables

We now extend the definition of decomposable functions to several variables [H4]. Let 

in £ Z+ . Define B(H)m by

B i n r  = {{Ax, A i , . . . %Am)- .A x, A 2  Am e B ( H ) } .

D efin ition  1.2.1 Let B ( M ) m be a subalgebra of B(H)m, where M  is an arbitrary subspace 

o f l i .  A decomposable function of m variables is a function

¥> ■ Um <h B ( M  )m -+ )

such that

1)  v ( B ( M ) m) c B ( M ) m;

2) if  A t , / t2, . . . ,  A m £ B(H), M  a subspace of  H and M  reduces A\ ,  /12, . . . ,  Am, then M  

reduces y{A\ ,  / t2, . . . ,  A m) and

v i A i , A z , . . . ,  Am) \M  = i p ( A \ \ M , A i \ M , . . . , A m\M)\

3) if  M  a n d N  arc subspaces o f H  and U : M  —► N  is unitary and A i , A j , . . . ,  A m £ B(Af), 

then

V{ U 'A XU, U ' A 2U V A mU) = Umv ( A u  A i t . . . ,  A m)U.

The function <p is (norm) continuous if <p\B{H)m is continuous (with the product topology 

on B(H)m). Also, we observe that all the results stated for decomposable functions of one
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variable translate into ones for decomposable functions of several variables with only minor 

changes. The following is an easy example of a  decomposable function of m  variables. Let 

p(z i>yi>a;2i Vii ■ ■ ■ >z mi J/m) be a non-commutative polynomial of 2 m variables and define tp 

by

p(A  \ , ^ 2 ). > > t^m ) — p( A i , j4j, . . . ,  Afnj Am).

Then tp is a  decomposable function.

The following result will be useful in the next chapter when we discuss completions of spaces 

of decomposable functions.

Let

T> =  {tp : tp is a continuous decomposable function of m variables}.

Let T  =  (T ,,T 2, . . .  ,Tm) G Let S n be the set of all operators T  G B(H)m such that

Ill’ll < n. Define || ||„ : V  -> [0 ,oo) by

II lln(v>) =  sup ||v>(T)||.
T€5n

Then

llvlln =  sup ||y>(r)||
T€5„

= II ®T65„ <P{T)\\

= H ^ r e s J I I

<  o o .

It is also clear that || ||„ is a seminorm on V.
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Define a metric on V  as follows

d(u> n j - V 1 II? 1 ~ ^ W i( ) +  v il li '

T heorem  1.2.2 The set V  together with the above metric is a complete separable metric 

space.

P ro o f  We observe that

ll^Vlln = sup \\<p'{T)v{T)\\
T €S „

= sup \\<p(Ty<p(T)\\
T e s „

= sup ||y>(T) | |2 
T £ S „

= M l

Let A = (Bt £S„T, where T  G Since <p is continuous, there exists a non-commutative

polynomial pn(x lt yl t . . .  , x m, ym) such that

Thus

ll(®re5n^ ( r ) ) - p „ ( 7 \ : r ) | | < ±
n



14

or equivalently,

I I V > - P l | n  <

Thus polynomials are dense in V  and taking those polynomials with coefficients in Q +  iQ, 

we conclude that V  is separable.

We will demonstrate the completeness of V  in the next chapter.

□



C hapter 2

C om pletions o f th e  space o f  

n on -com m u tative p olyn om ials

Let V  be the set of all non-commutative polynomials p(x i, yi ,X2 , j/2» • • • > x m,ym). We shall 

define several topologies on V  and show that the completion of V  with respect to some of 

these topologies give the same set.

Completions of the space of non-commutative polynomials give us a natural way to represent 

decomposable functions and in fact enables one to naturally extend the definition of a 

continuous decomposable function to  arbitrary C*-algebras.

15
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2.1 L ocally  convex  to p o lo g ica l vector  sp aces

In this section, we give a brief review of some topological results that we shall need later

in our discussion. The reader is referred to [KN] for a more complete discussion of the

background. We include proofs of some of the theorems here for completeness’ sake.

D efinition 2.1.1 Let (X, r) be a locally convex topological vector space. Then a net < x \  > 

is Cauchy i f  and only if  x \  — x^ —> 0 where X,p  6  V  for some directed set V  in which 

(>*uPi) < (A2, / i2) «  X\ < X2 and pi < p 2.

Theorem  2.1.2 [KN] Every locally convex topological vector space has a completion which 

is also a locally convex topological space.

P ro o f  Let .V be a locally convex topological vector space. Then the topology on X  is given 

by seminorms, say {/>, : i € /} . Let Ei  = {x € X  : pi(x) = 0}. For x  + Ei  € X / E i ,  let 

pi(x + Ei) = pi(x).  Then ( X / E i , Pi) is a normed space. Now ( X/ Ei ,  pi) is a completion 

of ( X / E i , pi). Put Y  = Ui£i (X/Ei ,pi ) .  Then Y  is complete. Indeed suppose < ya > is a 

Cauchy net in Y.  Then < y'a > is Cauchy in ( X / E i , pi) for all i € I.  Since ( X / E i , pi) is 

complete, < y'a > converges in ( X / E i , pi) for each i € I .  But this happens if and only if 

< ya > converges in Y . Therefore Y  is complete.

Let it ’. X  —> Y  be given by x(x)(t) = x + Ei. If x a —* x,  then

*■(*£.)(*) =  x a + Ei

-> x + Ei 

= *(x)(i).
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Thus 7T is continuous. Also tt is 1-1 since

jr(x)(i) = Ei o  x € Ei for all i G /

Pi(x) = 0 for all i G /  

<=> x = 0 .

Finally,

x(xa ) -♦ x(x) G Jr(X) &  * (*0)(«) — *(*)(*) V* E 1

x0 +  Ei -» x + Ei Vi G /

<=> Pi((*a -  * + £ .))  -►0 Vi G f 

O  Pi(xo -  x) -> 0 Vi G /  

xa —► x.

Thus it-1  is continuous and so x is a homeomorphism from Af onto x (X ) .

Put -Y = x( X) .

o

The next two theorems are modifications of an exercise in [KN]. We assume that X  and 

Y  are HausdorfT.

T h eo rem  2.1.3 I f T  : X  —* Y  is a continuous linear map, then there exists a unique map 

T  : X  —► Y , with T  continuous and linear such that T \ X  = T.

P ro o f  Let x G X .  Then there exists a net < x a >C X  such that x a -* x. Since T  is 

continuous linear and so uniformly continuous, < T x a > is Cauchy in Y  and thus converges 

there. Let T x  = lim oTxa. Note that the limit is unique since Y  is Hausdorff.
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T  is well-defined. To sec this, let < x a > and < yp > be Cauchy nets in X  both converging 

t o i g X .  Let £ = lima Tx0 and £ = ]impTyp.  Then

£ -  C = lim T x a -  lim Typ 

= Um(Txa - T y p )a,P

= lim T ( x a - y p )
a,0 

=  0.

Note that addition of nets in the preceding statements is as given in the proof of the pre

ceding theorem. Next, we show that T  is uniformly continuous. Let W  be a neighborhood 

of 0 in Y  and let V  be a neighborhood of 0 in Y  with V  = —V  and V  + V  C W.  Let U be 

a neighborhood of 0 in X  such that if x € X  and x £ U, then T i  6  K.

Such a neighborhood exists since if Uq C X  then Uo = U flX  for some open U C X .  Choose 

V  a neighborhood of 0 in Y  with V C W  and such that x 6  Uo implies tha t Tx £ K. Now 

if xo G Uo, then we can find a net x \  in Uo such that x \  —► xo- But this implies that 

T x  = lim,\ T x \  € V C W.  So T(U)  C W.  On the other hand if x G U then there exists 

a net x a G A' such that x a —* x. So eventually, x a G U ^  x a G U q . Thus there exists a 

subnet x ak £ Uo converging to x. But this means that x 6  Uo-

Let u £ X  with u G U and let < ua > be a net in X  converging to  u. Then for a sufficiently 

“large” a, ua £ U and so T u a £ V . Since T u a —> Tu,  for a sufficiently “large” a,

T u  £ T u a + V  

C V  + W  

C W.
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Thus T  is uniformly continuous.

Clearly T  is unique for if 5  also extends T  and if x a 6  X  converges to  x 6  X ,  then by 

continuity,

S x  = lim S x a
a

= lim T x a
a

= f x .

□

T heorem  2.1.4 The map f  is 1-1 i f  and only i f T  is 1-1 and i f  x a —* xo whenever < x a > 

is Cauchy in X  with T x a —► Txq.

P ro o f  (=>) W ithout loss of generality, we may assume T x q  = 0. Now since < x a > is

Cauchy in X , x a —> x for some x E X .  Continuity of T  implies that

T x a = f x a -  f x .

But we also already know tha t T x a —> 0. Since X  is Hausdorff, f x  =  0. Since T is 1-1, 

x = 0. Clearly T  is 1-1, being a restriction of a 1-1 map.

(<=) Suppose the converse is true and let f x  = 0. Since x £ X ,  there exists a net < xa >

in X  converging to x. Continuity of T  implies

f x a = T x a — 0.

Clearly < x a > is Cauchy in X  and so by hypothesis, x a —► 0. Since X  is Hausdorff, x = 0. 

Thus f  is 1-1. □
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2.2 C om p letion s o f  th e  sp ace  V

In this section, we plan to extend the idea of polynomials to a more general class of functions. 

This will enable us to get analogs of Theorems 1.1.6 and 1.1.8. We show that certain 

completions of the family of non-commutative polynomials are in fact equivalent. We shall 

restrict our discussion to decomposable functions of one variable but the results we present 

here apply to decomposable functions of several variables.

Let

V =  (p(x ,y) : p non-commutative polynomial}.

This is an algebra with involution. To get involution, because we know that for operators 

A and D, (AD) '  =  B m A", and (A/1)* = A/1*, we want x* = y and y* = x. Thus for example 

if p (x ,y) = 2 ix2y3, then

(2 ix V )*  = —2 ix3y2.

That is, interchange x and y, reverse the order of the factors and take the conjugate of the 

complex coefficients.

We now define several seminorms on the family V.  Let T  € BCH)- Define seminorms on V  

as follows.

0) Put \\p\\T = ||p(T ,7’*)||.

1) For n > 1, let

IIpIU = sup{||p ||r : Ill’ll < n, T  € B(H),  H  a Hilbert space}.

Let T  G f  £ H  and define

2) llpllr.r*,/ = ||p||r,/ + IIp IIt*,/-
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3) WpWt j  = \\p(T,T-)f\\.

Let V \  be the family of polynomials V  with the topology obtained from the family of 

seminorms given in ( 1); V 2 be V  with topology obtained from the family of seminorns in 

(2); V 3 be V  with the topology given by the family of seminorns in (3). Each of these V j ' s ,  

1 < j  < 3 is a locally convex topological vector space. By Theorem 2.1.2, each V j  has a 

completion V j  which is also a locally convex topological vector space. The elements in V j  

are equivalence classes of Cauchy nets in V j .

Note that in the above discussion, we have not said anything about the family (0) seminorms. 

The following result explains why we do not need to define a topology for tha t family of 

seminorns.

T heorem  2.2.1 The spaces Vo and V\  are equivalent.

P roof Let c > 0 and suppose po E V .  Put

Vi = {pE V  : | |p - p o | | r  < e}-

V2 = { p E V :  | |p -p o ||n  < f}-

If p E V2, then

||p -P o ||n  =  sup ||(p -p o ) ( r ,T * ) ||
imi<- 

< c.

This implies that ||(p -  po)(T,T*)|| < e for all T  with ||T || < n. So p € Pi and we have 

V2 C Pi.

Conversely, consider the subset B of all operators T  G B{12) such tha t ||T || < n. We know
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that all norms are equivalent on B. Take a ♦—strong dense subset of B, which we shall 

denote by Bd. If T  € B(C2), then we may write T  as a direct sum of operators. If S  is any 

operator with ||S || < n, there exists an operator S ' € B(t2) with ||S || = ||S '|| (see proof of 

Theorem 1.2.2). We have

ii ii„ = sup i i r t r . n i i  
imi<»

= sup iip(7\nn
T t B ( P )

= | |p ( 7 \ r ) | |  w r i te r  =

= llPllr-

Thus Vo and V\  are equivalent.

□

Thus we shall restrict our discussion only to the spaces Vj,  1 < j  < 3.

We observe that the map that sends Vj -1  —► Vj ,  2 < i < 3, is continuous. So by Theo

rem 2.1.4, it is one-to-one. Thus we have

Vi C V 2 C V 3.

Thus we get the following picture.

vx
1

•I v2
1

«2 r 3

11
Vi

«r
1

Vt *2
I

v3

We now extend the definition of a decomposable function as follows:
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Definition 2.2.2 Let C(Al)  be the set of  all linear transformations on A i ,  where A t  < H. 

The map : U»<w{B(A/()} —► UC(At) is a quasi-dccomposable function in case

a) <p(B(M)) C C ( M )  whenever A i  < H

b ) i f T  € B(H), At  < H  and A t  reduces T,  then A t  reduces y>(T) and <p(T\At) = <^(T)\At.

c) i f  A l ,  A  < H and S  G B ( A 1) and U : A  —► A l  is unitary, then ip(U'SU)  = Um‘p(S)U.

Proposition  2.2.3 I f  dimH = Ko and <p is a quasi-dccomposable function on H, then is 

a decomposable function on H.

P ro o f It is sufficient to show tha t <p(B(W)) C B{H).  Suppose not. Then there exists a unit 

vector x„ € H  such that

M T ) x n\\ > 2".

Let x = ( x u f  and put T<°°) = £ ® T . Then

oo > ||^ (T ‘~ )* )||a

= X > m ^ n
n =  1

°o 2n
> V ] —

"  n = l  »

= 00 a contradiction.

Thus <p(T) is bounded.

□

We shall also need the following lemma [KRJ.

L em m a 2.2.4 Suppose (I : H  X 7i —► C is linear in the first coordinate, conjugate linear 

in the second and for all (x , y ), there exists M  > 0 such that |/?(x,y)| < A/||x||||j/||. Then 

there exists a unique A G B(H) such that
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i) for all x , y  £ H, f3(x, y) = <  Ax,  y >,

ii) \\A\\ < M .

Here is a * -strong  version of [H i, Proposition 1.3].

P ro p o s itio n  2.2.5 I f  <p is a decomposable function on H, then there is a net < pn(x ,y)  > 

of non-commutative polynomials such that pn(T,T*)  —<• <p(T) in the *—strong operator topol

ogy for every T  £

P ro o f  Let ip be a decomposable function. Let e > 0. Let S  = {5 i, 62 , . . . ,  5*} C Let

/ ■ = { / . ,  A , Put 5  = £?<<<* Si, f  = Ef<,<fc f i • Then since *>(S) £ VP*(5), there

exists a non-commutative polynomial p(x, y) such that

||p (S ,5* ) / - < p ( S ) / | |< e .

Now because S  is a bounded set of operators, the norm, weak and *—strong closures of 

the set of such non-commutative polynomials are all equivalent. Thus we can find a non- 

commutative polynomial p(x ,y)  with

| |p ( 5 , 5 * ) / - ^ ( 5 ) / | |< f ,

and

||p (6 \S * )/-V > (S )7 ll< < .

Therefore for all h £ T ,  1 < j  < k,

M S ^ S D h - v i S j M K e ,
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and

M S j , s ; ) h - t p ( S j y h \ \  < c.

Put n = (S,  T ,  c), p„(x, y) =  p(x, y) and define

«?i C S2, T \  C T 2  & £1 > £2- 

Then < p„(x, y) > is a net and p„(T ,Tm) —̂ <p(T) *—strongly for each T  G B{H).

□

Suppose that <p G P 3 . Then we can associate <p with an equivalence class of Cauchy nets in 

TV say [< p \ ( x , y )  >] with < p \ (x , y )  > Cauchy in TV This means tha t for all T  € B(H),  

for all /  G W, < p \ ( T , T ’ ) f  > is norm Cauchy in H.  Since H  is complete, the net coverges 

to some element <p(T)f G H.

We are now ready to show the equivalence of the completions V 2  and TV 

T heorem  2.2.6

V2 = v3.

P ro o f  First, let £ G TV Then (  = [< pn(x ,y )  >]. For all e and all indexing sets I,  

< {pn(x,y)} > is norm Cauchy in TV Define

*(T)e = limpn( 7 \ r ) e
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where T  £ B ( l2), e £ I2. Then (  is well-defined. Indeed suppose pn(x ,y ), qm(x, y) are 

Cauchy nets in the same equivalence class with

(  = [< Pn(x,y)  >] and ( '  = [< qm(x ,y )  >].

Let T  £ B ( t2), e £ I 2. Then

a r ) e  = iim Pn( 7 \ r > .fl

£ '(T)e = lim 9m( 7 \ r > .
m

Now

i ( T ) e - l ' ( T ) e  = lim Pn(T ,T ' ) e  -  lim qm( T , T ‘ )e
n  m

= lim (pn( r , 7 ’> - 9m( 7 \ n e )
( n , m )

= 0.

We note that I ' . V i —* T ( B ( l 2), B( t2)), that is, £ maps Vi  into functions on B( i2).

Claim

{ = a  <$ (  = a.

P ro o f  of claim

(=>) Suppose (  = [< pn(x ,y )  >] and a = [< qm(x ,y )  >]. Then a = (  implies

a(T)e  = lim p„(7\ T')en

= \imqm( T ,T ' ) e
m

= t (T)e.
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(<=) Conversely, if d  = £, then

lim </m(7\T *)e = Yim pn(T,T*)e O  lim (qm( T , T ’ )e — pn(T,T*)e)  =  0.
"» n  ( n , m )

So < qm(x ,y)  -  pn(x ,y )  >G [0] which proves the claim.

If yj is a decomposable function, then given c > 0 there exists a non-commutative polynomial 

p(x , y) such that

llv5(7’)e — p(T,T*)|| < c and ||v (r)*e  -  p * ( 7 \ r ) e | |  < e.

Thus for any decomposable function <p, there exists { E V 2 such that

t  = V>\B(t2).

Now let a  = [< p \ (x , y )  >] and let d  : B( t2) —» B( t2) be given by

d(T )e =  norm lim p\{T,T*)e.

Let T  E B(H),  H  arbitrary. Let d (T ) /  = lim* p \ ( T , T ' ) f  with d |B( t2) = a.  Then d  is 

a decomposable function. To show this, first we note th a t if T  E B(H),  then so is d(T). 

Suppose not. Then for each n, we can find x n £ H,  | |i„ || < £ such tha t ||d(T )x„|| > 2". 

Let x = ( x i , i 2 ,. ■ ■) and let T^°°^ = Then

d (T<»>)* = ( y i , y 2 , . . . )

=  l im p A (r (oo), T (o° )* ) i



= l im(px(T,T’ )x t ,px(T ,T" )x2,.

So

y„ = W m p\(T ,T ‘ )xn

= &(T)xn.

Thus

00 > ||d(T (~))* ||

=

= 00 a  contradiction.

Thus 6 ( B ( M ) ) C  B (M ) .

If M  reduces T  and e £ Ti, then

~a{T)(M) = Ximpx{ T , T m)( M )  C M

and

&{T\M)e = Umpx( T \ M , T * \ M ) e  

= Kmpx( T , T ' ) \ M e  

=  'a{T)\Me.
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If M , N  < n , S e  B ( M )  and V : M  —► M  is unitary, then (for c € N )

~a(U'SU)e = lim p\(U 'SU,  UmS'U)e  

=  lim U’p\{S,  S*)Ue 

= V'&(S)Ue.

So a (U ‘SU)  = U'a(S)U.  Thus we have shown that q  is a decomposable function. 

To complete the proof of the equivalence of the two spaces, we show that

a = ( 3 & a = : j 3 < $ a  = (3.

We have already proven the second o .  For the first part,

(=>) Suppose q = (3. Then since a |# (£ 2) = a  and P\B(0)  = /?, we have 6  = fl.

(<=) Now suppose a = p.  Then on B(l2),

a  = P.

If 7i is an arbitrary Hilbert space, write

®

w = £ w>

where Hj  is separable and dimHj  =  Hq. Then Hj a  0  for all j  and so

a\b(h3) = m n 3).
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But since a  and /3 are decomposable functions and since any T  £ B{H)  may be written as

T  = Y , T j  Tj £

a  and f) must agree on H.  Applying [H i, Proposition 1.3] again but with P 3 in place of 

V 2 , we get a one-to-one correspondence of V3 with T>. So V3 and V 2 are equivalent.

□

Rem ark Let <p £ P3 . Then it follows from the above proof that for all T  £ B(H),  and all

/€ W,

T heorem  2.2.7 The map ip(T) : 7i —► H given by

V>(.T)f = ] im p \ ( T ,T ‘ ) f

is linear and bounded.

T heorem  2.2.8 Let V c be the set of  all continuous decomposable functions. Endow V c 

with the metric discussed in Section 1.2. Then

Pi  = Ve.

P ro o f  First we consider the case when T  £ B((2). Let (  £ Pi .  Then £ = [< p \ ( x , y )  >]. 

For all e £ t 2 and all indexing sets I ,  < {p\ (T ,T*)} > is norm Cauchy. Put

f(T )e  = lim PA (r,r* )e .

Then |  is well-defined and £ = (  if and only if ^ =  C- M <P € V c, then for any e > 0 and
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any operator T  in a bounded subset of B((2), there exists a non-commutative polynomial 

p(x,y)  such that

||p(T, T*) — <p(T)|| —► 0 uniformly.

Thus for any continuous decomposable function ip, we can find £ € V\  such that

i  = * w 2).

If a  = [< p \ ( x , y )  >], let d : B( l2) —► B( l2) be given by

d(T ) = norm lim p \ ( T , T m).

For an arbitrary Hilbert space 7i, define

&(T) = lim Ps ( T , T ' )

with

d | B(t2) = d.

Then d is a continuous decomposable function. We also note that if a = 0,  where a  is as 

above and /3(T) = norm-lim/1^ ( T , r * ) ,  then

a(T )  = lim px( T , r )  

= lim fc.(r,7”)

= P.
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Conversely, we note that a  = 0  implies that p \(x ,y )  — qt,(x,y) belongs to the equivalence 

class [0].

Also, since d|f?(f2) = d and 0\B ((2) = 0, equality of d  and 0  implies equality of d and 

0. Conversely, if d  = /3, then on B (t2), a  = 0. For an arbitrary Hilbert space, we apply 

Lemma 1.1.4 to write H  as a direct sum of orthogonal separable subspaces < H } > and we 

get that d = 0  on B(7ij) for all j .  Since q  and 0  are (continuous) decomposable functions 

and since any T  may be written as T  = Y l fT j ,  where Tj 6 H(W; ), it follows that d and 0  

must agree on H. Thus V\ and V c are equivalent and the theorem is proved.

□

W hat we have shown in the preceding results is that the diagram below commutes.

V x

1

v 2

1

v 3

1
1

A
*i

1

v 2 •a
1

A

[hi J/l2 j/»3

? m 2))
id

? W 2))
id

We observe also that the maps hj, 1 < j  < 3 are all one-to-one and so «i and i2 are also 

one-to-one. Our results show that h2 ai>d ^3 bavc the same range. It follows from this that 

the map i2 is onto. Also note that the inclusion ranhi C ran/»2 is strict.



C hapter 3

F in ite ly  generated  free 

C *-a lgebras

In this chapter we will study free C*—algebras generated by elements satisfying certain 

matricial relations. We shall compute the A"—groups of some of these C *-algebras and 

determine the conditions under which they have no non-trivial projections.

Throughout our discussion, R ep(.4 ,5) will represent the collection of all representations 

from A  into B, where A  and B are C ‘ ~ algebras. The collection of all representations from 

the C — algebra A  to  B{H) will be denoted by Rep(.4,W).

33
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3.1 A'—th eory  con seq u en ces

Let A  be a C *-algebra generated by a t ,a 2, . . .  , a m subject to relations that are closed under 

representations, direct sums, norm limits and summands and such that if A i , / t2, ■ ■ •, A m is 

a collection of operators on a Hilbert space satisfying the same relations, then there exists 

a unital representation n such that ir(aj) = A j, 1 < j  < m.

D efin ition  3.1.1 The C *—algebra A  satisfying the defining condition above is called a

universal C ’ —algebra.

Let tp be a null-bounded decomposable function (see Definition 1.1.2) of m variables. Define 

Fn.tfi to be the universal C*—algebra generated by {aij*}, 1 < i , j  < n , 1 < k < m

subject to the condition that v,((a*ji)»(a ij2), • • • » ( a i2m ) )  = 0- The notation will denote 

the universal C *-algebra generated by the elements a j , a 2, . . .  ,a m subject to the condition 

that ip(ai,a2 , . . . , a m) = 0.

We note here that makes sense only for null-bounded decomposable functions. To see 

this, suppose <p is a continuous decomposable function and suppose that {Tn} is a set of 

operators such that ||T„|| > n for each n and >p(Tn) = 0. Let — C*(a) where for each

n, there exists a representation jrn such that trn(a) =  Tn. Then n < ||Tn|| < ||a|| which is

clearly a contradiction.

From [H I, Corollary 3.2], we get

T h eo rem  3 .1 .2  A collection o f free relations on a set a i , a 2, . . . , a m of generators can be 

represented as a single equation <^(ai,a2, ..  . , a m) =  0, where ip is a null-bounded decompos

able function o f m  variables.

Thus the universal C m-a lgebra generated by a i , a 2, . . .  ,a m subject to  the given relations is 

isomorphic to T v .
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Here are some examples of universal C*-algebras.

Exam ple 3 .1 .3  Consider the C '-algebra generated by a t , a j , . . .  ,a m where

]£ [ (« .« ' -  U2 + (a>’a ' ~ ! )J] = °-
1=1

This is C *(Fm), the C ' —algebra generated by the free group on m generators.

If we put ip(ai,a2, . . .  ,a m) = 53™i((a ia * -  1)J +  (n*ai -  1 )2], then ip is a null-bounded 

decomposable function of m variables and annihilates every element satisfying the defining 

condition of the above C *-algebra. Thus this C *-algebra is isomorphic to

Exam ple 3 .1 .4  (T h e C untz algebra) Let

m
Om = : v-Vi = 1, J 2 ViVi = !})•

1=1

Here, wc define a null-bounded decomposable function <p by

<p(vu v2 , . . . , v m) = ( £ | 1  -  W*V,-|) + I 5 3  »,■!>,• -  1|.
|=1 1=1

If i> i, v2, . . . ,  vm satisfy the conditions defining the Cuntz algebra, then ^ (» i, v2, . . . ,  vm) =  0. 

Thus in this case Om is isomorphic to

Exam ple 3 .1 .5  Let 0 be an irrational number and suppose that u and v are unitary el

ements of some C ' —algebra such that uv = e2n,tvu. Then we get the irrational rotation 

C ' —algebra

A e = C '(u ,v ) .

We observe that in this case, Ae is isomorphic to where <p(ai,a2) = |ai«i2 -  e2*'6a2a\\.
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Exam ple 3.1.6 Let K  be a compact subset o f (Dm. Let

fm,K  =  C * ( i 4 i , i 4 2 , . . . , i 4 m )

xvhcre A i ,  1 < i <  m ,  are commuting normal operators with joint spectrum in the set K .  

Then T m<K a universal C" — algebra.

We note here that T \ =  C ( K ) ,  the continuous functions on K .  If we take K  to be the 

unit circle, we get the following example of a universal C*—algebra studied in [M cl].

Exam ple 3.1.7 Let U™° be the C*—algebra generated by {a.j}, 1 < i , j  < n, subject to 

the condition that the matrix (a,j) be unitary.

Before we give our last example, we need the following definition.

D efin ition  3.1.8 Let T  6 B{H) be a contraction. Then T  is called C '—universal i f  for  

any contraction S , there is a * — homomorphism n : C*{T) —* C m(S) such that it(T) = S.

E xam ple 3 .1 .9  Consider the universal C* — algebra generated by the elements {a;; },

1 < i , j  < n subject to the condition that ||(a ,j)|| < 1. Define by

<p(a) = 1 — a*a — |1 — a*a|.

Then ip is a continuous decomposable function and y>((fli;)) = 0. Thus C*(a,j) ~  T n,v  

We shall now give the definition of the concept of free products of C*—algebras (see [M cl]). 

Let A  and B  be C*-algebras and suppose C is a subalgebra of both A  and B. For each n,

1 < n < No, let H n be a Hilbert space with dim?fn =  n. Let

3  - {Tln : dim7f„ =  n, 1 <  n <  Kq}.
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D efinition 3 .1 .10 We define the free product o f the C* —algebras A  and B over the sub

algebra C, denoted by A  *c B by

A * c B = C *(*(A )U p(B ))

where f  is the direct sum o f all it € Rep(A ,H ), for all M 6 3 . Similarly p is the direct sum 

o f all p € Rep(B, H).

From this definition, we observe that the defining property for A*cB  is tha t if ir € Rep(.4, "H) 

and p € Rep(S, H) such that Tt\C = p\C, then there exists a  € Rep(^4 *c B ,H )  such that 

o\A  -- n and o\B  = p.

In [M cl, Theorem 2.3], McClanahan shows that if a unital C*—algebra A  has a unital 

^-homomorphism into the set of complex numbers, then the K -groups of Mn *Qi4 and A  

are isomorphic. We use this result to compute the /(-groups of f n,<p- 

The next result is a version of Paschke’s result given in [M cl].

T heorem  3.1.11 There exists a *-isomorphism a  : T n<v ® M„ —* * M n so that o\M n

is the natural inclusion o f M n into * Af„.

P ro o f  Let u be a  generator for and put

n

ua = H
k=1

where er8 is a matrix unit of M n. Put
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Then

v = (ejj) diag(uKe.j) 1 < i , j  < n 

= W  diag(u)W

where W  = (e;j). We observe that

W  = W ‘ = w~x

ThllS C *((t ly ))  ~  C’(u). 

Also

UijCrs = ^ 2 (e kiuejk )er 
k=l

and

— er<( ̂  J
k=l

“  CriUCj«.

Therefore Uij 6 M the commutant of M„. So there exists a ^-homomorphism

P ■ -+ C m({uij : 1 < i , j  < n})
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such that p (l)  = 1, and p(vij) = Uij. We also know that there exists a *-homomorphism 

(the inclusion map)

t : M„ —* * M„

such that

*(e i j )  =  eij-

Therefore it follows from the definition of tensor products that there exists a unique 

^-homomorphism

r  . , ? * ® M n ^  ̂Afn

such that

t (o  <g> b) = p(a)i(6).

We show that ir is both one-to-one and onto.

Since

diag(u) =  eauejj 
i,j=i

n

= E
»,i=si

= E 
•,>=!

we have that

ranjr = C*(ran/> U rani)

= C*({v.ij : 1 < i , j  < n ) U {ers : 1 < r , s <  n}).
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Thus 3T is onto.

To see that 7r is one-to-one, first observe that (Vij) 6 ^ n,̂ » ® A/n ftnd

So there exist Miomomorphisms p\ and p2 ,

P i  ■ - *  ® M n

p2 : M„ -» ® A/„

with

P l ( l ) = l ,  P l ( u )  =  (v;>).

Pa(l) = l, P a M ) = l ® / t .

We also have a ^-homomorphism

P  • T ^  * A/n ► ^ri,(^ ® -^n

such that

Now

and

P k ,  = Pi and p |Mn =  P2-

p  O 7r(v,j ® 1) =  Vij  ® 1.
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p o 7r( 1 0  A)  = 1®/1.

And the proof is complete.

□

We note that the relative commutant of M„ in ® M„ is isomorphic to the relative 

cominutant of ^{T n^  ® Af„) in ♦ A/n. But the commutant of T n,v ® Afn is T n,v © 1 

which is isomorphic to T n^ .  Thus we have

C o ro lla ry  3.1.12 T n is isomorphic to the relative commutant o f * A/„.

□

The following theorem is due to McClanahan [M c l, Theorem 2.3].

T h eo rem  3.1.13 Suppose A  is a unital C ‘  — algebra and suppose

a  : A  —  CD

is a unital *-homomorphism. Then

Iij{A  * Af„) 2  K j ( A )  for j >  1, j  = 0 ,l .

□

Applying the above theorem, we get the following corollaries to Theorem 3.1.11.
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C o ro lla ry  3 .1.14 Let be a null-bounded decomposable function and suppose admits 

a multiplicative linear functional. Then

K j ( r n„ ) = K j(? v ) j  = 0,1.

□

C o ro lla ry  3 .1.15 Consider the C* — algebra J-n,v given in Example 3.1.9 which is generated 

by the elements {a,j} subject to the condition that ||(a;j)|| < 1. Then

K j ( r n„) = K j(C *(T))

where T  is a C ' — universal operator.

Since

K j(C *{T)) = Kj{<£), j  =  0,1, (see [FH , Theorem 3.3]), 

we get K o i^ n ^ )  = Z and K \{T n^ )  =  0.

C o ro lla ry  3 .1.16 Let K  be a compact subset o f the complex plane. Then 

K j ^ n jc )  = K j{T x,K) = K j(C (K )), j  =  0,1.

□

□

The next result is due to McClanahan [M c l, Corollary 2.4]. We note that in our notation, 

U„c =  f „ j ,  where T  is the unit circle (see Example 3.1.7).
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C o ro lla ry  3.1.17

Kj (U™) = Kj (C(T) )  = Z

□

Consider the C*—algebra C*((fly))» 1 < i , j  < n subject to the condition that 

(a*j)(d{j) = I .  If we define ip by

<p(d)  = |1 -  a*a|,

then this defines a null-bounded decomposable function and we have C *((a;j)) ~  T n,v

When n — 1, we get ~  T , the Toeplitz algebra. The algebra T  is generated by the

unilateral shift [NW ], Hence we have 

C o ro lla ry  3 .1.18

K o ^ )  = Z

dnd

K l ( ? n „ )  =  0.

□

Note: Suppose A  is a C *—algebra and suppose a € A . Consider the class of all operators 

T  such that there exists a representation jt : C*(a) -► C ’ (T), jt(1) =  1 and x(T ) = a. This 

class is defined by a null-bounded decomposable function <p so that <p(T) =  0 if and only 

if T  is in the class. Then C*(a) ~  Let T n^  be the universal C *-algebra generated 

by {a,j}, 1 < i , j  < n subject to the condition that <p{(dij)) = 0. Then there exists a
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representation n : C*(a) —► C*({a,j}), with t(1 )  = 1 and t(o )  = (n(J).

Thus for example if a is normal, C '(a )  ~  C(o(a)) ~  -7>(0)- Now C m(a) admits a multiplica

tive linear functional, so K j(C '(a ))  = K >(C*({al ;}).

We can get similar results for other classes of operators such as hyponormal, hcrmitian, and 

subnormal operators.
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3.2  P ro jec tio n less  Spaces

In [M cl], McClanahan studies the unital C ‘ —algebra generated by the elements , 

1 < i , j  < n  satisfying the relations which make (u,j) a unitary matrix. It is shown that this 

C "—algebra has no non trivial projections. Also, Froelich and Salas show in [FH , Theorem

1.3] tha t if T  is a C *—universal operator then C*(T) has no non-trivial projections.

In this section, we use decomposable functions to  prove a more general result for which the 

above are special cases.

D efin ition  3.2.1 Let ip be a null-bounded decomposable function of m  variables. Define 

g n,{fi = {T  = (Tu T2 , . . . , T m) e M n(B(e)2) r  : <p{T) = Q}.

Let

0„,*,e =  {T  G Qn,v  : C ‘({Tu T2 , . . . , T m} ) r \M n(K {l2)) =  {0}}.

We are now ready to  prove the main result in this section.

T h eo rem  3 .2 .2  Suppose <p is a null-bounded decomposable function o f m variables and 

every connected component o f Gn^ , t  contains an element ((6tJi), (b{j2) , . . . ,  (bijm)) such that 

C'({b,jic 1 < i , j  < n, 1 < k < m}) contains no non-trivial projections. Then T n^  

contains no non-trivial projections.

P ro o f  Since T n,<p is a separable C*—algebra, there is a faithful unital representation 

* • > B (l2) such that -k is unitarily equivalent to ir ® ie ® • • •.

Let {aijk : 1 < i , j  < n, 1 < k < m ) be the generators of with
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'p({ai j \ )’ (a t>2)> • • ■ t (flijm)) — 0- Let

T  = ((’r(a,-ji)), (?r(aij2 )), • , (’r(a i>m)))-

Since tt ~  n ® 7r © • ■ clearly T  E Gn,v,e- Let £  be the connected component of Qn,v,t 

containing T  and let 5  = ((fr.yi),(^.>2)7 • • ■ A hjm )) € £  be an element such that

A  =  C*({bijk : 1 < i , j  < n, 1 < k  < m})

contains no non-trivial projections. Let C denote the C *-algebra of bounded norm contin

uous functions g : £ —<■ B (l2) such that g(S) E A . For 1 < i , j  < n, 1 < k < m, define 

Oijk : £  —> B(£2) such that for each A E £ ,

A = ((a ijt(A )) ,(a ij2( A ) ) , . . . , ( a ijm(A))).

Then o ,^  E C for 1 < i , j  < n, 1 < k < m  and

V,(((°I.;1)»(a ij2)t • ■ ■» (a 0’m))) =  0.

Thus there exists a unital representation p : —* C such that

p(aijk) = otijk for 1 < i , j  < n, 1 < k < m.

Since evaluation at T  with p  is t ,  that is, p(aIJt)(7 1) = Jr(a,j*), p must be faithful.

The proof is completed by showing that C has no non-trivial projections. To see this, suppose 

P  is a projection in C. Then P (S)  is a projection in A. Thus P (S) =  0 or P (S )  =  / .  By
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considering I — P  if necessary, we may assume that P (S)  = 0. Let h : €  —► {0,1} be defined

•>y

g ( A)  =  | |P(/4)| |.

Then h is a continuous function and so h(£) is a connected subset of {0,1}. Since h (S ) = 0, 

h must be identically 0. Thus P  = 0.

□

R em ark : The preceding theorem remains true if </„,*>,e >s replaced by To see this,

let m  = 1 and note that the component £q of Gn,^,e containing an element T  contains the 

closure of the unitary orbit of T . It follows from Voiculescu’s theorem [H3] that the closure 

of the unitary orbit of T  contains an operator unitarily equivalent to T I°°) = T  ® T  ® • • 

The map A *—■ defines a map from (7„iV to Gn,v,t that maps the connected component 

£\ containing T  in to Thus £{°°* C £o■ If A  contains an element (6,^) such

that C"({bij 1 < i , j  < n}) contains no non-trivial projections, then € £q and

C * ( : 1 < *,j < n}) also contains no non-trivial projections.

Our first application of Theorem 3.2.2 is the result of Froelich and Salas [FH , Theorem

1.3]. In [FH], a C ’ — universal operator T  is defined by the single relation ||T'|| < 1. Thus 

C '(T )  = where

<p(a) = 1 — a 'a  -  |1 — a*a|.

Note that ||a|| < 1 if and only if <p(a) = 0. In this case

= {T  e Mn(B (0 ))  : ||r||<l}.

Clearly, QniV, is connected and contains 0, whose matrix elements belong to the projectionless
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C""-algebra (SI.

Corollary 3 .2 .3  Ifip(a) = 1 —a * a - |l - a * a |,  then T n%l4) contains no non-trivial projections.

□

A similar argument applies to the C*-algebra generated by a j ,a 2, . . .  , a m subject to the 

condition that ||ajt|| < 1 for 1 < k < m.

Corollary 3 .2 .4  I f  <p(a\,a2, . . . , a m) = 2UT=i(U ~ a I a*l -  (1 -  a I a*))» then I F c o n ta in s  

no non-trivial projections for n = 1 ,2 ,__

□

In [Ch], M-D Choi proved that the C *-algebra of the free group on m generators contains 

no non-trivial projections. This C m-algebra is T v with

<p(au a2 , . . . , a m) = |1 - a j a * |  +  |1 -  a*a;|.
k=i

In this case,

On,* =  { (T i,T 2, £ Mn(B(e2))m : T i , l 2 , . . . , T m unitary}.

Since the set of unitary operators is connected, Qni<p is connected and contains ( / , / , . . . ,  I).



C o ro lla ry  3.2.5 I f

m
<p(au a2 , . . . , a m) = |1 -  amkak| + |1 -  0 *0 *1,

*=i

then Tn,v> contains no non-trivial projections for n =  1 ,2 ,__

□

We now turn our attention to a generalization of McClanahan’s result on U ^c mentioned 

in the introduction to this section.

Suppose K  is a subset of <Dm. We know from [HI] tha t there exists a continuous decompos

able function p  of m  variables such that p (a \,a 2, . . .  ,a m) = 0 if and only if a i ,a 2l. . .  ,a m 

are commuting normal operators with joint spectrum contained in K . For this p , we denote 

3~n,<p by Mn,K• Note that if n = 1 and K  is the unit circle, then N n,K Is the C*—algebra 

U„c in [M cl]. For notational convenience, we restrict ourselves to  the case in which m  = 1. 

However, our results are true for arbitrary 1 < m < oo.

L em m a 3 .2 .6  Suppose K  has p connected components, 1 < p < n < oo. Then every 

connected component of (7„iV, contains a matrix d ia g ( \ i l , \ 2 l , . XnI).

In the statement above, diag(ai, a2, . . . ,  an) stands for the diagonal matrix

/  \
A , /

X 2 I

A 3 /,

whose only non-zero entries appear along the main diagonal.
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P ro o f  Suppose T  £ Gn.^.e and £  is the connected component of Gn.v.c containing T. Since 

the set of unitary operators is connected, €  is closed under approximate equivalence. But 

C ' ( T )  (1 K ( l 2) = 0 implies that T  is approximately equivalent to  a diagonal operator D 

such that

D = D © /?©•■• = D{ooK

Let A '|, A'2, . . . ,  h'p denote the connected components of A' and let a ; £ A-,, 1 < 1 < p.

Then since p < n, D is unitarily equivalent to

/  \
Di

D2

with <r(Di) C A',,, Z?, diagonal and

Di ~  d \°°^ for 1 < i < n.

Note that for each integer r  > 1, and each K i , the set of diagonal operators of the form 

diag(A{°°\ Aj00̂ ,. . . ,  a£°°*) with Aj, A j,. . . ,  Ar £ Ki is homcomorphic to the cartesian prod

uct of r copies of Ki and is therefore connected. Since the set of unitary operators is 

connected, the set 2?i r  of all diagonal operators A such that A 2; A^°°^ and has finite spec

trum contained in Ki and card<r(/l) < r  is connected and contains a , / .  Thus the norm 

closure of the union of the Z>,,r ’s which is the set of all the diagonal operators A such that 

A = i4i°°i and a(A) C Ki is connected and contains a , / .
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Thus the connected component £  which contains D  must contain d ia g (a „ /,  o SJ/ , . . .  , o , n/) .

□

T h eo rem  3 .2 .7  I f  K  is a nonempty compact subset o f <Dm with p connected components, 

and if p < n < oo, then Afn,K contains no non-trivial projections.

□

C o ro lla ry  3.2.8 I f  K  is connected, then N n,K contains no non-trivial projections for all 

n > 1.

□

E x am p le  3.2.9 Suppose K  has two components. Then Afn,K = C ( K )  contains a non

trivial projection.
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